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Preface to ”Climate and Atmospheric Dynamics and

Predictability”

The state of the weather and climate is largely defined by the interactions between the various

components of the climate system (atmosphere, hydrosphere, land surface, cryosphere, biosphere).

The understanding and the prediction/projection of the atmospheric and climate dynamics (i.e.,

how the natural laws determine the weather and climate) are essential for life, property and

environment. High-impact weather systems, low-frequency oscillations and their climatic variability

exert a significant influence on humans and their activities. Over the last few decades, the advances

in weather and climate numerical models and the increase of computational resources have resulted

in a blooming of weather forecasting and climate research, allowing for more effective planning and

preparedness against adverse weather and climate change.

This Special Issue was mainly devoted to collecting observational, theoretical and modeling

studies on the dynamics of the atmosphere and the climate system, as well as on their predictability

at different spatiotemporal scales.

Ioannis Pytharoulis, Petros Katsafados

Editors
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Abstract: The objective of this work is the development of an automated and objective identification
scheme of cold fronts in order to produce a comprehensive climatology of Mediterranean cold fronts.
The scheme is a modified version of The University of Melbourne Frontal Tracking Scheme (FTS),
to take into account the particular characteristics of the Mediterranean fronts. We refer to this new
scheme as MedFTS. Sensitivity tests were performed with a number of cold fronts in the Mediterranean
using different threshold values of wind-related criteria in order to identify the optimum scheme
configuration. This configuration was then applied to a 10-year period, and its skill was assessed
against synoptic surface charts using statistic metrics. It was found that the scheme performs well
with the dynamic criteria employed and can be successfully applied to cold front identification in
the Mediterranean.

Keywords: cold fronts; climatology; Mediterranean; identification scheme; Frontal Tracking Scheme
(FTS); MedFTS

1. Introduction

Cold fronts are significant components of the weather and climate systems, and can be closely
associated with extreme events. The passage of a cold front is indicated by, and associated with,
substantial variations of temperature, humidity and wind. The identification of cold fronts has attracted
more scientific interest than their warm counterparts because of their more discrete character and their
connection with severe weather phenomena [1–6].

Despite the availability of numerical prediction and analysis models, the manual identification
of fronts on weather charts is a time-consuming process that introduces a high degree of subjectivity,
even for an experienced operational meteorologist [7,8]. The complexity of the task dictates that the
compilation of frontal climatologies by manual methods is not feasible. Hence, there is practical and
scientific interest in developing automated schemes to create such climatologies from observed data,
reanalyses, and climate model outputs [8]. The advantage of automated detection methods is that they
are objective, reproducible, and fast.

The majority of such objective and automated front identification methods in the literature use
thermal criteria [6,9–13]. Most of these studies focus on large-scale fronts that develop and move
across vast areas of oceans and continents. Thus, their identification is facilitated by the large scale of
fronts and the homogeneity of surfaces. However, verification of these algorithms has shown that
the recognition of the frontal surfaces, taking into account only temperature gradients, is inadequate

Climate 2019, 7, 130; doi:10.3390/cli7110130 www.mdpi.com/journal/climate1



Climate 2019, 7, 130

in many cases for complex features [14,15]. Some of these methods are used routinely in weather
forecasting [16], whereas others focus on extreme events, such as widespread fires [17]. A number
of automated algorithms have been applied in order to generate frontal climatologies for southwest
Western Australia [18], for the globe [7], and for the Southern Hemisphere [19,20].

Since the Mediterranean Sea is a closed basin surrounded by complex topography, its fronts tend to
exhibit small spatial and temporal scales, as well as complicated kinematic and thermodynamic features
during their lifetime [21]. Climatological studies focusing on the Mediterranean fronts are relatively
few, and the early studies were based on subjective approaches utilising synoptic surface maps [22].
The investigation of a nine-year period (1971–1979) of daily charts [22], demonstrated that fronts
appear very frequently in the Mediterranean throughout the year with maximum frequency one every
seven days in winter. While identification schemes have been applied to diagnose the climatologies
of cyclonic [23–25] and anticyclonic centers [26] in the Mediterranean, there is no corresponding
application for the analysis of cold fronts.

The objective of this study was to develop and evaluate a scheme for the identification of cold
frontal systems in the Mediterranean basin which is based on the Frontal Tracking Scheme (FTS) [19].
In Section 2, the scheme and the modifications performed are presented in brief, while in Section 3,
typical results of the sensitivity tests are given for specific high impact cases connected with cold fronts
passages over the Mediterranean. In Section 4, a statistical validation of the scheme for a decade is
given and, finally, in Section 5, the main conclusions are summarized.

2. Description of the Identification Scheme

FTS was developed at The University of Melbourne, Australia [19], and has been used for the
climatological study of Southern Hemisphere cold fronts. Unlike other similar schemes which use
thermal criteria [7,10,16], FTS uses only wind-related criteria to identify fronts and has proved to
work well compared to the other schemes. More specifically, thermal based methods are known to
have difficulties identifying fronts in the areas of high temperature contrasts, such as coastal areas
and regions with elevated topography [15]. Hence, the Mediterranean region would be a particularly
difficult site for frontal identification using thermal variables. Furthermore, thermal based methods
may not be able to reliably distinguish between cold/warm fronts [27].

FTS is based on Eulerian changes of the 10 m meridional wind component (v) which is valuable
in diagnosing various aspects of frontal behavior [8,28]. The criteria for identification are [19]: (a) at
a time t, grid points are flagged where the wind changes from the southwestern quadrant (westerly
zonal wind u > 0, southerly meridional wind v > 0) to the northwestern quadrant (westerly zonal wind
u > 0, northerly meridional wind v < 0) between subsequent time points t and (t + 6 h), (b) the change
of the meridional wind dv exceeds a specific threshold value dvcrit during the same 6 h period.

The grid points which satisfy the above-mentioned criteria are flagged and a component labelling
technique is applied [29]. Then, each flagged pixel is related and connected to its nearest eight
neighbors, giving clusters of grid points. The location of the front is determined by the eastern edge
of each cluster. As this approach is applied to all of the eastward edge points, the output is a set of
latitude and longitude points which mark the location of the front. Thus, the location of the front
at the time t + 6 h is given by a single series of longitude values. These values will have a stepwise
character, since they represent discrete grid points. For this reason, the longitude values are treated as
a simple series and smoothed by a resistant smooth method [30] appropriate for equally-spaced data.
This robust statistical technique employs a set of short-window running median and running mean
filters, which are successively applied multiple times to the series, to achieve adequate smoothing.
Then, the obtained smoothed eastern edge determines a “mobile front”. This method is particularly
suited for the detection of strongly elongated, meridionally oriented fronts, which typically extend far
from a cyclone center [19].

Since FTS was developed to identify cold fronts in the oceans while the topography of the
Mediterranean affects the formation and characteristics of cold fronts [31], in this study FTS is modified
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to better identify the position, scale and tilt of cold fronts in the Mediterranean. From the records
of the Hellenic National Meteorological Service, twenty cases of cold fronts are selected that entered
Mediterranean from different regions (e.g., Atlantic, North Africa, northern Europe) or formed in
different parts of the Mediterranean (Western, Central and Eastern) during different months throughout
the year, having caused intense precipitation.

The initial criterion used in MedFTS is that the zonal component u is westerly both at t and t + 6 h
and the meridional wind changes sign from positive to negative. Then, sensitivity tests were performed
on the other wind related criteria. First, sensitivity tests are made on the criterion of meridional wind
change within the 6 h time step (dv), in order to find the optimum threshold value of the meridional
wind magnitude change dvcrit. Second, instead of using the change of the meridional wind component
(dv), the shift of the vector wind direction is employed during a 6 h period (dϕ), where ϕ = arctan
(v/u) and a specific minimum threshold value dϕcrit is also investigated. This criterion is examined to
better identify zonally elongated cold fronts and at the same time, to filter out erroneously identified
front segments. Third, an additional criterion of the magnitude of vector wind |U| exceeding a specific
critical threshold |U|crit in each cluster of grid points is added to optimise the scheme, considering the
operational experience of forecasters that the intensity of the northwesterly wind is significant behind
the cold front. This criterion allows the discarding of shallow fronts.

3. Sensitivity Tests

For the twenty selected cases, ECMWF Re-Analysis (ERA)-Interim datasets of zonal u and
meridional v wind components at the near-surface level (10 m) on a 0.5◦ × 0.5◦ resolution are used [32].
This high resolution was chosen in order to obtain a better representation of the small-scale fronts
appearing in the Mediterranean region. The scheme results are compared with the surface analyses
produced by the UK MetOffice, archived by www2.wetter3.de, available every 6 h. Furthermore,
for the validation of the results, MSG IR 12.0 μm satellite images, available from the Hellenic National
Meteorological Service, are employed. We restrict ourselves here to showing results for the case of
7–10 November 2016 that included two extended tilted cold fronts that travelled across Mediterranean.
However, the results were consistently investigated and validated for the other cases. The tests are
performed following the rationale described in Section 2.

First, the critical values of the 6 h meridional wind change dvcrit was explored. An initial threshold
value dvcrit = 2 m s−1 was employed, as suggested by [19] in the initial version of FTS. Then, the scheme
was employed for different values of dvcrit increasing by 1 m s−1. Figure 1a shows the synoptic situation
of 7 November 2016, 00:00 UTC. In Figure 1b, the identified fronts are depicted (red lines) for the same
day and hour for dvcrit = 3 m s−1. In the same Figure, the light blue regions show the areas where the
wind shift criterion is satisfied.

A comparison of Figure 1a,b reveals that the scheme succeeds in identifying fronts over the
Atlantic. However, in the Mediterranean, its performance is somewhat lower: although it identifies
correctly the main cold front over Italy, this is segmented over the Adriatic Sea while other frontal
fragments are produced which do not exist in the synoptic analysis. For larger values of dvcrit of 4
and 5 m s−1, the erroneous front identifications show a tendency to diminish (Figure 1c). However,
when dvcrit exceeds the value of 6 m s−1, the existing fronts incline to be broken into smaller fragments
(Figure 1d). Therefore, moderate values of dvcrit ranging between 4–6 m s−1 seem to best represent
Mediterranean cold fronts. Similar results were derived for the following hours. Figure 2 shows the
results for 8 November 2016 at 12:00 UTC.
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(a) (b) 

(c) (d) 

Figure 1. (a) Synoptic surface chart over the area of interest at 00:00 UTC 7 November 2016, and identified
fronts for (b) dvcrit = 3 m s−1, (c) dvcrit = 5 m s−1, and (d) dvcrit = 7 m s−1. The red lines show the
identified fronts, whereas the areas where the wind shift criterion is satisfied are depicted with the light
blue color.

Since the analysed Mediterranean fronts are not purely meridionally elongated, but they rather
tend to assume a more zonal orientation, the 6 h change of the total wind direction dϕ is explored
instead of the change of the meridional wind magnitude. It should be noted that this criterion was
found helpful in identifying cold fronts that present zonal orientation in the beginning of their life [31]
and the criterion on dv might not be able to properly identify them. The scheme was tested for different
values of dϕcrit starting from 20◦, with steps of 10◦. In Figure 3, the identified fronts are depicted for
7 November 2016, 00:00 UTC, for (a) dϕcrit = 30◦ and (b) dϕcrit = 50◦. A comparison with the synoptic
analysis in Figure 1a shows that the scheme indeed represents the front over Italy when dϕcrit = 30◦.
However, it can be appreciated that using solely the dϕ criterion, several erroneously identified fronts
are obtained. Moreover, for dϕcrit = 50◦, the front over Italy is mistakenly broken into smaller fragments.
Similar results were obtained for dϕcrit > 40◦ and the best representation of fronts was obtained for
dϕcrit = 30◦ in most cases. To effectively filter out the erroneously identified frontal objects without
losing the spatial continuity of the correctly identified fronts, the value dϕcrit = 30◦ is adopted.

The use of the dϕ criterion alone is not adequate, since it may lead to mistakenly identified fronts
in cases when, at t + 6 h, the wind is weak or there is calm. For this reason, another criterion that we
apply is that the maximum magnitude of the vector wind is above a threshold value |U|crit. It should
be noted that apart from filtering out mistaken identifications, this criterion also helped in identifying
cold fronts entering from North Africa and distorted cold fronts in the Central Mediterranean that
rejuvenated when entering the Aegean Sea. To find the optimum value of |U|crit, values between 0 and
10 m s−1 were tested. Figure 4 depicts the results of the scheme on 7 November 2016 00:00 UTC for
(a) |U|crit = 5 m s−1 and (b) |U|crit = 7 m s−1. Red lines represent the identified fronts, whereas colored
areas show the magnitude of the total wind |U| at the grid points where the dϕ criterion is met. It is
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clear that a value of |U|crit = 5 m s−1 effectively filters out spurious front identifications, while a larger
value (e.g., |U|crit = 7 m s–1) erroneously filters out the front over Italy. From the above sensitivity
tests, the combination of dϕcrit = 30◦ and |U|crit = 5 m s−1 seems to best represent cold fronts in the
Mediterranean at each following synoptic time (Figures 5 and 6). Similar results were derived for the
other selected cases under a variety of synoptic environments. It should be noted that based on these
dynamic criteria, warm frontal structures are not identified.

 
(a) 

(b) 

 
(c) (d) 

Figure 2. (a) Synoptic surface chart over the area of interest at 12:00 UTC 8 November 2016, and identified
fronts for (b) dvcrit = 2 m s−1, (c) dvcrit = 4 m s−1, and (d) dvcrit = 6 m s−1. The red lines show the
identified fronts, whereas the areas where the wind shift criterion is satisfied are depicted with the light
blue color.

 
(a) (b) 

Figure 3. Identified fronts at 00:00 UTC 07 November 2016, for (a) dϕcrit = 30◦ and (b) dϕcrit = 50◦.
The red lines show the identified fronts, whereas the areas where the wind shift criterion is satisfied are
depicted with the light blue color.
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(a) (b) 

Figure 4. Identified fronts at 00:00 UTC 7 November 2016, for dϕcrit = 30◦, (a) |U|crit = 5 m s−1 and
(b) |U|crit = 7 m s–1. Red lines represent the identified fronts, whereas colored areas show the magnitude
of the total wind |U| at the grid points where the dϕ criterion is met.

 
(a) 

 
(b) 

Figure 5. (a) Synoptic surface chart at 12:00 UTC 08 November 2016, and (b) identified fronts for dϕcrit

= 30◦ and |U|crit = 5 m s–1. Red lines represent the identified fronts, whereas colored areas show the
magnitude of the total wind |U| at the grid points where the dϕ criterion is met.

 
(a) 

 
(b) 

Figure 6. (a) Synoptic surface chart over the area of interest at 00:00 UTC 9 November 2016, and (b)
identified fronts for dϕcrit = 30◦ and |U|crit = 5 m s–1. Red lines represent the identified fronts, whereas
colored areas show the magnitude of the total wind |U| at the grid points where the dϕ criterion is met.

In summary, in order to identify a front in our MedFTS scheme we require: (a) the zonal component
u is westerly both at t and t + 6 h, (b) the meridional wind changes sign from positive to negative,
(c) the directional shift of the wind (dϕ) exceeds the threshold of dϕcrit = 30◦ and (d) the magnitude of
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the vector wind |U| is greater than |U|crit = 5 m s−1. It should be noted that the initial criterion of dv>
dvcrit used in FTS has been replaced by both the criteria of dϕ > dϕcrit and |U| > |U|crit.

In order to check the performance of MedFTS, the results for 19 March 2018 at 12 UTC is
demonstrated in Figure 7 which included a cold front that developed over Tunisia and affected Greece
after rejuvenation and a zonally oriented cold front over the Iberian Peninsula that entered from the
Atlantic and moved towards western Mediterranean. Figure 7a,b shows that the surface analysis
agrees well with the satellite image for the cold front over Greece. The scheme correctly represents
the location and orientation of the fronts at this specific time (Figure 7c), avoiding many erroneous
identifications before the use of the |U|crit. The zonally elongated front over the Iberian Peninsula is
also identified correctly by the scheme (Figure 7c) along with its subsequent evolvement. Figure 7d
presents the results when the dv criterion is solely used. From the comparison between Figure 7c,d
becomes evident that the zonal front over the Iberian is not properly identified with the dv criterion.
Therefore, it is suggested that the successful identification of this front is mainly attributable to the
combination of dϕcrit and |U|crit criteria.

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 7. (a) Satellite image (IR 12μm) of the Mediterranean sea at 19 March 2018, 12:00UTC, (b) synoptic
surface chart over the area of interest at the same time, (c) identified fronts for dϕcrit = 30◦ and
|U|crit = 5 m s–1. Red lines represent the identified fronts, whereas colored areas show the magnitude of
the total wind |U| at the grid points where the dϕ criterion is met. (d) Respective results for the case of
solely the dv criterion for dvcrit = 6 m s−1.

4. Statistical Validation

After the above modifications, the new MedFTS scheme was applied for a ten-year period
(2007–2016) in order to validate its ability in identifying Mediterranean cold fronts on climatological
basis. The number of the cold fronts passing over Greece was counted for the specific synoptic hour
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of 00:00 UTC. Then, the results were validated against synoptic analyses obtained from Deutscher
Wetterdienst, with the aid of statistical indices (Table 1). It should be noted that the statistical validation
handles the occurrence of a cold front as a two-fold categorical variable, and therefore if two fronts
appear at the same time over the examined area in the analysis or in the scheme, only one is counted in
the total number. Due to the limited geographic area of the examined region, the appearance of more
than one front is an extremely rare event and does not affect the obtained results.

The total number of the cold fronts identified by the scheme was a + b = 511, which is slightly
lower than the corresponding number identified from the charts (a + c = 547). From Figure 8 we
see that there is excellent agreement between the monthly frontal frequencies in the two datasets,
albeit with a scheme underestimation in spring and summer and overestimation in autumn and
winter. Furthermore, the scheme succeeds in capturing the intra-annual variation of the frequency
of cold fronts, in agreement with the results of [22]. The vast majority of the simulated cold fronts is
observed during the cold period of the year, from November to March, peaking in February and March.
The frequency declines after April with minimum in August due to the predominance of anticyclonic
circulation during summer over the Eastern Mediterranean [26].

Figure 8. Mean annual cycle of the number of cold fronts identified by the MedFTS (model) and the
synoptic charts (analysis) over Greece for the period 2007–2016.

Furthermore, using the indices of Table 1, we calculated the success metrics described in Table 2,
taken from [33] and given in Table 3. It can be seen that the scheme succeeded in identifying correctly
the bulk of fronts in synoptic charts (hits) while it correctly rejected the vast majority of the fronts that
did not appear in the synoptic charts (correct rejection). On the contrary, the number of false alarms
and misses are comparatively smaller. It becomes also evident that the false alarms (b) are slightly
more than the misses (c).

Table 1. Definition of statistic indices used for the comparison of the fronts identified by the algorithm
and the fronts appearing in the synoptic charts.

Symbol Statistic Index Explanation

a hits Front exists in synoptic charts and identified

b false alarms Front identified but not appearing in charts

c misses Front appearing in charts not identified

d correct rejection No front identified and no front in charts

n a+b+c+d Sample size

8
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Table 2. Definition of the statistical metrics used of the validation of the algorithm’s capability.

Metric Definition Range Perfect Score

Frequency Bias Index (FBI) a+b
a+c 0 ÷ ∞ 1

Probability of Detection (POD) a
a+c 0 ÷ 1 1

False Alarm Ratio (FAR) b
a+b 0 ÷ 1 0

Critical Success Index (CSI) a
a+b+c 0 ÷ 1 1

True Skill Statistics (TSS) ad−bc
(a+c)(b+d) −1 ÷ 1 1

Heidke Skill Score (HSS) 2(ad−bc)
(a+c)(c+d)+(a+b)(b+d) −∞ ÷ 1 1

Equitable Threat Score (ETS) a−ar
a+b+c−ar

where ar =
(a+b)(a+c)

n −1/3 ÷ 1 1

Table 3. Values of the indices of Table 1, as they are counted for the decade 2007–2016.

Number of Fronts
Fronts Appearing in

Synoptic Charts
Fronts Not Appearing in

Synoptic Charts

Fronts appearing in the scheme a = 436 b = 111

Fronts not appearing in the scheme c = 75 d = 3031

Table 4 gives the values obtained for the metrics of Table 2. It can be seen that the value of FBI is
almost equal to the perfect score 1, suggesting that the total number of the fronts in the scheme (a + b) is
almost equal with the total number of fronts appearing in synoptic charts (a + c). Therefore, the scheme
is unbiased, without apparent overestimation or underestimation of the front frequency appearing
in the charts. Furthermore, POD was found of 85% and FAR of about 20%, suggesting satisfactory
detection of the observed fronts with limited false identifications. Besides, Critical Success Index (CSI)
presents high value (0.701), taking into account both incorrectly identified fronts and unidentified
fronts. Since CSI is somewhat sensitive to the climatology of the event, the Equitable Threat Score
(ETS) is also used, providing comparable value.

Table 4. Values of the metrics that are defined in Table 2 for the decade 2007–2016.

Metric Value

FBI 1.070
POD 0.853
FAR 0.203
CSI 0.701
TSS 0.818
HSS 0.794
ETS 0.659

5. Conclusions

In this study, the University of Melbourne Frontal Tracking Scheme (FTS), a front tracking algorithm
based solely on wind related criteria that was employed in Southern Hemisphere, was appropriately
modified to identify cold fronts in the Mediterranean, a closed basin with complex topography. It was
then used to compile a climatology of these features. The modified scheme (named MedFTS) employs
two new criteria, i.e., total wind direction change and total wind magnitude, to better identify the
position and tilt of a Mediterranean cold front. Different threshold values of the combined criteria were
tested for 20 different cases of cold fronts in the Mediterranean and an optimum selection of critical
values was obtained.

It was found that the total wind shift, along with the wind magnitude, accounts for good
representation of different types of cold fronts in the Mediterranean throughout the year. Therefore,
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in order for the Mediterranean cold fronts to be identified, not only the wind shift is required but a
sufficient wind magnitude as well. Since no thermodynamic criteria has been included in this scheme,
it is implied that wind shift is a prerequisite for the transition of a baroclinic zone to an organised cold
front in the Mediterranean, confirming the experience of operational forecasters that, if there is no
wind component at the upper levels perpendicular to the low level baroclinic zone, the formation
of the frontal zone is inhibited [34]. This wind shift is mostly related with upper level disturbances,
approaching a pre-existing area of enhanced low level temperature gradients [35].

Considering the climatological component of the scheme, a statistical validation of its results
referring to the frequency of cold fronts passing over Greece for a decade was performed against results
derived manually from synoptic analyses. It was found that the total frequency of the identified cold
fronts agreed very well with the frequency of the fronts identified from synoptic analyses over Greece.
Furthermore, the scheme succeeded in capturing the inter-monthly variations of the frequency of cold
fronts. The employment of statistical metrics, considering the front as a two-fold categorical variable,
confirms the satisfactory performance of the MedFTS on a climatological basis.

We are exploring the value of including thermodynamic and moisture information into the MedFTS,
although we are aware that these are not without problems and weaknesses [36]. However, we have
seen that with the appropriate modifications for the Mediterranean region, the dynamically-based FTS
can be successfully applied to cold front identification.
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Abstract: In this study, the physically-based hydrological model MIKE SHE was employed to
investigate the effects of anthropogenic land cover changes to the hydrological cycle components
of a regional watershed in Central Greece. Three case studies based on the land cover of the
years 1960, 1990, and 2018 were examined. Copernicus Climate Change Service E-OBS gridded
meteorological data for 45 hydrological years were used as forcing for the model. Evaluation against
observational data yielded sufficient quality for daily air temperature and precipitation. Simulation
results demonstrated that the climatic variabilities primarily in precipitation and secondarily in air
temperature affected basin-averaged annual actual evapotranspiration and average annual river
discharge. Nevertheless, land cover effects can locally outflank the impact of climatic variability
as indicated by the low interannual variabilities of differences in annual actual evapotranspiration
among case studies. The transition from forest to pastures or agricultural land reduced annual actual
evapotranspiration and increased average annual river discharge while intensifying the vulnerability
to hydrometeorological-related hazards such as droughts or floods. Hence, the quantitative assessment
of land cover effects presented in this study can contribute to the design and implementation of
successful land cover and climate change mitigation and adaptation policies.

Keywords: anthropogenic land cover changes; hydrological model MIKE-SHE; time-series statistical
analysis; trend analysis; Spercheios river basin

1. Introduction

The quantitative and qualitative state of water resources of a watershed are formed by a variety
of drivers that interact in a complex and often indirect way [1]. Climate elements (precipitation;
relative humidity; wind speed and direction; solar radiation and temperature that also controls
evaporation/evapotranspiration and snow melt and their temporal and spatial distribution) and
the biogeophysical characteristics of a catchment (topography, land—vegetation cover, geological
structure, soil coverage) are fundamental determinants of regional hydrology [2,3]. The conceptual
model describing the interactions among the abovementioned drivers is the hydrological cycle that
links the exchange, storage and movement of water among the biosphere, atmosphere, cryosphere,
lithosphere, anthroposphere, and hydrosphere [4], while the quantification of the relationships among
the components of the hydrological cycle at a given location constitutes the water balance [5].

All characteristics of the catchment (climate elements and biogeophysical characteristics) are factors
that can be largely affected by anthropogenic activities and pressures [3]. Humanly imposed climate
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change due to increased emissions of greenhouse gases and dust from anthropogenically-disturbed
soils [6], is expected to significantly increase freshwater-related risks such as modification of the
hydrological regime, floods and droughts, and to affect water cycle components [7,8]. Climate change
is projected to reduce renewable surface water and groundwater resources significantly in most dry
subtropical regions and is likely to increase the frequency of meteorological droughts (less rainfall) and
agricultural droughts (less soil moisture) in presently dry regions. Additionally, projections imply
variations in the frequency of floods and negative impacts on freshwater ecosystems by changing
streamflow and water quality [4,7]. Regarding anthropogenic interventions in catchment’s physical
characteristics (for example alteration of the land surface soil moisture, albedo and roughness [9]), land
cover changes due to livestock grazing, agriculture, timber harvest, deforestation, and urbanization
can reduce retention of water in watersheds and lead to an increase of the size and frequency of floods
and to the reduction of baseflow levels [10]. Dam constructions and diversion, canalization, snagging
and dredging of rivers, streams and drainage ditches, and groundwater overexploitation, disrupt the
dynamic equilibrium between the movement of water and sediment that exists in rivers [10]. Based
on recent studies, direct human impacts on the terrestrial water cycle are in some large river basins
of the same order of magnitude, or even larger than climate change [11,12]. Especially land cover
change alters annual global runoff to a similar or greater extent than other major drivers [13], while
land use change contribution in regional runoff values in tropical regions is larger than that of climate
change [14], especially in the case of smaller catchments [15].

Worldwide studies support the impacts of land cover changes, mainly deforestation and
urbanization, on the hydrometeorological factors, leading primary to river discharge increase [16–23]
and generally to an increase of eco-environmental vulnerability of the watersheds [24,25]. In Greece,
studies confirm the impact of land cover change and deforestation in river discharge. For example,
a study conducted in Pinios river basin proved that expanding the agricultural land over forest by
20%, a mean monthly increase in the river discharge of up to 3%, can be observed from October to
April and a respective reduction from May to September, reaching a maximum of 6% in July [26].
Moreover, human interference in streams crossing urban or suburban areas raise the vulnerability to
flash floods. For example, the hydrometeorological analysis of a fatal flash flood event which occurred
on 15 November 2017 in the suburban area of Mandra, western Attica, Greece resulting in extensive
damages and 24 fatalities, showcased heavy storm-induced run-off water in combination with human
pressures on streams as the reason for the flood [27].

Regarding the impact of land cover change to evapotranspiration, it has been reported that
mean annual evapotranspiration can be up to 39% lower in agricultural ecosystems than in natural
ecosystems in Brazil [20]. A recent study concerning the whole of China showed that the average
annual land surface evapotranspiration decreased at a rate of −0.6 mm/yr from 2001 to 2013, attributed
partly to land use and land cover changes of forests to other land types [28]. In Greece, a study in a
small catchment showed that 16% increase of agricultural land against wetland and forest area led to a
6% increase of evapotranspiration and 10% increase of the water deficit in the soil [29].

Given the uncertainty of future land cover changes due to socio-economic driving forces and local
development policies applied, a scenario-based modeling framework can be beneficial in supporting
the analysis of potential land cover changes, so as to mitigate potentially negative future impacts on a
basin’s water resources. In order to investigate the effect of anthropogenic land cover changes to the
hydrological cycle components and the main hydrometeorological factors of a regional agricultural
watershed in Central Greece (Spercheios river basin) of great ecological value, three (3) land cover
case studies were adopted, based on the land cover distribution documented in the following years:
in 1960 (hereafter LC1960; baseline), in 1990 (hereafter LC1990; mid-period), and in 2018 (hereafter
LC2018; current state). The modeling tool used was the physically-based hydrological model (MIKE
SHE), while the high-resolution gridded observational daily meteorological dataset of Europe named
E-OBS [27] from the EU-FP6 project UERRA [30] and the Copernicus Climate Change Service [31]
was also employed to drive the model. Since the E-OBS gridded dataset had not been used before in
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similar studies in Greece, the statistical evaluation of its efficiency was considered to be obligatory
before performing any further analysis. Finally, statistical tests and trend analysis were performed on
the simulated time series of each land cover case study examined.

The main objective of the present study was the better understanding of the system’s response and
the basin’s water resources to possible future land cover changes, while the main research questions
intended to be addressed are: (a) which are the interrelationships among land cover and the main
hydrometeorological factors’ (precipitation, air temperature, discharge, and actual evapotranspiration)
variations, (b) how land cover changes affect the trend magnitude of the main hydrometeorological
factors, and (c) which are the hydrometeorological-related hazards associated with land cover changes
in the study area?

2. Materials and Methods

2.1. Study Area

Spercheios river basin is located in the prefecture of Pthiotida in Central Greece, covers an area of
1,661 km2, and has a mean altitude of 641 m and a dense hydrographic network (Figure 1; [32]). The main
human activities of the wider area since it was first inhabited in the Early Neolithic period [33] include
arable agriculture and grazing, while industrial activities are limited mainly to small manufacturing
units of agricultural products and olive oil refineries [34]. The main hydromorphological modifications
of the area include water abstractions for irrigation, water flow regulations (small weirs, water
distributor), canalization, and the partial diversion of the original route of the river close to its estuary.
Spercheios river wider area has been included in many environmental protection networks (for example
NATURA 2000, CORINE biotopes, and Wildlife Refuges; [32,35]).

Figure 1. Study area.
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2.2. Hydrological Simulation

2.2.1. Methodological Approach

The modelling tool used in the present study was the MIKE SHE, developed by the Danish
Hydraulic Institute Water and Environment. MIKE SHE is a physically-based distributed model that is
able to simulate all hydrological domains within the land phase of the hydrological cycle in a river
basin. MIKE SHE is fully integrated with the channel flow code MIKE 11, which is a one-dimensional
model that can simulate water flow and level, water quality and sediment transport in rivers, flood
plains, irrigation canals, reservoirs, and other inland water bodies [36]. The hydrological model has
already been successfully set up, calibrated and validated during a previous study for Spercheios river
basin [35].

More specifically, during a previous research study, the hydrological model of Spercheios river
basin was set up and calibrated for the hydrological years 2008/2009–2010/2011 and validated for
the hydrological years 2013/2014–2014/2015 [35]. These periods were chosen based on the data
availability (actual in situ observations of water level and discharge and high-quality climatological
data) and on the fact that in 2008 the construction of the last engineering flood control structures
in the hydrological network and the river banks were completed. The calibration and validation
periods’ length were considered to be adequate since most studies addressing the question of the
utility of additional data in terms of the length of available discharge time-series in hydrological
model calibration concluded that several years of data ranging between 2 and 8 years are sufficient for
reliable parameter identification [37]. Moreover, when 2–3 years of continuous daily discharge data
are available, then the model activates the complete set of its procedures, and the use of longer data
sets would not offer a significant benefit in the definition of the model’s uncertainty [38]. The results of
the Spercheios river basin hydrological model calibration showed a satisfactory agreement between
observed and simulated water levels and discharge measurements. Their correlation coefficient R can
be characterized as moderate (0.55) to high (0.77) based on the criteria for correlation interpretation
proposed by Hinkle et al. [39], and in all cases the data were statistically significant at the 0.05
level, indicating the sufficient performance of the model. During validation, the resulted correlation
coefficient R was also moderate (0.68) to high (0.84) [39], and the data were also statistically significant
at the 0.05 level. The model performance can be considered satisfactory since the results meet the
criteria proposed by Moriasi [40] (R2 > 0.50, RSR < 0.70, and PBIAS ± 25% for streamflow) in the cases
where river discharge data were available for validation [35] (Table 1).

Table 1. Statistical characteristics and efficiency criteria for the calibration and validation of the
hydrological model at the Spercheios river basin [35].

Station Para-Meter
Statistical Parameter

N ME MAE RMSE R p-Value R2 PBIAS RSR

Kastri bridge
Calibration

L 1095 0.065 0.177 0.238 0.77 <0.00001 * 0.56 - -
Kompotades bridge L 909 0.042 0.273 0.387 0.55 <0.00001 * 0.11 - -

Komma bridge L 1063 −0.105 0.351 0.479 0.61 <0.00001 * 0.34 - -

KR2

Validation

L 176 0.063 0.102 0.138 0.70 <0.00001 * -1.06 - -
KR3 L 236 0.009 0.085 0.143 0.80 <0.00001 * 0.62 - -
KR6 L 303 0.146 0.266 0.366 0.68 <0.00001 * -1.24 - -
KR7 L 462 −0.060 0.195 0.405 0.76 <0.00001 * −0.88 - -
KR2 Q 12 0.735 1.164 1.777 0.79 0.002333 * 0.48 32% 0.21
KR3 Q 11 −0.718 1.304 2.007 0.84 0.001277 * 0.56 −27% 0.20

* result significant at p < 0.05; L: Level (m); Q: Discharge (m3/s); N: number of sample pairs; ME: mean error; MAE:
mean absolute error; RMSE: root mean squared error; R: correlation coefficient; R2: Nash-Sutcliffe coefficient of
efficiency; PBIAS: percent bias; RSR: RMSE-observations standard deviation ratio.

In order to investigate the impact of land cover change on the hydrological cycle components,
the calibrated hydrological model of Spercheios river basin was integrated for 45 hydrological years
(1960/61–2004/05) for three different land cover case studies. The specific period was characterized by a
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stable hydrographic network with minimum engineering interventions. Any hydraulic construction
built after 2006 was omitted from simulation procedure, while all engineering interventions which
took place before 1960 were included into the simulation, for the best representation of the actual state
of the river network during the period 1960/61–2004/05. For the specific simulation period, the gridded
time-series of the meteorological dataset used for the specific study area was complete and without
gaps. Finally, the land cover case studies were selected according to the data availability and taking into
consideration the overall anthropogenic interventions in the area, aiming at the better representation
of each distinguished period. More specifically, until 1960, the major hydraulic interventions and the
major agricultural reform of Greece had been completed, and ever since the area used for agricultural
activities has been practically stable in the study area [41]. The first available documentation concerning
the land cover distribution in Greece was from the year 1960 [42]. In 1990, the first pan-European land
cover data collection was utilized based on satellite image processing (Coordination of Information
on the Environment- CORINE Land Cover Programme [43]), and the most recent version is from the
year 2018 [44]. Therefore, the following three land cover case studies in Spercheios river basin were
implemented: (1) LC1960 based on the land cover of Spercheios river basin in 1960 (baseline), (2)
LC1990 based on the land cover in 1990 (mid-period) and (3) LC2018 based on the land cover in 2018
(current state) (Figure 2).

Figure 2. Flowchart of the current methodological approach.

2.2.2. Meteorological Data

Due to the lack of detailed and evenly distributed meteorological time-series in Spercheios river
basin covering the entire simulated period (1960/61–2004/05), the necessary data for the hydrological
modeling concerning daily temperature (minimum, average and maximum values) and precipitation
were retrieved from the high-resolution gridded data set of daily climate over Europe termed E-OBS
from Copernicus Climate Change Service [45,46]. The specific data set covers the period back to 1950
and provides high-resolution gridded fields at a spacing of 0.1◦ × 0.1◦ in regular latitude/longitude
coordinates. The ensemble version of E-OBS v.19.0e (the dataset produced from averaging multiple
equally probable interpolations of station-based observations, so as to provide the best representation
of the spatial and temporal distribution of climate parameters and a measure of uncertainty [47]) is
based on the European Climate Assessment and Dataset (ECA&D) initiative that combines collation
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of daily series of observations at meteorological stations, quality control, analysis of extremes, and
dissemination of both the daily data and the analysis results (Figure 1; [48,49]).

The reliability of the E-OBS dataset was evaluated by comparing the time-series of in-situ
observations from meteorological stations installed in the wider area by various agencies (Table 2;
Figure 1) against the corresponding grid point of the E-OBS dataset. The statistical criteria used to
investigate the dataset reliability were the following: mean error ME; mean absolute error MAE; root
mean squared error RMSE; standard deviation STDEV; and correlation coefficient R, while also the
p-value was calculated to estimate the significance of the results.

Table 2. Meteorological stations used in estimation of E-OBS efficiency.

Station Longitude (dd) Latitude (dd) Altitude (m) Owner Observations Available

Ano_Mpralos 22.45474 38.73054 580.5 MEE P
Ano_Ypati 22.23273 38.86562 286.0 MEE P
Dyo Vouna 22.37684 38.80680 470.6 PPC P

Gr. Oxia 22.00846 38.73601 1107.1 PPC P, Tmin, Tmax
Lamia 22.49940 38.89895 144.0 HNMS P, Tmin, Tmax, Tav

Mousounitsa 22.19244 38.68742 846.1 MEE P, Tmin, Tmax
Neochori 21.86983 38.96068 821.6 PPC P
Pitsiota 21.90836 39.01663 783.9 PPC P

Pyra 22.27196 38.74262 1137.1 MEE P
Rentina 21.97414 39.06577 884.9 MEE P
Trilofo 22.22209 38.99834 575.3 MEE P

Tymphristos 21.91575 38.90961 847.9 MEE P
Zileuto 22.25904 38.93192 97.2 MEE P

MEE: Ministry of Environment and Energy of Greece; HNMS: Hellenic National Meteorological Service; PPC: Public
Power Corporation S.A.; P: precipitation; Tmin: minimum air temperature; Tmax: maximum air temperature; Tav:
mean air temperature.

The lack of the necessary climatological data (relative humidity, solar radiation and wind
speed) precluded the use of the Penman-Monteith equation for the estimation of daily reference
evapotranspiration ET. Therefore, ET was estimated using the Hargreaves empirical approach [50],
which is recommended only in cases of lack of other meteorological data and is considered to provide
satisfactory results with an error rate of 10–15% or 1 mm/d, whichever is greater [51,52]. In the
Hargreaves approach, except for daily average, minimum and maximum temperature, all the other
required parameters (solar radiation, latent heat of vaporization) can be estimated using empirical
relationships [52].

2.2.3. Land Cover Spatial Distribution

The oldest official and most detailed information concerning land cover distribution in Spercheios
river basin was available from National Statistical Service of Greece for the year 1960. These data were
part of the preparatory activities taken place prior the Agricultural and Livestock Census of March 19,
1961 [42] and concerned the main land cover types per local community: agricultural land, communal
or private pastures for grazing animals, forest, artificial surfaces and water. It should be noted that in
the 1960s land cover census, all agricultural activities (annual, crops, vineyards, tree plantations, and
fallow land) were grouped together, while areas covered by shrubs, transitional woodland—shrub
areas or areas with dense vegetation were characterized as pastures. During this procedure, forests
were defined as areas mainly covered by ligneous plants clearly supported by a trunk and branching
out to no less than 1 m from the ground. The category artificial surfaces included cities, settlements,
roads, mines, and bare rocks. Finally, the category water included lakes, permanent inland and salt
marshes, coastal areas and lagoons, estuaries, water courses, river beds, and areas covered by water
for the greatest part of the year. Areas temporarily covered by water and areas lying near rivers or
lakes dried and usually cultivated in summer were included in arable land (Table 3).
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Table 3. Land cover nomenclature used in the present study.

Level 1 Level 2 1960 1990 2018

Artificial surfaces

Continuous urban fabric x x x
Discontinuous urban fabric x x x

Airports x x
Bare rocks x

Industrial or commercial units x x
Mineral extraction sites x x

Construction sites x
Road and rail networks and associated land x

Sport and leisure facilities x

Agricultural land

Non-irrigated arable land x x x
Permanently irrigated land x x x

Complex cultivation patterns x x x
Land principally occupied by agriculture x x x

Rice fields x x x
Olive groves x x x

Vineyards x x
Fruit trees and berry plantations x

Pastures

Natural grasslands x x x
Sclerophyllous vegetation x x x

Transitional woodland-shrub x x x
Pastures x x x

Moors and heathland x x
Sparsely vegetated areas x x

Forest
Broad-leaved forest x x x

Coniferous forest x x x
Mixed forest x x x

Water

Sea and ocean x x
Estuaries x x

Beaches, dunes, sands x x
Salt marshes x x x

Water courses x x x

The production of the 1960 land cover map (LC1960) was carried out by distributing the land
uses per local community, by also taking into consideration the land cover distribution of the CORINE
Land Cover (CLC) inventory for the year 1990 [44] and the Census of Agricultural and Livestock
Holdings for the year 1961 [53]. As mentioned above, detailed agricultural activities were not distinct
in 1960s land cover documented distribution [42]; therefore, the estimation of the different agricultural
classes was based on their corresponding distribution per local community for the year 1990 [44].
Natural grasslands, pastures, sclerophyllous vegetation, transitional woodland-shrub, moors and
heathland, and sparsely vegetated areas were classified as pastures, while artificial surfaces included
continuous and discontinuous urban fabric, airports, industrial or commercial units, mineral extraction
sites, construction sites, and road and rail networks (Table 3). The spatial distribution of forest classes
(broad-leaved, coniferous and mixed) was also based on the CORINE Land Cover (CLC) inventory for
the year 1990 [44].

The land cover maps for the years 1990 (LC1990) and 2018 (LC2018) were retrieved from CORINE
Land Cover (CLC) inventory for the corresponding years [44]. It should be noted that based on the
methodological approach of CORINE Land Cover (CLC), the density of houses is the main criterion to
attribute a land cover class to the discontinuous urban fabric or to the agricultural area, in complex
cultivation patterns class. In case of patchwork of small agricultural parcels and scattered houses, the
cut-off-point to be applied for discontinuous urban fabric is 30% at least of urban fabric within the
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patchwork area [43]. Therefore, documented sparsely populated areas in 1960 and 1990 land cover
distributions were in many cases classified as complex cultivation patterns (Table 3; Figure 3).

Figure 3. Land cover maps for the year: (a) 1960 produced for the present study, (b) 1990, and (c) 2018
from CORINE Land Cover (CLC).
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2.2.4. Irrigation Demands

In order to estimate the irrigation demands for each land cover case study in LC1960, LC1990 and
LC2018, due to a lack of detailed information concerning the crops cultivated for each reference year,
the irrigation demands for the year 2010 were used. More specifically, during a previous study [35],
the irrigation demands for Spercheios river basin per local community were calculated taking into
consideration the detailed agricultural activities and the cultivated crops per local community from
the Census of Agricultural and Livestock Holdings 2010 [54] and the methodology proposed by Food
and Agriculture Organization of the United Nations (FAO) for the estimation of the net irrigation
requirement of each crop in the study area [55]. The irrigation demands were then projected for the
years 1960 (LC1960), 1990 (LC1990) and 2018 (LC2018) per local community, based on the ratio of the
corresponding irrigation area as documented during the corresponding census or annual agricultural
statistical surveys [53,56,57] and the irrigation area of 2010 (for Pthiotida prefecture; Table 4).

Table 4. Estimation of irrigation demands for Spercheios river basin.

Year
Reference

Year 1

Total
Cultivated

Area (km2) 2

Total
Irrigated

Area (km2) 2

Ratio of
Irrigated

Area 2

Ratio of Irrigation
Area (in Relation to

2010) 2

Total Annual
Irrigation Demand

(*106 m3)

2010 2009 1388 573 41% - 129.8 [35]
1960 1961 1416 279 20% 49% 63.3
1990 1990 1459 520 36% 91% 117.9
2018 2017 1176 480 41% 84% 108.8

1 Year when Census of Agricultural and Livestock Holdings was conducted; 2 Pthiotida prefecture.

2.3. Statistical Analysis

In order to investigate the effects of anthropogenic land cover changes to the annual actual
evapotranspiration and river discharge, the following statistical tests were applied to the time-series of
each land cover case study examined.

The sequential version of the Mann-Kendall (SMK) test [58] and the non-parametric rank-based
distribution-free cumulative sum CUSUM test [59] were applied, so as to detect the approximate
change of trend with time. The sequential version of the Mann-Kendall test (SMK) is calculated so that
rank (xi) > rank (xj) (i > j). The number of cases xi > xj is counted and denoted by ni. The t statistic is
calculated as Equation (1):

t =
n∑

i=1

ni (1)

The distribution of t is assumed to be asymptotically normal with the following expectations
(Equations (2) and (3)):

E(t) = μ =
n(n− 1)

4
(2)

and

Var(t) = σ2 =
n(n− 1)(2n + 5)

72
. (3)

The null hypothesis that there is no trend is rejected for high values of the reduced variable |u(t)|, which
is calculated as Equation (4):

u(t) =
t− E(t)√

Var(t)
. (4)

Similar to the calculation of the sequential progressive series u(t), the retrograde series u′(t) is computed
backwards starting from the end of the time-series [58]. The intersection of the curves u(t) and u′(t)
indicates the approximate turning point of the trend of the original time-series. For the trend to be
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significant, the point of intersection must exceed the critical values of the confidence level. The sign of
the curve u(t) indicates whether the trend is increasing or decreasing.

In CUSUM test, the test statistic Vk is defined as Equation (5):

Vk =
k∑

i=1

sgn(xi − xmedian), k = 1, 2, . . . , n (5)

Where xmedian the median value of the xi data set and sgn(x). CUSUM test allows the detection
of changes in mean value of a sequence of observations ordered in time, by comparing successive
observations with the median of the series. If a significant trend develops in the plotted points either
upward or downward, it is evidence that the process mean has shifted and further investigation is
required [59–61].

After estimating the approximate change of trend with time, the rank-based non-parametric
Mann-Kendall test [62,63] was applied to each sub-period, so as to identify the trend significance. The
Mann-Kendall statistic S compares each value of the series (xt) with all subsequent values (xt+1) and
is defined as Equation (6):

S =
n−1∑
t′=1

n∑
t=t′+1

sgn(xt − xt′) (6)

where sgn is the sign function (Equation (7)).

sgn(xt − xt′) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1, i f xt > xt′
0, i f xt = xt′
−1, i f xt < xt′

(7)

If n < 10, the absolute value of S is compared directly to the theoretical distribution of S derived by
Mann and Kendall [64]. When n ≥ 10, the statistic S is approximately normally distributed with the
mean m and the variance V as follows [62,63] (Equation (8)).

ES = 0, V(S) =
1
18

[
n(n− 1)(2n + 5) −

∑
g
i=1ei(ei − 1)(2ei + 5)

]
(8)

g is the number of tied groups, and ei is the number of data in the ith tied group. The values of S and
VAR(S) are used to compute the test statistic Z. The standardized test statistic Z is defined as follows
(Equation (9)).

Z =
S + m√

V(S)
, (9)

Finally, the trend magnitude for each trend period identified from the abovementioned statistical test
was calculated based on Sen’s estimator of slope. This non-parametric statistic can be applied in cases
of linear trend and determines the magnitude of change per unit time [65]. The Sen’s slope estimation
test is defined for a season g as follows (Equation (10)):

β = Median
(xi − xj

i− j

)
, i < j (10)

where β; the slope between points xi and xj, xi data measurement at time i, and xj data measurement at
time j. The positive value of the β; implies the slope of the upward trend and negative value for the
downward trend [66].
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3. Results

3.1. Long-Term Land Cover Changes

Based on the results, the land cover of Spercheios river basin has changed considerably over the
last five decades. The artificial surfaces have increased during the years reaching from 1% in 1960
and 1990 to 3% of the total river basin area in 2018. This can be partly attributed to the fact that in
some cases, small settlements in 1990 were classified as agricultural areas due to the 30% threshold
adopted in the methodology by European Environmental Agency in CLC inventory for distinguishing
discontinuous urban fabric and complex cultivation patterns [43].

Agricultural land ranges from 28% (470 km2) in 1960, through 32% (531 km2) in 1990, to 30%
(498 km2) in 2018. Permanently irrigated land has increased from 2% (40 km2) in 1960, through 4%
(71 km2) in 1990, to 8% (135 km2) in 2018. On the contrary, non-irrigated land has decreased from 12%
(196 km2) in 1960, through 10% (171 km2) in 1990, to 5% (79 km2) in 2018. Other agricultural activities,
the majority of which were also irrigated, range from 14% (235 km2) in 1960, through 17% (289 km2) in
1990, to 17% (284 km2) in 2018. Pastures have decreased over the last decades (from 636 km2—38% in
1960, through 599 km2—36% in 1990, to 538 km2—32% in 2018). Finally, forested land change ranges
from 31% (517 km2) in 1960, through 30% (492 km2) in 1990, to 34% (558 km2) in 2018 (Figures 3 and 4).

Figure 4. Distribution of land cover type for the three land cover case studies examined.

Figure 5 presents the differences in agricultural land (Figure 5a), pastures (Figure 5b) and forests
(Figure 5c) for the three land cover case studies examined. Some of the areas characterized by transitions
in land cover among the cases studies were used to investigate the impact of land cover change on
annual actual evapotranspiration.
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Figure 5. Differences in agricultural land (a), pastures (b) and forests (c) for the three land cover case
studies examined.
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3.2. Meteorological Data

Based on the results of the comparison between in-situ observations from ground meteorological
stations and the E-OBS dataset, there was sufficient agreement regarding precipitation (Table 5). The
correlation coefficient R ranged between low (0.3) to very high positive (0.9; based on the criteria for
correlation interpretation proposed by Hinkle et al. [39]); nevertheless, the p-value in all cases was
statistically significant at the 0.05 level, except in the case of the meteorological station Ano Mpralos.
Overall, the E-OBS dataset systematically underestimated annual precipitation for the entire period of
evaluation, except in the case of Zilefto meteorological station for which the ME was calculated to be
positive. E-OBS dataset was not able to sufficiently estimate the altitude effect on the precipitation
rate, leading to a higher value of ME in meteorological stations of higher elevation (Table 5; Figure 6).
This led to an average 37% underestimation of spatially-averaged annual precipitation of Spercheios
river basin.

Table 5. Statistical characteristics and efficient criteria of annual observed precipitation measurements
and E-OBS dataset.

Station
Station

Altitude (m)
Period N

AV (mm) ME
(mm)

MAE
(mm)

RMSE
(mm)

R p-Value
Significance

Station E-OBS p < 0.01 p < 0.05 p < 0.10

AMpr 580.5 1970/71–2004/05 35 996.9 489.8 −507.1 517.2 645.6 0.38 0.1033 No No No
AYp 286 1960/61–2004/05 45 727.0 584.1 −142.8 214.5 281.1 0.4 0.0184 No Yes Yes

DVou 470.6 1980/81–2000/01 21 1024.6 473.2 −551.4 551.4 571.8 0.9 <0.00001 Yes Yes Yes
GrOx 1107.1 1980/81–2000/01 21 1059.8 598.3 −461.5 461.5 484.4 0.5 0.0157 No Yes Yes
Lam 144 1970/71–2004/05 35 569.0 471.7 −97.29 102.4 122.6 0.8 <0.00001 Yes Yes Yes

Mous 846.1 1963/64–2004/05 42 1228.1 644.8 −583.2 613.0 680.2 0.4 0.0131 No Yes Yes
Neo 821.6 1960/61–1991/92 32 1671.6 674.5 −997.1 997.1 1022.9 0.8 <0.00001 Yes Yes Yes
Pits 783.9 1960/61–1991/92 32 1257.0 635.3 −621.7 621.7 637.7 0.8 <0.00001 Yes Yes Yes
Pyr 1137.1 1963/64–2004/05 39 1070.6 628.4 −442.2 470.0 514.9 0.4 0.0063 Yes Yes Yes

Rent 884.9 1960/61–2004/05 45 1246.5 617.6 −628.9 628.9 745.1 0.7 <0.00001 Yes Yes Yes
Tril 575.3 1960/61–2004/05 45 528.5 481.0 −47.49 87.3 110.8 0.7 <0.00001 Yes Yes Yes

Tymf 847.9 1960/61–2004/05 45 989.1 638.7 −350.3 389.6 446.8 0.4 0.0052 Yes Yes Yes
Zil 97.2 1960/61–2003/04 41 481.1 487.6 6.5 98.1 128.6 0.5 0.0025 Yes Yes Yes

N: number of observations; AV: Average; ME: mean error (=E-OBS − station observed values); MAE: mean absolute
error; RMSE: root mean square error; R: correlation coefficient; AMpr: Ano Mpralos; AYp: Ano Ypati; DVou: Dyo
Vouna; GrOx: Grammenni Oxia; Lam: Lamia; Mous: Mousounitsa; Neo: Neochori; Pits: Pitsiota; Pyr: Pyra; Rent:
Rentina; Tril: Trilofo; Tymf: Tymphristos; Zil: Zileuto.

Figure 6. Precipitation lapse rates of Spercheios river basin based on observational meteorological data
and E-OBS dataset.

Concerning air temperature, the E-OBS dataset managed to represent the actual measurements
efficiently, except in the case of minimum air temperature, based on the higher MAE statistics calculated
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in minimum temperature in all stations (and maximum temperature of Mousounitsa station). The
correlation coefficient R ranged between moderate (0.49) to very high (0.98) positive [39]; nevertheless,
the p-value was not statistically significant at the 0.10 level in the case of minimum temperature at
Lamia station and at 0.05 level in the case of maximum temperature at Mousounitsa station. Overall,
temperature was underestimated (ME negative in all cases), especially in the case of minimum air
temperature of Lamia station and of minimum and maximum air temperature of Mousounitsa station
(Table 6).

Table 6. Statistical characteristics and efficient criteria of annual observed air temperature measurements
and E-OBS dataset.

Station Period N
AV (◦C) ME

(◦C)
MAE
(◦C)

RMSE
(◦C)

R p-Value
Significance

Station E-OBS p < 0.01 p < 0.05 p <0.10

Gr.Oxia (Tmin) 1973/74–1996/96 24 6.3 3.9 −2.4 2.4 2.5 0.46 0.0237 No Yes Yes
Gr.Oxia (Tmax) 1973/74–1996/96 24 15.5 15.1 −0.4 0.9 1.1 0.49 0.0151 No Yes Yes
Lamia (Tmin) 1970/71–2003/04 34 11.1 7.5 −3.5 3.5 3.7 0.10 0.5736 No No No
Lamia (Tmax) 1970/71–2003/04 34 21.9 19.4 −2.5 2.5 2.5 0.98 <0.00001 Yes Yes Yes
Lamia (Tav) 1970/71–2003/04 34 16.6 13.9 −2.8 2.8 2.8 0.84 <0.00001 Yes Yes Yes

Mousounitsa (Tmin) 1993/94–2004/05 12 9.0 4.0 −5.0 5.0 5.4 0.58 0.0465 No Yes Yes
Mousounitsa (Tmax) 1993/94–2004/05 12 20.3 14.9 −5.4 5.4 6.2 0.53 0.0763 No No Yes

Tmin: minimum temperature; Tmax: maximum temperature; Tav: average temperature; N: number of observations;
AV: Average; ME: mean error (=E-OBS − station observed values); MAE: mean absolute error; RMSE: root mean
square error; R: correlation coefficient.

3.3. Statistical Analysis

Based on the descriptive statistics of the simulated time-series of the main hydrometeorological
factors at Spercheios river basin, the mean annual precipitation of the entire catchment for the period
1960/61–2004/05 was 542.5 mm, and the mean annual air temperature was 13.2 ◦C for the same period.
Mean annual river discharge to Maliakos Gulf ranged from 5.1 m3/s in LC1960, through 5.7 m3/s in
LC1990, to 5.4 m3/s in LC2018, while annual actual basin-averaged evapotranspiration ranged from
406.1 mm in LC1960, through 384.7 mm in LC1990, to 395.0 mm in LC2018 (Table 7; Figure 7). Hence,
in comparison with LC1960, LC1990 and LC2018 case studies estimated 11.8% and 5.9% higher mean
annual river discharge to Maliakos Gulf, respectively. On the other hand, they estimated 5.3% and
2.5% lower basin-averaged annual actual evapotranspiration. These results can be attributed to water
balance which force discharge and actual evapotranspiration to be “communicating vessels”, given the
same meteorological forcing in the three land cover case studies examined. It is interesting to note that
the results showcased the role of richly-vegetated area variabilities on the hydrological characteristics
of the catchment. Deforestation as well as intertemporal increase of artificial surfaces have negative
effects on evapotranspiration while increasing discharge. For example, the reduced forested area of
LC1990 in comparison with both LC1960 and LC2018, resulted in minimum basin-averaged annual
actual evapotranspiration and maximum mean annual river discharge.

Table 7. Descriptive statistics for the annual time-series of the main hydrometeorological factors.

Factor Minimum Maximum Mean Std. Deviation Variance

Precipitation (mm) 315.6 912.4 542.5 109.1 11,902.0
Air temperature (◦C) 12.2 14.8 13.2 0.6 0.4

Basin-averaged actual
evapotranspiration (mm)

LC1960 298.1 515.5 406.1 47.9 2291.4
LC1990 288.9 488.9 384.7 46.3 2141.7
LC2018 305.7 496.0 395.0 44.9 2020.2

River discharge to Maliakos
Gulf (m3/s)

LC1960 1.1 14.4 5.1 2.5 6.2
LC1990 1.3 15.4 5.7 2.7 7.3
LC2018 1.1 15.1 5.4 2.7 7.2
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(a) 

 
(b) 

Figure 7. Basin-averaged annual actual evapotranspiration (mm) (a) and river discharge (m3/s) to
Maliakos Gulf (b) reconstructions. LC1960, LC1990 and LC2018 are represented by blue, orange and
gray lines.

As far as mean annual actual evapotranspiration is concerned, the three land cover case studies
present spatial differences. LC1960 is characterized by more inhomogeneous patterns than in LC1990
and LC2018 (Figure 8). It resulted in values exceeding 520 mm/yr and lower than 280 mm/yr at many
areas. A possible explanation for this difference is the increased scattering of areas covered by forests,
agricultural land and pastures in LC1960 which have effects of different magnitude on evaporation and
transpiration (see Figure 2). Forests and agricultural land increased evapotranspiration in comparison
with pastures and artificial surfaces [67]. In contrast to LC1960, LC1990 and LC2018 case studies are
characterized by wider continuous areas covered by the same land cover. Hence, the pattern of mean
annual actual evapotranspiration is smoother in LC1990 and LC2018 than in LC1960.

Comparing the results of the three land cover case studies, annual actual evapotranspiration is
almost the same at areas covered by artificial surfaces over time, for example at the city of Lamia (not
shown). On the other hand, the transition from pastures to agricultural land or forest increased mean
annual actual evapotranspiration, while the inverse transition had the opposite effects. In order to
quantitively estimate the impact of each land cover transition, case studies are compared in pairs e.g.
LC1960 vs LC 1990, regarding spatially averaged actual evapotranspiration only at areas characterized
by a specific transition. As far as deforestation is concerned, the transition from LC1960 to pastures in
LC1990 decreased annual actual evapotranspiration with a mean rate of about 33 mm/yr (Figure 9a,b).
It is important to note that the reduction is also evidenced for the entire simulation period which
means that land cover change effects can locally outflank the impact of climatic variability [11,12].
However, the transition from pastures in LC1960 to agricultural land in LC2018 increased annual
actual evapotranspiration (Figure 9c,d) with a mean rate of about 24 mm/yr. On the other hand,
the transition from forest in LC1990 to agricultural land in LC2018 caused a reduction in annual
actual evapotranspiration with a mean rate of about 26 mm/yr. Although, differences exist at areas
with the same land cover in all three cases examined, these are quite a bit smaller than those which
appeared at areas where land cover changed. These smaller differences may be attributed to the
horizontal propagation of land cover effects. The local differences in land cover introduce complex
forcing in parameters such as run-off water, infiltration, evaporation, and transpiration which can
sharply affect in a non-linear way the spatial distribution of water balance, yielding local differences
in evapotranspiration.
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Figure 8. Simulated mean annual actual evapotranspiration (mm/yr) in (a) 1960, (b) 1990 and (c) 2018.
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Figure 9. Timeseries, regarding areas characterized by transition from forest in 1960 to pastures in 1990,
of (a) annual actual evapotranspiration (mm/yr) simulated by LC1990 (orange line) and LC1960 (blue
line) as well as (b) their differences (red for positive and blue for negative). The same for (c,d) as well
as (e,f) regarding transition from pastures in 1960 to agricultural land in 2018 and transition from forest
in 1990 to agricultural land in 2018, respectively.

The statistical tests applied on the time-series of the main hydrometeorological factors
(precipitation, air temperature, actual evapotranspiration, and river discharge) for the trend analysis
and change point detection, resulted in the following findings. Although the u(t) and u′(t) curves of
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precipitation intersect only at one point (1981/82), the following trends were identified based on the
general form of the u(t) curve. C, concerning annual precipitation: (1) three increasing periods were
identified (1960/61–1973/74, 1976/77–1981/82 and 1992/93–2002/03), and (2) four decreasing periods
(1973/74–1976/77, 1981/82–1992/93 and 2002/03–2004/05 respectively). It should be noted that all trends
identified, either with SMK test, either with CUSUM test, were not significant at the 0.05 confidence
level (Figures 10a and 11a).

 
(a) 

 
(b) 

Figure 10. SMK and CUSUM tests for (a) precipitation and (b) air temperature.

(a) (b) 

Figure 11. Results of Mann-Kendall test (No border in columns indicates S test and black border Z test;
(*) and (+) symbols indicate if trend is significant at α = 0.05 level and at α = 0.1 level respectively) and
Sen’s slope for (a) precipitation and (b) air temperature.

Regarding annual air temperature, the following trends were identified, based on the form of
the u(t) curve: (a) two decreasing periods were identified (1960/61–1964/65 and 1969/70–1983/84),
followed (b) by two increasing periods (1964/65–1969/70 and 1983/94–2004/05 respectively). Of the
abovementioned trend periods, based on the SMK test, the periods 1960/61–1964/65 and 1983/94–2004/05
were significant at the 0.05 confidence level, while with the CUSUM test, the trends identified were not
statistically significant at the 0.05 confidence level (Figures 10b and 11b).

The trend analysis and change point detection tests applied in actual evapotranspiration time-series
of all land cover case studies examined, led to the identification of: (1) three increasing periods
(1960/61–1967/68, 1977/78–1982/83 and 1989/90–1994/95), followed by (2) three decreasing periods
(1967/68–1977/78, 1982/83–1989/90 and 1994/95–2004/05 respectively; Figure 12a–c). Nevertheless,
the trend magnitude of each period was different for each land cover case study examined. More
specifically, the trend magnitude in all trend periods identified was higher in the case of 1960, followed
by the trend magnitude calculated for the periods 1990 and 2018, with the exception of the period
1977/78–1982/83 that the trend magnitude was greater in LC2018, followed by LC1990 and LC1960, and
the period 1982/83–1989/90, where trend magnitude was practically identical in all land cover cases
examined. It should be noted that all trends identified were not significant at the 0.05 confidence level
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with the SMK test, while with the CUSUM test, the period 1982/83–1989/90 was statistically significant
at the 0.05 confidence level in all land cover case studies examined (Figures 13a and 14a).

Figure 12. SMK and CUSUM tests for actual evapotranspiration for (a) LC1960, (b) LC1990, and (c)
LC2018, and river outflow to Maliakos Gulf for (d) LC1960, (e) LC1990, and (f) LC2018.

(a) (b) 

Figure 13. Results of Mann-Kendall test for actual evapotranspiration (a) and river discharge (b) for
LC1960, LC1990, and LC2018. No border in columns indicates S test and black border Z test. (*) and (+)
symbols indicate if the trend is significant at the α = 0.05 level and α = 0.1 level, respectively.
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(a) (b) 

Figure 14. Sen’s slope for actual evapotranspiration (a) and river discharge (b) for LC1960, LC1990,
and LC2018.

Finally, concerning Spercheios annual river discharge and outflow to Maliakos Gulf, three
decreasing periods were identified for all land cover case studies examined (1960/61–1976/77,
1981/82–1992/93 and 1995/96–2004/05), followed by two increasing periods (1976/77–1981/82 and
1992/93–1995/96; Figure 12d–f). In all trend periods identified, the trend magnitude was smaller in
LC1960, followed by LC1990 and LC2018, except in the case of the period 1981/82–1992/93 that the
trend magnitude for LC2018 was smaller than in the case of LC1990. These results revealed a significant
impact of land cover on the formation of extreme hydrometeorological events. This finding indicates
that the decrease of a richly-vegetated area, for example due to deforestation between LC1960 and 1990,
increased annual river discharge while intensifying the vulnerability to extreme climatic variabilities
which often provokes either droughts or floods. Of the abovementioned trend periods, based on the
SMK test, 1981/82–1992/93 was significant at the 0.05 confidence level, while with the CUSUM test, the
trends identified were not statistically significant at the 0.05 confidence level (Figures 13b and 14b).

3.4. Water Budgets

Regarding the water budgets of each land cover case study examined, the following can be stated.
The actual evapotranspiration at Spercheios river basin ranged in the three land cover case studies
examined from 74.9% (LC1960), through 70.9% (LC1990), to 72.8% (LC2018). Baseflow to river ranged
from 16.7% (LC1960), through 19.2% (LC1990), to 18.1% (LC2018). Storage change ranged from 11.6%
(LC1960), through 13.3% (LC1990), to 12.4% (LC2018) (Figure 15).

Figure 15. Water budget of Spercheios river basin for the three land cover case studies examined.
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4. Discussion

Anthropogenic land cover changes and interventions on catchment’s characteristics can be leading
factors affecting the hydrological cycle components and, in some cases, the impacts can be of the same
order of magnitude, or even larger than those attributed to climatic variabilities [11,12]. In order to
investigate the effects of land cover changes on the main hydrometeorological factors of a regional river
basin in Central Greece, a physically-based hydrological model (MIKE SHE) and gridded observational
meteorological data (Copernicus Climate Change Service E-OBS) were employed, and three land cover
case studies were adopted.

Before the simulations, the reliability of the E-OBS dataset including precipitation and daily
temperature (average, minimum and maximum) was evaluated by comparing against time-series of
in-situ observations from meteorological stations at the basin. Based on the results, E-OBS dataset
systematically underestimated precipitation in Spercheios river basin for the entire period of evaluation.
This may be attributed to issues arising in the comparison of in-situ measurements with area-averaged
estimates [68], such as the identification of the most representative grid-point for each meteorological
station, the insufficient density of the weather stations network in Spercheios river basin or possible
uncertainties concerning the accuracy of observational measurements [69]. Moreover, the coarse
horizontal resolution of E-OBS prevented to accurately describe the influence of topography on
precipitation and to adequately resolve the atmospheric mesoscale processes; 10–15 km grid spacing
of meteorological variables generally improves the realism of the results but does not necessarily
significantly improve the objectively scored accuracy of the forecasts [70]. Additionally, the coarse
network of Greek meteorological stations used in the E-OBS development that are not evenly distributed
and do not cover higher altitude sufficiently, eventually does not allow the accurate representation
of area-averaged estimates. More specifically, the spatially-averaged annual precipitation calculated
at the present study for the period 1960/61–2004/05 was 542.5 mm, which is close to the mean
annual precipitation of Lamia meteorological station (585.5 mm for the period 1970–2000 [71]). In
other studies, the spatially-averaged annual precipitation of Spercheios river basin was estimated
to be 836 mm for the period 2008/09–2010/11 (precipitation estimated based on Thiessen polygons
method [72]) and 1,077 mm for the wet hydrological years 2013/14–2014/15 [73] (simulated precipitation
provided by Poseidon Monitoring, Forecasting and Information System [74]) [75], while for the period
1949/50–1989/90, the spatially-averaged annual precipitation for Spercheios river basin was estimated
to be 904.6 mm [76]. Nevertheless, the main scope of the present study was the trend analysis of the
time-series of the main hydrometeorological factors and, therefore, these discrepancies were considered
to be acceptable, since no other meteorological data except from the low-altitude Lamia meteorological
station (Hellenic National Meteorological Service, WMO 16675) were available for the entire simulation
period (1960/61–2004/05).

As far as the results of hydrological simulations are concerned, average annual actual
evapotranspiration and river discharge were the main parameters of the hydrological cycle which
were analyzed in this study. First, the average annual actual evapotranspiration at Spercheios river
basin was −5.3% and −2.5% decrease in LC1990 and LC2018 respectively, in comparison to LC1960.
These variations can be attributed to the presence of the larger areas covered by vegetation (forest and
pastures) in LC1960 (70% in comparison to 66% in LC1990 and LC2018), and especially to the larger
extent of areas classified as pastures that also include shrubs, transitional woodland—shrub areas or
areas with dense vegetation (38% in LC1960), that led to increased actual evapotranspiration. The
higher value of actual evapotranspiration in LC2018 in comparison to LC1990 can be attributed to
the increased forested land (34% in LC2018 in comparison to 30% in LC1990). The simulations also
presented high spatial differences in average annual actual evapotranspiration. Land cover in 1960
was characterized by a more inhomogeneous pattern than in 1990 and in 2018 due to the increased
distribution patterns of areas covered by forests, agricultural land and pastures in 1960 which have
different effects on evaporation and transpiration. Moreover, mean annual actual evapotranspiration
was almost the same at areas covered by artificial surfaces over time, for example Lamia city, but
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presents variations where land cover changed. The transition from pastures to agricultural land
or forest increased evapotranspiration, while the inverse transition had the opposite effects for the
entire simulation period which means that land cover effects can locally outflank the impact of
climatic variability.

Second, average annual river discharge to Maliakos Gulf was +11.8% and +5.9% increased in
LC1990 and LC2018 respectively, in comparison to LC1960. This can partially be attributed to the
contribution of the baseflow to river, that ranged from 16.7% in LC1960, through 19.2% in LC1990, to
18.1% in LC2018, following the same pattern. Additionally, the high forested land covering the area of
Spercheios river watershed in the case of LC1960 (31%) combined with the lowest irrigation demands
during the same period and led to the smallest river discharge. Although in 1990 the forested land
slightly decreased (30%), the irrigation demand was almost double, leading to higher exploitation of
underground waters, offering residual water in the rivers’ flow and leading eventually to the highest
river discharge. Finally, the increase of forested areas in 2018 (34%) and the additional high irrigation
demand in 2018 led to the small decrease of river discharge.

Regarding trend analysis, the effect of land cover change on the trend magnitude was evident.
Concerning precipitation and river discharge, the trend change points identified were almost
identical. Additionally, the trend change points of actual evapotranspiration identified coincide
with those of precipitation, verifying the fact that precipitation is a major factor affecting actual
evapotranspiration in dry areas, in contrast to wet areas that evapotranspiration is energy-limited
(radiation and air temperature) (for example [77–79]). On the contrary, the trend change points of actual
evapotranspiration and air temperature were not the same, indicating that actual evapotranspiration is
affected in a more complicated way and also by other factors except air temperature as expected, such
as land cover and water availability. This was also evident during the trend magnitude analysis of each
trend period, where the effect of land cover was noticeable. More specifically, in the case of LC1960,
where mean annual actual evapotranspiration was the highest in comparison to the other land cover
cases examined, and forested land and pastures (that also include natural grasslands, sclerophyllous
vegetation, transitional woodland-shrub, moors and heathland and sparsely vegetated areas) consisted
of 70% of the total watershed area, the trend magnitude of each trend period examined was higher.
Additionally, highly vegetated watersheds showed smaller tolerance to changes of hydrometeorological
factors regarding actual evapotranspiration. On the contrary, the small trend magnitude of river
discharge in LC1960 in comparison to LC1990 and LC2018 indicated that in the case of a highly
vegetated river basin, the response of the system to changes of hydrometeorological factors regarding
river discharge was milder. It is an important finding because land cover of LC1960 could play a
relaxing role on the consequences of extreme weather phenomena, either droughts or floods, which
will possibly increase in the future.

It should be noted that some uncertainties arise due to the fact that during the present study
precipitation and air temperature were considered to be unaffected by land coverage. This is a weakness
of the present methodological approach since the current version of the hydrological model MIKE SHE
does not provide the option of a two-way dynamically coupled atmospheric-hydrological modeling.
The use of an uncoupled system can lead to overprediction of the change in evapotranspiration caused
by land cover use changes in comparison to the use of a coupled model results [80].

5. Conclusions

In this study, the physically-based hydrological model MIKE SHE and Copernicus Climate Change
Service E-OBS gridded meteorological dataset were used to analyze the effects of anthropogenic land
cover changes to the hydrological cycle components of the regional watershed of Spercheios river
in central Greece. Three case studies based on the land cover of the years 1960, 1990, and 2018
were investigated.

The analysis of simulation results showed that phenomena like deforestation reduced mean
annual actual evapotranspiration while increasing mean annual river discharge. The increase of
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irrigated agricultural land and irrigation demand also increased discharge as revealed by the results of
the case study based on the latest land cover of 2018. Even though irrigation often reduces overland
water resources, the exploitation of underground waters can increase river discharge.

Moreover, the climatic variabilities primarily in precipitation and secondarily in temperature
influenced annual actual evapotranspiration and annual river discharge. Nevertheless, the response of
various watershed areas on land cover changes was shown to be more significant, hiding the effects
of climatic variabilities. Land cover changed among the case studies, and thus, locally exceeded the
impact of climatic variabilities as indicated by the reduced interannual variabilities of differences
in annual actual evapotranspiration. The inhomogeneity of land cover as well as the reduction of
vegetated areas were highlighted as the main reasons for this effect.

Remarkably, an in-depth trend analysis unveiled the effect of land cover on increasing the
vulnerability on extreme climatic variabilities causing intense hydrometeorological events, either
droughts or floods. This means that the resilience of the watershed to extreme weather and climatic
phenomena was higher in cases of increased vegetated area, since the response of river discharge in
changes of hydrometeorological factors and precipitation was milder in cases of land cover dominated
by forested land. This finding highlights the fact that the natural systems under stress mainly due to
land cover changes and anthropogenic interventions are likely to have more rapid and acute reactions
to climatic variabilities.

Understating the complex interactions among multiple stressors—land degradation and
hydrometeorological hazards—can contribute to the development and implementation of successful
Integrated Water Resources Management plans. Given the high level of uncertainty of climate change
projections and related impacts on water resources, the effects of climatic variabilities on freshwater
resources cannot be quantified in a deterministic way; decision-making should be rather based on
possible future freshwater hazards and risks. Under this scope, the quantitative assessment of land
cover effects presented in this study can be a basis for adaptation and mitigation to climate change and
human interventions.
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Abstract: Stretching along the border of North Dakota and Minnesota, The Red River Valley (RRV) of
the North has the highest frequency of reported blizzards within the contiguous United States. Despite
the numerous impacts these events have, few systematic studies exist that discuss the meteorological
properties of blizzards. As a result, forecasting these events and lesser blowing snow events is an
ongoing challenge. This study presents a climatology of atmospheric patterns associated with RRV
blizzards for the winter seasons of 1979–1980 and 2017–2018. Patterns were identified using subjective
and objective techniques using meteorological fields from the North American Regional Re-analysis
(NARR). The RRV experiences, on average, 2.6 events per year. Blizzard frequency is bimodal, with
peaks occurring in December and March. The events can largely be typed into four meteorological
categories dependent on the forcing that drives the blizzard: Alberta Clippers, Arctic Fronts, Colorado
Lows, and Hybrids. The objective classification of these blizzards using a competitive neural network
known as the Self-Organizing Map (SOM) demonstrates that gross segregation of the events can be
achieved with a small (eight-class) map. This implies that objective analysis techniques can be used
to identify these events in weather and climate model output that may aid future forecasting and risk
assessment projects.

Keywords: Blizzards; blowing snow; climatology; self-organizing maps; synoptic typing

1. Introduction

The United States (US) National Weather Service (NWS) currently defines blizzards as events that
have sustained winds or frequent gusts ≥ 35mph (16 m·s−1) and considerable falling and/or blowing
snow that reduces visibilities to ≤ 1

4 mile (400 m) for periods of three hours or longer. These events are
recorded within the National Centers for Environmental Information (NCEI) Storm Data publication
that is reliant on submissions by the Warning Coordination Meteorologist (WCM) at each NWS forecast
office. This publication serves as the official archive of storm events for the country [1,2].

Within the contiguous United States (CONUS), reported blizzards are most common over the
Northern Great Plains (NGP) including the region centered on North and South Dakota [1,2]. At a
county level, the highest frequencies are found along the border of North Dakota and Minnesota,
which, topographically, makes up the Red River Valley (RRV) of the North (Figure 1). To some extent,
this is impressive considering population-related reporting biases noted for warm-season hazardous
weather events such as tornadoes [3–6]. Alternatively, reporting biases could exist by the NWS County
Warning Area (CWA), as noted for warm-season hazards such as hail [7] and wind [8].
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Figure 1. Topography of the Red River Valley (RRV) of the North. Elevation (ASL) is shaded while
National Weather Service (NWS) County Warning Areas (CWAs) are denoted by the dark red polygons.
Larger water bodies and rivers are highlighted in blue.

Regardless of potential biases in Storm Data, the high frequency of blizzards in this region makes
physical sense and can be attributed to factors including the topography/land cover, climatology of
snow cover, and frequency of high-wind events. A lake plain leftover from the receding Glacial Lake
Agassiz 8000 years ago, the shallow Red River of the North flows northward to Lake Winnipeg before
eventually emptying into the Hudson Bay [9]. The RRV is largely devoid of trees except within the
immediate vicinity of the river and in shelterbelts (tree rows) planted due to agricultural activity.
Though the RRV is, on average, only a few hundred meters deep over a 100 km width, there is evidence
that winds are enhanced within this region. For example, blowing snow plumes are sometimes seen
only within the RRV, typically in regimes with cold-air advection (Figure 2). While there are numerous
studies that document topographic influences of valleys on winds in other locations, the authors are
unaware of any existing studies for the RRV.

Figure 2. False color imagery (generated from I1-I2-I3-M3-M11 bands) from the Visible Infrared
Imaging Radiometer Suite (VIIRS) onboard the Suomi satellite during the daylight (~1:30pm local time)
overpass on (a) 11 January 2018 and (b) 15 January 2018. Snow cover is denoted by pink/red, cloud
cover and blowing snow by white, and bare landscape by green (bare ground) or dark (forest) areas.
Blowing snow plumes oriented along the RRV are labeled by ‘BLSN’.
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With a latitude of 45–49◦ N in the center of the North American continent, the RRV is the coldest
non-mountainous region within the CONUS [10]. Though the region only receives, on average,
80–100 cm of snow in a year [11], the cold temperatures facilitate an environment that supports an
average snow cover extent >85% during the winter months [12]. Snowfall events responsible for this
cover have been tied to several meteorological patterns including extratropical cyclones that form due
to lee cyclogenesis such as Colorado Lows and Alberta Clippers [13–17].

As the name implies, Colorado Lows originate due to cyclogenesis near its namesake (the state
of Colorado). Historically, these types of systems have been associated with a number of impactful
blizzards, including events such as the Children’s Blizzard on 12 January 1888 [18]. The strength of
these cyclones can advect a significant amount of moisture northward, and, as a result, these systems
are responsible for the heaviest (and largest scale) snowfalls in the RRV, southern Manitoba, and
western Ontario [16]. The more progressive cousin of these systems include Alberta Clippers that
propagate rapidly east-southeast from Canada into the upper-tier of the US [19]. Precipitation for these
events typically comes in the form of mesoscale snow bands. Overall, snow totals are lower due to
lack of available moisture, but these systems can still produce significant winds capable of reaching
blizzard criteria [16,20]. While Colorado Lows and Alberta Clippers are colloquial terms for common
North American mid-latitude cyclones, blizzards can also be forced by systems that originate in other
areas (e.g., Montana). Historically, these events have been given the moniker ‘Hybrids’ by the Grand
Forks NWS Forecast Office (NWSFO), and, as such, this term is used herein to describe systems that do
not conform to stereotypical patterns but have a defined low pressure center. Depending on the event,
snowfall can be meso- or synoptic-scale in nature, with high variability for totals.

While blizzards are often thought of as large-scale events associated with the juxtaposition of
winds and snowfall associated with mid-latitude cyclones, the RRV also experiences events known
as ground blizzards that are frequently driven by strong winds behind Arctic (Cold) Fronts [16,21].
For these cases, winds greater than 4–7 m·s−1 impart a force on already fallen snow, rolling it on the
surface before being bounced and lofted into the atmosphere [22,23]. As demonstrated in Figure 2,
these events can often occur under otherwise clear skies and, in some cases, are confined solely to the
RRV, providing evidence of the topographic enhancement of winds.

Historically, the Grand Forks NWSFO has subjectively classified blizzards within their CWA (see
Figure 1) into the four aforementioned categories (Alberta Clippers, Arctic Fronts, Colorado Lows, and
Hybrids), and has maintained a local database of these blizzards from 1974 to present. These events
are identical to the reported blizzards in Storm Data, although additional meteorological information
is sometimes included within the local dataset vs. what is officially provided in Storm Data. While
Storm Data is considered the official dataset for blizzard events, the events are of such importance that
the local newspaper (The Grand Forks Herald) has independently kept track of and named impactful
events since the winter of 1989–1990.

The purpose of this work is two-fold. First, the climatology of blizzards within the Grand Forks
NWSFO CWA will be described for the winters of 1979–1980 and 2017–2018. Besides investigating
when and how often blizzards occur, this abbreviated time period will allow for composite patterns to
be generated using the North American Regional Re-analysis (NARR) [24]. Given the limitations and
known human biases of subjectively defining atmospheric patterns, the second goal of this work is to
demonstrate that atmospheric patterns associated with these events can be objectively defined. To do
so, a competitive neural network known as a Self-Organizing Map (SOM) [25] will be used.

The efforts of this work will add to the limited body of literature that discuss blizzards in
continental regions such as the Northern Great Plains. The climatology and demonstration of an
objective technique to classify these patterns described herein will pave the way for future studies that
will seek to identify these events in re-analyses, Numerical Weather Prediction (NWP) models, and
climate simulations. This will allow for questions to be investigated that range from best forecasting
practices for these events to how blizzards may change in a warming climate.
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2. Materials and Methods

As noted in the introduction, the climatology of blizzard events in this study comes from the
publically available NCEI Storm Data. For the purposes of this project, only blizzards contained within
the Grand Forks NWSFO CWA (Figure 1) were investigated (see Appendix A). These events are referred
to as RRV blizzards due to the majority of the CWA encompassing this topographic feature, although a
few counties within this region are on the periphery of the valley. To compare events to NARR data,
the time period was limited to the winter seasons (October–April, determined by reported blizzards in
Storm Data) of 1979–1980 and 2017–2018. Subjective classifications of event types (Alberta Clippers,
Arctic Fronts, Colorado Lows, and Hybrids) were made by Grand Forks NWSFO meteorologists using
available observations, model, and re-analysis output.

2.1. Composite Analysis

Composite surface and upper-air patterns were generated using the NARR [24]. Though on
a native 32 km horizontal grid, this dataset was averaged to a lower resolution, 16 × 16, and 1.25◦
(longitude) by 0.94◦ (latitude) grid centered on the Grand Forks NWSFO CWA. This was done to
reduce the computational cost of the SOM and to facilitate future comparisons to other datasets (e.g.,
weather or climate model output). While a number of re-analyses are now available, NARR was chosen
due to the authors’ familiarity with this dataset, along with prior studies that demonstrated favorable
performance over the region [25–28]. Given the variables and resolution used, it is anticipated that
similar results would be found if other current generation re-analyses were used (e.g., ERA-Interim [29]).
This assertion may not be valid in regions with more limited surface and upper-air observations where
re-analyses are more poorly constrained.

Using storm data, available surface observations, and the NARR, midpoint times were estimated
for each blizzard event. Patterns were composited for the four primary patterns using blizzard
midpoint times and +/−12-hr before and after these points. For patterns that contained a mid-latitude
cyclone, the minimum mean sea level pressure (MSLP) within the domain was identified and tracked
over this time.

2.2. Objective Classification Using a SOM

To objectively classify atmospheric patterns, the Self-Organizing Map (SOM) [30] technique was
used. A competitive neural network, SOMs are most similar to a K-means clustering algorithm [31].
Unlike K-means clustering, SOMs include a neighborhood function during the training process.
The result is a topological (feature) map that allows clusters (nodes) to a) span the data space and b)
relate to each other in a two-dimensional matrix. This latter property allows users to be less concerned
with the exact number of clusters to choose and instead to focus on clusters that are relevant for
their analysis purposes. While this alone makes it a useful algorithm for pattern recognition, SOMs
hold other advantages (handling of noise, no a priori assumptions of data, better identification of
pattern mixing) over common techniques such as Principal Component Analysis (PCA)/Empirical
Orthogonal Functions (EOFs) [32–34]. As a result, SOMs are now commonly used in the fields of
meteorology and oceanography. For additional information, the reader is referred to earlier surveys of
SOM studies [35,36].

The process of creating a SOM follows the strategy employed in earlier work by the author [37],
and the reader is referred to this study for more details on the nuances of SOM creation. To summarize
the process, a user must first select data for input then reduce the multi-dimensional meteorological
data into input vectors that the SOM performs the clustering on. SOMs are trained in a two-step
process that first determines the orientation of the feature map then iterates to a final solution that
seeks to minimize the error between the training dataset and the final classification of nodes [31]. These
stages require the selection of user parameters such as the map size, training length, learning rate,
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and the neighborhood radius. After the SOM is created, training samples are compared to each node
within the feature map and classified to the node with the minimum Euclidean distance.

Consistent with the generation of composite patterns in the previous section, the spatially averaged
16 × 16, 1.25◦ (longitude) by 0.94◦ (latitude) NARR was used to train the SOM. Based on the results of
the compositing process, variables that showed significant variability across patterns were used, and
these included 500 hPa geopotential heights, MSLP, and surface temperatures. Other combinations of
variables were tried, but the inclusion of 500 hPa geopotential heights made the largest difference in
the ability of the SOM to segregate patterns. Identical to [37], variables were computed as anomalies
from the field mean at each given time step. This allowed the SOM to focus on the gradients in
variables, minimizing the issues of biases or variability that vary by season or exist when patterns
are compared across multiple datasets (e.g., NARR vs. climate model data) which is useful for future
studies. To capture the progression of systems across the domain, each training sample included time
steps at the midpoint and +/−12 hrs. With three total variables, a 16× 16 region, and three times for each
case, input vectors used to train the SOM had a length of 2304 elements. All variables were normalized
to a common scale to contribute equally to the SOMs. In total, 93 blizzard cases (a subset of 37 winters
from 1979–2018 and 2015–2016) were used as input vectors due to the availability of NARR data at
the time the SOM was created and as a goal to classify future patterns. Errors (Euclidean distances)
for classified patterns in the latter two seasons were similar to the trained data. This suggested that
(1) training the SOM with all 100 patterns would not significantly alter the results, and (2) ample
variability was captured in the SOM and the methodology is useful for pattern recognition purposes.

A key parameter of the SOM (and other objective classification techniques) is the number of classes
chosen. For classifications of atmospheric states, this decision will be dependent on the purpose of the
study as well as the number of samples being used to train the SOM. Too few classes can smooth out
the details of patterns, while too many will lead to situations where some SOM nodes have no observed
patterns classified to them [37]. With a relatively small number of cases (~90–100) and the purpose of
comparing the SOM to subjectively classified classes, a rectangular 8-class (4 × 2) is presented. Larger
maps were also created, but they did not provide further insight to the results shown herein.

The SOM was generated using SOM_PAK software, which is freely available [30]. Within this
package, the ‘vfind’ program was used; this program randomly initializes a SOM feature map a
specified number of times and selects the map that minimizes the lowest quantization error. Following
the guidelines of SOM_PAK [30], settings for ‘vfind’ included a training length that increased and
learning rates and neighborhood radii that decreased between the two steps in the training process
(Table 1).

Table 1. Self-Organizing Map (SOM) settings used with the SOM_PAK command ‘vfind’.

Parameter Value Notes

Topology Rectangular vs. hexagonal lattice
Neighborhood Function Bubble vs. Gaussian

Trials 10 randomly initialized
Training Length (stage 1, stage 2) 93, 93000 # of blizzard patterns
Learning Rate (stage 1, stage 2) 0.05, 0.01 linearly decrease with time

Neighborhood Radius (stage 1, stage 2) 3, 1 # of nodes

3. Results and Discussion

3.1. General Characteristics

During the 39-year period, 100 total blizzards were reported, averaging 2.6 events per year.
An annual and seasonal breakdown of these events is provided in Figure 3. RRV Blizzards are highly
variable, with seasons varying from 0–10 events (Figure 3a). Record years (10 events) included the
infamous 1996–1997 winter that concluded with the catastrophic RRV flood [38,39] and the 2013–2014
winter that did not have significant flooding. On the other end of the spectrum, three seasons
(1986–1987, 1990–1991, and 2011–2012) did not have any recorded blizzards. While the source of this
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variability is beyond the scope of this study, snowfall and cyclone variability in this region have been
tied in part to phases of the El Niño Southern Oscillation (ENSO) and the North American Oscillation
(NAO) [40,41].

Figure 3. (a) Annual and (b) bimonthly number of Storm Data blizzards for the winter seasons of
1979–1980 and 2017–2018. Named blizzards by the Grand Forks Herald are provided by the red dots in
panel (a).

Out of curiosity, named blizzards from the Grand Forks Herald newspaper were also compared
for annual totals. Over the shorter period (1989–1990 and 2017–2018), the newspaper named 63 (vs. 76)
blizzards, and the datasets had a correlation of 0.77. Provided that the distribution area for the paper is
smaller than the CWA, these results are expected. While some specific years had more events recorded
by the paper vs. Storm Data, this is attributed to events that were stronger winter storms but did not
meet official blizzard criteria.

Blizzards have been reported from October–April, with the bulk of the events occurring from the
2nd half of December to the 1st half of March (Figure 3b). The most frequent period of occurrence
was the 2nd half of December, with a total of 17 blizzards over the 39-year period. A unique aspect
of the seasonal cycle is the bimodal distribution with a well-defined lull in late February. This is in
agreement with North American cyclone climatologies that indicate a relative minima of cyclones
during February [42].

3.2. Composite Analysis

Classifications of the 100 classified blizzards were used to generate composite patterns from the
NARR. Of the 100 patterns, two patterns were sufficiently different that they did not fit any of the four
categories, and these were omitted from the composite analysis. These included two events driven by
southerly winds well ahead of weaker mid-latitude cyclones on 6 March 2014 and 31 December 1996.
The remaining composite patterns are now described.

Of the four patterns, Colorado Low blizzards feature the strongest mid-latitude cyclone
(Figures 4a–7a) and resemble prior composites of this type [43]. Tracking from Northeast Colorado to
North Wisconsin, the composite minimum MSLP decreases from 1002–1000 hPa from 12 h prior to
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the midpoint of the event. With a storm track south of the RRV, the region is predominately under
northerly surface winds that strengthen and shift direction from the East-Northeast to the Northwest
as the cyclone progresses eastward. While not shown (and noted earlier), these systems are responsible
for the highest snowfall totals, as the region falls within the precipitation shield north of the cyclone
track [44]. Aloft, these events are associated with the progression of a well-defined trough that deepens
over the region (Figures 5 and 7a). In response to the passage of this trough, strong 500 hPa height falls
are found leading up to the event, with the maximum decrease located just northeast of the surface low.
In some cases, these troughs are associated with an upper-level closed low, although this definition has
been lost to some extent during the compositing process.

Figure 4. North American Regional Re-analysis (NARR) composite plots of mean sea level pressure
(MSLP) (hPa), surface wind barbs (kts), and surface temperatures (◦C) 12 hr prior to the midpoint of
(a) Colorado Low, (b) Alberta Clipper, (c) Hybrid, and (d) Arctic Front blizzards. 12-h MSLP change
(midpoint—12 hr prior) is provided by shaded contours while composite mean cyclone tracks are
denoted by the thick black lines for select classes.

Blizzards associated with Alberta Clippers also feature a well-defined, albeit weaker
(1008–1006 hPa) mid-latitude cyclone (Figures 4b–7b). Consistent with the name and prior
composites [19], these systems track east-southeast from southern Canada across the RRV with
the cyclone center eventually reaching Northeast Minnesota and North Wisconsin. One should note
that the composite cyclone tracks appear to be shifted east compared to the Colorado Low and barely
encompass the passage of the low out of Canada. Because these tracks were identified symmetrically
around the midpoint of the blizzard conditions, this implies that poor visibility primarily occurs
after the passage and development of the surface cyclone (Figure 4b). Aloft, conditions leading up
to the event feature stronger west-northwest 500 hPa flow with maximum height falls located over
Minnesota, just ahead of a developing short-wave trough (Figure 5b). By the midpoint of the blizzard,
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this trough has amplified and progressed eastward across the domain with 500 hPa winds shifting to
the Northwest.

As noted earlier, the Grand Forks NWS defines Hybrid events as those with characteristics of
multiple patterns, and this is also true of the composite patterns (Figures 4c–7c). At the surface, this
class manifests itself as a mid-latitude cyclone track that begins farther north (south) of a Colorado
Low (Alberta Clipper). The minimum pressure and intensity of the wind field are similar to that of
the Alberta Clipper, but it has weaker 12-hr pressure rises/falls (Figure 6c). This latter property can
be attributed to the slower progression of Hybrids vs. Alberta Clippers. At 500 hPa, Hybrids are
associated with weaker, near-zonal flow 12 h prior to the midpoint of blizzard conditions (Figure 4c).
Compared to the Alberta Clippers, the short-wave trough is in a similar position, but the orientation
of the flow leads to a more neutral tilt. Unlike the aforementioned pattern, Hybrids feature more
deepening of the upper-level low/trough by the midpoint of the blizzard, similar to what is seen for
Colorado Lows.

Figure 5. NARR composite plots of 500 hPa Geopotential heights (m) and wind barbs (kts) 12 hr prior
to the midpoint of (a) Colorado Low, (b) Alberta Clipper, (c) Hybrid, and (d) Arctic Front blizzards.
12-h 500 hPa height change (midpoint—12 hr prior) is provided by shaded contours.

Arctic Fronts are the final, and arguably most unique, composite pattern identified with RRV
blizzards (Figures 4d–7d). Unlike the other patterns, no centralized region of low-pressure is seen
at the surface. Instead, this pattern features an elongated southwest to northeast oriented surface
trough associated with the developing Arctic Front (Figure 4d). As the event progresses, surface
pressures rapidly rise and northerly winds strengthen behind the front, as the Arctic High develops to
the Northwest, increasing the gradient in MSLP and Cold Air Advection (CAA). Because the surface
trough/Arctic Front is often associated with a more distant cyclone, 500 hPa patterns are more dissimilar
from the other patterns (Figures 5 and 7d). These events are characterized by strong northwest flow
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that eventually develops a southwest trough (passing vorticity maxima) in the eastern half of the
domain by the mid-point of the event. As a result, the region ends up residing under large (60 m)
height rises associated with a strengthening jet stream and implied Negative Vorticity Advection
(NVA). Compared to the Alberta Clippers and Hybrid events, 500 hPa winds associated with Arctic
Fronts are approximately double in magnitude (80 vs. 40 kts). This leads to a vertical wind profile (not
shown) that implies downward transfer of momentum in a regime of subsidence is a key mechanism
for reaching blizzard criteria for winds. The presence of CAA, NVA, and subsidence matches many of
the checklist items for impactful post-cold frontal winds [21].

Meteorological patterns responsible for blizzard events have preferred periods of occurrence
(Figure 8). Early and late season events (October, November, and April) are primarily due to Hybrid and
Colorado Lows, with only one (Alberta Clipper) event not fitting these categories. These classes have
bimodal distributions with Colorado Lows (Hybrids) peaking in December and March (January and
March), respectively. Alberta Clippers occur from December to March, with the majority of the events
occurring during January and February, consistent with [19]. Arctic Fronts, commonly responsible for
ground blizzards, are more common during the late winter with events between December to March
and a maximum in January. As a result of these distributions, January ends up being the most diverse
month with relatively constant fractions (0.2–0.3) across the categories (Figure 8b). As noted earlier,
the lull in February is consistent with extra-tropical cyclone climatologies, and this is seen in Figure 8
as a reduction of Colorado and Hybrid lows in this month.

Figure 6. As in Figure 4, except for the midpoint of the blizzard. 12 hr MSLP change (12 hr post—midpoint)
is provided by shaded contours.
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Figure 7. As in Figure 5, except for the midpoint of the blizzard. 12-h 500 hPa height change (12 hr
post—midpoint) is provided by shaded contours.

Figure 8. (a) Number and (b) fraction of monthly blizzards for the winter seasons of 1979–1980 and
2017–2018, separated by type.
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3.3. Objective Classification of Patterns Using a SOM

Surface and 500 hPa analyses for the midpoint of blizzard events in the eight-class SOM are shown
in Figures 9 and 10. The SOM shows a progression of patterns that shift from cold fronts associated
with CAA (nodes 1/5) to deeper surface lows (nodes 3/4/7/8). These patterns have 500 hPa analyses
similar to those seen in earlier composites. For example, nodes 1/5 resemble Arctic Front patterns
with a strong northwesterly flow aloft, while the rightmost nodes appear as Colorado Lows with
either upper-level toughing (nodes 3/4) or a closed low (node 7/8). The progression of systems is also
similar to the composites shown earlier (not shown). For example, the rightmost nodes (4/8) progress
northeastward like a Colorado Low. Shifting from right-to-left, the mid-latitude cyclones become
weaker and have tracks that are displaced northerly, consistent with Hybrid/Alberta Clipper type
systems. While the SOM has many positive traits when compared to the composites, it by no means is
a perfect reproduction of the subjectively classified classes. For example, Arctic Fronts have pressures
that are too low 12-hrs prior to the midpoint of events resulting in weak cyclones vs. the open trough
seen in Figure 4. This is undoubtedly a result of the neighborhood function within the SOM smoothing
this category with other mid-latitude cyclone nodes. Despite this issue, quantitative comparisons of
blizzards events to both the composite patterns, and the eight-class SOM yielded better agreement for
the SOM with mean Euclidean distance ~30% lower (315.6 vs. 444.1). Increasing the SOM to a 5 × 3
(or larger) map mitigates this issue and further lowers the mean Euclidean distance; however, this
happens at the expense of decreasing the number of blizzards that occur per class (not shown).

Figure 9. MSLP (hPa, dashed lines) and surface temperature (◦C, filled contours) anomalies during the
midpoint of blizzards for the eight-class (2 × 4) SOM. Nodes are identified by the external numbers
ranging from 1–4 (5–8) for the top (bottom) rows.

Figure 10. As in Figure 9, except for 500 hPa height anomalies (shaded and dashed contours).
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As a final test of the SOM’s ability to segregate patterns, the subjectively classified events were
categorized into the eight-class SOM (Figure 11). As expected by the meteorological interpretation of
the nodes, patterns have distinct areas of occurrence. Colorado Lows (Figure 11a) only occur on the
right-hand-side of the SOM, with the majority of the cases occurring within Node 4. Alberta Clippers
occur within the left-most six nodes, with most occurring within Nodes 1, 2, 6, and 7. Hybrids, which
are subjectively defined as patterns with features of multiple patterns are the only category to occur
within every node. That said, the majority of these cases occur within Nodes 3 and 7, in-between
Colorado Lows and Alberta Clippers. Finally, Arctic Fronts are primarily on the left-hand-side of the
SOM with the majority of the cases occurring in Node 5. From a probability stand-point, categories
within the SOM can be arranged in a column fashion, with probability of occurrence shifting from
Arctic Fronts (Nodes 1/5), to Alberta Clippers (Nodes 2/6), to Hybrids (Nodes 3/7), to Colorado Lows
(Nodes 4/8). By doing this, the time period of occurrence for these categories gives results similar to
the results shown in Figure 8 with seasonal occurrence of SOM nodes varying by column (Table 2).

Figure 11. Percent of (a) Colorado Low, (b) Alberta Clipper, (c) Hybrid, and (d) Arctic Front blizzards
identified within each of the eight SOM nodes.

Table 2. Number (Percentage) of blizzards segregated by month and SOM nodes. Percentages are
calculated using monthly totals.

Nodes 1/5
(Arctic Front)

Nodes 2/6
(Alberta Clipper)

Nodes 3/7
(Hybrid)

Nodes 4/8
(Colorado Low)

October 0 (0) 0 (0) 2 (67) 1 (33)
November 0 (0) 0 (0) 2 (40) 3 (60)
December 2 (9) 7 (30) 9 (39) 5 (22)

January 12 (41) 5 (17) 8 (28) 4 (14)
February 6 (35) 6 (35) 3 (18) 2 (12)

March 4 (22) 4 (22) 4 (22) 6 (33)
April 0 (0) 0 (0) 1 (20) 4 (80)

3.4. Discussion and Future Work

The good agreement between subjectively and objectively identified blizzard patterns provides
evidence that the characteristics of these events, including types of patterns and time periods of
occurrence, are well understood. The use of a relatively small SOM and inclusion of only several
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variables to obtain this finding is a positive result that suggests SOMs can be used to investigate a
number of outstanding questions regarding blizzards. Some of these activities are now discussed.

Within the realm of weather prediction, a constant struggle is determining whether visibility
criteria will be met to justify and verify products such as NWS blizzard warnings. Though blowing
snow parametrizations exist [45,46], they are not currently included in operational Numerical NWP
models within the US. Instead, local forecasters must use empirical models that determine a probability
of blowing snow given conditions such as wind speed, air temperature, and snowpack conditions [47].
The context of how these events fit within the scope of forcing mechanism (type of event) is currently
only considered subjectively (e.g., Arctic Fronts are harder to forecast than Colorado Lows). A possible
solution is for SOMs to provide real-time identification and classification of forecast atmospheric
patterns from deterministic or ensemble NWP systems. While this could be done subjectively, burden is
placed on the forecaster to identify patterns within the large range of modeling systems now available.
Further, there is always the issue of human bias. A hypothetical system can identify the fractional
number of ensemble members with forecasted blizzard patterns. Pattern typing can then inform
forecasters on the scope of impacts. For a system such as the Global Ensemble Forecast System (GEFS),
doing this subjectively would require the forecaster to individually inspect 21 members, a process that
is too arduous for an operational setting.

Prior to the implementation of such a system, the SOM must consider null cases to understand
the nuances between patterns that do and do not produce blizzard conditions. In practice, this can be
done in two different ways. As presented here, a small SOM developed solely from blizzard events
can be used by defining a threshold Euclidean distance that counts a pattern as a hit. A caveat with the
presented SOM is distances that are still quite large; this would lead to a higher risk of false alarms.
Instead, a larger SOM could be used to reduce the threshold Euclidean distance needed. Alternatively,
SOMs can be produced using all available patterns during the winter. To encompass the increased
variability in patterns (blizzard and null cases alike), these SOMs must be larger. Instead of using a
threshold to define events, observed blizzard events can be mapped to the larger SOM to understand
which nodes are associated with these events.

Regardless of the exact methods, an interesting avenue of future work is a retrospective analysis
on all historical patterns. This can provide insight into events that may have been missed by the
observation system or were too limited in scope to fit within the traditional zone/county verification
process at the NWS. Pattern recognition can also be extended farther back in time using datasets such
as the 20th Century Re-analysis [48] to yield a long-term climatology of blizzards.

How the frequency and intensity of RRV blizzards may change in a warming climate is also
unknown. Previous studies have focused on how precipitation or cyclone frequency may change
independently. From the Clausius–Clapeyron relationship, a warmer climate will dictate higher
amounts of column water vapor and, thus, precipitation [49]. During the winter, however, there will
be a balance between warmer temperatures, column water vapor, and precipitation phase. Overall,
a general decline in snow cover has been found for the northern hemisphere, and much of this is due
to a significant shortening of the snowy season [50,51]. Despite this trend, the RRV region has seen an
increase in snowfall, especially for higher end events with 2+ inches [52,53].

Regarding forcing mechanisms for RRV blizzards, mixed results have been found for extratropical
cyclones. While some studies suggest a decrease in Northern Hemisphere wintertime cyclone
frequency [54,55], other work suggests the strongest cyclones have intensified or could further intensify
in future climate projections [56–59]. Concerning specific patterns identified within the present study,
there is a projected decrease (increase) in Alberta Clippers (Colorado Lows) over North America [59].
It is unknown how Hybrid lows or Arctic Fronts may change, and this is an avenue of work into
which SOMs can provide insight, as they can provide information on type and frequency of occurrence
of patterns.
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4. Summary

A climatology of documented blizzard events within Storm Data for the Grand Forks NWSFO
CWA for the winter seasons of 1979–1980 and 2017–2018 was presented. The NARR was used to
composite and objectively classify patterns. These results are now summarized.

• Over the past 39 years, 100 documented blizzards were reported in Storm Data, resulting in an
average of 2.6 blizzards per year. This dataset strongly correlates with an unofficial record of
societally impactful events named by the Grand Forks Herald, a local newspaper.

• RRV blizzards occur between October and April and have a distinct bimodal distribution of
occurrence, with 58% of the events occurring from December 15th to February 15th. After a lull in
late February, a separate (weaker) maxima occurs in March.

• The Grand Forks NWSFO has subjectively classified blizzard patterns into four classes: Alberta
Clippers, Arctic Fronts, Colorado Lows, and Hybrids. Composite patterns resemble the expected
meteorological patterns with variations in the intensity, position, and progressiveness of the
mid-latitude cyclone and upper-level trough. Hybrids appear as lows that have tracks in-between
the Alberta Clipper and Colorado Low systems.

• Patterns have seasonal variability, with most early/late season blizzards caused by Colorado and
Hybrid Lows. Alberta Clippers and Arctic Fronts are more common in the middle of the winter
with peak occurrence of these latter patterns in January–February.

• A relatively simple eight-class (4 × 2) SOM can reproduce the general characteristics of the
composite patterns. A transition in patterns is seen from Colorado Lows→Hybrids→ Alberta
Clippers→ Arctic Fronts. This results in reasonable separation of subjectively identified events
and good agreement in the seasonality of these patterns. This adds confidence to the subjective
classification of patterns.

While these results are most relevant to the local populace, the last point has important ramifications
for the broader weather and climate communities. Impactful weather events such as blizzards are
challenging to forecast/detect over both short and long time-scales due to properties (e.g., visibility)
that are not explicitly simulated by weather and climate models. The success of the SOM technique to
objectively classify patterns suggests that pattern recognition can be used to address problems such as
the predictability of hazardous weather events in NWP ensembles or trends in these events in climate
simulations. These subjects are the topics of forthcoming work.
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Appendix A

Table A1. Storm Data Blizzards in the Grand Forks NWSFO CWA 1979–1980 and 2017–2018. Italicized
events were not included in the typing or SOM analyses. Blizzards named by the Grand Forks Herald
but not listed within Storm Data are not provided. These events were most likely winter storms with
visibility, wind speed, or duration not meeting NWS thresholds.

Year Month Day
Midpoint

Hour in NARR
(UTC)

Type
Grand Forks
Herald Name
(1989–2018)

2018 1 11 0 Front Betsy
2017 12 4 21 Colorado Axl
2017 3 7 6 Hybrid
2017 1 12 18 Front Carrie
2016 12 26 15 Colorado Blitzen
2016 12 7 12 Hybrid Alvin
2016 11 18 12 Colorado
2016 2 8 9 Clipper
2015 1 8 21 Clipper Beryl
2015 1 3 12 Clipper Andrew
2014 3 31 21 Colorado Gigi
2014 3 21 15 Front
2014 3 6 0 Ground
2014 2 26 21 Front
2014 2 13 12 Clipper Fred
2014 1 26 18 Clipper Era Bell
2014 1 22 12 Front Dillon
2014 1 16 12 Front Corene
2014 1 4 6 Clipper Bubba
2013 12 28 21 Front Anita
2013 3 18 9 Hybrid Fiona
2013 2 18 21 Hybrid Dolley
2013 2 11 3 Colorado Cooper
2013 1 19 18 Front Beth
2013 1 12 3 Colorado Aaron
2011 3 12 6 Clipper Estra
2011 1 1 9 Colorado Dave
2010 12 30 21 Colorado Casey
2010 10 27 9 Hybrid Adeline
2010 1 25 18 Clipper Brett
2009 12 26 3 Colorado Alvin
2009 3 10 21 Colorado Coyote
2009 1 12 15 Clipper Barack
2008 12 14 15 Colorado
2008 2 9 18 Front
2007 3 3 0 Hybrid
2006 1 24 15 Front
2005 11 16 3 Clipper York
2005 10 6 3 Hybrid Zach
2005 1 22 6 Clipper Ann
2004 2 11 18 Clipper
2003 2 11 18 Front Arlys
2001 12 23 0 Colorado Bonnie
2001 10 25 0 Hybrid Al
2001 2 25 12 Colorado Dale
2000 12 21 3 Clipper Carol
2000 12 16 15 Hybrid Bill
2000 3 9 3 Colorado
1999 12 19 18 Clipper
1999 4 1 18 Colorado
1999 3 17 18 Hybrid
1999 2 12 12 Front
1998 12 18 21 Clipper
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Table A1. Cont.

Year Month Day
Midpoint

Hour in NARR
(UTC)

Type
Grand Forks
Herald Name
(1989–2018)

1998 11 10 21 Colorado Alex
1998 3 13 18 Front Aurora
1997 4 6 12 Colorado Hannah
1997 3 4 9 Colorado Gust
1997 1 22 12 Hybrid Franzi
1997 1 15 21 Front Elmo
1997 1 10 9 Clipper Doris
1997 1 5 9 Colorado
1996 12 31 21 Valley
1996 12 21 12 Front Christopher
1996 12 18 0 Clipper Betty
1996 11 17 9 Colorado Andy
1996 3 25 0 Colorado Erin
1996 2 27 21 Hybrid Darrel
1996 2 10 21 Clipper
1996 1 18 12 Hybrid Bruno
1995 12 9 0 Hybrid Anna
1995 2 10 6 Clipper
1994 4 26 15 Colorado
1993 12 22 0 Clipper
1992 12 25 6 Front
1991 12 14 3 Hybrid Dagmar
1990 1 11 12 Clipper Arnie
1989 2 1 6 Front
1989 1 7 21 Hybrid
1988 3 12 3 Colorado
1988 2 14 15 Clipper
1988 1 24 21 Hybrid
1988 1 12 15 Hybrid
1987 12 31 3 Colorado
1986 4 15 3 Colorado
1985 11 19 3 Hybrid
1985 3 4 6 Colorado
1985 1 25 0 Front
1984 12 16 18 Colorado
1984 3 10 15 Front
1984 2 5 6 Front
1983 12 25 0 Hybrid
1983 12 15 9 Hybrid
1983 3 8 21 Colorado
1982 4 3 12 Colorado
1982 3 8 15 Hybrid
1982 1 23 15 Colorado
1982 1 10 18 Hybrid
1981 2 1 12 Colorado
1980 1 11 15 Hybrid
1980 1 7 3 Hybrid

References

1. Schwartz, R.M.; Schmidlin, T.W. Climatology of Blizzards in the Conterminous United States, 1959–2000.
J. Clim. 2002, 15, 1765–1772. [CrossRef]

2. Coleman, J.S.; Schwartz, R.M. An Updated Blizzard Climatology of the Contiguous United States (1959–2014):
An Examination of Spatiotemporal Trends. J. Appl. Meteorol. Climatol. 2017, 56, 173–187. [CrossRef]

3. Doswell, C.A.; Moller, A.R.; Brooks, H.E. Storm spotting and public awareness since the first tornado forecasts
of 1948. Weather Forecast. 1999, 14, 544–557. [CrossRef]

4. Ray, P.S.; Bieringer, P.; Niu, X.; Whissel, B. An improved estimate of tornado occurrence in the central plains
of the United States. Mon. Weather Rev. 2003, 131, 1026–1031. [CrossRef]

56



Climate 2019, 7, 66

5. Anderson, C.J.; Wikle, C.K.; Zhou, Q. Population influences on tornado reports in the United States.
Weather Forecast. 2007, 22, 571–579. [CrossRef]

6. Elsner, J.B.; Michaels, L.E.; Scheitlin, K.N.; Elsner, I.J. The Decreasing Population Bias in Tornado Reports
across the Central Plains. Weather Clim. Soc. 2013, 5, 221–232. [CrossRef]

7. Allen, J.T.; Tippett, M.K. The characteristics of United States hail reports: 1955–2014. Electron. J. Sev.
Storms Meteorol. 2015, 10, 1–31.

8. Weiss, S.J.; Hart, J.A.; Janish, P.R. An examination of severe thunderstorm wind report climatology: 1970–1999.
In Proceedings of the 21st Conference Severe Local Storms, San Antonio, TX, USA, 11–16 August 2002;
pp. 446–449.

9. Teller, J.T. Proglacial lakes and the southern margin of the Laurentide Ice Sheet. In North America and Adjacent
Oceans during the Last Deglaciation; Ruddiman, W.F., Wright, H.E., Jr., Eds.; Geological Society of America:
Boulder, CO, USA, 1987; pp. 39–69.

10. Climate Data Online (CDO). Available online: https://www.ncdc.noaa.gov/cdo-web/ (accessed on
10 December 2018).

11. Kluver, D.; Mote, T.; Leathers, D.; Henderson, G.R.; Chan, W.; Robinson, D.A. Creation and Validation
of a Comprehensive 1◦ by 1◦ Daily Gridded North American Dataset for 1900–2009: Snowfall. J. Atmos.
Ocean. Technol. 2016, 33, 857–871. [CrossRef]

12. Estilow, T.W.; Young, A.H.; Robinson, D.A. A long-term Northern Hemisphere snow cover extent data record
for climate studies and monitoring. Earth Syst. Sci. Data 2015, 7, 137–142. [CrossRef]

13. Newton, C.W. Mechanisms of circulation change in a lee cyclogenesis. J. Meteorol. 1956, 13, 528–539.
[CrossRef]

14. Reitan, C.H. Frequencies of cyclones and cyclogenesis for North America, 1951–1970. Mon. Weather Rev.
1974, 102, 861–868. [CrossRef]

15. Zishka, K.M.; Smith, P.J. The climatology of cyclones and anticyclones over North America and surrounding
ocean environs for January and July, 1950–77. Mon. Weather Rev. 1980, 108, 387–401. [CrossRef]

16. Stewart, R.E.; Bachand, D.; Dunkley, R.R.; Giles, A.C.; Lawson, B.; Legal, L.; Miller, S.T.; Murphy, B.P.;
Parker, M.N.; Paruk, B.J.; et al. Winter storms over Canada. Atmos.-Ocean 1995, 33, 223–247. [CrossRef]

17. Hoskins, B.J.; Hodges, K.I. New perspectives on the Northern Hemisphere winter storm tracks. J. Atmos. Sci.
2002, 59, 1041–1061. [CrossRef]

18. Laskin, D. The Children’s Blizzard, 3rd ed.; HarperCollins: New York, NY, USA, 2005; p. 336.
19. Thomas, B.C.; Martin, J.E. A Synoptic Climatology and Composite Analysis of the Alberta Clipper.

Weather Forecast. 2007, 22, 315–333. [CrossRef]
20. Schultz, D.M.; Doswell, C.A. Analyzing and Forecasting Rocky Mountain Lee Cyclogenesis Often Associated

with Strong Winds. Weather Forecast. 2000, 15, 152–173. [CrossRef]
21. Kapela, A.F.; Leftwich, P.W.; Van Ess, R. Forecasting the impacts of strong wintertime post-cold front winds

in the northern plains. Weather Forecast. 1995, 10, 229–244. [CrossRef]
22. Mellor, M. Blowing Snow; US CRREL Monogr: Hanover, NH, USA, 1965; p. 79.
23. Li, L.; Pomeroy, J.W. Probability of occurrence of blowing snow. J. Geophys. Res. 1997, 102, 21955–21964.

[CrossRef]
24. Mesinger, F.; DiMego, G.; Kalnay, E.; Mitchell, K.; Shafran, P.C.; Ebisuzaki, W.; Jović, D.; Woollen, J.; Rogers, E.;
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Abstract: The quantification of water vapor in tropical regions like Central America is necessary
to estimate the influence of climate change on its distribution and the formation of precipitation.
This work reports daily estimations of precipitable water vapor (PWV) using Global Positioning System
(GPS) delay data over the Pacific region of Costa Rica during 2017. The GPS PWV measurements
were compared against atmospheric sounding and Moderate Resolution Imaging Spectrometer
(MODIS) data. When GPS PWV was calculated, relatively small biases between the mean atmospheric
temperatures (Tm) from atmospheric sounding and the Bevis equation were found. The seasonal
PWV fluctuations were controlled by two of the main circulation processes in Central America: the
northeast trade winds and the latitudinal migration of the Intertropical Convergence Zone (ITCZ).
No significant statistical differences were found for MODIS Terra during the dry season with respect
GPS-based calculations (p > 0.05). A multiple linear regression model constructed based on surface
meteorological variables can predict the GPS-based measurements with an average relative bias of
−0.02 ± 0.19 mm/day (R2 = 0.597). These first results are promising for incorporating GPS-based
meteorological applications in Central America where the prevailing climatic conditions offer a unique
scenario to study the influence of maritime moisture inputs on the seasonal water vapor distribution.

Keywords: atmospheric sounding; Costa Rica; GPS; MODIS; precipitable water vapor

1. Introduction

Although it constitutes only 0.001% of the planet’s water resources, water vapor plays an important
role in atmospheric processes as it is one of the major radiative gases and a dynamic element in the
atmosphere. Water vapor is a useful parameter to forecast severe weather conditions and precipitation
formation and is also a key factor for studying the global water cycle, changing climatic conditions,
and earth-atmosphere energy exchange [1–3]. Overall, water vapor is essential for the development of
disturbed weather and influences the planetary radiative balance. In the lower atmosphere, it controls
the heat exchange during the precipitation formation and the thermal structure of the troposphere,
and it is the main source for precipitation in all weather systems [3,4]. Therefore, accurate estimates
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of atmospheric water vapor content are needed to improve the predictability of rainfall and the
understanding of and feedback in climate related processes [5,6].

A quantifiable parameter useful for studying water vapor is the precipitable (or integrated) water
vapor (PWV). Precipitable water vapor mainly comprises tropospheric water vapor and the less
abundant stratospheric water and can be used to analyze water vapor variability and its contributions
to climate change [6]. The classical approach to gather information about PWV is using atmospheric
sounding based on radiosonde profiles [7]. However, due to high costs, radiosonde networks lack
spatial and temporal resolutions and, thus, provide limited information to carry out detailed studies of
weather and climate. For example, radiosondes are usually launched 1–2 times per day in monitoring
stations spaced several hundred kilometers from each other. In recent years, the fast development of
ground-based GPS networks allows a new source of water vapor information. As atmospheric water
changes the atmospheric refractivity, satellite-receiver path delays provide a unique information on
the total water vapor within the troposphere and stratosphere. Therefore, GPS has become a standard
technique for measuring PWV with some noticeable advantages over radiosondes. For instance,
GPS can be used in all weather conditions and has low operation costs, allowing for a high temporal
resolution with numerous records throughout the daytime and nighttime [8–10]. In Costa Rica, there are
14 Global Navigation Satellite System (GNSS) stations in operation which are associated with the
Sistema de Referencia Geocéntrico para las Américas (SIRGAS) network. Eight of these GNSS stations
are officially administrated by the National Institute of Geography. Although there are other GPS
stations operating in the country, access to these GPS data is rather limited.

Satellite remote sensing is also a feasible method to derive the PWV distribution. The Moderate
Resolution Imaging Spectroradiometer (MODIS) installed at the Terra and Aqua satellites offers
spatial and temporal PWV estimations [11,12]. Despite the high spatial coverage and resolution that
these satellite-based PWV products offer, there are several sources of errors in water vapor column
retrievals from these remote sensing platforms. These errors are mainly linked to an uncertainty
in the spectral reflectance of the surface, an uncertainty in the sensor calibration, an uncertainty in
the atmospheric temperature and moisture profile, and an uncertainty in the amount of haze [13,14].
Moreover, there are two other additional limitations related to a polar orbiting satellite like MODIS:
i) most areas are sampled only once per day, depending on the latitude and the configuration of the
instrument, and ii) the measurements are mainly restricted to cloud-free areas (especially during
daytime) as clouds are opaque in the visible and NIR spectrum [15]. Unlike satellite-based water
vapor estimations, the presence of clouds and precipitation does not affect GPS observations because
the liquid water contribution to the refractivity is normally small, especially outside of clouds [16].
In order to assess the performance of satellite measurements, their PWV estimates have been evaluated
against other conventional techniques (e.g., GPS PWV measurements) in several regions, for instance in
China, in Spain, and in Tibet [6,9,12]. Nevertheless, limited knowledge exists for the Central American
Isthmus regarding the application of remote sensing for PWV measurements and how well GPS delay
data compare to classical water vapor measurements made by atmospheric sounding in complex
tropical mountainous regions like those found in Costa Rica.

In this study, the objectives were i) to evaluate the GPS-based estimates of PWV against PWV
based on radiosonde measurements and on the MODIS satellite radiometer, ii) to estimate the influence
of the main circulation patterns in Costa Rica on the PWV variability using GPS-based estimations,
and iii) to identify major meteorological variables controlling PWV seasonal variations. We selected
two GPS stations located in the Pacific region of Costa Rica to calculate the mean daily PWV estimates
during 2017. These GPS-based estimations were then compared to PWV measurements made using
radiosondes at the only atmospheric sounding site in operation in Costa Rica, located in the Central
Valley of the country. We further compared data from the MODIS satellite radiometer against the
GPS and radiosonde estimations over the Central Valley of Costa Rica. GPS PWV estimates were also
analyzed in combination with surface meteorological data and the Hybrid Single Particle Lagrangian
Integrated Trajectory (HYSPLIT) model. We expect that this work will contribute to highlighting the
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opportunity of incorporating GPS-based meteorological applications in Central America, which can be
useful to study the influence of maritime moisture inputs from the Caribbean Sea and Pacific Ocean on
the seasonal water vapor distribution.

2. Materials and Methods

2.1. Climatic Characteristics of Costa Rica

Costa Rica is located in the tropics between 8◦–11◦N latitude and 82◦–86◦W longitude (Figure 1).
The climate of Costa Rica is influenced by four regional air circulation types: NE trade winds,
the latitudinal migration of the Intertropical Convergence Zone (ITCZ), cold continental outbreaks,
and the sporadic Caribbean cyclones [17–19]. Strong orographic effects are caused by a NW to
SE mountain range (or cordillera) with a maximum elevation of 3820 m above sea level (m a.s.l.),
which divides the country into the Caribbean and Pacific regions, each region having a distinct
precipitation regime. In the Pacific region of Costa Rica, the dry season ranges from December to April
and the wet season ranges from May to November. There is a secondary humidity gradient along the
Pacific coast where wetness increases from north to south [20,21]. The observed cyclic deviations in
the ocean-atmosphere domain can be described as “wet” and “dry” years throughout Costa Rica and
are mainly linked to changes in the sea surface temperature (SST), especially the warm/cold El Niño
Southern Oscillation (ENSO) episodes [17,22].

Figure 1. The location of the GPS stations (Liberia, LIBE and Central Valley, AACR, green circles) in
Costa Rica and the atmospheric sounding site at the San José International Airport (International Civil
Aviation Organization code: MROC, red triangle): The AACR and the MROC sounding site are situated
in the central mountainous region of Costa Rica (Central Valley), whereas LIBE is located on the dry
corridor of Central America (northern Pacific of Costa Rica).

2.2. GPS and Atmospheric Sounding Data

As stated above, there are 14 GNSS stations in operation in Costa Rica, which are associated with
the SIRGAS network. We selected GPS data from two of these stations to estimate PWV: one located
in the Central Valley (AACR) and one situated in the northern Pacific (Liberia or LIBE). As shown
in Figure 1, AACR is located in the mountainous central region of the country known as the Central
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Valley and LIBE is situated on the northern Pacific region. We selected these two stations based on
three criteria: i) at least one station must be as near as possible to an atmospheric sounding site (AACR),
ii) at least one additional station must be included in the analysis and situated in the Pacific slope of
the country (the climatic region where the Central Valley is located, LIBE), and iii) for each station,
a weather station must be available to register the meteorological conditions, with no significant height
differences between the GPS station and the weather station.

The GPS data were processed by the National Processing GNSS Data Center. The receiver and
antenna types at AACR were Topcon TPS NET-G3A and Topcon TPSCR.G3 TPSH, respectively. At LIBE,
the receiver and antenna model were Leica GRX 1200 + GNSS and Leica AT504GG LEIS respectively.
GPS data were processed using the software GIPSY, version 6.4 from JPL [23], using the Precise
Positioning Point (PPP) method based on the precise ephemerides computed by JPL. The parameters
for the satellite and receiver antenna phase center calibration were set according to the JPL products.
The tropospheric model incorporated a priori hydrostatic delay (PHD, m), computed as follows:

PHD = 1.013 ∗ 2.27e(−0.00016∗h), (1)

where h is the station height (m) above the ellipsoid. The PHD value was estimated as 0.1 m.
The tropospheric gradient was estimated based Bar-Sever et al. [24]. The global mapping function
(GMF) troposphere mapping functions were implemented, and an elevation cutoff angle was set at 7.5◦.

The observations of AACR and LIBE stations were available from January 1st to December
31st, 2017. To obtain PWV radiosonde estimations, we used the only atmospheric sounding site in
operation in Costa Rica, namely the International Airport of San José, Costa Rica (International Civil
Aviation Organization code: MROC). The radiosonde launching was carried out by the National
Meteorological Institute of Costa Rica using mainly Sprenger E085 (St. Andreasberg, Germany) sounding
systems. The radiosonde data were obtained from the University of Wyoming [25]. The distances and
elevation differences between the GPS stations and the atmospheric sounding site are summarized
in Table 1. In situ meteorological observations were measured with a Vantage Pro2 weather station
(Davis Instruments, Hayward, CA, USA), with no significant height difference between the GPS
stations and the weather monitoring sites.

Table 1. The location details for AACR and LIBE GPS receivers in the Central Valley and northern
Pacific region of Costa Rica and for the MROC radiosonde site used in this study.

Station AACR LIBE MROC

Latitude (decimal degrees) 9.9386 10.6305 9.9944

Longitude (decimal degrees) −84.1179 −85.4380 −84.2079

Elevation (m a.s.l.) 1159 132 912

Δ distance (km) 1 11.5 152 –

Δ elevation (m a.s.l.) 1 +247 −780 –
1 Δ the distance and Δ the elevation in relation to the MROC sounding site.

2.3. GPS Data Processing

In general, GPS data processing is based on the physics of the atmospheric propagation delay.
GPS radio waves are delayed by the ionosphere and troposphere when they travel through the
atmosphere from the satellite to GPS ground-receivers. The so-called “total or zenith atmospheric
delay” (or ZTD, in millimeters) of the signal emitted by a GPS satellite consists of two parts, “hydrostatic
delay” or ZHD and “wet delay” or ZWD:

ZTD = ZHD + ZWD (2)
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Overall, the ZHD is due to the effect of dry air, contributing to at least 90% of the total tropospheric
delay, whereas the ZWD represents less than 10% of the signal. Therefore, the ZTD depends on the air
mass between the receiver and satellite and can be expressed as a function of ground atmospheric
pressure [26–28]:

ZHD =
0.002277 Psurf

1− 0.00266 cos(2 θ) − 0.00028Hsite
, (3)

where Psurf is the surface pressure (hPa), θ the geodetic latitude, and Hsite represents the height (km)
above the geoid [26]. Once the ZHD is calculated, ZWD is estimated by subtracting ZHD from ZTD.

Overall, the computation of ZWD using GPS delay is commonly related to the precipitable or
integrated humidity along the altitudinal profile over the local atmosphere (known as GPS PWV).
GPS PWV represents the total mass of water vapor in an atmospheric column with a unit area and is
measured in kg/m2, but it is usually reported as the height of an equivalent column of liquid water in
millimeters [26,29]. We used the Bevis relationship to estimate GPS PWV using ZWD [8]:

PWV = kZWD, k =
106( k3

Tm
+ k′2

)
Rvρ

, (4)

where k is a dimensionless water vapor conversion coefficient. In Equation (4), k3 and k’2 are empirical
constants [30], Rv is the specific gas constant for water vapor, ρ is the liquid water density, and Tm is
the mean temperature of the atmospheric column. To calculate Tm, we used the well-known Bevis
equation [30]:

Tm = 70.2 + 0.72Ts, (5)

where Ts is the surface air temperature. In order to test the validity of this relationship for the tropical
atmosphere of Costa Rica, we used the radiosonde profiles available at MROC during the study
period (N = 210) to estimate the Tm values for the local atmosphere. As Tm depends both on the
temperature profile and the vertical distribution of water vapor, Tm was calculated using the following
equation [31,32]:

Tm =

∫ ∞
0

Pw
T dz∫ ∞

0
Pw
T2 dz

, (6)

where Pw is the water vapor pressure and T is the air temperature.
Based on the atmospheric sounding data available at MROC during 2017, the composite

atmospheric temperature profiles depict lapse rate changes for the tropopause and troposphere
for the dry and wet seasons (Figure 2A). During the dry season, the mean lapse rate was −5.0 ◦C/km
from the ground to the tropopause level (approx. 15–20 km), whereas during the wet season, the mean
lapse rate was −4.8 ◦C/km. Tropospheric temperature variations (up to 15 km) were similar during
the wet season (range: 198–296 K, mean: 256 ± 27 K) and the dry season (range: 199–297 K, mean:
258 ± 28 K). At MROC, the mean surface temperature (Ts) varied from 293–296 K during the dry
season and from 289–296 K during the wet season. The corresponding Tm values were in the range
279–289 K (dry season) and in the range 277–302 K (wet season). When we fitted a straight line to the
Tm data to obtain a Tm–Ts relationship for MROC (black line in Figure 2B), we found a poor Spearman’s
correlation between Tm and Ts for our data (r = 0.0257, p > 0.05). Therefore, we compared the relative
bias of the Bevis equation (Equation 5, plotted as a red line in Figure 2B) to the Tm calculations from the
radiosonde data. The mean relative bias using the Bevis equation was −0.009 ± 0.008 for the dry season
estimations (N = 70) and 0.004 ± 0.009 for the wet season calculation (N = 140). We also calculated
a RMSE of 3.50 K for the dry season, with a RMSE of 2.72 K for the wet season. The estimated relative
biases are equivalent to the mean error values of −2.6 ± 2.4 K (dry season) and 1.1 ± 2.5 K (wet season).
In terms of GPS PWV, the mean error associated to these Tm deviations were in the range of −0.2 and
0.4 mm. Therefore, as the relative biases for the Bevis equation are smaller than the estimated precision
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for the mean daily PWV calculations, we decided to apply the Bevis equation to estimate Tm in the
calculations of PWV at our study sites.

Figure 2. (A) A composite atmospheric temperature (K) profile constructed using radiosonde
measurements at the MROC sounding site during the dry season (N = 70, red dots) and wet season
(N = 140, blue dots). (B) The surface temperature (Ts, K) vs. mean temperature of the atmospheric
column (Tm, K) used to calculate the Tm–Ts relationship for the Central Valley of Costa Rica (black line)
and the Bevis equation [8] (red line).

In this work, we report mean daily PWV estimations based on hourly calculated ZTD and ZHD
values at AACR and LIBE. We decided to carry out our analysis on a daily basis because there is limited
atmospheric sounding data for Costa Rica, with only one radiosonde station in operation. Therefore,
sounding data can be only considered representative of the average daily atmospheric conditions.
The average precisions associated with the mean daily PWV calculations are 1.3 mm and 1.1 mm for
AACR and LIBE, respectively.

2.4. MODIS Data

MODIS is a radiometer on board the Terra (launched in 1999) and Aqua (launched in 2002) satellite
platforms. The MODIS instruments on the Terra and Aqua image the same area on Earth approximately
three hours apart, observing the entire Earth’s surface every 1 to 2 days. Terra’s sun-synchronous,
near-polar circular orbit passes the equator from north to south (descending node), whereas Aqua’s
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sun-synchronous, near-polar circular orbit crosses the equator from south to north (ascending node).
The water vapor remote sensing method is based on detecting the absorption by the water vapor
of the reflected solar radiation after it has transferred down to the surface and back up through the
atmosphere. The total vertical amount of water vapor can be estimated from a comparison between
the reflected solar radiation in the absorption channel and the reflected solar radiation in nearby
non-absorption channels. The solar radiation between 0.86 and 1.24 μm on the sun-surface-sensor
path is subjected to atmospheric water vapor absorption but also to atmospheric aerosol scattering
and surface reflection. Therefore, in order to estimate column water vapor from measurements of the
solar radiation reflected by the surface, the absorption and scattering properties of the atmosphere and
the surface near 1 μm must be considered [33]. The PWV products are derived from infrared (IR) and
near-infrared (NIR) measurements. NIR bands are used for daytime measurements (solar radiation
reflected by Earth + atmosphere), and IR bands are used during nighttime conditions (radiation emitted
by Earth + atmosphere). If clouds are present, other channels in the range of the 0.8−2.5μm region can
be used in order to estimate the absorption due to water vapor above and within clouds [13,14].

Among the available MODIS products, the Level-3 MODIS Atmosphere Daily Global Product
contains roughly 600 statistical datasets that are derived from approximate 80 scientific parameters
from four Level-2 MODIS Atmosphere Products: Aerosol, Water Vapor, Cloud, and Atmosphere Profile.
There are two MODIS Daily Global data product files: MOD08_D3, containing data collected from
the Terra platform, and MYD08_D3, containing data collected from the Aqua platform [11]. In this
study, the level-3 MODIS Terra and Aqua products of the daily mean (MOD08_D3 and MYD08_D3,
respectively) global grid with a spatial resolution of (1◦ × 1◦) were used to conduct the GPS PWV
comparison during 2017. We selected the square region of 30 × 30 km dimensions centered on the
MROC sounding site to calculate the satellite PWV estimations [34]. MODIS data estimates were
calculated as area-averaged values and were processed using the Earth Observing System Data and
Information System (EOSDIS) Giovanni website [35]. A total of 299 and 267 PWV Aqua and Terra
satellite estimations were available from the MODIS data product, respectively, for the study period.
The typical uncertainty of the MODIS PWV estimations is approximately 5–10% [13].

2.5. HYSPLIT Air Mass back Trajectory Analysis

Air mass back trajectory analyses were conducted using the HYSPLIT Lagrangian model developed
by the Air Resources Laboratory (ARL) of the National Oceanic and Atmospheric Administration
(NOAA, USA) [36,37]. Representative air parcel trajectories were estimated 72 h backwards in time due
to the nearness of the Caribbean Sea and the Pacific Ocean. Each trajectory was calculated using NOAA’s
meteorological data files (GDAS, global data assimilation system: 2006–present; 0.5◦ resolution) as
input for the HYSPLIT model [38]. The ending altitude of air masses was set to the mean elevation of
the Central Valley of Costa Rica (approx. 1,100 m a.s.l.). Trajectory analysis ending times at the Central
Valley (AACR) were set to 12:00 UTC, which corresponds to a local time of 06:00 a.m. in Costa Rica.
Given the estimated residence time of water in the atmosphere, ranging from around 4–10 days, weekly
(N = 52, Figure 3), air mass back trajectories were calculated [38]. The ending dates for the trajectory
analysis were set on Sunday of every week. These air masses were classified into two main groups,
dry season (January–April) and wet season (May–December), to compare and identify the moisture
transport pathways followed by the air masses that arrived at the Central Valley of Costa Rica.

2.6. Statistical Analysis

A Kruskal–Wallis non-parametric one-way analysis of variance on ranks was used to investigate
if the GPS PWV stochastically dominates the other PWV estimations (i.e., atmospheric sounding
and MODIS Aqua and Terra) during the dry and wet season [39]. A pairwise multiple comparison
procedure was applied using Dunn’s method for those groups having a significant difference in PWV
in order to isolate the stochastic dominance of the group or groups that differ from the others [40].
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Figure 3. Representative 72-h air mass back trajectories for the dry (red) and wet (blue) seasons in 2017
calculated using the HYSPLIT Lagrangian model [26].

We also applied a multiple linear regression (MLR) model using surface meteorological data in order
to identify the major variables controlling the PWV values in the Central Valley (AACR GPS station).

The cumulative annual precipitation for AACR during 2017 was 2586 mm with a mean daily
precipitation during the dry season of 2 mm (range: 0 mm–54 mm) and 11 mm (range: 0 mm–85 mm)
during the wet season. In LIBE, the corresponding cumulative annual precipitation was 2161 mm
with a mean daily precipitation during the dry season of 1 mm (range: 0 mm–49 mm) and 9 mm
(range: 0 mm–247 mm) during the wet season. At both sites, maximum daily precipitation values
were recorded at the end of October (Figure 4A). Despite the differences in the cumulative annual
precipitation, the relative humidity and air temperature variations were similar in the two regions.
The mean relative humidity was 80.8± 5.6 % (range: 39.0%–92.6%) and 82.4± 8.0% (range: 34.6%–93.6%)
in AACR and LIBE, respectively (Figure 4B). The mean air temperatures were 21.0 ± 0.9◦C (range:
16.2 ◦C–23.2 ◦C) and 26.7 ± 1.3 ◦C (range: 22.5 ◦C–30.5 ◦C) in AACR and LIBE, respectively (Figure 4C).
However, on a seasonal basis, the mean daily air temperatures and mean daily relative humidity were
6.3 ◦C and 2.1% greater in LIBE than in AACR during the dry season, respectively. During the wet
season, the corresponding values were 5.2 ◦C and 1.2% greater in LIBE than in AACR, in that order.
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Figure 4. The time series of (A) the daily precipitation (mm/day) recorded in Heredia (blue bars) and in
Liberia (red bars) during 2017: The left y-axis corresponds to Heredia, whereas the right y-axis shows
the data of Liberia. (B,C) The average daily relative humidity (%) and air temperature (◦C) for Heredia
(blue circles) and Liberia (red circles).

3. Results

3.1. Seasonal Variations of GPS PWV in AACR and LIBE

During the study period, the HYSPLIT trajectory analyses identified that air masses reaching
Costa Rica predominantly came from the southeastern Caribbean Sea with a less frequent contribution
from the Pacific Ocean (Figure 3). Overall, the wind direction and speed in Costa Rica are mostly
influenced by the seasonal migration of the ITCZ. Thus, during the dry season (December–April) when
the ITCZ is located south of Costa Rica, air mass trajectories were associated with the influence of
the NE trade winds. During the wet season (May–November), NE trade winds were weaker due to
the passage of the ITCZ over Costa Rica, and cross-equatorial winds from the southern hemisphere
transported moisture from the Pacific Ocean to the Central American Isthmus. This moisture transport
pattern controlled the precipitation regimes observed at the Central Valley (AACR, Figure 4A) and
the northern Pacific region of Costa Rica (LIBE, Figure 4A). During the study period, approx. 23%
(N = 12) of the air masses arrived from the Pacific Ocean and the rest (approx. 77%, N = 40) came from
the Caribbean Sea. Air masses arriving from the Pacific Ocean and the Caribbean Sea predominantly
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traveled over the eastern Pacific Ocean and the central and southern Caribbean Sea basins, respectively.
No significant differences were found between the mean sea levels of the air masses that reached the
Central Valley in the dry and wet seasons, with typical mean sea levels of 1500 m to 2000 m.

Seasonal GPS PWV variations were clearly defined at AACR and LIBE (Figure 5A). During the
dry season, GPS PWV values varied from 14.8 mm to 40.9 mm in AACR (mean value: 27.6 ± 6.3 mm),
whereas in LIBE, the variation was in the range 20.2 mm–55.5 mm (mean value: 36.9 ± 7.6 mm).
We observed an increment in the GPS PWV values at both sites at the end of April and at the beginning
of May that coincides with the onset of the wet season in Costa Rica, namely the passage of the ITCZ.
During the wet season, at AACR, the GPS PWV estimates ranged from 24.3 mm to 46.2 (mean value:
39.7 ± 3.7 mm), and at LIBE, these GPS PWV values fluctuated from 31.5 mm to 62.6 mm (mean value:
54.1 ± 5.2 mm). At the end of November, when the transition wet-to-dry season began, we registered
a decrease in the GPS PWV estimations related to the beginning of the dry season and the influence
of the NE trade winds. Overall, the GPS PWV values were greater at LIBE than at AACR due to the
elevation difference between the GPS stations (Δ1,027 m a.s.l.). For example, the mean differences
between the estimations for AACR and LIBE were −9.5 ± 4.5 mm in the dry season and −14.4 ± 3.0 mm
in the wet season. As shown in Figure 5A, these observed differences in the GPS PWV measurements
at the GPS stations were more evident during the wet season when the ITCZ predominantly influenced
the air circulation over Costa Rica. During the dry season, on the other hand, the differences between
the GPS PWV values for AACR and LIBE were relatively more difficult to separate. However, although
the GPS stations are situated approx. 160 km from each other (one in the Central Valley, AACR, and the
other one in the northern Pacific region of Costa Rica, LIBE), we found a good Spearman’s correlation
(r = 0.929, p > 0.001) between the GPS PWV values estimated for AACR and the corresponding
estimations calculated for LIBE (Figure 5B). The best performing linear regression model shown in
Figure 5B overall explained 86.9% of the variance for the GPS PWV estimates calculated for LIBE using
the GPS PWV values at AACR. Overall, this finding confirms that the PWV variations at both sites are
controlled by the climatic conditions of the Pacific slope which is also reflected in the precipitation
patterns and air temperature/relative humidity variations shown in Figure 4A–C. This is an important
result that demonstrates the applicability of PWV to monitor changes in the hydrometeorological
conditions at regions that share similar climatic conditions. Additionally, our HYSPLIT analysis is able
to identify the seasonal PWV variations at AACR. For instance, air masses arriving from the Pacific
Ocean between May and October are associated with high PWV estimations with values between
39 and 44 mm/day. These values are practically equal to or greater than the 75th percentile of our data
set (41 mm/day). In turn, air masses coming from the Caribbean Sea were associated with greater
variations in the PWV estimations registered between November and April but also to smaller PWV
estimations (up to 14 mm/day, Figure 5A).

3.2. GPS PWV Comparison to Other Estimations Methods and MRL Analysis

GPS PWV observations at the Central Valley of Costa Rica (AACR) compared well to the
atmospheric sounding measurements during the dry and wet season but only to the MODIS Terra
estimations during the dry season. As shown in Figure 6A, GPS PWV observations followed the seasonal
variations registered using the radiosonde data. The best performing satellite-based estimations were
those retrieved from the MODIS Terra, which also followed the seasonal variations in the GPS
and radiosonde PWV observations. Unlike MODIS Terra, MODIS Aqua PWV estimations showed
a systematic positive bias with respect the GPS PWV values and the radiosonde data. To better identify
the seasonal differences found after applying these PWV estimation methods, we split our data set into
two groups: dry season and wet season estimations (Figure 6B,C). For the dry season, the GPS PWV
median value (26.5 mm) was not significantly different from the radiosonde PWV median value and the
MODIS Terra PWV median estimation (27.0 mm and 25.8 mm, respectively; p > 0.05). However, it was
significantly different from the median value estimated using the MODIS Aqua PWV values (29.7 mm,
p > 0.001). In turn, for the wet season, the GPS PWV median value (40.3 mm) was significantly different
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from the MODIS Terra and MODIS Aqua PWV median estimations (36.0 mm and 51.4 mm, respectively;
p < 0.001) but not significantly different from the radiosonde PWV median value (41.4 mm, p > 0.05).
The mean relative biases for MODIS Aqua PWV and MODIS Terra PWV were also calculated using
the GPS PWV as a reference. During the dry season, these values corresponded to 0.16 ± 0.24 mm
and 0.02 ± 0.30 mm, respectively, and were equivalent to RMSE values of 7.43 mm and 7.21 mm, in
that order. During the wet season, the mean relative biases were 0.30 ± 0.24 mm and −0.06 ± 0.19 mm,
respectively, corresponding to 15.2 mm and 8.05 mm, respectively.

Figure 5. (A) The time series of GPS precipitable water vapor (PWV) (mm/day) estimated for AACR
(blue circles) and LIBE (red circles): The wet season period 2017 (May–November) is delimited in the
graph. (B) The graph shows the relationship between the GPS PWV estimated for ACCR and LIBE
(p < 0.001, N = 365). The 95% confidence limits are also shown (dashed lines).
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Figure 6. (A) The time series of PWV (mm/day) estimated for AACR using GPS (blue circles),
atmospheric sounding (red squares), MODIS Aqua (green inverted triangles), and MODIS Terra (blue
triangles). (B,C) Box plots of the PWV (mm/day) estimated using GPS, atmospheric sounding, MODIS
Aqua, and MODIS Terra for the dry season and wet season in AACR, respectively: The grey box
indicates the 25th and 75th percentiles with the median in middle. The error bars indicate the minimum
and maximum values. The black circles indicate outliers (1.5 times the central box).

Using the available surface meteorological data at AACR, we conducted a multiple linear
regression (MLR) analysis to identify the major drivers controlling the seasonal variability of GPS PWV
measurements made at the Central Valley of Costa Rica (AACR, Figure 7A). The best performing MLR
model was calculated as

GPS PWV = 4.257(T) + 0.355(RH) − 0.0486(FLUX) − 0.257(P) − 999.125, R2 = 0.597 (7)

where T is the mean daily air temperature (K), RH is the mean daily relative humidity (%), FLUX is
the mean daily downward solar radiation flux (W/m2), and P is the mean daily atmospheric pressure
(hPa). The mean relative bias associated with the estimations of GPS PWV values using this model
during the dry season was 0.10 ± 0.25 mm, whereas for the wet season the mean relative bias was
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−0.04 ± 0.09 mm. The corresponding RMSE estimated for the dry and wet seasons were 6.09 mm and
4.02 mm, respectively. When this model was applied to estimate the sounding PWV measurements,
the mean relative bias during the dry season and wet season were 0.12 ± 0.27 mm and −0.06 ± 0.10 mm,
respectively. The RMSE values calculated for the dry and wet season were 6.83 mm and 4.72 mm,
respectively. As shown in Figure 7B, the correlation between the GPS PWV data at MROC and the
corresponding PWV values estimated from the MLR model was better for the values between 30 and
45 mm. As these values were mostly registered during the wet season, it seems that our MLR model
performs better when the atmospheric conditions in the Central Valley are controlled by the seasonal
migration of the ITCZ and worse during the less stable atmospheric conditions linked to the influence
of NE trade winds.

Figure 7. (A) The simulated PWV (mm/day) time series (blue triangles) in relation to the estimated
GPS PWV (mm/day) at AACR (red circles). (B) The GPS PWV (mm/day) vs. simulated PWV at AACR
shows the goodness-of-fit of the multiple linear regression (MLR) model.

4. Discussion

Because of the isthmian geographical environment of Costa Rica (with only a Pacific-to-Caribbean
coast distance of approx. 400 km), the good correlation between the GPS PWV estimates at AACR
and LIBE was an expected result of our analysis, as both sites are located on the Pacific slope and
share similar climatological features (e.g., analogous precipitation patterns, Figure 4A). Moreover,
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we also confirm the good agreement between the GPS PWV calculations and the radiosonde-based
measurements reported by others [6,9,26,27,41]. For example, Spearman’s correlation coefficients
for the GPS PWV and the radiosonde-based calculations were 0.913 (p < 0.001) and 0.902 (p < 0.001)
during the dry and wet season, respectively. With respect to the MODIS satellite estimations of
PWV, our analysis yielded significant biases depending on the season of the year, which are related
to the annual cycle of water vapor, the NE trade winds influence, and the ITCZ activity over the
Central American Isthmus. For instance, only the MODIS Terra PWV estimations recorded during
the dry season were not significant biased with respect the GPS PWV calculations. However, we also
found good correlations between the MODIS Aqua and the GPS-based calculations, with Spearman’s
correlation coefficients of 0.735 (p < 0.001) and 0.621 (p < 0.001) for the dry and wet season, respectively.
The dry and wet season MODIS Terra Spearman’s correlation coefficients were 0.591 (p < 0.001) and
0.368 (p < 0.001), respectively. These correlation values were similar to those reported over different
regions of the Iberian Peninsula, including island environments like Mallorca and several coastal
sites [9]. Such relationships also allowed a further adjustment of the data to fit the observations by
adopting a spatial bias (error) correction method like the one applied to precipitation data [21,42,43]. As
mentioned above, due to the location of Costa Rica on the narrow land-bridge of Central America, the
MODIS near-infrared water vapor retrieval algorithm could be greatly affected and the derived column
water vapor values over coastal or water areas may vary significantly due to the lower signal-to-noise
ratios of the measured spectra [13]. This effect on the MODIS retrieval algorithm was particularly
evident in the MODIS Aqua PWV estimation which was somewhat high during both the dry and
wet season. MODIS Terra also showed deviations but were related to an underestimation during the
wet season which can be related to the so-called shielding effect (i.e., clouds are probably occulting
water vapor underneath them) [13,44]. The differences between the MODIS Aqua and MODIS Terra
estimations could be attributed to their different passing times over the Central American Isthmus
(MODIS Aqua crosses the equator in the afternoon, whereas MODIS Terra does it in the morning) and
to the use of different radiations to estimate the water vapor during the day and night. The MODIS
Aqua estimations could be higher than the corresponding MODIS Terra values because the algorithm
uses IR radiation during nighttime, which could be affected by the presence of clouds with water vapor,
leading to overestimations. Overall, our HYSPLIT air mass trajectory analysis is consistent with the
prevailing regional moisture transport mechanism during the dry season, the Caribbean Low Level Jet
(CLLJ). During the wet season, in turn, there is an intensification in the genesis and development of
deep convection systems on the Pacific coast of Costa Rica which is generally is associated with the
presence of the “Chorro del Occidente Colombiano” or CHOCO jet [45]. These circulation patterns
produced the two rainfall maxima observed on the Pacific slope, one in June and one in September,
which were interrupted by a relative minimum between July–August, known as the Midsummer
Drought, due to the intensification of trade winds over the Caribbean Sea [46]. The radiosonde data
were also useful to validate the atmospheric conditions controlling the GPS PWV estimations. First,
the composite temperature profiles calculated using the radiosonde data are in agreement with the
previously reported structure of the upper troposphere and lower stratosphere over Costa Rica [47].
As shown in Figure 2A, the temperatures in both the dry and wet season are roughly the same at 25 km,
but below this level (e.g., 15–20 km), the boreal winter (December to April) temperature profile is colder
than in boreal summer (from May to October). This finding was previously attributed to the influence
of wave-induced vertical motions across strong vertical gradients, the source variability in the air
masses arriving at Costa Rica (e.g., tropical western Pacific or midlatitudes) resulting from horizontal
transport and changes induced along parcel paths due to physical and/or chemical processes [47–49].
Secondly, despite these differences in the thermal structure of the tropical atmosphere of Costa Rica, the
Tm calculations using the Bevis equation showed small differences with respect to the corresponding
calculations based on radiosonde data. This finding also agrees with the calculations made in Algeria
and Argentina where Namaoui et al. and Fernández et al. estimated the uncertainty of the Tm values
and found that variations up to 15K produced small differences in the final estimation of GPS PWV,
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which did not exceed 2 mm [27,40]. Thirdly, the poor correlation observed between Ts and Tm at MROC
deserves further discussion. It is generally considered that the most accurate method to obtain Tm is
by using both temperature and humidity profiles from radiosonde data [42,50]. Therefore, we have
confidence that our Tm estimations are good approximations of the temperature profiles over the
Central Valley of Costa Rica. A possible explanation for this finding is the mountainous and isthmian
characteristics of the Costa Rica territory. The atmospheric sounding site is located on the southwestern
area of the Central Valley. From this site, the distance to the Pacific coast is only 55–60 km. Radiosondes
typically head in that direction after they are launched. Therefore, it seems that the atmospheric
profiles estimated from MROC are representative not only of atmospheric conditions over the Central
Valley but also of the Pacific coast of Costa Rica. There is also a limitation regarding the time of day
when the sounding is performed. At MROC, atmospheric sounding is only done once a day, typically
at 12Z or 7:00 a.m. Central American time. Therefore, Tm estimations with respect to Ts represent only
the atmospheric conditions prevailing during the morning when constant surface temperatures are
observed (approx. 294K ± 1K; Figure 2B). In consonance with these results, it was decided to rely on
the Bevis equation to estimate the hourly Tm values for the Pacific slope of Costa Rica as this model
has been extensively applied to estimate weighted atmospheric temperatures in several regions.

The MLR model estimated for GPS PWV data at AACR clearly matched the seasonal changes
correctly, simulating smaller GPS PWV values during the dry season (from December to April) and
much greater values during the wet season (from May to November). The best-performing and
most parsimonious model included, as expected, near-surface (T and RH, Equation 7) and vertical
atmospheric predictor variables (FLUX and P, Equation 6). The GPS PWV values were positively
correlated with air temperature (T) and relative humidity (RH), with Spearman’s correlation coefficients
of 0.210 and 0.426 (p < 0.001), respectively, and were negatively correlated with solar radiation (FLUX)
and air pressure (P), with Spearman’s correlation coefficients of −0.360 and −0.175 (p < 0.001),
respectively. These correlation results can be considered physically meaningful and can explain the
overall model performance, although it is worth mentioning that, like the MODIS satellite estimations,
it suffers from seasonal biases, specially during the dry season when the small PWV measured by the
ground GPS receivers were not reproduced. This worse performance of the model during the dry
season compared to the wet season was also evident after biases and RMSE values were additionally
estimated using the sounding PWV measurements.

5. Conclusions

The combined analysis of PWV using GPS-based estimations, MODIS satellite products, and
atmospheric sounding in the Pacific region of Costa Rica provides the first comparison between
different water vapor calculation techniques for the Central American region. The evaluation of
GPS-based estimates of PWV confirms the good performance of these estimations in comparison to
the traditional and standard technique based on radiosondes, with no significant differences during
the dry and wet seasons. These first results demonstrate the feasibility of incorporating GPS-based
meteorological applications in order to improve the study of moisture inputs on the seasonal water
vapor distribution in Central America. However, the performed evaluation identified significant biases
between the GPS PWV estimates and the MODIS Aqua PWV estimations under both dry and wet
season conditions and only the MODIS Terra PWV estimations recorded during the dry season were
not significantly biased relating to the GPS PWV calculations. These results open the opportunity to
evaluate other satellite products that provide higher spatial and temporal resolutions in order to give
better insights into the causes of disagreements. Our analysis was also able to identify the influence
of the main circulation patterns in Costa Rica, namely the trade wind regime and the ITCZ passage
on PWV variability, which resulted in the relatively greater variability of the smaller PWV values
during the dry season in comparison to the relatively smaller variability of the greater PWV values
observed during the wet season. The influence of these moisture transport patterns was identified
using the HYSPLIT analysis done for the Central Valley of Costa Rica. The multiple linear regression
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model successfully applied to this region can simulate the seasonal PWV variations using major
meteorological variables, namely the mean daily air temperature, the mean daily relative humidity,
the mean daily downward solar radiation flux, and the mean daily atmospheric pressure. We consider
that a further analysis based on hourly GPS data could better analyze these relations between water
vapor and HYSPLIT calculations and could refine the mathematical modeling presented in this work.
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Abstract: Most weather and climate models simulate circulations by numerically approximating
a complex system of partial differential equations that describe fluid flow. These models also typically
use one of a few standard methods to parameterize the effects of smaller-scale circulations such as
convective plumes. This paper discusses the continued development of a radically different modeling
approach. Rather than solving partial differential equations, the author’s Lagrangian models predict
the motions of individual fluid parcels using ordinary differential equations. They also use a unique
convective parameterization, in which the vertical positions of fluid parcels are rearranged to remove
convective instability. Previously, a global atmospheric model and basin-scale ocean models were
developed with this approach. In the present study, components of these models are combined to
create a new global Lagrangian ocean model (GLOM), which will soon be coupled to a Lagrangian
atmospheric model. The first simulations conducted with the GLOM examine the contribution of
interior tracer mixing to ocean circulation, stratification, and water mass distributions, and they
highlight several special model capabilities: (1) simulating ocean circulations without numerical
diffusion of tracers; (2) modeling deep convective transports at low resolution; and (3) identifying the
formation location of ocean water masses and water pathways.

Keywords: Lagrangian numerical method; ocean modeling; ocean mixing

1. Introduction

Many aspects of geophysical fluid dynamics are most easily modeled in a frame of reference that
moves along with the fluid. For example, we show below that in such a framework three relatively
simple ordinary differential equations predict large-scale fluid motions and local changes to fluid
tracers (Section 2.3). While partially Lagrangian models, in which fluid particles are tracked in flow
fields simulated by Eulerian methods, are becoming increasingly popular for both the atmosphere and
the oceans [1–3], few fully Lagrangian general circulation models have been used for either the oceans
or the atmosphere. This paper discusses the development of a fully Lagrangian model for simulating
global ocean circulations.

One particular application the author has in mind for this model, is to couple it to his fully
Lagrangian atmospheric model (LAM) [4]. The resulting Lagrangian coupled model is expected to
be useful for weather and climate prediction as well as climate dynamics experiments. The LAM has
already had success in simulating the Madden Julian Oscillation (MJO) [4–6], a planetary scale tropical
weather disturbance [7] that is poorly represented in many atmospheric models [8–10], and which has
global impacts on weather and climate [11–13]. The MJO also represents a component of the global
atmospheric circulation that is predictable at much longer time scales than mid-latitude baroclinic
waves [14]. The LAM has a unique spherical geometry [4], which as we note below is shared by the
new global Lagrangian ocean model (GLOM), which makes the GLOM well suited for coupling to the
LAM. However, there are many other potential advantages and applications for a fully Lagrangian
global ocean model.

One such advantage is that the GLOM can circulate water without producing numerical tracer
diffusion. A tracer value for a given water parcel does not change unless a tracer source is included,
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or a parameterization of tracer mixing is applied [15]. This contrasts with the behavior of z-coordinate
ocean models, which generate an uncertain amount of spurious numerical mixing associated with the
advection of tracers [16]. While isopycnal models [17] remove spurious numerical mixing of tracers
across isopycnal surfaces—essentially by using a Lagrangian vertical coordinate—they also generate
numerical mixing of tracers in modeling flow along isopycnals.

Another advantage of Lagrangian modeling relevant to this study relates to the parameterization
of convection. In nature, when a fluid is unstable, convective plumes form that transport dense fluid
downward and less dense fluid upward. The horizontal scale of the convective circulations is typically
much smaller than that of the grid spacing for a large-scale model. What geophysical convective plumes
ultimately accomplish is transporting fluid to a different layer. For example, in the atmosphere, tropical
deep convection moves air from the boundary layer to the upper troposphere [18], and mid-level air to
the boundary layer [19]. In the ocean, deep convective plumes move dense water from near the surface
to the ocean bottom. As noted in Section 2.2, the Lagrangian convective parameterization produces the
same vertical transport—by changing the vertical positioning of parcels—without attempting to model
the details of the small-scale circulation in the convective plumes. The author believes that this unique
convective parameterization has helped the LAM to simulate MJOs with realistic vertical structures
and life cycles [4–6].

A third advantage of the Lagrangian approach to weather and climate modeling is that it provides
fluid trajectory information for every mass element in the oceans and the atmosphere. Each component
of fluid mass has an identification number that does not change during the course of a simulation [4,15].
The modeler can look up the position of a given mass element at all previous times for which model data
is saved with no additional computations. It is hard to overemphasize the utility of this information.
For example, it is well known that in the ocean, water mass characteristics are intimately connected to
the locations in which they form, which is why water masses are given names like “North Atlantic Deep
Water”, “Antarctic Bottom Water”, and “Antarctic Intermediate Water”. The Lagrangian ocean modeler
can easily determine where each water parcel last had contact with the surface (e.g., see Section 3.5).
Similarly, in the atmosphere, the air temperature and moisture of a given air parcel are strongly
dependent on previous locations of the parcel, with terms like “Artic Air” or “Gulf Moisture” (indicated
moisture coming from the Gulf of Mexico) frequently used by meteorologists, and transports of
moisture largely determining where moist convective systems form and move [4].

Finally, we note that perhaps the most important benefit of developing fully Lagrangian
weather and climate modeling components, is that they will increase the genetic diversity of models.
By perturbating the planet’s radiative forcing, humans are essentially using the earth as a laboratory
for a giant climate experiment with unknown consequences. We need a diversity of tools to map
out the possible impacts of this experiment. Much in the same way that different kinds of engines
(e.g., standard combustion, diesel, electric motors) have different niches for which they are best suited,
so it is for different kinds of models of the atmosphere and oceans. The models and parameterizations
that are the most fundamentally different from the others make the largest contribution to diversity.
The Lagrangian tools presented here fit into that category. Much in the same way that the unique
animals living in Australia are a great treasure to the biologist, Lagrangian modeling components are
unique, and they have the potential to provide a fresh and fundamentally different perspective on
ocean and atmosphere modeling and dynamics.
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The work presented in this paper builds on a number of previous studies involving Lagrangian
models of lakes and oceans. Haertel and Randall [20] developed a Lagrangian numerical method for the
oceans in which a body of water was represented as a collection of conforming water parcels referred
to as “slippery sacks”. This method was closely related to two Lagrangian numerical methods used
at that time: partical in cell (PIC; [21]) and smoothed particle hydrodynamics (SPH; [22]). However,
in geophysical applications, PIC had only been used for one or two layers of fluid (e.g., [23]), and the
slippery sacks method differed from SPH in that two conforming water parcels could not occupy the
same physical space whereas two SPH particles could. Consequently, as slippery sacks moved around,
they maintained a fairly uniform distribution over time, whereas regions highly concentrated with
particles or nearly void of particles could develop under SPH. Haertel et al. [24] adapted horizontal
and vertical mixing schemes to the slippery sacks method and created a three-dimensional model
of a large lake. Haertel et al. [25] developed an idealized Lagrangian model of the North Atlantic
Ocean. Haertel and Fedorov [15] added an Antarctic circumpolar to the idealized Atlantic Ocean Model.
Applications of these models have included large lake upwelling [24], simulation of Stommel and Munk
solutions [25], modeling of the circulation and stratification in the North Atlantic Ocean [15,25,26],
and simulations of idealized equatorial oceans and tropical instability waves [27].

This study advances our previous Lagrangian ocean modeling efforts in several ways.
In particular, for the first time global spherical geometry and realistic bottom topography are included
in an ocean model. This means that for the first time a fully Lagrangian ocean general circulation
model is presented that can be used in global weather and climate modeling and climate dynamics
experiments. This model (the GLOM) was developed by combining components of the Lagrangian
basin-scale ocean model used by Haertel and Fedorov [15] and the Lagrangian atmospheric model
developed by Haertel et al. [4] This paper presents the first simulations conducted with the GLOM,
which not only provide evidence of its usefulness as a climate modeling tool, but also help to illustrate
the role of interior tracer mixing in maintaining global ocean circulation and stratification. This paper
is organized as follows. Section 2 describes the components of the GLOM. Section 3 presents our first
fully Lagrangian simulations of global oceans. Section 4 discusses the results presented in light of
other studies.

2. Materials and Methods

The primary data source for this study is the Global Lagrangian Ocean Model (GLOM). It was
developed by combining components of several previous Lagrangian ocean and atmosphere models.
Each of these model components is briefly described in this section with the goal of providing the
reader with an intuitive understanding of how they work. More complete technical details are available
from the original references that discuss the development of particular model components.

2.1. Fluid Parcels

The GLOM represents a body of water as a collection of flexible water parcels [20]. Each parcel has
a horizontal mass distribution function that remains fixed in the parcel’s frame of reference (Figure 1).

Figure 1. Parcel vertical thickness function (i.e., the outline of a parcel on a level surface).
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The mass distribution function defines the amount of mass per unit of horizontal area between
the top and bottom surface of the parcel. Since density variations in the ocean are small, this function
also provides a good approximation of the shape of the vertical thickness of a parcel, and it is also
referred to as the “vertical thickness” function. Here, we use a third-order polynomial in each
horizontal dimension (latitude and longitude) to define the mass distribution function following [24].
Constructing the mass distribution function in this manner is computationally efficient, and it
helps with conserving energy when calculating the pressure force, which also guarantees numerical
stability [20]. Although this means that the horizontal projection of a parcel is a square, it turns out
that most of the contours of vertical thickness are circular, as is illustrated in Figure 2b of [27].

Each column of mass within a given parcel can move up or down independently of neighboring
columns as the parcel slides over variable bottom topography or other parcels. So, although all parcels
have the same horizontal mass distribution or vertical thickness function (Figure 1), parcels have
a variety of shapes owing to vertical shearing (e.g., Figure 2a). As parcels slide over one another,
they conform, so there are no gaps between parcels. Since each parcel has a fixed amount of mass
associated with it, parcel centers maintain an approximately uniform distribution. When two parcels
meet, the parcel with a greater density slides under the parcel with a lesser density, so the fluid
maintains a neutral or stable stratification (Figure 2a; note that darker shading denotes denser parcels).
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Figure 2. A schematic illustration of the Lagrangian convective parameterization. (a) A collection of
water parcels, each having the same vertical thickness function, with darker shading denoting denser
parcels. (b) The density of the top middle parcel (P) increases (e.g., from a temperature decrease or
a salinity increase) yielding an unstable stratification. (c) The convective parameterization changes
the stacking order of the parcels, so parcel P sinks to the level at which its density is the same as
neighboring parcels. The long dashed line shows the path of the parcel center. Surrounding parcels
rise slightly with short dashed lines illustrating the paths of parcel centers.
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2.2. Lagrangian Convective Parameterization

On occasion, cooling or an increase in salinity can cause a near surface parcel to become more
dense than parcels beneath it (Figure 2b). The Lagrangian convective parameterization then changes
the stacking order of the parcels, so a neutral or stable stratification is restored (Figure 2c). Note that
as the dense parcel sinks, neighboring parcels rise around it (Figure 2c; dashes lines denote vertical
displacements of individual parcel centers). In this study, there is no mixing between convective
updrafts and downdrafts (i.e., rising and sinking parcels). In atmospheric applications, we have found
that carefully setting convective mixing (i.e., entrainment) is a key to accurately simulating moist
convective systems such as the Madden Julian Oscillation [4–6].

Note that Figure 2 is a schematic illustration of the Lagrangian convective scheme, and it
is intended to provide the reader with a mental picture, or intuitive understanding of how the
parameterization works. For simplicity, the parcels have been drawn in two dimensions in an extremely
coarse-resolution box-shaped ocean. A depiction of parcel interfaces for the simulations in this paper
would include many more lines, a varying free surface elevation, and irregular bottom topography.
Moreover, the GLOM does not actually keep track of parcel interfaces, but only the positions of parcel
centers. The horizontal position vector for each parcel is a prognostic model variable (see below),
whereas the vertical position of a given parcel depends on the vertical thicknesses of parcels beneath it.
Near the beginning of each model time step, the vertical positions are diagnosed one parcel at a time
starting with the lowest (most dense) parcel. The way that the convective scheme is implemented in
the model is parcels are sorted by density after each time step, so density is a non-increasing function
of the parcel array index, which determines the stacking order.

There are several limitations to this convective scheme. First, it is primarily intended to represent
the net transports by deep, buoyancy-driven convection. The depth to which a parcel sinks is
determined by its density relative to that of the environment (Figure 2). It is not intended to represent
near-surface wind driven convection due to turbulent mixing, which can determine the depth of
the surface boundary layer. Moreover, this scheme does not predict convective vertical velocities or
accelerations of parcels, but rather the integrated effects of transports by updrafts and downdrafts.
While mixing between rising and sinking parcels (i.e., entrainment) has been implemented and tested
in atmospheric applications, it has not yet been tested in ocean simulations.

2.3. Model Equations

The following equations describe the motions of a fluid parcel:

dx

dt
= u (1)

du

dt
+ f k × u = Ap + Am (2)

where x is horizontal position, u is horizontal velocity, f is the Coriolis parameter, Ap is the acceleration
due to pressure, and Am is the acceleration resulting from the mixing of momentum (i.e., viscosity).
Evaluating the pressure acceleration involves approximating an integral of pressure over the surface
of a parcel with a Riemann sum. Haertel et al. [24] developed a method to efficiently evaluate this sum
for every parcel, and for technical details the reader is referred to that study. The pressure force is
then divided by the parcel mass to yield the pressure acceleration vector. Vertical motion occurs when
a parcel slides up or down variable topography, and/or when there is mass convergence or divergence
beneath a parcel (i.e., as in conventional hydrostatic fluid models).

A fluid tracer q changes only in response to sources and mixing:

dq
dt

= Sq + Mq (3)
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where Sq is the source of the tracer and Mq denotes mixing. In this study, the only tracer we consider is
temperature, because we use the following simple equation of state:

ρ = 1029 kg m−3 ∗ (1 − 0.0002 T) (4)

where ρ is density, and T is temperature. The only temperature source for parcels is in the surface
layer, where a restoring temperature is applied (see Section 2.7). The author chose not to include
salinity’s effects on density for several reasons. First, he judged the transition from basin-scale ocean
simulations with idealized topography to global-scale simulations with realistic topography, along
with the required rewrite of much of the model code, to be a task of sufficient complexity in and of
itself without using a new equation of state. Second, a major goal of this paper is to extend the results
of [15] to global scales and they did not use an equation of state with salinity. Third, the author’s next
planned application for the GLOM involves studying the impacts of air–sea coupling on the dynamics
of the Madden Julian Oscillation, which does not require the use of an equation of state with salinity
variations. In nature, of course, salinity variations make important contributions to density, so in
interpreting the simulations presented here and comparing to observed ocean structure, it is probably
best to think of temperature as a proxy for density.

2.4. Mixing

For the purposes of computing horizontal and vertical mixing, the domain is divided into
isopycnal layers and columns respectively [24,25]. Columns of points are treated like columns of
points in a finite difference model following [24]. Within isopycnal layers, parcels are allowed to mix
momentum with their nearest neighbors following [25]. The Gent Mcwilliams [28] parameterization of
mixing by eddies is not explicitly included, but Haertel and Fedorov [15] found that random motions
of parcels generate a similar kind of mixing in this kind of Lagrangian model. The vertical viscosity is
set to 10 cm2 s−1, and the horizontal viscosity is set to 3 × 104 m2 s−1. For the simulation with interior
mixing, the vertical tracer diffusivity is 1 cm2 s−1 (it is zero in the simulation without interior mixing).
The horizontal tracer diffusivity is set to zero for both simulations.

2.5. Bottom Topography and Spherical Geometry

The Lagrangian method requires a specification of the bottom surface elevation over a horizontal
grid of points on which Riemann sums are evaluated to calculate the pressure force [24]. For the
simulations presented in this paper, the surface elevation field is constructed in the following way. First,
actual mean surface height of the earth’s land surface and ocean bottom is averaged into 1-degree bins.
Then, ocean depths are truncated at 4900 m, positive land surface values are set to 300 m, and the land
mass of Central America is widened slightly. The resulting data are smoothed repeatedly using a 1-2-1
filter. Finally, the smoothed 1-degree data are averaged over the spherical grid of the ocean model.
A comparison of the unsmoothed one-degree bathymetry (dashed) and the GLOM bottom topography
(solid) is shown in Figure 3a for 30 W. Sharp topographic features are smoothed to be consistent
with the large parcels used in this study, and the slope at the land ocean interface is reduced, which
helps to improve numerical accuracy in low resolution simulations [25]. The land surface elevation
is set to 300 m to prevent the smoothing of the bottom surface as well as the enhanced free surface
height perturbations resulting from the use of gravity wave retardation [29] from overly distorting the
locations of continental boundaries (e.g., from opening a water pathway through Central America).

The GLOM uses a spherical geometry in which grid boxes have a constant meridional width
(in both degrees and meters), and a zonal width that is roughly the same in meters but increases in
degrees longitude with distance from the equator. This geometry was first developed for a global
Lagrangian atmospheric model by [4]. A mercator projection of the grid boxes is shown in Figure 3b
for North America.
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Figure 3. Bottom topography and spherical geometry. (a) Model bottom surface along 30 W (solid
black line), the observed bathymetry (dashed line), and the undisturbed free surface height (blue).
(b) Spherical geometry for North America. Each grid box used for calculating the pressure force is
outlined in black. (c) Regions of land (gray) and ocean (blue) as determined by the zero height contour.
The solid black line denotes the actual position of the land–sea interface.

Here, grid boxes are shaded gray for z > 0 m, and blue for z < 0 m. A similar shading of model
bathymetry is shown for the entire world in Figure 3c, with the z = 0 contour for actual bathymetry
delineated with a black line. Notice that small peninsulas and islands are largely smoothed out in the
GLOM’s bottom topography, but that the gross structure of continents and ocean basins is retained.

For the simulations discussed in this paper, grid boxes are 1 by 1 degrees wide at the equator, but
have a larger width in degrees longitude at higher latitudes. Note that this grid is used to evaluate the
pressure force and to create plots of layer thickness. In contrast, parcels span multiple grid boxes and
move freely throughout the model domain. While it is difficult to precisely characterize the equivalent
Eulerian resolution of a Lagrangian model, the author estimates it to be roughly 2 or 3 degrees at low
latitudes, and somewhat coarser at high latitudes for the simulations presented in this paper.

2.6. Merging and Dividing Parcels

Following [25], the water in the oceans is divided into a collection of equally sized water mass
elements (WMEs), which may be considered to be the building blocks of water parcels. The target size
for parcels is one WME in the upper layer (0–700 m), two WMEs in the middle layer (700–2100 m),
and four WMEs in the lower layer (depths greater than 2100 m). When a vertically thick parcel rises to

85



Climate 2019, 7, 41

a higher layer, and it is larger than the target size, it is sliced in half and the resulting two parcels begin
moving independently (Figure 4).

(a)

(b)

(c)

Figure 4. Dividing and merging parcels. (a) A single parcel comprising two water mass elements.
(b,c) The parcel divides into two smaller parcels each comprising one water mass element, which then
move independently. Viewing the panels in reverse order illustrates the merging process.

When a vertically thin parcel sinks to a lower layer, it maintains its size until it overlaps and is
sufficiently close to another vertically thin parcel, at which time the two parcels are combined (Figure 4,
view panels from the bottom up). Notice that each individual WME has its own identification
number, and it can be tracked through the dividing and merging process. While merging generates
a small amount of numerical mixing, Haertel and Fedorov [15] found little difference between
simulations with dividing and merging when compared to simulations with vertically thin parcels
everywhere. Presumably, this is because merging only occurs when parcels go through substantial
vertical displacements (i.e., it is a rare event). While dividing and merging can be turned off to
completely remove numerical mixing of tracers, the author selected to use it here because it dramatically
speeds up the model (by a factor of 2 or more for the simulations presented in this paper). Owing to
the dividing and merging process, the vast majority of parcels in the upper layer comprise a single
water mass element and have a vertical thickness of approximately 78 m, with a factor of 2 (4) increase
in vertical thickness in the middle (lower) layer. All parcels have a radius of 333 km in each horizontal
dimension (i.e., 3 degrees latitude and 3 degrees longitude near the equator). There are approximately
154,000 water mass elements in each simulation, which allows the model to be run for millennial time
scales on a single processor (the GLOM has not yet been coded to run in parallel) .

2.7. Experimental Design

In designing the simulations presented in this paper, the author had several goals: (1) to test
the GLOM’s ability to reproduce the gross circulation and stratification structure of the world ocean;
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(2) to illustrate several unique capabilities of the GLOM that stem from its Lagrangian nature; and
(3) to make a contribution to the field of physical oceanography. After reflecting on these goals, he
chose to use the GLOM to extend the results of Haertel and Fedorov [15] (HF12) to include realistic
topography and a global domain. Briefly, HF12 addressed the question of to what extent ocean
circulation and stratification depend on interior mixing. They used a predecessor to the GLOM
to simulate circulations in an idealized ocean with the scale of the Atlantic, and which included
a circumpolar channel. They compared a simulation with a moderate amount of tracer mixing to one
in which the tracer diffusivity was set to zero. They found that the leading order solution for ocean
circulation, stratification, and heat transport could be reproduced with zero tracer diffusivity, and that
interior mixing essentially contributed first-order perturbations to this solution. Accordingly, in this
paper, we apply a surface forcing much like that used by HF12, but instead of using an idealized ocean
basin, we use a global ocean with a smoothed version of actual bathymetry.

The temperature restoring function (Figure 5a, solid black line) is a piecewise linear function
with a range set so that zonal average model SST (Figure 5a, red dashed line) has similar minima and
maxima to that of zonal average SST in nature (Figure 5a, blue dotted line). Note that the restoring
temperature is slightly lower in the Antarctic than in the Artic, which leads to Antarctic Bottom Water
being more dense than North Atlantic Deep Water. The idealized zonal wind stress forcing (Figure 5b)
is the same as that used by HF12; it includes strong westerlies at midlatitudes and weaker easterlies in
the tropics.

(a)

re
st

or
in

g 
te

m
pe

ra
tu

re
 (

C
)

0

10

20

30

70 S 30 S Eq 30 N 70 N

(b)

-0.1

0.0

0.1

0.2

zo
na

l w
in

d 
st

re
ss

 N
 / 

(m
*m

)

70 S 30 S Eq 30 N 70 N

Figure 5. Surface forcing. (a) restoring temperature (solid black line), average SST in the simulation
with mixing (red dotted line), and observed average SST (blue dotted line), which is from the NCEP
Optimally Interpolated weekly SST and Sea Ice datasets for the years 1998–2009. (b) zonal wind stress.

The forcing was applied to an initially isothermal ocean (T = 0 ◦C) for a period of 1400 years.
In one case, there was a moderately high vertical tracer diffusivity (1 cm2 s−1), and in the other case
the diffusivity was zero. One minor adjustment was made after 500 years of model integration–the
temperature difference between the restoring temperature in the Artic and Antartic was reduced from
1 ◦C to 0.5 ◦C to deepen the Atlantic Meridional Overturning Circulation (AMOC). By the year 1400,
the simulation with interior mixing was in an approximately steady state in the upper ocean, with very
weak cooling in the abyss. In the simulation without interior mixing, weak cooling continued in the
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deep ocean and abyss. However, the temperature here had reached within a few tenths of a degree of
the minimum restoring temperature, limiting the amplitude of possible future temperature changes.

3. Results

When the GLOM is forced with the temperature restoring and wind stress functions described in
the previous section (Figure 5), it generates large-scale circulation patterns and stratification that are
similar to those in the world ocean in nature. In this section, we examine these structures, and compare
results for the simulation with interior mixing to the one without, as well as both simulations to
observations. The results generally support the main conclusion of HF12—that a model with zero
tracer diffusivity can produce most of the large-scale circulation and stratification structure seen in
nature (i.e., the zero-order solution), with interior mixing contributing first-order perturbations.

3.1. Horizontal Stream Function

The horizontal circulation in the simulation with interior mixing (Figure 6a) is qualitatively
consistent with that predicted by theory [30] for a forcing like that shown in Figure 5. Anticyclonic
(cyclonic) gyres are present where the curl in the wind stress is negative (positive) with Sverdrup flow
in the eastern portion of ocean basins, and more intense return flow in the form of western boundary
currents to the east of continents. The model also produces an Antarctic Circumpolar Current (ACC),
with gyres in the Ross and Weddell Seas. While the ACC is somewhat weaker than in nature [31],
this is probably attributable to the low resolution of the model. In the simulation without mixing
(Figure 6b), the overall flow structure is similar, but the amplitude of most gyres is slightly weaker,
and the ACC is also weaker.
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Figure 6. Horizontal streamfunction (10 Sv contour interval). (a) Simulation with interior mixing.
(b) Simulation without interior mixing. Positive (negative) contours are drawn with solid (dashed)
lines, with contour values ranging from −45 to 105 Sv.
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3.2. Surface Temperature Field

Despite the idealized nature of the GLOM and the forcing, it qualitatively captures many of the
departures from zonal symmetry seen in the observed sea surface temperature (SST) field, including
warm tongues protruding poleward at mid-latitudes along the eastern boundaries of North America,
Asia, Africa, and South America, an equatorial cold tongue in the eastern Pacific, and isotherms that
slope northward from west to east across the North Atlantic (Figure 7).
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Figure 7. Sea surface temperature (◦C). (a) Simulation with mixing. (b) Simulation without mixing.
(c) Observed.

Of course, the low model resolution leads to western boundary currents that are broader and
weaker than those observed in nature. Moreover, other features whose forcing is not included in the
model are not well represented. For example, in nature, marine stratocumulus clouds are prevalent to
the west of South America. They reflect a significant portion of the solar heating, reducing the SST
there [32]. This forcing is not included in the GLOM simulations, and consequently SSTs are higher to
the west of South America in the model (Figure 7a,b) than they are in nature (Figure 7c).
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3.3. Stratification

In the simulation with interior mixing, the GLOM generates a region of water that is substantially
warmer than that in the rest of the ocean, which is largely contained in the upper 1 km between 50◦ S
and 50◦ N (Figure 8a).
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Figure 8. Stratification along 30◦ W. (a) Temperature (◦C) in the simulation with mixing.
(b) Temperature (◦C) in the simulation without mixing. (c) Potential density in nature, with the
upper four isopycals referenced to the surface, and the lower four isopycnals referenced to their
approximate depths. The lower isopycnals are shown only in the vicinity of the depth to which they
are referenced.

The vertical temperature gradient in the tropics within a few hundred meters of the surface is
especially high. These aspects of the simulated thermocline structure are like those in the pycnocline
in nature (Figure 8c). In both the model and in nature, the densest water forms in the Antarctic, and it
undercuts the deep water formed in the north (Figure 8a,c). When interior tracer mixing is removed,
the upper thermocline structure is very similar to that in the simulation with mixing (Figure 8b).
However, at greater depths, the ocean warms substantially, with many isotherms rising around 1 km
or more. The two simulations (with and without the mixing of tracers), have a similar slope in most of
the Atlantic (Figure 8a,b), which is also similar to that of isopycnals in nature (Figure 8c).
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3.4. Water Mass Distributions

One advantage of the GLOM is that it is easy to identify locations where water masses form.
In Figure 9, we color code parcels along 30◦ W by the latitude at which they were last modified by
the surface forcing (the model saves this information as a parcel variable and updates it it every time
surface fluxes alter the parcel temperature). We compare the water masses in the GLOM (Figure 9a,b)
to those in nature, as revealed by the salinity field (Figure 9c). In the simulation with mixing, each of
the main water masses in the Atlantic is represented (Figure 9a): warm tropical and sub-tropical water
near the surface that forms between 40◦ S and 40◦ N (red dots); Antarctic Intermediate Water (AIW)
that forms between 40◦ and 60◦ S and moves northward along the main thermocline (cyan dots); North
Atlantic Deep Water (NADW) that forms north of 40◦ N and reaches depths of about 4 km (green dots),
and Antarctic Bottom Water (ABW) that forms south of 60◦ S, and spreads to cover most of the ocean
bottom. Each of these water masses has a similar positioning to its counterpart in nature (Figure 9c),
as inferred from the salinity field. In the simulation without tracer diffusion (Figure 9b), the general
distribution of water masses is similar, except that the AIW penetrates farther north, the NADW is
shallower, and the ABW is deeper.
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Figure 9. Water masses along 30◦ W. Parcels are color coded by the latitude of last surface contact in
(a) the simulation with mixing. and (b) the simulation without mixing. (c) Observed water masses are
inferred from the salinity field.
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3.5. Atlantic Meridional Overturning Circulation

Most of the deep overturning the model generates is in the Atlantic Ocean, and we now examine
this circulation in detail, both because of its importance to ocean heat transport and to follow up on
the previous Lagrangian modeling results of HF12. When interior mixing is included in the model,
the AMOC has a mid-latitude amplitude of about 21 Sv (Figure 10a), of which about 11 Sv upwells in
the Southern Ocean. When interior tracer mixing is removed, the peak amplitude of the overturning
is reduced to 13 Sv, but almost as much water (10 Sv) upwells in the Southern Ocean (Figure 10b).
The overturning also becomes more shallow, with the deepest streamlines reaching around 3 km.
The other difference is that there is a lack of streamlines crossing the thermocline between 27◦ S and
40◦ N. We also examine the AMOC using temperature as a vertical coordinate in Figure 11—both
because this more directly illustrates heat transport by removing adiabatic overturning cells [15,33],
and because it also more clearly illustrates shallow wind-driven cells. When interior mixing is included,
the GLOM generates 24 Sv of deep overturning in the North Atlantic (Figure 11a), with roughly 12 Sv of
water upwelling in the Southern Ocean. There is little temperature change following four streamlines
(each representing 3 Sv of transport) from 70◦ N to 30◦ S. However, multiple streamlines indicate
warming of water in the interior of the deep cell with roughly 6 Sv of upwelling near the equator
(Figure 11a). When interior mixing is removed (Figure 11b), the amplitude of the deep cell is reduced
to 15 Sv, but once again roughly 12 Sv of water sinks in the North Atlantic and makes a long journey
to the Southern Ocean with very little temperature change. Also note that removing interior mixing
has little impact on the shallow wind-driven cells for T > 10 ◦C. These results suggest that the basic
character of the AMOC is maintained without interior mixing, but that mixing deepens the circulation,
and generates transport across the equatorial thermocline.
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Figure 10. Meridional overturning streamfunction (3 Sv contour interval). (a) Simulation with mixing.
(b) Simulation without mixing. Positive (negative) contours are drawn with solid (dashed) lines, with
contour values ranging from −10.5 to 22.5 Sv.
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Figure 11. Meridional overturning streamfunction with temperature as a vertical coordinate (3 Sv
contour interval). (a) Simulation with mixing. (b) Simulation without mixing. Positive (negative)
contours are drawn with solid (dashed) lines, with contour values ranging from −10.5 to 22.5 Sv.

3.6. Sample Trajectory Analysis

One advantage of the GLOM is that it provides trajectory information for every wass mass
element (WME) in the ocean. Each WME has a unique identification number (ID) that does not change
during the course of a simulation. To compute a trajectory for a given WME, the modeler simply
uses the ID to look up parcel positions for that WME for the times that data is saved. Moreover, for
low-resolution runs, it is easy to construct trajectories for every WMI in the ocean. These can then be
objectively partitioned to illustrate particular water pathways. We now perform such an analysis for
the subsurface pathway of the AMOC.

Figure 12a shows downwelling (blue) and upwelling (red) locations of all WMEs that sink in
the North Atlantic and upwell south of 30 N during the last 300 years of simulation with interior
mixing. Water generally sinks (i.e., loses contact with the surface) in the Labrador or Norwegian Seas
and upwells (i.e., regains contact with the surface) near the Gulf of Guinea or in the Southern Ocean.
Regions most frequented by WMEs are contoured, revealing that the preferred pathway to upwelling
is through a deep western boundary current just to the east of the Americas, which takes an eastward
turn south of 20◦ S (see dashed and solid black contours in Figure 12a). When interior tracer mixing is
removed, the downwelling locations are similar, as is the preferred pathway to the Southern Ocean,
but water no longer upwells near the Equator (Figure 12b). Presumably, this is because without interior
mixing, there is no longer any mechanism to warm the water once it loses contact with the surface,
which would be necessary for equatorial upwelling.
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Figure 12. Horizontal pathway to upwelling of North Atlantic Deep Water. (a) Simulation with
mixing. (b) Simulation without mixing. Blue (Red) dots indicated downwelling (upwelling) locations.
Contouring indicates the percent of WME pathways that pass through each 3 by 3 degree grid box (10,
30, and 50 percent).

A y–z cross-section of the water pathways in shown in Figure 13.
In both simulations, water typically downwells just south of 70◦ N, and upwells near 60◦ S.

In the simulation with interior tracer mixing, the pathway to upwelling is slightly deeper (Figure 13a),
and includes a branch to equatorial upwelling that is not present in the simulation without interior
mixing (Figure 13b). The pathways shown in Figures 12 and 13 are generally consistent with the
streamfunctions shown in Figure 10; although the preferred pathway to upwelling is slightly shallower
than the streamlines indicate, which may indicate a bias towards shallower paths because of the
relatively short sampling time (300 years).
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Figure 13. Vertical cross-section of pathway to upwelling of North Atlantic Deep Water. (a) Simulation
with mixing. (b) Simulation without mixing. Blue (red) dots indicate downwelling (upwelling)
locations. Contouring indicates the percent of WME pathways that pass through each 3 degree by 300
m grid box (10, 30, and 50 percent).

3.7. Pacific Water Masses

As in nature, the deep circulation in the GLOM in the Pacific Ocean differs greatly to how it is in
the Atlantic Ocean. In particular, for both the simulations, with and without interior mixing, Antarctic
Bottom Water fills almost all of the ocean at depths greater than 1 km (Figure 14). In the southern
hemisphere, there are a few scattered parcels of North Atlantic Deep Water (green dots) at depths
between 1 and 2 km that apparently come around the southern tip of Africa and through the Indian
Ocean to reach the central Pacific. We conclude that there is essentially no deep water formation in
the Pacific in the GLOM, which is not surprising considering the ocean geometry (Figure 3b) and the
zonally symmetric temperature restoring (Figure 5b).
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Figure 14. Water masses along 170◦ W. Parcels are color coded by the latitude of last surface contact in
(a) the simulation with mixing, and (b) the simulation without mixing.
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4. Discussion

In this paper, the author combines components of a Lagrangian basin-scale ocean model with the
dynamical core of a global Lagrangian atmospheric model to create a new global Lagrangian ocean
model (GLOM). Rather than numerically solving partial differential equations that describe fluid flow,
this model predicts the motions of individual fluid parcels using ordinary differential equations and
classical physics. The GLOM has variable bottom topography and spherical geometry, so it can be used
to simulate general circulations of the global ocean. It also has a unique convective parameterization,
in which the vertical positions of parcels are sorted by density to remove convective instability.

When forced with idealized surface temperature restoring and wind stress, the GLOM generates
much of the circulation structure seen in nature in the global oceans, including mid-latitude gyres
with western boundary currents, shallow wind-driven cells at low latitudes, a deep overturning in
the Atlantic Ocean, and an Antarctic Circumpolar Current. The GLOM also produces thermocline
structure and water mass distributions that are similar to those seen in nature. When interior mixing
is removed, the large-scale ocean circulation, stratification, and water mass distributions are similar,
with the main difference being that circulations, thermocline structure and upper-level water masses
are slightly shallower. These results support the primary conclusion of [15] (and earlier papers such
as [34,35]) that the leading-order solution for ocean stratification and circulation can be reproduced
without interior tracer mixing, and that including tracer diffusivity creates first-order perturbations.

The work presented here and in previous Lagrangian modeling studies supports the idea that the
Lagrangian approach would complement existing numerical methods used to study climate dynamics
and climate change. This paper highlights several unique features of the GLOM: (1) the ability to
conduct simulations with zero tracer diffusivity; (2) the unique convective parameterization which
restacks parcels in convectively unstable regions, and (3) ease in tracking every mass element in the
ocean and determining locations where water masses form. For these reasons, the author is continuing
to refine and improve the GLOM, and he will soon be coupling it to a Lagrangian atmospheric model
for coupled ocean–atmosphere climate dynamics experiments.

Of course, the GLOM has a number of disadvantages as well, so it would not be well suited for
every climate application. For example, the model, as it is currently configured, uses a high degree
of gravity wave retardartion (GWR) [29] which amounts to assuming that there is a layer of fluid
above the ocean with a density slightly lower than that of salt water, and which slows externing
gravity waves, allowing the model to have a large time step. The main side effect of GWR is that it
greatly enhances the amplitude of free surface perturbations, which would be a problem for modeling
circulations in shallow estuaries, for example. A second drawback to the Lagrangian approach used
here is that there is a potential energy barrier to starting circulations in a pile of parcels [25], so it could
have problems simulating weakly forced circulations.

The simulations presented in this paper are also limited in the sense that they use very large water
parcels, with horizontal scales of a few degrees, and vertical scales on the order of 100 m. Owing to the
lack of numerical tracer diffusion in the model, the equivalent resolution in an Eulerian ocean model is
probably somewhat finer. For example, Haertel et al. [25] found that circulations and stratification in
a 3-degree basin-scale Lagrangian ocean model compared favorably to those in a 1-degree z-coordinate
model that was exposed to the same surface forcing. However, this resolution is still very coarse, and it
represents the low end of expected climate applications (i.e., for millennial time-scale, single-processor,
global simulations). Fortunately, there is reason to believe that the GLOM will have the capacity
to be run at much finer resolution once it is coded in parallel. For example, Haertel et al. [24]
found nearly linear scaling in a predecessor to the GLOM, which had similar computational costs to
a sigma-coordinate ocean model for simulating circulations in a large lake. Moreover, it is encouraging
that even at the very coarse resolution used in this paper, the GLOM was able to reproduce the
gross circulation patterns and stratification seen in the world ocean, with the Lagrangian convective
parameterization and random parcel motions apparently adequately representing buoyancy driven
convective circulations and mesoscale eddy transports that occur at much smaller scales in nature.
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Considering that the GLOM is in a relatively early stage of development when compared with
other climate modeling tools, it is too early to fully understand its advantages and disadvantages
at this time. Moreover, there are probably many other potential applications for the GLOM and its
fully Lagrangian atmospheric counterpart that will take years to explore. For example, the recent
study of Paparella and Popolizio [36] suggests that Lagrangian models will have advantages for
simulating the mixing of biogeochemical tracers. However, one thing is clear already—Lagrangian
models, as well as the physical parameterizations that go along with them, are fundamentally different
from Eulerian models and methods, and they make a significant contribution to the diversity of climate
modeling tools.
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Abstract: Meaningful seasonal prediction of drought conditions is key information for end-users and
water managers, particularly in Latin America where crop and livestock production are key for many
regional economies. However, there are still not many studies of the feasibility of such a forecasts at
continental level in the region. In this study, precipitation predictions from the European Centre for
Medium Range Weather (ECMWF) seasonal forecast system S4 are combined with observed precipitation
data to generate forecasts of the standardized precipitation index (SPI) for Latin America, and their skill is
evaluated over the hindcast period 1981–2010. The value-added utility in using the ensemble S4 forecast
to predict the SPI is identified by comparing the skill of its forecasts with a baseline skill based solely on
their climatological characteristics. As expected, skill of the S4-generated SPI forecasts depends on the
season, location, and the specific aggregation period considered (the 3- and 6-month SPI were evaluated).
Added skill from the S4 for lead times equaling the SPI accumulation periods is primarily present in
regions with high intra-annual precipitation variability, and is found mostly for the months at the end of
the dry seasons for 3-month SPI, and half-yearly periods for 6-month SPI. The ECMWF forecast system
behaves better than the climatology for clustered grid points in the North of South America, the Northeast
of Argentina, Uruguay, southern Brazil and Mexico. The skillful regions are similar for the SPI3 and
-6, but become reduced in extent for the severest SPI categories. Forecasting different magnitudes of
meteorological drought intensity on a seasonal time scale still remains a challenge. However, the ECMWF
S4 forecasting system does capture the occurrence of drought events for the aforementioned regions
and seasons reasonably well. In the near term, the largest advances in the prediction of meteorological
drought for Latin America are obtainable from improvements in near-real-time precipitation observations
for the region. In the longer term, improvements in precipitation forecast skill from dynamical models,
like the fifth generation of the ECMWF seasonal forecasting system, will be essential in this effort.

Keywords: drought; forecasting; Latin America

1. Introduction

Drought is a recurring and extreme climate event that originates in a temporary water deficit and
may be related to a lack of precipitation, soil moisture, streamflow, or any combination of the three taking
place at the same time [1]. Drought differs from other hazard types in several ways. First, unlike other
geophysical hazards that occur along well defined areas (i.e., floods, earthquakes, landslides), drought
can occur anywhere with the exception of desert regions and extremely cold areas where it does not have
meaning [2,3]. Secondly, drought develops slowly, resulting from a prolonged period (from weeks to years)
of precipitation that is below the average, or expected, value at a particular location [4].
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To improve drought mitigation, different indicators are used to trigger a drought warning [1,5].
While an indicator is a derived variable for identifying and assessing different drought types, a trigger
is a threshold value of the indicator used to determine the onset, intensity or end of a drought, as well
as the timing to implement proper drought response actions [6,7]. Since precipitation is one of the most
important inputs to a watershed system and provides a direct measurement of water supply conditions over
different timescales, several commonly used drought indicators rely on precipitation measurements only [4].
Among them, the Standardized Precipitation Index (SPI) of [8] is certainly the most prominent; it has
been recommended by the World Meteorological Organization (WMO) for characterizing the onset, end,
duration and severity of drought events deriving from precipitation deficiencies taking place at different
accumulation periods and occurring at different stages of a same hydro-meteorological anomaly [9].

The immediate consequences of short-term droughts (i.e., a few weeks duration) are, for example,
a fall in crop production, poor pasture growth and a decline in fodder supplies from crop residues,
whereas prolonged water shortages (e.g., of several months or years duration) may, among others, lead to
a reduction in hydro-electrical production and an increase of forest fire occurrences [10]. Therefore, skillful
predictions of the onset and end of a drought a few months in advance will benefit a variety of sectors
by allowing sufficient lead time for drought mitigation efforts. Indeed, drought forecasting is nowadays
a critical component of drought hydrology science, which plays a major role in drought risk management,
preparedness and mitigation.

It has been demonstrated that droughts can be forecasted using stochastic or neural networks [11,12].
While [13] demonstrated that these type of forecast can provide “reasonably good agreement for forecasting
with 1 to 2 months lead times”, they do not quantify the improvement of these methods with respect to
using probabilistic forecasts of the precipitation fields. Forecasts of droughts can also be produced using
deterministic numerical weather prediction models. However, such forecasts are highly uncertain due to
the chaotic nature of the atmosphere, which is particularly strong on a sub-seasonal timescale [14].

As an alternative, ensemble prediction systems that forecast multiple scenarios of future weather
have considerably evolved over recent years. Indeed, the routine generation of global seasonal climate
forecasts coupled with advances in near-real-time monitoring of the global climate has now allowed for
testing the feasibility of generating global drought forecasts operationally. Systems to monitor drought
around the globe are described in [7] for meteorological drought and in [15] for hydrologic and agricultural
conditions. For example, Yuan et al. [16] used seasonal precipitation forecasts from the North American
Multi-Model Ensemble (NMME) and other coupled ocean-land-atmosphere general circulation models
(GCMs) to examine the predictability of drought onset around the globe based on the SPI. For the
global domain, they found only a modest increase in the forecast probability of drought onset relative
to baseline expectations when using the GCM forecasts. Hao et al. [17] described the Global Integrated
Drought Monitoring and Prediction System (GIDMaPS) that uses three drought indicators. The forecasting
component of their system relies on a statistical approach based on an ensemble streamflow prediction
(ESP) methodology. Dutra et al. [18,19] generated global forecasts of 3-, 6-, and 12-month SPI by combining
seasonal precipitation reforecasts from the European Centre for Medium-Range Weather Forecasts
(ECMWF) System 4 (S4) with precipitation observations from the Global Precipitation Climatology Centre
(GPCC) and, alternatively, the ECMWF Interim Reanalysis. They reported on several verification metrics
for the SPI forecasts for 18 regions around the globe. Using the same definition as [16], they found that
the ECMWF S4 provides useful skill in predicting drought onset in several regions, and the skill is largely
derived from El Niño-Southern Oscillation (ENSO) teleconnections. However, they also found that in many
regions is difficult to improve on “climatological” forecasts. Recently, Spennemann et al. [20] studied the
performance and uncertainties of seasonal soil moisture and precipitation anomalies (SPI) forecasts over
Southern South America by means of Climate Forecast System, version 2 (CFSv2). Their results show that
both SPI and standardized soil moisture anomalies forecast skills are regionally and seasonally dependent.
In general, a fast degradation of the forecast skill is observed as the lead time increases, resulting in almost
no added value with regard to climatology at lead times longer than 3 months. However, they note that
the forecasts have a higher skill for dry events if compared with wet events.
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In this study, we build on the work of [18,19] by considering the ECMWF S4 ensemble framework
to generate seasonal forecasts of the SPI, and perform their verification against corresponding SPI from
precipitation observations of the GPCC over Latin America. Drought is viewed from a meteorological
perspective, and seasonal forecasts of the 3- and 6-month SPI (SPI3 and SPI6) are generated and verified on
a monthly basis for the hindcast period of 1981–2010.

While the focus of the work is on the prediction of meteorological drought, the study assesses
two fundamental constraints in generating reliable regional drought predictions that will arise whether
using the reported method or any other approach (e.g., land surface modeling): (1) the accuracy of
summary statistics (e.g., mean, median, percentile) at predicting a seasonal drought from the members
of the ensemble forecasting system; and (2) the skill of probabilistic categorical predictions of seasonal
drought from the members of the ensemble forecasting system.

2. Study Area, Datasets and Methods

The study area covers the whole South-Central America region (the domain of analysis is limited to
land surface grid points between 56◦ S–35◦ N, 33◦–128◦ W). South-Central America spans a vast range of
latitudes and has a wide variety of climates. It is characterized largely by humid and tropical conditions,
but important areas have been extremely affected by meteorological droughts in the past [21–23] and the
climate change scenarios foresee an increased frequency of these events for the region [24,25]. Given the
significant reliance of South-Central American economies on rainfed agricultural yields (rainfed crops
contribute more than 80% of the total crop production in South-Central America), and the exposure of
agriculture to a variable climate, there is a large concern in the region about present and future climate
and climate-related impacts [26]. South-Central American countries have an important percentage of their
GDP in agriculture (10% average, [27]), and the region is a net exporter of food globally, accounting for
11% of the global value. According to the agricultural statistics supplied by the United Nations Food
and Agriculture Organization [27], 65% of the world production of corn and more than 90% of the world
production of soybeans occurs in Argentina, Brazil, the United States and China. The productivity of
these crops is expected to decrease in the extensive plains located in middle and subtropical latitudes of
South-America (e.g., Brazil and Argentina), leading to a reduction in the worldwide productivity of cattle
farming and having adverse consequences for global food security [28,29].

2.1. Forecasts: The ECMWF Seasonal Forecast System (S4)

In this study, we use the ECMWF seasonal forecast system 4 (hereafter S4; [30]) to forecast 3- and
6-month SPI. The S4 is a dynamical forecast system based on an atmospheric-ocean coupled model,
which has been operational at ECMWF since 2011 and is launched once a month (on the first day of
the month). The 2011 version of the forecast model has 91 vertical levels, lead times up to 13 months,
and a resolution of T255 (80 km). It provides back integrations (hindcast) with 15/51 member ensemble
(number depends on month) for every month from 1980 onwards. Molteni et al. [30] provide a detailed
overview of S4 performance. For the comparison with the GPCC observations, the S4 has been re-gridded
to 1.0◦ latitude/longitude grid spacing, and daily precipitation values over its hindcast period (1981–2010)
have been aggregated to monthly values. The ability of the probabilistic model to accurately forecast
seasonal drought conditions has been evaluated up to 6 months of lead time. In addition to the dynamical
seasonal forecasts and in order to test whether the forecasts perform better than a benchmark, a set of
climatological forecasts (CLM) were also generated by randomly sampling past years from the reference
data set to match the number of ensemble members in the hindcast, as depicted in [19].

2.2. Observations: The GPCC Full Data Reanalysis Version 6.0

In this study, monthly precipitation totals at 1.0◦ latitude/longitude grid spacing from the Full
Data Reanalysis Monthly Product Version 6.0 of the GPCC are used as a reference data set (for the
forecast verification). The GPCC was established in 1989 on request of the World Meteorological
Organization (WMO) and provides a global gridded analysis of monthly precipitation over land from
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operational in situ rain-gauges based on the Global Telecommunications System (GTS) and historic
precipitation data measured at global stations. The data supplies from 190 worldwide national weather
services to the GPCC are regarded as primary data source, comprising observed monthly totals from
10,700 to more than 47,000 stations since 1901. The monthly gridded data sets are spatially interpolated
with a spherical adaptation of the robust Shepard’s empirical weighting method [31]. Validation of the
original data sets for drought monitoring has been performed by [18,32], who found that GPCC data
sets show higher values for extreme precipitation, and tend to over-smooth the data. This can generate
some problems when analyzing intense precipitation events but appears of secondary importance in
drought analysis. Therefore, to be consistent with the data provided by the ensembles from ECMWF,
a common period of the hindcast that covers the period from 1981 to 2010 is used to calculate the SPI.

2.3. Drought Indicator: The Standardized Precipitation Index (SPI)

In this study, we selected the SPI [8] as a meteorological drought indicator. The SPI is a statistical
indicator that compares the total precipitation received at a particular location during a period of time with
the long-term precipitation distribution for the same period of time at that location. In order to allow for the
statistical comparison of wetter and drier climates, the SPI is based on a transformation of the accumulated
precipitation into a standard normal variable with zero mean and variance equal to one. SPI results are
given in units of standard deviation from the long-term mean of the standardized precipitation distribution.
Negative values, therefore, correspond to drier periods than normal and positive values correspond to
wetter periods than normal. The fundamental strength of the SPI is that it can be calculated for a variety
of precipitation timescales (e.g., weekly, monthly, seasonal or yearly accumulation periods) and updated
on various time steps (e.g., daily, weekly, monthly), enabling water supply anomalies relevant to a range
of end users to be readily identified and monitored. SPI is typically calculated on a monthly basis for
a moving window of n months, where n indicates the precipitation accumulation period.

The magnitude of negative SPI values correspond to percentiles of a probability distribution that are
frequently used as threshold levels (triggers) to classify drought intensity [8,33,34]. Several classification
systems of meteorological drought intensity based on fixed threshold levels of the SPI have been presented
in the literature. The most widely known is that proposed by [8], which maps precipitation totals below
the 50th percentile into four fixed categories of drought intensity (Table A1). For example, a “moderate”
drought event starts at SPI = −1.0 (units of standard deviation), which corresponds to a cumulative
probability of 15.9%, that is, approximately the 16th percentile. McKee at al. [8] determined that every
region is in “mild” drought 34% of the time, in “moderate” drought 9.2% of the time, in “severe” drought
4.4% of the time, and in “extreme” drought 2.3% of the time (Table A1). The threshold levels of drought
intensity proposed by [8] have been used worldwide in numerous applications at different timescales
of precipitation accumulation, such as to monitor drought in the United States [35,36] and Europe [37],
for detecting droughts in East Africa [38], to monitor drought conditions and their uncertainty in Africa
using data from the Tropical Rainfall Measuring Mission (TRMM) [32], and for improving the fire danger
forecast in the Iberian Peninsula [39].

2.4. Drought Detection and Verification Methods

The methods to detect drought events from the S4 ensemble system (Table A2) were defined in [40] as
13th percentile (Q13); 23th percentile (Q23); Median (MED); 77th percentile (Q77); 88th percentile (Q88);
Large spread (SpL); Low spread (Spl); Dry spread (SpD); Flood spread (SpF); Mean (EM_RES).

Forecast verification is the process of assessing the quality of forecasts. The usefulness of forecasts
to support decision making clearly depends on their error characteristics, which are elucidated through
forecast verification methods. In this study, the forecasts correspond to the monthly SPI3 and SPI6 values
computed with the ECMWF S4 for the period 1987–2010; the observations correspond to the SPI3 and
SPI6 values computed with the GPCC for the same historical period. The validation methods used are the
percentage correct (PC), extreme dependency score (EDS), Gilbert skill score (GSS), BIAS, probability of
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detection (POD), and False Alarm Rate (FAR). A comprehensive description of the validation metrics can
be found in the supplementary material.

3. Results and Discussion

Initially, we assessed the ability of the ECMWF S4 ensemble system to seasonally forecast the spatial
distribution of SPI in South-Central America by evaluating its monthly scalar accuracy and skill score at
each location with 3- and 6-month lead time (respectively for the SPI3 and SPI6). In the sequence, we verify
the non-probabilistic identification of drought events by means of the S4 system.

3.1. Non-Probabilistic Forecasts of Continuous SPI Values

In Figure 1, we present the monthly correlation between observed and forecast ensemble mean
(a) SPI3 and (b) SPI6 at, respectively, 3- and 6-month lead time for the hindcast period of 1981–2010.
The maps depicted in Figure 1 show that there is a positive correlation between SPI3 forecast and
observations at all months and for most of the study area. Overall, the forecast SPI3 values follow
the trends (increases or decreases) of the observed SPI3 values. Notwithstanding, the statistical significance
between observed and forecast SPI3 varies across regions and months: for example, the correlation along
the East Pacific coast is almost never statistical significant during the year, it is mostly statistical significant
during the whole year for Northeast of South-America, and significant patterns are only verified for
Central America during the months between December and May. On the other hand, SPI6 forecasts
present extensive geographic areas that are negatively correlated with SPI6 observations at 6-month lead
time (Figure A1). These large forecast errors are not systematic but occur mainly for the Amazon and
Central East part of South America, and are most evident during the months of January–April (end of
the wet season) and June–August (dry season). Surprisingly, and similarly to the SPI3, the correlation is
statistically significant during almost the whole year for the Northeast of South America and for large
parts of Central America from March to May. Mo and Lyon [41] suggest that the statistically significant
correlation patterns in Central America and Northeast of South America are likely contributed by the
ENSO: these regions are known to have a strong ENSO signal, and the seasonal skillful of precipitation
forecasts contribute to the SPI3 and SPI6 seasonal forecasts. Moreover, in those areas and during both
seasons (wet and dry), the intra-seasonal patterns of precipitation seem to be highly influenced by the
activity of the Madden–Julian Oscillation [42]. Since the correlation is statistical significant for some regions
at some months, then it suggests that the forecast has some skill at 3- and 6-months lead time.

The scalar skill score was also analyzed to assess the ability of the forecasts to improve SPI prediction
over the climatological median values (i.e., SPI = 0). The differences between the ECMWF-based forecasts
and the climatological forecasts (CLM) will indicate whether there is additional skill obtained from the
dynamical model forecasts. In Figure 2, we present the monthly SPI3 forecast skill (using the mean of
the ensemble) at 3-month lead time relative to baseline skill for the hindcast period 1981–2010, which shows
the difference in correlation between the ECMWF S4 SPI3 forecasts and the baseline SPI3 forecasts based
on climatological probabilities. Our results confirm that the forecasts have higher skill than the baseline,
but the differences are often not significant at the 5% level based on the Fishers Z test. Indeed, although the
correlation with observations is extensively significant over the study area, it does not extensively improve
over the climatological SPI values. Marked improvements are observed for Northeast Brazil during the
months of April–July, Mexico during the months of December–April, and North of South America between
January–April. Overall, our results are consistent with [19,41], namely, that it is still challenging to improve
on SPI forecasts that are based on climatology and persistence.

103



Climate 2018, 6, 48

Figure 1. Monthly correlation of the observed and forecast standardized precipitation index (SPI) at
3-months lead time (SPI3) (using the mean of the ensemble) for the hindcast period (1981–2010). Values are
indicated in the color bar: 0.31 (0.37) is statistical significant at 10% (5%) significance level.

Interestingly, scalar skill score results suggest that SPI3 forecasts match the observations in dry regions
mainly during the beginning of the dry seasons, while at regions with high rainfall variability and/or
during the wet seasons the forecasts are usually less skillful. Therefore, we believe that the ECMWF S4
ensemble mean might underestimate monthly rainfall and thus increase the intensity of dry periods and
lessen the forecast values of SPI3 for the study region.
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Figure 2. Monthly difference in forecast skill (Pearson correlation) between the forecast SPI3 at 3-month lead
time (using the mean of the ensemble) and climatological SPI for the hindcast period (1981–2010). Values are
indicated in the color bar: 1.96 is the statistical significance at the 5% significance level.

On the other hand, the 6-month seasonal forecasts are less skillful than the 3-month forecasts
(Figure A2). Indeed, and as expected from the correlation analysis, skill scores for the SPI6 forecasts
are generally lower than for SPI3 and almost not statistically significant at the 5% level. In Figure A2,
it is perceptible that regions with meaningful SPI6 forecasts are also depicted as skillful for the SPI3.
The monthly skill scores clearly show that the meaningful forecasts are concentrated over the eastern
Amazon, namely in most of the states of AP (Amapá), PA (Pará) and MA (Maranhão). Molteni et al. [30]
states that some important bias reductions were introduced in S4, as compared to S3, particularly in the
tropical Atlantic and Indian Oceans, and some improvements over land areas e.g., in East Asia and over
the Amazon Basin. It is possible that these improvements over the bias of the ECMWF S4 precipitation
forecasts will reduce the residual errors between observed and predicted seasonal SPI values.
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In Figure 3, the Root Mean Squared Error (RMSE) values between observed and forecast SPI3 at
3-month lead time (Figure A3 for SPI6), for the hindcast period 1981–2010. The results suggest that the
predicted SPI is less consistent with the observations derived from GPCC for those regions placed in the
subtropical subsidence zones around 10◦ and 30◦ N/S, such as subtropical southeast and central Brazil,
Paraguay and Bolivia, as well as large areas of Peru.

Figure 3. Root Mean Squared Error (RMSE) between the observed and forecast SPI3 at 3-month lead time
(mean of the ensemble) for the hindcast period (1981–2010). Values in difference of percentile magnitude are
indicated in the color bar.

The high variability of precipitation regimes within those latitudes [43,44] makes it difficult to predict
drought at seasonal scale. The results based on the analysis of residual errors also suggest that locations
with monthly forecast errors inferior to 0.2 have significant skill, whereas those superior to 0.5 have
negative correlation and are unskillful. This output is confirmed by the monthly skill score measured
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in terms of the RMSE (Figure 4). The RMSE skill score approximates the skill score computed with the
correlation index (Figure 2) and its spatial patterns: overall, seasonal SPI3 and SPI6 forecasts are monthly
skillful for a small region in the eastern part of the Amazon Basin.

Figure 4. Skill Score of the SPI3 at 3-month lead time forecast measured in terms of the RMSE relative
to climatological RMSE for the hindcast period (1981–2010).

3.2. Non-Probabilistic Forecasts of Categorical SPI Values

In Figures 5 and A5 the score values of categorical drought forecasts are represented (i.e., below the SPI
-1 threshold) while the ensemble drought detection was based on several methods as depicted in Table A2.
We have pooled together all seasons and locations at the study area in generating Figures 5 and A5.
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Surprisingly, the distribution of score values for SPI3 and SPI6 are alike for all methods and all verification
measures. This may be due to the fact that boundary conditions of seasonal dynamical model forecasts are
often characterized by low frequency variability, leading to similar predictability of medium-range climate
conditions that extend from a few to several months lead time. In general, precipitation is the result of
a complex and interacting phenomena at different spatial and temporal scales, but regional atmospheric
patterns that are actively involved in the development of long-term drought conditions are persistent
and influenced by predictors that can be accurately estimated at large lead times. Therefore, precipitation
anomalies over extreme peak thresholds (drought conditions) might be similarly predicted for different
accumulation periods and seasonal lead times, although the accuracy of their scalar values may vary
regionally and seasonally. Moreover, given the similar distribution of score values for different methods of
categorical drought identification, we present the results of the SPI3 and SPI6 in a joint analysis.

Figure 5. Verification measures of categorical drought forecasts (i.e., below the SPI3 “-1” threshold)
estimated with the methods described in Table A2.

For categorical drought events predicted with both SPI3 and SPI6, computed with the ECMWF S4
ensemble mean (EM-RES), POD values indicate that for at least 50% of the locations in South-Central
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America one in three seasonal drought events is correctly predicted. This is better than the respective
climatology (16% of drought events are correctly detected) and extends over a geographic area larger
than that with statistical significant scalar skill scores. Although the ensemble mean performs better
than the climatology, POD values are still higher for the methods Q13 (60% of detection) and SpD
(80% of detection); the worst results of all the methods are given by the wettest members of the ranked
distributions (Q77 and Q88). This means that drier members are better than the mean at detecting the
drought onset, but also that there is a low consistency between the extreme and dry members of the
ECMWF S4 ensemble set. Lavaysse et al. [40] found similar results in in Europe, where the highest POD is
achieved by using the 13 percentile, and the product using the Q13 and Q23 (SpD).

According to the FAR scores, we perceive that by using the ensemble mean SPI values to correctly
detect a drought (EM_RES), there will be on average a 70% rate of false alarms. Median FAR values are even
larger for dryer members (10% more for Q13 and SpD), and the inter-quantile range of the wettest members
is about six times greater than that of the mean (60%), which indicates a large spread of FAR values.
Based on these results, it is difficult to select the method that better optimizes between the number of
drought hits and the number of misses. Indeed, while the mean of the ensemble shows always an average
number of hits and misses (as similar to Spl and SpL, which represent the mean of ensemble extreme and
opposite members), the dryer and wetter members of the ensemble attain, respectively, extreme numbers
of hits or misses. In that sense, Lavaysse et al. [40] proposed a way to compensate the effect of number of
event detected in POD and FAR by using specific thresholds in order to select the same number of events
for the different methods.

Looking at PC, we might suggest that the Q13 of the ensemble is the worst performing method to
detect between drought and non-drought events. On the other hand, by looking the EDS we might suggest
that Q13 is the best method to detect the onset and end of a drought. Because of the non-dependency of the
EDS alone to assess a model’s performance on size is fixed, Ghelli and Primo [45] have suggested to not use
the EDS alone to assess a model’s performance on forecasting rare events. Those authors have shown that
the EDS equation results in an increased freedom of false alarms and correct negatives, which can freely
vary with the only restriction that their sum has to be constant. This feature encourages hedging, that is,
forecasting the event all the time to guarantee a hit and thus to ensure a higher success rate, however
this will increase the false alarm ratio and bias. Therefore, it is paramount to use the EDS in combination
with other scores that include the right hand side of the contingency table, as the false alarm rate and/or
the bias. Indeed, both FAR and BIAS show that SpD is not an accurate method to detect drought, as it
forecasts a large number of drought events that do not occur.

In that sense [40] proposes the use of the maximum Gilbert skill score (GSS) as trigger-point to find
the method that better optimizes among the number of false alarms, misses and hits of drought events
identified with the SPI. Looking at Figures 5 and A5, it is noted that the ensemble mean (EM_RES) is
the best choice for discriminating among seasonal drought and non-droughts events at 3- and 6-month
lead time, whilst keeping a minor number of false alarms. Although the SpD gives the best POD, it also
increases the ratio of false alarms and diminishes the overall skill score of the method. Following the
approach by [40], we suggest that the ensemble mean should be used to trigger the warning of seasonal
drought events for South-Central America by means of the SPI3 and SPI6 for respectively 3- and 6-month
lead times.

3.3. Probabilistic Forecasts of Categorical SPI Values

In addition to having skillful forecasts of scalar SPI3 and SPI6 derived with the ECMWF S4 ensemble
mean at seasonal lead times, a second fundamental challenge to generate reliable drought forecasts for the
region is associated with uncertainties in the ensemble used. Therefore, to further quantify the uncertainties
arising from the spread of the ensemble when computing the SPI, we computed the overall Brier Skill
Score (BSS), based on the climatological frequency of “moderate”, “severe” and “extreme” drought events
(Table A1). In Figures 6 and 7, we map the spatial distribution of BSS for the ECMWF S4 SPI-3 and SPI6
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forecast respectively, measured in terms of the BS relative to climatological BS at a lead time of 3 and
6 months for the hindcast period 1981–2010. We have pooled together all seasons at each grid point.

The spatial distribution of BSS suggest that the skill of the forecasting system is very similar for both
accumulation periods and decreases with the increasing intensity of drought. Looking at the skill for
predicting “moderate” drought events, the maps introduced in Figures 6 and 7 show that the forecasting
system behaves better than the climatology for large clustered points at the North of South America,
Mexico, Northeast of Argentina and Uruguay. In the later regions, where a hot spot appears over La Plata
basin, local feedbacks between soil properties and precipitation variability can explain the improved skill
which is linked to the coupling strength between soil moisture, evapotranspiration, and temperature [46,47].
On the other hand, the system skill for predicting “extreme” drought events is limited to a few locations
in Northeast Brazil, Northeast Mexico, Northeast Amazon, and Northeast of Argentina. These results
are encouraging, but only the Northeast of Mexico shows some spatial clustering with positive BSS for
extreme drought events, while positive BSS is spatially scattered for the other regions. On combining these
results, it can thus be reasonably assumed that forecasting different magnitudes of meteorological drought
intensity on seasonal time scales remains quite challenging, but the ECMWF S4 forecasting system does at
least a promising job in capturing the drought events (i.e., “moderate” drought) for some regions.

Figure 6. Brier Skill Score (BSS) of the European Centre for Medium Range Weather (ECMWF) S4 SPI-3
forecast for different probabilities of SPI occurrence, at a lead time of 3 months for the hindcast period
1981–2010. Values are indicated in the color bar; land grid points colored in white indicate that the forecasting
system is no more skillful than the climatology.

Figure 7. Brier Skill Score (BSS) of the ECMWF S4 SPI-6 forecast for different probabilities of SPI occurrence,
at a lead time of 3 months for the hindcast period 1981–2010. Values are indicated in the color bar; land grid
points colored in white indicate that the forecasting system is no more skillful than the climatology.
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It is interesting to note that the spatial pattern of positive BSS at different SPI categories closely
matches the regions that show significant skill scores for non-probabilistic drought forecasts, as well
as the geographic grid points that have the lowest monthly RMSEs (Figure 3). As expected, the BSS
is lower for the locations where the scalar mismatch between the forecast and observations is larger,
which implies more categorical misses and/or false alarms at any SPI intensity. Notwithstanding, since
the increase of SPI intensity is accompanied by a decrease of the respective cumulative probability,
it was expected that the BSS would decrease with an increase of the SPI drought category because
there is a larger probability for mismatching.

To finalize the evaluation of seasonal drought forecasts with the ECMWF S4 data set for
South-Central America, we proceed with the analysis of the Relative Operating Characteristic (ROC)
of the forecasts. In Figures 8 and 9, we present the spatial distribution of the area under the ROC
curve for the probability of drought detection at different SPI frequencies. The values are estimated
considering the ECMWF S4 SPI3 and SPI6 forecasts at a lead time of 3 and 6 months respectively,
for the hindcast period. We have pooled together all seasons at each 1dd grid point in generating
the maps of Figures 8 and 9. For the SPI3 and SPI6, for the “moderate” drought threshold, the area
under the ROC curve at all grid points in South-Central America is well above the no skill line,
indicating that, despite the poor reliability measured by the BSS, the forecasting system does have
some skill. Nevertheless, similarly to the BSS, we perceive that the regions in the North of South
America, Northeast of Argentina and Mexico are more skillful than the remaining locations. As the
intensity of drought increases, the usefulness of the forecasting system decreases both in magnitude
and area. For “extreme” drought events, the grid-points located in South, Central and Northeast of
South America are not skillful, as the area under ROC curve is below the 0.5.

Figure 8. Area under the Relative Operating Characteristic (ROC) curve for the probability of drought
detection at different SPI3 frequencies. Values indicated in the color bar are estimated at lead time of
3 months for the hindcast period 1981–2010.
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Figure 9. Area under the ROC curve for the probability of drought detection at different
SPI6 frequencies. Values indicated in the color bar are estimated at lead time of 6 months for the
hindcast period 1981–2010.

4. Conclusions

Here we present and assessment of seasonal drought forecasts, as characterized by the SPI at 3-
and 6-months accumulation periods for, 3- and 6-month lead times, respectively. The main advantage
of using the SPI for drought monitoring and prediction is that it is already used in operational
monitoring systems in many countries around the globe and it is the drought index endorsed by the
World Meteorological Organization (WMO).

We evaluated the scalar accuracy of the SPI forecasts together with the skill of probabilistic
forecasts of discrete drought events (i.e., <−1). The skill of probabilistic drought identification with the
SPI was also assessed. The scalar skill of the SPI-3 and SPI-6 was found to be seasonally and regionally
dependent, but for some locations, SPI3 predictions at a lead of 3 months and SPI6 predictions at a lead
of 6 months are found to have “useful” skill (monthly correlation with observations is statistically
significant at the 5% significance level). The difference in skill between the ECMWF S4 SPI forecasts for
South-Central America and a baseline forecast based on the climatological characteristics is positive in
many areas and for many months, however it is mostly statistically insignificant. Nevertheless, for the
SPI-3, our results show that the skill of the dynamic seasonal forecast is always equal to or above the
climatological forecasts. On the other hand, for the SPI-6, our results indicate that it is more difficult to
improve the climatological forecasts.

In a second step, we have evaluated several methods to forecast the drought events from the ensemble.
Ensemble drought detection was based on several methods (Table A2) and can be organized into
three types [40]: individual, where the index is based on an individual member or percentile; partially
integrative, where the sum of particular individual members or percentiles are used; and integrative,
which is represented by the ensemble mean. Although individual dry members and partially integrative
methods were providing an outstanding accuracy for seasonal drought detection, our results have shown
that the spread of the ensemble is too large and these methods also have large bias and false alarm ratio.
The best (or most consistent) method is defined by using the ensemble mean SPI values, both for SPI3
and SPI6, at three and six months lead times. Our decision was based on the GSS index, which according
to many authors provides an optimum solution for selection a classification method based on the number
of hits, misses and false alarm ratio. The ensemble mean achieves an overall accuracy of about 80%, with
POD above 30% for at least 75% of the study area, and false alarm ration that is overall below the 70%.
Although the ECMWF S4 forecast system often overestimates the drought onset, it is significantly better
than using the climatology (∼=16%).
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Finally, standard verification measures for probabilistic forecasts were used to assess the accuracy
of drought predictions based on the SPI values for “moderate”, “severe” and “extreme” categories.
The Brier Skill Score, which measures the probabilistic forecast skill against a forecast derived
from the climatology, showed that both the SPI3 and SPI6 were, for some regions, slightly more
skillful that the climatology. The ECMWF forecast system behaves better than the climatology for
clustered grid points at the North of South America, Northeast of Argentina and Mexico. The skillful
regions are similar for SPI-3 and -6, but become reduced in extent for the most severe SPI categories.
We hypothesize that, because an increase of SPI intensity is accompanied by a decrease of the respective
cumulative probability, the likelihood of mismatching is larger. As expected, the BSS is lower for the
locations where the scalar mismatch between the forecast and the observations is larger, which implies
more categorical misses and/or false alarms at any SPI intensity.

Forecasting different magnitudes of meteorological drought intensity on a seasonal time scale
still remains a challenge. However, the ECMWF S4 forecasting system does capture reasonably well
the onset of drought events (i.e., “moderate” drought) for some regions and seasons. A match is
noticeable between observed and predicted SPI for dry months in arid regions with highly marked
precipitation seasonality. Although the performance of Numerical Weather Prediction models is always
improving and advances in the representation of physical processes in the models is an area of intense
active research, the performance is still not good enough to provide useful guidance on months with
high precipitation amounts; but it provides information that is more skillful than the climatology for
dry periods.
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Appendix A Description of the Validation Metrics

Appendix A.1 Nonprobabilistic Forecasts of Continuous SPI Values

We first verify the scalar accuracy of the SPI values for the multimodel ensemble mean at 3 and
6 months lead time (respectively for SPI3 and SPI6). Ensemble mean SPI values are verified against
observations for the hindcast period (i.e., from 1981 to 2010). In this case, the SPI magnitude can
take any value in a specified segment of the real line, rather than being limited to a finite number of
discrete classes (see Table A1). We perform an independent verification of drought forecasts for each
month, by using four common accuracy measures of continuous nonprobabilistic forecasts, namely:
the Pearson product-moment correlation coefficient, r; the Mean Error (ME); and the Root Mean
Squared Error (RMSE). To be considered statistically significant at the 5% (10%) confidence level, the r
between forecast SPI values and those in the verifying GPCC data needs to be greater than 0.37 (0.31),
as defined by [41] for Nyears = 29 observations (i.e., after subtracting 1 year from the total number of
available years in the dataset).

Although the correlation does reflect linear association between two variables (in this case,
forecasts and observations), it is not sensitive to biases that may be present in the forecasts. On the
other hand, the ME, which is the difference between the average forecast and average observation,
expresses the bias of the forecasts. Forecasts that are, on average, too high will exhibit ME > 0 and
forecasts that are, on average, too low will exhibit ME < 0. It is important to note that the bias gives
no information about the typical magnitude of individual forecast errors, and is therefore not in
itself an accuracy measure. To complement the ME, we have computed the RMSE, which has the
same physical dimensions as the forecasts and observations, and can be thought of as a typical mean
magnitude for individual forecast errors.
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We also verify the skill score for the multimodel ensemble mean at 3 and 6 months lead time
(respectively for SPI3 and SPI6). Skill score refers to the relative accuracy of an ensemble set of forecasts
and is interpreted as the improvement over a reference forecast [48]. Therefore, if the ECMWF S4 is
providing value-added skill to the SPI forecasts, it will first be manifested by temporal correlations with
observations, r1, that exceed the expected correlation of the same observations with the climatological
SPI baseline value (0), r2. Under the assumption that the sets of forecasts are normally distributed,
to assess the statistical significance of the difference between two correlations r1 and r2, we used
Fisher’s Z transformation, as explained in [49]. We define Zi as

Zi =
1
2

ln (
1 + ri
1 − ri

)

for i = 1 and 2. The transformation Z is assumed to be normally distributed with variance (N − 3) − 1,
where N = 29 observations (i.e., after subtracting 1 year from the total number of available years in
the dataset). We then transformed r1 and r2 to Z1 and Z2, and computed the statistical significance for
the difference in correlations using the Z statistics:

Z =
Z1 − Z2√
1

N1−3 + 1
N2−3

where N1 − 3 and N2 − 3 are the degrees of freedom for r1 and r2, respectively. Using a null hypothesis
of equal correlation and a non-directional alternative hypothesis of unequal correlation, if Z is greater
than 1.96, the difference in correlations is statistically significant at the 5% confidence level.

A complementary skill score measure was constructed using the RMSE as the underlying
accuracy statistic. The reference RMSE is based on the climatological average SPI, and is computed as:

RMSEClim =

√√√√ 1
N

N

∑
k=1

(SPI − SPIk)
2

For the SPI, the climatological average does not change from forecast occasion to forecast occasion
(i.e., as a function of the yearly index k). This implies that the RMSEClim is an estimate of the
sample variance of the predictand. For the RMSE using climatology as the control forecasts, the skill
score becomes

SSClim = 1 − RMSE
RMSEClim

Because of the arrangement of the skill score, the SSClim based on RMSE is sometimes called
the reduction of variance (RV), because the quotient being subtracted is the average squared error
(or residual, in the nomenclature of regression) divided by the climatological variance.

Appendix A.2 Nonprobabilistic Forecasts of Categorical SPI Values

The temporal correlation between forecast and observed values of the SPI provides an overall
measure of forecast accuracy and skill, one that is not limited to the case of drought alone.
Therefore, we also evaluated SPI forecasts in the context of being able to detect drought, that is,
when the SPI drops below a particular threshold. Here, we identified a drought event as occurring
when the SPI value for a given month was ≤−1, which corresponds to a “moderate drought” category
or higher in the classification system presented in Table A1.

114



Climate 2018, 6, 48

Table A1. SPI classification following McKee et al. [8].

SPI Value Class Cumulative Probability Probability of Event [%]

SPI > 2.00 Extreme wet 0.977–1.000 2.3%
1.50 < SPI < 2.00 Severe wet 0.933–0.977 4.4%
1.00 < SPI < 1.50 Moderate wet 0.841–0.933 9.2%
−1.00 < SPI < 1.00 Near normal 0.159–0.841 68.2%
−1.50 < SPI < −1.00 Moderate dry 0.067–0.159 9.2%
−2.00 < SPI < −1.50 Severe dry 0.023–0.067 4.4%

SPI < −2.00 Extreme dry 0.000–0.023 2.3%

Ensemble drought detection was based on several methods (Table A2) and can be categorized
into three types [50]: individual, where the index is based on an individual member or percentile;
partially integrative, where the sum of particular individual members or percentiles are used;
and integrative which is represented by the ensemble mean. The individual types should be seen as
providing complementary information about the intensity of the SPI, but also about the distribution
of the members. The individual types of drought detection have been subdivided into five classes
representing dry members (Q13, Q23), wet ones (Q77, Q88) or the median. The extreme members of
the distribution are not used to avoid outliers generally associated with ensemble systems [50].

Table A2. Methods to detect drought events from the S4 ensemble system. Adapted from [40].

Name Definition Type

13th percentile (Q13) Member located at the 13% of the CDF Individual
23th percentile (Q23) Member located at the 23% of the CDF Individual

Median (MED) Member located at the 50% of the CDF Individual
77th percentile (Q77) Member located at the 77% of the CDF Individual
88th percentile (Q88) Member located at the 88% of the CDF Individual
Large spread (SpL) Sum of the extreme members (Q13 + Q88) Partially integrative
Low spread (Spl) Sum of the members (Q23 + Q78) Partially integrative
Dry spread (SpD) Sum of the dry members (Q13 + Q23) Partially integrative

Flood spread (SpF) Sum of the wet members (Q77 + Q88) Partially integrative
Mean (EM_RES) Ensemble mean Integrative

For 3- and 6-month lead times (respectively for SPI3 and SPI6), we computed several verification
measures for the categorical forecasts (i.e., below the SPI “-1” threshold) identified with the methods
described in Table A2. All verification measures are based on a contingency table approach, which
is applied at each grid point in the study area. The entries in the table are defined as follows: “A” is
the number of drought events that are forecast and occur; “B” is the number of drought events that
are forecast but do not occur; “C” is the number of drought events that are not forecast but do occur;
and “D” is the number of drought events that are not forecast and do not occur. The variable N is
the total number of cases analyzed from 1981 to 2010. Based on these values, the percentage correct
(PC, perfect = 1) is the ratio of good forecasting events in relation to the total number of events.

PC =
A + D

N

The extreme dependency score (EDS) provides a skill score in the range [−1, 1] that can be used
to find the hit-rate exponent [51]. The EDS takes the value of 1 for perfect forecasts and 0 for random
forecasts, and is greater than zero for forecasts that have hit rates that converge slower than those of
random forecasts.

EDS =
2log A+B

N

log A
N

− 1
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The Gilbert skill score (GSS) measures the fraction of forecast events that were correctly predicted,
adjusted for the frequency of hits that would be expected to occur simply by random chance [40].

GSS =
A + A∗

A + B + C − A∗

where A* is the number of random hits, computed as:

A∗ = (A + B)(A + C)
N

The GSS is often used in the verification of rainfall forecasts because its “equitability” allows scores
to be compared more fairly across different regimes (for example, it is easier to correctly forecast rain
occurrence in a wet climate than in a dry climate). However, because it penalizes both misses and false
alarms in the same way, it does not distinguish the source of forecast error. Therefore, it should be used
in combination with at least one other contingency table statistic, for example, bias. Here, we compute
bias as:

BIAS =
A + B
A + C

The probability of detection (POD, perfect = 1) is the ratio of the total number of observed events
that have been forecasted.

POD =
A

A + C

The false alarm rate (FAR, perfect = 0) is the fraction of the forecasted events which actually did
not occur.

FAR =
B

A + B

Appendix A.3 Probabilistic Forecast of Categorical SPI Values

Verification of probability forecasts is somewhat more subtle than verification of
non-probabilistic forecasts. Since non-probabilistic forecasts contain no expression of uncertainty,
it is clear whether an individual forecast is correct or not. On the other hand, unless a probabilistic
forecast is either 0.0 or 1.0, the situation is less clear-cut. For probability values between these
two (certainty) extremes, a forecast is neither right nor wrong, so that meaningful assessments can
only be made using collections of multiple forecast members and observation pairs. A number of
accuracy measures for verification of probabilistic forecasts of dichotomous events exist, but by far the
most common is the Brier score (BS) [48]. The Brier score is essentially the mean squared error of the
probability forecasts, considering that the GPCC drought observation at time k is ok = 1 if a drought
event occurs (i.e., SPI ≤ −1), and that the GPCC observation at time k is ok = 0 if a drought event
does not occur (i.e., SPI > −1). The BS averages the squared differences between pairs of forecast
probabilities, fcstk, and the subsequent binary reference observations,

BS =
1
n

N

∑
k=1

( f cstk − ok)
2

where the index k again denotes a numbering of the N forecast-event pairs. Comparing the BS with the
root-mean squared error, it can be seen that the two are completely analogous. As a mean-squared-error
measure of accuracy, the BS is negatively oriented, with perfect forecasts exhibiting BS = 0. Less accurate
forecasts receive higher BS values, but since individual forecasts and observations are both bounded
by zero and one, the score can take on values only in the range 0 ≤ BS ≤ 1.
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Skill scores of the form of SSclim are also often computed for the BS, yielding the Brier Skill Score
(BSS):

BSS = 1 − BS
BSre f

The BSS is the conventional skill-score form using the BS as the underlying accuracy measure.
Usually, for the SPI, the reference forecasts are the relevant climatological probabilities of a drought
event taking place with a certain severity (Table A1). For example, the frequency of “Moderate”
drought events is approximately the 16%. The BSS ranges between minus infinity and 1; 0 indicates no
skill when compared to the reference forecast; the perfect score is 1. A good companion to the BSS is
the Relative Operating Characteristic (ROC) of the forecast. ROC is conditioned on the observations,
and measures the ability of the probabilistic forecasting system to discriminate between drought events
and non-events of different frequencies, that is, the resolution of the forecast. ROC is not sensitive to
bias in the forecast (even a biased forecast could give a good ROC). However, the ROC is a measure of
potential usefulness of the probabilistic forecast, and the area under the ROC curve gives a measure
of its skill. Since ROC curves for perfect forecasts pass through the upper-left corner, the area under
a perfect ROC curve includes the entire unit square, so Aperf = 1. Similarly ROC curves for random
forecasts lie along the 45◦ diagonal of the unit square, yielding the area Arand = 0.5. The area A under
a ROC curve of interest can also be expressed in standard skill-score form SSROC, as

SSROC =
A − 1/2
1 − 1/2

Wilks [48] states that SSROC is a reasonably good discriminator among relatively low-quality
forecasts, but that relatively good forecasts tend to be characterized by quite similar (near-unit) areas
under their ROC curves. The SSROC ranges between 0 and 1; 0.5 indicates no skill, while the perfect
score is 1.

117



Climate 2018, 6, 48

Figure A1. Monthly correlation of the observed and forecast SPI at 6-months lead time (SPI6) (using
the mean of the ensemble) for the hindcast period (1981–2010). Values are indicated in the color bar:
0.31 (0.37) is statistical significant at 10% (5%) significance level.
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Figure A2. Monthly difference in forecast skill (Pearson correlation) between the forecast SPI6
at 6-month lead time (using the mean of the ensemble) and climatological SPI for the hindcast
period (1981–2010). Values are indicated in the color bar: 1.96 is the statistical significant at the
5% significance level.
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Figure A3. RMSE between the observed and forecast SPI6 at 6-month lead time (mean of the ensemble)
for the hindcast period (1981–2010). Values in difference of percentile magnitude are indicated in the
color bar.
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Figure A4. Skill Score of the SPI6 at 6-month lead time forecast measured in terms of the RMSE relative
to climatological RMSE for the hindcast period (1981–2010).
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Figure A5. Verification measures of categorical drought forecasts (i.e., below the SPI6 “-1” threshold)
estimated with the methods described in Table A2.
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