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Abstract: The advent of up-to-date hyperspectral technologies, and their increasing performance
both spectrally and spatially, allows for new and exciting studies and practical applications in
agriculture (soils and crops) and vegetation mapping and monitoring atregional (satellite platforms)
andwithin-field (airplanes, drones and ground-based platforms) scales. Within this context, the special
issue has included eleven international research studies using different hyperspectral datasets (from the
Visible to the Shortwave Infrared spectral region) for agricultural soil, crop and vegetation modelling,
mapping, and monitoring. Different classification methods (Support Vector Machine, Random
Forest, Artificial Neural Network, Decision Tree) and crop canopy/leaf biophysical parameters
(e.g., chlorophyll content) estimation methods (partial least squares and multiple linear regressions)
have been evaluated. Further, drone-based hyperspectral mapping by combining bidirectional
reflectance distribution function (BRDF) model for multi-angle remote sensing and object-oriented
classification methods are also examined. A review article on the recent advances of hyperspectral
imaging technology and applications in agriculture is also included in this issue. The special issue is
intended to help researchers and farmers involved in precision agriculture technology and practices to
a better comprehension of strengths and limitations of the application of hyperspectral measurements
for agriculture and vegetation monitoring. The studies published herein can be used by the agriculture
and vegetation research and management communities to improve the characterization and evaluation
of biophysical variables and processes, as well as for a more accurate prediction of plant nutrient
using existing and forthcoming hyperspectral remote sensing technologies.

Keywords: hyperspectral remote sensing for soil and crops in agriculture; hyperspectral imaging
for vegetation; plant traits; high-resolution spectroscopy for agricultural soils and vegetation;
hyperspectral databases for agricultural soils and vegetation; hyperspectral data as input for
modelling soil, crop, and vegetation; product validation; new hyperspectral technologies; future
hyperspectral missions

1. Introduction

The use of hyperspectral technology for an optimal quantification of crop and soil biophysical
variables at various spatial scales is an important aspect in agricultural management practices and
monitoring [1,2]. Moreover, there is a great interest to update (i.e., research of new variables) and

Remote Sens. 2020, 12, 3665; doi:10.3390/rs12213665 www.mdpi.com/journal/remotesensing1
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optimize the retrieval of crop biophysical variables using drone and available satellite data [2–17],
as well as future high spatial resolution hyperspectral satellites. To this aim, the exploitation of
different approaches for assimilation of the retrieved biophysical parameters into agricultural models
is also of primary interest. As it would allow deriving agronomical proxy variables addressing the
issues of the multi-scale and multivariate nature of the retrieved variables [6,7,11–19]. For example, a
complete and updated knowledge of the spatial distribution of leaf area index (LAI), pigments like
chlorophyll content and nitrogen can support sustainable agricultural practices and optimize related
costs, through optimal use of fertilizer, pesticides and water that are strictly subdued to an improvement
of crop yields and quality. Hyperspectral imaging has great potential for applications in agriculture,
particularly precision agriculture, owing to their ample spectral information sensitive to different
plant and soil biophysical and biochemical properties [11–25]. Multiple platforms (satellites, airplanes,
unmanned aerial vehicle (UAVs), and close-range platforms) have become more widely available in
recent years for collecting hyperspectral data with different spatial (from centimeter to decameter),
temporal, and spectral resolutions. These platforms have different strengths and limitations in terms
of spatial coverage, flight endurance, flexibility, operational complexity, and costs. These factors
need to be evaluated when choosing the hyperspectral platform(s) for specific research purposes,
e.g., increasing productivity, expanded coverage, and reduced use of fertilizers, pesticides, and water.
Further technological developments are also needed to overcome some of the limitations, such as the
short battery endurance in UAV operations and high cost of hyperspectral sensors [4].

All in all, hyperspectral remote sensing (RS) represents an attractive and efficient technology
capable of estimating soil and crop biophysical variables of interest from regional to intra-field scales.

Research advances are still required to validate methods and applications for the estimation
of additional crop biophysical variables and proxy agronomical products [14–25] and for their
assimilation into spatially distributed agricultural models (e.g., grains quality, pest and disease dynamic,
water-driven, and crop growing models), also by comparing different assimilation approaches [10–24].

This special issue was set up to highlight and diffuse the recent advances in hyperspectral RS
studies and their practical applications for agriculture (soils and crops) mapping and monitoring
from regional to within-field scales. Our objectives as guest Editors were to encourage studies and
applications on this topic and to assemble high-quality, peer-reviewed research and review articles
in a special issue of Remote Sensing dedicated to this theme. We accepted manuscripts concerned
with all aspects of hyperspectral RS (optical domain) for crop and natural vegetation. This included
hyperspectral studies of agricultural soils, crops, as well as other vegetation types using the ground,
drone, air-, and space-borne platforms (VIS-NIR, SWIR, and TIR). With various focus on: field, and
laboratory hyperspectral measurements for monitoring agriculture and vegetation; retrieval of plant
traits at leaf and canopy level from hyperspectral measurements; new methods for hyperspectral
data processing and atmospheric compensation techniques; hyperspectral sensors calibration and
products validation for agriculture and vegetation monitoring; statistical and computational methods
for hyperspectral data analysis in agriculture and vegetation applications; integration or combined
use of hyperspectral data from the optical domain with other Earth Observation (EO) technologies;
modelling of soils, crops, and vegetation using hyperspectral data; next-generation hyperspectral
technologies and missions, platforms, and sensors for agriculture and vegetation.

A total of 18 manuscripts were submitted and peer-reviewed by fifty anonymous, scrupulous
reviewers. Of these, 11 manuscripts achieved the level of quality and innovation expected by Remote
Sensing and were at the end published in this special issue. A total of 77 authors contributed to these 11
articles and hailed from six different nations: Brazil (26 authors), Canada (8), Australia (5), Finland (3),
China (23), UK (1), Iran (3), Belgium (1), Spain (1), Poland (3), Ethiopia (1), and USA (2).

2. Overview of Contributions

The works composing this Special Issue cover a wide range of topics, from the use of high
spectral resolution hyperspectral LiDAR (light detection and ranging) for vegetation parameters
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extraction, to the estimation of chlorophyll content in peanut leaf, to the estimation of heavy metal
contents in grapevine foliage, to the application of UAV-based multiangle hyperspectral data in fine
vegetation classification, to the use of artificial neural networks for modeling hyperspectral response of
water-stress induced lettuce plants, to different classification methods and algorithms for agricultural
biophysical variables retrieval, plants and invasive species retrieval, and to predict nutrient content.
They are presented below in chronological order of acceptance.

First, Jiang et al. [25] employed and evaluated the use of high spectral resolution hyperspectral
LiDAR (Acousto-optical Tunable Filter HSL-AOTF-HSL, active and non-contact instrument), with 10 nm
spectral resolution, for leaf vegetation red edge parameters extraction. The results were compared
with the referenced value from a standard SVC© HR-1024 spectrometer (Spectra Vista Corporation,

Poughkeepsie, NY 12603 USA) for validation. Green leaf parameter differences between HSL
and SVC results were minor, which supported the notion that HSL was practical for extracting the
employed parameter as an active method. This paper is just the beginning of using the high spectral
resolution HSL for vegetation index detection, which might inspire the estimation of other vegetation
parameters or biochemical content using this advanced LiDAR technique.

Second, the estimation of peanut leaf chlorophyll content with dorsiventral leaf adjusted ratio
index (DLARI), performed by Xie et al. [26]. The study is one of the first attempts to assess the impact
of spectral differences among dorsiventral leaves caused by leaf structure on leaf chlorophyll content
(LCC) retrieval. The authors’ objectives were to (1) analyze spectral differences in the adaxial and
abaxial surfaces of peanut leaves; (2) identify the optimal wavelengths of the modified Datt (MDATT)
index for estimating peanut LCC; (3) develop a novel index based on a four-band combination to reduce
spectral differences in dorsiventral leaves for improving LCC retrieval; (4) compare the performance
of the indices developed in this study with those widely used in the literature. The reliability of
narrow-band indices can be influenced by a range of phenotypic characteristics. Further work is
required to assess the application of DLARI to estimate LCC for other crop species. The robust
wavelength regions proposed (715–820 nm) should provide a good starting point for optimizing the
index for other crop species.

Third, [27], in their work applied five treatments of heavy metal stress (Cu, Zn, Pb, Cr, and Cd) to
grapevine seedlings and hyperspectral data (350–2500 nm) and heavy metal contents were collected
based on in-field and laboratory experiments. The partial least squares (PLS) method was used as
a feature selection technique, and multiple linear regressions (MLR) and support vector machine
(SVM) regression methods were applied for modelling purposes. Based on the PLS results, visible
and red-edge regions were found most suitable for estimating heavy metal contents in the present
study. The authors pointed out that each heavy metal has a special effect, leading to distinct responses
depending on the plant species (including leaf color changes, chlorosis, necrosis, dwarfism, giant, leaf,
and root spreading, etc.).

Fourth, Yan et al. [28] applied UAV-based multi-angle remote sensing for fine vegetation
classification by combining a bidirectional reflectance distribution function (BRDF) model for
multi-angle remote sensing and object-oriented classification methods. Bands of high importance
for the fine classification of vegetation included the blue band (466– nm), green band (494–570
nm), red band (642–690 nm), red-edge band (694–774 nm), and near-infrared band (810–882 nm).
The importance of the BRDF characteristic parameters are discussed in detail and the research results
promote the application of multi-angle remote sensing technology in vegetation information extraction
and provide important theoretical significance and application value for regional and global vegetation
and ecological monitoring.

Fifth, [29] evaluated the hyperspectral response of water-stress induced lettuce (Lactuca sativa L.)
using artificial neural networks (ANN). Hyperspectral response was measured four times,
during 14 days of stress induction, with an ASD Fieldspec HandHeld spectroradiometer (325–1075 nm).
Both reflectance and absorbance measurements were calculated. Different biophysical parameters were
also evaluated. The performance of the ANN approach was compared against other machine learning
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algorithms. Authors’ results showed that the ANN approach could separate the water-stressed lettuce
from the non-stressed group with up to 80% accuracy at the beginning of the experiment. Absorbance
data offered better accuracy than reflectance data to model it. This study demonstrated that it is
possible to detect early stages of water stress in lettuce plants with high accuracy based on an ANN
approach applied to hyperspectral data. The methodology has the potential to be applied to other
species and cultivars in agricultural fields.

Sixth, a review of waveband selection in hyperspectral classification of plants was performed
by [30]. The authors reviewed the last 22 years of hyperspectral vegetation classification literature
that evaluate the overall waveband selection frequency, waveband selection frequency variation by
taxonomic, structural, or functional groups. The influence of feature selection choice by comparing
methods as stepwise discriminant analysis (SDA), support vector machines (SVM), and random
forests (RF) is studied. They concluded that characteristics of plant studies influence the wavebands
selected for classification and advised caution when relying upon waveband recommendations from
the literature to guide waveband selections or classifications for new plant discrimination applications.
In this regard, recommendations appear to be weakly generalizable between studies.

Seventh, Sabat-Tomala et al. [31] study proposed a comparison of SVM and RF algorithms for
invasive and expansive species classification using airborne hyperspectral data (HySpex Visible and
Near Infrared-VNIR-1800 scanners and a Shortwave Infrared-SWIR-384 scanner; Hyspex NEO, Oslo,
Norway). These invasive species are considered a threat to natural biodiversity because of their high
adaptability and low habitat requirements. Maps of the spatial distribution of analyzed species were
obtained; high accuracies were observed for all data sets and classifiers. In particular, the authors
verified whether the expansive/invasive Rubus spp., Calamagrostis epigejos, and Solidago spp. were
characterized by a specific set of spectral characteristics that allowed them to be distinguished from the
surrounding species, which altogether created a mix of fuzzy, covered patterns. Moreover, an analysis
of the impact of the number of pixels in training data set on the classification accuracy was performed.
The accuracy assessment method presented in the paper confirmed that all analyzed species can be
identified in heterogeneous habitats through hyperspectral airborne remote sensing.

Eight, machine learning (ML) algorithms were applied by [32] to predict macro- and micronutrient
nutrient content (N, P, K, Mg, S, Cu, Fe, Mn, and Zn) in Valencia-Orange from leaf hyperspectral
measurements. A Fieldspec ASD FieldSpec® HandHeld 2 (Malvern PANalytical Ltd, Malvern, WR14
1XZ, United Kingdom) spectroradiometer was used and the surface reflectance and first-derivative
spectra from the spectral range of 380 to 1020 nm (640 spectral bands) was evaluated. K-Nearest
Neighbor (kNN), Lasso Regression, Ridge Regression, Support Vector Machine (SVM), Artificial Neural
Network (ANN), Decision Tree (DT), and Random Forest (RF) ML algorithms were tested. The methods
were assessed based on Cross-Validation and Leave-One-Out. The Relief-F metric of the algorithms’
prediction was used to determine the most contributive wavelength or spectral region associated with
each nutrient. RF model was the most suitable to model most of them. The results indicate that,
for the Valencia-orange leaves, surface reflectance data is more suitable to predict macronutrients,
while first-derivative spectra are better linked to micronutrients.

Ninth, a review article provided by [33] analyzed the recent advances of hyperspectral imaging
technology and applications in agriculture. Due to limited accessibility outside of the scientific
community, hyperspectral images have not been widely used in precision agriculture. In recent years,
different mini-sized and low-cost airborne hyperspectral sensors (e.g., Headwall Micro-Hyperspec,
Cubert UHD 185-Firefly) have been developed, and advanced space-borne hyperspectral sensors have
also been or will be launched (e.g., PRISMA, DESIS, EnMAP, HyspIRI). Hyperspectral imaging is
becoming more widely available to agricultural applications. Meanwhile, the acquisition, processing,
and analysis of hyperspectral imagery remain a challenging research topic (e.g., large data volume,
high data dimensionality, and complex information analysis). The imaging platforms and sensors
(airplane, UAV, satellite, close-range ground- or lab-based) together with analytic methods used in the
literature, were discussed. Performances of hyperspectral imaging for different applications (e.g., crop
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biophysical and biochemical properties’ mapping, soil characteristics, and crop classification) were
also evaluated. This review intended to assist agricultural researchers and practitioners to better
understand the strengths and limitations of hyperspectral imaging to agricultural applications and
promote the adoption of this valuable technology. Recommendations for future hyperspectral imaging
research for precision agriculture were also presented.

Tenth, Zhang et al. [34] presented a study on the detection of canopy chlorophyll content for
three growth stages of corn using continuous wavelet transform (CWT) analysis. The reflectance
spectrum increased in the 325–400 and 761–970 nm regions as the growth stage advanced and the
growth period shifted. The reflectance decreased in the 401–700 and 971–1075 nm regions as the
growth stage advanced. The characteristic bands related to chlorophyll content in the spectral data
and the wavelet energy coefficients were screened using the maximum correlation coefficient and the
local correlation coefficient extrema, respectively. A partial least square regression (PLSR) model was
established. Results showed that bands selected via local correlation coefficient extrema in a wavelet
energy coefficient created a detection model with optimal accuracy.

Last, a different study in terms of application is proposed by [35], who studied the nutrient
content of tef (Eragrostis tef), an understudied plant that has importance due to both food and forage
benefits, and investigated the replicability of methods across two study sites situated in different
international and environmental contexts [35]. The research aims were to (1) determine whether
calcium, magnesium, and protein of both the tef plant and grain can be predicted using hyperspectral
data and PLSR model through waveband selection, and (2) compare the replicability of models across
varying environments. Results suggest the method can produce high nutrient prediction accuracy
for both the plant and grain in individual environments, but the selection of wavebands for nutrient
prediction was not comparable across study areas. Results using PLSR model with hyperspectral
data from non-milled grains were generally positive, and wavebands for protein prediction generally
agreed with other studies. While more research is needed to determine whether these consistencies are
true positives or are affected by other factors. This study contributes to the gap in the literature related
to non-milled grains. Therefore, there is a need for greater attention to methods and results replication
in remote sensing, specifically hyperspectral analyses, in order for scientific findings to be repeatable
beyond the plot level.

3. Concluding Remarks

Hyperspectral remote sensing for studying agriculture and natural vegetation is a challenging
research topic that will remain of great interest for different sciences communities for the next decades.
As a matter of fact, Space agencies, on a worldwide basis, have ongoing programs to develop
hyperspectral satellite missions to assure global coverage at high spatial resolution that will have a
noteworthy impact on agricultural and natural vegetation monitoring studies. The eleven manuscripts
collected in this special issue and, therefore, represent some meaningful progress in the application
of hyperspectral EO data for agricultural and vegetation research themes. Further work in this area
is required in view of the recent advances and funding opportunities in this field. We expect that
the studies published herein will help the agriculture and vegetation research and management
communities to better characterize and assess biophysical variables and processes, as well as more
effectively predict plant nutrient using upcoming hyperspectral remote sensing technologies.
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Abstract: Non-contact and active vegetation or plant parameters extraction using hyperspectral
information is a prospective research direction among the remote sensing community. Hyperspectral
LiDAR (HSL) is an instrument capable of acquiring spectral and spatial information actively, which
could mitigate the environmental illumination influence on the spectral information collection.
However, HSL usually has limited spectral resolution and coverage, which is vital for vegetation
parameter extraction. In this paper, to broaden the HSL spectral range and increase the spectral
resolution, an Acousto-optical Tunable Filter based Hyperspectral LiDAR (AOTF-HSL) with 10 nm
spectral resolution, consecutively covering from 500–1000 nm, was designed. The AOTF-HSL was
employed and evaluated for vegetation parameters extraction. “Red Edge” parameters of four
different plants with green and yellow leaves were extracted in the lab experiments for evaluating
the HSL vegetation parameter extraction capacity. The experiments were composed of two parts.
Firstly, the first-order derivative of the spectral reflectance was employed to extract the “Red Edge”
position (REP), “Red Edge” slope (RES) and “Red Edge” area (REA) of these green and yellow leaves.
The results were compared with the referenced value from a standard SVC© HR-1024 spectrometer
for validation. Green leaf parameter differences between HSL and SVC results were minor, which
supported that notion the HSL was practical for extracting the employed parameter as an active
method. Secondly, another two different REP extraction methods, Linear Four-point Interpolation
technology (LFPIT) and Linear Extrapolation technology (LET), were utilized for further evaluation
of using the AOTF-HSL spectral profile to determine the REP value. The differences between the
plant green leaves’ REP results extracted using the three methods were all below 10%, and the some
of them were below 1%, which further demonstrated that the spectral data collected from HSL with
this spectral range and resolution settings was applicable for “Red Edge” parameters extraction.

Keywords: hyperspectral LiDAR; Red Edge; AOTF; vegetation parameters

1. Introduction

The remote sensing community has demonstrated the effectiveness of hyperspectral imagers
and LiDAR to obtain spectral and spatial information [1–5]. The hyperspectral imager is capable
of obtaining consecutive and abundant spectral profiles of targets, which has been employed in
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vegetation parameter extraction, food production prediction, target classification, etc. [1–5]. However,
the hyperspectral imager relies on environmental illumination conditions, so poor lighting will affect
the hyperspectral information acquisition. LiDAR is an active sensor invented to acquire spatial
information. In LiDAR a laser source emits monochromatic laser beams to a target, and thus, the ranging
information is obtained through measuring the travel time of the laser beam [6,7]. With a scanning
operation, LiDAR is able to obtain spatial information from the environment. Besides this, the power
of the reflected signal from the target in LiDAR can be obtained with ranging operation. With careful
calibration, the power of the reflected signal is measured and termed as intensity. Researchers have
carried out some investigations using the intensity of a single wavelength to obtain some textures of
the targets, for instance, rock analysis in outcrop models, landcover classification, etc. [1–8].

Restricted by the monochromatic laser source, intensity information of the back-scattered laser
pulse or the spectral information from a traditional single wavelength LiDAR is much less efficient
than a passive spectrometer [9–11]. Recently, two approaches were investigated for the fusion of spatial
and spectral data. The first approach ias to combine spectral and spatial data from two standalone
instruments into the same framework, and this method was employed in forest area classification, urban
species classification, automatic building extraction, and outcrop analysis [12–18]. The disadvantage
is that the data registration is complicated and time-consuming, and the coordinate transformation
between the two instruments will probably introduce additional errors [12–18].

The second approach refers to the integration of ranging with spectral measuring functions into
a single sensor or instrument. Hyperspectral LiDAR (HSL) or Multispectral LiDAR (MSL) were
developed as active sensors to obtain spectral and spatial information simultaneously. Basically, there
are two solutions to develop an HSL or MSL. The first solution is to combine several monochromatic
laser sources of different wavelengths together. Since more channels mean more laser sources at
different spectral wavelengths, it was hard to combine tens or hundreds of monochromatic laser sources
together in this framework [19–21]. The second solution is to develop the HSL through employing
a super-continuum (SC) laser source replacing the above monochromatic laser sources of different
wavelengths, and the SC laser source is able to emit ultra-wideband coherent laser transmissions
with spectral ranging from approximately 400 nm to 2500 nm [19–21]. Scientists from the Finnish
Geospatial Research Institute (FGI) proposed the SC laser source-based spectral measurement concept
in 2007 [22]. The first results with the prototype instrument were presented with a discussion of
improvements and applications in laser-based hyperspectral remote sensing [22]. Further, in 2010,
a two-channel multispectral LiDAR with 600 nm and 800 nm spectral wavelengths was developed
and demonstrated, which was capable of distinguishing between a vegetation target (Norway spruce)
and inorganic material using the Normalized Difference Vegetation Index (NDVI) parameter [23].
In 2012, the first full-waveform HSL with eight spectral channels was constructed by FGI. The novel
instrument produced 3D point clouds with spectral back-scattered reflectance data [24]. Then, HSL was
investigated in vegetation content estimation, leaf level chlorophyll estimation, leaf biochemical content
estimation, landcover classification, and artificial object classification [25–30]. However, compared
with the hyperspectral imager, these HSLs had restricted and discrete spectral bands and channels.
For broadening the applications of HSL, attention should be paid to develop a HSL enabling continuous
spectral band collection with higher spectral resolution [31–33].

As an active instrument to acquire abundant spectral profiles, HSL usually has limited spectral
bands and coverage, and a more universal and practical HSL with fine spectral resolution and coverage
is of great significance for non-contact and active vegetation parameter extraction. Motivated by this,
in this paper, an Acousto-optical Tunable Filter HSL (AOTF-HSL) with 10 nm spectral resolution
covering 500–1000 nm was developed, and the HSL was evaluated by comparing the selected “Red
Edge” (RE) vegetation parameter-related results from AOTF-HSL with those obtained using an SVC
HR-1024 spectrometer.

In this research, leaves from four different plants were measured to evaluate the capacity of using
the spectral from the AOTF-HSL for vegetation RE-related parameter extraction. In the vegetation
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research community, the important “Red Edge” position (REP) parameter is closely related to various
physical and chemical parameters of vegetation, and it is commonly employed to indicate the growing
states of the vegetation and monitor the plant activity [34,35]. Thus, the RE related parameters
were selected as the representative for evaluating the HSL in vegetation applications. As shown in
Figure 1, REP refers to the position of an inflection point of the first derivative of reflectance values,
and it usually locates in the red spectrum band [33–36]. REP result comparison between the HSL
and SVC spectrometer could provide a preliminary evaluation of the utility of HSL in vegetation
parameter extraction.

 

Figure 1. Schematic diagram of a tunable Hyperspectral LiDAR system based on AOTF.

In addition, three most common used methods (First-order Reflectance Slope (FRS), Linear
Four-point Interpolation technology (LFPIT) and Linear Extrapolation technology (LET)) were
investigated in this research for fully and furtherly evaluating the HSL capacity in spectral profiles
acquirement and vegetation parameters extraction.

The contribution of this paper was summarized as follows:

1. This paper presents a more universal and applicable HSL with high spectral resolution to obtain
vegetation spectral profiles, and three different RE position extraction methods were firstly
employed for addressing the acquired HSL spectral profiles;

2. This paper is just the beginning of using the high spectral resolution HSL for vegetation index
detection, which might inspire estimation of other vegetation parameters or biochemical content
using this advanced HSL.

The remainder of this paper is organized as follows: Section 2 presents the system design of the
AOTF-HSL and the REP determination methods in detail; Section 3 presents the results and analysis of
the laboratory experiments concerning the RE-related parameters measurements, result comparisons
between different methods and the analysis; and then the conclusions are drawn in Section 4.

2. Materials and Methods

This section is divided into two subsections, the first subsection is the AOTF-HSL design,
components and description; and the second subsection presents the REP determination methods,
including the calculation equations.

2.1. AOTF-HSL Design and Components

Figure 1 presents the design and diagram of the AOTF-HSL, which employs a super-continuum
(SC) laser source covering 450–2350 nm. Figure 2 presents the relationship between the wavelength
and power density of the employed SC laser source. An AOTF is installed in front of the SC source.
AOTF is capable of consciously selecting and filtering laser beam with 10 nm spectral resolutions
from 430–1450 nm. After the laser beam passing through AOTF, the emitted broadband laser beam is
collimated and then reflected towards the target by a reflecting mirror. A Cassegrain telescope optical

11



Remote Sens. 2019, 11, 2007

system is employed to collect the energy of the reflected laser pulses from the targets. An APD sensor
module with an integrated amplifier is placed on the focal point of the Cassegrain telescope to collect the
back-scattered laser echoes and transform them to electronic signals, which are sampled and recorded
by a linked high-speed oscilloscope (20 GHz sampling rate, which equals 7.5 mm range resolution).
Spectral information can be extracted from the recorded raw waveform. Meanwhile, the triggering
signal indicating the emission of SC source is collected by the linked high-speed oscilloscope. Distance
information is obtained by measuring the time difference between the triggering signal and reflected
signal from the target. More details on the spectral and ranging information acquiring capacity could
be found in our recent paper [32]. The remainder of this section will present the specifications of
different parts of the AOTF-HSL.

Figure 2. The supercontinuum laser source and the power density against the wavelength.

2.1.1. SC Source

In order to increase the spectral range of the AOTF-HSL, SC source (Figure 2) employed in this
paper is with a large single pulse energy (>19 uJ) and the pulse width is two nanoseconds with power
density distribution shown in Figure 3. The total power of the selected SC model is more than 8W, and
the M2 factor of SC source is better than 1.1 with a 200 MHz maximum repeating rates. With such a
powerful laser source, the effective range of AOTF-HSL is improved to several tens meters based on
the previous experiments [32].

 

(a) AOTF                  (b) LCTF 

Figure 3. Employed filter device. (a) AOTF, (b) LCTF.

2.1.2. AOTF vs. LCTF

An AOTF (Figure 3) is an electro-optical device that functions as an electronically tunable excitation
filter to simultaneously modulate the intensity and wavelength of the laser beam. The AOTF relies
on a specialized birefringent crystal whose optical properties vary upon interaction with an acoustic
wave. Changes in the acoustic frequency alter the diffraction properties of the crystal, enabling very
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rapid (in microsecond level) wavelength tuning, limited only by the acoustic transit time across the
crystal. The selected wavelength is determined by Equation (1):

λ =
ΔnV

f

[
sin2 2θi + sin4 θi

]1/2
, (1)

where the selected wavelength (λ) is a function of the difference of the refractive indexes due to
birefringent Δn, the frequency of the applied RF signal f , the incident angle θi and the variable speed
of acoustic waves in the crystal material V.

Previously, a feasibility study for detecting REP values was also carried out with a Liquid Crystal
Tunable Filter (LCTF)-based HSL (LCTF-HSL) [31]. The major parameter specifications of LCTF and
AOTF are shown in Table 1. The AOTF has a wider spectrum, covering from 430 nm to 1450 nm, while
the LCTF just covers 400 nm to 720 nm. The AOTF is capable of continuously selecting or tuning the
spectral resolution from 2 nm to 10 nm, and the LCTF just has three independent selections of 7, 10 and
20 nm. Moreover, the response time of AOTF is 10 μs, which is at least three orders of magnitudes
quicker than the LCTF (the typical response time is 50 ms). Obviously, AOTF is much more preferable
while selecting a filter in HSL. Figure 3 presents the AOTF and LCTF devices employed in this research.

Table 1. The AOTF vs LCTF Major Parameters Specifications.

Parameter AOTF LCTF (VariSpec VIS)

spectral range 430–1450 nm 400–720 nm
Response tine 10 μs 50 ms

spectral resolution 2–10 nm 7/10 or 20 nm

2.1.3. Collimator

After the transmission of the laser beam from the laser source, a collimator is necessary to collimate
the beam. In a traditional monochromatic LiDAR, the collimator design is comparatively simple, since
only a single wavelength is considered in the laser beam collimation. However, in HSL, the wider
spectral range of the laser beams should be taken into consideration in the laser beam collimation
operation. An achromatic Galileo-type collimator is utilized for HSL system development with a beam
expansion ratio of 1:5. Figure 4 shows the changing reflectance rate over the spectral wavelengths
of the employed collimator. It can be observed that the collimator has a stable and low reflectance
rate with the spectral wavelength ranging from approximately 650nm to 1050nm with broadband
anti-reflection coating technique.

Figure 4. Transmittance of laser beam expander.

2.1.4. Reflector

The main function of the reflector installed on the optical axis of the receiving Cassette telescope
is employed to steer the spectrally tuned laser beam toward the target. In order to mitigate the loss of
laser energy, this paper takes full consideration of the devices with high reflection efficiency in the
range from visible band (VIS) to near infrared spectrum band (NIS) during the selection of reflector.
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As shown in Figure 5, the reflectivity of the selected reflector is over 94% in the spectrum range of
500 nm to 1000 nm.

 
Figure 5. Reflectivity of the reflector.

2.2. REP Extraction Methods

The first-order differential of the spectral reflectance is the most commonly used method to
extract the REP values. Since the spectral profiles are sampled with Δλ, Equation (2) is employed for
calculating the first differential of the spectral reflectance. The equation is given in detail as:

ρ′ (λi) = [ρ(λi+1) − ρ(λi−1)]/2Δλ, (2)

where, λi is the corresponding spectral wavelength, ρ′ (λi) is the first-order differential of the spectral
reflectance, ρ(λi+1) and ρ(λi−1) are reflectance values at spectral wavelength of λi+1 and λi−1

respectively, 2 × Δλ is the spectral increment between λi+1 and λi−1. In this AOTF-HSL system,
10 nm spectral resolution is selected, thereby λi is sampled as 670, 680, 690, 700, 710, 720, 730, 740 and
750 nm in the spectral band.

Apart from this, another two RE parameters, RE slope and RE area, are also included. REP refers to
the position of the RE in spectral wavelength, and REP slope is the spectral reflectance slope of the REP.
REA refers to the area surrounded by the first derivative of the spectral reflectance, and it is calculated
by the accumulating the reflectance slope with the spectral range from 680 nm to 750 nm [32–37].
Illustrative figures of these RE related parameters can be found in [32–37].

In addition, another two methods, Linear Four-point Interpolation Technology (LFPIT) and Linear
Extrapolation Technology (LET), are employed for REP determination. Firstly, LFPIT is based on
Equations (3) and (4). In this experiment, the method employs four wavelength data for calculating the
REP. As illustrated, the 670 nm and 780 nm spectral information is used to calculate the reflectance at
the REP, and the 700 nm and 740 nm spectral data are for determining the REP. In Equations (3) and (4),
R670 and R780 are the corresponding reflectance values at 670 nm and 780 nm respectively. R700 and
R740 are the corresponding reflectance values at 700 nm and 740 nm respectively:

RREP =
(R670 + R780)

2
, (3)

λREP = 700 + 40
(RREP −R700)

R740 −R700
, (4)

Secondly, the LET method can be represented by Equations (5)–(7), and the REP is determined
using the two extrapolation equations. Equation (5) is the extrapolation of the reflectance for spectral
wavelengths ranging from 680 nm to 700 nm. Equation (6) is the extrapolation of the reflectance
for spectral wavelengths ranging from 725 nm to 760 nm. Then, the REP is determined using the
parameters (m1, m2, c1 and c2) from Equations (5) and (6). In the following equations, the FDR1

and FDR2 are the spectral reflectance slope of the spectral ranging 680 nm and 700 nm and 725 nm
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and 760 nm. m1, m2, c1 and c2 are the parameters for describing the spectral reflectance slope and
determining the REP. The REP determination using this method is as Equation (7):

FDR1 = m1λ+ c1, (5)

FDR2 = m2λ+ c2, (6)

λREP =
−(c1 − c2)

m1 −m2
, (7)

3. Results

As aforementioned, four different plants with green or yellow leaves were used in the laboratory
experiments for the AOTF-HSL testing. Figure 6 shows these measured plants, namely dracaena
(Figure 6a), aloe (Figure 6b), rubber plant (Figure 6c) and radermachera (Figure 6d). The AOTF-HSL
and the SVC spectrometer are employed to measure the REP, the corresponding reflectance REP slope
and REA. As aforementioned in Section 2, the LCTF-HSL is not sufficient for determining the REA
parameters according to the LCTF parameters.

 

(a) Dracaena 

 

(b) Aloe 

 

(c) Rubber plant  

 

(d) Radermachera 

Figure 6. Four different plants employed in lab experiment. (a) Dracaena, (b) Aloe, (c) Rubber plant,
(d) Radermachera.

3.1. REP, RE Slope and REA Measurement Results and Analysis

The Dracaena leaves spectral measurement results are shown in Figures 7–10. In Figure 7,
the first-order derivative spectral profiles of green leaf and yellow leaf from AOTF-HSL and SVC are
presented. Figure 8 shows the results of aloe green and yellow leaf, and the remaining Figures 9 and 10
are the spectral slope curves for rubber plant and radermachera green leaf, respectively.
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(a) Dracaena green leaf (b) Dracaena yellow leaf 

Figure 7. First derivative of the spectral reflectance versus spectral values of dracaena green and yellow
leaf measured by the AOTF-HSL and the SVC spectrometer. (a) Dracaena green leaf, (b) Dracaena
yellow leaf.

 

(a) Aloe green leaf (b) Aloe yellow leaf 

Figure 8. First derivative of the spectral reflectance versus spectral values of Aloe green and yellow
leaf measured by AOTF-HSL and SVC. (a) Aloe green leaf, (b) Aloe yellow leaf.

Figure 9. Rubber plant green leaf.

Among these figures, it can be seen from Figures 7a, 8a, 9 and 10 that spectral slope curves
of green leaves of the selected plants extracted from AOTF-HSL coincide with its corresponding
referenced measurements from the SVC spectrometer. Tables 2–4 list the quantitative results of
the corresponding vegetation parameter results and the differences between the active and passive

16



Remote Sens. 2019, 11, 2007

methods; the percentages are calculated using difference values dividing the corresponding referenced
results from SVC. The differences of REP of all green leaf test cases are below 1%, however, for the REP
slope, only the aloe green leaf REP slope difference percentage is below 1%. Specifically, the REP slope
of the dracaena green leaf is large than 10%. For green leaf REA results, dracaena green leaf difference
is also the largest, and it is more than 5%.

Figure 10. Radermachera green leaf.

Figures 7b and 8b present the spectral slope curves representing Dracaena yellow leaf and aloe
yellow leaf, respectively. Compared with green leaf curves, both the yellow leaf curves from AOTF-HSL
measurements are distinctive from that of SVC. Further analysis is also given in Tables 2–4, where the
REP differences are 9.45 nm and 24.1 nm, respectively, and the corresponding difference is considerably
higher than in the green leaf cases.

In addition, from comparing the REP between green and yellow leaves from the same plant, it can
be seen by comparing the curves of Figures 7a, 7b, 8a and 8b that REP has an obvious shift towards a
shorter wavelength, named “blue shift”, since the yellow leaves have lower chlorophyll content and
this tendency or REP behavior is consistent with previous research results.

Table 2. “Red edge” position measuring results based on FRS.

REP (nm)

AOTF-HSL SVC Difference

Dracaena Green Leaf 725 718.85 6.15 (0.85%)
Dracaena Yellow Leaf 695 685.55 9.45 (1.3%)

Aloe Green Leaf 725 718.85 6.15 (0.85%)
Aloe Yellow Leaf 715 690.9 24.1 (3.4%)

Rubber Green Leaf 725 725.45 0.45 (0.06%)
Radermachera Green Leaf 715 718.85 3.85 (0.53%)

Table 3. “Red edge” slope measuring results.

REP slope

AOTF-HSL SVC Difference

Dracaena Green Leaf 0.95 1.07 0.12 (11.2%)
Dracaena Yellow Leaf 1.44 1.03 0.41 (39.8%)

Aloe Green Leaf 1.29 1.3 0.01 (0.08%)
Aloe Yellow Leaf 1.1 0.59 0.51 (86%)

Rubber Green Leaf 1.09 1.17 0.08 (6.8%)
Radermachera Green Leaf 1 1.07 0.07 (6.5%)
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Table 4. “Red edge” area measuring results.

REA

AOTF-HSL SVC Difference

Dracaena Green Leaf 47.94 51.36 3.42 (6.7%)
Dracaena Yellow Leaf 36.67 26.34 10.33 (39.2%)

Aloe Green Leaf 52.54 51.1 1.43 (2.8%)
Aloe Yellow Leaf 41.63 31.53 10.1 (32.0%)

Rubber Green Leaf 44 43.68 0.32 (0.7%)
Radermachera Green Leaf 43.39 42.01 1.38 (3.2%)

3.2. Comparison of REP Results from Differnent Calculating Methods

In Section 3.1, the REP is calculated using the FRS technique. Actually, there are other
methodologies for interpolating the reflectance REP, for instance, Linear Four-point Interpolation
Technology (LFPIT), and Linear Extrapolation Technology (LET) [37,38]. For further validating
and evaluating the proposed active remote sensing method, the AOTF-HSL spectral information is
employed to calculate the REP based on LFPIT and LET.

With the parameters listed in Table 1, the selected wavelength spectral reflectance in LFPIT and
LET beyond the wavelength scope of the LCTF-HSL, AOTF-HSL is more applicable than LCTF-HSL.
In this section, only the spectral profiles collected by AOTF-HSL are used for extraction of these
parameters. Tables 5–10 give the results of the four REP determination methods. Among them, four
tables (Tables 5, 7, 9 and 10) are the REP results from the green leaves, and the other two (Tables 6 and 8)
are the REP results from yellow leaves of dracaena and dloe.

Firstly, in the aspect of the green leaves results, the AOTF-HSL and SVC give a similar REP using
the four different results, with differences all below 1% except for the rubber plant REP using the
LFPIT method. The lower spectral resolution of HSL may account for the minor differences between
AOTF-HSL and SVC. In this paper, the AOTF-HSL spectral resolution is 10 nm, and the SVC spectral
resolution is better than 2 nm.

Table 5. The three different methods’ “Red edge” position results for dracaena green leaf.

REP (nm)

AOTF-HSL SVC Difference

LFPIT 717.80 722.32 4.52 (0.63%)
LET 709.42 712.24 2.82 (0.40%)
FRS 725 718.85 6.15 (0.85%)

Table 6. The three different methods’ “Red edge” position results for dracaena yellow leaf.

REP

AOTF-HSL SVC Difference

LFPIT 636.79 692.43 55.64 (8.7%)
LET 628.65 679.91 51.26 (8.2%)
FRS 695 685.55 9.45 (1.3%)

Table 7. The three different methods’ “Red edge” position results for aloe green leaf.

REP

AOTF-HSL SVC Difference

LFPIT 718.68 715.13 −3.55 (0.49%)
LET 720.32 719.95 −0.37 (0.05%)
FRS 725 718.85 6.15 (0.85%)
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Table 8. The three different methods’ “Red edge” position results for aloe yellow leaf.

REP

AOTF-HSL SVC Difference

LFPIT 715.61 674.27 −41.34 (5.8%)
LET 721.12 669.01 −52.11 (7.2%)
FRS 715 690.9 24.1 (3.4%)

Table 9. The three different methods’ “Red edge” position results for rubber plant.

REP

AOTF-HSL SVC Difference

LFPIT 712.63 748.79 36.16 (5.1%)
LET 722.60 726.10 3.5 (0.5%)
FRS 725 725.45 0.45 (0.06%)

Table 10. The three different methods’ “Red edge” position results for radermachera green leaf.

REP

AOTF-HSL SVC Difference

LFPIT 712.14 709.25 −2.89 (0.4%)
LET 717.91 718.67 0.76 (0.1%)
FRS 715 718.85 3.85 (0.53%)

Secondly, in aspect of the yellow leaves (Tables 6 and 8), the differences of the results between
AOTF-HSL and SVC calculated by the LFPIT and LET methods are all more than 5%, and the figures
are slightly higher than the FPS-derived REP results. Compared with the green leaves, the differences
between AOTF-HSL and SVC are larger in the yellow leaf cases. In addition, the three REP-derived
methods give similar results in the green leaf cases, including AOTF-HSL and SVC, however, there is
an obvious difference in the yellow leaves results. Especially, in the AOTF-HSL REP of the dracaena
yellow leaf case, the LEPIT and LET methods afford similar results, but they are different from the
FRS results. As aforementioned, the spectral resolution has an influence on the operation of LET and
LEPIT, and in this experiment, the spectral resolution of AOTF-HSL is selected as 10 nm, which might
affect the calculation of the results.

4. Discussion

The development of active measuring methods to obtain spectral information is of great significance.
The AOTF-HSL technique presented in this paper has the unique characteristic of collecting a continuous
spectrum in the visible and near infrared (VNIR) regions with 10 nm spectral resolution, which is the
best spectral resolution in any published paper. However, limited by the HSL hardware configuration
and the data processing capacity, compared with SVC spectrometer, the spectral resolution is still
slightly restricted. We presume this is the major reason contributing to the slight differences between
AOTF-HSL and SVC in green leaves measuring results. In addition, for REP slope and REA, these
results are quite distinctive and the percentages are all larger than 30%. We think that these following
reasons might account for this phenomenon:

1. Green leaves have more uniform spectral reflectivity over their surface, since the contents affecting
“Red Edge” related parameters are distributed evenly on them; in contrast to this, yellow leaves
have uneven distributions of these contents as Figure 7a,b present and the reflectivity varies for
different parts of the yellow leaf;

2. As aforementioned in Section 2, the hardware design, optics system, and the measurement
distance determine the diameter of the laser pulse footprint for sampling, which is approximately
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1 cm in this experiment with a field of view (FOV) of 0.2 mill radian. The sampled area of the
spectrometer is larger (resulting in a 5.5 cm radius footprint with a 25◦ field of view). Area
coverage by the laser pulse has different reflectivity due to the non-uniformity of the yellow leaves.

For the FRS method, the spectral resolution affects the calculation results. Due to the higher
spectral resolution of the SVC, the spectral profile collected by SVC could contribute to more detailed
descriptions of the reflectance slope changes. In the LET and LPFIT methods, the parameters are
calculated using the selected reflectance at several specific spectral wavelengths, and some of them are
not consistent with the selected wavelength of the AOTF-HSL. Some spectral reflectance values are
calculated using the average values of the intensities from the nearby spectral wavelength. For instance,
in the LET method, the 725 nm reflectance is calculated through averaging that of 720 nm and 730 nm,
which might slightly affect the results. Moreover, in the LET method, only three spectral reflectance
values from AOTF-HSL are employed to fit the FDR1 (680, 690 and 700 nm), which might bias the
final results. Thus, we think following future works are necessary for extending the HSL enabling
vegetation index estimation and determination:

1. HSL with finer spectral resolution is anticipated to improve the performance in vegetation index
or parameter extraction, and the ultimate HSL will have similar spectral resolution with the
referenced SVC spectrometer. With better spectral resolution, it is of great significance to estimate
the vegetation content and produce more comparable measurements. HSL spectral profiles
covering the 500–1000 nm wavelength band with 2 nm resolution is anticipated for future work,
whose resolution is more feasible to produce reliable results for vegetation-related applications.

2. In this paper, the influence of the spectral resolution on the REP or further vegetation resolution
is not investigated, limited by the hardware design. A 10 nm spectral resolution is employed in
this paper, which is determined by the LiDAR raw measurement processing capacity; actually,
the spectral resolution of the AOTF-HSL can be adjusted from 2 nm to 10 nm, it is of great
significance for exploring the influence of the spectral resolution on the performance of the above
REP extraction method.

3. REP is one of the most important indicators for vegetation health monitoring, but there are still
some other vegetation indexes for presenting vegetation growth or content; more work would be
carried out on using HSL to extract these vegetation indexes.

5. Conclusions

This paper investigated an AOTF-based 10 nm spectral resolution HSL, and for which the
consecutive spectral bands were tunable covering 500–1000 nm. An AOTF was installed after the
super-continuum laser source and consecutively selecting the wavelength of the passing laser beam.
51-channel spectral information was acquired. Then, four different plants with four green leaves and
two yellow leaves were measured by the AOTF-HSL and with corresponding referenced spectral
profiles collected by an SVC spectrometer. For green leaves, the “Red Edge”-related parameters
extracted using the first-order reflectance slope (FRS) from the AOTF-HSL and SVC spectrometer were
trivial, and this demonstrated the AOTF-HSL was capable of measuring vegetation “Red Edge”-related
parameters. Moreover, the observed shift behaviours were consistent with previous research results,
which also supported the fact that measurement results from the AOTF-HSL are reliable. In addition,
another two methods, LFPIT and LET, were employed for calculating the REP for further comparing
the results between HSL and SVC. The results were similar to those from the FRS method, which
further demonstrated the effectiveness of the HSL in this vegetation index detection and measurement.
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Abstract: Relatively little research has assessed the impact of spectral differences among dorsiventral
leaves caused by leaf structure on leaf chlorophyll content (LCC) retrieval. Based on reflectance
measured from peanut adaxial and abaxial leaves and LCC measurements, this study proposed a
dorsiventral leaf adjusted ratio index (DLARI) to adjust dorsiventral leaf structure and improve LCC
retrieval accuracy. Moreover, the modified Datt (MDATT) index, which was insensitive to leaves
structure, was optimized for peanut plants. All possible wavelength combinations for the DLARI and
MDATT formulae were evaluated. When reflectance from both sides were considered, the optimal
combination for the MDATT formula was (R723 −R738)/(R723 −R722) with a cross-validation R2

cv of
0.91 and RMSEcv of 3.53 μg/cm2. The DLARI formula provided the best performing indices, which
were (R735 −R753)/(R715 −R819) for estimating LCC from the adaxial surface (R2

cv = 0.96, RMSEcv =

2.37 μg/cm2) and (R732 −R754)/(R724 −R773) for estimating LCC from reflectance of both sides (R2
cv

= 0.94, RMSEcv = 2.81 μg/cm2). A comparison with published vegetation indices demonstrated that
the published indices yielded reliable estimates of LCC from the adaxial surface but performed worse
than DLARIs when both leaf sides were considered. This paper concludes that the DLARI is the most
promising approach to estimate peanut LCC.

Keywords: leaf chlorophyll content; DLARI; MDATT; adaxial; abaxial; spectral reflectance; peanut

1. Introduction

Peanut (Arachishypogaea L.) is one of the major food legumes as well as oilseed crops being grown
in 118 countries (or regions) around the world on about 28 million ha of land [1], and offers multiple
benefits to meet human nutritional needs as well as being an important resource in the context of
food security and hunger issues [2]. Leaf chlorophyll content (LCC) is an important indicator of
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plant photosynthesis [3], nutritional state [4], and stress [5]. Determination of LCC is crucial for crop
management and precision agriculture practices [6].

Spectral vegetation indices, which are defined with the objective of enhancing spectral sensitivity to
vegetation properties, have long been popular for estimating vegetation’s biophysical and biochemical
variables [7,8]. Decades of research have gone into determining wavelength regions sensitive to LCC
in order to develop indices to maximize the accuracy of retrieval for different types of plants [9–11].
Datt [12] developed a three-band index for retrieval of LCC in higher plants based on the different
response of reflectance at 710 nm and 850 nm to LCC. Sims and Gamon [13] analyzed nearly 400 leaf
samples from 53 species and found that the mSR705 (simple ratio) and mND705 (normalized difference)
were relatively insensitive to species and leaf structural variation. Gitelson et al. [14] proposed an index
(RnirRred-edge − 1), which is an effective LCC predictor for maple, chestnut, wild vine, and beech leaves.

The pinnate leaves of peanut are highly sensitive to excess solar radiation and drought stress [15].
Field observations show that under strong solar irradiance, peanut easily turns the abaxial surface of
leaves upwards. As a result, the spectral reflectance recorded by satellites or spectroradiometers may
represent a mixture of the adaxial and abaxial surfaces in different proportions. The differences in
optical properties of dorsiventral leaves due to the structural difference among the two sides have been
well documented [16,17]. Baránková et al. [18] found that light incident from the adaxial side is more
effectively absorbed than light incident from the abaxial side of green tobacco leaves. Lu and Lu [19]
reported the lower reflectance of the adaxial white poplar surfaces compared to the abaxial faces in
the 400–700 nm spectrum but reported an inversion of this effect in the near infrared wavelengths
(700–1000 nm).

Leaf optical properties are a vital factor in determining the sensitivity of vegetation indices to
LCC [13]. However, to the best of our knowledge, few studies have considered the influence of
abaxial leaf reflectance on the retrieval of biochemistry and structure parameters. In one of the few
studies carried out, Lu et al. [20] extended the wavelengths in the Datt’s index to incorporate spectral
reflectance from 400 nm to 1000 nm. They found that the modified Datt’s index (MDATT) efficiently
reduced the effects of bifacial leaf structure and improved the retrieval of white poplar and Chinese elm
LCC. However, several characteristics of peanut leaves, such as leaf hair, wax, palisade, and spongy
tissues, substantially differ from woody plants. Thus, the applicability of the MDATT to peanut LCC
retrieval requires further investigation. In addition, the structural effects were mostly removed by
MDATT but partially remained [21].

Theoretically, multiple-band indices can incorporate a larger amount of information and have
the potential to improve retrieval accuracy [22–26]. For example, the mSR705 and mND705, which
were developed by adding a band (R445) to the exiting two-band indices SR705 and ND705, effectively
improved sensitivity to LCC [13]. Similarly, three-band indices such as the MERIS terrestrial chlorophyll
index (MTCI) [22] and OLCI terrestrial chlorophyll index (OTCI) has been successfully used to retrieve
chlorophyll content at the canopy scale (i.e., chlorophyll content) [27–29]. To date, very few studies
have been conducted to assess the potential of vegetation indices based on four or more bands for
improving LCC retrieval accuracy.

To address these gaps, this paper focuses on the development and optimization of new and existing
indices that are insensitive to spectral differences among two sides of peanut leaves. The objectives
of this work were to (1) analyze spectral differences in the adaxial and abaxial surfaces of peanut
leaves; (2) identify the optimal wavelengths of the MDATT for estimating peanut LCC; (3) develop a
novel index based on a four-band combination to reduce spectral differences in dorsiventral leaves for
improving LCC retrieval; (4) compare the performance of the indices developed in this study with
those widely used in the literature.
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2. Materials and Methods

2.1. Data Collection

Ground data collection was carried out over a farmland area in Changchun, Jilin Province, China
(44◦42′27′′N, 124◦53′08′′E), which is located in the temperate and monsoon climate zone with a typical
continental climate. The field size was approximately 2 ha. During the peanut growing season in 2018,
three field campaigns were conducted on 27 July (acicula forming stage), 19 August (bearing pod stage),
and 19 September (maturity stage) to collect peanut leaves, respectively. In each campaign, 20 plots
were randomly selected. One or two plants were selected at each plot, and leaves that were fully
expanded, homogenous in color, and showing no visible signs of damage were detached from the top to
the bottom of the canopy [30]. They were, immediately packed and sealed into plastic bags and placed
inside a cooler (the interior temperature of the cooler was 0 ◦C) to avoid desiccation and decomposition
of the chlorophyll by light. In each campaign, we collected 28 leaves. Thus, a total number of 84 leaves
were used for spectral measurement and chlorophyll extraction. All the measurements, including
the spectral measurements and chlorophyll extraction, were carried out within 4 h of leaf harvesting
to minimize changes in chlorophyll content. Figure 1 illustrates the phenomenon of peanut leaves
changing orientation under strong solar irradiance, making the view of the canopy a mixture of the
adaxial and abaxial sides (Figure S1).

Figure 1. Photographs of the peanut canopy in the field. Only the adaxial surface is visible under
low solar irradiance (a), while both the adaxial and abaxial surfaces are visible under high solar
irradiance (b).

The reflectance of the adaxial and abaxial surfaces was measured using an ASD FieldSpec® 3
portable spectroradiometer (Analytical Spectral Devices, Boulder, CO, USA) and a contact probe,
equipped with an internal halogen source and directly attached to the leaf surface using a leaf clip
accessory. The spectrometer can collect data in the 350–2500 nm spectral region, with a sampling
interval of 1.4 nm in the 350–1000 nm wavelength range and 2 nm in the 1000–2500 nm wavelength
range. The average of 10 separate measurements from each sample was recorded. To reduce errors
associated with variations in illumination geometry, the contact probe was pressed to the leaf surface,
which was illuminated by the internal light source, ensuring a consistent illumination geometry.

The LCC was determined from the same leaf samples used for reflectance measurements. Circular
discs with a diameter of 6 mm were cut from each leaf. Leaf discs were extracted in the dark at room
temperature for 24 h with 95% ethanol and shaken repeatedly to ensure chlorophyll was completely
extracted, as indicated by the completely white appearance of the disc [31]. The absorbance of each
extract was measured at 663 nm and 645 nm using a UV757CRT ultraviolet-visible spectrophotometer
(Shanghai Precision Scientific Instruments Corporation, Shanghai, China). The LCC (μg/cm2) was then
calculated according to the equations provided by Arnon [32]. In total, measurements of LCC and
reflectance were collected for 84 leaves. The LCC values ranged from 21.50 to 70.55 μg/cm2 with a
mean value of 40.78 μg/cm2 and a standard deviation of 11.68 μg/cm2.
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2.2. Data Analysis

2.2.1. Construction of a Dorsiventral Leaf Adjusted Ratio Index

A semi-empirical leaf reflectance model was proposed by Baret et al. [33], and can be expressed as:

R = Rs + S exp(−ΣkiCi) (1)

where Rs is the reflectance of the leaf surface, S represents scattering effects of the leaf mesophyll
structure, and ki and Ci are the extinction coefficient and chlorophyll concentration, respectively. Rs

and S are thought to be the main factors introducing variability between adaxial and abaxial leaf
reflectance, as they depend on the differences in the leaf surface and internal mesophyll structure
Datt [12]. Based on this model and the principle that there is no absorption at 850 nm by any leaf
pigment (i.e., ΣkiCi = 0), Datt [12] proposed an index of (R850 −R710)/(R850 −R680). The index
removed Rs and S. Lu et al. [21] extended the wavelengths in the Datt’s index to 400–1000 nm, which
can also remove Rs and S. The formula of MDATT is:

MDATT =

(
Rλ1 −Rλ2

)
(
Rλ1 −Rλ3

) = exp
(
−Kchl(λ1)Cchl

)
− exp

(
−Kchl(λ2)Cchl

)
exp
(
−Kchl(λ1)Cchl

)
− exp

(
−Kchl(λ3)Cchl

) (2)

where Cchl is the chlorophyll content and kchl(λ1), kchl(λ2), and kchl(λ3) are the specific absorption
coefficients for Chl at wavelengths λ1, λ2, and λ3, respectively.

Using the MDATT as a basis, we constructed a dorsiventral leaf adjusted ratio index (DLARI) by
substituting the Rλ1 term with an additional wavelength (Rλ4 ) in the denominator:

DLARI =

(
Rλ1 −Rλ2

)
(
Rλ3 −Rλ4

) = exp
(
−Kchl(λ1)Cchl

)
− exp

(
−Kchl(λ2)Cchl

)
exp
(
−Kchl(λ3)Cchl

)
− exp

(
−Kchl(λ4)Cchl

) (3)

Like the MDATT, the DLARI is also expected to suppress the effects of Rs and S. The efficiency of
incorporating an additional band is evaluated in the following sections.

2.2.2. Published Vegetation Indices

The accuracy of LCC retrieval using the MDATT and DLARI indices was compared with that of
12 published vegetation indices that were originally proposed for chlorophyll content retrieval and
have proven to be highly correlated with LCC [34]. The types of indices included single-band index
(e.g., 1/R700), two-band indices (e.g., VOG1 = R740/R720), three-band indices (e.g., DATT = (R850 −
R710)/(R850 − R680)), as well as four-band indices (e.g., VOG2 = (R734 − R747)/(R715 + R720)). The
formulae of the indices are provided in Table 1. In addition, two MDATTs proposed by Lu et al. [21]
were used to evaluate the optimal wavelengths in the MDATT for peanut LCC estimation. The first
MDATT in Table 1 with wavelengths at 691 nm, 745 nm, and 736 nm was developed from the adaxial
surface reflectance of woody plants, whilst the second MDATT with wavelengths at 721 nm, 744 nm,
and 714 nm was based on a mixture of reflectance for both adaxial and abaxial surfaces.

26



Remote Sens. 2019, 11, 2148

Table 1. The list of the published vegetation indices compared in the study.

Index Abbreviation Formula Scale Reference

Gitelson’s index Gitelson 1/R700 Leaf [35]
Vogelmann’s first Index VOG1 R740/R720 Leaf [36]

Carter’ Index Carter R710/R760 Leaf [37]
MERIS Terrestrial Chlorophyll Index MTCI (R740 − R705)/(R705 − R665) Canopy [22]

Modified Simple Ratio mSR705 (R750 − R445)/(R705 − R445) Leaf [13]
Modified Normalized Difference

Vegetation Index mND705 (R750 − R705)/(R750 + R705 − 2 × R445) Leaf [13]

Datt’ Index DATT (R850 − R710)/(R850 − R680) Leaf [12]
Maccioni’ Index Maccioni (R780 − R710)/(R780 − R680) Leaf [38]

Vogelmann’s second Index VOG2 (R734 − R747)/(R715 + R720) Leaf [36]

Red-Edge Position Index REP 700 + 40 × (((R670 + R780)/2 −
R700)/(R740 − R700)) Leaf [39]

Modified Datt Index Lu′s MDATT (R691 − R7745)/(R7691 − R745) Leaf [21]
Modified Datt Index Lu′s MDATT (R721 − R744)/(R721 − R714) Leaf [21]

2.2.3. Model Calibration and Validation

All possible band combinations based on the MDATT and DLARI derived from adaxial, abaxial,
and the bifacial (i.e., including both adaxial and abaxial reflectance measurements) datasets were
correlated with LCC, respectively. The waveband combinations with the highest coefficient of
determination (R2) for each dataset were selected as the optimal indices and used to model LCC.
Relationships between the measured LCC and indices were established using empirical regression
analysis. The form of fitting functions (e.g., linear, exponential, logarithmic) relating the indices to LCC
appeared to have a marginal impact when compared to the impact of band selection [24]. Therefore,
we restricted the fitting method to ordinary least-squares linear regression.

The performance of the index-based models was evaluated using the R2 and root mean square
error (RMSE) with respect to the biochemically measured LCC. In order to avoid dependence on a
single random partitioning of the datasets and guarantee that all samples were used for both training
and validation, a repeated 10 fold cross-validation was used to evaluate the performance of each
index [40]. The dataset was split into 10 consecutive folds, and each fold was then used once for
validation while the remaining 9 folds formed the training dataset. This process was repeated 50 times,
and combined R2

cv and RMSEcv values were calculated as the mean of those from each repetition.

3. Results

3.1. Spectral Differences Between Adaxial and Abaxial Surfaces

The mean spectral reflectance of the adaxial and abaxial surfaces is shown in Figure 2a.
The reflectance of the adaxial surface was much lower than that of the abaxial surface in the visible
region (400 to 690 nm). This is because light incident from the adaxial side was more effectively
absorbed than light incident from the abaxial leaf side [18]. In contrast, the adaxial reflectance was
higher than that of the abaxial surface between 750 and 1400 nm. This was partly because the palisade
structure at the adaxial side of the leaf contributed higher reflected radiation than the spongy structure
at the abaxial side [17]. Spectral differences among the two leaf surfaces were small in the red-edge
region (690 to 750 nm), especially between 718 and 732 nm, where differences in reflectance were
less than 5% (Figure 2b). Differences were also less substantial at wavelengths longer than 1400 nm.
Variations in the internal structure of the adaxial and the abaxial surface also contributed to these
differences (Figure 3). The adaxial surface (Figure 3a) was characterized by increased waxes than
the abaxial surface (Figure 3b). Rayleigh scattering by waxes is known to contribute to the higher
reflectance of the adaxial surface at NIR wavelengths [41].

The correlation between LCC and the reflectance of both surfaces are plotted in Figure 4.
The reflectance of both surfaces in the blue region (400 to 500 nm) and the main chlorophyll absorption
region near 680 nm demonstrated the least sensitivity to LCC. High sensitivity to LCC was observed
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at 570 nm and near 710 nm. The strongest correlation was at 710 nm (the correlation coefficient is
−0.91) and 704 nm (the correlation coefficient is −0.85) for the adaxial and abaxial surfaces, respectively.
The abaxial reflectance at wavelengths over 750 nm also demonstrated strong correlations. Overall,
the correlations between LCC and abaxial reflectance were stronger than those between LCC and
adaxial reflectance.

Figure 2. The spectral reflectance of the adaxial and abaxial surfaces (a) and the associated difference in
reflectance among the two sides (b). (The solid line represents the mean of sampled reflectance and the
shaded zone represents standard deviation).

 
Figure 3. Optical micrographs of the adaxial (a) and abaxial (b) surface of peanut leaves.

Figure 4. The correlation between LCC and the reflectance of the adaxial and abaxial surfaces from 350
to 2500 nm.
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3.2. Relationships Between Optimal MDATT Indices and Peanut LCC

The relationship between LCC and the MDATT using band combinations ranging from 400 nm to
1000 nm was assessed for each dataset. The maximum R2 was determined by fixing λ2 and λ3 as single
values and changing λ1 from 400 nm to 1000 nm. For the sake of concise display, only R2 values greater
than 0.8 were considered and they are shown in Figure 5, where the x-axis represents λ3 and the y-axis
λ2. From this figure, robust wavelength regions for each band of the MDATT can be identified. For the
adaxial dataset, the most sensitive region (red color in Figure 5a) ranged from 700 nm to 800 nm for λ2,
400 nm to 800 nm for λ3, and 650 nm to 750 nm for λ1 (Figure 5d). The robust regions for the abaxial
dataset were similar to those for the adaxial dataset (Figure 5b,e), but the most sensitive area (red color
in Figure 5b) was reduced, and covered approximately 750 nm for λ2, 730 nm for λ3, and 690–750 nm
for λ1. For the bifacial dataset (Figure 5c,e), the sensitive wavelength regions were further reduced.
The R2 values greater than 0.88 were demonstrated when λ2 and λ3 were between 700 nm to 750 nm
and λ1 was between 660 nm and 710 nm.

 
Figure 5. The maximum R2 values associated with the MDATT band combinations ranging from
400 nm to 1000 nm (a–c) and its corresponding λ1 (d–f). The left column is for the adaxial dataset,
the middle column is for the abaxial dataset, and the right column is for the bifacial dataset. For the
sake of concise display, only R2 values greater than 0.8 were considered.

According to the principle of selecting indices demonstrating the highest R2 values, three optimal
MDATT indices for each dataset were determined and are presented in Table 2. The wavelengths λ1,
λ2, and λ3 of the best performing MDATT index for all three datasets were concentrated in the region
of 701 to 747 nm. For the adaxial surface, the index incorporating reflectance values at 701 nm, 742 nm,
and 740 nm demonstrated an R2 of 0.95, whilst for the abaxial dataset, the best index incorporated
reflectance values at 718 nm, 747 nm, and 720 nm (R2 = 0.94). In the case of the bifacial dataset,
the best index incorporated reflectance values at 723 nm, 738 nm, and 722 nm, reaching an R2 of 0.91.
The optimal indices for the adaxial and abaxial surfaces employed at least one wavelength that was
highly correlated to LCC (r < −0.60), i.e., 701 nm, 718 nm, and 720 nm (Figure 4). The reflectance values
at 722 nm and 723 nm, which were used by the optimal index for the bifacial dataset, demonstrated the
minimum differences between adaxial and abaxial surfaces (Figure 2b).
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Table 2. Cross-validation results for the MDATT indices in the case of the adaxial, abaxial, and
bifacial datasets.

Index Dataset
Wavelength

Region Considered
(nm)

Optimal Wavelengths
(nm)

R2 R2
cv

RMSEcv

(μg/cm2)

MDATT
Adaxial reflectance 400–1000 λ1: 701; λ2: 742; λ3: 740 0.95 0.95 2.52
Abaxial reflectance 400–1000 λ1: 718; λ2: 747; λ3: 720 0.94 0.94 2.69
Bifacial reflectance 400–1000 λ1: 723; λ2: 738; λ3: 722 0.91 0.91 3.53

The linear models established using the MDATT indices are shown in Figure 6. They were
randomly selected from one of the 50 training datasets used in the repeated 10 fold cross-validation.
The results indicated that for the adaxial surface, the index (R701 −R742)/(R701 −R740) achieved
the highest retrieval accuracy (R2

cv = 0.95, RMSEcv = 2.52) (Figure 6a,d), followed by the index
(R718 −R747)/(R718 −R720) for the abaxial surface (R2

cv = 0.94, RMSEcv = 2.69) (Figure 6b,e). Both
performed better than the index (R723 −R738)/(R723 −R722) for the bifacial dataset (R2

cv = 0.91,
RMSEcv = 3.53) (Figure 5c,f). The observed and predicted values fell close to the 1:1 line, indicating
that the optimized MDATT indices were stable predictors of LCC. The optimal index for the bifacial
dataset demonstrated a lower correlation with LCC and was not as accurate an LCC predicator as the
other two indices.

Figure 6. Relationships between MDATTs and LCC (a–c) and scatter plots between observed LCC
and LCC predicted by the associated linear models (d–f). The different colors indicate the 10 fold
cross-validation subsets. The left column is for the adaxial dataset, the middle column is for the abaxial
dataset, and the right column is for the bifacial dataset.

Differences in adaxial and abaxial reflectance properties resulted in different MDATT indices
and associated retrieval accuracies. The reliability of applying the optimal index for the adaxial
surface to estimate LCC from bifacial reflectance measurements was investigated (Table 3). It showed
that compared to the bifacial MDATT, applying the adaxial MDATT to estimate LCC from bifacial
reflectance produced considerable errors (R2

cv = 0.87, RMSEcv = 4.14). In light of the errors, it was
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necessary to consider the influence of spectral differences between adaxial and abaxial sides when
estimating LCC from reflectance mixed by the two sides.

Table 3. LCC retrieval accuracy of the adaxial and bifacial MDATT indices when applied to
bifacial dataset.

Dataset
Adaxial MDATT Bifacial MDATT

R2
cv RMSEcv (μg/cm2) R2

cv RMSEcv (μg/cm2)

Bifacial reflectance 0.87 4.14 0.91 3.53

3.3. Relationships Between DLARI and Peanut LCC

3.3.1. Performance of DLARIs Incorporating Wavelengths Between 660 and 750 nm

Because the most robust wavelength region was between 660 nm and 750 nm in the case of the
MDATT, all possible DLARI combinations formed by Equation (3) using wavelengths from 660 nm
to 750 nm were calculated. According to the principle of selecting the index that demonstrated the
highest R2, optimal DLARIs were established for each dataset (Table 4). The results demonstrated
that the wavelengths used in the DLARIs were similar to those used in the MDATTs (Table 2). When
compared with the MDATTs for the adaxial surface, the DLARI did not improve retrieval accuracy
(RMSEcv = 2.53), the DLARI for the abaxial surface demonstrated a marginal advantage over the abaxial
MDATT (RMSEcv = 2.62). In the case of the bifacial dataset, the DLARI achieved some improvement
over the bifacial MDATT (RMSEcv = 3.34).

Table 4. Cross-validation results for the optimal dorsiventral leaf adjusted ratio indices (DLARIs) derived
using wavelengths between 660 and 750 nm in the case of the adaxial, abaxial, and bifacial datasets.

Index Dataset
Wavelength

Region Considered
(nm)

Optimal Wavelengths
(nm)

R2 R2
cv

RMSEcv

(μg/cm2)

DLARI
Adaxial reflectance 660–750 λ1: 740; λ2: 742; λ3: 703; λ4: 731 0.95 0.95 2.53
Abaxial reflectance 660–750 λ1: 714; λ2: 746; λ3: 718; λ4: 720 0.94 0.94 2.62
Bifacial reflectance 660–750 λ1: 731; λ2: 741; λ3: 722; λ4: 750 0.91 0.92 3.34

3.3.2. Performance of DLARIs Incorporating Wavelengths Over 750 nm

In the DLARIs for the bifacial dataset, the wavelength selected for λ4 was at the limit of the
considered region (i.e., 750 nm), indicating that relevant information might be contained at longer
wavelengths. When evaluated, DLARIs incorporating longer wavelengths (around 820 nm) achieved
higher retrieval accuracies than those described in Section 3.3.1. (Table 5). It showed that for the three
datasets, the optimal wavelengths of λ1 and λ3 moved to approximately 730 nm and 720 nm, where the
differences in adaxial and abaxial reflectance were less than 5% (Figure 2). The optimal location of λ2

moved to the red-edge shoulder, which means less sensitivity to leaf structure [42], while the optimal
location of λ4 moved to the NIR, where there is less absorption by leaf pigments [12]. The new adaxial
DLARI and abaxial DLARI demonstrated advantages over the DLARIs derived from reflectance over
660 and 750 nm (RMSEcv = 2.37; RMSEcv = 2.58). The new bifacial DLARI not only substantially
improved the retrieval accuracy (RMSEcv = 2.81), but also enhanced its sensitivity to LCC (R2

cv = 0.94).
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Table 5. Cross-validation results for the optimal DLARIs derived using wavelengths between 660 and
820 nm in the case of the adaxial, abaxial, and bifacial datasets.

Index Dataset
Wavelength

Region Considered
(nm)

Optimal Wavelengths
(nm)

R2 R2
cv

RMSEcv

(μg/cm2)

DLARI
Adaxial reflectance 660–820 λ1: 735; λ2: 753; λ3: 715; λ4: 819 0.96 0.96 2.37
Abaxial reflectance 660–820 λ1: 731; λ2: 755; λ3: 722; λ4: 774 0.95 0.95 2.58
Bifacial reflectance 660–820 λ1: 732; λ2: 754; λ3: 724; λ4: 773 0.94 0.94 2.81

Relationships between LCC and the optimal DLARIs established are shown in Figure 7, as are
scatter plots of the associated retrievals and observed values. For the adaxial and the abaxial datasets
(Figure 7a,b,d,e), the indices (R735 −R753)/(R715 −R819) and (R731 −R755)/(R722 −R774) attained
higher retrieval accuracies (R2

cv = 0.96, RMSEcv = 2.37; R2
cv = 0.95, RMSEcv = 2.58) than the MDATT

indices (R2
cv = 0.95, RMSEcv = 2.52; R2

cv = 0.94, RMSEcv = 2.69). For the bifacial dataset (Figure 7e–f),
the index (R732 −R754)/(R724 −R773) achieved an R2

cv of 0.94 and RMSEcv of 2.81, demonstrating a
substantial advantage over the bifacial MDATT index (R2

cv = 0.91, RMSEcv = 3.53) and the DLARI
derived using wavelengths shorter than 750 nm. The results revealed that the DLARIs incorporating
longer wavelengths efficiently improved LCC estimation accuracy, whether for the adaxial, abaxial or
bifacial datasets.

Figure 7. Relationships between optimal DLARI indices and LCC (a–c) and scatter plots between
observed LCC and LCC predicted by the associated linear models (d–f). The different colors indicate
the 10 fold cross-validation subsets. The left column is for the adaxial dataset, the middle column is for
the abaxial dataset, and the right column is for the bifacial dataset.

3.4. Comparing Developed Indices with Those of Previous Studies

The performance of the published vegetation indices for LCC retrieval using adaxial and bifacial
reflectance measurements is shown in Figure 8, as is the performance of the indices developed in this
study. The published indices, which ranged from single- to four-band formulae, produced reliable
retrievals of LCC when applied to adaxial reflectance measurements. In general, the three-band indices
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performed better than the two-band indices and the two-band indices performed better than Gitelson’s
index. The best performing indices were MTCI, DATT, and Maccioni followed by the four-band index
VOG2. The red edge position index performed worse than all the three-band indices. However,
when applied to the bifacial dataset, much lower R2

cv and higher RMSEcv values were obtained.
The VOG1, MTCI, mSR705, mND705, and VOG2 indices yielded RMSEcv values of approximately
3.5 from the adaxial dataset, while the RMSEcv values increased to 7.5 when applied to the bifacial
dataset. Although the MTCI, mSR705, Maccioni, and DATT share the same format, the Maccioni and
DATT indices (which employ two of the same wavelengths) performed better on the bifacial dataset.
This was possibly because one of the bands used by Maccioni and Datt is located within the NIR region
(780 nm and 850 nm), where there is little absorption by any leaf pigments (ΣkiCi = 0) [12]. This partly
reduces spectral differences caused by the different absorption properties of pigments at the adaxial
and abaxial surfaces.

Figure 8. Comparison of published vegetation indices and the indices developed in this study for LCC
estimation using adaxial and bifacial reflectance measurements.

Among the published indices, Lu’s MDATTs, which uses different wavelengths for the adaxial and
bifacial surfaces, provided the most accurate LCC retrievals (RMSEcv = 2.72; RMSEcv = 3.73), although
they did not perform as well as the indices developed in this study. The two MDATTs were proposed
for estimating the LCC of woody plants, such as white poplar (Populus alba) and grapevine (Vitis L.) [21].
The difference in wavelength combinations and retrieval accuracy between Lu’s MDATTs and the
MDATT optimized in this study can be attributed to the differences in phenotypic expressions (such as
leaf hair, wax, palisade tissues, spongy tissues, etc.) between woody plant leaves and peanut leaves.
By adding an additional band to the MDATT, the DLARI substantially improved retrieval accuracy,
especially for bifacial reflectance measurements. When compared with the published vegetation
indices, the indices developed in this study achieved the highest retrieval accuracies for estimating
peanut LCC, whether for the adaxial or mixed surfaces.

3.5. Comparison of the DLARI and MDATT

The difference between the MDATT and DLARI was the substitution of λ1 with an additional
wavelength (λ4). We evaluated the improvement of incorporating this additional wavelength by
calculating the maximum R2 of all band combinations for the DLARI formula based on the three datasets.
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The maximum R2 was derived from combinations by fixing λ4 while changing λ1, λ2, and λ3 from
700 nm to 760 nm. The wavelength regions for λ4 were from 700 nm to 900 nm. The results are plotted
in Figure 9. It shows that when λ4 was at 700 nm to 760 nm, the maximum R2 derived from adaxial
DLARIs and abaxial DLARIs were similar to those of the adaxial MDATT (0.95) and abaxial MDATT
(0.94), while bifacial DLARIs achieved higher correlations with LCC than the bifacial MDATT (0.91)
since λ4 was higher than 709 nm. When λ4 was higher than 760 nm, all three DLARIs were much
more correlated to LCC than the three MDATTs. The highest R2 of the adaxial DLARI and bifacial
DLARI were obtained at λ4 equal to 819 nm and 773 nm, respectively, and then rapidly became lower
than those of the MDATT when λ4 was located above 890 nm. For the abaxial dataset, the highest R2

appeared at λ4 equal to 774 nm and then became lower than the abaxial MDATT when λ4 was above
840 nm. Compared to the MDATT, the effective regions of λ4 for the adaxial DLARI were from 760 nm
to 890 nm and for the abaxial DLARI when they were from 760 nm to 840 nm. For the bifacial DLARI,
the robust wavelength regions of λ4 were from 709 nm to 890 nm.

Figure 9. Maximum R2 between LCC and MDATTs, DLARIs with λ1, λ2, and λ3 from 700 nm to 760
nm and λ4 from 700 nm to 900 nm.

The above bifacial DLARI was derived from a dataset composed of the same quantity of adaxial
and abaxial reflectance measurements. In order to evaluate the impact of the abaxial reflectance on
the performance of the two dorsiventral leaf adjusted indices, we divided the 84 abaxial reflectance
samples into 6 parts and accumulated them into the adaxial dataset, then we calculated the optimal
DLARIs and MDATTs and their accuracies, estimating LCC for each sub-dataset. The results are
shown in Figure 10, which shows that the RMSEcv of MDATT dramatically increased from 2.52 to 3.35
when adding one-sixth of the abaxial samples into the adaxial dataset and then linearly increased
to 3.55. With the increase of abaxial reflectance, the RMSEcv of DLARI stably increased from 2.37
to 2.82. Compared to the MDATT, the DLARI possessed a linear response to the impact of abaxial
reflectance. The optimal wavelengths for the DLARI and MDATT derived from each sub-dataset
showed unobvious changes with the addition of the abaxial reflectance. It can be concluded that the
presence of abaxial leaves decreased the accuracy of DLARI and MDATT for LCC retrieval, but had no
obvious influence on the optimal wavelengths for DLARI and MDATT.
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Figure 10. The impact of the dorsiventral leaf structure on DLARI and MDATT in terms of the estimation
accuracy and optimal wavelengths. The numbers in the brackets are the optimal wavelengths for
DLARI and MDATT with a unit of nm.

4. Discussion

In the case of narrow band indices such as the MDATT, different wavelength combinations
can provide the best performance for different vegetation types. Lu et al. [21] suggested the robust
wavelength region for λ1 is from 723 to 885 nm and for λ2 and λ3 from 697 to 771 nm for woody plants.
We optimized the wavelengths used in the MDATT to increase its suitability for peanut LCC estimation,
but the effects from the dorsiventral leaf structure remained. The optimal wavelengths for the bifacial
MDATT were 723 nm, 738 nm, and 722 nm. Using the MDATT as a basis, we constructed a DLARI to
further decrease the impact of abaxial leaves. Compared with the MDATT and the published indices
without considering the dorsiventral leaf structure, the three DLARIs performed best. The adaxial
DLARI improved the estimation accuracy to 2.37 with a high R2 of 0.96. The abaxial DLARI achieved a
performance with R2 = 0.95 and RMSE = 2.58. The bifacial DLARI showed an R2 value of 0.94 and
RMSE of 2.81. The results showed that the DLARIs not only improved the retrieval of LCC from the
adaxial side of the leaf, but also further reduced the impact of differences in the adaxial and abaxial
leaf reflectance thus increasing LCC estimation from the bifacial reflectance.

The measured leaf reflectance can be composed of the external (surface) reflectance (Rs) of the leaf
and internal reflectance (Ri) of the leaf [42]. The reflectance of the adaxial and abaxial leaf side differ
both in the Rs and Ri. The MDATT and DLARI formulae both successfully removed Rs according to
Equations (2) and (3), respectively. The left Ri is influenced by pigments concentrations and absorption
properties which are different at the two sides of the leaf [16]. For the MDATT, the optimal wavelengths
for λ1 and λ3 changed from 701 nm and 740 nm to 723 nm and 722 nm (Figure 10). The reflectance of
the adaxial surface and abaxial surface at 723 nm and 722 nm showed minimum difference (Figure 2).
The optimal wavelengths λ2 for bifacial MDATT was located at 738 nm where the reflectance of both
sides showed similar sensitivity to LCC (Figure 3). The ability of MDATT to decrease the Ri effect
contributed to the combination of these three wavelengths. For the DLARI, with the addition of abaxial
samples into the adaxial dataset, the four wavelengths gradually changed to approximately 732 nm,
754 nm, 724 nm, and 773 nm (Figure 10). At 732 nm and 724 nm, the adaxial reflectance showed
higher sensitivity to LCC than the abaxial reflectance. In contrast, at 754 nm and 773 nm, the abaxial
reflectance showed stronger correlation to LCC than the adaxial reflectance (Figure 3). In addition,
the optimal λ3 was located at the region where spectral differences among the two sides of the leaf were
negligible (Figure 2). The wavelength near 754 nm is known as the red-edge shoulder and has shown
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considerable potential in suppressing the influence of leaf structure [43]. These factors contributed to
DLARI being optimal for LCC estimation when bifacial reflectance measurements were used.

Compared to the published vegetation indices, the DLARI not only decreased the effect of
dorsiventral leaf structure but also significantly improved LCC estimation from the adaxial reflectance
measurements. In fact, when multiple bands are available, there is no reason to limit to two-band or
three-band indices. For instance, the first three wavelengths used in the DLARI were similar to that
used in the MDATT for the adaxial dataset, but the accuracy (RMSEcv) was improved from 2.52 to 2.37
by adding the fourth wavelength. Our results proved that indices based on four bands led to further
improvements compared to two-band and three-band indices.

As previously mentioned, the reliability of narrow-band indices can be influenced by a range of
phenotypic characteristics. Further work is required to assess the application of DLARI to estimate
LCC for other crop species. The robust wavelength regions proposed should provide a good starting
point for optimizing the index for other crop species.

The potential of satellites, such as Sentinel-2, to map crop biophysical variables has been shown
by many studies [44,45]. The Sentinel-2 multispectral instrument includes three bands in the red-edge
region centered at 705, 740, and 775 nm, which were found to be of great interest for crop monitoring [46].
Unmanned aerial vehicle (UAV) platforms coupled with imaging sensors are able to collect multispectral
or hyperspectral imagery and offer great possibilities in the precision farming [47,48]. When using these
remote sensing techniques to investigate peanut canopy information, the spectral information collected
by the sensors may not only come from the adaxial leaf surfaces but also the abaxial leaf surfaces.
Our results provide evidence that ignoring the spectral difference among the two faces introduces
significant errors in LCC estimation. Further work should consider this effect when estimating peanut
chlorophyll content or other biochemistry parameters at the canopy scale. The application of DLARI
on remote sensing sensors to estimate canopy chlorophyll content is yet to be tested.

5. Conclusions

In this study, we focused on the development and optimization of dorsiventral leaf structure
adjusted indices to minimize the impact of spectral differences between adaxial and abaxial leaf
surfaces when retrieving peanut LCC. The wavelengths used by the MDATT were optimized for
peanut, while a new dorsiventral leaf adjusted index was proposed to improve the LCC retrieval
accuracy. The optimal MDATT index for retrieving LCC from bifacial reflectance measurements
was (R723 −R738)/(R723 −R722) with an R2

cv of 0.91 (RMSEcv = 3.53). The DLARI incorporated
an additional wavelength in the NIR and exhibited the best retrieval accuracy when compared to
the MDATT and other previously published indices. The DLARIs of (R735 −R753)/(R715 −R819)

and (R732 −R754)/(R724 −R773) are recommended for retrieval of LCC using adaxial and bifacial
reflectance, respectively. These two DLARIs delivered excellent cross-validation accuracies (R2

cv = 0.96,
RMSEcv = 2.37; R2

cv = 0.94, RMSEcv = 2.81). The effective wavelength regions for DLARI were from
the red edge to the NIR. Compared to the MDATT, the DLARI showed stronger correlation to LCC
and less sensitivity to abaxial surface structure. This research provided new insights into the impact
of spectral differences between adaxial and abaxial leaf surfaces on LCC estimation and proposed
DLARI to improve LCC retrieval accuracy. The spectral differences between adaxial and abaxial leaf
surfaces should be considered when estimating peanut canopy parameters. Further studies should be
carried out to verify the applicability of DLARI to other plant species which have similar physiological
response to solar radiation and drought stress as peanut.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-4292/11/18/2148/s1,
Figure S1: Photographs of peanut canopies in the field.
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Abstract: Heavy metal monitoring in food-producing ecosystems can play an important role in
human health safety. Since they are able to interfere with plants’ physiochemical characteristics,
which influence the optical properties of leaves, they can be measured by in-field spectroscopy. In this
study, the predictive power of spectroscopic data is examined. Five treatments of heavy metal stress
(Cu, Zn, Pb, Cr, and Cd) were applied to grapevine seedlings and hyperspectral data (350–2500 nm),
and heavy metal contents were collected based on in-field and laboratory experiments. The partial
least squares (PLS) method was used as a feature selection technique, and multiple linear regressions
(MLR) and support vector machine (SVM) regression methods were applied for modelling purposes.
Based on the PLS results, the wavelengths in the vicinity of 2431, 809, 489, and 616 nm; 2032, 883, 665,
564, 688, and 437 nm; 1865, 728, 692, 683, and 356 nm; 863, 2044, 415, 652, 713, and 1036 nm; and 1373,
631, 744, and 438 nm were found most sensitive for the estimation of Cu, Zn, Pb, Cr, and Cd contents
in the grapevine leaves, respectively. Therefore, visible and red-edge regions were found most suitable
for estimating heavy metal contents in the present study. Heavy metals played a significant role in
reforming the spectral pattern of stressed grapevine compared to healthy samples, meaning that in
the best structures of the SVM regression models, the concentrations of Cu, Zn, Pb, Cr, and Cd were
estimated with R2 rates of 0.56, 0.85, 0.71, 0.80, and 0.86 in the testing set, respectively. The results
confirm the efficiency of in-field spectroscopy in estimating heavy metals content in grapevine foliage.

Keywords: field spectroscopy; hyperspectral; heavy metals; grapevine; PLS; SVM; MLR

1. Introduction

In-field spectroscopy provides a time and cost-efficient and accurate way to monitor plant
stress [1–3]. These hyperspectral data are sensitive to small differences in plant features; i.e., plant
disease [4–6], water content [7,8], biomass assessment [8,9], crops quantity and quality [10,11], species
and varieties discrimination [12–14], and heavy metal stress [1,2,15].
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Heavy metal contamination in food-producing ecosystems is considered to be a major
environmental problem due to its potential hazard to humans and other organisms and due to
the intention to protect the safety of food chains [16,17]. Within the selection of human food, grapes
and their secondary products (wine, jam, juice, jelly, vinegar, grape seed oil, and raisins) play an
important role. Therefore, the safety of vineyards in terms of heavy metals is a key factor in grape
production and wine industries [17,18]. In viticulture areas, the excessive and prolonged usage of
fertilizers and pesticides releases heavy metals (i.e., Cu, Zn, Cd, Pb, Cr, Ni, Hg, and As), which
has been considered in many studies [16–20]. According to Milićević et al. [18] and Sun et al. [17],
significant correlations occur between heavy metal concentration in soil, grapevine parts (leaf, skin,
pulp, and seed), and wine. Alagić et al. [21] also concluded that the grapevine has some highly
effective strategies involved in tolerance to heavy metal stress, which makes it an excellent plant
species for phytostabilization purposes. Therefore, grapevine foliage monitoring can potentially
demonstrate heavy metal concentration states in other parts of the plant and is also acknowledged to
be a bio-indicator of heavy metals in the enclosing environment.

Heavy metal stress can produce some changes in plant morphological and biochemical
characteristics [15]. This is because the leaf spectral response is mainly affected by plant structural and
morphological characteristics; i.e., the leaf’s intracellular and extracellular structure, and biochemical
parameters such as nitrogen, pigments, and water contents [22–27].

Usually, heavy metal concentrations are detected in plant samples by acid digestion–solvent
extraction followed by hydride generation atomic absorption spectrometry [28,29]. This tedious
approach is expensive and destructive. Alternatively, by modeling the relationships between the heavy
metal concentrations and foliar spectral characteristics, these concentrations can be efficiently estimated
without using any chemical solvents. Therefore, by analyzing leaf spectral data, it becomes possible to
investigate the biochemical and morphological changes caused by heavy metal stress [15,30]. It should
be noted that in-field spectroscopy is one of the most attractive fields in remote sensing studies and
can record specific spectral data to any object such as fingerprints [31,32]. Hyperspectral sensors
can be used in the in-field spectroscopy process and so provide a framework for spectral reflectance
acquisition in hundreds of narrow and contiguous bands/wavelengths [24,26]. Accordingly, it is
expected that a plant being exposed to heavy metal stress will lead to subtle differences in the spectral
curve as opposed to a healthy plant. These differences mainly occur in the visible and near-infrared
regions of the electromagnetic spectrum [33].

Several studies have made specific use of the application of crop spectral characteristics through
in-field spectroscopy data and multivariate statistical analysis to promote the prediction of heavy
metal content in plant samples. For instance, Font et al. [28] and Font et al. [29] applied visible and
near-infrared spectroscopy and the modified partial least squares (PLS) method to forecast metal
content in prostrate amaranth and rice, with determination coefficients of 0.63 and 0.65, respectively.
In another study, Rosso et al. [34] examined the spectral and physiological responses of Salicornia
virginica to heavy metal (Cd and V) stress in laboratory conditions. The potential of in-field spectroscopy
to detect heavy metal contents was also investigated by Ni et al. [35], Gu et al. [36], Liu et al. [37],
Liu et al. [38], and Li et al. [39] in the case of dominant plants in the Poyang lake wetlands, Brassica
rapa chinesis, rice, Phragmites australis, and vegetables, respectively.

It is worth noting that in-field spectroscopy delivers a large amount of spectral data, whereby each
of the wavelengths may be associated with one of the plant parameters [40]. Therefore, identifying
optimal wavelengths to monitor any parameter—e.g., heavy metal concentrations—is an important
step in applying these data [41]. In this regard, the usage of multivariate statistical techniques such
as the PLS method [14,40,42,43], multiple linear regression (MLR) [41,44,45], and support vector
machines (SVM) [12,40,46] can help with feature selection, data reduction, and modelling the existing
relationships between hyperspectral data and plant characteristics. Many studies have also taken
advantage of spectral indices to minimize atmospheric and background disturbances and illustrate
plant characteristics [3,15,30,45,47]. These indices are mathematical spectral transformations of two
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or more bands designed to enhance the spectral response of vegetation properties [12,40,46]. Hence,
spectral indices calculated from foliar reflectance data may reveal the biochemical and physiological
properties of leaves, which may be responsible for monitoring plant characteristics [46]. Despite the
proven performance of in-field spectroscopy in estimating heavy metal contents in plants, to the best
of our knowledge, such a study has never been employed on grapevines leaves.

Altogether, this study was designed with the following goals: (i) developing hyperspectral
libraries of healthy and heavy metal-stressed grapevine leaves (Vitis vinifera cv. Askari, as a common
grapevine variety in Iran) by using full range in-situ spectroscopy (350-2500 nm), (ii) evaluating the
potential of in-field spectroscopy for estimating heavy metals (Cu, Zn, Pb, Cr, and Cd) concentrations in
grapevine foliage, (iii) investigating two types of hyperspectral data (wavelengths vs. spectral indices)
and identifying the most appropriate features to estimate each studied metal in grapevine foliage, and
(iv) comparing the performance of SVM and MLR algorithms in modeling the relationships between
the foliar spectral response and heavy metal concentrations.

2. Materials and Methods

2.1. Pollutant Exposure Experiments

Since experience in the evaluation of in-field spectroscopy when estimating heavy metal contents
in grapevine leaves is lacking, we chose to conduct this research in a laboratory-controlled environment.
Therefore, treatments for heavy metal stress were applied to grapevine seedlings. For this purpose,
five treatments at varying levels of Cu, Zn, Pb, Cr, and Cd were considered, and in each treatment,
four repetitions were carried out (a total of 84 grapevine seedlings were examined).

It should be noted that the objective of this experiment was not to determine the sensitivity of
grapevine to pollutants. We only intended to add heavy metal contents to the grapevine to compare its
spectral differences with healthy leaf samples. The common grapevine variety in the study area is
Vitis vinifera cv. Askari; all seedlings belonged to this variety to eliminate the effect of variety change
on spectral characteristics [43,48]. Experiments were conducted outdoors in full sun between March
and September 2018. Each grapevine seedling sample was placed in an individual plastic pot (length
and width 25 cm × 10 cm) and was randomly divided amongst the studied treatments. The seedlings
were two years old, and their height at the beginning of the experiment was between 20 and 30 cm.
All seedlings were in the same conditions in terms of soil, pot size, sunlight exposure, watering,
temperature, and humidity. In Figure 1, a schematic of the applied treatments is displayed. The first
treatment served as a control to monitor the potential effects of soil, water, and air on the transfer of
heavy metals to grapevine seedlings. In the second treatment, the maximum allowed level (MAL) of
Cu, Zn, Pb, Cr, and Cd in irrigation water provided stress to the seedlings. All contamination levels
were increased in the third, fourth, and fifth treatments as two, three, and four times the metal MALs in
irrigation water, respectively. A stress program was applied to treatments 2–5 by dissolving the metal
salts (nitrate form) in irrigation water. Salt metals have a high solubility, resulting in the absorption of
the metals by plant organs [34]. According to the Iranian Water Quality Standard (IWQS), the MALs
for Cu, Zn, Pb, Cr, and Cd in irrigation water are 200, 2000, 100, and 10 mcg/l, respectively. Seedlings
were examined for a period of seven months, and they were stressed during each month (a total of
seven stresses were applied). At the end of the stress period and before the beginning of the fall season
(September 2018), a spectrophotometric analysis of grapevine seedlings leaves was applied.
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Figure 1. Schematic design of the treatment for each studied metal (C: control, L1 to L4: level 1 to level
4 stressed, MAL: maximum allowed level) and image of applied grapevine seedling pots.

2.2. Spectra Acquisition

At least five leaves of each seedling pot were collected for spectroscopy measurements (a total of
420 spectra samples were taken), and afterwards, individual reflectance spectra were measured by
pot. In this study, the grapevine foliar spectral reflectance was measured using the ASD FieldSpec 3
spectroradiometer in the full range (350–2500 nm). This instrument is supported by three separate
spectrometers (first: 350–975 nm, second: 976–1770, and third: 1771–2500 nm). The ASD spectral
resolutions in the range of 350–1000 nm and 1000–2500 nm are 3 and 10 nm with sampling intervals of
1.4 and 2 nm, respectively. In accordance with Kumar et al. [49], the electromagnetic spectrum in the
range of 350 to 2500 nm can be classified into four regions including visible (VIS), red-edge region
(RDE), near-infrared (NIR), and mid-infrared (MIR), with ranges of 350~700, 680~750, 700~1300, and
1300–2500 nm, respectively. We performed the spectroscopy experiment in a fully dark room in order to
reduce the effect of wind, water vapor, temperature, and other environmental disturbance [12]. In this
study, each spectral sample was recorded in 100 automatic replicates. Then, we applied the ViewSpect
version 6.0 in order to convert spectral curves into test files and analyze them by statistical software.

For each sample, the reflectance spectrum was recorded at 2151 wavelengths (350–2500 nm),
which gave a large amount of data, not all of which may be useful for the study purpose. Therefore, in
this study, 32 spectral indices were calculated to evaluate their ability to estimate heavy metal contents.
The spectral indices which are used in this study were calculated based on the method indicated by
Mirzaei et al. [12], although no specific spectral indices exist to detect heavy metal contamination [1].
Table 1 shows the indices that have demonstrated sensitivity in previous studies to small differences in
plant characteristics [12,46,50].
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Table 1. Characteristics of studied hyperspectral indices [13,46].

Indices Equation Indices Equation

Cellulose Absorption
Index, CAI

0.5(R2000 + R2200) − R2100 Gitelson and Merzlyak
Chlorophyll, GM1 and 2

GM1 = (R750)/(R550)

Moisture Stress Index, MSI (R1600)/(R820) GM2 = (R750)/(R700)
Normalized Difference Water
Index, NDWI

(R860 - R1240)/(R860 + R1240)
Lichtenthaler Indices, Lic1 to 3

Lic1 = (R800 − R680)/
(R800 + R680)

Disease Water Stress
Index, DWSI

(R802 + R547)/(R1657 + R682) Lic2 = (R440)/(R690)

Band ratio at 975 nm,
RATIO975

2 × R960 − 990/(R920 – 940 +
R1090 − 1110)

Lic3 = (R440)/(R740)

Band ratio at 1200 nm,
RATIO975-2

2 × R1180 − 1220/(R1090 −
1110 + R1265 − 1285)

Simple Ratio Pigment Index,
SRPI

(R430)/(R680)

Leaf Chlorophyll Index, LCI (R850 − R710)/(R850 + R680) Normalized Phaepophytiniz
Index, NPQI

(R415 − R435)/(R415 + R435)

DattA (R780 − R710)/(R780 − R680) Normalized Pigment
Chlorophyll Ratio Index, NPCI

(R680 − R430)/(R680 + R430)

Modified Red Edge
Normalized Difference
VegetationIndex, mNDVI705

(R750 + R705)/(R750 + R705 −
2 × R445)

Greenness Index, GI (R554)/(R677)

Chlorophyll Index, SGB (R750 − R445)/(R705 − R445) Water Index at 1180nm,
WI1180

(R900)/(R1180)

Structure Intensive Pigment
Index, SIPI

(R445 − R800)/(R680 − R800) Normalized Difference
Vegetation Index, NDVI

(R831 − R667)/(R831 + R667)

Simple Ratio, SR (R774)/(R677) Carter Index, CI (R760/R695)
Reflectance at 550 nm, R550 (R550) Vogelman Index, VOG (R740/R720)
Reflectance at 680 nm, R680 (R680) Carotenoid Reflectance Index,

CRI
R800(1/R520 − 1/R550)

Water Index, WI (R900)/(R970) Photochemical Reflectance
Index, PRI

PRI1 = (R531 − R570)/(R531 +
R570)PRI2 = 1.5(R830 −
R660)/(R830 − R660 + 0.5)PRI3
= (R539 − R570)/(R539 + R570)

R: Reflectance.

2.3. Heavy Metal Laboratory Analysis

The leaves of each pot were placed in polyethylene bags and converted separately in the laboratory
after obtaining the foliar reflectance spectra. The leaf samples were dried for 24 h in an oven at 45 ◦C
to achieve a constant weight [16]. The samples were powdered and stored for further analysis with
a stainless-steel mill. We then digested one gram of each grapevine sample with HNO3 + HClO4
(3:1 v/v) for about 4 h at a low temperature (about 40 ◦C) [51]. All digested samples were then diluted
and filtered to 25 mL. Finally, a Graphite-Furnace Atomic Absorption Spectrophotometer (GA-AAS,
Model: Analytik Jena, Germany) was used to analyze all samples in triplicate. The concentrations of
heavy metal samples were expressed as dry weight (DW) mg/kg. The device detection limits for Zn,
Cu, Pb, Cr, and Cd were 0.008, 0.025, 0.01, 0.04, and 0.009 mg/kg, respectively. Based on the analysis,
the relative standard deviation accuracy was less than 9%. To evaluate the accuracy of analytical
techniques, a spike-and-recovery analysis was performed. Post-analyzed samples were accentuated
and homogenized with varying amounts of standard metal solutions. The recovery ranged from 90%
to 108% of the spiked sample [52].

2.4. Feature Selection/Partial Least Squares (PLS)

In summary, the dependent variables were the contents of Cd, Cr, Cu, Pb, and Zn in grapevine
leaves, while the independent variables were wavelengths (count: 2151) and spectral indices (count:
32). However, a large number of independent variables can reduce the performance of the relationship
modelling between spectral data and metal contents. To mitigate this, we needed a feature selection
process to identify optimal features (wavelengths and spectral indices) to forecast the concentration
of each metal, individually. Also, before applying statistical operations, it is recommended to scale
each variable linearly to the same standard range, especially in the machine learning methods [40,53].
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The values of wavelengths, spectral indices, and heavy metal concentrations were therefore scaled to
the range between 0 and 1, as follows:

Ni =
xi − xmin

xmax − xmin
(1)

where Ni is the normalized value, xi is the original data, and xmin and xmax are the minimum and
maximum of each variable’s percentages, respectively.

Given the high-dimensional spectral dataset, the use of multivariate statistical analysis is an
appropriate solution for achieving optimal features to estimate each metal. PLS is a robust and
well-known statistical analysis in relation to hyperspectral data that has shown acceptable performance
in many studies [12,40]. This statistical analysis method generates some new components instead of
using existing inputs, based on the least square regression. Unlike principal components analysis
(PCA), PLS considers response variables in the data reduction process [54]. Fitting a regression model
between input and output variables, high collinear spectral data, and the high processing speed are
the other advantages of the PLS method. The PLS-developed components are capable of explaining
community variance by a simpler structural mechanism. Accordingly, the importance of each input
variable is realized by its factor load in each component [12]. We therefore selected optimal independent
variables (wavelengths or spectral indices) based on the maximum factor load in each developed PLS
component. These variables were considered to be the most representative of the related components.
Based on the PLS results, the optimal wavelengths and indices were identified and introduced to the
next step (modelling). Wold et al. [55] has provided more information about the assumptions and
applications of the PLS.

2.5. Modelling the Relationship Between Spectral Data and Heavy Metal Contents

After the identification of the optimal wavelengths and relevant indices by the PLS, two types of
modelling algorithms (SVM and MLR) were applied to estimate heavy metal concentrations based
on hyperspectral data. To assess the estimation performance of each model, two goodness-of-fit
indicators—specifically, the coefficient of determination (R2) and root mean squared error (RMSE)—were
used [40]. All achieved data in this study were randomly separated into two sections: 70% as training
data and 30% as testing data. As such, the performance of each developed model was individually
reported for training and testing sets.

2.5.1. Support Vector Machine (SVM)

SVM is a nonparametric learning algorithm for regression and classification goals and for
hyperspectral data mining [56–58]. In the SVM procedure, the n-dimensional input vectors are
conveyed into a high-dimensional feature space, and consequently, the optimal separating hyper-planes
are developed [59]. Here, the SVM regression algorithm was used in multiple scenarios and designs to
gain the best performance for modelling the relationship between the in-field hyperspectral data and
the measured heavy metal concentration in grapevine leaves. To this end, the input vectors were linked
to the outputs with a kernel function [12]. Regression SVM-type 1 with different kernel functions—i.e.,
radial basis functions (RBF), polynomials, and a sigmoid shape—was applied. In order to achieve
an optimal training constant, V-fold cross validation was used, and kernel function parameters
(coefficient, gamma, and degree) were altered to give a high-performance score [60]. More details
about the assumptions and structure of SVM are provided by Stitson et al. [59] and Cristianini and
Shawe-Taylor [61].

2.5.2. Multiple Linear Regressions (MLR)

MLR is a parametric regression algorithm that attempts a relationship model between two or
more independent variables and a response variable with a linear fitting. It has the capacity to select
appropriate input data. In this study, the forward selection method of MLR was applied to increases
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the R2 value by adding an independent variable [40]. The Durbin–Watson statistic was applied to test
autocorrelation in the residuals from statistical regression analysis. Durbin–Watson values close to 2
(1.5–2.5) indicate that there is no autocorrelation detected in the samples. Additionally, in order to
detect multicollinearity in regression analysis, thw variance inflation factor (VIF) was considered (VIFs
exceeding 10 are signs of serious multicollinearity) [62,63]. The general form of the MLR equation is
as follows:

HMC = a0 + a1LM1 + a2LM2 + . . .+ anLMn (2)

where HMC is the heavy metal concentration in grapevine leaves, a (i = 0,1, . . . ,n) are the parameters
generally estimated by least squares, and X (i = 1,2,...,n) are the independent variables (i.e., wavelengths
and spectral indices).

3. Results and Discussion

3.1. Reflectance Spectra of Healthy and Stressed Leaves

The average reflectance spectrum of a healthy grapevine vs. stressed grapevine leaves due to
heavy metal stress is shown in Figure 2. In the VIS region, the light absorption rate of the stressed
grapevine was drastically decreased. This is due to the fact that the spectral characteristics of plants in
this region are regularly motivated by pigments [64,65]. Accordingly, this suggests that heavy metal
stress reduced pigment contents. Various spectral characteristics between healthy and stressed leaves
can also be observed in the RDE, NIR, and MIR regions (Figure 2). As Vogelmann [66], Slaton et al. [23],
and Strever [67] stated, plant pigments do not absorb the light in the NIR and MIR regions; therefore, the
plant leaf reflectance is significantly increasing in these regions. Additionally, the spectral characteristics
of plant leaf in the NIR and MIR regions were changed by structure/morphology and water contents,
respectively [54]. According to Figure 2, in the NIR and MIR regions, a lower reflectance was observed
in healthy grapevine leaves as opposed to the stressed grapevine. Although other driving variables
such as structural parameters and water contents were not measured in this study, it can be concluded
that the stress caused by heavy metals had a significant effect on the leaf optical properties.
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Figure 2. Average reflectance spectrum of healthy grapevine leaves vs. the heavy metal-stressed
grapevine leaves (from 350 to 2500 nm).

3.2. Correlation Coefficient

Figure 3 displays the correlation coefficient between grapevine leaves’ reflectance (350–2500 nm)
and their heavy metal concentrations (Cu, Zn, Pb, Cr, and Cd). The correlation coefficients were
noisiest in the range from 350 to 400 nm due to atmospheric effects. Of particular interest is that the
highest absolute correlation coefficient took place in the range of 350 to 400 nm in relation to Cr, Pb,
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and Zn. Cd showed the best correlation with the wavelengths in the VIS region (400–680 nm), while it
dropped sharply in the RDE region (680–750 nm) (Figure 3). This suggests that the RDE region is one
of the best options for introducing optimal wavelengths to estimate Cd concentrations in grapevine
leaves. Also, the other heavy metals caused subtle fluctuations in the RDE region, and their correlation
coefficients tended to be positive. This finding indicates the potential of this region to forecast metal
contents in the grapevine leaves. Similar correlation coefficients were observed for Cu, Zn, Cr, and Pb
in the NIR spectrum region (750–1300 nm), but Cd had a varied correlation curve in this range. In the
MIR region (2500–1300 nm), the heavy metal correlation coefficients were closer together (Figure 3).
With the exception of Pb, the remaining metals were negatively correlated with most wavelengths of
this region.

In comparison to a related study by Zhuang [41], a similar correlation graph between spectral
response (400–2500 nm) and heavy metal contents (Cu, Zn, Pb, Cd, As, and Fe) was obtained.
A comparison of Figure 3 with the study results of Zhuang [41] shows that the correlation pattern
between the heavy metal contents and the spectral response is not alike. Therefore, the structural and
biochemical differences between the studied species (grapevine and rice) and the level of spectroscopy
(leaf or canopy level) can be considered as the most important drivers justifying these differences.
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Figure 3. Correlation coefficient between the heavy metal concentration (determined by laboratory
analysis) and spectral response of grapevine leaf samples (350 to 2500 nm).

3.3. Optimal Feature Selection

Determining the optimal wavelengths to monitor the desired plant parameters within the vast
hyperspectral bands is one of the most critical operations in spectroscopy [43,46,56]. Commonly,
a small number of wavelengths/spectral indices are selected with maximum performance for the
study purpose, while missing data should be minimal [46,68]. Thus, we chose the PLS method
because of its high adaptability with hyperspectral data to recognize optimal predictive variables
(wavelengths and spectral indices) for estimating heavy metals in grapevine leaves [42]. Identifying
the fit number of components is one of the most imperative factors in applying the PLS results because
the number of components can directly determine the number of model input variables. Accordingly,
the cross-validation algorithm was applied to optimize the number of PLS components [43], and
then the optimum variable for each of the components was identified. Figure 4 shows the number of
optimal components and the wavelength factor loads of the metals studied. This figure shows that the
numbers of developed fit components were 4, 6, 5, 6, and 4, for Cu, Zn, Pb, Cr, and Cd, respectively.
Therefore, based on the introduced components, the wavelengths and spectral indices which had the
highest correlation with the components were identified. They can be subsequently used as optimal
spectral wavelengths and indices in the relevant modelling process, especially for estimating metal
concentrations in the grape leaves [43].
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As shown in Figure 4, the wavelengths in the vicinity of 2431, 809, 489, and 616 nm can be
recognized as an optimal rate for estimating Cu content in grapevine leaves. In the same method,
wavelengths in the vicinity of 2032, 883, 665, 564, 688, and 437 nm; 1865, 728, 692, 683, and 356 nm;
863, 2044, 415, 652, 713, and 1036 nm; and 1373, 631, 744, and 438 nm were the optimal wavelengths
for estimating Zn, Pb, Cr, and Cd, respectively. Based on these results, the VIS, RDE, NIR, and MIR
regions introduced eight, eight, three, and five wavelengths for estimating the studied heavy metals,
respectively. The most delicate regions to estimate the studied heavy metals in the grapevine leaves were
RDE and VIS (particularly the blue region). Consistent with this finding, Liu et al. [38] and Zhuang [41]
also reported that VIS and RDE delivered the most optimal wavelengths for estimating heavy metal
contents. Moreover, according to the results, the RDE was one of the most influential regions in
introducing optimal wavelengths for estimating the contents of Zn, Pb, Cr, and Cd. In confirmation
with this finding, Gu et al. [36] noted the RDE region as being sensitive to estimate the variances of
metal contents (especially Cd). They suggested the wavelength of 782 nm as an optimal wavelength
for estimating Cd concentration in Brassica rapa leaves.
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Figure 4. The factor load of wavelengths (350–2500 nm) in the optimal components extracted by the
the partial least squares (PLS) method for estimating heavy metal concentrations (from top to bottom)
in the grapevine leaves (vertical axis is the factor load).

In the same way, the optimal spectral indices for estimating contents of Cu, Zn, Pb, Cr, and
Cd were also determined based on the interpretation of the PLS results. In Table 2, a summary of
the PLS results is presented, which is used to determine the optimal indices to estimate the heavy
metal concentrations. As an optimal index for the estimation of Pb, Cr, and Cd concentrations, the
Structure Intensive Pigment Index (SIPI) (proposed by Penuelas et al. [69]), which represents the ratio
of carotenoids to chlorophyll, was the most frequent index among the studied indices. Furthermore,
the Disease Water Stress Index (DWSI) and Moisture Stress Index (MSI) indices, which are sensitive
to water levels in vegetation (water stress), were identified as optimal indices for estimating Zn–Pb
and Cu–Cd, respectively. It is worth remarking that the Normalized Difference Vegetation Index
(NDVI) was not chosen as the optimal index to predict the studied metal contents. On the other hand,
according to Zhuang [41], the NDVI band ratios were extremely useful in monitoring the contents
of metals in the paddy canopy. Therefore, it can be argued that, in addition to the structural and
biochemical differences between grapevine and paddy species, the differences in studied spectral
indices are another reason for differences in the optimal spectral indices.

Table 2. Summary of the PLS results on the number of components and optimal indices for estimating
heavy metal contents in grapevine leaves.

Heavy Metal
No. of Optimal

Components
Cumulative
Variance (%)

Optimal Indices
in Components

Cu 4 82 SR, CAI, RATIO9752, and DWSI
Zn 5 84 R680, WI, Lic1, MSI, and PRI2
Pb 4 88 VOG, MSI, SIPI, and R550
Cr 4 92 mNDVI705, GI, RATIO975, and SIPI
Cd 2 81 SIPI and DWSI

3.4. Modelling and Accuracy Assessment

After determining the optimal spectral wavelengths and indices, two regression approaches—i.e.,
MLR and SVM—were applied to model the relationships between spectral data and heavy metal
concentrations. Table 3 illustrates the best-developed models and validation results using the SVM
algorithm. Based on this table, the RBF function was selected as the optimal central function in 60%
of the developed models, followed by the linear function (30%). These two functions were therefore
considered as the optimal functions for relevant modelling in the studied grapevine leaves.
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Table 3. Modelling and validation results of the best support vector machine (SVM) models based
on optimal wavelengths and spectral indices for estimating heavy metal concentrations in grapevine
leaves in training and testing sets. RBF: radial basis function.
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Metal

Model Structure Train Test

Kernel
Function

No. of
Vectors

Coefficient Degree Gamma R2 RMSE * R2 RMSE *

W
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s Cu RBF 13 - - 0.25 0.97 7.46 0.54 25.06

Zn Linear 25 - - - 0.67 22.50 0.42 29.65
Pb RBF 21 - - 0.20 0.89 22.28 0.71 24.09
Cr Linear 30 - - - 0.84 5.61 0.71 7.82
Cd RBF 34 - - 0.25 0.78 98.16 0.77 103.09

S
p
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e
s Cu Linear 32 - - - 0.88 13.01 0.50 25.46

Zn RBF 23 - - 0.8 0.92 13.42 0.85 15.94
Pb RBF 24 - - 0.4 0.85 22.49 0.67 24.51
Cr RBF 43 - - 0.32 0.80 7.27 0.79 6.11
Cd Polynomial 19 1 11 0.7 0.88 91.94 0.86 102.85

* mg/kg: dry weight.

Table 4 shows the modelling results using the MLR method. In cases where the Durbin–Watson
coefficient ranged from 1.5 to 2.5, there was a lack of self-correlation between error terms in the
regression model that included 60% of the presented models [40]. However, in relation to the presented
models for Pb–Cd (based on wavelengths) and Cr–Cd (based on spectral indices), the Durbin–Watson
coefficient was less than 1.5 and lacked one of the most important conditions for using regression
modelling. VIF was also considered for the multicollinearity checking between the predictor variables
in the regression models. According to Table 4, there was serious multicollinearity (some predictor
VIFs exceeded the critical threshold of 10) in the Pb-based-wavelength and Zn-based-spectral index
models. Therefore, these models violate the key assumption of multiple linear regression, making
these models invalid.

Table 4. The results of modelling and validation of the best multiple linear regression (MLR) models
based on optimal wavelengths and spectral indices for estimating heavy metals concentrations in
grapevine leaves in training and testing sets.

H
y

p
e

rs
p

e
ct

ra
l

D
a

ta
T

y
p

e

H
e

a
v

y
M

e
ta

l

P
re

d
ic

to
r

V
a

ri
a

b
le

V
IF

S
ig

.
o

f

R
e

g
re

ss
io

n
C

o
n

fi
d

e
n

t

D
u

rb
in

–
W

a
ts

o
n

Model Structure

Train Test

R2 RMSE * R2 RMSE

W
a

v
e

le
n

g
th

s

Cu All < 10 <0.05 2.17 CCu = −1.27 − (0.28 × R2431) + (4.08 × R809) −
(5.32 × R489) −(8.73 × R616) 0.94 9.35 0.56 25.60

Zn All < 10 <0.05 2.18 CZn = −1.11 − (5.77 × R2032) − (1.83 × R665) +
(2.38 × R564) + (13.85 × R688) − (7.7 × R437) 0.73 20.46 0.47 399.13

Pb
Some
cases
>10

>0.05 1.39 CPb = 0.46 − (5.1 × R692) + (6.24 × R683) 0.32 25.29 0.13 27.28

Cr All < 10 <0.05 1.59 CCr = 0.61 + (18.08 × R415) − (1.41 × R2044) −
(4.01 × R652) −(1.99 × R1036) + (1.11 × R713) 0.84 5.58 0.78 6.79

Cd All < 10 <0.05 1.38 CCd = 0.98 + (2.76 × R1373) + (3.15 × R631) +
(1.04 × R744) −(5.09 × R438) 0.63 132.79 0.64 117.26

S
p

e
ct

ra
l

In
d

ic
e

s

Cu All < 10 <0.05 1.74 CCu = −2.95 + (3.38 × SR) − (0.01 × CAI) + (6.76
× RATIO9752) − (0.77 × DWSI) 0.89 12.63 0.52 25.33

Zn
Some
cases
>10

<0.05 1.81 CZn = −2.26 − (11.34 × R680) + (41.89 ×WI) +
(20.68 × Lic1) −(3.63 ×MSI) − (4.14 × PRI2) 0.87 15.73 0.70 20.38

Pb All < 10 <0.05 1.55 CPb = 2.53 − (1.33 × VOG) + (1.93 ×MSI) + (0.85
× SIPI) 0.50 24.45 0.15 27.03

Cr All < 10 <0.05 1.06 CCr = −4.97 + (5.23 ×mNDVI705) + (0.17 × GI)
− (1.28 × RATIO975) 0.59 8.48 0.60 8.78

Cd All < 10 <0.05 1.27 CCd = −6.66 + (4.70 × SIPI) + (1.13 × DWSI) 0.66 121.77 0.67 112.17

* mg/kg: dry weight, Rn: reflections at a certain wavelength, Cn: concentration of a certain heavy metal.
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3.4.1. Modelling of Cu Concentration

Figure 5 illustrates the distribution of the observed vs. predicted concentration of Cu in the test
set. In some cases, the predicted values were significantly lower than the observed values, which led
to a sharp decrease in their accuracy. The optimal wavelengths in the SVM and MLR approaches
can predict test samples with 54 and 56% accuracy, respectively. Hence, as a general finding, using
wavelengths has a more acceptable performance as opposed to using spectral indices for estimating Cu
concentration in the grapevine leaves. In relation to the modelling approaches, it should be noted that,
although MLR yielded a slightly superior R2 than SVM (at the test set), the SVM–RMSE (25.06) was
lower than the MLR–RSME (25.65 mg/kg); therefore, the SVM’s performance seems more acceptable
(see also Tables 3 and 4).

 

Figure 5. Standardized values (between 0 and 1) of the observed (horizontal axis) and the predicted
(vertical axis) concentration of Cu based on wavelengths (top) and spectral indices (bottom) in the
testing sets of the SVM and MLR methods.

3.4.2. Modelling of Zn Concentration

The SVM and MLR approaches based on wavelengths were able to predict the Zn contents
with accuracies of 42–47% and based on spectral indices with accuracies of 70–85% in the testing set,
respectively (Tables 3 and 4). As shown in Figure 6, the predicted values overestimated the observed
values in most cases of wavelength-based models. However, a more uniform distribution was found
between the observed and predicted values in spectral indices-based models. Therefore, spectral
indices-based models tend to be preferred for predicting Zn contents in the grapevine leaves.
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Figure 6. Standardized values (between 0 and1) of the observed (horizontal axis) and the predicted
(vertical axis) concentration of Zn based on wavelengths (top) and spectral indices (bottom) in the
testing sets of the SVM and MLR methods.

3.4.3. Modelling of Pb Concentration

The MLR models based on wavelengths and spectral indices yielded a low performance in testing
sets with accuracies of 13% and 15%, respectively (Table 4 and Figure 7). Conversely, the SVM model
performed more reasonably and predicted Pb contents based on wavelengths and spectral indices in
the testing set with accuracies of 71% and 67% (RMSE: 22.49 and 24.51 mg/kg), respectively (Table 3
and Figure 7). It can thus be deduced that SVM is better at estimating Pb contents in the grapevine
leaves as opposed to MLR. It should also be noted that the wavelength–SVM model had a more
acceptable performance as compared to spectral indices. The obtained results therefore suggest that
the wavelength–SVM model is an optimal scenario for estimating Pb contents in grapevine leaves.

 

Figure 7. The standardized values (between 0–1) of the observed (horizontal axis) and the predicted
(vertical axis) concentration of Pb based on wavelengths (top) and spectral indices (bottom) in the
testing sets of the SVM and MLR methods.
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3.4.4. Modelling of Cr Concentrations

Figure 8 shows the distribution pattern of the observed vs. predicted values of Cr in the test set.
As shown, the predicted values were overestimated in most cases of MLR, but the predictions of SVM
were closer to the observed contents. Overall, the usage of the spectral indices–SVM model was an
optimal scenario for estimating Cr contents in the studied grapevine leaves (see also Tables 3 and 4).

 
Figure 8. The standardized values (between 0–1) of the observed (horizontal axis) and the predicted
(vertical axis) concentration of Cr based on wavelengths (top) and spectral indices (bottom) in the
testing sets of the SVM and MLR methods.

3.4.5. Modelling of Cd Concentrations

The wavelengths-based and spectral indices-based MLR models can estimate Cd contents with
accuracies of 64% and 67% in the testing set, respectively (Table 4 and Figure 9). On the other hand, the
accuracies of SVM were 77% and 86% in the testing set, respectively. Thus, the SVM outperformed the
MLR method at estimating Cd concentrations in the grapevine leaves. It must be admitted, however,
that the majority of observed values were around zero, leading to biased estimations. This is also
reflected in the RMSE values, which were higher than the other studied metals. Overall, the best model
presented by the SVM approach (based on spectral indices) had an RMSE value of 102.85 mg/kg dry
weight in the testing set (see also Table 3).
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Figure 9. The standardized values (between 0–1) of the observed (horizontal axis) and the predicted
(vertical axis) concentration of Cd based on wavelengths (top) and spectral indices (bottom) in the
testing sets of the SVM and MLR methods.

3.5. Summarizing Heavy Metal Modelling

Grapevine leaves are a suitable option for the study of the absorption and accumulation of heavy
metals [21]. Therefore, the monitoring of heavy metal concentration can ensure food security as well as
the reduction of health and ecological risks [16]. In this study, a stress–stroke method was employed to
ensure the appearance of heavy metals in grapevine foliage. This method was also used in similar
studies [34,38]. It is important to note that expanding heavy metal masses in plant foliage leads to
an increase in the number of reactive oxygen species [70]. Reactive oxygen species are produced in
the course of electron transfer activities—mainly in chloroplasts and mitochondria. They also have
an important role in consequences such as plant growth retardation, chlorophyll content reduction,
inhibition of enzymatic activity, damage to biological molecules (such as lipids, proteins, and nucleic
acids, especially DNA), cell membrane peroxidation, and damage to important cellular organelles
such as chloroplasts and mitochondria [71,72]. Heavy metal stress, like other non-biotic stresses, leads
to changes in the pathways of synthesis of secondary plant metabolites and increases or decreases
these compounds [73,74]. It was also observed that heavy metal stress leads to changes in the cuticle
position of the leaves and the openings of leaves’ stomas [73]. Considering the effect of heavy metals
on the physico-chemical changes in the plant, the spectral pattern of the plant can change, which leads
to the spectral pattern differentiation of stressed leaves from healthy leaves. These differentiations can
be determined by field-based spectrometry.

According to our results, SVM and MLR prediction methods performed similarly in estimating
Cu contents, but in relation to Zn, Pb, Cr, and Cd, the SVM models outperformed the MLR models
(Tables 3 and 4). Therefore, the SVM regression method tends to be preferred. Although, in related
studies, MLR was the most-used model due to its clarity and structure simplicity [30,41,45], the results
of this study recommend SVM for future investigations. The most important reason for the superiority
of SVM as opposed to MLR can be attributed to the nature of the relationships between independent
and dependent variables. SVM regression was able to perform more accurately in estimating heavy
metals due to its high flexibility in training by using both linear and nonlinear functions in the kernel
equation [75]. Similarly, a comparison between MLR and artificial neural network (ANN) methods
was performed to estimate heavy metals in rice leaves [38]; the results also showed the superior
performance of ANN as opposed to MLR.
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A comparison between the results obtained for the testing set and the optimal spectral indices
and wavelengths in estimating heavy metal contents in various studies was conducted and is shown
in Table 5. Based on the R2 rate of the test set, the performance order of the presented models was
Cd > Zn > Cr > Pb > Cu (Table 5). Therefore, the predictive accuracies for Cd, Zn, and Cu were 86, 85,
and 56%, respectively. Li (2011) listed a prediction order accuracy of heavy metals in vegetation as
Cr > Pb > Cu > Zn. Furthermore, Zhuang [41] ranked the prediction accuracy of heavy metals in rice as
Cu > Pb > Zn, which is different from the findings of the present study (Table 5). The rate of prediction
accuracy of Pb in this study is close to the findings of Li [44] and Zhuang [41]. The accuracy of Cr
prediction content is also comparable to the results of Li et al. [39]. According to Li [44], Zhuang [41]
and Ping et al. [30], Cu predictions were, respectively, 60, 76, and 69%, higher than the present study’s
result (56%) (Table 5). However, the present study was able to estimate Zn contents with a higher
accuracy compared with the results of Li [44], Zhuang [41], and Kooistra et al. [45], as well as Cd
contents as compared to the findings of Ping et al. [30] and Liu et al. [37].

As a final remark, in many studies, RDE and VIS regions were reported to be sensitive to the stress
caused by heavy metals [36,38,41]. The comparison of the optimal spectral indices and wavelengths
selected for the heavy metal rate predicted in the present study and other related studies show
discrepancies (Table 5). The number of spectral samples, spectroscopy acquisition level, spectral range,
calculated spectral indices, as well as statistical analyses for data reduction and relationship modelling
can all play a role in explaining these differences. Finally, it should also be pointed out that each heavy
metal has a special effect, leading to distinct responses depending on the plant species (including leaf
colour changes, chlorosis, necrosis, dwarfism, giant, leaf and root spreading, etc.), which can justify
this finding [76].

Table 5. Comparison results of the best models presented in this study and other similar studies in
relation to the estimation of heavy metal contents in plant species using field-based spectrometry.

Metal Reference Plant/Species Approach Optimal Spectral Indices/Wavelengths R2

Cu

Present study Grape MLR R616, R489, R809, R2431 0.56
Li [44] Vegetation MLR 0.60
Zhuang [41] Paddy/Rice MLR 0.76
Ping et al. [30] Maize MLR NI15, NI11 0.69

Zn

Present study Grape SVM R680 WI, Lic1, MSI, PRI2 0.85
Li [44] Vegetation MLR 0.48
Zhuang [41] Paddy/Rice MLR 661.96×R2210-136.26 0.34
Kooistra et al. [45] Grass MLR MSAVI2 0.64
Liu et al. [37] Rice ANN 0.95

Pb

Present study Grape SVM R1865, R728 R692, R683, R356 0.71
Li [44] Vegetation MLR 0.77
Zhuang [41] Paddy/Rice MLR 0.70
Ping et al. [30] Maize MLR NI15, NI17 0.87

Cr

Present study Grape SVM mNDVI705, GI, RATIO975, SIPI 0.80
Ping et al. [30] Maize MLR NI5, R553 0.49
Li et al. [39] Vegetation MLR R688, R672, R874, R677, R678, R679, R 680, R566 0.81

Cd

Present study Grape SVM SIPI, DWSI 0.86
Ping et al. [30] Maize MLR NI11, NI17 0.63
Liu et al. [37] Rice MLR 0.70

NI11: (R700–R690)/(R700+R690), NI15: (R760–850–R350–400)/(R760–850+R350–400), NI17:(R1220–R510)/
(R1220+R510), Rn: Reflections at a certain wavelength.

4. Conclusions

In this study, we examined the suitability of in-field hyperspectral data (wavelengths from 350 to
2500 nm and 32 spectral indices) in the estimation of heavy metal contents (Cu, Zn, Pb, Cr, and Cd) in
vine leaves. Our most important findings are listed as follows:

(i) The grapevine’s foliar spectral signatures (reflectance characteristics) altered when applying
heavy metal stress due to their effects on the biochemical components and the leaves’
structure. Considerable changes are observed in the VIS, RDE, NIR, and MIR regions of
the electromagnetic spectrum.

56



Remote Sens. 2019, 11, 2731

(ii) Significant correlations are found between the heavy metal contents and the grapevine’s foliar
spectral response, especially in VIS and RDE regions.

(iii) From the reflectance data, 32 spectral indices were formulated using two or more bands. In PLS
analysis, it was found that the Simple Ratio (SR), Cellulose Absorption Index (CAI), RATIO9752,
and DWSI; R680, Water Index (WI), Lic1, MSI, and Photochemical Reflectance Index (PRI)2;
Vogelman Index (VOG), MSI, SIPI, and R550; mNDVI705, Greenness Index (GI), RATIO975,
and SIPI; and SIPI and DWSI are more responsive to heavy metal contents compared with the
other indices. They are considered to be optimal indices to estimate Cu, Zn, Pb, Cr, and Cd
concentrations, respectively.

(iv) Also based on the PLS results, the wavelengths in the vicinity of 2431, 809, 489, and 616 nm;
2032, 883, 665, 564, 688, and 437 nm; 1865, 728, 692, 683, and 356 nm; 863, 2044, 415, 652, 713,
and 1036 nm; and 1373, 631, 744, and 438 nm are optimal for estimating Cu, Zn, Pb, Cr, and Cd
contents in the grapevine leaves, respectively. Accordingly, VIS and RDE emerged as the most
sensitive regions for monitoring heavy metal contents in grapevine leaves.

(v) In most cases, the SVM regression models yielded more accurate performances when estimating
heavy metal contents as opposed to the MLR models. For the best SVM structures, the
concentrations of Cu, Zn, Pb, Cr, and Cd are estimated with R2 values of 0.56, 0.85, 0.71,
0.80, and 0.86 in the testing set, respectively.

(vi) As a general finding, spectral indices yielded more acceptable performance as opposed to
wavelengths in forecasting heavy metal contents in the grapevine leaves.

Altogether, the scenario of joining spectral indices with SVM regression is suggested as the most
appropriate method for predicting heavy metal contents in the grapevine leaves. At the same time,
this conclusion underpins the usage of in-field spectroscopy data and multivariate statistical analysis
for the rapid and eco-friendly monitoring of heavy metals in food-producing ecosystems. This study
further revealed that the spectral responses of foliar grapevine and other agriculture/horticulture
species to heavy metal stress need to be better understood. Similar studies are required to investigate
heavy metal spectral signatures in other plant species. Eventually, the ultimate goal of this research
line is to integrate field data with spectral data from overpassing aerial and satellite sensors to up-scale
and automate the monitoring strategy to the field scale.
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Abstract: To obtain a high-accuracy vegetation classification of high-resolution UAV images, in this
paper, a multi-angle hyperspectral remote sensing system was built using a six-rotor UAV and a Cubert
S185 frame hyperspectral sensor. The application of UAV-based multi-angle remote sensing in fine
vegetation classification was studied by combining a bidirectional reflectance distribution function
(BRDF) model for multi-angle remote sensing and object-oriented classification methods. This method
can not only effectively reduce the classification phenomena that influence different objects with
similar spectra, but also benefit the construction of a canopy-level BRDF. Then, the importance of the
BRDF characteristic parameters are discussed in detail. The results show that the overall classification
accuracy (OA) of the vertical observation reflectance based on BRDF extrapolation (BRDF_0◦) (63.9%)
was approximately 24% higher than that based on digital orthophoto maps (DOM) (39.8%), and
kappa using BRDF_0◦ was 0.573, which was higher than that using DOM (0.301); a combination
of the hot spot and dark spot features, as well as model features, improved the OA and kappa to
around 77% and 0.720, respectively. The reflectance features near hot spots were more conducive to
distinguishing maize, soybean, and weeds than features near dark spots; the classification results
obtained by combining the observation principal plane (BRDF_PP) and on the cross-principal plane
(BRDF_CP) features were best (OA = 89.2%, kappa = 0.870), and especially, this combination could
improve the distinction among different leaf-shaped trees. BRDF_PP features performed better than
BRDF_CP features. The observation angles in the backward reflection direction of the principal
plane performed better than those in the forward direction. The observation angles associated
with the zenith angles between −10◦ and −20◦ were most favorable for vegetation classification
(solar position: zenith angle 28.86◦, azimuth 169.07◦) (OA was around 75%–80%, kappa was around
0.700–0.790); additionally, the most frequently selected bands in the classification included the blue
band (466 nm–492 nm), green band (494 nm–570 nm), red band (642 nm–690 nm), red edge band
(694 nm–774 nm), and the near-infrared band (810 nm–882 nm). Overall, the research results promote
the application of multi-angle remote sensing technology in vegetation information extraction and
provide important theoretical significance and application value for regional and global vegetation
and ecological monitoring.

Keywords: multi-angle observation; hyperspectral remote sensing; BRDF; vegetation classification;
object-oriented segmentation
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1. Introduction

The vegetation ecosystem is an important foundation for ecological systems [1]. The use of
remote sensing technology has become the main approach for vegetation ecological resource surveys
and environmental monitoring due to the corresponding real-time, repeatability, and wide-coverage
advantages [2–4]. With the development of remote sensing technology, visible light, multispectral,
hyperspectral, and other sensors have been widely used in the remote sensing of vegetation [5,6],
and more hyperspectral and high-resolution information has been obtained than ever before, greatly
improving the accuracy of image classification [7,8].

As one of the current frontiers of remote sensing development, hyperspectral remote sensing
technology has played an increasingly important role in quantitative analyses and accurate
classifications of vegetation due to its ability to acquire high-resolution spectral and spatial data [9–12].
For instance, Filippi utilized an unsupervised self-organizing neural network to perform complex
vegetation mapping in a coastal wetland environment [13]. Fu et al. proposed an integrated scheme
for vegetation classification by simultaneously exploiting spectral and spatial image information to
improve the vegetation classification accuracy [14].

From the perspective of remote sensing imaging, remote sensing vertical photography can
obtain only the spectral feature projection of the target feature in one direction, and it lacks sufficient
information to infer the reflection anisotropy and spatial structure [15]. Multi-angle observations of
a target can provide information in multiple directions and be used to construct the bidirectional
reflectance distribution function (BRDF) [16–18], which increases the abundance of target observation
information; additionally, this approach can extract more detailed and reliable spatial structure
parameters than a single-direction observation can [19]. Multi-angle hyperspectral remote sensing,
which combines the advantages of multi-angle observation and hyperspectral imaging technology,
is projected to become an effective technical method for the classification of vegetation in remote
sensing images.

The UAV remote sensing platform has emerged due to its flexibility, easy operation, high efficiency,
and low cost; it can efficiently acquire high-resolution spatial and spectral data on demand [20]. The
UAV remote sensing platform has the ability to provide multi-angle observations and thus has become
popular in multi-angle remote sensing [21–24]. Roosjen et al. studied the hyperspectral anisotropy
of barley, winter wheat, and potatoes using a drone-based imaging hyperspectrometer by obtaining
multi-angle observation data for hemispherical surfaces by hovering around the crops [25]. In addition,
Liu and Abd-Elrahman developed an object-based image analysis (OBIA) approach by utilizing
multi-view information acquired using a digital camera mounted on a UAV [26]. They also introduced
a multi-view object-based classification using deep convolutional neural network (MODe) method
to process UAV images for land cover classification [27]. Both methods avoided the salt and pepper
phenomenon of the classified image and have achieved favorable classification results. However,
it is difficult to obtain the continuous spectrum characteristics of the ground objects because of the
fewer wave bands the optical sensors use. Moreover, the research does not fully mine the contribution
difference of multi-angle features. Furthermore, how to use the limited multi-angle observations to
construct the BRDF of ground objects to enrich the observation information of the target is also one of
the difficulties in the application of multi-angle remote sensing.

In this paper, key technical issues, such as the difficulty in distinguishing complex vegetation
species from a single remote sensing observation direction, the construction of the BRDF model
based on UAV multi-angle observation data, and model application for vegetation classification and
extraction, were studied. The purpose of this study was to discuss the role of ground object BRDF
characteristic parameters in the fine classification of vegetation, thereby improving the understanding
of the relationship between the BRDF and plant leaves and vegetation canopy structure parameters,
as well as promoting the application of multi-angle optical remote sensing in the acquisition of
vegetation information.
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2. Date Sets

2.1. Study Area

The research area was in the village of Luozhuang, Changziying town, Daxing District, Beijing, as
shown in Figure 1. The image was acquired on 24 August 2018. The weather was clear and cloudless.
The rich vegetation types included weeds, crops, and tree species, as shown in Figure 2. The crops
included soybean in the flowering and pod-bearing stages, and maize in the powder stage. The tree
species included mulberry, peach, and ash trees. The vegetation grew densely, and shadows greatly
affected the classification results. Therefore, shadows were recognized as a type of object in this paper.
In summary, the land species were divided into eight types: weeds, soybeans, maize, mulberries, peach
trees, ash trees, dirt roads, and shadows.

Figure 1. Study site.

Figure 2. Schematic images of the vegetation types in the study area.

2.2. UAV Hyperspectral Remote Sensing Platform

In this paper, a Cubert S185 hyperspectral sensor mounted on a DJI Jingwei M600 PRO (Dajiang,
Shenzhen, China), which is a rotary-wing vehicle with six rotors, was used to obtain research data,
and is shown in Figure 3. The Cubert S185 frame-frame imaging spectrometer (Germeny) [28]
simultaneously captured both low spatial resolution hyperspectral images (50 × 50 pixels) and high
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spatial resolution panchromatic images (1000 × 1000 pixels), and then obtained high spatial resolution
hyperspectral images via data fusion using Cubert Pilot software. The sensor provides 125 spectral
channels with wavelengths ranging from 450 nm to 950 nm (4-nm sampling interval). Table 1 lists the
main performance parameters of the hyperspectral cameras.

 

(a) (b) 

Figure 3. Sensor system and UAV platform: (a) Cubert hyperspectral camera and (b) DJI Jingwei
M600 PRO.

Table 1. Main parameters of the Cubert UHD 185 snapshot hyperspectral sensor (provided by the
manufacturer).

Specification Value Specification Value

Wavelength range 450–946 nm Housing 28 cm, 6.5 cm, 7 cm
Sampling interval 4 nm Digitization 12 bit
Full width at half

maximum
8 nm at 532 nm, 25 nm at

850 nm
Horizontal field of view

Cube resolution
22◦

1 megapixel
Channels 125 Spectral throughput 2500 spectra/cube

Focal length 16 mm Power DC 12 V, 15 W
Detector Si CCD Weight 470 g

2.3. Flight Profile and Conditions

The drone mission was implemented from 12:10 to 12:30 on 24 August 2018. Regarding the
sun’s position, the zenith angle was 28.86◦, and the azimuth was 169.07◦. The weather was clear and
cloudless, there was no wind, and the light intensity was stable. The flying height was 100 m, and the
acquired hyperspectral image had a ground sample distance of 4 cm after data fusion. To ensure that
the remote sensing platform obtained a sufficient observation angle for each feature and to improve
the accuracy of the BRDF model construction, the flight adopted vertical photography and oblique
photogrammetry (the angle of the mirror center was 30◦). To obtain more abundant multi-angle
observation data, the image heading and side overlap were both greater than 80%. Moreover, RTK
(real-time kinematic) carrier phase difference technology was used to measure the coordinates of the
ground control points with a planimetric accuracy better than 1 cm. The number of control points was
5, and they were located in areas with clear, distinguishable, and unblocked GPS signals.

2.4. Data Processing

According to the flight mission plan described above, the hyperspectral experimental dataset
was successfully acquired, and the data were processed with Agisoft PhotoScan software Version
1.2.5 (St.Petersburg Russia) to generate a digital orthophoto map (DOM) and digital surface model
(DSM) data for the research area. Data processing included matching according to high definition
digital images and position and orientation system (POS) information at the time of image acquisition
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(latitude and longitude, altitude, flip, and pitch and rotation angle of the UAV flight), detecting the
feature points of photos based on a dynamic structure algorithm, establishing matching feature point
pairs, and arranging photos. A dense three-dimensional point cloud was generated using a dense
multi-perspective stereomatching algorithm, and the ground control points were input for geometric
corrections. Finally, the DSM and DOM of the experimental area were obtained, as shown in Figure 4.

  

(a) (b) 

Figure 4. Data processing results: (a) DSM and (b) DOM.

3. Materials and Methods

This paper proposed a novel vegetation classification method combining an object-oriented
classification method and BRDF. The relationship between BRDF characteristics and plant leaves and
vegetation canopy structure is discussed to promote the development of multi-angle optical remote
sensing in the application field of vegetation remote sensing. First, the method of image segmentation
combining spectral and DSM features was studied to improve the accuracy of the object-oriented
edge and the segmentation of the plaque. Second, multiple hyperspectral data sets were obtained
using vertical and oblique photogrammetry, the acquired multi-angle observation data of the ground
object were used, and then the semi-empirical kernel driver model was used to invert the BRDF model
of each object patch. Third, according to the characteristics of BRDF for each segmentation patch, a
multi-class feature set was constructed. Finally, object-oriented classification was carried out for fine
vegetation classification. The specific research technology route is shown in Figure 5:
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Figure 5. Flowchart of the classification method. DSM: digital surface model, DOM: digital orthophoto
maps, BRDF: bidirectional reflectance distribution function.

3.1. Image Segmentation

UAV remote sensing technology can acquire DSMs through the acquisition and processing of
multiple overlapping images, and this information can be used as auxiliary information to improve the
image segmentation accuracy. In this study, the DSM and spectral characteristics were taken as basic
information, and the object set of the UAV hyperspectral image segmentation was constructed using
Definiens eCognition Developer 7.0 (München, Germany). A multi-resolution segmentation method
was adopted. A segmentation scale parameter was manually adjusted using a trial and error method
and finally a segmentation scale of 50 was selected, which resulted in visually correct segmentation.
The shape and compactness weight parameters [29] used in the segmentation algorithm were also
found using trial and error, and values of 0.05 and 0.8 were used, respectively.

Next, the extraction of the feature sets for image segmentation patches were discussed, which
were used for vegetation classification.

3.2. Multi-angle Observation Data Acquisition and BRDF Model Construction

First, the maximum inscribed circle of each object patch was obtained as the attribute representative
of the patch. Second, corresponding image points for each pixel inside the inscribed circle were found.
Then, the average value of the reflectances in the corresponding circular area in one image was read
as the reflectivity of the segmented block under different observation angles. At the same time, the
observation angle of each image block with the same name was obtained. Finally, the BRDF model of
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the segmentation block was constructed by using the reflectance of a multi-angle observation. The
specific steps were as follows:

(1) Aerotriangulation and camera attitude parameter solution:
On the basis of multi-angle image data sets with high amounts of overlap acquired through

vertical photography and oblique photogrammetry, control point data obtained using synchronous
field measurements were used to calculate the coordinates of pending points in the study area via
aerotriangulation and then used as control points for multiple images and image correction. In this
method, aerial camera stations were established for the whole network, and the acquired images were
used for point transmission and network construction.

The exterior and interior orientation parameters were obtained via aerotriangulation with control
point data, and the internal camera parameters were obtained via camera calibration. The camera
calibration and orientation was carried out suing the Agisoft Photoscans software. Then, the coordinates
of the known object in three-dimensional space, the corresponding image pixel coordinates, and the
camera interior parameters were used to determine the exterior parameters of the object in a known
space, namely the rotation vector and the translation vector. Finally, the rotation vector was analyzed
and processed to obtain the three-dimensional altitude angle of the camera relative to the spatial
coordinates of the known object by considering the pitch, rotation, and wheel angles.

(2) Search for the corresponding image points:
The corresponding image point refers to the image point of any ground object target point in

different photos [30]. It was obtained by photographing the same object point multiple times at different
photo points during the aerial photography. After calculating the coordinates of the pending points in
the study area and the elements of the internal and external orientations of each image, a collinearity
equation with digital photogrammetry was used to determine the image plane coordinates of the target
point for each image; then, the characteristics of the sensor image were used to determine whether
each coordinate was within the visual threshold range and to search the image for corresponding
image points.

(3) Observation angle and reflectance of points with the same name:
After searching for points with the same name, the zenith angle and observation azimuth of

the object point in each image and points with the same name were calculated using the orientation
relationship between the camera station (projection center) and the object point. In addition, the
reflectance of points with the same name was determined for the selected band image.

(4) Parameter calculation for the semi-empirical kernel driver model:
Algorithm for model bidirectional reflectance anisotropics of the land surface (AMBRALS) [31]

was selected to construct the BRDF. The semi-empirical core-driven model can be expressed using
Equation (1):

R(θ, ∂, σ) = fiso + fvolKvol(θ, ∂, σ) + fgeoKgeo(θ, ∂, σ). (1)

The bidirectional reflectance can be decomposed into the sum of the weights of the three parts of
uniform reflection, bulk reflection, and geometric optical reflection. Therefore, the value of isotropic
reflection is generally equal to 1. In the core-driven model, R represents the bidirectional reflectivity, θ
represents the ray zenith angle, ∂ represents the observation angle of the zenith angle, and σ represents
the corresponding azimuth angle. Kvol and Kgeo are the bulk nuclear reflection and geometric optical
nuclear reflection, respectively. fiso, fvol, and fgeo are constant coefficients that represent the proportions of
uniform reflection, bulk reflection, and geometric optical reflection, respectively. The linear regression
method was used to solve for the optimal parameter values. In addition, the bulk nuclear reflection
and geometric optical nuclear reflection in the formula were calculated using the ray zenith angle,
the observation zenith angle, and the corresponding azimuth angle, and therein, the ray zenith angle
and the azimuth angle were calculated based on the time and date the image was obtained and the
coordinates of the object point.
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3.3. Feature Set Construction Based on the BRDF

To evaluate the application value of the BRDF model for vegetation classification, this study
extracted two types of features from the BRDF model as the basic attributes for the identification of
vegetation species. The first type was bidirectional reflectance factor (BRF) predicted by the BRDF
model, including the maximum (hot spot) and the minimum (dark spot) reflectance values observed in
the backscattering and forward scattering regions, respectively; the multi-angle observation reflectance
in the main plane of the observation (considering the maximum view zenith angle of the remote
sensing sensor, which was set to 60◦); and then the observations in the principal planes beginning from
the 0◦ zenith angle in the forward and backward directions of observation with a 10◦ sampling interval
to obtain the multi-angle observation data. The multi-angle observed reflectance of the main vertical
observation plane (the angular sampling method was consistent with the main plane of observation)
and joint feature set of multi-angle reflectance for the main planes (25) were also considered. Second,
the BRDF model parameters fiso, fvol, and fgeo were considered [25]. Table 2 summarizes the feature sets
used for vegetation species identification.

Table 2. Feature set construction using the BRDF for object-oriented classification.

Explanatory Variable Abbreviation

Commonly Used Reflectance obtained from DOM DOM

BRDF Characteristics
(1) Modeled bidirectional
reflectance factors (BRFs)

Vertical observation angle BRDF_0◦
Hot and dark spots reflectance signatures BRDF_HS_DS
Observation angles on principal plane BRDF_PP
Observation angles on cross-principal plane BRDF_CP
Observation angles on principal and cross planes BRDF_PP+CP

(2) Model parameters fiso, fvol and fgeo BRDF_3f

3.4. Vegetation Classification and Accuracy Assessment

After obtaining the noise attribute information for each object according to the above scheme,
the C5.0 decision tree [32] method was used to construct the vegetation species recognition model.
The decision tree algorithm has a structure similar to the tree structure shown in the flow chart. This
structure can intuitively display the classification rules, and the classification algorithm has a fast speed,
high accuracy, and simple generation mode. This study used the SPSS Clementine V16.0 software
(IBM, Chicago, USA) to achieve a fine classification of vegetation based on the C5.0 decision tree. To
verify the effectiveness of the method, the image segmentation results were taken as samples, and the
number of each sample was summarized, as shown in Table 3. Sixty percent of the samples were used
as model training samples, and the remaining 40% were used as verification samples.

Table 3. Samples of vegetation types.

Types Dirt Roads Weeds Soybeans Maize Mulberries Peach Trees Ash Trees Shadows

Number 36 26 17 29 25 38 26 38

The quantitative evaluation of the classification results mainly included the following index
factors [33]: confusion matrix (overall accuracy, producer’s accuracy, and user’s accuracy) and the
kappa coefficient. The overall accuracy is essentially tells us out of all the reference sites, what
proportion were mapped correctly. The producer’s accuracy is the map accuracy from the point of
view of the map maker (the producer). This is how often real features on the ground are correctly
shown on the classified map or the probability that a certain land cover of an area on the ground is
classified as such. The user’s accuracy is the accuracy from the point of view of a map user, not the
map maker. It essentially tells the user how often the class on the map will actually be present on the
ground. This is referred to as the reliability. The kappa coefficient is a statistical measure of inter-rater
agreement or inter-annotator agreement for qualitative (categorical) items.
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4. Image Classification Results

According to the set of classification feature parameters listed in Table 2, an image classification
based on C5.0 was performed. A quantitative evaluation of the classification results is shown in Table 4.
The overall classification accuracy based on BRDF_0◦ (63.9%) was approximately 24% higher than that
based on the DOM. Two principal plane reflectance feature sets (BRDF_PP+CP) were used for the fine
classification of vegetation, and the best results were obtained. The overall accuracy of classification
(89%) was greatly improved by 39%, and the kappa coefficient (0.870) was increased by 0.438. The
classification results for the study area based on BRDF_PP+CP are shown in Figure 6.

Table 4. Classification accuracy based on a feature set construction with the BRDF (overall accuracy
(OA) and kappa).

Explanatory Variable OA Kappa

Commonly Used DOM 39.8 0.301

BRDF Characteristics
Modeled bidirectional

reflectance factors (BRFs)

BRDF_0◦ 63.9 0.573
BRDF_0◦+HS+DS 77.1 0.728

BRDF_PP 85.5 0.828
BRDF_CP 78.3 0.740

BRDF_PP+CP 89.2 0.870

BRDF model parameters BRDF_0◦_3f 78.3 0.739

Figure 6. Classification results: (a) the reference map, (b) the map produced using DOM, and (c) the
map produced based on multi-angle reflectance characteristics of the observed principal planes and
cross-principal planes.

From Figure 6, the object-oriented vegetation classification method based on the multi-angle
reflectance characteristics achieved good mapping results with clear boundaries and an accurate
location distribution. BRDF_PP+CP feature sets helped to improve the recognition accuracy of the
junction of different tree species, as shown in the blue rectangle in Figure 6. This was because the
observation data from different angles could reflect the difference in tree structure, and the tree species
could be identified well using multi-angle difference features. In addition, it could improve the
accuracy of the division of corn and field roads, as shown in the yellow rectangle in Figure 6. However,
although the BRDF_PP+CP greatly improved the identification accuracy for shadows, it performed
poorly regarding the distinction between shadows and weeds with a low height, as shown in the black
area of Figure 6. The spectral vegetation types under shadow coverage in the study area were various,
and the spectral characteristics of shadow were similar to those of weeds with a low height.
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5. Discussion

5.1. Applicability Assessment of BRDF Characteristic Types

For promoting the realization of the relationship between the BRDF and plant leaves and vegetation
canopy structure parameters, the following subsections are given to discuss the role of the ground
object BRDF characteristic parameters in the fine classification of vegetation.

(1) Performance of BRDF_0◦:
Table 4 shows that compared with the classification results based on the DOM, the classification

accuracy based on BRDF_0◦ was greatly improved. Figure 7 shows the producer’s accuracy and user’s
accuracy of each type of land feature using two classification features.

Figure 7. Vegetation classification accuracy based on DOM and BRDF_0◦.

Figure 7 indicates that BRDF_0◦ was instrumental in the distinction among different objects. The
vertical reflectance data of DOM were obtained using statistical methods. However, the method of
using a semi-empirical model to construct the BRDF and invert the vertically observed reflectance
combines the advantages of an empirical model and a physical model. Although the model parameters
are empirical parameters, they have certain physical significance. Consequently, the observation angle
of the ground objects is unified with the vertical observations through the BRDF model, which weakens
the reflection characteristics of the same type of vegetation affected by the observation angle difference.
Compared with the classification results obtained using DOM data, the classification accuracy obtained
using BRDF_0◦ was greatly improved, but the recognition accuracy of dirt roads, peach trees, and ash
trees was still very low. The producer’s accuracy of weeds, soybeans, and maize improved to greater
than 90%, but the user’s accuracy improved only slightly, which indicates that the results for these
three types of land features were overclassified.

(2) Hot and dark spot reflectance signatures:
Six feature sets were used to classify vegetation, namely, the vertical observation direction

(BRDF_0◦); hot spot observation direction (BRDF_HS); dark spot observation direction (BRDF_DS);
vertical observation direction and hot spot direction (BRDF_0◦+HS); vertical observation direction and
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dark spot direction (BRDF_0◦+DS); and vertical observation direction, hot spot direction, and dark
spot direction (BRDF_0◦+HS+DS). The overall classification accuracy and kappa coefficients of the six
feature sets are shown in Figure 8. The classification accuracy of BRDF_0◦+HS+DS was the highest at
about 77%. The classification effect of vegetation types using BRDF_DS was slightly worse than that
using BRDF_0◦, while the classification effect of vegetation types using BRDF_HS was better than that
using BRDF_0◦. The results show that the hot spot reflectance signature had an excellent effect in the
recognition of complex vegetation types. This was because the reflection characteristics of different
objects in the direction of dark spots were lower than those in the direction of hot spots, and the hot
spot effects between crops and tree species were quite different. The producer and user accuracies of
each type of land feature are shown in Figure 9.

Figure 8. Overall accuracy and kappa coefficient of vegetation classification based on hot and dark
spot characteristics.

Figure 9. Cont.
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Figure 9. Producer’s accuracy and user’s accuracy for each vegetation type based on hot and dark
spot characteristics.

From Figure 9, the combined application of dark spot and hot spot directional reflectance features
improved the classification accuracy. The classification results for soybean, peach trees, mulberry trees,
and ash trees using BRDF_HS were more accurate than those using BRDF_DS. In contrast, the ground
objects with a high accuracy included dirt roads and shadows based on the reflection features in the
dark spot direction. The research shows that the tree structure features had a high sensitivity in the hot
spot direction.

(3) Multi-angle reflectance characteristics of the observed principal plane and cross-principal plane:
Four feature sets were used to classify the vegetation, namely the reflectance values from the

vertical observation direction (BRDF_0◦), principal plane (BRDF_PP), cross plane (BRDF_CP), principal
and cross planes (BRDF_PP+CP). The corresponding classification results are shown in Figure 10. The
classification accuracy using BRDF_PP+CP was the highest (OA = 88%). The reflectance characteristics
from the principal plane were more conducive to the classification of complex vegetation species than
those in the vertical main plane. The producer’s accuracy and user’s accuracy of each type of land
feature are shown in Figure 11.

Figure 10. Overall accuracy and kappa coefficient of the vegetation classification based on the
multi-angle reflectance characteristics for the observed principal plane and cross-principal plane.
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Figure 11. Producer’s accuracy and user’s accuracy of each vegetation type based on the multi-angle
reflectance characteristics for the observed principal plane and cross-principal plane.

Figure 11 shows that the combined application of reflectance characteristics from the principal and
cross planes could improve the classification accuracy. The joint classification results for the reflectance
characteristics in the two main planes show that the producer’s accuracy of other land features was
greater than 90%, the producer’s accuracy of peach seedlings was approximately 52%, and the peach
seedlings were misclassified as soybean and ash trees.

(4) BRDF model parameters:
Three feature sets were used to classify vegetation, namely the reflectance from the vertical

observation direction (BRDF_0◦), BRDF model parameters (BRDF_3f), and reflectance from the vertical
observation direction and BRDF model parameters (BRDF_0◦+3f). The corresponding classification
results are shown in Figure 12. The classification accuracy of BRDF_0◦+3f was the highest (OA =
78%). The proportions of uniform reflection, bulk reflection, and geometric optical reflection were
expressed as parameters. The addition of model parameters increased the descriptive information for
the physical structure of vegetation, which contributed to the classification. The producer’s and user’s
accuracies of each type of land feature are shown in Figure 13.
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Figure 12. Overall accuracy and kappa coefficient of vegetation classification based on the BRDF
model parameters.

 

Figure 13. Producer’s accuracy and user’s accuracy of each vegetation type based on the BRDF
model parameters.

5.2. Importance Evaluation of the Observation Angle and Band Selection

Figure 14 shows the variation in the classification accuracy (overall accuracy and kappa coefficient)
based on a single observation angle feature in the main observation plane and main vertical plane. The
angle feature in the main plane was observed. The angle feature located in the backward reflection
direction (zenith angle between −10◦ and −20◦) was associated with the optimal overall accuracy
and kappa coefficient. In the main vertical observation plane, the classification accuracy exhibited a
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symmetrical phenomenon with the angle distribution, and the variation in amplitude was lower than
that in the main observation plane.

Figure 14. Observation angle importance analysis for the main plane. The blue/red dotted lines
represent the classification results using DOM data.

Hyperspectral remote sensing has the advantage of providing hundreds of spectral channels
of data to obtain the spectral curves to reflect the attribute differences of the object. It also provides
convenience for the study of the band sensitivity of different vegetation types. Figure 15 shows the
top 10 bands in terms of feature importance when only the multiband dataset for the observation
zenith angle was used for classification in the main observation plane, where the diameter of the circle
represents the importance degree of the band. The importance of features were calculated using SPSS
Clementine software, and the indicators included the sensitivity and information gain contribution.
The results show that in the main plane of observation, the blue band (466–492 nm), green band
(494–570 nm), red band (642–690 nm), red edge band (694–774 nm), and near-infrared band (810–882
nm) were of high importance, among which the blue light band, red light band, and red edge band
were the most important.

 
Figure 15. The importance of band selection at each angle in the principal plane. The diameter of the
circle represents the importance of the band.

6. Conclusions

In this paper, the application of UAV multi-angle remote sensing in the fine classification of
vegetation was studied by combining a constructed multi-angle remote sensing BRDF model with an
object-oriented classification method. High-resolution image classification extraction with a UAV was
the objective, and the importance of ground object BRDF characteristic parameters was discussed in
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detail. In addition, considering the spectral segmentation advantage of hyperspectral data and the
importance of features from the two principal planes, the observation angles and band conditions of
the participating classifications were further analyzed. The main conclusions are as follows.

(1) The overall classification accuracy (63.9%) based on the BRDF vertical observation reflectance
characteristics was approximately 24% higher than that of traditional UAV orthophoto-based
classification. The combined application of the reflection features from the main observation plane and
main vertical plane yielded the best classification results, with an overall accuracy of approximately
89.2% and a kappa of 0.870.

(2) The reflectance characteristics near the hot spots were favorable for distinguishing between
corn, soybean, and weeds. The combined application of the reflectance characteristics from the main
observed plane could improve the classification accuracy of trees with different leaf shapes.

(3) The viewing angle characteristics in the retroreflective direction of the principal plane were
better than those in the forward reflection direction. The observation angles associated with zenith
angles between −10◦ and −20◦ were the most favorable for vegetation classification (sun position:
zenith angle 28.86◦, azimuth 169.07◦).

(4) Bands of high importance for the fine classification of vegetation included the blue band
(466–nm), green band (494–570 nm), red band (642–690 nm), red edge band (694–774 nm), and
near-infrared band (810–882 nm), among which the blue, red, and red edge bands were the
most important.

Due to the UAV hyperspectral image with a centimeter spatial resolution, when the research
target size was larger than the image resolution, the introduction of an object-oriented analysis method
can make the work of target recognition more accurate and efficient. Additionally, combining the
construction of a multi-angle remote sensing BRDF model with an object-oriented classification method
is very conducive to the study of the BRDF characteristics of canopy level vegetation. The research
results provide a methodological reference and technical support for BRDF construction based on
UAV multi-angle measurements, which promotes the development of multi-angle remote sensing
technology in vegetation information extraction. The study provides important theoretical significance
and application value for regional to global vegetation remote sensing applications. In this paper,
only two classification characteristics of the reflectance and model parameters were proposed for the
BRDF model. Research on the application of index characteristics, such as the vegetation index and
BRDF shape index in vegetation classification, along with an evaluation of different classifiers, will be
developed in future work.
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Abstract: Modeling the hyperspectral response of vegetables is important for estimating water stress
through a noninvasive approach. This article evaluates the hyperspectral response of water-stress
induced lettuce (Lactuca sativa L.) using artificial neural networks (ANN). We evenly split 36 lettuce
pots into three groups: control, stress, and bacteria. Hyperspectral response was measured four
times, during 14 days of stress induction, with an ASD Fieldspec HandHeld spectroradiometer
(325–1075 nm). Both reflectance and absorbance measurements were calculated. Different biophysical
parameters were also evaluated. The performance of the ANN approach was compared against
other machine learning algorithms. Our results show that the ANN approach could separate the
water-stressed lettuce from the non-stressed group with up to 80% accuracy at the beginning of
the experiment. Additionally, this accuracy improved at the end of the experiment, reaching an
accuracy of up to 93%. Absorbance data offered better accuracy than reflectance data to model it.
This study demonstrated that it is possible to detect early stages of water stress in lettuce plants with
high accuracy based on an ANN approach applied to hyperspectral data. The methodology has the
potential to be applied to other species and cultivars in agricultural fields.

Keywords: spectroscopy; artificial intelligence; proximal sensing data; precision agriculture

1. Introduction

Remote sensing is an important tool for the analysis of vegetation in agricultural fields because
it allows farmers to obtain data in a faster manner than most traditional methods [1,2]. Changes
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in the spectral response of plants can be observed with equipment that records wavelength values,
such as a spectroradiometer [3]. The analysis of the spectral signatures enables the identification of
vegetation characteristics that would not be visually perceived in asymptomatic plants [4]. Because of
this, many studies focusing on phytosanitary problems are based on spectroscopy. These problems
include nutritional deficiencies [5–7]; diseases [8], biomass [9], and, as in the present study, water
stress [10].

The spectral response of a plant differs according to the species, which motivates the creation of
different approaches to model it [11]. One of the problems commonly faced by farmers is related to
water stress, which limits growth and compromises its production [12]. Water stress is responsible
for chlorophyll variation and impairing other biological components, such as leaf area and root
size [13]. The alteration of these components results in the appearance of visual symptoms, but they are
difficult to identify due to their similarity to other problems, such as diseases, malnutrition, and cold
damage [14]. An alternative that can identify changes caused by water stress alone is hyperspectral
analysis [10,11].

The amount of leaf water is best estimated in the near-infrared and medium-infrared spectral
regions [15]. In the near-infrared region, the spectral response is associated with the structural
organization of intracellular molecules located in the mesophyll, which is affected as a consequence
of stress [14]. Stress may also unbalance other physiological conditions and cause changes in visible
and red-edge regions [15]. Changes in these spectral regions are associated with foliar pigmentation.
Studies have sought to evaluate spectral behavior in these and other regions of the spectrum [16,17].
In addition, the absorbance curve has shown a better relationship with leaf pigmentation [18], which
encourages the use of absorbance data to evaluate the negative effects caused by stress in plants.

Different approaches have been adopted to model the hyperspectral response when detecting
water stress in cultures. In rice, multivariate analysis models were applied to determine the spectral
response of the plant under different stress levels [10]. In tomatoes, classification trees were used to
separate the spectral indices that best corresponded to the induced water stress [12]. In winter wheat
crops, through continuous analysis of hyperspectral data over time, it was possible to quantify water
stress in relation to other variables, such as disease and nitrogen accumulation [19]. Other studies
have evaluated the implications of water stress through hyperspectral data in different plants, such as
vineyards [11] and citrus fruits [20].

Recently, machine learning approaches have been used in modeling the hyperspectral response
of different conditions associated with vegetation [21]. The popular techniques used for analyzing
data include regression analysis, vegetation indices, linear polarizations, wavelet-based filtering, and,
currently, machine learning algorithms like random forest, decision tree, support vector machine (SVM),
k-nearest neighbor (kNN), artificial neural networks (ANN), naïve Bayes (NB), and others [22–25].
To evaluate the hyperspectral response of plants, machine learning has already been implemented in
different scenarios. A radial basis function and the kNN were used to detect citrus canker in several
disease development stages [26]. ANN, NB, and kNN were also used to model pepper fusarium
disease in a climate room [27]. A combination of different machine learning algorithms like SVM,
ANN, and others were also evaluated to model photosynthetic variables [28].

In lettuce, water stress poses a major threat. To deal with this, commercially available seeds are
being inoculated with rhizobacteria, because it mitigates the effects of the stress [29]. These effects;
however, may not be visually perceptible, which makes detection by ordinary approaches difficult.
Hyperspectral data have already demonstrated high potential in assessing water stress in plants in
different spectral regions (350–2500 nm) [11,23,30]. However, to date, no model has evaluated the
spectral response of lettuce submitted to water stress. Here we evaluate the hyperspectral response of
water-stress induced lettuce with a machine learning method through ANN. The contribution of this
study is twofold. Firstly, we identified the effects of water stress in lettuce and its association with their
spectral response. Secondly, we evaluated the performance of the ANN algorithm to model its effects.
The rest of this article is organized as follows. Section 2 presents the materials and methods adopted
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in this study. Sections 3 and 4 present and discuss the results obtained in the experimental analysis.
Finally, Section 5 concludes the article.

2. Materials and Methods

The experiment was conducted in a growth chamber under controlled conditions in a phytotron.
Twenty-eight-day-old lettuce (Lactuca sativa L.) plants were transplanted to pots with 0.5 kg of
agricultural soil (pH (CaCl2 0.01 mol L−1) 5.9; 43.9 mg dm-3 of P (Mehlich-1), 2.7 mmol dm-3 of K,
25.3 mmol dm-3 of Ca, 5.3 mmol dm-3 of Mg, 14.3 mmol dm-3 of H +Al). The experimental design was
randomized with three treatments (n = 36). One treatment was carried out with B. subtilis inoculation,
strain AP-3 [31]. The inoculation was performed with bacteria obtained by scraping cells multiplied
in a solid medium, diluted in sterile water to a concentration of 1.0.109 cels. mL−1, and 0.1 mL per
inoculum. The plants were cultivated for 14 days under the same irrigation conditions, maintaining
the soil at field capacity. From the 14th day on, water restriction was applied.

The treatments were conducted as follows: (i) control group, with maintenance of the field
capacity and without inoculation of the plants; (ii) stress group, with maintenance of 50% of the field
capacity and without inoculation of the plants, and; (iii) bacteria group, with maintenance of 50% of
field capacity and inoculation of the plants. The water replacement for field capacity maintenance of
only 50% was conducted by the gravimetric method. The phytotron chamber maintained the same
temperature (25 ◦C) and lighting conditions during the experiment. Water-deficit treatment was
performed for 15 days and was completed on the 30th day after the transplantation of the plants to
vessels. The experimental design and analysis are summarized below (Figure 1).

. 

Figure 1. The workflow of the experimental analysis conducted in this study.
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2.1. Spectral Data Measurements

To record the spectral response of each plant, considering the different treatments, a darkroom
was prepared to avoid light interference from other materials. The spectral response of the lettuce
was measured using a Fieldspec HandHeld ASD spectroradiometer, operating at a spectral range of
325–1075 nm, in 512 channels with a spectral resolution of 1.6 nm and a 1◦ field of view. The equipment
was carefully placed close to the leaves, at a 45◦ inclination, in relation to the height of the plant so that
its field of view (FOV) did not exceed the area of the plant and register the spectral response of the
substrate. A halogenic lamp was also placed at 45◦ on the other side. Before each measurement, the
equipment was calibrated with a Lambertian (Spectralon® plate) surface plate.

The spectroradiometer registered 10 spectral curves during the same measurement for different
leaves. This resulted in 360 spectral signatures for each measured day. These signatures represent the
radiance from the leaves along the electromagnetic wavelength. Because the spectroradiometer records
the radiance that reaches the equipment, we needed to transform it into the reflectance factor. For that,
the leaf radiance was divided by a reference radiance, which corresponds with the Lambertian plate
measured previously. The spectroradiometer also has a known calibration factor (K), which must be
multiplied by the values of the described operation. This factor, together with the radiance values of
the reference plate of the Lambertian surface, was used to estimate the bidirectional reflectance factor
(BRF), as shown in Equation (1) [32].

BRF(ωiωr) =
dL (θr, Φr) (target)

dL (θr, Φr) (re f erence)
K (θi, Φi,θr, Φr) (1)

where dL is the spectral radiance, ω is the solid angle, θ and Φ are in order, the zenith and azimuth
angles, respectively; i is the incident flux, and r is the reflected energy flux. As mentioned, the K value
is the correction factor from the equipment manufacturer. The BRF represents the spectral signature of
the recorded radiometric target, also called the spectral response of the selected target.

To remove regions with a low signal-to-noise ratio, the spectral range from 380 to 1020 nm was
selected to compose the spectral data, removing everything outside this range. The spectral curves
were evaluated in terms of reflectance and absorbance values. Following Beer–Lambert’s law, which
shows that a concentration of an absorbent is proportional to the absorbance, the spectral reflectance
values were converted using Equation (2).

A = log
( 1

R

)
(2)

where A corresponds to absorbance and R corresponds to the spectral reflectance obtained with the
Fieldspec HandHeld ASD spectroradiometer.

2.2. Biophysical Data Measurements

The leaf chlorophyll content (α + β) was recorded using a portable chlorophyllometer (Clorofilog
Falker). The measurements were taken in the leaves of the apical part, median part, and basal part of
each lettuce plant. This device operates in three spectral regions, in which the first two are in the red
and red-edge regions and the third one in the near-infrared region [33]. The diameter of the leaves of
each plant was also measured using a millimetric tape. The plants were then detached and weighed
using a digital balance. At this stage, the aerial part (leaf and stem) was removed from the root and
weighed separately, obtaining the fresh mass (g). The material was then left to dry in the open air for
48 h and weighed again to find its dry mass (g).

2.3. Statistical Data Analysis

The Shapiro–Wilk test was used to verify the normality of the data related to the biophysical
parameters. The ANOVA method was applied to determine the difference among the three treatments
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(control, stress, and bacteria groups), while the mean difference was verified using the Tukey test.
A 95% confidence interval was then adopted for all statistical analyses. For spectral response curves,
the correlation of single wavelengths with the selected biophysical parameters was calculated for both
reflectance and absorbance values. Contour maps resulting from traditional 2D correlation analysis
were also applied between the pairs of the treatments to determine the spectral intervals that presented
similarity. Correlation graphs between the biophysical parameters and all the spectral wavelengths of
the three groups were then plotted. The results were compared using their means, standard deviations,
correlation coefficient, coefficient of regression (R2), mean discrepancy (by bootstrapping), and root
mean squared error (RMSE). The metrics evaluated here were obtained with the open-source software
PAST v. 3.2 and the statistical program R v. 3.6.

2.4. ANN and Machine Learning Analysis

In a computational environment, we randomly separated 80% of the data to train the ANN
algorithm and 20% to test it. The number of spectral wavelengths (n = 360) was the same for each day.
The spectral wavelengths were added as input for the ANN, and one hidden layer with n neurons
was considered. A linear activation function was applied in the output layer. We adopted the Adam
Optimizer with regularization of a = 0.0001. We used an open-source version of the RapidMiner v.
9.4 software.

To define the best hyperparameters, we performed a cross-validation method by separating our
dataset into 10 folds. This separation was stratified and we used only the training dataset (80%). In this
approach, one-fold is used to validate the algorithm performance while the remaining folds are used
to train the model. The test is repeated until all 10 folds are used individually as validation data. An
example of the training curve being adjusted to the 1st measurement day absorbance data is plotted
below (Figure 2).

 

Figure 2. Example of the training curve with the difference in accuracy for the artificial neural networks
(ANN) model.

We applied a hyperparametrization evaluation and detected that 100 neurons in hidden layers
and a maximum number of interactions of 200 presented the ideal configuration without overfitting
our model for most of the tests. Finally, we plotted an ROC (receiver operating characteristic) curve
to evaluate the comparison between each classification and a confusion matrix of the ANN results.
We evaluated the gain ratio and the F-score for each individual wavelength.

To test the robustness of the ANN, we compared it with other traditional machine learning
algorithms, such as decision-tree; support vector machine (SVM); random forest (RF); naïve Bayes;
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and logistic regression. The number of training and testing remained the same. We also performed a
hyperparametrization with these algorithms. The criteria for stopping was defined once it did not
return in any practical gains for the classification accuracy (%). For this, we considered the individual
characteristic of each classifier, like the number of trees, nodes and leaves, number of interactions,
function degree, and others.

The decision tree and random forest models provide classification trees that rely on the idea of an
overall accuracy improvement by adding the predictions of combined independent predictors [34].
SVM uses a regression approach to find separation lines and can be applied in many cases where
there is a distinct margin of separation. Naïve Bayes is a probabilistic classifier that applies the Bayes’
theorem with independence assumptions. Lastly, logistic regression is also a regression approach that
bases itself in a sigmoid function to model the predicted classes [35].

The metrics used for evaluating the performance of each algorithm was the AUC (area under the
curve), overall accuracy, F1-score, precision, and recall. We compared each one of them during the
four stages of the spectral response measurement: 14th, 19th, 24th, and 29th days. Both the reflectance
and the absorbance values were used separately as input features. The results are presented in the
following section.

3. Results

3.1. Hyperspectral and Biophysical Parameters Comparison

The water stress caused a reduction in practically all biophysical parameters. The exception was
for the root development node treatment inoculated with the rhizobacteria. This indicates that the
influence of the bacteria was more evident in the root system. The bacteria group had mean values
similar or even higher to those found for the control group, both in the fresh mass and in the dry
root (Table 1). Chlorophyll content also expressed high differences between the control group and
the others.

Table 1. Results from the mean test between the biophysical parameters mean.

Treatment
Chlorophyll

Content

Diameter
(cm)

Weight (g)

Fresh
(Aerial)

Fresh
(Root)

Dry
(Aerial)

Dry
(Root)

Control
Group 12.55 b 18.33 a 11.04 a 3.48 bc 1.86 a 0.48 b

Stress Group 20.02 a 17.17 a 6.87 bc 2.97 c 1.49 ab 0.40 c

Bacteria
Group 19.60 a 16.58 ab 7.27 b 4.82 a 1.43 b 0.52 ab

C. V. 29.54 16.15 28.14 26.48 22.18 20.07
F value 4.677 7.942 35.56 6.952 3.293 6.236
p-value 0.0124 0.0012 <0.0001 0.0021 0.0417 0.0036

Mean values followed by equal letters in lines do not present differences at 5% in the Turkey test. C. V. = coefficient
of variation.

At the end of the experiment, the lowest values of reflectance and the highest values of absorbance
were observed in the control group (Figure 3). The spectral behavior of each treatment increased
in difference as the stress progress continued. Stress and bacteria groups were both submitted to
water stress, and their spectral response curves were distanced from the control curve. This condition
can be explained by the reduction in fresh leaf mass and leaf diameter, which caused an increase in
chlorophyll concentration in both groups (stress and bacteria). Furthermore, a continuous analysis
over time showed that reflectance and absorbance values both increased and decreased, respectively.
The stress group; however, was the one that presented a higher discrepancy over time.
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Figure 3. Comparison between the mean spectral reflectance and absorptance at selected wavelengths
for each of the three treatment groups.
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To evaluate the correlation between each spectral behavior in the final day of the experiment,
a matrix (Figure 4) was organized with the correlation values between all groups. In general, the control
group presented better correlations with the bacteria group than the stress group. The correlation
was higher in the near-infrared region for all curves. The green region (from 520 to 580 nm) was
more evident on the reflectance curve in the bacteria group and was better isolated when evaluated
on the absorbance curve (Figure 4C,D). This could prove difficult in differentiating both groups’
spectral behavior. Still, both groups returned different amplitudes in the averaged values (Figure 3),
which indicates a feasible separation between them.

The relationship between the biophysical parameters and all the spectral wavelengths of the three
groups is shown in Figure 5. The parameters that presented best correlations with the spectral curves
were chlorophyll, fresh masses and aerial dry matter, and dry weight of roots. With the exception of the
dry root weight, the aforementioned parameters presented higher negative and positive correlations in
the visible region (Figure 5A,C,D), specifically in the blue region (from 380 to 460 nm) and in a smaller
range in the red region (between 640 and 680 nm), which coincides with the absorption regions of
chlorophyll. The weight of the root dry mass was the parameter that presented the highest correlation
(r = 0.80) with the near-infrared region (700 nm onwards).

The mean values of the correlation of each parameter with the reflectance and absorbance curves
were also compared (Table 2): the chlorophyll, diameter, fresh aerial weight, and dry root weight
had better correlations (r = −0.803; 0.540; 0.822; and 0.709, respectively) with absorbance than with
reflectance. The difference between averages ranged from 0.797 (fresh root) to 1.602 (fresh aerial),
which demonstrates how much the reflectance values differ from those of absorbance. This behavior is
better observed in the absorbance wavelengths of chlorophyll, fresh weight of the aerial part and in the
dry-root weight, which presented values higher than 0.7, and the lowest values in root mean squared
error (RMSE).

 
Figure 4. The correlation matrix between the mean spectral wavelengths.

88



Remote Sens. 2019, 11, 2797

 
Figure 5. The correlation coefficient (r) between the spectral wavelengths (380–1020 nm) and the
biophysical parameter; reflectance (blue curve) and absorbance (pink curve).

Table 2. Differences from mean values to correlations from absorbance and reflectance.

Biophysical Parameter
Mean Correlation ± Std. Dev.

Mean Difference
R2 RMSE R2 RMSE

Reflectance (r) Absorbance (r) Reflectance Absorbance

Chlorophyll Content 0.759 ± 0.131 −0.803 ± 0.104 1.562 (1.549–1.574) 0.43 0.125 0.70 0.102
Diameter −0.486 ± 0.215 0.540 ± 0.175 1.026 (1.006–1.047) 0.11 0.128 0.38 0.180

Fresh Weight (Aerial) −0.779 ± 0.122 0.822 ± 0.097 1.602 (1.591–1.613) 0.47 0.099 0.72 0.120
Fresh Weight (Root) −0.421 ± 0.278 0.377 ± 0.228 0.797 (0,771–0.824) 0.36 0.108 0.17 0.209
Dry Weight (Aerial) −0.646 ± 0.172 0.695 ± 0.139 1.341 (1.325–1.357) 0.27 0.116 0.56 0.152
Dry Weight (Root) −0.734 ± 0.226 0.709 ± 0.186 1.443 (1.422–1.465) 0.76 0.065 0.47 0.166

3.2. Modeling the Hyperspectral Wavelengths Through Artificial Neural Network

The wavelengths were modeled by different machine learning algorithms from the 14th day of
the experiment. The ANN model presented here was able to classify better than any of the remaining
algorithms since the first day of measurement (Table 3). In general, the absorbance values offered
better accuracy than the reflectance ones. The accuracy and other metrics were improved with each
measurement, indicating an increased difference over time.
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Table 3. Accuracy metrics for each of the machine learning algorithms evaluated in this study.

Model AUC Class. Acc. (%) F1-Score (%) Precision (%) Recall (%)

Day: 14th Refl. Abs. Refl. Abs. Refl. Abs. Refl. Abs. Refl. Abs.

Decision Tree 0.620 0.741 58.5 63.5 58.6 63.6 57.8 63.9 57.6 63.5

SVM 0.671 0.767 59.8 63.8 58.1 63.2 55.3 65.4 58.8 63.8

Random Forest 0.712 0.822 56.4 66.5 56.0 66.5 56.7 66.5 59.9 66.5

ANN 0.794 0.924 70.3 79.6 68.2 79.7 71.2 80.1 70.4 79.6

Naïve Bayes 0.589 0.707 44.2 54.8 46.4 54.2 49.8 55.4 50.1 54.8

Logistic Regression 0.701 0.833 66.2 71.4 60.3 71.3 65.4 71.4 61.9 71.4

Day: 19th Refl. Abs. Refl. Abs. Refl. Abs. Refl. Abs. Refl. Abs.

Decision Tree 0.702 0.772 60.5 69.2 59.5 69.2 64.6 69.3 60.2 69.2

SVM 0.755 0.803 58.8 60.6 59.2 58.0 58.4 60.6 58.8 60.6

Random Forest 0.811 0.891 62.3 74.5 56.5 74.5 64.0 74.5 69.2 74.5

ANN 0.904 0.941 75.6 82.0 70.8 81.9 74.1 81.8 74.0 82.0

Naïve Bayes 0.677 0.694 50.0 50.6 48.2 47.7 45.4 48.8 44.3 50.6

Logistic Regression 0.733 0.858 65.4 67.3 59.3 66.0 62.4 66.2 59.3 67.3

Day: 24th Refl. Abs. Refl. Abs. Refl. Abs. Refl. Abs. Refl. Abs.

Decision Tree 0.792 0.869 78.8 81.2 74.2 81.2 75.3 81.2 74.1 81.2

SVM 0.813 0.949 72.6 83.7 76.6 83.9 75.2 84.6 71.6 83.7

Random Forest 0.899 0.952 70.5 84.4 73.5 84.4 78.6 84.5 78.5 84.4

ANN 0.922 0.985 82.5 90.5 85.4 90.4 84.7 90.5 83.6 90.5

Naïve Bayes 0.684 0.869 60.2 70.4 67.9 70.7 65.8 71.4 61.4 70.4

Logistic Regression 0.868 0.971 77.9 89.4 76.1 89.3 67.8 89.4 72.1 89.4

Day: 29th Refl. Abs. Refl. Abs. Refl. Abs. Refl. Abs. Refl. Abs.

Decision Tree 0.818 0.845 81.2 78.0 71.3 78.0 70.2 78.0 64.9 78.0

SVM 0.879 0.902 83.7 76.6 70.2 76.8 71.7 77.5 62.3 76.6

Random Forest 0.912 0.942 84.4 83.1 74.5 83.1 75.3 83.7 70.1 83.1

ANN 0.945 0.984 90.5 92.7 81.3 92.7 82.4 92.7 79.3 92.7

Naïve Bayes 0.819 0.719 70.4 52.4 38.7 48.0 60.1 49.3 46.4 52.4

Logistic Regression 0.901 0.945 89.4 75.3 89.3 80.3 70.8 80.6 64.3 80.3

The other machine learning algorithms were also able to return similar classification accuracies.
The logistic regression method presented high accuracy in the first three measurements. However,
it declined over the final day. This behavior was noted for the other algorithms as well. ANN was not
only able to maintain consistency over time but also presented its highest accuracy on the final day.
Another observation is that, to all machine learning methods applied here, the absorbance values were
more efficient in discriminating the plant groups in most of the classifications.

To visualize the differences between each group, an ROC curve of the last day of measurement
was used (Figure 6). The ROCs suggest that the ANN was better to differentiate individually the three
groups, while other algorithms performed worse at specific conditions. The ANN also returned a
less false-positive rate than all of the other machine learning algorithms. The confusion matrix of the
final measurement day also shows how the ANN had more problems in predicting the control group
(89.6%) than the other groups (94.4% and 94.1%, bacteria and stress, respectively).
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Figure 6. Receiver operating characteristic (ROC) curve comparison for each group classification and
the ANN confusion matrix.

Based on this classification, the gain ratio and the relief-F were used to evaluate the contribution
of individual wavelengths to the ANN model (Figure 7). These metrics suggest that the stress group
presented higher differences with the control group than the bacteria group, easily distinguishable by
the algorithm. However, there appears to be a higher discrepancy between the bacteria group and the
control group at the blue region (380 to 440 nm). Nonetheless, the near-infrared region and the 660 to
730 nm region appears to be contributing more to the stress group response.

 
Figure 7. The individual contribution of the wavelengths to model the water-stress induced lettuces in
relation to the control group.
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4. Discussion

This study evaluated the spectral response of lettuce submitted to water stress while modeling
its effects with an ANN and other machine learning algorithms. For that, we separated our data into
three groups: control, stress, and bacteria. The reason to include the rhizobacteria in this situation is
to induce a similarity with what transpires in greenhouses or horticulture models, as this bacterium
is commonly present in soil and commercial seeds [29]. The addition of the bacteria group is also
important to reinforce our test as it can act as a middle-ground between the stress group and the
control group. We firstly evaluated the biological and physical response of the induced stress, and later
compared it with the hyperspectral measurement. Lastly, we used ANN and other machine learning
algorithms to classify both groups solely by their spectral response.

Our results indicate that the physiological response to water stress in early-stage lettuce is the
reduction in leaf size and an increase in chlorophyll concentration. This behavior was evident both in
the stress group and in the bacteria group, although with lower intensity in the latter. Changes in leaf
pigmentation are noticeable in cases of plant stress [15]. However, an interesting observation is that the
stress did not affect root weight in the bacteria group. This indicates that there is an effect in mitigating
this stress, although this was not indicated by leaf analysis. By examining the mean spectral curves of
each treatment (Figure 2) there is a small amplitude between the red-edge region wavelengths. The
red-edge region is commonly known to indicate stress presence [23,34], and this may explain why the
bacteria group did not differentiate much from the control group here.

Regarding the correlation between biophysical parameters and the wavelengths, it is initially
perceived that absorbance wavelengths are more correlated with most biophysical parameters. An
important observation to be made is the strongest correlation between chlorophyll and leaf fresh-weight
with these wavelengths (Figure 4 and Table 2). This relationship between absorbance levels and the
biophysical parameter was continuous throughout the experiment, particularly in regard to modeling
each group’s response with machine learning algorithms (Table 3). Still, the correlation was more
pronounced in the green and near-infrared regions (Figure 3). This situation is also evident when
observing the mean curves of each treatment (Figure 2), where the amplitude between the curves is
smaller in the blue, red, and red-edge remaining regions.

The classification performed by the ANN algorithm in this study showed interesting results
since the first day of measurement when lettuces had just been stressed one day before the actual
measurement. This condition is important to mention as it indicates how powerful hyperspectral
analysis in conjunction with machine learning algorithms can be. From the evaluation metrics used in
this study, it is evident how ANN was better in distinguishing the three plant groups. By observing
the phenomenon temporally, one can see how the performance of the algorithms increased (Table 3).
This can be explained by the increased distinction between the wavelengths of each group. As the
stress occurred, the spectral behavior of these experiments became distinct from each other. Because
this study is unique in this regard, there is a lack of literature to compare with. Still, the accuracy
found here is similar to or even higher than those obtained by modeling different stresses effects in
plants [21,24–27].

Another contribution of this study is the evaluation of the performance of different algorithms for
both reflectance and absorbance wavelengths. Absorbance curves were directly related to changes in
biophysical parameters for all treatments (Figure 4 and Table 2). This persisted in the machine learning
analysis, where the performance of the algorithms was superior in differentiating the three groups by
using their absorbance values. Thus, it is recommended that the modeling of these effects in lettuce is
preferably performed from the conversion of reflectance to absorbance data. Another observation is
that, by evaluating the performance of each algorithm over time, the ANN accuracy reached its peak at
the last measurement day (with 92.7%), while the other algorithms decreased in performance (from the
third to the fourth day of evaluation). This indicates how feasible the ANN algorithm was in modeling
the water-stress effects in comparison to the others.
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Lastly, the ANN algorithm has shown high precision and recall values (Table 2) when classifying
each group, as shown in Figure 5. The confusion matrix demonstrated a small decrease in performance
(89.6%) for differentiating the control group from the others. Regardless, the gain ratio and relief-F
metrics (Figure 6) show how each individual wavelength contributed to the ANN model. In the
gain ratio analysis, there is a predominance of wavelengths in the region of blue (380 to 440 nm), red
(660 to 730 nm), and near-infrared (790 nm onwards). Despite the similarity between the curves of
both groups, there was a smaller amplitude difference for the blue region. This may indicate how
much the blue region contributed to differentiate the effects of the stress on the bacteria group. This
was similar in the assessment of relief-F curves, in which this same region presented an even higher
value than the group under stress. The blue region is responsible for the absorption of chlorophyll
and may be an indication of how important the stress effect was in this spectral range. Nevertheless,
the model also indicated greater contributions in the red region, red-edge, and near-infrared, which
corroborates with the observations made during previous results (Figure 3). Apart from other species
and cultivars, future research could be conducted exploring additional spectral regions such as the
shortwave infrared (SWIR) region that is unfortunately not considered in the Fieldspec HandHeld
ASD spectroradiometer device.

5. Conclusions

In this study, we have applied an artificial neural network algorithm to model the hyperspectral
response of water-induced stress in lettuce. The ANN algorithm detected differences since the first
day of the induced stress, with an 80% classification accuracy. The algorithm continued to present
an increasing performance along with time-series analysis, resulting in a final 93% accuracy. The
spectral wavelengths that contributed the most for its prediction were located around 380 to 440 nm,
660 to 730 nm, and, on a lower level, 790 nm onwards. We also detected that absorbance values are
more suitable to deal with this issue than reflectance. Although the rhizobacteria did mitigate the
water-stress effect at some point, a spectral behavior difference was noticed by the ANN algorithm,
proving its robustness. The proposed approach indicated how feasible water stress in lettuce at early
stages is measurable with machine learning algorithms such as ANN in hyperspectral data. While
the small number of instances (four measurement days) evaluated could provide problems for the
experiment, all machine learning algorithms tested here were able to classify it appropriately. For
future works, we recommend similar studies with other species and cultivars. Additionally, the method
demonstrated here could be scaled up to remote sensing platforms like unmanned aerial vehicles
(UAV), as currently hyperspectral sensors can be embedded in it.
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Abstract: Hyperspectral sensing, measuring reflectance over visible to shortwave infrared
wavelengths, has enabled the classification and mapping of vegetation at a range of taxonomic
scales, often down to the species level. Classification with hyperspectral measurements, acquired by
narrow band spectroradiometers or imaging sensors, has generally required some form of spectral
feature selection to reduce the dimensionality of the data to a level suitable for the construction of a
classification model. Despite the large number of hyperspectral plant classification studies, an in-depth
review of feature selection methods and resultant waveband selections has not yet been performed.
Here, we present a review of the last 22 years of hyperspectral vegetation classification literature
that evaluates the overall waveband selection frequency, waveband selection frequency variation by
taxonomic, structural, or functional group, and the influence of feature selection choice by comparing
such methods as stepwise discriminant analysis (SDA), support vector machines (SVM), and random
forests (RF). This review determined that all characteristics of hyperspectral plant studies influence
the wavebands selected for classification. This includes the taxonomic, structural, and functional
groups of the target samples, the methods, and scale at which hyperspectral measurements are
recorded, as well as the feature selection method used. Furthermore, these influences do not appear
to be consistent. Moreover, the considerable variability in waveband selection caused by the feature
selectors effectively masks the analysis of any variability between studies related to plant groupings.
Additionally, questions are raised about the suitability of SDA as a feature selection method, with it
producing waveband selections at odds with the other feature selectors. Caution is recommended
when choosing a feature selector for hyperspectral plant classification: We recommend multiple
methods being performed. The resultant sets of selected spectral features can either be evaluated
individually by multiple classification models or combined as an ensemble for evaluation by a single
classifier. Additionally, we suggest caution when relying upon waveband recommendations from the
literature to guide waveband selections or classifications for new plant discrimination applications,
as such recommendations appear to be weakly generalizable between studies.

Keywords: hyperspectral; spectra; vegetation; plant; classification; discrimination; feature selection;
waveband selection; support vector machine; random forest

1. Introduction

The classification of reflectance spectra to determine broad plant type or species has been
explored increasingly over the past two decades. This has been driven by the increased availability of
hyperspectral sensing from imaging spectrometers and field spectroradiometers, and increasing need
from environmental conservation, agriculture, and forestry groups [1]. High classification accuracies,
particularly at fine taxonomic units such as species, or even clones for grapevine varieties [2], has in
some cases been enabled by hyperspectral observation [3]. Hyperspectral measurements have been

Remote Sens. 2020, 12, 113; doi:10.3390/rs12010113 www.mdpi.com/journal/remotesensing97
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used to classify a variety of plant types including annual gramineous weeds [4], food crops [5], arid zone
shrubs [6], and montane/sub-alpine trees [7], growing in equally varied environments, including
tropical wetlands [8], urban streetscapes [9], savanna plains [10], and alpine forests [11]. Due to the
scale required to map and monitor the world’s vegetation, fast, generalizable, and objective methods
that provide results, that can be quickly and easily shared and analysed, are required. Hyperspectral
imagery and data can fulfil these requirements, producing digital measurements that can be easily
shared and quickly analysed with semi-automated procedures in a repeatable and objective manner.
However, the potential generalisability of classification models has yet to be fully evaluated.

Hyperspectral measurements consist of numerous, finely spaced, contiguous measurements
(wavebands) providing considerably more information about targets than broadband multispectral
observations. These advantages come at the cost of high dimensionality and large data volumes.
Hyperspectral instruments record radiance within the range of 350 to 2500 nm of the electromagnetic
spectrum, with bandwidths often between 1 and 10 nm. The number of wavebands per observation
varies from hundreds to thousands. Training a classification model with such large numbers of
spectral features generally requires a large sample size. However, since the collection of samples for
hyperspectral studies is onerous, with high costs for imagery and arduous fieldwork for gathering field
measurements, sample sizes tend to be small. Data of this high dimensionality is prone to the Hughes
phenomenon, also known as the curse of dimensionality, whereby an increasing number of features
originally aids in improving classification, before the addition of more features decreases performance
as noise and sparsity of the feature space increases [12]. This problem is exacerbated by small sample
sizes [13].

In order to overcome this the ratio between sample size and data dimensionality must be improved.
In this review, we focus on reducing dimensionality via feature selection, though methods of artificially
increasing sample size through data augmentation, semi-supervised classification, and active learning
can aid in countering the curse of dimensionality [14–16]. Hyperspectral measurements tend to include
noisy or redundant features, with high levels of collinearity between wavebands. The elimination of
collinearity can substantially improve classification efforts and is in fact a requirement of parametric
statistical methods that assume the independence of all variables [17,18]. Additionally, feature selection
inherently reveals the spectral regions that offer the greatest discriminatory power for a set of samples.
Long held associations between specific spectral regions or individual wavebands and biophysical or
biochemical foliar traits [19] have often guided researchers in the selection of features to differentiate
species or plant types. The overall aim of this review is to assess these assumptions in light of the
evidence from 22 years of hyperspectral plant studies.

Review Scope and Approach

Here, we address some important questions that motivate much hyperspectral plant research.
Do the taxonomic, structural, or functional characteristics of plant types or species influence the spectral
regions that are most important to classification, or are particular spectral regions consistently selected
across a diversity of plant or ecological types? A review of selected features from the hyperspectral
literature could identify best practices for feature selection methods, as well as detect wave-regions of
high-utility, those that best generalize across taxonomic or ecological boundaries.

The search for literature spanned two decades, from January 1996 to December 2018, focusing on
peer reviewed journals in the English language. Search was performed with Google Scholar using
combinations of the keywords, namely Hyperspectral, Spectra, Vegetation, Plant, Tree, Species, Identi*,
Discriminat*, Classif*, Map, Feature Select*, Waveband, Band, UAV, Drone. In order to be included, a study
must have performed a feature selection technique on hyperspectral vegetation data with an aim to
classify plant samples.

Many studies fulfilled the initial requirement, but did not report selected wavebands with sufficient
specificity, and therefore could not be included. Here, we present waveband selections derived from
38 hyperspectral vegetation classification studies. When applicable, studies that included multiple
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feature selection techniques were broken into sub-studies, increasing the total number of reviewed
studies to 61 (Tables 1 and 2). These included studies are from a wide variety of scales (leaf, branch,
and canopy), recording methods (lab, field, aerial, satellite), taxonomic units, and bandwidths.

Additionally, a dataset was synthesised from hyperspectral measurements of 22 species of
New Zealand plants collected as field spectra from four locations on the North island [20,21].
This dataset was used to examine how study design (number of classes, number of samples, included
species, and feature selection method) influenced waveband selection. This was performed with
the aim of determining which elements of the study design most contributed to variation seen in
selected wavebands.

The remainder of this paper is structured in the following way. Section 2 provides a meta-analysis
of the selected wavebands, broken down by spectral region. Section 3 identifies and describes feature
selection techniques from these studies, and where possible, highlights their effects on waveband
selection. Section 4 examines study design influence on waveband selection, while Sections 5 and 6
present a discussion of the results and conclusions.
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2. Meta-Analysis

The delineation of spectral regions in this review follows that of [3], as adapted from [53]. Imaging
and non-imaging hyperspectral instruments have different sampling intervals, so a direct comparison
of selected wavebands between studies is not possible. This was resolved by aggregating selected
wavebands into 50 nm bins based on their band centres (Figure 1). The design and presentation
of the binned wavelengths is adapted from [1] with adjustments. Additionally, the bin size of the
histogram has the benefit of grouping highly correlated and often redundant wavebands together,
reducing noise from the selection of correlated features from the analysis. The percentage of studies
that selected wavebands within each 50 nm region is presented in the histogram, giving the selection
rate for each 50-nm spectral region. The binned table and selection rate histogram (Figure 1) only give
an indication of the rate with which a spectral region was selected and do not include information on
the number of bands selected in each 50 nm bin, nor the determined importance of a selected band for
subject discrimination.

2.1. Spectral Range

Of the studies that met the rules for inclusion in this review, 38 used hyperspectral data spanning
most of the range 350–2500 nm. However, a number of studies utilised devices that recorded a more
restricted wavelength range between 350 and 1100 nm, generally from 400 to 800 nm or 1000 nm
(Table 2). These studies are presented separately as the absence of Shortwave Infra-red(SWIR),
and much of the Near Infra-red(NIR) has shown to have an influence on waveband selection for the
Visible (VIS) and partial NIR [54]. Although selection rates in the VIS/NIR studies appear similar to
those from broader wavelength hyperspectral studies there are some notable differences. The initial
peak in selection rates present in both sets is shifted towards shorter blue wavelengths, and a greater
importance of the red edge over the red minimum is evident for the VIS/NIR studies. However, the
overall pattern is the same with two peaks in the rate of selection at both the blue/green and red
reflectance minima, with yellow wavelength bands having the lowest selection rate, save for the
sub-400 nm bands that appear in a very limited number of studies. Although the VIS/NIR studies do
not cover the full NIR region, selection rates for the red edge and shorter wavelength NIR are closely
matched between both groups (Figure 1). The overall higher rates present in the VIS/NIR table results
from the smaller number of studies in that group, with selection rates tending to decrease as more
studies are added. Additionally, the relatively small number of studies included in the VIS/NIR group
prevents the analysis of specific subsets, such as canopy and leaf. The following discussion of selection
rates refers to VIS/SWIR studies (Table 1) and is generally applicable to the VIS/NIR studies, although
particular discussion of the VIS/NIR studies is included when required.
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Figure 1. Waveband selection binned at 50 nm intervals for the VIS/SWIR studies (3502500 nm) green,
VIS/NIR studies (350–1100 nm) blue. Orange filled cells represent waveband regions removed from a
study due to noise. Selection rate is the percentage of studies that selected a given 50 nm region for
species classification. Each row of the table is an individual study, with each column being a 50 nm range
bin. Green/blue shaded bins represent at least one waveband being selected from within that range,
while orange shaded bins represent removed wavelength regions (e.g. major water absorption regions).
Wavelength bins were only removed if the entire 50 nm region was removed due to noise/atmospheric
effects in that particular study.

2.2. Visible (VIS; 400–700 nm)

Primarily a region of low reflectance in living foliage, typically as low as 5%–10% with the exception
of the green peak at ~550 nm where reflectance can be more than twice that of surrounding wavelengths
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(Figure 2). Reflection in the visible wavelengths is dominated by absorptions from foliar pigments.
Differences in leaf pigments between species have been identified by many studies as important
factors for discrimination [39], despite variability in the VIS being generally low compared to longer
wavelengths [53,55]. Of the pigments, chlorophyll a and b have the strongest influence over absorption
in this region, followed by those of carotenoids and anthocyanins whose effects are predominantly
masked by that of chlorophyll. The visible region is one of the most influential regions for classification,
with the vast majority of studies in this review selecting bands from within it. The visible wavelengths
can be divided into three regions of high discriminatory value, spanning almost the entire visible range:
the blue/blue-green edge (400–499 nm), the green peak centred around 550 nm, and the red reflectance
minimum (650–700 nm) (Figure 2). Of these, the red reflectance minimum, specifically bands near 680 nm
has previously been identified as the most commonly selected and critical band centre for crop type
discrimination [56]. The continued selection of 680 nm, along with neighbouring bands in later studies
has validated the importance of this region amongst agricultural crop studies [5,25,47,48,57], as well as
for other vegetation types [10,17,18,26,27,29,30,46,58,59]. In addition to the obvious relationship with
chlorophyll, absorption in the red region has been related to anthocyanin content, a foliar pigment
responsible for the red colouration in leaves [60], particularly evident in juvenile leaves of certain
species [30].

Figure 2. Example hyperspectral reflectance of 3 species of tree and key broad regions of the
electromagnetic spectrum (400–2400 nm).

The green region has the second highest selection rate amongst both the VIS and entire measured
spectrum (Figure 1). Wavebands selected in this region tend to be focused around the green reflectance
peak at approximately 550 nm, which is strongly correlated with chlorophyll content [61]. The green
peak, either manually chosen as a spectral variable as a representation of chlorophyll content or
selected via feature selection, has demonstrated importance in classifying species [9,30,42,62,63].
Additionally, absorption in wavebands within the green region adjacent to the reflectance peak is
associated with xanthophylls and anthocyanins. Xanthophyll pigments protect against photo-oxidation
of the photosynthesis reaction centres during high light conditions [64], resulting in short term changes
in reflectance at 531 nm. This band, along with 570 nm, makes up the photochemical reflectance
index [65]. Anthocyanins can be estimated by an index using anthocyanin’s absorption maximum near
550 nm, and a band from the red edge, usually 700 nm [66]. Although not necessarily associated with
these additional pigments, studies have selected bands along the leading edge of the green reflectance
peak between 500,550 nm [10].

Selection from the blue region (400–449 nm) has the third highest rate in the VIS region, though
the blue-green edge (450–499 nm) has an almost equal rate of selection to the green region (55.8%
and 58.8%, respectively). The importance of blue bands has been established for discriminating
within groups of conifers, and between conifers and broadleaf species [67,68], though its inclusion
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in approximately half of the studies, many of which include non-coniferous species, indicates its
importance in general for a wider range of vegetation types. Some of these non-coniferous studies
focused on the savanna ecosystem, where blue bands along with the red reflectance minimum and red
edge were informative [10,29]. Blue wavelengths are strongly influenced by chlorophyll absorption,
along with carotenoid absorption features present in the 450–499 nm region. Carotenoids have proven
important for the discrimination of senescent leaves, when the decay of chlorophyll and the diminishing
of the strong chlorophyll-absorption feature reveal the carotenoid absorption feature [18].

However, studies have noted that strong similarities between the visible reflectance of different
species can decrease the significance of VIS wavelengths for classification purposes. In one such study,
the NIR region was more informative for distinguishing species than the VIS, with spectral differences
in the VIS region being non-significant between species [69]. Additionally, in a study of tropical trees,
Rivard et al. [54] performed feature selection and classification on various datasets derived from
the same original spectra. One dataset included the wavelengths 350–2500 nm, another excluded
the VIS, while another excluded the SWIR. Although it was found that the full spectrum produced
greater overall classification accuracy, and both reduced datasets produced lower overall accuracies,
individual accuracies for certain species remained high. The classification model excluding the VIS
region maintained high accuracies for six out of 20 species, whereas the model excluding the SWIR
maintained high accuracies for five out 20 species. Although the importance of the VIS region has been
described by many authors and is clearly seen in the binned data, studies such as [54] demonstrate
that wavelength importance is dependent on the species included in the study.

2.3. Red Edge (680–780 nm)

The red edge encompasses the region from the red reflectance minimum around 680 nm to the
NIR shoulder at approximately 780 nm and indicates the sharp increase in reflectance from the VIS
to NIR regions associated with strong chlorophyll absorptions and internal leaf structure (Figure 2).
The inflection point of the slope in this region has been defined as the red edge position (REP) [70],
and its strong correlation with chlorophyll concentration has seen it used as an indicator of stress and
senescence in vegetation [71,72]. In the VIS-SWIR studies, the red edge region as represented by the
700–749 nm bin has the same rate of selection as the red minimum bin, whereas the VIS-NIR studies
have a slightly higher red edge rate than red minimum. However, as previously stated, the delineation
between the red minimum bin (650–699 nm) and the red edge bin (700–749 nm) means that bands
selected from the lower point of the red edge would be included in the red minimum bin, potentially
skewing red edge band selection rates.

The red edge region has been described as one of the most informative and frequently selected
regions in a number of studies, where the authors have attributed its importance to its correlation
with chlorophyll abundance, nitrogen concentration, water content, and structural features such as
leaf area index (LAI) [3,10,11,73]. Additionally, significant variation of the red edge region between
species has been documented after a first derivative transformation has been applied to the spectra [74].
The red edge has proven especially important in studies discriminating species with high levels of
chlorophyll and high LAI values such as the giant reed (Arundo donax), in which a distinctive “red shift”
is seen where the Red Edge Position (REP) is located at higher wavelengths [32,39]. This “red shift”
mirrors the “blue shift” of the REP where its position is shifted towards the shorter blue wavelengths
associated with a decrease in chlorophyll and used to monitor senescence or stress [75].

2.4. Near Infrared (NIR) (700–1327 nm)

The NIR is often defined to include wavelengths within the red edge region (680–780 nm) [42]:
As this region has been previously discussed, this section focusses on the NIR plateau (780–1327 nm).
The high reflectance of the plateau results from the scattering of photons within the leaf structure
due to a change in the refractive index from liquid water to air within the inter-cellular spaces [76].
Two minor water absorption features at ~980 nm and ~1200 nm are the only major features of the
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plateau. Along with water content, the depth and width of these absorptions can be influenced by
the spectral recording method. Canopy scale spectra tend to produce deeper and wider absorption
features compared to the leaf scale, at which absorption features can vary with leaf stack thickness [3].
High levels of intraspecific variability have been identified in the NIR and related to leaf age, water,
and chlorophyll concentration, as well as herbivory, necrosis, and epiphyll cover [3,38]. Wavebands
selected in studies reporting these high levels of intraspecific variation have generally been limited to
the water absorption features [11,38], although it has been suggested to avoid band selection from
within or near water absorption features due to this high level of within-class variability, specifically for
Eucalypts [46,77,78]. Despite this, [3] reported greater interspecific variability in the NIR, particularly
at the canopy scale, potentially related to species-specific photon scattering caused by differences in
canopy architecture, a result also reported by other studies [68,69]. However, it has been suggested
that the importance of the NIR and SWIR in [3] is linked to the time delay between leaf collection and
spectral measurement, causing a decrease in water content and affecting waveband importance [58].

Even when the high selection rate of the red edge is included, the average selection rate of the
NIR is close to half of that of the VIS, placing it third after the near SWIR. However, there are two
small peaks in the rate of selection within the NIR, in bins 950–999 and 1150–1199, both of which are
associated with water absorption features near 980 and 1200 nm. Despite having one of the lowest rates,
some studies have reported that bands in the NIR plateau are the most strongly discriminating [45,52].

2.5. Shortwave Infrared (SWIR) (1328–2500 nm)

Based on the binned results (Figure 1) the SWIR can be divided into two distinct regions, the near
SWIR (NSWIR) from 1350–1800 nm, including the strong water absorption feature at 1350–1450 nm,
and the far SWIR (FSWIR) from 1800–2500 nm, including another strong water absorption feature
from 1800–2000 nm. The wavebands associated with these water absorption features, that mark the
start of the SWIR and separate the near and far SWIR, are often removed from spectra due to high
levels of noise, as are the bands at the far end of the SWIR above 2400 nm. Selection rates within the
NSWIR are on average the second highest, primarily caused by high rates of selection at 1350–1450 and
1700–1750 nm. This initial high selection rate, spanning two consecutive bins, is associated with the
water absorption feature focused around 1400 nm. However, these bins are often removed in studies,
primarily when hyperspectral imagery is used due to increased noise that is not as prevalent in lab or
field spectra. Selection rates then drop in the mid-NSWIR bands before peaking again for the 1700–1750
nm bin, containing wavebands often associated with lignin, cellulose, tannins, and other biochemical
constituents of foliar and non-foliar plant matter [19,79]. The FSWIR has the lowest average band
selection rate, with its highest selection at bin 2250–2299 nm most likely associated with the weak
absorption features of cellulose and lignin present at 2270 nm [19,79].

As the selection results suggest, wavebands selected from the SWIR are reported in the literature
as being associated with water absorption [17,33,38,40,46–48,58] or the weak harmonic and overtone
absorptions from biochemicals such as lignin, starch, and cellulose [9,40,42,46–48,52,58,80]. However,
as described in regards to the NIR, the selection of bands in or near water absorption features may not
be suitable for classification in field or lab spectra, due to high levels of intraspecific variance [46,77].
Additionally, bands selected from leaf scale spectra in the two major water absorption features would
not be applicable to remotely sensed imagery as they coincide with low irradiance levels resulting from
atmospheric water absorption. The observation of higher selection rates in the NSWIR compared to the
FSWIR has previously been made with studies noting the importance of NSWIR bands and absence
of selection from the FSWIR [9,42], even when visual differences between species were apparent [52].
Possible reasons for this reduced selection of the FSWIR could be high levels of LAI or leaf water
content masking the biochemical features present in this region [81], or a high correlation between the
FSWIR, NSWIR, and VIS bands [9].
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2.6. Canopy and Leaf Scale Spectral Selection Rates

The red edge has been demonstrated as one of the most frequently selected regions (Figure 1),
though the remainder of the NIR (consisting of 12 bins from 750–1349 nm) has the second lowest
mean selection rate, only slightly higher than the FSWIR. As the literature has identified an increase
in importance of the NIR for canopy spectra, a comparison of band selection rates for each bin was
made between canopy and leaf scale spectral studies (Figure 3). Leaf spectra were defined as only
containing pure leaf reflectance, with canopy being primarily leaf spectra, though also containing
non-photosynthetic vegetation and potentially background reflectance. This comparison shows a
clear increase in selection rates for the NIR bins associated with water absorption features for the
canopy studies, and a related decrease amongst the leaf scale spectra. Differences are also apparent
in the visible regions, with a substantial increase in the selection of the leading edge of the green
peak, and a decrease in selection of the trailing edge of the green peak for leaf scale studies compared
to canopy level (Figure 3). This would indicate a blue-shift for green bands selected in leaf scale
spectra, and a red-shift of selected bands for canopy spectra. Differences in spectral reflectance for the
VIS region have been identified at different scales, with branch/canopy spectra including reflectance
characteristics from non-foliar sources, shadows and uneven lighting, as well as generally displaying
an increase in pigment absorption features [3,53]. Variation in selection rates is also evident in the
SWIR, most notably a broad region of increased selection for canopy spectra across four bins from 1950
to 2149 nm, and a sudden peak at 1800–1850 nm. The selection peaks of the canopy spectra correspond
to regions of water absorption which have demonstrated an increase in depth and width in canopy
studies. However, the disparity between canopy and leaf scale spectra is potentially exaggerated by
the fact that a majority of canopy studies eliminate these wavebands due to noise concerns, with the
remaining few studies selecting these wavebands as being discriminatory. Increased selection of the
broader region could also be related to water absorption, as well as structural components such as
lignin and cellulose, particularly from non-photosynthetic material in the canopy [3]. The NSWIR
however demonstrates the highest degree of conformity for a large region, covering nine bins from
1300–1750 nm.

Figure 3. Feature selection rates for 350–2500 nm studies (Table 2) per 50-nm bins of both canopy and
leaf scale spectra.

3. Feature Selection

Feature selection is implemented to select a subset of features to improve generalization and
computation requirements while preserving or improving classification accuracy. In this review, feature
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and waveband selection are used interchangeably. Feature selection techniques are generally divided
into three categories: filter, wrapper, and embedded methods. Filter methods are named as such as
they act as a pre-processing step that filters out irrelevant features. Filter methods are known to be
computationally fast and efficient, though they are generally outperformed by the other methods,
as well as not able to handle nonlinear relationships [82].

3.1. Filter Methods

Analysis of variance (ANOVA) is a parametric statistical filter method to determine significant
differences between group means. Related to ANOVA is the non-parametric Mann-Whitney U-test,
and the Kruskal–Wallis test which extends the Mann–Whitney U-test for more than two groups [45].
Following initial dimensionality reduction by one of these methods a secondary feature selection
step to further reduce the number of selected features is used, such as Linear Discriminant Analysis
(LDA) [35,52], classification and regression trees (CART) [32,37,39], or the manual selection of known
influential bands [8,45,46]. This secondary selection step found important bands in the VIS and SWIR,
with a reduced selection of NIR bands [39,52]. However, the reverse was found by [32] where CART
secondary selection was restricted to NIR wavelengths. The remainder of the studies manually selected
bands that differentiated the greatest number of species pairs [8], or selected known influential bands
from the wavelengths that demonstrated high levels of pairwise group variance [45,46].

3.2. Wrapper Methods

Wrapper methods search for a subset of features that gives the best classification performance,
with the best performing subset being selected. Although generally considered to outperform filter
methods, wrappers are known to be computationally demanding and can suffer from overfitting [82].

Two of the studies reviewed implemented genetic algorithms (GA), in which wavebands are
encoded as genes that are subsequently grouped into chromosomes. These chromosomes are allowed to
evolve over many generations where their fitness, as determined by a classifier, controls their likelihood
to reproduce and pass their genes onto the next generation. Fitness of chromosomes is determined
each generation by a chosen classifier, and with the classification accuracy of each chromosome being
its fitness score, chromosomes with increased fitness are more likely to reproduce. Both studies used
the same dataset of lab measured tropical mangrove leaves [49,50]. The selection of bands differed
between the two studies, despite the use of the same dataset and feature selector, though methodologies
did differ. The variability of selected bands with similar classification performance seen between
these studies demonstrates that multiple band selections can perform classification equally well.
The ensemble of chromosomes used in [50] helped to identify key regions for discriminating target
species related to biophysical and biochemical aspects of the vegetation that may have been missed if a
study was reliant upon the first single chromosome to reach the stopping criterion. This is apparent
when comparing the bands selected in both studies, with [49] selecting no VIS bands, resulting in
the authors concluding that pigments were not significant for the discrimination of the target species.
However, the importance of the VIS, particularly the green region became apparent in [50] where 21
out of 120 total bands were selected from 513 ±19 nm.

Forward feature selection (FFS) is a wrapper method of feature selection that begins with a model
containing a single feature that best discriminates the classes, with new features iteratively added to
the model based on their ability to improve class discrimination [83]. FFS was implemented by [27]
in their comparison between floral and leaf spectra, however, only the results for leaf spectra are
discussed here. The leaf spectra within this study were constrained to 475–900 nm at 1 nm increments,
with only eight wavebands being selected. These bands came from narrow regions of the spectra,
occurring at 450–499 nm in the blue, and the red minimum and red edge from 650–749 nm. In a similar
spectral range of 402.9 to 989.1 nm of airborne collected spectra, a very different feature selection trend
was observed by [11] following the use of the FFS variant sequential floating feature selection (SFFS).
Wavebands were selected from across the entire reduced spectrum, with a notable gap in selection
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occurring in the NIR between 800 and 849 nm. Selection differences exhibited between these studies
could be related to the differences in target species, leaf or canopy scale spectra, or version of FFS
used. The only VIS-SWIR study in this review to use FFS applied it to AVIRIS imagery of urban street
trees [9]. However, feature selection was only performed to identify spectral regions responsible for
species separability, with all bands used for classification. These informative spectral regions matched
a number of known informative regions from the literature, such as water absorption in the NIR,
cellulose and lignin features in the SWIR, and bands associated with photosynthetic pigments in the
VIS. Interestingly however, the highly selected red minimum and red edge were not selected in this
study, along with the majority of the NIR.

3.3. Embedded Methods

Despite being described as a wrapper method in [8], recursive feature elimination with a support
vector machine (SVM-RFE) is considered to be an embedded method [84]. Embedded methods differ
from wrappers, as they do not treat the classifier as a black box, rather, features are selected using
information gained whilst training the classifier [85]. A claimed strength of SVM as a classifier is
its reported independence of the Hughes effect, or curse of dimensionality [86,87]. However, it has
been shown that SVM classifications can be affected by the Hughes effect and can benefit the from
dimensionality reduction of its inputs, especially when sample sizes are small [88].

In order to be used as a feature selection method, [8] implemented recursive feature elimination
(RFE) with a SVM, determining that from the original 401 bands the optimal number of features
to include for classification is 20, after 1–5, 10, 15, 20, and 30 were all evaluated. The 20 bands
selected demonstrated a number of trends that were not apparent in the other feature selection
methods implemented in the same study. Firstly, the bands formed four distinct contiguous clusters
at 520–530 nm, 745–775 nm, 1005–1030 nm, 2295–2305 nm, and then a final single band at 2345 nm.
Secondly, the wavelengths of certain selected bands were also unique amongst the methods used,
with SVM-RFE being the only method to select bands from the NIR plateau out of all feature selection
methods implemented in [8]. Additionally, being the only method to not select bands from the NSWIR.
Although not reported in a manner suitable for inclusion in Table 1, [17] also performed feature ranking
with a SVM. As with [8], [17] identified the optimal number of features to be between 15 and 20,
depending on the dataset, pre-processing, and feature selection methods used. Unlike [8], where the
SVM selected bands from distinct contiguous regions, [17] report the SVM selecting bands evenly
spread over the entire spectrum.

Random forest (RF) is an ensemble classification method, in which a number of decision tree
classifiers are trained from a sub-sample of the dataset, with their results combined via a voting system.
One third of samples are retained for validation purposes known as the out-of-bag (OOB) samples,
with the remaining in-the-bag samples being used to construct the decision tree [89].

Of the original 72 bands in [29] between 384.8 nm and 1054.3 nm, eight were selected for
classification via RF. Although no other feature selection method was implemented in this study,
a previous study by [10] performed feature selection with the spectral angle mapper (SAM) add-on
Selector using the same data. This resulted in the selection of a far greater 31 bands. Upon binning of
the bands at 50 nm, a clear difference in the selection methods are evident (Figure 1). The RF selected
bands of [29] are focused in the 400–550 nm region with a single band from the red edge at 706 nm,
whereas the SAM bands are focused along the red edge and NIR plateau between 650 and 950 nm,
with additional bands in the 350–450 and 1000–1050 nm regions.

As with the bands selected in [29], the RF selected bands in [36] fell within four bins in the VIS and
VNIR regions. However, in [29], band selection was focused on the green region with limited selection
apparent in the red and NIR plateau with the exception of a single band near the red edge inflection
point. This focus was seemingly switched in [36] with bands falling into the bins along the red edge
up to the NIR plateau shoulder, with the remaining bin occurring at the blue/green edge. The Chan
and Paelinckx study [36] also offers a comparison to an alternative feature selection method using the
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best-first search (BFS) algorithm as a wrapper. The band selection techniques differ greatly in the VIS
and VNIR regions with only the bins at 450–499 and 700–749 in common. However, band selection is
more similar at longer wavelengths where the majority of bands were selected by both methods.

The wavebands selected via RF in [8] are in direct opposition to those selected by RF in [36].
Selected bands in [36] mainly occurred along the red edge and NIR plateau shoulder, no band was
selected in this region by [8]. Instead, focus was placed on the green, yellow, and red regions of the VIS
wavelengths, an area completely ignored by [36] RF selector, though significant for their BFS selection.
Additionally, [8] provided the top 20 informative bands determined by a RF classifier using the full 201
waveband dataset. Although these two implementations of RF differed in selecting bands, the overall
trend was very similar, with high selection rates in the VIS, low in the NIR, and similar selection
throughout the SWIR.

Additionally, a study by [33] produced waveband selections similar to those in [8] with similar
results in the VIS with the exception of no selection in the early green (500–549 nm), and selection
of the red edge bin rather than the red minimum. The biggest difference between [33] and all other
RF studies is the reduced selection at longer wavelengths, although all studies essentially ignored
the NIR, [33] only selected two bands from the SWIR, both within the same NSWIR bin at the water
absorption feature near 1400–1449 nm.

3.4. Comparison of Stepwise Discriminant Analysis (SDA) with non-SDA Feature Selectors

Stepwise discriminant analysis is a filter method that selects a subset of features by attempting
to minimise within-class variation while simultaneously maximising between-class variation [90].
Although a number of metrics are available to determine class separability, Wilk’s lambda is by far
the most frequently used to enter and remove variables from the selection in a stepwise manner.
Some studies reported Wilk’s lambda approaching zero and becoming asymptotic, indicating near
perfect separation of classes [48]. Features selected after this point can be safely removed from the
model as they will not substantially increase classification accuracy. This normally resulted in the
selection of 10–20 wavebands [5,38,47,48,51].

SDA in general selects wavebands more uniformly across the spectrum than other methods,
though the greatest number of selected bands is still found in the VIS (Figure 4). The most significant
difference for selection rates is the increased importance of the NIR beyond the red edge. The NIR
demonstrates significant selection with the use of SDA in all bar a first derivative dataset from [51],
and [38], with the author of the latter suggesting high levels of intraspecific variance due to differences
in leaf maturity as the reason no bands were selected in this region.

Upon comparing the selection rates of SDA studies compared to non-SDA, a clear difference in
selection of NIR bands is apparent. As with the difference between canopy and leaf scale spectra,
the increased selection is focused around the NIR water absorption features (Figure 4). Additionally,
in the VIS, there is significantly higher selection for the blue, green, and red regions in SDA studies.
In order to determine if the spectral acquisition scale or feature selection technique had a greater
influence on band selection, the selection rates were further subset into canopy studies using SDA
and non-SDA feature selection, and leaf scale studies using SDA and non-SDA selection (Figure 5).
It is apparent that the feature selection method has a greater impact on band selection rates, with
SDA selecting from the NIR with far greater rates than the non-SDA methods in both canopy and
leaf scale studies. The non-SDA methods demonstrated minimal selection in the NIR beyond the red
edge for leaf scale spectra, with only a slight increase in selection for canopy spectra focused around
the water absorption wavelengths from 1150–1250 nm. The studies that did select from the NIR with
leaf scale samples via non-SDA methods stated that the selected bands represented differences in
internal reflectance for leaf scale spectra [50]. The blue and red shifts around the green peak for canopy
and leaf scale spectra are still evident once the data has been subset into SDA/non-SDA, although it
becomes apparent that the high rates of selection in many parts of the VIS is driven by the SDA studies.
However, the use of SDA does not explain the selection rates of the VIS for the reduced spectral domain
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VIS/NIR studies, as only a single study used SDA for feature selection, perhaps indicating an alternate
driving force. The red edge demonstrates its robustness to variations in measurement scale and band
selection technique as it was frequently selected for all study subsets, although slightly less frequently
for leaf scale spectra with non-SDA feature selection.

Figure 4. Feature selection rates for 350–2500 nm studies that used SDA feature selection, and the
selection rate of all other feature selection methods combined.

Figure 5. Feature selection rates for 350–2500 nm studies that used SDA feature selection subset by
canopy and leaf scale spectra, and the selection rate of all other feature selection methods combined.

According to [91], “Stepwise analytic methods may be among the most popular research practices
employed in both substantive and validity research”. Despite this statement being made in the late
1980s, the use of SDA in approximately a third of the studies included in this review demonstrates its
continued popularity, being by far the most used method encountered. However, the widespread use
of stepwise methods has prompted strong arguments against its usage [90,92–94], particularly when
utilised in a predictive discriminant analysis application such as feature selection for classification [95].
The studies that utilised SDA in this review made no mention of these criticisms and therefore no
direct attempt to mitigate them. Despite this, [25] did validate their model with 20 repetitions of 1000
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random samples, with the final feature subset being based on the selection rates of features across
the repetitions, the consideration of important features identified in the literature from [6] and [47],
as well as the results from principal component analysis (PCA). PCA is a mathematical transformation
used to produce uncorrelated features from the spectral features, reducing dimensionality whilst
retaining the most informative spectral data. Additionally, [47], and [5] included SDA as part of an
ensemble of feature selection methods, again determining the final feature subset based on the selection
rates of features across all methods within the ensemble. Although one of these ensemble methods
(Lambda– Lambda plots) allows for the identification and removal of correlated features, in both cases,
it was run in parallel to SDA with the removal of correlated features occurring after features had been
selected. The remaining studies reported no efforts to mitigate the concerns of using SDA for feature
selection [38,41–43,48,51].

It must be acknowledged that the sub-setting of reviewed studies into canopy and leaf scale, and
then into SDA and non-SDA, meant each class was only represented by a small number of samples
(~8 per class), though leaf-SDA was only represented by five studies extracted from two papers. As a
result of this, a few outliers are evident, such as the 100% selection in bin 1700–1749 nm, and the 100%
selection of the 500–549 nm bin, both associated with the low leaf-SDA sample size. Additionally,
the comparison of SDA to non-SDA may disguise selection biases of the non-SDA methods as they are
often only represented by one or two studies, with any bias they may exhibit being masked by the
selection rates of the other methods.

4. Study Design Influence

All aspects of a study design influence waveband selection. However, many of these aspects
may be outside the control or be heavily constrained for the researcher, such as target classes, number
of samples and collection method, though the researcher often has control over data pre-processing,
feature selection, and classification methods. Due to this, and the apparent influence of feature selectors
previously described, we focus on how the choice of feature selection method effects waveband selection.

In order to ascertain any influence feature selection may have over waveband selection, some of
the most common feature selection methods were applied to a synthesised dataset. A key requirement
for these experiments is the need for a dataset with many species with a large number of samples,
something generally lacking in vegetation hyperspectral data. To accomplish this, a hyperspectral
synthesis method was created [20] to allow for the creation of any number of samples from 22 species of
New Zealand plants. The synthesised dataset consisted of 500 samples per class with 540 wavebands
from 350–2450 nm at 3-nm bandwidths, excluding regions of high noise.

Hyperparameters for the feature selectors were tuned via a holdout dataset, with the parameters
that selected features resulting in the highest classification accuracy being used for all experiments
(Table 3). This is crucial to ensure that the only variables that could affect waveband selection were
constrained to either the feature selector (svm_*, sda_*,sffs_*,rf_*) or the dataset (*_0 . . . *_9).

Table 3. Software packages and hyperparameters for each feature selection method.

Feature Selector Software Package and Library Hyperpaprametes

SVM Python 3.6, scikit-learn v0.21.3 C = 100, class_weight = ‘balanced’, kernel = ‘linear’

SDA Python 3.6, milk v0.6.1 tolerance = 0.001, significance_in = 0.01,
significance_out = 0.01, Metric = ‘Wilk’s Lambda’

SFFS R 3.6.1, varSel v0.1 Metric = “Jeffries-Matusita distance”, Strategy =
"mean"

RF Python 3.6, scikit-learn v0.21.3 n_estimators = 100, criterion = ‘gini’, max_depth =
None, min_samples_leaf = 1

Three experiments were devised. First, each feature selection method was performed on the same
dataset, cross-validated 10 times (eg. rf_0, rf_1 . . . rf_9), selecting the top 30 discriminative wavebands,
thus revealing any possible biases in waveband selection resulting from the choice of feature selection

116



Remote Sens. 2020, 12, 113

method (Figures 6 and 7). Secondly, feature selection was performed on datasets consisting of different
classes and samples to simulate many different studies, giving an idea if attributes of the samples
affect the wavebands being selected, which will impact generalizability and transferability. Variants of
this experiment were performed wherein the classes used remained the same as did the number of
samples, though actual samples were randomly selected. Additionally an experiment with the same
classes though with differing numbers of samples. Results for these variants did not significantly differ
and therefore aren’t shown here.

Each dataset produced significantly different waveband selections. This is especially evident in
Figure 6b were the histogram is ordered by feature selector, placing each repetition with a new dataset
next to each other. Here, it is clear the RF favours the red edge and NIR bands, essentially ignoring
the SWIR. SFFS demonstrated higher selection in the VIS, especially at shorter wavelengths, minimal
selection in the NIR, and medium selection in late SWIR. SDA and SVM are the most similar due to both
selecting broadly and relatively evenly along the entire spectrum. Dimensionality reduction techniques
offer a way to visualize the relationship between selection histograms (Figure 7). Due to their broad
general selection, SDA and SVM are grouped close to each other with SFFS and RF adjacent though
separate. Further, the histograms are clearly grouped by feature selection method rather than dataset,
indicating that feature selection method is a dominant factor affecting the selection of wavebands.

Figure 6. Cont.
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Figure 6. (a): Histogram of band feature selection binned at 50nm, ordered by dataset. Four feature
selectors run on the same dataset 10 cross-validation (new dataset consisting of 10 classes and 200
samples for each cross-val.). (b): Results of Figure 5a ordered by feature selection method. (RF =
random forest, SDA = stepwise discriminant analysis, SFFS = sequential floating feature selection,
SVM = support vector machine).

   
(a) (b) (c) 

Figure 7. (a) PCA dimensional reduction of histogram waveband feature selection. (b) t-Distributed
Stochastic Neighbor Embedding (T-SNE) dimensional reduction of histogram waveband feature
selection. (c) Uniform Manifold Approximation and Projection (UMAP) dimensional reduction of
histogram waveband feature selection.

5. Discussion

This review of hyperspectral vegetation classification literature has determined that every aspect
of a study can greatly influence selected wavebands and classification performance. However, despite
this, we have identified some important and consistent patterns that appear throughout the literature.
Visible wavelengths and their associations with photosynthetic pigments have played important
discriminatory roles in a wide range of studies, their high levels of selection clearly evident in
this review (Figure 1). Selection rates in the VIS showed only minor variations between VIS/SWIR
studies and the VIS/NIR (Figure 1), although the comparisons between canopy and leaf scale spectra
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demonstrated significant differences (Figure 3). The discriminatory value of the red edge has been well
documented with its close relationship to chlorophyll concentration and structural features. This is
reflected in the consistently high rates of selection of the red edge as well as the robustness of its
selection with only minor variation in magnitude between the comparisons. The inclusion of structural
features in canopy spectra can provide high levels of interspecific variation in the NIR, primarily in
the form of differences in albedo, rather than spectral shape [68]. However, selection rates from the
non-red edge NIR are low, with the selected bands generally being related to water absorption features
and potentially high levels of within-class variability. Additionally, the NIR has demonstrated the
greatest degree of variability between the canopy and leaf scale spectra studies. Wavebands selected in
the SWIR are associated with water absorption and non-photosynthetic biochemicals, with selection
rates heavily skewed towards the NSWIR over the FSWIR.

The reported importance of NIR bands [45,52] seems to be contentious, primarily being driven by
the use of a single feature selection technique. Comparisons between selection rates for the NIR with
and without the use of SDA as the feature selector are starkly contrasted, with the importance of NIR
being significantly higher with the use of SDA. The criticisms of SDA and stepwise methods in general
perhaps offer an answer to the selection biases presented in this review.

It is apparent that there is no single best feature selection method, with the same method
performing very differently within and between studies. This suggests that either multiple methods
should be applied to the data, or an ensemble of multiple methods may be the best practice, a conclusion
recognized by this review, and previously suggested by some studies [36]. Additionally, multiple
subsets of selected features have proven to discriminate species equally well [8], or alternatively,
no feature selection, with the original data outperforming feature selected subsets [7,9,36]. Additionally,
as computation power, dataset sizes, and machine learning techniques all increase, the need for feature
selection as a data reduction technique becomes less necessary.

6. Conclusions

This review has established that the variability in waveband selection seen between studies, driven
by study parameters beyond the characteristics of the target samples, prevents the determination of
generalizable, high utility spectral regions for specific taxonomic discrimination. Broad trends such as
the importance of VIS and red edge wavelengths are apparent, independent of plant groupings, though
in and of themselves they are not sufficiently specific for taxonomic discrimination. The possibility
of discriminatory spectral regions being associated with specific taxonomic, structural, or functional
groupings of plants is inconclusive due to the large degree of variability between studies. This is
further highlighted by the apparent dominance of feature selector choice over other parameters for
waveband selection (Figures 6 and 7). Building on this review, future works could investigate variance
in waveband selection caused by the hyperparameter choice of feature selectors, data preprocessing,
as well as the inclusion of vegetation indices.
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43. Papeş, M.; Tupayachi, R.; Martinez, P.; Peterson, A.; Powell, G. Using hyperspectral satellite imagery for
regional inventories: A test with tropical emergent trees in the Amazon basin. J. Veg. Sci. 2010, 21, 342–354.
[CrossRef]

44. Raczko, E.; Zagajewski, B. Tree species classification of the UNESCO man and the biosphere karkonoski
national park (poland) using artificial neural networks and APEX hyperspectral images. Remote Sens. 2018,
10, 1111. [CrossRef]

45. Schmidt, K.; Skidmore, A. Spectral discrimination of vegetation types in a coastal wetland. Remote Sens.
Environ. 2003, 85, 92–108. [CrossRef]

46. Shang, X.; Chisholm, L.A. Classification of Australian native forest species using hyperspectral remote
sensing and machine-learning classification algorithms. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014,
7, 2481–2489. [CrossRef]

47. Thenkabail, P.S.; Enclona, E.A.; Ashton, M.S.; Van Der Meer, B. Accuracy assessments of hyperspectral
waveband performance for vegetation analysis applications. Remote Sens. Environ. 2004, 91, 354–376.
[CrossRef]

48. Thenkabail, P.S.; Mariotto, I.; Gumma, M.K.; Middleton, E.M.; Landis, D.R.; Huemmrich, K.F. Selection of
hyperspectral narrowbands (HNBs) and composition of hyperspectral twoband vegetation indices (HVIs)
for biophysical characterization and discrimination of crop types using field reflectance and Hyperion/EO-1
data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2013, 6, 427–439. [CrossRef]

49. Vaiphasa, C.; Ongsomwang, S.; Vaiphasa, T.; Skidmore, A.K. Tropical mangrove species discrimination using
hyperspectral data: A laboratory study. Estuar. Coast. Shelf Sci. 2005, 65, 371–379. [CrossRef]

50. Vaiphasa, C.; Skidmore, A.K.; de Boer, W.F.; Vaiphasa, T. A hyperspectral band selector for plant species
discrimination. ISPRS J. Photogramm. Remote Sens. 2007, 62, 225–235. [CrossRef]

51. Van Aardt, J.; Wynne, R. Examining pine spectral separability using hyperspectral data from an airborne
sensor: An extension of field-based results. Int. J. Remote Sens. 2007, 28, 431–436. [CrossRef]

52. Wang, J.; Xu, R.; Yang, S. Estimation of plant water content by spectral absorption features centered at 1450
nm and 1940 nm regions. Environ. Monit. Assess. 2009, 157, 459–469. [CrossRef] [PubMed]

53. Asner, G.P. Biophysical and biochemical sources of variability in canopy reflectance. Remote Sens. Environ.
1998, 64, 234–253. [CrossRef]

54. Rivard, B.; Sanchez-Azofeifa, G.; Foley, S.; Calvo-Alvarado, J. Species classification of tropical tree leaf
reflectance and dependence on selection of spectral bands. Hyperspect. Remote Sens. Trop. Sub-Trop. For. 2008,
6, 141–159.

55. Ollinger, S.V. Sources of variability in canopy reflectance and the convergent properties of plants. New Phytol.
2011, 189, 375–394. [CrossRef]

56. Thenkabail, P.; Smith, R.; De Pauw, E. Hyperspectral Vegetation Indices for Determining Agricultural Crop
Characteristics, CEO Research Publication Series No. 1; Center for Earth Observation, Yale University Press:
New Haven, CT, USA, 1999.

57. Thenkabail, P.S.; Smith, R.B.; De Pauw, E. Evaluation of narrowband and broadband vegetation indices for
determining optimal hyperspectral wavebands for agricultural crop characterization. Photogramm. Eng.
Remote Sens. 2002, 68, 607–622.

58. Ferreira, M.P.; Grondona, A.E.B.; Rolim, S.B.A.; Shimabukuro, Y.E. Analyzing the spectral variability of
tropical tree species using hyperspectral feature selection and leaf optical modeling. J. Appl. Remote Sens.
2013, 7, 073502. [CrossRef]

59. Galvão, L.S.; Roberts, D.A.; Formaggio, A.R.; Numata, I.; Breunig, F.M. View angle effects on the discrimination
of soybean varieties and on the relationships between vegetation indices and yield using off-nadir Hyperion
data. Remote Sens. Environ. 2009, 113, 846–856. [CrossRef]

60. Blackburn, G.A. Hyperspectral remote sensing of plant pigments. J. Exp. Bot. 2006, 58, 855–867. [CrossRef]
[PubMed]

61. Thomas, J.; Gausman, H. Leaf reflectance vs. leaf chlorophyll and carotenoid concentrations for eight crops.
Agron. J. 1977, 69, 799–802. [CrossRef]

62. Castro-Esau, K.L.; Sánchez-Azofeifa, G.A.; Rivard, B.; Wright, S.J.; Quesada, M. Variability in leaf optical
properties of Mesoamerican trees and the potential for species classification. Am. J. Bot. 2006, 93, 517–530.
[CrossRef]

122



Remote Sens. 2020, 12, 113

63. Pu, R. Broadleaf species recognition with in situ hyperspectral data. Int. J. Remote Sens. 2009, 30, 2759–2779.
[CrossRef]

64. Demmig-Adams, B.; Adams, W.W. The role of xanthophyll cycle carotenoids in the protection of
photosynthesis. Trends Plant Sci. 1996, 1, 21–26. [CrossRef]

65. Gamon, J.; Penuelas, J.; Field, C. A narrow-waveband spectral index that tracks diurnal changes in
photosynthetic efficiency. Remote Sens. Environ. 1992, 41, 35–44. [CrossRef]

66. Gitelson, A.A.; Merzlyak, M.N.; Chivkunova, O.B. Optical properties and nondestructive estimation of
anthocyanin content in plant leaves. Photochem. Photobiol. 2001, 74, 38–45. [CrossRef]

67. Gong, P.; Pu, R.; Yu, B. Conifer species recognition: An exploratory analysis of in situ hyperspectral data.
Remote Sens. Environ. 1997, 62, 189–200. [CrossRef]

68. Van Aardt, J.A. Spectral separability among six southern tree species. Photogramm. Eng. Remote Sens. 2001,
67, 1367–1375.

69. Karlovska, A.; Grı̄nfelde, I.; Alsin, a, I.; Priedı̄tis, G.; Roze, D. Plant reflected spectra depending on biological
characteristics and growth conditions. In Proceedings of the International Scientific Conference Rural
Development, Akademija, Lithuania, 23–24 November 2017.

70. Clevers, J.; De Jong, S.; Epema, G.; Van Der Meer, F.; Bakker, W.; Skidmore, A.; Scholte, K. Derivation of the
red edge index using the MERIS standard band setting. Int. J. Remote Sens. 2002, 23, 3169–3184. [CrossRef]

71. Dawson, T.; Curran, P. Technical note A new technique for interpolating the reflectance red edge position.
Int. J. Remote Sens. 1998, 19, 2133–2139. [CrossRef]
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Abstract: Invasive and expansive plant species are considered a threat to natural biodiversity because
of their high adaptability and low habitat requirements. Species investigated in this research, including
Solidago spp., Calamagrostis epigejos, and Rubus spp., are successfully displacing native vegetation and
claiming new areas, which in turn severely decreases natural ecosystem richness, as they rapidly
encroach on protected areas (e.g., Natura 2000 habitats). Because of the damage caused, the European
Union (EU) has committed all its member countries to monitor biodiversity. In this paper we
compared two machine learning algorithms, Support Vector Machine (SVM) and Random Forest
(RF), to identify Solidago spp., Calamagrostis epigejos, and Rubus spp. on HySpex hyperspectral aerial
images. SVM and RF are reliable and well-known classifiers that achieve satisfactory results in the
literature. Data sets containing 30, 50, 100, 200, and 300 pixels per class in the training data set were
used to train SVM and RF classifiers. The classifications were performed on 430-spectral bands and on
the most informative 30 bands extracted using the Minimum Noise Fraction (MNF) transformation.
As a result, maps of the spatial distribution of analyzed species were achieved; high accuracies were
observed for all data sets and classifiers (an average F1 score above 0.78). The highest accuracies
were obtained using 30 MNF bands and 300 sample pixels per class in the training data set (average
F1 score > 0.9). Lower training data set sample sizes resulted in decreased average F1 scores, up to
13 percentage points in the case of 30-pixel samples per class.

Keywords: Natura 2000; invasive species; expansive species; support vector machine; random
forest; biodiversity

1. Introduction

The spread of invasive and expansive species is one of the main threats to biodiversity and
functioning of ecosystems [1]. This results in transformation of natural habitats, displacement of native
species, and degrading environmental conditions (e.g., number of existing micro- and macrophytes).
It also generates economic losses by degrading the quality of soil and destroying road and railway
infrastructure [2]. In the European Union (EU), it is estimated that the cost of controlling and combating
invasive species amounts to approximately 12 billion EUR per year [3]. Implementation of appropriate
remedial strategies and effective limitation of the invasion’s effects require constant monitoring, which
is emphasized in the EU Regulation No. 1143/2014.

The species that pose a threat to natural habitats protected under the Natura 2000 program in
Poland include, for example, native expansive plants such as blackberry shrubs (Rubus spp. L.),
perennial wood small-reed (Calamagrostis epigejos (L.) Roth), and foreign invasive goldenrod species
(Solidago spp. L). These species do not have high requirements concerning their habitat; they also
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reproduce quickly, both in terms of vegetative and generative reproduction, and they stifle other
plants [4]. They negatively impact valuable natural habitats, such as inland sand calcareous grasslands,
mountain and lowland Nardus grasslands, Molinia meadows, and alluvial meadows. They are
extensively used in fresh low pastures in mountain hay and bent-grass meadows [5–7]. In order to
prevent further changes in the vegetation, these harmful species should be identified and removed
preferably at the early stages of invasion.

The current monitoring of plant species changes is based on fixed target areas. Individual specimens
of the species found in target areas are counted, and the observed regularities are extrapolated to
the whole area, which can differentiate due to, for example, environmental components or land use.
In comparison to traditional fields, remote sensing allows for objective and repetitive monitoring
that can be conducted both on local and global scales [8,9]. Considering the complexity of class
distinctions, both intra-class similarities and differences between classes, the data which can be used
for this purpose are multispectral, such as Landsat [10], WorldView-2 [11], or hyperspectral data
(e.g., HyMap) [12]. As hyperspectral data constitute a source of ongoing information about spectral
reflection, they provide a lot of information about the biophysical and chemical characteristics of the
analyzed vegetation [13–15]. Either hyperspectral satellite data (e.g., Hyperion [16] and CHRIS [15,17])
or aerial data (e.g., APEX [18] and AISA [19,20]) are used, depending on the size of the research area and
the canopy characteristics of the identified vegetation. Airborne data are more useful for the detection
of small, less compact patches of plant species because of their high spatial resolution [16]. The study
of Mediterranean plants in southern France confirms that spectral and spatial resolution influence the
accuracy of vegetation mapping [21]. The highest accuracy of classification of five vegetation types was
obtained using the airborne hyperspectral imaging sensor, HyMap. Depending on the classification
method used, the overall accuracies (OAs) ranged from 62.3% for k-nearest neighbor (k-nn), 67.7% for
Random Forest (RF), and 70.2% for Support Vector Machine (SVM), up to 72.5% for Artificial Neural
Networks (ANNs), while the use of ASTER satellite data resulted in slightly lower accuracy levels
(from 60.3%), and the worst results were obtained using multispectral data Landsat 7 ETM + (59.3%).

Multi-dimensional, large-scale image data can be used effectively when their use is based on
modern classification methods, i.e., Support Vector Machine (SVM) [22] or Random Forest (RF) [23].
Both are considered to be among the most effective classification methods [21]. The SVM algorithm
transforms the original space and then constructs an optimal hyperplane in the multi-dimensional
feature space, which divides the data into different classes with the largest possible margin of separation.
The algorithm works well on noisy data and small numbers of training pixels; it is sufficient to develop
support vectors and usually has a higher level of accuracy than other classification algorithms [21,24].
The SVM method was compared with different types of neural networks (MLP, multilayer perceptrons;
CANFIS, co-active neurofuzzy inference systems) used for classifying five types of cultivated plants in
Spain using HyMap data [25]. Results have shown that, despite small differences in the classification
accuracy (OASVM = 96,4% 29, OAMLP = 94,5%, OARBF = 94,1%, OACANFIS = 94,2%), the SVM algorithm
is more efficient than neural networks in terms of stability, reliability, simplicity, as well as the speed
of the classification process. Moreover, SVM achieved very high accuracies (OA = 93%) during the
detection of invasive Solanum mauritianum shrubs on Pinus patula plantations in southern Africa on the
basis of AISA Eagle images [20].

On the other hand, the RF algorithm works by creating many decision trees based on a random
subset of training data, and the final decision is made by combining individual tree votes [23].
The advantage of this method is its resistance to overfitting of the training set and its short classification
time. Good results were achieved by using the RF method to study the invasion of Euphorbia
escula and Centaurea maculosa in Montana [15]. The accuracy levels of classification based on the
airborne hyperspectral HySpex images for the mentioned plant species were 86% and 84%, respectively.
Additionally, the Random Forest algorithm has proved its worth in identifying two expansive grassland
species, Molinia caerulea and Calamagrostis epigejos, in the Silesia Upland in Poland. HySpex and LiDAR
(light detection and ranging) products from the Riegl LMS-Q680i scanner were used in the study,
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obtaining the highest median Kappa of 0.85 (F1 = 0.89, which is a mathematical product of the user
(UA) and producer accuracies (PA)) for M. caerulea identification and 0.65 (F1 = 0.73) for C. epigejos [26].

The use of SVM and RF methods yielded good results during the classification of 20 types of
grassy vegetation in the Hortobágy National Park in eastern Hungary on the basis of AISA Eagle II
data [27]. The highest accuracy of classification was obtained on the first nine Minimum Noise Fraction
(MNF) transformation bands of the hyperspectral image and by using 30 random training pixels
(OASVM= 82.06%, OARF = 79.14%, OAML = 80.78%). However, when the training set was reduced to 10
pixels, SVM and RF methods still maintained high levels of accuracy (79.57% and 76.55%, respectively),
while the ML accuracy dropped significantly to 52.56%. The low level of sensitivity to the training
sample size is a big advantage of these algorithms, especially SVM. On the other hand, the RF algorithm
had a short image classification time (3 minutes) compared to the other methods used on the same
data set (SVM = 16 min, ML = 8 min). Studies of Mediterranean vegetation (mainly shrubs varying
in height from about 0.5 m to almost 5 m) that were carried out in Languedoc in southern France
demonstrated that RF and SVM methods obtained better information from hyperspectral data than
any traditional classifiers (e.g., classification tree (CT), linear discriminant analysis (LDA), quadratic
discriminant analysis (QDA), and k-nearest neighbor (k-nn)), especially when the spectral differences
between classes were small [21]. When distinguishing 15 species of plants, the overall accuracies of
the classification for modern methods, i.e., SVM and RF (OASVM = 39.2–47.9%, OARF = 39.3–49.5%),
were higher than those recorded for traditional methods (OACT = 28.6–44.4%, OALDA = 37–45.1%,
OAQDA = 37.5–39.3%, OAk-nn = 18–28.8%), depending on the set of input data. The artificial neural
network (ANN) method was also used to identify plant species; however, this experiment did not lead
to satisfactory results.

The aim of the current analysis was to verify whether the expansive/invasive Rubus spp.,
Calamagrostis epigejos, and Solidago spp. were characterized by a specific set of spectral characteristics
that allowed them to be distinguished from the surrounding species, which altogether create a mix of
fuzzy, covered patterns. Moreover, an analysis of the impact of the number of pixels in training data
set on the classification accuracy was performed. Well-known reference classification algorithms were
applied, SVM and RF methods, which are commonly used because of their effectiveness.

The proposed method could be applied in extensively used agricultural areas (considering
traditionally used farming methods), and not limited to only selected test areas.

2. Materials and Methods

2.1. Study Area and Objects of the Study

The research area was located in southern Poland near the town of Malinowice (Silesian Province)
and covered an area of approximately 10.6 km2 of the Natura 2000 habitat (Figure 1). This is an upland
area covering the Tarnogóra Hummock and the Katowice Upland and is in a transitional temperate
climate. This area is dominated by grasslands, meadows, and forests. Blackberry (mainly Rubus caesius
L., European dewberry), various species of goldenrod (Solidago spp.), and wood small-reed grass
(Calamagrostis epigejos) occur very frequently in this area.

Rubus spp. L., a genus of plant in the Rosaceae family commonly called bramble, is one of the
most important expansive species [28]. Blackberries are native to Asia, Europe, and North and South
America [29], and they often pose a threat to young forest crops and habitats protected under the
Natura 2000 program. They are typically shrubs (can be up to 3 meters high) with perennial roots,
biennial prickly stems, and edible fruits which are aggregates of drupelets [29]. Blackberries can be
found in all kinds of environments, including forests, shrubs, meadows, wastelands, and roadsides.
Vegetative reproduction and production of a large number of seeds that are spread by birds and
other animals allows them to quickly colonize new areas [30]. They bloom from May to September.
According to the latest data, there are 105 Rubus species in Poland alone [31]. Rubus spp. L. is linked to
negative economic and environmental consequences (e.g., changes in the dominant type of vegetation,
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soil depletion, or increased susceptibility to fires) [32]. The spectral characteristics of Rubus spp.
are very similar, which is why they were identified collectively in the paper without division into
individual species.

 
Figure 1. Field research polygons on the Malinowice area.

Another widespread, expansive species that degrades grassland and meadow communities is
Calamagrostis epigejos (L.) Roth, commonly referred to as wood small-reed [33]. It is a perennial grass
in the Poaceae family, which is native to the Eurasian area [5], and has spread to North America [34].
The plant has thick and rigid blades that can be up to 2 meters high and has complex inflorescences in
the form of a panicle. Wood small-reed propagates vegetatively, through numerous stolons, as well
as generatively, through seeds (i.e., kernels) [35]. It blooms from July to September, often forming
extensive single-species fields whose colors vary from green to brown to purple. Wood small-reed
grows in meadows, forests, urban areas, along railways, and on the roadsides. A large amount of reed
biomass is deposited in non-hay areas, and its lengthy decomposition time causes acidification of the
substrate and hinders development of other plants [36].
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Some of the most invasive plants that pose a huge threat to native species and biodiversity of entire
ecosystems are representatives of the goldenrod genus (Solidago spp. L.). They are perennials from the
Asteraceae family, imported from North America to Europe as decorative plants [37]. Goldenrod occurs
in the form of three invasive species: Solidago canadensis (Canadian goldenrod), Solidago gigantea (tall
goldenrod), and Solidago graminifolia (grass-leaved goldenrod) [38,39]. These plants have stiff sprouts
that can be up to 2 meters tall, ending in pyramidal panicle clusters, which are formed by flowers
clustered in heads [40]. They propagate vegetatively, thanks to underground rhizomes, and generatively
with the help of light seeds (achenes with pappus) that can be spread over considerable distances [41].
They quickly begin to dominate and often form dense single-species patches. They bloom from July to
October, forming characteristic yellow inflorescences. Goldenrods have a high tolerance for various
soil types, but they require exposure to full sun [42]. They grow in open habitats such as meadows,
wastelands, anthropogenic areas, and along roads and river banks [2].

2.2. Field Measurements

The field studies were conducted in the summer of 2017. Compact polygons (in the shape
of circles with a radius of 3 meters) of Rubus spp., Solidago spp., Calamagrostis epigejos, and other
background plants were located within the research area with the help of the Leica CS20 GNSS device
(Figure 2). The number of polygons was proportional to the prevalence of species in the research area
and amounted to 50 polygons for blackberry and wood small-reed, 60 polygons for goldenrod, and
100 polygons for background plants.

 

Figure 2. Collection of reference plot locations—plot for Calamagrostis epigejos shown in above picture.

Then, the polygons were transferred to ArcMap 10.3, where photo interpretation techniques were
used to create an additional 30 reference polygons for other types of land cover (i.e., trees, buildings,
bare soil, and shaded areas). These additional classes were meant to indicate for the algorithm the
spectral properties of objects that occurred in the research area and constituted non-forest vegetation.
Finally, reference polygons were created for eight classes: Calamagrostis epigejos, Solidago spp., Rubus
spp., other plants, trees, bare soils, buildings, and shadows (Figure 1).

2.3. Airborne Hyperspectral HySpex Data

Aerial hyperspectral data were obtained by MGGP Aero Sp. z o.o. on 29 August 2017 using
sensors located on a Cessna 402B aircraft. A hyperspectral image with a 16-bit radiometric resolution
was recorded with two HySpex Visible and Near Infrared (VNIR-1800) scanners and a Shortwave
Infrared (SWIR-384) scanner. The specification of both sensors is provided in the table below (Table 1).
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Table 1. Main technical characteristics of HySpex scanners used in this work.

Parameters HySpex VNIR-1800 HySpex SWIR-384

Spectral range 416–995 nm 954–2510 nm
Number of spectral bands 182 (163 1) 288

Spectral sampling 3.26 nm 5.45 nm
Spatial resolution 0.5 m 1 m

Spatial pixels 2 1800 384
Field of View (FOV) across track 17–34◦ 16–32◦

Instantaneous Field of View (IFOV) 0.01–0.04◦ 0.04–0.08◦
1 A number of spectral bands were deleted due to overlapping spectral ranges between VNIR-1800 and SWIR-384 sensors.
2 a number of pixels per scan line.

The aerial hyperspectral images were prepared for further processing in accordance with the
diagram presented in the schema (Figure 3). The data obtained by hyperspectral sensors were
converted to radiance units with HySpex RAD software. Then, the hyperspectral image was subjected
to geometric correction, which employed the digital surface model in PARGE (PARametric GEocoding)
software (ReSe Applications LLC, Wil, Switzerland), and atmospheric correction was performed with
the MODTRAN5 model in ATCOR4 (ATmospheric CORrection) software (ReSe Applications LLC, Wil,
Switzerland). Nine flight lines were mosaicked and re-sampled to achieve a uniform spatial resolution
of 1 m. Next, the last 21 bands in the SWIR range were removed because of the high level of noise
caused by the sensor’s lower SNR (Signal to Noise Ratio) at the extreme ranges of the imaged spectrum,
which ultimately resulted in a 430-band image in the spectral range of 416.18–2396.44 nm.

 

Figure 3. Research algorithm.

In order to reduce HySpex data dimensionality, Minimum Noise Fraction (MNF) transformation
was applied. Based on MNF bands, eigenvalues, and visual assessment of transformed bands, the first
30 MNF bands were selected for further processing. Finally, two data sets were prepared for species
classification: the first one contained 430 HySpex bands while the second one contained 30 MNF bands.
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2.4. Classification Process and Accuracy Assessment

One of our goals was to analyze the impact of pixel number in the training data sets on classification
accuracy; hence, we created training data sets with a set number of pixels per class. Using stratified
random sampling, 50% of all reference polygons were selected to create a training test data set, while
remaining polygons were used to create a validation data set.

The training test data set was used to create subsets (training data sets with a set number of
pixels per class), and all remaining samples ended up in the test data set that was used for preliminary
accuracy assessment. The validation data set was created to eliminate spatial autocorrelation with
the training test data set (randomly selected pixels were used in the training and validation sets).
This allowed to create a spatially independent and stable validation data set, which was used to assess
final results.

To investigate the influence of training data set size on achieved classification results, the training
test data set was sub-sampled to create training data sets that contained exactly 30, 50, 100, 200, and
300 pixels per class. These sub-sampled data sets will be used for classifier training. If a given class had
fewer total available samples than required, random sampling with replacement was used, otherwise
random sampling without replacement was employed. If all available pixels for given class were
selected for training purposes, a copy of training data for this class was used instead.

An iterative accuracy assessment was used in order to objectively compare achieved results.
This was a procedure consisting of the following steps repeated 100 times:

1. Sub-sample the training test data set in order to create a training data set with a set number of
samples per class;

2. Train SVM and RF classifiers;
3. Assess accuracy using test and validation data sets; and
4. Save trained classifier models and accuracy measures for further analysis.

Pixel classification was carried out on the basis of the Support Vector Machine and Random
Forest algorithms in R software. The first stage of the training process was to optimize the learning
parameters of these algorithms in order to obtain the best possible settings. This task was completed
on the training and test sets before the division. A radial basis function was chosen for the SVM
algorithm because of its proven efficiency [43] and smaller number of computational difficulties [44].
The learning parameters of the compared classification algorithms were subjected to a tuning process.
A gamma value of 0.1 and cost of 1000 was obtained for the SVM algorithm. In the case of the Random
Forest algorithm, on the basis of the out-of-bag (OOB) error analysis, the mtry parameter (the number
of features randomly sampled at each split) was set at 140 for classification on 430 hyperspectral
bands and at 13 for classification on the set of the first 30 MNF transformation bands. In both cases,
the number of random trees (ntree) amounted to 500.

In this work, we compared two classification algorithms (SVM and RF), two different data sets
(430 original hyperspectral bands, 430 HS, and 30 Minimum Noise Fraction bands, 30 MNF), and five
different sample sizes per class in the training data set (30, 50, 100, 200, and 300 pixels). Due to the
unavailability of the larger continuous areas of invasive plants on our study area, we have limited the
analysis to 300 pixels. All combinations of the above parameters were tested, resulting in 20 different
classification scenarios.

Accuracy of the performed classifier training was assessed with the set of test data and the data
spatially separated from the training and test set (i.e., on pixels of the validation data set), which was
constant for all scenarios. The algorithms were compared, and the best combination of image data set
and classifier was determined based on validation performance. The following accuracy parameters
were calculated on the basis of the error matrix:
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• Overall accuracy—the ratio of the total number of correctly classified pixels to the total number of
reference pixels [45];

• Cohen’s Kappa—the similarity of the analyzed classification compared to the random classification
(a Kappa value of 0 means full similarity while 1 means no similarity) [46];

• Producer’s Accuracy (PA)—the ratio of correctly classified pixels of a given class to all pixels in
the validation data set for this class [45];

• User’s Accuracy (UA)—the ratio of pixels correctly classified in a given class to all pixels classified
in this category [45]; and

• F1 score sensitivity, measured using harmonic mean of precision (P), positive predictive value,
and recall (R) as in Equation (1) [47,48]:

F = 2PR/(P+R) (1)

Afterwards, the best models for each classifier and data set were selected on the basis of
the mean F1 scores for all classes (based on the validation data), and the images were classified.
The significance of statistical differences between the accuracy of the models was checked using the
Mann–Whitney–Wilcoxon test [49] (significance level = 0.05). The Mann–Whitney–Wilcoxon test is well
suited for testing differences between non-normally distributed populations [26,50]. Distributions of
achieved accuracy measures for all classification scenarios were visualized using box plots. A detailed
explanation of boxes used in box plots is shown in Figure 4.

Figure 4. Explanation of structural elements of boxes used in box plot.

Moreover, classifier training was performed on nine classes, each with an identical number of
training samples to reduce any effect of unbalanced training data. After classifier training, background
classes were considered as one class with relation to plant classes. Such steps allowed us to properly
assess classification quality (which classes are confused with which) and helped us achieve the most
accurate results. In our work we assumed that confusion between background classes was acceptable,
while confusion between plant species and background classes or other plant species would be a
concern that would need to be addressed and reported. When classifying plant species, it is important
to deliver a suitable and representative sample of pixels that characterize objects other than object of
the study. Such classes can be oftentimes referred to as background classes. Since our study aimed to
investigate the influence of training data set size, it would be insufficient to perform classification of
four classes, that is, three plant species and one class with background objects. This mainly is due
to difficulties in randomly sampling background classes in such a way that, for example, 30 pixels
will represent them all. In fact, such an approach would almost guarantee that pixels for background
classes covering a relatively small area would not be included in the training data set with a sufficient
number of samples, which in turn would destroy any credibility of such work. To address this issue
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when creating the training data set, each background class (shadows, trees, other plants, soils, and
buildings) had the same number of training samples, equal to the number of samples used for each
plant species class. This is to ensure our background classes had similar representation to the plant
species classes during classifier training.

3. Results

3.1. Statistical Analysis of Investigated Classification Scenarios

The mean F1 score was calculated for all classes on two sets: the test set and the validation set.
The test set was dependent on the training set—the pixels in these sets were drawn from the same
polygons, so the number of pixels in the test set decreased with an increasing number of pixels in the
training set (Table 2). The high accuracy level obtained for this set is, therefore, not surprising, nor can
it be used to compare the classifiers.

In contrast, the validation set had a fixed number of observations (4835 pixels) and was spatially
independent of the other data sets. Regardless of the classifier used, higher mean F1 scores for all classes
based on the validation set were obtained for classifications performed on 30 MNF transformation
bands (0.854–0.918) compared to that of the 430 hyperspectral data bands (0.760–0.853).

Table 2. Classifier training parameters and their average F1 scores.

Data Used
Algorithm

(Parameters)

Number of Pixels Mean for 100 Iterations

Training
Set per

Class/All

Testing
Set

Testing Set Validation Set (4835 pixels)

F1 for All
Classes

F1 for all
Classes

F1 for
3 Plant
Species

F1 for
Background

Classes
Kappa

430
hyperspectral

bands

RF
(mtry =140;
ntree = 500)

30/240 4612 0.847 0.784 0.789 0.856 0.759
50/400 4452 0.876 0.803 0.811 0.871 0.785

100/800 4052 0.905 0.823 0.831 0.866 0.808
200/1600 3252 0.931 0.843 0.851 0.869 0.832
300/2400 2452 0.935 0.853 0.859 0.869 0.842

SVM
(kernel = radial;

cost = 1000;
gamma = 0.1)

30/240 4612 0.843 0.760 0.803 0.807 0.737
50/400 4452 0.888 0.787 0.833 0.853 0.771

100/800 4052 0.935 0.817 0.867 0.820 0.808
200/1600 3252 0.964 0.840 0.893 0.827 0.833
300/2400 2452 0.972 0.852 0.907 0.826 0.847

30 MNF
bands

RF
(mtry = 13;
tree = 500)

30/240 4612 0.952 0.869 0.868 0.965 0.853
50/400 4452 0.974 0.893 0.890 0.952 0.888

100/800 4052 0.988 0.910 0.908 0.942 0.906
200/1600 3252 0.994 0.917 0.920 0.940 0.917
300/2400 2452 0.995 0.918 0.926 0.932 0.92

SVM
(kernel = radial;

cost = 1000;
gamma = 0.1)

30/240 4612 0.961 0.854 0.918 0.860 0.850
50/400 4452 0.980 0.871 0.933 0.850 0.874

100/800 4052 0.993 0.881 0.943 0.847 0.885
200/1600 3252 0.998 0.883 0.949 0.846 0.889
300/2400 2452 0.999 0.883 0.951 0.838 0.891

The accuracy level for both classifiers increased with the number of training pixels used for
classification (Figure 5). The distributions of the mean F1 score for all classes revealed that when the
number of training pixels increased, the interquartile range of the obtained accuracies decreased, so the
results obtained in 100 iterations were more stable. What is more, the use of a smaller number of
training pixels caused a greater decrease in the accuracy of classifications performed on the original
hyperspectral bands than in the case of classifications performed on the MNF transformation bands.
The most stable distributions and the highest F1 scores for all classes were obtained by the classifications
performed on a set of 30 MNF transformation bands and 300 training pixels (the median F1 for RF was
about 0.92, while the median F1 for SVM was about 0.88).
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Figure 5. Distributions of mean F1 scores for all classes calculated on the validation data set for SVM
and RF classifiers; both analyzed raster data sets and a different number of training pixels. Explanations
are presented in Figure 4.

In order to check if there are statistically significant differences in the F1 scores of all the
tested scenarios, the Mann–Whitney–Wilcoxon test was carried out at the significance level of 0.05
(Figure 6). There were statistically significant differences between most of the considered scenarios.
The SVM classifications on MNF bands using 200 and 300 pixels for classifier training were the only
exception. There were no statistically significant differences found for the RF classification performed
on 430 hyperspectral bands using 300 training pixels and the SVM classification on a very limited data
set consisting of 30 MNF bands and 30 training pixels.

 

Figure 6. Matrix of statistical significance between scenarios calculated on the basis of F1 accuracy for
all classes using the U Mann–Whitney–Wilcoxon test (red fields indicate significant differences between
populations at the 0.05 significance level). Names of scenarios contain an acronym of the classification
algorithm (RF or SVM), information about raster data (430 HS or 30 MNF), and size of the training data
set in pixels.
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An analysis of the distribution of F1 scores for individual classes of identified species (Figure 7)
makes it possible to draw conclusions about the best data sets and algorithms for classifying each class.

Figure 7. F1 score distribution for validation data set (a) 430 bands and (b) 30 MNF bands. The horizontal
axis of the charts indicates the number of pixels in the training set used to classify the given species
using RF or SVM classifiers. The vertical axis shows the accuracy of the scenarios.

The Solidago spp. class identified well with all classifiers and raster data sets (the F1 score was
above 0.95). The accuracy levels increased with an increasing number of training pixels, whereas the
differences in accuracy levels resulting from the change in the size of the training sets were small.
However, slightly higher mean F1 scores were recorded for the Random Forest classifier. Solidago are
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marked by their very characteristic yellow color and spectral properties, which distinguished them
from other classes in the imaging, and additionally tend to form large, uniform fields, so the almost
perfect identification of this species was not surprising.

In the case of the Rubus spp. class, the best identification results were obtained for the SVM
classification on 30 MNF bands using 300 training pixels (F1 = 0.97), but application of the same
classifier with the number of training pixels reduced to 100 resulted in a similar accuracy level. Good
results were also obtained for the RF classification on the same raster data set and 300 training pixels
(F1 = 0.95). The F1 scores obtained on 430 hyperspectral data bands were lower (F1 RF from 0.7 to 0.76,
and F1 SVM from 0.71 to 0.84).

Calamagrostis epigejos was a more difficult plant species to identify. However, high F1 scores of
around 0.91 were obtained using the SVM algorithm, 30 MNF transformation bands, and sets of 200
and 300 training pixels. A similar accuracy level was also obtained for the SVM classification and
300 training pixels on 430 hyperspectral bands (F1 = 0.9). The Random Forest classification resulted in
lower accuracy levels for this species, with F1 scores between 0.7 and 0.82 on the hyperspectral data
set, and between 0.76 and 0.83 on the MNF transformation bands. The accuracy increased with the
growth of the number of training pixels.

Considering the mean accuracy level for three species identified in the research area, it can
be concluded that the best spatial distribution was obtained using the SVM algorithm and 200 or
300 training pixels (F1 = 0.95). For the other classes distinguished in the image (i.e., plant background,
forests, buildings, bare soil, and shadows), the best F1 scores (from 0.93 to 0.96) were obtained
with the RF algorithm. However, in terms of accuracy for all the classes together, the best accuracy
(Kappa = 0.92, F1 for all classes = 0.92) was obtained for the RF classifier, 30 MNF bands, and sets of
200 and 300 training pixels.

To sum up, the SVM algorithm and the data set consisting of 30 MNF bands and 300 training
pixels proved to be the best for identifying the Calamagrostis and Rubus classes. In the case of Solidago
and background classes, better results were obtained with the Random Forest classifier. However,
goldenrod classified well (mean F1> 0.95) on both sets of raster data and with a different numbers of
training pixels. On the other hand, in the case of background classes, the best results were obtained for
30 MNF bands and 200 training pixels. This may indicate that the Random Forest method works better
for the classification of spectrally uniform, large forms of land use, which differ significantly from their
surroundings, while the SVM method is better for identifying plant species that are more spectrally
different and similar to the background classes.

3.2. Best Model Plant Species Identification Accuracy

A set of data consisting of 30 MNF bands and 300 training pixels was selected on the basis of
the analysis of statistical accuracy to develop images showing spatial distributions of the analyzed
species in the research area. Figure 8 presents distributions of the producer and user accuracies for
100 iterations of classifications performed on a selected set of data using both classifiers.

For the Rubus spp. class, the RF classifier yielded a lower median user’s accuracy than that of
SVM by three percentage points, while the differences in the producer’s accuracy levels between
the classifiers were small. Both the producer’s and user’s accuracies for Solidago spp. were very
high (close to 100%), a slight underestimation was detected only in the case of the SVM classification
(producer’s accuracy about 93%). In contrast, the Calamagrostis epigejos class achieved the lowest
median producer and user accuracies of all classes. The SVM classifier achieved higher producer and
user accuracy levels for C. epigejos (PA = 96%, UA = 87%) than the RF classifier (PA = 88%, UA = 78%).

The resulting images for both classification methods prepared for the best mean F1 scores for all
iteration classes are presented and compared below (Figure 9). The correctness of species identification
was also assessed on the basis of the confusion matrix (Tables 3 and 4).
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Figure 8. User and producer accuracies of the 300 pixel training set and 30 MNF bands classification.

Figure 9. Classification results of the (a) SVM and (b) RF based on 30 MNF bands and 300-pixel training
sets; SVM: Kappa coefficient = 0.89, OA = 91.21; RF: Kappa coefficient = 0.92, OA = 93.23%.
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Table 3. Confusion matrix of the SVM classification with 30-MNF bands and the 300 pixel training set
(Kappa coefficient = 0.89, OA= 91.21%).

Class C. epigejos Rubus spp. Solidago spp. Shadows Trees Other Plants Soils Buildings Total UA (%)

C. epigejos 454 0 0 0 0 21 66 0 541 83.92
Rubus spp. 0 406 0 0 0 0 0 0 406 100.00

Solidago spp. 0 0 781 0 0 0 0 0 781 100.00
Shadows 0 0 0 415 0 0 0 5 420 98.81

Trees 0 6 0 0 344 2 0 0 352 97.73
Other plants 18 14 0 0 11 1375 44 0 1462 94.05

Soils 3 3 56 0 12 0 309 87 470 65.74
Buildings 9 2 3 3 60 0 0 326 403 80.89

Total 484 431 840 418 427 1398 419 418 4835
PA (%) 93.80 94.20 92.98 99.28 80.56 98.35 73.75 77.99

Table 4. Confusion matrix of the RF classification with 30 MNF bands and the 300 pixel training set
(Kappa coefficient = 0.92, OA = 93.23%.).

Class C. epigejos Rubus spp. Solidago spp. Shadows Trees Other Plants Soils Buildings Total UA (%)

C. epigejos 437 0 0 0 0 33 84 0 554 78.88
Rubus spp. 0 394 0 0 2 0 23 0 419 94.03

Solidago spp. 0 0 833 0 0 0 0 0 833 100.00
Shadows 0 0 0 418 0 0 0 10 428 97.66

Trees 0 2 1 0 414 5 0 0 422 98.10
Other plants 23 35 6 0 11 1360 31 27 1493 91.09

Soils 24 0 0 0 0 0 278 5 307 90.55
Buildings 0 0 0 0 0 0 3 376 379 99.21

Total 484 431 840 418 427 1398 419 418 4835
PA (%) 90.29 91.42 99.17 100.00 96.96 97.28 66.35 89.95

Rubus spp. was identified near forest borders and buildings, and its spatial distribution for the
SVM method reflected reality more accurately than the result of using the RF method (Figure 9).
There was a slight overestimation of this species in the case of the RF method, especially in places
with trees and bushes near buildings (Table 4). The Calamagrostis epigejos and Solidago spp. classes can
be found in the open spaces of non-agricultural meadows. The spatial distribution of Solidago in the
image resulting from the use of the RF method reflected reality almost perfectly, and in the case of the
SVM method, the underestimation of this species applied mainly to uncut meadows in the south of the
area. On the other hand, the Calamagrostis epigejos class was slightly overestimated in the results of
both classifications, especially in places with dry or mowed meadows. The SVM classification image
presents the spatial distribution of this species in the research area with greater precision (Table 3),
and its estimations were more accurate, especially in places with bare soils, which have a similar
spectral response.

4. Discussion

The effects of the raster data set and the number of training pixels on the classification accuracy
of three invasive or expansive plant species were tested in this paper using the Random Forest and
Support Vector Machine methods. The method we used to divide the patterns into three sets—the
training set, the test set, and the spatially independent validation set—allows for reliable assessment
of the classification accuracy. Balanced training sets of 30, 50, 100, 200, and 300 pixels per class were
tested in this paper. The test set was strongly spatially correlated with the training set, which led to
inflated accuracy results; therefore, it was used only for the initial accuracy assessment. However,
surprisingly accurate measures (PA, UA, F1) calculated on the test data set increased, despite the
decrease in the number of patterns in the test set. This highlights the importance of using spatially
separate data set for proper accuracy assessments. A constant set of validation pixels that remained
both unchanged between iterations and was spatially separate from training data allowed us to reliably
assess the accuracy of classification. Spatial separation of the data sets used to assess classification
results and train classifiers allowed us to avoid artificial inflation due to spatial correlation between
pixels belonging to the same reference polygon. Such a method allows for more objective comparisons
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of classification algorithms and data sets, while delivering more trustworthy accuracy metrics. The very
act of creating training and test or validation data sets introduces human or random bias into any
comparison. In order to decrease such bias of our method, training and validation data sets were
created multiple times. Such approaches were already used multiple times in the past [24,51,52] and
are proven to be more reliable when it comes to classifier comparison. The accuracy of any machine
learning procedure is directly related to the quality of samples used for training and validation of a
given classifier. In order to decrease the impact of human or random bias in creating the data sets,
training and validation data sets were created multiple times. Repeated sampling of pixels for the
reference sets and assessing classification accuracy minimized the impact of pixel selection for training
on the classification accuracy and allowed an objective assessment of the impact of the tested data sets
on the effectiveness of species identification [26,52,53].

The analyses showed that, regardless of the selected classifier, a higher F1 score for all classes was
obtained for classifications performed on 30 MNF transformation bands (0.854–0.918) than those on
430 hyperspectral data bands (0.760–0.853). The reduction in the number of input layers to several dozen
of the most informative bands is recommended for the Random Forest and Support Vector Machine
algorithms, as it allows one to obtain higher accuracy levels and significantly shortens the classification
time [51,54–56]. During the classification of herbaceous vegetation in the Hortobágy National Park
(Eastern Hungary), a higher overall accuracy level was obtained for nine MNF transformation
bands (SVM = 82.06%, RF = 79.14%) than for 128 original bands of AISA Eagle (SVM = 72.85%,
RF = 72.89%) [27]. Similarly, when identifying tree species based on AISA Eagle data using the SVM
algorithm, classification of the MNF-transformed data resulted in an increase of about 30% in the
classification agreement compared to the classification performed on the original bands [57]. The first
30 MNF transformation bands were used, for example, to identify four invasive or expansive species in
central Poland, obtaining high F1 scores of identification: about 0.80 for Filipendula ulmaria and Molinia
caerulea, about 0.79 for Phragmites australis, and about 0.73 for Solidago gigantean [58].

The increase in the number of pixels used to train the F1 score classification for the three species
analyzed in this article resulted in an increase of these values, but also a simultaneous decrease in
their distribution width, which indicates stabilization of the results. Our observations indicate that
the preferred number of training patterns is at least 300 pixels per class, regardless of the classifier
used. In the case of 30 MNF and the SVM algorithm, 300 was the optimal value because there were
no statistically significant differences between training data sets containing 200 and 300 pixels per
class (Figure 6). Due to the unavailability of the larger continuous areas of invasive plants on our
research area, we have limited the analysis to 300 pixels, and therefore we were unable to assess
impact of larger number of pixels per class in training data set on achieved classification results.
A similar trend was noticed by testing different sets of training pixels (from 10 to 30 pixels) and raster
data for the classification of 20 herbaceous species in Eastern Hungary by means of the SVM and
RF algorithms [27]. Moreover, the highest overall accuracy (SVM: 82.06%; RF: 79.14%) was obtained
using the largest of the tested sets of patterns (30 training pixels). The overall classification accuracy
decreased with a decreasing number of training pixels (lower by about 2 percentage points for the
set of 10 training pixels).

After a detailed analysis, it can be concluded that the Support Vector Machine algorithm was more
resistant to smaller numbers of training patterns and allowed to obtain a higher mean F1 score for three
plant species (F1 SVM = 0.95) compared to the Random Forest algorithm (F1 RF = 0.92) on the best
data set (30 MNF, 300 training pixels). Lower mean F1 scores for background classes (F1 SVM = 0.82,
F1 RF = 0.91) were noted in the SVM result image, but classification errors occurred mainly between
different background classes and not between the background and plant species.

Visual interpretation of the result images and statistical accuracy analyses indicated that both
classifiers detected the plant species of this study in the research area with a very high level of accuracy.
Correct identification of species was also confirmed by additional field verifications carried out after
the analyses. High classification accuracy levels obtained for the analyzed scenarios may also be due to
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the optimal time in which the imaging was obtained [26,59]. The analyzed species are in their flowering
and fruiting phases at the turn of August and September, which makes them more distinctive thanks
to their characteristic colors of inflorescences, fruits, and leaves (Table 5).

The classification accuracy of the Solidago spp. species was very high (F1> 0.95) for both classifiers
and the raster data. This is not surprising because this plant’s yellow inflorescences form homogeneous
fields, which are easy to distinguish from other objects in images, and it would probably be even
possible to use photointerpretation for this task. The Solidago gigantea species was identified in central
Poland using 30 MNF transformation bands (a mosaic of hyperspectral data from the same HySpex
sensors) and the Random Forest method; a lower F1 score for the species, about 0.73, and a slightly
higher F1 score for the background, about 0.94, were obtained [58]. Solidago spp. has also been classified
with high accuracy (F1 about 0.83, UA = 0.71, PA = 1.0) on the Hungarian–Slovak cross-border site
using 15 MNF bands (a mosaic of hyperspectral data from AISA Eagle II) and the maximum likelihood
method [61]. High identification accuracy of one of the goldenrod species, Solidago altissima (F1 score
of about 0.86, UA = 0.94, PA = 0.80), was also obtained during the research conducted in Watarase
wetlands in Japan with the help of only 3 MNF transformation bands (a mosaic of hyperspectral data
from AISA Eagle) and generalized linear models [19].

Table 5. Comparison of acquired results with references.

Plant Species Sensor Raster Data Algorithm UA (%) PA (%) F1 (%) Reference

Calamagrostis epigejos
HySpex 430 HS

RF 77 87 82
Present
paper

SVM 89 92 90

HySpex 30 MNF
RF 79 90 83

SVM 84 94 91

Calamagrostis epigejos HySpex
30 MNF +
42 discrete

LiDAR data
RF 88 63 73 [26]

Calamagrostis villosa APEX 30 MNF SVM 51 68 [60]

Solidago spp.
HySpex 430 HS

RF 99 99 99
Present
paper

SVM 97 98 97

HySpex 30 MNF
RF 100 99 99

SVM 100 93 96
Solidago gigantea HySpex 30 MNF RF 73 [58]

Solidago spp.
AISA
Eagle

15 MNF Maximum
Likelihood 71 100 [61]

129 HS
Spectral
Angle

Mapper
61 69

Solidago altissima AISA
Eagle 3 MNF

Generalized
Linear
Models

94 80 [19]

Rubus spp. HySpex
430 HS

RF 70 83 76
Present
paper

SVM 79 90 84

30 MNF
RF 94 92 95

SVM 100 94 97

Rubus fruticosus sp. agg. HyMap

20 HS
MTMF 81 92

[32]

MF 61 53
SAM 71 58

128 HS
MTMF 90 77

MF 49 35
SAM 75 45

Rubus spp. was classified in the research area with F1 scores ranging from 0.70 to 0.97, with
the highest accuracy obtained for the Support Vector Machine method and 30 MNF transformation
bands. High accuracy (OA = 87.8% and Kappa = 0.75) was also obtained during the detection of Rubus
armeniacus in open areas in Surrey, BC, Canada, by means of a combination of CASI hyperspectral
imagery with LiDAR data and the Random Forest algorithm [62]. Similarly, when identifying Rubus
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fruticosus sp. agg. in the Kosciuszko National Park in Australia, a F1 score of about 0.83 was obtained
for blackberry using 23 bands of a mosaic of hyperspectral data from HyMap after MNF transformation
and the Mixture-Tuned Matched Filter (MTMF) algorithm [32]. On the other hand, research on the
identification of Rubus cuneifolius species in the eastern parts of South Africa using the SVM algorithm
and multispectral data led to results that were much lower in accuracy: the F1 scores for the Landsat
data varied from 0.33 to 0.48, while the scores for the Sentinel-2 data were between 0.34 and 0.58, which
confirms that hyperspectral data allow for much more accurate detection of blackberries [63].

Identification of Calamagrostis epigejos resulted in F1 scores between 0.70 and 0.91, depending
on the algorithm and data set used. As before, the best data set for wood small-reed classification
turned out to be the SVM algorithm and MNF-transformed bands (F1 scores from 0.86 to 0.91), while
the RF method resulted in F1 scores between 0.76 and 0.83, depending on the number of pixels used
for training. By carrying out C. epigejos classifications at various growth stages, it was confirmed
that flowering time (around September) facilitated correct identification of wood small-reed [26].
In addition, the use of the Random Forest method and MNF transformation bands on the HySpex
hyperspectral data led to an F1 score of 0.72, which is an accuracy level close to the one obtained
for wood small-reed in our research. Lower accuracy was obtained (producer accuracy 68%, and
user accuracy 51%) in the classification of plant communities representing the Calamagrostis villosa
species when the APEX data and the SVM method were used [60]. However, an average PA of about
82% and UA of about 75% were obtained for wood small-reed grasses during the classification of
high-mountain vegetation communities using 40 MNF transformation bands of the DAIS 7915 data
and neural networks [64]. This was similar to the results obtained in our work on 30 MNF bands with
the RF algorithm (PA of about 88%, UA of about 78%) and was lower than the results for SVM (PA of
about 96%, UA of about 87%).

5. Conclusions

The above-presented research concerning identification of three species of invasive or expansive
plants using the Random Forest and Support Vector Machine classification methods, as well as various
sets of input data, has led to the following conclusions:

• The accuracy assessment method presented in the paper allows us to confirm that all analyzed
species can be identified in heterogenous habitats (achieved classification results F1 oscillated
around 0.90). The species created a unique set of spectral properties, which are recognizable
by the SVM and RF classifiers, and separating training and validation sets at the level of the
reference polygons, and not at the level of individual pixels, is justified. This allows one to
avoid overestimating the accuracy of the results due to spatial correlation of pixels from the same
reference polygon. We have shown a clear need to divide classes into training and validation at
the polygon level in order to minimize spatial correlation between samples and in order to achieve
unbiased and accurate classification metrics. A spatially separate and unchanging validation set
can be used to improve the quality of the obtained accuracy scores and compare the results more
objectively. Unfortunately, this type of approach makes it more difficult to use iterative methods
of assessing accuracy or significantly reduces the number of observations in a data set that can be
used for classifier training. What is more, the principles of a constant and unchanging validation
set are not optimal, which may negatively affect the quality of the resulting post-classification
images. A set of 30 MNF bands allows for more accurate identification of the analyzed invasive
and expansive plant species than that of the 430 original spectral bands of the HySpex image.

• Increase of number of pixels per class in training data set has a greater effect on achieved accuracy
measures in the case of 430 spectral bands data set (difference in medians between 30 and 300 pixel
data sets around 8 percentage points (p.p.) in the case of RF and 9 p.p. in the case of SVM
algorithm) then in the case of 30 MNF bands data set (median difference between 30 and 300 pixel
data set: 5 p. p. for RF and 3 p.p for SVM, Figure 7).
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• Three hundred pixels per class is the preferred number of samples in the training set for
classification of the analyzed plant species with the help of the SVM and RF methods. Fewer
pixels result in a significant decrease in classification accuracy and less stable results. In our
case, we managed to find the optimal number of pixels in training data sets per class only in the
case of the SVM classifier applied to MNF data. Figure 6 shows that there was no significant
statistical difference between tests performed on MNF bands with 200 and 300 pixel samples per
class. Hence, 200 pixels per class in the training data set for 30 MNF bands and the SVM classifier
is optimal.

• Both the Support Vector Machine method and the Random Forest method allowed us to obtain very
accurate images of the distribution of analyzed species in the research area. However, the SVM
classifier worked better for the classification of blackberry and wood small-reed (i.e., for classes
that are not uniform and do not differ spectrally from their surroundings). On the other hand, the
Random Forest algorithm allows one to obtain a higher accuracy for homogeneous classes that
stand out spectrally (i.e., goldenrod and background classes). Still, the SVM image was found to be
more reliable, despite its relatively lower accuracy for the background classes. Most classification
errors occurred between background classes rather than individual species.
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Abstract: This paper presents a framework based on machine learning algorithms to predict nutrient
content in leaf hyperspectral measurements. This is the first approach to evaluate macro- and
micronutrient content with both machine learning and reflectance/first-derivative data. For this,
citrus-leaves collected at a Valencia-orange orchard were used. Their spectral data was measured
with a Fieldspec ASD FieldSpec® HandHeld 2 spectroradiometer and the surface reflectance and
first-derivative spectra from the spectral range of 380 to 1020 nm (640 spectral bands) was evaluated.
A total of 320 spectral signatures were collected, and the leaf-nutrient content (N, P, K, Mg, S, Cu, Fe,
Mn, and Zn) was associated with them. For this, 204,800 (320 × 640) combinations were used. The
following machine learning algorithms were used in this framework: k-Nearest Neighbor (kNN),
Lasso Regression, Ridge Regression, Support Vector Machine (SVM), Artificial Neural Network
(ANN), Decision Tree (DT), and Random Forest (RF). The training methods were assessed based on
Cross-Validation and Leave-One-Out. The Relief-F metric of the algorithms’ prediction was used to
determine the most contributive wavelength or spectral region associated with each nutrient. This
approach was able to return, with high predictions (R2), nutrients like N (0.912), Mg (0.832), Cu
(0.861), Mn (0.898), and Zn (0.855), and, to a lesser extent, P (0.771), K (0.763), and S (0.727). These
accuracies were obtained with different algorithms, but RF was the most suitable to model most
of them. The results indicate that, for the Valencia-orange leaves, surface reflectance data is more
suitable to predict macronutrients, while first-derivative spectra is better linked to micronutrients. A
final contribution of this study is the identification of the wavelengths responsible for contributing to
these predictions.

Keywords: spectroscopy; proximal sensor; macronutrient; micronutrient; artificial intelligence
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1. Introduction

Remote sensing techniques can be useful for the estimation of plant health conditions,
including monitoring the nutritional status [1–4], the stress response [5–7], plant count [8,9], yield
prediction [10–12], chlorophyll content [13–15], pest and disease identification [16,17], and biomass
estimation [18], among others. Multisensory data is often used to accomplish this task, including
the ones acquired by orbital sensors, aircraft or Unnamed Aerial Vehicle (UAV)-embedded cameras,
terrestrial sensors, and field spectroradiometers, known as proximal sensors [19–23]. This type of
sensor can measure the spectral response of a target at very-high resolutions while having a reductive
amount of radiometric interference by being near the leaf sample.

The usage of proximal sensors for plant evaluation has assisted phenological studies of different
species. Due to the high spectral resolution capability of these sensors, studies have been relatively
successful in modeling phenomena, such as the ones previously stated, but at the leaf level, like
plant stress, yield prediction, nutrient content, chlorophyll, and many other attributes [24–27]. They
also have the advantage of helping to define, in detail, the appropriate spectral regions to estimate
these phenomena. This definition is relatively important as it can guide future research towards
the development of equipment specifically designed to measure these regions [23]. Another type of
contribution is that it can assist in creating spectral vegetation indices or other simpler mathematical
models that contribute to identifying the different characteristics of plants [13,28].

Currently, one of the most common problems in monitoring crops is knowing the proper amounts
of fertilization rates. Traditional agronomic methods used to evaluate plant nutrients are done regularly,
in key periods, to manage fertilization of agricultural fields [29]. These methods require the collection
of a high number of leaves for the chemical analysis of the leaf tissue. However, this chemical analysis is
a time-consuming, labor-intensive, and pollutive task [3,30,31]. Remote sensing, specifically proximal
sensing, can provide an effective alternative in assisting nutritional analysis of plants more accurately.
The use of proximal sensors has an advantage over traditional agronomic methods since it allows to
infer vegetation conditions in a non-invasive and non-destructive manner [32–35].

Regarding the monitoring of plant and leaf nutritional conditions by remote sensing systems,
recent research has made significant advances, especially in the estimation of nitrogen (N)
content [1–4,21,25,28,31]. These studies were conducted at orbital, aerial, terrestrial, or proximal
levels in different crops. N deficiency is linked to a characteristic chlorosis symptom, which is
observable at the visible spectra [21,25,28]. Still, considerable research was also able to identify spectral
bands and wavelengths in the near and short-wave infrared regions related to this nutrient [2,3,25,28,36].
Regardless, even though N is a pretty standard nutrient to be evaluated by remote sensing systems,
the same cannot be said about others.

The evaluation of nutrients, other than N, by proximal sensors, is more unusual. One study was
able to infer potassium (K) content by computing random two-band spectral indices calculated from
hyperspectral data ranging from 350 to 2500 nm [37]. Others focused on evaluating a large group
of macronutrients, magnesium (Mg), S, phosphor (P), K, and calcium (Ca), and found important
associations between the spectral region of 470 to 800 nm with them [32] Lastly, one approach aimed
to predict macronutrients like K, calcium (Ca), and magnesium (Mg), as well as micronutrients
like manganese (Mn) and iron (Fe), by using near-infrared spectroscopy, but their method did not
return satisfactory results for micronutrients [24]. Recent literature demonstrates how hyperspectral
measurements are being linked to nutrients, specifically macro. However, there is a gap in terms
of micronutrient prediction by spectral sensors that need to be addressed by new research, and few
studies were conducted within this theme. In citrus, a study performed a Partial Least-Squares
Regression (PLSR) evaluation on both macro- and micronutrients and archived interesting results using
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Laser-Induced Breakdown Spectroscopy (LIBS) [38]. Similar research, focusing only on near-infrared
spectroscopy, also returned high predictions for both classes of nutrients [39].

Another way to infer chemical components from hyperspectral measurements is by applying a
derivative analysis. The derivation of the reflectance data allows highlighting absorption features of
components that, in a traditional spectral curve (i.e., reflectance curve), may not be measured with the
same accuracy or even be detected [40–42]. Studies that apply a derivation of the reflectance curves in
plants have found good correlations with N [40,41] and cadmium (Cd) concentrations [42]. Since the
gains of derivative analysis are known in the literature, there are also methods for data analysis in the
remote sensing scenario that may benefit from it. The advantages proportionated by derivatives may
assist in the evaluation of leaf nutritional content when combined with more robust techniques.

The aforementioned studies found high relationships with hyperspectral data by employing
various statistical methods in their analysis. However, methods like Partial Least-Squares Regression
(PLSR), Principal Component Analysis (PCA), Stepwise-Multiple Linear Regression (SMLR), among
others, returned different accuracies even for the same cultures [15,24,32,37–40,42]. Some of these
methods are also reductive, and the prediction may decrease if an increase occurs in the model
complexity [32]. Since hyperspectral measurements produce high and complex amounts of data, one
type of approach that could ideally deal with this is machine learning.

Machine learning algorithms are a robust and intelligent technique that can model different types
of data [43,44]. These algorithms have the advantage of being non-parametric and non-linear while
being able to analyze noised and imperfect data [45–47]. They are also capable to perform numerous
combinations and calculations in a matter of seconds, achieving relative success in remote sensing
applications regarding plant analysis [48,49]. Concerning hyperspectral measurements, among the
applications evaluated, these algorithms were able to return state-of-the-art performances for many
situations [5,16,23,50–52]. Even though, to date, no study evaluated the performance of machine
learning algorithms in inferring both plant macro- and micro-nutritional content with only leaf
hyperspectral measurements. Since these algorithms have returned good accuracies in different
hyperspectral analyses, they could be appropriate to deal with the complexity imposed by this type of
dataset in the described situation.

As previously stated, the first-derivative of the reflectance data has already been proved to be
effective in associating with different chemical components. From this information, it could be assumed
that both the reflectance data and its first-derivative could be of assistance in predicting different
nutrients of the leaf tissue. Since the derivation of a reflectance curve can highlight hard-to-detect
components at the first level, it is possible that, by integrating these curves with machine learning
algorithms, one can create important information regarding proximal sensing and plant nutritional
analysis. In this spirit, a framework adopting machine learning algorithms are proposed to predict
macro- and micronutrient content in the leaf-tissue directly from its hyperspectral response. This is
the first approach to evaluate different nutrient content combining machine learning methods and
reflectance/first-derivative data.

In this study, citrus leaves—more specifically, from Valencia-orange trees—were selected to
compose the experimental dataset. It is well known that a sufficient supply of both macro- and
micronutrients is critical to the management and sustainability of these plants, and the balance of
available nutrients is a key component to profitability [53]. Citrus plants are economically important
to the agricultural sector of many countries and may benefit significantly from a rapid and indirect
nutritional assessment, such as the one proposed here. In this manner, the aims of this work are
to a) show a method to indicate the most suitable spectra (reflectance/first-derivative), in order to
model the nutrient content according to the algorithms’ performance; and b) determine the important
wavelengths or spectral regions associated with each nutrient.
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2. Materials and Methods

The framework proposed in this paper was divided into four main phases (Figure 1). In the
first phase, the hyperspectral measurements of the leaf samples in a Valencia-orange orchard were
performed. These measurements were conducted with a field spectroradiometer. In the second phase,
the spectral measurements were corrected, and the data were pre-processed. These corrections aimed to
convert the radiance signal to reflectance, as well as remove the noise and calculate their first-derivative.
The third phase involved the data analysis by machine learning algorithms. In this phase, a fine-tuning
to determine the most appropriate parameters to model the data was performed. The fourth and
final phase consisted of the organization of the prediction values into a hyperspectral map, where it
was identified as the most appropriate algorithm and wavelength (i.e., spectral window) to predict
each nutrient.

 
Figure 1. The workflow of the four main processes adopted for the proposed approach.

2.1. Study Area and Data Acquisition

As a study area, an open field of citrus trees, located on private property in the municipality of
Ubirajara, São Paulo state, Brazil, was selected. The species analyzed were all of Valencia-orange
(Citrus sinensis “Valencia”), planted on a Citrumelo–Swingle rootstock. During the evaluation, the trees
were in their vegetative phase, with an adult size, measuring nearly 3 m in height (ground-related),
with crown areas around 5.5 m2. During the survey, the trees were at their maturing stage, which is
five years from their initial planting. The area contains 752 trees per hectare, planted at approximately
a 7 × 1.9 m spacing. Each plantation field was 250 m × 250 m in size, with some fields compensating
for others accordingly to its location. The plantation fields were selected randomly inside this property
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and configured the different conditions of the treatments. Before the analysis, the soil was fertilized
with 250 kg/ha of N in the form of urea, 125 kg/ha of phosphorus excreted, expressed as P2O5, and
167 kg/ha of potassium oxide (K2O). The area is predominantly composed of red-yellow podzolic soil,
situated in a Cwa Köppen [54] subtropical climate type unit.

This paper evaluated leaf samples from multiple orange tress scattered around different planting
fields in an experimental portion of the orchard. In each field, the number of trees was selected
according to the size of the planting field and trees planted per area. The selection was both to measure
the leaf hyperspectral response and to collect them. A total of 320 samples collected in the field,
with both spectra curves and later-known nutrient content, were gathered during this survey. The
sampling method followed standard recommended agronomic procedures, guided by a field specialist.
To represent the proper conditions of a citrus tree, only leaves at a medium canopy height and those
visually healthy with no signs of diseases or damages were evaluated. A lift platform was used to
elevate the person with the equipment. Since the chemical analysis of the leaf tissue recommends the
3rd or 4th leaf of a fruit branch to be sampled, the spectroradiometer equipment was directed as close
as possible to the leaves that shared this description.

After measuring the spectral radiance, the leaves were extracted from their respective branches,
separated, and identified them into plastic bags to be submitted to the laboratory. The leaf samples
consisted of the same leaves that had their spectral radiance measured. They were conditioned at
an appropriate temperature and transported accordingly. In the laboratory, the leaves were washed
with a neutral detergent to remove any impurities. Later, they were dried in an oven, for 48 h, at
60–65 ◦C, and then crushed. From the crushed material, 100 mg was used for the N analysis. For that,
the Kjeldahl titration method [55], divided into 3 phases, was followed: (1) digestion; (2) distillation in
a nitrogen distiller; and (3) titration with sulfuric acid (H2SO4). The remaining material was separated
and used for the analysis of the other macronutrient (P, K, Ca, Mg, and S) and the micronutrients
(copper (Cu), Fe, Mn, and zinc (Zn)), following standard laboratory procedures of chemical analysis of
the leaf-tissue [56].

2.2. Hyperspectral Measurement Processing

The spectral radiance of the Valencia-orange leaves was measured with a Fieldspec ASD FieldSpec®

HandHeld 2 spectroradiometer. To record each target, the equipment was positioned at a 45◦ angle
concerning the tree canopy. For that, a lift platform was used to ensure the correct height. This
equipment operates at a spectral range of 325 nm to 1075 nm. In this study, a 10◦ aperture lens was
adopted, and 10 readings/measurements were conducted in each leaf to produce one mean spectral
signature. This procedure was important to reduce noise and variance for the same target. Before each
spectral measurement, a Lambertian (Spectralon® plate) surface plate was registered. This Lambertian
plate was used to calibrate the equipment and convert the digital number to a physical signal. As
mentioned, the leaf-spectral response in-field was recorded into 320 measurements for this experiment.

The measured spectral curves consist of the radiance value of the target (i.e., leaf samples) spread
along the electromagnetic spectrum. To produce the reflectance value (i.e., reflectance factor), the
Hemispherical Conical Reflectance Factor (HCRF) was calculated as shown in Equation (1) [57]:

HCRF(ωiωr) =
dL (θr, Φr) (target)

dL (θr, Φr) (reference)
K (θi, Φi, θr, Φr) (1)

where dL is the radiance; ω is the solid angle; θ and Φ are the zenith and azimuth angles, respectively;
i is the incident flux; and r is the reflected energy flux. The K value is the calibration coefficient (i.e.,
correction factor specified for the equipment). The target corresponds to the radiance of the leaf and the
reference is the radiance of the Lambertian surface plate. The HCRF represents the spectral signature
of the recorded target.

After obtaining the reflectance factor of each leaf, a low signal-to-noise removal was performed
by excluding wavelengths under 380 nm and above 1020 nm. After this, the first-derivative of all
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the HCRFs (n = 320) was calculated. The first-derivative calculation is a traditional method for
modeling spectral data, and many approaches have discussed this issue. For this study, a linear least
mean-squared smoothing filter [58] was firstly performed to reduce the random noise that may vary
with the wavelengths and affect the derivative function. In most cases, noise can be assumed to be
stationary with constant variance. It then can estimate a noise-free spectrum s(λ) in terms of the
current value of the observed data. By knowing the correct signal of the spectrum giving a specific
wavelength s(λ), it is possible to perform a final approximation to estimate derivatives by suitable
difference schemes according to a finite band resolution: Δλ. Thus, the first-derivative was calculated
according to [58]:

ds

dλ

∣∣∣∣∣ = s(λi) − s
(
λj
)

Δλ
(2)

where Δλ is calculated as |λj − λi|, assuming that the interval between the bands is constant. Additional
tests involving further derivates, such as the second, third, and fourth, were also made in the
experimental phase of this study. However, there were no indications of an improvement over the
first-derivate for the used dataset during the machine learning analysis. For this reason, the proposed
framework was limited only to the first-derivative, but future research using different leaf data to
process additional derivatives is encouraged.

From the total leaf measurements (n = 320) used here, 10% (n = 32) was randomly separated
and designed to compose the testing dataset (Figure 2). Wavelengths ranging from 380 to 1020 nm
were used in the software as columns, while the leaf measurements (320) were used as rows. The 32
measurements were configured as an independent dataset, which belonged to the Valencia-orange trees
located at different plantation fields, never before seen by the algorithms. The other 288 measurements
configured the dependent dataset and belonged to trees with conditions or characteristics distinct from
one another, observed during the field campaign. To indicate that, a descriptive statistical analysis
was conducted with the nutrients’ concentration from the chemical analysis of the leaf tissue, and
the following parameters were calculated: minimum, maximum, mean, standard deviation, median,
and coefficient of variation. They were important to demonstrate the discrepancy of the dependent
(calibration/training) data used, and how representative it could be of the nutritional conditions of
Valencia-orange leaf tissue in the analyzed period.

2.3. Machine Learning Analysis and Hyperspectral Mapping

In a computational environment, the nutrients were individually selected as the target variables.
As input parameters, the reflectance and the first-derivative were used, and the performance of the
algorithms in predicting these nutrients was evaluated. As stated, the curves were separated into
three sets. The training dataset was used to set-up the hyperparametrization of the chosen algorithms.
For that, the Random Search approach [59] was used. The same conjunction of training/validation data
was adopted for all algorithms. This process was repeated with a fine-tuning until the reduction in
the mean absolute error (MAE) did not result in any more practical gains, as the modification in the
parameters impacted the processing time. Once the hyperparameters of each algorithm were defined,
the testing dataset was used to verify its real performance.

To configure and run the algorithms, the open-source computer program RapidMiner 9.5 was
used, which is based on a particular Python Library [60], while still permitting the development and
implementation of different codes. The workstation for this task was equipped with an Intel(R) Core
(TM) i7-8550U CPU 4.00 GHz, a Nvidia GeForce MX-150 4Gb GDDR5 64-bits 6008 MHz GPU, and
8GB RAM DDR4 2400MHz. The algorithms for the proposed framework were as follows: k-Nearest
Neighbor (kNN), Lasso Regression, Ridge Regression, Support Vector Machine (SVM), Artificial
Neural Network (ANN), Decision Tree (DT), and Random Forest (RF). The prediction metrics to
evaluate these algorithms were the coefficient of determination (R2), mean absolute error (MAE), and
root-mean-squared error (RMSE). To ascertain the relationship between the measured data and the
predicted data, the overall finest models were evaluated in a regression plot.
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Figure 2. Spectral wavelengths used for testing the machine learning algorithms’ performance. In green
are the spectral reflectance, while in dark-red are their respective first-derivatives.

Regarding the configuration of each algorithm, the parameters of the used methods were set to the
library default values, except those described in Table 1. For both the DT and RF algorithms an Extreme
Gradient Boosting (XGBoost) model was used to increase their performances. This model adopts
a forward-learning ensemble method [61], which obtains predictive results in gradually improved
estimations. To illustrate the machine learning architecture regarding data inputs and outputs in the
proposed analysis, a structure was organized in Figure 3.

Table 1. Detailed information regarding the algorithms adopted in the proposed framework.

Algorithm Hyperparameter Criteria

kNN Distance
Number of Neighbors

Euclidian
k-Neighbors = 5

Lasso Regression (L1) Strength (α)
Elastic Net Mixing Proportion (L1–L2)

1.0
0.57:0.43

Ridge Regression (L2) Strength (α)
Elastic Net Mixing Proportion (L1–L2)

0.1
0.57:0.43

SVM Radial Basis Function (RBF)
Kernel exp(-g|x-y|2)

g = automatic
Regression Loss = 1.00
SVM Type Cost = 1
Tolerance = 0.001
Interaction (limit) = Unlimited

ANN
Activation: Logistic Function
Adam Optimizer
Regularization (α) = 0.0001

Neurons (First Hidden Layer) = 400
Neurons (Second Hidden Layer) = 200
Interactions = 10,000

DT Number of Leaves
Trees Depth

Leaves (minimal) = 2
Tree-depth (maximum) = 100

RF Number of Trees
Nodes

Trees = 100
Nodes (maximum) = 5
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Figure 3. Structure of the machine learning architecture of the proposed framework.

It is also important to address that, although hyperspectral data is relatively easy to obtain, leaf
tissue analysis can be limited. This is mostly because the chemical analysis can be highly cost if
considering the amounts of data required to process the machine learning algorithms. Therefore, the
appropriate number of samples is something to be observed in each case. In this study, the amount of
data used to train and validate/test the used algorithms should be sufficient based on the literature. One
study [62] compared different learners, such as RF, SVM, kNN, and others, in diverse settings. Between
these settings, they evaluated the number of classes per problem (from 2 to 50) and the number of
samples per class (from 5 to 100). This returned a variation of 10 to 5000 samples. Through their study,
it was demonstrated that data curation could be modeled by these algorithms from a few to a high
number of samples and still achieve appropriate results. In comparison with the proposed approach,
other machine learning frameworks also adopted similar sample sizes, like 324 leaf measurements that
were used to model the water-stress response from lettuce [23], 189 hyperspectral observations that
were used to model grapevine water status [63], and 266 observations that were used as training to
predict nitrogen content in rice fields [64].

As a discussion example, a recent paper collected 500 samples per class with 540 spectral bands
and adopted a Cross-Validation method with a dataset considering 200 samples for each validation to
demonstrate the importance of the feature selection methods [65]. Regardless, hyperspectral data have
a characteristic distinct from most data, which is a high number of bands/wavelengths available to
model a given problem. The used dataset was composed of 320 leaf measurement (in which 32 were
separated as a test) and 640 spectral bands (380–1020 nm). This gives a total of 204,800 combinations
to work with, which should be enough to configure a training/testing dataset. Although this high
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dimensionality could offer potential problems to hyperspectral data processes [65], studies already
suggested that maintaining the original data could also outperform feature-selected subsets [66,67].

As mentioned, though the aforementioned studies did use similar sample sizes of data to train,
validate, and test their learners, little information related to hyperspectral wavelengths and machine
learning method sample size could be encountered in the literature [65]. Since there is no research
focused on evaluating the impact of the training set to model spectral data, a previous comparison
regarding two well-known sampling methods was performed. The first is the cross-validation method,
which is more suitable to deal with the most common tasks in machine learning data curation [43].
The Cross-Validation method was performed with 10k folders. This model separates the data into
10(k) parts while using nine of them to train the algorithm and one to validate. This process is done
sequentially, constantly changing the folder used for validation. In this manner, the chosen algorithm
is always validated by data not used during the training phase. The second method used was the
Leave-One-Out approach. This method is similar to Cross-Validation, but instead it only takes one
data instance for validation each time. The method is considered a very time-intensive procedure, and
it is only recommended for smaller datasets [43]. After applying the Random Search approach [59] to
perform a fine-tuning, both training methods’ results were compared (Table 2).

In the Cross-Validation method, from the 288 samples, 90% was used to train while 10% was used
to validate, and was repeated 10 times randomly. In the Leave-One-Out method, 287 samples were
used to train, while one sample was used to test it. This was repeated until all instances were used. The
low difference between MAE predictions in each nutrient for both methods indicates that, even when
adopting a more suitable training approach to model smaller datasets (Leave-One-Out), the training
results are similar. Still, while the Leave-One-Out method is approximately unbiased, it could result in
a high variance. Normally, the variance in fitting a model tends to be higher in small datasets since it is
more sensitive to noise and artifacts in the used training sample. Because of that, a Cross-Validation
method would also show signs of high variance, as well as a high bias if given a limited amount of data.
This was not the case here, since both methods returned high predictions and similar metrics, thus
indicating that, whatever the training method, the amount of data (204,800 combinations) was sufficient
to model the given problem. Regardless, the Leave-One-Out method needed a higher computational
cost, which is something to be considered when evaluating the amount of processed data. In the
workstation, the Leave-One-Out-averaged processing time for all algorithms was 7.5 times slower
than the Cross-Validation method. Because of that, the Cross-Validation method was adopted in this
study, but future research should considerer both methods according to their respective dataset size
and characteristics.

Lastly, the contribution of each spectral wavelength into the performance of the algorithm was
computed by displaying their Relief-F value. Relief-F uses a kNN scoring to address noise data while
handles incomplete data [68]. It is considered a reliable metric to inform a feature score and then be
applied to rank top-scoring features. Here, the Relief-F values were used to map the hyperspectral
response of each nutrient regarding the strength of the individual wavelengths to the performance
of the evaluated algorithms. Aside from that, to help ascertain the hyperspectral relationship with
the evaluated nutrients dataset, an analysis of each nutrient and a Shapiro–Wilk normality test at
a 95% confidence interval was performed. As the normality test returned a p-value under 0.05,
a non-parametric Spearman’s correlation test in a pairwise comparison was executed to verify the
association between each nutrient.
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3. Results

The chemical analysis of the leaf tissue returned heterogeneous and non-parametric results for the
nutrient content of the analyzed leaves (Table 3). Analysis has shown that the majority of the nutrients
presented a high variability and uniform distribution. This behavior was most noticeable in nutrients,
such as Ca, Fe, Mn, and Zn. Regardless, this condition is important to demonstrate the applicability
of the proposed framework. Since this is a heterogeneous dataset, machine learning algorithms are
advantageous for modeling data with such characteristics.

Table 3. Descriptive data from the chemical analysis of the Valencia-orange leaves.

Summary
Macronutrient (g/kg) Micronutrient (mg/kg)

N P K Ca Mg S Cu Fe Mn Zn

Mean 29.55 2.13 17.07 30.72 5.36 2.36 72.20 86.95 36.69 27.77
Std. Dev. 2.95 0.43 3.34 13.18 1.39 0.38 26.09 39.50 19.11 13.09
Median 29.45 2.17 16.70 28.85 5.25 2.35 69.90 78.35 33.10 22.80

Min. 24.00 1.21 11.80 10.70 2.70 1.60 25.50 26.20 14.30 10.90
Max. 36.70 2.98 28.30 78.60 9.90 3.60 128.90 207.30 122.10 69.80

Coeff. Var. 9.98 20.39 19.60 42.90 25.97 16.37 36.14 45.44 52.105 47.16

All of the nutrients returned a p-value under 0.05 for the Shapiro–Wilk normality test at a 95% confidence interval.

The correlation between nutrients (Figure 4) is important information to characterize a dataset. The
correlation coefficients indicated that, although significant, most nutrients have a low correlation value
among themselves. Still, the pairwise comparison returned an expected behavior. Macronutrients,
such as N, P, and K, showed positive correlations with each other while presenting negative correlation
coefficients (N and P) with the other nutrients. The correlation coefficients between the nutrients varied
around 0.5 or below, with the highest reaching 0.59 and lowest reaching −0.60. The low correlation
value is also favorable for the proposed framework, as it helps to isolate the effects of the nutrient on
the evaluated wavelengths.

Figure 4. Correlation between the measured nutrients for the Valencia-orange leaf samples.

For the machine learning algorithms used, the results were separated between the two datasets:
reflectance (Table 4) and first-derivative (Table 5). The algorithms returned good performances
(R2 > 0.80) for the macronutrients with the spectral reflectance as predictors. When the first-derivative
was used, the algorithms performed well on both macro- and micronutrients (some R2 > 0.80), but all
performances were improved for the micronutrients. This is an important discovery, as it highlights
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the importance of first-derivative measurements and their relationship with micronutrients in the
Valencia-orange leaf tissue. In both datasets, algorithms like RF, ANN, and kNN returned better
predictions than most linear ones, such as Lasso and Ridge Regressions and SVM. The MAE predictions
returned here are similar to the predictions resulted from the training phase, which indicates how
adjusted the sampling method was.

Table 4. The machine learning algorithms’ accuracy performance for the reflectance data.

Method N P K Ca Mg S Cu Fe Mn Zn

kNN

R2 0.852 0.623 0.621 0.179 0.797 0.119 0.834 0.437 0.592 0.431
MAE 0.704 0.163 1.087 6.765 0.285 0.204 7.083 18.142 5.105 6.005
RMSE 1.245 0.278 2.041 13.905 0.445 0.416 11.362 36.248 11.707 10.157

Lasso Regression

R2 0.394 0.452 0.315 0.157 0.413 0.660 0.215 0.180 0.189 0.128
MAE 2.145 0.193 1.542 7.304 0.627 0.137 19.881 34.140 8.470 7.852
RMSE 2.526 0.335 2.745 14.091 0.757 0.258 24.744 43.751 16.513 12.573

Ridge Regression

R2 0.351 0.153 0.354 0.169 0.139 0.056 0.232 0.222 0.190 0.137
MAE 2.468 0.284 1.347 9.923 0.698 0.298 19.321 28.456 9.456 6.541
RMSE 2.912 0.417 2.597 13.989 0.916 0.431 24.485 42.158 16.502 12.982

SVM

R2 0.638 0.404 0.530 0.336 0.458 0.400 0.277 0.308 0.742 0.447
MAE 0.902 0.247 1.546 6.551 0.505 0.233 19.692 21.421 3.666 7.891
RMSE 1.952 0.349 2.275 12.501 0.752 0.344 23.754 40.201 9.309 9.741

ANN

R2 0.860 0.656 0.762 0.481 0.733 0.438 0.841 0.340 0.698 0.595
MAE 0.840 0.177 1.265 7.637 0.359 0.174 8.377 30.259 5.880 6.949
RMSE 1.211 0.265 1.619 11.052 0.510 0.332 11.120 39.251 10.078 8.567

DT

R2 0.743 0.661 0.613 0.576 0.759 0.452 0.731 0.453 0.730 0.640
MAE 0.787 0.178 1.434 6.375 0.345 0.166 8.835 20.016 5.090 5.681
RMSE 1.644 0.263 2.064 12.123 0.484 0.328 14.472 35.726 9.525 8.0811

RF

R2 0.912 0.771 0.699 0.624 0.832 0.727 0.754 0.527 0.854 0.741

MAE 0.706 0.093 1.146 3.525 0.234 0.100 7.828 19.375 5.093 4.246

RMSE 1.059 0.216 1.818 9.404 0.405 0.231 13.850 33.233 7.007 6.846

The bolded in the table are the scores representing the overall best performance of each nutrient.

Table 5. The machine learning algorithms’ accuracy performance for first-derivative data.

Method N P K Ca Mg S Cu Fe Mn Zn

kNN

R2 0.669 0.453 0.329 0.311 0.512 0.172 0.752 0.512 0.898 0.587
MAE 0.944 0.180 1.341 6.994 0.398 0.184 7.456 17.846 3.594 4.948
RMSE 1.867 0.335 2.717 12.039 0.689 0.404 13.903 33.740 5.859 8.655

Lasso Regression

R2 0.257 0.401 0.161 0.287 0.401 0.158 0.292 0.190 0.234 0.130
MAE 1.489 0.197 1.986 7.048 0.486 0.304 19.513 33.146 7.934 9.588
RMSE 2.804 0.354 3.040 12.258 0.789 0.407 23.503 43.487 16.055 12.561

Ridge Regression

R2 0.210 0.310 0.157 0.302 0.129 0.222 0.273 0.183 0.300 0.158
MAE 1.650 0.265 1.997 6.978 0.789 0.248 19.212 34.240 8.242 9.047
RMSE 2.987 0.380 3.101 12.268 0.987 0.358 23.819 44.289 15.348 11.978

SVM

R2 0.373 0.323 0.330 0.531 0.270 0.459 0.679 0.423 0.649 0.513
MAE 1.357 0.250 1.714 6.745 0.678 0.240 11.870 24.653 6.676 6.159
RMSE 2.262 0.373 2.716 10.511 0.844 0.326 15.829 36.705 10.855 9.397

ANN

R2 0.721 0.554 0.445 0.566 0.564 0.582 0.800 0.444 0.838 0.731
MAE 1.287 0.219 1.680 6.495 0.559 0.197 10.030 20.466 4.617 5.605
RMSE 1.712 0.302 2.471 10.113 0.652 0.287 12.493 36.028 7.372 6.983

DT

R2 0.703 0.633 0.491 0.491 0.479 0.474 0.786 0.509 0.728 0.584
MAE 1.298 0.136 1.223 6.850 0.597 0.232 7.013 32.559 4.976 4.832
RMSE 2.767 0.274 2.368 13.015 0.832 0.314 25.209 33.861 15.036 11.391

RF

R2 0.866 0.765 0.548 0.501 0.507 0.453 0.861 0.612 0.879 0.855

MAE 0.738 0.119 1.225 6.668 0.424 0.209 6.509 17.280 4.050 2.075

RMSE 1.185 0.219 2.231 10.839 0.693 0.328 10.389 31.640 6.377 5.121

The bolded in the table are the scores representing the overall best performance of each nutrient.
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To ascertain the relationship between each nutrient prediction, their regression values were
plotted (Figure 5a,b). A quick analysis of the best-predicted values versus the laboratory-measured
values demonstrates how the performance of the algorithms varied with the increase in the nutrient
concentrations. Nutrients such as P and Ca did not show a closer resemblance with a 1:1 relationship
(dashed-line—Figure 5a,b) as much as the other nutrients’ predictions, even lower ones such as Fe.
Regardless, most predictions were quite well related to the laboratory data, and on-site measurements
of nutrients like N, K, Mg, S, Cu, Mn, and Zn may benefit from the advantage promulgated by the
approach presented here.

 
(a) 

 
(b) 

Figure 5. (a) Macronutrient prediction comparison against laboratory measurements for the best
algorithms’ results. (b) Micronutrient prediction comparison against laboratory measurements for the
best algorithms’ results.
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The calculated Relief-F value showed the contribution of each wavelength to the algorithms’
performance (Figure 6a,b). This contribution is important to isolate specific spectral regions and
wavelengths of the electromagnetic spectrum most closely related to each nutrient. This relationship,
however, is limited to the evaluated algorithm and its performance. Still, since most performances
were relatively high (Tables 3 and 4) for most nutrients, this metric is an interesting parameter, as it
shines some light on the spectral mapping of Valencia-orange leaf nutrients, as not much is known
about their spectral behavior.

As mentioned, the Relief-F value calculated for each wavelength indicated important contributions
in different ranges for each nutrient (Figure 5a,b). Because of that, certain bands of the electromagnetic
spectrum contributed more than others. To summarize the information obtained from the proposed
framework, a table (Table 6) indicating the nutrient and its class (macro or micro), the machine learning
method most suitable to model it, its coefficient of determination (R2), the spectral data which its
prediction was calculated from, and the most contributive wavelengths or spectral regions to model
the measured nutrient from the Relief-F value was created. These results demonstrate the potential of
applying different machine learning algorithms for this task. So far, this is the first approach of its kind
with nutrient content in leaf tissue analysis.

 
(a) 

Figure 6. Cont.
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(b) 

Figure 6. (a) The individual contribution of wavelengths for each macronutrients’ prediction. (b) The
individual contribution of wavelengths for each micronutrients’ prediction.

Table 6. Summarized information on the results obtained by the proposed framework.

Nutrient Class Method R2 MAE Spectral Data
Contributive Wavelengths/Spectral Regions

(nm) *

N Macro RF 0.912 0.706 Reflectance 384–412; 421; 423; 432; 433; 435; 440–455; 464–472;
480–487

P Macro RF 0.771 0.093 Reflectance 385–411; 438–456; 472–477; 502; 521; 527; 544–555;

K Macro ANN 0.763 1.265 Reflectance 762–764; 816; 838; 857; 903 908; 915–925; 934–957;
973–1020

Ca Macro RF 0.624 3.525 Reflectance 545–551; 749–787; 843–888; 901–1020
Mg Macro RF 0.832 0.234 Reflectance 390; 411–412; 445; 496; 554; 586–630; 643; 656–669

S Macro RF 0.727 0.100 Reflectance 579; 590; 595; 609–612; 618; 624–632; 645–680;
684–689; 700

Cu Micro RF 0.861 6.509 First-Derivative 388; 394; 416–419; 430–432; 440; 452–456; 461; 475;
512; 523; 823; 863–865; 951; 977–979;

Fe Micro RF 0.612 17.280 First-Derivative 391–396; 405; 421–424; 433–436; 474–477; 552; 758;
810; 837; 890–892; 910; 926

Mn Micro kNN 0.898 3.594 First-Derivative 381; 392–410; 414; 438; 555–568; 582; 819; 607;
761–767; 823–835; 841

Zn Micro RF 0.855 2.075 First-Derivative 381; 398; 407–411; 420; 449; 555–559; 604–607; 858

* These wavelengths and regions were obtained by sorting the highest Relief-F values of each prediction.

4. Discussion

In the proposed framework, both reflectance data and their first-derivatives were used to predict
macro- and micronutrients. This approach used a robust technique (machine learning) to model the
hyperspectral data, which helped to ascertain some discoveries. The results demonstrated compelling
performances to predict most of the nutrients (Tables 3–5). Nutrients like N, Mg, Cu, Mn, and Zn
were predicted with an R2 of 0.912, 0.832, 0.861, 0.898, and 0.855, respectively. Other nutrients like
P, K, and S presented inferior performances with an R2 of 0.771, 0.763, and 0.727, respectively. The
worst performances were obtained for nutrients like Ca and Fe, with their R2’s equal to 0.624 and
0.612, respectively. In comparison to the literature, most of these performances, specifically those
related to macronutrients, were similar or superior for other types of plants and methods. For N,
predictions using visible to infrared data returned accuracies between 0.73 to 0.87 (R2) [2,30,40]. For
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K, a three-band combination index predicted the nutrient with an R2 equal to 0.74 [37]. In nutrients
like Mg, S, P, Ca, and others, the predictions (R2) variated between lower values of 0.27 up to 0.98,
depending on the method applied and the plant evaluated [24,26,30,32,38,39,50].

One important finding from this research is the relationship between nutrients, algorithms, and
leaf-spectral curves. For macronutrients, the performance of the algorithms was superior when
adopting the surface reflectance data. As for the micronutrients, the first-derivative of the spectral
reflectance returned better performances for the algorithms (Figure 5a,b and Table 6). This finding
can be related to information reported in the literature [39–41]. Since first-derivative spectra allow
for highlighting absorption features of the original spectra, it could potentially be linked to different
components not so easily observable in spectral reflectance data alone. This approach demonstrated
a better relation for all micronutrients when linked to the algorithms with the first-derivative, so
this could offer a possible explanation. As previously mentioned in Section 2.2, other derivatives of
the dataset were evaluated, but could not find a significant difference over the first derivative. Still,
further research should continue to explore the association between first-derivative spectra, second-
and third-derivatives, and micronutrients.

Another contribution of the proposed framework is that, although, with a limitation in the
accuracy of the algorithms, it is possible to identify the wavelengths and the spectral regions that
most contributed to predicting each nutrient (Figure 6a,b and Table 6). While some nutrients show
contributions from the same wavelengths, these contributions vary in value (Relief-F). Even so, most of
the nutrients showcase particular wavelengths that could potentially be isolated or used in combination
with others to ascertain their relationship with the prediction (Table 6). This finding could help to map
the Valencia-orange leaf spectral behavior related to both macro- and micronutrients and promote the
investigation of simpler mathematical models or spectral indices capable of modeling these nutrients
by focusing on these wavelengths.

Machine learning algorithms have the advantage of modeling data in a non-linear and a
non-parametric manner. Unlike many traditional statistical methods, these algorithms are built
with the advantage of dealing with noisy, complex, and heterogeneous data [16,23,50–52]. These
characteristics proved to be an advantage for this study, as the data used had higher variance, was
not-normal (Table 3), and, while statistically significant, low-correlated in a pairwise manner (Figure 4).
Previous research aimed to model nutrient content with similar characteristics by using multiple
mathematical methods in the analysis of plant hyperspectral data, but it did not return the same
accuracies [15,24,32,40,42]. Nonetheless, since machine learning methods can deal with most of the data
inconsistencies, both in hyperspectral measurements and in nutrient content analysis, the proposed
framework should be more appropriate to combine these features not requiring data modification
while still returning good performances.

Finally, the different performances returned by the algorithms should be discussed. It is clear that
regression models like Lasso, Ridge, and SVM were inferior to others (Tables 3 and 4) in both scenarios
(reflectance/first-derivative). Although SVM is known to handle high dimensionality data and do
well with a limited training dataset [45], it performed poorly in the used dataset in comparison with
the rest. The DT algorithm, though not as inferior in performance as the aforementioned algorithms,
achieved middling results in comparison with the remaining methods. For the DT, the XGBoost model
was adopted to improve the prediction performance, which was also implemented in the RF base
model. During the experimental phase, this boosting model proved to be of assistance in enhancing the
performance of both algorithms. Still, DT did not return predictions as accurate as did the RF algorithm.

The highest performances were obtained by the RF, ANN, and kNN algorithms; both for macro-
and micronutrients. While RF was better in almost all predictions, ANN and kNN performed well in
only particular cases, especially for K (reflectance data) and Mn (first-derivative data), respectively.
kNN is a simpler method than ANN and RF, being relatively faster. However, throughout the different
nutrients, RF and ANN had better consistency. The ANN was constructed in a manner that could
predict most of the nutrients, but performance rates were limited. The amount of available data for
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training the algorithms could also be a potential hindrance for deep learning networks to handle. While
the ANN method benefited from a multilayer perceptron, with two hidden layers and a high number
of neurons and interactions, the RF algorithm was boosted with the XGBoost model, which returned a
continuous performance for the reflectance and first-derivative datasets. Regardless, as no machine
learning algorithm is considered universally appropriate to deal with any task, a framework like the
one proposed here is recommended since it makes uses of multiple algorithms because different data
could potentially impact its performance.

5. Conclusions

The proposed approach uses leaf spectral data in the visible and near-infrared regions, and switches
between reflectance and its first-derivative data to predict the amount of macro- and micronutrients
measured in the laboratory. This method was able to return high predictions (R2) for nutrients like
N (0.912), Mg (0.832), Cu (0.861), Mn (0.898), and Zn (0.855), and, to a lesser extent, P (0.771), K (0.763),
and S (0.727). These accuracies were obtained with the RF, ANN, and kNN algorithms, among
which RF performed the best. Another discovery was that reflectance data is more suitable to model
macronutrients, while the first-derivative of the reflectance data is better related to micronutrients.
Another contribution also made by this study is the identification (by the Relief-F value) of the
wavelengths most responsible for the prediction results. Each nutrient was better correlated to one
or more spectral wavelengths. Because of it, future research should evaluate simpler models or
spectral vegetation indices capable of modeling the nutrient content by focusing on these wavelengths.
Although the presented method was used for evaluating the nutritional conditions of Valencia-orange
leaves, it can be replicated for different plants and cultivars, with the possibility of even better
performances being achievable. Furthermore, as an advantage of this approach, this framework may
be implemented in hyperspectral data obtained with sensors embedded in UAV-based systems.
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Abstract: Remote sensing is a useful tool for monitoring spatio-temporal variations of crop
morphological and physiological status and supporting practices in precision farming. In comparison
with multispectral imaging, hyperspectral imaging is a more advanced technique that is capable
of acquiring a detailed spectral response of target features. Due to limited accessibility outside of
the scientific community, hyperspectral images have not been widely used in precision agriculture.
In recent years, different mini-sized and low-cost airborne hyperspectral sensors (e.g., Headwall
Micro-Hyperspec, Cubert UHD 185-Firefly) have been developed, and advanced spaceborne
hyperspectral sensors have also been or will be launched (e.g., PRISMA, DESIS, EnMAP, HyspIRI).
Hyperspectral imaging is becoming more widely available to agricultural applications. Meanwhile,
the acquisition, processing, and analysis of hyperspectral imagery still remain a challenging research
topic (e.g., large data volume, high data dimensionality, and complex information analysis). It is
hence beneficial to conduct a thorough and in-depth review of the hyperspectral imaging technology
(e.g., different platforms and sensors), methods available for processing and analyzing hyperspectral
information, and recent advances of hyperspectral imaging in agricultural applications. Publications
over the past 30 years in hyperspectral imaging technology and applications in agriculture were
thus reviewed. The imaging platforms and sensors, together with analytic methods used in
the literature, were discussed. Performances of hyperspectral imaging for different applications
(e.g., crop biophysical and biochemical properties’ mapping, soil characteristics, and crop classification)
were also evaluated. This review is intended to assist agricultural researchers and practitioners to
better understand the strengths and limitations of hyperspectral imaging to agricultural applications
and promote the adoption of this valuable technology. Recommendations for future hyperspectral
imaging research for precision agriculture are also presented.

Keywords: precision agriculture; remote sensing; hyperspectral imaging; platforms and sensors;
analytical methods; crop properties; soil characteristics; classification of agricultural features

1. Introduction

The global agricultural sector is facing increasing challenges posed by a range of stressors,
including a rapidly growing population, the depletion of natural resources, environmental pollution,
crop diseases, and climate change. Precision agriculture is a promising approach to address these
challenges through improving farming practices, e.g., adaptive inputs (e.g., water and fertilizer),
ensured outputs (e.g., crop yield and biomass), and reduced environmental impacts. Remote sensing
is capable of identifying within-field variability of soils and crops and providing useful information for
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site-specific management practices [1,2]. There are two types of remote sensing technologies given the
source of energy, passive (e.g., optical) and active remote sensing (e.g., LiDAR and Radar). Passive
optical remote sensing is usually further divided into two groups based on the spectral resolutions
of sensors, multispectral and hyperspectral remote sensing [3]. Multispectral imaging is facilitated
by collecting spectral signals in a few discrete bands, each spanning a broad spectral range from tens
to hundreds of nanometers. In contrast, hyperspectral imaging detects spectral signals in a series of
continuous channels with a narrow spectral bandwidth (e.g., typically below 10 nm); therefore, it can
capture fine-scale spectral features of targets that otherwise could be compromised [4].

Multispectral images (e.g., Landsat, Sentinel 2, and SPOT images) have been widely used in
agricultural studies to retrieve various crop and soil attributes, such as crop chlorophyll content,
biomass, yield, and soil degradation [5–10]. However, due to the limitations in spectral resolution,
the accuracy of the retrieved variables is often limited, and early signals of crop stresses (e.g., nutrient
deficiency, crop disease) cannot be effectively detected in a timely manner [11]. Hyperspectral
images (e.g., Hyperion, CASI, and Headwall Micro-Hyperspec) with hundreds of bands can capture
more detailed spectral responses; hence, it is more capable of detecting subtle variations of ground
covers and their changes over time. Therefore, hyperspectral imagery can be used to address the
aforementioned challenges and facilitate more accurate and timely detection of crop physiological
status [12,13]. Previous studies have also demonstrated the superior performance of hyperspectral
over multispectral images in monitoring vegetation properties, such as estimating the leaf area
index (LAI) [14], discriminating crop types [15], retrieving crop biomass [16], and assessing leaf
nitrogen content [17]. Despite its outstanding performance, hyperspectral imaging has been utilized
comparatively less in operational agricultural applications in the past few decades due to the high cost
of the sensors and imaging missions, and various technical challenges (e.g., low signal-to-noise ratio
and large data volume) [18–21]. Although ground-based hyperspectral reflectance data can be quickly
measured using a spectroradiometer (e.g., ASD Field Spec, Analytical Spectral Devices Inc., Boulder,
CO, USA) and have been widely used for observing canopy- and leaf-level spectral features [22–24],
such ground-based measurements are limited to a few numbers of field sites, and they cannot capture
spatial variability across large areas. In contrast, hyperspectral imaging sensors are more convenient to
acquire spatial variability of spectral information across a region.

In recent years, a wide range of mini-sized and low-cost hyperspectral sensors have been developed
and are available for commercial use, such as Micro- and Nano-Hyperspec (Headwall Photonics Inc.,
Boston, MA, USA), HySpex VNIR (HySpex, Skedsmo, Skjetten, Norway), and FireflEYE (Cubert GmbH,
Ulm, Germany) [11,25]. These sensors can be mounted on manned or unmanned airborne platforms
(e.g., airplanes, helicopters, and unmanned aerial vehicles (UAVs)) for acquiring hyperspectral images
and supporting various monitoring missions [13,26,27]. In addition, new spaceborne hyperspectral
sensors have been launched recently, such as the DESIS—launched in 2018 [28]—and PRISMA—
launched in 2019 [29]—or will be launched in the next few years, such as EnMAP, with scheduled
launching in 2020 [30,31]. Overall, increasingly more airborne or spaceborne hyperspectral images
have become available, bringing unprecedented opportunities for better monitoring of ground targets,
especially for better investigation of crop and soil variabilities and supporting precision agriculture.
Therefore, a literature search was performed to examine if more research in using hyperspectral
imaging for agricultural purposes had been published in recent years. Both Web of Science and
Google Scholar were used for conducting the literature search with topics or keywords, including
hyperspectral, imaging, agriculture, or farming, and publication over a 30-year time span (1990 to 2020).
The searched results were further verified to ensure that each publication falls within the scope of
hyperspectral imaging for agriculture applications. It was found that there was an increasing number
of publications in recent years that used hyperspectral imaging for agricultural applications (Figure 1).
Substantially more studies have been published in the recent decade (e.g., 245 articles published in
2011–2020) than that in the previous one (e.g., 97 published in 2001–2010).
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Figure 1. The number of publications that utilized hyperspectral imaging for agriculture applications
(by May 2020).

This review is designed to focus on the acquisition, processing, and analysis of hyperspectral
imagery for different agricultural applications. The review is organized in the following main aspects:
(1) Hyperspectral imaging platforms and sensors, (2) methods for processing and analyzing
hyperspectral images, and (3) hyperspectral applications in agriculture (Table 1). Regarding imaging
platforms, different types, including satellites, airplanes, helicopters, fixed-wing UAVs, multi-rotor
UAVs, and close-range platforms (e.g., ground or lab based), have been used. These platforms
acquire images with different spatial coverage, spatial resolution, temporal resolution, operational
complexity, and mission cost. It will be beneficial to summarize various platforms in terms of these
features to support the selection of the appropriate one(s) for different monitoring purposes. After raw
hyperspectral imagery is acquired, pre-processing is the step for obtaining accurate spectral information.
Several procedures need to be carried out during pre-processing (usually implemented in a specialized
remote sensing software), including radiometric calibration, spectral correction, atmospheric correction,
and geometric correction. Although these are standard processing steps for most satellite imagery,
it still can be challenging to perform on many airborne hyperspectral images due to different technical
issues (e.g., the requirement of high-accuracy Global Positioning System (GPS) signals for proper
geometric correction, the measurement of real-time solar radiance for accurate spectral correction).
There are no standardized protocols for all sensors due to the limited availability of hyperspectral
imaging in the past and the fact that the new mini-sized and low-cost hyperspectral sensors in the
market are from different manufacturers with varying sensor configurations. Various approaches have
been used in previous studies to address these challenges [12,19,32,33]. Therefore, it is essential to
review these approaches to support other researchers for more accurate and efficient hyperspectral
image processing. After pre-preprocessing, such as calibration and correction, spectral information
extraction (e.g., band selection and dimension reduction) can be performed to further improve the
usability of the hyperspectral image. Techniques for these procedures are reviewed in this study.
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With pre-processed hyperspectral images, a robust and efficient analytical method is required
for analyzing the tremendous amount of information contained in the images (e.g., spectral, spatial,
and textural features) and extracting target properties (e.g., crop and soil characteristics). Previous
studies have used a suite of analytical methods, including empirical regression (e.g., linear regression,
partial least square regression (PLSR), and multi-variable regression (MLR)), radiative transfer
modelling (RTM, e.g., PROSPECT and PROSAIL), machine learning (e.g., random forest (RF)),
and deep learning (e.g., convolutional neural network (CNN)) [34–37]. These methods have been
developed based on different theories and have different operational complexity, computation efficiency,
and performance accuracy. Therefore, it is essential to review the strengths and limitations of these
methods and help to choose the appropriate one(s) for specific research purposes. Using hyperspectral
information, researchers have investigated a wide range of agricultural features. Some popular ones
include crop water content, LAI, chlorophyll and nitrogen contents, pests and disease, plant height,
phenological information, soil moisture, and soil organic matter content [11,38]. It will also be valuable
to review the performances of hyperspectral imaging in these studies and further explore the potential
of this technology for monitoring other agricultural features. Lastly, challenges of using hyperspectral
imaging for precision agriculture, together with future research directions, are discussed. A few
previous review articles have discussed some of these topics to some extent [11,38,39]. More details
and contributions of this review will be discussed in each specific section. Overall, this review aims to
examine the main procedures in collecting and utilizing hyperspectral images for different agricultural
applications, to further understand the strengths and limitations of hyperspectral technology, and to
promote the faster adoption of this valuable technology in precision farming.

2. Hyperspectral Imaging Platforms and Sensors

Hyperspectral sensors can be mounted on different platforms, such as satellites, airplanes,
UAVs, and close-range platforms, to acquire images with different spatial and temporal resolutions.
Platforms used in the literature were identified and summarized over the publication years, aiming to
find, if any, the platforms that had been used more frequently in a specific time period, and the results
are shown in Figure 2. Airplanes have been the most widely used platforms for hyperspectral imaging
in agriculture (Figure 2). Approximately 30 articles that used airplanes were published every five years
starting from 2001 (e.g., 27 publications in 2001–2005 and 38 in 2006–2010). In comparison, satellite-based
hyperspectral imaging has been used less frequently; approximately 20 or fewer articles were published
in all five-year periods. UAVs are popular platforms for remote sensing and have been widely used in
the last decade for hyperspectral imaging in agriculture (e.g., more than 20 publications in 2011–2015 and
2016–2020). Close-range platforms have been the most widely used in the last five years (i.e., 2016–2020),
with 49 publications (Figure 2). The review in this section is structured based on different platforms,
including satellites, airplanes, UAVs, and close-range platforms. In contrast to previous articles reviewing
hyperspectral platforms [20,38,39], the review in this section focuses more on recent advancements of
imaging platforms (e.g., UAVs, helicopters, and close range) and their applications to precision farming
(e.g., weed classification, fine-scale evaluation of crop health, pests, and disease).

2.1. Satellite-Based Hyperspectral Imaging

Compared with a large number of satellite-based multispectral sensors (e.g., Landsat,
SPOT, WorldView, QuickBird, Sentinel-2), there are significantly fewer hyperspectral sensors.
EO-1 Hyperion, PROBA-CHRIS, and TianGong-1 [40] are a few examples of the available satellite
hyperspectral sensors [20]. EO-1 Hyperion is the most widely used satellite-based hyperspectral
sensor for agriculture (e.g., more than 40 publications). It collects data in the visible, near-infrared,
and shortwave infrared ranges with a spectral resolution of 10 nm and a spatial resolution of 30 m.
More sensor specifications of EO-1 Hyperion are given in Table 2. The sensor was in operation
from 2000 to 2017, which corresponds to the period having more publications using satellite-based
hyperspectral imaging (e.g., 2006 to 2020 in Figure 2). The use of Hyperion data has been reported in a
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variety of agricultural studies for monitoring different crop and soil properties, including detecting
crop disease [41,42], estimating crop properties (e.g., chlorophyll, LAI, biomass) [43–45], assessing crop
residues [46,47], classifying crop types [48], and investigating soil features [49,50]. A few featured ones
include Wu et al. [45], who estimated vegetation chlorophyll content and LAI in a mixed agricultural
field using Hyperion data and evaluated spectral bands that are sensitive to these vegetation properties.
Camacho Velasco et al. [48] used Hyperion hyperspectral imagery and different classification algorithms
(e.g., spectral angle mapper and adaptive coherence estimator) for identifying five types of crops
(e.g., oil palm, rubber, grass for grazing, citrus, and sugar cane) in Colombia. Gomez et al. [49] predicted
soil organic carbon (SOC) using both spectroradiometer data and a Hyperion hyperspectral image,
and they found that using Hyperion data resulted in a lower accuracy compared with results derived
from spectroradiometer data.

 
Figure 2. Number of publications that used different hyperspectral imaging platforms over time.

Studies have also been conducted to compare the performances of Hyperion hyperspectral imagery
with multispectral imagery for estimating crop properties or classifying crop types. For instance,
Mariotto et al. [15] compared Hyperion hyperspectral imagery with Landsat multispectral imagery for
the estimation of crop productivity and the classification of crop types. The authors reported better
performances of using hyperspectral imagery than using Landsat imagery for both research purposes.
Similarly, Bostan et al. [51] compared Hyperion hyperspectral imagery with Landsat multispectral
imagery for crop classification and also found that higher classification accuracy can be achieved by
using hyperspectral imagery.
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PROBA-CHRIS is another commonly used satellite-based hyperspectral sensor that was launched
in 2001. Specific studies, such as Verger et al. [57], utilized PROBA-CHRIS data for retrieving
LAI, the fraction of vegetation cover (fCover), and the fraction of absorbed photosynthetically
active radiation (FAPAR) in an agricultural field. Antony et al. [58] identified three growth stages
of wheat using multi-angle PROBA-CHRIS images and found the optimal view angles for the
identification. Casa et al. [59] evaluated the performance of airborne Multispectral Infrared Visible
Imaging Spectrometer (MIVIS) data and spaceborne PROBA-CHRIS data for investigating soil texture,
and they found that these two data have similar performances, although the PROBA-CHRIS data have
a lower spatial resolution.

There are a few other satellite-based hyperspectral sensors that have not been commonly used
in an agricultural environment. For instance, Hyperspectral Imager (HySI) is a hyperspectral sensor
equipped on the Indian Microsatellite-1 (IMS-1) launched in 2008 [60]. It collects spectral signals in the
range of 400–950 nm with a spatial resolution of 550 m at nadir [61]. HySI imagery has been used to
map different agricultural features, such as soil moisture and soil salinity [62]. It has also been used for
crop classification [63]. However, this data has not been widely used in precision farming, which is
probably due to the low spatial resolution and limited data availability. The Hyperspectral Imager
for the Coastal Ocean (HICO) is another spaceborne hyperspectral sensor that takes images with a
spectral range from 380 to 960 nm at a spatial resolution of 90 m [64]. This sensor was mainly designed
to sample the coastal ocean and operated from 2009 to 2015.

In recent years, several spaceborne hyperspectral sensors have been launched or scheduled for
launching in the next few years. For instance, the German Aerospace Center (DLR) Earth Sensing
Imaging Spectrometer (DESIS), a hyperspectral sensor mounted on the International Space Station,
was launched in 2018 [65]. This sensor acquires images in the range from 400 to 1000 nm with a spectral
resolution of 2.5 nm and a spatial resolution of 30 m. The Hyperspectral Imager Suite (HISUI) is a
Japanese hyperspectral sensor that is also onboard the International Space Station [66]. It was launched
in 2019 and collects data in the range from 400 to 2500 nm with a spatial resolution of 20 m and a
temporal resolution of 2 to 60 days [20]. Hyperspectral Precursor and Application Mission (PRISMA)
is an Italian hyperspectral mission with the sensor launched in March 2019. Its spectral resolution is
12 nm in the range of 400-2500 nm (~250 bands in visible to shortwave infrared). Its hyperspectral
imagery has a spatial resolution of 30 and 5 m for the panchromatic band [67]. The Environmental
Mapping and Analysis Program (EnMAP) is a German hyperspectral satellite mission that is still in
the development and production phase [68]. The EnMAP sensor will collect data from the visible to
the shortwave infrared range with a spatial resolution of 30 m. It is planned to be launched in 2020.
The Spaceborne Hyperspectral Applicative Land and Ocean Mission (SHALOM) is a joint mission by
Israeli and Italian space agencies, and the satellite is scheduled to be launched in 2022 [69]. This sensor
will collect hyperspectral images with a spatial resolution of 10 m in the spectral range of 400–2500 nm
and panchromatic images with a spatial resolution of 2.5 m [70]. HyspIRI is another hyperspectral
mission that is also at the study stage [71]. This sensor will collect data in the 380 to 2500 nm range
with an interval of 10 nm and a spatial resolution of 60 m.

Although the actual PRISMA, EnMAP, and HyspIRI data are not yet available, researchers
have simulated the images using other data and tested the performance of the simulated images for
investigating different vegetation and soil features. For instance, Malec et al. [72], Siegmann et al. [73],
and Locherer et al. [74] simulated EnMAP imagery using different airborne or spaceborne images and
applied the simulated images for investigating different crop and soil properties. Bachmann et al. [75]
produced an image using the EnMAP’s end-to-end simulation tool and examined the uncertainties
associated with spectral and radiometric calibration. Castaldi et al. [76] simulated data of four
current (EO-1 ALI and Hyperion, Landsat 8 Operational Land Imager (OLI), Sentinel-2 MultiSpectral
Instrument (MSI)) and three forthcoming (EnMAP, PRISMA, and HyspIRI) sensors using a soil spectral
library and compared their performance for estimating soil properties. Castaldi et al. [77] used PRISMA
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data that were simulated with lab-measured spectral data for estimating clay content and attempted to
reduce the influence of soil moisture on the estimation of clay.

Previous studies have confirmed the good performance of satellite-based hyperspectral sensors for
studying agricultural features; however, several factors could potentially affect the broad applications
of these data in precision farming, including the spatial resolution, temporal resolution, and data quality.
The detection and monitoring of many agricultural features, such as crop disease, pest infestation,
and nutrient status, require high spatial and temporal resolution. Most of the satellite-based
hyperspectral sensors have medium spatial resolutions, such as 17 or 36 m for PROBA-CHRIS;
30 m for Hyperion, PRISMA, and EnMAP, DESIS; and 60 m for HyspIRI. Previous studies have
indicated that such spatial resolutions are not sufficient for precision farming applications [20,49].
To overcome such limitations, researchers have attempted to pansharpen hyperspectral images, aiming
to improve spatial resolution [73,78–80]. Loncan et al. [81] also reviewed different pansharpening
methods for generating high-spatial resolution hyperspectral images.

Temporal resolution is another factor that could potentially limit the applications of satellite-based
hyperspectral images to precision agriculture. Most of the satellite-based sensors have a long revisit
cycle (e.g., typically around two weeks), and thus early signals of crop stress (e.g., disease and
pest) may be missed. This limitation can be further aggravated by unfavorable weather conditions
(e.g., cloud contamination). Lastly, low data quality is also an issue that can affect the performance of
satellite-based hyperspectral imaging for investigating agricultural features. A low signal-to-noise ratio
is a well-known issue of Hyperion data (e.g., in the shortwave infrared (SWIR) range), which has affected
the accuracy of retrieving different agricultural features [20]. For instance, Asner and Heidebrecht [82],
Gomez et al. [49], and Weng et al. [83] found that the low signal-to-noise ratio influenced the accuracies
of estimating non-photosynthetic vegetation and soil cover, soil organic matter, and soil salinity,
respectively. Future satellite-based hyperspectral missions are expected to solve the data quality issue.

2.2. Airplane-Based Hyperspectral Imaging

Airborne hyperspectral imaging has been widely used to collect hyperspectral imagery for
different monitoring purposes (e.g., for agriculture or forestry). The first hyperspectral sensor was an
airborne visible/infrared imaging spectrometer (AVIRIS) that was developed and utilized in 1987 [84].
It collects spectral signals in 224 bands in the visible to SWIR range (Table 2). Researchers have applied
AVIRIS data to help understand a wide range of agricultural features, such as investigating vegetation
properties (e.g., yield, LAI, chlorophyll, and water content) [85–88], analyzing soil properties [89],
evaluating crop health or identifying pest infestation [90–92], and mapping crop area or agricultural
tillage practices [93,94].

Besides AVIRIS, the Compact Airborne Spectrographic Imager (CASI), Hyperspectral Mapper
(HyMap), and AISA Eagle are also widely used airborne hyperspectral sensors (Table 2). For instance,
CASI images have been used for estimating crop chlorophyll content [95], investigating crop cover
fraction [96], classifying weeds [97], and delineating management zones [2]. The HyMap imagery
has been applied to examining crop biophysical and biochemical variables (e.g., LAI, chlorophyll and
water content) [98–100], detecting plant stress signals [101], and investigating the spatial patterns of
SOC [102]. Regarding AISA Eagle imagery, Ryu et al. [35] and Cilia et al. [103] used this data for
estimating crop nitrogen content, and Ambrus et al. [104] used it for estimating biomass.

Several other airborne hyperspectral sensors have also been used in previous studies. For instance,
AVIS images were used for investigating a range of vegetation characteristics (e.g., biomass and
chlorophyll) [105], Probe-1 hyperspectral images were used for investigating crop residues [106],
RDACS-H4 hyperspectral images were used for detecting crop disease [34], AHS-160 hyperspectral
sensor was used for mapping SOC [107], the SWIR Hyper Spectral Imaging (HSI) sensor was used for
estimating soil moisture [108], the Pushbroom Hyperspectral Imager (PHI) was used for estimating
winter wheat LAI [109], and airborne prism experiment (APEX) data were used for studying the
relationship between SOC in croplands and the spectral signals [110].
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Most of the aforementioned airborne hyperspectral images have been acquired by airplanes at
medium to high altitude (e.g., 1–4 km altitude for CASI, 20 km for AVIRIS), and the acquired images
generally having high to medium spatial resolution, such as 4 m for CASI imagery, 5 m for HyMap,
and 20 m for AVIRIS [111–113]. Such spatial resolutions are appropriate for mapping many crop and
soil features. However, image acquisition usually needs to be scheduled months or even years in
advance, and flight missions are expensive [19]. Furthermore, for some specific applications, such as
investigating species-level or community-level features (e.g., identification of weeds or early signal
of crop disease), images with very high spatial resolutions (e.g., sub-meter) are preferred [114,115].
In addition, due to the unstable nature of airplanes as imaging platforms, a gimbal or high-accuracy
inertial measurement unit (IMU) will be required to compensate for the orientation change of the
airplanes or recording the orientation information for subsequent image correction, respectively.
These factors limited the full application of airborne hyperspectral imaging in precision agriculture.
Manned helicopters have also been used as platforms for hyperspectral imaging and investigation
of vegetation features [27,116]. Helicopters have more flexible flight heights (e.g., 100 m–2 km) than
airplanes and are capable of acquiring high-spatial-resolution images (e.g., sub-meter) over large
areas. An aviation company with a manned helicopter is generally needed for the imaging task,
which requires extra funding support and far advanced pre-scheduling.

2.3. UAV-Based Hyperspectral Imaging

UAV has become a popular platform in recent years for remote sensing data acquisition,
especially for multispectral imaging using digital cameras or multispectral sensors. With the increased
availability of lightweight hyperspectral sensors, researchers have experimented on mounting these
sensors on UAVs to acquire high-spatial-resolution hyperspectral imagery [19,117]. Different types
of UAVs, including multi-rotors, helicopters, and fixed wings, have been utilized in previous studies
(Figure 3). Compared with manned airplanes and helicopters, UAVs are capable of acquiring high-
spatial-resolution images with a much lower cost and have high flexibility in terms of scheduling a
flight mission [118]. Several specific agricultural applications of UAV-based hyperspectral imaging are
summarized in Table 3.

 
Figure 3. Hyperspectral UAV systems used in previous agricultural studies. Figures were reproduced
with permission from the corresponding publishers: (a) MDPI [119], (b) MDPI [120], (c) MDPI [121],
and (d) SPIE [122].
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Table 3. Example applications of UAV-based hyperspectral imaging in agriculture.

Applications Previous Studies Research Focuses

Estimating LAI and
chlorophyll Yu et al. [37]

Estimated a range of vegetation phenotyping variables
(e.g., LAI and leaf chlorophyll) using UAV-based

hyperspectral imagery and radiative transfer modelling.

Estimating biomass
Honkavaara et al. [123]

Mounted a hyperspectral sensor and a consumer-level
camera on a UAV for estimating biomass in a wheat and

a barley field.

Yue et al. [124] Utilized UAV-based hyperspectral images for estimating
winter wheat above-ground biomass.

Estimating nitrogen
content

Pölönen et al. [125] Used lightweight UAVs for collecting hyperspectral
images and estimated crop biomass and nitrogen content.

Kaivosoja et al. [126] Applied UAV-based hyperspectral imagery to investigate
biomass and nitrogen contents in a wheat field.

Akhtman et al. [127]
Utilized UAV-based hyperspectral images for estimating
nitrogen content and phytomass in corn and wheat fields
and monitored temporal variations of these properties.

Estimating water
content Izzo et al. [128]

Evaluated water content in the commercial vineyard
using UAV-based hyperspectral images and determined

wavelengths sensitive to canopy water content.

Classifying weeds Scherrer et al. [129]
Classified herbicide-resistant weeds in different crop

fields (e.g., barley, corn, and dry pea) using both ground-
and UAV-based hyperspectral imagery.

Detecting disease Bohnenkamp et al. [119] Used both ground- and UAV-based hyperspectral images
for detecting yellow rust in wheat.

Various lightweight hyperspectral sensors have been developed in recent years and can be
mounted on UAVs. Examples of sensors include the widely-used Headwall Micro- and Nano-Hyperspec
VNIR [12,13,26,128], UHD 185-Firefly [53,130], the PIKA II sensor [19,32], and the HySpex VNIR [25,131].
These hyperspectral sensors contain more than 100 bands in the visible-near infrared spectral range
(Table 2). These sensors are small and compact (1–2 kg), thus they can be deployed quickly on various
manned or unmanned remote sensing platforms. Previous studies conducted by Adão et al. [11] and
Lodhi et al. [52] also compared and summarized various lightweight hyperspectral sensors.

A large number of factors need to be considered in the application of UAV-based hyperspectral
imaging, ranging from sensor setup and data collection, to image processing. Saari et al. [122] tested
the feasibility of a UAV-based hyperspectral imaging system for agricultural and forest applications
and discussed several challenges regarding the imaging technology (e.g., hardware requirements
and system settings). Aasen et al. [132] focused on the calibration of images collected with a
frame-based sensor and discussed several challenges related to the use of UAV-based hyperspectral
imaging for vegetation and crop investigation (e.g., the payload of UAV, signal-to-noise ratio, and
spectral calibration). Habib et al. [120] attempted to perform orthorectification of UAV-acquired
pushbroom-based hyperspectral imagery with frame-based RGB images over an agricultural field.
Adão et al. [11] reviewed applications of UAV-based hyperspectral imaging in agriculture and forestry
and listed several hyperspectral sensors that can be mounted on UAVs. The authors also discussed
several challenges in collecting and analyzing UAV-based hyperspectral imagery, such as radiometric
noise, the low quality of UAV georeferencing, and a low signal-to-noise ratio.

UAV-based hyperspectral imaging has become more popular in recent years; therefore, it is critical to
review its strengths and limitations. To explore more features of this technology, this section of the review
is not limited to agricultural applications alone. Different types of UAVs have been used as hyperspectral
imaging platforms, with the two most widely used as multi-rotors [130,133,134] and fixed-wing
planes [33,120,135]. Slow flights at low altitudes are preferred to achieve high-spatial-resolution
hyperspectral imagery with a high signal-to-noise ratio. Thus, a multi-rotor is more competitive than
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fixed-wing planes for hyperspectral imaging in terms of flight operation. Specifically, the multi-rotor
allows for a low flight altitude, flexible flight speed, and vertical takeoff and landing, while the
fixed wing requires a minimum flight altitude, speed, and, sometimes, accessories for takeoff and
landing (e.g., runway, launcher, and parachute). A hyperspectral imaging system, which consists
of a hyperspectral sensor, a data processing unit, a GPS, and an IMU, has a considerable weight
(e.g., 1–3 kg), thus bringing challenges to the payload capacity of the UAV system and its battery
endurance. The multi-rotors are generally powered by high-performance batteries (e.g., LiPo), and most
have a short endurance (e.g., less than 20 min). The endurance can be as short as 3 min [12]. In contrast,
many fixed-wing UAVs are powered by fuel, thus having a much longer endurance (e.g., 1–10 h) [19,135].
However, these fixed-wing planes are mostly large and heavy (e.g., a 5 m wingspan and 14 kg take-off
weight) [135], and thus bring challenges to the flight operation. Using UAV, researchers need to consider
the UAV SWaP (size, weight, and power), geographical coverage, time aloft, altitude, and other variables.
In addition to the challenges in building a UAV system and performing flight operations, researchers
likely need to apply for flight permission from an aviation authority (e.g., Special Flight Operations
Certificate (SFOC) from Transport Canada), and purchase suitable UAV flight insurance [136]. UAV size
and weight are essential parameters to consider in these processes. Furthermore, the UAVs are required
to be visible during flight missions, so that the pilot can maintain constant visual contact with the
aircraft. This could create a major challenge when flying over a large area, a hilly area, or an area
with forests.

2.4. Close-Range (Ground- or Lab-Based) Hyperspectral Imaging

Close-range hyperspectral imaging, including ground (Figure 4a–c) or lab based (Figure 4d,e),
is an emerging technology in recent years, and it is capable of acquiring super-high-spatial-resolution
(e.g., cm or sub-cm level) hyperspectral imagery [137–139]. Therefore, this imaging technology can
be used for investigating fine-scale (e.g., leaf and canopy level) vegetation features and thus greatly
support the investigation of crop growing status and detection of early signs of crop stress (e.g., disease,
weeds, or nutrition deficiency). Sensors are mounted on moving or static platforms (e.g., linear
stages, scaffolds, or trucks) that can be deployed indoors or outdoors for collecting images. Lamps
(e.g., halogen lamp) or the sun are used as light sources in these platforms, respectively.

Researchers have utilized different types of platforms and hyperspectral sensors for collecting
super-high-spatial-resolution hyperspectral imagery to study different agricultural features, as shown
in Table 4.

Table 4. Example applications of close-range hyperspectral imaging in previous studies.

Applications Previous Studies Research Focuses

Investigating
biochemical
components

Feng et al. [140]

Designed a hyperspectral imaging system that consists of a
Headwall hyperspectral camera, a halogen lamp, a computer,

and a translation stage and used this system for taking images of
rice leaves to study leaf chlorophyll distribution.

Mohd Asaari et al. [141]

Mounted a visible and near-infrared HIS camera in a
high-throughput plant phenotyping platform for evaluating

plant water status and detecting early stage signs of plant
drought stress.

Zhu et al. [142]
Installed a hyperspectral camera and halogen lamp on a moving

stage and used this imaging system for estimating sugar and
nitrogen contents in tomato leaves.

Detecting crop
disease

Morel et al. [143]
Used a HySpex hyperspectral camera installed in a close-range

imaging system for investigating black leaf streak disease in
banana leaves.

Nagasubramanian et al. [144]
Integrated a Pika XC hyperspectral line imaging scanner and

halogen illumination lamps for taking images of soybeans and
monitoring fungal disease.
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Table 4. Cont.

Applications Previous Studies Research Focuses

Identifying
vegetation
species or

weeds

Eddy et al. [139]

Mounted a hyperspectral sensor on a boom arm that was
installed on a truck for acquiring images at 1 m above the

ground and applied the hyperspectral images to classifying
weeds in different crop fields.

Lopatin et al. [145]
Installed an AISA Eagle imaging spectrometer on a scaffold at

the height of 2.5 m above ground, aiming to collect hyperspectral
imagery in a grassland area for classifying grassland species.

Phenotyping Behmann et al. [146]

Utilized hyperspectral cameras and a close-range 3D laser
scanner that were mounted on a linear stage for collecting

hyperspectral images and 3D point models, respectively, and
used these two datasets for generating hyperspectral 3D plant

models for better monitoring plant phenotyping features.

Monitoring soil
properties

Antonucci et al. [147]
Attempted to estimate copper concentration in contaminated
soils using hyperspectral images that were acquired from a

lab-based spectral scanner.

Malmir et al. [137]

Collected close-range soil images using Pika XC2 hyperspectral
camera that was mounted on a linear stage and used the
hyperspectral imagery for investigating soil macro- and

micro-elements.

Overall, the close-range hyperspectral imaging platform is capable of acquiring super-high-
spatial-resolution hyperspectral imagery that is critical for investigating fine-scale crop or soil features.
These features provide detailed information about the plant’s biophysical and biochemical processes
and how plants respond to environmental stresses and diseases. However, the image collection and
processing also suffer from different issues, such as uninformative variability caused by the interaction
of light with the plant structure (i.e., illumination effects), influences of shadows, and expanding
applications of the platform to a large scale [141,146]. Further research in these areas is warranted.

Figure 4. Close-range imaging platforms used in previous studies. Figures were reproduced with
permission from corresponding publishers: (a) American Society for Photogrammetry and Remote
Sensing (ASPRS), Bethesda, Maryland, asprs.org [139]; (b) SPIE [148]; (c) Elsevier [138]; (d) Springer
Nature [144]; (e) Elsevier [149].

In summary, different hyperspectral imaging platforms, including satellites, airplanes, helicopters,
UAVs, and close-range, have different advantages and disadvantages for applications in precision
agriculture. Detailed comparisons of these platforms for agricultural applications are shown in
Table 5. In brief, satellite-based systems provide images covering large areas but suffer from medium
spatial resolution and limited data availability (e.g., a limited number of operating sensors and long
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revisit time). Airplane- and helicopter-based imaging platforms acquire data with suitable spatial
coverage and resolution for most of the agricultural applications. However, they are limited by
a high mission cost and scheduling challenges and thus are not suitable for repeated monitoring.
UAV-based systems are capable of acquiring high-spatial resolution images repeatedly and have high
flexibility. However, they can only cover a small area due to the limited battery endurance and aviation
regulations. The close-range imaging systems are capable of obtaining super-high-spatial-resolution
images, but they can only be used at leaf or canopy levels. Therefore, the following factors should be
taken into consideration when selecting a platform for a specific research project: spatial resolution
needed for the study, flight area and flight endurance, weight of the imaging system, platform payload
capacity, flight safety and regulations, operation flexibility, and cost.

Table 5. Comparison of hyperspectral imaging platforms.

Satellites Airplanes Helicopters
Fixed-Wing

UAVs
Multi-Rotor

UAVs
Close-Range

Platforms

Example
Photos  

(Photo: Swales
Aerospace)

   
(Photo:
ASPRS)

Operational
Altitudes 400–700 km 1–20 km 100 m–2 km <150 m <10 m

Spatial
Coverage

Very large Medium—large Medium Small—medium Small Very small
e.g., one

Hyperion scene
covers 42 km ×

7.7 km

A 10-min flight/operation covers

~100 km2 ~10 km2 ~5 km2 ~0.5 km2 ~0.005 km2

Spatial
Resolution 20–60 m 1–20 m 0.1–1 m 0.01–0.5 m 0.0001–0.01 m

Temporal
Resolution Days to weeks Depends on flight operations (hours to days)

Flexibility Low (e.g., fixed
repeating cycles)

Medium (e.g., limited by the
availability of aviation

company)
High

Operational
Complexity

Low (Final data
provided to

users)

Medium (Depends on who
operates the sensor, users or

data vendors)

High (users typically operate sensors and need
to set up hardware and software properly)

Applicable
Scales

Regional—
global Landscape—regional Canopy—landscape Leaf—canopy

Major
Limiting
Factors

Weather (e.g.,
rain and clouds)

Unfavorable flight
height/speed, unstable
illumination conditions

Short battery endurance (e.g.,
10–30 min), flight regulations

Platform
design and
operation

Image
Acquisition

Cost
Low to medium High (typically requires hiring

an aviation company to fly) High (If need to cover a large area)

Number of
publications * 59 133 3 4 38 79

* The number of publications was counted based on which specific platform was used in each of the
literature reviewed.

3. Methods for Processing and Analyzing Hyperspectral Images

Hyperspectral images acquired by different platforms and sensors are typically provided in a
raw format (e.g., digital numbers) that needs to be pre-processed (e.g., atmospheric, radiometric,
and spectral corrections) to retrieve accurate spectral information. Afterward, different approaches can
be used for analyzing the hyperspectral information and investigating various agricultural features
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(e.g., crop and soil properties). A few commonly used methods include linear regression, advanced
regression (e.g., PLSR), machine learning and deep learning (e.g., RF, CNN), and radiative transfer
modelling (e.g., PROSPECT and PROSAIL). Researchers have used one or more of these methods for
investigations of different agricultural features. In this section, the review is arranged based on the
different methods used in the studies.

3.1. Pre-Processing of Hyperspectral Images

Typical processing of hyperspectral imagery includes geometric correction, orthorectification,
radiometric correction, and atmospheric correction. For satellite- and airplane-based hyperspectral
images, the geometric and orthorectification correction are generally performed by data providers,
and the radiometric and atmospheric corrections can be done following standard image processing steps
available in remote sensing software. For UAV-based images, in contrast, the users need to conduct
these processing steps and decide on appropriate processing methods and associated parameters.
For instance, a digital elevation model (DEM) and ground control points (GCPs) are usually needed
for performing the orthorectification and geometric correction [12]. If the sensor mounted on UAV
is pushbroom based, accurate sensor orientation information recorded by an IMU will be needed
for these corrections, and the IMU needs to be integrated into the UAV and well-calibrated [12,27].
Software packages commonly used in previous studies for performing these corrections on UAV-based
hyperspectral images include ENVI (Exelis Visual Information Solutions, Boulder, CO, USA) and
PARGE (ReSe Applications Schläpfer, Wil, Switzerland) [12,26,117].

Radiometric correction is conducted to convert image digital numbers to radiance using calibration
coefficients that are provided by the sensor manufacturer [11]. These coefficients may need to be updated
over time due to the degradation of spectral materials used to construct the hyperspectral sensors.
Regarding atmospheric correction, although the UAVs are flown at low altitudes, the signals acquired
are still subjective to the influence of various atmospheric absorptions and scatterings, such as oxygen
absorption at 760nm; water absorption near 820, 940, 1140, 1380, and 1880 nm; and carbon dioxide
absorption at 2010 and 2060 nm [12,13,26,150]. Therefore, atmospheric correction is critical for obtaining
good-quality spectral information. However, Adão et al. [11] suggest that this process might be skipped
if the UAVs are operated close to the ground. Therefore, the application of atmospheric correction will
depend on specific flight missions and research purposes (e.g., flight altitudes, if atmosphere-influenced
spectral bands are needed). Software or methods commonly used in previous studies for performing
atmospheric correction on UAV-based hyperspectral images include the MODTRAN model (Spectral
Sciences Inc.), ENVI FLAASH (L3Harris Geospatial), PCI Geomatica (PCI Geomatics Corporate),
SMARTS model (Solar Consulting Services), and empirical line correction [12,19,27,32,33,116].

Hyperspectral images typically have hundreds of bands, and many of them are highly correlated.
Therefore, dimension reduction is also an essential procedure to consider in the pre-processing of
hyperspectral imagery. Many previous studies using hyperspectral imagery have discussed the
challenges of data redundancy and have used different methods for dimension reduction. For instance,
Miglani et al. [151] performed principal component analysis (PCA) on hyperspectral images and
indicated that 99% of the information could be explained in the first 10 principal components.
Amato et al. [152] discussed a few previous methods of dimension reduction, such as PCA, minimum
noise fraction (MNF), and singular value decomposition (SVD), and proposed a dimension reduction
algorithm based on discriminant analysis for supervised classification. Teke et al. [38] reviewed
several dimension reduction methods and summarized them based on transformation techniques.
Thenkabail et al. [153] discussed the problems of high dimensionality and listed a number of spectral
bands that are more important for investigating crop features. Sahoo et al. [4] reviewed different
methods for dimension reduction, such as PCA, uniform feature design (UMD), wavelet transforms,
and artificial neural networks (ANNs), and discussed their features of operation. Wang et al. [154]
proposed an auto-encoder-based dimensionality reduction method that is a deep learning-based
approach. Of these different methods, the wavelet transform is one of the most widely used ones for
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dimension reduction. This technique decomposes a signal into a series of scaled versions of the mother
wavelet function and allows the variation of the wavelet based on the frequency information to extract
localized features (e.g., local spectral variation) [155,156]. It has also been successfully used for image
fusion, feature extraction, and image classification [156–158].

In addition to dimensionality reduction, band sensitivity analysis and band selection have also
been widely used in hyperspectral remote sensing to reduce the data size by selecting only the bands
that are sensitive to the object of interest. Different algorithms have been proposed in previous studies
for band selection, such as a fast volume-gradient-based method that is an unsupervised method and
removes the most redundant band successively based on the gradient of volume [159], a column subset
selection-based method that maximizes the volume of the selected subset of columns (i.e., bands)
and is robust to noisy bands [160], and a manifold ranking-based salient band selection method that
puts band vectors in manifold space and selects a band-based ranking that can tackle the problem of
inappropriate measurement of the band difference [161]. With the sensitivity analysis, previous studies
have identified spectral bands that are sensitive to different crop properties, for instance, ~515, ~550,
~570, ~670, 700–740, ~800, and ~855 nm for investigating chlorophyll content; ~405, ~515, ~570, ~705,
and ~720 nm for evaluating nitrogen status; ~970, ~1180, ~1245, ~1450, and ~1950 nm for assessing
water content; ~682, ~855, ~910, ~970, ~1075, ~1245, ~1518, ~1725, and ~2260 nm for estimating
biomass; and ~550, ~682, ~855, ~1075, ~1180, ~1450, and ~1725 nm for crop classification [36,44,153,162].
Overall, pre-processing is an essential step for improving the quality of hyperspectral images and
preparing for further data analysis. After the pre-processing, the analytical methods to be discussed
below can be used for analyzing the hyperspectral information and investigating various agricultural
features on the ground.

3.2. Empirical Relationships

Linear regression is a widely used method for analyzing hyperspectral imagery and retrieving
target information (e.g., crop and soil properties). Both spectral reflectance and vegetation indices can
be used as predictor variables in establishing a linear relationship. For instance, using spectral bands,
Finn et al. [108] built linear regressions between field-measured soil moisture data and the spectral
reflectance of collected hyperspectral imagery and identified bands that have stronger correlations with
soil moisture. More studies have used vegetation indices in the regression for a better performance as
some indices can enhance the signal of targeted features and minimize the background noise. Some of
the previous studies are shown in Table 6.

Table 6. Selected previous studies utilized linear regression and hyperspectral vegetation indices for
investigating agricultural features.

Applications Previous Studies Research Focuses

Estimating leaf
chlorophyll and
nitrogen content

Oppelt and Mauser [105]

Utilized the Chlorophyll Absorption Integral (CAI), Optimized
Soil-Adjusted Vegetation Index (OSAVI), and hyperspectral

Normalized Difference Vegetation Index (h NDVI) for estimating
leaf chlorophyll and nitrogen content from hyperspectral

imagery and evaluated the performance of each of the indices.

Wu et al. [45]

Tested a range of vegetation indices (e.g., NDVI, Simple Ratio
(SR), and Triangular Vegetation Index (TVI)) for retrieving

vegetation chlorophyll content and LAI from Hyperion images
and determined the indices that produced high accuracies.

Cilia et al. [103]

Utilized the Double-peak Canopy Nitrogen Index (DCNI) and
Modified Chlorophyll Absorption Ratio Index/Modified

Triangular Vegetation Index 2 (MCARI/MTVI2) for estimating
nitrogen content, as well as the Transformed Chlorophyll

Absorption in Reflectance Index (TCARI), MERIS Terrestrial
Chlorophyll Index (MTCI) and Triangular Chlorophyll Index

(TCI) for estimating leaf pigments.
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Table 6. Cont.

Applications Previous Studies Research Focuses

Estimating LAI and
biomass

Xie et al. [109]

Evaluated a range of vegetation indices, such as the modified
simple ratio index (MSR), NDVI, a newly proposed index
NDVI-like (which resembles NDVI), modified triangular

vegetation index (MTVI2), and modified soil adjusted vegetation
index (MSAVI) for estimating winter wheat LAI from

hyperspectral images.

Ambrus et al. [104] Tested the NDVI and Red Edge Position (REP) for estimating
field-scale winter wheat biomass.

Richter et al. [98]

Examined a range of techniques (e.g., index-based empirical
regression, radiative transfer modelling, and artificial neural

network) for estimating crop biophysical variables (e.g., LAI and
water content) in terms of operational agricultural applications
with airborne Hymap data and discussed the unique features of

each technique.

Estimating nitrogen
content Nevalainen et al. [163]

Utilized 28 published vegetation indices (e.g., Chlorophyll
Absorption Ratio Index (CARI) and Normalized Difference Red

Edge (NDRE)) for estimating oat nitrogen and identified the
best-performing one.

Detecting crop
disease

Huang et al. [164]

Examined the performance of the photochemical reflectance
index (PRI) for estimating the disease index of wheat yellow rust
using canopy reflectance data and then applied the regression

on an airborne hyperspectral imagery for mapping the
disease-affected areas.

Copenhaver et al. [34]
Calculated a range of vegetation indices (e.g., NDVI and red

edge position index) for detecting crop disease and compared
the effectiveness of these indices.

Estimating crop
residue cover Galloza and Crawford [47]

Utilized the Normalized Difference Tillage Index (NDTI) and
Cellulose Absorption Index (CAI), together with ALI, Hyperion,
and airborne hyperspectral (SpecTIR) data, for estimating crop

residue cover for conservation tillage application.

Crop classification Thenkabail et al. [44]

Utilized both spectral bands and vegetation indices for
classifying different crop types and estimating vegetation

properties and evaluated the performance difference of using
various bands or indices.

Overall, linear regression has been commonly used for estimating a wide range of crop or soil
properties. It is easy to establish, and most of the index-based regressions generated satisfactory
accuracies. However, there are several potential issues associated with this approach, such as the large
number of indices available and it is unknown which performs better, regression may be very sensitive
to data size and quality, and the saturation problem of indices [36,165]. It is thus critical to consider
these potential issues and adopt appropriate solutions when establishing linear regressions with
hyperspectral data. For instance, selecting appropriate vegetation indices with targeted crop or soil
variables is recommended. Researchers have evaluated a wide range of hyperspectral vegetation indices
for different research purposes. Haboudane et al. [166] examined 11 hyperspectral vegetation indices for
estimating crop chlorophyll content. Main et al. [167] investigated 73 vegetation indices for estimating
chlorophyll content in crop and savanna tree species. Peng and Gitelson [168] tested 10 multispectral
indices and 4 hyperspectral indices for quantifying crop gross primary productivity. Croft et al. [169]
analyzed 47 hyperspectral indices for estimating the leaf chlorophyll content of different tree species.
Zhou et al. [170] evaluated eight hyperspectral indices for estimating the canopy-level wheat nitrogen
content. Tong and He [165] evaluated 21 multispectral and 123 hyperspectral vegetation indices for
calculating the grass chlorophyll content at both the leaf and canopy scales. Yue et al. [171] examined
54 hyperspectral vegetation indices for estimating winter wheat biomass. Indices performed differently
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in these studies; thus, it is suggested to evaluate the top-performed ones in these studies and select the
one that generates the highest accuracy.

To deal with issues of linear regression, advanced regression, such as MLR and PLSR, has also
been commonly used in previous research for estimating crop and soil properties [172,173]. Compared
with linear regression, the advanced regression models mostly use multiple predictor variables in the
model to achieve a higher accuracy. PLSR is one of the most widely used models for investigating
crop properties using hyperspectral images, such as Ryu et al. [35], Jarmer [99], Siegmann et al. [73],
and Yue et al. [124] used PLSR and hyperspectral images for estimating different crop biophysical and
biochemical variables (e.g., LAI, biomass, chlorophyll, content, fresh matter, and nitrogen contents).
Thomas et al. [100] examined PLSR for retrieving the biogas potential from hyperspectral images and
evaluated the influence of imaging time on retrieval accuracy. Regarding soil features, Gomez et al. [49],
Van Wesemael et al. [107], Hbirkou et al. [102], and Castaldi et al. [110] built a PLSR model for estimating
the SOC content using hyperspectral images. Zhang et al. [50] used PLSR for estimating a wide range
of soil properties (e.g., soil moisture, soil organic matter, clay, total carbon, phosphorus, and nitrogen
content) from hyperspectral imagery and identified factors that may affect the model accuracy
(e.g., low signal-to-noise ratio, spectral overlap of different soil features). Casa et al. [59] used the
PLSR model and different hyperspectral imagery for investigating soil textural features and evaluated
various factors (e.g., spectral range and resolution, soil moisture, geolocation error) influencing the
model performance.

The PLSR model is implemented in Python and R [174,175] and is widely used in many research
areas, including forests [176], grasslands [177], and waters [178]. This model performed well in different
studies owning to its strengths in dealing with a large number of inter-correlated predictor variables
(i.e., by converting them to a few non-correlated latent variables), addressing the data noise challenge,
and tackling the over-fitting problem [171,179]. Different techniques have also been confirmed to
be efficient for improving the accuracy of the PLSR model, such as incorporating different types of
predictor variables in the model (e.g., spectral bands, indices, textural variables), utilizing predicted
residual error sum of squares (PRESS) statistics for determining the optimal number of latent variables,
and feature evaluation for selecting more important predictor variables in the model [36]. It is thus
critical to carefully examine these techniques for achieving the optimal model accuracy.

3.3. Radiative Transfer Modelling

Radiative transfer modelling is a physically based approach that uses physical laws to
simulate the interaction of electromagnetic radiation with vegetation (e.g., reflection, transmission,
and absorption) [180]. The RTMs simulate vegetation spectra (e.g., leaf reflectance and transmittance)
using vegetation biophysical and biochemical properties (e.g., chlorophyll and water contents) in
the forward mode, and for inversion of these variables from spectral measurements in the inverse
mode [181]. PROSAIL is one of the most widely used RTMs. This model is an integration of the
leaf-level PROSPECT model and canopy-level SAIL model and is capable of simulating canopy
reflectance using leaf properties (e.g., chlorophyll and water contents), canopy structural parameters
(e.g., LAI and leaf angle), and soil reflectance [18].

PROSAIL has also been used in agricultural environments for investigating crop and soil
properties. For instance, Casa and Jones [182] inverted PROSAIL and a ray-tracing canopy model
with spectroradiometer-measured hyperspectral reflectance data and imaging spectrometer-acquired
hyperspectral image data, respectively, for estimating canopy LAI and evaluated factors influencing
the estimation accuracy (e.g., the non-homogeneous surface caused by the crop row structure).
Richter et al. [98] utilized PROSAIL for estimating LAI, fCover, canopy chlorophyll, and water content
from hyperspectral images and compared its performance to other methods (e.g., artificial neural
network). Richter et al. [183] applied PROSAIL to investigate similar vegetation variables and analyzed
the accuracy and efficiency of this method. Wu et al. [184] examined the sensitivity of vegetation indices
to vegetation chlorophyll content using simulated results from the PROSPECT model and suggested

186



Remote Sens. 2020, 12, 2659

a few well-performed indices. Locherer et al. [74] attempted to estimate vegetation LAI using the
PROSAIL model and multi-source hyperspectral images and tested several techniques (e.g., different
cost functions and types of averaging methods) used for the inversion process. Yu et al. [37] estimated
a range of vegetation phenotyping variables (e.g., LAI and leaf chlorophyll) using hyperspectral
imagery and PROSAIL and examined the sensitivity of different spectral ranges to the parameters in
the PROSAIL model.

Compared with the regression models discussed in previous sections, the RTMs have been less
used in the literature for investigating agricultural features due mainly to their high model complexity
and computational intensity. For instance, a wide range of parameters need to be considered in
RTM (e.g., chlorophyll, carotenoids, water contents, leaf area index, leaf angles, solar angles, and soil
reflectance, along with other parameters, in the PROSAIL model) and the users need to use different
techniques (e.g., merit function, look-up table) to facilitate the forward and inversion operations of
the model. In addition, it costs much more computing time than the regression models to achieve the
predictions of target vegetation variables. However, it is also well known that the regression models
tend to be site and time specific and are not readily transferable to other geographical regions or
different times over the site [166]. In contrast, RTM is a more transferable approach owning to the
fact that it is established based on physical laws and does not require training data for rebuilding
the model. In addition, RTM is capable of estimating a range of vegetation properties in one model,
while regression models typically can only estimate one variable [36,185].

3.4. Machine Learning and Deep Learning

Machine learning algorithms, including support vector machine regression (SVM) and RF,
are powerful tools for analyzing hyperspectral information since they can process a large number of
variables (e.g., spectral reflectance and vegetation indices) efficiently [186]. Machine learning has been
widely used in the remote sensing field for estimating properties of ground features or classifying
different ground covers [36,114,187]. Researchers have also used different machine learning algorithms
and hyperspectral images for agricultural applications. SVM has been a commonly used algorithm
in previous research for prediction or classification purposes. For instance, Honkavaara et al. [123]
estimated crop biomass using SVM and UAV-acquired hyperspectral imagery. Bostan et al. [51] utilized
SVM for classifying different crop types and achieved high classification accuracy. Ran et al. [93]
used KNN and SVM classifiers for investigating tillage practices in agricultural fields and compared
their performances. RF is another commonly used algorithm for investigating agricultural features
with hyperspectral imagery. For instance, Gao et al. [188] successfully classified weed and maize
using RF and lab-based hyperspectral images. Using ground-based hyperspectral reflectance data
acquired by an ASD spectroradiometer, Siegmann and Jarmer [189] evaluated the performance of
RF, SVM, and PLSR for estimating crop LAI and confirmed the good performance of RF. Similarly,
using hyperspectral reflectance, Adam et al. [190] attempted to detect maize disease with the RF model.
Overall, machine learning models generally have robust performances for investigating agricultural
features using hyperspectral imagery.

Deep learning is a subset of machine learning and extends machine learning by adding more
“depth” (i.e., hierarchical representation of the dataset) in the model [191,192]. It is a popular approach
in recent years for recognizing patterns in remote sensing images and thus for investigating various
ground features. Deep learning has been commonly used in the remote sensing field for image
classification, such as land cover classification [193–195] and the identification of ground features
(e.g., buildings) [196]. Deep learning has also been applied to precision farming to solve complicated
issues. Existing studies are, for example, investigating the estimation of crop yield using CNN
and multispectral images together with climate data [197], plant disease detection using CNN and
smartphone-acquired images [198], crop classification using 3-D CNN and multi-temporal multispectral
images [199], and classification of agricultural land cover using deep recurrent neural network and
multi-temporal SAR images [200]. Kamilaris and Prenafeta-Boldú [191] reviewed applications of deep
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learning in agriculture and food production, although not all studies used remote sensing images.
Singh et al. [201] reviewed a range of deep learning methods and their applications, specifically in plant
phenotyping. Up to now, deep learning has not been well explored for processing and analyzing remote
sensing images, especially hyperspectral images, for agricultural applications. Considering the capacity
of deep learning for studying feature patterns in images and the rich information in hyperspectral
imagery, the integration of the two has a wide range of agricultural applications (e.g., crop classification,
weed monitoring, crop disease detection, and plant stress evaluation). Further research in these areas
is warranted.

Machine learning or deep learning is capable of processing multi-source and multi-type data [202].
For instance, besides multi-type remote sensing images (e.g., optical, thermal, LiDAR, and Radar), other
sources of data, such as weather, irrigation, and historical yield information, can also be incorporated in
the modelling process for a possibly better evaluation of targeted agricultural features [203]. Although
machine learning and deep learning models are powerful, it is also critical to keep in mind that these
models require large-quantity and high-quality training samples to achieve robust performances [202].
Insufficient training datasets or data with issues (e.g., data incompleteness, noise, and biases) may
cause undesired model performances.

In summary, different analytical methods (e.g., linear regression, advanced regression,
machine learning and deep learning, and RTM) have different levels of complexity, performance,
and transferability. More detailed comparisons on these methods are listed in Table 7. Overall, linear
regression is the easiest method to use, and its performance is generally acceptable, although this
method can be highly influenced by the choice of predictor variables and quality of the sample data.
The advanced regression (e.g., PLSR) mostly performs better than the linear regression since it involves
multiple variables in the model and is less sensitive to data noise. RTM (e.g., PROSAIL) is capable of
producing multiple data products (e.g., chlorophyll, water, and LAI) with reasonably high accuracies.
One essential advantage of this method is its high transferability. However, this method has the highest
complexity as it requires a wide range of parameters and extensive programming. In terms of machine
learning, many algorithms, such as RF and SVM, are well established and mostly performed well in
previous studies. Some programming and model adjustments are needed for this method to achieve
optimal performance. Deep learning is a relatively new method and is increasingly popular in recent
years. Appropriate model design and programming are critical for this approach. It also requires a
substantial amount of training data and computing resources to achieve a good model performance.
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4. Hyperspectral Applications in Agriculture

Hyperspectral imaging has been used in agriculture for a wide range of purposes, including
estimating crop biochemical properties (e.g., chlorophyll, carotenoids, and water contents) and
biophysical properties (e.g., LAI, biomass) for understanding vegetation physiological status and
predicting yield, evaluating crop nutrient status (e.g., nitrogen deficiency), monitoring crop disease,
and investigating soil properties (e.g., soil moisture, soil organic matter, and soil carbon). Previous
studies have also summarized some of the above-mentioned applications of hyperspectral remote
sensing in precision agriculture [4,84]. In this section, we will thus focus more on recent hyperspectral
studies and summarize these studies according to specific applications.

4.1. Estimation of Crop Biochemical and Biophysical Properties

One important hyperspectral application in agriculture is monitoring crop conditions through
the retrieval of crop biochemical and biophysical properties [8,99]. For instance, the leaf chlorophyll
content is an essential biochemical property influencing the vegetation photosynthetic capacity and
controlling crop productivity [99]. In previous studies, Oppelt and Mauser [105] collected AVIS data
to retrieve the chlorophyll and nitrogen contents in a winter wheat field. Similarly, Moharana and
Dutta [43] used Hyperion data to estimate the contents of these two biochemical components in a rice
field. LAI, on the other hand, is a fundamental vegetation biophysical parameter and is highly related
to crop biomass and yield [98]. Previous studies have used hyperspectral remote sensing to estimate
the LAI of different crops, and some of the example studies are shown in Table 8.

Table 8. Selected previous studies estimating LAI for different crop types using hyperspectral images.

Crops Previous Studies Research Focuses

Winter wheat

Xie et al. [109]
Estimated canopy LAI in a winter wheat field using airborne

hyperspectral imagery and proposed a new vegetation index for
improved estimation accuracy.

Siegmann et al. [73]
Retrieved LAI of two wheat fields using EnMAP images and

attempted to pan-sharp the images aiming to improve the
spatial resolution of LAI products.

Barley Jarmer [99]

Retrieved a range of canopy variables from barley, including
LAI, chlorophyll, water, and fresh matter content using HyMap
data and established an efficient approach for monitoring the

spatial patterns of crop variables.

Rice Yu et al. [37]
Investigated LAI, leaf chlorophyll content, canopy water

content, and dry matter content using UAV-based hyperspectral
imagery, aiming to understand the growing status of rice.

Mixed
agricultural

fields

Richter et al. [98]

Estimated crop LAI and water content with airborne HyMap
data aiming to support operational agricultural practices (e.g.,

irrigation management and crop stress detection) in the context
of the EnMap hyperspectral mission.

Wu et al. [45]

Estimated chlorophyll content and LAI in a mixed agricultural
field (e.g., corns, chestnuts trees, and tea plants) using Hyperion
data and identified spectral bands and vegetation indices that

generated the highest accuracy.

Verger et al. [57] Estimated LAI, fCover, and FAPAR in an agricultural site with
different crops using PROBA-CHRIS data.

Locherer et al. [74]
Estimated LAI in mixed crop fields using EnMAP data and
compared the result accuracy to that of LAI estimation with

airborne data.
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In addition to the above-mentioned vegetation biochemical and biophysical properties, crop water
content is a critical parameter for revealing water stress. Richter et al. [98] attempted to estimate the
water content in maize, sugar beet, and winter wheat using airborne HyMap data. Moharana and
Dutta [204] investigated the water stress in a rice field and its variations using Hyperion images and
indicated that the remote sensing-estimated water content matched well with field-observed data.
Izzo et al. [128] evaluated the water status in a commercial vineyard using UAV-based hyperspectral
data and determined wavelengths sensitive to the canopy water content. Sahoo et al. [4] discussed the
applications of hyperspectral remote sensing data for evaluating water features in crops and listed
several vegetation indices for calculating the water content.

It can be found from the literature review that many previous studies have focused on estimating
the crop chlorophyll content, LAI, and water content using hyperspectral imagery, while other
important crop properties, such as carotenoids, that are sensitive to plant stress are less explored.
In addition, crop production is influenced by all of these vegetation properties (e.g., chlorophyll,
water, and LAI). Besides investigating the spatial and temporal variations of each property, it is also
critical to evaluate the relationships between these properties and further understand how they affect
crop growth and crop production.

Estimating crop biomass and forecasting yield are also important applications of remote sensing,
as they will contribute to the understanding of crop productivity and implementing suitable
management measures [126]. Yue et al. [124] utilized UAV-based hyperspectral images for estimating the
above-ground biomass of winter wheat. Yang [205] and Mariotto et al. [15] utilized both multispectral
and hyperspectral data to estimate crop yield and found that the hyperspectral imagery-based model
performed better. In addition, crop residues left in the field are critical materials protecting soil
from water and wind erosion and influencing soil biochemical processes. Previous studies, such as
Bannari et al. [106], Galloza and Crawford [47], Bannari et al. [46], have used different hyperspectral
images for the estimation of crop residues on farmlands

Beyond the estimation of crop biomass and residue, one further research topic is investigating
bioenergy (e.g., biogas), which can be generated from the crop biomass. Thomas et al. [100] attempted
to estimate the amount of biogas that can be generated per unit of biomass using airborne HyMap
data and achieved satisfactory results. Overall, hyperspectral imagery has contributed greatly to the
estimation of crop biomass, yield, and other related features (e.g., bioenergy, crop residues). Since crop
biomass and yield are highly affected by agricultural practices (e.g., watering and nutrition treatment),
involving these practice data, together with hyperspectral imagery, in the model can potentially
generate better results. More research in this area is warranted.

4.2. Evaluating Crop Nutrient Status

Precision farming involves evaluating the crop nutrient status and providing recommendations
on site-specific resource management according to crop needs [206]. Such an approach is critical for
improving the resource use efficiency and reducing environmental impacts [4,103]. Previous studies
have used hyperspectral images for estimating the nitrogen content of different crop types, as shown
in Table 9.

Table 9. Selected previous studies estimating the nitrogen content for different crop types using
hyperspectral images.

Crop types Previous Studies Research Focuses

Corn

Akhtman et al. [127]
Used UAV-based hyperspectral images for estimating nitrogen

content and phytomass in corn and wheat fields and monitored the
temporal variation of these properties.

Goel et al. [207]

Collected hyperspectral images in a cornfield with different nitrogen
treatments and weed controls aiming to evaluate to what extent the

spectral signals can identify different nitrogen treatments, weed
controls, or their interactions.
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Table 9. Cont.

Crop types Previous Studies Research Focuses

Cilia et al. [103]

Estimated nitrogen concentration and dry mass in an experimental
maize field using airborne hyperspectral imagery, aiming to

quantify the nitrogen deficit and provide a variable rate fertilization
map. The authors also suggested a way to evaluate the minimum

amount of nitrogen to apply without reducing crop yield and avoid
excessive fertilization.

Quemada et al. [208]
Evaluated plant nitrogen status in a maize field using airborne

hyperspectral images and developed nitrogen fertilizer
recommendations.

Wheat

Koppe et al. [209]
Attempted to investigate wheat nitrogen status and aboveground

biomass using hyperspectral and radar images and to evaluate
spectral signatures of wheats under different nitrogen treatments.

Kaivosoja et al. [126]

Used UAV-based hyperspectral imagery to investigate nitrogen
content and absolute biomass in a wheat field and evaluated the

degree of nitrogen shortage on the date of image acquisition. In this
research, historical farming data, including a yield map and a spring
fertilization map, were used for estimating the optimal amount of

fertilizer to be applied in different areas of the field.

Castaldi et al. [210]

Estimated nitrogen content in wheat using multi-temporal
satellite-based multispectral and hyperspectral images and found

that the band selection affected estimation accuracy at different
phenological stages.

Rice

Moharana and Dutta [43]
Collected Hyperion images for monitoring nitrogen and chlorophyll

contents in rice and investigated the performance of different
spectral indices.

Ryu et al. [35] Used airborne hyperspectral images and multivariable analysis to
estimate nitrogen content in rice at the heading stage.

Zheng et al. [211]
Tried to monitor rice nitrogen status using UAV-based hyperspectral
images and tested the performance of different vegetation indices

for estimating the nitrogen content.

Zhou et al. [212]
Estimated leaf nitrogen concentration of rice using close-range
hyperspectral images and tested if the variations of the spatial

resolution of the imagery affect the estimation accuracy.

Other crops
(i.e., barley,

potato,
cabbage,
tomato,

sugarcane,
and cacao)

Nasi et al. [213]

Evaluated the performance of using airborne hyperspectral images
and photogrammetric features for estimating crop nitrogen content
and biomass in a barley field and a grassland site, and examined if
the integration of spectral and plant height information can improve

the estimation results.

Nigon et al. [214]
Examined nitrogen stress in potato fields using airborne

hyperspectral imagery and identified spectral indices that are
sensitive to nitrogen content.

Chen et al. [215]
Estimated nitrogen content in cabbage seedlings using close-range
hyperspectral images and identified sensitive wavelengths for the

estimation.

Zhu et al. [142]
Investigated soluble sugar, total nitrogen, and their ratio in tomato

leaves using close-range hyperspectral images and tested data
fusion analysis techniques for improving the investigation accuracy.

Miphokasap and
Wannasiri [216]

Collected Hyperion images for investigating spatial variations of
sugarcane canopy nitrogen concentration and attempted to identify

the nutrient deficient areas for corresponding treatments.

Malmir et al. [217]

Attempted to evaluate nutrient status (e.g., nitrogen, phosphorus,
and potassium) of cacao leaves using close-range hyperspectral

images and examined influences of band selection on the evaluation
accuracy.
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Overall, owing to the large amount of spectral information in hyperspectral imagery, crop nutrient
status can be evaluated with high accuracies, and a corresponding fertilizer treatment plan can be
proposed to achieve optimal crop productions. However, it is also essential to keep in mind that there is
a wide range of factors, such as soil moisture, soil type, and topographic conditions, that can impact crop
growth and production. A more comprehensive treatment plan that takes into consideration both the
crop nutrient status and other influencing factors can make a greater contribution to crop production.

4.3. Classifying Imagery to Identify Crop Types, Growing Stages, Weeds/Invasive Species, and Stress/Disease

Besides quantifying crop properties, hyperspectral images have also been used for classification
purposes, such as differentiating crop types, identifying crop growing stages, classifying weeds or invasive
species, and detecting disease [218]. Examples of previous studies are shown in Table 10. Different
agricultural land covers or crop types have different spectral characteristics; hence, hyperspectral
images can contribute greatly to the classification of these agricultural features.

Table 10. Selected previous studies for the classification of agricultural features using hyperspectral images.

Applications Previous Studies Research Focuses

Classification of
crop types

Camacho Velasco et al. [48]

Utilized Hyperion data and different classification algorithms
(e.g., spectral angle mapper and adaptive coherence estimator)
for identifying five types of crops (e.g., oil palm, rubber, grass

for grazing, citrus, and sugar cane) in Colombia.

Bostan et al. [51]

Classified different crop and land cover types (e.g., maize,
cotton, urban, water, barren rock, and other crop types) using

Landsat 8 multispectral and EO-1 Hyperion hyperspectral
images and indicated that hyperspectral imagery performed

better than the multispectral imagery.

Amato et al. [152]

Assessed the potential of PRISMA data for classifying different
agricultural land uses (e.g., soybean, corn, and sugar beet) and

evaluated the contribution of spectral bands to image
segmentation and classification.

Nigam et al. [91]
Performed crop classification over homogeneous and

heterogeneous agriculture and horticulture areas with airborne
AVIRIS images and assessed crop health at the field scale.

Sahoo et al. [4]

Reviewed a few previous studies that used hyperspectral
images for classification purposes and indicated the robustness
of hyperspectral imagery for classifying different crop types and

different crop phonological stages.

Other
classifications

(e.g., growth stages
and agricultural
tillage practices)

Antony et al. [58] Applied multi-angle PROBA-CHRIS data for classifying
different growth stages of wheat.

Ran et al. [93]
Attempted to detect agricultural tillage practices using

hyperspectral imagery with different classification models and
identified the best performing one.

Teke et al. [38]

Discussed the application of spectral libraries for classification
purposes and listed several spectral libraries available

worldwide. The authors also indicated the limitations of using a
spectral library, such as the spectral varieties within the same

species or land cover, and highlighted the importance of having
geographically specific libraries

Weed infestation is a severe issue in agricultural fields and could substantially affect crop growth
and yield. Identifying and mapping weeds in agricultural fields using remote sensing will contribute
greatly to variable rate treatment in the fields [219]. Researchers have utilized different remote sensing
data and methods for weed mapping, as shown in Table 11. Overall, the identification of weeds
typically requires a high spatial resolution since many weeds are small in size and mixed with crops.
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UAV-based and close-range hyperspectral imaging is capable of acquiring high-spatial-resolution
images, and thus has high potential to contribute to weed detection.

Table 11. Selected previous studies for detecting weeds using different hyperspectral imaging platforms.

Platforms Previous Studies Research Focuses

Airborne

Goel et al. [97]

Attempted to detect weed infestation in a cornfield that
had different nitrogen treatments using airborne

hyperspectral imagery and found the different nitrogen
treatments affected the classification accuracy of weed.

Karimi et al. [220]

Performed combinations of different nitrogen treatment
rates and weed management practices in a cornfield and

tried to classify these combinations with airborne
hyperspectral images.

Close range

Zhang et al. [221]
Developed a close-range weed sensing system using

hyperspectral images for classifying tomato and weeds
and tested its performance in different environments.

Eddy et al. [139]

Used a ground-based hyperspectral imaging system for
classifying weeds in canola, pea, and wheat crops and

evaluated the applicability of this approach for real-time
detection of weeds in the field.

Eddy et al. [222]
Used hyperspectral image data as well as secondary
products with reduced bands to classify weeds and

achieved good accuracy.

Liu et al. [223]

Classified carrot and weeds using a ground-based
hyperspectral imaging system and evaluated the number
of spectral bands needed to achieve a good classification

accuracy.

Multiple platforms Scherrer et al. [129]

Attempted to classify herbicide-resistant weeds in
different crop fields (e.g., barley, corn, and dry pea) using
both ground- and UAV-based hyperspectral imagery and
discussed factors influencing classification accuracy (e.g.,

crop type, plant age, and illumination condition).

Review studies LÓPEZ-Granados [224]

Discussed the high potential of hyperspectral remote
sensing images for mapping weeds but also indicated

the limitations of this technology due to the high cost of
data collection.

Monitoring crop disease is highly important to growers trying to reduce economic and yield
losses [38]. Hyperspectral imaging collects signals at fine spectral resolutions (e.g., less than 10-nm
intervals), and thus can possibly detect early symptoms of crop disease and support timely
interventions [225]. Previous studies have used hyperspectral images for detecting diseases in
different types of groups (Table 12). Overall, hyperspectral signals are sensitive to the variations of
crop growth status (e.g., caused by disease or stress) and thus can indicate the occurrence of crop
disease or stress. However, considering that crop status can be affected by other factors (e.g., nutrient
deficiency), repeat imaging and analysis together with robust modelling would be critical for accurate
and timely detection of crop disease or stress.
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Table 12. Selected previous studies for detecting disease in different crops using hyperspectral images.

Crops Previous Studies Research Focuses

Wheat

Bohnenkamp et al. [119]

Used both ground- and UAV-based hyperspectral imaging
platforms for detecting yellow rust in wheat and evaluated

factors influencing the detection (e.g., measurement distance,
spectral features to use).

Bauriegel et al. [226]

Targeted the infestation of wheat by Fusarium and attempted to
detect this disease using hyperspectral remote sensing data, and
consequently suggested that farmers need to deal with infected

crops separately from healthy crops.

Zhang et al. [227]

Attempted to detect the Fusarium head blight in winter wheat
similarly using close-range hyperspectral imaging and

suggested that this is a stable and feasible way to monitor this
disease using low-altitude remote sensing.

Corn Copenhaver et al. [34]

Used airborne hyperspectral images to detect the signal of
Ostrinia nubilalis in a cornfield (e.g., via monitoring rate of plant

senescence) and tested the performance of this approach
throughout the growing season.

Soybean Nagasubramanian et al. [144]
Tried to detect charcoal rot in soybeans using close-range

hyperspectral imaging and identified wavelength ranges that
are sensitive to this disease.

Sugarcane Apan et al. [41]
Detected sugarcane areas affected by orange rust disease using
Hyperion data and developed specific vegetation indices that

are sensitive to the disease.

Mustard Dutta et al. [42] Delineated mustard areas influenced by diseases using Hyperion
images and evaluated the performance of different indices.

Review
studies

Lowe et al. [218] Focused on hyperspectral imaging and reviewed some of its
applications in detecting and classifying crop disease and stress.

Thomas et al. [225]
Reviewed the contributions of hyperspectral imaging to the

detection of plant disease and discussed different factors (e.g.,
light and wind) that may limit its wide applications.

Mahlein et al. [228] Reviewed previous studies using remote sensing for detecting
plant disease, but not limited to hyperspectral imaging.

4.4. Retrieving Soil Moisture, Fertility, and Other Physical or Chemical Properties

Agricultural soil properties, including soil moisture, soil organic matter, soil salinity, and roughness,
are important factors influencing crop growth and final production [7]. Hyperspectral remote sensing
can contribute greatly to the investigation of these factors. For instance, estimating soil moisture is
one of the most popular research topics. Finn et al. [108] estimated soil moisture at three different
depths using airborne hyperspectral images and linear regression and discussed the contributions and
limitations of hyperspectral remote sensing for soil moisture studies. Casa et al. [229] investigated
soil water, clay, and sand contents using a fusion of CHRIS-PROBA images and soil geophysical data.
Shoshany et al. [7] summarized four main approaches for estimating soil moisture content: (1) Radar
techniques; (2) radiation balance and surface temperature calculations; (3) reflectance in the visible,
NIR, and SWIR ranges; and (4) integrative methods using multiple spectral ranges. Although soil
moisture can be estimated using optical remote sensing data, it is often affected by the plant ground
cover. Integrating multi-type remote sensing data, e.g., SAR and thermal data, can possibly generate
more accurate estimates.

SOC is a critical component of soil fertility, which highly controls both the growth and yield of
crops. Hyperspectral data provide fine spectral details that are critical for the estimation of SOC content.
Previous studies have used hyperspectral images collected by different platforms for investigating
SOC (Table 13). Overall, hyperspectral imagery has a high potential for the estimation of soil organic
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matter and carbon. However, similar to the evaluation of soil moisture, the investigation of soil organic
matter and carbon can be highly influenced by vegetation cover. Therefore, collecting hyperspectral
images in non-growing seasons could be a solution.

Table 13. Selected previous studies for estimating soil organic carbon using hyperspectral images
acquired by different platforms.

Platforms Previous Studies Research Focuses

Satellites

Zhang et al. [50]

Utilized EO-1 Hyperion images for estimating several soil
properties, including soil moisture, soil organic matter, total

carbon, total phosphorus, total nitrogen, and clay content. The
authors also found the influence of spectral resolution on the

performance of retrieval models.

Casa et al. [230]
Assessed soil organic matter and soil texture at the field scale

using CHRIS-PROBA images and produced uniform soil zones
for supporting irrigation management.

Airplanes

Hbirkou et al. [102]

Attempted to estimate SOC in agricultural fields using airborne
HyMap images and tested the influences of soil surface

conditions on the estimation, aiming to support soil
management in precision farming.

Gedminas and Martin [231]

Tried to map soil organic matter using airborne hyperspectral
imagery in combination with topographic information extracted
from LiDAR image and evaluated the correlation between soil

organic matter and various spectral bands.

Castaldi et al. [110]

Investigated the relationship between SOC in croplands and
spectral signals using a soil database and then estimated SOC in
their study sites using airborne hyperspectral imagery. With this
approach, the authors attempted to reduce the amount of new

data collection in the field or lab.

Van Wesemael et al. [107]

Discussed the impacts of vegetation cover on soil and the
estimation of SOC from remote sensing data and attempted to

use spectral unmixing techniques to estimate the fraction of
vegetation cover and then estimate the soil carbon content using

the residue soil spectra.

Multiple
platforms Gomez et al. [49]

Estimated SOC using both lab-based hyperspectral reflectance
data and Hyperion image data and found that using the

lab-acquired reflectance data can generate more accurate results
than using the Hyperion data. At the same time, the Hyperion
data can generate a SOC map that matches field observations

and thus can also be used for prediction.

Hyperspectral remote sensing data have also been used for estimating other soil features, as shown
in Table 14. It can be found from these studies that hyperspectral images can be used for studying a
wide range of soil features. Different soil features influence the spectral signals in different bands and
with different magnitudes, while some of these influences may be spectrally overlapped. Therefore,
when investigating a specific soil feature, it is critical to collect a suitable number of soil samples with
other soil features generally controlled.
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Table 14. Selected previous studies for investigating different soil features using hyperspectral images.

Soil Features Previous Studies Research Focuses

Soil texture Casa et al. [59]
Investigated soil texture using airborne MIVIS and spaceborne

PROBA-CHRIS hyperspectral images and discussed their
performance and limitation (e.g., lack of SWIR band).

Soil nitrogen Song et al. [232]

Used airborne hyperspectral images for evaluating the impact of
soil nitrogen applications and variable-rate fertilization on winter
wheat growth. The authors also indicated that the variable-rate
fertilization in the field could reduce the growing difference of
winter wheat caused by the spatial variations of soil nitrogen.

Copper
concentration Antonucci et al. [147] Attempted to estimate in soil using lab-based hyperspectral

measurement and achieved good accuracy.

Potassium
content Wang et al. [233]

Evaluated potassium content in cinnamon soil using close-range
hyperspectral imaging aiming to better understand soil fertility and

indicated the good performance of this approach when the
potassium content is high (i.e., ≥ 100 mg/kg).

CO2 leaks McCann et al. [234] Detected CO2 leaks from the soil by monitoring vegetation stress
signals using multi-temporal hyperspectral images.

In summary, hyperspectral imaging has been successfully applied to a wide range of agricultural
applications, as reviewed above, and summarized in Table 15. Future research directions are
also suggested.
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5. Conclusions and Recommendations

Hyperspectral imaging has great potential for applications in agriculture, particularly precision
agriculture, owing to ample spectral information sensitive to different plant and soil biophysical and
biochemical properties. Multiple platforms, including satellites, airplanes, UAVs, and close-range
platforms, have become more widely available in recent years for collecting hyperspectral images with
different spatial, temporal, and spectral resolutions. These platforms also have different strengths and
limitations in terms of spatial coverage, flight endurance, flexibility, operational complexity, and cost.
These factors need to be considered when choosing imaging platform(s) for specific research purposes.
Further technological developments are also needed to overcome some of the limitations, such as the
short battery endurance in UAV operations and high cost of hyperspectral sensors.

Different analytical methods, such as linear regression, advanced regression, machine learning,
deep learning, and RTM, have been explored in previous studies for analyzing the tremendous amount
of information in hyperspectral images for investigating different agricultural features. Previous
studies have mainly used the regression approach, while more physically based methods, such as
RTM, have been less explored. Deep learning and effective big-data analytics are powerful tools for
recognizing patterns in remote sensing data. Together with hyperspectral imagery, deep learning
models have high potential to support the monitoring of a wide range of agricultural features. Different
analytical methods have different advantages and disadvantages, and thus it is critical to compare
these methods for specific research (e.g., requirements of accuracy and computing efficiency) and
choose an optimal approach. In addition, image spectral information has been commonly used as
variables for prediction or classification tasks, while other information, such as texture, has been less
explored. Further, some other sources of data, such as weather, irrigation records, and historical yield
information, can also be used in some of the analytical methods (e.g., machine learning and deep
learning) for better monitoring of crop features. More research in these fields is also warranted.

Hyperspectral imaging has been successfully applied in a wide range of agricultural applications,
including estimating crop biochemical and biophysical properties; evaluating crop nutrient and stress
status; classifying or detecting crop types, weeds, and diseases; and investigating soil characteristics.
Previous studies have focused on discussing one or two of the many factors impacting crop growth
performance and productivity, and thus cannot evaluate crop status and growth-limiting factors
comprehensively. It is important to integrate these factors to achieve a better understanding of their
inter-relationships for optimal crop production and environmental protection. Besides, previous studies
using hyperspectral imaging have mainly targeted investigating crop growth, aiming to improve
crop yield, while less research has focused on understanding the ecosystem side of crop production
(e.g., ecosystem services and biodiversity). Further research in these areas is warranted.
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Abbreviations

ALI Advanced Land Imager
APEX Airborne Prism Experiment
AVIS Airborne Visible Near-Infrared Imaging Spectrometer
AVIS Airborne Visible Near-Infrared Imaging Spectrometer
AVIRIS Airborne Visible/Infrared Imaging Spectrometer
ANN Artificial Neural Networks
CAI Cellulose Absorption Index
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CAI Chlorophyll Absorption Integral
CARI Chlorophyll Absorption Ratio Index
CASI Compact Airborne Spectrographic Imager
CHRIS Compact High Resolution Imaging Spectrometer
CNN Convolutional Neural Network
DEM Digital Elevation Model
DESIS Dlr Earth Sensing Imaging Spectrometer
DCNI Double-Peak Canopy Nitrogen Index
EnMAP Environmental Mapping And Analysis Program
FAPAR Fraction Of Absorbed Photosynthetically Active Radiation
fCover Fraction Of Vegetation Cover
GCPs Ground Control Points
HSI Hyper Spectral Imaging
HySI Hyperspectral Imager
HICO Hyperspectral Imager For The Coastal Ocean
HISUI Hyperspectral Imager Suite
HyspIRI Hyperspectral Infrared Imager
HyMap Hyperspectral Mapper
h NDVI Hyperspectral Normalized Difference Vegetation Index
PRISMA Hyperspectral Precursor And Application Mission
IMU Inertial Measurement Unit
LAI Leaf Area Index
MTCI Meris Terrestrial Chlorophyll Index
MNF Minimum Noise Fraction
MCARI/MTVI2 Modified Chlorophyll Absorption Ratio Index/Modified Triangular Vegetation Index 2
MSR Modified Simple Ratio Index
MSAVI Modified Soil Adjusted Vegetation Index
MTVI2 Modified Triangular Vegetation Index
MIVIS Multispectral Infrared Visible Imaging Spectrometer
MSI Multispectral Instrument
MLR Multi-Variable Regression
NDRE Normalized Difference Red Edge
NDTI Normalized Difference Tillage Index
OLI Operational Land Imager
OSAVI Optimized Soil-Adjusted Vegetation Index
PLSR Partial Least Square Regression
PRI Photochemical Reflectance Index
PRESS Predicted Residual Error Sum Of Squares
PCA Principal Component Analysis
PHI Pushbroom Hyperspectral Imager
RTM Radiative Transfer Modelling
RF Random Forest
REP Red Edge Position
SWIR Shortwave Infrared
SR Simple Ratio
SVD Singular Value Decomposition
SOC Soil Organic Carbon
SHALOM Spaceborne Hyperspectral Applicative Land And Ocean Mission
SFOC Special Flight Operations Certificate
SVM Support Vector Machine Regression
TCARI Transformed Chlorophyll Absorption In Reflectance Index
TCI Triangular Chlorophyll Index
TVI Triangular Vegetation Index
UMD Uniform Feature Design
UAV Unmanned Aerial Vehicle
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Abstract: The content of chlorophyll, an important substance for photosynthesis in plants, is an
important index used to characterize the photosynthetic rate and nutrient grade of plants. The real-time
rapid acquisition of crop chlorophyll content is of great significance for guiding fine management
and differentiated fertilization in the field. This study used the method of continuous wavelet
transform (CWT) to process the collected visible and near-infrared spectra of a corn canopy. This task
was conducted to extract the valuable information in the spectral data and improve the sensitivity
of chlorophyll content assessment. First, a Savitzky–Golay filter and standard normal variable
processing were applied to the spectral data to eliminate the influence of random noise and limit
drift on spectral reflectance. Second, CWT was performed on the spectral reflection curve with 10
frequency scales to obtain the wavelet energy coefficient of the spectral data. The characteristic bands
related to chlorophyll content in the spectral data and the wavelet energy coefficients were screened
using the maximum correlation coefficient and the local correlation coefficient extrema, respectively.
A partial least-square regression model was established. Results showed that the characteristic bands
selected via local correlation coefficient extrema in a wavelet energy coefficient created a detection
model with optimal accuracy. The determination coefficient (Rc

2) of the calibration set was 0.7856,
and the root-mean-square error (RMSE) of the calibration set (RMSEC) was 3.0408. The determination
coefficient (Rv

2) of the validation set is was 0.7364, and the RMSE of the validation set (RMSEV)
was 3.3032. Continuous wavelet transform is a process of data dimension enhancement which can
effectively extract the sensitive variables from spectral datasets and improve the detection accuracy
of models.

Keywords: canopy spectra; chlorophyll content; continuous wavelet transform (CWT); correlation
coefficient; partial least square regression (PLSR)

1. Introduction

Corn, one of the major food crops in the world, provides an important guarantee of food security
and economic development. Proper nitrogen application is one of the keys to a good harvest of
corn [1,2]. A number of studies have shown that the leaf chlorophyll content (LCC) can be used
to predict the nitrogen requirement of crops [3,4]. Chlorophyll content is an important indicator of
crop photosynthesis ability and nutrition level. Variable fertilization can be achieved using nitrogen
fertilizers according to different chlorophyll contents through accurate monitoring of the chlorophyll
content of corn leaves [5,6]. Appropriate fertilization can ensure that crops receive adequate nitrogen
and avoid soil and water pollution caused by excessive fertilization [7]. This mechanism is the key to
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improving the photosynthetic performance of crops, thereby regulating the growth and development
of corn and increasing the input–output ratio of corn fertilizers [8]. The topic of detecting chlorophyll
content of corn is one of the active areas in field management research today. Thus, this study aimed to
detect the chlorophyll content in field crops to evaluate the growth status and providing guidance
for fertilization.

The traditional chlorophyll detection method is an analytical chemical method, which has
high precision. However, the process is complex, time-consuming, and may damage crops. This
method cannot meet the requirements of rapid and nondestructive testing on site. Spectral analytical
technology has been widely used in qualitative and quantitative analysis of the physicochemical
parameters of farmland crops because of its fast, nondestructive, and nonpolluting characteristics.
Kapp-Junior et al. [9] developed a novel regression model able to produce a prescription of the
required nitrogen (N) for maize by combining spectral reflectance data and agronomic efficiency.
Lu et al. [10] used hyperspectral techniques to analyze the vertical distribution of nitrogen in corn.
Zhang et al. [11] used leaf characteristic spectra to forecast apple sugar content. These studies highlight
the feasibility and efficiency of evaluating crop nutrients via spectroscopy. Therefore, rapid detection
of the chlorophyll content was conducted in the present research by using hyperspectral technology
during the growth stages.

Most current studies on the detection of chlorophyll content via spectral analysis have focused
on the exploration of spectral characteristics to quantitate the intensity and position of molecular
absorption or reflection [12,13]. The two types of methods to quantify the spectral absorption and
reflectance of specific matters include multivariate statistical analysis and region positioning calculation.
First, multivariate statistical methods are used to select and enhance the parameters of spectral
reflectance, derivative spectrum, and vegetation index using maximum correlation coefficient analysis.
Liang et al. [14] compared fifty hyperspectral vegetation indices, such as the photochemical reflectance
index and canopy chlorophyll index, to identify the most appropriate vegetation indices for crop LCC
and canopy chlorophyll content (CCC) inversion. Xu et al. [15] used simulated datasets from the
PROSAIL model to establish a 2D-matrix-based relationship between leaf chlorophyll and red-edge
relative indices (RERI(705nm) and RERI(783nm)). The leaf chlorophyll content can be retrieved using the
two vegetation indices from observations on the basis of the matrix. Neto et al. [16] created a sunflower
leaf chlorophyll model with the spectral reflectance in the band of 500–1039 nm by using partial
least-squares regression (PLSR). Rei et al. [17] used two methods, namely machine-learning algorithms
and the inversion of a radiative transfer model, to detect the LCC of tea. Second, the characteristic
spectral positions show changes with the local correlation extreme values, which generally include
the red edge and green peak. Li et al. [18] used spectral reflectance to construct red-edge spectral
parameters and newly developed red-edge region parameters to detect the chlorophyll content in
rapeseed leaves. Sun et al. [19] indicated that the blue edge, red valley, and eight other spectral
parameters could be used to reflect the chlorophyll content of potato crops. Zheng et al. [20] developed
a model of chlorophyll content in potato leaves on the basis of the red-edge location. The mentioned
characteristic parameters selected by maximum or local extreme correlation have been widely used as
sensitive spectral variables for detecting the chlorophyll content.

However, the canopy reflectance spectrum and sensitive bands of crops are easily affected
by external interferences of dynamically changing soil background, vegetation canopy geometry,
and atmospheric conditions during the growth periods [21–23]. Numerous studies have attempted
to improve the detection models of chlorophyll content by eliminating the irrelevant and noise
information of the spectral data [24,25]. With regard to the ideas and principles of radiation transmission,
the combination of the PROSPECT leaf optical property model and SAIL (Scattering by arbitrarily
inclined leaves) model, also referred to as PROSAIL, has been used to develop methods for retrieval of
vegetation biophysical properties. Mridha et al. [26] used the broadband canopy radiation transfer
model PROSAIL to invert the leaf area index (LAI), LCC, CCC, and leaf equivalent water thickness
of the biophysical variables in soybeans. Botha et al. [27] evaluated the ability of the PROSAIL
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canopy-level reflectance model to detect LCC of spring wheat (Triticum aestivum L.) during the growth
stages between pretillering (Zadoks growth stage (ZGS15)) and booting (ZGS50). Lunagaria et al.
discussed the spectral sensitivity of crop canopy parameters using a theoretical model. The results
indicated that the reflectance in the visible range was important for chlorophyll retrieval. Reflectance
in the near-infrared range has importance for retrieval of leaf inclination angle, dry matter, and LAI.
Accordingly, the influencing factors are difficult to reduce, and the modeling results are challenging to
improve because of the external and internal interferences affecting the field canopy spectrum [28].
The primary concern of this research area is to overcome such challenges to detect the chlorophyll
content by hyperspectral technology during the growth stages.

Although scholars have tried to use preprocessing methods (such as continuum removal, first-order
differentiation, and high-pass filtering) to eliminate the noise and enhance the characteristic signals
caused by certain factors (such as sample background and stray light), challenges and problems
in effectively removing the interference signals, especially random and low-frequency signals,
exist during dynamic growth periods [29–31]. We addressed the primary concern using continuous
wavelet transform (CWT) to overcome such problems. CWT, with its rich wavelet base function,
multiresolution analysis, time-frequency localization, and other advantages, has received increasing
attention in image and signal analysis, decomposition, compression, and denoising [32–37]. This method
can effectively separate low-frequency signals from high-frequency signals and extract the weak
information from the spectral signal. Chen et al. [38] studied the CWT, taking 265 leaves of 47 plants as
the sample spectrum and effectively inverting the water content in the sample, with a high precision of
up to 75%. Li et al. proposed a new technique (WREP) to extract red-edge positions (REPs) on the basis
of the application of CWT to the reflectance spectra. The results demonstrated that WREP obtained
the best detection accuracy for LCC and CCC compared with the traditional techniques. High scales
of wavelet decomposition were favorable for the detection of CCC and low scales for the detection
of LCC [39]. These studies highlight that the CWT can be used to improve the modeling results of
LCC detections. However, great uncertainty still exists regarding the effects of this method to help
improve LCC detection during growth periods in which the spectral characteristics are dynamically
changed and influenced by soil background, vegetation canopy geometry, and atmospheric conditions.
Similar to spectral wavelengths, whether to use the local correlation extremum method or the maximum
correlation coefficient method to select sensitive wavelet features is worth discussing. Thus, this study
aimed to clarify and create a model to monitor the CCC of corn on the basis of CWT during the
growth stages.

This study focused on the relationship between LCC and corn canopy spectral reflectance to
propose an efficient method to evaluate the chlorophyll content of corn. The main aims of this study
were as follows: (1) to comparative analyze the advantages of maximum correlation value and local
correlation extreme value in selecting feature variables; (2) to use CWT to decompose the original
spectral data and extract the weak information in the spectrum to detect the chlorophyll content.

2. Materials and Methods

2.1. Experiments and Materials

The experiments were conducted in Hengshui City, Hebei Province, China. Seventy-two sampling
areas were present in the test field, as shown in Figure 1, with six fertilization levels to ensure the
gradient of chlorophyll content. The nitrogen fertilizer was pure nitrogen, and the phosphorus fertilizer
was P2O5. The spectral data were collected in three growth periods on the basis of the growth time and
conditions, namely, G1 (6 leaf stage), G2 (9 leaf stage), and G3 (12 leaf stage). During growth periods,
one leaf sample was collected in each sampling area, so that two hundred and sixteen leaf samples
were collected.
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Figure 1. Locations and treatments of the experiment.

The overall process of analyzing reflection spectrum data and chlorophyll content is shown in
Figure 2; this mainly included the collection of spectrum data, preprocessing of the spectral data,
selection of the characteristic variables, and establishment of a detection model for the chlorophyll
content. The selection of the characteristic variables was conducted on the basis of comparison of the
characteristic wavelengths and wavelet features selected by maximum correlation coefficients and
local extrema of the correlation coefficients.

 

Figure 2. Data analysis flow chart.
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2.2. Field Spectrum Data Collection and Chlorophyll Content Measurement

The ASD FieldSpec® HandHeld 2 was used in the field to measure the canopy reflectance of corn.
This tool is a hand-held spectrometer with a wavelength range of 325–1075 nm, wavelength accuracy
of 1 nm, and spectral resolution of <3.0 nm at 700 nm [40]. Sample leaves were randomly chosen in
each sample area to measure the spectral reflectance. Sample leaves were then sealed for subsequent
chlorophyll extraction experiment. Spectrum reflectance data were collected three times above the leaf
during the spectrum measurement. The averaged reflectance was taken as an original spectral datum.

The chlorophyll content of the sample leaves was measured in the laboratory via SHIMADZU
UV2450 spectrophotometry. The spectrophotometry measurement wavelength range was 190–900 nm
and the band width was 0.1–5 nm. The spectral resolution was 0.1 nm and the stray light was lower
than 0.015%. The main stems of corn leaves were removed, and the leaves were shredded and
evenly mixed. Approximately 0.4 g crushed leaf samples were soaked in 25 mL acetone and absolute
ethanol mixture for 24 hours, and the mixture ratio was 2:1. During soaking, the mixed solutions were
shaken three times to accelerate the chlorophyll extraction. The absorbances of extract solution at 645
and 663 nm were measured with a UV spectrophotometer. The concentrations of chlorophyll a (Chla)
and chlorophyll b (Chlb) were calculated using the following equations:

Chla = 12.72×A663 − 2.59×A645, (1)

Chlb = 22.88×A645 − 4.67×A663, (2)

ChlT = Chla
(
mg L−1

)
+ Chlb

(
mg L−1

)
, (3)

where A645 and A633 are the absorbances of the extract solution at 645 and 663 nm, respectively, and ChlT
is the total chlorophyll [41].

2.3. Spectrum Data Preprocessing

The corn canopy spectrum collected in the field environment contained noise information due to
the uneven surface of the sample, random noise, different optical paths, and light scattering. First,
a Savitzky–Golay (S-G) filter was used to smoothen the reflection spectrum, and the smoothing
window was set to 13 [42]. The S-G filter is based on the principle of least squares. Multiple fitting
was performed to the original signal in the correction window and the final conversion result was
calculated by the multiplicity of the fitting. Using m (m is odd) continuous wavelength points as
the window, the data points inside the smooth window were fitted by p-order polynomial function,
and the polynomial equation combination was obtained. The smoothing coefficient was obtained using
least-square fitting, and the corrected spectral value of the center point of the window was calculated.
By successively moving the position of the smoothing window and repeating the above polynomial
fitting steps, the spectra after S-G filtering were obtained.

Second, the standard normal variable (SNV) method was used to process the smoothed spectral
curve to reduce the influence of the scattering effect [43]. Standard normal variable correction is often
used to eliminate the effects of different particle sizes, surface scattering, and optical path differences
in NIR diffuse reflectance spectra. The SNV correction of sample spectra were independent of each
other and did not involve the spectral information related to the sample set. First, the sample spectrum
was centralized, which means that the mean value of spectral reflectance of each spectral data was
subtracted from the sample. The standard deviation of the sample reflectance was then used to scale up.
After SNV correction, the spectral mean of each sample became 0 and the variance became 1. The SNV
correction spectrum of sample j is as follows:

Aj,SNV =
(
Aj −Aj

)
/σ j, (4)
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where Aj is the mean value of the spectrum of sample j and σ j is the standard deviation of the spectrum
of sample j.

Wavelet analysis is one of the potential technologies used in the extraction of weak hyperspectral
information. Wavelet transform is a function combination that decomposes a complex signal into
simple subsignal components. The spectral signal can be decomposed into subsignals of different
frequencies when applied to the analysis of crop spectral data. We effectively used the overall
structural characteristics of spectral information and extracted the weak information hidden in the
spectral signal. Moreover, we searched for the optimal combination of the subsignal components to
detect the chlorophyll content of the crop canopy.

2.4. Sample-Set Division Algorithm According to Sample-Set Partitioning Based on the Joint X–Y Distance (SPXY)

In this study, the SPXY algorithm proposed by Galvão et al. was used to divide the modeling
and verification sets [44]. This approach is a method for dividing the sample set on the basis of the
statistical perspective, and it comprehensively considers the difference between the spectrum and the
property parameters to select the modeling set. The SPXY algorithm first calculates the Euclidean
distance between the spectrum data of all samples using Equation (5). The algorithm then selects the
two with the largest distance as the first two samples in the modeling set.

dx(p, q) =

√√√ I∑
i

[
xp(i) − xq(i)

]2
; p, q ∈ [1, N], (5)

where xp(i) and xq(i) are the spectral parameters of samples p and q at i wavelength, respectively; I is
the number of wavelengths in the spectrum; and N is the number of samples.

The Euclidean distances between the remaining and selected samples were calculated. The sample
with the next longest Euclidean distance was selected as the third sample in the modeling set.
We repeated the above-mentioned steps until the number of selected samples was equal to the
predetermined number.

The nature property factor dy(p,q) was considered as Equation (6) on the basis of the
above-mentioned formula.

dy(p, q) =

√(
yp − yq

)2
; p, q ∈ [1, N] , (6)

where yp and yq are the property parameters of samples p and q, respectively.
Variables dx(p,q) and dy(p,q) were divided by their maximum values in the dataset to ensure that

the sample had the same weight in the spectral and property spaces. The standardized xy distance
formula was as follows:

dxy(p, q) =
dx(p, q)

maxp,q∈[1,N]dx(p, q)
+

dy(p, q)

maxp,q∈[1,N]dy(p, q)
. (7)

2.5. Spectrum Characteristic Variable Selection Method

2.5.1. Characteristic Variable Selection

(1) Maximum Correlation Coefficient Method

The characteristic variables needed to be filtered to simplify the model and improve its accuracy.
The correlation analytical method is widely used to select variables highly correlated with chlorophyll
content on the basis of the maximum correlation coefficient method. However, the selection result
showed multicollinearity between the adjacent wavelength variables [45].
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(2) Local Extremum of Correlation Coefficient Method

The local extremum of the correlation coefficient method was proposed to improve the variable
selection strategy of correlation analysis to solve multicollinearity between the adjacent wavelength
variables: the correlation coefficient of spectral reflectance and chlorophyll content were calculated,
and the correlation coefficient curve was drawn. Thereafter, the local extreme points of the correlation
curve (the zero-crossing positions of the correlation first-derivative curve) were calculated as the
chlorophyll characteristic wavelengths [46]. The maximum correlation wavelengths were also selected
on the basis of the maximum correlation coefficient method for comparative analysis.

2.5.2. Continuous Wavelet Analysis

From the perspective of signal processing, wavelet analysis can be used to perform data analysis in
the frequency and time domains and extract available information from the signal [47]. The reflection
spectrum analysis is highly similar to electronic signal analysis. Accordingly, CWT can be used to
decompose the reflection spectrum curve at different frequency scales to generate a series of wavelet
energy coefficients. The CWT process is shown in Equation (8).

W f (a, b) =
1√
a

f (λ)ψ(
λ− b

a
)dλ, (8)

where a is the frequency scale factor which is set to 2n (n = 1, 2, . . . , 10) gradients, and translation factor
b is the center wavelength of the mother wavelet function. The mother wavelet function ψ(λ) uses the
second-order Gaussian function. f (x) is a 1D reflection spectrum, and the wavelet coefficient Wf(a,b)
(denoted as WFa,b) is 2D data, including frequency scale (1, 2, . . . , 10) and wavelength (325–1075 nm).

Correlation analysis of the wavelet energy coefficient and chlorophyll content was performed.
The local extreme value of the correlation was calculated as the sensitive wavelet feature. The wavelet
coefficient with the highest correlation was selected for comparative analysis.

The extreme point was calculated using the peak function in MATLAB software. The parameters
of the peaks’ function were set as follows: the correlation extreme value peak distance of the spectral
reflectance was set to 10, and the minimum peak value was set to 0.1; the correlation extreme value
peak distance of the wavelet coefficient was set to 50, and the minimum peak value was set to 0.3.

2.6. Establishing Chlorophyll Content Detection Model Based on PLSR

PLSR gradually became a widely used modeling method in spectral analysis after it was proposed
by Geladi in 1986 [48–50]. PLSR can solve the problems of autocorrelation and multicollinearity
between variables on the basis of the method of principal component extraction. PLSR was used to
perform principal component decomposition simultaneously on the spectral reflectance matrix and
LCC matrix. During decomposition, PLSR correlated the spectral and chlorophyll content matrixes
and established a linear regression model between the two to detect the chlorophyll content of
corn leaves. The leave-one-out cross-validation (LOOCV) method was used for internal interactive
verification, and the optimal number of characteristic variables was determined by root-mean-square
error of cross-validation (RMSECV). The model evaluation indicators were the validation coefficient of
validation set model (Rv

2) and the root-mean-square error of validation set (RMSEV).

3. Results

3.1. Analysis of Canopy Spectral Response of Corn during Growth Periods

The original reflectance spectrum of the corn canopy is shown in Figure 3a. The figure demonstrates
serious noise-point information in the spectral curve. The noise point of the spectral curve was
significantly reduced after the S-G filtering (Figure 3b). The scattering effect of the sample reflection
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spectrum was significantly improved after the SNV correction (Figure 3c). The average spectral curves
of three growth stages are shown in Figure 3d.

In general, 400–500 and 611–710 nm were two low-reflectance regions in the visible light band due
to the strong absorption of blue and red light by leaf pigments. The absorption valleys appeared near
400 and 680 nm. Approximately 520–610 nm was a high-reflection area due to the strong reflection by
the leaf pigments of green light. The reflection peak appeared near 550 nm. In the near-infrared region,
the reflectance sharply increased from 711 nm to 760 nm due to the large cavity of the reflective surface in
the spongy tissue structure of the mesophyll, thereby showing a “rapid climb” trend. The 761–1000 nm
region was a strong reflection area, and the curve was close to horizontal, thereby showing a “high
reflection platform”. A weak absorption valley appeared around 970 nm due to the absorption of water.

Figure 3d demonstrates that the different growth periods varied in the four spectral ranges of
325–400, 401–700, 761–970, and 971–1075 nm. The spectral reflectance increased with the growth period
in the ranges of 325–400 and 761–970 nm. The reflectance decreased with the growth period in the
ranges of 401–700 and 971–1075 nm.

Figure 3. Corn canopy reflectance spectral curve. (a) Original canopy reflectance spectra; (b) canopy
reflectance spectral after the S-G filtering; (c) canopy reflectance spectra after the S-G filtering and SNV;
(d) average canopy spectra of three growth stages.

3.2. Statistical Analysis and Sample-Set Division

The trend of the average chlorophyll content with the growth period is shown in Figure 4,
which demonstrated an increase from G1 to G3. From G1 to G3, the variation ranges of the chlorophyll
content between samples gradually concentrated. The SPXY algorithm was used to divide the
sample set according to the ratio of 2:1. The division result is shown in Table 1. One hundred and
forty-four samples were included in the modeling set to establish a chlorophyll content detection model,
and 72 samples in the verification set to test the performance of the detection model. The range of
chlorophyll content of the samples in the modeling set was larger than that in the verification set. Thus,
the sample set obtained by the SPXY algorithm was reasonable and was used for subsequent modeling.
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Figure 4. Statistical box line graph of chlorophyll content of the corn growth stages.

Table 1. Statistical results of the calibration set and validation set (%).

Sample Set Sample Size Maximum Minimum Average Standard Deviation

Total sample 216 55.58 20.11 44.19 6.51
Modeling set 144 55.58 20.11 44.11 6.59
Verification

set 72 55.22 25.31 44.35 6.38

3.3. Correlation Analysis of the Chlorophyll Content and Spect/ral Reflectance

3.3.1. Characteristic Wavelength Selection Based on the Maximum Correlation Coefficient Method

The correlation curve of the chlorophyll content and spectral reflectance is shown in Figure 5.
The chlorophyll content was positively correlated with spectral reflectance in the blue (450–500 nm)
and red (620–780 nm) regions, and negatively correlated in the green region. This result is consistent
with the absorption characteristics of chlorophyll in visible light. The absolute value of the correlation
coefficient between the chlorophyll content and the spectral reflectance was higher than 0.5 in the
five bands, namely, 376–504, 518–596, 671–681, 698–746, and 880–913 nm. The correlation coefficient
gradually decreased.

 
Figure 5. Correlation curve between the spectral reflectance and the chlorophyll content.
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The top 15 wavelengths with the maximum correlations were selected as the chlorophyll-sensitive
wavelengths (denoted as CA bands). The results were concentrated in the green light region of
529–543 nm. The CA bands were only divided into narrow bands. Accordingly, information redundancy
may occur due to autocorrelation of information caused by adjacent narrow-band wavelengths.

3.3.2. Characteristic Wavelength Selection Based on the Local Extrema of the Correlation Coefficient

Twelve extreme points (denoted as CA peak bands) of correlation existed between the spectral
reflectance and the chlorophyll content in five highly correlated bands. Approximately 392 and 409
nm were present in the violet region, 453 and 465 nm in the blue region, 533 nm in the green region,
677 nm in the red region, 715 and 782 nm in the red edge, and 845, 896, 976, and 1051 nm in the
near-infrared region. The selected wavelengths are shown in Figure 4 with red circles.

3.4. Correlation Analysis of Chlorophyll Content and Wavelet Energy Coefficient

CWT was performed with 10 frequency scales on the spectral reflection curve. We calculated the
correlation coefficients of the wavelet energy coefficient and chlorophyll content at each frequency scale.
Thereafter, we took the absolute value of the correlation coefficient results and drew the distribution
map of the correlation coefficients at different scales. The result is shown in Figure 6.

The wavelet energy coefficient bands with high correlation with chlorophyll content (|r| > 0.5)
are shown in Table 2. Most of high-correlation wavelengths were concentrated in the visible light
area of 325–700 nm. Selected numbers of wavelet energy bands were reduced with the scale increase.
In the low-frequency scales from 1 to 4, the high-correlation bands had narrow wavelength ranges,
more numbers, and clear division of intervals. In the mid- and high-frequency scales from 5 to 8,
selected bands had wider wavelength ranges, less numbers, and ambiguous division of intervals.
At the low-frequency scale, the high correlation bands of scale 1 and 2 were consistent, and the high
correlation bands of scale 3 and 4 were consistent. With the increase of frequency scale, the correlation
between the wavelet energy coefficient and chlorophyll decreased gradually from scale 5, and the
boundary between the high-correlation band and the low-correlation band became ambiguous. It can
also be seen from Figure 6 that as the frequency scale increased, the correlation between the wavelet
energy coefficient and the chlorophyll content gradually decreased. No high-correlation wavelet
energy coefficient exists on the high-frequency scale of 9–10. Therefore, the optimal features of wavelet
energy should be selected on a scale of 1 to 5.

Figure 6. Distribution of the absolute values of the correlation coefficients between the wavelet energy
coefficient and the chlorophyll content.
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Table 2. Wavelet energy coefficient bands with high correlation with chlorophyll content (|r| > 0.5).

Scale Wavelengths

1 480–516 nm, 525–565 nm, 575–590 nm, 599–604 nm,635–645 nm, 671–700 nm, 710–740 nm,
745–775 nm.

2 480–516 nm, 525–565 nm, 575–590 nm, 599–604 nm,635–645 nm, 671–700 nm, 710–740 nm,
745–775 nm.

3 480–516 nm, 525–565 nm, 575–590 nm, 635–645 nm,671–700 nm, 710–740 nm, 745–775 nm.
4 480–516 nm, 525–565 nm, 575–590 nm, 635–645 nm,671–700 nm, 710–740 nm, 745–775 nm.
5 455–500 nm, 520–585 nm, 605–675 nm, 700–750 nm,758–811 nm.
6 455–500 nm, 520–585 nm, 605–675 nm, 700–750 nm,788–858 nm, 886–901 nm.
7 376–470 nm, 532–582 nm, 665–740 nm, 854–918 nm.
8 326–466 nm, 555–695 nm, 883–944 nm.

3.4.1. Sensitive Wavelet Feature Selection Based on the Maximum Correlation Coefficient

Fifty wavelet energy coefficients with high correlations were selected as the chlorophyll-sensitive
wavelet features (denoted as CA-WFs). These result are shown in Table 3. The absolute values of the
correlation coefficients of CA-WFs and chlorophyll content were all higher than 0.8.

Table 3. Location and frequency scale parameters of the chlorophyll-sensitive wavelet features (CA-WFs)
with |r| higher than 0.8.

Wavelet Feature Scale Wavelengths

CA-WF1 1 504–505 (2)
CA-WF2 2 527
CA-WF3 2 687
CA-WF4 3 527–529 (3)
CA-WF5 3 685–688 (4)
CA-WF6 3 716–718 (3)
CA-WF7 4 528–534 (7)
CA-WF8 4 679–685 (7)
CA-WF9 4 715–720 (6)

CA-WF10 5 472–483 (12)
CA-WF11 5 717–720 (4)

3.4.2. Sensitive Wavelet Feature Selection Based on the Local Extrema of the Correlation Coefficient

Fifty-five chlorophyll-sensitive wavelet energy coefficients were selected as sensitive wavelet
features (denoted as CA peak WFs) on the basis of the extreme values of the correlation coefficient.
The absolute values of the correlation coefficients of CA peak WFs and chlorophyll content were all
higher than 0.5. The distribution of CA peak WFs at different frequency scales is shown in Figure 7.

Figure 7. Result of the sensitive wavelet feature selection based on the local correlation coefficients.
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The wavelength position analysis indicated that all sensitive wavelet variables of the CA Peak WF1,
CA Peak WF2, and CA Peak WF3 were distributed in the visible light region, reflecting the leaf
pigment information. CA Peak WF4 contained eight sensitive variables, seven of which were located
in the visible light region, and another variable was located at 839 nm. CA Peak WF5 contained eight
sensitive variables, six of which were located in the visible light region, and the other two variables
were located at 915 and 973 nm. The 915 nm wavelength can reflect CH2 methylene groups, and 973 nm
can present the leaf moisture information. CA Peak WF6 contained eight sensitive variables, five of
which were located in the visible light region, and the other three variable positions were 821, 896,
and 985 nm. CA Peak WF7 and CA Peak WF8 contained four and eight variables, respectively; each of
them had one sensitive variable located in the near-infrared region at 894 and 909 nm. The remaining
sensitive variables were located in the visible region.

3.5. Establishment of Chlorophyll Content Detection Model with PLSR

The PLSR algorithm was used to establish a chlorophyll content detection model on the basis of
the spectral characteristic variables of the CA bands, CA peak bands, CA-WFs, and CA peak WFs.
Both models used LOOCV for internal cross-validation to eliminate the influence of spectral information
redundancy and multicollinearity on the model accuracy. The modeling results are shown in Table 4
and the verification results are shown in Figure 8. The comparison of the four detection models
showed that the PLSR chlorophyll content detection model based on CA peak WFs had the optimal
performance. The decision coefficient (Rc

2) of the modeling set was 0.7856, the RMSEC of the modeling
set was 3.0408, the decision coefficient (Rv

2) of the verification set was 0.7364, and the RMSEV of the
verification set was 3.3032.
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Figure 8. Results of the PLSR detection model for the chlorophyll content. (a) Results of the maximum
correlation coefficient method; (b) Results of the local extremum of correlation coefficient method;
(c) Results of the maximum correlation coefficient method with wavelet energy coefficient; (d) Results
of the local extremum of correlation coefficient method with wavelet energy coefficient.
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Table 4. Result statistics of PLSR detection model for the chlorophyll content.

Characteristic
Variable

Number of
Variables

Number of Principal
Components

Modeling Set Verification Set

Rc
2 RMSEC Rv

2 RMSEV

CA bands 15 4 0.6959 3.6214 0.6319 3.8432
CA peak bands 12 3 0.7622 3.2015 0.7082 3.4306

CA-WFs 50 17 0.7820 3.0661 0.6940 3.5286
CA peak WFs 55 13 0.7856 3.0408 0.7364 3.3032

3.6. Chlorophyll Distribution

The spectral reflectance of the corn canopy in three growing stages was introduced into the
chlorophyll content detection model. The distribution of chlorophyll in the field during the three
growing periods was obtained (Figure 9).

 

Figure 9. Field chlorophyll distribution in three growth stages.

4. Discussion

4.1. Sensitive Spectral Wavelengths

This study demonstrated that spectral measurements can be used for corn CCC detection.
In the range of visible light, the chlorophyll content in the blue and red light regions was positively
correlated with spectral reflectance, and reflection peaks were present; in the green light region,
the chlorophyll content was negatively correlated with spectral reflectance, and an absorption valley
was present [16,51,52]. When the maximum correlation coefficient method was used to filter the
sensitive wavelengths, the 15 selected wavelengths were all in the absorption valley of green light, and
a serious multicollinearity existed between them. The sensitive wavelengths screened by the local
extremum of correlation coefficient method were relatively dispersed and distributed in the visible
and near-infrared regions. In the visible light region, the chlorophyll was is characterized by the
reflection peak in the red and blue light regions and the absorption valley in the green light region.
The extremum characteristic wavelengths in the near-infrared region reflected the composition of other
substances [53–55]. The reflectance of the 896 nm band indicates CH3 methyl groups, that in the 976 nm
band reflects the moisture content, and that in the 1051 nm band reflects CH2 methylene groups [56–58].
These substances are relative to the canopy structure of the corn crop. Therefore, the characteristic
wavelengths in the NIR region will improve the robustness of the chlorophyll detection model.
The CA peak bands were more evenly distributed and had less redundant information compared with
CA bands.

225



Remote Sens. 2020, 12, 2741

4.2. Continuous Wavelet Analysis

Each wavelet feature contains the information of scale and wavelength position, which corresponds
to the state of the generating wavelet function in the process of CWT, namely the scaling factor and
the position of shift. The physical meaning of the wavelet feature can be explained by plotting the
generating wavelet function corresponding to the wavelet feature that is sensitive to the biochemical
parameters. In this study, the Gaussian second derivative was chosen as the generating function
of CWT. Each wavelet feature reflects the similarity between the generating wavelet function and the
reflectivity spectrum at a specific wavelength position and scale. The absorption characteristics of
biochemical parameters at different positions and intensities in the reflectivity spectrum were detected.
This situation can be seen as the result of smoothing the spectrum at a particular wavelength and finding
the second derivative. The spectral bending degree caused by the different absorption intensities of the
biochemical parameters in various bands can be characterized. These two understandings of CWT can
be combined to explain the physical meaning of wavelet transform.

The absorption of chlorophyll in the green light band was weaker than that in red and blue
light regions. In the reflectivity spectrum, a reflection peak was formed in the green light band. The
wavelet features sensitive to chlorophyll were located near the reflection peak of the green light band.
Different chlorophyll contents can affect the shape and size of the reflection peak. These changes are
easily captured by wavelet features in low scales. A small wavelet feature of medium and high scale
near the green light band covered the whole visible band, thus providing the amplitude information
of reflectance. The wavelet features at red edge and near-infrared band were stable at the leaf level,
thereby indicating that this region is important for chlorophyll monitoring.

Wang et al. used a Mexican hat as the generating wavelet function to obtain the correlation
between the wavelet coefficient and the SPAD value of wheat leaves, which can reflect the amount of
chlorophyll content. The results showed that the wavelet features sensitive to chlorophyll were located
in the red-edge band of 720–740 nm, which was consistent with the research results in References [59–62].
The multiple scattering of light inside the leaves leads to high reflectivity in the near-infrared region,
resulting in the rapid increase of spectral reflectance of green vegetation at 680–750 nm, the “red
edge” of the area. In the vegetation reflectance spectrum curve, the red edge is one of the most
obvious spectral features, and it is an important indicator band used to describe the chlorophyll state
of vegetation. The red-edge position (REP) is the wavelength position at which the reflectance of
vegetation increases fastest in this interval, and it is also the inflection point of the first derivative of
spectral reflectance in this interval. The position of the red edge is an important spectral parameter
for detecting the chlorophyll content of vegetation. Liao et al. extracted the wavelet characteristics
sensitive to the chlorophyll content of maize leaves in different layers on the basis of the canopy
spectrum. The wavelet features sensitive to the chlorophyll content in the upper leaves were distributed
in green light and red-edge bands. Meanwhile, the wavelet features sensitive to chlorophyll content in
the middle and lower leaves were all located in the red-edge bands, and those in the green light bands
disappeared [63]. This phenomenon could have been due to the strong absorption of chlorophyll in
the visible range that made it difficult for the green light to penetrate to the middle and lower layers;
the visible band of the canopy spectrum mainly contained information regarding chlorophyll in the
upper leaves [64]. The comparison of existing literature indicated that the wavelet features at the green
light band at the blade level perform better among different datasets. The wavelet features at the red
edge perform better among the different datasets at the canopy level.

4.3. Sensitive Wavelet Features

The frequency-scale analysis indicated that CA-WFs were mainly distributed on the low frequency
scale (1–4), and the other two types were distributed on the mid-frequency scale (5). The wavelength
position analysis indicated that CA-WF1 and CA-WF10 were distributed in the blue light region,
and CA-WF 3, CA-WF 5, CA-WF 6, CA-WF 8, CA-WF9, and CA-WF11 were distributed in the red
light area. These regions are the strong absorption bands of leaf chlorophyll. CA-WF2, CA-WF4,
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and CA-WF7 were distributed in the green light regions. These regions are strong reflection bands of
leaf chlorophyll. All wavelet features were distributed in the visible light region, which represented the
pigment information of the leaves. CA-WFs selected using the maximum correlation coefficient method
also had redundant information. For example, the 12 characteristic wavelet coefficients of CA-WF10
were distributed in 472–483 nm, and had serious variable autocorrelation. These autocorrelation
problems also existed in CA-WF7, CA-WF8, and CA-WF9.

The frequency-scale analysis indicated that CA peaks WF1–WF4 were distributed in the
low-frequency scale (1–4). Meanwhile, CA peaks WF5–WF7 were distributed in the medium-frequency
scale (5–7), and CA peak WF8 was located in the high frequency scale (8). Most wavelet features
were in the middle- and low-frequency scales, which was consistent with the result of Yao et al [47].
The wavelet features in middle and low frequencies could effectively detect the water content of
wheat leaves.

The analysis from the distribution of characteristic wavelet features indicated that all the variables
in CA-WFs were distributed in the visible light area and could only reflect the pigment information in
the leaves. CA peak WFs were more evenly distributed compared with CA-WFs. The sensitive variable
WF4—839 nm in the near-infrared region—reflected the molecular structure of RNHR. WF5—915 nm
reflected the CH2 methylene group, and WF5—973 nm showed the moisture information. WF6—985 nm
reflected the starch material, WF7—894 nm showed the CH3 methyl group, and WF8—909 nm provided
protein information. CA peak WFs comprehensively reflected the material structural information of
corn leaves, thereby improving the stability of the chlorophyll detection model.

4.4. Chlorophyll Content Detection Model

From the perspective of the method of selecting feature variables, the Rv
2 values of the detection

models established by using as feature variables the CA bands and CA-WFs were 0.6319 and 0.6940,
respectively. The Rv

2 values of the detection models established by using as feature variables
the CA peak bands and CA peak WFs were 0.7082 and 0.7364, respectively. The distributions of
CA bands and CA-WFs were relatively concentrated. A high degree of autocorrelation existed
between variables. Meanwhile, CA peak bands and CA peak WFs were evenly distributed and
comprehensively reflected information.

Comparing the CA peak bands and the CA peak WFs, under the same variable selection method,
the Rv

2 of the detection model established using the CA peak WFs (0.7364) was larger than that using
CA peak bands (0.7082). The CWT, a process of dimensionality-increasing operation, could dig out the
spectral variable information of chlorophyll. The CA peak WFs provided more variable information
related to chlorophyll content. Finally, the PLSR model established using CA peak WFs was preferred
to detect the chlorophyll content of corn crops.

Comparing the detection models established using spectral reflectance (Rc
2 = 0.77) [14] and

spectral index (Rc
2 = 0.70) [15], the wavelet features (Rc

2 = 0.7856) showed better detection capability,
which further illustrated that the CWT can deeply mine the information in spectral data.

The model comparison demonstrated that the data after continuous wavelet decomposition
can be used to effectively extract valuable information in the spectral reflectance through the
dimensionality-increasing operation. In terms of the physical and chemical parameter inversion,
the middle- and low-frequency wavelet features highlighted the characteristics of crop pigment
and water absorption. In combination with the local extremum of correlation coefficient method,
the interference of multicollinearity was eliminated, and the degree of information redundancy
was reduced. The detection model established by combining these two methods showed advantages
in accuracy and error elimination.

4.5. Chlorophyll Distribution in the Field

The distribution of chlorophyll in Figure 9 demonstrates that the chlorophyll concentration in the
canopy of plants gradually increased with the advancement of growth period. The field observation
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during the field experiment also conformed to this conclusion. The green leaves slowly become dark
with the gradual growth of the corn, as shown in Figure 1. The chlorophyll content gradient in the
test field remained unchanged over the three growth periods. The figure shows that the chlorophyll
contents in the four regions of No. 28–31, 39–48, 52–55, and 63–72 were lower than those in other regions.
Some studies have shown a significant positive correlation between the chlorophyll and the nitrogen
contents of plants, and chlorophyll can reflect the nitrogen demand of plants to a certain extent [65–68].
Therefore, the chlorophyll detection model based on spectral reflectance can play a guiding role in
smart field management and differentiated fertilization.

4.6. Future Work

In this study, the advantages of local correlation coefficient extrema in screening feature variables
were compared, the ability of CWT to extract weak spectral information was discussed, and a chlorophyll
content detection model for corn canopy based on wavelet energy coefficient was constructed. Advanced
methods for crop characteristics’ detection like computer vision techniques should be involved [69].
In this experiment, hyperspectral images of sample leaves were collected. It is necessary to establish a
more accurate and reliable chlorophyll detection model through hyperspectral images. Furthermore,
a larger dataset should be used to verify the adaptability of the algorithm.

5. Conclusions

In this study, corn canopy spectrum data were collected for three growing stages. First, an S-G
filter and SNV correction were applied to the reflectance spectra. Subsequently, the dynamic migration
of the canopy spectral characteristics and the chlorophyll content dynamic changes in the three growing
periods of G1 to G3 were analyzed. Extraction of the chlorophyll characteristic variables was carried out.
Finally, the PLSR detection model of the maize chlorophyll content was established. The conclusions
were as follows.

The noise point of the spectral curve was significantly reduced. The scattering effect of the
reflection spectrum was significantly reduced after the preprocessing steps of S-G filtering and
SNV correction. The reflectance spectrum increased in the 325–400 and 761–970 nm regions as the
growth stage advanced and the growth period shifted. The reflectance decreased in the 401–700 and
971–1075 nm regions as the growth stage advanced.

The characteristic variables selected on the basis of the local extrema of correlation coefficients
were more evenly distributed compared with the maximum correlation coefficient method.
This method weakened the autocorrelation and information redundancy of variables and reflected
comprehensive information. The wavelet coefficient obtained by performing CWT on the reflectance
spectra was used to efficiently analyze the information of chlorophyll and leaf structure substances in
a deep and comprehensive way. The spectral feature extraction method based on CWT highlighted the
spectral reflectance features of a specific scale, while suppressing the noncorrelated spectral features
and noise of other spectral bands with high flexibility. The proposed method effectively improved the
matching accuracy of spectral features.

The highest Rv
2 was for the detection model established using the CA peak WFs. The results

showed that the CA peak WFs had excellent detection capability for chlorophyll content. CWT combined
with the local extremum of the correlation coefficient method is a potentially accurate and efficient
strategy for detecting the chlorophyll content of corn crops.
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Abstract: Achieving reproducibility and replication (R&R) of scientific results is tantamount for
science to progress, and it is also necessary for ensuring the self-correcting mechanism of the scientific
method. Topics of R&R have sailed to the forefront of research agenda in many fields recently
but have received less attention in remote sensing in general and specifically for studies utilizing
hyperspectral data. Given the extremely local environments in which many hyperspectral studies are
conducted (e.g., agricultural field plots), purposeful attention to the repeatability of findings across
study locales can help ensure methods are generalizable. This study undertakes an investigation
of the nutrient content of tef (Eragrostis tef ), an understudied plant that is growing in importance
due to both food and forage benefits, but does so within the context of the replicability of methods
and findings across two study sites situated in different international and environmental contexts.
The aims are to (1) determine whether calcium, magnesium, and protein of both the plant and grain
can be predicted using hyperspectral data with partial least squares (PLS) regression with waveband
selection, and (2) compare the replicability of models across differing environments. Results suggest
the method can produce high nutrient prediction accuracy for both the plant and grain in individual
environments, but selection of wavebands for nutrient prediction was not comparable across study
areas. The findings suggest that the method must be calibrated in each location, thereby reducing
the potential to extrapolate methods to different areas. Our findings highlight the need for greater
attention to methods and results replication in remote sensing, specifically hyperspectral analyses,
in order for scientific findings to be repeatable beyond the plot level.

Keywords: reproducibility; replicability; hyperspectral; waveband selection; partial least squares;
Ethiopia; Eragrostis tef
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1. Introduction

The reproducibility and replication (R&R) of scientific findings has recently moved to the forefront
of research agenda in many fields [1–5] since it has been discovered that findings often cannot be
reproduced or replicated [5,6]. While the two “R’s”—reproducibility and replicability—are intertwined,
there are key differences between their goals. Adopting the definitions from the National Science
Foundation [7] and the National Academy of Science, Engineering, and Medicine [8], we define
reproducibility as the ability of a researcher to duplicate the results of a prior study using the same data
and methods as the original investigator. In short, if a researcher makes the data and methods/code
available, another researcher should be able to produce the exact same results. In comparison,
replicability is the ability of a researcher to duplicate results using similar methods but with new data.

Achieving R&R is critical for advancing scientific discoveries, yet neither topic has received much
attention in geography and the spatial sciences, where investigations tend to be observational instead
of experimental or theoretical [9]. R&R has received even less attention in remote sensing (but see [10]
for an early take), even though the field is uniquely positioned to contribute to R&R on several fronts.
First, there is a rich archive of publicly available remote sensing datasets (e.g., Landsat), supporting
opportunities for reproducibility [9,11]. Second, remote sensing studies, and in particular hyperspectral
studies, are often situated in extremely local contexts (e.g., agricultural plots) due to the need for
ground reference data and the high labor and time costs of operating equipment. Yet, an implicit
goal of science is to develop widely applicable methodologies and generalizable findings that can be
applied in different contexts. Thus, working toward the replicability of methods and findings across
different study areas is important for advancing remote sensing science.

Despite the myriad opportunities for remote sensing scientists to explore R&R issues, very few
formal efforts have been documented. One reason is likely because remote sensing scientists often work
with large datasets and perform complex spectral and spatial manipulations [12–16], which makes
R&R difficult if processing code is not made available. Until recently, many scientific publications did
not require code to be submitted as part of the manuscript review process, although this is changing.
Replication in remote sensing is also hindered by attributes of local environments, which makes the
transfer of results from one landscape to another difficult. However, if we are to develop methodologies
that are transferrable across space, it is necessary to begin developing and implementing protocols
for testing the R&R of remote sensing studies. One way to do this is to incorporate multi-field,
multi-environment analyses into studies to self-test the replicability of methods and results.

Precision agriculture is one field where immediate gains can be made toward testing the replicability
of methods while also contributing a larger understanding of the extent of R&R issues in remote sensing.
Since the overall goal of precision agriculture is to decrease the ambiguity of decisions required on
agricultural lands that are often highly variable [17], the ability to transfer methods and findings from
one environment or location to another requires them to be replicable [18]. However, most studies
capture data in a single region or location (often in a single crop field) under uniform conditions [12,15],
thus limiting their generalizability across environmental or geographical contexts. Furthermore,
the implicit assumption is that methods and findings are extendable beyond the single field in which
they were tested, but in most cases, no such evidence is provided. Many studies lack basic explanation
for environmental variances such as soil, hydrology, and topography that can cause reflectance
variations, thereby altering results across space [16]. Ultimately, remote sensing methodologies are of
little practical value for precision agriculture if they are developed, tested, and applicable in a single
location where these multiple and often confounding factors are held constant.

Partial least squares (PLS) regression has become an accepted technique in vegetation studies
using hyperspectral data for estimating a range of biophysical and biochemical properties [19–23].
In situations where the number of independent variables is large and the variables are collinear,
which is common with hyperspectral data, multiple linear regression will often overfit the model [24,25].
PLS regression standardizes model construction from the preprocessed hyperspectral data via latent
variables, from which the predictive capabilities of the model can be tested. Recently, variations of PLS
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regression using a waveband selection procedure [13] have been proposed and adopted, but there has
been little effort to test the replicability of these methods across environments to determine whether
results might be transferable.

The objective of this study is to investigate the replicability of PLS regression methods, including
PLS with waveband selection, for predicting nutrient content in plant and grain material across
multiple environments. This study addresses gaps in the remote sensing R&R literature by replicating
a methodological workflow using hyperspectral data and PLS regression for predicting nutrients in a
single crop but in two varying environments in different international contexts to determine the degree
to which the methods are replicable. The focus is on Eragrostis tef (tef), a cereal crop primarily grown
in Ethiopia, although production has been expanding to other parts of the world due to its versatility
and resistance to drought. Tef is ideal for studying replicability because it is grown in different
international contexts and is known for being successfully cultivated across differing environments.
Additionally, very few hyperspectral analyses have been performed on non-milled grains [26], so this
study contributes knowledge in that realm as well.

Tef is a grass (Family: Poaceae) that has received little attention from the remote sensing and
precision agricultural communities despite its versatile cultivation characteristics. Tef is thought to be
one of the earliest domesticated plants [27], with the center of origin and diversity in Ethiopia/Horn
of Africa [28]. It is drought and heat resistant, has a high nutrient content, and is grown for animal
feed as well as a staple food crop [29]. While tef can be cultivated across many environments, it is
primarily grown in Ethiopia, where it is the most commonly harvested crop, popular for its highly
nutritious, gluten-free grain [30–35]. Recently, cultivation has been spreading outside the region; in the
United States, tef is planted as a sequential forage crop for livestock feed but is currently only grown in
a handful of locations [29,36].

2. Data Collection and Processing

2.1. Study Sites

This study focuses on four sites in two countries. The two US sites (US1: 21.45 ha; US2: 24.19 ha) are
located in Hydro, Oklahoma, which is part of the Central Great Plains ecoregion. The region experiences
cold winters (average temperature minimums from 4 to −12 ◦C) and hot summers (temperatures
greater than 38 ◦C). Precipitation is variable, and temperature changes can be considerable across
all seasons. The US sites are located within three kilometers of each other, so the environmental
characteristics are similar. Both sites have similar soils (vertisols) and are located at the same elevation
(474 m). The two Ethiopia sites (ET1: 0.77 ha; ET2: 1.23 ha) are also in close geographic proximity
(Figure 1). The first site is located in the warm, sub-moist lowlands, while the second site is in the
warm, humid lowlands. Soil composition at both sites is similar (vertisols), but the sites are at different
elevations (1919 m and 2201 m, respectively).
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Figure 1. Locations of the four study sites.

2.2. Spectral Data Collection and Nutrient Processing

Data collection and processing methods included in situ spectral data collection and ex situ
laboratory nutrient analyses. The methodology proceeded in four general phases (Figure 2), which are
briefly described here and detailed below. First, canopy spectral measurements and plant samples were
collected at the four sites immediately prior to peak crop maturity (seed head stage). Next, plant samples
were dried and separated in the laboratory where the grain was imaged and both the plant material
and grain were subjected to nutrient analyses. Third, the relationship between the nutrients and
spectral components were modeled using PLS regression with both the full spectrum and a waveband
selection method. Lastly, the replicability of the PLS regression methods were tested through statistical
comparisons of model fits and similarity of results.

 

Figure 2. Methods flowchart detailing data collection and processing methods.

In Phase 1, canopy-level hyperspectral measurements and plant material were collected at each
site immediately prior to harvest during peak maturity, which was late June/early July 2016 in the
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US and October 2017 in Ethiopia. For each of the four sites, 40 random points were generated in
ArcGIS, providing 80 possible sampling location in each country. These points were then located in
the field using a hand-held GPS unit (Trimble Juno 3B, Corvallis, OR, USA). In some cases, locations
could not be accessed due to sampling on the days of harvest and attempting to not interfere with the
harvesting practices of the respective farmers, so the actual number of samples is below 40 for each
field and below 80 for the region. At all sampling sites, canopy spectral data were captured using the
same spectroradiometer (FieldSpec Pro FR: Analytical Spectral Devices [ASD], Boulder, CO, USA),
measuring reflectance from 350–2500 nm with a spectral sampling width of 1.4 nm from 350–1000 nm
and 2.0 nm from 1000–2500 nm. The spectroradiometer was calibrated using a Spectralon diffuse
reference panel (Analytical Spectral Devices [ASD], Boulder, CO, USA) approximately every 15 min.
The spectralon was held at a distance from the spectroradiometer fiber to ensure no shadows were
measured. The spectroradiometer fiber was held 1.2 m above the ground; since the top of canopy was
about 0.3 m above ground, the cone of acceptance was 25◦, resulting in a footprint with a diameter of
0.40 m for each sample. This diameter ensured a sufficient mass of plant/grain matter was collected for
nutrient testing (10 g of grain; SSSA, 1990; [37]). Reflectance data were captured between 11:00 a.m. and
2:00 p.m. local time under a cloud-free sky. It is important to mention that the same spectroradiometer
was operated by the same individual in all locations to ensure the exact same data collection process
was reproduced. Each location was imaged five times in succession, and spectra were averaged.
Plant material in the footprint of the imaging fiber was then clipped at the base, stored in plastic bags,
and placed on ice in a cooler for transport back to the laboratory.

In the laboratory, samples were dried to remove excess moisture, and the grains were separated
from the plant using a traditional method of hand threshing with the assistance of a basket weaved
surface. The grains from each sample, which measure approximately 1 mm in length, were aggregated
in a petri dish to generate a sufficient amount to fully cover the lens of the imaging equipment.
The grains were spectrally imaged in a dark room using a contact probe (Contact Probe: Analytical
Spectral Devices [ASD], Boulder, CO, USA) with a halogen light source, while not equivalent to the
sun, still emitted spectral wavelengths (350–2500 nm) capable of being identified using the same
spectroradiometer used in the field (Figure 3). As with the in situ samples, five spectral readings were
collected for each sample, and the values averaged.

 

Figure 3. Use of spectroadiometer in the field (left) and a close-up of Eragrostis tef (tef; right).

2.3. Spectral Processing

The raw spectral curves from both the plant (in situ) and grain (ex situ) were smoothed using a
Savitsky–Golay filter [38] to reduce noise (SG; Figure 4a). A third-order, 10-band moving polynomial
was fitted upon the original spectral signatures [39]. Data within each 5 nm window were averaged
(e.g., the value at 600 nm is average of 598–602 nm). First derivatives (hereafter, FD) were computed
from the smoothed spectra (Figure 4b). Computing derivatives allows minor differences in reflectance
values to be exploited and permits discrimination of key points along the spectral curves (i.e., inflections
and maxima) corresponding to biophysical and biochemical components that would otherwise be
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difficult to detect [40,41]. Lastly, wavebands associated with atmospheric noise (1290–1495, 1705–2045,
and 2355–2500 nm) and splicing points within the spectroradiometer (350–395 and 1005–1015 nm)
were removed, resulting in 277 wavebands between 400–2350 nm, at a spectral resolution of 5 nm.
The reflectance/derivative values at these wavebands ultimately serve as the independent variables for
the statistical analyses discussed below.

 
Figure 4. Typical canopy spectra (noisy atmospheric windows removed) for tef (Eragrostis tef ) showing
(a) Savitsky–Golay filtered reflectance curve and (b) first derivative (FD) transformation.

2.4. Nutrient Analysis

Since tef serves as both a food (grain) and forage (plant) crop, nutrient analyses were performed
on both the plant and grain. All samples were analyzed for calcium (Ca), magnesium (Mg), and protein
content (Table 1). For details on Ca and Mg laboratory procedures, readers are directed to the Soil
Science Society of America [42] plant analysis guidelines. For details on protein analysis, readers
are directed to the National Forage Testing Association’s (NFTA) Forage Analysis Procedures [37].
For the US samples, nutrient analyses were performed at the Oklahoma State University Soil, Water,
and Forage Analytical Laboratory. For the ET samples, analyses were performed by the Ethiopian
Public Health Institute of Addis Ababa. These labs were chosen for their rigor and location as samples
could not be transported across country boundaries. Moreover, the procedures used by both institutions
followed these established standards [37,42], with aim to minimize impact on results. Ca and Mg
values are expressed in ppm mg/kg, while protein values are expressed in percent (%) of total sample
weight. All are expressed as dry matter weight. These nutrient data from the plant material and grains
ultimately serve as the dependent variable in the PLS regression analyses (discussed below).

Table 1. Number of samples of each component collected in each study location.

Component Nutrient Number of Samples (n)

United States Ethiopia

Plant
Ca 67 78
Mg 67 79

Protein 67 79

Grain
Ca 66 78
Mg 66 79

Protein 65 79
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3. Analytical Methods

Partial least squares (PLS) regression was implemented to assess the relationship between
reflectance (independent variable) and nutrient content (dependent variable) of both the plant and
grain. PLS, which can also stand for projection to latent structures [43], was selected over other
forms of regression because it accounts for overfitting errors common when analyzing hyperspectral
data [13,44]. Briefly, PLS regression finds a set of components (called latent factors) from X, a matrix of
predictors collected on the observations, that best predict Y, a matrix of dependent observations [43].
These latent factors, or latent vectors, are orthogonal, and thus explain as much of the covariance
between X and Y as possible, often resulting in a smaller number of variables than principal component
regression. PLS regression extracts X-scores from the latent variables to construct a model to predict
the Y-scores. In PLS, the X- and Y-scores are subject to redundancy analysis that seeks directionality in
factor space until the most accurate prediction is found [25,45]. When implementing PLS regression
with hyperspectral data, it is important to ensure the number of latent variables does not far exceed the
number of independent variables being used, as overfitting can occur [13].

3.1. Specification of the PLS Regression Model Using the Full Spectrum

The PLS equation follows a standard regression (Equation (1)):

ŷ = β1x1 + β2x2 + · · ·+ βkxk + ε (1)

where the response variable ŷ is the nutrient value, and the predictor variables x1 to xk are the reflectance
(SG) or derivative (FD) values for bands 1 to k (here, 277). β1 to βk are the estimated weighted regression
coefficients computed directly from the PLS loadings corresponding to the model with the optimal
number of latent variables, and ε is the error vector. The optimal number of latent variables (NLV) is
determined through a leave-one-out (LOO) cross-validation and assessed through the minimum root
mean square error:

RMSECV =

√∑n
i=1

(
ŷc

i − yc
i

)2
n

(2)

where ŷc
i represents the predicted response when the model is built without sample i, yc

i represents
the measured nutrient value for sample i, and n represents the number of samples used in the
calibration [46]. Twelve, standard PLS regressions were performed, each corresponding to a dataset in
Table 1, and each including the full set of 277 bands (PLS-Full).

3.2. PLS Regression with Waveband Selection

A modified form of PLS regression, known as the waveband selection (or iterative stepwise
elimination) method, was developed to eliminate noisy and unhelpful predictors in hyperspectral
studies [13,44]. Instead of including all 277 wavebands, the number is reduced iteratively [44] by
dropping the least important wavebands (similar to stepwise linear regression). Waveband importance
(vk) is determined as:

vk =

∣∣∣βk
∣∣∣sk∑K

k=1

∣∣∣βk
∣∣∣sk

(3)

where βk and sk are the regression coefficient and standard deviation corresponding to waveband
k. The selection begins with all 277 wavebands, and the waveband contributing least to the model
(lowest vk) is removed. The model (Equation (1)) is then re-run with 276 variables, and so on, until the
maximum predictive capability is achieved [47]. A representation of the iterative processes to determine
the maximum predictive capability is shown in Figure 5. This version of the model is hereafter referred
to as PLS-Wave.
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Figure 5. Representation of the iterative process to determine the number of wavebands via the
waveband selection process. The number of wavebands is determined by the lowest RMSEcv value
(dotted line), which in turn determines the coefficient of determination (solid line) using the given
number of wavebands in the partial least square regression (PLS). Top figure is for the Savitsky–Golay
filtered data. The bottom figure is for the first derivative.

3.3. Predictive Ability of PLS Regression

To test the predictive capabilities of the PLS-Full and PLS-Wave models, we implemented a
bootstrapping procedure by dividing the data into calibration (65–75%) and validation (25–35%) sets
replacing the data of these sets n = 1000 times (following [48,49]). After each separation, the models
were calibrated (assessed through RMSECV) and then validated using root mean square error of
prediction (RMSEP):

RMSEp =

√∑n
i=1

(
ŷv

i − yv
i

)2
n

(4)

where ŷv
i represents the predicted nutrient values, yv

i represents the measured nutrient values, and n
represents the number of samples in the validation subset [46]. Mean coefficient of determination (R2),
R2 standard deviation (R2 std.), and RMSEP standard deviation (RMSEP std) are also reported for the
validation. PLS regressions were performed in Matlab v2016a (MathWorks, Sherborn, MA, USA).

3.4. Replication across Environments

To assess the replicability of the PLS-Full and PLS-Wave regression methodologies for predicting
nutrient content across environments, we compared model performance between the US and ET
using a difference of means (t-test) for each component–nutrient combination (e.g., grain–calcium,
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plant–calcium, etc.) between the two sites from the bootstrapped results. To compare the similarity of
wavebands selected by the PLS-Wave model, the Jaccard index [50] was used to measure the overlap in
selected wavebands compared to the total number of wavebands selected for each site (Equation (5)):

J(A, B) = |A∩ B|/|A∪ B| (5)

where A and B are the set of selected wavebands in the two locations, respectively. A Jaccard value
of 1.0 indicates that the models for the two locations overlap completely in terms of the wavebands
selected as important for prediction; 0 indicates the two locations share none of the same wavebands.

4. Results

4.1. Plant and Grain Nutrient Analyses

Plant nutrient values for Ca, Mg, and protein were considerably higher for the US compared to ET
(Table 2). Mean Ca was five to six times higher; mean Mg almost four times higher; and mean protein
nearly 2.5 times higher in the US. Results were similar for grain nutrients (Table 2), with values in the
US typically two to four times higher than ET. Additionally, the standard deviation and ranges for
Ca and protein at both the plant and grain level were higher in the US, except for Mg, which showed
similar standard deviation and ranges across both locations for plant and grain.

Table 2. Descriptive statistics for the calcium (Ca), magnesium (Mg), and protein measured for the
plant and grain samples from each location.

Nutrient Descriptive Statistics

United States (US) n Min. Mean Max. Range SD

Plant
Ca (ppm mg/kg) 67 3760 6651 9360 5600 1371
Mg (ppm mg/kg) 67 1860 2753 3620 1760 327

Protein (%) 67 5.74 15.68 23.52 17.78 5.42

Grain
Ca (ppm mg/kg) 66 1620 2267 3240 1620 465
Mg (ppm mg/kg) 66 1750 2015 2510 760 186

Protein (%) 65 12.13 17.59 34.42 22.29 4.71

Ethiopia (ET)

Plant
Ca (ppm mg/kg) 78 437 1223 1772 1335 195
Mg (ppm mg/kg) 79 115 740 1181 1066 297

Protein (%) 79 3.02 5.77 9.93 6.91 1.69

Grain
Ca (ppm mg/kg) 78 716 1283 2128 1411 460
Mg (ppm mg/kg) 79 270 553 841 571 155

Protein (%) 79 8.16 10.84 14.57 6.41 1.43

4.2. Model Performance

4.2.1. Results for the PLS-Full Model

At the plant level (Table 3, top), the PLS-Full models varied considerably in performance between
the two sites with cross-validated calibration coefficients of determination (R2

CV) ranging from 0.03
(Mg US) to 0.88 (Mg ET) at the plant level. The validation coefficients of determinations (Mean R2)
closely matched the calibration values, except in the case of ET (Ca and Protein (SG)) where the
validation R2 was approximately double that of the calibration. Interestingly, when comparing the
US and ET, one generally outperformed the other, but the relationship changed depending on the
nutrient. Differences in filtering (SG vs. FD) were largely negligible, with the exception of protein in ET,
where the model fit for the FD was about twice that for the SG data (0.41 vs. 0.18). The bootstrapped
R2 values were normally or semi-normally distributed in all cases except for Mg in the US and Ca
in ET (Figure S1, Supplementary Material). Importantly, t-test comparisons for replicability indicate
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the PLS-Full regression model did not replicate well across the two environments, with significant
differences in fit for every nutrient at the plant level (Table 3, top).

Table 3. Partial least squares (PLS) regression and t-test results for the full spectrum model (PLS-Full)
for plant and grain. SG: Savitsky–Golay; FD: First derivative; NLV: Number of latent variables; std:
Standard deviation.

Loc.
Calibration Validation Comparison

NLV R2
CV RMSECV Mean R2 R2 Std Mean RMSEP RMSEP Std t-test

Plant

Calcium

SG
US 2 0.53 935.79 0.52 0.12 976.86 168.52 −58.75 ***ET 3 0.10 229.07 0.18 0.14 221.14 42.02

FD
US 2 0.51 954.17 0.50 0.12 1000.47 156.54 −56.12 ***ET 1 0.09 231.48 0.20 0.17 233.25 82.71

Magnesium

SG
US 3 0.03 327.93 0.06 0.08 345.49 65.33

276.75 ***ET 7 0.87 108.63 0.86 0.04 117.70 16.45

FD
US 3 0.03 334.21 0.05 0.07 359.43 61.58

326.52 ***ET 7 0.88 104.66 0.86 0.04 117.47 16.25

Protein

SG
US 9 0.86 2.04 0.82 0.06 2.40 0.37

54.64 ***ET 5 0.18 1.34 0.38 0.12 1.42 0.16

FD
US 4 0.84 2.13 0.81 0.04 2.38 0.29

481.18 ***ET 2 0.41 1.30 0.44 0.12 1.35 0.15

Grain

Calcium

SG
US 7 0.88 159.89 0.87 0.04 176.55 28.41 −50.57 ***ET 14 0.78 216.06 0.74 0.07 253.12 31.16

FD
US 2 0.88 163.19 0.86 0.04 183.84 28.04 −44.96 ***ET 8 0.80 205.09 0.78 0.05 234.28 25.71

Magnesium

SG
US 6 0.71 99.49 0.70 0.10 108.77 18.81

219.53 ***ET 15 0.71 84.09 0.65 0.10 99.31 15.57

FD
US 3 0.73 96.49 0.72 0.10 104.89 17.96

144.8 ***ET 9 0.74 79.67 0.71 0.08 90.55 12.24

Protein

SG
US 15 0.93 1.23 0.90 0.05 1.59 0.51 −115.03 ***ET 5 0.47 1.03 0.49 0.14 1.09 0.18

FD
US 5 0.91 1.43 0.89 0.04 1.65 0.47 −106.51 ***ET 7 0.64 0.86 0.62 0.11 0.95 0.15

*** t-test significant at 0.001, ET served as first group.

At the grain level (Table 3, bottom), results were more consistent across the study sites and
nutrients. This is believed to be the case in-part to grain spectral values measured in a controlled
setting, while plants were measured in a field setting. Calibration R2 ranged [0.47, 0.93], and validation
R2 ranged [0.49, 0.90] (Table 3). The results for ET protein using the SG data were a slight outlier
though, and when considering only the FD values, the minimums increase to 0.64 and 0.62, respectively.
The differences between the SG and FD filters were again negligible, except in the Mg ET case.
The t-test comparisons for grain indicate the PLS-Full regression method did not replicate well across
the environments.
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4.2.2. Results for the PLS-Wave Model

At the plant level, the PLS-Wave models varied in performance in both environments with
calibration R2 ranging [0.11, 0.94] (Table 4, top). Differences between the SG and FD were negligible
in most cases. Fits for Mg in ET and Protein in the US were high (0.88–0.94), but there was little
consistency across locations. T-test comparisons show significant differences in model performance for
all nutrients/processing methods between the two locations indicating the PLS-Wave regression model
did not replicate well in terms of predicting plant nutrients across these two environments.

Table 4. Partial least squares (PLS) regression and t-test results for the waveband selection model
(PLS-Wave) for plant and grain. SG: Savitsky–Golay; FD: First derivative; NLV: Number of latent
variables; std: Standard deviation.

Loc.
Calibration Validation Compare

NLV R2
CV RMSECV # of Waves Mean R2 R2 Std Mean RMSEP RMSEP Std t-test

Plant

Calcium

SG
US 3 0.56 899.24 9 0.55 0.10 954.24 113.58 −52.36 ***ET 2 0.12 226.93 49 0.23 0.17 221.46 74.21

FD
US 1 0.53 929.65 9 0.55 0.10 937.88 125.67 −39.102 ***ET 1 0.11 228.37 2 0.25 0.19 219.72 75.70

Magnesium

SG
US 2 0.08 312.41 121 0.10 0.11 323.94 56.66 −11.34 ***ET 10 0.92 100.04 15 0.88 0.03 109.74 14.80

FD
US 4 0.30 277.97 50 0.28 0.14 296.41 48.51 −2.33 *ET 5 0.94 84.14 38 0.92 0.02 88.49 12.98

Protein

SG
US 6 0.88 1.84 46 0.88 0.04 1.93 0.29 −85.95 ***ET 3 0.45 1.25 31 0.46 0.11 1.32 0.12

FD
US 5 0.92 1.53 46 0.90 0.04 1.78 0.28 −72.48 ***ET 1 0.42 1.28 166 0.47 0.12 1.31 0.16

Grain

Calcium

SG
US 8 0.90 149.80 14 0.88 0.03 169.35 25.42 −40.05 ***ET 7 0.81 200.20 43 0.79 0.06 223.68 28.61

FD
US 2 0.91 142.23 47 0.89 0.04 156.88 25.36

17.45 ***ET 12 0.93 122.84 44 0.92 0.02 142.35 20.65

Magnesium

SG
US 4 0.73 96.74 77 0.73 0.10 102.28 22.78 −0.7781ET 12 0.73 80.54 15 0.73 0.07 87.75 11.56

FD
US 4 0.78 86.09 7 0.78 0.06 90.85 11.74

31.02 ***ET 8 0.87 56.29 33 0.85 0.04 63.38 9.02

Protein

SG
US 12 0.95 1.00 74 0.94 0.03 1.17 0.29 −94.58 ***ET 6 0.52 0.99 23 0.53 0.14 1.05 0.17

FD
US 4 0.93 1.24 33 0.92 0.03 1.43 0.33 −76.55 ***ET 7 0.67 0.82 159 0.65 0.11 0.91 0.14

* t-test significant at 0.05, ** at 0.01, *** at 0.001.

At the grain level, the PLS-Wave models performed generally well for all nutrients across the two
locations, with calibration R2 ranging [0.52, 0.95] (Table 4, bottom). Fits for protein were lower for
ET than US, but fits for Ca and Mg were similar. Bootstrapping resulted in normal and semi-normal
distributions for all nutrients and processing (Figure S2, Supplementary Material). For Ca ET, a bimodal
distribution was observed. Upon further investigation of the original Ca ET data, the distribution
deviated from a normal distribution and instead was bimodal and skewed to the right, explaining the
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bimodal and skewed distribution of the R2 bootstrapping values (Figure S2, Supplementary Material).
T-test comparisons again indicate significant differences in all cases, despite similar R2 values for some
of the nutrient-component combinations, indicating the PLS-Wave regression model did not replicate
well across these two environments.

In addition to significant differences in the model fits, the PLS waveband selection procedure also
indicated considerable differences in the number and position of important wavebands for nutrient
prediction (Figure 6). At both the plant and grain level, Jaccard indices were low (<0.2), with three
instances having no overlapping bands (Table 5). For instance, nine wavebands were selected as
important for predicting plant-level Ca in the US (SG): One at 760 nm, and eight from 1020–1060 nm
(Figure 6). In contrast, the important bands for predicting Ca from the ET samples (SG) included fifteen
bands positioned from 1045–1115 nm. The Jaccard index for this set was 0.069 (Table 5) indicating
minimal overlap in the band positioning.

Table 5. Jaccard index for similarity between bands selected by partial least square regression (PLS) for
the US and Ethiopia (ET) datasets for the various models.

Plant SG FD

Ca 0.069 0.00
Mg 0.081 0.148

Protein 0.052 0.185

Grain SG FD

Ca 0.00 0.110
Mg 0.00 0.046

Protein 0.025 0.104

In summary, the results from this study indicate that the PLS regression, using both the full model
and the waveband selection process, did not generate replicable findings across the two study areas.
We found statistically significant differences in model fits for 11 of the 12 comparisons; only the model
for grain Mg using the SG filtering (Table 4) was not statistically different. Even though model fits
were not comparable, it is still possible for the wavebands identified as important for prediction to be
similar. However, the Jaccard index (Table 5) and plots of the important wavebands for each model
(Figure 6) indicate very little overlap in the important wavebands between the US and ET samples,
further diminishing the case for replicability across these two study sites.
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4.3. Combined Samples for Multiple Environments

Following the single environment analytics, we tested the performance of a PLSR for the two
environments (US and ET) combined. We re-ran the analytics with the same methodologies for the
PLS-Full and PLS-Wave models using the combined samples (named USET), and found this generally
resulted in better model fits compared to the single sites for both calibration and validation for both
the PLS-Full (Table 6) and PLS-wave models (Table 7). Calibration and validation coefficients of
determination (R2) were all greater than 0.9 for all plant and grain nutrients using both SG and FD
data and for both the PLS-Full and PLS-Wave models. RMSE values from the validation were slightly
higher than those from the calibration, which is expected, and RMSEp values were all within 11 percent,
so the models do not appear to be overfit.

Table 6. Partial least squares regression (PLS) results for the full spectrum model (PLS-Full) for plant
and grain using the combined United States and Ethiopia (USET) dataset. SG: Savitsky–Golay; FD:
First derivative; NLV: Number of latent variables; std: Standard deviation.

Calibration Validation

NLV R2
CV RMSECV Mean R2 R2 Std Mean RMSEP RMSEP Std

Plant

Calcium

SG 7 0.94 674.18 0.94 0.01 693.01 70.18
FD 5 0.94 684.48 0.94 0.01 694.93 87.95

Magnesium

SG 12 0.93 274.06 0.93 0.02 287.42 32.92
FD 6 0.93 269.72 0.93 0.02 289.64 37.94

Protein

SG 8 0.91 1.86 0.91 0.01 1.96 0.19
FD 4 0.90 1.94 0.90 0.02 2.03 0.22

Grain

Calcium

SG 14 0.90 216.52 0.80 0.03 240.30 22.71
FD 11 0.91 203.73 0.90 0.02 223.02 19.95

Magnesium

SG 14 0.97 118.87 0.97 0.01 128.61 13.50
FD 9 0.98 117.99 0.97 0.01 130.00 14.64

Protein

SG 15 0.93 1.25 0.92 0.02 1.37 0.25
FD 9 0.93 1.23 0.93 0.02 1.34 0.24

Table 7. Partial least squares regression (PLS) results for the waveband selection model (PLS-Wave) for
plant and grain using the combined Untied States and Ethiopia (USET) dataset. SG: Savitsky–Golay;
FD: First derivative; NLV: Number of latent variables; std: Standard deviation.

Calibration Validation

NLV R2
CV RMSECV

# of
Waves

Mean R2 R2 Std Mean RMSEP RMSEP Std

Plant

Calcium

SG 5 0.95 658.69 13 0.95 0.01 664.46 72.39
FD 4 0.95 664.55 38 0.94 0.01 690.87 79.27
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Table 7. Cont.

Calibration Validation

NLV R2
CV RMSECV

# of
Waves

Mean R2 R2 Std Mean RMSEP RMSEP Std

Plant

Magnesium

SG 9 0.94 265.07 44 0.93 0.01 276.48 31.00
FD 5 0.94 261.27 112 0.94 0.01 271.65 33.62

Protein

SG 5 0.92 1.78 13 0.92 0.02 1.81 0.18
FD 8 0.93 1.68 52 0.92 0.02 1.79 0.16

Grain

Calcium

SG 11 0.91 206.43 59 0.90 0.02 221.41 21.83
FD 10 0.93 173.75 59 0.93 0.02 186.35 17.83

Magnesium

SG 12 0.98 106.71 39 0.98 0.00 114.98 11.90
FD 7 0.98 101.05 51 0.98 0.00 103.95 9.54

Protein

SG 10 0.94 1.12 19 0.94 0.02 1.16 0.19
FD 9 0.95 1.04 31 0.95 0.01 1.10 0.17

5. Discussion

5.1. Replicability of Scientific Methods and Findings

Demonstrating that methods and findings can be replicated across studies is critical for the
self-correcting mechanism of the scientific method to function properly and is imperative for generating
solutions that can be applied widely. Hyperspectral data is commonly used in precision agriculture
for predicting biochemical properties of vegetation and nutrients [18,26,51–53], yet the replicability of
findings is rarely tested across different study sites. Scalable science is needed to develop solutions
that can be applied globally. The adoption of PLS regression has provided a solution to some of the
computational challenges when working with high dimensional, hyperspectral data in remote sensing
in general and precision agriculture more specifically, but whether these solutions are transferable has
not been widely explored. This study used hyperspectral data and in situ samples to build PLS models
to predict plant and grain nutrients for tef and test the replicability of those models for predicting
across different environments.

We found significant differences in model fits for both the PLS-Full and PLS-Wave models along
with differences in the number and locations of wavebands deemed important for prediction with
the PLS-Wave models. Differences in the optimal number and location of wavebands for predicting
nutrients via plant canopy measurements may be influenced by varying management practices, such as
differing irrigation practices, which may lead to variable water content in the crops [41]. The ET
fields were rain fed while the US fields were irrigated through to harvest; therefore variable plant
water content may have influenced which wavebands were selected, as water can cause access noise
in spectral signatures. This noise is particularly prevalent in wavebands that are sensitive to O-H
bonds, including the spectral range 971–1400 nm [54–56]. While we removed a portion of this range
from our data (see Figure 4), it is possible remaining wavelengths were affected by noise making
replication difficult.

The number of wavebands selected in the PLS models for ET was often less than the number
selected for the US (Figure 5). This difference may reflect how the PLS models incorporate water-induced
noise that may have been present in the US samples. These findings suggest that understanding
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how hyperspectral remote sensing methods, such as PLS regression, replicate across agricultural
environments may require greater controls on the conditions under which crops are being cultivated.
In addition to irrigation and other management differences, changes in latitude and sun angle could
have led to differences in scattering and light absorption during field data collection [57], which would
impact replication comparisons. However, hyperspectral readings for the grain samples were collected
in a controlled laboratory setting with the same halogen lamp, so we can assume that any differences
in wavebands were not the result of external factors (i.e., sun angles, latitudes, etc.).

When comparing the nutrient content of the grains, there were clear differences between the study
areas (Table 2). These large differences likely result in varying chemical property relationships within
the grain, which in turn can result in differential absorption and scattering of electromagnetic energy.
The large variance amongst biochemicals within the grain may result in noise for some nutrients as
nutrient reflectance properties are often associated with near or similar portions of the electromagnetic
spectrum [41].

In short, had we completed this study only in the US, the PLS regression method (both with
and without waveband selection) would have produced favorable findings for all three nutrients at
the grain level, and for protein at the plant level. Similarly, had we completed this study only in ET,
PLS regression would have also produced favorable findings for all three nutrients at the grain level,
and for Mg at the plant level. Yet, even where favorable results were found in both environments
(all three nutrients at the grain level), the model fits were statistically different, and the wavebands
selected were not similar. This finding serves as a cautionary tale that urges researchers to refrain from
placing too much confidence on R2 values, which may not translate to different areas. Even when
the R2 values were superficially high, there were statistical differences in their values. This is not to
suggest that hyperspectral investigations with PLS regression are not useful or valuable but rather that
caution should be used when translating findings from one site to another.

5.2. Combining Samples from Multiple Regions

A valid question arises as to whether combining samples from multiple regions can make models
more robust for prediction across environments. Higher performance was obtained when the US and
ET samples were combined. However, these higher R2 values are likely artifacts of a larger spread
among the dataset (larger range of levels of nutrients across locations).

It is worth noting that in three instances, the RMSEP from the combined USET dataset was greater
than the minimum value of the nutrient in ET (see Table 2). These included Ca and Mg at the plant
level for the PLS-Full model (Table 6) and Ca at the plant level for the PLS-Wave model (Table 7).
Upon further investigation, it was determined that two of these samples were outliers (PLS-Full Mg
and Ca), where the value was more than two standard deviations from the mean. Thus, these issues do
not appear to be widespread or have a large impact on predictive capabilities of the models. However,
it is important to keep this point in mind when combining data from differing regions with varying
environmental factors and agricultural practices, where there may be large disparities in nutrient
content. These disparities may result in the identification of between-site variation, requiring a greater
variation of nutrient values to fully establish a generalized model.

Nevertheless, the results from the combined dataset are promising because they suggest that
increasing within-sample variation can improve PLS model predictability across study areas. It is also
worth mentioning that this practice could result in a reduction of accuracy of measurement, especially
for field measurements, as the data may take on more noise. In this case, the use of single region
analytics may be more beneficial. Nonetheless, improvement of predictability has been a similar
finding in past studies that have referred to a need for global (i.e., USET) versus local (i.e., US and ET)
modeling within similar measurement collections such as those in soil geochemistry studies [58,59].
Since it is unlikely though that this range of variation would be captured within a single site in
many cases, it becomes necessary to combine samples from a variety of locations, and likely from a
variety of study sites and research groups. To this point, we recommend building a more open and
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transparent culture of data sharing within the remote sensing community that can permit data sharing
to advance our modeling capabilities and promote development of more generalizable predictive
models. We recognize that a shift is already underway in many disciplines to promote data and code
sharing, with some journals mandating these components accompany manuscript submission to allow
reproducibility checks. Our findings here suggest that sharing data may have broader impacts beyond
simply reproducing tests, but rather could result in more robust predictive models.

5.3. Non-Milled Grains

Since very few hyperspectral analyses have been performed on non-milled grains [26], we comment
briefly on those aspects here. We generally found positive results using hyperspectral data with PLS
regression to predict nutrient content of non-milled grains. While the reflectance measurements for
these grain samples were collected in a controlled environment (i.e., a dark room using a contact probe),
the coefficients of determination were noticeably higher for the grains compared to the plant canopy
measurements collected in situ.

An interesting finding emerging from this research is that in the US, several blocks of wavebands
corresponding to the VIS-NIR regions were identified as important for protein prediction when using
FD values (Table S1, supplementary material). We compared these findings to other studies predicting
protein from hyperspectral data [26,56,60]. We do see a considerable amount of overlap in the bands
identified in this study for tef, and the bands identified in those studies for forage quality, cooked hams,
and cereal grains (rice, oats, and maize), particularly for the FD transformation (Table 8). However,
as noted by Talens et al. [56], several of the band ranges found to be important across multiple studies
for protein prediction do fall in the range impacted by O-H bonds. So, it is difficult to determine
whether these consistencies are true positives or are being affected by other factors.

Table 8. Identification of matching bands associated with tef protein content that has also been identified
as important protein indicators in past hyperspectral studies. Abbreviations: S: Savitsky–Golay; F: First
derivative; B: Both; US: United States; ET: Ethiopia.

Object Measured Band(s) US Plant ET Plant US Grain ET Grain Paper

Forage 583 F F

[60]Forage 679 B S F
Forage 700–800 (Red Edge) B F B B
Forage 710 F B

Cooked Hams 930 F

[56]

Cooked Hams 971 S F S F
Cooked Hams 1051 F F S F
Cooked Hams 1137 F B
Cooked Hams 1165 F F
Cooked Hams 1212 S F

Cereal Grains 1216 F [26]
Cereal Grains 1100–1400 B F B B

Cooked Hams 1645 F S [56]
Cooked Hams 1682 S F F

Forage 2091 F
[60]Forage 2128

Forage 2146 F F

5.4. Potential Limitations

Environmental factors such as sun angle, soil types/moisture, agronomic practices, etc.,
can contribute to the reflectance and nutrient differences at the plant the level. Given the number of
samples collected at each location, this study is not meant to be a representative sampling for all tef
varieties at varying growth stages around the world. To establish more generalized models that can be
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applied to a broader range of locations/tef varieties, future studies should focus on obtaining a greater
number of samples across a greater number of location for multiple tef varieties.

6. Conclusions

This study investigated the replicability of PLS regression methods, including PLS with waveband
selection, for predicting nutrient content in plant and grain material across multiple environments.
Using Eragrostis tef (tef) as a target crop, this study compared PLS model fits and selected wavebands
across two environments in the U.S. and Ethiopia to determine the extent to which the methods and
finding are replicable. Three main findings emerge from this study:

First, the model fits and wavebands selected as important for nutrient prediction were not
replicable across the two study sites in the US and Ethiopia. Eleven of the 12 comparisons had
statistically different model fits across 1000 bootstrapped iterations, and the Jaccard index for similarity
indicated very low similarities in the wavebands selected.

Combining samples from both environments improved model fits, suggesting that increasing
within-sample variation may improve the predictability of PLS models across study areas,
though caution is reserved if great disparities in sample values are great. Our recommendation
is to build a more open and transparent culture of data sharing within the remote sensing community
that will permit data sharing in order to advance modeling capabilities and promote development of
more generalizable predictive models.

Results using PLS regression with hyperspectral data from non-milled grains were generally
positive, and wavebands for protein prediction generally agreed with other studies. While more
research is needed to determine whether these consistencies are true positives or are affected by other
factors, this study contributes to the gap in the literature related to non-milled grains.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-4292/12/18/2867/s1,
Figure S1: Bootstrapping results for plant and grain analyses with the PLS-Full model, Figure S2: Bootstrapping
results for plant and grain analyses with the PLS-Wave model, Table S1: Selected wavebands from the partial least
square regression (PLS) using waveband selection (PLS-Wave) for protein in plant and grain for the combined
United State and Ethiopia samples (USET).
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