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Elisa Peñalvo-López, Javier Cárcel-Carrasco, David Alfonso-Solar, Iván Valencia-Salazar and

Elias Hurtado-Pérez
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Preface to ”Evaluation of Energy Efficiency and

Flexibility in Smart Buildings”

Energy use in the residential sector accounts for about 40% of the total energy use both in

Europe and the US. In particular, heating and cooling in buildings represent a high share of the

overall energy use. Nevertheless, buildings are considered a resource in power systems thanks to

the high energy flexibility they provide. Indeed, in buildings, there are several deferrable loads

(e.g., laundry machines and dishwashers) and thermostatically controlled loads (TCL), such as heat

pumps, refrigerators, and air conditioners. The latter technologies, together with the properties of

the building envelope, contain various forms of storage, which can be used to alter the electric

load without affecting the quality of the energy service. The energy flexibility provided by

buildings is paramount to mitigating the upcoming challenges of future power systems, and its

exact definition and quantification have a central role. Furthermore, the EU’s Energy Performance

of Buildings Directive pushes towards new and better-performing buildings—nearly zero energy

buildings (nZEB)—where energy efficiency and energy flexibility are essential to achieve the required

performance targets. Given this premise, the sector of heating and cooling in buildings is promising

for the application of demand-side management (DSM) strategies aimed at modifying the final

user’s electricity demand on the basis of electricity grid needs. The relevance of DSM is related

to the growing share of renewable energy sources (RES) in the generation mix and consequently

to the necessity of integrating them and of adapting the energy demand to their intermittent

and unpredictable production. DSM technologies can be used to activate the energy flexibility of

buildings. They can be divided into three main categories: (i) energy-efficient end-use devices;

(ii) additional equipment, systems, and controls to enable load shaping (e.g., energy storage); and

(iii) communication systems between end-users and external parties, for example, demand response

(DR) programs. The identification of the different technologies within the aforementioned categories,

their technical details, and the effects of their application at the system or even country level is

paramount. Different possibilities and analysis are collected in this book to shed light on this very

interesting topic.

Alessia Arteconi

Editor
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Abstract: Real-time optimal control of air conditioning (AC) is important, and should respond to
the condition changes for an energy efficient operation. The traditional optimal control triggering
mechanism is based on the “time clock” (called time-driven), and has certain drawbacks (e.g., delayed
or unnecessary actions). Thus, an event-driven optimal control (EDOC) was proposed. In previous
studies, the part-load ratio (PLR) of chiller plants was used as events to trigger optimal control
actions. However, PLR is an indirect indicator of operation efficiency, which could misrepresent
the system coefficient of performance (SCOP). This study thus proposes to directly monitor the
SCOP deviations from the desired SCOP values. Two events are defined based on transient and
cumulative SCOP deviations, which are systematically investigated in terms of energy performance
and robustness. The PLR-based and SCOP-based EDOC are compared, in which energy saving
and optimal control triggering time are analyzed. Results suggest that SCOP-based EDOC has
better energy performance compared with PLR-based EDOC, but the frequent event triggering
might happen due to the parameter uncertainty. For actual applications, the SCOP-based EDOC can
be recommended when the ideal SCOP model is available with the properly-handled uncertainty.
Nevertheless, the PLR-based EDOC could still be a more practical option to replace the traditional
TDOC considering its acceptable energy performance and better robustness.

Keywords: real-time optimal control; system coefficient of performance; event-driven optimal control

1. Introduction

If the air conditioning (AC) system experiences identical operation condition all of the time,
the engineer can set up the optimal settings and maintain the system energy efficiency easily. However,
the fact is that the operation condition of AC systems involves many random variables over time,
e.g., weather and occupancy. This makes real-time optimal control important. Each time the AC system
experiences significant changes, the control system should respond and reset the previous optimal
settings. Thus, the optimal control of the AC system should be repeated over the operation period.

Central AC systems contribute towards a large portion of a building’s energy consumption [1,2].
Optimal control has been considered as a powerful measure to improve the operating efficiency of
AC systems [3–7], where an objective function is optimized through optimizing the control set-points
or operation modes (e.g., chiller sequence). Although many advanced optimization algorithms

Energies 2019, 12, 3863; doi:10.3390/en12203863 www.mdpi.com/journal/energies1
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(e.g., reinforcement learning and model-predictive control [8]) and sophisticated modelling techniques
(e.g., grey-box models or data-driven models [9] were developed, the mechanism to trigger the optimal
control actions is still simple. In fact, an efficient triggering of optimal control can enhance the energy
efficiency with the same resource consumption [10].

In most current practices, the control actions are triggered periodically based on a time “clock”.
This mechanism is thus termed as a time-driven optimal control (TDOC) [11,12]. In the TDOC, the time
interval between two neighboring optimizations is called “optimal control frequency”. Typical optimal
control frequency ranges from a few minutes to a few hours [13]. The TDOC scheme has been widely
used due to its simplicity and effectiveness. For example, Kusiak, Li and Tang [14] performed an
hourly optimization of the set-points of a supply air pressure and temperature, leading to a 7.66%
energy saving. Huang, Zuo and Sohn [15] optimized the condenser water set-point for an existing
chiller plant, and the hourly optimization offered a 9.67% energy saving.

However, since AC systems always experience stochastic changes in their operation conditions,
such as weather and occupancy changes [10], using a periodic optimization mechanism, TDOC will
have inherent drawbacks, e.g., stochastic (or aperiodic) changes cannot be captured promptly or
correctly. Consequently, the TDOC may lead to delayed or unnecessary control actions, which would
degrade the expected optimization performance. To deal with this issue, an event-driven optimal
control (EDOC) was recently developed by Wang et al. for AC optimal control [11], where control
actions are triggered only when pre-defined events occur. In the study of Wang et al. [11], two events
were defined based on the part-load ratio (PLR), because PLR has great impact on the AC optimal
control [16]. One event was defined as the significant change of the chiller plant PLR, and one was
defined as the chiller sequence change, which is also triggered by the variation of PLR. Thus, this EDOC
was titled as a PLR-based EDOC. Numerical studies showed that the PLR-based EDOC was able to
achieve a better energy efficiency (0.4–2.6% higher), and simultaneously reduce the computational cost
by 60–84% when compared with a traditional TDOC approach.

Many studies use PLR as an indicator to optimize the AC operations, e.g., optimal chiller
loading [17]. However, for triggering the optimal control, the real and direct trigger of optimal control
is the system coefficient of performance (SCOP) [18]. SCOP links the system cooling/heating output to
the system power [19,20]. Only when the SCOP deviates from the optimal value, an optimal control
action is needed. Since the relationship between the PLR and SCOP is nonlinear [12,21], the PLR
cannot reflect the SCOP precisely. Using PLR variation to trigger would lead to non-optimal actions.
For instance, when the PLR has a significant change (e.g., 10%) compared with the last optimization
time instant, it is possible that the system operation efficiency remains at its ideal level, but the
PLR-based EDOC strategy will trigger optimization, leading to unnecessary control actions. When the
PLR has a little change (e.g., 2%), it is possible that the system operation efficiency deviates largely
from its ideal level, but the optimal control is not triggered, leading to a degraded operation efficiency.

For a more efficient EDOC, events could be directly defined based on the control objective(s).
For instance, Xu et al. [22] investigated a PMV-based event-triggered mechanism for building energy
management. The control objective is to satisfy the thermal comfort of occupants, while minimizing
the building electricity cost. Event 1 was defined as the equality between the predicted and actual
occupied time, and Event 2 was defined by a thermal comfort range. The two events were directly
linked to the control objective, and the simulation results show that the energy cost can be saved
with the reduced power demand. Therefore, to optimize the operation efficiency, events could be
directly defined based on the SCOP. SCOP has been widely used to evaluate the performance of
AC system operations [23,24]. A higher SCOP indicates that less power is required when the same
cooling/heating capacity is provided. Thus, the SCOP of AC systems should be maintained at its ideal
value to minimize the energy use. Accordingly, events can be defined such that the optimal control is
triggered when the SCOP is lower than its ideal value.

However, using the SCOP to trigger the AC optimal control has not been systematically investigated
in terms of its energy performance and robustness. This study aims to develop the SCOP-based EDOC

2



Energies 2019, 12, 3863

for AC systems, and systematically compares SCOP-based and PLR-based EDOC, regarding their
merits and demerits. Since the ideal SCOP varies with the working condition [22,23], an artificial neural
network (ANN) is developed to predict the ideal SCOP under various conditions. The methodology of
SCOP-based EDOC is firstly illustrated, including events definitions and a SCOP prediction model.
Then, the EDOC approaches are evaluated by testing in a case AC system. The control performance
and applicability of different EDOC approaches are compared. Discussions and concluding remarks
are given at the end.

2. Methodology

2.1. Overview

The real-time optimal control mainly consists of two steps (see Figure 1): (1) Triggering optimal
control; (2) solving the optimal control problem using a certain search algorithm subject to operation
constraints. Finally, optimal control settings will be sent to the AC system to supervise the operation.
In this study, the triggering of optimal control will be studied, and three triggering approaches will be
discussed, i.e., The time-driven approach, part-load ratio (PLR)-based event-driven, optimal control
(EDOC) approach and the system coefficient of performance (SCOP)-based EDOC approach.

A case commercial AC system is simulated in the Transient System Simulation Tool (TRNSYS) with
validated component models. The optimal control codes and basic local control codes are programmed
in MATLAB. Actual weather and cooling load data are used as the simulation inputs. The actual system
operation is simulated through co-simulation between TRNSYS and MATLAB (Figure 2). Typical
weather and load profiles are tested with each case in 24 h. The typical load profiles are identified
using a PPA-based K-means clustering approach (see Appendix D). At last, the simulation results are
compared to evaluate the performance.

Figure 1. Overview of the research.
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Figure 2. Simulation diagram and software.

2.2. Optimal Control Triggering Approaches

2.2.1. PLR-based EDOC Approach

For PLR-based EDOC, “PLR significant change” and “chiller operating number change” are used
as the events. The PLR is a continuous variable, and a threshold is critical for the event definition [11].
Till now, there is no selection or calculation method on this PLR variation threshold. The American
Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE) handbook’s heating,
ventilation, and air conditioning (HVAC) applications (in Section 3.2 of Chapter 42) suggests an
example of 10% for the threshold of chilled-water load change. For a certain system, [10] suggested
that the threshold of PLR variation can be customized for a better energy performance. This study will
choose a suitable threshold from 5% to 10%.

2.2.2. SCOP-based EDOC Approach

The basic idea of the SCOP-based EDOC is to control the deviation between the current SCOP
and its ideal SCOP within an acceptable range. The SCOP is defined by

SCOP = Qsys,tot/Psys,tot (1)

where Qsys,tot is the system total cooling capacity (kW), and Psys,tot is the system total power of all the
major equipment (kW).

Two events are defined to capture the transient and cumulative SCOP deviations.
Event 1: The transient SCOP deviation (which deviates from its desired value) is larger than σtra.

e1 :=
{
[SCOPidl(τ) − SCOP(τ)] > σtra

}
(2)

where τ is a time index; SCOPidl is the reference of SCOP; and σtra is a predefined threshold.
Event 1 actually defines an unacceptable SCOP curve, denoted by the curve SCOP2 in Figure 3,

the value of which is calculated by SCOP2(τ) = SCOPidl(τ) − σtra. Event 1 occurs at every moment
when the SCOP curve crosses the SCOP2 curve downward, which indicates the SCOP becoming
unacceptable, and thus the optimization should be taken immediately to improve the SCOP.

4
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Figure 3. Two events of SCOP deviations.

It is possible that the SCOP is lower than a certain value in a long period, but does not cross
down the unacceptable curve (SCOP2). In this situation, if no optimal control is taken, the operation
efficiency cannot be guaranteed in the long run. Therefore, an event dedicated for the cumulative
SCOP deviation is defined as below:

Event 2: The cumulative SCOP deviation is larger than σcum.

e2 := {∫ τ j
τi
[SCOP1(τ) − SCOP(τ)]dτ > σcum

and SCOP(τ) ∈ [SCOP2(τ), SCOP1(τ)] ∀τ ∈
(
τi, τ j

)
} (3)

where τi and τ j are start and end time of a continuous period; SCOP1 is a bound to define the acceptable
SCOP range; and σcum is a predefined threshold.

Note that in Event 2, to exclude the model uncertainty in the calculation of the cumulative
SCOP deviation, SCOP1 is used instead of SCOPidl in the integration. The curves SCOP1 and SCOPidl,
as shown in Figure 3b, define a range in which the SCOP is acceptable. The calculation of the cumulative
deviation should start only when the SCOP goes into the range [SCOP2, SCOP1]. The calculation will
stop, and the cumulative deviation value will be reset to zero when Event 2 or Event 1 occurs.

In the event detection, the SCOP deviation is calculated based on the measured data that are
collected at each sampling time [10]. Considering the discrete-time sampling, “SCOP·mins” is used to
approximate the integration in Equation (3). One minute is used as the discretization time interval to
approximate the integration, as one minute is small enough for sampling time intervals in buildings.
The cumulative SCOP deviation is represented by SCOP·mins in Equation (4), where the integration is
approximated by a summation.

SCOP·mins
(
τi, τ j

)
=

∫ τ j

τi

[SCOP1(τ) − SCOP(τ)]dτ ≈
∑τ j

τi
[SCOP1(τ) − SCOP(τ)] (4)

2.3. Ideal SCOP Model

To develop the Artificial Neural Network (ANN)-based SCOP ideal (SCOPidl) model, important
variables affecting the SCOP should firstly be identified. A crucial step is to select the input variables,
since the inclusion of unimportant variables may bring in redundant information and decrease the
ANN model accuracy [25].

Traditional techniques, e.g., correlation coefficient, standard regression coefficient and the
products of these two coefficients, are inadequate to handle correlated data [26]. Thus, advanced
techniques are required, such as variance-decomposition-based, variable-transformation-based and
machine-learning-based techniques [26,27]. The random forest (RF) algorithm is selected because

5
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RF can handle highly correlated variables, avoid overfitting and improve the prediction accuracy.
Moreover, the variable importance can be represented by “%IncMSE” from RF [28]. The calculation
details of “%IncMSE” are shown in Appendix A.

To develop the prediction model of SCOPidl, the ANN algorithm is used since ANN has
demonstrated its capability in handling complex relationships in building energy fields [29,30].
A typical three-layer feed-forward ANN (including the input layer, the hidden layer and the output
layer) is used in this study (see Figure 4). The identified important variables are used as the ANN
model inputs, while the SCOPidl is the ANN output. The ANN toolbox in MATLAB is used, and the
Levenberg–Marquardt algorithm (see “trainlm” of MATLAB) is adopted in the training. A different
number of hidden neurons are tested to select a suitable number, where the mean squared error (MSE)
is used for the model evaluation.

Figure 4. The structure of the Artificial Neural Network (ANN).

3. Case Study: System, Problem Formulation and Simulation

The selected case air-conditioning system serves a super-tall office building in Hong Kong.
As Hong Kong is a subtropical region, only cooling is considered in the case study.

3.1. System Description

The schematic diagram is shown in Figure 5, which is a typical primary-constant and
secondary-variable chilled water system. The specifications of its main components are presented in
Table 1. Four critical temperatures are controlled by PI controllers, namely the supply cooling water
temperature (Tscw), the supply chilled water temperature at the primary (Tschw,prm) and secondary loops
(Tschw,sec), and the supply air temperature (Tsa). Tscw is controlled through varying the cooling tower
fan frequency; Tschw,prm is controlled by modulating the refrigerant flow rate; Tschw,sec is controlled by
modulating the water flow rate; Tsa is controlled by AHUs. The set-points of the above four critical
temperatures are optimized and reset in real-time to achieve the best energy efficiency.

6
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Figure 5. Schematic of the air-conditioning (AC) system.

Table 1. Specifications of the main components.

Equipment Number Capacity (kW) Rated Power (kW) Mw,ev (L/s) Mw,cd (L/s)

Water-cooled Chiller 6 7230 1346 345 410

Equipment Number Heat rejection
capacity (kW) Rated power (kW) Mw (L/s) Ma (m3/s)

Cooling tower - type A 6 5234 152 250 157.2

Cooling tower - type B 5 4061 120 194 127.0

Equipment Type Efficiency (%) Rated power (kW) Mw (L/s) Head (m)

Condenser water pump Constant speed 83.6 202 410 41.6

Primary chilled-water pump Constant speed 84.5 126 345 31.6

Secondary chilled-water
pump Variable speed 84.2 163 345 41.4

Note: Ma is the air flow rate; Mw is the water flow rate; ev and cd stand for evaporator and condenser respectively.

3.2. Optimal Control Problem Formulation

For all-electric AC systems without thermal storage, the minimization of the energy use can be
simplified as the minimization of the system total power at each time instance [16]. In this case study,
the decision variables that significantly affect the energy efficiency of the system operation are Tscw,
Tschw,prm, Tschw,sec and Tsa. Thus, the real-time optimal control problem is formulated as

(
T∗scw, T∗schw,prm, T∗schw,sec, T∗sa

)
= argmin Psys,tot

(
Tscw, Tschw,prm, Tschw,sec, Tsa

)
(5)

where Psys,tot = Pch,tot + Pct,tot + Ppump,tot + PAHU,tot.
The system total power can be written as a function of these four decision variables

Psys,tot = f
(
Tscw, Tschw,prm, Tschw,sec, Tsa

)
(6)

where f (·) is always a nonlinear function. The decision variables are limited in their feasible ranges,
which are treated as operational constraints (shown in Equations (7)–(10)).

Table 2 shows the values of the operational constraints.

Tscw,lower ≤ Tscw ≤ Tscw,upper (7)

Tschw,prm ≤ Tschw,prm ≤ Tschw,prm,upper (8)
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Tschw,sec ≤ Tschw,sec ≤ Tschw,sec,upper (9)

Tsa,lower ≤ Tsa ≤ Tsa,upper (10)

Table 2. Operational constraints of the case AC system [11].

Name
Value

Spring Summer Autumn[
Tscw,lower, Tscw,upper

]
[20, 28] ◦C [28, 35] ◦C [24, 30] ◦C

[Tschw,prm,lower, Tschw,prm,upper] [5, 8] ◦C
[Tschw,sec,lower, Tschw,sec,upper] [6.5, 11.5] ◦C[
Tsa,lower, Tsa,upper

]
[12, 18] ◦C

3.3. Simulation Platform

A dynamic simulation platform integrating TRNSYS and MATLAB was constructed to test
the performance of the proposed optimal control approaches. The platform layout was shown in
Figure 6. The used TRNSYS models were verified by measured data with acceptable model accuracies.
The model details are presented in Table 3. The control logics presented in Section 2 were coded in
MATLAB. The simulation duration for each run was 24 h, with a simulation time step of 30 s. Several
typical loads and weather data are simulated. The computer used to perform the simulation has a
six-core processor (3.60 GHz) with 16 GB RAM. Since cooling load and weather data are crucial for
the AC optimal control, actual load and weather data were input to the TRNSYS simulation to mimic
the actual operations. The airflow rate was calculated based on the cooling load and the enthalpy
difference between the supply air (the temperature set-point with 95% relative humidity) and the room
air (set as 25 ◦C with 50% relative humidity).

Figure 6. Transient System Simulation Tool (TRNSYS) model (screenshot).
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Table 3. TRNSYS model and description.

Name Model Type Description

Chillers Grey-box model (dynamic)
Verified by the measured data

(see Chapter 3.2 and Chapter 5 of [31]);
Model accuracy: ±10%.

Cooling towers Grey-box model (dynamic)

Verified by the measured data
(see Chapter 3.2 and Chapter 5 of [31]);

Model accuracy: ±6.9% for predicting the
heat reject load and ±1% for predicting

outlet water temperature.

Variable-speed Pumps Polynomial model
(steady-state)

Verified by the measured data
(see Chapter 3.2 and Chapter 5 of [31]);
Model accuracy: the pump model can
predict exactly as the catalogue data.

AHU Physical model
(dynamic) TRNSYS Model: Type 508a

Heat exchanger Physical model
(dynamic) TRNSYS Model: Type 699

PID Controller Physical model
(dynamic)

TRNSYS Model: Type 23; The PID
settings: P = – 0.95 and I = 35 s [11]

3.4. Ideal SCOP Model

To develop an ANN model for predicting the ideal SCOP, important variables that have significant
influence on the SCOP were firstly identified. Basically, important variables that affect the SCOP are
similar in typical AC systems that contain chillers, cooling towers, pumps and AHUs/Coils [16,32].
The variables include the outdoor dry/wet-bulb temperature (Tdb/Twb), the chilled water supply
temperature (Tschw), the condensing water return temperature (Tscw), the chilled water mass flow
rate at the primary/secondary loop (Mw,prm,pump/Mw,sec,pump), the PLR, the cooling tower fan frequency
(Freqct, f an) and the enthalpy driving force in the operation of cooling towers “Δh” [33].

To evaluate the variable importance, the RF algorithm was implemented in the software R using
the package of “randomForest” [34] and the results were plotted in Figure 7. The variable PLR
has the highest importance, while the Mw,sec,pump has the lowest importance. As discussed in [35],
less important variables (e.g., % IncMSE lower than 10%) can be omitted. Therefore, Mw,sec,pump was
not used in the ideal SCOP model, and totally eight variables were used as the ANN model inputs.

In the ANN model, 70% of the data set was used for training, 15% of the data set was used for
validation and the additional 15% of the data set was used to test whether the model can perform well.
Since the optimal number of the hidden layer neurons depends upon the specific problem, this study
tested a different number of hidden neurons (from 2 to 20). The MSEs of different numbers of hidden
neurons were plotted in Figure 8. Figure 8. shows that when the number of neurons increased, the MSE
decreased. However, the reduction in MSE became insignificant as the number of neurons was greater
than 15. Thus, “15” was selected as the optimal number of hidden neurons. The R-value of the ANN
model with 15 hidden neurons was 0.96052 (see Figure 9), with R values of training, validation and test
are 0.96007, 0,95783 and 0.9656 respectively, which showed a good prediction accuracy.
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Figure 7. Results of random forest (higher %IncMSE means more important).

Figure 8. Number of ANN hidden neurons vs. mean squared error (MSE).
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Figure 9. Regression plots of the ANN model (with “15” hidden neurons).

3.5. Event Threshold

For the event “PLR significant change”, 7% was selected as the PLR change threshold based on
a previous study on the same AC system [11]. The threshold of SCOP deviation can be calculated
based on the value of SCOPidl and an expected energy saving percentage (as shown in Appendix C
Equation (A8)). For instance, an expected energy saving percentage can be specified by users (e.g., 10%),
and the SCOPidl can be obtained from the developed ANN model. After the threshold is calculated,
it should be checked that whether the calculated threshold is feasible or not based on the SCOP
deviations in historical data. The threshold selection should also consider the uncertainties in the
SCOPidl model and SCOP measurement in terms of the application concerns.

The thresholds of the SCOP deviation are set as 0.2057 (transient) and 2.057 (cumulative).
The selection details are presented as follows: The targeted energy saving is set as 10%, based on
handbook [16] and a previous study [10]. To help the threshold selection, the histogram of SCOPidl

and SCOP deviation are plotted in Figure 10. The base case keeps all the four temperature set-points
as constant. The SCOP deviation is the difference between SCOP of the base case and SCOPidl.
From Figure 10, the mean of SCOPidl is 2.0544. Using a SCOPidl of 2.0544 and an expected energy
saving of 10.0%, the threshold of SCOP deviation is 0.2057, based on Equation (A8) (Appendix C).

Figure 10. (a) Histogram of SCOPidl; (b) Histogram of SCOP deviation.
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Since “0.2057” is within the range of SCOP deviation and the most frequent case (Figure 10b), it is
a feasible threshold value.

For uncertainties, the value 0.01 was used for as the model uncertainty of SCOPidl, which was
the averaged value over the training and validation Mean Squared Error (MSE) of the ANN model.
The measurement uncertainty for the case study was calculated in Appendix B, where sensor
uncertainties were added to the simulation-generated operation data. As a negative value is considered,
“–0.0694” was used for measurement uncertainty. Thus, the combined uncertainty is “–0.0794”
(“–0.01”+”–0.0694”), and SCOP1 can be set as “SCOPidl − 0.0794”.

In comparison, the threshold 0.2057 is nearly three times greater the combined uncertainty,
which can largely prevent the uncertainty-caused event triggering. Thus, 0.2057 is used as the threshold
of transient SCOP deviation. The cumulative SCOP deviation depends on both the time duration and
the SCOP deviation. The deviation for cumulative SCOP was considered as half of the transient SCOP
deviation threshold (i.e., 0.2057/2), or a 5% energy saving equivalently. The time duration was selected
as 20 minutes for a demonstration. Thus, the threshold of cumulative SCOP deviation is 2.057.

4. Results and Discussions

4.1. Energy Performance

The optimal control performance is evaluated by the energy saving percentage. The energy
saving percentage is computed based on the base case (i.e., constant control settings without optimal
control). The energy saving percentages of EDOC range from 5.83% to 12.06% for ten different load
clusters. In general, as can be seen from Figure 11, SCOP-based EDOC outperforms PLR-based EDOC,
and EDOC outperforms TDOC (1 h per optimal control).

The biggest energy performance difference can be 3%, as shown in load cluster no. 3. The possible
reason of such superior performance is that the SCOP-based events can directly represent the system
operation efficiency without mismatch compared with the PLR-based events. By continuous monitoring
and tracking of the transient and cumulative SCOP deviations, a better timing of optimal control can
be achieved. As a result, the system operation efficiency is always maintained at or near the ideal level.
The next section will discuss the triggering time of optimal control in details.

Figure 11. Energy saving percentages.
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4.2. Triggering Time of Optimal Control

It was observed that (see Table 4), in load cluster 1, both TDOC and EDOC approaches triggered
seven times control actions. Thus, load cluster 1 is the best for analyzing the effect of different optimal
control triggering times.

In Figure 12, the optimal control time of EDOC is plotted. The Y axis refers to the time of the
optimal control action, and the Y axis is updated each time when this optimal control is triggered. The X
axis is the simulation time step in minutes. From Figure 12 (see dashed circles), SCOP-based EDOC
tends to react in advance compared to the PLR-based EDOC. The possible reason is because SCOP is
a more comprehensive energy efficiency index than the PLR index. SCOP-based EDOC can capture
the operation variation earlier than the PLR-based EDOC, leading to a better energy performance.
Moreover, inside the solid circles of Figure 12, the SCOP-based EDOC did not take response, while this
PLR-based EDOC triggered optimal control. In such circumstances, the PLR varies, but the SCOP still
remains at the ideal level, which is unnecessary to trigger optimal control. The SCOP-based EDOC
could avoid such unnecessary actions, while the PLR-based EDOC cannot (which is a demerit).

Figure 12. Optimal control time of EDOC (load cluster 1).

The total optimal control times of EDOC are shown in Table 4, which reflects the frequency of
optimal control. Based on literatures [15,36,37], it can be found that 1 h per optimal control is the most
common optimal control frequency used for TDOC. Thus, this study uses 1 h as the benchmark. Then,
less than 24 times can be regarded as an acceptable triggering frequency for one day. On average,
PLR-based EDOC (22.7 times per day) satisfies the condition, while SCOP-based EDOC (26.4 times
per day) triggers more actions than the benchmark. It should be noted that, in load cluster no. 8,
the SCOP-based EDOC performed 61 times of optimal control. The reason for such frequent triggering
is possibly due to the uncertainty in “SCOP”. As the parameter, SCOP is calculated based on the power
meter and the load measurement, the combined uncertainty of power and load could be significant.
Besides, the model of ideal SCOP also has model uncertainty. When the SCOP value fluctuated at the
pre-defined threshold value, the optimal control action can be triggered frequently. From this, a demerit
of SCOP-based EDOC is that frequent optimal control may be triggered compared with PLR-based
EDOC. This problem could be mitigated by adding an additional time interval constraint between
two adjacent optimal control actions (e.g., at least 10 mins between two control actions). Although
SCOP-based EDOC obtains the highest energy saving, in terms of the energy saving performance,
triggering frequency and robustness of optimal control, PLR-based EDOC can still be recommended to
replace traditional TDOC for practical applications.
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Table 4. Optimal control triggering frequency of EDOC.

Load Cluster PLR-Based EDOC SCOP-Based EDOC

1 7 7
2 16 21
3 31 19
4 13 37
5 32 25
6 29 27
7 28 11
8 15 61
9 29 36
10 27 20

Average optimal control triggering frequency 22.7 26.4

4.3. Analyses of SCOP-based Events

As both transient and cumulative SCOP deviations are used (Section 2.2.2), the event triggering
times of the two events are analyzed in this section. From Figure 13, e1 and e2 were triggered differently
under different load clusters, e1 sometimes dominates, and e2 sometimes reacts more. For example,
in load cluster C1 and C2, only e2 was triggered. In load cluster C3–C10, e1 and e2 both appeared.
If only using e1 in load cluster C1 and C2, the SCOP-based EDOC may not work. This validates
the idea of combing e1 and e2 to accommodate broader operation conditions, since one event may
fail sometimes.

Regarding the individual energy performance of the single event (e1 and e2), load cluster C7
was used as an illustration, where two events are triggered almost equally. Simulation results show:
Using only e1 gives 9.84% of energy saving, and using only e2 gives 9.97% of energy saving. In Figure 11,
combining e1 and e2 outputs 10.38% of energy saving. It can be seen that combining e1 and e2 will be
beneficial for improving the energy performance of EDOC. The reason is because the single event may
not capture the critical operation variations in a comprehensive manner.

( : transient SCOP deviation, : cumulative SCOP deviation, C1: load cluster 1.)

Figure 13. Triggering times of SCOP-based events.

14



Energies 2019, 12, 3863

5. Conclusions

This study investigates the optimal control triggering of EDOC in AC systems. Optimal control
triggering approaches are classified into direct and indirect approaches based on the used triggering
indicator. In the direct SCOP-based EDOC, two events have been defined to capture both the transient
and cumulative SCOP deviations, which maintains the SCOP at the ideal level in a closed-loop manner.
Simulated case studies suggest that direct SCOP-based EDOC achieved a higher energy saving than
indirect PLR-based EDOC in all the typical load scenarios. The main reason is due to a more direct
performance indicator, i.e., SCOP, that can reflect the system performance precisely and timely. However,
the development of an accurate ideal SCOP model requires sufficient operation data and extensive
work, which could restrict its implementation [8]. The robustness issues caused by the uncertainty of
SCOP should also be paid attention to. Thus, in terms of actual applications, the SCOP-based EDOC can
be recommended when the ideal SCOP model is available with a properly-handled uncertainty issue.
However, the PLR-based EDOC could still be a more practical option to replace traditional TDOC,
which features an easy development process, better robustness and acceptable energy performance.
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Nomenclature

Variables/Abbreviations Subscripts

SCOP system coefficient of performance scw supply cooling water
EDOC event-driven optimal control schw supply chilled water
TDOC time-driven optimal control sa supply air

TLP typical load profile prm primary
PLR part-load ratio sec secondary

SCOP system coefficient of performance wb wet-bulb
s event threshold db dry-bulb
T Temperature (◦C) sys system
P Power (kW) tot total

Mw water flow rate (L/s) ct cooling tower
Freq Frequency (Hz) ch chiller
PAA Piecewise Aggregate Approximation pump pump
Δh

enthalpy difference between the saturated (at
cooling tower inlet water temperature) and

incoming air of cooling tower (kJ/kg)

fan fan
ref reference value

lower lower bound
upper upper bound

Appendix A. Variable Importance Measures (“%IncMSE”)

In the random forest algorithm, the variable importance is represented by “%IncMSE”.

%IncMSE
(
vj
)
= 100%×

[
MSE

(
−vj
)
−MSE

]
/MSE (A1)

where “MSE
(
−vj
)
” stands for the MSE if vj is not used in the prediction. A higher %IncMSE suggests that the

variable vj is more important.
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Appendix B. SCOP Measurement Uncertainty

This part is to calculate the measurement uncertainty of SCOP. The equations for SCOP are shown in
(A2)–(A4), where Qsys is the system cooling capacity, cw and mw are the water specific heat capacity and water
flow rate (others please see the nomenclature). Assuming the sensors/meters are well-calibrated, the reported
accuracies of sensors/meters from a chiller design guide [38] can be used to quantify the measurement uncertainty
of SCOP.

SCOP = Qsys/Psys (A2)

Qsys = cwmw(TCHWR − TCHWS) (A3)

Psys = Pch + Pct + Ppump + PAHU (A4)

Considering the measurement uncertainties in the cooling capacity and power, the Equation (A2) can
be re-written as Equation (A5), where the subscript mea means the measured value, ΔPsys,mea, ΔQsys,mea and
ΔSCOPmea are the measurement uncertainties for the power, cooling capacity and SCOP.

SCOPmea = Qsys,mea/Psys,mea (A5)

where Psys,mea = Psys + ΔPsys,mea; Qsys,mea = Qsys + ΔQsys,mea; SCOPmea = SCOP + ΔSCOPmea;
Since multiple uncertainties are involved in the SCOP calculation, uncertainty shift can be used to integrate

the variable uncertainties for easy analyses [39]. The measurement uncertainty of power consumption can be easily
quantified by the power meter uncertainty. For the measurement uncertainty of the cooling capacity, the measured
cooling capacity is represented by Equation (A6), and the measurement uncertainty can be calculated by Equation
(A7), as demonstrated by [39].

Qsys,mea = cwmw,mea
(
TCHWR,mea − TCHWS,mea

)
(A6)

ΔQsys,mea = Qsys,mea −Qsys

= Δmw,mea
(
TCHWR,mea − TCHWS,mea

)
+ mw,mea

(
ΔTCHWR,mea − ΔTCHWS,mea

) (A7)

With mw,mea = mw + Δmw,mea; TCHWR,mea = TCHWR + ΔTCHWR,mea; TCHWS,mea = TCHWS + ΔTCHWS,mea;
where Δmw,mea, ΔTCHWR,mea, ΔTCHWS,mea are the measurement uncertainties for the corresponding variables.

Based on measurement accuracies in Table A1, the measurement uncertainties of cooling capacity and power
can be calculated. The simulated operation data is considered as the measured value. As presented in Table A2,
the maximum positive and negative relative uncertainties for ΔSCOPmea are +3.73% and -3.95%, with the absolute
uncertainties of “0.0708” and “-0.0694” respectively.

Table A1. Typical measurement accuracy [38].

Measured Variable Reported Accuracy

Water flow ±1% o f f ull scale

Water temperature ±0.1◦C
Electrical power 1% o f reading

Table A2. Measurement uncertainties of SCOP (worst cases).

Δmw,mea (ΔTCHWR,mea−ΔTCHWS,mea) ΔQsys,mea ΔPsys,mea

Relative SCOP
Measurement
Uncertainty

Absolute
SCOP

Measurement
Uncertainty

+1% of full
scale +0.2◦C 197 kW

−38.01 kW
(−1% of
reading)

+3.73% +0.0708

−1% of full
scale −0.2◦C −197 kW

+38.01 kW
(+1% of
reading)

−3.95% −0.0694
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Appendix C. Energy Saving Estimation

The energy saving percentage at a time instant can be estimated using Equation (A8) by substituting the
value of SCOP(τ) and SCOPidl(τ).

ΔP(τ)
P(τ)

=
[P(τ) − Pidl(τ)]

P(τ)
= [SCOPidl(τ) − SCOP(τ)]/SCOPidl(τ) (A8)

where P(τ) = load(τ)
SCOP(τ) , Pidl(τ) =

load(τ)
SCOPidl(τ)

, P is power, idl is the ideal value, τ is the time instant.

Appendix D. Load Clustering

A K-means clustering method is proposed to generate typical load profiles (TLPs) in this study. Figure A1a
shows a general procedure of the K-means clustering with a Piecewise Aggregate Approximation (PAA)
transformation. To cluster the load profile (a time-series data), the distance between two profiles should be
computed for measuring the similarity. However, computing the distance on raw time-series data is difficult
and slow. Therefore, the approximation is normally carried out to reduce the computational difficulties [40].
Many representation techniques can be used to transform the raw time-series data, such as Discrete Fourier
Transformation [41], Discrete Wavelet Transformation [42], Single Value Decomposition [43], PAA [44], etc.
The PAA was used in this paper due to its simplicity and fast calculation speed [44].

In the PAA method, the original load profile is firstly segmented into equal-distance pieces (Figure A1b).
Then, the mean of each piece is used to approximate the original segment (Figure A1c). This approximation
greatly reduces the data dimension, while the fundamental characteristics in the original time-series data are still
captured. After the PAA transformation, the Euclidean distance between two load profiles is calculated, and the
standard K-means clustering algorithm is applied. The initialization of the K-means is important as it affects the
final result [45]. A different K value will be tested to find a suitable one. A realistic testing range for the K value is
between 2 and

√
n [46], where “n” is the number of data samples. Then, the “furthest first initialization” is used,

which starts at a random point as the first cluster center, and adding more cluster centers which are furthest from
the existing ones [47]. Based on the clustering result, one representative profile from each cluster will be selected
to form the TLPs.

The measured cooling load data of the case building in year 2013 was used. In total 214 daily load profiles
from spring season to autumn season were used, which covered typical cooling seasons for sub-tropical regions
like Hong Kong. The clustered loads were given in Figure A2a, where the similar load profiles were grouped
together as a load cluster. In each cluster, the load profile closest to the cluster centroid was selected to constitute
the TLPs (see Figure A2b). These TLPs and their associated weather data (from Hong Kong Observatory) were
used as the simulation inputs.

PAA-based K-means Clustering
TS2’TS1’TS1 TS2

Figure A1. (a) Process of generating typical load profiles (TLPs); (b) two original load profiles; (c) two
load profiles after PAA transformation.
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Figure A2. (a) Clustered load profiles; (b) Selected typical load profiles.

Table A3. Load and weather data of ten TLPs.

Load Cluster.
Load (kW) Tdb (◦C) Twb (◦C)

Mean Max Min Mean Max Min Mean Max Min

C1# 4833 6495 3268 21.5 23.5 20.6 18.8 19.7 17.4

C2 9072 13038 3954 23.7 25.2 22.1 22.9 23.6 21.5

C3 13998 22361 4212 29.7 32.9 27.6 26.6 28.1 25.9

C4 6164 8593 3437 29.2 32.5 27.3 26.2 27.4 25.3

C5 14492 22996 2923 29.7 33.1 27.4 26.1 27.9 24.9

C6 12646 21177 3367 28.2 31.0 26.4 25.3 26.0 24.4

C7 11465 17715 3740 27.8 29.7 26.8 24.0 25.1 22.8

C8 7037 10241 3355 29.2 31.9 27.2 26.1 27.1 25.1

C9 8067 18175 3475 31.2 34.2 28.4 25.1 26.8 23.5

C10 10628 15714 3487 24.8 27.3 22.9 21.5 22.5 19.5

(#: ‘C1′ means the load cluster 1.).
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Abstract: The energy consumption of air-conditioning systems is a major part of energy consumption
in buildings. Optimal control strategies have been increasingly developed in building heating,
ventilation, and air-conditioning (HVAC) systems. In this paper, a load forecast fuzzy (LFF) control
strategy was proposed. The predictive load based on the SVM method was used as the input parameter
of the fuzzy controller to perform feedforward fuzzy control on the HVAC system. This control
method was considered as an effective way to reduce energy consumption while ensuring indoor
comfort, which can solve the problem of hysteresis and inaccuracy in building HVAC systems
by controlling the HVAC system in advance. The case study was conducted on a ground source
heat pump system in Tianjin University to validate the proposed control strategy. In addition,
the advantages of the LFF control strategy were verified by comparing with two feedback control
strategies, which are the supply water temperature (SWT) control strategy and the room temperature
fuzzy (RTF) control strategy. Results show that the proposed LFF control strategy is capable not only to
ensure the minimum indoor temperature fluctuations but also decrease the total energy consumption.

Keywords: load forecast fuzzy (LFF) control; SVM method; building HVAC system; time delay effect;
optimal control strategy

1. Introduction

Buildings energy systems account for about one-third of the global energy consumption [1].
In China, the total energy consumption of HVAC systems is expected to account for 65% of residential
buildings by 2020 [2]. Optimal control strategies have been increasingly developed in building HVAC
systems [3]. The energy consumption of building energy systems can be greatly reduced by developing
effective control strategies for building HVAC systems [4].

Some scholars have focused on the air-conditioning control strategies. Yordanova et al. [5]
designed a fuzzy controller for temperature and humidity control. This method uses fuzzy control to
ensure indoor comfort and reduce energy consumption. Wang et al. [6] proposed a direct load control
strategy to optimize the distribution of set values for local and global refrigerators by setting adaptive
effect functions, which saves energy while ensuring indoor comfort. Krstic [7] proposed a method
based on feedback control to compensate for the input delay of any length in a nonlinear control
system. Mossolly et al. [8] proposed control strategies based on energy cost and thermal space transient
model constraints and they used genetic algorithms to solve problems. This optimization plan/model
is suitable for building floor case studies in Beirut. Powell et al. [9] modeled the characteristics of the
complexity of large-scale energy systems and used recursive neural networks to accurately predict the
hourly load capacity of regional energy systems 24 h in advance. Other researchers have studied the
operation and simulation of central air-conditioning systems. Wei et al. [10] obtained the operating
power consumption curve based on the mathematical.

Energies 2020, 13, 530; doi:10.3390/en13030530 www.mdpi.com/journal/energies21



Energies 2020, 13, 530

Model of the established air conditioning system equipment to determine the optimal operating
plan. Chan [11] proposed a solar heating and cooling (SHC) absorption chiller of central air-conditioning
system design based on the TRNSYS simulation model for a hotel building. Different control strategies
are loaded into the TRNSYS simulation model to evaluate the superiority of different control strategies.
Li et al. [12] proposed a central air-conditioning solar heating and cooling (SHC) absorption chiller
system based on TRNSYS and proposed three control schemes for the solar collector circuit to determine
the preferred design strategy for these systems. Xue et al. [13] proposed a fast power demand response
control strategy to investigate the performance of operational dynamics and energy systems in response
to strategically controlled demand response events. From the analysis of research status at home
and abroad, the current research on control strategies of central air-conditioning systems focuses on
the combination of intelligent algorithms and hybrid models. However, the model has insufficient
accuracy, inaccurate control, problems such as control errors and overshoot, and overly complex control
models are not suitable for actual engineering control.

Judging from the progress of theoretical research at present, although there are many types of
research on advanced HVAC system control technology [14,15], the control modes of building HVAC
systems presently have a great limitation both in control methods and controlled parameters. From the
control method point of view, PID control [16–18] is a kind of negative feedback control system,
which is widely used in the control of HVAC systems of public buildings by using the proportional
integral and differential method to calculate the control amount according to the system deviation.
For controlled objects with inherent nonlinearity and hysteresis characteristics [19] such as the HVAC
system, it is difficult to obtain an ideal PID control effect due to the uncertainty and time-varying
nature of external environmental disturbances. From the controlled parameters point of view, constant
pressure control [20] and constant temperature control [21,22] are widely applied. However, there are
significant drawbacks to the constant pressure difference and constant temperature difference control
of the air conditioning system. On one hand, for constant pressure difference control, there is no direct
relationship between the load and pressure difference of the HVAC system. It is not possible to use the
differential pressure as a controlled variable to ensure that the chilled water flow changes accurately
following the load change [23]. Moreover, the return temperature of the chilled water is inconsistent
with the water supply temperature due to the transmission delay of the HVAC system. It is unscientific
to adjust the chilled water flow rate according to the temperature difference between the supply and
return water detected at the same time as the controlled parameter. Therefore, the control mode based
on water supply temperature commonly used for HVAC systems is only applicable to controlled objects
or processes without time delay [24,25]. New control techniques and methods need to be adapted to
meet the actual needs of the stability and rapid response of the central air conditioning system.

Aiming at the problems existing in HVAC system control technologies, a load forecast fuzzy
control strategy was proposed. The predicted load obtained by the SVM method training is used as an
input parameter to the controller in advance for feedforward fuzzy control, which can regulate the
HVAC system in advance based on the forecast cooling load demand and overcome the shortcomings
of controlled parameters. In this study, a simulation platform was established for the heat pump system
in Tianjin University based on TRNSYS and MATLAB to confirm the advantages of the proposed LFF
control strategy.

2. Case Description

The proposed strategy was validated by an air-conditioning system in Tianjin University Laboratory.
The laboratory has two floors and a height of 9 m (see Figure 1). Temperature, humidity sensors,
and wind sensors were used for testing. The room temperature measuring point is installed 1 m from
the ground level. The central air conditioning system has an automatic platform for monitoring and
recording the operating parameters of the air conditioning system. In this case, there are two heat
units with a rated cooling capacity of 42 kW and two variable frequency water pumps with a rated
power of 3 kW.
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Figure 1. Lab Exterior View.

The actual operation strategy of the chilled water system is the supply water temperature control
strategy, as shown in Figure 2. When the water supply temperature is below the minimum temperature
(9 ◦C), units will be turned on one by one until the temperature rises to the maximum temperature
(11 ◦C). Conversely, when the water temperature is higher than the maximum temperature, units
will be turned off one by one until the water temperature is lowered to the minimum temperature.
In addition, the unit is equipped with a supercooling protection device, which will shut down all units
when the water supply temperature is lower than the minimum temperature for more than one minute.
However, in the SWT control strategy, the pump is not controlled.

Figure 2. The logic diagram of the supply water temperature (SWT) control strategy.

Another common control strategy is the room temperature fuzzy control strategy. As a feedback
control strategy, the control strategy blurs the indoor temperature and the time change rate of the
indoor temperature to solve the operation of the control equipment to ensure that the room temperature
is controlled at the set value [26]. The control logic diagram of RTF is shown in Figure 3.
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Figure 3. The logic diagram of the room temperature fuzzy (RTF) control strategy.

3. LFF Control Strategy

Control errors caused by system delay effects may cause adjustment effects to not be reflected in
time, resulting in greater overshoot and oscillation. This is a detrimental effect on the air conditioning
system control. The objective of the optimal control strategy is to solve the problem of time delay in control,
which provides the HVAC system with the capability to operate at relatively high efficiency and save
energy at various possible conditions in operation. The proposed LFF control strategy has the following
characteristics. The predicted load was obtained based on the SVM [27] method and the predicted load
was used as the input parameter of the feed-forward controller. The feed-forward controller can control the
HVAC system in advance to eliminate the impact of system time delay on the control of the air conditioning
system, and this advanced control time is the time delay of the chilled water transmission of the HVAC
system. The predicted load and the time of the advance input are used as input parameters for fuzzy
control to obtain control signals for the operation of the water pump and the unit. It is worth mentioning
that compared with the SWT control strategy, the LFF control strategy controls the unit while controlling
the operation mode of the pump. Compared with the feedback control strategy, the LFF control strategy is
load-based feedforward control, which ensures the directness and accuracy of the control.

The control logic diagram of the LFF control strategy is shown in Figure 4. As shown in Figure 4,
the cooling load was generated by the weather parameters acting on the building model. Based on the
SVM method, the cooling load was trained to obtain the predicted cooling load. The predicted cooling
load was applied to the fuzzy controller output control signal u to control the operation of the energy
system equipment in advance T.

 

Figure 4. The logic diagram of the load forecast fuzzy (LFF) control strategy.
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4. The Method of Control Optimizations

4.1. The Load Forecast Model Based on SVM

Key to the LFF control technology is the accurate input of the cooling load, which determines
the effect and quality of control. This paper firstly performs the load simulation calculation on the
building model based on TRNSYS, and then the load is predicted by using the support vector machines
(SVM) method for the calculated load. SVM is the technique to solve the classification and regression
problems [28]. Support vector regression (SVR) is a machine learning method based on statistical
learning theory [29].

Support vector machines have strong generalization ability and can effectively solve practical
problems such as nonlinearity and small samples. It mainly includes ε-SVR and υ-SVR models [30].
The ε-SVR method maps the input space from a low-dimensional feature space to a high-dimensional
feature space based on a nonlinear mapping function ϕ(x), and then uses Equation (1) to fit a
linear function.

f (x) = ωT × ϕ(x) + b (1)

In the SVM method, the parameters ω and b are determined using the minimum structural risk.
The insensitive loss function parameter ε is introduced to obtain optimization Equations (2)–(5) [31].

min
1
2
ωTω + C

∑n

i=1

(
ξi + ξ∗i

)
, (2)

The constraints are as follows:

s.t. yi − ωT × ϕ(xi) − b ≤ ε + ξi, (3)

ωT × ϕ(xi) + b − yi ≤ ε + ξ∗i , (4)

ξi ≥ 0, ξ∗i ≥ 0, i = 1, 2, . . . , n (5)

The SVM includes two parameters: the penalty parameter “C” as the intrinsic parameter of SVM
and the parameter γ in the kernel function. The penalty parameter “C” and the kernel function γ affect
the correlation between the complexity, stability, and vector of the model, respectively. A Gaussian
kernel function was introduced to represent the complex non-linear relationship between input and
output [32]. The Gaussian kernel function is as follows:

K
(
xi, xj

)
= exp

(
−γ‖xi − xj‖2

)
,γ > 0, (6)

The load of the building was simulated from 15th June to 15th September which is the actual
operation period in summer. The meteorological data used in this paper are those of a typical
meteorological year.

The flow chart of the SVM method is shown in Figure 5.

Figure 5. The flow chart of the support vector machines (SVM) method.
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The specific steps of load prediction based on the SVM method are as follows.

• The objective function of the support vector machine is established from the training samples.
The load calculated by the simulation and the corresponding dry bulb temperature (T, Th−1, Th−2,
Th−3) and wet bulb temperature (W, Wh−1) of the typical meteorological year are used as training
samples to establish the support vector machine objective function, where Th−1, Th−2 and Th−3
represent the dry bulb temperatures of 1 h, 2 h, and 3 h in advance and Wh−1 represents the wet
bulb temperature 1 h earlier.

• The optimal combination of key parameters of the SVM is determined via MATLAB program
calculations. The best combination of key parameters of the SVM is Best c = 14.4149, g = 0.7136.

• The optimal combination parameters are substituted into the SVM model to obtain its decision
regression model to obtain the predicted load. The annual (8760 h) maximum instantaneous
cooling load obtained by the SVM method is 68.6 kW.

4.2. The Calculation of Time Delay

The time delay of the system includes the heat transfer delay caused by the terminal equipment of
the air conditioning system and the time delay caused by the fluid flow of the air conditioning water
system. The air conditioning system, in this case, is a fan coil system, and the heat transfer from the
terminal to the air is accomplished by convection, which has a small time delay compared to the water
system flow and can be ignored [33]. Therefore, only the time delay caused by the flow of the air
conditioning water system is considered here.

The time delay of fluid flow, which is the time required for chilled water to flow from the outlet of
the air conditioning system to the most unfavorable terminal, can be calculated from the hydraulics of
the pipeline. Equation (7) is the ratio of branch pipe flow to total system flow under the assumption
that the flow rates at the respective terminal are the same.

xi =
mi
M

(7)

The system is assumed to have a total of n branches. The flow rate Vi of each section of the main
pipe can be calculated by Equation (8).

Vi =
i∑

j=1

xi ×
(

Dn

Di

)2
× Vn (8)

The time delay of each main pipe is calculated according to the ratio of the length of the main
pipe to the flow rate, which can be computed by Equation (9).

Ti =
Li
Vi

=
Li∑i

j=1 xi ×
(

Dn
Di

)2 × Vn

(9)

The sum of the time delay of the main sections is the time delay from the outlet of the chilled water
to the most unfavorable terminal. The total time delay is calculated as Equation (10). The calculation
results are shown in Table 1.

T =
n∑

i=1

Ti =
n∑

i=1

Li∑i
j=1 xi ×

(
Dn
Di

)2 × Vn

(10)

26



Energies 2020, 13, 530

Table 1. The theoretical calculation of the time delay caused by the flow.

i Li(m) Di(mm) xi Vi(m/s) Ti(s)

1 5.30 32 1/12 0.12 44.24
2 7.24 40 1/12 0.15 47.22
3 4.41 50 1/12 0.15 29.96
4 7.32 50 1/12 0.20 37.30
5 8.01 50 1/12 0.25 32.65
6 5.45 65 1/12 0.17 31.29
7 6.80 65 1/12 0.20 33.46
8 4.69 65 1/12 0.23 20.19
9 8.52 65 1/12 0.26 32.61

10 7.21 80 1/12 0.19 37.62
11 4.69 80 1/12 0.21 22.25
12 16.4 80 1/12 0.23 71.30

Total 440

4.3. Fuzzy Control Scheme

A two-dimensional fuzzy controller is established based on the fuzzy logic theory [34] and applied
to the HVAC automatic control system. The signal obtained by the sensor is compared with the set
value to obtain the deviation e and the deviation change rate ec, and then the deviation e and deviation
change rate ec are taken as two inputs of the fuzzy controller. The fuzzy quantization process is
performed to obtain the fuzzy variables E and EC. According to fuzzy rules, the fuzzy decision is
made to obtain a fuzzy control quantity U. Finally, the actual control output is obtained through the
defuzzification and the proportional transformation. For the LFF control strategy, the input of fuzzy
control is the cooling load demand. The difference between the input load and the set load is the
deviation e. The change rate of the load versus time is the deviation change rate ec. e and ec are the
double inputs of the fuzzy control system and the output value u is the pump speed control value.

The sub-fuzzy system was selected to represent the control level. As shown in Equations (11)–(13).

E(e)∈{NB, NM, NS, ZO, PS, PM, PB} (11)

EC(ec)∈{NB, NM, NS, ZO, PS, PM, PB} (12)

U(u)∈{NB, NM, NS, ZO, PS, PM, PB} (13)

E: The universe of E is {−6, −5, −4, −3, −2, −1, 0, 1, 2, 3, 4, 5, 6}. The minimum value of the load
is 0 kW and the maximum value is 68.6 kW. In order to convert e into the domain of E, we need to
multiply the coefficient ke. The value of ke is determined to be 0.175.

EC: The universe of EC is {−6, −5, −4, −3, −2, −1, 0, 1, 2, 3, 4, 5, 6}. The minimum value of load
change rate is −27.2 and the maximum value is 27.2. The universe [−6,6] that converts ec to EC needs
to be multiplied by the coefficient kec, the value of kec is determined to be 0.221.

U: The universe of u and U are both [0,1].
Fuzzy sets: Each input parameter is represented by a fuzzy set Ak with a membership function μ,

see Equations (14) and (15). The most commonly used triangular membership function was used in
this study [35].

Ak = {(i, μ(i)} (14)

μ(i)∈[0,1] (15)

4.4. Optimization of Pumps and Units Control

The control strategy of the pump is as follows: when the required flow of the system is less
than or equal to half of the maximum flow, one pump is individually frequency-controlled and the
other is not operated. If the required flow is greater than half of the maximum flow, one pump
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provides half the flow at full load and the other pump provides the remaining flow by frequency
conversion. Specific control strategies for pumps is shown in Table 2. The fuzzy control output value u
is between 0 and 1. The pump operates at a frequency and the operating frequency is proportional to
the control signal.

Table 2. Pump control strategy.

u Pump Control Method

0.0–0.2 Both pumps are off and the pump control signal is 0
0.2–0.5 One pump control signal is 0, the other pump control signal is 0.5 + u
0.5–1.0 One pump control signal is 1 and the other control signal is 2u − 1

In order to ensure the normal operation of the system, one unit is always running and the other
unit is controlled by the set start-stop time. The start and stop time means that the unit is turned on
within the set time, while the unit is turned off outside the set time. For example, a start-stop time of
0.5 means that the unit’s on-time and off-time are each half of the total operating time. The specific
operation control strategy of the unit is shown in Table 3.

Table 3. Heat units control strategy.

u Heat Units Control Method

0.00–0.50 One unit start-stop time ratio is 1, another unit start-stop time ratio is 0
0.50–0.66 One unit start-stop time ratio is 1, another unit start-stop time ratio is 0.17
0.66–0.75 One unit start-stop time ratio is 1, another unit start-stop time ratio is 0.33
0.75–0.80 One unit start-stop time ratio is 1, another unit start-stop time ratio is 0.50
0.80–1.00 Start and stop time rate of both units is 1

5. TRNSYS Simulation Platform

5.1. Establishment of the Simulation Platform

The construction of the test platform based on TRNSYS is shown in Figure 6. In this case,
the simulation time is from 15th June to 15th September of the typical meteorological year, for a total of
2231 h. The building is simulated by a single area building module (Type 12) in TRNSYS. A water-water
heat pump system is used in this case. Type 668 was selected as the water-water heat pump unit
module. The cooling transmission in the system is achieved by the variable speed pump module Type
110. In order to advance the predicted load in advance and consider the delay caused by the flow of the
central air conditioning chilled water system, the delay module (Type 93) is added to the test platform.
The model is closer to the actual system and lays the foundation for subsequent feedforward control.
In the test platform, the switch differential controller Type 2 and the Type 155 read the chilled water
supply temperature of the heat pump unit and collectively control the heat pump unit operation to
make it the same as the actual operation logic.
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Figure 6. TRNSYS simulation platform.

5.2. Verification of Simulation Platform

5.2.1. Indoor Temperature Validation Test

Based on the actual monitoring data, the weather data measured from 6th August to 11th August,
2017 were selected to verify the system simulation model. In order to reduce the influence of the initial
conditions on the simulation, the actual indoor temperature on 8th August when the system is on stable
operation is compared with the indoor simulated temperature with and without considering the delay
effect of the system respectively. The temperature comparison results are shown in Figure 7. It can be
seen from Figure 7 that the indoor temperature curve obtained by the simulation platform with delay
effect is basically consistent with the actual temperature curve during the period from 9 am to 8 pm.
The maximum temperature difference at a single point is 0.8 ◦C, and the average relative temperature
difference is 0.4 ◦C. However, there is a large deviation between the actual room temperature and the
indoor simulation temperature without considering the system delay effect. The maximum single
point temperature difference is 1.9 ◦C, and the average relative temperature difference is 1.1 ◦C. As a
result of this, in the simulation of the room temperature, the model considering the delay effect of the
system is more in line with the actual situation. In the period from 1 am to 9 am, the reason for the
error in the simulation result of the model considering the system delay effect is that the unit was set to
be completely closed when the chilled water outlet temperature is lower than 8 ◦C in the simulation
model in order to reduce the frequent oscillation of the system parameters during the simulation.
This will result in a lower temperature of the chilled water at night, which in turn will result in lower
room temperature. The simulated temperature from 4 pm to 7 pm is also low because the simplified
room model only considers the effect of outdoor temperature on the indoor load and does not consider
the effects of radiation. The indoor load was influenced by solar radiation and the heat storage effect of
the wall, which leads to increased room temperature.
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Figure 7. The temperature in three modes.

5.2.2. Heat Pump Unit and Pump Energy Consumption Validation Test

The energy consumption of the heat pump unit for the actual three hours based on the load rate
and power of the heat pump unit during three time periods were monitored and calculated, from
9:22 to 10:22 on 7th August, 15:03 to 16:03 on 8th August, and from 13:17 to 14:17 on 11th August.

As shown in Figure 8, within three test days, the energy consumption of the heat pump unit
under the consideration of time delay, without considering time delay, and actual control conditions
have been marked, which shows the comparison of energy consumption within 3 h for the model unit
considering the system delay effect, without considering the system delay effect, and the actual unit,
respectively. It can be seen that the relative errors of the total energy consumption of the actual unit
and the simulated total energy consumption of the unit with and without considering the system delay
effect are 4.0% and 14.4%. This shows that a system with a delay effect is more energy-efficient than
a system without a delay effect because the cooling load is input at an early time. From the above,
the simulated energy consumption of the heat pump unit considering the system delay effect is more
consistent with the actual energy consumption.

Figure 8. Comparison of simulated energy consumption and actual energy consumption of heat
pump units.

The two pumps have been operating at full load, with a rated power of each pump at 3 kW.
Therefore, the water pump energy consumption per hour is 6 kWh, and the actual total energy
consumption of the three-hour pump is 18 kWh. Figure 9 shows the comparison of the system with
and without the delay module, and the actual unit pumps energy consumption within three hours.
The relative error between the actual total pump energy consumption and the simulated total energy
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consumption of the pump considering the delay effect of the system is 0.2%, without considering the
delay effect of the system is 1.1%. The reason why the difference between both models is small is that
the pump operates at a fixed frequency. Since the pump runs at a fixed frequency, the control signal
cannot be controlled by the variable frequency like the control unit, and the energy consumption of the
pump can only be reduced by changing the start and stop time of the pump. Therefore, the energy
consumption of the system pump with or without delay effect is basically the same.

Figure 9. Comparison between simulated energy consumption and actual energy consumption of
water pumps.

6. Results and Discussion

Based on the test platform, the indoor temperature and total system energy consumption under
the three control strategies (LFF, RTF, and SWT) were simulated. The TRNSYS simulation platform of
the LFF control strategy is shown in Figure 10.

Figure 10. TRNSYS simulation platform of the LFF control strategy.

6.1. Simulation Results of Indoor Temperature

The room temperatures of the three control strategies were compared under both full-time
simulation and hottest day simulation conditions. The temperature results of LFF, RTF, and SWT
control strategies for the full-time simulation correspond to Figure 11a–c, respectively. As can be seen
from Figure 11, three control strategies can control the room temperature between 25 ◦C and 27 ◦C
when the air conditioning system is in operation. Indoor temperatures above 27 ◦C occur at night
when the outdoor temperature is high.
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Figure 11. (a) Room temperature simulation results under LFF control; (b) Room temperature simulation
results under RTF control; (c) Room temperature simulation results under SWT control.

During the entire simulation, the outdoor temperature was the highest on 19th June, so the
simulation results of 19th June were selected to analyze the indoor temperature control of the HVAC
system under the limit conditions. The room temperature comparison under different control strategies
on 19th June is shown in Figure 12.
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Figure 12. Comparison of room temperature under different control strategies on 19th June.

All three control strategies can control the room temperature within the operating period of the
air conditioning system between 25 ◦C and 27 ◦C. Three kinds of control of the temperature range are
acceptable. During the 0:00 to 7:00 and 20:00 to 23:00 periods which the air-conditioning chilled water
system is not in operation, the indoor room temperature under the three control strategies is almost the
same regardless of the trend or value. However, in the period of 7:00 to 20:00 when the air-conditioning
chilled water system is in operation, there are obvious differences in the indoor room temperature control
effect under the three control strategies. The room temperature under SWT control fluctuates the most.
The room temperature reaches a maximum of 27 ◦C at 10:00. At this time, the temperature of the external
wall will rise due to the increase of the outdoor temperature, thus making the indoor temperature rise.
The room temperature reached a minimum of 25 ◦C at 19:00 because the chilled water temperature of the
unit was turned off at 8 ◦C, which in turn caused the indoor temperature to drop. The room temperature
under the RTF control fluctuated relatively less with a fluctuation range of 25.4 ◦C and 26.8 ◦C. The RTF
control strategy is based on the indoor temperature as the control object, and the fuzzy temperature of the
set temperature range is solved to ensure the thermal comfort of the indoor temperature. However, with
the LFF control strategy of predictive load feed-forward control, the required load of the system is given
from the demand-side response, which can ensure that the system operating temperature just matches
the room temperature demand. Therefore, the room temperature fluctuation range under the LFF control
strategy is between 25.4 ◦C and 26.4 ◦C, and among the three control strategies, the temperature fluctuation
range is the smallest.

6.2. Simulation Results of Energy Consumption

The total hourly energy consumption of pumps and units under all three control strategies are
shown in Figure 13.

The comparison of energy consumption under the three control strategies for the system is shown
in Figure 14. It can be intuitively seen from Figure 14 that the LFF control strategy consumes the least
amount of energy, whether it is the total energy consumption of the system or the energy consumption
of the unit and the pump. The energy consumption of the system under the LFF control strategy is
the least because the system is controlled from the demand- side, the system is feed-forward input
according to the predicted load advance time delay, and the operation of the pumps and units is
fuzzy controlled. Demand-side control can fundamentally solve problems such as the mismatch
between system energy consumption and required cooling capacity, and avoid unnecessary startup
and overload operation of the unit. Compared with the LFF control strategy, the RTF control strategy,
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as a feedback control, has a significantly better control effect than the actual control strategy based
on the temperature difference between the supply and return water. However, due to problems such
as time delay in feedback control, it is impossible to determine the operation of the system from the
demand-side feedforward control, which will cause certain unnecessary energy loss in the system.
Table 4 shows the energy consumption comparison between LFF and the other two control strategies
(SWT, RTF), respectively. Compared to the SWT control strategy, the LFF control strategy has a heat
pump unit energy-saving rate of 14.5%, a pump energy-saving rate of 10.2%, and a total energy-saving
rate of 13.4%. Compared with the RTF control strategy, the LFF control strategy has a relatively low
energy-saving rate of 9.2%, 4.1%, and 7.8%, respectively.

 

Figure 13. The simulation results of energy consumption under three different control strategy.

Figure 14. Comparison of energy consumption under three conditions.
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Table 4. Comparison of energy-saving rates of LFF control strategies compared to the other two
control strategies.

Contrast
Item

Unit Energy Consumption
(kW·h)/Energy Saving Rate (%)

Pump Energy Consumption
(kW·h)/Energy Saving Rate (%)

Total Energy Consumption
(kW·h)/Energy Saving Rate (%)

LFF 4016 1740 5756
SWT 4713/14.5% 1937/10.2% 6650/13.4%
RTF 4425/9.2% 1815/4.1% 6240/7.8%

7. Conclusions

In order to solve the problem of time delay in the control process of the air conditioning system,
the LFF control strategy was developed. In this control strategy, the cooling load forecast is used as an
input parameter to regulate and control the air conditioning system in advance and ignore the problem
of parameter variation caused by time delay in the control process.

The energy performance under the LFF control strategy has been validated based on the actual
case built TRNSYS simulation platform. The results show that compared with the commonly used
feedback control strategy, the proposed effective control concept ensures indoor comfort and reduces
system energy consumption. Under the LFF control, the indoor temperature fluctuations are minimal
and the energy consumption under this control strategy is the lowest. Compared with the SWT and
RTF controls, the total energy consumption of the LFF control at full-time simulation was reduced by
13.4% and 7.8%, respectively.

However, the simulation analysis results of the energy-saving rate have some limitations.
By changing the simulation parameters, it can be found that the system energy-saving rate obtained by
the TRNSYS simulation platform is mainly affected by outdoor meteorological parameters and thermal
performance parameters of the building envelope. For different types of buildings and different
outdoor meteorological parameters, the system energy-saving rates simulated by the LFF control
strategy are often different.
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Nomenclature

LFF load forecast fuzzy
RTF room temperature fuzzy
SWT supply water temperature
SVM Support Vector Machines
SVR Support Vector Regression
C error cost
γ kernel parameter
mi the number of the terminal of the branch I of the air conditioning system
xi the ratio of the flow rate of each branch pipe to the total flow
Dn the inner diameter of the chilled water outlet pipe
Ti the delay time of each main pipe
NB negative large
NS negative small
PS positive small
PB positive large
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Ak fuzzy set
EC the change rate of the load versus time
ω weight vectors
ϕ(x) nonlinear mapping function
b threshold
(xm, ym) a pair of input and output vectors
n number of samples
ξi upper training error
ξ∗i lower training error
M the total number of the terminal of the air conditioning system
Di he inner diameter of each section of the main pipe
Vn he real-time flow rate of the chilled water outlet.
Li the length of each main pipe
NM medium
Z zero
PM medium
μ a membership function
E the difference between the input load and the set load
U Pump speed control
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Abstract: Control of energy systems in buildings is an area of expanding interest as the importance of
energy efficiency, occupant health, and comfort increases. The objective of this study was to demonstrate
the effectiveness of a novel predictive steady-state optimal control method in minimizing the economic
costs associated with operating a building. Specifically, the cost of utility consumption and the cost of
loss productivity due to occupant discomfort were minimized. This optimization was achieved through
the use of steady-state predictions and component level economic objective functions. Specific objective
functions were developed and linear models were identified from data collected from a building on
Texas A&M University’s campus. The building consists of multiple zones and is serviced by a variable
air volume, chilled water air handling unit. The proposed control method was then co-simulated
with MATLAB and EnergyPlus to capture effects across multiple time-scales. Simulation results
show improved comfort performance and decreased economic cost over the currently implemented
building control, minimizing productivity loss and utility consumption. The potential for more
serious consideration of the economic cost of occupant discomfort in building control design is also
discussed.

Keywords: energy optimization; steady-state control; building energy control system; comfort and
engineering; buidling simulation (EnergyPlus and MATLAB)

1. Introduction

Energy use and consumption of natural resources has become a pertinent concern for current
and future generations. In the U.S. alone, total energy consumption has tripled over the last 65 years
from 34.6 quadrillions Btus (quads) in 1950 to 101 quads in 2019 [1]. Of the energy consumed in the
U.S., non-renewable energies still represent nearly 90% of energy sources [2]. Many nations have put
forth specific renewable energy targets which aim to reduce dependence on non-renewable energies
and maintain a competitive edge in the global energy technology market. For example, the European
Union’s (EU) Renewable Energy Directive has established a goal of 20% final energy consumption
from renewable sources by 2020 [3]. The U.S. Department of Energy has set a goal of having 20%
electricity sourced from wind energy by the year 2030 [4]. While renewable sources are projected to
grow, reductions in energy usage can work to achieve these goals as well.

Delving into the energy consumption practices in the U.S., approximately 40% of all energy goes
to building operations in the commercial and residential sectors [5]. The data show that approximately
75% of the energy used in the building sector comes from fossil fuels. As a result, energy usage in
buildings account for 40% of the total U.S. carbon emissions [6]. Additionally, the buildings’ share
of U.S. energy consumption has increased from 34% in 1980 to 40% as of 2010, and is projected to
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continue in growth [7]. The commercial buildings sector accounts for half of this energy usage and is a
prime target for reduction.

Examining the top commercial site energy end uses reveals that space heating (27%), lighting
(14%), space cooling (10%), water heating (7%), and ventilation (6%) are responsible for 64% of energy
consumption [5]. These categories can be combined more generally to refer to services required mostly
when a building is occupied (space conditioning and lighting). Economically, utilities cost businesses
and building owners in the commercial sector $179.4 billion in 2010 [5]. The same five end uses listed
above account for the top five cost areas, further motivating the need for energy reduction technologies.

Advanced building controls is a major area of research seeking to reduce energy usage by improving
on the current practice of low-level controllers (proportional-integral or proportional-integral-derivative).
In some buildings, there may be supervisory control, but frequently the components and systems
operate independently and in a decentralized fashion. Because of the physically interconnected
and complex nature of building systems, this uncoordinated control can often lead to inefficiencies
where controllers compete with each other in achieving their desired outputs. To solve this issue,
many advanced control strategies have been proposed, with Model Predictive Control (MPC) being
a front-runner. A key part of MPC is the development of the objective function to be minimized.
Strategies thus far have targeted energy and cost reduction, but often do not optimize occupant
comfort and the associated economic impact of discomfort, accounting for occupant comfort using
limits of thresholds. Thus, the energy optimal solution results in the maximum tolerated occupant
discomfort. One exception included the cost of occupant discomfort as a portion of an employee’s
lost salary, as described in [8]. Such an objective function would enable the identification of possible
energy and cost savings, serving to guide building managers and researchers as to where their efforts
for increases in performance and efficiency should be focused.

This paper contributes a novel, scalable steady-state economic controller that accounts for both
the cost of utilities as well as the loss of productivity due to occupant discomfort. Detailed are the
development of a steady-state optimal control method based on data collected from a building on Texas
A&M University’s campus, the comparison of a simulated standard control implementation versus
the proposed supervisory controller, and a discussion of the impact of including the cost of occupant
discomfort in the control strategy. While the decision was made to focus on one building for this work,
the basic structure of the algorithm is scalable and enables the optimization of larger systems/buildings
that contain multiple chillers, AHUs, dozens of VAVs and hundreds of zones. Additionally, this work
tackles several practical challenges that are not often addressed in current literature, including
accounting for humidity as well as temperature issues as they relate to energy/comfort, having
a time-varying objective function that is updated based on current operating conditions, empirical fits
for component models to reflect the systems in an actual building, and switching models to capture
changes in system behavior due to mechanical limits. First, a background on recent efforts in control
of building energy systems is given, focusing on economic optimization. Then, information about the
building and development of the steady-state control method are given, followed by the simulation
methods. Simulation results are then presented, followed by a discussion of the importance of occupant
comfort in building control strategies. The paper ends with a discussion of the study’s outcome as
well as future work.

2. Background

Control of buildings presents several unique challenges, many of which arise form the interconnected
nature of building systems. For example, in a large building there may be multiple chillers that are used
to chill a secondary fluid, such as water. This chilled water is then pumped to various systems and
areas of buildings where heat exchangers in air handling units (AHUs) use the chilled water to cool and
dehumidify air streams. A network of fans and ducts then deliver the cooled air to the desired locations.
The flow of this cooled air into the zones can be controlled by variable air volume (VAV) units, in which
there may be another heat exchanger that utilizes heated water to warm the air, if necessary. The heated
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water for this process is provided by a different set of centralized pumps and heat exchangers. The zones
themselves are connected to one another, either by conduction through barriers or convection through
shared doorways/open spaces. All these interconnections and couplings result in coordinated control
problems.

Another difficulty comes from nonlinear dynamics evolving over multiple time scales across these
various building systems. While changes in damper position of a VAV or fan speed in an AHU are
relatively fast (on the order of seconds), changes in desired chilled water temperatures can take longer
(minutes), or changes in room air or wall temperature can be even slower (hours). There are also
slow, overarching changes to take into consideration such as the shift in solar loads as the sun moves
throughout the day, gradual changes in outdoor air temperature due to change in weather or seasons,
and the slow deterioration of equipment through use over time. These all contribute to shifting system
behaviors and disturbances that can cause undesired performance. There are also discrete changes
to take into account, such as whether an area/room is occupied, how many people are in the room,
opening and closing of windows or doors, or changes in real-time pricing of utilities. Furthermore,
the system sensors are distributed (not always equally), monitoring is performed centrally, and devices
are driven by localized controls. All of this occurs within constraints, either due to hardware limitations,
limited resources, or issues of health and comfort.

While the challenges of building control are numerous, one control method that has emerged
as a capable solution is model predictive control (MPC), also known as receding horizon control.
MPC has been chosen as the most appropriate control method in several building thermal control
research projects [9–11]. MPC predicts the change in dependent variables of a modeled system by
optimizing independent variables. Using the current state information, dynamic models of the system,
and an objective function, MPC will determine the changes in the independent variables that will
minimize the user-defined objective function while honoring given constraints on both dependent and
independent variables. Once this series of changes is determined, the controller will apply the first
determined control action, and then repeat the calculations for the next time step. Figure 1 displays
how a typical reference tracking MPC implementation would behave. It can be seen at time k that the
controller determines what the predicted output would be along with its optimal control trajectory.
After completing the computations, the control would be applied and the system would move on to
time k + 1, repeating the predictions and optimization with the new measurements. More details about
MPC can be found in [12].

MPC applications for buildings have been studied mostly in simulation [13–22], with a few
experimental efforts [9–11,23–25]. In simulation, MPC has been adapted for controlling building
systems such as floor heating [26], water heating [27], cooling [11], and ventilation [28], among others.
There is a large body of work on MPC in buildings, but what is not as clear is if full MPC is needed to
solve the challenges presented by controlling buildings. Thus, the research presented here proposes a
steady-state method that is inspired by previous MPC efforts.

For most reported applications of MPC for buildings, the cost takes the form of economic MPC
(E-MPC), where the objective function is a linear combination of the monetary cost of building energy
consumption [17]. In these applications when E-MPC is used, the amount of energy consumed is being
minimized, while authors occasionally account for occupant comfort limits through constraints on
the variables [13,15,17,18,20,23,24]. These proposed control strategies are able to respond to real-time
changes in utility pricing and optimize energy usage; however, occupant comfort becomes a second
priority with limits on the ranges of parameters such as temperature and lighting levels. These limits
ensure the controller does not drift too far from the user-defined comfort zone, but does not actually
optimize occupant comfort or the associated cost of discomfort. In fact, the energy optimal solution
generally maximizes discomfort within prescribed limits.
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Figure 1. How MPC, or receding horizon control, typically functions.

Some researchers have included comfort in the optimization beyond limits on parameters,
e.g., Corbin et al. [19] minimized the sum of electricity used by all HVAC equipment and a comfort
penalty. This comfort penalty was defined as an area-weighted sum of the number of zone occupied
hours outside of a predicted mean vote (PMV) threshold of ±0.5. PMV is an index that determines the
thermal comfort of an average individual dependent upon a variety of factors, including air temperature,
relative humidity, relative air velocity, metabolic rate, clothing insulation level, work output, and several
other variables [29]. While the researchers of [19] worked to optimize occupant comfort, they did so with
the focus of reducing the cost of energy usage, neglecting the economic cost associated with occupant
comfort and productivity.

The authors of [21] also included a discomfort cost with their monetary energy cost that was
based on different lower and upper thermal limits; however, the physical meaning of this discomfort
cost is arbitrary as the cost increases to unity until the temperature limits are exceeded and then
becomes significantly large, not following any physical or measured relationship. The cost function
in [22] included regulation of occupant comfort based on PMV, though it took the quadratic cost
form, with the first term being the difference between the predicted PMV of the zone and the PMV
setpoint for the zone, quantity squared, multiplied by a weighting factor. The second term consisted of
the square of the change in control action, or increment, multiplied by a weighting factor. With this
form, the MPC will balance maintaining the desired zone PMV while limiting large control action
rates, specifically changes in water flow and air velocity. This will help keep occupants comfortable
but the economic cost of the control actions is not accounted for. Morosan et al. [16] used a linear
objective function that penalized the error between the predicted room temperature and the future
room temperature reference as well as the energy usage to condition the room. In their efforts, comfort
is accounted for as a comfort index that acts as a penalty when the room temperature does not meet its
setpoint. However, in the presented simulations, the temperature setpoints are arbitrarily chosen and
not dependent on any comfort information. Additionally, this method, similar to the previous ones
mentioned, does not account for the economic aspect of occupant comfort.

One objective function from the literature that appears more unique than others appeared in [25].
This objective function consisted of three different linear terms: (1) a weighting coefficient multiplied
by the predicted percentage of dissatisfied (PPD) people, which PPD can be calculated from PMV;
(2) a weighting coefficient multiplied by the summation of cost of energy consumed by the heating
and cooling devices; and (3) a weighting coefficient multiplied by the summation of the green house
gas intensities of the various energy sources (electricity and natural gas). This objective function
displays the power of MPC to determine optimal control actions with respect to a user’s desired
metrics, in this case occupant comfort, monetary cost of energy, and environmental impact of energy
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sources. While providing great flexibility in allowing the building operator to prioritize the three
metrics with the weighting factors, the respective economic impact of the three areas is not represented
in the objective function due to differing units and arbitrary weights.

Overall, previous methods have accounted for the economic cost of energy usage and/or
attempted to maintain occupant comfort through optimization constraints or optimizing comfort
itself, but none have accounted for the economic aspect of comfort on occupant productivity alongside
utility costs. Additionally, it is unknown whether comparable results can be achieved with less
computational burden by using a steady-state predictive model as opposed to a full dynamic MPC
solution. This research effort aimed to develop a novel supervisory control method that optimizes a
building’s economic cost, due to both the consumption of utilities and the economic cost of loss of
productivity due to occupant discomfort. This control method emulates MPC in that it uses models
to predict the system’s behavior at steady-state, such as was done by Elliott and Rasmussen [30].
The focus of this paper is on the development of the economic costs of the system, while a full MPC
implementation will be completed in future work. Through analysis of the performance of this control
method, the authors intend to identify areas having the most potential for savings and guide the
priorities of building managers and researchers for future work.

3. Development of Economic Objective Function for Advanced Building Systems Control

Considering the literature and previous works, a general component-level objective function of
the form shown in Equation (1) was chosen. The quadratic terms (first and third) were included to
allow for standard convex optimization when desired, where e represents the error for the system,
Q the weighting placed upon the error, u the control action, and S the weighting placed on control
action. The linear terms (second and fourth) were included to facilitate calculating cost purely in
economic terms (dollars), as opposed to nonsensical units such as dollars squared. R and T can
be formulated in such a manner to transform e and u into economic cost. This is demonstrated in
subsequent sections using a specific building at Texas A&M’s campus as a case study.

Jcomponent = eTQe + eT R + uTSu + uTT (1)

3.1. Building Configuration

For operating a typical building, there are economic costs associated with electrical cost, thermal
costs, and comfort/productivity costs. The electrical costs can stem from running equipment such
as electric motors in AHU fans, or from reheating air at local VAVs before it enters a zone. Thermal
costs can occur from site-wide chillers that produce chilled water used to cool the air locally in
buildings. Of course, comfort/productivity costs come from the thermal discomfort of the occupants.
These costs exists across a wide selection of buildings/situations and can be accommodated by the
general cost function above. To provide a more detailed understanding of how to derive the costs for a
specific building, as well as how to construct/apply the proposed steady-state method, a case study is
presented focused on a specific building, as detailed below.

Working with the Utilities Energy Management (UEM) Office at Texas A&M University, limited
access was granted to the Utilities Business Office (UBO) for the purpose of collecting data and future
implementation of advanced controllers. Individual component objective functions were developed
for specific equipment in the UBO; however, the UBO represents a typical office building and thus the
work can be generalized to other commercial buildings. What follows is a description of the UBO and
its behavior to inform the development of the component objective functions.

The UBO is a rectangular, single-story building consisting of 11 zones, 10 of which are actively
controlled. The general layout can be seen in Figure 2, with the thermostats shown as white boxes and
the approximate locations of the VAVs shown as blue boxes. In this initial development, the decision
was made to focus solely on the cooling aspects of the system because: (1) the majority of the year is
spent cooling due to the location and climate of the building; and (2) simplified operating conditions
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will help to validate the developed control strategy in its initial implementation. The process flow and
current control structure is displayed in Figure 3. The rest of this section details each of the subsystems
and currently implemented controls.

Figure 2. Zone layout for the Utilities Business Office (UBO) at Texas A&M University.

Figure 3. Process flow and current control implementation for the UBO.
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3.1.1. Rooftop Air Handling Units

Most commercial buildings are serviced by rooftop air handling units (AHUs). These AHUs serve
to condition a combination of indoor air and outdoor air to meet the comfort/health requirements
in one or multiple zones. In the presented case study, the UBO is serviced by a single rooftop AHU.
The AHU consists of a variable air volume (VAV) fan, a chilled water coil, an outdoor air damper, a return
air damper, a discharge air temperature sensor, and an end static pressure sensor. The organization
of these components can be seen in Figure 4. During normal operation, the VAV fan is driven by
a Proportional-Integral-Derivative (PID) loop to maintain an end static pressure setpoint given by a
supervisory Proportional-Integral (PI) controller (see Figure 3 and Table 1). This PI controller’s feedback
signal is a pressure demand calculation dependent upon the individual damper positions of the zone
terminal boxes. This calculation is given by Equation (2).

DEDS =
1
n

n

∑
i=1

udmpr,i · 0.4 + max(udmpr,i) · 0.6 (2)

where DEDS is the end-static pressure demand, n = 10 is the number of individual dampers, and udmpr
is the damper position. The end-static pressure demand setpoint for this supervisory PI controller
stays constant at 60 (unitless) and was set during tuning by the building technicians.

Figure 4. Rooftop Air Handling Unit (AHU) for the Utilities Business Office (UBO) at Texas A&M University.

Table 1. Specifications for control loops in the UBO.

Controller Reference Feedback Output KP KI KD

Supervisory Controller #1 D∗
EDS DEDS P∗

EDS 12 0.1 0
Fan Speed Controller P∗

EDS PEDS ω f an 0.5 0.15 0.1
Supervisory Controller #2 D∗

CLG DCLG T∗
DA 12 0.01 2000

Chilled Water Valve Controller T∗
DA TDA uCHW 20 1 10

Supervisory Controller #3 Deadband Controller N/A
Damper Controller T∗

zone Tzone udmpr Set by Manufacturer

3.1.2. Chilled Water Production

In many sites, chilled water is produced at a central location and used for conditioning the air in
local buildings. There is a cost associated with the production of this chilled water, and it is important
to capture in an economic control method. In the presented case study, chilled water provided by the
central plant is passed through the UBO’s AHU chilled water coil to lower the temperature of the
moving air as well as reduce the air’s humidity. The amount of chilled water passing through the
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coil is controlled by a valve which is actuated by a PID control loop. This control loop is driven by a
difference in a discharge air temperature setpoint and the discharge air temperature. The discharge air
temperature setpoint is the output of a supervisory PID control loop (see Figure 3 and Table 1) that is
trying to maintain a cooling demand setpoint. A cooling demand calculation supplies the feedback
signal for this supervisory controller that is a weighted combination of the average and maximum
cooling loopout values from the individual zone control loops.

Figure 5 details the chilled water loop. A chilled water pump works to maintain a specific supply
pressure to provide the required chilled water flow for the AHU. The chilled water supply and return
temperatures are available to measure within the energy management system.

Figure 5. Chilled water loop for the Utilities Business Office (UBO) at Texas A&M University.

3.1.3. Conditioned Zones in Buildings

Zones within buildings can consist of one or multiple rooms, and can be serviced by one or multiple
pieces of equipment. Frequently, zones in commercial buildings are assigned a VAV terminal box or
damper that regulates the amount of conditioned air that is introduced to that space. There is typically a
thermostat placed in the zone to provide feedback for the zone controller to regulate temperature.

As described above, the UBO consists of 11 zones, 10 of which are actively controlled. Each controllable
zone is serviced by a VAV terminal box equipped with hot water reheat capabilities, an example of
which is shown in Figure 6. The flow of conditioned air into the room is regulated by a damper in
the terminal box whose position is determined by a PID control loop. The error signal for the control
loop is the difference between the respective room temperature setpoint and the measured room
temperature while the output is the damper position (see Table 1). The room temperature setpoint is
determined by whether the room is occupied or unoccupied and if the zone is in heating or cooling
mode. A supervisory deadband control method (see Figure 3) is employed such that if the room is
occupied, the zone VAV will heat the room to 70 °F or cool the room to 74 °F. If the room is unoccupied,
the VAV will heat the room to 60 °F or cool the room to 85 °F. If the occupancy sensors in all the rooms
read unoccupied, then the main AHU will turn off and the room temperatures will freely fluctuate.
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Figure 6. Variable Air Volume (VAV) box in the Utilities Business Office (UBO) at Texas A&M University.

3.2. Economic Cost of Operating Equipment

Having described the existing equipment and controls, the following sections will outline the
economic cost functions for said equipment, particularly an AHU and individual zones. Examining a
typical AHU, two sources of economic cost become apparent: (1) the cost of electricity used by the
AHU fan to move the air; and (2) the cost associated with the production of chilled water for cooling of
the air. At the zone level, there is usually no building equipment that consumes a significant amount
of power or resources (when considering cooling only applications; VAVs with local reheat would be a
different situation). For example, the damper in a VAV terminal box is the only actuated component
and the power required to move it is negligible.

For the presented case study, an economic objective function that minimizes the cost of occupant
discomfort as a measure of the loss of productivity at the zone level was developed. As mentioned in
the Background Section, select previous building energy optimizations have included some form of
occupant comfort, whether simply as constraints on the optimization or as a measure to be minimized;
however, to the knowledge of the authors, no previously simulated or implemented building energy
optimization has considered the economic cost of occupant comfort. The following sections detail the
development of these objective functions.

3.2.1. AHU Fan Economic Objective Function Development

As described above, the fan in an AHU works to maintain an end static pressure in the duct
to move the required amount of air to condition the individual zones. To accomplish this, the fan
motor requires electricity and there is a cost associated with the power used. A simple way to measure
the power consumed by a fan motor would be to use a power meter on the electrical lines to the fan
and measure the power consumed; however, power meters are not often included on individual fans
within existing building energy systems. Therefore, for the presented case study of the UBO, the power
consumed by the fan was instead determined by other available data. Specifically, the change in
pressure across the fan and the volume flow rate of air were used. With these two values, the work
being performed by the fan on the air can be estimated and converted into a measure of power.
The equation for work performed by a fan is given in Equation (3):

Pf an = 0.1175 · qAHU · ΔP
μ f · μb · μm

(3)

where Pf an is the power consumed by the fan [W], 0.1175 is a conversion factor for imperial units,
qAHU is the air flow rate through the AHU [cfm], ΔP is the change in pressure across the fan [in.
H2O], and μ f , μb, and μm are efficiencies for the fan blade, the fan belt, and the fan motor, respectively.
The efficiencies were all assumed to be 0.9 based on comparable values to reflect some degradation
from the ideal efficiencies of new/perfectly tuned equipment. The change in pressure across the fan
was taken from the end static pressure sensor in the AHU. As for the volume flow rate, the flow rate

47



Energies 2020, 13, 2922

meters included in each of the VAVs were used in summation to calculate the total air flow rate through
the AHU, assuming minimal duct losses and leaks.

The most appropriate control action u for the AHU fan objective function would be the end
static pressure setpoint. Assuming the local PID controllers have zero steady state error and sample
significantly faster than the new supervisory controller, a reasonable assumption can be made that the
end static pressure will equal the end static pressure setpoint. As such, assuming an electric utility rate
of $0.12 per kWh, the fan power cost can be calculated as:

J f an =
0.1175
1000

· Celec · qAHU · P∗
EDS · ts

μ f · μb · μm
(4)

where Celec is the rate of electricity cost [$/kWh], P∗
EDS [in. H2O] is the end static pressure setpoint,

and ts [hr] is the sampling time of the supervisory controller. Reformulating Equation (4) to fit
Equation (1) gives:

J f an = eTQe + eT R + uTSu + uTT

Q = 0 R = 0 S = 0

u = P∗
EDS

T =
0.1175 · Celec · qAHU · ts

1000 · μ f · μb · μm
,

(5)

thus establishing an objective function that can minimize the cost of electricity used by the AHU’s VAV
fan by optimizing the end static pressure setpoint.

3.2.2. AHU Chilled Water Economic Objective Function Development

As described in the building operation details, chilled water is used in the AHU to condition
the zone supply air. If specific details about the chiller are known, the consumption of power can
be calculated and then used to determine the cost of producing said chilled water. In the case study,
utility usage data were leveraged to determine this cost. The UEM Office at Texas A&M University
maintains utility usage data, specifically the cost per unit of energy of the respective utility. For chilled
water, this is the dollar cost associated with producing one mmBtu of chilled water at the campus wide
chilled water temperature of 45 °F. In the AHU, the discharge air temperature setpoint is tracked by a
PID loop that actuates the valve metering how much chilled water flows through the chilled water coil.
The energy associated with chilled water usage can be determined by Equation (6):

Q̇ = ṁ · c · ΔT (6)

where Q̇ is the rate of change of heat, or energy, ṁ is the mass flow rate, c is the specific heat of the
respective fluid, and ΔT is the change in temperature of the fluid. If a mass flow rate sensor is available
on the AHU for the chilled water, then this measurement can be used to calculate the rate of change of
energy of the chilled water and thus the overall cost; however, mass flow rate sensors are not usually
installed on chilled water lines at the AHU level. If this is the case, then a volume flow rate can be
used such that:

ṁ = ρ · q (7)

where ρ is the density of water and q is the volume flow rate. With the UBO, the maximum flow rate
through the chilled water valve was determined to be 3.41e−3 m3/s (54.05 gal/min). Assuming a
linear valve/flow relationship, the chilled water valve position multiplied by the maximum possible
flow will give the current volume flow rate of the chilled water. Using data values for the discharge
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air temperature setpoint and the chilled water valve position, a fit was generated to transform the
setpoint to a valve position [31]. Combining the relationships gives Equation (8)

JCHW = α · qmax · ρ · c · ΔTh2o · ts · 0.00341214 · 3682
241

α =
(

3.021T∗2
DA − 109.4T∗

DA + 1002
) (8)

where α is the fitted relationship between the discharge air temperature setpoint (T∗
DA [◦C]) and the

chilled water valve position [%], qmax [m3/s] is the maximum flow through the valve (at 100% opening),
ρ [kg/m3] is the density of water, c [kJ/kg ◦C] is the specific heat of water, ΔTh2o [◦C] is the change
in temperature of the supply and return chilled water, ts [h] is the sample time of the supervisory
controller, 0.00341214 [mmBtu/kWh] is a conversion factor from kWh to mmBtu, and the last term
is the economic cost for the UBO of the consumed chilled water. Reformulating Equation (8) to fit
Equation (1), where u equals the discharge air temperature setpoint, gives:

JCHW = eTQe + eT R + uTSu + uTT

Q = 0 R = 0 S = 0

u = α =
(

3.021 · T∗2
DA − 109.4 · T∗

DA + 1002
)

T = qmax · ρ · c · ΔTh2o · ts · 0.00341214 · 3682
241

(9)

where the linear cost term uTT is equal to Equation (8). This result actually lends itself well to traditional
convex optimization of the setpoint T∗

DA, due to the quadratic nature of the fit.

3.2.3. Zone Occupant Comfort Economic Objective Function Development

To measure an occupants level of discomfort, many have relied on the use of predicted mean
vote (PMV), developed by Fanger in the 1970s [29]. PMV is a measure on the American Society of
Heating, Refrigeration, and Air-Conditioning Engineers (ASHRAE) thermal sensation scale of −3 to
3, where negative numbers represent being too cold, positive numbers represents being too warm,
and a value of zero represents being comfortable. Performing a large study of people, Fanger collected
data regarding occupants votes and created an equation to determine the PMV across a variety of
environmental factors. These factors include air temperature, air relative humidity, relative air speed,
mean radiant temperature, an occupant’s insulation level due to clothing, an occupant’s metabolic
rate, and an occupant’s work output, among several other variables. The details of the equation can be
found in [29]. From PMV, Fanger determined the Predicted Percentage of Dissatisfied (PPD) of people.
The relationship of PPD to PMV can be seen in Figure 7a.
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(a)

(b)
Figure 7. Curves used in the zone occupant comfort economic objective function development.
These equations/relationships and their values are defined in [29,32]. (a) Relationship between PPD
and PMV as calculated in Fanger [29]. (b) Shape of Loss Of Productivity function as calculated in [32].

One can see that at −3 and 3 PMV approximately 100% of the population would be dissatisfied.
Of note is that, even at 0 PMV, 5% of the population, on average, will still be dissatisfied, attesting to
the fact that each individual has specific preferences. While PMV determines how many people will be
dissatisfied, a relationship to tie this to an economic cost is still needed.

Fortunately, researchers have investigated the effect of occupant comfort on worker productivity,
as mentioned in the literature review. One effort in particular tied PMV to a measure of Loss of Productivity
(LOP) [%]. By using regression analysis, a direct relation can be calculated between a worker’s loss of
performance and the PMV of an indoor climate by including the calculations of equivalent thermal
situations from Gagge’s two-layer human model [33] and Fanger’s comfort equation [29]. For a detailed
explanation of the relationship, see [32]. The results of Roelofsen’s work [32] are two sets of coefficients
for a regression fit for the cold side of the PMV comfort zone and for the warm side of the PMV comfort
zone. The regression is the sixth-order fit shown in Equation (10):

LOP = c0 + c1PMV + c2PMV2 + c3PMV3 + c4PMV4 + c5PMV5 + c6PMV6 (10)

where LOP is the loss of productivity and c0, . . . , c6 are the regression coefficients. The value of the
Roelofsen’s coefficients are repeated in Table 2, for reference. Roelofsen constructed the regression
on the cold side to be zero at −0.5 PMV and for the warm side to be zero at 0 PMV, leaving a region
between −0.5 and 0 PMV where LOP is zero. This bias is because several studies found a region of
conditions near and below 0 PMV that had a negligible effect on productivity. Figure 7b shows the
change in LOP as PMV varies.
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Table 2. Regressions for loss of productivity fit of PMV; values presented in [32].

Regression Cold Side of Warm Side of
Coefficients PMV Comfort Zone PMV Comfort Zone

c0 1.2802070 −0.15397397
c1 15.995451 3.8820297
c2 31.507402 25.176447
c3 11.754937 −26.641366
c4 1.4737526 13.110120
c5 0.0000000 −3.1296854
c6 0.0000000 0.29260920

To connect LOP to an economic cost, a multiplication of the lost productivity percentage by the
amount of salary an employee earns over the sample period can be used, as shown in Equation (11):

β = LOP ·
(

pyear · ts

52 · 40

)
(11)

where β [$] is the lost productivity in wages, pyear [$] is the annual salary for the zone, and ts [h] is the
sampling time. A 40-h work week for the entire year was used as a conservative assumption. In reality,
there will be some variation due to holidays, vacation, and overtime.

Considering the individual zones in the presented case study with respect to Equation (1), it is
noted that, while there is no control action u at the zone level that consumes energy, there is an error
signal present. That is the error e in Equation (1), which is given by:

e = Tzone − T∗
zone (12)

where Tzone and T∗
zone are the zone temperature and zone temperature setpoint, respectively. The error

is defined in this manner as this publication focuses on the systems when in cooling mode; thus,
the error will be mostly positive during cooling mode. If the zone were in heating mode, the sign of the
error term would need to reversed. Recognizing that the zone temperature setpoint can be optimized
by the supervisory controller to minimize the LOP by optimizing the zone’s PMV, and that the error
signal is a difference of temperatures, the sensitivities of the above relationships can be determined
and combined to give an economic objective function.

In determining PMV, only the zone air temperature and zone air relative humidity are changing.
As such, a fit of the PMV equation was created and used to reduce computation time and complexity.
A metabolic rate of 70 [W/m2], a clothing insulation factor of 0.75 [m2K/W], and a relative air velocity
of 0.2 [m/s] were assumed. Additionally, the mean radiant temperature was assumed to be equal to
the zone air temperature. The fit is defined as:

PMV = 0.5542 · Rhzone + 0.23 · Tzone − 5.44 (13)

where Rhzone [%] is the relative humidity of the zone and Tzone [◦C] is the zone air temperature.
Equation (13) is used to determine the sensitivity of PMV to changes in air temperature. The resulting
combination of sensitivities is shown in Equation (14):

Jroom = eTQe + eT R + uTSu + uTT

Q = 0 S = 0 T = 0

R =

[
∂PMV

∂Ta

]
·
[

∂LOP
∂PMV

]
·
[

∂β

∂LOP

] (14)

where the sensitivities are determined to be:
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[
∂PMV

∂Ta

]
= 0.23 (15)

[
∂LOP
∂PMV

]
= c1 + 2c2PMV + 3c3PMV2 + 4c4PMV3 + 5c5PMV4 + 6c6PMV5 (16)

[
∂β

∂LOP

]
=

(
pyear · ts

52wks · 40hrs

)
. (17)

The cost calculation assumes that, if more than one occupant is in a zone, the sum of the occupant’s
salaries is used for pyear. For Equation (16), the coefficients are as described in Table 2. If the zone’s
PMV falls within the range of −0.5 to 0, then Equation (16) is equal to zero. The overall trend of the
objective function as the zone air temperature varies is shown in Figure 8. The abrupt changes occur at
the PMV values of −0.5 and 0, due to the fit of the LOP equation.

Figure 8. The change in objective cost of the loss of productivity due to discomfort due to changes in
zone air temperature during a 15 min period.

This curve will shift depending on other variables in the objective function that are varied,
such as annual salary and relative humidity of the zone. In addition, depending on the value of
the user-defined setpoint, the objective cost can become negative. This does not mean that the zone
is earning money, but occurs because of the structure of the objective function. An optimization
competition can occur between the error term and the coefficient R. As the error is defined as the
difference in the zone temperature and zone temperature setpoint, the objective cost will be zero when
the zone reaches this defined setpoint; however, if this setpoint is not equal to the optimal comfort
temperature, as determined by the PMV function, then the objective cost will also be zero if the zone
air temperature is equal to the optimal comfort temperature.

This behavior presents an interesting control question. To operate at the most cost effective
point, as defined by the objective function, would require that the zone temperature setpoint be set
to the PMV optimal temperature, but, in doing so, the ability for occupants or building managers
to provide the system feedback about their comfort is removed. Thus, which is more important:
the ability for occupants to choose their zone temperatures or allowing the system to determine what
is best for the occupants? This question deserves additional investigation but is beyond the scope
of this publication. Fortunately, with this objective function, the system will propose a compromise:
a temperature between the user-defined setpoint and the PMV optimal comfort temperature.

For a centralized implementation, the objective function then becomes:

Jtotal = J f an + JCHW +
n

∑
i=1

Jzone,i (18)
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where n is the number of zones in the system. Equation (18) is the system objective function that will
be minimized in the optimization.

4. Simulation Design

A model of the UBO was first created with the aid of SketchUp [34], a 3D modeling software.
Using dimensions taken from the building, the single story layout was replicated. Utilizing the plug-in
from OpenStudio, thermal zones, boundaries, and interactions were defined. This model was then
exported as an input file (IDF) for EnergyPlus [35], an open-source energy simulation program that
has been developed by the Building Technologies Office (BTO) under the U.S. Department of Energy
(DOE). Using EnergyPlus, HVAC equipment was added to the model based on the equipment present
in the UBO. While EnergyPlus excels at modeling and simulation, it is not immediately accessible
for controller development and implementation. As such, controllers for the AHU and the zone
level VAVs were created in MATLAB. To enable co-simulation between EnergyPlus and MATLAB,
two programs were used. The first was MLE+ [36], an open-source MATLAB toolbox for creating the
necessary configuration files and providing functions to connect EnergyPlus and MATLAB with an
easy-to-use graphical interface. MLE+ utilizes the Building Controls Virtual Test Bed (BCVTB) [37]
as the communication backend between EnergyPlus and MATLAB, providing the co-simulation
functionality.

The individual zones of the model were setup as defined in the building layout and exterior doors
and windows were placed as accurately as possible. The AHU and zone VAVs were added using
EnergyPlus’ HVACTemplate objects. A central electric chiller was also added to supply chilled water
to the AHU. The chilled water output temperature is regulated to 45 °F, the same as the supply chilled
water temperature for the UBO.

Currently, EnergyPlus does not offer modeling of pressure with variable air volume systems,
thus another solution was necessary to simulate the UBO’s control and physical limitations of end
static pressure and flow in the AHU. To accomplish this, the authors assumed that the dynamics
of the fan speed and end static pressure were fast enough compared to the simulation timestep
(1 min) to be considered instantaneous. Additionally, the assumption that the fan would supply
the requested end static pressure, constrained by the physical limitations of the AHU and ducting,
was made. To determine this constraint, data from the real UBO building were analyzed and a
maximum possible work performed by the fan was calculated (910 W). During the optimizations,
the constraint is calculated by using Equation (19).

To determine the total volume flow through the AHU, individual models of the zone VAVs were
generated from data based on VAV damper position and end static pressure. The effect of outdoor air
temperature was also considered on the VAVs as the AHU draws in outdoor air, but was shown to
be minimal. This is most likely due to the fact that AHU is able to meet its discharge air temperature
setpoint, even at varying flows, effectively isolating the VAV supply air from the outdoor air conditions.
The flows from the VAV models are summed to obtain the total flow through the AHU, assuming
minimal duct losses. The constraint can be written as:

910 ≥ 0.1175 · qAHU · PEDS
μ f · μb · μm

(19)

Thus, the optimization will only ever choose an end static pressure setpoint that is physically
achievable by the system. This end static pressure is then passed to the VAV models which, along with
the commanded damper positions, produce individual zone air volume flows.

The overall control hierarchy can be seen in Figure 9. The supervisory controller supplies the
zone temperature setpoints (T∗

ZONES) to the respective PID reference inputs and the end static pressure
setpoint (P∗

EDS) to the VAV models. The discharge air temperature setpoint (T∗
AHU) is supplied directly

to EnergyPlus as the control for the chilled water valve is implemented using an appropriate setpoint
manager within EnergyPlus. The zone temperature error is fed to the cooling PID controller which
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outputs a desired percentage of maximum flow setting (0–100%). If the minimum flow setting for a
zone is zero, then the signal remains unchanged. The desired flow percentage is then passed to the
flow PID controller which then produces a desired damper position. This damper position is used in
the VAV models as previously described. The outputs from the VAV models, desired zone air volume
flows, are converted to air flow fractions and then sent to zone VAVs in EnergyPlus where the room
dynamics are simulated for one timestep.

Figure 9. Control hierarchy used in simulation of the UBO.

For the supervisory controllers, a prediction model is necessary to determine the future zone
temperatures as the setpoints are optimized. A previously developed modeling algorithm was employed
to generate models for the individual zones [38]. One of the main reasons this algorithm was chosen
is because of its ease in producing models, requiring the user to only select input and output data.
The full details of this process are beyond the scope of this publication, but more information can
be found in [38]. Briefly, data from the EnergyPlus simulation are analyzed to develop discrete,
linear models of the selected parameters. These models take the form of:

xi(k + 1) = Aixi(k) + Biui(k) + Kiei(k)

yi(k) = Cixi(k)
(20)

where A, B, C, and K are the identified system matrices, u is the model input vector, y is the predicted
output, and e is the error defined as the difference between the current value and the previous predicted
value. The algorithm automatically identifies significant coupling interactions between zones and
includes the respective zone temperatures (Tzone dist.,j) as measured disturbances. In addition to the
temperature of these disturbance zones, other parameters such as outdoor air temperature (TOA),
outdoor air relative humidity (RhOA), AHU discharge air temperature (TAHU), end static pressure
(PEDS), and zone temperature setpoints (T∗

zone,i) are used as inputs to ARX, ARMAX, Output Error,
and Box-Jenkins modeling methods with the output being the respective zone temperatures (Tzone,i).
The best fitting model is selected and then the individual models are combined into a centralized
model of the entire system. Steady-state predictions from this centralized model are then used by
the supervisory controller to optimize the UBO’s 12 setpoints (discharge air temperature setpoint,
end static pressure setpoint, and 10 zone temperature setpoints) to minimize the economic cost
functions previously described. The optimization occurs every 15 min with the R, S, and T matrices
updating based on current operating conditions to reflect the time varying nature of the system
dynamics.

Steady-state relationships were chosen over dynamic relationships for the initial implementation
and validation of the proposed economic objective function strategy. This choice takes advantage
of the fact that in the building energy systems, the control variable’s dynamics (AHU discharge air
temperature, end static pressure, VAV damper position) change quickly versus the other system
variables (outdoor air temperature, outdoor relative humidity, room temperature), which change
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relatively slowly over the optimized timestep. The exact model inputs and outputs are shown in
Table 3.

Table 3. Inputs and outputs for the generated zone models.

Model Input Model Output

TOA
RhOA
T∗

zone,i Tzone,i
T∗

AHU
P∗

EDS
Tzone dist.,j − Tzone,i

Models were identified for two operational cases: (1) where the zone VAV damper still had
actuator range (i.e. the damper was not fully open); and (2) where the zone VAV damper is fully open.
The separate models were necessary as the effect of the model inputs varies greatly between the two
cases. In Case 1, the effect of T∗

AHU and P∗
EDS are minimal compared to T∗

zone,i. This is due to the fact
that the VAV damper is actuated by a PID controller with T∗

zone,i as the reference. The PID controller is
able to reject changes in T∗

AHU and P∗
EDS by changing the damper position to achieve T∗

zone,i. However,
in Case 2, when the damper is fully open, T∗

AHU and P∗
EDS become the inputs of significance as they

directly effect the zone temperature, determining the amount and the temperature of the incoming
conditioned air.

A decision process was necessary to determine when each model should be used. This decision
was made based off of two conditions. The first determined if the predicted zone temperature using
the Case 1 models was greater than the prediction from the Case 2 models. This condition served to
verify whether the predicted temperature from the Case 1 models was currently achievable with the
state of the AHU. If the Case 1 predicted temperature was lower than the Case 2 predicted temperature,
then the VAV would not be able to achieve the Case 1 predicted temperature with the current T∗

AHU and
P∗

EDS values. The second checked if the current VAV damper position was less than 95%, or, in other
words, if the VAV still had actuator range of the damper. The value of 95% was used as opposed to
100% to serve as a threshold and help prevent the system from oscillating between cases. If both these
conditions were true, then the Case 1 models were used; otherwise, the Case 2 models were used.
To help ensure smooth transfer between the two models and more accurate predictions, errors were
calculated between the previous predictions the measured temperatures and included in the current
prediction.

5. Results

Simulations were completed to determine the steady-state optimal control method’s performance
compared to the current control strategies in place in the UBO, using Equation (18) as the objective
function. An additional simulation was completed to demonstrate the current control method’s ability
to track LOP optimal (PMV = −0.25) zone temperature setpoints. By using LOP optimal temperature
setpoints, a more direct performance difference can be determined between the current control method
and the proposed steady-state optimal control method. Lastly, a simulation showcasing the proposed
optimal control method’s ability to prioritize certain zones over other zones was completed.

5.1. UBO Simulation with Current Building Controls

The current control method was simulated on the UBO building under two operational cases:
(1) with the building operator defined zone temperature setpoints (23 °C); and (2) with LOP optimal
zone temperature setpoints (the air temperature at which PMV = −0.25). The numerical results of the
first case are used as a baseline to compare against, while this section details the performance of the
second case. Figure 10 shows one day of the zone temperatures for the UBO building using the current
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control method and PMV optimal temperature setpoints. The outdoor air temperature (dashed line) is
included in the plot for reference.

The current control method with demand calculations and local PID control shows the ability
to track the LOP setpoints fairly accurately. Worth noting is that beginning around 2 pm, Zone 1’s
temperature starts to drift upwards away from the optimal temperature. This is due to Zone 1’s
damper being fully open combined with the fact that the AHU fan has reached its power limit and the
discharge air temperature is not decreasing fast enough to provide the additional required cooling.
Figure 11 shows the system’s end static pressure (dashed green line) and the total air flow (solid
blue line) in the AHU. Shortly after 1 PM, the end static pressure begins to decrease as the total air
flow continues to increase. This is the point where the AHU fan has reached its maximum power
capabilities. As the zone dampers continue to open, there is less obstruction to the passage of air,
decreasing the pressure and increasing the flow.

Figure 12 shows the chilled water flow and discharge air temperature of the AHU. The discharge
air temperature gradually decreases throughout the day (dashed green line), responding to the increase
in cooling demand. As the temperature drops, more chilled water is required to cool the air, displayed
by the increase in the mass flow rate of the chilled water (solid blue line).

Figure 10. Zone and outdoor air temperatures for the UBO using the currently implemented methods
with PMV optimal temperature setpoints. None of the rooms violated the prescribed PMV thresholds.
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Figure 11. Total air flow and end static pressure in the AHU for the UBO using the currently implemented
control methods with PMV optimal temperature setpoints.

Figure 12. Chilled water flow and discharge air temperature for the UBO using the currently implemented
control methods with PMV optimal temperature setpoints.

5.2. Steady-State Optimal Control Simulation

The proposed steady-state optimal control method was simulated on the UBO building with the
user-defined temperature setpoints equal to the PMV optimal temperature. All the zone temperatures
can be seen in Figure 13. Compared to Figure 10, the zone temperatures appear to vary slightly more
through out the day. This is not because the zones temperatures are not optimal, but because of the
range of PMV (−0.5 to 0) for zero loss of productivity. This range of PMV’s allows the optimization a
band in the individual zone temperatures while minimizing the utility cost of the chilled water and
electricity and leveraging the coupling that exists between zones.

Figure 14 shows the end static pressure and the total air flow through the AHU. Comparing to the
current control method simulation, the air flows follow relatively similar paths, with the pressure in the
steady-state method simulation taking a higher value but remaining more constant throughout the day.
Figure 15 shows a lower discharge air temperature for the steady-state case. While this results in increased
flow rates of the chilled water, the cost may not necessarily be higher as the return chilled water temperature
may be lower, meaning the chiller has to cool the water over a smaller difference in temperatures. This lower
discharge air temperature helps the steady-state optimal control method to achieve more reduction in the
cost of lost productivity due to discomfort, enabling lower temperatures in the zones.
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Figure 13. Zone and outdoor air temperatures for the UBO using the steady-state control method with
PMV optimal temperature setpoints. None of the rooms violated the prescribed PMV thresholds.

Figure 14. Total air flow and end static pressure in the AHU for the UBO using the steady-state control
method with PMV optimal temperature setpoints.

Figure 15. Chilled water flow and discharge air temperature for the UBO using the steady-state control
method with PMV optimal temperature setpoints.
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5.3. Very Important Person Simulation

To demonstrate one of the proposed steady-state algorithms capabilities, a simulation in which
the comfort conditions of one zone was valued significantly more over the other zones in the building
was completed. This can occur in the situation where there is a very important person (VIP) that
requires comfortable conditions to be maintained, or in the case where other rooms are less important
to maintain at a specific comfort level and can be warmer to reduce utility usage. In this simulation,
Zone 5 was chosen as the VIP zone. Figure 16 shows all of the zone temperatures. The other zones are
higher in temperature throughout the day, while Zone 5 is maintained at a lower temperature. Several
zone temperatures can be seen rising above the 0 PMV threshold after 1 PM, when the cooling demand
for the day is the greatest. This departure from the optimal LOP range between −0.5 and 0 PMV is
due to the optimization balancing the cost of discomfort in the zones with the cost of the utilities.

Figure 17 provides further insight into the maintaining of comfort in Zone 5. The zone temperature
is shown with the solid blue line and two thresholds are displayed: (1) the dashed red represents the
0 PMV threshold; and (2) the dashed green represents the −0.5 PMV threshold. After the building is
initially occupied, the zone temperature is maintained between the two thresholds resulting in zero
loss of productivity for Zone 5.

Figure 16. Zone and outdoor air temperatures for the UBO using the steady-state optimal control
method with a VIP zone.

Figure 17. Zone and outdoor air temperatures for the UBO using the steady-state optimal control
method with a VIP zone.
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6. Discussion

Table 4 shows the annualized costs from the two simulations performed with the current control
method and the simulation performed with the proposed steady-state optimal control method.
The costs from the simulations were annualized using cooling degree days for the College Station,
TX area. The first simulation in the table is the UBO as it is currently operated. The building technician
defined temperature of 23 °C was used as the zone temperature setpoint. While this simulation used
the least amount in utilities, it also had the greatest cost in terms of loss productivity due to discomfort.
The technician defined setpoints is above the PMV optimal range for loss productivity, thus this is to
be expected.

Table 4. Annualized economic costs of the different simulation scenarios.

Zone
Comfort Cost Total

Control Method (Productivity) CHW Cost Fan Cost Utility Cost Total Cost

Current Control with User Setpoints $6869.38 $4093.61 $1255.67 $7046.03 $13,915.41
Current Control with PMV Setpoints $476.37 $4562.48 $1677.62 $8131.19 $8607.56

Optimal Predicted Steady-State
Setpoints with PMV Setpoints $299.21 $4383.28 $1226.63 $7426.72 $7725.93

The second simulation in the table is the UBO and its current control method but with PMV
optimal temperature setpoints (setpoints that give 0 PMV). Worth noting is the significant decrease
of 93.1% in the cost of loss productivity just by changing the user-defined setpoints. This of course
comes at an increase (approximately 15.4%) in utility cost; however, the total cost was reduced by
$5307.85, or 38.1%. The third simulation is the UBO with the proposed steady-state optimal control
method. This method resulted in the greatest decrease of the cost of lost productivity of 95.6% with a
slightly higher cost in utilities of 5.4%. The steady-state optimal control method also gave the greatest
decrease in overall cost, saving $6189.48, or 44.5%, of the original cost. This translates to utility savings
of $704.47, or 8.7%, and total cost savings of $881.63, or 10.2%, over the current control method with
PMV optimal setpoints.

A significant observation is that, just by changing the current zone temperature setpoints, the UBO
building operators could have immediate savings in terms of increased productivity for a slight increase
in utility cost with no change in control methods. Furthermore, additional savings can be had through
the use of the advanced steady-state optimal control method. Other benefits of using the advanced
controller are that, over time, the modeling identification algorithm used will update and improve the
steady-state prediction models automatically, providing for the potential for further savings over time.
In addition, the models will adapt as seasonal climate shifts occur and equipment efficiency changes
while the current control method would require manual tuning as the system parameters change to
maintain the same level of performance.

In the UBO, user overrides of the current control system and setpoints are common. While these
overrides may reduce in frequency with a change in zone temperature setpoints to PMV optimal
values, the impact of overrides would still be greater with the current control system compared to the
proposed steady-state optimal controller. The steady-state optimal controller balances the optimal
economic zone setpoint with the user-defined setpoint, theoretically reducing the number of overrides.
The advanced controller also has the added benefit of allowing the building operator to easily prioritize
zones to maximize comfort by adjusting the weight of the annual salary of respective zones.

The authors acknowledge that not all building operational situations call for maximum comfort
and productivity, but propose that the importance of occupant comfort and its significant economic
impact on businesses and organizations merits further investigation. As building design and control
move forward, optimizing occupant comfort should be considered a priority as opposed to maintaining
comfort within a predefined range.
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Future Directions

The presented work has raised some interesting questions, such as the importance of occupant
comfort and its associated economic cost of loss productivity versus utility cost. Further study
into this relationship is necessary and can include additional economic and psychological measures,
such as the impact of productivity in specific working environments, as well as investigating if
integrating user feedback into the control would be beneficial or not. In addition, while the simulations
showed the proposed steady-state controller to be successful in reducing the overall cost, verification
on the actual building is needed. It would also be of interest to investigate the performance of
steady-state predictions versus dynamic predictions and determine exactly how much benefit there is
from implementing the more computationally difficult dynamic models of fully implemented MPC.

7. Conclusions

This paper presents a novel economic steady-state optimal control method for control of energy
systems in buildings. The control method used economic objective functions that were based on real
data from systems found in the Utilities Business Office at Texas A&M University to minimize the
economic cost associated with operating the building. Specifically, the cost of utilities (electricity and
chilled water) were optimized alongside the cost of loss productivity due to occupant discomfort.
In these optimizations, the effect of practical realities that are under represented in the literature
were taken into account, including humidity and its effect on comfort, the switching behavior of
systems due to mechanical limits, and the effect of current operating conditions on the optimization.
Co-simulations of the steady-state optimization controller applied to the Utilities Business Office
building were performed with EnergyPlus and MATLAB. The simulation results show improved
comfort performance and economic savings with the use of the steady-state optimization controller
over the current control method implemented. While the proposed algorithm was deliberately applied
to one AHU, the basic structure allows for the optimization of larger building systems that could
include several chillers, AHUs, dozens of VAVs, and hundreds of zones.
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Abbreviations

The following abbreviations are used in this manuscript:

MPC Model Predictive Control
AHU Air Handling Unit
VAV Variable Air Volume
E-MPC Economic Model Predictive Control
HVAC Heating, Ventilation, and Cooling
PMV Predicted Mean Vote
PPD Predicted Percentage of Dissatisfied
e Error
Q Weighting for quadratic error
R Weighting for linear error
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u Control action
S Weighting for quadratic control action
T Weighting for linear control action
UEM Utilities Energy Management
UBO Utilities Business Office
PID Proportional-Integral-Derivative
CHW Chilled water
PI Proportional-Integral
KP Proportional gain
KI Integral gain
KD Derivative gain
D∗

EDS End-static pressure demand setpoint
DEDS End-static pressure demand
P∗

EDS End-static pressure setpoint
PEDS End-static pressure
ω f an Fan speed
D∗

CLG Cooling demand setpoint
DCLG Cooling demand
T∗

DA Discharge air temperature setpoint
TDA Discharge air temperature
uCHW Chilled water valve position
T∗

zone Zone temperature setpoint
Tzone Zone temperature
udmpr Damper position
Pf an Fan power
qAHU Air flow rate of the air handling unit
ΔP Change in pressure across the fan
μ f Fan blade efficiency
μb Fan belt efficiency
μm Fan motor efficiency
kWh KiloWatt-hour
J f an Fan power cost
Celec Rate of electricity cost
ts Sampling time
Q̇ Rate of change of heat
ṁ Mass flow rate
c Specific heat
ΔT Difference in temperature
ρ Density
q Volume flow rate
JCHW Chilled water cost
qmax Maximum flow rate through the chilled water valve
mmBtu One million British thermal units
ASHRAE American Society of Heating, Refrigeration, and Air-Conditioning Engineers
LOP Loss of productivity
β Lost productivity in wages
pyear Annual salary
Rhzone Relative humidity of a zone
Ta Air temperature
Jtotal Total cost
IDF Energy Plus input file
DOE Department of Energy
BCVTB Building Controls Virtual Test Bed
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Abstract: With the falling costs of solar arrays and battery storage and reduced reliability of the grid
due to natural disasters, small-scale local generation and storage resources are beginning to proliferate.
However, very few software options exist for integrated control of building loads, batteries and other
distributed energy resources. The available software solutions on the market can force customers to
adopt one particular ecosystem of products, thus limiting consumer choice, and are often incapable
of operating independently of the grid during blackouts. In this paper, we present the “Solar+
Optimizer” (SPO), a control platform that provides demand flexibility, resiliency and reduced utility
bills, built using open-source software. SPO employs Model Predictive Control (MPC) to produce
real time optimal control strategies for the building loads and the distributed energy resources on
site. SPO is designed to be vendor-agnostic, protocol-independent and resilient to loss of wide-area
network connectivity. The software was evaluated in a real convenience store in northern California
with on-site solar generation, battery storage and control of HVAC and commercial refrigeration
loads. Preliminary tests showed price responsiveness of the building and cost savings of more than
10% in energy costs alone.

Keywords: demand flexibility; control system; optimization; resiliency; smart buildings;
distributed energy resources; model predictive control

1. Introduction

The United States electrical grids face a range of new challenges to safe and reliable operation:
aging infrastructure, increased penetration of less predictable renewable generators to mitigate climate
change and the increasing occurrence of extreme weather events all place stress on the grid [1].
To address these issues, more decentralized grid architectures have been proposed [2] based on
distributed energy resources (DERs) and microgrids [3–5]. Collections of buildings with local DER
and energy storage could operate in grid-disconnected (islanded) mode in case of outages, improving
system resiliency [6,7]. Buildings that participate as DERs could also provide additional opportunities
for energy storage using their thermal systems (Heating, Ventilation and Air Conditioning (HVAC)
and Refrigeration) [8]. With the emergence of low-cost solar and battery storage, small-size microgrids
are now a commercially viable option at sites with a high value for resilience and several products to
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control them have appeared in the market [9–11]. However, microgrid software typically focuses on
site protection and battery control and does not coordinate with control of building systems, especially
HVAC [12].

HVAC systems represent the largest fraction of the energy use and demand in commercial
buildings [13]. Traditional HVAC control strategies deploy rather simple control algorithms [14]
that might reside in zone-level thermostats (in small and medium commercial buildings) or in a
centralized building automation system (in larger commercial buildings). These algorithms rely on
static schedules, irrespective of the actual occupancy of the building or grid needs. While more modern
HVAC control strategies exist, they do not typically incorporate DER and are largely proprietary in
their implementation, making them hard to extend.

The lack of interoperability between these new control systems limits the realization of the
full potential for microgrid systems [15]. For instance, a microgrid controller that has very little
information about the status of the building and its projected load cannot operate the battery optimally.
Furthermore, there can be missed opportunities for HVAC and refrigeration controllers to take full
advantage of periods of high solar generation to pre-cool or pre-heat, utilizing innate thermal storage
in the mass of buildings and refrigerated goods.

To address this gap, this paper presents a software platform called “Solar+ Optimizer” (SPO),
which was developed, deployed and tested in a pilot application at a fueling station with convenience
store in Blue Lake, California, United States. The software provides optimal control of the building
loads and DERs and has been built exclusively on open-source libraries. The controller takes into
account the time-varying costs of energy and demand and the status of the grid connection to reduce
the overall operational cost for the building owner, and it provides demand-response services to
the grid. The platform is designed to be scalable, as well as vendor and protocol agnostic. This
allows building managers to take advantage of a larger market of connected devices (both sensors and
actuators) without being tied down to any particular manufacturer ecosystem, and it could enable
less costly adaptation and modification of the system over the expected multi-decade lifetime of
microgrid hardware.

The paper is organized as follows. Section 2 reviews the existing literature of advanced control
studies with a focus on experimental and field studies. Section 3 introduces the overall software
architecture and details the principal components within. Section 4 describes the deployment of the
hardware and software on a case study and presents experimental results and analysis. Section 5
discusses the results and technical challenges encountered during the demonstration. The paper ends
with conclusions and future work in Section 6.

2. Literature Review and Contribution

Research on advanced control strategies and algorithms (e.g., MPC and reinforcement learning)
with application to building systems and DERs has grown significantly in the last decade [16], as
the potential of these advanced controls to provide flexibility to the electrical grid has become more
evident. Previous studies have investigated MPC applications in a range of HVAC and thermal
energy storage systems in buildings: These include MPC utilizing an ice storage tank and building
thermal mass [17,18]); MPC for Air Handlers (AHU) and Variable Air Volume (VAV) systems [19–21];
and MPC applied to window operation for mixed natural and mechanical ventilation in an office
building [22,23]. Studies have also demonstrated the coordination of HVAC, energy storage and PV
generation using MPC based controls in simulated commercial buildings [24–27]. However, most of
these studies developed customized solutions, closely tied to the specific building and equipment
setup; the gap that this work fills is an MPC application that is built to be extensible and scalable.

There are several control algorithms that have been used for optimizing building systems and
DER. Linear programming was employed to minimize the conditional value at risk in the objective
function while providing resilience and cost minimization in commercial buildings through local
energy generation and storage [7,28]. Genetic algorithms have also been used to optimize the building
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thermal loads [29,30]. Reduced energy costs and improved occupant thermal comfort within buildings
were achieved by using particle swarm optimization [31,32]. Dynamic programming was employed by
Benjamin Heymann and Jiménez-Estévez [33] to reduce the energy costs while meeting the building
load requirements. A neural network model was trained using the Levenberg–Marquardt algorithm
to predict the optimal boiler operation period in commercial buildings [34]. Another emerging type
of advanced control is Deep Reinforcement Learning (DRL) [35–40]. While DRL is a model-free
approach, most DRL methods use detailed models to generate synthetic data for training purposes.
EnergyPlus models of the buildings have been used during the training period [36–40], along with
the Building Controls Virtual Test-Bed (BCVTB) [41], which has been leveraged for controls based on
the co-simulation framework [37,38]. The DRL algorithms were used to minimize energy costs while
maintaining thermal comfort by controlling room temperature setpoints [37], air flowrate in the VAV
boxes [38], supply water temperature [39] or outdoor air damper positions [40]. This robust area of
new research is promising, with many approaches to optimal control still in their infancy. There is not
yet an agreed-on standard approach for these problems.

While the majority of research on advanced control algorithms is conducted on simulations, some
studies have deployed those advanced controls on real systems, which allows researchers to test their
software in a live environment with unforeseen system behavior that is difficult or impossible to
include in simulation. MPC control of multiple air handling units (AHUs) or rooftop units (RTUs) in
multi-zone real buildings are demonstrated in [42–46]. Experiments using MPC to control building
systems, behind-the-meter energy storage and DERs have also been demonstrated [47–49]. MPC based
controllers were deployed in office buildings to determine the setpoints for the supply air temperature,
fan speed and the zone air temperature for each AHU [42,43], and West et al. [42] additionally
controlled the chilled water and hot water valve position. MPC has also been used to control the air
conditioning in large spaces that were served by multiple RTUs by turning on/off different stages
of operation of each RTU. These controls were demonstrated in a gym space of a university campus
[44] and in a restaurant [45]. Carli et al. [46] used MPC to control the fan speed of a fan coil unit
that supplies conditioned air to a single office space in a university building. Frequency regulation
as a grid service (by varying the air flow rate setpoints, which resulted in modifying the fan speed)
was implemented in the FLEXLAB R© testbed [50] at Lawrence Berkeley National Laboratory [47,48].
A public school building in southern Italy was chosen as a site of demonstration in [49], where the
authors performed their optimizations in the cloud and send the control signals to the Internet of
Things (IoT) devices and controllers that were retrofitted in the school building to control the battery
and various loads through an intermediary gateway. DRL strategies have also been implemented in
real buildings, although in small experiments. Chen et al. [51] used DRL to control the damper position
of a VAV box in a single conference room in a building and Zhang and Lam [52] used it to control the
supply water setpoint to the HVAC system in a experimental test-bed office in a university building.

A core barrier in progressing from simulations to real-world deployment of advanced controls
is the lack of a robust and reliable software infrastructure to implement those controls in real-world
building systems, which often have an eclectic mix of various controllers and systems in place. There
has been work on middle-ware software platforms that collect data from various connected sensors and
actuators across different systems within a building [42,43,46,48,49,53–56]. The ability to retrieve data
from various IoT sensors and devices, store these data centrally and use them for simulations of better
control algorithms have been demonstrated in [46,49,53–56]. Interfacing with the existing proprietary
control software for gathering data and publishing control signals is another common solution, but
this requires site specific implementations as seen in [42,43,48]. Bruno et al. [49] and Carli et al. [46]
introduced a software stack and also demonstrate actual controls capabilities on real buildings based on
decisions determined by the optimization engine. However, the architecture seems rather case specific
with no mention of expansion capabilities to other types of buildings or systems. The VOLTTRON [57]
platform has also been used in research studies for data collection and optimization of flexible
building loads and grid integration, but these works have been in simulation [58–60], in laboratory
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environments [61], or are still in progress [62,63]. Most of the platforms reviewed here employ a
publish-subscribe method of communication (usually Message Queue Telemetry Transport, MQTT [64])
for messaging, which relies upon a central broker, usually residing in the cloud. This is in line with
broader trends for information technology and software services moving to a cloud-based software
architecture, but the buildings industry is justifiably reluctant to adopt this model. Cybersecurity
vulnerabilities and the possible loss of data and control signals during a network outage are major
issues that concern building managers, particularly in commercial buildings. Furthermore, in a
microgrid application there can be loss of network connectivity during a blackout, when the system is
expected to continue working and provide resilience. Hence, having controls that are able to operate in
a mode with local communication and computation may be required to enable widespread adoption
of smart control platforms.

Among the field demonstrations of advanced controls, the scope of controls were limited to a
very small subset of buildings, mostly office spaces and buildings on university campuses, laboratories
or experimental test-beds. Experiments were conducted in well-instrumented environments and
thus presented more measured data for advanced controls deployment than general buildings do.
Most existing studies rely on proprietary software and do not describe the effort required to deploy
both software and hardware, which is critical for replication. While some papers discuss software
implementation, the focus was generally on communication and software architecture, with less
emphasis on the integration of systems and controls with those software. Those that did demonstrate
integration between the controller and the building, deployed a cloud based solution that is susceptible
to network outages and more vulnerable to security risks. The SPO solution presented in this paper
represents an advance in the field studies of advanced building controls by narrowing the gap between
MPC based simulation studies and field demonstrations. The main contributions of this paper are:

• An integrated software architecture that supports a vendor- and protocol-agnostic data acquisition
and control framework that enables both local and/or cloud based controls. The architecture is
extensible to other building types, equipment and DERs.

• A field demonstration of this software controlling HVAC, refrigeration and DER using MPC. The
software is deployed in the local area network in a real-world small commercial building.

• A proof-of-concept demonstration of a building controller that is responsive to various grid signals
(time varying energy costs) and that supports demand response events.

• A description of the implementation challenges experienced during deployment and operations,
intended to accelerate the effort of future researchers and practitioners who could avoid these
barriers that have been identified .

3. Controller Architecture and Components

The Solar+ Optimizer (SPO) is a software solution that has been developed to integrate sensors
and controllers for building systems and DERs and to identify real-time optimal control actions for
the connected systems such as building loads and batteries. It supports integration across multiple
devices and protocols, as illustrated in the architecture diagram in Figure 1. Through support for
several communication protocols and APIs, SPO allows integration of systems that are typical for small
and medium commercial buildings. It can operate completely within a local network, but can also
be configured to operate in tandem with cloud-based resources. This section describes the different
software components of SPO that enable these capabilities.
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Figure 1. Software architecture diagram of the Solar+ Optimizer system.

3.1. eXtensible Building Operating System (XBOS)

To coordinate the numerous heterogeneous connected devices and controllers within a building,
robust network communication is a key requirement. Most commercial and academic solutions use
middleware, i.e., software that resides between the hardware devices and other data sources that
produce data and the applications that use these data. SPO uses XBOS, an open-source building
operating system developed for real-time data acquisition from sensors and control of building
actuators [65]. XBOS consists of the following components:

• WAVE and WAVEMQ: WAVE is an authentication engine that handles permissions and access
control. WAVEMQ is a multi-tier publish-subscribe message bus that allows exchange of data and
control signals.

• Drivers: Drivers are connectors to real devices and other data sources (e.g., web based services,
emulated devices, etc.). A driver is responsible for gathering data from a device and for controlling
the device in response to requests from an external controller. With the required permissions, a
driver can publish and subscribe to messages on WAVEMQ.

• Data Storage: Both operational and configuration data are stored on dedicated databases. There
are separate data stores for the building metadata represented using the Brick schema [66] and for
the continuous real-time data that are being collected by the drivers.

• Applications: Developers can write applications on the XBOS platform using real-time data that
is being published on the message bus (e.g., notification service and visualization dashboard) or
using historical data that have been stored in the database (e.g., MPC based optimization engine
and fault detection tools). Applications can publish control signals for the devices on WAVEMQ
and can trigger a change in their mode of operation.

3.2. WAVE and WAVEMQ

WAVE is “an authorization framework offering decentralized trust: no central services can modify
or see permissions and any participant can delegate a portion of their permissions autonomously” [67].
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WAVEMQ is a tiered publish-subscribe message bus that all drivers and applications on XBOS use
to transmit messages [68]. WAVE-based keys and permissions authorize drivers and applications to
communicate with one another. The tiered nature of WAVEMQ is implemented in the form of a single
“designated router” that is deployed on reliable hardware, typically located in the cloud, and additional
message routers at each site, called “site routers”, as illustrated in Figure 2. The services, which can be
drivers or applications that have been granted the required WAVE permissions, can publish (i.e., write)
on or subscribe (i.e., read) to a particular topic (i.e., sensor measurements or actuation commands) on
the bus.

Figure 2. WAVEMQ: A tiered publish-subscribe message bus [68].

During network outages and loss of connectivity between the site routers and the designated
router, this tiered architecture of WAVEMQ enables the site router to continue message delivery across
the services hosted locally. By buffering messages that have not yet been delivered to the designated
router since the loss of Internet connectivity, and by re-attempting to publish these messages once
the connectivity has been restored, WAVEMQ also mitigates the risk of data loss. Messages in XBOS
are defined using Google’s Protocol Buffers or protobufs [69] and the native functions and services
are implemented as remote procedural calls using the gRPC framework [70]. These technologies
support platform and language independent development, which means drivers and applications can
be developed in any programming language and they can use the auto-generated language specific
bindings for functions calls and message transmission.

3.3. Drivers

Drivers are the components of XBOS responsible for presenting a uniform communication
interface, to local hardware devices and external software applications, that is agnostic to the particular
protocols and networks used by those devices and applications. Figure 1 shows some examples of
hardware devices that can be integrated using XBOS drivers: environmental sensors, electric meters,
HVAC controllers, battery controllers, solar inverters, etc. Internet weather services and utility APIs
for power prices are few examples of external software applications from which drivers gather data.
These devices and services communicate over a variety of protocols, including older, legacy equipment
such as refrigeration or HVAC controllers that communicate over wired, non-Internet Protocol (non-IP)
based protocols such as Modbus serial [71] or BACnet MS/TP [72]. In such cases, it is essential to set
up the drivers locally within the building’s physical network. The drivers also translate the data from
the device to the necessary protobuf format required to publish it on WAVEMQ and also interpret the
control signals from XBOS applications to equivalent commands for the devices (e.g., changes to the
HVAC setpoints or battery charge rate, etc.).

3.4. Data Storage

Data storage to the database on each WAVEMQ router is handled by an XBOS service called
the “data ingester.” This service, along with the tiered WAVEMQ message bus, allows SPO to access
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multiple data stores for the same data at different designated and/or site routers, as needed, without
configuring additional data replication or mirroring scripts. SPO takes advantage of this feature by
providing the capability of deploying the whole system—the drivers, data storage and optimization
engine—locally with a building’s local area network, provided that all the required data can be
obtained from local devices and services.

For buildings and sites that allow both cloud and local communication, the preferred approach
is to deploy the essential and critical drivers and applications such as sensor and actuator drivers
and optimization engine locally and deploy drivers that communicate with web services (e.g., utility
demand response (DR) servers, weather APIs, etc.) and read-only applications (e.g., benchmarking
tools and visualization dashboards) on the cloud. Such a strategy limits the drivers that have access to
local actuators to be located within the local network, and also reduces the chance that a controller
remains in a suspended state due to loss of connectivity to cloud-based intelligence. With this network
configuration, multiple data ingester services can be configured across the local site router and the
cloud designated router. While the local ingester ensures that the most recent data are always available
locally for the optimization engine and other critical applications, the ingester on the cloud can store
the messages to a more persistent cloud data store for permanent storage and analytical applications.
This preferred architecture is illustrated in Figure 3.

Figure 3. The services on the site router continue to run even during network outages.

The caveat in Figure 3 is that the critical applications on the site router should not require any
data from the drivers on the designated router. If applications require data from external web services,
it is recommended to host the drivers that are querying them directly on the site router to minimize
points of failure.

3.5. Applications: Optimization Engine

Existing solutions often use proprietary platforms and site-specific specifications for generating
and sending optimal control signals to devices. Similarly to how XBOS is used as middleware platform
by SPO, the open-source package MPCPy [73] is used to implement MPC-based optimization in an
extensible and open-source framework. SPO integrates MPCPy as an XBOS application, extending
its capabilities to interact with real-time systems. This application, labeled as the “Optimization
Engine” queries historical data and future forecasts from the data store, solves the optimization
problem using the MPCPy framework and publishes control signals to devices through WAVEMQ.
Figure 4 depicts this interaction between the optimization engine, the data store and the device drivers.
Through this implementation, SPO provides a scalable, protocol- and manufacturer-independent
solution for implementing advanced building controls. This section details the components of the
optimization engine.
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Figure 4. The optimization engine component and its relationship to other parts of SPO.

3.5.1. MPCPy

The MPCPy package [73] is designed to facilitate the simulation, testing and implementation of
MPC for building systems. It includes several generic capabilities such as solving optimal control
problems with constraints, parameter estimation and validation, interaction with real and/or emulated
building systems, and data processing including weather, internal loads, grid signals, etc.

3.5.2. Model Formulation

MPCPy utilizes models defined in the Modelica language [74], an equation-based multi-domain
language to model complex physical systems including mechanical, electrical and deterministic
control systems. These models can be used to predict the future system behavior and to support
linked simulation-optimization problems. For use in optimization, MPCPy focuses on the use of
simplified physical models, often known as “grey-box” models. These grey-box models include
sufficient detail about the building systems to simulate overall responses but not the specific details
of typical expert-defined building energy models. The goal is to balance model specificity with
computational efficiency for use with optimization solvers. MPCPy utilizes JModelica.org [75] to
generate and solve a control optimization problem based on the user-provided Modelica model,
objective and constraint information and input data (e.g., weather or electricity prices). JModelica.org
uses CasADi [76] to compute function derivatives and the optimization algorithm IPOPT [77] to solve
the resulting nonlinear problem. IPOPT, short for interior point optimizer, is a state-of-the-art nonlinear
optimization library to solve large-scale continuous system optimization problems.

3.5.3. Optimization Configuration for Grid Interactions

Using the MPCPy framework, the SPO optimization engine is designed to minimize the cost
of building operations subject to various DR scenarios or grid price signals. SPO can optimize for
different types of peak-load reduction DR events (e.g., through utility programs such as Peak Day
Pricing [78] or Critical Peak Pricing [79]), as well as dynamic prices [80,81]. At its most basic level,
SPO minimizes electricity bills of buildings that are subject to Time-Of-Use (TOU) tariffs that contain
both energy and demand charges. Other modes of operation for responding to signals from the grid
are shown in Table 1, including real-time pricing, demand limiting, load shedding, load shifting and
load tracking.

The optimization engine is structured in a flexible way so that the various responses to grid
signals can be easily configured and swapped. This is achieved by formulating the objective function
in a generic way, translating the grid signals into components of this parameterized function and
into constraints of the optimization problem. The various options are stored in variables of a
configuration file to easily switch between modes. Table 1 summarizes the five grid signals and
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the corresponding configuration in the optimization engine. The constraints presented here only relate
to the grid-responsive modes, excluding other constraints related to system operation (e.g., indoor
temperature boundaries).

Table 1. MPC configuration for handling different grid signals.

Mode Objective Information in the Signal Constraints

Price
based

Minimize cost of
energy and/or power

Energy price and/or
demand charges,
estimated peak power

None

Demand
limiting

Minimize cost of
energy and/or power

Energy price and/or
demand charges,
estimated peak power,
maximum power Pmax

P ≤ Pmax

Load
shedding

Minimize cost of
energy and/or power

Energy price and/or
demand charges,
estimated peak power,
baseline power Pbaseline,
Pshed, start time, final time

P ≤ Pbaseline − Pshed for
[tstart, t f inal]

Load
shifting

Minimize cost of
energy and/or power

Energy price and/or
demand charges,
estimated peak power,
baseline power Pbaseline,
Pdecrease, Pincrease,
start increase time,
final increase time,
start decrease time,
final decrease time

P ≥ Pbaseline + Pincrease for
[tstart,increase, t f inal,increase]
and
P ≤ Pbaseline − Pdecrease for
[tstart,decrease, t f inal,decrease]

Load
tracking

Minimize error against
reference power profile

Reference power
profile Pre f erence

| P − Pre f erence |< ε

3.5.4. Supervisory Control Scheme

MPC is a receding horizon control process, which can be briefly described as follows: at each
sampling interval, system states are measured or estimated and fed back to the controller model to
update the model states. With the updated information, the controller predicts the system behavior
based on the built-in model within the control horizon (e.g., the next 6 h) along with disturbance
forecast such as weather and occupancy. The optimization algorithm then tries to find an optimal
solution by minimizing the objective function subject to the latest system constraints. The first control
action is implemented and then the MPC engine relaunches a new optimization at the next control
interval. The SPO optimization engine follows this approach, but it is designed to be a supervisory
controller, i.e., it does not replace but rather interacts with local controllers such as thermostats. The
optimizer periodically (e.g., every 5 min) sends optimal setpoints to the local controllers, and they
control the equipment through traditional control loops at a finer time scale (e.g., 1 s).

3.5.5. Weather Forecast

The optimization engine requires weather forecast data to operate. The SPO weather forecast
module predicts solar radiation using data from external weather forecast services. Hourly forecasts of
outdoor dry bulb temperature, relative humidity, wind speed and cloud cover for the duration of the
control horizon (e.g., 6 h into the future) are required by the controller. A solar forecast model has also
been implemented in this module to calculate the global solar radiation [82]. The direct and diffuse
solar radiation are further computed based on the predicted global solar radiation [83]. Based on the
predicted solar radiation, the plane-of-array solar radiation can be easily calculated and used as inputs
for building and photovoltaic (PV) system models.
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4. Evaluation

In this section, the performance of the SPO solution in a real commercial building is evaluated.
It begins with the description of the site where SPO has been deployed, the hardware and software
details, followed by the specifications of the optimization engine and concludes with the results of
how SPO controls the building’s loads and its distributed energy resources in response to different
grid signals.

4.1. Site Description

The SPO has been deployed in a convenience store/gas station in Blue Lake, California, United
States at the Blue Lake Rancheria. Being located at the edge of the utility service territory and in
a generation-constrained area of Humboldt County in California, this site is at a strategic point for
supporting grid reliability. The refueling and cold storage services provided by the store are recognized
as critical community needs by the operators, particularly during blackouts or natural disasters, which
drives their interest in energy resiliency at the site. Strongly tied to this motivation is the requirement
for network resilience, that is, being able to operate in an Internet-disconnected mode as well. A unique
aspect about this particular building is that it is attached to a casino complex and hence the store also
contains gaming machines. The presence of these machines within the convenience store means there
are regulatory requirements for network and firewall restrictions that prevent any control signals from
originating outside their local network. The site has a unique combination of a real need for resilience
and a site with professional IT network staff who require robust cybersecurity.

The store is typically open 24 h a day, 7 days a week and serves frequent customers throughout
a day. The space inside the store is conditioned by two separate two-stage roof top units (RTUs),
virtually (but not physically) dividing the store into an “east zone” and a “west zone”. These RTUs are
controlled by individual thermostats that have been installed in the corresponding zones. The store
also has a walk-in refrigerator for storing and displaying beverages through a set of glass reach-through
doors and a walk-in freezer for storing and displaying ice-cream and frozen food. The site has 60 kW
of local solar power generation capacity along with a battery with 174 kWh of energy storage (and
power capacity of 109 kW). As seen in Figure 5, the solar panels are installed on the gas station canopy
and the energy storage unit is a Tesla Powerpack.

(a) 60 kW local solar power capacity (b) 174 kWh local energy storage capacity with a peak
output of 109 kW

Figure 5. Distributed Energy Resources installed on site.

The typical daily energy consumption is about 800 kWh (or 33 kW average demand), with
an hourly average load profile illustrated in Figure 6. However, the gaming machines in the store
contribute a significant portion of the total electrical load, and only about 15 kW of the electrical
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demand is for the thermal systems (i.e., the two RTUs, the refrigerator and the freezer), which are
controllable by SPO. The remaining uncontrolled demand is primarily from gaming machines that
are located in the store. The building exhibits peak demand in the early morning and early evening
periods—both prime targets for thermal load shifting to alleviate system stress around sunrise and
sunset. It currently operates on the E19S electricity tariff offered by Redwood Coast Energy Authority,
a community-choice aggregator that provides retail options to customers in Humboldt County who
could otherwise be served by the distribution utility, Pacific Gas and Electric Company [84]. The site
soon plans on moving to the B19 tariff [85]. Both these tariffs contain time-of-use energy charges
($/kWh) and time-of-use demand charges ($/kW), with the key difference being the timing of the
peak prices. In B19, the peak prices occur later in the day, between 16:00 and 21:00 daily to account
for the growing duck-curve problem in California [86], while E19S is a legacy tariff with the peak
prices during the 12:00–18:00 period that historically included coincident peak demand. The building
operators are motivated to reduce their overall energy costs by reducing energy consumption and by
effective management of the peak loads on the grid.

Figure 6. Daily load profile of the convenience store across different seasons.

4.2. Hardware and Software Set Up

Given the cybersecurity requirements at the site, the SPO system uses local drivers with local
storage and an MPC-based optimization engine. The local SPO server with a WAVEMQ site router has
been hosted on an Intel NUC computer with an Intel i7 processor and 2TB of internal disk capacity [87]
at the site. The designated WAVEMQ router is hosted on a cloud server, which is also attached to a
persistent data store, also in the cloud. InfluxDB [88] is utilized as the timeseries database, both in the
cloud and on the local server. The local server has been configured with a retention policy to only
store the most recent two weeks of data that might be relevant for the optimization engine. The local
server also hosts the drivers that communicate with each of the devices and/or services (over the
protocols mentioned) listed below, reading data once every minute and publishing to the WAVEMQ
message bus. There are data ingester services set up both at the site router and the designated router to
store these published messages in the local and the cloud-based InfluxDB databases, respectively. The
drivers for the controllers also subscribe to the ’optimal setpoints’ being published by the optimization
engine so that they can change the setpoints of the controllers.

The list of data sources and/or controllers, with their respective communication protocols are
given below:
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• Electricity Meters: The building has six Continental Controls Wattnode power meters [89] that
measure the power consumption of: whole building, west zone RTU compressor, east zone
RTU compressor, refrigerator compressor, refrigerator evaporator fan and freezer compressor
and evaporator fan, respectively. These devices measure instantaneous power parameters and
communicate over Modbus serial.

• HVAC: The two RTUs are controlled by two separate KMC Flexstat 120063CEW [90] thermostats,
which communicate over BACnet/IP. The preferred temperatures in the west and east zone are
20.56 and 21.67 ◦C (or 69 and 71 ◦F, respectively), respectively. The heating and cooling setpoints
of the thermostats are controlled by the optimizer.

• Refrigeration: Sporlan Parker PSK214 Modbus (serial) [91] refrigeration controllers are used to
control the large refrigeration systems. By default the freezer is set to an indoor temperature
of −21.67 ◦C (−7 ◦F) and the refrigerator to 0.56 ◦C (33 ◦F). During the experiments, the SPO
controlled the indoor cabinet temperature setpoint of the equipment.

• PV and Battery: The inverters of the PV panels and the battery are interfaced with a Schweitzer
Engineering Laboratories SEL-3505 Real Time Automation Controller (RTAC) [92]. The RTAC is
the short-timescale microgrid controller for this system and it handles power flows, circuit
switching and safety aspects during the grid-islanded system operation. However, due to
certain restrictions at this site, the RTAC only allows ’read’ operations (over Modbus(TCP))
to be performed by the SPO.

• Emulated Battery: As the Tesla battery on site only allows ’read’ operations, a software-based
emulated battery is used for the experiments. This battery has been scaled down to a size that
makes sense for conventional small and medium convenient stores (without power-hungry
gaming machines, but HVAC and refrigeration). The emulated battery has a total capacity of 27
kWh, with a peak output of 14 kW (equivalent to two Tesla Powerwalls [93]).

• Weather: The current outdoor temperature, cloud cover, relative humidity and wind speed data,
along with their 48-h forecasts, are collected from the DarkSky weather service’s REST API [94].

• Grid Signals: Provides information about the prices based on tariffs or dynamic prices and/or
could also publish information about scheduled demand response events. While this is currently
implemented as library function that retrieves the grid signals from a static database, retrieving
the real-time or day-ahead Independent System Operator (ISO) prices or dynamic prices from a
utility using protocols such as IEEE 2030.5 [95] or OpenADR [96] are planned future work.

Table 2 provides a list of data and their respective sources that are required for the optimization
engine. A summary of the controllers and the variables that can be controlled, with the default values
and lower and upper bounds, is given in Table 3. These limits were provided by the convenience
store operators after considering the requirements for indoor air conditioning and food storage. The
limits have been encoded into the respective drivers so that even if the optimization engine produces a
setpoint outside the limits, the drivers can ensure that those values are not set on the actual device. It
is to be noted that the list of variables in Tables 2 and 3 are a subset of variables that can be read from
or written to each of the devices.
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Table 2. List of data sources and relevant variables (Inputs to the optimization engine).

Source Protocol Variables

Wattnode Meter Modbus (serial) active power (W)

KMC Thermostat BACnet/IP indoor temperature ( ◦C)

Refrigeration Controller Modbus (serial) cabinet temperature ( ◦C)

RTAC Modbus
(TCP)

PV production (W)
battery charge/discharge rate (W)

battery state of charge (%)

Battery (emulated) - battery charge/discharge rate (W)
battery State of Charge (%)

Dark Sky API HTTP

outdoor temperature ( ◦C)
cloud cover (%)

relative humidity (%)
wind speed (mph)

and 48-hour forecasts of these

Grid Signals (tariffs, dynamic prices,
Demand response events) -

price of energy ($/kWh)
demand charge ($/kW)

amount of load limit/shed/shift (W)

Table 3. List of Controllers and their relevant variables (Outputs of the optimization engine).

Controller Protocol Control Variables Default Lower Limit Upper Limit

Thermostat East BACnet/IP heating setpoint 19.44 ◦C 17.22 ◦C 22.22 ◦C
cooling setpoint 21.67 ◦C 19.44 ◦C 23.33 ◦C

Thermostat West BACnet/IP heating setpoint 18.33 ◦C 17.22 ◦C 22.22 ◦C
cooling setpoint 20.56 ◦C 19.44 ◦C 23.33 ◦C

Freezer Modbus (serial) cabinet temp. setpoint −21.67 ◦C −34.44 ◦C −18.89 ◦C

Refrigerator Modbus (serial) cabinet temp. setpoint 0.56 ◦C 0.56 ◦C 3.33 ◦C

Battery (emulated) - charge/discharge rate 0W −14 kW 14 kW

4.3. Optimization Engine Set Up

4.3.1. Modeling

As mentioned in Section 4.1, the main occupied zone in the store is conditioned by two RTU
systems. One of the two food storage rooms is conditioned by a custom-made refrigeration system;
the other by a freezer. The layout of these spaces is captured by the building model, which includes
four thermal zones: two RTU zones, one refrigerator zone and one freezer zone. The building zones
are modeled using the lumped resistance and capacitance approach: each zone is represented by one
resistance and one capacitance and connected with each other thermally. The overall building thermal
model is therefore a linear fourth-order model. The battery system is modeled based on the bucket
model approach by considering the battery as a repository for energy [97]. The state variable is the
battery SOC and the input is the real power that should be stored in or extracted from the battery. The
PV system is modeled with a constant efficiency and the input is the predicted plane-of-array solar
radiation. The linearity of these models allows efficient computation for the optimization algorithm,
which takes about one minute to converge to an optimal solution in these experiments. Figure 7 shows
the MPC model structure and its interaction with the local controllers.
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Figure 7. MPC model structure.

The weather parameters considered for the building are the dry bulb temperature and the solar
radiation. The dry bulb temperature forecast is obtained from the Dark Sky API based on the site
latitude and longitude. The solar radiation forecasts for the building and PV system are predicted
using the built-in model as described in Section 3.5.5. The prediction horizon used in the experiments
is 6 h. The store zones are occupied by staff for 24 h each day. The occupancy disturbance is therefore
not considered. The major internal load disturbance in the store is from the gaming machines, which
emit heat directly to the zone. These machines are in operation 24 h per day. This internal thermal
load is therefore assumed to be constant in the model. The system constraints for MPC used in the
experiments are defined by the facility staff and are summarized in Table 3. The thermal comfort
setpoints for the HVAC system are constrained to values between 19.44 ◦C (67 ◦F) and 23.33 ◦C (74
◦F). The constraints for the freezer cabinet temperature setpoint are from −34.44 ◦C to −18.89 ◦C (−30
◦F to −2 ◦F). The constraints for the refrigerator cabinet temperature are from 0.56 ◦C to 3.33 ◦C (33
◦F to 38 ◦F). The battery cannot be charged more than 95% and discharged below 25% of its total
capacity. The maximum charge or discharge power is 14 kW. The upper and lower bounds for the
power consumption are calculated for each grid signal, as shown in Table 1.

The system states of the model are the space temperatures of the RTU systems, cabinet
temperatures of the refrigerator and freezer system and the battery SOC. These values are all measured
and thus there is no need for state estimations in the MPC formulation. The measured states are
updated in the model at each control interval (5 min). The control inputs for the model are the heating
or cooling rate for the RTUs, the cooling rates for the refrigerator and the freezer, and the battery
charging and discharging rate. The control outputs are the supervisory setpoints for each individual
system: zone setpoints for the RTUs, refrigerator setpoint, freezer setpoint and charge/discharge
power setpoint for the battery. When the setpoints are sent to each controller, the controller decides its
operation mode based on its internal control loop implemented by the manufacturer. For instance, the
thermostat receives the optimal setpoint and determines whether to switch the RTU heating or cooling
state ON or OFF.

4.3.2. Controller Start-Up

The controller needs to be instantiated once the system model has been specified. During
this process, the software loads and initializes all the components including the MPC model, the
optimization problem, the system states (measured temperatures and SOC), the inputs (outdoor dry
bulb temperature, solar radiation, grid signals and constraints) and the outputs (setpoints), based on
the configuration. The objective function and associated constraints to grid signals, as summarized
in Table 1, are automatically updated according to the goal of each experiment. At every control
interval, the software calls the instantiated controller to solve the optimization problem and pushes
the solutions to the respective devices over WAVEMQ. A single instance of the controller can handle
different types of grid signals and only requires re-instantiation when configuration parameters (e.g.,
new input sources and modified outputs) are changed.
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4.4. Experiments

To evaluate the performance of the SPO, the system was subjected to different grid signals (as
shown in Table 1) and the optimal setpoints that were generated were pushed to the equipment
in the building. This paper presents the results of three tests: (1) a dynamic pricing signal; (2) a
Time-Of-Use (TOU) tariff; and (3) a demand limiting signal. While most commercial buildings in the
US are enrolled in a TOU tariff rate, some utilities are moving towards use of dynamic pricing for
grid integration [80,81]. These prices are also considered as the replacement for event-based demand
response programs. These use cases are a representative collection of legacy (i.e., TOU tariffs and
event-based demand response programs) and emerging (i.e., dynamic pricing) interaction mechanisms
between grid and building-level microgrids.

By specifying a linear regression model based on the weather, solar production and building
load data from ten days prior to each experiment (excluding days when SPO was being run), a
weather-normalized baseline has been calculated for each of the following experiments. The battery
was excluded from the baseline formulation because it was not operated during the period of baseline
data collection. For all the experiments, the preferred temperatures for the HVAC zones are 20.56 ◦C
(69 ◦F) and 21.67 ◦C (71 ◦F) for the west and east zones, respectively. The key metric used to evaluate
the performance of the SPO system is the total cost of electricity (including both energy and demand
charges) since the primary objective of SPO’s optimization engine is to minimize this cost. This is the
cost incurred due to the net load consumption supplied by the grid. All variables in the following
equation are assumed to be non-negative.

netload = totalbuildingload − powerproducedbyPV + batterychargingrate − batterydischargingrate.

4.4.1. Dynamic Prices

This test, conducted on 17 May 2020 evaluated the behavior of the SPO in response to dynamic
prices. A grid signal containing a 24 hour price forecast for the event day was generated and published
on WAVEMQ. The prices were based on the wholesale market prices obtained from the California
Independent System Operator (CAISO), the entity responsible for the California energy markets. These
prices reflect the duck-curve dynamics in California, which occur when the net electricity demand
drops during mid-day due to large amounts of solar generation during that time. The demand ramps
up rapidly in evening hours as the sun sets, but air conditioning loads continue to be present due to
the thermal lags in buildings, and many people return home and begin evening activities.

Figure 8 shows the results of the dynamic price test. Section (a) of the figure shows the driving
variables: dynamic prices and solar irradiance. Section (b) shows the battery state of charge, and the
resulting net load controlled by the SPO, compared to the baseline power profile. Section (c) shows the
SPO generated setpoints for the HVAC zones and their corresponding temperature profiles.

The expected behavior of the system is that the battery, the HVAC and the refrigeration loads will
be controlled to minimize consumption during high price times and shift consumption to low price
times, subject to the constraints on comfort and other factors. In the operational test, this behavior was
observed in broad terms. Figure 8b shows how the net building load was lower at times of high prices
and higher during the beginning and the middle parts of the day when prices were low. This was
achieved through a combination of battery dispatch and modification of thermal setpoints. Deviations
from this baseline are attributed to the behavior of the control system.

The baseline load was much lower the first 6 h of the day as the battery was charged to full
capacity during these hours. This was in preparation of the increasing prices, starting from 06:00,
when the battery discharges completely to support the building load (Figure 8b). The battery was
controlled similarly during the high price periods that occurred later in the day as well. From the
slope of the battery state of charge, it is evident that the rate of charging and discharging change also
vary according to the the price fluctuations. In Figure 8c, it can be seen that the responses of HVAC
systems were mainly for the second peak in the afternoon. From around 12:00 to 17:00, the battery
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was in charging mode and the cooling power usage was kept minimum as the indoor temperatures
were increasing. Once the battery began to discharge, the HVAC systems began to bring the indoor
temperatures back to the preferred temperatures slowly. Even though the HVAC systems used more
power during the high price duration, the net energy use decreased as battery was discharging. Due to
very strict constraints on the temperatures and also owing to undersized equipment, there were hardly
any changes in the operation of refrigeration systems. However, the temperatures of both the freezer
and refrigerator were maintained within the bound set by the convenience store operators.

Figure 8. (a) SPO’s response to hourly dynamic prices and varying solar irradiance. (b) Through
battery discharge and reduction in building load, where the net load is minimum during high price
times and the battery charges during the low price times anticipating the high price period. (c) SPO
changes the thermostat setpoints to vary the zone temperature. Preferred temperatures: 20.56 ◦C (69
◦F) for the West Zone and 21.67 ◦C (71 ◦F) for the East Zone.
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As there were no demand charges in this signal, the total cost of electricity constitutes only the
energy cost, which is calculated by multiplying the hourly energy charge with the hourly energy
consumption. The total cost for this day was $59.14 for the SPO optimized actions as compared to the
$68.72 for the baseline load, generating a savings of 13.94%.

4.4.2. Time-Of-Use Prices

This experiment, conducted on 15 May 2020, tested the response of SPO to the winter TOU rates of
the B19 tariff [85]. This tariff contains time of use based energy prices and demand charges. Figure 9a
shows the solar irradiance, demand and energy charges. The peak price window for both demand and
energy charges are from 16:00 to 21:00 Figure 9b shows the battery and net load responses, controlled
by the SPO. Figure 9c shows the HVAC zone setpoints that were generated by SPO and the actual
temperatures for these two zones (gaps in the chart are due to missing data, where the thermostats
temporarily lost network connection).

In response to the peak prices, the battery began to charge quite late until the PV generation began
to get online and charged up to its maximum of 95% of its capacity right before 16:00 and started to
discharge until 21:00, the end of the peak period. The HVAC systems started pre-cooling very early at
around 07:00 Then, it started to increase the indoor temperatures once the battery began to charge.
During the beginning hours of the peak period, the temperatures were maintained as high to reduce
the HVAC load. Then, the HVAC west began to cool down the space as the accumulated penalty of
deviating from the setpoint began to get high. With regards to the refrigeration systems, there were
still hardly any periods when the temperatures were allowed to rise, but they always remained within
the limits.

Table 4 compares total electricity costs incurred in these 24 hour for the SPO optimized building
against the building’s baseline load for this day (shown in Figure 9b). The energy cost is calculated
as described in the previous experiment and it can be seen that SPO was able to save 10.33% of
the total energy cost. Calculating the total demand cost and the subsequent savings is slightly more
complicated. The total demand cost is the sum of the demand costs across all the different TOU rate
periods (e.g., 16:00–21:00). The maximum load (load refers to the 15-min average power consumption)
for each rate period across the whole billing cycle (typically monthly), or, in this case, the whole day,
multiplied by the corresponding demand charge is the demand cost for that period. This introduces
the caveat that the demand cost shown in Table 4 might not be the final demand cost for the full billing
cycle. Hence, for the purposes of evaluating this experiment, the billing cycle is assumed to be one day.
Under this assumption, SPO reduced the total demand cost by $21.13. For a realistic billing cycle of a
month, through continuous peak demand management by SPO, much higher demand cost savings
can be accrued.

Table 4. Comparison of estimated costs for energy and demand between SPO and Baseline controls.

Costs SPO Optimized Load Baseline Load

Energy Cost $61.42 $68.63
Demand Cost $793.86 $814.99

Total Cost $855.28 $883.62
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Figure 9. (a) SPO’s response to a TOU tariff with both demand charges and energy costs and varying
solar irradiance. (b) The battery is used effectively for reducing net load during peak price hours. (c)
SPO changes the thermostat setpoints to vary the zone temperature. Preferred temperatures: 20.56 ◦C
(69 ◦F) for the West Zone and 21.67 ◦C (71 ◦F) for the East Zone.

4.4.3. Demand Limiting Event

Demand limiting “refers to shedding loads when pre-determined peak demand limits are about
to be exceeded ... and this is typically done to flatten the load shape when the pre-determined peak is
the monthly peak demand” [98]. Coordinated load limiting efforts across multiple buildings helps to
reduce the stress on the utility during peak hours.

An experiment was conducted in May 2020 to test the response of SPO to a demand-limiting
signal. The signal constrained demand to 26 kW from 06:00 to 08:00., given that minimum baseline
load during this period is 32.9 kW. Figure 10a depicts the response of SPO: the building reduced its
average power consumption at 06:00 to 26.30 kW from 32 kW at 05:30. Figure 10b shows that this was
achieved by reducing in the power consumption of the two HVAC units from 06:00 (in yellow and
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orange) and a drop in power consumption of the freezer unit at 07:30. However, the battery state of
charge remained nearly flat throughout the event as SPO decided not to employ the battery during it.
This is evidence of SPO’s intelligent load control capabilities as it is able to coordinate the controllable
load without depending on the battery to handle grid signals.

Figure 10. (a) Reduction in net load during a 26 kW demand limiting grid signal from 06:00 to 08:00 (b)
Breakdown of controlled loads; HVAC and freezer loads cause the decrease in net load consumption;
the battery was not used during this event.

5. Discussion

Overall, this work represents a proof of concept for an open-source, extensible, cyber-secure
software system that can optimally control energy use in a microgrid.

5.1. Benefits to Developers

A core design intent of SPO was the ability to be modular and extensible, unlike solutions
presented in previous studies [43,46]. For this reason, SPO was developed on top of modern
open-source projects such as XBOS and MPCPy. Its core communication infrastructure, based on
a distributed and secure message bus [68] and gRPC [70], allows developers to seamlessly replace
components such as databases, optimization engines and drivers. For instance, the native XBOS data
store was replaced by another time-series database [88], due to the cybersecurity requirements of the
demonstration site. The use of gRPC is an innovative feature compared to other open-source projects
[57,99], and it allows developers to use languages they are more familiar with or are more advantageous
for a particular application. Hence, XBOS drivers have been developed in both Go and Python as
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part of this project. Further, native integration with BRICK metadata schema [66] is a distinctive
feature of SPO. BRICK is an emerging “open-source effort to standardize semantic descriptions of the
physical, logical and virtual assets in buildings and the relationships between them” [100]. BRICK
avoids hard-coding sensor names in the software, making the application more portable between
buildings. For instance, instead of representing a sensor as “supply_temp_VAV002_AHU01”, BRICK
queries can search for the ID of the supply air temperature sensor in any VAV belonging to any AHU.

During the model construction and calibration phase, the use of MPCPy was crucial to make
the software more flexible. MPCPy affords the construction of multiple systems that can be quickly
replaced with others, as long as the inputs and outputs stay the same. This allows rapid switching
between emulated components and real components (e.g., a virtual battery with a real battery) and
vice versa. Furthermore, it provides the possibility to run the optimization engine in “shadow mode”
(i.e., the optimal controller computes setpoints, but it does not send them to the actual devices) and, if
necessary, to quickly swap to controlling the real systems. This setup allowed debugging the system
with real-time data but avoided loss of comfort or disruption of business operation.

5.2. Challenges of the Real World Deployment

The real-world deployment of SPO was a useful step to test the robustness of the implementation
and understand the challenges with real systems. The lessons learned during this process are
summarized in Table 5.

Table 5. A summary of challenges faced during the implementation and deployment of SPO.

# Category Description of Challenge

1 Technical Limited choice of secure connected devices with local communication interfaces

2 Technical
Uncertain service and support for connected products, web services and
underlying libraries (e.g., discontinued services, APIs changes).

3 Technical
Complex interaction of advanced supervisory control with local control in each
connected device (e.g., thermostat hysteresis and defrost control).

4 Technical
Overconstrained systems (e.g., undersized refrigerator with tight temperature
control bands)

5 Technical
Faulty equipment and sensors that make modeling harder due to unexpected behavior
and incorrect representation of the system state

6 Technical
Unmodeled and unmeasured effects in the systems (e.g., unknown occupancy, door
opening, internal gains due to uncontrolled equipment)

7 Organizational
Conflicting objectives and different risk tolerance between occupants/managers and
researchers (e.g., thermal comfort, refrigerator temperature swings)

8 Organizational Strict site/organization procedures and requirements (e.g., cybersecurity procedures)

9 Logistic Delays in equipment deliveries (e.g., components in high demand)

10 Logistic Faulty new equipment that needs to be replaced

11 Regulatory
Long lead times to work with highly-regulated, risk-adverse entities (e.g., utilities to
sign off on the interconnect agreement, receiving approval before battery and
PV commissioning)

12 Exceptional
Unfortunate and unforeseen natural disasters (e.g., power shutoffs due to threats of
wildfires, COVID-19 pandemic)

Selecting sensors and controllers for the project proved to be the first hurdle. While there is a
proliferation of new IoT and smart home devices on the market, very few met the cybersecurity and
local control requirement of the project. In particular, to access the API of most smart thermostats,
an Internet connection is required. This was undesirable for a microgrid that needs to work during
network outages. Eventually, a BACnet thermostat was selected for installation, although its cost was
significantly higher than other alternatives and it did not provide native data encryption. There is a
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clear need for modern connected devices that meet the requirements of commercial buildings and
microgrids. The deployment process also revealed the effect of the fast rate of change of the online
services and IoT market. In the middle of the project, the weather service used to gather weather
forecasts for the site had to be replaced, because its free service was terminated after a corporate
acquisition. As this paper is written, the new weather forecast service was also acquired by a different
company and there is uncertainty about the future of the service and API.

Precise control of refrigerator and RTU operation through these networked controllers represented
another challenge. Often, the details about the local control loop (e.g., deadbands, hysteresis and other
safeguard mechanisms) were not provided by the manufacturer and they had to be reverse-engineered
by the research team. While these features are useful to protect the equipment, they added uncertainty
to the results of each control action determined by the supervisory controller. Additional issues
related to the ability to control the system emerged when it became clear that the refrigeration system
was undersized and its temperatures tightly prescribed, allowing for little flexibility in its operation.
Unlike typical commercial buildings, the 24-h operation of the store also added challenges and unique
problems for the testing of the system deployment. Conflicts between local temperature adjustments
by the staff and the setpoints suggested by the system also emerged. In the system monitoring process,
unexpected data were often observed. In one instance, the store temperature kept dropping even
though the cooling systems had not been running . Analysis revealed that the door openings had a
large impact on the thermal conditions of the store. This type of event was very difficult to characterize
in the model. The placement of the sensors in the store also impacted the controls. As additional
sensors were not installed in the store, the measurements from the temperature sensors located within
the thermostats and the refrigeration controllers were used to determine the state of the system.
Unfortunately, these devices were installed away from the areas where staff and customers typically
orbit, and hence did not capture the user comfort.

As it is typical of deployment projects, the research team had to work with multiple departments
within the same organization, each having their own set of requirements. Building occupants expressed
concerns about temperature oscillations during experiments. The IT department defined strict
cybersecurity requirements and access control procedures. These issues were resolved through clear
and responsive communication with all parties involved at all times, providing frequent and regular
updates and expectations. Providing the local staff with a real-time dashboard and alarm/notification
system was a very effective way of keeping them engaged and updated. However, these needs also
impacted the number of experiments allowed and their boundaries.

Further, the overall project schedule was significantly delayed because of logistical issues (i.e.,
unforeseen delays in equipment delivery and faulty equipment) regulatory requirements (i.e., working
with utilities to sign off on the relatively novel microgrid interconnect agreement and receiving
approval before battery and PV commissioning) and unfortunate and unforeseen natural disasters
(i.e., power shutoffs due to wildfires and the COVID-19 pandemic). Although this combination of
circumstances was unique, field deployments of advanced technologies should account for delays
in their timeline. The delays that were experienced due to the wildfires and the pandemic only
underscore the value of research that is focused on accelerating deployment of these systems. While
it is unreasonable to expect that every microgrid would face similar challenges, a core goal of
deployment-focused research must be to identify solutions to these challenges and improve the ability
of developers to deploy advanced energy systems at scale.

5.3. Limitations and Future Work

During field tests, the SPO system demonstrated the ability to respond to both price- and and
demand- based grid signals, using all the controllable loads: the battery, the two RTUs, the freezer
and the refrigerator. The system has been collecting data from the local controllers and sensors
for almost a year and has been controlling the equipment for seven months at the time of writing
this paper. However, thus far the experiments have lasted approximately one week at a time and
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the results presented in the paper covered only a single day of operations. Thus, there needs to
be further prolonged testing to evaluate the performance and the robustness of the system in the
long run. Additionally, the baseline load for each of the experiments has been determined using a
linear regression model based on historical environmental and building load data. In addition, the
focus of this paper is to demonstrate an integrated software solution in a real building rather than
precisely investigating the performance of the optimal control algorithm . The next steps in the
research project involve determining more accurate baselines (statistical techniques such as Random
Forest Regression, Autoregressive integrated moving average (ARIMA), etc.) and improving and
evaluating the performance of the optimization algorithm by comparing it against other advanced
control solutions.

Currently, the measurements recorded by the temperature sensors that are embedded into the
thermostats and the refrigeration controllers have been used by SPO’s optimization engine. While this
characteristic allows easy deployment of SPO, there has been work planned to improve the building
model by collecting data from temporarily installed temperature loggers across the store. Installing
additional sensors to record occupancy related information would also be greatly beneficial. For
example, with a door sensor, SPO would have been able to track the door open/close events and the
model would have been able to take into account the effect of outside air in the store.

While this pilot site has unique characteristics, this test successfully demonstrates the feasibility
of the SPO system for similar types of buildings. Many convenience stores in operation today (around
12,000 in California alone) have similar HVAC and refrigeration systems and can be upgraded to
become a building-scale microgrid. Quick serve restaurants, hotels and grocery stores are other
possible candidates for deployment of these systems. Deploying SPO in such buildings would provide
data points regarding the portability and the scalability of the whole system and identifying another
deployment site is also a part of the future work.

6. Conclusions

This paper presents the design, implementation and preliminary test of Solar+ Optimizer (SPO),
a control software that provides demand flexibility to building-scale microgrids. The software uses
Model Predictive Control (MPC) to optimally coordinate the operation of building loads and the
distributed energy resources on site. SPO is designed to be vendor-agnostic and protocol-independent
and is built on open-source software. The software has been tested in a convenience store in northern
California with on-site solar generation, battery storage and control of HVAC and commercial
refrigeration loads and preliminary results show the ability to shed load in response to price signals
and to curtail demand, generating more than 10% savings in energy costs alone. Future work includes
more extensive testing and publishing the project as an open-source library as well as sharing the data
obtained during the project.
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Abstract: The implementation of model predictive controls (MPCs) in buildings represents
an important opportunity to reduce energy consumption and to apply demand side management
strategies. In order to be effective, the MPC should be provided with an accurate model that is
able to forecast the actual building energy demand. To this aim, in this paper, a data-driven model
realized with an artificial neural network is compared to a physical-based resistance–capacitance
(RC) network in an operative MPC. The MPC was designed to minimize the total cost for the thermal
demand requirements by unlocking the energy flexibility in the building envelope, on the basis of
price signals. Although both models allow energy cost savings (about 16% compared to a standard
set-point control), a deterioration in the prediction performance is observed when the models actually
operate in the controller (the root mean square error, RMSE, for the air zone prediction is about 1 ◦C).
However, a difference in the on-time control actions is noted when the two models are compared.
With a maximum deviation of 0.5 ◦C from the indoor set-point temperature, the physical-based model
shows better performance in following the system dynamics, while the value rises to 1.8 ◦C in presence
of the data-driven model for the analyzed case study. This result is mainly related to difficulties in
properly training data-driven models for applications involving energy flexibility exploitation.

Keywords: model predictive control; data-driven model; artificial neural network; physical building
model; energy flexibility

1. Introduction

Advanced control methods for energy management in buildings are required if the goal is
obtaining an optimized operational performance [1]. Model predictive control (MPC) represents one of
the most investigated controls in academic literature [2,3] given its ability to easily merge the principles
of feedback control and numerical optimization [4]. The basic concept of MPC is to use a dynamic
model to forecast a system behavior and to optimize the actuations in order to operate under the best
sequence of decisions [5]. A key feature of MPCs consists in selecting future control actions, taking into
account both predictions of future disturbances and system constraints [4], while the goal is pursued.

In buildings, MPCs can be applied for many purposes: (i) to exploit the energy storage capability
in high-massive buildings, (ii) to maximize the use of renewable energy sources (RES), or (iii) to
implement demand side management (DSM) such as demand response (DR). However, in order to be
truly effective, an MPC must be based on a reliable model of the system under study [6].
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Buildings are complex systems consisting of smaller systems which interact with the occupants [7].
In order to accurately predict their thermal dynamics, different aspects need to be considered.
The IEA (International Energy Agency) EBC (Energy and Buildings Communities) annex 53 [8] defined
six main factors that determine the energy consumption in buildings: (a) climate, (b) envelope,
(c) systems and equipment, (d) operation and maintenance, (e) user behavior, and (f) indoor
environmental quality. As highlighted by Geraldi and Ghisi [9], the six factors can be grouped
into two categories: the first three factors, (a), (b), and (c), account for the building dimension, while the
remaining, (d), (e), and (f), are related to the human dimension. The latter category can have a great
impact on the assessment of the energy demand of buildings [10]. However, it is not always easy to
predict users’ behavior [7]; thus, a certain level of uncertainty is always present in building models
which are not able to exactly predict the occupancy profiles.

In general, for short-time predictions, three categories of building energy modeling and forecasting
are available: physical-based, data-driven, and hybrid models [11].

Physical-based systems are white box models [12] that need a detailed description of the building’s
physical and thermal properties in order to describe the building’s dynamics with mathematical
equations. Typically, they solve energy conservation equations based on heat transfer phenomena.
No training data are required, and the parameters of the model are usually obtained from design plans,
manufacture catalogues, or on-site measurements [11]. Most of the popular software, such as Energy
Plus [13], TRNSYS [14], DOE-2 [15], or ESP-r [16], is based on a physical-based approach [17].

On the other hand, data-driven (or black box) models do not require a physical knowledge of the
system, but they need a large amount of training data to be collected over an exhaustive period [11],
i.e., both the data and the considered period should be statistically representative of the system
operation. Statistical models have been directly applied in order to capture the correlation between
building energy consumption and available measurement data [12]. The most common black box
models are [18] support vector machines (SVM) [19], statistical regression (e.g., linear auto regressive
models with exogenous inputs, ARX [20]), and artificial neural networks (ANNs) [21]. Unlike white
box models, in which all the model parameters have a physical meaning, the parameters involved in
a black box model cannot be interpreted in such terms.

A compromise between the two approaches is represented by hybrid (or grey box) models.
Grey box models are a combination of physical-based and data-driven prediction models; thereby,
some internal parameters and equations are physically interpretable, while others are estimated with
a data-driven approach. Grey box models are widespread in building energy modeling [22], although
they require both the system structure and training data.

Many works are available in the literature concerning the performance evaluation of the different
hybrid and data-driven building models to be used in an MPC. Hietaharju et al. [23] introduced
a generalizable grey box model based on heat transfer laws to predict temperature inside buildings.
Testing the model structure on five buildings, of which real data were available, they found an average
modeling error constantly below 5% during the 28-h prediction horizon. Ferracuti et al. [24] compared
the performance of three different data-driven models for short-term thermal prediction in a real
building: a lumped element grey box model, an ARX, and a nonlinear ARX. This work demonstrates
that all the data-driven models investigated can be used to predict the short-term flexibility of the
building for DR applications. In fact, for a prediction horizon of one hour, all the models showed
a maximum root mean square error, RMSE, less than 0.5 ◦C in the tested period (among the grey box
models, the third order one showed the best performance). Relying on a real neighborhood, Walker
et al. [25] tested the use of machine learning algorithms (boosted-tree, random forest, SVM-linear,
quadratic, cubic, and fine-Gaussian, as well as ANNs) to predict the electricity demand at individual
and aggregated building levels, using data from 47 commercial buildings. Their results showed
that boosted-tree, random forest, and ANN provided the best performance in predicting the hourly
energy demand when computational time and error accuracy were compared. Touretzky and Patil [26]
developed an ARX model to forecast the building power demand, also adopting physics-based

94



Energies 2020, 13, 3125

modeling approaches for building energy management. They investigated different configurations of
options for inputs and outputs in relation to the available measurements, highlighting the importance
of an appropriate selection of exogenous inputs in order to capture the effect of common demand
management practices. In order to evaluate the user behavior impact on overheating in a domestic
environment, Baborska–Narozny and Grudzinska [27] developed a grey box model to simulate different
scenarios in relation to fabric, occupant ventilation, and shading practices. The results showed that
overheating could be entirely avoided if blinds were deployed to prevent excessive solar heat gains
and mechanical extract ventilation was installed in the building.

Besides the above, other studies focus on the energy performance improvement that is obtained
when a predictive control is used in a building with respect to a classic ruled-based control. Drgoňa et
al. [28], for example, obtained energy use savings equal to 53.5% and a thermal comfort improvement
of 36.9% for an office building in Belgium when a white box MPC based on first-principle physical
equations was adopted. Moreover, Ferreira et al. [29] found similar energy savings (greater than 50%)
when an MPC was adopted in the building sector. In this case, they proposed a discrete MPC that
used radial-basis-function ANNs as predictive models and demonstrated the feasibility of the model
with experimental results obtained in a building of the University of Algarve. Joe and Karava [30]
introduced a smart operation strategy based on an MPC in order to optimize the performance of
hydronic radiant floor systems in office buildings. They obtained a 34% cost saving compared to
the baseline feedback control during the cooling season and a 16% energy use reduction during the
heating season.

However, all the mentioned works focus either on evaluating the best model configuration to be
adopted in an MPC (e.g., parameters identification, selection of inputs and outputs) or on the energy
benefits that can be obtained through the adoption of such controls in buildings.

The purpose of this work is to combine these two types of analysis when the energy flexibility
provided by the thermostatically controlled load can be also exploited. The two opposite modeling
approaches (physical-based and data-driven) to predict the building energy demand are compared
from two different points of view: (i) the capability of the models to reproduce the building energy
behavior of a reference case and (ii) the practical implementation of a simple MPC designed to minimize
the energy supply cost. In particular, the relationship between the model structure and its effectiveness
in predicting the energy flexibility behavior will be explored.

With a dynamic cost tariff and the possibility of activating the building energy’s flexibility [31] by
allowing the indoor temperature to vary in a wider comfort range, the MPC can apply load shifting
strategies to reach the goal. For the physical-based model, a lumped-capacitance model based on
thermal–electrical analogy was used, while an ANN was chosen as data-driven model. The reference
building, from which training data were extrapolated and in which the MPC was tested, was designed
in a TRNSYS [14] simulation environment. The goal was to highlight the advantages and disadvantages
of the two approaches when they were implemented in an MPC.

After this introductive section, Section 2 describes the methodology used to design the two models
and the optimization process carried out by the MPC in the two cases. The case study is reported in
Section 3, while the results of the study are provided in Section 4. The conclusions of the paper can be
found in Section 5.

2. Methodology

In this study, the goal of the MPC was to minimize the total energy cost for the building thermal
demand satisfaction. The typical structure of an MPC is shown in Figure 1. It is mainly composed of
two parts: the building predictive model and the optimizer. The building predictive model should be
able to dynamically forecast the building’s energy response in a certain period (prediction horizon,
ph), while its inputs can vary both in a controlled (manipulated variables) and in an uncontrolled
(disturbances) way. To solve the optimization problem, it is important to define a proper objective
function and to respect the system constraints; in this way, the optimizer has the possibility to select
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the best control actions to maximize the performance. Following a “receding horizon” logic, the MPC
updates the best control action at each timestep, moving the prediction horizon forward and repeating
the optimization [5].

 
Figure 1. Architecture of a typical building’s model predictive control (MPC).

As anticipated, two different approaches for the building prediction model are used in this work:
a data-driven model based on an ANN and a physical-based model with a thermal–electrical analogy
structure. In order to obtain training data for the ANN and to check the MPC effectiveness, a detailed
building model designed in TRNSYS [14] was adopted as a control building.

The MPC routine was written in MATLAB [32], and for each time step the controlled building
started the MATLAB engine to run the controller. The uncontrolled inputs of the models were weather
conditions and heat gains, while the manipulated variable was the hourly building energy demand.
Since the objective of the work was to focus on the comparison between the two approaches for building
modeling in an operative MPC, an ideal HVAC system was considered in the building, i.e., the thermal
energy demand was treated as a control action (Figure 1).

The optimizer solved the optimization problem in the prediction horizon, ph, in order to minimize
the total energy cost with constraints on the internal comfort conditions. As an incentive for the
exploitation of the energy flexibility, a dynamic energy cost tariff was considered [33]. In addition,
to amplify the cost variations, a penalty signal was used in the MPC optimizer. It was obtained with
a statistical method based on mean and standard deviation:

p(t) =
c(t) − μc

σc
(1)

where p is the penalty signal at each time t, c is the energy cost, while μc and σc are the cost signal
mean value and standard deviation, respectively. Additional details about the penalty signal will be
discussed in Section 3.

The performance of each model was assessed by evaluating the root mean square error, RMSE,
which is defined as:

RMSE =

√√√
1
n

n∑
j=1

(
ymodel,j − ydata,j

)2
(2)

where y is the variable being evaluated and n is the number of points considered. Another index that
will be used in the results is the root square error, RSE, defined as:

RSEi =
∣∣∣ymodel,j − ydata,j

∣∣∣ (3)

The first analysis consisted of evaluating the deviation of the models with respect to the building
reference data. Then, in order to assess the accuracy of the models in the operative MPC, the RMSE
was calculated between the prediction of the MPC building model and the actual thermal behavior
of the building. Due to the different mathematical formulations of the two models, the optimization
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problem was different for the two cases. The following Sections 2.1 and 2.2 discuss the mathematical
formulations of the two approaches.

2.1. MPC with Physical-Based System Model

A lumped-parameter model based on the thermal–electrical analogy was chosen as the building
prediction model in the physical-based MPC. The building thermal dynamics is represented by
an equivalent circuit of thermal resistances and capacitances [34]. A third order model was selected
since it represented a good compromise between network complexity and capability of predicting the
short-term dynamics of the building [35].

As shown in Figure 2, three thermal nodes were used. Each node is described by a temperature
(T) and a thermal capacitance (C). Then, four thermal resistances (R) were used to model the heat
transfer between the nodes.

Figure 2. Thermal network for building model.

All the numerical values of the parameters (R and C) were deducted by the knowledge of the
thermal and geometrical building features. Specifically, the first node (Te, Ce) represents the external
building thermal mass, the second node (Tair, Cair) is the indoor air node, while the last node (Ti, Ci) is
the internal building thermal mass. As suggested by EN ISO 13790 [36], Ce and Ci are calculated by
summing the heat capacitances of all the building elements (up to the thermal insulation) in direct
thermal contact with the internal air zone.

As concerns the thermal resistance, Rw is the thermal resistance from the indoor air node
temperature to the ambient air temperature (Tamb), due to air changes and windows. Ree and Rie

are the thermal resistances between the external building thermal mass node and Tamb and Tair,
respectively. They are calculated as equivalent thermal resistances due to the conductive heat transfer
of all the building envelope layers, from outdoor to the thermal insulation for Ree, and from thermal
insulation to indoor for Rie. These thermal resistances also take into account the convective heat
transfer phenomena between the external surface and ambient temperature (Ree) and between the
internal building envelope surface and indoor air temperature (Rie). In the same fashion, Ri considers
the thermal resistance between the indoor air node and the internal thermal mass Ti. The heat fluxes,
directly applied to the internal thermal nodes Tair and Ti, are the cooling power derived by an ideal
HVAC system (Q) and the total heat gains (G). The latter includes both solar and internal contributions,
which are provided with a scalar factor (f) for both the internal air and the internal mass node.

The dynamics of the resistance–capacitance (RC) model can be represented by the following
equations:

Cair
dTair

dt
=

(Te − Tair)

Rie
+

(Tamb − Tair)

Rw
+

(Ti − Tair)

Ri
+ fairG + Q (4)

Ce
dTe

dt
=

(Tamb − Te)

Ree
+

(Tair − Te)

Rie
(5)

Ci
dTi

dt
=

(Tair − Ti)

Ri
+ fiG (6)

Using these relations, a discrete time invariant state–space formulation can be set up:

[X(k + 1)] = [A][X(k)] + [B][U(k)] (7)
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where [X] = [Tair Te Ti]T represents the system state at each discrete time k, [U] = [Tamb G Q]T is the
vector of the inputs, and [A] and [B] are coefficient matrices. A discrete time (k) of 1 hour is adopted,
as well as for the simulation time step (t).

Along with the building prediction model, the MPC must include an optimizer. In the present
work, the objective of the MPC was to minimize the total energy cost for the building thermal
demand satisfaction while the indoor temperature remains in an allowed comfort range. For the
physical-based MPC, a simple linear programming (LP) problem was formulated. In this optimization
problem, both the objective function and constraints must be linear functions of the decision variables.
The objective function (OF) is calculated as the sum of the building thermal energy consumption (Qk)
multiplied by the penalty signal pk at each time step k in the whole prediction horizon (ph):

OF =

ph∑
k=1

pkQk (8)

Therefore, the minimization problem can be written as:

minOF (9)

subject to the following comfort and ideal HVAC constraints:

∀ k = 1, . . . , ph Tmin ≤ Tair,k ≤ Tmax (10)

∀ k = 1, . . . , ph 0 ≤ Qk ≤ Qmax (11)

The LP optimization problem is solved at each time step within a MATLAB script, according
to a “dual-simplex” algorithm. The actual air zone temperature, Tair(t), is passed to the MPC as the
starting condition for the optimization. Based on the receding horizon principle, the control action
at the controlled building time, t, is the first value of Qk in the optimal decision variable sequence.
At the following time step, t+1, the optimization problem is re-solved, moving forward the dataset of
the disturbances by a time step. Figure 3 shows the scheme of the operation.

Figure 3. MPC receding horizon scheme.
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2.2. MPC with Data-Driven System Model

The data-driven system used in the present study is based on an artificial neural network (ANN),
a mathematical model that reflects the functioning of a biological brain [37]. In an ANN, the inputs
(x) have the same role of biological dendrites, while the outputs (y) can be regarded as biological
axons. The processing of the data takes place in the neurons, which, in an ANN, apply a nonlinear
activation function, g, on the input data. Being a pure mathematical model without physical meaning,
an ANN needs to be trained with existing data. The purpose of the training, which can be carried out
with different error minimization techniques, is to determine the coefficient weights and biases of the
network, i.e., the parameters that fully describe an ANN. Taking into account a feedforward ANN
consisting of only one layer of neurons (also called a hidden layer because its activation values are
not directly accessible from outside the network) and a linear activation function in the output layer
(with just one output), the mapping carried out by the ANN on the input can be expressed as follows:

y =
m∑

j=1

⎛⎜⎜⎜⎜⎜⎝ŵjg

⎛⎜⎜⎜⎜⎜⎝
d∑

i=1

w jixi + b

⎞⎟⎟⎟⎟⎟⎠+ b̂

⎞⎟⎟⎟⎟⎟⎠ (12)

where d is the number of inputs, wji is the weights matrix of the inputs, b is the bias vector of the
inputs, m is the number of neurons in the hidden layer, ŵj is the weights matrix of the hidden layer,
and b̂ is the bias vector of the hidden layer.

Generally, training data are divided into inputs and targets, and a well-trained ANN is expected
to determine its outputs with a low deviation in respect to the provided targets. The available data of
the system under study need to be examined carefully in order to train the ANN only with the inputs
that most influence the objective targets. If the physics of the system under study is complex, a method
to individuate the most effective inputs involves the use of statistical approaches such as factor analysis.
Instead, if the physics of the system is not entirely unknown, the operator can try to select the input
variables that mostly influence the desired target. In the present work, since the thermal behavior of
the building is known, the four input variables (outdoor temperature, solar gains, internal gains, and
indoor temperature) that most significantly influence the target variable (the thermal power required
by the building) were selected.

The ANN was trained with 168 hourly-based input/target data referred to as a typical week.
These data, provided by the building simulation environment designed in TRNSYS, were not obtained
with a fixed set-point condition. In this case, in fact, the ANN’s performance would have been
insignificant, as there would have been no correlation between the output and the controlled variable
(the indoor temperature). Indeed, the control unlocks the energy flexibility of the building and allows
indoor temperature variations in a given comfort range, as explained previously. Therefore, to improve
the ANN’s prediction capability, the building simulation environment was allowed to work with
multiple indoor set-point temperatures, varying within a reasonable comfort range. To avoid the
overfitting of the data, i.e., an exaggerated interpolating behavior of the ANN, only a fraction of
the dataset was actually used to train the network. Specifically, the initial dataset of 168 points was
randomly divided into three subsets: a training set (60%), a validation set (20%), and a test set (20%).
While the training data were used by the ANN to complete its training, the validation set was used as
an internal interrupt criterium to end the training if overfitting occurred. The test set, instead, was used
to evaluate the ANN’s performance after training, in order to check its prediction capability with
new data.

ANNs are available in different architectures, based on the physical–mathematical problem that
is being studied. In the present work, since the goal was to estimate the thermal power required by
a building, a fitting ANN was chosen. In MATLAB, fitting ANNs have a feedforward architecture and
are trained according to a Levenberg–Marquardt backpropagation algorithm, which uses regression
analysis and RMSE to evaluate the performance. As it is well-known that even one layer of neurons
is sufficient to represent complex, nonlinear problems [37], in this study, one hidden layer with

99



Energies 2020, 13, 3125

five neurons was used. The neurons used a hyperbolic tangent sigmoid as activation function.
The ANN therefore had the architecture as represented in Figure 4.

 
Figure 4. Artificial neural network (ANN) architecture of building prediction model.

After training, the ANN model was used in the MPC to predict the building’s thermal demand
for a given prediction horizon, ph. To this purpose, the ANN inputs were divided into uncontrolled
(outdoor temperature, solar gains, and internal gains) and controlled (indoor temperature) variables
(Figure 1). In this way, it was possible to manipulate the ANN as a function of the indoor temperature
and to carry out an optimization process in order to minimize the overall energy cost in the time period
ph. The objective function of the optimization algorithm can be therefore written as in Equation (8),
subject to the constraints defined in Equations (10) and (11). Since the ANN function for the thermal
demand was nonlinear, the optimization algorithm chosen in MATLAB was a programming solver
based on the gradient method that uses an initial value for the indoor temperature as first attempt of
solution. In the same fashion as the LP optimization problem defined for the physical-based model,
the control action of the ANN-based MPC works according to the receding horizon principle (Figure 3).

3. Case Study

For the case study, a detailed building model was implemented in TRNSYS using Type 56.
The model was composed of a single thermal zone and the envelope characteristics were extrapolated
by the Tabula Project [38] for detached houses. The building was north-facing, while all the walls faced
outwards and the floor was placed on the ground (considered at a constant temperature of 15 ◦C).
Table 1 reports the main geometrical and thermal properties of the building that was considered
(a single family house), which were extrapolated by UNI-TR 11552:2014 [39].

Table 1. Case study envelope properties: thermal transmittances and surfaces.

Property External Walls Roof Floor Windows

Thermal transmittance (W m−2 K−1) 0.34 0.28 0.33 2.20
Surface (m2) 223.3 96.4 96.4 24.1

The structure was characterized by high levels of thermal insulation and double-glazed windows,
which were air-filled, were selected (g-value of 0.7). An air change per hour (ACH) equal to 0.2 h−1

was selected. Internal gains included occupancy and artificial lighting [40]. The former was 120 W
per person (occupancy density of 24 m2 per person), while an artificial light density of 5 W m−2 was
considered (artificial light turns on if total horizontal radiation is less than 120 W m−2 and turns off
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when the value exceeds 200 W m−2). The building was located in Rome, Italy (41◦55’ N, 12◦31’ E),
and a Meteonorm [41] weather file was used as a typical meteorological year.

In this work, the cooling season was chosen for the MPC test. Analogous results, however,
could have been obtained for the heating season. As mentioned in Section 2, no specific HVAC system
was modeled; instead, an ideal cooling control was used in Type 56 to extrapolate the training data [14].
In this way, the MPC control actions were applied as convective heat gains to the air nodes (positive
for heating and negative for cooling). An indoor air temperature range of 25–27 ◦C was chosen as the
comfort condition (i.e., Tmin and Tmax in Equation (10)) and a maximum cooling load power of 7 kW
was fixed (i.e., Qmax in Equation (11)) [42]. Since the cooling power was directly applied to the air-zone,
the ideal HVAC can be compared to a traditional heat pump split system. Assuming an average COP
of 2.5, the thermal energy requirement can be converted into electricity consumption, and the penalty
signal can be obtained consequently (Equation (1)).

For the reference case, a fixed set-point of 26 ◦C was simulated in order to provide a comparison
between the building as controlled with the MPC and without the MPC.

4. Results

As discussed in Section 2, the evaluation of the forecast performance of the two building prediction
models was realized according to two points of view: (i) the ability of the models to match the behavior
of a known reference building and (ii) their dynamic operation when applied within the controller of
the same building. Since short-term dynamics are involved in an MPC, a representative summer week
was selected for the analysis (from July 30 to August 6). Figure 5 shows the uncontrollable inputs in
the selected period (i.e., ambient temperature and total gains).

(a) (b) 

Figure 5. MPC uncontrollable inputs (disturbances) for the selected summer week: (a) ambient
temperature, Tamb; (b) total gains, G.

As concerns the performance analysis, the ANN training data were selected as comparison terms
to test the two building models. As mentioned in Section 3, the ANN training data were obtained with
daily random set-points, which could range in the allowed comfort band. Figures 6 and 7 show the
results in the entire 168-point dataset for the ANN-based model and the RC network, respectively.
Since the output of the models was different in the two approaches, for the ANN the hourly cooling
power forecasting was evaluated (Figure 6a), while for the RC network the internal air node temperature
was considered (Figure 7a). As can be seen, both the prediction models were able to reply to the
dynamic variations of the training data. In the first case, the RMSE was 0.26 kW, while the value
found for the RC network was 0.34 ◦C. As highlighted by the RSE profile in Figure 6b, for the ANN
the deviation was mainly due to the inability of the network to simulate the cases with reduced or
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zero cooling demand. For the physical-based model, instead (Figure 7b), there seemed to be a regular
prediction error rather than specific peaks. It is worth noting that the RSE assumes a maximum value
of 0.9 ◦C in the RC model and a value of 0.8 kW in the ANN model.

(a) (b) 

Figure 6. ANN model prediction results compared to training data: (a) cooling power demand; (b) root
square error (RSE).

(a) (b) 

Figure 7. Resistance–capacitance (RC) model prediction results compared to training data: (a) indoor
air temperature; (b) RSE.

When the building was allowed to be controlled by the MPC, at each time step the cooling power
demand that was selected was the one that minimized the total energy cost. The original energy
cost profile and its corresponding penalty signal in the representative summer week are shown in
Figure 8a,b, respectively. The use of the penalty signal, instead of the actual energy cost, allowed us to
amplify the cost variation and, thus, to incentivize the unlocking of the building’s energy flexibility.

Figures 9 and 10 show the MPC results for both the prediction models. The results are presented
with a prediction horizon, ph, of 6 hours. Specifically, Figures 9a and 10a show the comparison between
the building’s actual internal air temperature (Type 56) and the MPC’s predicted value for the same time
step (t). Instead, in Figures 9b and 10b, the control actions (Q(t) in Figure 3) selected by the controller
at each time step are represented. Looking at the black curves in Figures 9a and 10a, it is possible to
note that both the prediction models were able to activate the building’s energy flexibility, exploiting
the whole comfort temperature range. Low temperature values are preferred when the energy cost is
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low and subsequent increases are expected. Conversely, the temperature is maintained close to the
higher comfort range when high energy costs are detected.

The application of the MPC with both the prediction models produced a total cost reduction of
about 16% if compared to the reference building with a fixed set-point of 26 ◦C. The RMSE between the
actual air temperature and that predicted by the MPC at each time step also shows similar error values
for the two models: 1.1 ◦C for the controller with the ANN and 0.99 ◦C for the RC model. However,
comparing these values with the RMSEs found in the first part of the analysis, a degradation in the
prediction performance can be noted for both the approaches. This is due to the fact that the building
operated in variable dynamic conditions when the energy flexibility was activated. Thus, the predictions
depend on constantly updated factors (such as the starting temperature conditions, the charge and
discharge level of thermal inertia, etc.) which clearly amplify the prediction error.

(a) (b) 

Figure 8. Electricity cost signal for the selected summer week: (a) hourly energy cost, c; (b): penalty
signal, p.

(a) (b) 

Figure 9. MPC with ANN as building prediction model: (a) internal air temperature, comparison
between the actual Type 56 air zone temperature and ANN prediction at each timestep; (b) cooling
power profile (control action sequences).
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(a) (b) 

Figure 10. MPC with RC as building prediction model: (a) internal air temperature, comparison
between the actual Type 56 air zone temperature, and RC prediction at each timestep; (b) cooling power
profile (control action sequences).

Although the models seem to have similar performances, different on-time trends for the
two models can be expected if the actual building air temperature is observed (the red curves in
Figures 9a and 10a). In particular, the MPC with the RC network seemed to follow the system dynamics
more accurately than the controller with the ANN. When the ANN was operatively used in the
controller, it appeared to perform less effectively than the RC network. In both cases, in the second
half of the tested period, the prediction error started to grow but, in the case of the ANN, the actual
air zone temperature exceeded the upper comfort limit by more than one degree (28.8 ◦C was the
maximum value reached with the ANN in the controller, against 27.5 ◦C in the case of the RC model).
This behavior is also confirmed by the duration curves reported in Figure 11. In the building regulated
by the ANN-based MPC, the indoor temperature was found to be above the upper control limit for 36%
of the simulation time. This percentage dropped to 24% when the RC network was used. This behavior
was due to the difficulty of the control to maintain the comfort level when the temperature was too
close to the upper comfort boundary; a small error in prediction can also cause temperature violations.

Figure 11. Indoor air temperature duration curves.

In summary, a reversal of performance between the two models can be found when the evaluation
is carried out for the application in a realistic controller. The main reason for this behavior is related to
the difficulty in selecting the proper dataset for the ANN training. In fact, the model must not only be
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able to replicate the response of the building in the same input conditions (and this is done well in
the present study), but it must also be able to predict the system’s responses in different scenarios,
taking into account the contribution of energy flexibility. When the latter is introduced, it becomes
difficult to identify a dataset that can train the black box model adequately, since the problem becomes
dynamically affected by the operation of the system. Although the flexibility contribution seems to be
better represented by the white box model based on the RC network, even in this case, a degradation
in the prediction performance is detected when the controller is applied to the building. When using
a white box model, however, a relevant amount of detailed data relating to the design and construction
characteristics of the building should be known in order to implement an accurate model. Moreover,
it is not always obvious which is the best network structure to use in the physical-based approach.
For very complex buildings, it may be exceedingly difficult to identify an appropriate model and the
corresponding parameters, even if detailed knowledge of the building is available. Another aspect
that should be taken into account when using a purely physical-based model is that some dynamics
(e.g., occupancy) cannot be considered in any way unless dedicated models are added. When, instead,
measured data are used for the model training, such information may be intrinsically provided to the
model. For these reasons, it could be convenient to monitor data and use hybrid models.

To conclude, Table 2 reports a comparison summary between the two building model approaches,
subdivided into the main steps of configuration and implementation in an MPC.

Table 2. Comparison summary between a physical-based and a data-driven approach in an
operative MPC.

Step Physical-Based Approach Data-Driven Approach

Preparation of the
building model

• No measured data are required
• An accurate knowledge of the geometrical and

thermal characteristics of the building is needed

• Measured data are required
• The knowledge of the geometrical and thermal

characteristics of the building is not needed

Identification of the
model configuration

• Difficulty in selecting the proper RC network
and the numerical values of the parameters for
complex buildings

• Necessary to provide an accurate occupancy
model if this aspect needs to be considered

• There is no systematic procedure to choose the
best network architecture, and the optimal
number of neurons is the result of a
trial-and-error process

• Difficulty in selecting proper input and output
quantities when representing energy flexibility

Model development
• Linear model that can be represented with a

state–space formulation
• Nonlinear model, one hidden layer of neurons

is generally sufficient

Comparison with the
reference building

• Good ability to replicate the reference case
behavior at the same inputs (RMSE = 0.34 ◦C)

• Good ability to replicate the reference case
behavior at the same inputs (RMSE = 0.26 kW)

Implementation
in an MPC

• Improved performance in terms of objective
functions compared to the reference operation

• Good ability to represent flexibility and follow
thermal dynamics, with occasional comfort
constraint violations

• An amplification of the prediction error occurs
when real implementation is tested (comfort
violation of 24%, maximum temperature
deviation of 0.5 ◦C)

• Improved performance in terms of objective
functions compared to the reference operation

• Relevant errors in demand prediction when
energy flexibility is managed

• Comfort constraint violations can occur during
real implementation

• An amplification of the prediction error occurs
when real implementation is tested (comfort
violation of 36%, maximum temperature
deviation of 1.8 ◦C)

5. Conclusions

In this paper, a comparison between a data-driven model implemented with an artificial neural
network (ANN) and a physical-based model realized with an RC network is provided in an operative
model predictive control (MPC). The controller was designed to provide a minimization of the total
energy cost for the thermal demand satisfaction.

Focusing on the evaluation of the cooling season, a 16% reduction in the weekly cost with respect to
the reference case was obtained, with an RMSE of about 1 ◦C in both cases (1.1 ◦C with the data-driven
model and 0.9 ◦C with the physical-based approach). Although the data-driven model shows a good
performance in replicating the building’s thermal power profile, this trend is not confirmed when it
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works operatively in the controller. In fact, the comfort constraints are not respected for the 36% of
the simulation time, with a maximum temperature deviation from the upper comfort limit of 1.8 ◦C.
The physical-based model, instead, shows a discomfort percentage of 24% but a maximum deviation
of only 0.5 ◦C.

The main conclusions of the presented work can be summarized as follows:

• Both the controllers show a good ability to replicate the reference case behavior at equal inputs.
• In the case of real implementation, for the ANN-based MPC, comfort constraint violations can

occur more frequently. Indeed, the use of a data-driven model poses an issue for the training
dataset to operatively represent the energy flexibility contribution in buildings.

• The physical-based model seems to better reproduce the system dynamics. However, an accurate
knowledge of the building, which is not always possible, is required.

• Both the approaches show an amplification of the prediction error when their dynamic operation
in the MPC is considered, even if the physical-based MPC limits this issue.

This latter point highlights the difficulty in implementing MPCs in real controls for energy flexible
systems and suggests the need for further investigation. Indeed, it is important to consider that the
results presented in this paper are related to a relatively simple building and no dedicated occupancy
models were considered. When such advanced controls must be applied to more complex buildings
where the role of users is not negligible, a purely physical-based approach can be computationally
heavy, and it could be more convenient to use hybrid models. As a future development, it would be
interesting to test the use of a hybrid model with an RC network structure and to provide a sensitivity
analysis of the model according to the users’ behavior in order to assess whether improvements in
operational performance are also evident in the case of a simplified building.
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Nomenclature

A State space model coefficient matrices for state vector
ACH Air changes for hours
ANN Artificial neural network
B State space model coefficient matrices for input
b Bias vector
c Hourly thermal energy cost (EUR kWh−1)
C Thermal capacitance (J kg−1 K−1)
COP Coefficient of performance
DR Demand response
DSM Demand side management
d Number of inputs
f Scalar factor
G Gains (W)
g Activation function
HVAC Heating, ventilation, and air conditioning
k Discrete timestep (hr)
LP Linear programming
MPC Model predictive control
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m Number of neurons
n Samples number
OF Objective function
p Penalty signal
ph Prediction horizon
Q Thermal power (W)
R Thermal resistance (K W−1)
RC Resistance–capacitance
RES Renewable energy source
RSE Root square error
RSME Root mean square error
SVM Support vector machine
T Temperature (◦C)
t Simulation time step (hr)
U Input vector
w Weights matrix
X State vector
x Input variable
y Output variable
μ Mean value
σ Standard deviation

Subscripts

air Internal air
amb Ambient
c Cost
e External
ee External Envelope
i Internal
ie Internal Envelope
k Discrete time step
max Maximum value
min Minimum value
n sample
w Windows and air changes
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Abstract: Climate change is continuously bringing hotter summers and because of this fact, the use of
air-conditioning systems is also extending in European countries. To reduce the energy demand and
consumption of these systems, it is particularly significant to identify further technical solutions for
direct cooling. In this research work, a field study is carried out on the cooling energy performance
of an existing, operating ventilation system placed on the flat roof of a shopping center, located in
the city of Eger in Hungary. The running system supplies cooled air to the back office and storage
area of a shop and includes an air-to-air rotary heat wheel, a mixing box element, and a direct
expansion cooling coil connected to a variable refrigerant volume outdoor unit. The objective of
the study was to investigate the thermal behavior of each component separately, in order to make
clear scientific conclusions from the point of view of energy consumption. Moreover, the carbon
dioxide cross-contamination in the heat wheel was also analyzed, which is the major drawback of
this type heat recovery unit. To achieve this, an electricity energy meter was installed in the outdoor
unit and temperature, humidity, air velocity, and carbon dioxide sensors were placed in the inlet
and outlet section of each element that has an effect on the cooling process. To provide continuous
data recording and remote monitoring of air handling parameters and energy consumption of the
system, a network monitor interface was developed by building management system-based software.
The energy impact of the heat wheel resulted in a 624 kWh energy saving and 25.1% energy saving rate
for the electric energy consumption of the outdoor unit during the whole cooling period, compared
to the system without heat wheel operation. The scale of CO2 cross-contamination in the heat wheel
was evaluated as an average value of 16.4%, considering the whole cooling season.

Keywords: building energy efficiency; heat wheel; direct expansion cooling; ventilation system;
energy consumption

1. Introduction

The use of environmental control systems has significantly increased in the building sector in order
to reduce the energy consumption of heating, ventilation, and air-conditioning (HVAC) systems [1].
Air handling units (AHUs) are one of the most complex building service systems [2], and can include
heating, cooling, humidifier, mixing element, and heat recovery units, in order to provide the required
indoor air quality and thermal comfort in conditioned spaces [3].

In a typical AHU, chilled water in the cooling coils cools the air, and hot water (or steam) in the
heating coils heats the air, in order to maintain the desired temperature of the supply [4]. The supply
and return fans assist in moving the air for heat exchange, as well as circulating it in the HVAC system
at the required flow rate [5]. Several components are part of a typical system, i.e., the chiller, the boiler,
the supply and return fans, and the water pump that consumes a lot of energy [6].
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Direct expansion ventilation units are becoming more commonly used central air-conditioning
technical solutions, in which a refrigerant is directly delivered to the cooling (and heating) coil [7].
These systems have the potential to save cooling and heating energy use, since they do not require any
water pumps for their operation, compared to water-based central air conditioning systems [8,9].

Developers are working really hard to minimalize the energy consumption of their developed
devices; however, there are many imperfections in the actual available product catalogues, technical
data, and technical support service systems, especially for the annual energy designing provided by
the ventilation producers for building service and energy design engineers [10,11]. Therefore, it would
be particularly significant to have measured and recorded data obtained from field studies [12,13],
which may be utilized in the course of design work, and which would allow a proper estimation of
the expected realizable annual energy consumption of air handling elements in the function of the
temperature and relative humidity of ambient and indoor air and operating parameters [14].

Stamatescu et. al [15] presented the implementation and evaluation of a data mining methodology
based on collected data from a more than one-year operation. The case study was carried out on four
AHUs of a modern campus building for preliminary decision support for facility managers. The results
are useful for deriving the behavior of each piece of equipment in various mode of operation and can
be built upon for fault detection or energy efficiency applications. The imperfection of their work
is the missing data for air condition parameters (temperature and humidity) between the coils and
mixing box; before and after the fans, which cannot be neglected, since the electrical motor of the fans
increases the air temperature and decreases the relative humidity; and the air volume flow rate, which
changes during the operation. All these missing parameters have a significant effect on the energy
efficiency of the ventilation system.

Hong et. al [16] conducted a case study on a running AHU for data-driven predictive model
development. In order to develop the optimal model, input variables, the number of neurons and
hidden layers, and the period of the training data set were considered. The results and conclusions
presented for the one-year field study could have much better reflected the reality from the view point
of energy performance, if further temperature and relative humidity sensors had been placed between
the coils and humidifier element, before and after the fans. Only focusing on energy performance data
recording is not enough, since the desired indoor air quality and thermal comfort are also significant
parameters that need to be considered. To draw a more exact conclusion from this point of view, the
CO2 parameter should also have been monitored and recorded in the outdoor air inlet (OA) and supply
air outlet (SA) sections in the investigated AHU.

Based on a literature review of the field, there are some case studies in which the heat recovery unit
has also been considered in the ventilation system. Noussan et. al [17] presented results obtained from
an operation data analysis of an AHU serving a large university classroom. The main drivers of energy
consumption are highlighted, and the classroom occupancy is found to have a significant importance
in the energy balance of the system. The availability of historical operation data allowed a comparison
of the actual operation of the AHU and the expected performance from nominal parameters to be
performed. Calculations were made considering the operation analysis of the heat recovery unit over
different years; however, the existing system does not include any heat or energy recovery devices, so
there are no exact measured data from this point of view.

Bareschino et. al [18] compared three alternative hygroscopic materials for desiccant wheels
considering the operation of the air handling unit they are installed in. Their results demonstrated
that a primary energy saving of about 20%, 29%, and 15% can be reached with silica-gel, milgo, and
zeolite-rich tuff desiccant wheel-based air handling units, respectively. The results were given based
on a simulation and there is no exact measured data, which would be significant for making precise
and clear energetic conclusions.

In this work, a field study is carried out on an existing, operating ventilation system that
includes an air-to-air rotary heat wheel, a mixing box element, and a direct expansion cooling coil
connected to a variable refrigerant volume outdoor unit. One of the main objectives of the present
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paper is to investigate the cooling energy performance and thermal behavior of each air handling
component separately. To achieve this, an advanced data recording and remote monitoring system
was considerately developed by building management system-based software. The system includes
an electricity energy meter installed in the outdoor unit, as well as temperature, humidity, air velocity,
and CO2 sensors placed in the inlet and outlet section of all the air handling elements that have an
effect on the cooling process. The purpose of the CO2 measurements was to investigate the CO2

cross-contamination, which occurs from the exhaust air flow to the supply air flow in the air-to-air rotary
heat wheel, resulting in indoor air quality degradation. The novelty of this research is the accurate
determination of the seasonal effectiveness and the energy saving impact of the heat wheel on the
electric energy consumption of the outdoor unit. Moreover, the relative average and maximum value
of CO2 cross-contamination in the rotary heat recovery using the developed measurement system in
the cooling period are presented. A further innovation in this study is the analytical evaluation method
developed, which shows a good agreement between the calculated and measured energy consumption.

2. Materials and Methods

The selected air handling unit (AHU) is located on the flat roof of a shopping center, located in
the city of Eger in Hungary, which has supplied fresh air to the back-office and storage area of a shop
since 2017.

2.1. Description of the Investigated Central Ventilation System

The main air handling components of the system are an air-to-air rotary heat wheel, a mixing box
element, and direct expansion cooling/heating (DX) coil connected to a variable refrigerant volume
outdoor unit. Figure 1 shows the elements of the investigated AHU.

 
Figure 1. Photo from the investigated air handling units (AHU).

The specification of the AHU can be seen in Table 1.

Table 1. Specification of the investigated AHU [19].

Parameter Value Unit

Width × Height × Length 1450 × 1340 × 2897 mm
Air flow 1060 m3/h

External Pressure Drop 280 Pa
Weight 595 kg

Figure 2 shows the outdoor unit which is connected with refrigerant pipes to the DX coil and is
located in the AHU.
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Figure 2. Photo from the outdoor unit.

Technical data of the unit can be seen in Table 2.

Table 2. Technical data of the outdoor unit [19].

Parameter Value Unit

Total Cooling Capacity 10.9 kW
Refrigerant R410a -

EER 3.99 -
Fin Material Aluminium -

Tube Material Copper -

Table 3 shows the specification of the air-to-air recovery heat wheel in the cooling period.

Table 3. Specification of the investigated heat wheel [19].

Parameter Value Unit

Heat recovered 2 kW
Effectiveness 74.9 %

Diameter 600 mm

2.2. Description of the Developed Measurement System

In total, six temperature and relative humidity sensors, three CO2 sensors and three air velocity
sensors were placed in the inlet and outlet section of each air handling element and an electricity
energy meter was installed in the outdoor unit. The placement of the measurement points can be seen
in Figure 3. The technical data of the installed sensors and instrument can be read in Table 4.

 
Figure 3. Schematic diagram (a) for the placement of the measurement points on the real operating
AHU and (b) the AHU without a heat recovery operation assumption.
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Table 4. Specification of the sensors and instrument.

Model Device Working Range Accuracy

Honeywell VF20-3B65NW Temperature sensor −40–150 ◦C ±0.4 ◦C
Honeywell LFH20-2B65 Humidity sensor 10–90% ±3%
Honeywell AQS-KAM-20 CO2 sensor 0–2000 ppm ±50 ppm
Honeywell AV-D-10 Air velocity sensor 2–20 m/s ±0.2 m/s
Inepro Metering Pro 380 Electricity energy meter 5–100 A ±1%

The recording of the measured data took place in an hourly period. With regards to the
measurement accuracy, temperature sensors are normally used with a ±0.4 ◦C accuracy, humidity
sensors with a ±3% accuracy, an air velocity sensor with a ±0.2 m/s accuracy, carbon dioxide sensors
with a ±50 ppm accuracy, and an electric energy meter with a 1% of full scale accuracy. Among the
monitoring air handling data, the air temperature and relative humidity data of the inlet and outlet
sections of the DX cooling coil, energy recovery unit, and outdoor were used to investigate the energy
performance and thermal behaviour of these air handling elements in the AHU in the cooling season.

The specification of the sensors and electricity energy meter used for monitoring of the investigated
AHU can be seen in Table 4.

For the monitoring and recording of the various air condition parameters and the electrical
energy consumption of the outdoor unit, the CentraLine Building Management System (BMS) software
(version 2019) solution from Honeywell was implemented on a central server. Figure 4 shows a picture
of the target building, along with a representative BMS screen for the investigated air handling unit.

 
Figure 4. A screenshot of the investigated AHU in the Building Management System (BMS).

Access to the BMS software was remotely enabled. Within this technical context, the necessary
data were collected for this field study. Data were collected online at hourly intervals, saved, and
stored on a computer from a distance.

3. Evaluation of the Data Recorded

To investigate the energy performance of the AHU, using the measurements, the following
mathematical approaches were implemented.
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3.1. Calculation Formulas for Measured Data Evaluation

Using the measured air temperature and relative humidity data, the specific humidity could be
calculated to obtain the enthalpy of the air. To achieve this, the water vapor saturation pressure (Pws)
was first calculated with Equation (1) [20]:

Pws = A·10(
mt

t+tn )·100, (1)

where Pws is the saturation pressure of the water vapor in Pa; t is the air temperature in ◦C; and
A, m, and tn are constant values in -. Since the temperature range during the measurements was
between −20 and +50 ◦C, the constant values (in 0.083% maximum error) were as follows: A = 6.116441;
m = 7.591386; tn = 240.7263 [20]. The constant value of 100 in Equation (1) represents the conversion of
the saturation pressure of water vapor from hPa to Pa.

To obtain the moisture content, the partial pressure of water vapor in the air at a given relative
humidity was also calculated with Equation (2) [20]:

Pw = Pws·RH
100

, (2)

where Pw is the partial pressure of water vapor in Pa and RH is the relative humidity of the air in %.
The constant value of 100 in Equation (2) represents the conversion of relative humidity from % to -.

The moisture content was calculated with Equation (3) [21]:

x = 0.622· Pw

Po − Pw,
(3)

where x is the moisture content of the air in kg/kg, Po is the barometric pressure in Pa, and the 0.622
constant value is the molecular weight ratio of water vapor to dry air.

The enthalpy was calculated with Equation (4) [21]:

h = cpa·t + x·(cpw·t + 2500), (4)

where h is the enthalpy of the air in kJ/kg, cpa is the specific heat of air at constant pressure in kJ/(kg·◦C),
cpw is the specific heat of water vapor at constant pressure in kJ/(kg·◦C), and the constant value of 2500
represents the evaporation heat in kJ/(kg·◦C).

3.2. Formulas for Energy Calculations

Considering the fact that there is balanced ventilation, the effectiveness values of the heat wheel
were determined from the air temperature measured values using Equation (5) [22,23]:

εs =
(tHWS − to)

(tHWE − to)
, (5)

where εS is the real sensible effectiveness of the heat wheel given by the measured data in -, tHWS is the
air temperature in the supply outlet section of the heat wheel in ◦C, tHWE is the air temperature in the
exhaust inlet section of the heat wheel in ◦C, and to is the ambient air temperature which is equal to the
air temperature in the supply inlet section of the heat wheel in ◦C.

To get information about the seasonal energy performance of the heat recovery during the cooling
period, the average of the sensible effectiveness was calculated with Equation (6):

εs_AV =

∑n
i=1 εs_i

n
, (6)
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where εs_AV is the average of the sensible effectiveness of the heat wheel given by the measured data in
the cooling season in - and n is the number of measurements.

The maximum value of the sensible effectiveness was also analyzed during the whole cooling
season, which was calculated with Equation (7):

εs_MAX = MAX (εs_i . . . εs_n), (7)

where εs_MAX is the maximum value of the sensible effectiveness of the heat wheel given by the
measured data in the cooling season in -.

To calculate the energy saving of the heat wheel in the cooling season, Equation (8) was used:

QHW_saved =
.

ms·(ho − hHWS)·τ, (8)

where QHW_saved is the energy saving of the heat wheel in kWh;
.

ms is the air mass flow rate delivered
by the fans in kg/s, which is calculated by the multiplication of the measured air velocity in m/s and the
internal cross-section of air duct in 0.7398 m2 and approached a 1.2 kg/m3 constant air density; ho is the
ambient air enthalpy which is equal to the air enthalpy in the supply inlet section of the heat wheel in
kJ/kg; hHWS is the air enthalpy in the supply outlet section of the heat wheel in kJ/kg; and τ is the time
in hours. The average air volume flow rate was evaluated as 1060 m3/h during the cooling season.

To calculate the cooling energy consumption of the DX coil, Equation (9) was used:

QDX_HW =
.

ms·(hHWS − hDX)·τ, (9)

where QDX_HW is the cooling energy consumption of the DX coil in kWh, and hDX is the air enthalpy in
the supply outlet section of the DX coil in kJ/kg, which is equal to the supply air condition.

In order to investigate more the energy saving impact of the heat wheel on the DX coil, the cooling
energy consumption of DX coil was also determined by Equation (10), neglecting the air-to-air rotary
heat wheel operation, when the DX coil directly cools the hot ambient air to the supply air conditions.

QDX_WO_HW =
.

ms·(ho − hDX)·τ, (10)

where QDX_WO_HW is the cooling energy consumption of the DX coil without the heat wheel operation
in kWh.

The calculated electric energy consumption of the outdoor unit was calculated with Equation (11):

PVRV_HW =
QDX_HW

EER
, (11)

where PVRV_HW is the calculated electric energy consumption of the outdoor unit with the heat wheel
operation in kWh, and EER is the energy efficiency ratio, given by the producer in -.

Moreover, the real electric energy consumption of the outdoor unit (PVRV_HW_M) was also measured
during the cooling season, in order to see the agreement between values of the measured data and
calculations using the recorded air condition parameters (PVRV_HW). The difference between the
measured and calculated electric energy consumption was determined with Equation (12):

ΔPVRV_HW = PVRV_HW_M − PVRV_HW , (12)

where ΔPVRV_HW is the difference between the measured and calculated electric energy consumption
of the outdoor unit with the heat wheel operation in kWh.
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The rate of deviation of the measured and calculated electric energy consumption of the outdoor
unit related to the measured data was calculated with Equation (13):

ΔPVRV_HW_REL =
ΔPVRV_HW

PVRV_HW
·100, (13)

where ΔPVRV_HW_REL is the rate of deviation of the measured and calculated electric energy consumption
of the outdoor unit in %.

The electric energy consumption of the outdoor unit without the heat wheel operation was
calculated with Equation (14):

PVRV_WO_HW =
QDX_WO_HW

EER
, (14)

where PVRV_WO_HW is the electrical energy consumption of the outdoor unit without the heat wheel
operation in kWh when it directly cools the hot ambient air to the supply air conditions via the DX coil
during the cooling season.

The energy saving of the heat wheel in terms of the electric energy consumption of the outdoor
unit was calculated with Equation (15):

ΔPVRV_HW_saved = PVRV_WO_HW − PVRV_HW , (15)

where ΔPVRV_HW_saved is the amount of energy saved by the heat wheel in terms of the calculated
electric energy consumption of the outdoor unit compared to that without the heat recovery operation
in kWh.

The energy saving impact of the heat wheel on the electric energy consumption of the outdoor
unit, compared to the system without the heat wheel operation, was calculated with Equation (16):

ΔPVRV_HW_saved_REL =
ΔPVRV_HW_saved

PVRV_WO_HW
·100, (16)

where ΔPVRV_HW_saved_REL is the energy saving rate of the heat wheel for the electric energy consumption
of the outdoor unit, compared to the system without heat the wheel operation, in %.

The value of the actual energy efficiency ratio of the outdoor unit given obtained the field study
was determined with Equation (17) for the investigated cooling season to compare the data provided
by the producer:

EERM =
QDX_HW

PVRV_HW_M
·100, (17)

where EERM is the evaluated energy efficiency ratio (-) based on the measurement during the whole
investigated cooling season.

3.3. Formulas for Carbon Dioxode Cross-Contamination in the Heat Wheel

The scale of carbon dioxide (CO2) cross-contamination in the air-to-air rotary heat recovery wheel
was also investigated by measurements in the heat wheel during the operation of the air handling unit
in the cooling period. To achieve this, the CO2 concentration difference between the supply inlet and
outlet sections of the heat wheel was first determined with Equation (18):

ΔCCO2_cross = CCO2_HWS −CCO2_o, (18)

where ΔCCO2_cross is the scale of the CO2 cross-contamination in the heat wheel in a given hour in ppm;
CCO2_HWS is the CO2 concentration in the supply outlet section of the heat wheel in ppm; and CCO2_o
is the CO2 concentration of the ambient air in ppm, which is equal to the CO2 concentration in the
supply inlet section of the heat wheel in ppm.
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Having completed the measurements, the average of the CO2 cross-contamination values was
taken, and the ratio of the result and the supplied average CO2 concentration was calculated by
Equation (19):

ΔCCO2_cross_AV =

∑n
i=1 ΔCCO2_cross_i

n
, (19)

where ΔCCO2_cross_AV is the average of the CO2 cross-contamination values in ppm and n is the number
of measurements.

Since CO2 cross-contamination occurs from the exhaust section to the supply section in the heat
wheel, the average of the measured CO2 values in the exhaust inlet section of the heat wheel was also
calculated with Equation (20) using the data measured:

CCO2_HWE_AV =

∑n
i=1 CCO2_HWE_i

n
, (20)

where CCO2_HWE_AV is the average value of the CO2 concentration in the exhaust inlet section of the
heat wheel in ppm and n is the number of measurements.

Equation (21) was used to obtain the relative average of differences:

ΔCCO2_REL =
ΔCCO2_cross_AV

CCO2_HWE_AV
·100, (21)

where ΔCCO2_REL is the relative average of CO2 cross-contamination in %, considering the CO2

concentration content in the exhaust inlet section of the heat wheel in ppm.
The maximum value of CO2 cross-contamination was also analyzed during the whole cooling

season, which was calculated with Equation (22):

CCO2_REL_MAX =

[
MAX

(
CCO2_cross_i

CCO2_HWE_i
. . .

CCO2_cross_n

CCO2_HWE_n

)]
·100, (22)

where CCO2_REL_MAX is the maximum value of CO2 cross-contamination in the heat wheel in the cooling
season given by the measured data in %.

4. Results and Discussion

The reference period of the study is the year 2019, more specifically, the cooling period from
June 1st to August 31st for a total of 92 days and 25,296 data samples for each of the used measurement
points. The AHU is intermittently operated 12 h/day from 8:00 till 20:00 7 days/week. Since this
research work focused on the ventilation energy saving of the heat recovery unit’s DX cooling coil, the
mixing box was shut off during the data recording.

The air handling parameters obtained from the field study for the investigated AHU are illustrated
in Figures 5–7 with a monthly timescale. Since the ambient air temperature was the highest in June
during the whole cooling season, this relevant month was selected to present the measured data
resulting from the data collection.

Figure 5 shows the temperature of the outdoor air (to), the air in the supply outlet sections of the
heat wheel (tHWS) and DX coil (tDX), and the exhaust inlet section of the heat wheel (tHWE) over time at
hourly intervals in June.

Considering the hottest periods in the cooling season, the ambient air temperature decreased by
about 4–5 ◦C due to the pre-cooling effect of the heat wheel, and by an additional 18–20 ◦C, provided
by air cooling of the DX coil.

Figure 6 shows the measured relative humidity of the outdoor air (RHo), the air in the supply
outlet sections of the heat wheel (RHHWS) and DX coil (RHDX), and the exhaust inlet section of the heat
wheel (RHHWE) over time at hourly intervals in June.
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Figure 5. The air temperature values in the air handling processes.
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Figure 6. The air relative humidity values in the air handling processes.

The ambient air relative humidity decreased by about 60% due to the air cooling process. In this
way, the supplied air relative humidity was around 90%.

Figure 7 shows the enthalpy of the outdoor air (ho), the air in the supply outlet sections of the
heat wheel (hHWS) and DX coil (hDX), and the exhaust inlet section of the heat wheel (hHWE) over time
at hourly intervals in June.

Considering the hottest periods in the cooling season, the ambient air enthalpy decreased by
about 8–10 kJ/kg due to the pre-cooling effect of the heat wheel, and by an additional 30–35 kJ/kg,
provided by air cooling of the DX coil.

120



Energies 2019, 12, 4267

 

τ

20

30

40

50

60

70

80

90
1-

Ju
n-

19
 - 

7 
A

M
1-

Ju
n-

19
 - 

8 
PM

2-
Ju

n-
19

 - 
7 

PM
3-

Ju
n-

19
 - 

7 
PM

4-
Ju

n-
19

 - 
6 

PM
5-

Ju
n-

19
 - 

5 
PM

6-
Ju

n-
19

 - 
4 

PM
7-

Ju
n-

19
 - 

3 
PM

8-
Ju

n-
19

 - 
2 

PM
9-

Ju
n-

19
 - 

1 
PM

10
-J

un
-1

9 
- 1

 P
M

11
-Ju

n-
19

 - 
12

 P
M

12
-J

un
-1

9 
- 1

1 
A

M
13

-J
un

-1
9 

- 1
0 

A
M

14
-J

un
-1

9 
- 9

 A
M

15
-J

un
-1

9 
- 8

 A
M

16
-J

un
-1

9 
- 7

 A
M

17
-J

un
-1

9 
- 7

 A
M

17
-J

un
-1

9 
- 8

 P
M

18
-J

un
-1

9 
- 7

 P
M

19
-J

un
-1

9 
- 6

 P
M

20
-J

un
-1

9 
- 5

 P
M

21
-J

un
-1

9 
- 4

 P
M

22
-J

un
-1

9 
- 3

 P
M

23
-J

un
-1

9 
- 2

 P
M

24
-J

un
-1

9 
- 2

 P
M

25
-J

un
-1

9 
- 1

 P
M

26
-Ju

n-
19

 - 
12

 P
M

27
-J

un
-1

9 
- 1

1 
A

M
28

-J
un

-1
9 

- 1
0 

A
M

29
-J

un
-1

9 
- 9

 A
M

30
-J

un
-1

9 
- 8

 A
M

h
[k

J/
kg

]

h_o h_HWS h_HWE h_DX

τ [h]

Figure 7. The air enthalpy values in the air handling processes.

Figure 8 shows the sensible effectiveness data (εs) for the outdoor air temperature in June.
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Figure 8. The sensible effectiveness values as a function of outdoor air temperature in June.

Based on the results, the average sensible effectiveness of the heat wheel was 79.6% during the
whole cooling season and the maximum value of 97.6% was recorded in June.

Figure 9 shows the energy saving of the air-to-air rotary heat wheel (QHW_saved) in terms of the
energy consumption of the DX coil, and the cooling energy consumption of the DX coil with the heat
wheel operation (QDX_HW) and without the heat wheel operation (QDX_WO_HW), when the DX coil
directly cools the hot ambient outdoor air to the supply air conditions during the cooling season.
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Figure 9. The energy recovery and auxiliary cooling energy consumption for ventilation.

Based on the results, the energy saving of the heat wheel was 2491 kWh in terms of the energy
consumption of the DX coil, the cooling energy consumption of the DX coil with the heat wheel
operation was 7434 kWh, and that without the heat wheel operation was 9926 kWh.

Figure 10 shows the electric energy consumption of the outdoor unit based on the direct real
electric energy consumption measurements (PVRV_HW_M) and the calculations made using the recorded
air condition parameters with (PVRV_HW) and without the heat wheel operation (PVRV_WO_HW) for the
whole cooling period.
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Figure 10. The electric energy consumption of the outdoor unit.

The real electric energy consumption of the outdoor unit based on the measurements was 1889 kWh
and the calculations resulted in 1863 kWh consumption with and 2488 kWh consumption without the
heat wheel operation for the whole cooling period.

Since the difference (ΔPVRV_HW) is only 26 kWh and rate of deviation (ΔPVRV_HW_REL) is 1.36%
between the values of the measured and calculated electric energy consumption of the variable
refrigerant volume (VRV) outdoor unit with the heat wheel operation, Figure 10 shows very good
agreement between the experimental and numerical results. The evaluated energy efficiency ratio is
3.94 based on the measurements (EERM) conducted for the whole investigated cooling season, which is
only 0.05 less than the value of 3.99 given by the producer. The energy impact of the heat wheel results
in 624 kWh energy being saved (ΔPVRV_HW_saved), which is equivalent to a 25.1% energy saving rate
(ΔPVRV_HW_saved_REL) in terms of the electric energy consumption of the outdoor unit for the whole
cooling period, compared to the system without the heat wheel operation.
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Figure 11 shows the measured CO2 concentration of the outdoor air (CCO2_o), the air in the supply
outlet section of the heat wheel (CCO2_HWS), and the exhaust inlet section of the heat wheel (CCO2_HWE)
over time at hourly intervals in June. There are a few hours in Figure 11 when the recorded CO2 values
of the air were lower in the supply outlet section than in the exhaust inlet section of the heat wheel,
probably due to the uncertainties and transient response characteristics of the CO2 sensors.
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Figure 11. The carbon dioxide values in the investigated supply and exhaust sections of the heat wheel.

Having completed the measurements of the whole cooling period, the average CO2

cross-contamination value (ΔCCO2_cross_AV) was 63.9 ppm. The average value of the CO2 concentration
in the exhaust inlet section of the heat wheel (CCO2_HWE_AV) was 390.1 ppm. Based on the results,
the relative average of CO2 cross-contamination (ΔCCO2_REL) was 16.4% and the maximum value
(CCO2_REL_MAX) was recorded as 30.1%, considering the whole cooling season. To determine how the
obtained values influence the indoor air quality inside of the conditioned spaces, further indoor air
quality measurements are necessary (with the use of further measurement devices and questionnaires),
which can act as a continuation of this research work, but exceed the limitation of this recent ongoing
research project.

5. Conclusions

In this research work, a field study was carried out on the cooling energy performance of an
existing, operating ventilation system under the operation of an air-to-air rotary heat wheel and direct
expansion cooling coil, connected to a variable refrigerant volume outdoor unit. The major findings
obtained from the study can be summarized as follows:

1. The operation of the heat wheel has a significant cooling energy saving impact on the electric
energy consumption of the outdoor unit. Comparing the measured ventilation system with an air
handling unit without a heat wheel operation, the cooling energy consumption is 25.1% higher;

2. Based on the measurements, the real sensible effectiveness and the CO2 cross-contamination of
the heat wheel are not in accordance with the design assumptions for the cooling period;

3. The sensible effectiveness of the heat wheel performed 4.7% higher than the data (74.9%) given
in the technical data book of the producer;

4. Having completed the measurements for the whole cooling period, the amount of CO2

cross-contamination in the heat wheel was much higher (with 16.4% relative average and 30.1%
maximum values) than predicted during the designing phase.
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Future work will focus on heating and annual energy performance investigations by conducting
further field studies on the system. Moreover, simulation model development will also be considered
for an annual energy consumption investigation of the existing ventilation system and model validation
is planned based on data given by an annual field study. The long-term goal is to develop a simulation
model which is suitable for determination of the energy consumption of ventilation systems in the
design phase with a high accuracy.
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Nomenclature

Abbreviations

A Constant value (-)
AHU Air Handling Unit (-)
CO2 Carbon dioxide (ppm)
cpa Specific heat of air at constant pressure (kJ/(kg·◦C))
cpw Specific heat of water vapor at constant pressure (kJ/(kg·◦C))
EER Energy efficiency ratio (-)
h Enthalpy (kJ/kg)
m Constant value (-)
.

m Air mass flow rate (kg/h)
P Pressure (Pa); electric energy consumption of the outdoor unit (kWh)
RH Relative humidity (%)
t Temperature (◦C)
tn Constant value (-)
VRV Variable refrigerant volume (-)
.

V Air volume flow rate (m3/h)
x Absolute humidity (gwater/kgdry air)
Greek Letters

εs Sensible effectiveness (-)
τ Time (hr)
Subscripts

DX Supply outlet section direct expansion evaporator
EI Exhaust air inlet
HWE Exhaust inlet section of the heat wheel
HWS Supply outlet section of the heat wheel
O Outdoor
s Saturation
SI Supply air inlet
SO Supply air outlet
w Water vapor

124



Energies 2019, 12, 4267

References

1. Zhong, C.; Yan, K.; Dai, Y.; Jin, N.; Lou, B. Energy Efficiency Solutions for Buildings: Automated Fault
Diagnosis of Air Handling Units Using Generative Adversarial Networks. Energies 2019, 12, 527. [CrossRef]
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Abstract: Rooftop gardens ona building have proved to be a good way to improve its storm water
management, but many other benefits can be obtained from the installation of these systems, such as
reduction of energy consumption, decrease of the heat stress, abatement on CO2 emissions, etc. In this
paper, the effect from the presence of these rooftop gardens on abuilding’s energy consumption
has been investigated by experimental campaigns using a green roof ona public building in a
Mediterranean location in Spain. The obtained results demonstrate a substantial improvement by
the installation of the green roof onthe building’s cooling energy demand for a standard summer
day, in the order of 30%, and a reduction, about 15%, in the heating energy demand for a winter day.
Thus, given the longer duration of the summer conditions along the year, a noticeable reduction on
energy demand could be obtained. Simulation analysis, using commercial software TRNSYS code,
previously calibrated using experimental data for typical summer and winter days, allows for the
extrapolation to the entire year of these results deducing noticeable improvement in energy efficiency,
in the order of 19%, but with an increase of 6% in the peak power during the winter period.

Keywords: green roofs; buildings; air conditioning; energy efficiency; mediterranean area

1. Introduction

The application of rooftop gardens onbuildings, or green roofs [1], which introduces a layer of
vegetation, growing media and an additional drainage/auxiliary layers, has evidenced to improve
storm water management [2,3], but this is not the only positive outcome resulting from these systems.
They also produce positive impacts in many other aspects [4], such as reducing the heat island effect
by decreasing the temperature in main city centers [5,6], ameliorating air pollution [7] and reducing
energy consumption of buildings [8–10]. In relation to this last aspect, roofs are a critical part of
the building envelopes, since they are highly susceptible to solar radiation and other environmental
changes. Thereby, they have a significant influence on the indoor comfort conditions of the occupants.
Roofs account for large amounts of heat gains and losses, especially onone-floor buildings with large
roof area. In these cases, green roofs improve the performance of the building’s energy behavior
by either decreasing the heat load during the winter period [11] or the cooling requirements during
summer time [12]. Green roofs also reduce the temperature fluctuation of the roof membrane along
the year [13] and, consequently, increase the efficiency of photovoltaic (PV) systems installed on the
roof [14]. In summary, a green roof is a good alternative to improve sustainability in urban areas by
reducing energy consumption, heat stress, air pollution and CO2 emissions.
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All these possibilities, and the fact that thermal behavior of a building and thus, the impact of green
roof installation on the building energy consumption is not an easy subject, explain the important effort
developed during the last decade for research on these systems, both from the theoretical simulation
and the experimental point of view [15].Thermal conductivity of employed materials is an important
factor, but other factors, such as internal loads (lights, computers, people etc.) or roof reflectance
to solar radiation, can play a very important role, especially in the summer period. Therefore, the
contribution of the green roof to the improvement of the energy efficiency in the building will be highly
dependent on local conditions and studies should be addressed to model and experimentally quantify
that contribution for different climate areas. Thusfar, published works have focusedon cold [11,16] and
hot climates [12,17] applications. In this last case, special emphasis has been given to the Mediterranean
area [18]. Other research studies in the area indicate the benefits of integrating green roofs onbuildings,
contributing to reduce a building’s energy use while mitigating greenhouse gases (GHG) in urban
areas [19–21].

This paper summarizes a long-term study using a green roof designed, built and installed ona
public building located in the Mediterranean coast of Spain. The main emphasis of the study was to
deduce its impact on the energy consumption of the building’s air conditioning system by monitoring
key energy and environmental variables, covering winter and summer periods. This approach allows
evaluating the energy consumption of the building and address a complete comparison for similar
periods before and after the installation of the green roof. Simulation studies using commercial
software TRNSYS 17 allow for the extrapolation of the results to the entire year. Obtained results are
representative for buildings in theMediterranean climate area. Section 2 introduces the experimental
setup used for this study, while the main experimental results are presented in Section 3. Section 4
includes an extrapolation of these experimental results to the entire year period using commercial
software TRNSYS 17.

2. Experimental Setup

A green roof was installed ona building located on Benaguasil, a small town in the Mediterranean
coast of Spain. As a reference, aclimograph of Valencia was included, which is the nearest city (at
a distance of about 18 km and with similar altitude) with available weather data (Valencia weather
station of Viveros). In Valencia, the average annual temperature is 23.0 ◦C during the day and 13.8 ◦C
at night. In January (the coldest month), the temperature typically ranges from 14 ◦C to 20 ◦C during
the day and 4 ◦C to 12 ◦C at night. In August (the warmest month), the average temperature registered
over the last 80 years in Valencia was around 25 ◦C (Figure 1). Furthermore, specific temperature data
of the Benaguasil area ranged from 28 ◦C to 34 ◦C during the day and about 22 ◦C at night.

 

Figure 1. Climograph of the 1938–2018 period for Valencia city (Viveros).
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Building Description

The building is a multipurpose social center with 1160 m2 anda single floor, located in the southeast
of the town (Figure 2). Since it was initially designed as a day care center for senior citizens, the
building has some common spaces and facilities such as a dining room, dressing rooms, kitchen etc.

 

Figure 2. Building main facade (north).

The building has a flat roof with an “inverted roof” typology, characterized by having the thermal
insulation (extruded polystyrene, XPS) over the waterproofing membrane, and over this thermal
insulation liesa geotextile filter and a layer of gravels.

In our case, the detailed structure (Figure 3) incorporates the following elements: gravel layer
(gravel diameter in the range of 20 to 50 mm and 1700 kg/m3 bulk density, 50 mm of layer thickness),
geotextile filter layer (2 mm), extruded polystyrene (XPS) insulation (40 mm), waterproofing membrane
(5 mm) and concrete hollow block (300 mm).

Figure 3. Initial roof structure.

The green roof was built over the present “inverted roof”. It was decided to remove the layer of
gravel and a water retention layer was added below the growing medium (separated with a filter fabric
layer). This storage layer increases the capacity of the roof for retaining water after a rain episode and
significantly reduces the amount of runoff generated. Figure 4 displays the green roof structure, which
includes the following layers: growth medium (80 mm thickness), permeable textile layer (2 mm),
drainage layer (water storage layer, 30 mm), geotextile layer/root barrier layer (3 mm), XPS insulation
(40 mm), waterproofing membrane (5 mm) and a concrete hollow block (300 mm).
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Figure 4. Green roof structure.

The growth medium is a mixture of conventional gardening organic substrate (40%), volcanic
lava rocks (40%) and silica sand (20%). In the upper part of the green roof, there are plants covering
almost the entire area with a height in the range of 50 to 150 mm. These plants are genus sedum (a
mixture of sedum album AH, sedum floriferum, sedum sediform, sedum reflexum, sedum spurium,
sedum moranense and sedum acre).

Figure 5 displays the plan view of the building, denoting the roof area where the green roof was
installed by the dotted line. The building area under controlled conditions with green and conventional
rooftop was 280 m2. Figure 6 shows the green roof already installed.

Figure 5. General view of building roof (dotted line indicating green roof affected area).

 

Figure 6. General view of greenroof.
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The monitoring system used for these experiments is presented in Figure 7.

Figure 7. Monitoring system scheme.

A set of six type T thermocouples, whose positions and missions are detailed in Table 1, enables
to determine the evolution of the temperature at different layers of the roof. These temperature
measurements allow identifying similar ambient temperature conditions in the registered data sets
and provide the data required for the simulation tools.

Table 1. Thermocouple positions.

Thermocouple # Position

T1 Below first level layer (gravel or growth medium)

T2 Under XPS insulation layer

T3 Under insulated layer in the area not covered by the
green roof. (Used as a reference)

T4 Outdoors of the building

T5 Indoors of the building

T6 Internal side of the roof

Specifications of the thermocouple sensors were: Probe PT100 RS PRO M16, PT100, +100 to
+450 ◦C, diameter 6 mm, Connection head, Class B 4 Stainless Steel.

All these thermocouple signals were stored every minute in a data logger, together with the
electricity consumption of the two heat pumps and the impulsion unit of the air conditioning system
of the area covered by the green roof. In addition, wind velocities and solar radiation were provided
by a nearby meteorological station.

The area affected by the green roof is about 1/4 of the total building surface and it has an
independent air conditioning system. There are two heat pumps (Mitsubishi Electric PEA-RP250GA,
with an input power of 8.455 kW each). Additionally, there is a common air impulsion unit of 3.05 kW
of input power. Thus, maximum total input power, for both cooling and heating models, is about
19.96 kW.

This monitored building area is about 280 m2 and it was closed during the testing periods to
guarantee the control on internal loads and other factors that could affect the energy consumption.
In this way, the test conditions are the same along the experimental campaigns with the conventional
and the green roof. Only the external variables (temperature, solar radiation, wind etc.), which are
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experimentally monitored, change. These campaigns cover different indoor comfort temperatures,
in arange from 22 ◦C to 28 ◦C.

3. Experimental Results

The experimental campaigns check the green roof effects on the building energy efficiency during
20 months (July 2017 to March 2019). During the first period, from July 2017 to February 2018,
measurements correspond to the “conventional” roof. In February 2018, the external gravel layer of
the conventional roof was replaced by the green roof. Thus, from March 2018 to March 2019, registered
data corresponded to the green roof effects. Figure 8 displays typical traces for the temperatures and
solar radiation obtained for the conventional and green roof campaigns, respectively, along an entire
week during the summer period.

 

Figure 8. Typical traces for different temperatures and solar radiation in summer period.

The obtained results in both situations are summarized in Table 2, where the consumption from
the air conditioning system (peak demand, energy consumption range during the entire campaign
and its average daily range) and the external roof temperature are detailed for both types of roofs.
Because the operation time of the offices located in the building was restricted to the morning hours,
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the operating time of the Heating, Ventilating and Air Conditioning (HVAC) system was only from
8:00 to 15:00, thus, the time span for comparison purposes was fixed for the period 9:00–13:00.

Table 2. Energy demand for conventional and green roof.

Dates

Conventional Roof Green Roof

Winter Summer Winter Summer

November 2017 to
February 2018

July to October
2017

November 2018 to
February 2019

July to
October 2018

Maximum power demand (kW) 13.7 19.4 16.6 16.4

Daily energy consumption range (kWh) 20–25 30–35 24–28 20–25

Average daily consumption (kWh) 22.6 31.3 26.6 21.9

Range of Top roof temperature (◦C) 20–30 45–55 5–15 22–35

We can deduct from these measurements that, during summer time, energy consumption was
higher in the conventional roof in comparison to the winter one. However, energy consumption during
winter is lower in the conventional roof. This behavior could be partly explained due to the presence
of gravel in external layer of the roof, which acts as a heat storage system with high temperature.
This fact introduces an additional load to be compensated by the air conditioning system during the
summer. Given that the summer period is much longer than the winter one in the Mediterranean area,
any effort to increase energy efficiency of the building should be concentrated onthe summer months.

Once the green roof is installed, the differences in energy consumption between the summer
and winter periods reduced significantly to less than 15%, higher for the winter period in this case,
whichcould be explained by the absence of the gravel layer as aheat source. This interpretation is
supported by the data presented in Figures 9 and 10, where the evolution of the temperature along a
similar day during the summer and winter periods, respectively, is presented for the conventional and
green roof situations. Similar days were selected in terms of similar ambient outdoor temperature,
humidity and solar radiation. During the summer, ambient outdoor temperature was 35 ◦C and
the gravel reaches 50 ◦C, while with the presence of the green roof, this effect is smoothed and the
temperature in the roof does not exceed the ambient outdoor temperature; in fact, it is below that value,
namely, 32 ◦C.
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Figure 9. Temperature evolution for a typical summer day with and w/o green roof.
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Figure 10. Temperatureevolution for a typical winter day with and w/o green roof.

Similar behaviorwasobtained for the winter period, as data plotted in Figure 10 shows. In this
case, the smoothing of the temperature fluctuation due to the green roof reduces the heat input to the
building and forces to higher energy consumption for the same level of indoor comfort.

Analysis of the data presented at Table 2 enables to evaluate the impact of the green roof on the
energy requirements of the building. It can be deduced that in the winter period there is an increase
for the total daily energy consumption and the requirement in electric power to be used by an order of
15%. This fact can be explained by the increase in the roof external layer temperature produced by the
solar radiation, which is 50% higher in the case of the conventional roof than with the green roof due
to the isolation produced by the former one. This heat source helps to heat up the building, reducing
the energy requirements in winter, while this is not available when the green roof is installed. On the
contrary, during the summer period, the energy saving increases up to 30%, with a reduction of the
required peak power of about 15%. Given the higher percentage of savings and the longer duration
of the summer period, it can be concluded that the global energy savings for the entire year is going
to be highlysignificant. Table 3 summarizes the percentages in energy requirement variation due to
installing the green roof for the winter and summer periods.

Table 3. Energy and power demand variation due to the green roof presence.

Energy and Power Demand Winter Summer

Maximum peak power demand (kW) +17% −15%

Average daily consumption (kWh) +15% −30%

Data comparingtwo similar days during summer time with both types of roofs areshown in
Figure 11. An initial peak power was observed to start building conditioning, as is the case for the
conventional roof; once a stable situation is reached, however, the power demand with the green roof
is 20% less than with the conventional one.

A similar comparison is presented in Figure 12 for two similar days in the winter period. Power
demand is very similar for both types of roof, but slightly lower in the case of the conventional one.

Obtained experimental results are comparable with other experimental studies conducted in
Mediterranean climate conditions [22], in which a 15% to 17% lower energy consumption was observed
during warm periods, whilehigher energy consumption (10% to 12%) was observed during cold times.
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Figure 11. Comparison of similar days with and without a green roof in the summer period.

 

Figure 12. Comparison of similar days with and without a green roof in the winter period.

4. Simulation Results

In order to evaluate the benefits of the green roof for a longer period of time, commercial software
TRNSYS 17 was used as theenergy simulation tool of the experimental setup. During the simulation,
conventional and green roof were modeled based on their constructive characteristics and energy
relationships. TRNSYS model was defined with 6 layers with different thickness: gravel or green roof
(0.07 m), polystyrene insulation (0.05 m), membrane (0.001 m), concrete (0.075 m), building slab (0.17 m)
and air chamber (0.5 m). The estimated U-value for the traditional roof was considered 0.518 W/m2·◦K,
while for the green roof, estimation was 0.409 W/m2·◦K.Solar absorption of the roof was modelled with
0.8 for the gravel and 0.2 for the green roof.

Figure 13 shows the input data for the simulation, external conditions, building characteristics
and temperature set points, and the deduced outputs, temperatures in the different layers of the roof
and cooling and heating demand along the year.
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Figure 13. Parameters of TRNSYS Model.

Initially, rooftop models developed in TRNSYS were validated using collected experimental
data. Validation was carried out in two stages, using a down-top approach: first, it was checked that
modelled temperatures were similar to the experimentally measured at the rooftop layers along a
week period. Then, the model was calibrated using the data from experimental daily profiles in the
summer period.

In the case of the week validation, temperatures of the different layers of the roof were determined
with the model and results (Figure 14) were compared with the corresponding experimental data.
Maximum simulated temperatures of 59 ◦C were obtained during summertime in the gravel, while
registered data during the same time period revealed a temperature range of 45 ◦C to 55 ◦C.

 

Figure 14. Simulated temperatures of the initial rooftop.

One-day validation was performed using as a reference two similar days in terms of environmental
parameters (temperature, humidity etc.) and use-of-space (workday) during the experimental campaign,
one for each of the two different types of roof considered, on 24th July 2017 (conventional roof) and 31st
July 2018 (green roof), in order to deduce the parameters used in the simulation. Comparison of the
simulation results, detailed in Figure 15, with the experimental data plotted in Figure 11, shows a good
enough agreement, thus, the simulation for the entire year could be addressed using these parameters.
In order to complete the simulation task, a selected time window during the day with stable conditions
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was identified. This time span was from 11:00 to 13:00. During this time span, TRNSYS simulations
were addressed considering a set-point of 22 ◦C in heating demand (October to March) and 26 ◦C for
cooling needs (April to September).

 

Figure 15. One-day validation of the models for conventional and green roof.

Figure 16 shows temperature evolution in the building outdoors (T4) and indoors (T5), as well as
the temperature below the growth medium (T1). As can be observed, top roof temperatures decreased
both in summer (40 ◦C to 35 ◦C) and winter (10 ◦C to 5 ◦C), which requires to compare the benefits for
cooling in summer versus the negative effects in heating during winter period.
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Recorded data for cooling energy demand in both scenarios (conventional and green roof) showed
an energy savings of approximately 25% in cooling energy demand, decreasing the maximum peak
power demand by 33%. Heating energy demand in both scenarios (conventional and green roof) is
presented in Figure 17. In this case, the results show that energy heating demand increased12% in
the green roof scenario. Moreover, the maximum energy peak due to heating also rose6% with the
green roof in comparison to the conventional rooftop, due to the reduction of solar heat gain reaching
the building.
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Figure 17. Results of the heating demand in both rooftops.

As a summary, results of the simulation are presented in Tables 4 and 5, which show total
energy consumption, saving in cooling and heating mode and the average power saved along the
operation time.

Table 4. Annual energy consumption for the conventional and green roof.

Roof Type Summer (kWh) Winter (kWh) Annual (kWh)

Conventional Roof 12,400 6083 18,483

Green Roof 9300 6813 16,113

Table 5. Simulation results in energy savings (green roof vs. conventional rooftop).

Simulation Results

Summer Winter Annual

Cooling
Demand Reduction

Heating
Demand Reduction

Total
Reduction

Total Energy Savings (%) 25% −12% 19%

Energy Reduction (kWh) 3100 −730 3780

Peak Power Savings (%) 33% −6% -

These results are compatible with the experimental values detailed at Table 2, which indicate a net
gain in energy saving for the entire year, in the order of 19%. In contrast, an energy demand increase of
6% is noted, due to the requirement for additional heating in the winter period.
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5. Conclusions

Consecutive experimental campaigns in a building with a conventional and with a green roof
have allowed deducing the impact on the energy efficiency of the building air conditioning system due
to green roof installation. In its application to a typical Mediterranean one-story building, insulation
effects coming from the presence of the green roof introduced a small deterioration in that energy
efficiency for the winter period, but showed clear improvements for the summer one. The global effect
along the entire year is a net gain in the order of 19% for the energy consumption, but a 6% increase
for the nominal power in the winter period. These results werededuced using a TRNSYS calculation,
previously calibrated with the experimental data obtained for summer and winter periods. Therefore,
in addition to the beneficial effects on the storm water control by reducing runoff and improving water
quality, green roofs are also a significant element to improve energy efficiency in buildings and could
help to mitigate urban heat island effect, while increasing urban biodiversity.
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Abstract: Building integrated photovoltaics (BIPV) is technology that can significantly increase
the share of renewable energy in final energy supply and are one of essential technologies for the
nearly zero-energy buildings (nZEB), new build and refurbished. In the article (a) an experimental
semitransparent BIPV glazed façade structure with 60% of PV cell coverage is shown; (b) energy
efficiency indicators were developed based on identified impact parameters using experimental data;
and (c) multi-parametric models of electricity generation, preheating of air for space ventilation,
and dynamic thermal insulation features that enable prediction of solar energy utilization in different
climate conditions are shown. The modeled efficiency of electricity production of BIPV was in the
range between 8% and 9.5% at daily solar radiation above 1500 Wh/day, while low impact of outdoor
air temperature and ventilation air flow rate on PV cell cooling was noticed. Between 35% and 75% of
daily solar radiation can be utilized by preheating the air for space ventilation, and 4.5% to 7.5% of
daily solar radiation can be utilized in the form of heat gains through opaque envelope walls.

Keywords: nZEB, BIPV; room ventilation; dynamic thermal insulation; multi-parametric model

1. Introduction

Buildings in Europe are responsible for 36% of all greenhouse gas emissions. To fulfil targets
presented in the Paris climate agreement, emissions in the building sector must be decreased by 90% [1].
Building integrated photovoltaics (BIPV) in form of façade structures are solutions that can significantly
contribute to this goal, as well as increase the share of renewable energy in the final energy supply.
As such, BIPV are one of the essential technologies for the nearly zero energy buildings. Regarding to
the structure of building stock and for ensuring the cost effectiveness of BIPV in general, solutions
for refurbishment of buildings are of great interest [2]. Among several design options, BIPV glazed
façade with a natural or forced ventilated air gap has several comparative advantages and are from the
architectural perspective upgraded double ventilated façades [3].

One way to fulfil this goal is in the multi-functionality of BIPV solutions. Relative low efficiency
of solar energy utilization with PV cells can be improved by solar concentrators or tracking devices,
although in case of BIPV applications, it is more convenient to upgrade PV modules to combine
power and heat generators to so called photovoltaic thermal building structures (BIPV/T). The liquid
heat transfer media can be used to supply the heat to the buildings [4,5], although preheating of
ventilation air for building ventilation is a better option because such applications operate as a low
exergy system [6]. In [7] opaque PV modules are cooled by air flowing through the forced ventilated
air gap and authors report that the overall energy efficiency during the winter months was in the
range between 48% to 52% on the monthly basis. Analysis of natural ventilated semitransparent
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BIPV designed as a double façade structure is shown in [8] showing energy and environmental
advantages of semitransparent BIPV over the opaque PV modules. In [9] authors propose solutions
for forced ventilated close loop BIPV/T based on the analytical modeling and point out the need for
experimental validation.

The second most common cited advantage of ventilated BIPV structures is the increase of the
PV cell efficiency by cooling. Buoyancy driven natural ventilated semitransparent BIPV consisting
of see-through a-Si PV cells was studied by [10]. Authors have shown that daily energy output can
be increased by 1.9% to 3% due to the lower operating PV cell temperature. Ventilated BIPV façade
was studied by [11] and authors claim that the PV modules efficiency can be increased by 2.2% on the
annual basis in case of natural ventilation and up to 4.7% to 5.7% in cases of forced ventilation with
different air flow rates. Similar results, 2.5% increase in annual electricity production by ventilated
façade mounted opaque PV modules, are reported in [12].

Ventilation of buildings significantly contributes to the wellbeing in buildings. Not only
bioeffluents, but pollutants such as formaldehyde and odors, can be efficiently removed from indoor
air [13]. Proper indoor air quality (IAQ) increases the occupant’s productivity as well [14]. Mechanical
ventilation systems with heat recovery could efficiently reduce heat demand, but significantly increase
the electricity demand, especially in commercial buildings. Nevertheless, in [15] it is shown that
in all-glass buildings with BIPV façade structures, electricity demand for ventilation, even in case
of the ventilation systems that fulfill present requirements about energy efficiency, is dominant
compared to heating, cooling, and lighting systems, measured by primary energy needed. Central
mechanical ventilation systems are difficult to adjust to the presence of occupancies and their personal
physiological needs. Furthermore, decentralized ventilation can be energy efficient in most European
climate regions [16]. Dynamic insulation is a part of the building envelope where outdoor air passes
through a porous thermal insulation layer towards the interior and redirects heat loss flux. Research
on this technique is shown in [17]. The authors have shown that dynamic thermal transmittance of a
ventilated structure having static U 0.3 W/m2K decreases to 0.15 W/m2K at air flow rate 0.75 1/s per m2

of the building structure area. Similarly, transmission heat losses of the envelope building structure
can be decreased if the air gap, designed inside the building structures, is ventilated by outdoor air,
and then transferred into the buildings as preheated air. In [18] building ventilated opaque BIPV was
studied at a steady state outdoor temperature, solar irradiation, and wind velocity. Indoor heat gains
were investigated using computational fluid dynamics (CFD) techniques and compared to static heat
losses expressed by thermal transmittance U of the building envelope structure.

In the presented article, a multi-functional modular semitransparent BIPV glazed façade structure
was designed, built, in-situ tested, and analyzed during winter-time conditions. M-Si PV cells are built
in the BIPV in form of double side glass laminated PV module with 60% PV cell packing factor, which
make the BIPV is semitransparent. Modular units can be multiplied according to needs of particular
flat/office/building in new, as well as in renovated buildings. Thick temperate glass layers (4 mm each)
of BIPV also result in the specific thermal response of the structure. Several aspects of functionality of
solar energy utilization are addressed and evaluated, such as (a) electricity production, preheating of
air for space ventilation and dynamic thermal insulation performance; (b) overall efficiency of solar
energy utilization is determined in form of approximation multi-parametric model, providing a tool
for evaluation of such BIPV glazed façade structure in different climate conditions; and (c) all models
are developed on the base of diurnal averaging of independent variables, which enables integration in
buildings thermal response models.

2. Object of Research and Research Methods

2.1. Semitransparent BIPV Glazed Façade Structure with Forced Ventilated Air Gap

In general term, BIPV are multifunctional devices because they incorporate passive functions
of ordinary façade (or roof) structures, for example, precipitation and sound protection with active
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renewable energy utilization. In this way lower production of electricity compared to self-stand
systems, as a consequence of the position of installation defined by the building envelope, can be
compensated at least in terms of investment. Nevertheless, in the presented article, the multifunctional
nature of the examined BIPV glazed façade structure is evaluated in terms of utilization of solar
energy thereby increasing energy efficiency of the building, while improving indoor living comfort.
A pilot BIPV glazed façade structure was designed to fit new buildings and could be used for energy
refurbishment as well, possibly eliminating the need for additional thermal insulation. It consisted of a
transparent glass façade with integrated PV cells and forced ventilated air gap which, beside electricity
production, enabled preheating of fresh supply air and it to act as dynamic thermal insulation (Figure 1).
In this way, the heat losses of façade envelope decrease as consequence of the lower (static) thermal
transmittance Ust and because part of transition heat losses preheats the air that flows inside the
ventilated air gap. Both effects are evaluated with dynamic thermal transmittance Ueff. To increase the
efficiency of solar energy utilization, the BIPV was designed as a semitransparent structure with 60%
of opaque PV cell area. Another reason for this BIPV design follows from optimization of multilayer
glazing according to the natural heating, shading, daylight, and occupancies view towards the outdoor
environment [15]. A similar conclusion is presented in [8]. In this way, both the ventilated BIPV on the
opaque façade structure and BIPV glazing can be combined with the same architectural appearance of
the building. BIPV were produced by [19] and consist of two 4 mm hard glass panes and encapsulated
layer. Monocrystalline silicon cells with reference efficiency 18.5% [19] and size 156 × 156 mm are
installed in the BIPV glazed structure.

(a) (b) (c) 

Figure 1. Experimental semitransparent building integrated photovoltaics (BIPV) glazed façade
structure (shown by the rectangle section). (a) The façade wall with two ventilation openings, each
of them was enclosed by a fan; (b) BIPV glazed structure installed 80 mm in front of the façade wall,
and (c) interior of experimental BIPV façade structure—air channels were thermal insulated during
the experiment.

The BIPV glazed façade structure was installed in front of the opaque south orientated façade wall
of laboratory unit in the way, and an 80 mm thick air gap, which was between BIPV glazed structure
and façade wall, was formed. The façade wall (Figure 1a) consisted of a thermal insulation layer
(d 0.035 m, λ 0.035 W/mK), lined by an inner and outer layer of solid wood (d 0.005 m, λ 0.14 W/mK)
made of two transversely glued soft wood plates. Such building structures are often installed as opaque
parapet as part of glazed building façade structures, since its thermal transmittance Ust (1.027 W/m2K)
does not exceed the common required level for glazed façades (e.g., in Slovenia Umax equals 1.3 W/m2K).
The surface of the structure has absorptivity of solar irradiation αs 0.65 and emissivity of IR irradiation
εIR 0.9, which is close to that of concrete façade structures. The section of the experimental BIPV glazed
façade structure is 0.435 m wide and 1.167 m high, with area ABIPV 0,508 m2. All support structures,
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such as the installing frame and outdoor and indoor air channels were thermal insulated to keep heat
transfer close to the 2D problem.

The air gap was forced ventilated by two DC fans with power of 2 W at a supply voltage of 12 V.
By changing the supply voltage, ventilation air flow rate

.
Va,in was set on a daily basis to the value

between 0 m3/h and 61.5 m3/h and kept constant all day long. If reverse flow fans were used instead,
the overheating protection by forced ventilation of the air gap with cooler indoor air instead of warmer
outdoor air, could be applied. The thermal response of the BIPV glazed façade structure in case of
the non-ventilated air gap was tested to examine the static thermal transmittance Ust of the structure,
while other discrete values of ventilation air flow rates were selected based on the indoor air quality
(IAQ). It was assumed that the office with a net volume Vn of 35 m3 and a useful area Au 14 m2 will be
equipped by the pilot BIPV shown in Figure 1. One person (1.2 met, 1 clo) occupied the office between
8:00 and 17:00 and emitted SCO2 800 mg of CO2 per minute [20]. No brake or leaving from the office
was assumed. When the person started to work, the CO2,8:00 concentration was equal to the outdoor
concentration 500 ppm. The first order concentration model was used to determine transient CO2,t
concentrations assuming constant conservative (decay factor k = 0) pollutant source SCO2 [21]:

CCO2,t→∞ =
SCO2 + CCO2,8:00 ·

.
Va,i

.
Va,i + k.Vn︸︷︷︸

decay︸︷︷︸
0

(mg
m3

)
(1)

CCO2,t = CCO2,t→∞ + (CCO2,t=0 −CCO2,t→∞) · e−
.

Va,i
Vn ·t
(mg

m3

)
. (2)

Taking into account IAQ quality categories as defined in [22], the CO2,17:00 concentration that
appeared in the office at the end of the workday (at 17:00) did not exceed class III (1350 ppm above
outdoor concentration) if office was ventilated with constant air flow rate

.
Va,in 19.5 m3/h, and class

I requirements (550 ppm above outdoor concentration) were achieved if office was ventilated with
constant air flow rate

.
Va,in 62 m3/h.

2.2. Experiment Setup

The pilot BIPV glazed façade structure was installed on the south oriented façade wall of laboratory
building (Figure 1). The indoor environment was heated and cooled with a split air–air heat pump.
An appliance built-in control unit was used to control indoor air temperature and because large
solar gains were caused by other glazed structures, the laboratory building was often chilled at noon.
This resulted in indoor air temperature periodical oscillations, but we want to point out that at least
Class II [22] of thermal comfort was achieved during the experiment. BIPV and the laboratory building
were equipped with sensors shown in Figure 2. Global solar radiation on the vertical surface was
measured with a Kipp & Zonen CMP3 pyranometer (measurement uncertainty ± 5%) [23]. Downward
atmospheric long-wave radiation was measured with a Kipp & Zonen CG1 pyrgeometer (measurement
uncertainty ± 4%). Other meteorological parameters were measured using a Vantage Pro 2 weather
station: ambient air temperature (± 0.5 ◦C) and wind velocity (± 5%) [24]. The weather station was
installed on the roof of the laboratory test building (Figure 2b). Temperatures of air (indoor and in the
ventilated air gap) and surface temperatures (BIPV and façade wall) were measured with calibrated
K-type thermocouples (± 0.25 ◦C). Heat flux at the interior surface of the composite façade wall was
measured with an AHLBORN FQ A018 C sensor (± 8%) [25]. Air velocity in the middle of the round
tube was measured with an Almemo thermoanemometer FV A645 TH3 (± 3%). All measured data was
monitored in one-minute intervals, using a data acquisition units Agilent 34970A [26] and AHLBORN
Almemo 2290-4, the latter only for the thermoanemometer.
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(a) (b) 

Figure 2. Position of sensors (a) and meteorological station Vantage Pro 2 (b).

2.3. Research Methods

The energy efficiency of functionality mode, as well as total energy efficiency of solar energy
utilization, were determined on the basis of an in situ experiment. The efficiency of PV was determined
on the basis of measured transmittance of solar irradiation and temperature of the inner surface of
BIPV glazing TPV,si. The in situ experiment was performed between 25 December 2019 and 15 April
2020. Measured data were gathered in 1-minute intervals (Δtmeas). The solar irradiation Gglob,90 and
outdoor air temperature Te during the experiment are shown in Figure 3. The range of meteorological
parameters appearing during the experiments are shown in Table 1.

Energy efficiency indicators were developed as diurnal values by summarizing and averaging the
measured data. Although most indicators involve diurnal average values, some of them are developed
using shorter time intervals. For example, the efficiency of electricity production indicators involve
average meteorological data for the day-time period when Gglob,90 > 0 W/m2 or the efficiency indicators
related to preheating of the ventilation air were developed taking into account the occupancy period in
office buildings (8:00 to 17:00).

Figure 3. Solar irradiation received by BIPV Gglob,90 and outdoor air temperature Te, which occurred
during the experiment.
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Table 1. Average and extreme values of meteorological variables during the duration of the experiment.

Meteorological Variable
Average

Exp. Period
Max

Daily av.
Min

Daily av.
Max Min

Outdoor air temperature Te (◦C) 5.75 16.3 −2.8 25.6 −8.7
Solar irradiation Gglob,90 (W/m2) 11324h 841 46

Solar radiation Hglob,90,day (Wh/m2day) 2706 5410 274
IR sky radiation HIR,90,day (Wh/m2day) 7858 8791 6924

Wind velocity vw (m/s) 0.49 1.84 0.03 5.6 0.0

In the second evaluation step, statistical methods were used to define the influential parameters
for each of the energy efficiency indicators.

In the final evaluation step, influential parameters were involved as independent variables in
the statistical evaluation of multi-parametric approximation models developed for each of energy
efficiency indicators. These approximation models can be integrated into models for determining the
energy performance of buildings on the basis of daily energy balance and can be used for climate
conditions at least in the range of values of meteorological parameters as listed in Table 1.

3. Energy Efficiency Indicators

Although experimental data was gathered in one-minute intervals, the energy efficiency of solar
energy utilization with the pilot BIPV glazed façade structure, and the indicators of each operation
mode of the BIPV façade structure are presented as daily average or integral values. As such, indicators
can be implemented in a monthly calculation procedure, which is still commonly used in engineering
practice, and can be used for assessment of nZEB as well [27]. The indicators are schematically presented
in Figure 4. In addition to those solar energy utilization indicators for which the approximation
models were developed, some other are shown to emphasize the advantages of the pilot BIPV glazed
façade structure.

Figure 4. Scheme of indicators of the efficiency of solar energy utilization with the pilot semitransparent
BIPV glazed façade structure; diurnal electricity production EPV; diurnal heat supplied with preheated
air for space ventilation Qa,in; and heat gains through the opaque façade wall Qi,sol were the basis
for developing approximation models of energy efficiency, while others, such as static Ust, dynamic
thermal transmittance Ueff, and preheating efficiency εv, are used to emphases the advantage of the
pilot semitransparent BIPV glazed façade structure.
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3.1. Electricity Production

The amount of diurnal produced electricity was determined by analytical model considering the
measured values of influenced parameters in each time step of observation Δtmeas. Daily amount of
produced electricity is determined by equation:

EPV =
1

60

tss′∑
tsr′

APV · nPV ·KT ·KG ·Gglob,βΔtmeas

(
Wh
day

)
, (3)

where tsr‘ and tss‘ are sunrise and sunset time relative to the BIPV structure, respectively, indicating the
time frame when PV cells produce electricity. KT is the efficiency factor that corresponds to corrected
PV cell efficiency and includes temperature coefficient β, which depends on PV cell technology. Value
−0.46%/K was assumed for m-Si cells [28–30]. APV and nPV are the area of an individual PV cell
(0.156 × 0.156 m) and the number of PV cells in the BIPV [15,19]. Because BIPV has relatively thick glass
layers (4 + EPA + 4 mm, λ 0.76 W/mK), the PV cell temperature TPV was modelled by combining the
heat transfer model and measurements of surface temperature on the outer and inner glass. The surface
glass temperatures were measured behind the 2nd row and 6th row of the PV cell (TBIPV,2, TBIPV,6).
It was found that in the case of ventilated air gap, there was not a significant difference between
both temperatures, and an average value was used as the representative surface glass temperature.
According to the CFD computer simulations, the combined surface heat transfer coefficient hr+c,e

15 W/m2K and hr+c,i 6 W/m2K were assumed and PV cell temperature TPV is approximated in the
following way:

KT = ηre f ·

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝1 + β ·
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

TPV︷������������������������������������︸︸������������������������������������︷
TPV,si + 0.0064 + 0.0013 ·Gglob,β

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠− 25

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ (−), (4)

where TPV,si is temperature of the BIPV surface behind the PV cell towards the air gap. The reference
efficiency ηref was taken from producer data [19] and is equal to 0.185. Solar irradiation correction
factor KG considers the decrease of PV cell efficiency at low level of solar irradiation [15]:

Kg = 1 if Gglob,90 ≥ 200
W
m2 and

0.029 · ln
(
Gglob,90

)
− 0.0037

ηre f
if Gglob,90 < 200

W
m2 . (5)

To investigate the impact of ventilation of the air gap on PV cell overheating, diurnal overheating
hours OHH was introduced. OHH is defined as diurnal sum of the difference between modeled PV
cell temperature and PV cell reference temperature 25 ◦C:

OHH =
1
60

tss′∑
tsr′
δ · (TPV − 25) · Δtmeas δ = 1 if (TPV − 25) > 0 otherwise δ = 0

(
Kh
day

)
. (6)

As an example, Figure 5 shows measured data for two selected days—the clear sky and overcast
cloudy day, and diurnal variables involved in energy efficiency modeling—daily solar radiation
received by BIPV Hglob,90, average daily outdoor air temperature during PV cell operation Te,avg,PV,

average wind velocity during PV cell operation time vW,avg,PV (m/s), and
.

Va,in ventilation air flow rate.
In the case presented in Figure 5a, BIPV was not ventilated, while in the case shown in Figure 5b

BIPV was ventilated with air flow rate
.

Va, in. Concerning the surface glass temperature behind the
PV cells (TBIPV,2 and TBIPV,6), it can be seen that temperatures differ only in the case of non-ventilated
(closed) air gap (mark c) as consequence of buoyancy driven convection—by solar irradiation during
day-time and by heat flux due heat losses during the night-time. This causes counter flow pattern
during the night-time and higher TBIPV,6 when compared to TBIPV,1.
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(a) (b) 

Figure 5. Graphs showing instant ηPV and average diurnal PV cell efficiency ηPV,avg, instant

electricity power
.
EPV , and diurnal production of electricity EPV (a), PV cell temperatures (glass

surface temperatures behind PV cell towards ventilated air gap) in the 2nd (TBIPV,2) and the 6th row
(TBIPV,6) in BIPV, overheating hours (OHH) and selected meteorological data—solar irradiation Gglob,90,
diurnal solar radiation Hglob,90, and instant and daily average outdoor air temperature (Te, Te,avg) (b).

3.2. Preheating of Ventilation Air

The air gap formed by BIPV was force ventilated by outdoor air. Two by two temperature sensors
were installed at the outlet openings, on both sides of fans. It was found that an increase of the air
temperature caused by fans can be neglected. Data on air velocity in the center of the supply pipe,
gathered by a hot-wire anemometer, was used to determine volumetric air flow using a continuity
equation. Because air flow is turbulent even in case of lowest flow rate set, the volume (and mass) air
flow rate was determined by averaging velocity using the Blasius formula and continuity equation.
Daily heat transferred into the building by preheated air was determined by the sum of one-minute
experimental data over the 24-hour period starting each day at 6:00 in the morning:

Qa,in =
1
60

+6:00∑
6:00

1
3600

· ρa · cp,a ·
.

Va,in · (Ta,in − Te) · Δtmeas

(
Wh
day

)
, (7)

where ρa is air density, cp,a specific heat capacity of air,
.

Va,in is volume air flow rate, Ta,in is supply
air temperature, and Te is outdoor temperature. Preheating efficiency of ventilation air, value that
can be compared to the heat recovery efficiency in case of mechanical ventilation with recovery unit,
is defined by averaging supply air, outdoor air, and indoor air temperatures over the occupied office
hours (8:00–17:00), assuming constant ventilation air flow rate during observation period:

εv =

(Ta,in,avg − Te,avg

Ti,avg − Te,avg

)17:00

8:00
· 100(%). (8)

Preheating efficiency εv can be above 100% if Ta,in,avg > Ti,avg, and Te,avg < Ti,avg. Figure 6 shows
an example of experimental data for the selected days. The average air inlet temperature during
work-hours Ta,in,avg, the integrated solar radiation Hglob,90 received by the BIPV, and heat transferred

by air into the building
.

Qa,in are shown as well. Because average supply air temperature Ta,in,avg in
Figure 6b is above average indoor air temperature Ti,avg while average outdoor temperature Te,avg is
below Ti,avg, the air preheating efficiency is above 100%.
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(a) (b) 

Figure 6. Graphs showing outdoor and indoor air temperatures and the temperature of supplied
preheated air (Te, Ti, and Ta,in); velocity, ventilation air volume flow rate, and heat flux by preheated
air (va,

.
Va,in, and

.
Qa,in); average ventilation air temperature during office occupant hours Ta,in,avg;

air preheating efficiency (εv); as well as solar irradiation Gglob,90; and diurnal solar radiation Hglob,90;
as well as diurnal heat transferred into the ventilated space by preheated air Qa,in; (a) for 14 January
2020 and (b) for 28 February 2020.

3.3. Dynamic Thermal Insulation

Because building envelope structure is ventilated and air is supplied to the indoor space, part of
the heat losses can be recovered and the BIPV structure acts as dynamic thermal insulation. Efficiency
of heat loss recovery is determined by comparing daily actual heat losses to theoretical ones at steady
state conditions, taking into account reference thermal transmittance of the composite façade wall,
which was upgraded with the BIPV structure—Ust 1.027 W/m2K (Figure 1). Transmission heat losses
of the BIPV structure were evaluated by static thermal transmittance Ust, while effective thermal
transmittance Ueff was evaluated based on the transient thermal response of the BIPV structure. Ust

was determined by instant indoor Ti and outdoor Te air temperatures and heat flux was measured
on the internal surface of the structure

.
qsi using measured values for the period between 23:00 and

6:00+ o’clock in each day, to minimize the impact of accumulated solar energy. At that period, the heat
transfer was close to the steady state, because the temperature difference (Ti − Te) was almost constant.
With the Ust value, the impact of the double skin façade, as well as the forced ventilation of the air gap,
was evaluated and compared to that of the Ust of the reference building envelope structure (Figure 2a).
The dynamic thermal transmittance Ueff was defined in the similar way, the only difference was in the
evaluation period, which was in this case all day long (6:00 to 6:00+1 day). The following equations
were used:

Ust =
1
7

1
60

+6:00∑
23:00

.
qsi

(Ti − Te)
· Δtmeas

( W
m2K

)
, (9)

Ue f f =
1
24

1
60

+6:00∑
6:00

.
qsi

(Ti − Te)
· Δtmeas

( W
m2K

)
. (10)

The impact of unsteady parameters (Hglob,90, Te, and vW ), as well as impact of ventilation air flow

rate
.

Va,in, are considered by the effective thermal transmittance Ueff. Examples of evaluation are shown
in Figure 7.
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(a) (b) 

Figure 7. An example of measured values used for the evaluation of the energy efficiency of dynamic
thermal insulation of the BIPV glazed façade structure. (a) In the case of heavy cloudy day (1 March
2020), because the air gap was ventilated, Ust was equal to reference thermal transmittance of composite
façade structure (Uref 1.027 W/m2K) and Ueff was very close to the Ust; (b) even in the case of clear
sky weather (21 February 2020), the Ust was very close to the reference value, while dynamic thermal
transmittance was much lower, indicating a significant difference in diurnal transmission heat loss
Qi,sol from the pilot BIPV glazed façade structure.

3.4. Overall Efficiency of Solar Energy Utilization

Overall efficiency of solar energy utilization by the pilot BIPV glazed façade structure includes
energy gains related to production of electricity, preheating of ventilation air, and decreased transmission
heat losses due to the dynamic thermal insulation. In fact, the latter is not achieved solely by utilization
of solar energy but also due to lower thermal transmittance of the BIPV structure, nevertheless all
indicators are normalized to diurnal received solar radiation Hglob,90. The overall efficiency is defined
by the sum of partial efficiencies in the following way:

ηsol.BIPV = ηPV,BIPV + ηa,BIPV + ηi,sol,BIPV =

⎛⎜⎜⎜⎜⎜⎜⎜⎝
EPV + Qa,i +

∣∣∣∣(Qloss,re f −Qloss,i
)∣∣∣∣

Hglob,90 ·ABIPV

⎞⎟⎟⎟⎟⎟⎟⎟⎠ (−), (11)

where:

ηPV,BIPV =
EPV

Hglob,90 ·ABIPV
= ηPV ·

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0,6 ·ABIPV︷�����︸︸�����︷
APV · nPV

ABIPV

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
= KT ·KG ·

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0,6 ·ABIPV︷�����︸︸�����︷
APV · nPV

ABIPV

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(−), (12)

ηa,BIPV =
Qa,in

Hglob,90 ·ABIPV
=

0.34 · 1
60

17:00∑
8:00

.
Va,in · (Ta,in − Te) · Δtmeas

Hglob,90 ·ABIPV
(−), (13)
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ηi,sol,BIPV =

∣∣∣∣∣∣∣∣∣∣∣

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
1,027W/m2K︷︸︸︷

Ust,re f ·
(
Ti,avg − Te,avg

)
· 24−

(
1
60

+6:00∑
6:00

.
qsi · Δtmeas

)⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ ·ABIPV

∣∣∣∣∣∣∣∣∣∣∣
Hglob,90 ·ABIPV

(−). (14)

The constant 0.34 replaces the product of air density and specific heat capacity. Figure 8 shows an
example of overall efficiency of solar energy utilization ηsol,BIPV determined by measured data in two
days during the experiment period.

(a) (b) 

Figure 8. Overall efficiency of solar energy utilization ηBIPV of the pilot BIPV glazed façade structure (a)
on 8th January 2020 and (b) on 20th February 2020; in the case (a) the ventilation air flow rate

.
Va,in was

3.5 m3/h, and consequently, the utilization of solar energy for preheating of the ventilation air decreased,
while the temperature of the supply air Ta,in increased above indoor air temperature and efficiency εv

was above 100%; the case (b) was the opposite because
.

Va,in was much higher and utilization of solar
energy was higher, while preheating air efficiency εv was significantly lower.

4. Results and Discussion

4.1. Parametric Study

The impact of daily solar radiation, average daily outdoor air temperature, and ventilation air
flow rate on the static thermal transmittance Ust was analyzed and shown in Figure 9a. The Ust was
determined from measured data, gathered between 23:00 and 6:00 the next morning. It can be concluded
that the Ust is practically independent of daily solar radiation Hglob,90 (c2), and values in the middle
of the air flow rate range are ~ 0.04 W/m2K lower when compared to that of the reference composite
façade wall (c1) due to the increased thermal resistances of the BIPV and air gap. No significant impact
of mid-range daily average outdoor air temperatures Te,av can be seen either. This result corresponds
to the fact that composite wall is light-weight with limited potential for storing the (solar) heat. This
also confirms that the thermal response through the previous day does not affect the heat response of
the BIPV the next day, leading to the conclusion that energy efficient indicators can be determined
by averaging data over the proposed time period (6:00 to 6:00+). The impact of the air flow rate Va,i
can be noticed only when the air gap was not ventilated (Ust is lowered to the range between 0.80 to
0.85 W/m2K) and at its highest air flow rate, at which Ust increases to 10 W/m2K (c3). Some additional
data would increase the credibility of this finding.
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(a) (b) 

Figure 9. Static thermal transmittance Ust of the glazed BIPV façade structure with a forced ventilated
air gap; (a) impact of the daily solar radiation Hglob,90 received by the BIPV façade structure and average
daily outdoor air Te,avg (equal to the temperature of the ventilation air at the inlet of the air gap);
(b) impact of the solar radiation and ventilation air flow rate Va,i.

The dynamic thermal transmittance Ueff shows a significantly greater dependence on the
influencing parameters (Figure 10). In theory, at low daily solar radiation (Hglob,90 < 300 Wh/day)
dynamic thermal transmittance approaches static one (c1) regardless of the outdoor air temperature.
At higher daily solar radiation Ueff decrease linearly (c4), while it increases with the decreasing of the
outdoor air temperature Te,avg (c2). The dynamic thermal transmittance Ueff of BIPV is 0.2 W/m2K or
lower if daily average outdoor temperature is above ~ 9 ◦C and the solar radiation is above 4000 Wh/day,
and when the outdoor temperature Te,avg is above ~ 5 ◦C, the daily solar radiation Hglob,90 will be not
less than 2500 Wh/day, if BIPV is not ventilated (c3). The slope of Ueff decrease is higher in case of
non-ventilated BIPV (c5) when compared to the slope of Ueff decrease in the case of ventilated BIPV
(c4). The decrease of the Ueff with increased ventilation air flow rate Va,i is more evident at higher air
flow rates (C6), while it is not seen at daily solar radiation below 2000 Wh/day. Negative Ueff were
observed at the highest air flow rates. The wind velocity vw at the experiment location was so low
(Table 1) during the whole period of experiment that it cannot be treated as impact parameter.

(a) (b) 

Figure 10. Dynamic thermal transmittance Ueff of the BIPV façade structure with a forced ventilated air
gap; (a) impact of the daily solar radiation Hglob,90 received by the BIPV façade structure and average
daily outdoor air Te,avg; (b) impact of the solar radiation and ventilation air flow rate Va,i.
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The average daily efficiency of electricity production is shown in Figure 11. One must note that
values are defined for the BIPV façade structure as whole, while PV cells only cover 60% of BIPV
structure. The daily efficiency ηPV,BIPV increases slightly (c2) with daily solar radiation Hglob,90 above
2500 Wh/day, while at such conditions efficiency is almost temperature independent (c1). The reason
can be in the design of glazed BIPV, which contains two relatively thick glass panes (2 × 4 mm).
By measurement it was determined that absorptivity of the transparent area of BIPV is ~ 19.5%. It was
also discovered that an increase of the ventilation air flow rate Va,i causes only minor increase of
efficiency because of the PV cells cooling (c3). It can be that at higher air flow rate the fully developed
flow occurs at a larger distance from the inlet opening. Nevertheless, as mentioned before, the difference
between PV cell temperatures (meaning as measured—the temperature of the inner glass of the BIPV
behind the PV cell) in the 2nd and 6th rows only differ for < 1–1.5 ◦C during clear sky conditions at air
flow rates above 15 m3/h, while temperature differences up to 5.5◦C were noticed in similar weather
conditions in case of buoyancy convection in closed air gap. This finding indicates that additional
research will be useful in the future. In this case as well, we found no evidence of impact of the wind
velocity vw on the PV cell efficiency as well.

(a) (b) 

Figure 11. Average daily efficiency of electricity production by glazed BIPV determined considering
that surface area of PV cell in glazed BIPV is 60%; (a) impact of the daily solar radiation Hglob,90 and

average daily outdoor air Te,avg; (b) impact of the solar radiation and ventilation air flow rate
.

Va,in.

If supply air is predominantly preheated by heat losses through composite façade wall (c1 in
Figure 12), the efficiency of solar energy utilization ηa,BIPV for preheating of the supply air for space
ventilation may rise over the value of one. In practice, this is the case in days with low daily solar
radiation Hglob,90 (threshold is at ~500 Wh/day). Such cases appear at daily average outdoor air
temperatures Te,avg below 8 ◦C (c2). Where daily solar radiation Hglob,90 is above that threshold value,
the ηa,BIPV is in the range 0.50 to 0.75 showing a slightly negative trend due to the increased heat losses
of the BIPV glazed façade structure (c3). Consequently, at daily solar radiation above 4000 Wh/day, it
will be slightly below the 0.5. This means that the decrease of ventilation heat losses is comparable to
the mechanical ventilation with heat recovery. Results also show a slight increase of efficiency with the
ventilation air flow rate

.
Va,in (c4), while no significant impact of the wind velocity vw on the ηa,BIPV can

be found from experimental results.
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(a) (b) 

Figure 12. Average daily efficiency of solar radiation utilization for preheating of the supply air for
space ventilation; (a) impact of the daily solar radiation Hglob,90 and average daily outdoor air Te,avg;

(b) impact of the solar radiation and ventilation air flow rate
.

Va,in.

Solar radiation that passed through glazed BIPV façade structure was absorbed on the opaque
composite façade wall. Consequently, heat loss decreased or even turned into the heat gain. If solar
heat gains exceed steady-state heat loss on the daily basis, the value of ηi,sol,BIPV will be greater than
zero. The heat gains are defined by the product of the ηi,sol,BIPV and daily solar radiation Hglob,90.
Figure 13 shows how ηi,sol,BIPV depends on influence parameters: daily solar radiation Hglob,90, daily
average outdoor temperature Te,avg, and ventilation air volume flow rate Va,i. One must note, that only
40% of the total BIPV structure is transparent. The ηi,sol,BIPV slightly rises with daily solar radiation if
Hglob,90 is larger than 500 Wh/day, where it will be in the range between 0.06 and 0.08 (c1). In case of
non-ventilated BIPV, it is significantly higher (c2)—between 0.10 and 0.12. The efficiency rise varies
slightly with the outdoor air temperature Te,avg as well (c3). At lower solar radiation, the ηi,sol,BIPV rises
up to 0.30. Obviously, at such low solar energy potential, increased thermal resistance of the BIPV
structure contributes more significantly to decreased heat losses than solar radiation itself. Ventilation
air flow rate has a negative and quite small impact on the ηi,sol,BIPV, but it must be considered in a
multi-parametric regression model. A small negative impact of wind velocity vw was also noticed.
Furthermore, it was noticed that heat flux that enters the building has a small-time delay because of
the low thermal capacity of the composite façade wall (Figure 6b).

(a) (b) 

Figure 13. Average daily solar heat gains through composite façade wall behind the glazed BIPV façade
structure expressed by efficiency ηi,sol,BIPV; (a) impact of the daily solar radiation Hglob,90 and average

daily outdoor air Te,avg; (b) impact of the solar radiation and ventilation air flow rate
.

Va,in.
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4.2. Multi-Parametric Model of Overall Efficiency of Solar Energy Utilization

In the previous section it was shown which variables have the greatest impact on the overall
efficiency of solar energy utilization of the BIPV façade structure. To be able to predict energy efficiency
of such structure in different climate conditions based on the diurnal data, multiple linear regression
models were developed for each component of overall efficiency of solar energy utilization—ηPV,BIPV,
ηa,BIPV, and ηi,sol,BIPV. Statistical regression analysis was made within MS Excel using built-in LINEST
function, which fits the data using the least squares method. The level of significance for the regression
coefficients of each predictor (independent variable) were tested using Student’s t-tests with built-in
T.DIST.2T function. Only terms with p-value < 0.05 were used in the final multiple linear regression
models. Developed models are of the form:

ηPV,BIPV = 0.01207 · ln
(
Hglob,90

)
− 0.000414 ·

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
25◦C︷�︸︸�︷

TPV,re f − Te,avg

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠− 0.000147 · .
Va,i,avg, (15)

ηa,BIPV =
340.775
Hglob,90

− 0.0783 · Te,avg + 0.02807 · .
Va,i,avg, (16)

ηi,sol,BIPV =
7.867

Hglob,90
+ 0.00152 ·

(
Ti − Te,avg

)
+ 0.0078 · ln

( .
Va,i,avg

)
− 0.0072 · vw,avg, (17)

where all independent variables are daily integrals or average values. The accuracy of the developed
multiple linear regression models of solar energy utilization efficiencies was tested with widely used
indices [31,32]: the adjusted coefficient of determination R2

adj, the normalized mean bias error (NMBE)
and the coefficient of variation of the root-mean-square error CV(RMSE) which are defined by the
following equations:

R2
adj = 1− n− 1

n− (p + 1)
·
(
1−R2

)
, (18)

NMBE =
1

M
·

n∑
i=1

(Mi − Pi)

n− p
· 100, (19)

CV(RMSE) =
1

M
·

2

√√√√√√ n∑
i=1

(Mi − Pi)
2

n− p
· 100. (20)

Detailed explanation as well as calibration criteria of ASHRAE and other agencies can be found
in [31]. Figure 14 presents the comparison of individual efficiencies of overall efficiency of solar energy
utilization obtained from measured values and determined with developed multiple linear regression
models (Equations (15)–(17)). The statistical parameters are also shown on the figures.

It can be seen that R2
adj exceeds the recommended value of 0.75 for all three regression models.

Also, NMBE is within ± 5%, which is the calibration criteria in the case of monthly calculation methods.
Only CV(RMSE), which should be below 15%, is slightly higher in the case of ηa,BIPV, which is probably
is the consequence of the narrow range of ventilation air flow rates. Nevertheless, we can conclude that
the developed multi-parametric regression models are adequate and can be used to evaluate the energy
efficiency performance of the analyzed BIPV façade structure within the ranges of meteorological
conditions that appeared during the experiments. It should be noted that the conditions during the
experiment were quite typical for a moderate and continental climate.
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(a) (b) (c) 

Figure 14. Correlation of components of overall efficiency of solar energy utilization ηsol,BIPV determined
by experimental results and multi-parametric regression models; statistical indicators are also shown
for (a) ηPV,BIPV, (b) ηa,BIPV, and (c) ηi,sol;BIPV.

5. Conclusions

In this paper research on energy efficiency of the glazed BIPV façade structure with forced
ventilated air gap is presented. Today, BIPV is considered to be one of the most important technologies
by which, especially in the urban environment, the standards for the nearly or even zero energy
buildings can be achieved. The studied BIPV element is designed as a modular unit that can be used
in new, and with even greater advantages, in renovated buildings. The energy efficiency indicators
were defined for each of the solar energy utilization modes—electricity production, energy savings
due to decreased transmission heat losses and due to decreasing ventilation heat losses by preheating
air for space ventilation. Results based on all-winter season experimental results had shown that
up to 10% of daily solar radiation could be utilized for electricity and heat supply while preheating
of the air utilizes up to 75% of daily received solar radiation. In the case of no clear sky conditions
(low daily solar radiation) the efficiency of heat utilization increases further due to the dynamic thermal
insulation effect. This are general figures. For day-to-day analyses in different climate conditions, the
multi-parametric regression models were developed.

In follow-up research the impact of orientation of the BIPV façade structure with forced ventilated
air gap will be studied and multi-parametric models developed, which will consider the thermal
transmittance of the opaque envelope wall as an independent variable. The study of the impact of
the other techniques for decreasing the PV cell temperature, like phase change materials, will also
be interesting.

Author Contributions: Conceptualization, S.M., C.A., and S.D.; methodology, S.M.; validation, S.D., C.A., and
L.P.; writing—original draft preparation, S.D. and C.A.; writing—review and editing, S.M. All authors have read
and agreed to the published version of the manuscript.

Funding: The authors acknowledge the financial support from the Slovenian Research Agency (research core
funding No. P2-0223 (C)).

Conflicts of Interest: The authors declare no conflict of interest.

Nomenclature

A m2 area
α (-) absorptivity
β (-) temperature coefficient
C mg/m3, ppm pollutant concentration
cp (J/kgK) specific heat capacity
d m thickness
Δτmeas min measuring interval
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.
E W electrical power
E Wh/day diurnal production of electricity
ε (-) emissivity
.

G W solar irradiation power
G W/m2 solar irradiation
h W/m2K surface heat transfer coefficient
H Wh/m2day diurnal solar radiation
k 1/day pollutant decay factor
η (%) efficiency
KG (-) solar irradiation factor
KT (-) temperature factor
λ W/mK thermal conductivity
M (-) measured value
n (-) number of
OHH (Kh/day) diurnal overheating hours
P (-) Predicted value
.
q (W/m2) density of heat flux
.

Q (W) heat power
Q (Wh/day) diurnal delivered heat
ρ (kg/m3) density
S mg/min source of pollutant
T ◦C temperature
U W/m2K thermal transmittance
v m/s velocity
V m3 volume
.

V m3/h flow rate
7, 24 h/day constants
60 min/h constant
Index

a air
avg; avg,day average, diurnal average
avg, PV diurnal average during PV electricity production
BIPV pilot building integrated PV glazed façade structure
e outdoor, external
eff effective, dynamic
g glass
glob,90 solar on vertical surface
glob,90,day solar on vertical surface diurnal
i indoor, internal
in inlet
IR infrared, long wavelength
IR,90,day infra-red on vertical surface diurnal
loss heat loss
max maximum, maximum at the end of working hours
n net
PV photovoltaic
PV,si on inner glass surface of BIPV structure
r+c combined radiative and convection
ref reference, reference structure
s solar, short wavelength
si internal surface
sol generated by solar energy
st static
v ventilation
w wind
2, 6 second row, sixth row of PV
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Abstract: The article estimates energy flexibility provided to the electricity grid by integration of
long-term thermal energy storage in buildings. To this end, a liquid sorption storage combined
with a compression heat pump is studied for a single-family home. This combination acts as a
double-stage heat pump comprised of a thermal and an electrical stage. It lowers the temperature
lift to be overcome by the electrical heat pump and thus increases its coefficient of performance.
A simplified model is used to quantify seasonal energy flexibility by means of electric load shifting
evaluated with a monthly resolution. Results are presented for unlimited and limited storage capacity
leading to a total seasonal electric load shift of 631.8 kWh/a and 181.7 kWh/a, respectively. This shift,
referred to as virtual battery effect, provided through long-term thermal energy storage is large
compared to typical electric battery capacities installed in buildings. This highlights the significance
of building-integrated long-term thermal energy storage for provision of energy flexibility to the
electricity grid and hence for the integration of renewables in our energy system.

Keywords: long-term thermal energy storage; seasonal thermal energy storage; thermochemical
energy storage; liquid sorption storage; power-to-heat; seasonal energy flexibility; seasonal load
shifting; virtual battery effect

1. Introduction

There is an increasing need for energy storage in buildings to allow for integration of
intermittent on-site renewable energy sources or the provision of energy flexibility to the electric grid.
Thermal storage thereby plays an important role as it allows cheaply offsetting large amounts of energy.
Thermal storage capital cost is low when compared to electric batteries and thus allows for economical
energy storage also over longer time periods thus operation with substantially fewer cycles over its
lifetime. At its extreme, seasonal storage is possible whereby the low number of cycles put a challenge
on acceptable investment cost of the storage technology [1]. Seasonal storage is of great importance for
significantly increasing renewable fraction in the operation of buildings. Without seasonal storage,
excess energy available in summer cannot be made available for coverage of heat demand in winter
such that renewable fraction, especially for space heating remains strongly limited. With seasonal
energy storage, excess energy available from on-site renewable production or electricity from the grid
can be absorbed in summer to be made available in winter when space heating demand is largest.
Assuming a heat pump to provide space heating by using electricity, long-term storage thus contributes
to significant load shifting from the winter into the summer. Power to heat conversion with the thermal
energy storage together can be considered as a virtual electric battery and the electricity offset as
the virtual battery effect. This consequently leads to an increase of integrated on-site renewables
or provides a significant amount of energy flexibility to the electric grid. As the flexibility offered
represents a seasonal rather than a short-term shift, it is referred to here as seasonal energy flexibility.
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Currently, available sensible water storages or storages based on phase change materials suffer
from a continuous heat loss such that seasonal storage is possible only at a large scale. To enable compact,
long-term thermal energy storage on a building scale, higher volumetric energy storage densities are
required, along with high in/out storage efficiencies, meaning low thermal losses during storage period.
A class of energy storage known as thermochemical energy storage [2] promises to fulfill these criteria.
Within this class there are different sub-classes often categorized into chemical reactions and sorption
processes [3–6]. Depending on the type of reaction and the specific materials used energy densities
between 200 and 2000 kWh/m3 can be reached [6,7]. From measurements performed for a liquid
sorption storage using aqueous sodium hydroxide (NaOH) as sorbent and water (H2O) as refrigerant,
a concentration difference from 50 to 27 wt.% NaOH was achieved for evaporation and absorber inlet
temperatures of 5–20 ◦C and 25–38 ◦C, respectively, leading to a maximum theoretical volumetric
energy density of 435 kWh/m3 with reference to the diluted sorbent volume [8]. For comparison,
volumetric energy storage density of water is at around 55 kWh/m3, assuming a temperature difference
of 50 K. Most important for thermochemical energy storage is the fact that energy is stored rather by
means of a chemical potential than by actual thermal energy such that no continuous heat losses occur
during the storage phase but only at conversion (charging/discharging). Generalized indication of
storage density for thermochemical energy storage is problematic as it depends on many operational
parameters, i.e. mainly temperatures. This fact is very often overlooked even in the research field of
sorption energy storage. For a cross comparison of different thermochemical storage types, materials,
and processes, thus a common reference framework as suggested, e.g., for the building application,
in [9], is needed. A generalized metric provided in [10] can be used for performance comparison across
different storage processes reported in literature but does not replace performance metrics such as
volumetric energy density, asking for a uniform basis for evaluation.

There are several possibilities of integrating sorption storage into building energy systems,
largely depending on the type of process, i.e. open or closed sorption process [5,11–13]. In an open
process, absorbate for discharging is provided at atmospheric conditions, typically by ambient air and it
is again released to the ambient in charging. In a closed process, phase change is typically taking place
at subatmospheric conditions. The absorbate is provided through evaporation using a low temperature
source in discharging and is again condensed using a low temperature sink in charging. The coupling
between the storage and the heat source/sink happens through a heat exchanger. This article strictly
focuses on a closed liquid sorption process using NaOH/H2O as sorption couple. An overview of
examples of open and closed sorption storage processes is presented in [10].

Unlike a heat battery directly storing and releasing heat, sorption storage rather works as a heat
pump, thus needing contact to two thermal reservoirs for charging or discharging. In charging a high
temperature heat source is required for desorption (evaporation of water from the liquid sorbent,
e.g., NaOH) as well as a low temperature heat sink for condensation of the water vapor extracted from
the sorbent. In discharging, a low temperature heat source is needed for evaporation of water and a
medium temperature sink, typically the building, for absorption of the water vapor. For integration of
a sorption storage into the building energy system, it can be coupled with solar thermal collectors for
the high temperature source as well as with a ground heat exchanger for low temperature heat source
and sink [14]. More interesting from an energy flexibility perspective is the coupling of the storage
with the electric grid through a compression heat pump. The heating system can then be looked
at as a double-stage heat pump with one stage being a compression heat pump and another stage
being a thermal or chemical heat pump, i.e. the sorption storage. Similar hybrid concepts combining
compression and sorption cycles are presented in [15–17]. As an electricity source, on-site PV and/or
the electric grid can be used. In charging mode, excess electricity can be received, while in discharging
mode a smaller temperature lift is expected from the compression heat pump as it only represents one
stage of the hybrid concept. Consequently, a higher heat pump efficiency and thus lower electricity
consumption is expected. This article strictly focuses on the second option of double-stage heat

162



Energies 2020, 13, 2944

pumping in order to address the seasonal energy flexibility offered to the electricity grid through
building integration of a liquid sorption storage.

2. Materials and Methods

2.1. Sample Building

For the assessment of the seasonal energy flexibility by using a liquid sorption storage, a sample
single family home (SFH) with 140 m2 of floor area is considered as defined by the IEA SHC Task
44 /HPP Annex 38 reference framework [18]. Out of three SFH buildings presented there, the SFH45
was picked, showing an area specific annual space heating demand of 46.255 kWh/(m2·a). From three
different climatic locations proposed, only the one for Strasbourg, France was considered. Results from
detailed building simulations are provided as monthly values. This monthly resolution is sufficient to
capture seasonal energy flexibility. From simulation results presented, monthly space heating loads,
the instantaneous design heat load and average supply and return temperatures of the floor heating
system were used (Table 1). Monthly average ambient temperatures for the location of Strasbourg
were taken from [19] and are also shown in Table 1. Ambient temperature data was relevant for the
evaluation of the air-source heat pump as well as for the sorption storage performance.

Table 1. Monthly average space heating load, space heating supply and return temperatures for SFH45
under climate of Strasbourg from [18] and ambient temperatures from [19].

Input Variables Jan. Feb. Mar. Apr. May Jun. Jul Aug. Sep. Oct. Nov. Dec.

SH load (kWh/m2) 11.99 8.18 4.53 0.96 0.025 0 0 0 0 1.55 7.62 11.4
Tsup (◦C) 30.1 29.1 27.4 26.1 27.2 0 0 0 0 26.4 28.1 29.4
Tret (◦C) 22.2 21.4 20.7 20.4 20.5 0 0 0 0 20.5 21 22

Tamb (◦C) 0.9 2.4 6.1 9.7 13.8 17.2 19.2 18.6 15.7 10.7 5.3 2.1

2.2. System Description

For the building integration of the closed, liquid sorption storage, a combination with a compression
heat pump was chosen. In this way the sorption-based thermal energy storage is coupled to the
electricity grid through the compression heat pump. The heat and mass exchanger (HMX) of the
sorption storage is shown in Figure 1 with the absorber/desorber representing the left chamber and the
evaporator/condenser the right chamber in the figure, respectively.

The heat pump is a water/water heat pump with an additional water/air heat exchanger.
The schematic of storage integration is shown in Figure 2a in charging operation and Figure 2b
in discharging operation. The H-shaped component represents the HMX. The sorption storage tanks
consisting of absorbate (water), concentrated sorbent (NaOH) and a diluted sorbent tank, respectively,
are not shown here. For more details of the sorption storage system with all components included, it is
referred to [14,21].

In charging operation (Figure 2a), the compression heat pump is providing cold to the condenser
of the HMX, while providing heat to the desorber of the HMX. In order to balance the mismatch
between the evaporator and condenser, power provided by the heat pump the condenser side is
additionally connected to the water/air heat exchanger for excess heat rejection to the ambient.
Alternatively, excess heat can be used for domestic hot water production instead. In discharging
(Figure 2b), the heat pump is used to extract heat from the ambient air using the water/air heat
exchanger while providing heat to the evaporator of the HMX. In the absorption process taking place
in the absorber of the HMX, heat is released to the building for space heating purposes.
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Figure 1. Heat and mass exchanger (HMX) with absorber/desorber on the left side and
evaporator/condenser on the right side being connected to each other for water vapor exchange.
During charging, diluted sorbent enters the desorber from the top leaving it as concentrated sorbent at
the bottom. Thereby, water is evaporated by the external heat source and transported to the condenser,
where it changes back to its liquid state, releasing heat to a respective sink. In charging, concentrated
sorbent enters the absorber at the top, leaving it as diluted sorbent at the bottom. Thereby, water being
evaporated by a low temperature heat source in the evaporator is absorbed, releasing useful heat
for space heating or domestic water production. Heat exchange between sorbent and heat transfer
fluid is followed in counterflow, allowing for the optimal exploitation of available temperatures.
Adapted from [20].

 

(a) (b) 

Figure 2. Schematic of the sorption storage integration together with a compression heat pump,
where the H-shaped component represents the HMX: (a) Charging mode: Heat pump provides high
temperature for desorption and low temperature for condensation; (b) Discharging mode: Heat pump
provides low temperature heat for evaporation.

2.3. Liquid Sorption Storage Modelling

The liquid sorption process is modeled, assuming thermodynamic equilibrium. This means that for
a given absorbate vapor pressure and temperature of the liquid sorbent the equilibrium concentration
is determined. In charging operations, a fixed outlet sorbent concentration of 50 wt.% NaOH and a
maximum desorption temperature of 55 ◦C are chosen. For this state the water vapor pressure present
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in the desorber, as well as in the condenser, is determined and with it the resulting condensation
temperature. In discharging, the source temperature for the evaporation determines the absorbate
pressure in the evaporator and absorber respectively and with it the sorbent concentration depending
on its temperature. Minimum sorbent concentration in discharging is thus determined by the absorbate
pressure given by the evaporator and the return temperature from the space heating system of the
building entering the absorber. NaOH properties depending on temperature or concentration are
calculated using available mathematical correlations [22].

For simplicity, during charging, heat provided to the desorber is assumed to be equal to heat
rejected by the condenser, meaning that heat losses appearing in the desorber compensate for the
neglected heat of solution.

2.4. Seasonal Flexibility Analysis

Seasonal flexibility offered by a building integrated sorption storage is evaluated based on its
ability to use grid electricity in summer during charging and to reduce electricity demand in winter
during discharging of the storage. Electricity is not stored seasonally but rather the potential to reduce
electricity demand in winter/heating season. The electric load shift achieved is referred to as the virtual
battery effect as it acts similarly to storing this part of electricity over the season. The seasonal energy
flexibility must be separated in two parts, i.e., the additional electricity absorbed during charging
(negative flexibility) and the electricity savings in discharging (positive energy flexibility). These energy
flexibilities are quantified with reference to the regular heat pump operation without sorption storage
integrated. The electricity consumed by the heat pump is calculated as the energy provided by the
heat pump divided by its coefficient of performance (COP). The COP is calculated as the ideal Carnot
COP based on thermal reservoir temperatures multiplied by a fixed isentropic efficiency (ηisen) of 0.5.

Negative energy flexibility provided with storage is equal to the electricity utilized by the heat
pump to charge the storage, given a certain time (Δtexcess) with excess electricity available from the
electricity grid (Equation (1)). During charging, the heat pump must provide the entire temperature lift
between the HMX desorber and condenser and sensible heat stored in the charged, concentrated sorbent
is lost (ηcharging). The temperature of the desorber is fixed at 55 ◦C and the saturation pressure of
water vapor at this temperature and a targeted sorbent concentration of 50 wt.% determines the
condensation temperature needed in the HMX. The inlet to the condenser of the HMX provided by
the evaporator of the heat pump then needs to be lower by the amount of the temperature difference
between the absorbate and the heat transfer fluid (ΔThx,HMX) and an additional temperature difference
of the heat transfer fluid across the HMX condenser (ΔTHMX,ev). The evaporation temperature of the
heat pump is then below the inlet temperature on the HMX condenser by ΔThx,hp. In the condenser
of the compression heat pump there is no temperature difference assumed between condensation
temperature and temperature of the heat transfer fluid leaving the condenser. This assumption is
justified because of the desuperhating taking place in the condenser, allowing even for secondary
fluid temperatures above condensation temperature at the outlet of a counterflow-type condenser.
This affects Equations (2) and (4) where condensation temperature of the heat pump is equal to the
HMX desorber inlet temperature (Tdesorption + ΔThx,HMX) and Tsupply of the space heating, respectively.

E f lex,charging = Pel,hp,chargingΔtexcess = ηcharging
Qhp, desorption

COPhp,charging
Δtexcess (1)

COPhp,charging = ηisen
Tdesorption + ΔThx,HMX(

Tdesorption + ΔThx,HMX
)
− (Tsat,pdesorb − ΔThx,HMX − ΔTHMX,ev − ΔThx,hp)

(2)

In discharging, the energy flexibility is calculated as the difference in electricity consumed during
heating season (Δtheating) by the single-stage and double-stage heat pump including storage respectively
(Equation (3)). In case a sorption storage is included the temperature lift is to be provided by the
compression heat pump is reduced, thus increasing its COP.
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E f lex,discharging = (Pel,re f ,heating − Pel,storage,discharging)Δtheating= Qheating

(
1

COPre f ,heating
− 1

COPstorage,discharging

)
Δtheating (3)

In standard operation without storage installed, the heat pump COP (COPref,heating) is calculated
based on supply temperatures (Tsupply) of the space heating system and the evaporation temperature
(Equation (4)). The latter is determined by the ambient air temperature reduced by the temperature
difference between the air inlet of the water/air heat exchanger and the water outlet of the heat pump
evaporator (ΔTair) and the temperature difference between the water and refrigerant (ΔThx,hp) in
the evaporator.

COPre f ,heating = ηisen
Tsupply

Tsupply − (Tamb − ΔTair − ΔThx,hp)
(4)

When combined with the sorption storage the evaporation temperature of the heat pump remains
the same but the condensation temperature of the heat pump being the inlet temperature of the
HMX evaporator (THMX,ev,in) changes, leading to a different COP (COPstorage,discharging) as expressed in
Equation (5). The inlet temperature to the evaporator side of the HMX provided by the compression
heat pump as the first stage shown in Equation (6) is determined by the required supply temperature
(Tsupply) of the space heating and the available temperature lift from the sorption storage (ΔT50,max)
between the maximum sorbent temperature and the evaporation temperature. Further, there is
the temperature difference of the heat exchanger, once between the sorbent and heat transfer fluid
(ΔThx,HMX) and once between the absorbate and the heat transfer fluid (ΔThx,HMX) and the temperature
difference across the evaporator of the HMX (ΔTHMX,ev). The temperature lift provided by the sorption
storage (ΔT50,max) depends on the maximum sorbent concentration of 50 wt.% as shown in Figure 3.
In this analysis, a departure from ideal equilibrium condition is assumed, leading to a reduction of the
effectively provided temperature lift.

COPstorage,discharging = ηisen
THMX,ev,in

THMX,ev,in − (Tamb − ΔTair − ΔThx,hp)
(5)

with
THMX,ev,in = Tsupply + ΔThx,HMX − ΔT50,max + ΔThx,HMX + ΔTHMX,ev (6)

Figure 3. Ideal temperature lift provided between HMX evaporator temperature (TEout) and the
maximum HMX absorber temperature by the sorption storage depending of maximum sorbent
concentration. Adapted from [20].

The positive energy flexibility provided during discharging is depending on the amount of
energy stored. This amount is determined during the charging phase. Maximum energy storage
capacity is determined by the installed heat pump capacity multiplied by the time with available excess
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electricity from the electricity grid (Δtexcess). In discharging mode, the fraction of space heating demand
that can be covered by the stored energy is determined in order to identify the system operating in
double-stage mode. When storage capacity is exhausted it switches to standard single-stage operation
mode. This way the positive energy flexibility offered with limited storage capacity is calculated and
confronted with the ideal case of unlimited storage capacity.

In order to determine the volumetric energy density of the sorption storage with reference to the
diluted sorbent and the volume required to store the calculated energy, terminal sorbent concentrations
were evaluated based on system temperatures. Specifically, for the HMX evaporator temperature, the
saturation pressure of water vapor is calculated, determining the achieved terminal concentration
in the HMX absorber based on absorber inlet temperatures. These temperatures are determined
by the return temperatures from the space heating system plus a temperature difference (ΔThx,HMX)
between the heat transfer fluid and the sorbent. An average terminal sorbent concentration is then
calculated over the heating period in order to calculate the sorbent mass needed to store the energy
provided during charging. For this purpose an energy balance, a species mass (NaOH), and total mass
balance over the HMX absorber is applied resulting in an expression for the inlet mass of concentrated
sorbent depending on the known ratio of inlet to terminal concentration and the specific enthalpies of
concentrated (hsorbent,in) and diluted (hsorbent,out) sorbent, respectively, and enthalpy of condensation for
water (hlg) given in Equation (7).

Msorbent,in =
Qheating

hsorbent,in +
(

csorbent,in
csorbent,out

− 1
)
hlg −

(
csorbent,in
csorbent,out

)
hsorbent,out

(7)

The outlet mass of diluted sorbent then becomes

Msorbent,out =

(
csorbent,in

csorbent,out

)
Msorbent,in (8)

The volumetric energy density of the sorption storage is calculated dividing the leaving sorbent
mass (Msorbent,out) by the sorbent density at the terminal concentration (csorbent,out) assuming a fixed
temperature of 25 ◦C, representing the average absorber inlet temperature.

In Table 2, parameter values used for the evaluation of energy flexibility are summarized.

Table 2. Parameter values used for evaluation of energy flexibility provided with the building integrated
sorption storage.

Input Parameters

ηisen 0.5 csorbent,in 0.5 ΔThx,HMX (K) 3
ηcharging 0.9 Tdesorption (◦C) 55 ΔThx,hp (K) 3

Δtexcess (h) 720 nominal heat pump/HMX capacity (kW) 4.07 ΔTHMX,ev (K) 3
ΔTair (K) 10 ΔT50,max (K) 25

3. Results

In the following, results are presented for the parameter settings according to Table 2. These include
COP improvements, electricity demands, electric load shifting, i.e. energy flexibilities provided when
using a building-integrated sorption storage. Results are presented for the different cases of (a)
unlimited storage capacity and (b) limited storage capacity with reference to no storage installed. As an
extension to the base case using input parameters according to Table 2 with 720 hours of available
excess electricity, a simulation case assuming an increased number of 1080 hours of available excess
electricity was considered as well.
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3.1. Coefficient of Performance (COP) Improvement and Electric Load Shifting, i.e., Seasonal Energy Flexibilities

Sorption storage acts as a thermal heat pump, thus providing a certain temperature lift depending
on maximum sorbent concentration. For a NaOH concentration of 50 wt.%, a temperature lift of around
38 K is ideally provided (Figure 3). This maximum theoretical temperature lift is determined by the
difference in water vapor saturation temperature for pure water and sorbent solution respectively.
Available temperature lift in reality is significantly lower due to imperfections of the process
(deviations from equilibrium conditions) leading to an assumed temperature lift available of 25 K
based on experience from experiments performed [8]. When using a sorption storage along with a heat
pump, the temperature lift to be provided by the heat pump is reduced with comparison to heat pump
operation without storage. According to Figure 4, heat pump COP is more than doubled when the
total temperature lift required becomes small at moderate ambient air temperatures and is increased
by about 50% during the coldest months in January and December.

Figure 4. Coefficient of performance (COP) with (blue) and without (orange) sorption storage in
heating operation and charging operation (red).

Improved COP with integrated sorption storage directly translates into electricity demand
reduction in discharging representing positive energy flexibility to the grid. In Figure 5,
electricity demands are shown for (a) no storage capacity limit and (b) limited storage capacity.
The limitation in storage capacity is determined by the available heat pump capacity, the charging
efficiency, and the total time of available excess electricity. In the proposed integration of the sorption
storage with the heat pump, the latter provides the high temperature source and the low temperature
sink at the same time when operating in charging mode. As a consequence, heat pump capacity
available for charging is dictated by the evaporator power. The difference between condenser and
evaporator power of the heat pump cannot be used by the sorption storage and is rejected over the
water/air heat exchanger to the ambient air or used for domestic hot water production. With unlimited
storage, capacity electricity demand is reduced during the entire heating operation (Figure 5a) while
with the limited storage capacity, a demand reduction can be achieved only in January and a little bit
in February (Figure 5b). When more excess electricity from the grid is available, charging duration and
thus storage capacity can be increased such that more significant reduction in electricity demand can
also be achieved in February (Figure 5c). This increase in available excess electricity does of course not
have any effect on the theoretical case of unlimited storage capacity, which assumes full coverage of
space heat demand by the sorption storage.
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(a) (b) 

 

(c) 

Figure 5. Monthly electricity demand of heat pump for space heating operation (discharging) with
(red) and without (blue) sorption storage and charging of sorption storage (orange). For base case with
720 hours of excess electricity: (a) with unlimited storage capacity; (b) with limited storage capacity
and alternative case with 1080 hours of excess electricity available; (c) with limited storage capacity.

Electric load shifted between seasons are shown in Figure 6. With unlimited storage capacity total
seasonal load shift/flexibility amounts to 631.8 kWh/a, while with a limited storage capacity it reduces
to 181.7 kWh/a for the base case with 720 hours of available excess electricity. This leads to 38% and
10.9% of electric load shifted for unlimited and limited storage capacity, respectively. When assuming
1080 hours of available excess electricity, the seasonal load shift increases to 266.7 kWh/a.

 

(a)  (b) 

Figure 6. Electric load shift of heat pump operation with storage. With limited (red) and unlimited
(blue) storage capacity for: (a) base case with 720 h of excess electricity and (b) case with 1080 h of
excess electricity available.
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3.2. Storage Capacity and Size

Based on temperatures assumed and resulting sorbent concentration lift, a volumetric energy
storage density of 312.5 kWh/m3 is achieved with reference to the diluted sorbent. With available
charging capacity of the heat pump and assumed operation hours, a total energy storage capacity of
1822.6 kWh results, leading to a storage volume of the diluted sorbent of 5.8 m3.

4. Discussion

The analysis performed captures seasonal load shifting/flexibility for a single-family home with
an integrated sorption storage. It thus represents the electricity saved in heating operation because
of seasonal thermal energy storage, called virtual battery effect. It acts the same as using an electric
battery to store electricity seasonally. The latter is not done as it is economically not viable to use electric
batteries for seasonal storage. This is hence a valuable feature of thermal energy storage. The virtual
battery capacity achieved with the limited storage capacity is equal to 181.7 kWh. When comparing
this with a standard capacity of an electric battery installed in single family homes of around 8 kWh,
the sorption storage represents a 22.7 fold battery capacity. When comparing to the unlimited sorption
storage capacity, a 79 fold battery capacity results. The limited sorption storage capacity leads to a
storage volume of the diluted sorbent of 5.8 m3. When no dead volume is assumed this represents the
full storage volume needed. When using fixed storage tanks for concentrated and diluted sorbent as
well as for the absorbate a total storage volume of 11.6 m3 would be required. In either case, this size
could be fitted in an SFH, taking up a floor area of 2.9 and 5.8 m2, respectively, assuming cubic tanks
with a height of 2 m.

As shown in Figure 3, COP of the electric heat pump can be improved substantially when
combined with a sorption storage. In the model a fixed isentropic efficiency was used, leading to
some overestimation at very low temperature differences between evaporation and condensation.
In reality, isentropic efficiency is not constant but varies across the operation range of a heat pump.
When designed accordingly, however, high and relatively constant isentropic efficiencies can be
achieved at low temperature lifts for a limited operation window [23].

COP improvement is the main driver for electric load shifting and reflects the effect of the
double-stage heat pumping when introducing a sorption storage along with an electric heat pump.
The other important part is the available energy storage capacity. It was differentiated between limited
and unlimited capacity. Energy flexibility offered with limited storage capacity is smaller than expected
because of limitations present in charging. When sizing a heat pump for a low-energy house such as
the SFH45, installed capacity is rather small. In a hybrid operation of heat pump and sorption storage,
as suggested, all heat provided to the building or the storage needs to go through the heat pump,
making it to become the bottleneck. Another restriction comes from the time with available excess
electricity from the grid. This is a given and strongly depends on the specific electricity generation
system considered.

Different possibilities are seen to increase energy flexibility. Heat pump and HMX capacity
could be increased, leading to overcapacity installed. When using a capacity-controlled heat pump,
this would not negatively impact space heating operation but only system cost. Alternatively, only HMX
size could be increased, dimensioning it rather for the charging than for the discharging operation
being determined by the space heating demand of the building. In order to make use of larger HMX
capacity, an additional heat source such as solar thermal collectors would be needed. While this would
provide additional heat for charging it would not increase the negative energy flexibility. As it leads to
larger energy storage capacity and hence seasonal load shift, it would still increase positive energy
flexibility offered during heating season. Further, extended time of available excess electricity from
the grid could be assumed, leading to larger energy storage capacity. The latter could be justified
as times with excess electricity will increase with an increasing share of renewables in the electricity
grid. Currently, excess is assumed for the months of June to September with an average of 6 h a
day. When considering energy production profiles of solar thermal collectors or PV installations,
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excess production with reference to space heating demand could already appear in April and May
as well as in October. When assuming, for example, 6 instead of 4 months with excess electricity,
raising the number of hours by 50%, storage capacity and consequent seasonal electric load shift would
rise to 266.7 kWh/a or 16.1% with reference to no storage. This increase of time with excess electricity
assumed can be seen as a proxy for any measures discussed above to increase charging and thus energy
storage capacity.

Looking at the overall storage potential of building integrated sorption storage for the case of
Switzerland, assuming that an average storage capacity of 266.7 kWh is installed in every one of the
1.7 millions of domestic buildings (including multi-family homes), a total figure of 0.46 TWh would
result, representing 5.04% of existing electric storage capacity in Switzerland provided by seasonal
hydro storage [24].

Building-level sorption storage has substantial potential to provide energy flexibility to the
electricity grid and support the integration of renewables. For a better prediction of available energy
flexibility a more detailed analysis based on an improved model of the building and the sorption
storage with higher temporal resolution is needed. Further, an extended analysis of design parameters
and their influence on storage performance together with an optimized operation for minimal electricity
demand and CO2 emissions are desirable. These additions to the current study will be addressed in
future research.
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Nomenclature

Eflex,charging Negative energy flexibility offered during charging (kWh)
Eflex,discharging Positive energy flexibility offered during discharging (kWh)
Pel,hp,charging Electric power of heat pump during charging (kW)
Pel,storage,discharging Electric power of heat pump during discharging (kW)
Pel,ref,heating Electric power of heat pump without storage during heating (kW)
Δtexcess Time of excess electricity available (hours)
Δtheating Time with space heating demand (hours)
ηcharging Charging efficiency (%)
ηisen Isentropic efficiency of heat pump (%)
Qhp,desorption Heat provided by heat pump during charging of storage (kWh)
Qheating Space heating demand (kWh)
COPhp,charging Heat pump COP during charging
COPstorage,discharging Heat pump COP during discharging
COPref,heating Heat pump COP without storage during heating
Tdesorption Sorbent temperature in HMX desorber during charging (◦C)
Tsat,p_desorb Saturation temperature of water at desorption pressure (◦C)
Tsupply Supply temperature of space heating system (◦C)
Tamb Ambient air temperature (◦C)
THMX,ev,in Inlet temperature at HMX evaporator (◦C)
ΔThx,HMX Temp. difference primary/secondary fluid in HMX heat exchanger (K)
ΔThx,hp Temperature difference primary/secondary fluid in hp heat exchanger (K)
ΔTHMX,ev Temperature difference of HTF across HMX evaporator/condenser (K)
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ΔTair Temperature difference ambient air inlet to evaporator water outlet (K)
ΔT50,max Maximum temperature lift sorption storage (K)
Msorbent,in Concentrated sorbent mass entering HMX absorber in discharge (kg)
Msorbent,out Diluted sorbent mass leaving HMX absorber in discharge (kg)
hsorbent,in Specific enthalpy of sorbent entering HMX absorber (kJ/(kg·K))
hsorbent,out Specific enthalpy of sorbent leaving HMX absorber (kJ/(kg·K))
hlg Specific enthalpy of condensation for water (kJ/(kg·K))
csorbent,in NaOH concentration of sorbent entering HMX absorber (kg/kg)
csorbent,out NaOH concentration of sorbent leaving HMX absorber (kg/kg)

Abbreviations

COP Coefficient of performence
HMX Heat and mass exchanger
hp Heat pump
H2O Water
NaOH Sodium hydroxide
PV Photovoltaics
SFH Single family home
SFH45 Single family home with specific space heating demand of 45 kWh/m2
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Abstract: Standard ISO 10077-2 gives the procedure to calculate thermal transmittances of window
frames in 2D numerical simulations. It also introduces some examples of frame geometrical models
with all necessary input data and the solutions so as to perform validation of the applied numerical
tools. In the present paper, the models prepared with a commercial finite volume software of a PVC
window frame were first positively validated with the results given in the Standard. An experimental
test was then implemented to confirm the simulated data, with satisfactory agreement. The numerical
code was used on one of the frames provided by the Standard to perform a sensitivity analysis of
all the components and boundary conditions playing a role on the definition of the frame thermal
transmittance, such as surface heat transfer coefficients, values of the solid thermal conductivity,
emissivity and insulation properties of air gaps. Results demonstrate that the air gap properties
represent the most influential parameters for the definition of the PVC window frames thermal
transmittance, followed by the surface heat transfer coefficients and the PVC thermal conductivity.
The rubber and the steel properties show a negligible effect on the whole frame performance.
This procedure could constitute a design tool to guide the efforts of window manufacturers for the
achievement of high performance products.

Keywords: window frames; numerical analysis; hot box; sensitivity analysis

Highlights

• Numerical simulations of different window frames given in Standard ISO 10077-2 were performed.
• Measurements of window frame U-value in hot box apparatus with satisfactory agreement with

simulations were performed.
• A surface response module in Ansys Fluent software was performed, indicating a strong impact

of air gap properties on the window frame U-value.
• Numerical sensitivity analysis method proved a reliable tool to optimise window

frames performance.

1. Introduction

The massive use of insulating materials on opaque walls makes windows the weakest part of the
building envelope in terms of heat loss [1,2]. The transparent components performance have been
strongly improved in recent years, both from the glazing and frame points of view [3–6]. The researchers
also examined the edge-of-the-glass region to create better joint solutions [7,8] but the efforts from
researchers and manufacturers to lower the windows thermal transmittance are still needed [9].

Energies 2020, 13, 2957; doi:10.3390/en13112957 www.mdpi.com/journal/energies175
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Window frame thermal transmittance (Uf values) can be obtained both in numerical simulations
and in measurements performed in the calorimetric chamber. Both methods are described in standards
ISO 10077-2 [10] and EN 12412-2 [11], respectively. The computational approach could be implemented
by software such as Frame Simulator [12], Therm [13], etc.

The standard ISO 10077-2, gives some examples of geometries of window frames with all the
necessary input data and solutions (calculated Uf values). The Standard obliges the users of the
method to validate the applied calculation programs and to perform the calculations given in the
examples. The users should achieve a level of discrepancy lower than 3% between the results of the
calculations and the values given in the Standard. In the first part of the present work, the software
Ansys Fluent [14] was validated with the ISO 10077-2 approach to calculate Uf values. Fluent was
chosen due to the capability of the code to implement optimization routines that allow a relatively
quick calculation of a high number of frame design cases under investigation.

The robustness of the software results was further confirmed by measurements performed in
standardized conditions in the calorimetric chamber, assessing the differences between the simulation
and measurement results of an actual window frame thermal transmittance. After these steps, a
sensitivity analysis [15] of the different parameters playing a role in the frame thermal transmittance
was conducted. The investigation covered the boundary conditions (surface heat transfer coefficients on
cold and warm sides), as well as material thermal conductivities and surface emissivity. The software
allows automatic variation of the above-mentioned parameters within a user-defined range, in order to
define the most influential ones on the window global performance. As far as the authors’ knowledge,
the sensitivity analysis approach has not been reported in previous studies and it could constitute a
novel tool in the window frames design phase, covering a wide range of cases through simulations
with a reasonable computational time.

Both calculations and experiments carried out in this research are valid only for steady-state
conditions. The numerical models and the hot box measurements do not take into account the transient
effect of boundary conditions (heat transfer coefficients, boundary temperatures, heat accumulation,
overheating due to direct exposure to sunlight, etc.), which could play a significant role when the
holistic performance of a window is analyzed.

2. Analyzed Frame Models and Simulation Input Data

The validation of the window frame thermal transmittance calculations took into account four
chosen example models given in Standard ISO 10077-2 [10]: aluminum frame (example I1 from the
Standard), PVC frame (example I3), a wooden frame (example I4) and a roof window wooden frame
(example I5). The views of the models are given in standard [10]. An additional frame model was
analyzed, which was a window frame made of PVC hosting a triple glazing [16] (Figure 1), which was
also tested experimentally in a hot box apparatus.

All five models contain air gaps in the frames. The gaps were replaced by a solid with an equivalent
thermal conductivity calculated according to Standard ISO 10077-2 [10] indications. Both convective
and radiative heat transfer in the gaps were taken into account. The Standard [10] introduces the
method of calculation including conductivity of air gaps when they are rectangular as well as when
they are non-rectangular. In the latter case, the equivalent width, thickness and area of non-rectangular
air gaps are calculated, and they are treated as rectangular, following the standard. The knowledge of
surface temperatures of the gaps is required which implies an iterative process. In the first step, the gap
surface temperatures were assumed and after heat exchange calculations they were corrected from the
temperature distribution and the calculations were repeated again. After calculations of the equivalent
values of a gap conductivity, the simulations treat all materials as solids. The material thermal
conductivities are shown in Table 1. Surface emissivity was assumed as equal to 0.90. When calculating
window frame thermal transmittance, glazing has to be replaced with an insulation panel of the same
thickness as glazing and a visible height of 190 mm.
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Figure 1. Model of real PVC frame with the following materials: 1, PVC; 2, steel; 3, ethylene-propylene
diene monomer (EPDM); 4, butyl rubber; 5, insulation panel. Colored lines define the boundary conditions.

Table 1. Material thermal conductivities.

Material Thermal Conductivity W/(mK)

Wood 0.130

PVC 0.170

EPDM 0.250

Aluminum 160.0

Polyamide 0.300

Steel 50.0

Butyl rubber 0.24

Insulation panel 0.035

Both the end of the insulation panel and the frame part adjacent to the wall were treated as
adiabatic. On the internal (warm) side of the frame, the temperature of air θi was fixed at 20 ◦C, while
on the external (cold) frame side, the air temperature θe was considered equal to 0 ◦C, as suggested
by the Standard [10]. As the Standard [10] assumes different values of heat transfer coefficients on
boundaries, the choices taken in the domain are shown in Figure 1. The yellow boundary line shows
adiabatic conditions on the end of the frame (left hand side). Blue lines show external boundary
conditions with heat transfer coefficient equal to 25 W/(m2K), while red and orange lines represent
internal boundary conditions with the values 7.7 W/(m2K) and 5 W/(m2K), respectively.
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Ansys Fluent [14] program uses the finite volume method. The calculations were performed in
steady-state conditions, with second order up-wind discretization scheme used for the energy equation.

The temperature distributions for five given geometries are presented in Figures 2–6.

Figure 2. Temperature distribution on aluminum frame, example I1 from ISO 10077-2.

 

Figure 3. Temperature distribution on PVC frame, example I3 from ISO 10077-2.
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Figure 4. Temperature distribution on wooden frame, example I4 from ISO 10077-2.

 

Figure 5. Temperature distribution on roof window frame, example I5 from ISO 10077-2.

 
Figure 6. Temperature distribution on real PVC frame.

As can be seen in Figures 2–6, the temperature distribution in the part of glazing is one-dimensional
(parallel isotherms), while in the frame the heat flux changes its direction. The warmer the frame

179



Energies 2020, 13, 2957

on its internal side, the lower the value of frame heat losses. It can be seen that the aluminum one
(example I1) is the coldest on its internal side, indicating the worst performance in terms of thermal
transmittance (see the results in Table 2).

Table 2. Comparison of the simulation results and the results from the standard ISO 10077-2.

Frame Source L2D
f

, W/(mK) Uf, W/(m2K)
|Uf,simul−Uf,stand|

Uf,stand
·100%

I1
Simulations 0.550 3.22

0.2%
Standard 0.550 ± 0.007 3.22 ± 0.06

I3
Simulations 0.421 2.05

1.0%
Standard 0.424 ± 0.006 2.07 ± 0.06

I4
Simulations 0.345 1.35

0.7%
Standard 0.346 ± 0.001 1.36 ± 0.01

I5
Simulations 0.402 2.02

2.9%
Standard 0.408 ± 0.007 2.08 ± 0.08

Real PVC frame Simulations 0.261 1.098 Not applicable

3. Simulation Results

The window frame thermal transmittance was calculated from the following equation [10]:

Uf =
L2D

f −Upbp

bf
, (1)

where:
L2D

f =
Φ

θi − θe
. (2)

The results of the numerical calculations of five models are given in Table 2.
Results show that each simulation result differs less than 3% from the values given in the

Standard [10]. Thus, it can be stated that the software Ansys Fluent [14] could be applied as a tool
for window frame thermal transmittance calculations. The lower row of Table 2 is supplemented
with the results of the simulations of the fifth model, whichh is a real PVC window frame hosting a
triple glazing.

4. Window Frames Thermal Transmittance Measurements

The second stage of the work was focused on the measurements of window frame thermal
transmittance and comparison of the experimental results with the simulations for validation.

The frame measurements should meet the demands of the Standard EN 12412-2 [11] and should
be performed in a calorimetric chamber (Figure 7). This device consists of two spaces separated with a
surround panel, which consists of a cold chamber and a warm chamber. The specimen to be tested was
mounted into the surround panel, which was made of thick insulation material with known thermal
conductivity. In the case of window frame thermal transmittance measurements, the glazing was
substituted by an insulation panel with (known) low thermal conductivity, and the same thickness as
the glazing.
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Figure 7. The view of the Laboratory of Thermal Engineering calorimetric chamber situated in Cracow
University of Technology, Poland.

In the cold chamber, the air was kept in steady-state thermal conditions (0 ◦C), through a control
and data acquisition system. The same approach was used in the warm chamber, where the air
temperature set point was fixed to 20 ◦C. The test specimen cold side faced a baffle. A set of ventilators
was installed on the top of the baffle to push the air upwards in controlled forced convection conditions
on the space between the baffle and the specimen. The heart of the measurement stand is the hot box
system. It is a smaller guarded chamber embracing the specimen on its warm side. In the lower hot
box part, ventilators were installed in order to move the air downwards along the tested specimen, to
create steady-state natural convection conditions. The hot box was equipped with internal radiators.
The idea of the measurement is that the radiators provide the amount of heat demanded to ensure
the temperature difference between the internal and the external hot box walls is 0 K, i.e., no heat is
transferred through the hot box walls. That means that all heat power from the radiators is supplied to
the specimen, to the surround panel and to the flanking losses between them [16,17].

After more than three hours of steady-state conditions in the whole apparatus, the temperatures
of air, surface temperatures of baffle, reveal, insulation filling and surround surfaces were measured on
both cold and warm sides, along with the heat power supplied by the radiators. Then, the calculations
given by the Standard EN 12412-2 [11] were performed to obtain the value of the window frame
thermal transmittance.

The view of the tested window frame filled with the insulation panel and mounted into the
surrounding panel in the calorimetric chamber of the Laboratory of Thermal Engineering at Cracow
University of Technology is shown in Figure 8.

The uncertainty of the frame section was calculated using the error propagation rule from the equation:

ΔUf =

√(
ΔUm,t∂Uf

∂Um,t

)2
+

(
ΔAt∂Uf

∂At

)2
+ · · ·+

(
Δθn∂Uf

∂θn

)2
, (3)

where the uncertainties of all the quantities of Equation (3) had to be calculated according to the error
propagation rule. The measured frame thermal transmittance results equaled to 1.063 W/(m2K), with
an uncertainty of about 8%.
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The discrepancy between the measured and simulated Ansys Fluent values of the frames thermal
transmittance was about 3%. The good agreement of measurements with the simulations enforces the
reliability of the finite volume analysis for the evaluation of window frames thermal performance.

 

Figure 8. View of the tested window frame in the surround panel on the warm side.

The measurement results as well as the calculation results based on the Standard EN 12412-2 [11]
are given in Table 3.

Table 3. Measurement and calculation results of real frame thermal transmittance.

Quantity Value Unit

Air temperature, cold side 0.7 ◦C
Baffle temperature, cold side 0.6 ◦C
Reveal temperature, cold side 1.2 ◦C
Insulation filling temperature, cold side 1.4 ◦C
Surrounding panel temperature, cold side 1.1 ◦C
Air velocity, cold side 1.5 m/s

Air temperature, warm side 19.8 ◦C
Baffle temperature, warm side 19.5 ◦C
Reveal temperature, warm side 18.0 ◦C
Insulation filling temperature, warm side 18.1 ◦C
Surrounding panel temperature, warm side 19.0 ◦C
Air velocity, warm side 0.1 m/s

Heat power in the hot box 33.2 W

Density of heat flow rate through the specimen 12.5 W/m2

Surround panel thermal resistance 5.6 m2K/W

Total surface heat transfer resistance 0.26 m2K/W

Environmental temperature, warm side 19.5 ◦C
Environmental temperature, cold side 0.7 ◦C
Frame thermal transmittance 1.063 W/(m2K)

Frame thermal transmittance uncertainty 0.089 W/(m2K)
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5. Sensitivity Analysis of the Influence of Input Data on the Value of Window Frames
Thermal Transmittance

In this section, after the simulation code validation, analysis of the influence of input data on the
results of window frames thermal transmittance value was performed. The geometry presented in
Figure 2 (frame D3 from the Standard [10]) was chosen for the analysis. This is a PVC frame with steel
reinforcements, EPDM seals and 11 air gaps within its geometry.

The analysis was performed using Ansys DesignXplorer [14]. This tool enabled us to parameterize
the desired input data in Fluent in the assumed range of variations in order to achieve the response
surface and to analyze the optimized outputs. The response surface can be used to predict the
performance of the data without needing to run the actual simulation. This model was applied for
the sensitivity analysis. In the present study, the sensitivity analysis method called “screening” was
applied. By means of this approach, it was determined how the change of the input values of a certain
parameter influenced the output. The sensitivity is a quotient where the nominator is the difference
between the output values Y(X + D) and Y(X), where D is a percentage variation of the input X and it is
the term on the denominator. The higher the sensitivity, the higher the impact of the analyzed variable.

In order to prepare the optimization process, it was necessary to create variable input parameters
in a given range instead of constant values. The parametric calculations took into account thermal
conductivities of the solid materials as well as the surface heat transfer coefficients both on cold and
warm frame sides. Moreover, the thermal conductivities of air gaps in the frame were treated as
changeable parameters as well. The Standard [10] introduces the method of calculating the equivalent
thermal conductivities of air gaps within the frame geometries, considering one-dimensional convective
and radiative heat transfer through the gas gaps. As a result, the gap thermal equivalent conductivity
treats the gas as a solid material and these values constituted the input data in Ansys Fluent [14]
calculations for the frame thermal transmittance. In order to perform the sensitivity calculations, it was
necessary to create user defined functions (UDF) in C++ to calculate equivalent conductivities of air
gaps in Fluent, based on pre-run established gap temperatures and emissivity, which were imported
to the UDF by a get-parameter function. These values were then parameterized in Design Explorer.
The output parameters were the heat fluxes on the boundary surfaces and a frame U-value that was set
as the optimized parameter. The ranges of the variable parameters used for the sensitivity analysis are
listed in Table 4.

Table 4. Ranges of parameters variation in the sensitivity analysis.

Parameter Design Value Range of Variation

P1: surface heat transfer coefficient, cold
side, W/(m2K) 25.0 10.0–40.0

P2: surface heat transfer coefficient, warm
side, W/(m2K) 7.7 5.0–10.0

P3: PVC thermal conductivity, W/(mK) 0.16 0.10–0.20

P4: surface emissivity of air gaps 0.90 0.10–0.90

The preliminary sensitivity calculations indicated that thermal conductivities of steel and EPDM
have no influence on the results, mainly because of the low amount of these materials in the whole
geometry. For this reason, among all the solids, only PVC conductivity was varied in the sensitivity
calculation process.

The sensitivities of four output parameters described in Table 4, as calculated in Ansys Fluent [14],
are given in Figure 9. A higher parameter sensitivity value means that it has a bigger impact on the
output results.
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Figure 9. Sensitivities of parameters P1–P4, described in Table 4.

The results indicated that the values of heat transfer coefficients on cold and warm frame sides
have dominant impact on the results of frame thermal conductivities together with the PVC thermal
conductivity, while the air gaps emissivity alone has a negligible effect on the whole performance.

The surface heat transfer coefficients depend mainly on the air velocity and, at a lower level, on
the inner and outer surfaces emissivity. Therefore, their prominent modifications are linked to the
convection heat transfer, an effect not tunable by the window frame construction.

The rationing is not to include parameters not directly connected to the building component on the
evaluation of its performance. Thus, in the last part of the sensitivity analysis, they were kept constant.

For the same reason, the temperature variations on both cold and warm sides were not investigated,
despite the fact that inner and outer temperatures change significantly depending on building location
and weather conditions. These temperatures vary quickly in time, especially in the hot season.

On the other hand, the effect of the air gaps equivalent thermal conductivity variation had a
substantial impact on the window frame thermal transmittance. It was varied between the worst
condition (air in the gap and surface emissivity equal to 0.90) and the most efficient one (which
represents the situation of air gaps filled with a super insulation material). Intermediate values may
represent filling air gaps with different insulation materials like wool, aerogel or different gases like
argon, and giving the surfaces different emissivity [18].

The results of this part of the optimization process indicated that the values of equivalent thermal
conductivities of gaps (P5) have the strongest influence on thermal transmittance of window frames
with respect to the PVC thermal conductivity (Figure 10).

Figure 10. Sensitivities of PVC thermal conductivity (P3) and multiplier of air gap equivalent
conductivity (P5).
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Summing up the sensitivity analysis results, both window frame construction and external
environmental boundaries considerably influence its thermal performance, with the gaps playing the
most important role among the parameters where a designer could intervene.

6. Conclusions

The finite volume analysis implemented by a commercial code for the windows frame
thermal transmittance numerical assessment proved reliable (discrepancy lower than 3%) both from
comparison with Standard indications and from experimental validation obtained from a calorimetric
chamber apparatus.

The software has been used to perform a sensitivity analysis of the input data (material
conductivities, internal and external surface heat transfer coefficients, surface emissivity) on the
results of a PVC triple glazing window frame thermal transmittance. The objective consisted of
evaluating the influence of each parameter on the global performance of the frame.

The method proved particularly effective, as it allows one to change the input parameters,
spanning between reasonable input values, then looking at the changing results. The procedure is
implemented with a relatively low computational effort and it seems original, at least in the field of
window thermal properties assessment.

The specific outcomes for the case analyzed indicate that it is worth focusing on air gap properties,
which could lead to significant improvements if adequately treated. For instance, filling the gaps
with an insulation material, substituting the air with a lower conductivity gas such as argon and
covering the gap walls with low-emissivity coatings. Beyond the peculiarity value of these results, the
proposed numerical optimization methodology could represent a useful tool for window designers
and manufacturers to address their energies towards the most fruitful actions for the enhancement of
the building components performance.
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Nomenclature

Af Frame area, m2

Afi Area of the frame filling, m2

At Surface of project of measurement area, m2

bf Width of the frame section, m
bp Visible width of the insulation panel, m
L2D

f Thermal conductance of the entire model, W/(mK)
Uf Frame thermal transmittance, W/(m2K)
Um,t Measured thermal transmittance of frame and insulation filling, W/(m2K)
Up Insulation panel thermal transmittance, W/(m2K)
Δθn Environmental temperature difference, K
Δθs,fi Surface temperature difference on warm and cold sides of the frame filling, K
Φ Linear heat flow rate, W/m
Λfi Thermal conductance of the frame filling, W/(m2K)
θe External air temperature, ◦C
θi Internal air temperature, ◦C
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Abstract: Energy flexibility in buildings is gaining momentum with the introduction of new European
directives that enable buildings to manage their own energy demand and production, by storing,
consuming or selling electricity according to their need. The transition towards a low-carbon energy
system, through the promotion of on-site energy production and enhancement of self-consumption,
can be supported by building-integrated photovoltaics (BIPV) technologies. This paper investigates
the aesthetic and technological integration of hidden coloured PV modules in architecturally sensitive
areas that seem to be the best possibility to favour a balance between conservation and energy issues.
First, a multidisciplinary methodology for evaluating the aesthetic and technical integration of PV
systems in architecturally sensitive area is proposed, referring to the technologies available on the
market. Second, the experimental characterisation of the technical performance specific BIPV modules
and their comparison with standard modules under standard weather condition are analysed, with the
aim of acquiring useful data for comparing the modules’ integration properties and performance.
For this purpose, new testbeds have been set up to investigate the aesthetic integration and the energy
performances of innovative BIPV products. The paper describes the analyses carried out to define
the final configuration of these experimental testbeds. Finally, the experimental characterisation at
standard test conditions of two coloured BIPV modules is presented and the experimental design for
the outdoor testing is outlined.

Keywords: building-integrated photovoltaics; BIPV; hidden coloured BIPV module; BIPV integration;
photovoltaic; PV

1. Introduction

The latest surveys on the current energy use scenario in Europe reported that buildings account
for almost 40% of energy consumptions and 36% of carbon dioxide emissions (CO2 emissions) [1].
The European Union (EU) has adopted a comprehensive regulatory framework to meet the commitments
stated in the Paris Agreement [2] and to facilitate the transition from fossil fuels to cleaner energy
production. The Energy Performance of Buildings Directive (EPBD) and the European Directive on
Energy Efficiency (EED) provide the roadmap for the transformation of the existing building stock
into nearly zero-energy buildings (nZEB) [3,4] through the definition of specific measures to improve
the energy efficiency of buildings, reduce the energy use and enhance the decarbonisation in the
construction sector. Furthermore, the recast version of the Renewable Energy Directive [5] set the target
for renewable energy source (RES) penetration in the European energy mix to 32% by 2030. Energy
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flexibility in buildings is, moreover, gaining momentum through the introduction of self-consumers
and collective self-consumers concepts in regulations which, on the one hand, empower users to be
prosumers instead of merely consumers and, on the other hand, enable buildings to manage their energy
demand and production, by storing, consuming or selling electricity according to their need [5,6]. In this
context, building integrated photovoltaics (BIPV) technologies can support the transition towards a
low-carbon energy system, promoting on-site energy production and enhancing self-consumption,
if integrated into the overall building/district energy system and coupled with electric or thermal
storages [7]. BIPV constitute indeed a solution to incorporate RES in the built environment by integrating
solar photovoltaics (PV) technologies in the building envelope. More precisely, BIPV systems have a
dual purpose: they serve as building envelope and as power generation systems at the same time,
harvesting solar energy for on-site energy production [8]. This is a relevant characteristic, especially
for the decarbonisation of energy systems in densely built environments, where the on-site energy
production is difficult to exploit due to urban constraints, which hinder traditional ground-mounted PV
installation. In addition, the solar potential for roof-mounted PV is low if compared to multi-property
and multi-story building energy demand [9]. Despite the high potential for BIPV applications, there is
the need to overcome technical, social and economic barriers to reach a larger scale of BIPV applications,
improving their economic profitability [10–12]. Besides the cost, which has consistently decreased
recently, the main limit to the spread of BIPV has so far been their aesthetic, since they are often
considered anaesthetic by users and architects [13]: “[ . . . ] When we hear about photovoltaics, however,
the image that is invoked in our mind is a blue or black element that usually seems to “overload” the aesthetic image
of a building [14]. Research institutes, universities and industries are working together to design and
produce a novel generation of BIPV solutions which will transform the visual appearance of standard
PV modules into a more “architecturally pleasing” one [15] to be integrated into sensitive environments.
Crystalline silicon modules, thin films, coloured solar cells, homogenised black appearance and
integration of high-resolution images are just a few examples of the new possibilities offered by the PV
market. However, the turning point in the acceptance of BIPV applications has been the development of
hidden coloured BIPV modules. This module typology (which includes several different technologies,
as discussed in Section 4) can hide the PV cells behind coloured patterns which hinder the perception of
the original material of the cells. In this way, the modules appear very similar to standard construction
materials [9]. As a result, a wide range of colours is currently available on the market, and this wide
selection enables PV to be integrated also in traditional roofs, façades, and shading systems (Section 4).
Nonetheless, the production of these modules is predominantly customisable for a specific installation.
Modules customisation ensure a variety of new aesthetic and technical possibilities that facilitate the
use of BIPV technologies also in densely built environments. This solution appears appropriate also
for architecturally sensitive areas (i.e., historical centres, vernacular and historic buildings, natural
and cultural landscapes), thanks to the aesthetical and technological advances related to low-rate
reflection, mimetic appearance, compact shape and geometric flexibility [16–19]. Thus, these aesthetic
improvements unlock the solar potential of a large set of vertical and horizontal envelope surfaces
currently not exploited, leading the building stock to energy flexibility and self-sufficiency [20,21].
Conversely, the extreme requirements of customisation results in a fragmented market scenario and
a high variety of colours, shapes, sizes, finishing, mechanical robustness and electricity generation
efficiencies. Therefore, there is an urgent need to better frame the hidden coloured BIPV technologies
available on the market, while building a common dialectic within the stakeholders along the entire
value chain, to boost the BIPV market penetration. Section 2 indicates the aims and methodology
pursued in this paper and outlines its structure.

2. Aims and Methodology

This paper investigates the aesthetic and technological integration of hidden coloured PV modules
in architecturally sensitive areas. In these areas, there is an increasing debate on the possible integration
of PV systems, respecting heritage constraints as well as preserving historic and natural values.

188



Energies 2020, 13, 4506

Coloured BIPV modules seem the best possibility to favour a balance between conservation and energy
issues (Section 4.1). In parallel, these technologies have shown a relatively recent market growth,
and their applications are significantly increasing due to their flexibility. Therefore, there is an urgent
need to better understand the overall technical performance of these promising products against the
real requirements of the built environment, with the purpose of providing better modelling of their
behaviour and fostering energy flexibility in buildings [22,23]. Despite the high technological readiness
level (TRL) of BIPV systems, it is essential to further investigate their performance and reliability in
operational environment to increase the users’ trust and boost its market penetration.

One aspect related to the novelty of this research concerns the interdisciplinarity between aesthetic
and technical aspects. The first one refers mainly to the work of conservators, designers, heritage
and public authorities that need clear criteria for the methodological assessment of BIPV systems in
architecturally sensitive areas. The second one refers to engineers, manufactures, supplies, installers
and power utilities that need clear data from BIPV experimental assessment. For this reason, the
paper is divided in two parts. First, a multidisciplinary methodology for evaluating the aesthetic
and technical integration of PV systems in architecturally sensitive area is proposed, referring to
the most promising technology (Sections 3 and 4). More precisely, in Section 3, the key concept of
integration is discussed, with particular focus on the international guidelines for the application of
BIPV in architecturally sensitive areas, which has been crucial to identifying the criteria for ensuring
the aesthetic integration of BIPV technologies (Section 3.1). Then, once recognising that the visual
integration is fundamental for broader BIPV deployment, and in particular that the geometrical
uniformity and the colour of the cells play a key role in this respect, the analysis focuses on the state of
the art of the existing technologies for hidden coloured PV modules. To this purpose, a deep technical
review of the BIPV technological solutions available on the market is realised (Section 4). On these
bases, an evaluation matrix has been developed with the aim of steering the market analysis required
to choose the technologies to be tested within the project (Section 4.1). This evaluation process has been
used to identify a set of different coloured BIPV technologies for their experimental characterisation.
Second, the experimental characterisation of the technical performance specific BIPV modules and their
comparison with standard modules under standard weather condition are analysed, with the aim of
acquiring useful data for comparing the modules’ integration properties and performance (Section 5).
To this purpose, a new facility specifically developed for BIPV system has been set up for investigating
the aesthetic integration and the energy performances of innovative PV products, focusing on the
three integration concepts: (i) technology (i.e., innovative integration substructures); (ii) aesthetic
(i.e., appealing PV modules); and (iii) energy integration (i.e., plug and play concepts). The description
of the experimental facilities is provided in Section 5.1.1 (outdoor testbeds) and Section 5.1.2 (indoor
laboratory). In Section 5.2, the indoor experimental results are presented, while the experimental
design of the outdoor testbeds and the first qualitative results of the experimental camping is provided
in Section 5.3. Finally, Section 6 presents the conclusions and lesson learnt. These facilities also allow
to tackle specific challenges of BIPV to develop better and more performing systems, as well as to
show among all the stakeholders involved in the value chain (i.e., manufactures, designers, supplies,
installers, national public authorities, local planning authorities, power utilities, owners, final users
and financial bodies) the benefits offered by these innovative BIPV panels.

This work has been made in the framework of the research project BIPV UPpeal that aims at
accelerating BIPV market penetration by showing to the main stakeholders the benefit of integrating
PV systems in architecturally sensitive areas. This permits to concretely show the new aesthetic and
technical possibilities of BIPV systems (e.g., with testbeds, case studies and databases) but also to create
a network among the professionals. Otherwise, innovative coloured BIPV technologies are selected to
be tested in these testbeds following the evaluation criteria defined in the framework of the EU project
BIPV meets history that aims at creating a value chain for the use of BIPV in heritages, according to the
international guidelines and ad hoc working tables [19].
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3. PV Integration Concepts

Scientific literature adopted several definitions of BIPV, avoiding a univocal consensus for the PV
and the building sectors. PV modules are considered integrated by the standard EN 50583-1:2016 [24]
are if “[ . . . ] they form a construction product providing a function”, as defined in the European
Construction Product Regulation CPR 305/2011 [25]. This definition refers mainly to the idea of
multi-functionality, according to which a BIPV module must have additional functions for the building
envelope, besides the energy production (e.g., structural integrity; thermal insulation; solar shading;
daylighting control; noise, fire and weather protection; safety; and security). However, this definition
of BIPV does not seem exhaustive [15]. Different working groups of the International Energy Agency
(IEA) on BIPV (i.e., PVPS Task 7 [15], IEA Task 41 [26], Task 59 [27] and Task 51 [28]), have underlined
the importance of “formal/aesthetic” integration, beyond the multi-functionality concept. Particularly,
the IEA-SHC Task 41 [26] defines architectural integration quality as the result of a controlled and
coherent integration of the solar collectors from functional, constructive and formal (or aesthetic) points
of view simultaneously. Other IEA working groups (Task 59 [27] and Task 51 [28]) also encourage an
ad-hoc BIPV design to preserve original shapes, features and values in heritage and existing sites,
favouring the aesthetic integration too. The balance of technical and aesthetic aspects is indeed a priority
for BIPV system in terms of architectural functionalities and construction requirements (e.g., visual
impact, dimensional flexibility, colour selection, easy mounting, safety and reliability, fire security,
climate resistance, hygrothermal risks, thermal stability, maintenance and durability) [19,29]. From the
analysis of the literature and standard definitions of BIPV, three integration levels can be identified [30]:
(i) aesthetic; (ii) technological/functional; and (iii) energy (see Figure 1). Aesthetic integration refers to
the capability of the PV solution to be included in the linguistic and morphological rules governing
building’s architectural language. The technological/functional level is strictly connected to the
standard EN 50,583 definition [24], referring to the PV system capability to replace traditional building
components. Finally, the energy integration refers to the ability of PV to be efficiently integrated
into the overall energy system of the building/district through the “energy-matching” approach [31],
thus interacting with the building loads to maximise self-consumption towards the implementation of
efficient energy communities.

Figure 1. Multilevel BIPV integration aspects.

3.1. PV Integration in Architecturally Sensitive Areas

Special care must be given to PV integration in historical and heritage buildings as well as in
architecturally and naturally sensitive areas (e.g., historical centres, heritage sites, archaeological areas
or heritage landscapes). Consequently, several countries published national guidelines defining the
architectural criteria for RES installation [32–38] according to national legislation, local authorisation
processes and specific heritage features. These tools are addressed to the specialists in the field of
design, architecture, engineering and energy consulting as well as to the public authorities involved
in the energy issues, preservation of monuments and release of building permits [34]. The criteria
for PV installation are always devoted to the protection of historic and distinctive materials, features,
spaces, finishes, construction techniques, traditional craftsmanship and spatial relationships. Therefore,
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PV panels must not create permanent losses or transformations in the historic fabric, significant
architectural obstructions or disjointed and multi-roof solutions [32–35,37,39]. Both PV and BIPV
technologies can be inserted on new constructions, deteriorated historic buildings or elements
(i.e., a damaged roof), non-historic buildings, new additions or adjacent constructions, while matching
the original designs, colours and texture [32,33,35,39]. Missing features of historical buildings can also
be replaced with PV panels or BIPV systems by documentary and physical evidence, using similar
colours and textures [35,39]. PV technologies can also be used in industrial buildings and 20th century
architecture, where they express the idea of “material innovation” [39]. In listed buildings and their
settings, the heritage authorities must evaluate the impact of PV systems on the historic and natural
values [33,35,36,39].

According to the theory of restoration in architecture, the evaluation criteria in these sensitive areas
can be summarised in visibility, technical compatibility and reversibility of the systems [34]. Visibility
is the most important aspect in heritage buildings and natural areas. It refers to the minimisation
of the visual impact of PV technologies, and thus the preservation of the original features, colours,
texture, shapes, geometries, proportions and spatial relationships [33,35,39]. Overall, PV panels are not
permitted on roofs and façades on the side of the building which is the most viewed generally from a
public thoroughfare, a road or natural site or above the principal elevation [32,35]. On the contrary,
PV panels can be located on hidden roof planes, for example in internal valley or street, behind parapets,
new additions or outbuilding [35]. In this case, the new roof has to be hidden with existing roof ridge
lines and flush [35]. Two main aesthetical parameters are considered for the integration of PV systems
in architecturally sensitive areas: geometrical uniformity and colours of the cells. First, the visual
impact of PV panels depends on the coverage of the surface by PV modules where 100% coverage is
preferable for a more uniform appearance [32]. Therefore, BIPV products may be appropriately suited
for historic buildings [35,39]. The acceptability of PV technologies is more difficult in these contexts
because it requires also the respect of building lines, the grouping of PV panels, the reduction of the
spaces among the panels and the accurate design [32,33,35,38–41]. Second, the chromatic integration
with traditional materials is strongly suggested for PV camouflage, using terra-cotta cells for clay roof
tiles, anthracite or green-grey cells for slate or stone, white cells for plaster or high-resolution images as
marble or wood [39]. The aspects related to low-reflectance, camouflage of the PV cells, texturization
and aesthetic pattern of PV modules are not considered in these guidelines but are very important for
heritage authorities [19]. Compatibility refers to the protection of the integrity of the property and
its environment guaranteeing the technical compatibility between old and new materials, avoiding
hygrothermal (e.g., moisture accumulation on the back-side), structural (e.g., falling and excessive
deflection) and energy (e.g., reduction of the efficiency and thermal bridges) risks [35]. Reversibility
refers to the possibility of removing PV or BIPV system in the future, without affecting the essential
form and integrity of the historic property and its environment. Removals and replacements of PV
panels should be considered in the design phase to minimise loss or damage of original fabric [32].
The previous guidelines report only general principles for the aesthetic and technical integration of PV
systems, but not references to specific technologies. On the contrary to these guidelines, some Italian
working tables of the EU project BIPV meets history show that the heritage authority prefers BIPV
systems instead of PV modules applied to a building element (i.e., roof or façade) or traditional material
with PV panels (i.e., PV tile) [19]. Hidden coloured PV modules, semi-transparent PV-active layers
and/or textured PV modules seem very promising for the integration in heritage and architecturally
sensitive areas [19].

4. Existing Technologies for Hidden Coloured PV Modules

Broader architectural application claims for improvements in the aesthetic rendering of BIPV
modules [23,42,43]. The turning point in the aesthetic acceptance of BIPV applications has been
the development of modules that can hide the PV cells behind coloured patterns which hinder the
perception of the original material of the cells, making the modules appear as standard construction
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components. This kind of coloured BIPV modules have shown relatively recent market growth,
and their application is considerably increasing. Nonetheless, colouring the modules hinders the
PV performance, due to the optical and physical behaviour of the coloured layers, which can cause
the reflection of portions of solar radiation that would be otherwise converted into electricity [44].
Some theoretical studies, focusing mainly on monochromatic colours, were conducted to define the
relations between the modules’ colour and their power losses. The research highlighted a rather low
level of power loss ranging between 7% and 10% [45]. However, BIPV applications imply a wider
colour range and the finishing layer could present textures, uneven surfaces, fouling and time-related
performance decay. Hence, there is the need to improve the awareness on coloured BIPV technologies
with regards to the electrical behaviour of a large variety of coloured modules, which should guarantee
reliable power output during their operation. Different customisation techniques to obtain coloured or
textured BIPV modules are currently used for modules available on the market, including: (i) solar
cells with anti-reflection coating; (ii) semi-transparent and/or coloured PV-active layers; (iii) layers or
interlayers containing solar filters, coloured or patterned coatings; (iv) coloured polymeric encapsulant
films; and (v) printed, coated or alternative finished front glass [46,47]. Hereafter, a brief overview of
these technologies is provided. The study is not exhaustive, but it aims at defining the peculiarities of
each typology in terms of technical potential for each category. The same nomenclature used in this
section is reported in Table 1 to categorise some commercial products that have been considered in the
frame of the BIPV market analysis (Section 4.1).

4.1. Solar Cells with Anti-Reflection Coating

Coloured solar cells can be produced by means of deposition on the cells’ surface of a hydrogenated
amorphous silicon nitride SiNx:H layer, which serves for both passivation and antireflection coating
(ARC). SiNx:H layer is deposited by means of plasma-enhanced chemical vapour deposition [48].
Once this nitride layer is optimised in thickness and refractive index, solar cells assume the classic
blue hue of standard PV modules. Other production techniques of the passivation and ARC are
possible, using, for example, double anti-reflective coating (DARC) realised by electron beam (e-beam)
evaporation techniques to deposit an additional layer of SiO2 on the SiNx:H layer. Various colours
can be obtained by tuning the SiO2 layer thickness, without any variation on the coloured solar cells’
conversion efficiency [49,50]. Even if a quite large range of colours can be obtained by using this
process (blue, yellow, bronze, green and purple), the coloured cells appear to be iridescent and highly
variable with viewing angle and incident light polarisation [51].

4.2. Semi-Transparent and/or Coloured Pv-Active Layers

Coloured or semi-transparent PV-active layers can exhibit semi-transparency or colour tunability
according to the absorption spectrum of the specific materials used as active layer. In this technology
category organic solar cells (OSCs), dye-sensitised solar cells (DSSCs) and perovskite solar cells (PSCs)
are included [52]. Distinct colour appearance in OSCs can be obtained, for example, by varying the
materials used in the donor-acceptor combinations or adding coloured dye compounds to the active
layer. In PSCs, colour tuning is imputable to band gap modification or the inclusion of dyes in the
photoactive layer or other layers (e.g., hole transporting layer) [53]. The colours achievable through
these techniques are manifold, but the system efficiency is affected by the optical behaviour of the
coloured layer.

4.3. Layers or Interlayers Containing Solar Filters, Coloured or Patterned Coatings

Another option to obtain coloured BIPV modules is by using layers or interlayers containing solar
filters, coloured or patterned coatings [47,54], that can be laminated into the modules. In addition,
encapsulant components and/or back sheet layers can be coloured or printed with semi-transparent
ink. The degree of customisation for this BIPV typology is very high, and, consequently, the efficiency
is highly affected by the optical properties of the coloured/patterned layers.
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4.4. Coloured Polymeric Encapsulant Films

Polymer materials are usually used in the lamination process as a bonding and protective layer
for semiconductors. The most frequent polymers used for this purpose are polyvinyl butyral (PVB)
and Ethylene-vinyl acetate (EVA) [55]. Both these polymers can be manufactured in different colours
and shades, and, when coupled with amorphous silicon or polycrystalline silicon PV, they lead to
coloured PV modules with different degree of transparency and a quite large colour palette (coloured
polymeric encapsulant films) [56]. To avoid undesired reflection or absorption of energy in the visible
spectrum range, which could lead to the reduction in the efficiency of the modules, the coloured layer
is usually provided at the rear side of the PV module [57].

4.5. Printed, Coated or Alternative Finished Front Glass

Modified front glass modules are produced by coupling a glass front sheet with a glass or
metal back-sheet by means of lamination with polymeric encapsulants which incorporate c-Si cells.
The most common encapsulant materials are ethylene-vinyl acetate (EVA) and polyvinyl butyral
(PVB). The front glass sheets can be tinted with different hue or digitally printed to reproduce the
appearance of traditional construction materials or any other pattern or image. This procedure ensures
the camouflage of the PV cells which are almost completely hidden to the view. The front glass can be
also texturized to provide different finishing [58]. Available finishing options on the market are shining,
matte or three-dimensional texturized. Although the manifold customisation options offer several
aesthetical advantages, the modification of the front glass leads to changes in the optical behaviour of
the glass sheet, which could reflect or absorb a portion of the solar spectrum that would otherwise
reach the PV cells where it would be used to produce electricity. Hence, the main challenge to be faced
in the production of such modules consists in seeking the optimal trade-off between aesthetic and
energy efficiency [44,45].

4.6. Evaluation Criteria and Market Analysis

As just reported, BIPV applications claim for multi-functionality properties of the products.
The methodology for the evaluation and selection of a BIPV module for a defined project could
ground its theoretical roots on this multi-functional integration (as defined in Section 1), identifying the
requirements to be satisfied from the three integration levels identified in the literature and standards
definition of BIPV (Section 3). The differences in the products of the market and the multifaced technical
solutions could make module selection complex for the designer, who needs to be properly provided
with the information required to support the design of the three integration aspects. Therefore, in this
section, a specific methodology for selecting the BIPV systems in architecturally sensitive areas is
proposed. The described methodology guided the selection of two technologies to be installed and
tested in the outdoor testbed, in the frame of a broader experimental campaign on coloured BIPV
products (see Section 5). The methodology consist in four steps: (i) the identification of three integration
levels for BIPV systems (Section 3); (ii) the identification of specific parameters for defining the main
characteristics of each integration level, according to the standard UNI 8290-1/2; (iii) the market
analysis on commercial hidden coloured PV modules; and (iv) the comparison of different technologies,
considering technical elements, flexibility, shapes, dimensions, colours and nominal power.

Once the three integration levels were identified and defined, specific parameters were identified
for each of them, with the aim of drawing up an evaluation matrix that served as a base for the
selection of the BIPV technologies. Then, a deep market analysis was performed to detect the existing
technologies suitable for the experimental campaign. The parameter referred to each integration
level are described in detail hereafter, while the results of the market analysis including the analysed
technologies are presented in Table 1.

The functional or technological integration refers to the ability of the modules to serve as a building
component, thus fulfilling the functional requirements handed over by the original building element.
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Typical envelope functions could be rain, snow, wind and solar protection, mechanical strength and
reliability, shadowing or daylight admission. In Italy, the UNI 8290-1/2 [59] standard identifies for each
technical element (i.e., roof, opaque vertical façade and transparent vertical façade) the corresponding
requirements to be satisfied by the envelope components. Since the choice of a BIPV technology to
be integrated into the building envelope must consider the functional requirements needed for the
selected application, we decided to evaluate BIPV technologies according to the UNI 8290-1/2 [59]
classification. Nonetheless, it is common to utilise a single BIPV product (typically coloured c-Si BIPV
modules) for different applications by choosing the appropriate mounting system, e.g., as roof tiles
or external layer of a ventilated façade. This peculiarity could grant to BIPV products a certain level
of flexibility that facilitates the standardisation of the products manufacturing and the procurement
design. This aspect has been considered through the identification of flexibility as a specific parameter
for the functional integration in the evaluation matrix. As Table 1 highlights, the large variety of
modules available on the market reflects the need of flexibility and multi-functionality and enables the
use of the same module as elements belonging to a different technical class unit, if coupling with a
suited mounting structure. Both multi-functionality and flexibility could be relevant characteristics for
enhancing the market penetration of BIPV modules, since they enable the industrial production in
series of a larger number of units that would eventually be used as different construction elements.
This could represent an important advantage for BIPV industries, since it could potentially reduce the
time and the costs of the modules production, encouraging BIPV market penetration.

The aesthetic integration identifies the ability of the product to define morphological and
architectural rules which steer the architectural language and composition of buildings [26].
Consequently, the shape, dimension, position, materials, colour and texture of modules are defined in
parallel with junction systems and mounting structure, which should be invisible to guarantee a good
camouflage of the BIPV technology in the building envelope. The aesthetic evaluation is performed
through four main parameters: (i) module’s dimension; (ii) shape, defining the morphological
integration of the BIPV technology in the building envelope; (iii) colour, which ensures the mimicking
of the traditional building envelope material, camouflaging the BIPV module into the building envelope;
and (iv) the module’s reflectance, which is an essential aspect to be considered to ensure a high-quality
aesthetic result and to avoid glare and overheating in the surroundings. As shown in Table 1, the first
three parameters are quite common in the producers’ specifications, while it is rare to find information
about the module’s reflectance. Furthermore, the market analysis highlights a common practice within
the BIPV producers to provide customised solutions, mainly in terms of dimensions and colours.
This is due to the peculiarity if the BIPV applications that, being tailored on the building envelopes,
quite often require a specific design for the modules. This high level of customisation on the one hand
constitutes the strength and the uniqueness of BIPV products in the PV scene, while on the other hand
represents a limit since it hinders the series production of the modules limiting their cost reduction.
In addition, the improvements of the BIPV industry in terms of available modules colours, which can
range among an impressive hue palette and printing, are remarkable.

The energy integration refers to the ability of BIPV plants to interact with the energy systems at
the building level or at the district level, with the aim of maximising the self-consumption. In fact,
BIPV products could be used extensively on façades, enlarging the envelope surfaces available for PV
installation. As a result, BIPV could lead to a shift in the energy paradigm for buildings: buildings
would no longer be a mere energy consumer in the local electric grid, but it could indeed provide
load flexibility, by producing, storing and selling electricity to the grid according to mutual needs.
At present, within this paper, two preliminary parameters are evaluated in respect to the energy
integration, i.e., the module’s efficiency and its nominal power per square meter. This information is
not easy to find on the producers’ technical sheets since they are highly dependent on the chosen colour
or texture. Table 1 shows some efficiency and nominal power range which have been retrieved both
from technical documentation (if available) or directly from the producers, by means of interviews.
In future studies, the “energy integration” concept will be more deeply investigated, since the PV
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Integration Lab is conceived to allow experiments on several “energy integration” configurations
(i.e., stand alone, grid connected and plug and play). This way, the PV production can be associated to
specific building loads (electrical consumption).

As stated before, multifunctionality and flexibility are relevant characteristics for enabling the
use of the same BIPV technology in different technical elements, when coupled with the appropriate
mounting structure. For this reason, modules’ multifunctionality and high flexibility are prioritised in
the selection of the technologies involved in the experimental campaign. Consequently, the technologies
suited only for roofing systems have been discarded (Table 1). The architectural applications require
larger aesthetical possibilities to ensure flexibility in the design. Thus, the customisation of modules’
shapes and dimensions is important in architecturally sensitive areas, even if the standardisation of
these characteristics would imply advantages for industrial series production. Therefore, we select the
technologies that allow the customisation of shape and dimension. the same considerations are applied
to colours. Producers that guarantee colour customisation or larger colour palette have been preferred.
Then, among those, the producers that provided the higher modules’ nominal power (W/m2) have been
selected. As a result of this procedure, two BIPV technologies from Glassfer & Sunage producer have
been selected. Among the available colours and customised printed patterns, two module typologies
suitable for the installation in sensitive architectural areas have been chosen. Both technologies present
a modified front glass. The first one has a tinted front glass in a uniform “terracotta” colour, which is
representative of the typical chromatic palette of Italian historical roofs (similar RAL 8015). The second
one has a textured front glass, which reproduces the pattern of the terracotta Portuguese tiles through
ceramic ink printing. Portuguese tiles are the most used typology of clay roof tile in vernacular and
traditional Italian architecture as well as in historical towns.

5. Experimental Characterisation of BIPV Technologies

As emerged in H2020 Project PV IMPACT [60], BIPV stakeholders workshops, there is an
urgent need by architects and designers to acquire more knowledge on coloured modules, to better
understand the current possibilities on the market (as provided in Table 1) and to gather information
on their performance and reliability. Although a broad literature exists on the theoretical relationship
between colour and efficiency/power generation [44,45], there is a lack of information on the real final
performance of coloured modules due to the fragmented techniques used by different PV modules
producers. In fact, during the module assembling and the lamination process, the colour could change
significantly compared to the initial components colour, obtaining different aesthetical solutions in the
final product.

When standard modules became mainstream many scientific publications covered and shared
test results, which helped to gain a greater understanding on the topic [61–63]. In this section, a similar
approach is chosen to fill the knowledge gap about the technical characterisation at module level of
coloured BIPV products in the scientific community. In fact, when it comes to the characterisation
of coloured PV modules, several studies analysed coloured glass at material and optical level,
while few analysed the electric behaviour of PV coloured modules ready for the market. Among the
latter, those available assessed the modules’ performance through outdoor tests [58,64]. Therefore,
the experimental characterisation of BIPV modules is needed both at standard test conditions (STC) and
under real operating conditions. For this reason, the project BIPV UPpeal aims at testing several BIPV
products in the EURAC Research facilities in the next years. The overarching aim of the research is to
test different BIPV technologies to collect useful information for comparing the technical properties of
different modules. To do so, at first, the modules will be tested in the indoor laboratories at STC to
characterise the performance according to the existing standard procedures. Then, the modules will be
tested in the outdoor facilities, under real exposure conditions, to gain information on the dynamic
behaviour of the modules under operating conditions in terms of energy performance, functional
adequacy and aesthetical appealing. Hereafter, we provide a brief description of the experimental
facilities that will be used within the research (Section 5.1) and we present the results of the first
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experimental indoor campaign (Section 5.2). Then, the description of the experimental design of
outdoor testing is provided (Section 5.3).

5.1. Experimental Facilities Description

5.1.1. Outdoor Facilities

The selected modules will be mounted on the testbeds of the PV Integration Lab of EURAC
Research (Figure 2). It consists of an outdoor infrastructure which allows testing and evaluating in real
conditions the three aspects of BIPV integration: aesthetics, technology and energy. The roof testbed
is a rotating roof measuring 20 square metres. It permits tilting up to 60◦ from the horizontal plane
and orienting in any direction to reproduce any exposure condition or any type of cover for roofs.
The façade testbed consists of a vertical substructure of about 30 square meters that can host BIPV
modules with any mounting systems. The testbeds are connected to a monitoring system for recording
the electrical and environmental parameters (such as yield, solar radiation, air temperature and relative
humidity) and the energy performance of any type of PV module. The BIPV systems can be connected
to storage systems and/or the grid to verify the impact on electricity networks.

  
(a) (b) 

Figure 2. Outdoor PV integration lab: (a) view of roof in horizontal configuration and façade testbeds;
and (b) detail of rotating configuration of the of the roof testbed.

5.1.2. Indoor Laboratory

The indoor characterisation of BIPV modules is performed by means of the solar simulator
(Figure 3a) and electroluminescence (EL) camera (Figure 3b) provided by indoor “Solare PV Lab” of
EURAC Research. The pulsed light solar simulator is in class “AAA”, according to the international
standard IEC 60904-9 [65]. It measures the electrical performance of PV modules, allowing the
performance analysis of a PV cell or the comparison among different technologies in controlled
conditions. It measures the PV module’s IV curve under standard conditions [65]. The measurements
detect the energy performance of the module in different combinations of irradiance (0–1000 W/m2)
and temperature (5–75 ◦C) and its temperature coefficients, in accordance with UNI CEI EN ISO/IEC
17025:2005 [66]. The test accredited is the Performance at STC (MQT 06.1) for PV modules according to
the standard IEC 61215:2016 [67]. The electroluminescence camera is a VIS-SWIR InGaAs camera with
a quantum efficiency over 60% at 1–1.2 μm and sensor of 640 × 512 pixels. This camera enables the
implementation of the test following IEC TS 600904-13:2018 [68] indications.
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(a) (b) 

Figure 3. Indoor “Solare PV Lab”: (a) panoramic view of solar simulator room; and (b)
electroluminescence test execution.

5.2. Indoor Testing of BIPV Technologies: First Results

From the market analysis described in Section 4.1, two modules typologies have been selected
to be tested through indoor and outdoor laboratories. The tests described hereafter constitute the
first experimental campaign on coloured BIPV products. The first set of chosen modules belong to
the Suncol® Tile technology, provided by Glassfer & Sunage, and consist in a sandwich PV panel
of two tempered solar glass sheets within which a layer of monocrystalline cells is laminated by
means of polymeric encapsulant films. The two sets of modules differ in dimensions, number of cells
and customisation of the coloured front glass. The detail of the two modules typologies is given in
Table 2, while Figure 4 shows the modules’ samples. These modules have been selected for their high
flexibility and aesthetical integration for architecturally sensitive areas, as explained in Section 4.1.
Two different customisation techniques have been selected to compare their aesthetic impact and
their energy performance: one has a full colour tinted front glass and one has a printed tile pattern.
In both cases, an anti-reflection coating has been applied on solar cells. Furthermore, the modules are
provided with an invisible mounting system and module frame that guarantees the reduction of the
visual disturbance as well as their reversibility.

 
 

(a) (b) 

Figure 4. Tested modules samples: Suncol® Tile-Terracotta Simil RAL 8015 (a); and Suncol®

Tile-Texturing Simil roof tile (b).

Table 2. Detail of the two tested modules typologies.

Suncol® Tile-Terracotta Suncol® Tile-Texturing

Solar tempered front glass Simil RAL 8015 Simil roof tile
Active layer 18 monocrystalline cells 36 monocrystalline cells

Solar tempered back glass Black printed Black printed
Dimensions [m ×m] 1 × 0.575 1 × 1.05
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The integration of solar cells into coloured modules could results in losses in the irradiance
reaching the solar cell within the module, since the colours and materials used in the glass modification
have an impact on glass transmittance and light spectrum reaching the underlying cells. Some studies
investigated the influence that coloured layers could have in the energy performance of c-Si PV
modules, with both theoretical and experimental analyses [44,45]. One main result of these studies is
that usually the theoretical colour-related power losses are lower than the actual ones, due to undesired
reflections in the near infrared spectrum (NIR, wavelengths > 780 nm) that could appear. Therefore,
as a first analysis for the characterisation of the two selected technologies, we decided to investigate the
energy parameters of the two modules’ set, with the aim of evaluating the power losses due to the front
glass modification. The expected power loss due to the variations in the optical properties is analysed
through the cell-to-module (CTMx) factor (Equation (1)), where X is the considered electrical parameter:

CTMx =
Xmodule∑n
i=1 Xcell,i

(1)

This ratio is calculated using the electrical parameters of the bare cells before the assembly of the
module. To calculate the CTM factor, firstly the electric performance of the two modules typologies
in standard test conditions have been investigated in the indoor laboratory, with the solar simulator.
The results present a normal shape of the current-voltage curves (Figure 5). The electrical parameters
obtained in the standard test conditions (STC) performance test are presented in Table 3, where the
power at maximum point (Pmpp), short-circuited current (Isc) and open voltage (Voc) are highlighted.
Regarding the maximum power linearity respect to irradiance levels at 100–1000 W/m2, the test shows
acceptable performances comparable to those in commercial transparent glass photovoltaic modules
(Figure 6).

Table 3. Electrical parameters at standard test conditions of the tested module at maximum power point
(Pmpp); current at maximum power point (Impp); voltage at maximum power point (Vmpp); open circuit
voltage (Voc); and short-circuit current (Isc).

Pmpp (W) Impp (A) Vmpp (V) Voc (V) Isc (A)

Suncol® Tile Terracotta 77 8.49 9.8 12.06 8.3
Suncol® Tile Texturing Roof tile 133.6 6.71 19.9 23.96 7.19

Table 4 provides CTM factors for both the types of PV modules and a reference monocrystalline
module with clear front glass. The results show power losses in accordance with those calculated by
Peharz and Ulm [45] using a numerical model for RAL colours between 8000 and 8050, which is about
−21% in comparison with zero reflective devices. We obtained −20.7% for Suncol® Tile Terracotta
and 31.2% for Suncol® Tile Texturing Roof tile. Thus, our test shows agreement with the numerical
model for the PV modules of uniform terracotta colour. These performance losses are expected:
they depend on the layers superposed to the c-Si cells (EVA polymeric encapsulant and glass pane)
and solar cells and strings interconnection. This behaviour is enhanced by the colours and ceramic
ink used to customise the modules’ front glass pane which hinders the PV performance, due to the
optical and physical behaviour of the coloured layers, that depends on the modules’ hue and coverage
percentage [65,66].

Table 4. CTM loss in Suncol® Tile Terracotta and Texturing Roof tile modules.

CTM Loss Pmpp (W) Isc (A) Voc (V)

Suncol® Tile Terracotta −20.7% −17.4% −0.60%
Suncol® Tile Texturing Roof tile −31.2% −28.4% −1.30%

Reference monocrystalline
module [69] −3.8 −4.1 -
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As a further analysis, we provide hereafter the results of electroluminescence control technique,
which is increasingly relevant in the analysis of PV modules quality. It basically shows the path taken
by the electrons along the circuitry in the module. Several issues can be detected such as diverse
mechanical breaks in cells or disconnected areas. The test was realised with a VIS-SWIR InGaAs camera
and focused on the effect of the non-transparent glass in the EL signal emission from the module;
therefore, from normal to near 0◦ incidence shooting was carried out in the indoor lab (Figure 7).
The first results in normal incidence demonstrate a good reception of the signal compared to transparent
glass technology (Figure 8). For small angles of incidence, no blind spot has been detected in both
types of modules and the transmission of the EL signal is still acceptable. Thus, the results of the
EL test show a good electrical response of the modules regardless the incident angle of the radiation.
This is a critical aspect when performing outdoor operation and maintenance (O&M) activities in real
installations where the position of the panel can be diverse depending on the building and limitations
for shooting can be multiple (Figure 9).

 
(a) (b) 

Figure 5. STC performance of PV modules under analysis: (a) Suncol® Tile Terracotta; and (b) Suncol®

Tile Texturing Roof tile.

Figure 6. Power at maximum point according to different irradiance levels.
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Figure 7. Electroluminescence test at different shooting angles.

 

 
(a) (b) 

Figure 8. Electroluminescence images obtained at normal incidence shooting for: (a) Terracotta;
and (b) Texturing Roof Tile.

  
(a) (b) 

Figure 9. Electroluminescence images obtained at small incidence shooting for: (a) Terracotta;
and (b) Texturing roof Tile.

5.3. Experimental Design of Outdoor Testing

The roof testbed described in Section 5.1.1 is conceived with an interdisciplinarity approach
focusing on the three integration aspects mentioned in Section 3 (technology, aesthetic and energy).
This interdisciplinarity approach makes it unique with respect to other existing BIPV outdoor
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setups described in [70] that provides an overview of the existing international BIPV R&D testing
facilities. Indeed, the proposed experimental set up is not conceived for testing stand-alone modules
performance but rather a large portion of envelope BIPV systems, offering the opportunity to investigate
the aesthetical and technological integration of real scale installations, involving several modules.
The added value of this kind of testbed is that it will offer the opportunity to different stakeholders
in the BIPV community (students, designers and the public and heritage authorities involved in the
energy issues) to witness first-hand innovative BIPV technologies, better understanding the benefits of
coloured PV systems.

A first qualitative study has been performed on the aesthetic integration and technical compatibility.
The ensemble of PV modules are inserted to minimise their visual impact, guaranteeing: (i) 100%
coverage of the roof surface; (ii) aesthetic and chromatic integration with traditional clay roof tiles
(the selection terra-cotta colour, both with and without the texturing pattern); (iii) geometrical and
chromatic uniformity inserting two different kinds of PV parallels in parallel rows; (iv) coplanarity
with the roof line; (v) colour rendering under different exposure and tilting conditions; and (vi) pattern
continuity for the tile texturing PV cells. Furthermore, the PV modules are integrated into the roof
testbed through a back attached tile-type mounting system that guarantees successful integration from
the aesthetical point of view since no mounting system or module frame is disturbing visual appearance
(Figure 10). Considering the technology integration, technical compatibility and system reversibility
are evaluated. Technical compatibility refers mainly to the reduction of moisture accumulation on
the backside of the panels, while reversibility refers to the use of mounting systems to remove the
panels without affecting the integrity of the roof. Figure 11 shows the roof layout (Figure 11a) and its
electrical configuration (Figure 11b). From a qualitative point of view, the testbed design has been
conducted with particular focus to the functional requirements for the roof outer layers, such as water
resistance and moisture accumulation prevention. The first qualitative findings show no accumulation
of water or moisture problems to appear. Quantitative measurements will be provided in future
works to rigorously evaluate the technology performance in this respect. Moreover, the back attached
tile-type mounting system guarantees the reversibility of the system without affecting the original roof,
as requested for the preservation of heritage systems.

   
(a) (b) 

Figure 10. Testbed realisation on the outdoor roof testbed. To perform quantitative tests, the two
module types Suncol® Terracotta and Suncol® Texturing Roof Tile are connected in two strings to a
multi-string (two maximum power point trackers) grid-connected inverter. PT100 temperature sensors
are applied on the backside of eight modules, as displayed in Figure 10b.
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(a) (b) 

Figure 11. Testbed design: (a) roof layout; and (b) electrical configuration.

6. Conclusions

This paper outlines the research activities carried out to define the configuration of new testbeds
for the experimental characterisation of coloured BIPV technologies. The investigation of BIPV
technology is an interdisciplinary activity that calls for heterogeneous expertise, having the BIPV
modules multifunctional features related to the aesthetic and technological integration in building
envelope and to energy integration both in the building systems and in the electric grid. Being BIPV
applications tailored on the building envelopes, the modules and the mounting systems require a
specific design. This high level of customisation constitutes the strength and the uniqueness of BIPV
products but also a limit, since it hinders the series production of the modules and, thus, it limits
their cost reduction. Furthermore, the customisation of coloured BIPV modules that completely hide
the PV cells from the view and their expansion on the market would contribute in enhancing the
social acceptance of PV in sensitive areas, where the PV technologies have been often considered
anaesthetic, and thus unacceptable, by users and architects. Therefore, there is the need to overcome
the technical, social and economic barriers to reach a larger scale of BIPV applications and thus improve
their economic profitability. The first issue to deal with is the definition of the concept of integration,
which needs to find a unique expression within BIPV literature and standards. The definition of
the criteria that set the application of BIPV in architecturally sensitive areas need especially to be
revised. In fact, the existing guidelines refer mainly to PV systems applied on the building envelope
(BAPV), without considering the actual potential of the modern coloured BIPV technologies that can
“disappear” from the view. Secondly, it is important to better investigate the wide range of available
technologies for coloured BIPV, with regards to the electrical behaviour of a large variety of coloured
modules. This variety results in a fragmented market scenario where several customisation options
are now available. Nonetheless, the customisation process could lead to modifications in the electrical
behaviour of the module, due to the presence of one or more coloured layers which cause the reflection
or absorption of a portion of the solar spectrum (in the visible range) that would otherwise be converted
into electricity, causing a reduction in the modules’ yield.

Therefore, to deeply investigate this behaviour, experimental assessment is needed both at STC
and under real operating conditions on final assembled BIPV modules. For this reason, we selected two
BIPV modules to be tested in EURAC Research’s indoor and outdoor facilities. Indoor tests are already
completed with satisfactory results and will support outdoor experiment analysis. Besides the technical
assessment, real scale BIPV testbeds are useful to test different solution for the mounting systems and
to understand the risks related to the installation of BIPV modules. Testbeds are also important because
they could show different stakeholders the new and concrete aesthetic and technical possibilities of
BIPV systems, improving the users’ trust on aesthetic integration, the market penetration and the
economic profitability. In fact, BIPV products could sensibly expand the envelope surfaces available
for PV installation. As a result, BIPV could lead to a shift in the energy paradigm for buildings that
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would no longer be a mere energy consumer in the local electric grid, but could indeed provide load
flexibility by producing, storing and selling electricity to the grid according to mutual needs. To achieve
the objectives of deeper market penetration and higher economic profitability of BIPV applications,
further test activities will be carried out in these facilities. In fact, several BIPV systems (including PV
modules, substructures and energy systems) will be integrated in both the outdoor roof and façade
testbed, with the aim of testing and comparing them with respect to the three integration aspects of
aesthetic, technology and energy, since all these aspects are of fundamental importance to enhance the
application of BIPV technologies in the built environment.
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Abstract: Latent heat thermal energy storage (LHTES) using phase change materials (PCM) is one
of the most promising ways for thermal energy storage (TES), especially in lightweight buildings.
However, accurate control of the phase transition of PCM is not easy to predict. For example,
neglecting the hysteresis or the effect of the speed of phase change processes reduces the accuracy
of simulations of TES. In this paper, the authors propose a new software module for EnergyPlus™
that aims to simulate the hysteresis of PCMs during the phase change. The new module is tested
by comparing simulation results with experimental tests done in a climatic chamber. A strong
consistency between experimental and simulation results was obtained, while a discrepancy error of
less than 1% was obtained. Moreover, in real conditions, as a result of quick temperature changes,
only a partial phase transformation of the material is often observed. The new model also allows the
consideration of the case with partial phase changes of the PCM. Finally, the simulation algorithm
presented in this article aims to represent a better way to model LHTES with PCM.

Keywords: phase change material; hysteresis; simulations; EnergyPlus; thermal energy storage

1. Introduction

The term ‘passive buildings’ has become common nowadays. However, when this term was
coined, it originally related to a building that included passive solar systems [1] and was designed to
maximize solar gains [2]. Although the passive solar energy gains in buildings are predictable and
controllable, protecting buildings against overheating is often neglected during the design process,
leading to the construction of buildings with high cooling loads even in heating-dominated climates [3]
and in mild ones [4]. This occurs because the measures to protect buildings against the risk of
overheating are commonly poorly understood given the dynamicity of solar heat gains.

The lack of thermal inertia in many modern buildings exacerbates the risk of reaching too high
indoor temperatures. In the case of lightweight buildings, there is no opportunity to accumulate the
available exterior (solar) energy gains for later use efficiently [5]. This is why phase change materials
(PCM) that store large amounts of energy thanks to the latent heat needed for a phase change process
have been proposed over the last two decades [6].

Specific PCM algorithms have been added to various kinds of simulation tools, as the dynamic
control of PCM and of their phase change process requires to be controlled dynamically. One of the
largely adopted tools for PCM simulations is EnergyPlus™, which will be considered in this study, and
it is briefly presented in the next section.

2. Simulation Method of Phase Changing Materials in EnergyPlus™

The first EnergyPlus™ version, including a PCM simulation algorithm, was released over a decade
ago. Pedersen et al. developed an implicit finite difference thermal model of building surfaces that

Energies 2020, 13, 1200; doi:10.3390/en13051200 www.mdpi.com/journal/energies209
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simulates the performance of PCM using their enthalpy law [7]. This model has been incorporated
into EnergyPlus™ and combined with the general transformation based algorithm.

In recent years, many studies have been performed on the validation and verification of the results
of the EnergyPlus™ calculations using different procedures: correspondence between the measured
and simulated wall surface temperatures [8], heat flux density [9], and internal air temperatures [10],
just to cite a few. These works did not lead to modification of the source code of the program, but only
to the comparison and assessment of the reliability of the results.

The subjects of the simulation were mainly wall components with PCM. The impact of these
components on thermal conditions in the simulated rooms and on the thermal properties of the entire
building has been examined in previous research using fiber insulation by Kosny et al. [11] and concrete
tiles by Naraid et al. [12]. In most cases, the authors reported a relatively strong agreement between
simulation results and test data [13–15]. In many of these studies, the authors benchmarked EnergyPlus
against controlled field data [14] and confirmed the value of this software.

Numerous simplifications are often used during numerical modeling. For example, the complex
geometry of the products containing PCM is replaced with a homogeneous layer to which the enthalpy
data is assigned. It is not surprising that the results of some experimental investigations performed
did not find a strong agreement between the test results and the simulation ones [16]. For example,
Castell et al. [16] evaluated software simulations in EnergyPlus™ with measurements done inside
3 × 3 × 3 m test cells in Spain. The authors suggested that the reason for the discrepancy of the results
could be the inconsistency of the weather data used for calculations and the actual variable thermal
conditions. Recent studies indicating strong agreement between simulation and research results in
a moderate United States of America climate [17] and in the sub-tropical one of Hong Kong [18]
confirmed that the right weather data and material data are key factors for reducing the discrepancy
between simulation and test results. Lee et al. showed that the differences between experimental and
predicted total heat transfer values were under 5% [19].

The results of calculations in the EnergyPlus™ program were also compared with the results from
the HEATING program [20]. Errors in the routing of EnergyPlus™ were, hence, corrected over the
years [21]. For example, in version 8, code modifications allowed an acceleration of the calculation
process and the inclusion of variable values for the thermal conductivity coefficient.

In EnergyPlus™, the calculation of the energy balance of building surface constructions is based on
the conduction transfer function (CTF), but in the case of more advanced constructions, such as PCMs
or variable thermal conductivity, a more flexible approach in the form of a conduction finite difference
algorithm is used [22]. Because of the implicit solution of the equation set, it is more efficient to set a
time step shorter than those used for the CTF solution algorithm [20]. Tabares-Velasco recommended a
simulation time step of fewer than three minutes for a more accurate prediction of the behavior of
PCM [21]. This approach is critical to allow to fully control the dynamic changes that occur in a PCM
during a phase transition. However, one of the critical elements that still remain poorly modeled is the
hysteresis of PCM, an aspect that is described in the next section.

2.1. PCM Hysteresis

The hysteresis may be explained as the dependence of the state of a system on its history or the
lagging of an effect behind the cause of this state. This effect applies to the phase-change phenomenon.
Many researchers have already dealt with the hysteresis effect during simulation modeling, revealing
the effects of this phenomenon on simulation results with real conditions [9]. Biswas et al. [23]
conducted PCM measurements using heat-flow meter apparatus for freezing and melting cycles and
used them to model different simulation scenarios both with and without hysteresis. The results
showed that including the hysteresis effect significantly impacts the calculated thermal performance of
the PCM layer. Barz and Sommer [24] also confirmed that the phase transition of PCM is significantly
affected by hysteresis phenomena. According to their results, the static hysteresis model and the macro
kinetic models showed qualitatively consistent results.
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Delcroix et al. [25], Mehling et al. [26], Berardi and Gallardo [27] proved that PCM thermal features
are sensitive to the testing method and stated that DSC (differential scanning calorimetry) test results
are not directly applicable to building simulations as the process of charging and discharging in PCM
mixed in other porous materials is hardly represented by testing samples of a few grams. In particular,
Delcroix et al. [25] and Mehling et al. [26] analyzed hysteresis as a function of the cooling and heating
rates and noticed that the hysteresis tested in DSC is low (around 1 ◦C) at low cooling and heating rates,
while it can reach up to around 7–8 ◦C at higher rates that can be found in real conditions. The authors
did not comment in this context on the whole volume complexity of phase change. Mehling et al. [26]
also advised adjustments to measure methods and conditions to PCM application to include the
subcooling effect in enthalpy curves.

Mandilaras et al. presented a new hybrid methodology for the precise determination of the
effective heat capacity and enthalpy curves of PCMs [28]. They combined DSC testing with dynamic
operated heat flow apparatus followed by the numerical optimization of the obtained experimental
enthalpy curves. Fateha et al. included the hysteresis effect in their numerical and experimental
investigation of an insulation layer with PCM [29]. However, no switching between the melting and
freezing curves was explored during the cycle. When using the hysteresis model for enthalpy, they
were able to identify a strong agreement between measurements and simulations.

Kumarasamy et al. elaborated on the numerical schemes for the testing and simulation of
encapsulated PCM with temperature hysteresis [30]. Their results showed that encapsulation greatly
altered the thermal response of PCM in terms of the phase change temperatures and hysteresis. The
authors suggested that in such a case, a Computer Fluid Dynamics-based conduction-dominant
scheme should be incorporated into the simulation. Moreles et al. investigated the application of
PCM, considering the hysteresis of phase change and only complete phase transitions [31]; based on a
developed numerical model, a graphical method of optimized PCM selection was, hence, proposed.

All the previously discussed papers were based on former versions of the EnergyPlus™ program
in which the PCM parameters did not take into account the hysteresis effect. In the simplified
enthalpy–temperature function, only one curve representing both the melting and solidifying process
was given. However, the latest releases of EnergyPlus™ 9.2 (released on September 27, 2019) take
into account two separate freezing and melting curves with user-specified temperature data [20]. In
this algorithm, an actual value of the specific heat that is used in the simulation process is not only
dependent on the current state of the PCM but also on the former state as in symbolic Equation:

cp = f (Ti;new;Ti;prev;PhaseStatenew;PhaseStateprev) (1)

where cp is the specific heat, and Ti is the previous and new i-node temperature. The values of PCM
thermal conductivity and density should be entered for the liquid and solid states. It should be
noted that the current description of the new algorithm related to hysteresis is unclear in the program
documentation, as it is not entirely clear what ‘temperature difference’ refers to in this context and
which PCM data should be introduced [20].

One of the first papers on the new hysteresis algorithm embedded in EnergyPlus™was written by
Goia et al. [32]. Unfortunately, the hysteresis algorithm was only briefly highlighted in this paper, and
the authors’ input data was not presented. The simulation results were compared against experimental
data obtained from the small-scale dynamic tests performed with the heat-flow apparatus. It was
expected that a new algorithm that enables modelling of hysteresis would closely follow the real
mode of phase change and thus the precision of the PCM simulations. Goia et al. confirmed these
expectations stating that the numerical results were significantly better than those obtained with more
conventional models. However, in the case of an incomplete phase change of PCM, the obtained results
were regarded as ‘questionable’.
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2.2. PCM Use Efficiency

One of the basic items of technical information of PCM is the transition temperature, usually
given as one specified value. It is common knowledge that the real physical course of the PCM occurs
within a temperature range of a few degrees. Additionally, the transition temperature range is usually
different for the freezing and melting curves because of hysteresis. The total transition from solid to
liquid and vice versa does not occur when the real temperature fluctuations around the PCM and do
not cover the whole range of both phase change courses. In these conditions, the large amounts of
heat are neither stored nor released and the operating results of the system do not meet expectations.
Berardi and Soudian discussed this aspect extensively, suggesting the use of night cooling to obtain
full solidification of the melted material [33] and reported the frequency of PCM activation and the
percentage of time with full solidification.

The relatively wide phase-change temperature ranges and the thermal conditions in a room not
covering this range can be the cause of only a partial solidification or melting. Such situations occur in
practice when the entire transformation range goes beyond the minimum or maximum air temperature
in the interior or when the time of maintaining a sufficiently low temperature is too short, and the
material only partially solidifies.

In the situation of partial phase change, it is necessary for the simulation algorithm to break the
initial process and switch to the second enthalpy curve without reaching the end of phase change.
Moreles et al. stated that even all the numerical models tested were not fully able to replicate the
behavior of PCM layers if the PCM did not melt or re-solidify completely [31].

The transition process between the heating and cooling enthalpy–temperature curves in the
case of incomplete phase change was investigated by Delcroix et al. [34]. In their experiment, the
PCM-equipped wall sample was quickly transferred from a cold to a hot environment and conversely.
For the interrupted cooling process, the PCM followed an enthalpy curve that was very close to the
heating curve. In the case of the interrupted heating process, PCM followed a new curve that was
located between the heating and cooling curve. It was revealed that the transition process was sensitive
to the actual values of the boundary conditions. In another paper, Delcroix et al. [25] showed that
varying heat transfer rates have a significant impact on the phase change temperature range and the
hysteresis between heating and cooling curves. Higher rates increase the hysteresis and shift the phase
change temperature towards colder temperatures. The authors suggested adjusting a PCM testing
method to the perspective conditions of its application. All these results of testing and observations
mean that a precise description of the material properties is difficult.

The problems highlighted above are known to people involved in PCM research, but they are
poorly understood by designers or potential investors. The effective design of a building in which
PCM is applied requires extensive and precise information about the material used, and second, a
simulation tool that would allow effective modelling of such a phenomenon.

The introduction of the hysteresis modelling and temperature-dependent enthalpy in
the EnergyPlus™ program improved the simulation capabilities of this tool. However, the
above-highlighted aspect of incomplete PCM transition should be taken into account when modelling
phase change phenomena.

3. New Simulation Algorithm

The hysteresis effect is usually shown in the form of two curves describing the course of the same
phenomenon. The difficulty associated with modeling the hysteresis is due to the need to introduce
two different functions describing the material enthalpy within the phase change range. The selection
of the proper curve (Figure 1) must be based on the history of changes and the identification of the
direction of the current changes. Such an algorithm would be appropriate if it could be assumed that
the phase transitions occurred in the entire volume of the material.
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Figure 1. Phase change hysteresis process represented as a function of temperature.

As outlined in the previous section, the real course of the phase changes is more complicated,
and, in many cases, the process of melting/solidification is incomplete. A hysteresis algorithm should
enable the direct transition from the melting curve to the freezing curve and vice versa. The concept
of a ‘state’ was used by Zastawna [35] to create a new algorithm. Figure 2 shows the transition from
the ‘cooling curve state’ to the ‘heating curve state’ defined as the occurrence of the third kind of
state called the ‘transition curve state’. The states are represented by the colors: blue—cooling curve;
red—heating curve; purple-transition curve.

  

(a) (b) 

Figure 2. Intermediate transition curve between solidification (a) and melting (b) curves.

When the cooling phase of the completely melted material has begun (curve 0–1–2, Figure 2a) and
before the phase change starts (point 2), the heat is released in a sensible way. After the phase change
process has started, the energy is released in both latent and sensible ways (curve 2–3). At this point
(point 3), the heating of the material begins again. Thus far, the enthalpy value follows the cooling
curve state. The re-start of heating results in the termination of the cooling curve state and the start of
the transition curve state (curve 3–4). For the transition curve, the enthalpy value is determined from
either the heating curve or the cooling curve.

Rose et al. [36] suggested an instantaneous transition between the curves and a horizontal
movement of the state until it reaches either the melting or solidifying curve. Bony et al. [37] assumed
a sloped transition curve between the heating and cooling curves but a horizontal transition for the
sub-cooling effect. Any change in the system temperature during the transition phase should obviously
be associated with a change in enthalpy. The method of transition in the form of a horizontal line
adopted in the article is a simplification.
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While the hysteresis curves can be measured, the shape and slope of the transition curve are
completely unknown, and experimental data are not available as they depend on many parameters,
including the current entropy value. Curves describing the full transformation hysteresis are also a kind
of idealization of this phenomenon and only describe it in an approximate way. Among others, heating
and cooling curves are not usually parallel to each other, so any decision regarding the transition curve
slope would always be approximate. Because the impact of simplification in the form of a horizontal
transition line is small, and because of this, the modeling algorithm becomes significantly simpler, it
was decided to use a horizontal transition curve in the model.

At point 4, the process of melting of the partially solidified material restarts. At this moment,
the transition curve state ends, and the heating curve state will restart (curve 4–5 in Figure 2b). After
completion of the phase change, the material again accumulates heat only in a sensible way (curve 5–1)
while remaining in the heating curve state.

Equivalent specific heat of a PCM in case of the heating curve is calculated in the following way:

cp(T) =
Hj

i,h −Hj−1
i,h

Tj
i − Tj−1

i

(2)

where Hj
i,h is the heating enthalpy of a discrete node ‘i’ at a time-step ‘j’ (and respectively ‘j − 1’) [J/kg].

In the same way for the cooling curve:

cp(T) =
Hj

i,c −Hj−1
i,c

Tj
i − Tj−1

i

(3)

where Hj
i,c is the cooling enthalpy of a discrete node ‘i’ at a time-step ‘j’ (and respectively ‘j − 1’) [J/kg].

For the transition from cooling to heating curve 3–4, Equation or, if Hj
i,tr > Hj

i,h then:

cp(T) =
Hj

i,tr −Hj−1
i,tr

T j
i − Tj−1

i

(4)

where Hj
i,tr is the transition enthalpy, taken from transition curve and Hj

i,tr = Hj−1
i,tr

If Hj
i,tr ≤ Hj

i,h then

cp(T) =
Hj

i,h −Hj−1
i,tr

T j
i − Tj−1

i

(5)

For the transition from heating to cooling curve 4–3, Equation or, if Hj
i,tr < Hj

i,c then:

cp(T) =
Hj

i,tr −Hj−1
i,tr

T j
i − Tj−1

i

(6)

and Hj
i,tr = Hj−1

i,tr

If Hj
i,tr ≥ Hj

i,c then:

cp(T) =
Hj

i,c −Hj−1
i,tr

T j
i − Tj−1

i

(7)
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Appendix A shows the data that should be entered into the newly created PCM hysteresis
algorithm. Each temperature corresponds to two enthalpy values separately for the heating and for
the cooling curves.

4. Results

To assess the correctness of the new EnergyPlus™ algorithm, the simulation results have been
compared to the results of measurements conducted in the climate chambers shown in Figure 3. A wall,
located between the warm and cold chamber, was made of 15 cm expanded polystyrene covered with
the standard gypsum panel on the warm side. Two material samples were glued to the gypsum panel.
One of them was a modified gypsum panel (50 × 60 cm) containing 30% by mass of PCM Micronal.
The second one was a reference standard gypsum panel of the same size and thickness (12.5 mm) as the
PCM panel. The principle of the presented research was based on a comparison of surface temperature
fluctuations and energy accumulation in the PCM and the reference standard samples. In this way, the
authors wanted to examine the efficiency of the added PCM wall cladding as a form of overheating
protection in a hot summer environment.

Figure 3. Full-scale climate chambers (cold chamber on the left and warm chamber on the right).

The melting temperature of the PCM panel, as declared by the manufacturer, was 23 °C.
Before the experiment, a sample of PCM was tested in the calorimeter DSC214 (Polyma–Netzsch),

and measured latent heat was equal to 127.7 J/g. The PCM 23 effective phase change temperature
range measured was very wide: 17.8 ◦C ÷ 31.5 °C. Both gypsum boards were initially tested for
thermal conductivity using the Laser Comp Fox 314 plate apparatus. The tests were performed
for different temperature ranges referring to the melting temperature of PCM. In the first case, the
average temperature below the phase change temperature range was adopted and the value of thermal
conductivity λ was 0.159 W/mK. In the second case, only a part of the material was in the liquid state
(the temperature of the heating plate was 40 ◦C and the cooling plate was 20 °C). In these conditions,
the λ-value was equal to 0.162 W/mK. In the third case, the temperature of both plates exceeded the
phase change value, so all the PCM material contained in the tested plate was in the liquid state
during the test, and the λ-value was equal to 0.164 W/mK. The observed small differences in the
thermal conductivity coefficients (max. 2.8%) can be treated as negligible and were not included in
further analysis.
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Three temperature sensors were placed on the surface of both gypsum panels (K-type
thermocouples, measurement class 2, sensors attached to the surface with adhesive paper tape).
The heat flow on both surfaces of the sample plates was measured by means of Ahlborn 118SI silicone
heat-flow transducers (sensor size 120× 120 mm), measurement class A. Air temperature was measured
by means of the Pt 100 and Pt 1000 sensors, measurement class B, protected with an aluminum foil
against thermal radiation. All the measurements and data recording were performed by the Ahlborn
Almemo 5690 data acquisition system and the Data-Control 4.2 program.

Temperature fluctuations in the warm chamber corresponded to the conditions that occur in a
room during a hot summer day. However, the technical capabilities of the control system only allowed
stepped (non-continuous) changes. Four testing cycles were conducted as reported in Table 1.

Table 1. Testing cycles of the boundary conditions.

Temperature Cycle
Air Temperature in the

Warm Chamber [°C]
Air Temperature in the

Cold Chamber [°C]
Peak Temperature

Duration [h]

0129 18 ÷ 36 18 4
0130 18 ÷ 37 18 3.5
0131 18 ÷ 30 18 ÷ 46 4
0203 18 ÷ 30 16 ÷ 32 3

The temperature in the warm chamber was gradually changing during the daily cycle within
the range 18 ÷ 37 °C. The daily maximum temperature was maintained for 4 hours at the same level,
which was long enough to enable the phase change in the whole volume of PCM. During the whole
night, a constant temperature of 18 °C was maintained in the chamber; therefore, after each cycle, it
was possible to discharge the total amount of energy stored in the tested materials during the day to
the surrounding environment. The air temperature in the cold chamber was maintained at a constant
18 °C in two tests, and in the other two tests, it was variable in a similar way as was the case in the
warm chamber. The last two cycles were close to the conditions that occur during hot summer days. A
simulation model of the climate chambers with the sample wall between the chambers was created in
the EnergyPlus™ software. As in the real conditions, the modeled wall consisted of a 15 cm layer of
expanded polystyrene and gypsum board, to which a layer of phase-changing material was attached.
It was assumed that the conditions of heat exchange between the outer shell of the chamber and the
surrounding environment were adiabatic. A dynamically changing cycle of air temperature inside the
warm chamber was assumed. This was consistent with the cycle of the experimental measurements.
The same model was used as the reference variant of the standard gypsum board.

Measured and calculated temperature fluctuations during one selected day of cycle 0129 are
presented in Figure 4. The red curve shows the daily internal air temperature cycle that was a driving
force of the fluctuations and the boundary condition both in the experiment and the simulation.

The scheduled maximum temperature of 36 °C was maintained for more than three hours. The
curves obtained from numerical calculations and the measurements were, in general, very close to
each other, with the exception of the surface temperature of the reference gypsum plate. The relatively
low thermal capacity of the standard material in which heat is stored only in a sensible way resulted in
a significantly higher temperature of the gypsum surface when the internal air temperature was rising
and much lower temperature during the cooling stage. The gypsum plate cooled quicker than the
PCM. The results of the simulation by means of both algorithms (with and without the hysteresis effect)
fit perfectly with each other and very closely followed the measurements during the heating stage.
This means that the enthalpy characteristic introduced to the simplified algorithm without hysteresis
followed the heating curve of the PCM.
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Figure 4. Measured versus simulated temperature fluctuations of the phase change materials’
(PCM) surface.

As could be expected, significant discrepancies may be observed during the cooling stage, when
the solidification process starts. Within the wide range of phase change, but still, before the phase
change temperature declared by the producer (23 °C) was reached, the model without hysteresis (orange
curve) showed a surface temperature higher than the other models due to the single characteristic
curve. The new model that takes into account the effect of hysteresis closely followed the measured
values. Below the phase change temperature, this relationship was reversed.

Figure 5 shows the heat flux values on the internal surface of the PCM board obtained from
measurements and computer simulations. One simulation was conducted on the model without taking
into account phase change hysteresis and the second one with this effect. The cycle begins with the
discharge phase of the wall’s thermal capacity (negative flux value). Then, as a result of the internal
temperature increase in the tested space, heat flux released from the wall decreased, and then the
process of recharging (plus flux value) began. The significant differences between both simulation
models may be noticed in the second phase of the research cycle, especially in cooling mode. The
maximum instantaneous heat flux value was high and equal to 62 W/m2. During the whole measuring
period, the PCM panel accumulated around 180 Wh/m2.

To assess the accumulation efficiency of the PCM board, Figure 6 shows the results of measurement
and simulation of heat flux on the internal surface of the reference gypsum board. The heat exchange
on the surface of the standard panel took place according to a similar scenario as before, but the
instantaneous heat flux values were definitely lower. In the case of material without phase change,
the graph obtained from the simulation was very close to the measurement results. The maximum
momentary heat flux value was, in this case, equal to 32 W/m2 and accumulated during the whole
cycle amount of energy was only 36 Wh/m2.
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Figure 5. Measured versus simulated heat flux density on the internal surface of the PCM panel.

Figure 6. Measured versus simulated heat flux density on the internal surface of the standard
gypsum panel.

During the full phase transition cycle, the entire volume of PCM material could accumulate 5
times more energy than a standard material of the same volume. The application of PCM wall panels
substantially enlarged the storage capacity of the wall and also enabled a decrease in cooling power
demand. All these measures support the improvement in space thermal comfort.

5. Discussion of the Simulation Precision

Figure 7 presents the temperature difference between the results of measurements and calculations
for the two variants of the simulation algorithm. The maximum momentary error of simulation
occurred in the case of the algorithm without hysteresis and was equal to 0.96 K.
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Figure 7. Absolute momentary errors of simulation.

The average results of relative error calculation for all the temperature testing cycles are shown in
Figure 8. In the case of cycle 0130, the mean relative error of the variant without hysteresis was 5.38
times larger than that of the variant with hysteresis. The lowest disproportion may be observed in the
case of cycle 0203, the mean relative error was 1.71 times larger than in the case of the variant with
hysteresis. The average ratio between the errors of both compared algorithms in the four tested cycles
of measurements was 3.35. It should be noted that the errors related to the algorithm with hysteresis
were close to the errors of the simulation of the standard materials (reference plate), i.e., precision of
the applied simulation software.

Figure 8. Mean error of surface temperature estimation in four cycles of measurements.

Figure 9 shows mean absolute errors of simulation of the heat flux density at the internal surface
of tested samples. The inclusion of the hysteresis effect in the simulation algorithm reduced simulation
error in three cycles of simulation only to a small extent. Better accuracy of heat flux evaluation could
be expected only in the case of standard building material, in which only sensible heat accumulation
takes place. Relatively high fluctuations can be caused on the one hand by the large variation in the
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value of heat fluxes and on the other hand, by much lower, than in case of temperature, precision of
the heat flux measurement (5%). However, the absolute error values allowed a rough estimation of the
room’s cooling load and may be used as a simple designing tool.

Figure 9. Mean error of surface temperature estimation in four cycles of measurements.

6. Conclusions

Numerous experimental tests confirmed that the hysteresis of the phase change process has a
noticeable effect on heat accumulation in PCM. It is, therefore, necessary to include this phenomenon
in commonly used simulation programs. This article presented the principles of a novel EnergyPlus™
simulation module, which enables the hysteresis effect of phase change in building materials to be
taken into account.

In the developed algorithm, apart from the basic difference associated with a different course of
the heating and the cooling phenomenon of the material, it is possible to model an incomplete phase
change too. This feature of the algorithm seems to be a unique and important aspect of the developed
algorithm because incomplete transition quite often appears in the practical applications of PCM and
adversely affects the achieved energy effects. The verification of the new calculation module confirmed
its usefulness in simulation analyses. The relative calculation error of surface temperature was less
than 1%, while in the case of the simplified model without hysteresis, the simulation error would be
even a few times higher. We conducted experimental research and created a simulation model that
confirmed the practical effects of PCM application as a passive measure of overheating protection. The
addition of 30% phase changing material to the gypsum board increased its effective heat capacity
several times and doubled the maximum cooling power of PCM wall cladding.

However, the practical effects of PCM application are often much lower than the expectations
associated with them. This may be related to several factors that are poorly understood by building
designers. One of these is the phase change temperature, declared by the material manufacturer as
a specified numerical value, while in reality, the transformation process covers a temperature range
of a few degrees. The incomplete phase transition is largely related to the fact that the phase change
does not take place at one temperature but in a fairly wide temperature range. Effective phase change
temperature ranges of the PCM 23 applied in this research, measured in the DSC apparatus, was
17.8 °C–31.5 °C. As a result, the heat capacity of PCM can be only partially used. Another reason for
poor performance is an insufficient temperature fluctuation or too short a heating or cooling stage,
during which the material is not fully charged or discharged.

Both experimental tests in the climate chamber, as well as simulation analysis, confirmed the
effectiveness of PCM enriched gypsum board as an energy accumulator.
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Appendix A

Example of the separate data input for melting and solidifying curves.

Material Property:Phase Change,
PCM plate, !- Name
-40, !- Temperature 1 {C}-temperature beyond phase change range
0, !- Enthalpy-m 1 {J/kg} – melting enthalpy
0, !- Enthalpy-s 1 {J/kg} – solidification enthalpy
23, !- Temperature 2 {C}
2005, !- Enthalpy-m 2 {J/kg}
3005, !- Enthalpy-s 2 {J/kg}
25, !- Temperature 3 {C}
6570, !- Enthalpy-m 3 {J/kg}
12714, !- Enthalpy-s 3 {J/kg}
27, !- Temperature 4 {C}-temperature within phase change range
12714, !- Enthalpy-m 4 {J/kg} – melting enthalpy
29200, !- Enthalpy-s 4 {J/kg} – solidification enthalpy
28, !- Temperature 5 {C}
25300, !- Enthalpy-m 5 {J/kg}
29300, !- Enthalpy-s 5 {J/kg}
29, !- Temperature 6 {C}
30000, !- Enthalpy-m 6 {J/kg}
30300, !- Enthalpy-s 6 {J/kg}
30, !- Temperature 7 {C}
33000, !- Enthalpy-m 7 {J/kg}
31300; !- Enthalpy-s 7 {J/kg}
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Abstract: In many regions, the heat used for space heating is a basic item in the energy balance
of a building and significantly affects its operating costs. The accuracy of the assessment of heat
consumption in an existing building and the determination of the main components of heat loss
depends to a large extent on whether the energy efficiency improvement targets set in the thermal
upgrading project are achieved. A frequent problem in the case of energy calculations is the lack of
complete architectural and construction documentation of the analyzed objects. Therefore, there is a
need to search for methods that will be suitable for a quick technical analysis of measures taken to
improve energy efficiency in existing buildings. These methods should have satisfactory results in
predicting energy consumption where the input is limited, inaccurate, or uncertain. Therefore, the
aim of this work was to test the usefulness of a model based on Rough Set Theory (RST) for estimating
the thermal energy consumption of buildings undergoing an energy renovation. The research was
carried out on a group of 109 thermally improved residential buildings, for which energy performance
was based on actual energy consumption before and after thermal modernization. Specific sets
of important variables characterizing the examined buildings were distinguished. The groups of
variables were used to estimate energy consumption in such a way as to obtain a compromise between
the effort of obtaining them and the quality of the forecast. This has allowed the construction of a
prediction model that allows the use of a fast, relatively simple procedure to estimate the final energy
demand rate for heating buildings.

Keywords: building energy consumption; building load forecasting; energy efficiency; rough set
theory; thermal improved of buildings

1. Introduction

In the climatic conditions of central and eastern Europe, the heat used to heat rooms is a basic
item in the building’s energy balance and significantly affects its operating costs. The accuracy of the
assessment of heat consumption in an existing building and identification of the main components
of heat loss depends largely on whether the energy and economic effects assumed in the thermal
modernization project are achieved.

Activities aimed at improving the thermal efficiency of buildings, and thus affecting the thermal
comfort of users, usually consist in increasing their energy standard. In the case of buildings that
existed before taking action to save energy, there is a need to prepare an energy audit, the purpose of
which is to obtain adequate knowledge of the existing energy consumption profile of a given building
or buildings complex, determine the manner and amount of energy that can be obtained, and notify
about the results.
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The objective of the audit is to determine the amount and structure of consumed energy and to
identify and then recommend specific solutions that are energy profitable. The audit may identify
modernization operations that are profitable in the investigated building and which products and
technical solutions are the most favourable. Since 1999, there has been a program in Poland that
supports actions aiming at reduction of energy consumption in existing buildings. It is set forth
in the act on supporting thermal efficiency improvement and renovations [1], which is in line with
the provisions of the EU Directive on the energy performance of buildings [2]. As a part of this
program, a majority of apartment buildings are modernized—according to BGK [3], approximately
41,000 buildings were modernized. According to the statutory provisions, the auditing of buildings
is based on the following stages: analysis of the present condition of buildings, verification of the
assumed parameters based on the data on the real energy consumption, identification of possible
facilitation along with determination of costs of their realization, calculation of savings resulting from
facilitations (at the assumption that modernized partitions should have heat transmission ratios U
lower or equal to the border values set forth in binding industry resolutions) and economic analysis of
profitability, where it is assumed that investment expenditures incurred for a given facilitation should
be returned within 10 years. Energy calculations in audits are made with a balance method (monthly
or annual), where the auditor used the so-called diagnostic method that consists of estimation of
parameter values. Current energy consumption is determined on this basis. When estimating energy
consumption after thermal efficiency improvement, additionally economic aspects of the suggested
energy saving solutions are included. This method is faulty due to the possibility of its use, which
enables forecasting thermal energy consumption of single buildings. For the estimation of energy
consumption for a bigger group of buildings, this method is too time consuming and requires a
considerable work input.

Thus, it is necessary to look for other methods that will be suitable for analysis of the
adopted thermal modernization measures and determine their impact on future heat consumption in
existing buildings.

There are many methods to forecast current and future energy needs of buildings, which can be
divided into three main groups [4–6]:

• Engineering methods—use a transparent process based on solving physics equations to describe
the energy behaviour of buildings [5–7]

• Based on data—called “black box” models—are mainly based on statistical analyses of time series
and machine learning algorithms to develop an energy model of a building [5,8–14]

• Hybrid methods—a combination of methods based on physics and data [15,16].

Engineering methods determine the thermal balance of the building, taking into account the use
and efficiency of the heating/cooling and hot water preparation system. These models are used to
determine the energy performance as well as to create forecasts of thermal comfort in buildings (user
comfort). They are also used to determine indoor environment quality indicators. These models can
be divided into two groups: dynamic and static. The dynamic models are based on the guidelines
contained in EN 15251 [17], which defines the indoor environment conditions for individual rooms
(thermal conditions for winter, thermal conditions for summer, air quality, criteria for ventilation,
lighting and acoustics). They also take into account the influence of changing external conditions
such as temperature, solar radiation intensity, wind speed, and others. They are mainly used in
newly constructed (highly efficient) energy-saving and passive buildings [18–20]. Dynamic methods,
determining the heat balance in short periods (usually 1 h), allow for a more accurate consideration of
the effects related to the storage of heat or cold energy in the building’s structural elements. Static
models are based on the European standard EN 13790 [21], which is also supplemented by the EN 12831
standard [22]. Based on this method, heat balance is determined for a long calculation period (usually
one month or heating season). Such models can be found in the literature [23–25]. This method is also
used when preparing energy audits. Statistical methods are mainly regression models that correlate
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energy consumption or energy index with independent variables, which can be either quantitative or
qualitative. Empirical models are constructed on the basis of historical results, which means that before
training the model, we have to collect enough historical data to achieve sufficient precision. Statistical
regressions have been widely used both for research at the design stage and after—during the use of the
building. Regression models are used to forecast energy consumption based on detailed data, such as
the age of the building and its main geometrical and thermo-humidity parameters, such as for example:
shape factor, area of the opaque and glazed partitions, heat transfer coefficient, and indoor and outdoor
temperatures, etc. Model calculations were carried out in analyses of heat consumption in systems
supplying entire housing estates or towns, as well as at the level of a single building [9,26]. In some
simplified models, regression is used to correlate energy consumption with climatic variables (e.g., a
degree-days) in order to obtain the energy performance index [4,5,27–38]. Although the simplicity of
regression is generally an advantage of these models, it is also a disadvantage because most regression
techniques cannot deal with non-linear phenomena that occur during the use of a building. In models
based on artificial intelligence, artificial neural networks and their derivatives are most often used. This
type of models is based on solving non-linear problems and is an effective approach to this complex
issue. The detailed division of methods and input variables for modelling is discussed in the paper [4].
These are: weather data grouping all data related to outdoor conditions, indoor environment in the
building (temperature, humidity, etc.); occupancy and behaviour of occupants; time indicators that
provide information about the functioning of the building and its energy behavior; past time steps,
which take into account the potential impact of past events on current and projected energy demand
states of the building; and building characteristics with information about active and passive systems.
In recent years, artificial neural networks have been used to analyse the energy consumption of different
types of buildings for different processes, such as heating/cooling, electricity consumption, heat loss
through partitions and optimisation of energy consumption and estimation of performance parameters.
The use of artificial neural networks and machine learning methods for modelling energy consumption
can be found in the works of many authors [9,39–43]. Most of the presented calculation methods can be
successfully used to estimate energy consumption for heating/cooling and hot water preparation and
to determine the energy performance for different thermal parameters of partitions, the way buildings
are used, and weather variables [4,5]. The authors of these works mainly focus on energy modelling in
buildings such as offices, hotels, schools, universities, etc. However, few works concern single and
multi-family residential buildings. In particular, there is a lack of studies on real buildings [4], data
for which are difficult to obtain. Individual energy demand in residential buildings is more difficult
to estimate due to the lack of data on occupancy of buildings and the complexity of the inhabitants’
behaviour. Forecasting models focus mainly on estimating energy consumption, thermal comfort
in existing (or simulated), newly built, energy efficient and passive facilities, for which it is possible
to obtain reliable data on the insulation of building partitions, ventilation air streams, and number
of inhabitants [18–20,44]. Most of the calculation methods presented are successfully suited for the
estimation of energy consumption when determining the energy efficiency of buildings, for different
parameters of thermal barriers, use, and variable weather conditions. Nevertheless, it is necessary
to look for other solutions that could be used in the case of real buildings characterized by different
availability of data describing the object from the thermal and operational point of view [14]. Another
extremely important aspect of assessing energy consumption is the fact that the use of residential
buildings often differs from the intended project. This is often due to the fact that the auditor’s
calculations are in many cases based on unreliable and inaccurate data, which significantly affects the
accuracy of the assessment of current and future energy consumption of a building. At each stage
of the audit calculations, some characteristics are likely to be inaccurately estimated, most often the
physical parameters of buildings and the way the building is used, due to the difficulty of collecting all
the figures that characterize the building and its surroundings with sufficient precision. This applies in
particular to the value of heat transfer coefficient U through the building envelope. In such cases, the
auditor carries out the examination of partitions and then assesses the equivalent thermal resistance of
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the partition. Even methodologically correctly calculated resistances can be wrong, as it is necessary to
determine the thermal conductivity and thickness of individual layers, which is not always possible.
A frequent problem in thermal calculations is the lack of complete architectural and construction
documentation of the analyzed objects. In addition, there are other factors that affect the accuracy of
the calculations, which are due to e.g., moisture, ageing of the material, etc. Uncertainty as to the
correct assessment of the heat transfer coefficient, as well as other important parameters, such as the
volume of ventilation air flow, influences the result of the final assessment of heat demand for both the
existing buildings and the buildings for which thermal modernization measures are planned. It is
therefore advisable to test new methods that could be used for a rapid technical analysis of measures
taken to improve energy efficiency and to determine their impact on future heat consumption in
existing buildings. These tools should allow decision-makers to assess the potential for real energy
savings resulting from planned actions to improve the thermal performance of buildings. One of these
methods may be the Rough Set Theory (RST) method [45], which is developed to analyze inaccurate,
generic and undefined data. The more so because this method—according to the literature review—has
not been used so far in forecasting energy consumption in buildings [4,8,15,43]. Therefore, the aim of
the research was to determine the usefulness of a model based on RST for estimating thermal energy
consumption in buildings undergoing thermal improvement. Due to the different availability and
accuracy of data describing the building, the used input variable configurations will be tested during
model construction in such a way as to achieve a compromise between the effort of the auditor to
obtain them and the quality of the forecast.

2. Materials and Methods

Before the main objective of the study was achieved, analyses were carried out to establish a
potential list of explanatory variables (conditional attributes). During the research, a database was
created covering 109 buildings from the end of the last century that were thermal improved in the years
2010–2015. These buildings had energy audits prepared, on the basis of which the optimum variants
of thermal modernization were selected, the partitions that should be modernized were indicated,
and the appropriate thicknesses of layers of thermal insulation materials were selected. The analyzed
buildings were described with many parameters.

For experimental reasons, most relevant characteristics have been selected. Some of them are
measured and others calculated, as pointed out in Table 1.
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Table 1. Characteristics of the selected values that influence the reduction of annual energy demand for
buildings subjected to thermal efficiency improvement.

No. Parameter Abbreviation Average Median

1 calculated surface of heated floors from
interior measurements, [m2]

Af 1567.4 1524.2

2 calculated area of temperature-controlled
rooms (heated surface), [m2] AH 1764.0 1565.4

3 calculated from exterior measurements
surface of roof projection area (net), [m2] Ar 467.0 383.1

4 calculated from exterior measurements
total walls’ surface (net) area, [m2] Aw 1096.6 979.8

5
calculated surface of floor from interior
measurements (floor over basement or

floor on the ground), [m2]
Afl 395.4 360

6 calculated from exterior measurements
total windows area, [m2] Atw 290.5 251.1

7 calculated from exterior measurements
the heated volume of building, [m3] Ve 6391.6 5408.8

8 shape coefficient of buildings (the ratio
surface to volume), [m2·m−3], [m−1] S/Ve 0.46 0.42

9 number of stores, [pc.] NOs 4.3 4

10 number of residential flats, premises [pc.] NOp 32.4 29

11 number of living persons per
building [Nb]

NOpb 73.9 64

12 calculated thermal transmittance of walls
components, [W·m−2·K−1] Uw 1.12 1.16

13 calculated thermal transmittance of peak
walls components, [W·m−2·K−1] Upw 1.0 0.94

14 calculated thermal transmittance of roof
projections components, [W·m−2·K−1] Ur 1.24 0.72

15 calculated thermal transmittance of floor
components on the ground, [W·m−2·K−1] Ug 1.62 1.41

16
calculated thermal transmittance of floors

components (floor over basement),
[W·m−2·K−1]

Uf 1.13 1.1

17 calculated thermal transmittance of
windows (commercial data), [W·m−2·K−1] Uwin 1.82 1.6

18 calculated heating consumed power, [kW] Φh 189.2 161.2

19

measured, the annual heat consumption
for building heating converted (according

to formula 3) to the conditions of the
standard heating season, [MWh·year−1]

QK,H0 506.6 475.3

The average value of parameters describing the examined buildings is comparable to the data
contained in the building typology “TABULA” for Poland. These parameters are typical for an “average
building” of a multi-family residential building built in 1967–1985 [46,47]. Therefore, the surveyed
group of buildings can be considered as representative.

The data, selected after preliminary selection, were used to build sets of input variables based
on which the usefulness of a method based on rough set theory (RST) for estimating the energy
consumption of a building after the performance of thermal modernization measures in it was checked.
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These variables were used to develop four sets of input data with different degrees of influence on
energy consumption and difficulty in obtaining them, which are summarized in Table 2. A very limited
set of indicators has been selected for the first set of variables explaining changes in energy consumption
for heating a building after its thermal modernization. It included the amount of demand for thermal
power to heat the building before the thermal modernization, the actual unitary indicator of final energy
consumption for heating, and information about improvement actions taken—that is, which of the
partitions will be insulated. From the next set of variables, the information concerning the demand for
thermal power of its heating was eliminated and replaced with information concerning characteristic
dimensions of individual components of the building, that is, area of individual building partitions,
area and cubic capacity of the building, shape coefficient of buildings, and indicators characterizing
a given building (number of people using the building, number of dwellings). The previous set of
variables contained information which can be relatively easily obtained for any residential building,
but it did not contain a very important parameter that would characterize the thermal insulation of
individual partitions in the current state. Next set of variables has been supplemented with heat
transfer coefficients for individual partitions. Collecting such an extensive range of information
allows for precise characteristics of the object, but requires a lot of work on its reliable preparation.
Because the above set of variables was very extensive and gathering such an extensive range of data is
time-consuming, in the last set of input data, only the variables having direct influence on heat losses
in the building, such as heat transfer coefficients through partitions and the fields of partition surfaces
through which heat losses occur, are left. Sets of variables 2, 3 and 4 also included information on
improvement measures taken—which of the partitions are to be isolated.

The groups of variables presented in Table 2, constituting conditional attributes, were used to
build a model of prediction of final energy demand for building heating based on the Rough Set
Theory. It was introduced in the 1980s by Professor Zdzisław Pawlak [45]. It is used as a tool to
synthesize advanced and effective methods of analysis and to reduce datasets [48]. The rough sets
serve as a methodology in the process of discovering knowledge in databases. It is a tool used to
describe inaccurate, uncertain knowledge; to model decision-making systems; and for approximation
reasoning [49]. The deduction methodology using the Approximate Collection Theory refers only to
the qualitative nature of object characteristics. This causes limitations and difficulties when we deal
with the occurrence of features in a quantitative form, not a qualitative one. The specificity of the
attributes of the surveyed buildings shows a great variety of ways of encoding the given characteristics,
which mostly occur in the quantitative form. In this case, the integration of the valued tolerance relation
proves helpful [50]. It allows to implement more flexibility in data mining into the approximate set
theory and to analyze observations expressed in quantitative form. The classic assumption of RSTs is
based on the concept of the indistinguishability relationship as an exact relationship of equivalence,
i.e., objects will only be indistinguishable if they have similar attributes (system 0–1). The introduction
of a valued tolerance relation to RST allows to determine the upper and lower approximation of the
crop with different degrees of indifference ratio [51]. This allows for the comparison of two sets of
data and gives a result between 0 and 1, which is the level of indistinguishability. This range is a
membership function derived from the assumptions of fuzzy harvest theory. The closer the result is to
one, the more similar (indistinguishable) the objects are in terms of the analyzed attribute, and the
closer to 0 the more distinguishable they are [50,51]. Detailed description of the prediction model
based on quantitative variables has been presented in [51,52]. The general course of the construction of
the model using the approximate sets theory is presented in Figure 1.
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Table 2. Sets of input variables for analyzed predictive models. Sets of variables (before thermal
modernization) (Recorded in the form of 0–1 information—whether the peak wall, external wall, floors,
ground floors, windows, and flat roof are to be thermal modernized).

Parameter-Condition Attributes

Set I Φh – calculated heating consumed power, [kW]
FE0 – index of final energy demand for heating before modernization, [kWh·m−2·year−1]

Set II

Ve – calculated from exterior measurements the heated volume of building, [m3]
S/Ve – shape coefficient of buildings (the ratio surface to volume), [m2·m−3], [m−1]

Af – calculated surface of heated floors from interior measurements, [m2]
Aw – calculated from exterior measurements total walls’ surface (net) area, [m2]

Ar – calculated from exterior measurements surface of roof projection area (net), [m2]
Atw – calculated from exterior measurements total windows area, [m2]

Ain – calculated from interior measurements total (net internal area), [m2]
Nopb – number of living persons per building, [Nb]
Nop – number of residential flats, premises, [pcs.]

FE0 – index of final energy demand for heating before modernization, [kWh·m−2·year−1]

Set III

Uw – calculated thermal transmittance of walls components, [W·m−2·K−1]
Upw – calculated thermal transmittance of peak walls components, [W·m−2·K−1]

Ur – calculated thermal transmittance of roof projections components, [W·m−2·K−1]
Uf – calculated thermal transmittance of floors components (floor over basement), [W·m−2·K−1]

Uwin – thermal transmittance of windows (commercial data), [W·m−2·K−1]
Ug – calculated thermal transmittance of floor components on the ground, [W·m−2·K−1]

Ve – calculated from exterior measurements the heated volume of building, [m3]
S/Ve – shape coefficient of buildings (the ratio surface to volume), [m2·m−3], [m−1]

Af – calculated surface of heated floors from interior measurements, [m2]
Aw – calculated from exterior measurements total walls’ surface (net) area, [m2]

Ar – calculated from exterior measurements surface of roof projection area (net), [m2]
Atw – calculated from exterior measurements total windows area, [m2]

Ain – calculated from interior measurements total (net internal area), [m2]
Nopb – number of living persons per building, [Nb]

Nop – number of residential flats, premises, [pc.]
FE0 – index of final energy demand for heating before modernization, [kWh·m−2·year−1]

Set IV

Uw – calculated thermal transmittance of walls components, [W·m−2·K−1]
Upw – calculated thermal transmittance of peak walls components, [W·m−2·K−1]

Ur – calculated thermal transmittance of roof projections components, [W·m−2·K−1]
Uf – calculated thermal transmittance of floors components (floor over basement),

[W·m−2·K−1]
Uwin – thermal transmittance of windows (commercial data), [W·m−2·K−1]

Ug – calculated thermal transmittance of floor components on the ground, [W·m−2·K−1]
Af – calculated surface of heated floors from interior measurements, [m2]

Aw – calculated from exterior measurements total walls’ surface (net) area, [m2]
Ar – calculated from exterior measurements surface of roof projection area (net), [m2]

Atw – calculated from exterior measurements total windows area, [m2]
FE0 – index of final energy demand for heating before modernization, [kWh·m−2·year−1]
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 Defining the problem 

Gathering information about objects and determining  
the ranges of individual attributes 

Construction of the decision board 

Determining the set of conditional 
and decision attributes 

Determining decision rules based on a decision table 

Division of the set from the decision table into abstract 
classes in relation to the decision attribute 

Division of the decision table set into abstract classes 
according to specific configurations  

of conditional attributes 

Determination of the quality and accuracy of the approximations  
of the above mentioned sets 

Checking if certain configurations 
of conditional attributes assigned 
to a given decision state do not 

coincide 

Designation of reducers and attribute set core 

This is to reduce unnecessary 
information attributes, and thus to 

identify the most important 
conditional attributes necessary to 

make a specific decision 

Creating a reasoning model based on the core of the set 
 of conditional attributes 

Using the core of the set 
of conditional attributes, 
an inference model can 
be presented in the form 
of a decision tree, which 

classifies a decision 
attribute on the basis of 

the core consisting of the 
most relevant conditional 

attributes 

Figure 1. Diagram for building of a model of inference based on the core of a set of conditional attributes
using the theory of rough sets.

After selecting the possible list of independent variables (conditional attributes), the developed
database was divided into a didactic set, to which 80% of the tested buildings were randomly selected,
and a test set created from other objects. A schematic view of the work areas with individual
blocks, illustrating the methodology for determining the energy demand indicator for heating after
improvements based on the inference model built, is presented in Figure 2.

The evaluation of the quality of the developed model was assessed for individual groups of
variables. For assessment of past due forecasts, the mean absolute error (MAE), mean absolute
percentage error (MAPE)—also known as mean absolute percentage deviation (MAPD) [53,54]—as
well as mean bias error (MBE), and coefficient of variance of the root mean square error (CV RMSE), was
used; these are accepted as statistical calibration standards by ASHRAE Guideline 14-2002 [14,55,56]:

MAE =
1

ng

ng∑
m=1

∣∣∣Or −Opr
∣∣∣ m = 1, 2, 3 . . . , ng (1)

MAPE =
1

ng

ng∑
m=1

∣∣∣∣∣∣Or −Opr

Or

∣∣∣∣∣∣·100% m = 1, 2, 3 . . . , ng (2)
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MBE =

∑ng

m=1

(
Or −Opr

)
∑ng

m=1 Or
·100% m = 1, 2, 3 . . . , ng (3)

CV RMSE =

√∑ng

m=1
(Or−Opr)

2

ng

1
ng

∑ng

m=1 Or
·100% m = 1, 2, 3 . . . , ng (4)

where: Or—real value of the index of final energy demand for heating after modernization (FE1);
Opr—the forecast value of the index of final energy demand for heating after modernization; and ng—is
the number of buildings covered by the study.

 

Figure 2. View of the working space.

According to the ASHRAE Guideline, models are considered to be calibrated when MBE values
are within ± 10% and CV RMSE values are within 30% [14,57].

The novelty of this research is an attempt to develop a universal model based on the rough set
theory describing the final energy demand indicator for heating buildings and to use, for this purpose,
groups of variables characterized by different degrees of difficulty in obtaining them. The algorithm
of building a model for forecasting energy demand presented in the article allows decision-makers
to assess the potential for real energy savings resulting from planned actions to improve thermal
performance of existing buildings. It is important to underline the fact that, as the literature review
shows, it has not yet been used in the energy assessment of buildings. The presented method based
on Rough Set Theory (RST) should not be considered as competition for statistical analysis, but as an
optional choice of method for data analysis. Bearing in mind that a common disadvantage of using
classical statistical and data-based analyses is their time-consuming, costly nature (equipment and
the collection of a sufficient, generally large number of representative observations), and the great
complexity of the procedures used, which consists of so-called preliminary analyses (i.e., checking
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the assumptions of randomness of variables, examining the probability distribution and correct
interpretation of statistical analysis results), as well as the ability to conduct and interpret statistical
tests. In many cases, this results in the data being matched to the model, not the model to the data,
as it should be in reality. When using rough set methods, the observations “speak for themselves”
and are not corrected in any way, either before the application of the method or during the analysis.
Moreover, the method based on RST is not limited, unlike regression models, by the number of sets of
representative observations (both small and large sample of observations), nor is the construction of a
statistical model required; decisions are made on the basis of dependencies: if certain conditions are
met, a specific decision is taken (according to Boolean application). The presented method does not
impose complicated rules of control of the features taken into account and the results of analyses. Only
two main coefficients are used to control the significance of conditional attributes in relation to the
decision attribute and the created decision rules: quality and approximation accuracy—easy to apply
and interpret.

3. Results and Discussion

3.1. Analysis of Final Energy Consumption for Heating Buildings

The analyzed buildings are heated from the municipal heating network. Therefore, information
on actual heat consumption for heating in the three heating seasons before and after the thermal
modernization was obtained. On this basis, calculations of final energy demand for heating were
made, and then the energy characteristics of objects in the state before and after thermal modernization
were determined. To exclude seasonal fluctuations, the actual energy consumption values obtained
were converted (corrected) to standard season conditions (multi-year average). The data concerning
the heating season degree days (from the years 2010–2018 and the multiannual average) based on
which the calculations were carried out were taken from the climate database Eurostat [58] for the
Małopolska region.

The amount of final energy consumption was calculated using the formula:

QK,H =
3∑

i=1

HDD(tb)i

HDD(tb)0
·QK,Hi·13 (5)

where: QK,H —the final energy demand for the heating season, [kWh]; HDD(tb)0—the number of
degree days in a standard heating season, [oCd]; HDD(tb)i—the number of degree days for the “i” of
this year, [oCd]; QK,H i—final energy consumption for heating in a measurement period for the “i” of
this year, [kWh].

The index of final energy demand for heating before and after the implementation of the
improvement was calculated according to the formula:

FE =
QK,H

AH
(6)

where: FE—index of final energy demand for heating, [kWh·m−2·year−1]; QK,H—the final energy
demand for the heating season, [kWh]; AH—calculated area of temperature-controlled rooms (heated
surface), [m2].

The energy characteristics of the analyzed group of buildings in the state before FE0 and after FE1
thermal modernization are shown in Figure 3. Figure 4 shows the structure of buildings in terms of
energy consumption.
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Figure 3. Index of final energy demand for heating of buildings before and after
implementing improvements.

Figure 4. Structure of buildings due to the size of the energy demand indicator for heating (a) before
(b) after the improvement.
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Index of final energy demand for heating of buildings is very varied. In buildings before
modernization, it was between 83–569 [kWh·m−2·year−1], while after the improvement, it was
51–389 [kWh·m−2·year−1].

The average value of the index before modernization was 287 [kWh·m−2·year−1]; after the
improvement, it decreased to 144 [kWh·m−2·year−1]. Average final energy consumption for heating an
“average building” in Poland determined on the basis of a standard reference calculation based on EN
ISO 13790/seasonal method [21] is: for buildings before thermal modernization 265.6 [kWh·m−2·year−1],
while energy consumption after the improvement is 77.9 [kWh·m−2·year−1].

Nearly half of the buildings before the thermal modernization were characterized by energy
consumption in the range 164–245 [kWh·m−2·year−1]. In the group of improved buildings,
the largest group is made up of buildings where the energy demand for heating is between
99–147 [kWh·m−2·year−1].

Comparing the average values of the FE0 actual energy consumption index in the studied group of
buildings with theoretical values, it can be seen that for existing buildings they are similar, whereas for
improved buildings they differ. The projected energy consumption in a thermally improved “average
building” based on standard reference calculations [46] is twice lower than the actual values.

3.2. Modeling the Consumption of Thermal Energy in Buildings Undergoing Energy Modernization

In the first part of the prediction model construction, the database was randomly divided into a
teaching set and a test set. The input data characterizing the buildings were then divided into groups
of variables Set I to Set IV. For individual groups from the learning set, the reducts and the core of the
set of attributes were determined, which were used to create an inference model. The built model was
subjected to a critical analysis (on the test set) in terms of accuracy and quality of the built forecast.
The working space, on the basis of which the analyses were performed, is shown in Figure 2.

The results of quality and accuracy calculations of the constructed models depending on the
selected set of input variables are shown in Table 3.

Table 3. Assessment of model of energy demand indicator for heating based on studied set of input
variables (Set I to Set IV).

Assessment Parameters
Sets of variables

Set I Set II Set III Set IV

MAE [kWh·m−2·year−1] 22.8 23.1 25.3 18.1

MAPE [%] 15.4 16.4 17.8 14

MBE [%] −0.73 1.68 −16 −9.6

CV RMSE [%] 21.7 18.2 32.2 18.8

Analysis of the mean absolute values of the actual deviation of the final energy demand indicator
for heating of residential buildings from the predicted value indicates that the model based on set IV
has the lowest deviation value (18.1 kWh·m−2·year−1).

The highest error value (about 25.3 kWh·m−2·year−1) was shown by the model based on set III. The
error value for the model based on the set I and II is similar and amounts to about 23 kWh·m−2·year−1.

The analysis of the MAPE error on the test set confirmed the usefulness of the model for determining
the size of the energy demand indicator for heating for the building after thermal modernization. The
obtained average error values for the selected Sets ranged from 14% to 17.8%.

The values of the two other meters used to assess the correctness of the models are as follows:
The MBE error values indicate that the energy consumption forecasts obtained from the model

are overestimated for sets I, III and IV. The lowest value of the indicator (−0.73%) is obtained for set I,
the highest (−16%) for set III. The model based on set II undervalued the actual values on average by
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1.68%. The assessment of the energy demand indicator model expressed in the RSME CV ranges from
18.2% (Set II) to 32.2% (Set III).

Bearing in mind ASHARE’s recommendations for model calibration, it can be concluded that
three models based on data sets meet the requirements. These are the models based on sets I, II and IV.
The best values for the assessment indicators can be observed for the set II model and then for set I. An
analysis of the assessment indicators (MBE and CV RSME, which are considered together) showed
that the best value of the assessment indicators can be obtained for set II and then for set I. Set IV has a
CV RMSE value close to set II, but the MBE value is clearly different from the others.

Taking all four assessment indicators into account, it can be seen that the best fit values are found
for the model using the first set of variables.

4. Conclusions

The research was carried out on a group of 109 thermally improved residential buildings. The
energy performance of these buildings was determined. The energy performance is based on the
actual energy consumption for heating. The calculations were made for the state before and after
thermal modernization. The specific sets of important variables characterizing the examined buildings
have been identified. The variables were grouped into sets depending on the difficulty of obtaining
them. They were used to build a prognostic model based on the rough set theory (RST). The use of
this method made it possible to quickly determine the energy saving potential for heating after the
completion of the thermal renovation.

The following conclusions can be drawn from the analysis of the indicators’ evaluation of the
model for forecasting the final energy demand for heating after thermal improvement:

• The model developed based on the Rough Sets Theory (RST) is a universal solution that can be
used for estimating thermal energy consumption in buildings undergoing thermal improvement.
This is evidenced by the results of the assessment, where, according to the ASHRAE Guide, the
calibration targets are set at ±10% (MBE) and less than 30% (CV RMSE). The achievement of these
thresholds has been demonstrated for three models. These are models based on sets I, II and IV.
The best results can be obtained for the model using sets II and I.

• Taking into account all four evaluation indicators, it was found that the best match between the
predicted and real values can be obtained if a limited set of input variables (set I) is used in the
model, the value of the deviation of the real value from the predicted value (MAE) is amounts to
about 22.8 kWh·m−2·year−1, whereas the accuracy of estimation (MAPE) of the model built on
the basis of these data is 15.4%. Similar forecasting results can be obtained by using the data set
II, but in this case, a greater number of conditional attributes characterizing the building must
be available.

• Analyzing the values of MAE and MAPE indicators, it was found that the best results for
forecasting energy consumption after thermal improvement can be obtained using the IV set of
input variables. The use of this set of variables to build the model allows obtaining the results
with the error (MAE) 18.1 kWh·m−2·year−1. This gives an estimated accuracy (MAPE) of 14%.
Despite this, this model is recommended as the third in order because of the high value of the
MBE indicator, which clearly differs from the others.

• Forecasting the energy consumption of buildings using a model based on Rough Set Theory
(RST) using variables that characterize buildings, allows for estimation accuracy of 14.4−15.9%.
However, in further research, it is advisable to test this method on a larger, several hundred
elementary set of objects (buildings) from different regions, characterized by different climatic
conditions from those in which the research was performed, in order to verify the results obtained.

• The examined group of objects should be used to test other forecasting methods so that the results
of the estimation can be compared with each other.
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Nomenclature

RST Rough Set Theory
MAE Mean Absolute Error
MAPE Mean Absolute Percentage Error
MAPD Mean Absolute Percentage Deviation
MBE Mean Bias Error
CVRMSE Coefficient of Variation of the Root Mean Square Error
Or real value of the index of final energy demand for heating after modernization (FE1)
Opr the forecast value of the index of final energy demand for heating after modernization
ng number of buildings covered by the study
QK,H final energy demand for the heating season
QK,H i final energy consumption for heating in a measurement period for the “i” of this year
HDD(tb)0 the number of degree days in a standard heating season
HDD(tb)i the number of degree days for the “i” of this year
FE index of final energy demand for heating
FE0 index of final energy demand for heating before modernization
FE1 index of final energy demand for heating after modernization
Af calculated surface of heated floors from interior measurements
AH calculated area of temperature-controlled rooms (heated surface)
Ar calculated from exterior measurements surface of roof projection area (net)
Aw calculated from exterior measurements total walls’ surface (net) area
Afl calculated surface of floor from interior measurements (floor over basement or floor on the ground)
Atw calculated from exterior measurements total windows area
Ve calculated from exterior measurements the heated volume of building
S/Ve shape coefficient of buildings (the ratio surface to volume)
NOs number of stores
NOp number of residential flats, premises
NOpb number of living persons per building
Uw calculated thermal transmittance of walls components
Upw calculated thermal transmittance of peak walls components
Ur calculated thermal transmittance of roof projections components
Ug calculated thermal transmittance of floor components on the ground
Uf calculated thermal transmittance of floors components (floor over basement)
Uwin calculated thermal transmittance of windows (commercial data)
Φh calculated heating consumed power
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Abstract: A fault detection and diagnostics (FDD) tool is a type of energy management and
information system that continuously identifies the presence of faults and efficiency improvement
opportunities through a one-way interface to the building automation system and the application
of automated analytics. Building operators on the leading edge of technology adoption use FDD
tools to enable median whole-building portfolio savings of 8%. Although FDD tools can inform
operators of operational faults, currently an action is always required to correct the faults to generate
energy savings. A subset of faults, however, such as biased sensors, can be addressed automatically,
eliminating the need for staff intervention. Automating this fault “correction” can significantly
increase the savings generated by FDD tools and reduce the reliance on human intervention.
Doing so is expected to advance the usability and technical and economic performance of FDD
technologies. This paper presents the development of nine innovative fault auto-correction algorithms
for Heating, Ventilation, and Air Conditioning pi(HVAC) systems. When the auto-correction routine is
triggered, it overwrites control setpoints or other variables to implement the intended changes. It also
discusses the implementation of the auto-correction algorithms in commercial FDD software products,
the integration of these strategies with building automation systems and their preliminary testing.

Keywords: fault correction; fault detection and diagnostics; building operation; energy efficiency;
field testing

1. Introduction

Commercial buildings constitute 18% of the U.S. primary energy consumption [1] and account for
$149 billion in annual energy expenditures [2]. Much of this consumption is due to operational waste,
representing a tremendous potential for savings. The literature indicates that median whole-building
savings of 16% are achieved by commissioning existing buildings [3] and that 5–30% of commercial
building energy use is wasted due to problems associated with controls [4–9].

Commercially available fault detection and diagnostics (FDD) tools provide a means of
monitoring-based commissioning, through which instances of operational inefficiency can be
continuously identified, isolated, and surfaced for resolution by operations and maintenance staff.
Today’s FDD technology has been documented to enable whole building savings of 8% on average,
across users [10]. These technologies integrate with building automation systems (BASs) or can be
implemented as retrofit add-ons to existing equipment, and continuously analyze operational data
streams across many system types and configurations. This is in contrast to the historically typical
variants of FDD that are delivered as original equipment manufacturer-embedded equipment features
or handheld FDD devices that rely upon temporary field measurements.

Figure 1 represents an idealized architecture of a BAS, adapted from American Society of
Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE) Guideline 13 [11]. Field devices
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(and controllers) connect to the sensors and actuators in the field. Network controllers typically
provide supervisory control capabilities, scheduling, alarms, trending, local data storage, and user
interfaces, in addition to some security features. Modern versions of these controllers have the ability
to communicate via a BACnet (a data communication protocol for building automation and control
network) IP over an IP network. When such functionality is not available, a common integration
strategy employs “integration gateways” (e.g., Niagara JACE) that translate from proprietary protocols
to standard protocols, such as BACnet IP. For larger installations and campuses, the controllers or
gateways are also connected to a BAS server that provides configuration and management, long-term
data storage (i.e., databases) and visualization tools. FDD tools can be installed in the local IP network,
run from the cloud, or have a combination of cloud and local components. Integration with the BAS is
typically implemented through a one-way interface using one of these three FDD–BAS integration
pathways:

1. The FDD tool collects data from the central server database (common for large campus-wide
installations) via a database application programming interface (API) (e.g., structured query language).

2. The FDD tool collects data from a central server, controller, or gateway using vendor-specific API
(e.g., Automated Logic web services).

3. The FDD tool collects data directly via the BACnet IP network shared with other controllers
and gateways.

Through these interfaces, system-level operational data are made available to the FDD software.
Meter data are often also included. Data are continuously analyzed and detected faults are presented
to operational staff through a graphical user interface. Since the BAS is the primary source of data,
the FDD is most commonly focused on Heating, Ventilation, and Air Conditioning (HVAC) equipment.
However, today’s technologies offer extensive libraries of FDD logic and algorithms, and therefore can
be applied to lighting and other building end-use systems for which data are available [12].

 
Figure 1. Schematic illustration of the integration of building automation system (BAS) data into
fault detection and diagnostics (FDD) products. (BACnet MS/TP - BACnet Master Slave Token
Passing protocol).

Although FDD tools are being used to enable cost-effective energy savings, there remains an
opportunity to advance the state of the technology. In practice, the need for human intervention to
fix faults once they are identified often results in delay or inaction, resulting in additional operations
and maintenance (O&M) costs or lost opportunities. Traditionally, FDD generates recommendations

244



Energies 2020, 13, 2598

and follow-up actions which are implemented by service technicians or other staff. An emerging
capability comprises the integration of FDD outputs with facility management “work order” or CMMSs
(computerized maintenance management systems). While this makes it possible to automatically
generate work orders from the FDD system, human intervention is still required to implement the
corrective action. Therefore, this work seeks to develop automated fault-correction approaches and
integrate them with commercial FDD technology offerings, thereby closing the loop between the
passive diagnostics and active control. This is possible by converting the one-way BAS interface into a
two-way interface, as is done with supervisory predictive control technologies that are emerging in
the market.

It is not possible to automate the correction of mechanical faults such as failed actuators; however,
there is nonetheless a compelling set of operational problems that are detectable in today’s FDD
offerings and are correctable through the software-based manipulation of the BAS parameters that
can be exposed to external applications via BACnet. For example, Fernandez et al. [6] assessed
control problems in commercial buildings, as well as their prevalence and whole-building energy
impact for key commercial building sectors. Among the most common faults that relate to biased
sensors, improper control parameter settings and inefficient schedules have significant impact and
high prevalence rates. Automating the correction of these types of faults can increase the savings
realized through the use of FDD tools and reduce the extent to which savings are dependent upon
human intervention.

The academic and technical literature has extensively covered the development of automated FDD
applied to HVAC and lighting systems [13,14]; however, very little has been published on the automatic
correction of the identified faults via the actual control system. One set of relevant papers stem from the
vast literature on rule-based FDD algorithms. Fernandez et al. [15,16] developed passive and proactive
fault auto-correction algorithms for various HVAC components and systems. The methods proposed
to correct some faults which include biased air-handler unit (AHU) mixed air (MA), outside air (OA),
and return air (RA) temperature and humidity sensors; damper control hunting; minimum outdoor air
damper too open/closed; and manual overrides in large HVAC systems. Using the same approach,
Brambley et al. [17] extended Fernandez et al. [15,16] by adding correction routines for the biased
AHU supply air (SA) temperature and flow rate sensors and the biased variable-air-volume (VAV)
box discharge air temperature and flow rate sensors. This project implemented and tested a subset of
these algorithms (sensor bias and minimum outdoor air damper position) in a laboratory experiment.
This research stopped short of validating the developed solutions in physical buildings or integrating
them with existing BAS and commercial FDD products.

Related to the concept of fault correction is a body of work in the building control literature
that focuses on fault tolerant control. The purpose of a fault tolerant controller is to the maintain
proper operation of a system despite the presence of faults [18,19]. These approaches have been widely
adopted in other industries for safety-critical systems such as nuclear power plants, spacecraft and
aircraft. In the context of buildings, Padilla et al. [20] developed a model-based strategy which aims to
replace defective sensors in AHUs [20] with “virtual sensors.” The signal generated from these “virtual
sensors” can be used in the AHU control system when the actual physical sensors behave abnormally.
Supply air temperature and pressure sensor faults are effectively corrected by using the proposed
algorithms. Wang et al. [21] developed a supervisory control scheme that adapts to the presence of a
measurement error in an outdoor air flow rate. The method uses neural network models to estimate
the correct behavior of the faulty sensor and to maintain indoor air quality while minimizing energy
use. Hao et al. [22] employed principal component analysis to develop fault-tolerant control and
data recovery in the HVAC monitoring system. Bengea et al. [23] developed a fault-tolerant optimal
control strategy for an HVAC system integrating FDD and model predictive control. The output of the
FDD algorithm is used to continuously update the model’s predictive control algorithm parameters.
The approaches described in these papers offer innovations to the state of the art, yet they are not
readily implemented in today’s buildings control systems. This is because they comprise strategies
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that are not supported by traditional BAS capabilities. Similarly, while the literature focuses on the
development of these advanced controllers, it does not explore their integration with existing FDD
technologies. An additional practical challenge is that a large volume of non-faulty data under various
operational conditions is typically needed to train the models employed in these solutions.

This paper complemented and extended previous work in three ways. (1) It developed a
comprehensive set of fault auto-correction algorithms designed to be integrated with commercial
FDD tools. These algorithms target incorrectly programmed schedules, manual control “lock out,”
sensor bias, control hunting, rogue zone, and suboptimal setpoints/setpoints setback. Typically,
commercial FDD tools are developed as a software layer on top of the existing BAS. There exists a
natural separation of roles in this arrangement, in which the BAS actively controls the building and the
FDD tool observes its operation and provides insights and recommendations to the building manager.
The new auto-correction algorithms afford the FDD technology a certain degree of control capability.
(2) It conducted preliminary testing and performance validation during which two auto-correction
routines were deployed in a commercial FDD tool and tested on two AHUs in a real building.
The enhanced FDD tool was able to correct faults successfully. (3) It presented the challenges of
the integration of developed auto-correction algorithms into commercial FDD tools along with the
solutions through work with three industry partners. New insights were gained by implementing the
pseudo-code developed by the research team in real systems and real buildings. Sections 2–4 present
the auto-correction algorithms, preliminary testing and the implementation changes and solutions,
respectively. Section 5 concludes the paper and describes future work.

2. Fault Auto-Correction Algorithms

To identify the faults that are auto-correctable, we reviewed the existing literature and discussed
the topic with 10 subject matter experts who had years of experience in FDD research and application.
These experts included a set of FDD technology and service providers from the industry who were
participating in this R&D effort as implementation partners. These providers maintained a large
footprint in the FDD market and have explicitly included fault correction in their product development
roadmaps. It is not possible to automate the correction of mechanical faults such as failed actuators,
valve leakage and damper stuck, as they require physical repair or replacement. However, there is
nonetheless a compelling set of operational problems that are detectable in today’s FDD offerings,
and correctable through a software-based manipulation of the BAS parameters that can be exposed to
external applications via BACnet. Considering both the possibility of the automated correction and
the feasibility of implementation in an FDD platform, a set of nine HVAC system faults were isolated,
as shown in Table 1.

Table 1. Summary of the auto-correctable faults of focus in this study.

Fault Fault Description

1. Schedules are incorrectly programmed
Heating, Ventilation, and Air Conditioning (HVAC) equipment does
not turn on/off according to its intended schedule due to an error in
the control programming.

2. Override manual control

Operator unintentionally neglects to release what was intended to be
a short-term override of setpoints or other control commands
(e.g., fan variable frequency drive (VFD) speed, cooling coil valve
control command).

3. AHU OA or SA temperature sensor bias
Air-handler unit’s (AHU’s) outside air (OA) or supply air (SA)
temperature sensor measurements have constant bias over time,
representing an offset from a correct or true value.

4. Control hunting The damper, valve, pump, or fan hunting fault due to an improper
proportional gain.

5. Rogue zone

A rogue zone continuously sends cooling/heating requests whenever
its schedule is on, due to the zone-level equipment problems like a
leaky reheat valve, a dysfunctional supply air damper, or an
insufficient capacity variable-air-volume (VAV) terminal.
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Table 1. Cont.

Fault Fault Description

6. Improve economizer high-lockout
temperature setpoint

In the AHU with fixed dry-bulb economizer control, the economizer
shall be disabled whenever the outdoor air conditions exceed the
economizer high-lockout temperature setpoint. If the setpoint is set
too low in the control logic, it will result in missed opportunity to use
outdoor air to reduce the mechanical cooling load in mild conditions.

7. Improve zone temperature setpoint setback

Each zone has separate occupied and unoccupied cooling and
heating setpoints. If the zoom temperature cooling setpoint is too
low or the heating setpoint is too high, the space will be overcooled
or overheated, causing unintended energy consumption.

8. Improve AHU static pressure setpoint reset Non-optimized AHU static air pressure setpoint.

9. Improve AHU SA temperature setpoint reset Non-optimized AHU supply air temperature setpoint.

For each of the faults in Table 1, correction algorithms were developed (for faults 1, 3 and 5–9) or
adapted from the existing literature (for faults 2 and 4). The auto-correctable faults in Table 1 were
divided into two categories: faults 1–5 were in the “Fault” category, which indicated problems that
violated the intended operation of the equipment (e.g., sensor bias); faults 6–9 were in the “Opportunity”
category, which indicated problems that represented potential to improve the current operation of
the equipment (e.g., improve a setpoint reset). This distinction was made to differentiate between the
intent of the restoring operation to what it was originally intended to be and that of optimal control.

As the objective of this study was to develop automated fault-correction algorithms that could be
integrated with commercial FDD and BAS products, the auto-correction algorithms described in this
section were decoupled from the fault detection and diagnostics algorithms embedded in the FDD
tools. This permitted the applicability of the developed correction algorithms across a variety of FDD
technologies that employed different FDD rules and algorithms. Furthermore, it was assumed that
the FDD tools were able to detect the faults of focus, as they represented some of the more commonly
encountered faults in commercial buildings.

Figure 2 shows the flow chart of the general auto-correction process. In this process, after the
FDD algorithm generates a fault flag of a specific fault, the fault auto-correction algorithm is initiated
to correct this fault with the approval from the building operator. Control_variable_being_overwritten
is the key element in the auto-correction process. The algorithm overwrites this variable
(Control_variable_being_ overwritten_current) with a new value (Control_variable_being_overwritten
_new). The control_variable_being_overwritten_current is the one identified in the FDD algorithm
to be associated with the problematic value (fault) or potential to improve (opportunity).
The control_variable_ being_overwritten_new is the same variable that has the correct value (fault) or
optimized value (opportunity). All of the auto-correction algorithms developed in this work followed
this structure, with different control variables overwritten, and different ways to determine the correct
or improved value of the variable.

Each auto-correction algorithm is presented and discussed in the following.

 

Figure 2. Flow chart of the general auto-correction process.
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2.1. Schedules Are Incorrectly Programmed

In this auto-correction algorithm, the control_variable_being_overridden is Equip_Schedule,
which is the HVAC equipment on/off times that are programmed in the BAS for weekends, weekdays
and holidays. The control_variables_being_overwritten_current are the current schedules read from
BAS, which are concluded to be incorrectly programmed (e.g., the AHU starts at 4 a.m. and stops at 8 p.m.
on weekdays). The control_variable_being_overwritten_new is Intended_Schedule, which is HVAC
equipment on/off times as they are supposed to be (e.g., the AHU starts at 6 a.m. and stops at 7 p.m.
on weekdays). The auto-correction algorithm overwrites the Equip_Schedule and replaces it with the
Intended_Schedule to enable the system to start and stop as it is supposed to. The Intended_Schedule
is prior knowledge that is specified by the building operator or another resource.

2.2. Override Manual Control

As documented in [15], the control_variable_being_overwritten in the auto-correction algorithm
is Manual_Override. This variable indicates the equipment (e.g., fan speed, valve control command,
damper control command) manual control status or equivalent flag: 1—equipment is in manual
control, 0—equipment is in automatic control. When there is the override fault, Manual_Override = 1
in the faulty case. The correction algorithm changes the manual control variable back to automatic
(Manual_Override = 0).

2.3. AHU Supply Air or Outside Air Temperature Sensor Bias

Two approaches can be used to correct the AHU supply air or outside air temperature sensor bias
fault. In the first approach, the control_variable_being_overwritten is a data point (TempSensorOffset)
in the control loop that controls the offset of the controller’s temperature input. In the second approach,
the control_variable_being_overwritten is the control setpoint associated with the temperature.
These two approaches are presented here in detail for the supply air temperature (SAT) sensor
bias fault. Figure 3a illustrates the auto-correction workflow for the first method. It is assumed that
when the FDD algorithm flags the sensor bias fault it also determines the bias value, which is the
difference between the sensor reading value and the actual value. This bias value (SAT_bias) is fed into
the auto-correction algorithm. After judging the bias direction, the bias value is directly written to
the TempSensorOffset. The adjusted TempSensorOffset is added from the SAT reading value and the
conversion results (SAT+TempSensorOffset) enter the controller as input (e.g., adjust the incorrect SAT
value with a new offset to provide the correct reading which is fed into the cooling/heating coil valve
controller). Figure 3b illustrates the auto-correction workflow for the second method. In this method,
the new SAT setpoint (SAT_spt) value can be calculated by adding or subtracting the bias value
accordingly, and then be written to the BAS. The auto-correction of the outside air temperature uses the
similar two approaches as above. The control_variables_being_overwritten in the second approach are
the AHU economizer high (low) lockout temperature setpoints, which are the outside air temperatures
above (below) which the outside air damper will return to its minimum position.
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(a) (b) 

Figure 3. Flowchart of the supply ai temperature (SAT) sensor bias fault auto-correction algorithm.
(a) Approach 1: overwrite the SAT temperature value, and (b) Approach 2: overwrite the SAT setpoint.

2.4. Damper/Valve/Fan/Pump Control Hunting Due to Improper Proportion Gain

In contrast to the other algorithms, the auto-correction of control hunting due to improper
proportion gain employs a trial and error procedure [15]. The control_variable_being_overwritten is the
proportional–integral–derivative (PID) controller parameter proportion gain (Kp). In the auto-correction
process, the Kp is continually adjusted to find out the appropriate value that eliminates the hunting
behavior. When the FDD algorithm flags an improper Kp causing the hunting fault, the auto-correction
algorithm is initiated. First, a maximum auto-correction duration threshold (T_AC_thresh) is set to
avoid an endless auto-correction process. Note that a setting time of an actuator during the control
response may be varied due to different actuator control characteristics. For example, for a VAV
terminal unit damper, the settling time is typically in the order of one or two minutes, but the settling
time for a cooling coil valve may be several minutes. Then, the current value of the Kp is compared to
a Kp_threshold, in this case 0.2. This test is meant to avoid an unacceptably long settling time under
pure integral control. If the Kp value is above the Kp_threshold, the Kp is decreased by 10% [15]. Then,
the algorithm starts a proactive test scenario to see if the hunting issue still persists, by changing the
setpoint (T_set) of the damper/valve/fan/pump to trigger the component’s movement. If the component
is still hunting, the procedure is repeated; otherwise, the procedure is terminated. If the Kp reaches the
Kp_threshold and there is still a hunting fault, then it is flagged as an error and the Kp is reset to the
original value (Figure 4).
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Figure 4. Flowchart of Algorithm 2.4: control hunting due to improper proportion gain (T_AC_thresh -
a maximum auto-correction duration threshold, Kp - controller parameter proportion gain).

2.5. Rogue Zone

ASHRAE Guideline 36 [24] defines high-performance control sequences for AHU–VAV systems.
The “Trim and Respond” logic (see Sections 2.8 and 2.9) is adopted to reset the supply air temperature
and static pressure setpoints at an AHU. The adjustment of these setpoints depends on the number of
cooling “requests” generated by downstream zones that are served by the same AHU. For each time
step, the change value of setpoint (SPchange) is determined by Equations (1) and (2) below:

SPchange= SPres × (R− I) (1)

R =
∑

IMiRequesti (2)

where SPres is a unit respond amount (e.g., 0.06 inches for static pressure setpoint), R is the total
number of cooling requests from the downstream zones, I is the defined number of ignored requests, i
is the indicator of the downstream zone, IM is the importance multiplier that is used in the control
sequence to decide if the cooling requests from the zone level should be used to control the upstream
AHU, and Request is the cooling request from the zone. Therefore, if there is a rogue zone that
continuously sends cooling requests whenever its schedule is on, due to the zone-level equipment
problems, the parameter R will always include this request, and it keeps the setpoints in the control
loop to its high end. Excluding rogue zones from the corresponding reset control strategies improves
operation and increases energy savings. After the zone-level equipment problems that lead to the rogue
zone are fixed, the rogue zone is no longer rogue, and all the control variables that are overwritten
during the auto-correction process change back to their original value.

Two correction strategies were developed to eliminate the rogue zone impacts (i.e., to ignore the
cooling request from the rogue zone). The first is to overwrite I in Equation (1). The auto-correction
algorithm increases I by n for each currently identified rogue zone. The value of n is the same as the
number of cooling requests determined in the control sequence of that rogue zone. The second is to
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overwrite the IM of the rogue zone in Equation (2). When the FDD tool flags the rogue zone fault,
the IM of the rogue zone is overwritten to be zero. Therefore, the cooling requests from the rogue zone
can be removed.

2.6. Improve Economizer High-Lockout Temperature Setpoint

The previous five algorithms focused on correcting faults to restore the intended operation.
This algorithm and the next three serve to provide more optimal control. They implement improved
control setpoints or sequences when the FDD tool identifies the opportunity to do so.

After the opportunity to improve the economizer lockout temperature setpoint is identified,
the setpoint is overwritten to the recommended value, following the flowchart in Figure 2.
The recommended value can be determined based on the high-lockout limit recommended in the
energy code [25]. For example, the recommended lockout setpoint is 23.9 ◦C, 21.1 ◦C and 18.3 ◦C,
respectively, in the dry climate zone, the cold–humid climate zone, and the hot–humid climate zone.

2.7. Improve Zone Temperature Setpoint Setback

Similar to the algorithm in Section 2.6, this auto-correction algorithm overwrites the zone
temperature cooling or heating setpoint during the occupied or unoccupied hours to the recommended
values wherever there is an opportunity.

2.8. Improve AHU Static Pressure Setpoint Reset

The auto-correction algorithms for this and the next opportunities are most closely related to
optimal controls. Both algorithms correct the fault “continuously” as it continuously adjusts the control
variables to optimize the equipment operation (e.g., resets). They are relevant for AHUs without
sophisticated reset strategies, such as no reset or simple resets based on return air temperature or
outside air temperature.

The auto-correction algorithm uses the ASHRAE Guideline 36 [24] “Trim and Respond” logic for
the static pressure setpoint. To optimize the operation of the AHU and minimize discomfort, the static
pressure setpoint (SSP_spt) is continually reset using the Trim and Respond logic between a minimum
and maximum setpoint (SPmin and SPmax). When the supply air fan is off, the setpoint is the initial
setpoint (SP0). The reset logic is active while the supply air fan is proven on, starting a delay timer (Td)
after the initial device start command. When active, for every time step T, when the cooling request
from the downstream zones (R) is less than or equal to a defined number of ignored requests (I), the
setpoint is trimmed by a trim amount (SPtrim), but no less than SPmin. If R is more than I, the setpoint
changes by a respond amount, (i.e., SPres * (R − I)), but no more than the maximum response per time
interval (SPres-max).

2.9. Improve AHU SAT Setpoint Reset

Similar to the algorithm to improve the static pressure setpoint reset, this auto-correction
algorithm uses the ASHRAE Guideline 36 [24] “Trim and Respond” logic to reset the SAT setpoint
continuously between a minimum and maximum setpoint. The control_variable_being_overwritten is
the SAT setpoint.

3. Results: Preliminary Testing

Three commercial FDD providers participating in this research selected a subset of the algorithms
that were created by the authors and integrated them into their development product environments
for field testing. The partners chose the relevant algorithms for a variety of reasons, including: the
expected ease of implementation, the reduction of operational cost, savings potential, and the ability to
solve problems common to their customers. The implementation process varied depending on the
platform, but generally consisted of the following phases: (1) confirm/add two-way communication
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functionality between the FDD and the BAS, (2) build an auto-correction interface to communicate with
the building operator, (3) translate the algorithms into the FDD programming environment, (4) modify
the BAS programming of the specific building to integrate the new control actions sent by the FDD
tool, and (5) commission and test the new system. Further details are presented in Lin et al. [26].
This section illustrates the test results of two auto-correction algorithms: “Rogue zone” and “Improve
AHU supply air temperature setpoint reset” for one implementation partner. Section 4 summarizes
the challenges that were faced by three partners during the implementation process, as well as the
solutions that were used by one or more project partners to mitigate them.

In the preliminary testing, the two routines were deployed in a commercial FDD product
(SkySpark® by SkyFoundry) and tested on two AHUs in a building in Berkeley, California, US. between
March 3 and April 5, 2020. The goal of this preliminary test was to determine whether the enhanced
FDD solutions were able to correct faults without adverse operational effects.

3.1. Description of the Testing Site and Equipment

Table 2 summarizes the test site and equipment information. AHU01 and AHU02 are structurally
identical. Figure 5 shows the BAS graphics (i.e., native dashboard) for one of the two AHUs.

Table 2. Test site information.

Building Type Size (m2) Building Schedule HVAC Configuration BAS Brand and Model

Mixed laboratory
and office space 8919

Labs: 24/7
operation,
Offices:
4 a.m.–9 p.m.,
Monday–Sunday

3 chillers and 2 AHUs (AHU01
and AHU02), covering about
90% of the floor area, and the
connected zones (n = 83 and
n = 80, respectively)

Johnson Controls (JCI)
Metasys

 
Figure 5. BAS graphics for the AHU02 at the test site. AHU01 has a similar structure.

Both AHU01 and AHU02 were controlled by a control sequence implemented in the native BAS
control language and hosted on local controllers. Each AHU was controlled independently. The supply
air temperature cooling and heating setpoint was reset based on the algorithm highlighted below in
plain English:
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• If the AHU is enabled (based on schedules, normally 24/7):

◦ Calculate the average cooling demand output for all the zones served by the AHU (cooling
demand output is the output calculated by the PI[D] loop based on the proportional, integral
[and derivative] component of the difference between zone cooling setpoint and zone
temperature).;

◦ Constrain the results between min = 3% and max = 12%;
◦ Linearly map the average output to a calculated cooling setpoint between 18.3 ◦C and 12.8 ◦C.

The value of 3% average cooling output is mapped to 18.3 ◦C, 12% is mapped to 12.8 ◦C,
and all the values in between are calculated linearly;

◦ The heating setpoint is fixed to 12.8 ◦C, except for when the cooling setpoint reaches 12.8 ◦C.
In that case, the heating setpoint becomes 12.2 ◦C.

• The economizer damper and the chilled water valve are controlled to maintain the cooling supply
air temperature setpoint. The heating hot water valve is controlled to maintain the heating supply
air temperature setpoint. As a result, when the outside air temperature is between the heating
and the cooling setpoints, the air handling unit typically does not cool or heat the air.

The existing SAT control strategy is relatively efficient, compared to common practice in the
industry (fixed setpoint or resets based on outdoor temperature or return temperature alone and no
deadband). However, the current strategy presents two limitations: (1) it responds to outlier zones or
rogue zones, although minimally, as the reset is based on an average cooling demand outputs from
all the zones; and (2) its calibration parameters (e.g., min and max average zone feedback of 3% and
12%, respectively) were established via trial and error and personal judgement. Given the limited
capabilities of the BAS zone controllers (i.e., field devices in Figure 1), the reset strategy was entirely
calculated within the AHU controllers.

The FDD tool connected to the BAS is a commercial product managed by a consultant and the
facility manager of the site. The tool allows for custom programming and bi-directional communication
to the BAS via the BACnet network. In contrast to the BAS, the FDD tool coding language is a modern
scripting language with the ability to use high-level functions that allow the portability of the code
between the buildings and equipment. The two auto-correction algorithms were coded using this
platform and tested on the two AHUs. In the FDD tool, a zone was identified as a rogue zone when
one or more disqualifying conditions were detected for that zone and the zone was sending a request
to the AHU. The zone requests are calculated based on zone PID loop output >95%. Disqualifying
conditions for cooling requests include:

• Leaky reheat valve (VAV box discharge air temperature (DAT) > AHU SAT + 2.8 ◦C);
• Supply airflow setpoint not met (<90% or>110% of setpoint and delta> 1.4 cubic meter per minute);
• Zone cooling setpoint too low (lower than 22.2 ◦C unless exempt).

3.2. Auto-Correction Code in the FDD Tool

3.2.1. Code for “Rogue Zones”

The code adopts the first correction strategy in Section 2.5 and overwrites the number of ignored
cooling requests from the identified rogue zones. The number of requests and ignored requests are
calculated as in Equations (3)–(5):

R′ = max(R− Itotal, 0) (3)

Itotal = Ide f ault + Irogue_zones (4)

Irouge_zones =
∑

i

Irouge_zone_i (5)
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where R′ is the number of net cooling requests from the downstream zones of an AHU; R is the number
of total cooling requests from the downstream zones; Ide f ault is the default number of ignored cooling
requests (set by the user); Irouge_zones is the number of ignored cooling requests from the all rogue zones;
Itotal is the sum of the previous two variables; and Irouge_zone_i is the number of cooling requests from
the ith identified rogue zone. R′ is calculated by subtracting the sum of all the rogue zones ignored
based on the conditions described above (Irogue_zones) and a default minimum of the ignored zones
(Ide f ault) from all the requests (R). If the equation leads to a negative result, R′ becomes zero. R′ is used
in the SAT reset calculation below.

3.2.2. Code for “Improve AHU Supply Air Temperature Setpoint Reset”

The supply air temperature cooling setpoint (SAT_spt) is continually reset using “Trim and
Respond” logic between a minimum and maximum setpoint (SATmin = 12.8 ◦C and SATmax = 18.3 ◦C).
When the supply air fan is turned on, the initial setpoint is set to SAT0 = 18.3 ◦C and the reset logic
is active immediately. When active, for every time step t = 5 min, the net cooling request from the
downstream zones (R’) is calculated using Equations (3)–(5) above. If the R′ is above zero, SAT_spt is
decreased by a defined respond amount (SATres = 0.06 ◦C for each request) until the SAT_spt reaches
SATmin; if R′ is equal to zero, the SAT_spt is increased by a fixed amount (SATtrim= 0.12 ◦C) until the
SAT_spt reaches SATmax.

3.3. Test Results

3.3.1. Test Results of “Rogue Zone” Algorithm

The “rogue zone” auto-correction algorithm worked as expected on AHU01 and AHU02 during
the testing period. Figure 6 shows the results of the values for the requests and ignored requests
calculated on 4 March. The two heat maps in Figure 6 depict each zone (in the vertical axis) plotted
against the time of the day, for a single day. For each zone, the darker areas show when the requests
(red) and ignored requests (blue) happened during the day. R, Irouge_zones, and R′ were reevaluated
every five minutes. Taking 11:00 a.m. as an example, the vertical line marks the values of Ri, Irogue_zone_i,
R, Itotal, and R′ at 11:00 a.m.: eight zones (i.e., Rm 4107, Rm 411, Rm 4113, Rm 4203B, Rm 5113, Rm
5115, Rm 5116, and Rm 5204A) sent requests (R = 8), three zones (i.e., Rm 4107, Rm 5113, and Rm
5116) were identified as rogue zones (Irogue_zones = 3), and two additional zones were ignored by
default (Ide f ault = 2), summing up to a total of five zones ignored (Itotal = 5). R′ is therefore equal to 3,
based on Equation (3). This test confirmed that the system correctly calculated and implemented the
modified requests, ignoring the rogue zones.

254



Energies 2020, 13, 2598

Figure 6. Zone requests per zone (upper left), the ignored requests per zone (upper right), the sum of the
requests, the total of ignored requests and the net requests for all the zones of AHU01 on 4 March 2020.
The vertical line marks 11 a.m. on all the plots.

3.3.2. Test Results of “Improve AHU SAT Setpoint Reset” Algorithm

The auto-correction algorithm “Improve AHU SAT setpoint reset” successfully changed the SAT
setpoint of AHU01 and AHU02 in the BAS. As shown in Figure 7, the SAT setpoint changes followed
the routine described in Section 3.2. The supply fan was on for the whole time, since this AHU serves
laboratory areas. When R’ was larger than zero starting at 10:05 a.m., the algorithm slowly reduced the
SAT setpoint by 0.06 ◦C for each request every five minutes. Starting at 11:50 a.m., the R’ remained at
zero and the routine slowly increased the SAT setpoint by 0.12 ◦C every five minutes until it reached
SATmax (18.3 ◦C). The SAT setpoint remained at SATmax until R’ was larger than zero at 14:50 p.m.
Then, the SAT setpoint again slowly decreased when R’ was larger than zero and slowly increased
when R’ was zero.

Because both the original and corrected logic used feedback loops, a direct comparison of the
two was not possible without modeling the dynamic behavior of the system or collecting enough
data to perform a system-level evaluation. However, since the original controller was still active
(for backup purposes) we could qualitatively compare the time at which each algorithm would start
reducing the SAT setpoint in the morning. Figure 8 shows this comparison for two consecutive days
in AHU01. The red line represents the corrected setpoint that was calculated by the algorithm and
the blue line was the actual temperature that tracked the setpoint. The green line depicts the original
logic. As highlighted by the text, the original logic would try to reduce the temperature much earlier
than the corrective algorithm. This behavior was consistent across the testing period for both AHUs.
For AHU01, during 14 days out of the 34 days, the old logic started earlier, while during the other
20 days the system did not require cooling. Conversely, for AHU02, during 13 days the old logic
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started earlier, during one day it started later, and the other days it did not require cooling (the test
was conducted during a mild spring). Overall, the preliminary test was successful. It showed the
uninterrupted operation of the two algorithms in two AHUs for more than a month. The SAT tracked
the new setpoint throughout the whole testing period. The new control sequence did not cause any
occupant complaints, and it worked more efficiently than the previous one, although a precise savings
estimate was beyond the scope of the test.

Figure 7. The SAT setpoint of AHU01 after the execution of the auto-correction algorithm (4 March 2020).

Figure 8. Comparison of the new and the old setpoint control strategies in AHU01 during
3–4 March 2020.
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4. Discussion: Implementation Challenges and Solutions

The commercial partners faced a number of challenges when implementing the auto-correction
algorithms into the FDD tools. We organized these issues under four areas: (1) developing a secure
two-way communication between the FDD tool and the BAS; (2) incorporating operator approval;
(3) managing the customizations necessary to the specific BAS/site installation; and (4) managing the
potential conflict between the auto-correction and the BAS control actions. This section describes these
challenges, as well as the solutions that the partners came up with to mitigate them.

The differences in the solutions described below also stemmed from different FDD software
architectures, as well as different BAS network setups across the implementation partners. The FDD
products developed by the two partners were based on software platforms that ran from the cloud
with centralized fault libraries and analytics engines. These companies used additional hardware and
software installed on site to collect data and send it to the cloud. A third implementation partner
was the distributor of a third-party software and developed custom algorithms for various customers.
This software ran on the local BAS network and had direct access to it, allowing access to external
users via a virtual private network connection.

4.1. Develop a Secure Two-Way Communication Between the FDD and the BAS

Opening a two-way communication between the FDD system and the BAS was a challenge seen
across all project partners implementing fault auto-correction into their FDD product environment.
FDD tools typically read operational data from the BAS, run analytics and flag faults on the software
interface. Often, they do not have capabilities to write commands directly onto the BAS. As indicated
in Figure 1, the FDD tool commonly collects operational data using three pathways: (1) from the BAS
server database, (2) from a central BAS server via API and (3) directly via the BACnet IP network.
The first pathway prevents the FDD tool from writing back to the control system, therefore it cannot be
used to implement auto-correction procedures. The second one requires BAS-specific interfaces; thus,
implementers tend to avoid it. For this reason, when expanding the one-way interface to two-way
communication, all the partners selected the third pathway to write back directly via the BACnet
IP network.

The project partners mitigated the two-way communication challenge by upgrading their FDD
system infrastructure. Figure 9 illustrates the solutions for the two cloud-based FDD systems. The solid
line shows the original infrastructure, and the red dashed line shows the upgrade. In the first
cloud-based FDD case (Figure 9a), the BACnet stack (a software library allows users to add a native
BACnet interface to talk to the devices or applications in the BACnet network) of the FDD data
acquisition device was updated to include a “write” function. The local data acquisition device was
also updated to make API requests to the cloud FDD platform to retrieve the auto-correction command
information. This enabled the FDD system to send the auto-corrective command to the local device
and then to the writable properties used to control the BAS. In a cloud-based FDD system of another
partner (Figure 9b), the current BACnet library already had writing capabilities. To enable secure
communication with the cloud, the system architecture was changed. The standard data acquisition
device was paired with a new field device (an auto-correction execution device) specifically designed
to execute the new routines and log the interaction with the BAS. The cloud FDD engine initiated the
auto-corrective command onto the auto-correction execution device. The device then executed the
commands onto the BAS BACnet network and reported back the results to the cloud FDD engine.
The BAS data were still acquired by the existing FDD data acquisition field device and delivered to the
cloud FDD engine. The third on-premise FDD system was already capable of writing commands via
BACnet. It only needed to change a setting in the BAS to authorize the changes.
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(a) (b) 

Figure 9. Two-way communication infrastructure for (a) the cloud-based FDD system 1, and (b) the
cloud-based FDD system 2.

4.2. Incorporate Operator Approval

The second challenge faced by the partners was incorporating operator approval. The new
auto-correction feature affords the FDD technology a certain degree of control capability. The building
operators may be hesitant to trust this new capability and feel a lack of control. To mitigate this
challenge, one project partner updated the existing interface to make sure the users were allowed to
actively start, interrupt and track the auto-correction activities. Auto-correction enable and disable
functionality was added to the user interface (UI), and the name of the control variables, their current
value, and the new proposed values were provided to increase the operators’ awareness. All the user
and system activities of auto-correction are stored in a history log that is available to the user. Figure 10
shows a simplified mockup of the new UI displaying the auto-correction enable/disable functionality,
action history and other details. Another partner also developed new interfaces for auto-correction
authentication and acknowledgement.

 
Figure 10. Mockup of the new user interface (UI) developed by one partner, displaying the
auto-correction enable/disable functionality, the action history and other details (ASO – Automatic
System Optimization).

4.3. Manage BAS and Site-Specific Customizations

The traditional separation of the roles between the FDD and the BAS allowed the FDD tools
to develop general algorithms that were independent from some of the details about BAS and the
implementation of specific control programs. For instance, an algorithm that detects opportunities
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to save energy by shortening the AHU schedules did not need to know how these schedules were
implemented in the BAS, it just needs to analyze the data produced by them. However, auto-correcting
the same schedule meant overriding the operation of the BAS, therefore the developers must know many
more details about the specific implementation of the control logic to avoid unintended consequences.
The third challenge confronted was the lack of standardization in the BAS control logic, variables
and interfaces. The implementation partners reported issues in (1) deciphering the BAS control
sequences and identifying the exact control variables to override, (2) gaining access to these variables
and (3) gathering data with frequency and timeliness appropriate to the application. An example
of the first issue is the implementation of the “override manual control” algorithm described in
Section 2.2. Depending upon the BAS, the override can be accomplished via an “override” variable
Manual_override (whose value is 1—equipment is in manual control, 0—equipment is in automatic
control) or by the setting of the priority level of the BACnet points (e.g., 8—manual operator override,
16—default automatically operation) [27].

Accessing the proper control variable was another part of the challenge. The auto-correction
algorithms may require the FDD tools to be able to access the control variables that are not commonly
exposed to the outside by the BAS. An example is the PID-tuning parameters required by the “control
hunting” algorithm. One implementation partner reported being unable to retrieve these points via
BACnet for a site, since the BAS vendor used a proprietary solution. -The third issue emerged when
a partner implemented the algorithms described in Section 3. These routines need real-time data
updated every few minutes, since the algorithms are reevaluated continuously, while the existing BAS
was storing it at 15-minute intervals and transmitting it to the FDD tool once a day (to save memory
and bandwidth).

To address the challenges, all the partners had to spend significant time to understand and modify
the BAS programming and setup, in addition to its interface with the FDD tool. The parameters of
the BAS controller, gateway or server were changed to expose the necessary variables, making sure
they could be modified when needed. Sampling frequency and data transfer rate were increased to
implement some of the algorithms. A partner created a virtual point in the actual codes to accommodate
the settings of override in various BASs. The virtual point is a string semicolon delimited list of point
IDs that are mapped to any points that need to be changed from override in the BAS. A partner reported
that particular care had to be put into matching appropriate data types (e.g., binary, analog with
different precisions, arrays) used by the BACnet protocol, to avoid communication errors. All these
customizations varied by BAS vendor, hardware vintage and site configuration.

4.4. Manage Control Conflicts between the BAS and the FDD Tool

The last challenge reported pertained to the conflicts between the BAS and the FDD control actions.
Algorithms that make one-time changes to the BAS operation (e.g., the incorrectly programmed
schedule in Section 2.1) may be overridden by operators or the BAS logic at a later date. It is unclear
whether or not the auto-correction procedure should periodically update these variables. Moreover,
algorithms that continuously change variables may also conflict with the existing BAS sequence of
operation. An example is improving the AHU static pressure setpoint reset (Section 2.8) on a BAS
that already has a reset strategy. There is a need to understand which one takes precedence and if the
existing control sequences should be turned off.

To address the first issue, one implementation partner used an existing feature of the FDD platform
to separately track the active schedule and the most efficient schedule and let the operator decide
which one to activate. In addition, it logged all the changes to that schedule to offer more information
to the user. For the second issue, another partner set up a fallback mechanism in the BAS, for use with
the new FDD auto-correction algorithm that continuously modified the control setpoint. A watchdog
was added in the BAS programming to make sure the FDD tool was online. If the FDD tool went
offline, the BAS reverted back to the setpoint generated by the original control logic in the case of loss
of communication with the FDD tool.
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4.5. Other Considerations

The development and deployment of these algorithms stimulated an interesting discussion
among the partners and advisors of the project about the role of the FDD and the BAS. Typically,
the commercial FDD tools are developed as a software layer on top of the existing BAS. There exists
a natural separation of roles in this arrangement, in which the BAS actively controls the building
and the FDD tool observes its operation and provides insights and recommendations to the building
manager. However, some consider FDD tools as a new generation of BAS that can take over some of
its functionalities when it is necessary. At the beginning of the project, one facility manager expressed
the desire to implement Guideline 36 sequences [24] on a building being controlled by an obsolete
control system. To implement the sequences on that system, significant hardware upgrades and BAS
programming labor would be required. The code cannot be easily reused between controllers due to
the limitations of the control language, therefore this operation was not scalable and its implementation
on multiple systems was hampered. As an alternative, he suggested to host the sequences in the
significantly more modern FDD tool (algorithms 2.5, 2.8 and 2.9) and use the existing BAS as a simple
tool to collect data and provide direct control over the lower-level hardware. This strategy was
eventually implemented and was described in Section 3. Other partners disagreed, objecting that
extensive real-time control of the building is outside the scope of FDD tools. Business models of the
companies developing the tools may play a role in the way these new functions will be eventually
incorporated in the FDD products at the end of this project.

5. Conclusions and Future Work

This paper presented nine algorithms for HVAC systems that were designed to automatically
correct faults or improve operations relative to incorrectly programmed schedules, overriding manual
control, sensor bias, control hunting, rogue zones and less aggressive setpoints or setpoints setback.
It also showed preliminary tests confirming the efficacy of a subset of these algorithms, as tested in
a large commercial building. Finally, it discussed challenges faced during the integration of these
auto-correction algorithms into three commercial FDD tools and the solutions to these challenges
that were adopted by the project partners. The main challenges included: (1) developing a secure
two-way communication between the FDD tool and the BAS; (2) incorporating operator approval;
(3) managing the customizations necessary to the specific BAS/site installation; and (4) managing the
potential conflict between the auto-correction and the BAS control actions. The suggested solutions
will help future auto-correction developers address similar challenges.

With respect to automated fault auto-correction, future work will focus on more field testing
of the FDD integrated correction algorithms in a cohort of existing buildings. This will include the
evaluation of the technical efficacy and the performance of each correction routine, the evaluation of the
operations and maintenance benefits for each site in cohort and the characterization of challenges and
best practices. A second area of future work will entail the design and execution of a techno-economic
analysis to quantify the broader market opportunity to inform ongoing commercialization efforts.

The state of today’s FDD technology can be advanced through research focused on enhanced
diagnostic (as opposed to detection) approaches and methods for fault prioritization. Complementary
work to characterize fault prevalence based on empirical data from the field could also prove valuable in
guiding future FDD technology development and implementation efforts. There is also an overarching
need to navigate issues related to data management, integration, cybersecurity, and interoperability.
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Abstract: This study examines how the energy renovation of old detached houses affects the hourly
power consumption of heating and electricity in Finland. As electrification of heating through heat
pumps becomes more common, the effects on the grid need to be quantified. Increased fluctuation
and peak power demand could increase the need for fossil-based peaking power plants or call for new
investments to the distribution infrastructure. The novelty in this study is the focus on hourly power
demand instead of just annual energy consumption. Identifying the influence of building energy
retrofits on the instantaneous power demand can help guide policy and investments into building
retrofits and related technology. The work was done through dynamic building simulation and
utilized building configurations obtained through multi-objective optimization. Deep energy retrofits
decreased both the total and peak heating power consumption. However, the use of air-source heat
pumps increased the peak power demand of electricity in district heated and wood heated buildings
by as much as 100%. On the other hand, peak power demand in buildings with direct electric heating
was reduced by 30 to 40%. On the building stock level, the demand reduction in buildings with direct
electric heating could compensate for the increase in the share of buildings with ground-source heat
pumps, so that the national peak electricity demand would not increase. This prevents the increase of
demand for high emission peaking power plants as heat pump penetration rises. However, a use is
needed for the excess solar electricity generated by the optimally retrofitted buildings, because much
of the solar electricity cannot be utilized in the single-family houses during summer.

Keywords: single-family house; detached house; energy renovation; deep retrofit; power demand;
electric heating; ground-source heat pump

1. Introduction

The European Union (EU) aims to reduce CO2 emissions by 80% compared to 1990 levels by
the year 2050 [1]. The EU recognizes electrification of heating through heat pumps as one key step
towards decarbonization [2]. Since buildings are responsible for 40% of EU’s energy demand and
emissions, the Energy Performance of Buildings Directive (EPBD) was created to reduce emissions
caused by the operation of future buildings [3]. However, despite tightening regulation of new
buildings, the existing energy-inefficient building stock that has mostly been built before modern
regulations remains the biggest source of building-based emissions. To tackle this issue, the EU has
called for national retrofit strategies to effect a positive change in the existing buildings as well [4].
Finnish building code also requires the consideration of energy efficiency whenever renovation tasks
are performed on buildings [5]. This is important, as 79% of Finnish buildings have been built before
the year 2000 [6] and certain mandatory renovation work provides a chance for lower cost energy
efficiency improvements as well.
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The influence of building retrofits on energy demand has been examined in many studies. The case
of various Italian building types was examined in [7]. The results show the cost-effectiveness of
different levels of energy efficiency, showing that energy consumption in single-family houses could go
down by up to 77%. Similarly, the energy saving potential in Swedish detached houses was found to
be 65–75% in [8]. Here the focus was on standardized buildings built between the years 1961 and 1980,
increasing the usability of the suggested actions. Four reference buildings from different regions were
dynamically simulated in IDA-ICE, which is a multi-zone simulation tool for evaluating indoor thermal
conditions and building energy consumption. Retrofit measures were added step-by-step based on
their prevalence in real life, until the energy efficiency matched passive houses. In Ireland, deep energy
retrofits in semi-detached houses were only feasible with government grants [9]. This study used six
different environmental indicators and included the environmental impact of the materials needed for
retrofitting in addition to the operational impact. Thirty-five pre-determined retrofit packages were
calculated using quasi-steady state equations in the DEAP software, a web-based tool for producing
Building Energy Ratings. In the Finnish context, energy retrofits have been examined for apartment
buildings [10,11], where both primary energy demand and CO2 emissions could be significantly
reduced cost-effectively, especially using heat pumps, but also including improvements to the building
envelope. In Finnish office buildings CO2 emissions could be cost-effectively reduced by 50% while
preserving thermal comfort [12]. In Finnish detached houses [13] life cycle costs and CO2 emissions
could be most effectively lowered by deep energy retrofits in buildings with direct electric or oil-based
heating. In these studies, dynamic simulation with IDA-ICE was combined with multi-objective
optimization by a genetic algorithm, to go through hundreds of retrofit packages. Heat pumps in
particular stand out as a good heating solution for the future [14]. As heating demand is increasingly
met with electricity, short term fluctuations in electric power use can be expected to increase. However,
all these studies have reported their results only on an annual level, leaving the seasonal changes
unknown and providing no information about the peak power levels on short timescales.

The power levels in shorter time scales are important for the development of the energy generation
infrastructure, especially as the share of undispatchable renewable energy increases. Investments into
new power plants are based on capacity-based costs and the variable energy prices [15], which are
again influenced by the instantaneous power demand and the available energy generation capacity.
Increase of peak power demand may call for increased investments to power transmission lines [16] or
to demand response services which are used to shift peak demand to lower load hours [17]. Strategies
for reducing peak demand under uncertain loads are being developed such as in [18], which highlights
the importance of energy flexibility in buildings. Important strategies include the price mechanism
effect on occupant’s behavior, centralized energy management with demand response and HVAC
peak load controls. A review on power system planning studies concluded that when modelling the
power grid, smaller details such as heating systems should also be taken into account [19]. On the
building side, a Norwegian study did report some monthly results on the deep retrofit of apartment
buildings [20], though the main goal was to show the feasibility of evaluating retrofits using only the
hottest and coldest months. A Spanish study showed the monthly renewable energy use and changes
in peak demand after building retrofits [21]. Peak power demand reduction was also the focus of a
study made for Dubai’s cooling dominated climate [22]. Hourly power demand after building retrofits
has been reported for Finnish apartment buildings [23], but a similar study on detached houses was
not found. In many studies on building energy retrofits, heat pumps have been presented as the
lowest emission heating solution. This is to be expected as there is a lot of low emission electricity
generation in the Nordic countries, such wind power (Denmark and Sweden), nuclear power (Finland
and Sweden), and hydro power (Finland, Norway, and Sweden) [24]. However, in a Sweden-based
study on building retrofits, new heat pump systems were assumed to increase the total electricity use,
thus forcing the use of high emission fossil fuel sources, under the assumption that all existing low
emission generation is already in use [25]. This raises the question of whether the demand in other
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buildings could be reduced to make the existing supply of low emission electricity to stretch further or
if the benefits of heat pumps have been exaggerated.

Many articles have been published on emission reduction and energy efficiency improvements
in different building types. However, typically only annual changes to emission levels or energy
consumption are reported, while few retrofit studies focus on the potential effects on the grid. In this
paper, the changes in power levels of Finnish detached houses with different heating systems are
examined individually and on the building stock level. The studied scenarios are based on previously
optimized emission reducing configurations. The key questions are: What is the impact of deep energy
retrofit on the seasonal and peak district heating and electric power demand of Finnish detached
houses? How does the excess solar electricity generation of optimized building configurations compare
to the hourly demand? What is the potential impact of large-scale building retrofits and electrification
of heating on the electric power requirements of the whole detached house building stock?

2. Methods and Materials

2.1. Simulation and Optimization

To estimate the effect of energy retrofits on power demand in single-family houses, Finnish houses
of various ages were modelled and simulated in the IDA-ICE dynamic energy simulation software [26],
which has been validated, for example, in [27] and [28]. Hourly space heating and ventilation demand
were obtained through simulation, while the domestic hot water [29] and electric equipment loads [30]
were based on measured data. MATLAB was used for pre-processing tasks before the IDA-ICE
simulation and for energy balance and cost calculations after the heat loads were obtained. Retrofitted
configurations of the reference buildings were generated through multi-objective optimization, using
the MOBO tool [31] with the genetic algorithm NSGA-II [32], as described in Figure 1. Finally, a few
optimally retrofitted building configurations were selected for further study. The calculations are based
on previous simulation work of the authors [13], where Finnish single-family houses of various ages
were retrofitted to reduce emissions.

Figure 1. The process chart for the utilized simulation and optimization method.

2.2. Building Descriptions

The base building was a single-family house (SH), which has previously been used as a type
building [33], with two storeys and a heated net area of 180 m2. The studied buildings were split into
four age categories, based on their construction year and the building code in effect at the time: SH1
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(<1976), SH2 (1976–2002), SH3 (2003–2009), and SH4 (>2010). Each age category has tighter thermal
insulation requirements than the previous. The ventilation system for SH1 was natural ventilation and
for SH2 it was mechanical exhaust ventilation without heat recovery. SH3 utilized mechanical supply
and exhaust ventilation with heat recovery as did SH4, but with a higher heat recovery efficiency.
The details of the reference building properties are shown in Table 1.

Table 1. Properties of the reference single-family houses [34].

Building Age Class SH1 SH2 SH3 SH4

Construction years –1975 1976–2002 2003–2009 2010–

U-values of
envelope

(W/(m2·K))

External wall 0.58 0.28 0.25 0.17

Floor 0.48 0.36 0.25 0.16

Ceiling 0.34 0.22 0.16 0.09

Doors 1.4 1.4 1.4 1.0

Windows 1.8 1.6 1.4 1.0

Total solar heat transmittance (g) 0.71 0.59 0.46 0.46

Direct solar transmittance (ST) 0.64 0.52 0.39 0.39

Air tightness
n50, (1/h) 6 4 3.5 2

q50m3/(h m2) 15.6 10.4 9.1 5.2

Ventilation

Type
Natural

ventilation
Mech. E.

vent.
Mech. S.&E.

vent.
Mech. S.&E

vent.

Heat recovery temp. eff. 0 0 0.55 0.65

Ventilation rate
(L/s/m2)

0.30 0.33 0.36 0.36

Total air exchange
rate (1/h)

0.41 0.46 0.5 0.5

SFP (kW/m3/s) 0 1.5 2.5 2

Heating setpoint (◦C) 22 22 21.5 21

In addition, the buildings were divided according to the main heating system in use in the
building: district heating (DH), wood/oil boiler, direct electric heating, or ground-source heat pump
(GSHP). The share of different heating systems in the building stock within each building age category
is shown in Figure 2.

Figure 2. Distribution of main heating systems in the building stock within each building age category.
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The domestic hot water (DHW) use profile was based on measured data from Finnish buildings [29]
and was normalized to 35 kWh/m2 per year [35], though distribution losses of 0.5 W/m2 were assumed.
While the buildings of different ages had different space heating demands, the DHW demand was the
same for all buildings. Lighting and electric appliance profiles were based on measured profiles from
1630 Finnish households [30], and the consumption and internal gains were normalized to 5.3 kWh/m2

and 15.9 kWh/m2 per year, for lighting and equipment, respectively, to match the Finnish building
code [35].

In total, 75% of the Finnish building stock is located in the Southern and Western Finland (Zones I
and II), which is why the building simulation used the TRY2012 Helsinki-Vantaa weather data that
describes these regions [36]. The average annual air temperature is 5.6 ◦C with an annual solar insolation
of 970 kWh/m2 on a horizontal surface. The heating degree day value is 3952 Kd (at indoor temperature
of 17 ◦C) in this heating dominated climate [37].

2.3. Retrofitted Building Configurations

Figure 3 shows the possible retrofit paths for each building. It was assumed that buildings with
district heating or direct electric heating would keep their main heating system the same, while other
retrofits were performed. Buildings with oil or wood boilers would switch to (or keep using) wood
boilers or ground-source heat pumps. No retrofits were made for buildings originally equipped with
a GSHP. The retrofit measures used in the optimization were the increased thermal insulation of
the building envelope, replacing old windows with more efficient ones, installing a new ventilation
system with heat recovery or variable air volume ventilation (VAV), replacing old water radiators
with low temperature radiators, installing solar thermal or photovoltaic (PV) solar electric systems,
and installing a ground-source heat pump (GSHP) or an air-to-air heat pump (AAHP).

Figure 3. Top: The ventilation and heat distribution systems for the reference buildings. Bottom: The
retrofit paths considered.
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In this study, three versions of the buildings are presented for each configuration: the original
unrenovated case (Ref), a building retrofitted to minimum cost levels (D), and a building retrofitted to
significant emission reductions (B). The original optimization study included dozens of Pareto optimal
solutions for each building type, but these two optimized levels were selected to limit the amount of
cases to be presented while still providing a range of feasible solutions.

Table 2 shows the building configurations of the oldest building type SH1, obtained in the earlier
optimization study. It shows the emissions and energy demand as well as the thermal insulation levels
and other system properties. The same information for the rest of the building age classes can be found
from Tables 3–5.

3. Results

3.1. Buildings With District Heating

This section shows the specific power demand of heating and electricity use for all building
configurations that use district heating. Both the original and the retrofitted cases are presented.
Figure 4 (left side) shows the hourly duration curves of district heating use in all applicable buildings.
The blue lines show the district heating demand in the reference cases, highlighting the improvements
in energy efficiency along with the tightening building code (new buildings consume less energy).
The green lines show the district heating demand for buildings that have been retrofitted to the
minimum cost level, D. This includes the use of an air-to-air heat pump, a slightly improved building
envelope and some solar thermal capacity. For the older building types SH1 and SH2, a major drop in
both peak DH demand (−33% and−23%, respectively) and average DH demand is seen. The differences
are the smallest where the demand is the lowest. Finally, the red lines show the DH demand for
buildings that have been significantly retrofitted to level B. This includes a further improved envelope
and a large solar thermal capacity. For half of the year, no district heating is needed at all because of
abundant solar energy. The peak DH demand goes down by 30 to 50% in all cases, as generally does
the DH demand.

The duration curves give no indication on the temporal distribution of power demand. Having
several hourly chronological lines would make the figure too cluttered to read, which is why Figure 4
(right side) shows the weekly maximum and minimum DH power consumption instead. However,
instead of the single highest demand hour, the sustained peak power demand, that is, the average of
the top (or bottom) 5% of weekly demand is shown. Each week was sorted according to hourly power
demand and then the 8 hours (5% of 168 weekly hours) with the highest (or lowest) demand were
averaged to obtain the plotted values. Together the values show how much the power demand varies
within shorter periods during the whole year and give an indication on the required energy storage
capacities. In the B cases, the summertime heating demand goes to zero, thanks to solar energy.

Similar to the heating demand, Figure 5 presents the electricity consumption of all district heated
buildings. It can be seen on the left side that the minimum electricity consumption for the Reference
and D cases remains slightly positive. However, in case B, the solar PV capacity grows so high that
the exported excess solar power exceeds the maximum purchased power as much as six times. This
increases the load on the grid, but could support the energy needs of other users in the grid. However,
such an influx of power might require strengthening of the local grid, which was not taken into account
in the optimization. The use of air-source heat pumps in the retrofitted buildings increased the peak
electric power demand by as much as 60% compared to the reference case, but the absolute value of
the increase is much lower than the power exported from the PV system. The reported values include
only the heating use of AAHP, as cooling energy was not considered in this study. The right side of the
figure shows the sustained peak (and bottom) power demand. This is the average power of the 5% of
weekly hours (8 h) with the highest (or lowest) demand.
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Figure 4. District heating use of all district heated houses. On the left: The hourly duration curve of
district heating (DH) power demand for the whole year. On the right: The sustained peak/bottom DH
power demand. Solid lines depict the weekly top 5% of demand and dotted lines the weekly bottom
5% of demand.
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Figure 5. Electric power demand of the district heated buildings. Negative values represent exports of
excess electricity back to the grid. On the left: The hourly duration curve of power demand for the
whole year. On the right: Sustained peak/bottom power demand. Solid lines depict the weekly top 5%
of demand and dotted lines the weekly bottom 5% of demand.
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3.2. Buildings with Wood Boilers

The wood boiler use in the wood heated buildings closely matches that of district heating in the
previous section. The electricity use for buildings with wood-based heating is also similar, as shown in
the duration curves in Figure 6. The retrofitted cases have higher maximum power demand, because
part of the wood-based heating was shifted to the air-source heat pumps in both the D and B cases.
In the minimum demand side, we see that the B cases have very large exports of electricity due to the
large solar panel arrays installed in the high investment cases.

The sustained weekly peak power demands are also shown in Figure 6 (right side). The sustained
peak electricity demand in summer is the lowest for the B cases, due to self-consumption of solar
electricity. In winter, the B cases have the highest peak demand, because of higher capacity air-source
heat pumps. Solar panels produce very little power in the Finnish winter and do not influence
peak demand.

3.3. Buildings with Direct Electric Heating

Figure 7 shows the duration curves of electricity use for buildings with direct electric heating.
Electric heating in the oldest building (SH1) increases the peak demand over ten times compared
to the non-electrically heated buildings. However, with electric heating the retrofits significantly
reduce electricity demand, unlike in the DH and wood boiler cases. Here the absolute values of the
maximum demand and the maximum solar energy exports are of the same scale in the retrofitted cases.
Qualitatively, all the different age classes have similar sets of duration curves.

Figure 7 also shows the sustained peak and minimum power levels (the average of 5% of weekly
max/min hours) for all cases with direct electric heating. During summer, the peak demand in the
retrofit B case is similar to the minimum demand in the reference case for all age classes. In winter,
the sustained peak demand in SH1 was 70, 50 or 40 W/m2 for the Ref, D and B cases, respectively,
showing a great reduction due to the retrofits. The difference was smaller for the newer building,
such as SH4, where the sustained peak demands were 45, 36, or 30 W/m2, for the Ref, D and B
cases, respectively.

3.4. Buildings with Ground-Source Heat Pumps

Use of the GSHP produced a major decrease in peak electric power demand compared to direct
electric heating. Duration curves of the GSHP cases are shown in Figure 8. Comparing the original
GSHP systems to the retrofit scenarios, in the case of SH1, the D level retrofit reduced peak demand
from 55 to 43 W/m2 while the capacity ratio (HP power vs. space heating demand) was 68% for both
cases. In SH2, SH3, and SH4 there was no difference in peak power when comparing the reference
buildings with original GSHPs and the D level retrofits. The power demand increased significantly
during the peaks compared to the base level due to capacity constraints of the GSHP. The systems
did not cover 100% of heating demand and electric backup heating was needed, thus significantly
increasing demand during peak hours. With the level B retrofits, which included significantly improved
thermal insulation of the building envelope, the heat pump size was sufficient (93% of space heating
demand in SH2 and over 100% for the rest) and peak power was in check. As in the other cases, the PV
arrays were oversized and the power exported to the grid was comparable to and even higher than the
demand from the grid.

The seasonal variance of the electric power demand is shown on the right side of Figure 8, which
shows the weekly top and bottom 5% of power flow. In SH1, retrofit D reduced sustained winter peak
demand from 50 to 36 W/m2, while in SH2 and SH3 there was no difference. In SH4, retrofit D actually
had higher peak demand, because the GSHP was sized down from 83% capacity ratio to 69% and thus
the electric backup heater saw more use. Retrofit B shows major decreases in power demand during
the entire heating season for all building age classes. It also significantly lowers the absolute variance
between the peak demand in high and low demand time periods. For example, during weeks 1 to 5 in
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the case of SH2, the peak demand changes by 15 W/m2 in the reference and retrofit D, but in retrofit B
the change is only 5 W/m2. This is due to the sizing difference of the GSHP systems. In the retrofit B
cases the GSHP capacity is close to peak demand, which means that electric backup heating with high
power demand is not needed. In both the retrofit levels D and B, the exports of surplus solar electricity
happen at high power. Especially in level B, the peak power in exports in summer is 1.5 to 3 times as
much as the winter demand peak. Depending on the strength of the distribution grid, the optimal
solution may not be feasible after all.

Figure 6. Electric power demand of the wood-heated buildings. Negative values represent exports of
excess electricity back Table 5 of demand, and dotted lines depict the weekly bottom 5% of demand.
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Figure 7. Electric power demand of the buildings with direct electric heating. Negative values represent
exports of excess electricity back to the grid. On the left: The hourly duration curve of power demand
for the whole year. On the right: the sustained peak/bottom power demand. Solid lines depict the
weekly top 5% of demand, and dotted lines depict the weekly bottom 5% of demand.
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Figure 8. Electric power demand of the buildings with ground-source heat pumps. Negative values
represent exports of excess electricity back to the grid. On the left: The hourly duration curve of power
demand for the whole year. On the right: Sustained peak/bottom power demand. Solid lines depict the
weekly top 5% of demand, and dotted lines depict the weekly bottom 5% of demand.
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3.5. Effect on Building Stock

This section shows the effect these energy renovations could have on the whole building stock,
namely the electricity consumption levels. Some retrofit actions increase electricity consumption, while
others decrease it.

Significant changes in both district heating and electrical power levels were realized with energy
retrofits in all the building age categories. In the previous study [13], it was found that switching to
electrified heating resulted in significant emission reductions, when monthly average emission factors
of Finnish electricity generation were used. However, as the number of retrofitted buildings goes up,
the changes in consumption patterns start to influence the national grid. With increased electricity use,
the average emission factors may no longer be reasonable. Thus, the changes in DH and electricity
demand need to be quantified on the building stock level.

To estimate the potential influence of retrofits on a larger scale, assumptions about the retrofit
levels were made in reference [13]. Of buildings that use wood or oil boilers for heating, 50% switch to
GSHP and the other 50% switch to or keep using a wood boiler, while also doing other improvements.
Buildings already equipped with GSHP are not renovated. In the other buildings, the main heating
system remains unchanged while other retrofit actions are performed as described in Tables 2–5 and
reference [13]. The buildings are retrofitted to either the minimum cost level D or the costlier but high
impact level B.

The total annual electricity demand in each scenario is shown in Figure 9. Buildings with
direct electric heating consumed most of the electricity in the base scenario. In both of the retrofit
scenarios, the electricity consumption of ground-source heat pumps increased significantly. However,
the improved energy efficiency of buildings with direct electric heating more than compensated for the
increase in heat pump use and the total electricity consumption went down in both the scenarios D
(−11%) and B (−38%). The total PV capacity of the retrofitted building stock was 4400 MW in scenario D
and 5600 MW in scenario B. It was assumed that no PV panels were installed in the reference buildings,
although at the end of 2018 there was actually a total installed solar electric capacity of 120 MW in
Finland [38]. Solar electricity produced in the retrofitted buildings significantly exceeded how much
could be used in detached houses without energy storage technologies. Self-consumed solar electricity
has been subtracted from the demand values presented, but the surplus amounts are shown separately
as negative demand. A small part of the surplus could be utilized in other detached houses (Usable
solar), which have unmet electricity demand, but the majority of it is excess energy that needs to be
used in some other sector or by other building types (Excess solar).

The electric power levels in the whole building stock are shown in Figure 10. It shows the weekly
top and bottom 5% of power as well as the hourly duration curves. Like in the individual building
level, the excess solar power production was significant in the whole building stock as well. Notably,
in retrofit scenario D, the peak demand during winter grew compared to the reference scenario,
even though the total electric energy demand went down (as shown in Figure 9). In retrofit scenario B,
the peak demand remained almost the same as in the reference scenario, even though the annual energy
demand was significantly lower. This is elaborated in the duration curve of Figure 10, where the power
demand of scenario B is lower than the original scenario for every moment after the peak. The largest
differences are seen after hour 6570, when the large PV arrays of the retrofitted scenarios result in
significant excess power. Solar electricity reduces power demand mainly when the demand is not very
high anyway and has no effect on the peak demand. On the other hand, the large PV capacities greatly
increased the power flow during the summer. In scenario B, the summertime export power reached 5
GW, while the imported peak power was only 4 GW.
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Figure 9. Annual electricity demand for the whole detached house stock. Also shown is the excess
solar electricity produced in the buildings. Usable solar is surplus production from some detached
houses that could be used in other houses, while Excess solar is surplus that needs to be used in some
other sector (values presented).

Figure 10. Sustained peak and bottom electric power (5% of weekly hours) in the whole building stock
with the original systems and in the retrofit scenarios D and B. Also shown are the hourly duration
curves of the same original data.

3.6. Summary

In DH and wood heated cases, the energy retrofit decreased the use of DH and boiler, but increased
electricity consumption due to the air-source heat pumps that were included in all optimal solutions.
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Solar power did not influence peak power demand. In buildings with a ground-source heat pump
or direct electric heating, the electricity consumption went down for both the D and B level retrofits.
From the national and regional energy system point of view, it is useful to know the range of power
demand of the buildings before and after the retrofits. These results are shown in Table 6. Shown
in the table are the maximum and minimum (single hour) power demand for the month of January
(high demand and emissions) and July (low demand and emissions). Also shown is the sustained
peak/bottom power demand, which is the average power of the 5% of hours in the month (37 h) with
the highest/lowest demand. Finally, it shows the median power demand of the whole month. Negative
values represent exports of excess solar electricity back into the grid.

Table 6. Electric power demand for all reference and retrofit cases. Results are shown for January (a
high emission month) and July (a low emission month). The reported values are the absolute maximum
and minimum power demand, the monthly top/bottom 5% of power demand (average power of 37
highest/lowest demand hours) and the median power demand. Negative values represent exports of
excel solar energy to the grid.

Case
January, Electric Power (W/m2) July, Electric Power (W/m2)

Max Top 5% Median Bottom 5% Min Max Top 5% Median Bottom 5% Min

SH1

DH Ref 6.5 6.2 3.1 2.3 2.3 4.2 3.9 1.3 0.7 0.7

DH D 9.7 9.1 6.1 5.3 4.7 4.2 3.9 1.3 0.8 0.7

DH B 11.2 9.7 6.4 −5.7 −29.6 3.8 3.0 −1.3 −32.8 −35.5

Elec Ref 75.3 70.1 41.4 30.7 26.8 19.3 13.5 6.8 1.9 1.5

Elec D 56.0 50.1 23.7 6.3 −36.5 9.4 6.3 −0.7 −42.2 −45.7

Elec B 45.4 39.7 19.6 0.5 −33.9 4.4 3.6 −1.3 −37.3 −40.4

GSHP Ref 51.2 45.1 15.1 10.9 9.6 6.7 6.6 3.1 1.3 1.0

GSHP D 38.8 33.3 11.4 −3.1 −36.1 6.0 4.7 −0.2 −45.8 −49.6

GSHP B 16.5 13.9 8.2 −7.4 −36.9 3.7 2.9 −2.1 −42.6 −46.0

Wood Ref 6.5 6.2 3.1 2.3 2.3 4.2 3.9 1.3 0.7 0.7

Wood D 9.7 9.1 6.1 5.3 4.7 4.2 3.9 1.3 0.8 0.7

Wood B 13.9 11.0 5.7 −2.8 −20.4 3.9 3.1 −0.5 −23.1 −25.0

SH2

DH Ref 6.8 6.5 3.4 2.6 2.6 4.5 4.2 1.6 1.0 1.0

DH D 11.5 10.1 7.1 5.6 5.0 4.5 4.2 1.6 1.1 1.0

DH B 13.5 10.7 5.9 −6.1 −29.3 4.1 3.3 −1.0 −32.5 −35.2

Elec Ref 56.5 52.0 32.4 24.1 22.4 13.9 13.4 7.1 2.2 1.9

Elec D 43.3 39.0 23.3 8.0 −26.5 9.6 6.5 −0.1 −32.5 −35.2

Elec B 36.0 30.8 18.8 −0.9 −29.3 4.1 3.3 −1.0 −32.5 −35.2

GSHP Ref 35.8 30.8 12.7 9.2 8.5 7.0 6.9 3.4 1.5 1.3

GSHP D 35.8 30.9 11.9 −3.2 −35.7 6.3 5.0 0.2 −45.5 −49.3

GSHP B 20.6 15.1 8.4 −4.6 −29.3 4.1 3.3 −1.0 −32.5 −35.2

Wood Ref 6.8 6.5 3.4 2.6 2.6 4.5 4.2 1.6 1.0 1.0

Wood D 11.5 10.3 7.3 5.8 5.2 4.5 4.2 1.6 1.1 1.0

Wood B 13.7 10.9 6.0 −2.9 −20.0 4.2 3.4 −0.2 −22.8 −24.7

SH3

DH Ref 7.4 7.0 4.0 3.2 3.2 5.1 4.8 2.2 1.6 1.6

DH D 8.9 8.5 5.3 4.2 4.1 5.0 4.7 1.9 1.3 1.2

DH B 12.5 10.0 5.6 −6.4 −29.3 4.4 3.6 −0.8 −32.5 −35.2

Elec Ref 56.2 50.5 30.0 21.5 19.1 14.6 14.0 7.5 2.9 2.5

Elec D 45.4 39.2 21.1 3.2 −36.5 9.5 5.6 −1.0 −42.1 −45.6
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Table 6. Cont.

Case
January, Electric Power (W/m2) July, Electric Power (W/m2)

Max Top 5% Median Bottom 5% Min Max Top 5% Median Bottom 5% Min

Elec B 38.0 32.2 17.2 −1.8 −33.9 4.4 3.6 −1.2 −37.3 −40.4

GSHP Ref 31.5 24.9 10.7 7.7 7.1 7.6 7.5 3.9 2.1 1.9

GSHP D 32.5 25.8 9.5 −5.9 −37.1 6.8 5.5 0.3 −45.4 −49.2

GSHP B 16.4 13.4 7.7 −8.2 −38.2 4.3 3.6 −1.6 −42.2 −45.7

Wood Ref 7.4 7.0 4.0 3.2 3.2 5.1 4.8 2.2 1.6 1.6

Wood D 8.9 8.5 5.3 4.2 4.1 5.0 4.7 1.9 1.3 1.2

Wood B 12.0 9.6 5.5 1.5 -6.1 4.7 4.2 1.3 −8.2 −8.9

SH4

DH Ref 7.2 6.9 3.8 3.0 3.0 4.9 4.7 2.0 1.5 1.4

DH D 8.8 8.3 5.1 4.1 3.4 4.8 4.6 1.8 1.2 1.2

DH B 11.9 9.5 5.3 −6.8 −29.2 4.4 3.6 −0.8 −32.5 −35.2

Elec Ref 50.8 45.1 25.7 17.5 15.8 14.3 13.8 7.3 2.5 2.2

Elec D 41.5 35.5 18.3 0.7 −36.6 9.4 5.2 −1.1 −42.2 −45.7

Elec B 37.0 30.4 15.9 −1.5 −29.2 4.4 3.6 −0.9 −32.5 −35.2

GSHP Ref 26.0 20.0 9.2 6.5 5.9 7.4 7.4 3.7 1.9 1.8

GSHP D 30.3 24.2 8.9 −5.8 −37.3 6.7 5.4 0.5 −45.1 −48.9

GSHP B 16.6 13.5 7.7 −5.6 −29.3 4.4 3.6 −0.9 −32.5 −35.2

Wood Ref 7.2 6.9 3.8 3.0 3.0 4.9 4.7 2.0 1.5 1.4

Wood D 8.8 8.3 5.1 4.1 3.4 4.8 4.6 1.8 1.2 1.2

Wood B 12.2 9.5 5.3 −6.9 −29.3 4.4 3.6 −0.9 −32.5 −35.2

Building
stock

Original 26.4 23.4 13.8 10.4 9.3 6.9 6.8 3.4 1.5 1.3

Retrofit D 31.3 27.5 13.8 5.4 −14.0 6.7 5.0 1.2 −20.3 −22.0

Retrofit B 26.4 22.2 11.6 −1.0 −24.1 5.0 4.0 −0.3 −29.3 −31.7

In January, retrofitting district heated or wood heated buildings increased median electric power
demand by 33 to 108% or 1.3 to 3.7 W/m2. The increase was due to the air-source heat pumps included
in all the retrofitted cases. Switching from a wood boiler to GSHP increased median power demand by
95 to 272%. This was 5.1 to 8.5 W/m2 for the D level retrofit and 3.7 to 5.2 W/m2 for the B level retrofit.
The increase was smaller for the new buildings SH3 and SH4. The maximum power demand increase
in the switch from wood to GSHP was much larger. Level D retrofit increased maximum power by 23
to 32 W/m2 and level B retrofit increased it by 9 to 14 W/m2. In July the difference between peak and
median demand is smaller. The largest effect is the solar electricity production, which is seen as highly
negative minimum and sustained bottom power demand.

In January, the median electricity demand in the electrically heated buildings was reduced by as
much as 22 W/m2, while the maximum power demand was reduced by up to 30 W/m2. In buildings
with GSHP, retrofit B reduced maximum power demand by 9 to 35 W/m2 (36 to 68%), depending on
the building age. Median power demand was reduced by only 2 to 7 W/m2. The large difference
between these changes was caused by electric backup heating, which is only used during peak demand
hours. In the GSHP B cases, the heat pump capacity was large enough to meet all loads without
backup heating.

The results for the building stock scenarios (as described in Section 3.5.) are shown at the end
of Table 6. In the detached house building stock, electrically heated buildings (with heat pumps
or direct electricity) make up a significant portion of the houses, especially in the retrofit scenarios
(as described in Section 3.5). The maximum combined specific power of the building stock was below
that of GSHP buildings only, but above that of wood and DH heated buildings. The maximum power
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in the Retrofit D scenario was increased vs. the Original case, but remained on the original level in the
Retrofit B scenario. The retrofits in electrically heated buildings reduced the power demand enough to
compensate for the higher penetration of heat pumps. The median electrical power demand in January
was 13.8 W/m2 for the Original and Retrofit D scenarios and was reduced to 11.6 W/m2 in the Retrofit
B scenario. In July, the power demand never rose above 7 W/m2.

4. Discussion

Air-to-air or ground-source heat pumps were utilized in all optimal retrofit solutions. Thus, some
buildings will increase their electric power demands on the grid. Other studies have therefore assumed
that new heat pumps cannot use the average low-emission electricity of the grid and would instead
need to utilize the marginal production that is typically high emission coal generation [25]. However,
the issue can be bypassed if the existing loads are lowered at the same time as new ones are added.
This was the case in this study on the building stock level. New heat pumps increased electricity
demand in the retrofitted wood heated or district heated buildings, but this was offset by the same
solutions (heat pumps and envelope improvements) reducing electricity demand in the most power
intensive buildings that were heated directly with electric radiators or electric boilers.

The optimization of retrofit solutions favored very large PV systems (4400 MWp and 5600 MWp)
for the scenarios aiming for the largest emission reduction. However, the majority of the solar electricity
generated by the oversized systems could not be used at the buildings and had to be exported to
the grid. The maximum power levels of the exports were several times larger than the peak power
demand in building without electric main heating systems. In those cases, the high-power requirement
of the solar arrays could be a problem for the distribution grid, if it is not designed to handle such
power. However, in electrically heated buildings the peak winter demand was on a similar level as the
exports and the grid would presumably be able to handle the loads. However, a study on integration of
variable renewables in the Finnish grid estimated that more than 1100 MWp of solar electricity would
decrease wind energy integration potential and significantly increase costs [39]. This shows the need
for an additional study that looks at the building stock in more detail, while also including the effects
of the national power grid and international transfers through the Nordic electricity market.

With the large amounts of excess solar energy going to the grid, the electricity spot price would
likely drop. Solar electricity is produced in all buildings at the same time, so with enough excess
power the price could go to zero or even to negative values. This would influence the LCC of the
building retrofits, by lowering the lifetime value of solar electricity generation. Thus, if large scale
retrofitting was done, the cost-optimal PV array size would go down. To avoid this, more ways to
use the electricity are needed. Communities could use seasonal thermal energy storage to shift the
use of electricity in summer to meet heating needs in winter. For example, solar electricity combined
with borehole thermal energy storage for Finnish conditions was examined in [40]. Typically, demand
response and short-term thermal energy storage in water tanks is also useful for increasing the value
of solar electricity [41,42], but in the retrofit cases of the current study, solar thermal collectors were
also included and handled most of the heating demand in summer. District heating could be produced
with heat pumps [43]. Totally new uses for electricity are likely to appear. For example, the number of
new electric car registrations in Finland has almost tripled in a year, though the absolute numbers
are still low [44]. Other uses for excess electricity are in the energy intensive Finnish industry [45] or
synthetic fuel production (also known as power-to-X) [46].

When GSHP was utilized, the annual peak electricity demand was significantly lower for the
retrofit B cases than the original or retrofit D cases. This was due to higher heat pump thermal power
capacity relative to the heating demand. When the heat pumps were sized to 60% or so of peak demand,
electric backup heaters saw more use. Sizing the heat pump to above 90% made the peak electricity
demand drop, also making the daily variance in demand smaller. This helps in sizing the electricity
distribution infrastructure and designing energy storage systems. It is easier to optimize an energy
storage system for power or energy capacity compared to having to maximize both.
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The energy demand data for all the buildings were obtained through simulation. While dynamic
simulation with IDA-ICE has been shown to be accurate, the results are sensitive to the background
assumptions. Different age classes of single-family houses were modelled, but the shape and size
of the basic building was the same for every case. The results could be different for smaller houses.
In addition, only the southern climate zone of Finland was used for weather input data, creating
a southern bias in the data. Further north, heating demand would be higher while solar energy
generation would suffer. However, the majority of houses are located in the southern zone. Doing
detailed calculations for two more climate zones would have tripled the number of cases and the need
for time-consuming optimization. The results were obtained using the Test Reference Year 2012. Since
building retrofitting is a long-term investment, climate change can influence the energy demand of the
buildings during the lifetime of the buildings, as we move towards the year 2050. Cooling demand was
ignored in this study, but it could be that as air-to-air heat pumps become more common, people will
start using them for cooling as well, even though the heat pumps were purchased mainly for reducing
heating expenses. This would increase the electric loads during summer, though this increase could
mostly be mitigated by the increased amount of solar power.

The changes in the building stock were accounted for in a simplistic way, assuming all buildings
are immediately retrofitted. In practice, many buildings in regions with declining populations and
house values would likely not be retrofitted, due to the resident’s unwillingness to do long-term
investments. A separate study is needed to calculate more feasible retrofit pathways, taking into
account that change happens gradually and that new buildings are added while some old buildings
are completely torn down. No flexibility or demand response methods were utilized, which removes
the balancing element that appears when a large amount of buildings with different use profiles and
energy storage systems are combined. In practice, on the building stock level, the peak power demand
could thus be expected to be lower than in the cases presented in this study. The houses were assumed
to be oriented south for solar energy purposes. In practice, some buildings are oriented badly, receive
a lot of shading or are otherwise not suitable for solar energy installations. Thus, only a fraction of
houses would be feasible for solar energy production.

There is uncertainty in the heating systems in use in the current building stock. Building owners
do not always report changes to their heating system, such as when replacing an oil boiler with a
heat pump. Some wood-heated buildings might actually use wood only as a backup energy source,
while others use it as the main heat source. Thus, the real distribution of heating systems is not
known. Possible changes to the electricity use of equipment and appliances in the buildings were
not considered in the study. On the one hand, old appliances are gradually upgraded into more
energy-efficient devices, which should reduce electricity consumption, but on the other hand, people
are adding new electricity consuming equipment, which increases power demand. These trends could
have an influence on the heating demand of buildings in the future through the excess heat they release.

5. Conclusions

Analyzing the hourly power demand of buildings helps in planning future generation capacity
and backup and energy storage investments. The hourly heating and electric power demand of the
Finnish detached house building stock was simulated using four different age categories of buildings,
four different main heating systems and three levels of energy performance (reference, low cost retrofit
D, and high impact retrofit B). Energy retrofits to improve energy efficiency had a significant effect on
the peak and average power demand in all examined buildings. The main contribution of this paper
was to show the power demand distribution before and after retrofits. Typically retrofit studies only
show the effects of retrofits on the annual level, but this study presented the seasonal changes in power
demand, to better understand what additional changes to the energy system are needed inside and
outside the building sector. Another important contribution was the presented estimate of the net
change in power demand in the building stock level if large-scale building energy retrofits are done.
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The lower emissions of electricity compared to on-site boilers or district heating favor electrification
of heating, through the use air-source heat pumps. This resulted in increased electricity demand in
buildings with district heating or on-site wood boilers. At retrofit level B, the peak power demand of
these building rose by 60 to 70%, but the absolute impact was low. On the other hand, buildings with
direct electric heating significantly lowered their demand through the retrofits (peak demand down by
27 to 40% in retrofit B), as did buildings with ground-source heat pumps (peak demand down by 36 to
68%), with significant absolute impact.

These effects were combined in scenarios where all single-family houses of the whole building
stock were retrofitted, which resulted in a net decrease in annual electricity use, −11% for low cost
retrofits (scenario D), and −38% for high impact retrofits (scenario B). On the building stock level,
peak power demand increased by 19% for low cost retrofits, but remained unchanged for the combined
high impact retrofits. However, it is not likely that all buildings could be retrofitted in the same way in
practice, due to both social and technical issues related to different conditions in each building.

The optimal solar electricity generation capacity on the individual building level was high.
When the individual optima were utilized in the whole building stock, the peak excess power of
solar electricity was 3.5 GW for the low cost retrofit scenario and 5 GW for the high impact retrofit.
Such high values for unnecessary power generation could be difficult for the grid to handle. Such a
scenario is also sensitive to price assumptions and might not be feasible if increasing excess production
were to reduce solar energy value. This calls for further research on the optimization of individual
building retrofits together with the power system as a whole. Future studies need to combine the
changes in buildings and conventional power sector, as well as include new potential ways to use the
available renewable energy. Seasonal thermal energy storage could be one way to solve the problem of
overproduction, along with electric cars and power-to-X technologies.

Retrofitting old detached houses in Finland can reduce emissions significantly by improving
thermal insulation values and by utilizing electrified heating with air-source or ground-source heat
pumps. Fears of increasing the marginal electricity demand seem to be unfounded. While the amount
of heat pumps is increased, reducing the energy demand in buildings with direct electric heating
can prevent both the total electricity demand and peak power demand from rising at the building
stock level. This bodes well for major retrofit projects based on electrification of the heating market.
However, more accurate modelling of the building stock is needed. A future study should consider
how the Finnish building stock could realistically be retrofitted, taking into account both the addition
and removal of buildings as well as regional trends in population and economic activity.
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Abstract: The current energy inefficiencies in relocatable temporary camps of the Armed Force troops
create logistic challenges associated with fuel supply. The energy needs of these camps are primarily
satisfied by diesel engine generators, which imply that a significant amount of fuel needs to be
continuously provided to these camps, often built in remote areas. This paper presents an alternative
solution, named Smart Hybrid Energy System (SHES), aiming towards significantly reducing the
amount of fuel needed and minimizing transportation logistics while meeting camp energy demands.
The SHES combines the existing diesel generators with solar power generation, energy storage,
and waste heat recovery technologies, all connected to a microgrid, ensuring uninterrupted electricity
and hot water supplies. All components are controlled by an energy management system that
prioritizes output and switches between different power generators, ensuring operation at optimum
efficiencies. The SHES components have been selected to be easily transportable in standard shipping
20 ft containers. The modularity of the solution, scalable from the base camp for 150 people, is designed
according to available on-site renewable sources, allowing for energy optimization of different camp
sizes in different climates.

Keywords: hybrid energy system; energy efficiency; microgrid; military applications; renewable
energy; remote areas

1. Introduction

The Armed Forces operate in remote locations for training and military operations, even under
natural disaster conditions or in foreign territories during conflicts, and must be ready to deploy on
short notices, in any climate and for prolonged periods. As such, they currently rely on relocatable
temporary camps (RTCs) for their deployments through extreme operational and environmental
conditions. To sustain operations, as there is no utility grid, RTCs depend on logistics for the
continuous supply of fossil fuel (primarily diesel) as the main source of energy. Inefficiencies in current
practices lead to vulnerabilities in energy infrastructures, such as shortfalls in power generation and
higher requirements for fuel resupply, with the knock-on effect of greatly increasing the transportation
logistics during operations. Moreover, RTCs typically use spot generation by connecting loads to
a common set of generators, where each generator is oversized to satisfy peak loads, even when
these loads are infrequent. Consequently, generators typically are selected at a significantly higher
capacity, resulting in an inefficient and costly source of power, increased maintenance, and wet sacking,
a condition resulting from poor fuel combustion.

In recent years, military engineers have therefore encountered several operational challenges
associated with energy logistic convoys and infrastructure, limited supplies, and climate change.
Scientific literature identified a spectrum of approaches and technologies to address energy consumption
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under these conditions. Few combinations of components have been proposed according to the
site-specific characteristics [1–3], however, the definition of further integrated configurations remains
rarely investigated, although it is evident that the Armed Forces could benefit from holistically assessing
these approaches as integrated systems.

Significant gains in the efficiencies of RTC utility systems (renewable energy systems; improved
generators and energy storage or grid efficiency) and energy conservation measures (e.g., insulation of
the camp tent fabric, building controls, etc.) would have an overall increasing benefit on the deployed
operations. Meanwhile, stand-alone hybrid energy systems have been proposed as valuable means of
supplying energy to remote areas, such as isolated rural villages [4–7], and for various other purposes,
such as medical clinic practices [8] or military operations [9–11].

Some researchers investigated solutions aiming at reducing the dependency on fossil fuels during
prolonged emergencies by proposing self-contained demonstration units that make use of hybrid
generation from solar, wind, and biomass and, minimally, fossil sources [12]. Some of these systems
have already been introduced to the market, as described below. Besides microgrids, clusters of
electricity sources and load operating systems are being used to improve the reliability of electrical
grids, manage the addition of distributed clean energy resources like wind and solar photovoltaic
generation, reduce fossil fuel emissions, and provide electricity in areas not served by centralized
electrical infrastructure [13].

Some models described the components of a microgrid [5,9,14,15], but not much is known about
its behavior as a whole system. Some studies aimed to model microgrids at steady-state and study their
transient responses to changing inputs [16]. However, researchers have built a full-scale microgrid
model, including the power sources, power electronics, and load and mains models [5].

One of the main challenges towards the development of isolated microgrids is the management of
various devices and energy flows to optimize their operations, particularly regarding the hourly loads
and the availability of power produced by renewable energy systems. Energy management systems
could be a solution to tackle these issues [16–18]. Regarding the provision of energy services with
modular and transportable systems by making use of microgrid technology, some examples can be
found in the market. For example, examples of possible technical solutions include the following:

• Power Box Containers by Out of the Box Energy Solutions (http://www.outofthebox.energy/power-
box/powerbox-containers/)

• Energy Containers by Intech Clean Energy (https://www.intechcleanenergy.ca/energy-container/)
• Hybrid Smart Total by Golden Peniel Limited (http://gplnigeria.com/hybrid.html)
• Container Box Systems by Hakai Energy Solutions (https://www.hakaienergysolutions.com/

services/container-box-systems/)
• Multi Box Microgrid by BoxPower (https://boxpower.io/products/multi-box-microgrid/)
• PowerPlus Hybrid Power Generator by Firefly (https://www.fireflyhybridpower.com/products/

powerplus/)
• ES Box by Schneider Electric (https://solar.schneider-electric.com/product/es-box/)

The Cross-Power unit, e.g., uses modular hybrid wind and solar systems, integrated with battery
storage, to produce electricity in remote locations. However, most of the existing solutions use black
box intelligent energy management systems to ensure a continuous supply and avoid shortfalls in
power generation.

This paper presents a scalable and transportable solution, named Smart Hybrid Energy System
(SHES), for providing energy-efficient services to soldiers in protracted displacement situations.
The SHES combines the existing diesel generators with solar power generation, energy storage, and
waste heat recovery technologies, all connected to a microgrid, ensuring uninterrupted electricity
and hot water supplies. The reliable and energy-efficient system helps to manage generator output.
By transforming an independently operating system of generators into a demand-managed microgrid,
SHES provides power only where and when it is needed, instead of completely relying on fuel-burning
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generators. The system also provides the Armed Forces with critically needed power surety by utilizing
intelligent load management technologies to prevent grid collapse in the event of generator fault,
as the SHES prevents a stoppage of energy flow by shifting demand onto supporting generators if
one generator fails. The system is designed to manage the energy needs of a 150 to 1500-person RTC,
operating in a temperate climate zone and allowing for the occasional deployment to extremely hot or
cold climatic zones. Finally, this paper considers the energy savings achievable through technologies
that improve the accommodation’s insulation, such as a thermoreflective multilayer system developed
for emergency architecture, or that provide additional layers of solar protection, reducing the heat
transfer through the shelter exterior thus reducing the daily air conditioning loads and reliance on
diesel fuel [19,20].

2. Methodology

Regarding the design criteria of the RTCs solution, different technologies for energy production and
storage concerning containerized solutions for emergencies were analyzed for the SHES. The equipment
was selected from a range of commercial products based on sizing calculations and container space.
The travel weight and volume, logistical support, required maintenance, and any hazards associated
with the systems were also considered. Finally, for each of the selected technologies, detailed design
work was conducted.

The system was proposed to the Canadian Armed Forces, and as such, the annual energy
performance reported in this study was analyzed for the temperate climate zone of Brandon (Manitoba,
Canada) at 49.85◦N. Through dynamic energy and energy management simulations with a combination
of software including the DoE Energy Plus and HOMER Pro software, the performance of the SHES
system was analyzed.

First, an energy model reproducing the existing baseline 150-person military camp was created
using Energy Plus, and data related to geometry, constructions, occupancy, HVAC, lighting, equipment,
operation, climate, and energy management system (EMS) was assigned. Furthermore, the energy
model was calibrated to match the actual net energy and heating energy consumptions of the RTCs
and deriving and collating data from past RTC deployments as a reference for the design process.
For this purpose, the net energy consumption was described as the combined energy consumptions
of electricity generation and diesel-heating equipment. Second, the Energy Plus-generated electric
and thermal hourly load profiles were imported to HOMER Pro, a microgrid design, simulation, and
optimization tool, used for the purposes as a design and investment decision support tool for selecting
the optimal portfolio, sizing, placement, and dispatch of the multiple energy sources feeding the
decentralized energy system and serving the camp loads. HOMER Pro was also used in performing
sensitivity analyses to identify the most cost-effective system configuration at various fuel costs and
nominal discount rates.

The dynamic studies made it possible to conduct comparisons between different utility systems
scenarios, comprising multiple distributed energy resources and energy conservation measures (i.e.,
advanced insulation materials), over the current base camp practices. Further simulations were
subsequently made on the most cost-effective proposed solution to estimate the annual fuel use and
energy savings for different climate zones.

In order to evaluate the economic and technical feasibility of the many options and to account for
variations in technology costs and energy resource availability, the operation of the different system
configurations was simulated in HOMER Pro by performing dynamic energy balance. For each time
step and for each system configuration considered, HOMER Pro compared the electric and thermal
demand to the energy that the system can supply and calculated the flow of energy to and from each
component of the system. In each time step, the analyses focused on how to operate the generators
and whether to charge or discharge the batteries and determined whether a configuration is feasible.
The study also looked at the system cost calculations in terms of capital, replacement, operation and
maintenance, fuel, and interest rates. Furthermore, HOMER Pro used optimization algorithms to
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search for the most cost-effective system configuration in terms of net present cost (life cycle cost).
Details about the calculations are available in the HOMER Pro user manual [21].

It is important to note that the lowest net present cost did not necessarily indicate the lowest
energy consumption; however, incorporating the operational costs in the calculation, it was used to
find the optimal system design rather than net energy consumptions.

2.1. Case Study

RTCs provide accommodations, administration shelters, ablutions, maintenance, storage, hangar,
and kitchen facilities. RTCs generally include tents identical to those deployed by militaries throughout
the world (Figure 1). The population supported by RTCs can vary considerably from day to day,
depending on operational activities as well as surges due to the rotation of personnel. Deployed
personnel are provided a bed space in a tent that holds 4–10 people. The accommodations are located
in a condensed area adjacent to the ablutions. Ablutions units are composed of a shower, a toilet, and a
sink, each unit serving 10 members of the camp population.

Figure 1. Tent demonstration unit in Toronto, ON, built within Ryerson University (left) and full
assembly of relocatable temporary camp (RTC) (right).

Multiple, independent systems are in place for electrical power generation and distribution,
heating and cooling, storage and distribution of fuel and water, and waste disposal. These systems are
not designed to promote energy efficiency. The current energy management approach in RTCs relies
on diesel-powered generators for electricity production. Electrical energy is provided to the camp via
multiple single-speed generator farms that incorporate variants of 300, 350, and 500 kW generators.

To avoid low load operation, load banks are employed to keep the generators running at optimal
conditions and efficiency points. Excess electricity not required in the camp is ultimately diverted
to a load bank where it is converted to waste heat. In the current “baseline” scenario, diesel-fired
space heaters are used for heating. Cooling is provided by electric environmental conditioning units.
Heating and cooling units are attached to each tent and are controlled by individual users.

2.2. Energy Modeling

The virtual model reproducing the existing base camp (baseline) was sized for accommodating
150-persons and included 15 accommodations, each hosting 10 persons, 15 ablutions, administration,
maintenance, laundry and storage hangar, kitchen, and dining facilities (Table 1). Each accommodation
tent was 5.80 m length and 5.10 m width, with a medium internal height of 2.30 m. Data have
been obtained in line with the technical sheet of the model by Montana 29 tent, Ferrino (Figure 2).
The relative U-values of the envelope reported in Table 2 were estimated assuming that the standard
shelter system was a canvas tent with low thermal resistance, in agreement with the literature [19].
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Table 1. Modeled zone properties of the military base camp.

Zone
Occupancy Plug Loads

Exhaust Air
Rate

Heating/Cooling
Set Point

Target
Illuminance

(m2/Person) (W/m2) (m3/s) (◦C) (Lux)

Accommodation 4 5 – 20/24 300
Kitchen 9 100 0.21 17/21 500

Dining hall 1.4 20 – 20/24 300
Ablution 2.4 2 0.0125 20/24 200

Admin office 20 15 – 20/24 400
Maintenance 20 10 3.15 NA/24 400

Storage 3 - – NA/24 200
Laundry 10 70 – 20/24 300

Figure 2. Geometric characteristic of the modeled tent.

Table 2. Modeled envelope construction: thermal properties of the fabric tent of the military shelters.

Component Construction
Overall U-Value

(W/m2·K)

Floor 50.8 mm OSB + RSI-0.175 standard insulation 1.32
Window 6 mm clear sheet 5.78

Wall, roof, door RSI-0.175 standard insulation 5.71

Camp electric power capacity was sized for 1.5 kW/person, considering data related to past RTC
deployments. Specific electrical load profiles were also taken into consideration. Generators were
sized with a 10% overload and a further 10% expansion capability factor.

Typical fuel consumption for a 1.5 kW/person load provision was approximately 2000 L of diesel
per person per year. Besides, it was assumed that 500 L of diesel fuel per person per year was used
for direct combustion, which after accounting for an 80% efficiency, provided 15 GJ of energy for
space heating.

Figure 3 shows the detailed HVAC system and power generation scheme of the base camp, which,
for a 150-person camp size, has a total diesel consumption including heating of 2500 L/person*year,
has a heating diesel consumption of 500 L/person*year, and allows a hot water consumption of
30 L/person*day.
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Figure 3. Baseline camp: HVAC system and power generation scheme for a base camp.

Solution designs were also conceived to operate for prolonged periods in extremely hot (up
to 50 ◦C) or cold (down to −40 ◦C) climates, as well as in all the temperate climatic conditions.
Temperature, precipitation, daylight, and wind data of a temperate climate zone, Brandon, Manitoba,
Canada, was used for all design calculations as required by the Canadian Defense Department. Further
simulations were made to analyze the proposed system performance in different climate zones with
severe conditions, including: Vancouver (British Columbia, Canada), Kanoya (Japan), Churchill
(Manitoba, Canada), and Changi (Singapore).

3. Results

3.1. Smart Hybrid Energy System (SHES) Design

The SHES is designed to work in stand-alone mode or connected to the local grid. The SHES
combines into a single, integrated system of the following technologies: (a) photovoltaic (PV) array,
(b) an energy storage system, (c) existing diesel generators, (d) waste-to-heat energy recovery system
(WHRU) for space heating, (e) solar hot water (SHW) system for domestic hot water, and (f) energy
management system (EMS) that actively monitors and manages base camp equipment and zones.

Figure 4 shows the SHES schematic configuration of the energy vectors, while Figure 5 shows the
detailed HVAC system and power generation scheme of the SHES.
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Figure 4. Smart Hybrid Energy System (SHES) schematic configuration of the energy vectors.
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Figure 5. Smart Hybrid Energy System (SHES): detailed HVAC system and power generation scheme.

In particular, the SHES system was composed of the following components:

• PV modules, with a 21% efficiency (SPR-X21-345) and a combined power output of 100 kW with a
surface of 446 m2, are strung together. Each array is south-oriented with an optimized tilt angle,
which varies by location, anchored to the ground with a mounting aluminum system. As the base
camp loads use alternating current (AC), inverters are used to transform the direct current (DC)
produced from PV. It is important to note that to satisfy the entire energy demand of the camp,
the PV configuration would have employed a larger system (about four times larger); however,
considering the army requirements for continuous transportation and reinstallation in addition
to the high initial costs of the system and the spatial limitations, the PV system was sized to
sufficiently cover the peak electric loads except for cooling; thus, only systems up to 100 kW
were considered.

• Energy storage allows overcoming the intermittent nature of renewable energy sources. When
PV systems have a peak above the load, the surplus energy is stored in sodium–sulfur batteries.
On the other hand, when there is a high energy demand and the electricity generated by the PVs
is insufficient, the batteries are discharged. The cells are monitored and protected by a battery
management system (BMS). Various battery models were considered, and the most cost-effective
model was selected. In particular, containerized NAS lithium-ion energy storage system by BASF
was found to be a cost-effective solution for this project purposes due to its relatively large capacity
(1250 kWh), discharge output (286.1 kW max), long duration (4.4 h), long lifespan (20 years or
6,250,000 kWh), reasonable warranty periods (10 years), and physical sizing considerations. A 40%
minimum state of charge was assumed, while an 80% state of charge setpoint was found to be the
most cost-effective strategy, as discussed later.

• Existing internal combustion diesel generator was integrated into the microgrid to ensure
continuous power supply. A 15% minimum part-load ratio was assumed.

• WHRU allows recovering the waste heat from generators to use it for space heating (combined
heat and power), which is supplemented by an efficient (89%) diesel boiler. The WHRU consisted
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of counter-flow heat exchangers and water-distribution systems, delivering hot water to terminal
heating equipment. The terminal heating equipment was modeled as fan–coil units.

• SHW system used has a surface of 90 m2 and a power of 63 kW that supplies a significant fraction
of the base camp domestic hot water (DHW) requirements, while the remaining portion is satisfied
by the existing electric water heater. The strategy undertaken allows a 10,000 L storage tank to
reach a higher temperature (80 ◦C) to increase the efficiency of the SHW system.

• EMS controls all components and ensures grid stability, continuously balancing energy generation,
and consumption. It maximizes the power output by establishing a hierarchy of sources and
prioritizing the use of renewable energy while optimizing the interactions between different
components. The EMS is equipped with real-time remote monitoring and controls the base camp
parameters, enabling central and informed decisions.

The selection of equipment from a range of commercial products was made based on 20 ft container
space (Table 3) in addition to sizing calculations (Table 4) to optimize the annual energy production.

Table 3. Key components dimensions of the Smart Hybrid Energy System (SHES).

Equipment Example of Possible Component Models Quantity Size (mm)*

PV panels SunPower (SPR-X21-345) 290 1559 × 1046 × 46
Inverter SUNSYS PCS2 IM-200kVA-TL 1 805 × 806 × 2150
Battery NAS 1 6100 × 2400 × 2400

PV/SHW mounting
systems Fast-Rack (GMX Caribou Ground) 2 Various

SHW panels Ritter Solar (CPC45 Star Azzurro) 20 2426 × 2032 × 121

Insulated storage tank Niles Steel Tank (JS-36-072) 10 2032 height × 1016
diameter

Heat exchanger Doucette Industries (CUI 35M5) 1 1346 × 873 × 533

* ISO 6346 [22]: 20 ft container: length = 20 ft (6096 mm); width = 8 ft (2438 mm); height = 8 ft 6” (2590 mm).

Table 4. Components of the Smart Hybrid Energy System (SHES) for a 150-person relocatable temporary
camp (RTC) in Brandon, MB.

Technology
Smart Hybrid Energy System

(150-Persons Base Camp)
Sizing Based On

PV panels

Number of collectors = 290 80 kW peak (excluding cooling) electric
loads

Total collectors aperture/Gross area = 446/465 m2 Spatial limitations
System size = 100 kW Logistic requirements

Optimal collector tilt = 45◦, Azimuth =0◦ S Spatial limitations

Converter 175 kW (Eff. 96%) Selected PV size
Net present cost

Battery 1250 kWh, Max. discharge output = 286.1 kW
Duration =4.4 h

Selected PV size
Net present cost

Generator Existing 300 kW diesel generator Existing

SHW panels

Number of collectors = 20 30 L/Day. Person
Total collectors aperture/Gross area= 90/98.8 m2 60 ◦C HW temp.

System size = 63 kW 4 ◦C supply temp.
Optimal collector tilt = 45◦, Azimuth = 0◦ S 70% solar fraction for sunniest

Required hot water storage volume = 10,000 L Month
Backed-up by existing electric heater (Eff. 65%)

Waste heat recovery
unit Counter-flow fluid heat exchangers 1.25 L/s design heat recovery water flow

rate

The system is adaptable to different installation and climates, and it was designed such that some
existing equipment could be incorporated into the system, thus reducing investment costs for the Army.
At the same time, individual components could be integrated without being tied to one manufacturer
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too. Consequently, the models of the components reported in Table 3 are only indications of possible
solutions, as the system could integrate alternative components with comparable performances.

Other renewables can also be optionally integrated into the microgrid according to their on-site
availability. The SHES is fully scalable for electric power outputs of 270 kW up to 2.7 MW to meet the
varying energy needs from 150 to 1500-persons base camps. Several units of the system, eventually
centralized at each tent, can be interconnected to complement the system provided for a 150-person
base camp with a larger operational power range. The scaling options include the deployment of
additional PV arrays, supplementary battery units, larger power generators, a large-scale WHRU, and
a large-scale SHW system.

The SHES design architecture provides redundancy to ensure continuous operation through any
subsystem failure, while the microgrid supply power guarantees the longer service and lifespans.
The hybrid power generation design prioritizes renewable, followed by battery power, resulting in
less generator runtime, thus requiring less maintenance. The EMS allows for identifying operations
and maintenance issues before they become problematic, improving problem response time while
contributing to the overall system reliability. Furthermore, the central and remote monitoring of the
system parameters improves the maintenance supervision, scheduling, and management control.
The proposed solution is provided with fire protection and security functions. The SHES incorporates
existing technologies and state-of-the-art components; therefore, eventual replacements parts are
widely available in the market. The system is prewired, preconfigured, and designed to be rapidly
deployed as a plug and play system, following minor on-site assembly.

3.2. Energy Simulation Results

Energy simulations were conducted to quantify the reduced energy demand of the combination
of microgrid, renewable resources, and energy recovery measures.

Figure 6 shows the results obtained using different software for the baseline scenario in different
climate zones. Maximum differences of 6% and 8% were obtained for the heating and net energy
consumptions in Vancouver (BC), respectively. This confirmed the validity of the approaches followed
in modeling.

Figure 6. Comparison between Energy Plus and HOMER Pro software for the current base camp
practice (Baseline) for a 150-persons base camp in different climate zones.
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Table 5 reports the simulation results for the annual energy consumption of a 150-persons RTC in
Brandon (MB) according to different scenarios: Baseline, Solar Hot Water, Microgrid: generators +
battery, Microgrid with a Waste Heat Recovery (a counter-flow fluid heat exchanger), Microgrid with a
PV array (100 kW PV system to cover peak electric loads excluding cooling), and the scenario with all
SHES technologies integrated.

Table 5. Simulation results of the annual energy consumption for a 150-persons RTC in Brandon, MB,
for the various scenarios with new technology solutions incrementally adopted.

Sc. Technology Equipment Annual Energy Consumptions

1 Baseline

1- Diesel Generator 300 kW + Fluid Cooler
2- Electric Water Heater (Eff. 65%) for DHW
3- Packaged Terminal AC Unit for:

A- Electric Space Cooling (COP 2)
B- Diesel Space Heating (Eff. 80%)

Net Energy Consumption = 13041 GJ/year
Space Heating Energy Consumption = 3034 GJ/year
Space Cooling Energy Consumption = 377 GJ/year

DHW Energy Consumption = 529 GJ/year

2 Solar Hot Water

1- Diesel Generator 300 kW + Fluid Cooler
2- SHW System + Back-up Existing Electric

Water Heater (Eff. 65%) for DHW
3- Packaged Terminal AC Unit for:

A- Electric Space Cooling (COP 2)
B- Diesel Space Heating (Eff. 80%)

Net Energy Consumption = 13041 GJ/year (−1%)
Space Heating Energy Consumption = 3034 GJ/year
Space Cooling Energy Consumption = 377 GJ/year
DHW Energy Consumption = 99 GJ/year (−81%)

3
Microgrid:

generators +
battery

1- Diesel Generator 300 kW + Fluid Cooler
2- Electric Water Heater (Eff. 65%) for DHW
3- Energy Storage System (1 NAS Battery)
4- Packaged Terminal AC Unit for:

A- Electric Space Cooling (COP 2)
B- Diesel Space Heating (Eff. 80%)

Net Energy Consumption = 13139 GJ/year
Space Heating Energy Consumption = 3034 GJ/year
Space Cooling Energy Consumption = 377 GJ/year

DHW Energy Consumption = 529 GJ/year

4
Microgrid:
Waste Heat
Recovery

1- Diesel Generator 300 kW (0.5 Thermal to
Electric Power Ratio) + Fluid Cooler

2- Counter-flow Fluid Heat Exchanger
3- Electric Water Heater (Eff. 65%) for DHW
4- Packaged Terminal AC Unit for:

A- Electric Space Cooling (COP 2)
B- Space Heating Using Recovered

Heat (Eff. 89%)

Net Energy Consumption = 13639 GJ/year (−16%)
Space Heating Energy Consumption = 913 GJ/year

(−70%)
Space Cooling Energy Consumption = 377 GJ/year

DHW Energy Consumption = 529 GJ/year

5 Microgrid: PV

1- Diesel Generator 300 kW (Variable Eff.) +
Fluid Cooler

2- 100 kW PV System to Cover Peak Electric
Loads Except for Cooling + Energy
Storage System

3- Electric Water Heater (Eff. 65%) for DHW
4- Packaged Terminal AC Unit for:

A- Electric Space Cooling (COP 2)
B- Diesel Space Heating (Eff. 80%)

Net Energy Consumption = 11593 GJ/year (−12%)
Space Heating Energy Consumption = 2865 GJ/year
Space Cooling Energy Consumption = 377 GJ/year

DHW Energy Consumption = 516 GJ/year

6 All SHES
technologies

1- Diesel Generator 300 kW (0.5 Thermal to
Electric Power Ratio + Fluid Cooler

2- Counter-flow Fluid Heat Exchanger
3- 63 kW SHW System & Existing Electric

Back-up Water Heater (Eff. 65%)
4- 100 kW PV System to Cover Peak Electric

Loads Except for Cooling + Energy
Storage System

5- Packaged Terminal AC Unit for:

A- Electric Space Cooling (COP 2)
B- Space Heating Using Recovered

Heat & Diesel Boiler (Eff. 89%)

Net Energy Consumption = 8340 GJ/year (−37%)
Space Heating Energy Consumption = 2027 GJ/year

(−33%)
Space Cooling Energy Consumption = 377

GJ/yearDHW Energy Consumption = 100 GJ/year
(−81%)
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The simulation results indicated that up to 37% fuel savings over current base camp configurations
are achieved when all the SHES technologies are implemented for accommodating 150-person in a
temperate climate (Brandon, MB) (Figure 7). Considered individually, the most impactful technology
was found to be the Microgrid with a Waste Heat Recovery system (scenario 4), as evident in both
Figure 7 and Tables 5 and 6.

Figure 7. Comparison between different utility systems scenarios: annual energy consumption savings
over the current base camp practice (Baseline) for a 150-persons base camp in Brandon, MB.

Table 6. Summary of simulation results for the various scenarios for a 150-person RTC in Brandon, MB.

Scenario Technology Consumptions Reduction Compared to the Baseline

Scenario 1 Baseline
Net Energy Consumption = 13985 GJ/year

Space Heating Energy Consumption = 2866 GJ/year
DHW Energy Consumption = 529 GJ/year

Scenario 2 Solar Hot Water
1% reduction in net energy consumption

81% reduction in DHW energy consumption
Scenario 3 Microgrid: generators + battery -

Scenario 4 Microgrid: Waste Heat Recovery 16% reduction in net energy consumption
70% reduction in space heating energy consumption

Scenario 5 Microgrid: Photovoltaics 12% reduction in net energy consumption

Scenario 6 All SHES technologies
37% reduction in net energy consumption

33% reduction in space heating energy consumption
81% reduction in DHW energy consumption

The technoeconomic assessment indicated that the implementation of all SHES technologies
significantly reduced the net-present cost (life cycle cost), defined as the present value of all installation
and operation costs over the project lifetime, excluding the present value of all the revenues earned
over the same interval.

Actual components’ costs were used in the analysis. The project lifetime was assumed to be 25
years, while an 8% nominal discount rate, defined as the simple interest rate on borrowed capital
before factoring the inflation rates in, was assumed. The inflation rate was also assumed to be 2% over
the project lifetime, and it was used in combination with the nominal discount rate to calculate the
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real discount rate, which is used to convert between one-time and annualized costs. Finally, the fuel
(diesel) cost was assumed to be $1.00 for each liter.

Results indicated that up to 32% reduction in net present value over current base camp
configurations are achieved when all the SHES technologies are implemented for accommodating
150-person in a temperate climate (Brandon, MB) (Figure 8). The levelized cost of energy was also
significantly reduced by 25%, as indicated. Figure 8 shows that the SHES acts as the most cost-effective
solution; thus, it is the optimal solution that maximizes the use of renewable-generated energy while
minimizing the project lifetime capital costs. More importantly, it is evident that the consideration of
individual technologies eliminated the benefits gained from the integrated solution, and in fact, most
technologies (except for WHRU), although reducing the net-present costs compared to the baseline,
produced increased levelized energy costs due to their high initial costs and limited energy savings
and utilization of all available energy resources when compared to SHES.

Figure 8. Comparison between different utility systems scenarios: net present cost and levelized energy
cost over the current base camp practice (Baseline) for a 150-persons base camp in Brandon, MB.

Diesel costs may vary overtime and by the region it is sold depending on the cost of crude
oil. Similarly, interest rates fluctuate overtime, being influenced by the economic growth, fiscal and
monetary policies, and inflation rates. Thus, it is critical to design an optimal system in terms of life
cycle costs at the expected fuel and interest rates.

A sensitivity analysis was conducted to evaluate the proposed system due to variations in the
nominal discount rates and diesel costs (Figure 9). As evident, SHES acts as the optimal system
design for the widest range of fuel and simple interest rates, assuming a constant inflation rate of
2%. In particular, the baseline configuration is only considered cost-effective at combined low fuel
rates and high simple interest rates. It is also evident that the SHES’s selected photovoltaics, energy
storage, and converter capacities are optimal at the specified fuel cost and interest rates of $1/L and 8%,
respectively. On the other hand, reducing these capacities would act as a more cost-effective solution
at combinations of low and high fuel and simple interest rates, respectively.
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Figure 9. Optimal system design for variations in diesel price and nominal discount rate.

As discussed earlier, only PV capacities up to 100 kW, which sufficiently covers the camp peak
electric loads excluding the cooling loads, were considered to reduce initial costs and due to spatial
and logistics purposes. Also, various battery and converter models and capacities were considered,
and the most cost-effective configurations were selected considering the preselected PV size. Figure 9
shows that the optimal battery capacity is strictly influenced by the selected PV capacity, thus, using a
lower PV capacity would imply using a smaller battery capacity except in cases where the interest
rates are incredibly high, for which investing in energy storage would not be cost-effective at all.
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Similarly, the converter capacity is dependent on the selected PV capacity. However, the rate of capacity
reduction is higher than that of the battery, particularly at moderate interest rates (8%–12%), driven by
high converter capital costs when compared to energy storage and PVs.

One of the main challenges towards the development of isolated microgrids is the management of
the various devices and energy flows to optimize their operations, particularly regarding the hourly
loads that must be served, and the availability of power produced by renewable energy systems
depending on daily and seasonal variations. The SHES combines the existing diesel generators with
solar power generation, energy storage, and waste heat recovery technologies, all connected to a
microgrid, ensuring uninterrupted electricity and hot water supplies. The reliable, energy-efficient
system helps to manage generator output. By transforming an independently operating system of
generators into a demand managed microgrid, SHES provides power only where and when it is needed,
instead of completely relying on fuel-burning generators. A critical part of designing SHES was
understanding the electric and thermal load and generation profiles to identify the most cost-effective
energy management strategy while maximizing the renewable generation, without significantly
increasing the initial costs of system while considering army spatial and logistic requirements. It is
crucial to identify the parts of the system that carry these loads at different times of the day and different
seasons, particularly at peak loads. The peak electric load typically occurs during the warmest period
of the year due to increased cooling loads, while thermal loads during the same period would be low
due to the absence of heating requirements. For these purposes, various dispatching strategies were
considered for energy management purposes of controlling generator and battery operation in periods
of insufficient renewable energy to supply the load, including “cycle charging” and “load following”
strategies. A cycle charging dispatching strategy was found to be the most cost-effective. The cycle
charging strategy implies that the generator runs at its maximum power output when it is needed to
serve the electrical loads, while any surplus electrical production is diverted towards charging the
battery until the battery setpoint state of charge of 80% is reached. This is accomplished by selecting
the optimal combination of power sources, based on fixed and marginal costs, to serve the electric
and thermal loads at the minimum cost and excess electricity production, while still satisfying the
operating reserve requirements. On the other hand, a load following strategy, which implies that the
generator produces enough power only to serve the load while the battery is charged by the renewable
sources, would be more cost-effective in situations where the renewable generation is comparable to
the magnitude of the served load.

The results of the control strategy can be observed in Figures 10 and 11, which show the electric
and thermal and the generation profiles for the summer and winter peak demand days, respectively.
The electric load served is initially constant and relatively low during early and late hours of the
summer days and in the absence of solar radiation (Figure 10). Thus, this low electric load is satisfied
solely by the energy stored in the battery while the generators are off. As the electric load starts to
increase, the generators are turned on to satisfy parts of these loads, while the remaining parts are
satisfied using the PV-generated power. To reduce the generator runtimes, at several intervals of the day,
the reliance of the generator is reduced and eventually eliminated. At the same time, the loads are still
being served by the energy stored in the battery during the previous hours. For the winter day, similar
trends can be seen. However, due to lower electrical loads and increased PV generation as a result of a
lower sun altitude, after the generators are turned on to serve partial loads and charge the battery, they
are turned off for extended periods of the day, thus significantly reducing fuel consumption by relying
on renewable resources. The generator’s runtime was reduced considerably to 4600 h (48% reduction)
compared to 8760 h for the baseline configuration. It is also evident that the system could benefit from
a greater PV size due to the high availability of solar radiation that is not being taken advantage of in
both summer and winter months.
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Figure 10. SHES dynamic electric load management for a 150-persons base camp in Brandon, MB, in
summer and winter peak days.
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Figure 11. SHES dynamic thermal load management for a 150-persons base camp in Brandon, MB, in
summer and winter peak days.

In Figure 11, the thermal loads are very low in summer due to the absence of heating requirements
while some heating is only required during night times, which suggested increasing the insulating
properties of the tent fabrics. In the winter, the peak thermal heating load is served mainly using the
diesel boiler, which is supplemented by the waste-to-heat recovery system that uses the generator’s
heat to warm up the water delivered to the terminal fan–coil units. This heat is drawn from the
generator only when it is running to serve the electrical loads during the winter; therefore, the WHRU
system can only serve a part of the daily thermal load, which highlights the importance of considering

305



Energies 2020, 13, 2279

synergies and differences between the different seasonal loads and designing a cost-optimal system in
regards to full-year expected loads and availability of resources. It is also evident that a significant
amount of excess heat is wasted in the summer months due to the absence of a simultaneous end use,
thus, a heat storage system might be beneficial to store the heat and allowing for its use when needed
in the colder months or in cold summer nights.

The SHES solution for the camp was also simulated in different geographic locations, to evaluate its
performance, feasibility, and expected energy savings outcomes in different climate zones. In particular,
the analysis involved the city of Vancouver (British Columbia, Canada), Kanoya (Japan), Churchill
(Manitoba, Canada), and Changi (Singapore). Results indicated that fuel reductions from 21% up
to 39% are also achievable for extremely hot and frigid climates when the solar collectors’ tilt and
orientation are optimized for the specific location (Table 7). It is important to note that the solution was
not reoptimized for different locations except for the PV and SHW tilt angles, and component and
system sizes were kept constant to satisfy the army requirements of standard sizing.

Table 7. Simulation results for extreme climatic zones when all SHES technologies are implemented.

Climates Scenario Technology Consumptions Reduction Compared to Baseline Optimal Angle

Vancouver,
BC

1 Baseline
Net Energy Consumption = 11297 GJ/year

33◦Space Heating Energy Consumption = 7408 GJ/year
DHW Energy Consumption = 529 GJ/year

6
All SHES

technologies

34% reduction in net energy consumption
34% reduction in space heating energy consumption

66% reduction in DHW energy consumption

Kanoya,
Japan

1 Baseline
Net Energy Consumption = 11917 GJ/year

24◦Space Heating Energy Consumption = 392 GJ/year
DHW Energy Consumption = 529 GJ/year

6
All SHES

technologies

27% reduction in net energy consumption
34% reduction in space heating energy consumption

83% reduction in DHW energy consumption

Churchill,
MB

1 Baseline
Net Energy Consumption = 14804 GJ/year

55◦Space Heating Energy Consumption = 5355 GJ/year
DHW Energy Consumption = 529 GJ/year

6
All SHES

technologies

39% reduction in net energy consumption
29% reduction in space heating energy consumption

66% reduction in DHW energy consumption

Changi,
Singapore*

1 Baseline
Net Energy Consumption = 13461 GJ/year

0◦DHW Energy Consumption = 529 GJ/year

6
All SHES

technologies
21% reduction in net energy consumption

98% reduction in DHW energy consumption

* The heat recovery system is not required for the Changi climate zone due to the extremely low heating demand.

3.3. Environmental Considerations

The SHES reduces the dependency on fossil fuel lowering the environmental footprint of RTCs
since the transportation logistics are minimized and the consumption of vehicle-fuel transporting fuel
to the base campsite is also reduced. The generators, rather than being fueled by diesel (as currently
done in Canadian Armed Forces), could be powered by LPG (Liquefied Petroleum Gas) to produce
lower amounts of harmful greenhouse gases. However, the risks due to the transportation of more
hazardous materials must be considered.

Table 8 reports significant annual CO2 emissions savings compared to the baseline when all the
SHES technologies are implemented for accommodating 150-person in a temperate climate (Brandon,
MB). CO2 reductions up to 39% are also achievable with the deployment of the system in extreme hot
and cold climates (Table 8). The CO2 emissions were calculated based on the annual diesel consumption
to produce power by the generator and thermal energy by the boiler, assuming an emissions factor of
2.4 kg-CO2e produced as a result of burning each liter of consumed diesel. It was also assumed that
diesel has a carbon content of 88%.
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Table 8. CO2 annual emissions for different scenarios of a 150-person RTC operating in different climates.

Climates Scenario Technology
Annual CO2 Emissions

kg/Year

Brandon, MB (1) Baseline 919,500
(6) All SHES technologies 583,270 (−37%)

Vancouver, BC (1) Baseline 788,879
(6) All SHES technologies 517,335 (−35%)

Kanoya, Japan (1) Baseline 831,462
(6) All SHES technologies 606,460 (−27%)

Churchill, MB (1) Baseline 1036,790
(6) All SHES technologies 636,805 (−39%)

Changi, Singapore (1) Baseline 938,783
(6) All SHES technologies 743,139 (−21%)

The SHES is designed to be easily integrated with other water and waste infrastructure systems,
e.g., it could be combined with deployable water purification systems (e.g., Aspen Water) powering
them as AC loads or using directly the solar energy of the photovoltaic panels or with deployable
waste-to-energy systems (e.g., Energos Technology and Eco Waste Solution), which convert wastes into
thermal energy (e.g., DWECX-TEEPS) that can be used locally. Moreover, the waste heat coming from
the waste converter exhaust of the waste-to-energy system could be captured and used to produce
space heating.

3.4. Enhanced RTC Construction

The existing standard RTCs are constructed with materials (canvas) that suffer from poor thermal
performance leading to higher heating and cooling energy consumptions to maintain the thermal
comfort of deployed soldiers. Consequently, the low thermal resistance of the existing shelter systems
requires the design of bigger HVAC systems. Standard tents are constructed of such materials mainly
due to their lightweight and waterproofing abilities, allowing for their easier transportation, installation,
and long service life. However, recent developments in innovative materials made it possible to
provide such properties combined with improved thermal performance to achieve higher energy
savings [23,24]. Notably, 13 mm aerogel-enhanced blankets were proposed to be integrated into
the existing construction to make significantly improved RSI-values of 0.625 m2K/W compared to
0.175 m2K/W as demonstrated in Table 2 earlier [23]. Such blankets have an extremely low thermal
conductivity of 0.015 W/m. K, while having low toxicity, low density of 200 kg/m3, excellent fire
rating, and high recyclability. Figure 12 shows a recently patented aerogel blanket obtained at Ryerson
University using an ambient pressure drying (APD) process.

Energy simulations were conducted to assess the energy performance of the camp integrating
SHES and high-performance tents incorporating the aerogel blanket produced into the interior of the
existing canvas. Table 9 reports the results for different climate zones. The results show that enhancing
the thermal resistance of the RTCs has significant impacts on increasing the camp energy efficiency for
all climate zones. When compared to Scenario 6 results (SHES), it becomes clear that aerogel-enhanced
blankets have their highest energy reduction impacts in extreme climates as Churchill, while still
offering significant reductions in the other climate zones.
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Figure 12. New aerogel-enhanced blanket obtained by the authors and used to enhance the tent
material fabric providing higher thermal resistance.

Table 9. Energy consumption and CO2 annual emissions results for different scenarios (SHES and
aerogel blanket are used) of a 150-person RTC operating in different climates.

Climates Consumption Reduction Compared to the Baseline
Annual CO2

Emissions, kg/Year

Brandon, MB
48% reduction in net energy consumption

85% reduction in space heating energy consumption
81% reduction in DHW energy consumption

477,291 (−48%)

Vancouver, BC
47% reduction in net energy consumption

90% reduction in space heating energy consumption
66% reduction in DHW energy consumption

486,372 (−47%)

Kanoya, Japan
31% reduction in net energy consumption

89% reduction in space heating energy consumption
83% reduction in DHW energy consumption

570,357 (−31%)

Churchill, MB
57% reduction in net energy consumption

84% reduction in space heating energy consumption
66% reduction in DHW energy consumption

446,767 (−57%)

Changi,
Singapore

29% reduction in net energy consumption
26% reduction in space cooling energy consumption

98% reduction in DHW energy consumption
664,548 (−29%)

4. Conclusions

This paper has described a new solution for a military army camp. The new approach shows
significant improvements over the existing solutions thanks to the combination of microgrid with
energy storage systems, renewable resources, and waste heat recovery technologies to reduce the fuel
supply to RTCs significantly. In particular:

• A properly sized SHW system can supply a significant fraction of a base camp water heating
requirements using solar energy;

• Modeling indicates that a combination of smart microgrid and renewable energy sources can
reduce base camp energy demand and fuel use significantly, in addition to a significant carbon
emission reduction. Considered individually, the technology with the lowest energy consumptions
(up to 16% reduction) is the microgrid connected waster heat recovery system (scenario 4);
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• Smart microgrids with energy storage systems supply power with improved voltage and frequency
stability increased grid reliability and longer life of end use equipment;

• The EMS, equipped with real-time monitoring and control of base parameters, enables central
and informed decision making. Configurable automatic load distribution provides the potential
for reducing camp energy consumption for normal operations and unplanned events;

• The simulation results indicated that up to 37% of fuel savings and up to 37% annual CO2 emissions
savings over current base camp configurations are achieved when all the SHES technologies are
implemented in a temperate climate;

• Fuel and CO2 reductions from 21% up to 39% are also achievable for extremely hot and frigid
climates when the solar collectors’ tilts are optimized.
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Abstract: The built environment has the potential to contribute to maintaining a reliable grid at the
demand side by offering flexibility services to a future Smart Grid. In this study, an office building is
used to demonstrate forecast-driven building energy flexibility by operating a Battery Electric Storage
System (BESS). The objective of this study is, therefore, to stabilize/flatten a building energy demand
profile with the operation of a BESS. First, electricity demand forecasting models are developed and
assessed for each individual load group of the building based on their characteristics. For each load
group, the prediction models show Coefficient of Variation of the Root Mean Square Error (CVRMSE)
values below 30%, which indicates that the prediction models are suitable for use in engineering
applications. An operational strategy is developed aiming at meeting the flattened electricity load
shape objective. Both the simulation and experimental results show that the flattened load shape
objective can be met more than 95% of the time for the evaluation period without compromising the
thermal comfort of users. Accurate energy demand forecasting is shown to be pivotal for meeting
load shape objectives.

Keywords: electricity; HVAC; demand forecasting; flexibility; office building; Smart Grid

1. Introduction

The European Union agrees on drastically lowering CO2 emissions in order to mitigate the effects
of climate change [1,2]. Currently, in the Netherlands, electricity generation is mostly achieved by
means of fossil fuels and is responsible for a significant portion of the total emissions [3]. To meet
European targets, a transition to more sustainable energy generation is necessary within the country
to decarbonize the grid [4,5]. When transitioning towards a low-carbon society, not only sustainable
generation, but also energy saving on the demand side is even more important [6,7]. Transport and
the built environment account for approximately 24% and 36% of total energy consumption in the
Netherlands and are therefore responsible for much of the emissions due to fossil fuels [3,8]. It is evident
that an effective transition to a sustainable future also requires technologies on the demand side [9,10]
that can be powered by Renewable Energy Sources (RES), such as electric heat pumps [11,12] to fulfill
the heating demand of buildings and electric vehicles for transport [13], in the Dutch context [4].

A transition to more sustainable energy generation is expected to bring about a variety of
challenges. Firstly, the foreseen large-scale deployment of RESs may seriously affect the stability of
energy grids [14,15]. An increase in power grid-connected RESs results in a change in power generation
characteristics and grid operation [16]. In contrast to conventional fossil power plants, RESs are
often relatively small power generators and are distributed throughout the low- and medium-voltage
grid levels [17]. When RESs are integrated into the built environment, buildings will both consume
and supply energy to the grid and become active ‘prosumers’ [18]. This creates multi-directional
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energy flows on the low- and medium-voltage grid levels [19]. Additionally, through the continuing
electrification of space heating by heat pumps and transport by electric vehicles, the pressure on the
transmission and distribution grids will increase further, thereby increasing the risk of congestion [20,21].

A specific problem that can be encountered is “overgeneration,” with increasing penetration of
solar photovoltaics (PVs). The Californian Independent System Operator published a “duck chart”
which shows during springtime a significant drop in midday net load as more PVs are added to the
system [22]. This introduces a huge problem in ramping up the generation, as PV power production
rapidly decreases as the sun sets in the evening. Notably, no research reports, papers, or other
documents were found which describe the duck curve or a similar problem explicitly in the Dutch
context. However, a quick analysis of the installed PV capacity growth over the years and the grid
loads in the Netherlands indicate that the problem increases as the current PV growth trend progresses.
Large-scale integration of PV generation could also lead to local problems. The decentralized generation
of PV power could lead to overvoltage and congestion in the low-voltage grid level when there is high
PV power generation but low demand [23].

All the aforementioned problems call for more intelligent ways of consuming electricity.
One possible way is a Smart Grid [24], where both demand and local production in the distribution
grid are controlled in order to stabilize the grid [14]. Many definitions of a Smart Grid exist [25].
According to the Institute of Electrical and Electronics Engineers (IEEE) [26], the Smart Grid has come
to describe a next-generation electrical power system that is typified by the increased use of information and
communication technology (ICT) in the generation, delivery and consumption of electrical energy. The future
power grid is expected to provide unprecedented flexibility in how energy is generated, distributed
and managed [27]. The Dutch branch organization of energy network operators (Netbeheer Nederland)
estimates that the total need for flexibility in the Netherlands will double towards 2030 compared to
2015, and increase even further by a factor of three towards 2050 [28].

Power system flexibility can be achieved through a variety of different interventions at both the
supply and demand side [29]. The traditional approach is supply-side flexibility, which could be
delivered by supply-side energy storage, power plant response, curtailment of variable renewable
electricity generators or dedicated power plants such as combined heat and power (CHP) and combined
cycle gas turbines [29]. The demand side, which includes the built environment, can also adapt its
electricity demand according to grid needs through the adoption of Demand Side Management (DSM)
programs. Gellings [30] describes DSM as: “the planning and implementation of those electric utility
activities designed to influence customer uses of electricity in ways that will produce desired changes in the
utility’s load shape”. Techniques such as peak shaving and valley filling could be used to accomplish
the load shape objective [31], especially with the use of storage systems. The built environment could
thereby provide energy flexibility, which is defined by the International Energy Agency (IEA) Annex
67 as a building’s ability to manage its demand and generation according to local climate conditions, user needs
and grid requirements [32].

Building energy flexibility is not just limited to the utilization of storage systems but also energy
systems inside the buildings to create a balance with the building-integrated renewable energy
production. Of the energy systems present in a commercial office building, Heating Ventilation and Air
Conditioning (HVAC) [33] systems account for approximately 63% of the energy requirements (in the
Netherlands in 2017) [34]. Therefore, the employment of HVAC systems for realizing Demand-Side
Flexibility (DSF) services is interested and driven by the following factors [19]:

- HVAC systems are equipped with automation and control systems that enable implementation of
strategies for DSF actuation;

- HVAC systems have significant thermal inertia, thereby they can function as a buffer for the
electricity grid for short periods of time by reducing air-handling unit (AHU), chiller or heat
pump loads;

- HVAC systems have continuous control systems that allow operational cycle modification for
energy advantages, rather than on–off control.
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The significant energy demands and the aforementioned control advantages allow HVAC systems
and energy storage systems to provide effective energy flexibility and management services for the built
environment. Buildings could, therefore, offer DSF by manipulating installations to respond to power
system requirements by increasing or reducing electricity consumption patterns while maintaining
a comfortable and productive environment for the occupants [19]. Additional DSF could also be
delivered through the control of lighting and plug loads [35].

To provide the above-mentioned decision-making requirement, it is necessary to perform accurate
short-term and small-scale electricity load forecasting on subsystem levels of individual buildings [36].
The energy behavior of a building is influenced by many factors, such as weather conditions, building
construction, the thermal properties of the building, the occupancy, and occupant behavior [37].
Forecasting subsystem-level loads is therefore considered a complex and challenging problem [36].
However, this type of demand prediction could be a valuable contribution to maintaining a reliable
electricity grid.

Contributing to solving the mentioned problems, the objective of this research is to identify and
implement building energy management opportunities using subsystem-level electricity demand
prediction and a Battery Electric Storage System (BESS). The objective of this study is to stabilize/flatten
a building energy demand profile to demonstrate energy flexibility for a future Smart Grid without
compromising user comfort. The proposed methodology in Section 2 is advantageous to the research
community because it discusses the demand prediction of several subcomponents (AHU, HVAC,
chiller, lighting, and plug loads) of buildings, which is otherwise rare in the existing literature.
Moreover, a major contribution would be the implementation of the discussed methodology in a
real-life office building. Next, the quantitative results and qualitative findings have been presented in
Sections 3 and 4.

2. Materials and Methods

This section first introduces the case study building and its electrical load groups. Subsequently,
three steps are described in the methodology used:

- Step 1: Prediction models are established for each load group and the performance metrics that
are used to analyze prediction accuracy are described;

- Step 2: The operational strategy of the Battery Electric Storage System (BESS) is described
alongside key performance indicators (KPIs) that are used to quantify the impact of the energy
flexibility provided;

- Step 3: The implementation procedure in the real BMS system is described.

2.1. Case Study Building

The case study office building is located in The Netherlands, which is a European country with
a temperate oceanic climate (Cfb type) according to the Köppen–Geiger climate classification [38].
The office was built in 1993 and can be described as a traditional office building. The building has an
approximate floor area of 1500 m2 and a practical maximum occupancy count of 35 [19]. The building
is provided with a photovoltaic system and a Battery Electric Storage System. An impression of the
building is shown in Figure 1. A general overview of the loads of the building is shown in Figure 2.
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Figure 1. (Left) Impression of the building. (Right) A Battery Electric Storage System (BESS) installed
inside the building.

Figure 2. Electrical load diagram of the building.

A detailed description of the subcomponents of the building follows:

(a) AHU and HVAC control unit: The ventilation system of the building is designed for two
functions: refreshing the air in the building and transporting the desired cooling capacity into the
building [39]. This group is composed of a variety of different components including supply and
return fans, HVAC controls, a heat recovery wheel, and the pumps for the heating system and
cooling system.

(b) Chiller: The chiller is an electric, double-stage air-source compression cooling machine. It is an
on–off operated machine, which means that it starts and stops multiple times per hour depending
on the cooling load. This cooling machine is equipped with a small buffer. The distribution
system supplies cold temperature to the rooms utilizing water-to-air aftercoolers.

(c) Lighting: The building is largely equipped with fluorescent lighting. One office space has an
LED lighting system with motion sensors and the ability to individually set light temperature
settings for each workplace.

(d) Plug loads: Plug loads consist of all the remaining electricity consuming devices such as
computers, printers, coffee machines, etc.

(e) PV system: The case study office has 65 solar Photovoltaic (PV) panels on its roof, with 260 Wp per
panel, corresponding to a total installed capacity of 16.9 kWp [40], with a 15 kW inverter. Each solar
panel is individually optimized to its Max Power Point (MPP) with the use of DC/DC optimizers.
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(f) Battery Electric Storage System: The building is equipped with a Nilar NiMH Battery Electric
Storage System (BESS) with 48 kWh of storage capacity. The power conversion system is formed
by the combination of a bi-directional inverter and transformer in a single cabinet. The advantage
of this configuration is that the equipment can be disconnected completely. This prevents
unnecessary power loss when the battery is not utilized. Table 1 provides an overview of the
specifications of the Nilar BESS and energy conversion system.

The method used to ultimately flatten the electricity demand profile for the case study building
consists of three steps elaborated in Sections 2.2–2.4.

Table 1. Battery storage and conversion system specifications.

System Technical Features Value Unit

SUNSYS-PCS2-33TR (bi-directional inverter and transformer)

Maximum current (DC) 80 Adc
- limited in setup to 35 Adc

Maximum current (AC) 53 Arms
Rated current (AC) 48 Arms
Rated power (AC) 33 kW
Maximum efficiency 97 %
European efficiency 96 %

Nilar ECI-600V—48 kWh (BESS)

No. of battery packs 40
System voltage 600 V
Rated capacity 80 Ah
Energy 48 kWh

2.2. Step 1: Establish Prediction Models

Building electricity demand predictions are an essential part of developing a suitable control
strategy. The total electricity consumption of the case study building consists of 5 major load groups
and a BESS which were extensively monitored. Due to the different behavior of all load groups, different
prediction methodologies are proposed depending on the group’s characteristics. An advantage of
this approach is that the cause of prediction errors is easier to trace back to the load groups which are
inaccurately predicted, after which the model could be adjusted or optimized. Another argument for
predicting each load group separately is that relatively simple prediction methods could be used which
are specifically designed for predicting the loads of a particular load group. This also makes practical
implementation of the predictions in the BMS more transparent. A priori knowledge obtained through
inspection of the building’s individual load groups and their characteristics enabled the construction
of the prediction models as presented. On the other hand, large fluctuations in loads such as the chiller
make it exceptionally difficult to accurately predict electricity demands intra-hourly. Consequently,
predictions in this study are calculated for all load groups on a 1 hour resolution. Figure 3 illustrates
the overview of subloads and corresponding day-ahead prediction models. BMS data from 1 January
2017 to 31 December 2018 are used in the establishment of the prediction models except for Solargis®

predictions for the outdoor temperature and PV yields. The Solargis dataset contains data from 25
May 2018 to 4 April 2019 (~10 months).
(a) AHU and HVAC control unit:

For this load group, a parametric approach is chosen because of the characteristic S shape of
the data (see Figure 4). Parametric modeling techniques involve two steps [41]: first identifying the
function form, and then fitting the parameters of the mathematical model. In order to determine a
better fit for the mathematical model, the natural logarithm of the dataset is taken, which is also known
as a variance-stabilizing transformation.
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Figure 3. Overview of the subloads and corresponding prediction models.

Figure 4. Demand variation in the air-handling unit (AHU) and the Heating Ventilation and Air
Conditioning (HVAC) control unit with respect to the outdoor temperature (Toutdoor).

Data points with an energy demand < 4 kWh.h−1 are considered outliers and were removed from
the dataset. The data in Figure 4 are plotted in an S shape. This shape can be described mathematically
by combining a logistic function and parabolic function. The transformation of this combined equation
back to the scale of the original dataset is achieved by exponentiation. The final equation to predict the
AHU and HVAC control unit energy demand (EAHU&controls) as a function of the ambient temperature
(Toutdoor) is given by Equation (1).

EAHU&controls,t=i = exp
(
(A·Toutdoor

2 + B·Toutdoor + C)

·
[
α+

β
1+exp(−γ·(Toutdoor−δ))

]) [
kWh.h−1

] (1)

(b) Chiller:
Figure 5 shows a scatter plot of the hourly electricity demand of the chiller as a function of the

outdoor temperature. Considering the shape of the data, a linear regression model will be used in this
case. Engineering expertise also tells us that measurements at the previous time step (t−1) may have
the largest impact on the building cooling load at time t [42]. Therefore, one of the proposed models is
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a multi-variable linear regression model that uses a time series of Toutdoor as an input and provides
a prediction for the chiller’s energy demand at t = i (Echiller,t = i) as the output. The mathematical
definition of this model is shown in Equation (2). By fitting the coefficients ai to the dataset, a single
equation is obtained which is capable of providing predictions. The number of terms/variables that
should be included in the model is determined through k-fold cross-validation [41] with k = 10. Note
that k-fold cross-validation is used for the establishment of the chiller model.

Echiller,t=i = a0 + a1·Toutdoor,t=i + a2·Toutdoor,t=i−1 + a3·Toutdoor,t=i−2 + · · ·+ an

·Toutdoor,t=i−(n−1)

[
kWh.h−1

] (2)

Figure 5. Demand variation of the chiller with respect to the outdoor temperature.

(c) Plug loads and lighting:
Occupancy is known to be related to plug loads [43]. However, because the day-ahead occupancy

cannot be predicted accurately, an approach is chosen wherein the future plug load and lighting demand
are based on (recent) historic demands. The proposed model makes energy demand predictions for
an hour i (Epred,t=i), based on the historic demands of the same clock hour. This model predicts hour
i based on the power demands at hour i of the N most recent workdays when predicting workdays,
likewise for weekend days. Equation (3) describes the model. In this equation, 24 describes the number
of hours per day. This prediction model is hereby named the “recent day model”.

Epred,t=i =

∑N
k=1(Et=i−24∗k)

N

[
kWh.h−1

]
(3)

(d) Photovoltaic panels:
Solargis® is a Slovakian company that provides solar, weather, and PV yield forecasts for almost

any location on earth. The case study building has been using its services since May 2018. Solargis®

provides both temperature and PV yield predictions on an hourly basis for every hour of the day and
up to 48 hours ahead.
(e) Outdoor temperature:

Some of the aforementioned models use the outdoor temperature as a predictor variable. Making
future predictions with these models, therefore, requires outdoor temperature predictions. Solargis®

services are again used to provide predictions for the outdoor temperature. The data obtained are
post-processed with elevation correction and bias correction [44].
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2.2.1. Performance Evaluation of Predictions

The performance of the prediction models requires quantification. This is achieved by introducing
various error metrics [45]. Two types of error metrics are used: those without dimensions (without units)
and those with dimensions (with units). Error metrics without dimensions are essentially normalized
errors which are necessary for comparing results with studies with different sized installations [46].

To normalize the data, error metrics with dimensions use the sum of all measured points or
the average of all measured points in their denominators. This denominator has a downside when
interpreting these error metrics for parameters such as the temperature or when assessing the seasonal
performance of the PV predictions, since there is the possibility that the temperatures of a dataset,
for example, may average to approximately 0 ◦C in wintertime, which in turn gives an unreasonable
scaling to the performance metrics. Choosing an error metric with dimensions omits this problem and
gives an intuitive value with units.
(a) The Coefficient of Determination (R2)

R2 evaluates how much of the variability in the actual values is explained by the model [41].
Generally, R2 takes a value between 0 and 1, wherein 1 represents the best performance. It should
be emphasized that while R2 is a powerful metric when assessing linear models, it is an inadequate
measure when assessing non-linear models [47]. R2 is therefore only used for the assessment of the
chiller model in this research. The mathematical definition of R2 is given by Equation (4).

R2 = 1−
∑N

i=1(x̂i − xi)
2∑N

i=1(xi − x)2
[−] (4)

where
x̂i The predicted value for data point i (e.g., power demand),
xi The measured (observed) value for data point i, and
x The mean of all observed values in the dataset.

(b) The Weighted Average Percentage Error (WAPE)
The WAPE describes the average magnitude of error produced by the model, relative to the

measured values. It is widely used as a performance measure in forecasting, since it is easy to interpret
and understand [48]. This metric is robust to outliers. Forecasting is best when the WAPE is close to 0.
Equation (5) shows the mathematical definition of the WAPE [48].

WAPE =

∑N
i=1

∣∣∣∣ x̂i−xi
xi

∣∣∣∣xi∑N
i=1 xi

=
∑N

i=1 |xi−x̂i |∑N
i=1 xi

[%]

f or xi ≥ 0
(5)

(c) The Coefficient of Variation of the Root Mean Square Error (CVRMSE)
The CVRMSE is a performance metric that penalizes larger errors more than the WAPE [49].

The American Society of Heating, Refrigerating, and Air Conditioning Engineers (ASHRAE)
recommends CVRMSE values below 30% [50] for hourly predictions and so this standard is also
adopted in this research. The mathematical definition is provided in Equation (6) [49].

CVRMSE =

√∑N
i=1(xi−x̂i)

2

N

x
[%] (6)

(d) The Mean Absolute Error (MAE)
The MAE is the average of the absolute difference between the predicted values and observed

value; see Equation (7) [51]. The closer the value is to 0, the better the prediction performance.

MAE =

∑N
i=1|xi − x̂i|

N
(7)
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(e) The Root Mean Square Error (RMSE)
The RMSE is the same as the CVRMSE, except for scaling by the average of all observations; see

Equation (8) [52].

RMSE =

√∑N
i=1(xi − x̂i)

2

N
(8)

(f) The Mean Bias Error (MBE)
The MBE indicates whether a forecasting model, in general, tends to overestimate or underestimate

in comparison to the actual values [46]. This metric could then be used to correct such systematic
deviations. The MBE can be calculated according to Equation (9) [52]:

MBE =
1
N

N∑
i=1

(x̂i − xi) (9)

2.2.2. Total Demand Prediction of the Building

Finally, in order to predict the total day-ahead (lead time: 24 h) electricity demand of the building,
the established prediction models for all load groups and Solargis® temperature and PV prediction
services are integrated into one combined model (see Figure 6). The predictions are performed each
day at 00:00 and error metrics are computed. The dataset used in the integrated model consists of
Solargis® and historic building energy demands from 25 May to 4 April 2019. MATLAB is used for the
integration of the models and assessment of the data. After combining the predicted energy demands
of each subcomponent, the resulting total building demand prediction with the hourly resolution data
in kWh.h-1 is taken as the power demand in kW.

Figure 6. Total demand prediction of the building.

2.3. Step 2: Establish the Operational Strategy and BESS Simulations

The objective of this study is to stabilize/flatten a building energy demand profile during office
work hours using a BESS. Peak shaving and valley filling are necessary to meet the load shape objective.
A peak refers to a significantly higher power demand than desired, and a valley to a significantly lower
power demand than desired. Before peak shaving and valley filling can be considered, a ‘desired power
demand profile’ of the building should be established. A comparison between the actual building load
and the desired load then allows for the identification of peaks and valleys. Instead of the term ‘desired
power demand’, henceforth, the term ‘baseline’ (BL) is used. An illustrative example of a BL which is
set between 07:00 and 17:00 (working hours of the building) is shown in Figure 7. By charging and
discharging the BESS, load shape objectives can be met. In principle, this baseline can be developed to
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reflect the different objectives of the building owners such as maximizing self-energy consumption,
minimizing electricity costs, and matching flexible Smart Grid demands.

Figure 7. Peak shaving and valley filling depending on the established baseline.

The operation of the BESS relies heavily on the established BL. When the baseline is too high,
power demands are unnecessarily high, and the BESS may not be able to fill all valleys. On the other
hand, when the BL is too low, the BESS may not be able to deliver the power necessary to shave
all the peaks. Another important parameter that is dependent on the baseline (and vice versa) is
the initial state of charge (SoCini) of the BESS before the load balancing period starts. In this case,
the load balancing period starts at 07:00. The mutual dependence of BL and SoCini calls for a strategy
to determine the best balance. The steps taken to determine the best balance are described below.
For both workdays and weekend days, the predictions are calculated at 00:00 for the upcoming 24 h
and then used when determining the BL and SoCini.

2.3.1. Workdays

The determination of suitable values for the BL and SoCini is a dynamic process performed
by using the established energy predictions for each day. On the other hand, battery operation is
constrained to work between a 0.8 SoC and 0.2 SoC margin, which means a capacity of ~28.8 kWh out
of the total 48 kWh is available for operation throughout the day. The other operational constraints,
e.g., the limited number of charging cycles, which affect the degradation of the battery are not taken
into account.

The algorithm starts at 00:00 by receiving the predicted energy demand profile for the upcoming
day. Based on the maximum predicted power demand of the prediction profile, a series of test baselines
(BLtest) are generated as shown in Figure 8a. Next, for different SoCini values ranging from 20% to 80%
(20%, 30%, . . . , 80%), the charging and discharging patterns of battery storage are evaluated for each
BLtest profile as illustrated in Figure 8b. For the evaluation, the charging efficiency is taken as 85.5%,
and the discharging efficiency is taken as 95%.

For each case, the cumulative energy which could not be delivered by the BESS to shave the peaks
throughout the day, denoted by Xdischarge (read: ‘inability to discharge’), and the cumulative energy
which could not be stored by the battery to fill the valleys throughout the day, denoted by Xcharge (read:
‘inability to charge’), are calculated. Performing the simulations for each case results in a complete
overview with all different combinations of BL and SoCini, and corresponding values for Xdischarge and
Xcharge. This information forms the basis in order to decide which case is expected to perform the best.
Then, the chosen BL and SoCini are used for the operation of the specific workday.
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Figure 8. (a) Principle of defining test baselines based on the maximum predicted power demand.
(b) Peak shaving and valley filling depending on the test baseline and building energy demand forecast.

2.3.2. Weekend Days and Holidays

The operational strategy of the weekend/holiday is to maximize PV self-consumption and prevent
net power injection into the grid, meaning BL = 0 kW is chosen for weekends. At 00:00, an energy
demand profile of the building is generated based on the predictions for the upcoming 24 h. By using
these energy predictions and the assumed charging efficiency of the battery, the expected required
storage capacity of the battery to prevent net injection between 07:00 and 17:00 is estimated. From this,
the required SoCini is calculated. Figure 9 shows a visual representation of an example weekend day.

Figure 9. Foreseen excess photovoltaic (PV) production depending on building energy demand forecast
on weekend days and holidays.

An illustration of the operational strategy to maintain the flattened demand profile on weekdays
and weekends/holidays is shown in Figure 10. Before implementing it in the real building, the prediction
models that are established in Section 2.2, the operational strategy and algorithm to determine the BL
and SoCini, as well as a BESS model are implemented in MATLAB.
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Figure 10. BESS operational schedule.

Even though the demand predictions are carried out with hourly resolution data, after the
determination of the required baseline (BL) and SoCini, operational strategies are simulated with the
highest-resolution data available, i.e., 1 min resolution data. This is becausecontrol of the real system
occurs on the time scale of seconds rather than hours. Furthermore, battery behavior can only be
accurately modeled when simulating with very high-resolution data. After simulation of the power
flows in the BESS, the 1 min operation data are averaged to 15 min resolution data. The 15 min
resolution is of interest because national electricity grid balancing in the Netherlands is carried out in
time blocks of 15 min (clock quarters), also known as the program time unit (PTU) [53]. It is, therefore,
reasonable to assess the performance of flexibility efforts at the same resolution.

2.3.3. Assessment of Operational Strategy

Because this research focuses on assessing the building’s electrical energy flexibility, key
performance indicators (KPIs) are chosen wherein the actual impact of energy flexibility is quantified.
Important KPIs that evaluate overall building energy performance and which are used in this
research are:

(a) KPI 1: Total energy consumption (excluding PV power generation) [54]. In this paper, this is
limited to electricity only;

(b) KPI 2: Exported electricity (feed in from the building’s PV system into the AC grid) [54];
(c) KPI 3: Imported electricity (power from the grid) [54];
(d) KPI 4: Battery Electric Storage System (BESS) losses;
(e) KPI 5: Self-consumption [55];
(f) KPI 6: Self-sufficiency [55];
(g) KPI 7: Percentage indicating the proportion of working hours wherein the baseline is

successfully maintained.

Furthermore, a qualitative assessment is included using the load duration curves only for working
hours and for both working and non-working hours. In addition, similar to the load duration curve,
a Baseline Deviation Duration Curve (BDDC) is defined, since the aim of the model is to maintain the
power demand as set by the baseline for the building through the operation of the BESS. This curve
visualizes how well the system can maintain the baseline during the operational hours. The BDDC can
be constructed by calculating the offset between the baseline and electricity consumption from the grid
(Pbuilding,net) for all working hours, as shown in Equation (10).

Pbaseline,deviation,t=i = Pbuilding,net, t=i − Pbaseline,t=i [kW] (10)

Then, the values of Pbaseline,deviation are sorted in descending order. This leads to a curve that is
analogous to the load duration curve. The obtained Baseline Deviation Duration Curve visualizes how
well the BESS strategy can maintain the baseline.
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2.4. Step 3: Real Building Management System (BMS) Implementation

The final step concerns the practical implementation of the prediction models, algorithms,
and BESS control strategies in the InsiteView® Building Management System (BMS). The BMS platform
coordinates sensor-based measurements, actuators, and monitoring data at all operational levels in
the building and provides an environment where advanced control algorithms can be implemented.
After beta testing for ~4 weeks, an experimental phase was conducted for 13 days, from 7 August 2019
to 19 August 2019.

An overview of the general methodological steps that are used to structure Section 2 and the
results (Section 3) is provided in Figure 11.

 
Figure 11. Summary of the methodological framework.

3. Results

The results are discussed following the steps described in Sections 2.2–2.4.

3.1. Step 1. Establish Prediction Models

(a) AHU and HVAC control unit: Parametric model
As mentioned in Section 2.2, from the scatter plot obtained for the energy demands of the AHU and

HVAC control unit load group (EAHU&controls) against the outdoor temperature (Toutdoor), a parametric
approach was considered for demand prediction. Figure 12 shows the results of the curve fitting,
where (a) shows the measurements and fitted curve, and (b) the residuals. The fitted parameters to
Equation (1) are provided in Table 2. Thereby, the parametric model is represented by Equation (11).

EAHU&controls,t=i = exp
((

0.0075·TOutdoor
2 − 0.3576·TOutdoor + 123.8934

)
·
[
0.01555 + −0.0016

1+exp(−(−1.0342)·(TOutdoor−21.2692))

]) (11)

A major factor for the deviations from the function fit above the curve is found to be the opening of
the variable air volume (VAV) valve depending on the indoor CO2 concentration. The error calculation
metrics for the fitted curve are a WAPE of 2.81% and a CVRMSE of 4.36%. Since these values are in line
with the requirements, the model is considered accurate enough for its predictions.

323



Energies 2020, 13, 2357

Figure 12. (a) Final function fit power demand for the AHU and HVAC control unit during office hours.
(b) Residuals plot.

Table 2. Numerical values for parameters.

Parameter Value

A 0.0075
B −0.3576
C 123.8934
α 0.0155
β −0.0016
γ −1.0342
δ 21.2692

(b) Chiller: Multi-variable linear regression
For chiller demand prediction, multi-variable linear regression is used. The results of the k-fold

cross-validation for different numbers of variables involved in the regression formula (see Equation (2))
are shown in Figure 13. Overall, the performance is very similar regardless of the number of variables
involved. At first, there is a (slightly) increasing performance when using one variable compared to
two variables. This behavior is in line with the literature claiming that temperatures at previous time
steps (t−1) may have the largest impact on the building cooling load at time t [42]. Including more
variables in the regression results in unexpected behavior; at first, the performance decreases, and then
it appears to increase again. Since this observed behavior cannot be proven, the sudden increase in
performance using ≥ 6 variables is thought to have a mathematical or coincidental origin rather than a
physical origin.

Figure 13. K-fold cross-validation results for multi-variable linear regression.
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The results of the k-fold cross-validation for different numbers of variables involved in the
regression formula are investigated for up to 10 variables; see Figure 14. As discussed in the previous
section, k-fold cross-validation where k = 10 is used—this means that the process of taking the 9 training
folds, determining the regression coefficients, and then inputting the validation fold as input is repeated
10 times in total until all folds are used once as a validation set. Each repetition of this process yields
a set of regression coefficients. These regression coefficients are plotted in Figure 14. It is observed
that the value for a1 is nearly the same value for all folds, indicating a low uncertainty in the value of
this parameter. The results for parameter a2 show that most values are slightly below zero, indicating
a weak negative correlation. For a3 and beyond, parameter values become extremely uncertain; as
shown by the distribution of values around zero, it can be concluded that it is not even clear whether
there is a small positive correlation, small negative correlation, or no correlation at all. Therefore, these
and subsequent terms were not considered.

Figure 14. Regression coefficients for k-fold cross-validation using 10 variables.

The regression with two variables reaches a local performance maximum with an R2 value of 0.89,
a WAPE of 19.7% and a CVRMSE of 27.6%. Since the best results are obtained by using two variables,
a model of the form as shown in Equation (12) is used and fitted to the dataset. The corresponding
coefficients are provided in Table 3.

Echiller,t=i = a0 + a1·Toutdoor, t=i + a2·Toutdoor,t=i−1

[
kWh.h−1

]
(12)

Table 3. Fitted parameters to the multi-linear regression model.

Parameter Value

a0 −10.9190
a1 0.7902
a2 −0.1223

(c) Plug loads and lighting: Recent day model
The results of the performance assessment for the lighting and plug load predictions according to

the model described by Equation (3) are shown in Figure 15. The performance for all hours (=working
+ non-working) of the dataset is shown in blue, and the prediction performance for only work hours,
is shown in orange.

325



Energies 2020, 13, 2357

Figure 15. (a) Performance assessment of predictions for lighting loads. (b) Performance assessment of
predictions for plug loads.

The predictions show a sharp increase in performance between N = 1 and N = 2 for both lighting
and plug loads. Using multiple historic data points for the prediction of a future data point is thought to
have a stabilizing effect because the outliers which may be present in the historic data are combined with
more representative historic values. The predictions, which are made by taking the average of these
historic data points, are therefore less affected by outliers. Both the lighting and plug load predictions
reach optimum performance when using five historic days (N = 5) in the forecast. With N = 5 for work
hours, the lighting load predictions yield a WAPE of 8.6% and a CVRMSE of 12.0%, and the plug load
predictions yield a WAPE of 10.6% and a CVRMSE of 13.8%.
(d) PV power: Solargis®

During the night, there is no sunlight, and PV power predictions for these hours are always zero.
These predictions are of course always 100% accurate. These predictions should not be considered in
performance evaluation. Specifically, predictions which are done for hours between 17:00 and 07:00
are not included in the Solargis® PV prediction evaluation. Prediction accuracy is determined by
comparing Solargis® predictions with the AC-side power measurements of the PV system.

Figure 16 gives an overview of the Solargis® prediction performance as a function of the lead
time for the case study building. The overall performance of the predictions shows a rapid decrease
in prediction accuracy in the first few lead hours. A peak at 5 lead hours is followed by a sharp
decrease in the MAE and the RMSE, after which a long approximately stable period follows. The peak
and subsequent decrease mark the transition between satellite-based models and numerical weather
prediction models used by Solargis® [46].

The subplots for the different seasons all show similar behavior in terms of the MAE and the RMSE.
However, the MBE clearly shows different fluctuations depending on the season and the lead time.
As stated earlier, the MBE indicates whether there is systematic overestimation or underestimation
in the predictions. In principle, the MBE can be used to easily correct prediction inaccuracy, e.g.,
by subtracting the value of the MBE in case of overestimation. Due to the various fluctuations, there
will be no attempt to improve prediction accuracy through MBE compensation. Such an analysis is
beyond the scope of this research.

(e) Outdoor temperature: Solargis®

The accuracy of the temperature predictions is assessed by comparing Solargis® temperature
predictions with the temperature measurements which are calculated by the weather station on the
roof of the building; see Figure 17.
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Figure 16. PV yield prediction performance assessment.

 
Figure 17. Weather station at the case study building.

The results of the analysis of the temperature forecasts for the case study building are shown in
Figure 18. The overall performance of all data points is shown as well as subplots for the performance
during the different seasons. From the magnitude of the MAE and the RMSE (without MBE correction),
it can be seen that temperature predictions are quite accurate overall. The autumn and winter
temperatures are predicted best. The errors increase only gradually for longer lead times. For an
unknown reason, a small spike at lead time = 25 h is observed. The behavior of the MBE in the overall
assessment shows a steady underestimation, with a value of –0.5 ◦C. Although this value is slightly
changed for the different seasons, a systematic underestimation (indicated by the “–” sign) occurs
throughout the seasons. MBE correction can be used to improve the predictions. This is achieved by
adding a value of 0.5 ◦C to all the Solargis® temperature predictions of the dataset. The dashed lines
in Figure 18 show the modified results. The figure clearly shows that the MBE has shifted upwards to
the desired value of ~0 ◦C. The lower values for the MAE and the RMSE in all plots show that this
correction is an appropriate measure to better align the predictions with the measurements.
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Figure 18. Outdoor temperature prediction performance assessment.

3.1.1. Summary of Subcomponent Prediction Models

The subprediction models and Solargis® services that were demonstrated in Section 2.2 form the
building blocks of the complete building energy demand prediction. A summary of the developed
models and corresponding performance metrics for each load group is provided in Table 4. For the
purpose of this research, the proposed model accuracies are considered sufficient.

Table 4. Summary of the prediction performance of the best performing model for each load group.

Load Group Model R2 WAPE CVRMSE

AHU and controls Parametric fitting N/A 2.8% 4.4%
Chiller Multi-variable linear regression 0.89 19.2% 27.1%

Lighting Recent day model N/A 8.6% 12.0%
Plugs Recent day model N/A 10.6% 13.8%

3.1.2. Total Demand Prediction of the Building

The established prediction models for all load groups and Solargis® temperature and PV prediction
services are integrated into a combined model, wherein the building’s total energy demand is predicted.
The dataset used in the integrated model consists of the Solargis® and historic building energy demands
from 25 May 2018 to 4 April 2019. The error metrics are computed for the predictions which are
calculated at 00:00. Only the predictions calculated for workdays between 07:00 and 17:00 are included
in quantifying the error matrices. Figure 19 shows the prediction accuracy of all the models on average
for all the months. Predictions for lighting and plug loads are combined and simultaneously assessed
for convenience.

From Figure 19b it can be seen that prediction errors are largest during the summer months.
Since the chiller operates the most during these months, and with the highest energy demands,
the magnitude of error is also larger. During the colder months, the chiller is mostly in standby mode
and is thus nearly perfectly predicted because standby power is constant. In Figure 19c, the months
January and February show an above-average error magnitude. From the large relative difference
between the MAE and the RMSE, it follows that there were a few moments with a relatively large
prediction error. These are caused by the opening of the variable air volume (VAV) valve due to CO2

concentration, which is not a factor that is considered in the predictions.
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Figure 19. Prediction errors for work hours (07:00 to 17:00).

Lighting and plug load prediction accuracy show above-average larger errors in January and
March. As can be seen for the first day in Figure 20a, and in Figure 20b, the building shows completely
different behavior compared to expectations. Due to abnormal building operation, which is probably
caused by anomalously low occupancy, the predictions are far off, resulting in a large prediction
error. Additionally, due to the history-based model used for lighting and plug-load predictions,
these abnormal days are still incorporated in the predictions for the next day. Since data from historic
days are used to make the forecasts, this again results in the estimation of the demand in the upcoming
days. One abnormal day could, therefore, trigger a cascade of prediction accuracy deviation for several
days. Nonetheless, overall, prediction errors for this load group are comparatively small and prediction
results are satisfactory.

Figure 20. Bad prediction performance in (a) January and (b) March.
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3.2. Step 2: BESS Simulations

In the previous step, multiple prediction models were developed and ultimately combined to
predict the total demand of the building. The prediction models are integrated with the proposed
operational strategy and simulated in MATLAB. The results of the simulations are evaluated in this
section. Table 5 provides an overview of the assessed Key Performance Indicators (KPIs). The overview
shows that total energy consumption (KPI 1) has increased by 2.2%, which is caused by conversion
loss in the BESS (KPI 4). From a decrease of 60.9% in exported electricity (KPI 2), it follows that
the operational strategy has significantly increased self-consumption (KPI 5) from 82.3% to 93.1%.
Due to the storage of this excess PV power that would otherwise be exported, the amount of imported
electricity (KPI 3) is reduced by 0.4%, as the BESS was capable of providing (some of) the required energy.
Overall, self-sufficiency (KPI 6) has increased by 2%, which means that the ratio of self-consumed
electricity from PV to total energy consumption (KPI 1) has improved. KPI 7, which quantifies the
ability of the system to maintain the baseline, shows that the baseline was successfully maintained for
97.2% of the time on weekdays between 07:00 and 16:33 (see also Figure 10).

Table 5. Assessment summary.

Key Performance Indicator Without BESS With BESS Load Balancing Difference [%]

KPI 1: Total energy consumption (excluding PV power
generation) [54] (in this paper, this is limited to electricity only) 55,538 kWh 56,781 kWh +2.2%

KPI 2: Exported electricity (feed in from the building’s PV
system into the AC grid) [54] 2309 kWh 902 kWh −60.9%

KPI 3: Imported electricity (power from the grid) [54] 44,769 kWh 44,604 kWh −0.4%

KPI 4: Battery Electric Storage System (BESS) losses 0 kWh 1245 kWh N/A

KPI 5: Self-consumption [55] 82.3% 93.1% +10.8%

KPI 6: Self-sufficiency [55] 19.4% 21.4% +2%

KPI 7: Percentage indicating the proportion of working hours
wherein the baseline is successfully maintained N/A 97.2% N/A

In Section 2.3.3, the Baseline Deviation Duration Curve (BDDC) was defined. This curve provides
a visual impression of the ability of the demand curve to maintain the baseline throughout the day.
Figure 21 illustrates the baseline deviation.

Figure 21. (a) Baseline Deviation Duration Curve (BDDC) with 15-minute resolution data. (b&c)
Close-up of the corners of (a).
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It is important to realize that the BESS cannot always store/deliver power due to the applied
constraints—this means that whenever the difference between Pbuilding,net and the baseline is too small,
the battery will not deliver or store power. A slight deviation from the baseline (BL) value cannot be
prevented, and it is not a problem. This is why the tolerance band, which marks the baseline deviation
between which the deviation is considered acceptable, is defined. The green area marks the bandwidth
around the zero line of –3.51 kW to 2.85 kW. These values naturally follow when considering the
minimum requirement of a 3 kW charging/discharging power constraint before the BESS starts to
operate and charging/discharging efficiencies (85.5% and 90% are the charging/discharging efficiencies):

• The BESS is controlled such that it starts charging when there is at least 3 kW/0.855 = 3.51 kW of
AC power available. Or in other words, when Pbuilding,net−BL ≤ −3.51 kW.

• Similarly, the BESS starts discharging when at least 3 kW × 0.95 = 2.81 kW of AC power is required
by the building. This means that when Pbuilding,net−BL ≥ 2.81 kW, then the BESS starts discharging.

Therefore, whenever the baseline deviation ≤ –3.51 kW, the BESS should have charged to fill the
valley. Whenever the baseline deviation ≥ 2.85 kW, the BESS should have discharged to shave the
peak. Finding baseline deviation values outside of the tolerance means that the BESS was incapable of
maintaining the BL and this was not caused by the minimum power constraint.

From the parts of the load duration curve outside of the green area, it can be seen that it was
not always possible to discharge/charge to deliver/store the power necessary to maintain the baseline.
The peaks which could not be shaved by the BESS are marked by the red area and have a total duration
of ~32 hours during the evaluated period. The valleys which could not be filled by the BESS are
marked by the yellow area and have a total duration of ~19 hours. Nevertheless, it can be concluded
that the system is well capable of actively maintaining the baseline 97.2% of the time (within the green
tolerance band). From Figure 22 it can be seen that, overall, there is a decrease in load duration of high
positive power and an increase in the duration of low positive power. This is the direct consequence of
the load balancing strategies wherein peaks are shaved and valleys are filled.

Figure 22. Load duration curves for (a) work hours only and (b) all hours of the dataset. (c&d)
Close-ups of (a). (e&f) Close-ups of (b).

3.3. Step 3. BMS Implementation

The KPIs of the building when operating the BESS can readily be calculated from the measurements
that are extracted from the Building Management System (BMS) during the experimental period from
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7 August 2019 to 19 August 2019. An overview of the resulting KPIs for the experimental period is
shown in Table 6.

Table 6. Key performance indicator (KPI) assessment for experimental results.

Key Performance Indicator Base Case With BESS Load Balancing Difference [%]

KPI 1: Total energy consumption (excluding PV power
generation) [54] (in this paper, this is limited to electricity only) 2190 2317 +5.8%

KPI 2: Exported electricity (feed in from the building’s PV
system into the AC grid) [54] 115 70 −39.1%

KPI 3: Imported electricity (power from the grid) [54] 1500 1582 +5.5%

KPI 4: Battery Electric Storage System (BESS) losses 0 127 -

KPI 5: Self-consumption [55] 85.8 91.3 +5.5%

KPI 6: Self-sufficiency [55] 31.5 31.7 +0.2%

KPI 7: Percentage indicating the proportion of working hours
wherein the baseline is successfully maintained N/A 96.2 -

After introducing the BL strategy, total energy consumption increased due to BESS losses.
Furthermore, it follows that exported electricity to the national grid is reduced from 115 to 70 kWh,
and imported electricity increased from 1500 to 1582 kWh. Self-sufficiency has increased from 31.5% to
31.7% and self-consumption from 85.8% to 91.3%. Finally, during 96.2% of the time, the BESS was
able to successfully maintain the BL within the tolerance, thereby, demonstrating that the load shape
objectives are most often met. In the future, the value of flexibility can be established if the relevant
guidelines and regulations are provided by the energy markets. The load duration curves for the
experimental period on the real building are shown in Figure 23.

Figure 23. Load duration curves for the experimental results (a) Work hours only. (b) All hours of the
dataset. (c&d) Close-ups of (a). (e&f) Close-ups of (b).

The ability of the demand curve to maintain the BL is visualized in Figure 24 using a Baseline
Deviation Duration Curve (BDDC). During 96.2% of the time, the BL was maintained within the
constraints. There was a total duration of 3 hours wherein peaks were not shaved. However, all valleys
were effectively filled during the experimental period.
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Figure 24. (a) Baseline Deviation Duration Curve (BDDC) for the experimental results of strategy 2
with 15-minute resolution data. (b&c) Close-up of (a).

4. Discussion

The objective of this study was to stabilize/flatten a building energy demand profile during
office hours by means of peak shaving and valley filling using a Battery Electric Storage System.
This was achieved by defining load shape objectives in the form of a baseline that is determined
based on electricity demand forecasts for the building. Before doing so, predicting the electricity
demand of the various load groups in the building was achieved through relatively simple models.
All individual prediction models of each load group proved to be sufficiently accurate for use in the
control strategy of the BESS. Finally, testing the operational strategy with BESS after the predictions
resulted in meeting the flattened load shape objectives over 95% of the time in both simulations and
practical implementation. The practical implementation was performed without compromising the
thermal comfort of the building users. Peak loads, which increase the risk of congestion, were also
successfully reduced both in magnitude and duration. Due to BESS losses, total energy consumption is
shown to have increased marginally.

Total energy demand forecasting of the building was achieved by combining the separate
predictions for each load group. The level of detail required to assess these separate models in order to
determine the best performing algorithm makes this approach a labor-intensive process. Even though
data-driven machine learning prediction methods are expected to increase prediction accuracy while
allowing for higher levels of abstraction, with the current BMS structure of the case study building,
the question remains whether that would be practically implementable. The prediction models that
were developed in this work were constrained by practical considerations. Nevertheless, the relatively
simple prediction models that were developed and optimized proved to be well capable of predicting
the building’s energy demands with sufficient accuracy within the practical setting.

5. Conclusions

Utilization of flexibility in the future Smart Grid will occur through information and communication
technology (ICT) regardless of the exact market design. In the future, it is unknown whether a steady
load profile as demonstrated in this paper will be the true load shape objective of a Smart Grid.
However, because no operational Smart Grid exists that can be used to define the load shape objective

333



Energies 2020, 13, 2357

in the Dutch context, and since the method introduced in this article has proven to be successful
after implementing in the building, it is safe to conclude that the baseline approach is adequate for
demonstrating load flexibility for a future electricity grid setting.

As an extension of this work, in the future, the baseline approach can be extended to a dynamic
baseline which varies hourly depending on the grid’s needs. BESS flexibility, as well as other sources
of flexibility (e.g., HVAC system flexibility), could then be integrated to achieve even greater flexibility.
The optimal load shape could be determined based on the combination of the predicted energy demand
of the buildings or neighborhoods according to the Smart Grid’s needs. However, this work did not
include an economic assessment of a Smart Grid using PVs and a BESS. An extension of this study
could also be made with an added economic assessment. However, in such a study, a time-of-use tariff
structure and the economic value of provided flexibility should be incorporated.

The built environment has the potential to contribute to maintaining a reliable grid by actively
participating in future grids. The case study building provided a perfect opportunity for demonstrating
and investigating such characteristics.
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Nomenclature

AHU air-handling unit MBE mean bias error
BDDC baseline deviations duration curve PVs photovoltaics
BESS battery electric storage system R2 coefficient of determination
BL baseline RES renewable energy sources
BMS building management system RMSE root mean square error
CVRMSE coefficient of variation of the root mean square error SoC state of charge
DSF demand-side flexibility SoCini initial state of charge of the BESS
DSM demand-side management t time
EAHU&controls predicted energy demand of AHU and HVAC control unit Toutdoor outdoor temperature
Echiller predicted energy demand of the chiller WAPE weighted average percentage error
Epred,t=i predicted energy demand at t = i x the mean of all observed values in the dataset
HVAC heating ventilation and air conditioning Xcharge inability of the BESS to charge
i index Xdischarge inability of the BESS to discharge
KPI key performance indicators xi the measured (observed) value for data point i
MAE mean absolute error xî the predicted value for data point i
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Abstract: One fundamental dimension in the design of an electrical energy system (EES) is the
economic analysis of the possible design alternatives, in order to ensure not just the maximization of
the energy output but also the return on the investment and the possible profits. Since the energy
output and the economic figures of merit are intertwined, for an accurate analysis it is necessary to
analyze these two aspects of the problem concurrently, in order to define effective energy management
policies. This paper achieves that objective by tracking and measuring the energy efficiency and the
cost effectiveness in a single modular framework. The two aspects are modeled separately, through the
definition of dedicated simulation layers governed by dedicated virtual buses that elaborate and
manage the information and energy flows. Both layers are simulated concurrently within the same
simulation infrastructure based on SystemC-AMS, so as to recreate at runtime the mutual influence of
the two aspects, while allowing the use of different discrete time scales for the two layers. Thanks to
the tight coupling provided by the single simulation engine, our method enables a quick estimation
of various cost metrics (net costs, annualized costs, and profits) of any configuration of EES under
design, via an informed exploration of the alternatives. To prove the effectiveness of this approach,
we apply the proposed strategy to two EES case studies, we explored various management strategies
and the presence of different types and numbers of power sources and energy storage devices in
the EES. The analysis proved to allow the identification of the optimal profitable solutions, thereby
improving the standard design and simulation flow of EES.

Keywords: design-time optimization; cost modeling and simulation; cyber-physical system;
electrical energy system; sustainable energy planning; sustainable power planning; design space
exploration; SystemC-AMS

1. Introduction

In the design of large-scale electrical energy systems (EESs), cost is a dimension at least as
important as the energy efficiency of the system: given the initial investment, in fact, users do want an
effective solution that can provide a return on the investment in the shortest possible time.

Designing an EES encompasses a number of options, such as the choice of components
(which power sources and which storage devices), their sizing, and particularly, their management
(how the energy flow is controlled among all the actors), possibly in a way that is aware of the
load profiles. The problem of optimizing the cost under an initial investment cost constraint is
therefore a complex problem, as it involves both “physical” aspects (i.e., the dynamics of the various
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devices, their non-idealities, the electrical characteristics of the loads, etc.) as well as “cyber” issues
(the algorithms that manage the flow of energy among these devices and the loads).

It is quite evident that accounting for (i) such a set of heterogeneous variables, (ii) numerous
significant non-idealities, and (iii) complex inter-dependencies between components can only be
handled effectively by the simulation of the EES as a cyber-physical system (CPS). This would allow
one to describe accurate (power and cost) models for the components, fed by accurate traces of
environmental data for the power sources, and exercised under realistic power demand traces [1,2];
on top of that, management policies modeled in software can evaluate a number of alternative scenarios.
Although throwing all these aspects into an optimization problem would be possible [3], this could be
done only using average quantities as representative values for the variables of the problem.

The literature presents many solutions for the simulation of these cyber-physical electrical energy
systems (CPEES), with different levels of accuracy, complexity, generality, and flexibility [4–8]. Most of
these approaches lack one fundamental feature which could be regarded as modularity. With this
term we mean the possibility of separating the different layers of information to be tracked in the
CPEES simulation. For instance, the analysis of the power flow (an “power layer”) could be carried
out to extract information that could be used for different purposes by another “layer” of simulation
that sits on top of that power layer. Such information could be used, for example, to track the
reliability (e.g., the mean time to failure, MTTF, or the mean time between failures, MTBF) of the
CPEES, using appropriate reliability models that depend on how energy is used and are fed by the
power traces obtained by the simulation at the power layer. Alternatively, as done in this work,
one could use the power traces to feed cost models to assess the overall economic balance of the system.
In some cases, a user might want to have both layers (reliability and cost), while in others, one might
be interested in only one of them. This degree of modularity requires a specific architecture of the
overall simulation framework.

An interesting solution that follows this modular approach was proposed in [9], where the
authors design a framework for the concurrent simulation of both functionality and extra-functional
properties, yet in a different context. The work refers to smart electronic systems [10–12], which can
be seen as small scale CPSs; here, the bottom layer of the simulation is the functionality; i.e., what the
overall system does and its timing evolution in terms of digital signals. Layers built on top of this
baseline layers (called “non-functional”) track other quantities (called properties), such as power
consumption, temperature, and reliability, stacked in this order. The key for modularity in this work
was the definition of a multilayer, bus-centric framework where each layer has a similar structure:
each simulated quantity corresponds to a simulation layer, and the bus-centric organization in each
layer implies the definition of a virtual bus, which conveys and elaborates quantity-specific information
(i.e., power-bus, temperature bus, etc.) to ease synchronization and information exchange.

In this work we adopt the paradigm of [9] to use it to add support for a new “property”; i.e., cost.
Cost is modeled as a new layer of the framework of the bus-centric approach: component-specific
costs are estimated locally to each component, while the bus merges them and keeps track of the
power balance and of any operation of the grid; i.e., to buy or sell power. We additionally extend the
framework to focus on the simultaneous simulation of cost with the power layer, to reproduce the
mutual interactions of the two properties, and to investigate such mutual inter-dependency.

Finally, we apply the extended framework to the design of a custom EES, that is used to highlight
and investigate the characteristics of the proposed modeling and simulation approach.

The paper is organized as follows: Section 2 discusses the background, including related work
and a brief introduction of the multi-layered framework of [9]. Section 3 illustrates how to build the
cost-layer and the information exchanges with the other layers. The implementation of proposed
simulation framework is introduced in Section 4. Section 5 exemplifies the overall approach on a
reference EES case study to prove the effectiveness of the proposed solution, and Section 6 draws
our conclusions.
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2. Background

2.1. Cost Estimation for EES Systems

The estimation of the total cost (and the possible resulting economic benefit) of an EES should
consider a number of cost items; namely, the initial investment, the runtime operation expenditures
(i.e., maintenance and obsolescence), and the cost of energy consumption, which depends on the
overall architecture and the load profiles. Once a comprehensive model is available, it will allow one to
compare different solutions (mainly the allocation of the energy flow, and the choice and sizing of the
components), so as to choose the most profitable one, by taking into account a number of constraints
and of optimization goals.

Given its relevance in many domains (industry, residential, large-scale energy generation
installations), the literature on the topic is quite rich. The most recent solutions proposed at state of the
art are summarized in Table A1 (moved to the Appendix A not to interrupt the natural flow of the
paper). The Table highlights the goal of each work, how EES components are modeled, the considered
costs, and most importantly, the solution proposed by each work, which mostly fall under two
categories: optimization-based approaches and simulation-based approaches.

Optimization-based solutions use analytical or empirical equation-based models of the power
characteristics of EES components and the corresponding costs, and formulate the problem into the
constrained optimization of a given target; e.g., maximization of power production, or minimization of
a cost function [13–31]. Unfortunately such approaches suffer from many limitations. Given that the
focus is optimization of some economic parameter, the evolution of EES components is considered
only as a byproduct: either as a constraint or an optimization goal [29–31], or as a dimension of the
problem that can be reproduced with simplified models or even simple input traces [13–18,24,25,28,32],
thereby sacrificing accuracy to simplify computation. When accurate models are adopted, they are
restricted to a subset of the components considered of interest (e.g., only batteries or PV modules),
while the other EES components are either ignored or modeled with simplistic equations [20–23,26,27].
Few works take into account the power management strategy used to activate power sources and
energy storage devices. When this happens, the goal is determining the optimal day-ahead scheduling
of energy storage devices, thereby preventing the comparison of different power management
strategies [26–31]. As a result, power dynamics are always considered as a minor dimension of
the problem (i.e., a constraint, an optimization goal, or an input), and the mutual impact of power and
cost is completely lost. Finally, these approaches provide one solution (or a few) and do not easily
allow a comparative analysis of various solutions, nor the sensitivity of a solution with respect to some
of the parameters.

Simulation-based approaches optimize EES design from an economic perspective based on dynamic
simulations of alternative configurations [33–35]. The goal is the evaluation of the impact of electricity
pricing, the feasibility of the constructed EES, or the evaluation of the most economical alternative.
However, once again the focus is on the economic dimension, thereby adopting gross grain temporal
scales (e.g., 1 h time steps) and restricting accurate modeling only to specific classes of EES components
of interest (e.g., PV modules [33,34]). Finally, the focus is restricted to only one direction of the
mutual impact between the cost dimension and power dynamics of the EES under analysis, which are
evaluated strictly sequentially, depending on the causality of interest.

The main limitations of the aforementioned approaches are thus the adoption of abstract and
simplistic models of EES components and the gross grain temporal scale: the energy dimension is
thus modeled with a very low level of detail, thereby missing important intrinsic dynamics of the
EES components, together with the modeling of inefficiencies and of realistic operating conditions.
Additionally, cost and power evolution are never considered as mutually interacting dimensions,
thereby missing important dimensions of the analysis.

The work proposed in this paper can be viewed as a different perspective; while it is a
simulation-based approach, it leverages results of an independent simulation of power traces, which can use
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models with variable accuracy and possibly with different time scales; these power traces are then fed
into the various models of different cost items (where they are power-dependent), which can vice versa
influence and impact the power dimension. This kind of modular approach is not, however, the result
of two distinct simulation environments, but both power and cost information can be derived by
concurrently simulating them: this allows one to expose all mutual dependencies between power and
cost, and thus to improve the design of EES with a more informed view of all the variables. There is
one study [36] that focused on the modeling the different components in the EES by using a different
model of computation (MoC) in one simulation framework by using SystemC-AMS. Cost is indeed
mentioned in that study, but there is no indication of how the cost models of that work are linked to the
power simulation. These are simply obtained by a post-processing of the power traces, as done in most
related works. Our proposed simulation framework speeds up the design-time optimization process
and has different methods to evaluate the power flow and economic benefit of EES by concurrently
simulating the two quantities. The key for such a modular and concurrent simulation approach is
described in the following section.

2.2. A Multi-Layered Approach for Functional and Extra-Functional Simulation

The simultaneous simulation of the various aspects of a system requires the construction of
frameworks that integrate different views of a system in a single run. The work in [9], which targeted
smart electronic systems, proposed an effective methodology that allows the simulation of system
functionality together with its power, thermal, and reliability evolution.

The approach proposed in [9] envisions a multi-layer, bus-centric framework (depicted on the
left-hand side of Figure 1, adapted from the original paper): multi-layer because it has a stacked layers
structure; each layer is associated with one simulated characteristic of the system (called property).
Bus-centric means each property is simulated with a virtual bus in each layer, used to update the
property-specific status of the system. All simulated properties are thus reduced to this common
structure, thereby easing synchronization and information exchange. The goal is indeed to avoid the
construction of co-simulation frameworks, and to rather simulate all layers in a single run by falling
on the same implementation language; namely, SystemC-AMS.

Each layer is fixed to a single generic underlying architecture, of which the layer-specific
bus is the central element, used to carry information between components (layer-specific signals).
Such information is specific of the property under analysis in the layer (e.g., voltage and current for
the power layer). Each component in the system corresponds to a model in each layer, to capture
the property-specific evolution over time of the component. The layer-specific bus aggregates the
property-specific information of each component to control the information flow and update the
overall property-specific information. Layers can additionally share information (inter-layer signals) to
mutually influence each other. Notice that signals can go in both directions; i.e., they can be forwarded
to upper layers, as signals that are needed to carry out the simulation at that layer (solid lines);
but signals can also be fed back to lower layers as information that can make the lower-level simulation
more accurate (dotted lines). In the context of [9], for example, the former type of signals could
be power consumption signals forwarded upwards to compute the temperature map of the system;
the latter type could be the same temperature maps, which could impact the power consumption of
some of the components. Most importantly, when the layers run at different time scales, time converters
can be introduced to convert the signals towards coarser or finer time scales. For instance, while it
makes sense to measure the functionality of an electronic system at the nanosecond scale, this is not
a required granularity for power simulation, and can be even more relaxed for the analysis of the
thermal flow.

Not shown in the figure, there are also layer-specific description data that are strictly referring to that
layer and are needed as a sort of “context” of the simulation. In the temperature layer of [9], these data
could refer either to the physical locations of the components, which affect the thermal flow, or to the
characteristics of the materials (type, thickness, etc.) constituting the system itself.
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Figure 1. The multiple layered framework for the non-functional properties simulation proposed in [9]
(left) and application to the simulation of power and cost proposed in this paper (right).

This paradigm proved to work very well for the simulation of the different views of a smart
system, thanks to its scalability and to the simultaneous evolution of the different system properties,
which thus can react simultaneously the one to changes of the other.

For this reason, in this work we tried to fit the above-described paradigm to the co-simulation of
power and cost of an EES, with the objective of exploiting its two main benefits; namely, modularity and
generality. Notice that the contribution of this work is showing that the layered, modular framework
of [9] is not a customized architecture, but its paradigm can be extended to other quantities: in this
specific case the operational costs of an EES. The work of [9] was applied to small-scale electronic
systems, where the non-functional properties were (from bottom to top; see Figure 1 in the manuscript)
power, temperature, and reliability. Our work aims at demonstrating the general applicability of the
modeling and simulation paradigm of [9] to the context of large-scale EES, and can add different
non-functional properties that the properties in this work are power and cost. The right-hand side of
Figure 1 shows how the generic bus-based layered architecture maps to our specific context. Since we
focus on EES, the first layer of the simulation stack coincides with the power layer. In some sense,
this represents the equivalent of “functionality” in the original version; that is, the lowest abstraction
level of the semantics. On top of the power layer sits the cost layer, which receives power flow
information (used to update the power-dependent cost items, such as electricity cost) and returns cost
information to the power layer, which can be used to implement policies in the power bus to decide
the optimal power flow among the various components.

Time converters are also expected, since some updates of some of the cost items might generally
have different time granularity with respect to power updates, which in the finest granularity are
updated every 15 min (as in the most accurate meters).

In the conceptual architecture of Figure 1, the power layer is fundamentally working just as
described in [9]; even if components are different in their power scale (100 s of Watts vs. milliwatts),
their interfaces and interaction are the same. The cost layer, conversely, is an original layer and its
implementation within the constraints of the layered structure demonstrates the claim of modularity
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of the architecture. In the next section, we will describe the cost models and the technical details to
incorporate the cost layer within the template of Figure 1.

3. Modeling of Cost

Calculating the life-cycle cost of the EES is an accurate and sound way to estimate the overall
cost spent on an asset over the course of its useful life, thereby including the initial capital costs,
the projected operating costs, and the maintenance costs, plus possible disposal costs or final residual
values of the asset. This Section maps the characteristics of the various models of the life-cycle cost
with respect to the layered structure outlined in Section 2.2.

3.1. Main Characteristics of the Cost Layer

The cost of the whole EES is a combination of component-specific cost items—that is, that can entirely
be determined locally for each component (e.g., initial investment cost, operation, and maintenance
cost); and of global costs—that is, costs that require an aggregation to be computed; this is essentially
the case for electricity cost, whose computation implies the calculation of the balance of the power
flow. Therefore, the adoption of a bus-based architecture for the cost layer is relatively natural
and straightforward:

• Each component computes its “local” costs over time;
• All individual costs are conveyed to the cost bus;
• The cost bus estimates additional global costs, i.e., due to energy balance with respect to the grid;
• The cost bus determines and keeps track of the total balance over time.

The characteristic information managed in this layer is cost, interpreted as a numeric value in some
currency. Cost is thus the only layer-specific signal that connects all components to the layer-specific
bus, and all components are directly connected to the cost bus. Notice that this architecture may not
reflect the actual physical organization among the components in the actual EES. For instance, in the
real-world EES, a certain component may be connected to the physical power bus through a DC-DC
converter; nonetheless, in this virtual cost layer, both the component and the DC-DC converter are
independently connected to the cost bus. Figure 2a shows a pictorial representation of the general
structure of the cost layer.

Figure 2. Organization of the cost layer: property-specific signals (a), inter-layer signals shared by
models of the same component (b), and with the power bus (c).

3.2. Cost Models

This Section details the various cost components by category, and it maps them to the cost
layer template. Notice that the presence of multiple cost models makes the cost signal connecting
components to the bus rather an array of cost values, as sketched to Figure 2a, where each array
element denotes one cost category listed hereafter. In the following, we will use uppercase letters C to
denote cumulative costs; i.e., costs whose definitions encompasses the time intervals over which they
are accrued. Lowercase c denotes instantaneous costs. The former are expressed in currency × time,
e.g., $ × year, and the latter in currency.
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3.2.1. Component-Specific Costs

We consider three main component-specific cost items. Since our focus is on small to medium-scale
EESs (such as those in residential installations), we ignore here disposal costs or final residual values
as they can be regarded as marginal. These could be, however, easily incorporated without any
conceptual difficulty.

Initial Capital Cost

Initial capital cost is the initial investment for the purchase of a component at time zero.
This expense is computed for component i by considering its unit cost Cunit,i and its cardinality Ni:

Ccapital,i = Ni · Cunit,i (1)

where Ci is the cost of one unit of component i; Ni is the number of units of i. We decouple the two
terms to allow the possibility of tuning the size of components in the exploration. Many components
can in fact being seen as modular (e.g., a PV panel consists of a number of PV modules, a battery pack
of a number of cells, etc.).

Time-Dependent Capital Cost

Time-dependent capital cost describes the decrease in the value of a component over its useful
life as a consequence of obsolescence and/or wearing, and it is in general proportional to its initial
capital cost. We consider two types of components, depending on how their loss of value is defined.
A first category corresponds to components that have a maximum expected duration; examples are,
for instance, PV panels and wind turbines, whose datasheets typically define maximum operational
life. For this class, we call this cost depreciation cost, defined for component i as:

Cdepreciation,i(t) = Ccapital,i · CRF · t
Ts

(2)

where Ccapital,i is defined as in Equation (1), and Ts serves as a time normalization factor and it denotes
the number of simulation samples (ΔT) per year, in order to express the depreciation over each sample
time (e.g., if the ΔT is 1s, Ts = 3600 × 24 × 365). CRF is the capital recovery factor, a ratio used for
estimating the present value during the lifespan of a system if invested at a particular interest rate [37].
CRF is expressed by:

CRF =
R · (1 + R)n

(1 + R)n − 1
(3)

where R is the interest rate, and n denotes the number of years of operations of the system
(i.e., component lifetime).

A second class of components has instead a lifetime not defined a priori, but rather determined
by their usage characteristics; this is for instance the case of batteries, whose lifetime is defined
upon reaching a given value of usable capacity, which depends on several usage-related factors [38].
To distinguish from the former category, we call the time-dependent capital cost for this class as
wear-out cost, defined for component i as:

Cwout,i(t) = Ccapital,i · L(t)
Lmax

(4)

where L(t) is the loss of “functionality” over time and Lmax is the maximum value of the loss after
which the component is considered not functional and it needs to be replaced. Thus, when L(t) reaches
Lmax, the entire capital cost has been consumed.

L(t) clearly depends on the type of component and requires an ad-hoc model. Using a battery as
an example, L(t) will be the capacity loss due to both calendar and cycle aging, which are affected by
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several parameters [39], most of which can be attributed to how the power is drawn from the battery,
and thus from information derived from the power layer. Lmax is the maximum capacity loss before
the battery is considered as depleted (usually a loss of 20% from the initial capacity). This information
must be provided at runtime by power simulation, as will be explained later in this Section.

In summary, the time-dependent capital cost depends on the type of component; the term Ccapital,i(t)
will correspond to either Equation (2) or Equation (4) depending on the characteristic of component i.

Operation and Maintenance Cost

Another time-dependent cost is the one due to operation and maintenance [40] that includes both
scheduled and major corrective maintenance. This cost is component-specific, as it strictly depends
on the characteristics of the component (e.g., it may include periodical cleaning, wiring replacement,
and screw and bolt tightening). To this extent, many definitions of this cost are available.

Coperation,i(t) = Coperation,yearly,i · Pi(t) · t
Ts

(5)

where Coperation,yearly,i is expressed in $/kW/Year; Pi(t) is the instantaneous power flow related to
different components i; e.g., the power generation of PV modules and power provided by the battery
pack. Ts is the time normalization factor defined as in Equation (2). The Coperation,i includes the base
cost of element replacement inside each component during its operating lifetime.

3.2.2. Bus Models

The functions of the cost bus are two-fold; firstly, it calculates the costs that depend on the
overall power flow of the EES; i.e., the cost of electricity that is bought (and sold) over time from the
grid. Secondly, it computes some global cumulative metrics to be used for the exploration of design
alternatives or for computing the sensitivity with respect to some parameters of the EES.

Electricity Cost

Electricity cost is the instantaneous cost related to the money paid to (or received from) the utility
provider as an effect of the total power balance in the system. This cost can be modeled as:

celec(t) = pE(t) · E(t)
ηconv

(6)

where E(t) = P(t) · Δt is the energy to be bought (or sold) at time t; P(t) is the instantaneous power
demand (positive or negative), which refers to the total balance of the EES, and its sign determines
whether the power is being bought (P(t) > 0) or sold (P(t) < 0). pE(t) is the instantaneous electricity
price (in currency/kWh); its value depends on the sign of P(t):

pE(t) =

{
pE,buy if P(t) > 0
pE,sell if P(t) < 0

where typically pE,sell < pE,buy. ηconv ≤ 1 is the efficiency of the conversion process; i.e., how the
nominally consumed energy E(t) is actually perceived [2].

Given that Equation (6) depends on the overall power flow (production vs. demand) of the EES
evolution, this cost can only be computed by the cost bus, that, by collecting the individual signals
from the components can have a global perspective on the system.
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Net Cost

The first global metric computed by the cost bus is net cost over time; i.e., simply the sum of all
cost components:

Cnet(t) =
t

∑
τ=0

(
celec(τ)

)
+∑

i

(
Ccapital,i(t) + Coperation,i(t)

)
(7)

including, thus, time-dependent capital costs, operation and maintenance costs, and the cost of
electricity until time t. Notice that the total electricity cost is obtained by integrating (summing) the
celec component over the time interval [0, t], whereas the other components already include the time
interval in their definition.

Annualized Cost

The annualized cost of an EES is the cost that, if it were to occur equally in every year in the
system lifetime, would give the same net present cost as the actual cash flow sequence associated with
the system:

Cannualized =
Cnet(tMAX)
tMAX

∑
t=0

PPS(t)

(8)

where tMAX is the maximum system lifetime, and PPS(t) is the power produced by the EES power
sources over the same interval. The equation considers all costs from the beginning of simulation to
the end of system lifetime, and divides them by the total produced power, with no distinction between
whether such power has been used to satisfy load demand or to sell power to the grid.

This cost basically returns the average cost per kWh of consumed energy produced by the system:
it is thus a useful metric to compare alternative configurations of the EES and to have a picture of
which configuration is more convenient than the others.

Profit

The net cost provides an indication of the total cost over a given time interval. When exploring
different design alternatives (EES architectures, policies), a most useful metric is the actual profit of a
given configuration. Defining a profit would, however, require to set a baseline to compare against;
since the key element that has the most sizable impact on profit is the presence of renewable power
sources, our definition of profit focuses on the net balance of the energy provided from power sources
to the load and not requested from the grid (at the price pE,buy). From this energy we need to subtract
the net cost defined in Equation (7) .

Pro f it(t) =
t

∑
τ=0

(
pE,buy(t) ·

Eps2load(t)
ηconv

)
− Cnet(t) (9)

Clearly, the profit is monotonically increasing with t during the lifetime of EES. The positive value
of profit illustrates the given configuration can bring real benefit to the users, while the negative value
indicates the given configuration is not a profitable one.

3.3. Interaction with the Power Layer

As stated in the previous section, some cost models depend on the power flows in the EES.
The concurrent simulation of the cost and power layer is, therefore, essential to get an accurate
estimation of the total EES costs. The generic inter-layer interaction depicted in Figure 1 shows generic
connection between two layers. However, there are distinct types of interactions among the power
and cost layers.
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The first one involves an individual component in the two layers (Figure 2). The power model of a
component Ci sends the following information to its cost model:

• The time-dependent capital cost requires information about the current loss of functionality
of the component L, and the maximum accepted loss Lmax (Equation (4)). Both values are
known at the power layer: Lmax is a configuration value used by policies to determine when the
component reached the end of its lifetime; L is a value that is constantly updated at simulation
time to correctly estimate the behavior of the component. Using again the example of a battery,
this would be approximated by the full cycle equivalent [41], i.e., the number of equivalent full
charge-discharge cycles, which can be computed by just knowing the nominal battery capacity
and the instantaneous power drawn.

• The operation and maintenance cost strictly depends on the power produced or stored by a
component over a given time interval (Equation (5)); the power layer naturally keeps track of this
quantity during simulation.

The second type of interaction involves the two buses as it concerns aggregate information
(Figure 2c). The power bus forwards to the cost bus the following information:

• The energy balance over time ETOT , taking into account the difference between the power
provided by power sources and the power demand to guarantee the load operations. This quantity
allows one to compute the electricity cost over time (Equation (6));

• The total power produced over time by power sources PPS, useful for the estimation of the
annualized cost (Equation (8)).

There is, however, also a feedback flow from the cost bus to the power bus. The former can in
fact provide information to the power layer that can be used to design and apply specific power
management policies. Examples of such information are:

• The current price of electricity: at times, the price of electricity may be so low that it makes
convenient to recharge all energy storage elements (e.g., battery packs), and use the stored energy
to power the system when electricity price is higher.

• Data on wear-out and/or depreciation in the form of alarms or warnings that can be used to force
the replacement of some components.

The next section will present the implementation details (software infrastructure, timing model,
etc.) of the overall intra-layer and inter-layer signal interaction.

4. SystemC-AMS Implementation

In order to replicate the approach proposed in [9], the proposed framework has been implemented
in SystemC-AMS. Section 4.1 provides a brief introduction to SystemC-AMS, while Section 4.2 explains
the reasons behind this choice and explains how SystemC-AMS has been adopted in this context.

4.1. SystemC-AMS

SystemC-AMS is the extension of SystemC for modeling analog and mixed-signal systems [42].
SystemC-AMS provides three different models of computation (MoC) to cover various domains as
indicated in Figure 3.

Figure 3. Abstraction levels supported by SystemC-AMS.
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Timed data-flow (TDF) models are scheduled statically by considering their producer-consumer
dependencies in the discrete time domain. Each TDF module is characterized by a simulation time
step, which is used by the TDF solver to insert timed activation events in the standard SystemC event
queue. This ensures efficient computation, as it avoids any runtime dynamic event management.
Continuous time models can be modeled with two abstraction levels. Linear signal flow (LSF)
supports the modeling of continuous time through a library of pre-defined non-conservative primitive
modules [43] (e.g. in Figure 3 derivative and integrative, respectively). The electrical linear network
(ELN) MoC models the electrical network by connecting the instantiation of predefined primitives
(e.g., in Figure 3, capacitor and voltage source, respectively). All such abstraction levels are handled by
the same simulation kernel that derives the system of equations to be solved over time and estimates
system evolution.

4.2. SystemC-AMS Implementation of the Proposed Solution

SystemC-AMS is selected as the reference language for heterogeneous modeling for several
reasons. The provided multiple abstraction levels unify the modeling work in a wide range of
domains by using a single language: models can be built by choosing the most suitable abstraction
level, and native converters can be exploited to simulate different abstraction levels simultaneously.
SystemC-AMS also has the characteristics of a modular one, in that it divides the definition of interface
and implementation, and is a IEEE standard language; thus, it can be easily extended and free from
compatibility and reuse issues.

The flexibility of SystemC-AMS allows one to easily integrate the power models and the cost
models. Figure 4 shows an example of a component implementation of a battery that is used in the
remainder of this section as a reference. Each EES component is instantiated as a SystemC-AMS
module (SC_MODULE, Figure 4, left) that internally instantiates one SystemC-AMS module for the power
model and one for the cost model (line 5). This solution avoids forcing the fact that both models follow
the same abstraction level and leaves maximum flexibility in the choice of the implementation style.
The interface of the top level module includes the layer-specific signals of power (line 2) and cost
(line 3) that will be bound to the corresponding ports of the layer-specific buses.

Figure 4. Example of SystemC-AMS of a battery: top level module (left), power model, implementing
a circuit model in ELN (center), and a cost model (right).

The interface of the power and cost modules includes the layer-specific signals (e.g., in case of the
cost layer, one port per cost computed by the component, line 45) and the inter-layer signals, used to
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communicate with the other layer (line 22 for the signals propagated from the power module to the
cost module). This naturally enables inter-layer communication: thanks to the encapsulation of both
power and cost models in a single top level SystemC module, inter-layer communication signals are
set as TDF signals, binding the property-specific ports of the modules (lines 4 and 14–16).

The implementation of power models in SystemC-AMS has been discussed in many works at
the state of the art that proved that SystemC-AMS can find a good trade off between accuracy and
simulation time [36,44,45]. The presence of multiple abstraction levels allows one indeed to adopt for
each power model the most suitable solution; e.g., ELN for circuit or circuit-equivalent models, TDF
for equations, and LSF for dynamic models. In the case of Figure 4, the power model adopted for
the battery is the circuit model proposed in [38] that is implemented as a network of connected ELN
primitives (e.g., Ib is a current source, lines 23 and 30–32; Cnom is a capacitor, lines 25 and 34–35).

Modeling the cost equations detailed in Section 3 is straightforward, as they can be easily mapped
on C++ functions and primitives, encapsulated by the TDF semantics of SystemC-AMS. The right-hand
side of Figure 4 shows a snapshot of code: the processing function of TDF repeatedly evaluates the
cost models of the battery over time, in terms of capital cost (line 50), real-time capital cost (line 51),
and operation and maintenance cost (line 52).

Note that the separation of the power model and the cost model in two different SystemC-AMS
modules allows one to decouple their activation frequency. Power models require a fine grain activation
time step (in the order of 1s down to 1ms) to accurately evaluate the internal dynamics of the component.
Vice versa, the cost models allow a larger time step, so as to reduce the computation overhead. As a
result, the activation time step of the two modules is different (lines 41 and 56, respectively), and the
inter-layer signals are handled with a conversion between different time scales.

5. Simulation Results

All simulations reported in this section have been implemented in SystemC-AMS 2.1 and run on a
server installed with Intel Xeon 2.40 GHz CPU (16 cores, 2 threads each) and 128GB RAM, with Ubuntu
operating system 18.04.1.

5.1. EES Case Study 1

As an example case study, we used a grid-connected EES built upon the prototype of [46],
and sketched on the left hand side of Figure 5. The EES includes a wind turbine, a photovoltaic (PV)
array, a battery pack, various AC loads, a common DC bus, and the necessary converters. Tables 1 and 2
report the main characteristics of the EES components, in terms of rated power and costs, respectively.
The right hand side of Figure 5 shows the mapping of the case study to the proposed two-layer
approach. The following subsections will detail the construction of the power and cost layers.

Figure 5. Structure of the electrical energy system (EES) case study 1 (left) and result of the application
of the proposed approach (right).
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Table 1. Characteristics of prototype EES components.

Component Unit Rated Electric Characteristic Cardinality (#) Overall Rated Electric Characteristic

Wind Turbine 10 kVA 1 10 kVA

PV Module 57 V 5.49 A 30 10 kW

Battery Cell 3400 mA 3.7 V 40 × 60 200 Ah 144 V

Table 2. Initial capital cost and nominal lifetime of EES components.

Component Unit Capital Cost ($) O&M Cost ($/kW/Year) Nominal Lifetime

Wind Turbine 19,500.00 15 20 Years

PV Module 675.00 15 20 Years

Battery Cell 2.50 10 SOH→ 80%

5.1.1. Power Layer

In the power layer, each EES component is described by a model. More specifically:

• The wind turbine is modeled with a mechanical model, proposed in [47];
• The PV array is modeled with a model of a single PV module, built by adopting the solution

in [48], scaled up to the size of the PV array;
• The battery pack is based on the circuit-equivalent model in [38] (which models a single battery

cell), scaled up to the size of the pack;
• AC loads reproduce power consumption of a residential community including 15 houses [49];
• Converters are modeled in terms of their conversion efficiency as introduced in [50];
• The grid component is used only to keep track of the power balance between demand and supply,

and of any inefficiency introduced by the presence of a transformer between the grid and the
power bus.

Table 1 collects the most relevant power characteristics of these components, plus the initial
cardinality (# of elements) considered in the initial installation.

The power sources need input traces of irradiance and wind speed, which have been downloaded
from the datasets of the National Renewable Energy Laboratory’s (NREL’s) Measurement and
Instrumentation Data Center (MIDC) [51]. The time scale of irradiance and wind speed traces (one
sample per minute) is longer that those of the load (one sample per second). We adopted the conversion
methodology proposed in [9] to solve the issue of different time resolutions.

The power bus implements an initial non-cost-aware energy management policy similar to the one
proposed in [52]: AC loads are satisfied by the renewable power sources whenever possible, and the
battery pack is used to compensate whenever necessary (until its state of charge reaches a minimum of
10%). If the sum of energy stored in the battery pack and the power generated from the power sources
cannot satisfy the AC loads, the houses purchase the missing energy from the grid. Otherwise, if the
demand of the AC loads is less than the total power generation of the power sources, the unused
power is used to charge the battery pack until it reaches 90% SOC, and then it is sold back to the grid.

5.1.2. Cost Layer

In the cost layer, only some components of the EES are relevant from the cost perspective. AC loads
are not considered as a “variable,” as they are assumed to be given upfront in terms number and type;
as such, they are not associated with a cost model, as they do not contribute to the overall economic
evolution. Therefore, loads are an input of the system; i.e., a trace of the input power demand over time.

Another difference with respect to the power layer is that all costs connect to the grid; i.e., the costs
of buying/selling energy to the grid, are taken into account inside the cost bus; it is not, therefore,
necessary to include a specific component for the grid.
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Thus, the cost layer features three components: the two power sources (i.e., the wind turbine
and the PV array) and the energy storage (battery pack). Table 2 reports all cost information for such
components. All components model their initial and time-dependent capital costs (Equations (1)
and (2) or (4)) and their operation and maintenance cost (Equation (5)). Note that the operation and
maintenance cost is expressed in terms of $/kW/Year, as it considers the annual routine operating and
maintenance costs, and not accidental inside parts replacement. The interest rate used in Equation (3)
is 7% for all components, and the CRF is thus set as 0.094.

The main difference between the models of the components is in terms of their time-dependent
capital cost:

• The wind turbine and the PV array are considered as fixed lifetime components (with lifetime
20 years, as derived from their datasheets); thus, their time-dependent capital is modeled as in
Equation (2).

• The battery pack has a variable lifetime, depending on its usage profile; thus, its time-dependent
capital cost is modeled as in Equation (4), by considering the loss of functionality L as a aging
degradation of battery capacity over time. The state of health (SOH) of the battery pack is
represented by 1 − L.

The cost bus estimates the total electricity cost with Equation (6), plus the net cost and the
annualized cost, as defined in Equations (7) and (8). In our analysis, electricity price depends on
the kind of operation (i.e., buying or selling) and on the time slot of the day, as shown in Table 3.
Electricity buying price pE,buy is initially defined in three time slots, with the highest price at peak
demand hours of the day. Electricity selling price pE,sell is instead independent of time and is much
lower than pE,buy.

Table 3. Electricity prices in different time of the day, as defined in [53].

Operation Rate Value ($/kWh) Time Slot of Day

Buying
F1 0.220 10 a.m.–3 p.m., 6 p.m.–9 p.m.
F2 0.215 7 a.m.–10 a.m., 3 p.m.–6 p.m., 9 p.m.–11 p.m.

F3 0.200 11 p.m.–7 a.m.

Selling - 0.030 all day

5.1.3. One-Month Example Simulation Traces

In order to illustrate the different quantities that can be trace with the proposed simulation
framework, we extract one-month simulation results of the prototype EES configured as shown in
Table 1. For the simulation, the environmental traces used are relative to the observation site of MIDC
at the University of Arizona [51], which has dry and windy weather all year long, with up to 90%
sunny days.

Evolution of the Power Layer

Figure 6 depicts the evolution of the prototype EES in the initial 30 days by focusing on the power
layer. Plot A shows the evolution of the environmental traces, in terms of solar irradiance (blue line)
and wind speed (orange line), while plot B shows the power production of the corresponding power
sources (same colors as in A). Plot C shows residential load demand over time. Plots D and E show
the results of the application of the power bus policy in terms of state of charge (SOC) over time of the
battery (D) and power balance in the system that leads to buying or selling energy.

352



Energies 2020, 13, 2949

0

0.5

1

E
 (

kW
/m

2 )

0

10

20

30

W
S

 (
m

/s
)

(A) - Environmental Profiles Solar Irradiance
Wind Speed

0

5

10

P
W

R
 (

kW
)

0

5

10

P
W

R
 (

kW
)

(B) - Renewable Power Generation PV Power
Wind Power

0 
20
40
60

P
W

R
 (

kW
) (C) - Total Power Consumption of The Whole Community

0 
30
60
90

S
O

C
 (

%
)

(D) - Batter Pack SOC Profile

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
Days

0
20
40

P
W

R
 (

kW
) (E) - EES Interaction With Utility Grid Buy From Grid

Sell to Grid

Figure 6. One-month long simulation of the EES in terms of power tracing quantities.
The solar irradiance and wind profiles shown in (A) illustrate different daily weather conditions;
the corresponding power generation by PV array and wind turbine indicated by (B); (C) reports the
load power consumption of the whole residential community; battery SOC profile is shown in (D),
within its operating range from 10% to 90%; the interactions with utility grid to buy or sell energy due
to the energy surplus and deficit are illustrated in (E).

Evolution of the Cost Layer

The corresponding cost information evolution is shown in Figure 7, which reports one subplot per
cost equation described in Section 3.2.1. The plots refer to the aggregate cost for all components,
as determined by the cost bus, to provide a global view of the system rather than focusing on
single components.

The plots in A and B show the global evolution of the time-dependent capital cost and of the
operation and maintenance cost over time, respectively, as in Equations (2) and (5). Such graphs
linearly grow over time, as the system components’ values decrease over time and maintenance is
necessary to allow their correct operation.

The graphs in C-E are used to comment on the instantaneous electricity cost, dropped down
into money spent to buy electricity from the grid (C), and money earned by selling to the grid (D).
Such graphs reflect the application of the policy implemented by the power bus. For the sake of
readability, we report in E the evolution of the battery SOC: from this plot, it is evident that electricity
is bought from the grid when the battery is discharged (SOC < 10%) and the loads demand too much
power, and that electricity is vice versa sold to the grid when power sources can feed the loads and the
battery is fully charged (SOC > 90%).

Plot F shows the total net cost, as from Equation (7), that grows almost linearly over time, as a
result of the sum of electricity cost with the time-dependent capital cost and operation and maintenance
cost of all components.

Plot H reports the evolution of profit over time (Equation (9)) that mitigates net cost by considering
the intrinsic benefit generated by using the produced green energy (reported in plot G), rather than
satisfying the entire load demand by buying from the grid. As the graph reports, exploiting renewable
power sources generates a positive advantage for the EES: profit tends to grow linearly over time.
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The decreasing periods correspond to time slots when it was necessary to buy electricity from the
grid, as the battery SOC was equal to 10% and renewable energy could not feed the loads (e.g., in the
daytime of 6th and 20th days, or in the nighttime between the 9th and the 10th day).
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Figure 7. Evolution of the different cost quantities referring to the overall EES system and to
the snapshot of simulation reported in Figure 6: time-dependent capital cost (A); operation and
maintenance cost (B); electricity cost, divided into buy cost (C) and sell cost (D); SOC evolution of the
battery (E); net cost (F); benefit generated by using power sources to feed the loads (G); and profit (H).

Evolution of Component-Specific Costs

Figure 8 reports the detailed evolution of time-dependent capital cost and O&M cost for each
component in the EES.
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Figure 8. Time-dependent capital cost and O&M cost of the PV array (A), the wind turbine (B), the
battery bank (C) and SOH and battery current profile (D) referring to the snapshot of simulation
reported in Figure 6.
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The time-dependent capital cost evolves linearly for the PV installation, A, and the wind turbine,
B, which have a constant depreciation over time, according to Equation (2). The time-dependent
capital cost of the battery (C) reflects the capacity loss over time, as it is calculated with the wear-out
Equation (4). The full cycle equivalent battery pack aging mode [41] is adopted in our simulation, which
correlates (Equation (10)):

Ncyc =

∫ T
0 |I(t)|dt
2 ∗ Cnom

and L =
Ncyc

Ncyc,max
(10)

where effective number of cycles Ncyc is an amount of charging and discharging energy divided by a
nominal battery capacity Cnom; Ncyc divided by the maximum charging and discharging cycles of the battery
Ncyc,max indicates the lost capacity (L).

We define 1 − L as the state of health (SOH) of the battery pack; the real-time available battery
pack capacity is thus computed by SOH × Cnom. The SOH profile shown in D illustrates the available
capacity decreases based on the battery charging/discharging current, whereas it keeps stable when
there is no current flow in the battery pack (blue line in D); e.g., during the night between 5th and 6th
days; then results the time-dependent cost also do not change during such period (Orange line in C).

The operation and maintenance cost grows almost linearly for all components, in a way that is
linearly proportional to the unit operation and maintenance costs listed in Table 2; i.e., 10 $/kW/Year
for the battery pack and 15 $/kW/Year for the other components. However, the cost growth is strictly
related to the power handled by the component over time. This is clear from the plot in A, as the O&M
cost of the PV module has approximately a stair-case waveform shape. This happens because at night
there is no PV power production, and thus no increase in the O&M cost. Concerning the O&M cost of
the battery, it shows itself to be similar to its time-dependent cost due to there being no power value
sent to the cost layer during the battery pack idle period.

Comparisons with Previous Works

Concerning the validation of the power simulation accuracy and the comparison with other work,
it is not possible to directly compare with other similar methods, as it would imply re-implementing
the codes of other authors, since the comparable frameworks are not open-source. Although different
in the way the co-simulation of power and cost is carried out, one possible option is to build the
same proposed framework in Simulink, the work of [36] has demonstrated that already demonstrated
that a SystemC-based homogeneous simulation can conduct the EES power simulation with excellent
accuracy compared with Simulink (the average error is smaller than 0.0001%; the maximum error of
all different components in the EES is smaller than 0.5% ), while achieving a speedup of about 250X
on simulation time. In terms of the cost evolution, Simulink it requires additional post-processing of
power traces to track the cost metrics, which further supports the benefits of our proposed concurrent
simulation, as the post-processing for the evaluation of the cost is proportional to the length of the
total simulated interval.

5.1.4. Design Space Exploration through Proposed Simulation Framework

The previous section has shown the type of analysis that our framework can provide;
however, its main use is to allow a cost-aware design of EES while simultaneously simulating the
power flow of the system.

To demonstrate this feature, this Section provides three possible design space exploration (DSE)
experiments to rank different system configurations from the cost perspective. We first compare the
adoption of two possible power policies: the standard power management policy proposed in Section 5.1.1
and a cost-aware policy, designed for real time pricing rates.

Then, we propose two design space explorations that consider as variables the amount of power
sources and of energy storage; i.e., the numbers of PV modules, battery cells, and wind turbines included
in the system. The reference initial configuration is the one proposed in [46] and listed in Table 1,
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i.e., one wind turbine, 30 PV modules, and a battery pack of 2400 battery cells. The first experiment
carries out an exhaustive exploration of different configurations to determine the one with the highest
economic profit as computed by Equation (9); the second one explores the most profitable configuration
under the fixed initial capital cost limitation.

Comparison of Different Power Bus Policies

The pricing policies applied by the grid suppliers have an important impact on the profit and the
costs connected to EES operation, as evident from the different cost definitions provided in Section 3.
When building the power management policy of an EES, it is thus crucial to determine how the energy
balance between loads and renewable power sources fits the pricing policy that will be applied by
the supplier.

The power management policy presented in Section 5.1.1 is not cost-aware: it assumes a traditional
time of use (TOU) policy like the one in Section 5.1.2, where electricity price is different at different
times of the day (higher/cheaper rates during peak/off-peak hours). However, the smart grid market
has started featuring into complex pricing policies [54–56]. Comparing such rates and understanding
their economic impact given the power management policy is far from trivial.

The framework proposed in this paper naturally enables this kind of analysis, thanks to the
concurrent cost/power co-simulation of the EES on typical environmental traces, with the possibility
of evaluating different power management policies implemented by the power bus.

To prove this effectiveness, we compare the adoption of the non-cost-aware policy presented in
Section 5.1.1 with a cost-aware policy. In the latter, electricity price is changed dynamically according
to a real time pricing (RTP) strategy. RTP improves flexibility as electricity price closely reflects the
trend of the wholesale market and of the energy demand over time on the grid: prices vary at any
time of day, several times per day, and differently on different days (even working ones) of the week;
this should encourage users to behave in a flexible manner to reduce demand peaks [56].

As a possible strategy that uses this dynamically changing pricing, we propose the following
energy management policy: if the renewable power sources cannot satisfy the load demand, the power
bus checks the current price of electricity. If the price is lower than the daily average buying price
(calculated as the moving average over one week), then electricity is bought from the grid. This allows
one to save the energy stored in the battery pack for more expensive time slots. This modification
makes the policy cost-aware, as it shifts electricity demand on the grid to cheaper time slots.

Figure 9 analyzes the impact of the two policies (the non-cost-aware and cost-aware ones) by
comparing the simulation results on a one-week simulation, from Monday to Sunday. Plot A shows
the evolution of the total load power consumption of the whole community (blue) and the total power
generation from renewables (i.e., PV modules and wind turbine, in red), in order to highlight the
power balance in the system. Plot B indicates the evolution of electricity prices to buy energy from
the grid applied by the cost-aware policy, as derived from [56] (solid) and the moving average used
by the policy to implement cost-awareness (dashed); notice that the electricity price exhibits a high
heterogeneity not only across the hours of a single day but also across different days of the week.
As a concrete comparison between the two policies, plot C reports the SOC profile of the battery pack
(dashed for the cost-aware, solid for the non-cost-aware).

The main difference is visible on Monday (Day 1), when the total renewable power generation
cannot satisfy the load consumption. Since the RTP is lower than the average buying price,
the cost-aware policy does not use the battery (whose SOC does not change in this interval), but rather
buys power from the grid. Vice versa, the non-cost-aware policy uses the battery to provide, and the
SOC curve of non-cost-aware policy (orange color) reaches the minimum threshold of 10%.

Table 4 lists all the costs after one year of operation by applying the two different policies. Net cost
and profit are calculated with Equations (7) and (9): net cost is the sum of real-time capital costs,
operation and maintenance costs, and the cost of buying/selling power from/to the grid; notice
the cost of selling energy (second row) is a negative value since it is treated as a gain of the EES
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compared to the cost of buying energy; profit is the value gained by using renewable power sources
minus the net cost. The year uses the same real load consumption (total AC loads of 15 houses [49]),
environmental data collected by MIDC at University of Arizona [51] as the previous simulation,
and RTP is extrapolated by [56] repeating the 1-week profile shown in Figure 9B. The cost-aware policy
reduces the time-dependent capital cost and operation and maintenance cost of the battery, which is
less involved in the EES energy flow. However, the cost to buy from the grid is higher for the cost-aware
policy, and it is not compensated by a higher gain to sell to the grid. This is not counter-intuitive: a
cost-aware policy is not necessarily improving the overall net cost or profit, as shown in the table, but it
is just inclusive of the electricity cost in the decision of the energy flow. While the choice of buying
energy when the price is low seems reasonable, it causes in fact a reduction of the energy provided by
the EES itself (avoid using the battery and rather buy when electricity price is considered low, thereby
reducing the benefit generated by using power sources to feed the loads).
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Figure 9. Different scenarios of two power management policies within one example week.

Generally speaking, the design of a smart energy management policy that maximizes the profit is
not the target of this work. In this section we just showed that the proposed simulation framework can
easily include cost “in the loop” and can efficiently validate the policies over time intervals of practical
significance. In this perspective, the result on the cost-aware policy confirms that it is necessary to
evaluate the mutual impact of cost and power, to get a complete view of the economic advantage of
the EES under design.

Table 4. Different cost values after one year operation by two policies.

Cost Type Cost-Aware Policy ($) Non Cost-Aware Policy ($)

Electricity Buy 2445.34 1855.35

cost Sell −507.34 −416.51

Own (provided by EES) 9146.64 9736.63

Battery Time-dependent capital cost 470.86 662.14

Operation and maintenance cost 17.46 24.73

PV array Time-dependent capital cost 1903.35 1903.35

Operation and maintenance 55.88 55.88

Wind turbine Time-dependent capital cost 1832.79 1832.79

Operation and maintenance cost 123.57 123.57

Net Cost 6341.97 6041.30

Profit 2804.67 3695.33
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Exhaustive Exploration of Different Configurations

The first scenario is an exhaustive DSE to determine the configuration with the highest economic
benefit. Two cases are described in here based on the presence of wind turbine. As the capital cost
of one wind turbine is approximately equal to the capital cost of 29 PV modules, the ranges of the
parameters of power source and energy storage are set as follows:

• The number of PV modules varies from 0 to 100 in steps of 10 when the wind turbine is present,
and from 0 to 150 when there is no wind turbine in the EES;

• The number of battery cells varies from 0 to 10,000, in steps of 1000.

The AC loads and input environmental traces are same as the ones introduced in Section 5.1.3.
The TOU scheme is adopted as electricity buy price, 0.03 $/kWh as the electricity sell price; then we
use the non-cost-aware power management policy in the exploration simulations.

The left-hand side of Figure 10 shows the net cost for the cases with (top left) and without
(bottom left) wind turbine after 20 years, which is the maximum operating lifetime of wind turbine and
PV modules. The right-hand curves show instead the corresponding 20 years annualized cost computed
by Equation (8). The x-axis and y-axis represent the different numbers of PV modules and battery cells
in the pack, and the z-axis represents corresponding cost.

Figure 10. Net cost (left) and annualized cost (right) of different ESS configurations after 20 years with
(top) and without (bottom) wind turbine.

The results illustrate the advantage of wind turbine in the EES: the annualized cost of those
EES including wind turbine is about 10% of the annualized cost of configurations including only PV
modules and batteries. Such a big advantage is mainly caused by the complementary effect of the
wind turbine with respect to photovoltaic energy generation: the wind turbine mostly generates power
at night or on cloudy/rainy days, when the PV modules cannot generate power or can only generate
power with low efficiency. Additionally, the wind turbine increases total power generation during the
peak hours to reduce the need of buying power from the grid.

The optimal EES configuration without wind turbine is made of 5000 battery cells and 150 PV
modules, thereby reaching an annualized cost of 0.9591 $/kW. The optimal configuration when
the wind turbine is present has 2000 battery cells and 100 PV modules, with a total 0.4984 $/kW
annualized cost. This confirms the intuition that annualized cost can be reduced by increasing total
power generation.
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However, such configurations may not be optimal from the perspective of profit; i.e., when taking
into account also the advantage of self-consumption of power generated by the renewable power
sources. The corresponding results for the exhaustive exploration results in the perspective of profit
are shown in Figures 11 and 12. The x-axis and y-axis represent the different numbers of PV modules
and battery cells in the pack. The z-axis represents the total profit of EES computed by Equation (9)
for the various configurations, at different points of the lifetime of the EES (i.e., after 5, 10, 15 and
20 years).

Figure 11. Profit in different years with various configurations for case without wind turbine in EES.

Figure 12. Profit in different years with various configurations for case with wind turbine in EES.

Figure 11 refers to EES configurations without the wind turbine: the results illustrate that none of
the configurations without a wind turbine results into a positive profit, even after 20 years. The 3-D
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surface shown in the figures indicates that the more PV modules the higher the benefit, still on the
negative profit side. The optimal configurations is different from the previous analysis and always
include 6000 battery cells and a number of PV modules that varies from 140 to 150 (due to the varying
nature of environmental inputs and load power consumption profiles over the years). Notice that,
for longer time horizons, the profit of the EES worsens, e.g., the configuration of 6000 battery cells with
140 PV modules has lost 2805.77 K$ after one year, and this loss is enlarged to 58,080.77 K$ after the
EES run for 20 years.

When the EES includes the wind turbine for generating power, there exist several configurations
making profit, as revealed in Figure 12. This proves once again the benefit of a wind turbine in the EES.

According to the simulation results, the optimal configuration with highest profit is made
of 3000 battery cells with 60 PV modules and one wind turbine. Some years see a higher profit
when decreasing PV modules to 50, due to the different weather conditions and load power profiles;
however, the increase in profit is minimal; e.g., the configuration with 50 PVs leads to an increase of
86.90 $ after 5 years, while one with 60 PV modules makes a profit 850.42 $ bigger than the 50 PV
modules one after 20 years). Thus, the two configurations can be considered comparable, and the user
may choose the one he prefers (e.g., the one with lower initial capital cost), knowing that the profit will
be comparable.

Exploration with Fixed Initial Capital Cost

A more realistic scenario is the one where the initial capital investment is a fixed constraint,
i.e., the compared EES configurations have same initial capital cost. Given the big advantage of
the presence of a wind turbine in the EES indicated in the previous exploration, the configurations
considered in this analysis always take into account the presence of the wind turbine.

We assume an initial capital cost to 60,000 $: Table 5 lists 20 different configurations with different
numbers of PV modules, battery cells and wind turbines, with an initial capital cost as closed as
possible to 60,000 $. Note that configurations from 1 to 13 have one wind turbine, and explore the
number of PV modules (from 0 to 60) and of battery cells (0 to 16,200). Configurations from 14 to
20 additionally explore the introduction of a second wind turbine, thereby lowering the number of the
other EES components to meet the initial capital cost constraint.

Table 5. Different configurations with fixed initial capital cost in the exploration.

Config.
PV Modules Batteris Wind Turbines

Config.
PV Modules Batteries Wind Turbines

(#) (#) (#) (#) (#) (#)

1 0 16,200 1 11 50 2700 1

2 5 14,850 1 12 55 1350 1

3 10 13,500 1 13 60 0 1

4 15 12,150 1 14 0 8400 2

5 20 10,800 1 15 5 7050 2

6 25 9450 1 16 10 5700 2

7 30 8100 1 17 15 4350 2

8 35 6750 1 18 20 3000 2

9 40 5400 1 19 25 1650 2

10 45 4050 1 20 30 300 2

Furthermore, we bring another factor in the exploration to investigate the influence of weather
condition. We conduct the exploration with data relative to two locations from the database of
NREL’s MIDC [51] that have significantly different climatic characteristics: one is located in Eugene,
Oregon (cloudy and wet climate), the other in Tucson, Arizona (dry and windy climate).
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The exploration results in perspective of profit in both locations show the same finding as previous
explorations, the highest profitable configuration is the same one in each year.

Figure 13 shows the profit results after 20 years for the two locations. As expected, the profits
in Arizona (right) are always higher than in Oregon, due to its better environmental conditions.
Table 6 lists the profit made by highest profitable configuration at both locations in different years: the
difference of the profit keeps about 150%, due to the their climatic characteristics. For example,
the average annual energy generated by PV modules for configuration 10 in Arizona is about
30,000 kWh, and the wind turbine produces about 50,000 kWh every year; while the same numbers in
Oregon become about 20,000 kWh and 25,000 kWh, respectively.

Overall, the highest profit configuration in Eugene is number 19 in Table 5, and the highest one is
number 18 for Tucson (peaks of the 3-D surfaces across all years). Note that both optimal configurations
have two wind turbines, thereby proving that wind power generation is the critical factor among three
modifiable parameters in the EES. The valleys in both 3-D surfaces correspond to 13, which features no
battery: this indicates that the battery pack also plays an important role to maximize the profit, as it
reduces the need for buying energy from the grid.

Figure 13. Profit of different configurations have same initial capital cost at two locations.

Table 6. Highest profit at both locations in different years.

Year
Eugene, Oregon Tucson, Arizona Absolute Relative

Config. Profit ($) Config. Profit ($) Difference ($) Difference (%)

1 19 2402.92 18 6062.42 3659.50 152.29%

5 19 11,997.35 18 30,282.70 18,285.35 152.41%

10 19 23,971.38 18 60,679.42 36,708.04 153.13%

15 19 35,432.53 18 90,469.58 55,037.05 155.32%

20 19 49,118.32 18 122,508.33 73,390.01 149.41%

5.2. EES Case Study 2

In order to show the high flexibility of our proposed simulation framework, we built another
EES case study as described in Figure 14; the EES is composed of a PV array, an electric vehicle (EV),
an AC load, a common DC bus, and the relative converters. The left-hand side of Figure 14 draws the
conceptual graph of the new EES case study, the right-hand side displays the corresponding modules
of the EES in the proposed simulation framework.
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The construction of the power layer and cost layer in the proposed simulation framework has
been done similarly to the previous example of Sections 5.1.1 and 5.1.2.

Figure 14. Structure of the EES case study 2 (left) and result of the application of the proposed
approach (right).

Concerning the power layer, the PV array has been modeled by starting from a single PV module
model [48], which has then been scaled up to the size of the final array; namely, 10 PV modules to
mimic a small-size residential PV installation. In this case study the size of the array is fixed. The AC
load represents the power consumption of one single house from dataset [49]; converters are modeled
as already described above [50]. The EV consists of two sub-modules; namely, the battery pack module
and EV motor module; their models are built by the methods provided in [50]; the grid is used to keep
track of the power balance between house power consumption and PV array power generation and
energy storage of EV.

The input traces of solar irradiance from the dataset provided by the National Renewable Energy
Laboratory’s (NREL’s) Measurement and Instrumentation Data Center (MIDC) [51]. Concerning the
driving profile, we assume the EV operates according to a daily commute routine: the driver leaves
at 7:30 a.m. and drives half an hour to arrive at the destination; then he/she drives another half an
hour and comes back home at 7 p.m. We assume the EV consumes the identical energy every day in
the following simulations to remove from the analysis the influence from the EV driving situations.
This scheme can obviously be changed should one be interested in analyzing the fluctuations due to
specific driving patterns.

We envision two main scenarios in the EES daily operation; the first one is with the EV plugged,
the second one is when PV acts as as the only power source connected to the EES. The power bus
module implements a cost-aware energy management policy: (1) when the EV is not connected, the PV
array provides its generated power to satisfy load demand of the house; excess power will be sold
to the grid while power deficit will be bought from the grid; (2) when the EV is plugged, we set a
threshold electricity price to decide whether the power consumption of the house is provided by the
EV (price < threshold), or bought from the grid (price > threshold). However, the EV can provide
power only until its battery SOC reaches to 10%, then the house will have to buy from the grid the
required power, and the EV will start to charge the battery until the electricity price goes below the
threshold price. As already discussed for the previous uses case, this is just an example of policy and it
has no claim of optimality; our objective is to show the flexibility of the framework and not to provide
optimized policies.

Concerning the cost layer, we adopted the three-time slots electricity price as indicated in Table 3
in this case study and we set the threshold electricity price is 0.21 $/kWh; therefore, it means EV
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plays the power source role in the EES during the electricity price in the F1 and F2 periods if it has
residual energy.

The cost items referred to the battery and the PV modules are the same as in Tables 1 and 2.
We selected several EVs with different battery pack sizes in the market used in the following simulations.

Notice that the cost analysis does not consider the items involved in the EV operations outside
the house EES, such as possible intermediate charging costs or different driving distances.

5.2.1. One-Week Example Simulation Traces

We extract a five-day simulation (one week of working days) results of the EES with EV case
study to show the different power and cost quantities that can be tracked in our proposed simulation
framework. For the battery pack size of the EV used in this example, the 21 kWh battery pack with
40sX40p configuration is adopted. The selected solar irradiance trace is the location at the University
of Arizona [51]. The load consumption profile is extracted from the number 1 house in the dataset [49].

Evolution of the Power Layer

Figure 15 shows the EES main quantities evolution of the power layer. Plot A shows the PV array
generation power evolution, it illustrates the EES does not have a renewable power source during the
night. Plot C shows the result of the power bus policy that leads to buy or sell energy with the grid.
Plot D shows the SOC over time of EV battery pack and plot E shows the corresponding battery current
profile, the positive value means the discharge current, the negative values means the charge current.

0

2

4

P
 (

kW
)

(A) - Renewable PV Power Gneration

0

5

P
 (

kW
)

(B) - Power Consumption of One House

0

5

10

P
 (

kW
)

-3
-2
-1
0

P
 (

kW
)

(C) - Interaction with the Grid
Buy from Grid
Sell to Grid

0

50

100

S
O

C
 (

%
)

(D) - Battery Pack SOC Profile

0 6 12 18 0 6 12 18 0 6 12 18 0 6 12 18 0 6 12 18 0 
Time (Hour)

0

50

100

I (
A

)

(E) - Battery Current Battery Current

Figure 15. Five-Day simulation of the EES in terms of power tracing quantities. The PV power
generation profile is shown in (A) illustrate different daily weather conditions; (B) reports the load
power consumption of one house; the interactions with utility grid to buy or sell energy due to the
energy surplus and deficit are illustrated in (C); battery SOC profile is shown in (D), within its operating
range from 10% to 90%; the corresponding battery current is indicated in (E).
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In order to show how the policy executed in the power bus and how we consider the
time-dependent capital and O&M cost of the battery pack in EV in our simulations, we extract
one day from Figure 15 to give more details as shown in Figure 16.

Because EV leaves from the house at 7:30 a.m. and comes back home at 7 p.m., there are two
periods after 7 a.m. and before 7 p.m. in the plot C indicate the SOC of battery decreases (as estimated)
due to the driving. In the period when the EV is plugged in the house, the battery pack in the EV
provides the power to the house if the electricity price is higher than the threshold price 0.21 $/kWh,
therefore, plot E shows there are discharge currents between 7 a.m. and 7:30 a.m. and from 7 p.m.
to 11 p.m. However, the SOC of battery pack reaches its bottom operation limitation 10% during the
period from 7 p.m. to 11 p.m. as indicated in plot C, so the house has to buy power from the grid
starting from about 9:50 p.m. as shown in plot B.

As discussed above, the cost generated by the EV daily driving and charging does not take into
account in our analysis, the reason is that the EV is independent energy storage or power source
component to the house, there is no direct relation between load demand of the house and the EV,
we only consider the power involved between the EV and the house when the EV plays a role of the
power source. Therefore, the power consumed by the daily driving and the charging power to backfill
such consumed power is ignored, but the charged power for compensating the power provided to
the house should be taken into account. This point is illustrated by plots B and C, the EV starts to
provide power to the house when it comes back house at 19:00 and the SOC is about 40% at that time
as indicated by red arrow A; then the house start to buy power from the grid after the SOC decreases
to 10% at around 21:45 as shown by red arrow B; the electric price is lower than the threshold price
after 23:00; thus, the EV starts to charge the battery pack; when the SOC increases to 40% around 24:00
as indicated by red arrow C, the bought power for charging the battery is stopped since it reaches
the SOC when the EV arrives at house, only left the bought power for the load demand of house as
shown in plot B. We remove the influence of the EV driving conditions from our analysis in this way,
only consider the period between arrow A and C which is the period of EV involved with the House.
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Figure 16. One-day long simulation with power quantities of the EES extracted from Figure 15.
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Evolution of the Cost Layer

The corresponding cost quantities traces are shown in Figure 17, each subplot is related to one
cost equation formalized in Section 3.2.1.

Plots A and B show the time-dependent capital cost and operation and maintenance cost of PV
modules and battery pack in EV; the time-dependent capital cost of PV modules is updated according
to Equation (2), so it increases as time elapses. Conversely, the time-dependent capital cost of the
battery pack is given by Equation (4), so it only increases when the EV connects with the house to
provide the power or to charge the battery pack to backfill the provided power; both actions use
Equation (5) to compute the operation and maintenance cost; therefore the curve of PV is related to
the power generation profile that keeps stable during the night and increases during the daytime,
whereas the curve of the battery pack has the similar trend as time-dependent capital cost.

Plot D shows the cost related to the grid as per Equation (6). It indicates that the surplus PV
power is sold to the grid and the house needs to buy the power if PV power cannot satisfy the power
demand when the EV is disconnected with the house; it also indicates that the house always buy the
power from the grid from 11 p.m. to 7 a.m. due to the low electricity price. The blue line in plot F
shows the net cost formalized by Equation (7), which grows over time since it is a result of the sum
of the described previous cost. Plot E shows the evolution of intrinsic benefit generated by using the
PV power and battery pack of EV, instead of buying power from the grid to satisfy the load demand.
The orange line in plot F illustrates the profit profile of the EES computed by Equation (9), the negative
values tell this EES cannot bring profit finally, but notice that the EES still can bring the benefit, a more
comprehensive comparison is introduced in the following section to illustrate the benefit of EES.
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Figure 17. Five-day simulation with cost quantities of the EES corresponding to Figure 15.

5.2.2. Comparison of Different EVs in the EES

As an example of design-space exploration, we investigated the impact of different EVs involved
in the EES, in terms of different battery sizes. We select several EVs (with different battery pack sizes)
in the following simulation. Table 7 lists the corresponding configurations, chosen from a set the
popular common EVs in the market [57]. We also added two configurations without battery pack
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involved in the EES as a reference. The first one shows a scenario in which the house always buys
the power from utility grid since there is no any other power sources; the second one indicates the
house can also get the power from PV modules instead of only buying power from the grid, while still
having no storage (EV).

Table 7. Different configurations of EES for comparing the cost quantities.

EES No. PV Modules Number
Electric Vehicle

EV Model Battery Pack Size (kWh)

1 0 NaN 0

2 10 NaN 0

3 10 Mitsubishi MiEV 16

4 10 GM Spark 21

5 10 Nissan Leaf 30

6 10 BMW i3 (2019) 42

7 10 Tesla S 60 30

Table 8 shows the one-year long simulation results of the different configurations list in Table 7.
The first row indicates the situation when all the load demand needs to be satisfied by the grid, so there
is only electricity buying cost, the net cost and profit is computed based on the Equations (7) and (9),
respectively; notice that the negative sign in the last column means an absolute cost for the household.
The PV array cost columns are constant but in the first case, as it generates the same power. The “buy”
electricity cost column indicates that the cost of buy electricity decreases if the battery pack size in
the EV increases due to the residual energy of battery pack increases when the EV comes back house,
the last three cases show that the “buy” electricity cost are same because of the maximum energy
can be provided to the load by the battery pack is reached, it means increasing the battery pack size
becomes useless.

The “own” electricity cost behaves similarly to the buy cost; it first increases for increasing battery
sizes, then it stabilizes since the maximum energy provided by the EV is reached. The battery pack cost
columns indicate that the O&M cost is positively correlated to the power provided from the battery
pack, while the time-dependent capital cost column tends to decrease for larger sizes because the
time-dependent capital cost (Equations (4) and (10)) states that the aging degradation is reduced when
the battery pack size increases.

The last column in the Table 8 illustrates that all the different EVs involved in the EES cannot bring
profit for the house, which is not like the results in the previous case study, for example, 3000 battery
cells with 60 PV modules and 1 wind turbine combination of previous EES case study can generate
positive profit as shown in Figure 12. However, involving EV in the EES can bring economic benefit
compared to the situation when this is no EV in the EES; for example, involving an EV with a 16 kWh
battery pack (third row) can bring 16.36 $ economic benefits compared to the EES without EV involved
(second row). Finally, the profit-optimal battery size is the one in the third case; it provides about a
1104.33 $ benefits compared to the case without PV modules and EV involved in the EES.
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Table 8. Cost quantities simulation results of one-year period with different battery packs in the EV.

No.

Electricity Cost ($) PV Array Cost ($) Battery Pack Cost ($)
Net
Cost
($)

Profit
($)Buy Own Sell

Time-
Dependent

Capital Cost
O&M

Time-
Dependent

Capital Cost
O&M

1 1513.08 0.00 0.00 0.00 0.00 0.00 0.00 1513.08 −1513.08

2 833.48 672.17 385.03 52.15 1.98 0.00 0.00 1097.27 −425.11

3 812.71 689.20 385.03 52.15 1.98 20.58 0.10 1097.95 −408.75

4 796.10 1051.30 385.03 52.15 1.98 445.34 2.09 1508.09 −456.79

5 793.08 1087.52 385.03 52.15 1.98 477.59 2.30 1537.52 −450.00

6 793.08 1087.52 385.03 52.15 1.98 471.80 2.30 1531.82 −444.30

7 793.08 1087.52 385.03 52.15 1.98 467.80 2.30 1527.73 −440.21

6. Conclusions

This paper proposed a simulation framework for the economic optimization of EESs that relies
on the concurrent simulation of energy flows and economic estimations based on a single simulation
kernel, namely, SystemC and its extensions. We showed that our framework allows an effective and
efficient design exploration of the EES under design and enables decisions, such as the identification of
(1) the optimal management policy based on joint energy and economic constraints; (2) the cost-optimal
or profit-optimal configurations of the EES in terms of number and type of renewable energy elements
used (power sources and energy storage devices).
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Appendix A

Table A1. Overview of recent representative related works on cost estimation of EES Systems.

Ref. Goal Energy Models Cost Models Proposed Solution

[13] Optimize energy storage
configuration to minimize fuel
costs

Simple linear models, e.g., PV
power as function of area and
rated power

Operation and maintenance,
replacement, capital

Comparison of alternative
configurations

[14] Find sizing of EES
components that minimizes
levelized cost of electricity

Based on linear equations of
rated power and capacity

Capital, operation and
maintenance, replacement

HOMER [58] and artificial
bee colony optimization

[15] Optimal configuration while
minimizing total net present
cost

Simplified models of EES
components (e.g., battery as a
function of efficiency and depth
of discharge)

Capital, replacement,
operation and maintenance

Hybrid optimization genetic
algorithm

[16] Optimization of levelized
energy cost and payback time,
emission reduction

Simple linear models Annual investment and
replacement, emission
reduction benefit

Particle swarm optimization
to identify optimal
component sizing

[17] Minimize cost and improve
reliability

Simple linear models,
e.g., power sources as linear
function of environmental
quantity

Investment, replacement,
operation and maintenance,
electricity

Constrained optimization
problem to determine
capacity of power sources
and storage

[18] Optimization of annualized
cost through dimensioning of
EES components

Power sources as simple linear
function of environmental
quantities

Operation and maintenance,
capital, replacement,
electricity

Mixed integer linear
programming applied to
different scenarios
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Table A1. Cont.

Ref. Goal Energy Models Cost Models Proposed Solution

[19] Optimal sizing of EES
components to minimize
levelized cost of energy

Accurate models, fixed power
management policy

Capital, operation and
maintenance, replacement

Genetic algorithm

[20] Maximize electricity bill
savings with optimal sizing of
energy storage

Accurate model only of energy
storage devices

Capital, electricity,
replacement

Non-convex optimization
problem plus
exhaustive-search solution

[21] Optimal sizing of EES
components given pricing
policies

Focus only on power source
capacity and battery state of
charge

Capital, operation and
maintenance, electricity

Cataclysm genetic algorithm

[22] Reduce cost of microgrid
expansion considering impact
of battery dynamics

Focuses on batteries, simple
model of power sources

Capital, electricity,
annualized cost

Mixed integer linear
programming

[23] Optimize battery sizing given
battery bank degradation cost

Models only battery aging, fixed
power management policy

Electricity, battery
degradation

Linear optimization method

[24] Optimize battery size and
scheduling taking into
account costs and loads

Simple linear models, input
traces for power sources

Electricity, battery capital
cost

Convex programming
method

[25] Find sizing of EES
components plus operating
strategy to minimize costs

Simple models, based on rated
power, efficiency coefficients,
area occupied by PV modules,
etc.

Annualized system cost Mixed integer linear
programming model solved
with CPLEX

[26] Optimization of battery
management to minimize
electricity cost and carbon
dioxide emissions

Focuses on battery state of
charge, no model of other EES
components

Electricity, emissions
equivalent cost

Multi-objective optimization
(energy cost and emissions)

[27] Co-scheduling problem of
HVAC control and battery
management

Detailed model only of batteries
(power sources as input traces,
converters as efficiency
coefficients)

Electricity, battery
degradation

Minimize total cost with the
convex optimization tool
CVX

[28] Utility scheduling to minimize
total operational cost

Storage devices modeld only as
their lifetime, power sources as
input traces

Electricity, degradation,
pricing schemes

Nonlinear mixed integer
optimization to determine
schedule of batteries and
supercapacitors

[29] Determine optimal power
management policy to reduce
operation and emission costs

EES components as min-max
constraints for the optimization

Operation and maintenance,
electricity

Particle swarm optimization

[30] Balance total power
generation w.r.t. load and
minimize total operation cost

Capacity and scheduling as goal
of optimization

Capital, operation and
maintenance, electricity

Integer linear programming
with CPLEX

[31] Construction of optimal
scheduling to optimize usage
of storage and grid

EES capacity as constraints and
object of optimization

Levelized cost of energy Predictive optimization
given a graph of alternatives

[32] Techno-economic model to
determine optimal capacity of
PV system and battery storage

Simple models, e.g., PV as linear
function of irradiance and
temperature

Capital, operation, payback
time

Particle swarm optimization

[33] Optimal sizing of EES
components to maximize
profit

Accurate model only of PV
modules

Capital, operation and
maintenance, electricity

Dynamic simulation to
evaluate impact of electricity
tariffs

[34] Feasibility study of wind/PV
hybrid system

Accurate model only for PV
modules

Capital, operation and
maintenance, replacement

Simulation based on
MATLAB and HOMER [58]

[35] Operation cost minimization
with different pricing
mechanisms

Simple linear models Annualized cost of system
components

Based on HOMER [58]

This Estimate mutual impact of
power dynamics and costs to
reach effective design of EES
(Sections 3.3 and 5)

Level of detail can be tuned by
user, allows one to have high
level of accuracy of component
dynamics (Sections 2.2 and 4)

Capital, profit, depreciation,
operation and maintenance,
electricity, net and
annualized cost (Section 3)

Simulation-based, allows
efficient construction and
evaluation of alternative
configurations (Section 5)
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Abstract: Building energy consumption accounts for 36% of the overall energy end use worldwide
and is growing rapidly as developing countries continue to urbanize. Understanding the energy use at
urban scale will lay the foundation for identification of energy efficiency opportunities to be deployed
at speed. China has almost half of global new constructions and plays an important role in building
suitability. However, an open source national building energy consumption database is not available
in China. To provide data support for building energy consumptions, this paper used a simulation
method to develop an urban building energy consumption database for a pilot city in Wuhan, China.
First, residential, small, and large office building archetype energy models were created in EnergyPlus
to represent typical building energy consumption in Wuhan. The baseline reference model simulation
results were further validated using survey data from the literature. Second, stochastic simulations
were conducted to consider different design parameters and occupants’ energy usage intensity
scenarios, such as thermal properties of the building envelope, lighting power density, equipment
power density, HVAC (heating, ventilation and air conditioning) schedule, etc. A building energy
consumption database was generated for typical building archetypes. Third, data-driven regression
analysis was conducted to support quick building energy consumption prediction using key high-
level building information inputs. Finally, a web-based urban energy platform and an interface
were developed to support further third-party application development. The research is expected to
provide fast energy efficiency building design solutions for urban planning, new constructions as
well as building retrofits.

Keywords: urban scale; building energy simulation; EnergyPlus; regression; building archetypes

1. Introduction

By 2050, 66% of the world’s population will live in urban areas [1], making urbanization one of
the critical themes and challenges in this century. This is the case especially for some Asian countries,
such as China, where city boundaries are expanding with numerous new constructions every year.
China has contributed to approximately 50% of the world’s new constructions since 2010 [2]. Rapid
global urbanization has resulted in significant increases in energy consumption, greenhouse gas
emissions, pollutant emissions, and widespread environmental degradation. Urban areas account for
67–76% of global energy use and 71–76% of CO2 emissions [3]. Cities around the world are searching
for strategies to reduce energy consumption and to become green and low-carbon cities, and enhance
their resilience in a changing climate.

Building energy consumption accounts for 36% of the global final energy use in 2017, and this
number is much higher in urban areas [4,5]. In the U.S., national level building energy consumption
databases have been developed and regularly updated to represent actual building energy usage
levels. For example, the Residential Energy Consumption Survey (RECS) and Commercial Buildings

Energies 2020, 13, 3210; doi:10.3390/en13123210 www.mdpi.com/journal/energies373



Energies 2020, 13, 3210

Energy Consumption Survey (CBECS) collect energy-related building characteristics and energy usage
information [6,7]. However, this kind of open source national building energy consumption database
is not available in China.

To better understand building energy consumption in urban areas, besides survey and
measurement, urban datasets and urban-scale building energy consumption platforms have been
developed based on urban-scale building energy simulations. Urban-scale building energy simulation
can play an essential role in sustainable urbanization, allowing planners and policy makers to develop
planning strategies using the lens of energy performance.

A research group from the college of Architecture at Georgia Institute of Technology developed a
GIS-based urban building energy modeling system, called Urban-EPC. It includes four main models: the
Data Preparation Model, the Pre-Simulation Model, the Main Simulation Model and the Visualization
and Analysis Model. This Urban-EPC tool also uses physics models and calculates the hourly heat
balance of the whole building. It contains three categories of building vintage (based on the construction
year), each of which includes 16 building types representing most of the commercial buildings across
16 US climate zones. The development team also conducted a case study for Manhattan. They obtained
the building footprint data from New York city planning database with references to Google Earth 3D
building [8].

The sustainable design lab at Massachusetts Institute of Technology (MIT) also developed an
Urban Building Energy Model (UBEM) for Boston to estimate citywide hourly energy demands at the
building level. In this project, the geometric input for Boston was also extracted from GIS shapefiles
into the Rhinoceros 3D V5 CAD environment, and a total of 76 different building archetypes were
then assigned to individual buildings based on land use and building age. Bayesian calibration was
applied to update the probability distributions of uncertain parameters in archetype descriptions
using monthly and annual measured energy usage data. EnergyPlus was used to simulate the energy
consumption results of individual building models. The urban energy use pattern of different times
of the day is visualized and overlaid with the Boston map. The tool can help local communities
to evaluate energy related decisions and building retrofit strategies to reduce building energy use.
They also predicated future scenarios, including solar photovoltaic (PV) penetration, and demand
response strategy implantation [9,10].

Lawrence Berkeley National Laboratory (LBNL) developed and released a web-based urban-
scale building stock simulation platform, called City Building Energy Saver (CityBES). It is designed to
support building retrofit analysis. CityBES uses an open standard, CityGML, to represent the 3D city
models, and then it categorizes buildings into different types, including small/medium/large offices,
hotels, schools, and hospitals. For each type of these buildings, CityBES generates baseline EnergyPlus
simulation models based on the cities’ building datasets and user-selected energy conservation
measures (ECMs). There are three main layers: the data layer, the simulation algorithms and software
tools layer, and the use-cases layer. The neighborhood buildings in CityBES are modeled as shading
surfaces in EnergyPlus to consider the shading interactions between buildings. Simulation results,
such as energy use intensity (EUI), can be color-coded and mapped to the 3D buildings with the GIS
database. A case study using CityBES for San Francisco shows a potential retrofit site energy saving of
23–38% per building [11].

In addition, the Oak Ridge National Laboratory and National Renewable Energy Laboratory have
also developed urban scale simulation tools, called AutoBEM and URBANopt, respectively [12,13].
They used similar approaches: generate baseline building energy models for each building type as
a template, categorize buildings in the area of interest into corresponding archetype and link to the
template results, map the simulation results to a GIS platform for visualization. This method can
provide quick design support for large scale energy decision making based on archetype data, without
running detailed building energy simulation.

However, the above case studies are based mainly on simulation results. It is important to validate
the numerical simulations using ground truth building energy survey data and consider occupants’
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energy usage behavior. Furthermore, the case studies are for large cities in the US, where rapid
urbanization has almost been completed. Due to rapid urbanization, China has a large percentage of
new constructions. Meanwhile, old buildings with different years of building exist in the same urban
region. The building age variation could be as high as several decades. As they were subject to different
building design standards/codes, the same type of building, if built in different years, could show very
different building consumption profiles. Therefore, building vintage is a key parameter to consider.
However, open-source building energy models for typical archetypes have not been well developed in
China. It is important to develop an updated urban-scale building energy consumption platform for
China, to understand both the spatial and temporal urban energy system.

This paper shows our efforts on building archetype development for the urban energy simulation
platform. Three main archetype buildings (residential building, small office building, and large office
building) are created and demonstrated in this paper with the following innovations.

• Develop reference building energy models for residential, small office, and large office building
types in Wuhan, China, considering different vintages and unique HVAC usage patterns

• Create an application programming interface (API) for Wuhan to support urban building energy
platform development.

2. Reference Building Models

Currently, there are no open sourced well-developed reference building models in China.
Residential and office building are selected for prototype development in this paper because these two
types of buildings are the top two largest building stocks in China, with a percentage of 73% and 9%,
respectively [14].

Working with local project partners, the most popular configurations and geometries for residential
buildings as well as office buildings were collected through a survey. Figure 1 shows the geometry of a
typical residential building. It is a 10-story apartment building with a total building area of 7836 m2.
According to the different orientation, each floor is divided into nine thermal zones: eight apartment
units, and one corridor. The floor area of each apartment is about 88 m2.

 

Figure 1. Geometry of the residential reference building.
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Figure 2 shows the most popular geometries of a typical small office building (left) and a large
office building (right). The small office building has three floors and the large office has eighteen floors.
Each floor has four external zones and one core zone. The total building areas are 8176 m2 for the small
office and 26,142 m2 for the large office, respectively.

 

Figure 2. Geometries of reference office buildings (left: small office, right: large office).

Key building design parameters, such as the building envelope’s thermal properties, lighting
power density, equipment load density, HVAC system and schedules, were defined based on the
corresponding residential and commercial building design standards [15,16].

Based on the survey, the HVAC systems for these three building types are different. Residential
and small office buildings use ductless mini-split heat pumps for heating and cooling, while large
office buildings use chillers and cooling towers for cooling and boilers for heating.

To capture the average energy usage level, the China Residential Energy Consumption Survey
(CRECS) data were used to determine the heating and cooling schedules for residential and small
office building. The CRECS was conducted by Renming University in 2012. The CRECS2012 includes
residential appliance usage and electricity consumption data from 1450 residential buildings across 26
provinces in China [17]. Valid instances numbering 218 from the hot summer and cold winter climate
zone (where Wuhan is located) were used to calibrate the baseline residential model. Figure 3 shows
the number of heating days in winter and the number of cooling days in summer, respectively. It can
be observed that most people only use heating for less than one month in winter, and use cooling
for one to two months in summer. Compared with cooling, the residents seem to be more tolerant
of heating. Figure 4 shows the daily distribution of heating and cooling hours. It shows that most
people use heating or cooling for less than 5 h per day. The heating and cooling schedules (days/year
and hours/day) as well as the temperature setpoints of the reference buildings were adjusted to be the
average values according to the survey data.
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Figure 3. Distribution of heating/cooling days per year in winter/summer.

 
Figure 4. Distribution of heating/cooling hours per day in winter/summer.

The baseline reference buildings were developed using EnergyPlus software. EnergyPlus is an
open source simulation engine for whole building energy consumption [18]. It was developed and
is supported by the U.S. Department of Energy. EnergyPlus has been widely used and validated
by researchers and designers. It is a console-based program, not a user interface. Some graphical
interfaces for EnergyPlus, such as DesignBuilder and OpenStudio, are also available. Since the inputs
and outputs for EnergyPlus are all text-based, users can easily edit the information to develop a
customized system and run parametric simulations using scripts. The detail settings of each model are
summarized in Table 1.
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Table 1. Baseline EnergyPlus model settings.

Input
Parameters

Unit
Small
Office

Large
Office

Residential
Building

Reference

External wall
insulation W/m2·K 0.597 0.597 0.88

Residential building:
DB42T-559-2013 [10];
Small and large office

buildings:
GB50189-2015 [11]

Roof insulation W/m2·K 0.399 0.399 0.447

Ground floor
insulation W/m2·K 0.253 0.253 1.2

External
Windows W/m2·K 2.6 2.6 2.7

Infiltration rate ACH 1 1 1

Lighting power
dentistry W/m2 9 9 Apartment: 4.2,

Corridor: 1.8

Equipment
power density W/m2 15 15 Plug load: 2,

Kitchen: 5

Occupancy
density m2/person 10 10 2

Infiltration rate 1/h 1.0 1.0 1.0

HVAC system -
Mini-split

air
conditioner

Chiller +
Natural gas

boiler

Mini-split air
conditioner

Survey data [12]
Heating/Cooling

setpoints
◦C 20.5/23.5 20.5/23.5 18/26

Heating Schedule - 9:00–12:00,
1/1–2/14

8:00–15:00,
1/1–2/14

19:00–22:00,
1/1–2/14

Cooling Schedule - 12:00–16:00,
7/18–8/31

10:00–17:00,
7/18–8/31

18:00–22:00,
7/18–8/31

Wuhan’s hourly weather data were used to simulate annual building energy consumption [19].
Figure 5 shows the simulation results of a baseline residential building. The simulated total
building electricity consumption is 27.8 kWh/m2. It can be observed that heating and cooling
energy consumptions only account for approximately 30% of the total annual electricity consumption.
People tend to use the heat pumps only when the weather is too cold or too hot, to reduce their
electricity bills. The occupants’ behavioral energy saving patterns can be found.

Figure 5. Reference residential building electricity consumption breakdown [kWh/m2].
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Figure 6 shows the distribution of electricity consumption in the hot summer and cold winter
climate zone from the CRECS survey. The mean value (25.8 kWh/m2) matches well with the EnergyPlus
simulation result, which further validates the reference building model. It is of note that the electricity
consumption is expected to be 35.3 kWh/m2 (37% higher than the actual mean value) in the Guideline
for Energy Consumption Quota of Civil Buildings in Wuhan [20]. Therefore, it is critical to consider
occupants’ energy use behavior and reflect the actual energy usage when making regional building
energy consumption standards.

Figure 6. Distribution of electricity consumption from CRECS data.

Similarly, the HVAC schedules of small office and large office buildings were calibrated using
the survey data. The annual energy consumptions were simulated in EnergyPlus. Figure 7 shows
the simulation results. The total electricity consumption is 61.0 kWh/m2 for the small office and
130.9 kWh/m2 for the large office.

Figure 7. Reference office building electricity consumptions [kWh/m2] (top: small office, bottom:
large office).
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3. Stochastic Simulations

After the reference building models were validated, stochastic simulations were conducted to
consider different building design variations for the urban building energy consumption database
development. Eight different design parameters, such as the building envelope’s thermal properties,
infiltration, heating and cooling schedules, lighting power density, and equipment power density,
were considered to cover different constructions, building design scenarios and the occupant’s energy
usage patterns.

To differentiate building vintage, three levels (high, medium, and low) of building envelopes were
studied by grouping U factors of different parts (external wall, slab, roof, and glass). The building
geometry was kept constant to represent the most common configuration in Wuhan.

To reflect the actual energy saving behavior of the occupants and better capture different energy
usage patterns, thirteen heating and cooling schedules were proposed. The schedule information was
derived based on statistical analysis of the actual building energy data from CRECS. The data from
the CRECS energy consumption survey was ranked from low to high. Level of 5% means the top
5% from the ranking. It represents the most efficient energy usage, in terms of heating and cooling
hours per day and days per year. Level of 95% represents the least efficient energy usage (bottom
5% from the ranking). It is assumed that the lighting and plug/equipment loads are coupled with
heating/cooling schedules, since people’s energy saving behavior is consistent. Other energy usage
profiles can be interpolated.

Figure 8 shows the stochastic cases of the residential building. In total, 117 design scenarios were
considered. The combination of residential building baseline model is highlighted in yellow. In a
similar way, 117 small office and 117 large office EnergyPlus models were generated to cover different
energy use intensity scenarios for office buildings.

 
Figure 8. 117 stochastic scenarios of the residential building model.
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4. Results and Discussion

Stochastic simulations were performed using EnergyPlus. Figure 9 shows the annual energy
simulation results of residential buildings. It is of note that the energy consumptions are based on
pure stochastic simulations defined in Section 3, assuming a uniform distribution of the 117 parametric
design scenarios of each building type without any additional weighting factor. In reality, there may
be less people in the very low (left) and very high (right) energy consumption ranges. To get a more
realistic energy consumption distribution, we collected Wuhan’s housing price (for residential building)
and rent (for office building) information and adjusted the energy distribution accordingly. Figure 10
shows the housing price distribution of 18,864 residential buildings in Wuhan.

 
Figure 9. Annual residential building electricity consumption distribution of the stochastic simulations.

 
Figure 10. Housing price distribution of residential buildings in Wuhan.

Similarly, the annual electricity consumption distributions for small and large office buildings are
shown in Figure 11.
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Figure 11. Annual office building electricity consumption distribution of the stochastic simulations
(top: small office. Bottom: large office).

Furthermore, a data-driven regression model was developed to predict building energy
consumption. Suggested by local urban planners and energy policy makers, building’s price/rent and
vintage were chosen to be the two key independent variables for the regression model.

Various machine learning algorithms were applied to the dataset to compare prediction accuracy.
However, due to the very limited number of inputs, more complex algorithms did not show much
advantage. Finally, linear regression models were selected, because of their robustness and high
prediction accuracy. Tables 2–4 show the regression functions for residential, small office and large
office buildings, respectively.
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Table 2. Regression functions for residential buildings.

Item Regression Function [kWh/m2] R2

total electricity (0.0034× price− 29.2658) × (1 + F) 0.93
heat electricity (0.0005× price− 3.4929) × (1 + F) 0.77
cool electricity (0.0006× price− 5.4794) × (1 + F) 0.92
light electricity (0.001× price− 9.406) × (1 + F) 0.95
equip electricity (0.0013× price− 10.7288) × (1 + F) 0.95

fan electricity (0.00005× price− 0.1587) × (1 + F) 0.89
equip gas (0.0012× price− 9.941) 0.95

where

F =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0, i f year = 2010

0.0245, i f year = 2000
0.0603, i f year = 1990

Table 3. Regression functions for small office buildings.

Item Regression Function [kWh/m2] R2

total electricity (2.2161× rent− 62.4217) × (1 + F) 0.97
heat electricity

(
1.9× 10−5 × rent3 − 3.82× 10−5 × rent2 + 0.37× rent− 7.21

)
× (1 + F) 0.81

cool electricity (0.2944× rent− 10.2555) × (1 + F) 0.95
light electricity (0.7× rent− 19.4252) × (1 + F) 0.97
equip electricity (1.2163× rent− 33.7546) × (1 + F) 0.97

fan electricity (0.0057× rent− 0.1856) × (1 + F) 0.96

where

F =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0, i f year = 2010

0.0119, i f year = 2000
0.0228, i f year = 1990

Table 4. Regression functions for large office buildings.

Item Regression Function [kWh/m2] R2

total electricity (1.4117× rent + 21.5392) × (1 + Fele) 0.86
heat electricity

(
10−6 × rent− 7× 10−5

)
× (1 + Fele) 0.88

cool electricity (0.0811× rent + 26.5387) × (1 + Fele) 0.83
light electricity (0.4711× rent− 11.3829) × (1 + Fele) 0.84
equip electricity (0.7851× rent− 18.9715) × (1 + Fele) 0.84

fan electricity (0.0549× rent + 18.6239) × (1 + Fele) 0.65
pump electricity (0.0027× rent + 1.0361) × (1 + Fele) 0.84

heatRej electricity (0.0169× rent + 5.6949) × (1 + Fele) 0.82
heat gas (0.0692× rent + 16.2071) ×

(
1 + Fgas

)
0.80

where

Fele =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0, i f year = 2010

0.0204, i f year = 2000
0.0245, i f year = 1990

, Fgas =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0, i f year = 2010

0.0544, i f year = 2000
0.0847, i f year = 1990

To better illustrate our methods and make it easy and friendly to use, we developed a building
simulation platform based on JavaEE technologies [8,9,21,22]. Figure 12 shows the system architecture.
The platform consists of two parts. The first part is the service consumer (Application layer).
The consumer here refers to the end users or any other third-party applications. The end user can
utilize the service which results directly by opening a given service endpoint URL through the browser.
Our service can also be incorporated into other external systems easily. The second part is the service
provider. It generally includes three main layers: data layer, core algorithms implementation layer,
and RESTful WebService layer. The data layer is responsible for providing enough data to make the
platform work securely, such as the building information, system data, and stochastic simulation data.
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Figure 13 shows how the simulation data is stored in the database. From the E-R diagram, we can see
that hourly building energy consumptions can be simulated for the main types of buildings, such as
large office, small office, and residential, in different scenarios. The core algorithm layer implements the
core algorithms to simulate the building energy consumption. This layer mainly includes regression
analysis and interpolation algorithms. To support third-party applications, our platform was designed
to be a Service Oriented Architecture (SOA) based program [23]. Specifically, we chose the widely
used RESTful WebService to wrap the core simulation APIs, so that everyone would be able to use
our platform by just calling these standard WebServices [24]. For instance, users can use the API
directly through their browsers by typing into the service endpoint as shown in Figure 14. In addition,
third-party applications written in any programming languages can incorporate the APIs easily as
these APIs are developed using the standard WebService.

 
Figure 12. System architecture.

Figure 13. E-R Diagram.
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Figure 14. Output of a RESTful WebService.

The building energy prediction models and the APIs created in this paper can be used to support
further third-party urban energy application development. For example, Figure 15 shows an example
of an urban building energy prediction platform developed by one of our research partners. Monthly
energy consumptions (in EUI) of different building types are color-coded and mapped to individual
buildings in a GIS database. Dark red represent a high EUI, while light red represents a lower EUI
value. To support HVAC system design and equipment selection, high fidelity hourly EUIs are also
provided for typical design days. By clicking any individual buildings from the web-based platform,
the annual EUI of the selected building is shown with other building characteristics information,
including building height, floor area, year of building, and housing price/rent. If the user toggles the
year bar in the bottom, the platform can also visualize energy information in the past and predict future
scenarios. This urban-scale 3D platform is currently used by the local government. It provides spatial
and temporal building energy assessment and visualization to support design decision makings for
city managers and urban planners.

 

Figure 15. An urban building energy prediction platform developed based on our API [25].
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5. Limitations and Future Work

This paper demonstrates the development of residential and office building archetypes using
a case study in Wuhan, China. Data-driven regression models were developed based on stochastic
simulations. A web-based urban energy platform and an interface were created to support further
third-party application development. Future work can be improved based on the following limitations.

A uniform distribution was assumed to generate different design variations for stochastic
simulations. The actual distribution was adjusted through post processing to match the distribution
of the survey data. In future work, we will apply a Bayesian calibration to consider the probability
distribution of key uncertain variables. Due to the limited number of inputs for regression model
development, the advantages of more complex non-linear machine learning algorithms, such as support
vector machine or gradient boosting, cannot be reflected. In the next step, we will collaborate with our
colleagues and partners and collect more available input data to improve our models. In addition,
the platform will be fully verified using real-world data from our partners. Furthermore, it is usually
straightforward to model building energy consumption for each single building using the traditional
physics-based energy simulation methods, but it does not work well for modelling multiple building
at community or city level [26–28], hence we are trying to use deep learning to discover the hidden
and complex dynamics between multiple buildings so as to make our model more accurate while
simulating the city scale energy consumption.

6. Conclusions

Urban-scale building energy consumption data are important for city managers or urban planners.
However, an open source national building energy consumption database is not available in China.
Instead of an energy consumption survey or measurement, urban scale building energy simulation
can play an essential role in sustainable development during the urbanization process. It can enable
high resolution analysis to estimate city level energy and track dynamic change. The requirement
for citywide dynamic energy consumption information is urgent for city planning and energy policy
making. Urban planners and policy makers can use the urban energy simulation platform to support
urban-scale spatial and temporal decision-making on energy.

To develop such an urban-scale building energy platform, this paper demonstrates our work on
generating a representative building energy consumption database for typical residential building,
small office building, and large office building. The reference residential building, small and large office
building energy models for Wuhan China were developed in EnergyPlus. The baseline residential
reference building was calibrated using China’s CRECS2012 building energy survey data to consider
different building characteristics and occupants’ unique HVAC usage patterns. Stochastic simulations
were conducted to generate the numerical building energy consumption database. Three different
construction levels were considered to reflect building vintages. Energy consumption distributions
were adjusted using Wuhan’s housing price and rent data.

Urban-scale building energy simulation requires engineering knowledge and computational
resources, which creates a barrier for fast decision-making support. To solve this challenge, the building
energy consumption database was further used to develop statistical regression models. To better
illustrate our methods and make it easy and friendly to use, we developed a building simulation
platform based on JavaEE technologies and standard WebServices. The platform and APIs are expected
to provide design support for new constructions as well as for building retrofit. Combined with GIS
database, the API can be easily used to develop a 3D urban energy prediction platform. With the
support of data visualization, city managers and urban planners can check the spatial and temporal
building energy distributions in a city area and assemble fast polices regarding building efficiency
and sustainability.
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Abstract: The paper shows how difficult it is to prove technically that a building really is both low
energy and smart, and that all aspects of energy efficiency have been treated equally. Regulations
connected to the determination of the energy performance of residential buildings take into account
only space and hot water heating energy consumption and define the indices of maximal primary
energy consumption, but not energy needs based on the architecture of the building. A single family
house designed and constructed as a low energy solar house in Warsaw’s suburbs is considered.
Availability of solar energy and its influence on the architecture of the house is analyzed. A specific
solar passive architectural concept with solar southern and cold northern buffer spaces incorporated
into the interior of the house is presented. Parameters of the building’s structure, construction
materials, as well as operation parameters of equipment and heating systems based on active use
of solar energy, ground energy (via a heat pump) and waste heat from a ventilation system are
described. Results of calculations give values of final and primary energy consumption index levels of
11.58 kWh/m2 and 25.77 kWh/m2, respectively. However, the official methodology for determination
of energy performance does not allow for presenting how energy efficient and smart the building
really is.

Keywords: energy performance of buildings; solar passive systems; low energy buildings;
energy efficiency; smart buildings

1. Introduction

This paper deals with the analysis of the energy performance of a solar low-energy house,
which can also be considered a smart house. The smartness of the house is based on its design and
construction with the focus on using the ambient surrounding and energy sources, mainly solar
energy, in a passive way to reduce energy demand for space heating and cooling, and then to provide
the energy demand in an effective way through the well-planned operation of its energy systems.
In other words, to achieve real smartness in a house it is necessary first to create the architectural
concept, which from the beginning takes into account energy aspects as well as aesthetics, and assures
passive and active utilization of renewable energy and waste heat available to the house. Then the
well-designed integration of different energy devices and installations assures their complementarity
thanks to effective automatic control of the multisource energy system. It can be said that smartness is
achieved through coupling passive and active methods of energy conservation, joining architecture,
civil engineering and technical energy aspects. Avoiding energy demand is the best way to save energy.
Thanks to the low energy demand concept of a house it is easier to consume less energy living there.
The paper presents how difficult it is to technically prove, using standard methods of determination of
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the energy performance of buildings, that a building is really both low energy and smart, and that all
aspects of energy efficiency have been treated equally.

In most countries in the world there are specific standards and regulations put into place to
assure energy efficiency in buildings. In EU countries the formal background for the development
of energy efficiency in buildings has been set out by the directive of the European Parliament and
of the Council on the energy performance of buildings (Directive 2010/31/EU) [1]. The directive
entered into force in 2010 and was a recast of the previous EU Directive on the Energy Performance of
Buildings—EPBD, published in 2002. Further amendments have been made in 2018 (2018/844/EU) [2].
Since the beginning of the new millennium the EU Commission has been fostering the development
of low energy buildings and the application of energy saving technologies, including utilization
of renewable energy. Nowadays, thanks to Directive 2010/31/EU, measures to reduce the energy
consumption in buildings have led to the evident improvement of thermal comfort in buildings and
a reduction in environmental pollution. According to Article 9 of the directive, from 2021 all new
buildings will have to be nearly zero-energy buildings, and in the case of public utility buildings
the rule already came into force at the beginning of 2019. Thus, due to the official EU legislative
policy to adopt the rules of nearly zero-energy use in the construction and use of buildings, the idea
of energy efficiency in buildings is not only a concept of implementing general energy conservation
principles and minimizing their environmental footprint, but it has become a national duty and
legal necessity. The EU directive promotes the idea of nearly zero-energy for new buildings and
stimulates the transformation of existing buildings to be refurbished into nearly zero-energy ones.
Energy conservation in buildings has been supported by other EU regulatory frameworks, mainly by
the EU directive on energy efficiency [3].

Nearly zero-energy buildings (NZEBs) should have very high energy performance. The low
amount of energy which these buildings require for their effective use comes mostly from the use
of renewable energy sources. The idea of zero energy buildings and net zero energy buildings
was discussed before the EPBD directive came into force [4]. The EU energy legislative policy
(through directives) compels national member state regulations to introduce limits for final and
primary energy consumption for buildings with regard to their typology. These indices are different in
different EU countries depending on climate and energy mix in those countries. The EU policy leaves it
open for the member states to make a decision on the quantification of the boundary indices for energy
consumption, i.e., what is the maximum quantity of energy to be used in buildings with regard to their
final and primary energy.

Thanks to the implemented regulations the energy needs of buildings have been much reduced in
recent times, mainly due to the well-designed envelopes and structures of buildings (i.e., shape of the
building, types of construction, one layer or multilayered, type of construction materials and insulation
applied with the focus on their thermal parameters). Recently, focus has been put on the thermal
quality of buildings, mainly on application of thick thermal insulation of very low conductivity, and on
windows characterized by low heat loss (transmission) coefficients (U-values). However, it can be
mentioned here, that using insulation in a warm climate can reduce the heat losses necessary in summer
to limit overheating. Heat losses are necessary during summer nights to release the excess heat gained
during the day, because of high solar irradiation and to keep the indoor air temperature at the required
level. Therefore, application of insulation must always be adapted to the given climate conditions.
In addition, highly efficient and reliable equipment and energy installations, including ventilation
systems with heat recovery, have been implemented. Such measures have caused significant drops in
final energy demand. Application of renewable energy systems have also reduced the primary energy
consumption based on fossil fuels.
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Buildings are responsible for approximately 40% of EU energy consumption and 36% of the
CO2 emissions [5]. For many years high energy consumption in buildings was caused by high heat
losses through buildings’ envelopes [6]. The space heating demand used to be the highest demand
component of energy consumption in buildings and is still responsible on average for about 65% of
the total energy needs of buildings in the residential sector [7]. Of course, the share of space heating
demand was higher in high latitude countries than those of low latitudes. Energy consumed by space
heating and domestic hot water systems now accounts on average for 80% of the total (according to
EUROSTATS). Therefore, it is not surprising that measures undertaken to reduce energy consumption
in buildings have been mainly focused on decreasing the space heating demand.

In many European countries, as in Poland, new regulations connected with the determination
of energy performance of residential buildings take into account only heating energy demand for
space heating and domestic hot water (DHW). Cooling energy demand and electricity consumption
by lighting units and systems, and electrical appliances are not limited by any official regulations.
As electricity consumption was relatively small in residential buildings, it was believed that there was
no reason to set limits for electricity consumption in houses. In the case of cooling energy it is arbitrarily
assumed, that residential buildings in Poland do not require cooling, because of the relatively cold
climate. Nowadays, it turns out that supplying cooling energy to residential buildings is sometimes
necessary to maintain thermal comfort. Summer cooling demand can be seen especially for south and
west facing rooms with large windows [8]. It turns out that cooling demand becomes a challenging
issue for new buildings in moderate climates [9].

In Poland, according to existing regulations [10] since 2021 the indices of primary energy
consumption for space heating and domestic hot water of all newly constructed residential buildings,
called nearly zero energy buildings (NZEB), cannot exceed 70 kWh/m2a or 65 kWh/m2a for single family
houses or multi-family apartment buildings, respectively. In addition, the heat transfer coefficients for
external walls must not be higher than 0.2 W/(m2K). As a result, external walls have thick insulation
of high thermal quality (in the 1970s the recommended thickness of thermal insulation was 6–8 cm,
at present it is 20–25 cm). What is more, the heat transfer coefficients for windows will soon not be
allowed to be larger than 0.9 W/(m2K) and currently they cannot be higher than 1.3 W/(m2K) (in the
1970s it was 3.2 W/(m2K)). Existing regulations on energy performance of buildings define the indices of
maximal primary energy consumption considering only technical issues. They put the focus on energy
efficiency, which results in reduction of final energy consumption and gives support for renewable
energy sources, which utilize much less primary energy. Unfortunately, they do not show how crucial
for energy consumption is the architectural concept of a building. Its shape, structure, location,
the sizing of different elements of the building envelope and their orientation to specific directions of
the world, and surroundings are of great importance. Without analysis of all the architectural and
local settlement conditions, it is like being halfway to the finish line, but with a slow first half and no
chance of winning. When a building is designed and constructed without a real vision of maintaining
low energy consumption throughout the whole year, then it will not be possible to reduce the final
and primary energy consumption to the set limits relying only on the energy efficiency of devices and
installations applied. Therefore, such a building will not be a smart low-energy building. To get a
real reduction in energy consumption of any building it is necessary to have a global interdisciplinary
approach and look at the process of building design, construction and use in a holistic way.

Many energy simulation programs have been developed to determine building energy performance
and they are used in many different countries. Comparison of the features and capabilities of twenty
major simulation programs determining the energy performance of buildings can be found in the
literature [11]. The authors showed how contrasting the building energy performance approaches can
be. So it is not surprising that it is difficult to find such a method of determining energy performance
of buildings, which would take into account all aspects of the actual energy efficiency of buildings
such as those described in this paper.
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This paper presents the problem of how the existing regulations supporting the reduction of
energy consumption in buildings through an engineering determination of energy performance cannot
fully present a true and reliable assessment and evaluate the real impact on energy consumption.
The paper shows how difficult it is to prove technically that a building is really low energy and smart,
and that all aspects of energy efficiency mentioned above have been treated equally. An example
of a single family house designed and constructed as a low energy solar house located in Warsaw’s
suburbs has been considered. Section 2 describes a general idea of a low energy building and a
smart building and shows how some of their main features are similar to each other, whilst others
are different. Section 3 presents solar radiation conditions in Poland and a concept of solar passive
architecture, which should be taken into account when a low energy smart solar house has to be
designed and constructed. Section 4 describes the heating energy demand as well as final and primary
energy consumption of the house under consideration. At the end, both the officially calculated and
real energy performances of the building are discussed and general conclusions are formulated.

2. Low Energy and Smart Buildings

Low energy buildings are not usually equated with smart buildings. However, it seems that if a
building is low energy it must be smart. However, the smartness of a building can be defined by many
parameters that are distinct from those usually applied to low energy buildings. If we would like to
consider a modern low energy building as a smart building, we should define what both ‘low-energy’
and ‘smart’ mean and whether a building can be both. A low energy building can be defined as a
building which needs and consumes a small amount of energy during its life-time. It is a building
needing a small amount of energy for space heating or cooling, thanks to its architectural and civil
engineering design and construction. Low energy needs result from the specific concept of the building
envelope, materials used, specific location of different partitions such as opaque walls and transparent
glazing in the structure of the building, as well as specific location of rooms of different functions inside
the building. It also needs the correct utilization of solar radiation for gaining energy in the winter and
protecting from excessive solar gains in the summer. Of course the aesthetic values of the building
envelope cannot be forgotten. A low energy building also consumes a small amount of energy because
of the use of energy efficient devices and systems applied to fulfill all its energy needs: space and
water heating, cooling, ventilation, air conditioning, lighting, electricity for electrical appliances, etc.
Moreover, renewable energy sources are used to reduce primary energy consumption of fossil fuels.

Different means of construction and operation of low energy buildings have been developed
in recent decades, with the best achievements in the last decade. Kivimaa and Martiskainen [12]
conducted a systematic review of case studies on low energy innovations in the European residential
building sector from the beginning of this century. They analyzed drivers important for systemic and
architectural innovation in low energy buildings and pointed out how different the low energy buildings
can be in their main purpose. There are some key words used to describe buildings of low energy
consumption, such as: energy efficient, low energy, zero carbon, passive houses, etc. All these keywords
express the main features of low energy buildings, i.e., energy, efficiency, environment and architecture;
however, according to the names of those buildings the focus can be put on different aspects.

When we search through the Internet trying to find a definition of the smart building, the most
common one is as follows: A smart building is any structure that uses automated processes to
automatically control the building’s operations including heating, ventilation, air conditioning,
lighting, security and other systems [13]. This idea is certainly connected to the energy efficiency aspect
of low energy buildings, but it seems to be much more closely connected to energy efficiency measures
introduced (mainly to office buildings) and known as BMS—building management system [14].
BMS systems are also known as building automation systems (BASs). Such a system is a computer-based
control system used in buildings to monitor and control the building’s energy systems and other
systems such as fire and security. Smart buildings use sensors, data monitoring and collecting
systems, which give the information needed for effective operation of different buildings’ systems,

392



Energies 2020, 13, 3232

including energy systems. Smart buildings use IT—Information Technology and IoT—Internet of
Things. Such technology is usually used for office buildings, hospitals, health care and educational
facilities, sport centers and sometimes for public buildings, but very rarely for residential houses.
There are no standards for smart buildings. Low energy architecture is not one of determinants of
the smartness of such buildings. Therefore it can be said, that in many smart buildings like office
buildings, the important element of energy efficiency required to reduce energy needs is usually missed.
However, without low energy or energy efficient architecture of a building it is really difficult to call
any building a smart one.

One more aspect not analyzed in detail in the paper is very important, namely the smartness of
building users. Energy consumption in buildings depends on user behavior. It can be said that the
inhabitants of residential houses basically want energy savings because they relate to the user costs
and directly affect them. The problem with these unthinking building users’ behavior is particularly
evident in office buildings [15]. Therefore, it should be stated that a smart building also requires
smart users.

Taking into account what features should be common to both low energy buildings and smart
buildings, it can be seen that energy efficiency is essential. However, it seems that the definition of a
smart building should be much wider, especially in the case of residential buildings. The next section
presents the concept of a smart low energy building realized at the micro scale, i.e., in a single family
house in Polish climatic conditions.

3. Influence of Solar Energy Availability on Architecture of a Building

3.1. Solar Radiation Conditions in Poland

The relation between climate, and especially solar radiation conditions, and architecture of a
building should be obvious [16,17]. Unfortunately, nowadays it is quite often forgotten. Any building
is under the influence of solar radiation, but the solar building must pay very special attention to
solar radiation conditions. In Poland the climate is moderate with the influence of continental climate.
The annual average ambient air temperature, depending on the region can be around 8 ◦C to 11 ◦C.
However, there are relatively large differences in ambient air temperature during the year and especially
between summer and winter. Thus in summer, during the daytime, the temperature can be +30 ◦C or
more, as has happened quite often recently. In winter, ambient air temperature can drop to −30 ◦C,
however such a low temperature was last recorded almost 10 years ago. The annual global solar
irradiation varies from 900 kWh/m2 to 1200 kWh/m2. Annual solar hours are on average equal to
1600. Climate is characterized by relatively large differences in solar irradiation throughout the year.
For example, in Warsaw in June, the average monthly solar irradiation is about 160–180 kWh/m2, but in
December only 11–12 kWh/m2. What is also typical for the climate is the high share of diffuse radiation.
The annual share of diffuse radiation usually accounts for 54–56% of the global and in winter this share
is especially high and accounts for 70–80%. Only in summer is the share of direct radiation higher and
can be on average equal to 60% of global radiation [18]. Figure 1 presents the averaged distribution
of the average hourly global solar irradiance on averaged days of the all months of the average year.
Figure 2 shows the distribution of average hourly ambient air temperature for averaged days of all
months of the average year for Warsaw.

Relatively large differences in solar irradiation and ambient air temperature in summer and winter
can easily be seen in Figure 1. In such climatic conditions not every solar passive system can be used in
an effective way. Very uneven distribution of solar radiation during the whole year means that specific
passive architectural solutions should be recommended [19].
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Figure 1. Distribution of average global solar irradiance for every hour on averaged days of different
months of the average year in Warsaw.

Figure 2. Distribution of average hourly ambient air temperature for averaged days of different months
of the average year for Warsaw.

3.2. Buffer Space Incorporated Into Interior of a House as a Specific Solar Passive Architectural Concept

The single family solar house presented here has been designed and constructed with particular
attention to passive and active utilization of renewable energy, mainly solar. Availability of solar
energy with regard to the climatic conditions and specific location of the building has been considered.
It can be mentioned here, that even if the climate is the same, the conditions in a city center are different
than in the suburbs and in the country side in the vicinity. The considered house is located in the
suburbs of Warsaw. The location of the house was specially selected so that in winter the southern
facade of the house is fully exposed to solar radiation. Deciduous trees were planted on the south-east
and south-west sides creating shade on these sides in the summer. The south is completely open, as it
is beneficial in winter. Elements of building architecture provide shading in summer, as is described in
the next section. A plan of the first floor of the house is presented in Figure 3. The main living space
area is marked with the red lines.
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Figure 3. A plan of the first floor of the considered house, main living space area is delimited by
red lines.

The south transparent solar buffer space of a special design and north opaque buffer space are
described below. Buffer spaces, as the name indicates, create a kind of a buffer between the outdoor
and indoor climate. The southern transparent glazed solar buffer space allows solar radiation to
penetrate the interior of the house in a planned way. Solar radiation can be fully utilized in winter
and significantly reduce the space heating demand, whilst in summer, to reduce solar energy gains,
the special architectural form of the southern buffer space is needed. A glazed solar buffer space is
incorporated into the interior of the building. This specific architectural concept of a solar passive
system is shown in Figure 4. It can be seen that the buffer space contains two theoretical cuboid
sub-spaces. The external one is higher and the internal one lower. There is no partition between them.
The solar buffer space has external and internal glazed vertical surfaces. External, four meter high
glazed partitions are in direct contact with the ambient surroundings on one side, and with the interior
of the buffer space, on the other. Internal glazed partitions (regular windows) are at one side in direct
contact with the interior of the buffer space on the one side and with the interior of the main living
space on the other.

The key architectural concept of the southern glazed façade of the house is to design and plan two
overhangs at the south side of the building. The first external overhang is just a regular one being a
part of the roof (marked with a symbol E). The internal overhang (marked with a symbol I) is a part of
the internal construction of the building. The main point is to properly design (place and size) the
internal overhang in accordance with the sizing of the external overhang to protect the interior of a
building against too much solar energy gains in summer and to allow solar radiation to penetrate
the interior of the house without any obstacles in winter. Of course the size of the external south
glazed facade is taken into account. The external overhang of the roof (E) has been designed to shade
the buffer space for a few noon hours (between 10 a.m. and 4 p.m.) in the warmest part of the year,
i.e., from May to the end of August, but not to block the access of solar radiation in the rest of the
year. The internal overhang (I) is formed by part of the floor on the second floor being, at the same
time, a part of the ceiling of the first floor (over the lower part of the buffer space, as can be seen in
Figure 2). The internal overhang has been designed to allow direct solar radiation to enter fully into
the interior space of the house in winter, exactly from November to the end of February, and to fully
block the direct solar radiation penetration from May to the end of August. In the remaining months
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of the year, solar radiation reaches the interior directly in the morning and afternoon. As has been
mentioned, the buffer space has full access to solar energy from October to the end of April and partly
(mornings and late afternoons) from May to the end of August.

 
 

 
 
 
 
 
 
 
 
 
 
 

(a) (b) 

Figure 4. Architectural solar passive system: (a) A view of the south glazed buffer space incorporated
into the house; (b) and a cross-section of a house along the south–north direction with apparent
shading planes.

To have planned such access to solar radiation, the size of the buffer space, the size and position
of different partitions of the buffer space, including the size of the external and internal overhangs,
have been determined on the basis of the astronomical relationship between position of the Sun and
the different partitions of the buffer space (glazed and opaque) [20]. Calculations of solar energy
availability have been conducted with a time step equal to one hour throughout the whole year.
The anisotropic diffuse solar radiation HDKR (Hay – Davis – Klucher – Raindl) model has been applied
to determine solar irradiation of surfaces of different inclination and orientation [21].

3.3. Northern Buffer Space

Analysis of solar energy availability in buildings also requires designers to pay attention to
that part of the building envelope, which is not exposed to solar radiation, especially in winter.
It is the northern part of the building enclosure which requires this thoughtful approach. In the
considered climate, with cold winters and warm (or even hot) summers, a highly opaque insulated
buffer zone should be created at the northern part of the building to reduce the effect of the severe
climatic conditions in winter. The external north partitions must be characterized by very high thermal
resistance (0.5 m thick walls, which include 0.25 m thick insulation) and no windows or any other
transparent elements.

Figure 5 presents such a north façade, which is a façade of the considered low energy solar house.
The northern walls and roof are elements of the buffer space. Another important feature is to

create usable spaces which do not require heating energy, because they are not for permanent residence
of the inhabitants. The air temperature in that space can be, or even is required to be, lower than in the
living space of the house. It is possible to plan a cold store, pantry, wardrobe, garage or boiler room
there. Northern fully opaque and highly insulated buffer zones can significantly reduce the influence of
severe climatic conditions in winter and have a positive impact on the energy balance of the building.

Planning cold and solar buffer spaces in a building allows introduction of temperature zones
into the building in a natural way. Due to the architecture of the building, natural passive control of
thermal comfort is created. In this way the following air temperature zones are designed:

• A cold northern zone with a seasonally variable indoor air temperature, daily changes of
temperature are very small;
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• A warm internal zone corresponding to the living space of residents with a requirement of
relatively constant indoor air temperature (throughout the year), where a low temperature space
heating system is applied;

• A southern solar zone with a variable air temperature on a daily scale (warm day/cold night) and
on a seasonal basis depending on the intensity of solar radiation and the influence of the ambient
air temperature.

 
Figure 5. A view of the northern buffer space of the house.

Thus, the architecture of the building creates a smart concept for building structure focused on the
planned use of the environment to reduce the need for heating and cooling energy for the living spaces.
The temperature zones go from the north, always with the lowest indoor air temperature, to the south,
with most variable indoor air temperature during daylight hours, the highest in summer, high or
moderate in spring and autumn and high or low in winter. The thermal state of the southern buffer
space is directly impacted by the solar radiation and by ambient air temperature. However, the radiation
is the dominant component. In such a way a smart solar low energy concept of a house can be created.
When the energy needs of a house are accomplished through the smart and energy efficient design of a
building then highly energy efficient devices and installations can be introduced.

4. Building Energy Needs and Final and Primary Energy Consumption

4.1. Space Heating Energy Needs of the Considered House

Usually, to reduce building energy consumption, two main measures are applied. The first is
focused on improvement of the thermal performance of the building envelope by adding insulation
and reducing infiltration rates, and the second is on improvement of energy efficiency of the devices
and installations used in buildings, including lighting, heating, ventilation and air-conditioning [22].
However, to reduce the energy consumption significantly the design of the building cannot be based
only on reduction of heat and mass flow through the building envelope (through improvement of
insulation and reduction of infiltration). The architecture of a building is crucial and it should take
into account specific climatic and environmental conditions with a focus on solar energy availability
specific for the given climate and location of the building. The single family house presented in this
paper was designed using this wide holistic approach to reduce energy needs, as has been described in
the previous section. In this section the results of calculations of the energy balance of the building and
the final and primary energy consumption are presented. Simulation studies have been performed
using our own simulation code. The availability of solar radiation and its impact on the energy needs
of the building have been determined. Modeling of the space heating and DHW needs have been
based on the methodology on determination of energy performance of buildings [23].
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The floor area of the heated space of the house is 350 m2. In addition to two floors, the building
has an unheated attic (there is no basement). The roof directed to the south and north is inclined at
30 degrees. The northern slope is larger than the southern one, required by the specially designed
north unheated buffer space. The south façade of the building is transparent in 70% of its total surface
area, which in turn is related to the design of the south solar buffer space. There are two types of
windows. Large windows form the main part of the façade and their heat transfer coefficient U is equal
to 1.2 W/(m2K). The U value of the other regular windows and internal windows of the south buffer
space is 1.4 W/(m2K). The main idea of the building design was to use standard construction materials,
typical nowadays for such a climate, to make the building envelope energy efficient and reduce heat
transfer with ambient surroundings. External walls are 0.5 m thick (two layers: mineral wool from
outside and bricks from inside). The heat transfer coefficient U is equal to 0.14 W/(m2K). The U value
for the ceiling over the second floor, under the unheated attic, is lower and accounts for 0.12 W/(m2K),
but the heat transfer coefficient for the floor on the ground is larger and is equal to 0.17 W/(m2K).

The energy balance of the building was formulated and space heating energy needs were calculated.
The results are shown in Figure 6. This figure presents monthly space heating energy demand with
all components of the energy balance of the building. Thus all heat losses through the building
envelope and ventilation (positive values), as well as heat gains: internal and solar (negative values),
are presented. It can be noticed that ventilation and heat losses through windows dominate among all
others, but it is also evident how large the solar gains are and their impact on the energy balance of
the building.

 
Figure 6. Monthly space heating demands with energy balance components: heat losses and gains.

The main observations on heat losses from Figure 6 are confirmed by the diagrams in Figure 7
which presents the seasonal share of different heat loss components in the total heat loss of the building.
As could be expected for a low energy house, the largest losses occur through ventilation and then
through windows, and they account for 34% and 29% of the total losses, respectively. In the third
place there are heat losses through walls (15%) and all the others take nearly the same share (6–7%)
(heat losses through doors are lower at 3%).

It can be noticed that the heat energy demand for the ventilation system results from the natural
necessity to exchange air in the building, including exchange for hygienic purposes in rooms such as
kitchens and bathrooms. In the building under consideration, the heat demand is significantly reduced
due to the use of heat recuperation. In the calculations of energy demand the use of a recuperative unit
was taken into account when determining the final energy consumption. Heat recuperation requires a
forced ventilation system to be used. The design of the forced ventilation system is usually taken into
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account at the design stage of the building and its interior, and this was the case with the building
under consideration. Ventilation ducts supplying fresh air, which is preheated in a recovery unit,
as well as ducts discharging used air outside through the recovery unit, were planned at the time of
creating the architectural design of the building. It can be mentioned that the heat recovery ventilation
unit is not used all the time, but only when inhabitants are at home. For the remaining months outside
the heating season only short-term morning and evening ventilation is used.

Figure 7. The seasonal share of heat losses in the total amount of heat losses of the building.

The calculated index of the annual space heating energy needs amounts to 36.16 kWh/m2 of the
heated floor area. The low space heating energy demand results from the architectural concept of
the building, the introduction of temperature zones resulting from the existence of buffer spaces at
the northern and southern sides of the building, including the passive use of solar radiation energy.
Low energy demand also results from the use of appropriate building materials of high thermal
insulation and thermal capacity. The high thermal capacity is demonstrated by a building time constant,
equal to 222 h.

According to existing regulations [23], when the energy performance of a residential building is
calculated the energy consumption for domestic hot water (DHW) heating is also taken into account.
For the considered house, the annual total heat demand index (for DHW and space heating, which is
only seasonal) is equal to 45.6 kWh/m2. The annual DHW head demand is equal to 3011 kWh
(heat demand index for DHW is equal to 9.44 kWh//m2). Up to now there have not been any official
regulations introduced to limit these energy-need indices of buildings; this is a problem which does
not help in significantly reducing the energy consumption of buildings, as the authors try to present
in this paper. There are limits only for the heat loss coefficients of walls, e.g., for walls U was equal
to 0.3 W/(m2K), now it is 0.25 W/(m2K). It can be mentioned, that 10 years ago when the house was
constructed according to the obligatory regulations, buildings (of similar compact shape) required a
maximum of 90 kWh/m2 of final energy and 69 kWh/m2 of primary energy consumption (regulation [10],
before amendments in 2013). Nowadays, these indices are even higher, because the official limits stated
for primary energy consumption for a single family house is equal to 95 kWh/m2. Since the beginning
of the 2021, even if a new house is to be called “nearly zero energy” the index for primary energy
consumption will be at a level of 69 kWh/m2.

4.2. Final Heating Energy Consumption of the Building

In order to determine the final energy consumption, it is necessary to take into account the energy
efficiency and effectiveness of energy devices and installations used to cover heating needs, as well
as their time of operation. In addition, the work of auxiliary devices necessary for the operation of
heating systems, such as circulation pumps in liquid circuits and fans in air circuits also have to be
taken into account.
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Operation of heating systems in the low energy house is of course based on using energy efficient
devices and installations. Heating demand is met by a ground source heat pump with vertical heat
exchangers coupled to a solar thermal systems with flat plate solar collectors via a buffer storage tank.
The buffer storage tank has a smaller DHW tank inside. In this way water in the main volume of the
buffer tank not only serves as a storage medium, but also as thermal insulation for the water in the
internal DHW tank. DHW is preliminarily heated in the internal tank and then it flows to another
DHW tank with an auxiliary heat source (electric heater). Solar collectors are integrated into part of
the south roof surface. A low temperature underfloor space heating system is used. The flow is forced
by a pump into every loop of the system. As has been mentioned, the heat recuperation unit is also
applied. Fans are used to force the flow of fresh and used air through the ventilation ducts. The main
characteristics of the heating system are presented in Table 1.

Table 1. Main (elements) devices of the heating system of the house and their main parameters.

Devices and Their Parameters Value Units

Ground source heat pump

Ground U-tube heat exchangers: number of boreholes 4 −
Total length of boreholes 200 m

Heat pump heating capacity 8.1 kW
Seasonal COP (Coefficient of Performance) 4.9 −

Solar thermal flat plate collectors

Gross / Aperture surface area 12/10.92 m2

Annual average solar energy gains 380 kWh/m2

Water storage system

Buffer storage tank - total volume 700 kg
Internal DHW tank volume 100 kg

Auxiliary DHW tank 50 kg
Ventilation heat recovery unit

Power of fans 280 W
Volumetric air flow 600 m3/h

The operation of the solar thermal collectors and the heat pump is not directly connected.
Both devices operate in parallel. They can operate at different times of the day, but they can also
supply heat at the same time. Flat plate solar collectors supply heat to the main buffer storage tank
(via a heat exchanger). An antifreeze mixture circulates in a solar collector loop. There is another loop
with an antifreeze mixture circulating in vertical ground heat exchangers, which are coupled with the
evaporator of the heat pump. Heat can be sent to the buffer storage. It is also possible to supply heat
directly from the heat pump to the underfloor heating system or DHW tank (without charging the
storage tank). The buffer storage tank with water as a storage medium contains a small tank inside.
The small tank is used as a buffer tank for the DHW system. Cold water is supplied to the small tank
and when the water is heated up it flows out of the tank and is transferred to the other tank, which is
the main DHW storage tank (50 l volume) equipped with an auxiliary electric heater. The ground
source heat pump is used only during heating season. Domestic hot water out of the space heating
system is accomplished via the solar thermal system operation, which operates very effectively in
Polish conditions [18,24]. From May until the end of September the thermal solar energy system can
cover all DHW heating demand. In March, April and October, solar energy provides about 60–70% of
demand, in winter the share of solar energy is very small and it does not exceed 10% for the DHW and
space heating. Figure 8 presents the print screen of a display showing the operation of the ground heat
pump system coupled with the solar heating system for space heating and DHW heating.
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Figure 8. The print screen displaying the configuration and operation of the ground heat pump system
coupled with solar heating system.

A micro-scale energy management system is used in the house. Operation of the heating systems
is controlled by a central system that continuously monitors the operation of all heating devices
and systems. Several variants of operation are possible depending on the availability of the given
renewable energy source in time and its adherence with the energy demand in that time. The system
is equipped with a number of sensors enabling on-line observation of the system’s operation as
well as its control. Through a dedicated computer application, it is possible to remotely change the
temperature settings in the rooms. It is also possible to change the parameters of the system operation,
mainly temperatures and flows, and even completely turn off the operation of individual devices or
installations. Operation priorities are set according to the efficiency of energy conversion from a given
energy source and the effectiveness of using that energy at a given time. The automatic control system
helps in a smart way to ensure the highest energy efficiency in gaining the available renewable energy
and consuming it in an effective way.

Figure 9 presents the distribution of monthly space heating final and primary energy consumption
for comparing the distribution of monthly space heating needs. It can be noticed that monthly space
heating needs are presented in two graphical forms. The highest bars show total energy demand
with standard ventilation needs, as shown in Figure 4 (where ventilation is a dominant factor of
energy demand). The lower bars (colored red also show the total energy needs, but the demand
is much reduced due to application of the heat recuperation ventilation system. The smallest bars
represent final energy consumption. It is evident that final energy consumption is really very low
thanks to the highly energy efficient energy systems and mainly because of using a heat pump that
has been well selected for the given operating conditions and operates with high energy performance
(SCOP (Seasonal Coefficient of Performance) nearly equal to 5 after nearly 10 years of operation).

The seasonal index of the final energy demand for space heating accounts for 4.61 kWh/m2,
which is very low. As has been mentioned, determination of the energy performance of any residential
building requires taking into account only the heat consumption of the building for space heating
and DHW. The so called annual index of energy consumption includes the annual DHW heating
and space heating, while the space heating takes place only during the heating season, and for the
considered house it lasts only four months. Thus the final annual energy demand index for space
heating and domestic hot water is 11.58 kWh/m2, which is still a very low value even if the electric
energy consumption by the auxiliary devices of the heating loops (like pumps and fans) is included.
It can be mentioned here, that in Poland a building can be classified as a low energy building, when its
final annual energy consumption (for all heating needs) amounts to 30–60 kWh/m2. Such a range of
indices was proposed in 2007 [25] and is still used [26].
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Figure 9. Monthly final and primary energy consumption and energy demand for space heating (bars
for ventilation with heat recuperation and without are shown).

4.3. Primary Energy Consumption

The annual index of primary energy consumption for space heating and domestic hot water for the
considered low energy solar house is equal to 25.77 kWh/m2. The annual index for domestic hot water
accounts for 4.11 kWh/m2. These are really very small values, far below the existing and future (since
2021) limits for such indices required by the present regulations. The primary energy consumption is
based on renewable energy sources: solar, solar thermal collectors and ground, ground source heat
pump; on waste heat, i.e., recovery of heat from the ventilation system and on conventional electrical
energy taken from the grid. In Poland, more than 90% of electricity is produced in power plants fired
by coal (hard and brown). Thus, taking electricity from the grid means using primary energy based on
fossil fuels. The calculated value of annual CO2 emissions is equal to 596.8 kg per year. To estimate
that value the official Polish energy mix with referred emissions for fossil fuel used was taken into
account [27].

5. Conclusions

Carefully analyzing the results obtained it can be noted that the building under consideration
is characterized by the final space heating energy consumption being lower than the space heating
energy needs and lower than the primary energy consumption. At the same time, primary energy
consumption is less than the heating energy needs (if heat recuperation from ventilation systems is
included in the calculations of the final energy consumption). This low consumption of final energy
results from the use of a heat pump for which a seasonal coefficient of thermal performance (SCOP) is
used instead of standard efficiency or effectiveness of devices and systems. So the use of a heat pump
should always be recommended to achieve a small final energy consumption.

In standard buildings with standard thermal energy systems supplied by fossil fuels the primary
energy consumption is always the highest, then the final energy (which is lower than primary energy)
and the lowest being the energy heating needs (in this case for the space heating). In energy efficient
buildings the application of a heat pump reduces the final energy consumption, which is lower than
energy needs (what is also the case in the energy system described in this paper). Such a lowering
of final energy can be also achieved and fostered through application of a ventilation heat recovery
system (real operational effectiveness of the recuperative heat exchangers is 70% in the considered
system, theoretical one accounts for 85%). However, it can be noted why the heat recovery of the
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ventilation system should be considered as final energy consumption, when the decision to use such
a system is made during elaboration of the architectural concept of the building (ventilation ducts
for forced airflow must be considered at this stage). So when the space heating of the low energy
solar house is considered in this paper and if we assume the heat recovery of the ventilation system at
the stage of determining the space heating energy needs, then comparing all three forms of energy,
i.e., energy needs, final and primary energy consumption, the final energy consumption is the lowest,
and the energy needs are lower than the primary energy consumption. Next, when application
of renewables is taken into account then the primary energy consumption is reduced. How much
this energy is reduced depends on the share of renewable energy sources used to fulfill the energy
requirements. All these considerations show how difficult it is to determine the energy performance of
a building. The problem is that in the official requirements for determination of energy performance of
a building there are no limits (indices) for the heating energy needs of the building, so perhaps if a
heat pump and the heat recovery ventilation system are to be applied, then the space heating energy
consumption can just be at the limit of official regulated indices, even if not much has been done to
reduce the energy needs.

Another problem is connected to official national regulations, which do not require (or even do
not allow) inclusion of the electricity use by electrical lighting and appliances, when determining the
energy performance of a residential building. Consequently, when any renewable energy system,
like photovoltaic or wind energy, is used, then it can be considered if such a system supplies energy to
drive the heating device, like a heat pump or electric heater. This means that any energy produced by
such renewable energy systems for electrical appliances during the whole year cannot be included in
calculations for determination of the energy performance of buildings. Thus the air heat pump used all
year round to supply heat for DHW and seasonally for space heating can turn out to be a much better
solution than using solar collectors for heating energy demand, mainly for DHW demand. This paper
describes a ground source heat pump operated during the space heating season. Such a heat pump
operates in a very efficient way, because out of heating season the ground can recover and come back
to its natural thermal state very quickly. As a result the thermal conditions of using the ground source
throughout the space heating season are very good (SCOP is quite high). In a case of an air heat pump
the SCOP is much lower, because of using an ambient air source during winter.

It turns out, that determination of the energy performance of a solar low energy house based on
official regulation does not allow for showing how energy efficient and smart the building really is.
The main problem is that there are no limits on the energy demand of the building.

The basis for ensuring the energy efficiency of the building is primarily ensuring significantly
reduced energy needs for the energy used in the building, i.e., the heating energy (energy for DHW,
for space heating or cooling) and electricity. The biggest energy saving is the lack of demand for it.
In buildings, significant savings can be obtained through the appropriate architectural concept of the
building, designing the compact shape of the building, opening the southern side of the building to
the impact of solar radiation and closing it tightly from the north to limit the impact of the external
environment, especially in winter. A suitable concept for the interior of the building, e.g., as described
in this paper, is the concept of using buffer zones, including the introduction of a southern buffer zone
into the interior of the building, allowing the use of energy from the environment, including primarily
solar radiation, and thus significantly reducing heat demand for heating. The architectural concept
should ensure a natural temperature zoning of the interior of the building, including high thermal
living comfort zones for permanent residence of people, zones for periodic residence (e.g., in transition
seasons like spring and autumn) and non-residential zones (e.g., for cold or hot auxiliary facilities).
Such natural zoning ensures a significant reduction in final energy consumption, and determines the
smartness of the building. One could say it is an innate, inborn intelligence because the smartness
is achieved naturally, passively, and not through the use of complex energy management systems in
the building.
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As has been presented in this paper, a low energy solar building is smart through its architecture,
construction, energy efficient devices and systems applied, and through the well managed operation
of all components based of utilization of renewable energies. It can therefore be concluded that
the building should have the built-in (embodied) smartness of reducing energy demand and
consumption, achieved naturally, passively, as well as through the use of energy-efficient devices and
installations, planning appropriate operating priorities and the use of efficient low-carbon energy
sources, preferably renewables.
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National Regulation on Methodology of Determination on Energy Performance of Buildings and Energy
Performance Certificates. Dziennik Ustaw, 2015, poz. 376. (In Polish). Available online: http://isap.sejm.gov.
pl/isap.nsf/DocDetails.xsp?id=WDU20170000022 (accessed on 10 May 2020).

24. Sawicka-Chudy, P.; Rybak-Wilusz, E.; Cholewa, M. Thermal efficiency of a solar power system in a collective
residential structure based on performance tests. J. Renew. Sustain. Energy 2016, 8. [CrossRef]

25. Stachowicz, A.; Fedorczuk, C.M. Low energy buildings—Analysis of energy consumption of the all life cycle
building. Czasopismo Techniczne 2007, Z-1B, 133–141. (In Polish)

26. Matuszko, L.; Parzych, J.; Hozer, J. The low-Energy building—New trends of the construction industry.
Studia i Prace WNEiZ US 2018, 54, 21–31. (In Polish) [CrossRef]

27. Available online: www.kobize.pl (accessed on 10 May 2020).

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

405





energies

Article

Extending the Application of the Smart Readiness
Indicator–A Methodology for the Quantitative
Assessment of the Load Shifting Potential of
Smart Districts

Thomas Märzinger 1 and Doris Österreicher 2,*

1 Department of Material Sciences and Process Engineering, Institute for Chemical and Energy Engineering,
University of Natural Resources and Life Sciences, 1190 Vienna, Austria; thomas.maerzinger@boku.ac.at

2 Department of Landscape, Spatial and Infrastructure Sciences, Institute of Spatial Planning,
Environmental Planning and Land Rearrangement, University of Natural Resources and Life Sciences,
1190 Vienna; Austria

* Correspondence: doris.oesterreicher@boku.ac.at; Tel.: +43-1-47654-85515

Received: 2 June 2020; Accepted: 3 July 2020; Published: 7 July 2020

Abstract: In 2018, the revised Energy Performance of Buildings Directive (EPBD) included for the
first time the application of a smart readiness indicator (SRI). Based on the fact that load shifting in
and across buildings plays an increasingly important role to improve efficiency and alleviate the
integration of renewable energy systems, the SRI is also aimed at providing an indication of how
well buildings can interact with the energy grids. With the clustering of buildings into larger entities,
synergies related to the integration of renewable energy and load shifting can be efficiently exploited.
However, current proposals for the SRI focus mainly on qualitative appraisals of the smartness of
buildings and do not include the wider context of the districts. Quantitative approaches that can be
easily applied at an early planning stage are still mostly missing. To optimize infrastructure decisions
on a larger scale, a quantifiable perspective beyond the building level is necessary to evaluate and
leverage the larger load shifting capacities. This article builds on a previously published methodology
for smart buildings with the aim to provide a numerical model-based approach on the assessment
of whole districts based on their overall energy storage capacity, load shifting potential and their
ability to actively interact with the energy grids. It also delivers the equivalent CO2 savings potential
compared to a non-interactive system. The methodology is applied to theoretical use cases for
validation. The results highlight that the proposed quantitative model can provide a meaningful and
objective assessment of the load shifting potentials of smart districts.

Keywords: smart buildings; smart districts; smart grids; smart readiness indicator; energy efficiency;
energy performance of buildings directive; energy flexibility; load shifting; demand response

1. Introduction

At the end of 2019, the newly elected President of the European Commission published the
European Green Deal [1], a roadmap for transforming the EU’s economy towards sustainability. The goal
is for the EU to be climate neutral in 2050 by boosting the efficiency and use of resources, moving to a
clean and circular economy and restoring biodiversity and cutting pollution. The de-carbonization of
the energy sector, as well as ensuring that buildings become more energy efficient, is amongst the key
actions in this long-term strategy. The subsequent proposal for the first European Climate Law [2] aims
to ensure that all EU policies contribute to the European Green Deal and that all sectors of the economy
and society will play their part. With over 40% of the global energy consumption being attributed to
the construction and use of buildings [3,4] and the European building sector being responsible for an
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estimated 39% of final energy consumption [5] it is evident, that any future oriented government must
include buildings and their associated infrastructure at the core of its roadmaps.

Currently EU legislation related to energy use in buildings is based on the Energy Efficiency
Directive [6], the Renewable Energy Directive [7], and Energy Performance of Buildings Directive
(EPBD) [8], with each directive providing the framework conditions for the national regulations and
standards. The EPBD, which came into force for the first time in 2002 has since then be twice revised
in 2010 and 2018 [9], with each new version imposing yet stricter regulations on energy efficiency in
buildings. In the last amendment the EPBD included for the first time the development and application
of a so-called smart readiness indicator (SRI), which should describe how well the building can
interact with the grid, manage and optimize itself, and relate information to and from its occupants.
Since the SRI has not been fully elaborated in the regulative document, a study has subsequently been
commissioned by the EC in order to provide guidance and a coherent framework for the member
states [10,11]. The study provides a calculation framework for the assessment of the SRI that is based
on qualitative indicators in a matrix approach that covers a series of impact criteria, domains and
domain services. The framework focuses mostly on a qualitative assessment that is dependent on
certified assessors, thus adding the danger of subjectivity to the process. Since its publication the
consortium has carried out several tests to validate the process. An independent study also concluded
that the approach shows limitations, particularly when applied to colder climates [12]. Another recently
published analysis highlights the inherent subjectivity of the proposed solution as it documents how
two independent research groups carrying out the assessment on the same buildings came to highly
diverging results [13]. It is expected that more appraisals will follow to assess whether the initial
proposal poses a viable way forward. The member states of the European Union will finally have to
jointly or individually decide on the specific process to be implemented in their countries.

In a position paper of the “Annex 67: Energy Flexible Buildings” of the International Energy
Agency (IEA) the authors argue, that there is a need for a quantitative analysis of buildings’ energy
flexibility [14]. Whilst a market model is proposed as an assessment, this is not considered entirely
future proof, as costs and markets are subject to change [15]. One of the key objectives of the SRI
is the assessment of the load shifting potentials of buildings, however this aspect is not explicitly
quantified within the above-discussed study [10,11]. Also, the district is not considered, even though
the clustering of larger entities becomes more important as load shifting capabilities increase. In a
previous publication [16], the authors of this article have already proposed a methodology to integrate
a quantitative assessment of the load shifting potential of buildings in order to support an objective
judgment and subsequent implementation of the SRI. Based on the definition of the SRI in that paper,
conclusions can be drawn on the load shifting potential of buildings. Following the publication,
the authors have consulted with relevant stakeholders to gather feedback on the proposed methodology
and to identify relevant research gaps.

This article consequently builds on the previously published methodology with the aim to provide
a coherent assessment to support the optimization of infrastructure decisions on a larger scale based
on the hypothesis that a perspective beyond the building level is necessary to leverage potential load
shifting capacities of the built environment. The underlying hypothesis is, that the methodology for
the SRI can also be expanded to larger entities, such as districts or cities and that it can provide an
adequate approximation for the potential CO2 savings. The subsequent research questions follow
this hypothesis and can be summarized as follows: (1) How can the definition of the SRI be extended
in terms of an efficiency limit? (2) Can the assessments for buildings be meaningfully extended to
groups of buildings and larger districts? (3) Can the equivalent CO2 savings potential be derived from
the methodology?

As a result, the objective of this study is the adaptation and enlargement of the methodology to
also include larger entities as well as infrastructure and CO2 assessments on a district scale. The aim
is to provide a numerical model-based approach on the assessment of whole districts based on their
overall energy storage capacity, load shifting potential and their ability to actively interact with the
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energy grids. In addition to the district SRI and the district load shifting potential it also provides an
estimation of the equivalent CO2 savings compared to a system that does not include the building’s
load shifting potential. Comparably to the first publication, the approach is applied to theoretical use
cases for validation. It shows that a comprehensive quantitative approach can provide meaningful
result also on a district level, thus delivering important answers to the question of how much buildings
can contribute to actively store and dispatch energy within a district or larger urban quarter.

The following Section 2 highlights the current state of the art and subsequent research gap this
publication is addressing in the context of the assessments of smart districts. The regulative framework
conditions are briefly outlined, followed by an account of state-of-the-art research related to the load
shifting potential in buildings in combination with the increased use of renewable energy systems
(RES). The particular focus on smart districts is seen as the logical intermediate step between smart
buildings and smart cities. Section 3 describes the overall methodology, respective equations and
derivations for the assessment. In Section 4 the approach is tested on a theoretical use case on a small
representative district in the City of Vienna. The discussion in Section 5 finally provides a review of
this extended methodology, its limitations, as well as potential for a wider application with the goal
that the member states include an objective and quantitative assessment within their new regulations
related to the Smart Readiness Indicator.

2. Background

Buildings play undoubtedly a crucial role within a sustainable and fossil-free energy system.
Whilst the focus on the single entity is hugely relevant in order to develop highly efficient materials,
structures and system, the enlargement of the perspective to bigger entities can be crucial to leverage
the full potential of connected systems. Especially in dense urban environments, buildings cannot
only be viewed as detached elements, but must be perceived within a wider neighborhood in their
urban morphological and societal context. Resilient urban development thus sets a particular focus on
concepts for sustainable, efficient, and green districts [17]. The de-carbonization of the energy systems
will heavily rely on the widespread integration of RES. But since demand and supply can be deeply
asynchronous, demand response management and storage potentials must be implemented to match
the scale of renewables. Energy grids can provide the required transfer for electrical and thermal
energy. Whilst on the building level infrastructure considerations are mostly dependent on the already
existing infrastructure on a particular building site, planning on a district scale offers a broader range
of options. In addition to larger urban or regional networks, small-scale infrastructure, such as district
heating or cooling networks, can be included at this scale.

2.1. Regulative Background and Current Developments on the SRI

Within the latest revision of the EPBD the regulators also foresee a Smart Readiness Indicator (SRI)
that rates a building to use information and communication technology (ICT) to adapt the operation of
the building to the needs of the occupants and the grid [9]. As a support mechanism, the European
Commission has funded a study to provide a coherent methodology for the assessment of the SRI for the
member states [10]. After the publication of the original findings in 2018, the consortium subsequently
started a stakeholder consultation process to review the applicability of their proposal. This process
included the review of a series of topics, including cost and cost-benefits, climatic specificities, scoring
system and testing. They also implemented two expert topical stakeholder working groups focused
on SRI value proposition and implementation as well as SRI calculation methodology. The findings
of the process and adaptations have been summarized in the interim report of the Second Technical
Support Study on the Smart Readiness Indicator for Buildings [11]. Related to their Task 1 on the
technical support for the consolidation of the definition and the calculation methodology of the SRI,
the study concludes that the proposed SRI methodology builds on assessing the smart readiness service
in a building. These services improve the performance of the building in regard to energy efficiency,
responds to user requirements and support the interaction with the grid. The proposal includes both a
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simplified and detailed assessment method and the overall methodology has also been tested on 112
test cases [11]. Compared to the initial study, the revised version after the consultation process has not
significantly changed other than refinement of the indicators as outlined above. The methodology still
relies heavily on qualified assessors and thus on a subjective and quantitative approach. The latest
report states that the reliability of and trust in the experts to deliver the scheme will be a key success
factor and that high-quality training will be required [11]. It should also be noted that the methodology
relates mostly to the electricity demand (as outlined under point 3 in the reference stated above) and
does not equally consider flexibility in thermal demand.

Whilst the implementation of the EPBD is up to the individual member states, the Concerted
Action on Energy Performance of Buildings Directive (CA EPBD), which is funded under the European
Unions’ Horizon 2020 program, aims at exchanging knowledge and best practices in the field of
energy efficiency amongst the European member countries [18]. Subsequently the SRI and potential
methodologies associated with its integration into national building codes will also most likely be
discussed within this working group. As the CA EPBD also publishes country reports on the status of
the implementation of the EPBD in the member states, it remains to be seen how the SRI methodology
as proposed in the above study will be applied throughout Europe.

Nevertheless, it is clearly understood, that the Energy Performance certificates (EPCs), which are
an inherent part of the EPBD play a crucial role in transforming the building market and that the
directive as such already has been shown to be an effective policy [19,20]. Education and training
as well as interdisciplinarity are essential cornerstones in driving the EPBD forward to improve the
performance of buildings [21]. The EPCs should ideally provide easily accessible data on building
performance and can support the identification and subsequent refurbishment of underperforming
buildings [22]. The recently added SRI can also serve as a useful source of information to enhance
public awareness on the smartness of a building, however similarly to the EPC, it is key that the
indicator is easy to use, transparent and based on reliable data.

The discussion of the regulatory background shows, that policy related to the assessments of
buildings are both highly relevant, but there is an evident need for easily applicable and reliable tools
that provide an objective assessment. Currently, this aspect is still mostly missing within the context of
the SRI.

2.2. Smart Districts

The terminology “smart” has in recent years been extensively used and elaborated on. There are
several definitions, when it comes to the labelling of smart buildings or smart districts. Wiggington and
Harris conclude that there exist more than 30 separate definitions on the term intelligence in relation to
buildings [23]. Other literature on the subject states that intelligent buildings are clearly multi-faceted
and whilst they can be summarized by a series of characteristics that include aspects ranging from user
safety and comfort to resources, a universal description is challenging [24]. Whilst smartness has been
mainly used as a label for buildings and cities, the intermediate scale of the district gains in importance
as local energy solutions emerge.

Within the contact of this approach, the smartness mostly related to the efficient use of resources
and energy. From an architectural perspective, the planning of a building is mostly limited and defined
by the actual plot of the construction. Nevertheless, urban planning considerations as well as scale,
morphology and societal setting amongst others heavily influence the design. Energy efficiency is
also largely dependent on the immediate context relating to climate, resources, and infrastructure.
Incorporating a systemic view beyond the building’s edge towards the district can provide added
value, as concepts for sustainable neighborhoods play a fundamental role in the development of
resilient cities [17].

Following the logic of resource and energy efficient design on a buildings scale [25], the district
offers the benefit of the systemic perspective and can subsequently deliver optimization beyond the
single entity. Especially when it comes to building renovation, clustering buildings with different
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thermal qualities and connected energy generation, supply and storage systems can achieve significant
primary energy savings with minimal physical intervention compared to the renovation of single
entities alone [26].

The steps as outlined in Figure 1 describe the methodology for the development of energy concepts
at district scale. In step 1, the passive aspects, defined by the architecture (shape, form, envelope,
mass) are the first key measures to reduce the actual energy demand for heating, cooling, lighting and
ventilation. At the district scale the influencing factors include the orientation of the building blocks,
the density and the functional mix of the various entities. The 2nd step relates to the energy systems
and focus on the energy networks, the use of waste heat potential and the efficient control management
across buildings. In step 3 the adequate selection of RES and respective energy storage solutions is key
to move towards zero-carbon district solutions. The overall load management as well as small scale
district heating or cooling grids are relevant aspects in step 4, where the overall district in connection
to the larger urban entity or region signifies the move towards smart district and subsequently smart
city solutions.

Figure 1. Methodology for resource and energy efficient design at district scale, author’s graphic
adapted from [25].

There is however still the question how the domains of the smart buildings can be connected to
the district and subsequently to the city to ensure interoperability, especially when it comes to digital
planning tools but also for operational purposes. In a recent publication where the interoperability
of smart buildings into smart city platforms was evaluated, the authors concluded that the five
aspects of smart energy, smart mobility, smart life, smart environment and smart data were the key
domains related to the interconnectivity between the scales. Subsequently, smart building integration
into a smart city has been defined to set out the framework for the various integration levels [27].
On a building scale there are already several assessments in place that are aimed at quantifying
the intelligence or smartness of a building, several of which have been analyzed within the context
of the named publication. The building intelligent quotient (BIQ) program developed by the BIQ
Consortium consisting of CABA (Continental Automated Building Association) members, is a program
aimed at evaluating building intelligence. Whilst it is mainly focused on building automation and
control, it should function by its own definition as an evaluation tool for a buildings’ smartness [28].
The Honeywell Smart Building Score (HSBS) provides a rating on 15 technology asset groups that
make a building green, safe, and productive, and similarly offers a broad approach on the rating of
devices, software, and control mechanisms within a building [29]. Both ratings encompass a rather
complex and elaborate process and mainly focus on intelligent control mechanism and appliances
rather than on load management, which provides an entirely different approach as outlined in this
paper. In addition, they are also focused on a technology and device-oriented approach, which would
need to be adapted as new technologies emerge.
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Whilst the assessment of energy flows in buildings is already mostly considered standard practice
with more or less detail, the district scale requires a different set of models as other aspects, such as
mobility, networks and other infrastructure (e.g., waste heat from industrial processes) need to be
factored in. In order to identify optimal strategies at the district level, methodologies should include
qualitative and quantitative evaluation procedures based on reciprocal impacts [30]. However, there is
also a need for district and energy models that go beyond the scientific community to be applied
in practical design developments. Focusing especially on the planning community, the CityCalc
tool has been developed to provide a quick assessment for urban planning competitions and initial
planning phases [31,32]. Spatial-temporal modeling and thus dynamic assessments on a district scale
can also be carried out by the CEA (city energy analyst) [33], a free open-source GIS-(geographic
information systems) integrated system that has been conceived as an urban building simulation
platform for the analysis and scenario comparison of energy demand, associated CO2 emissions,
financial benefits and production optimization for districts [34,35]. GIS based data analysis coupled
with energy workflow modelling can be of particular importance for integrated urban platforms,
that aim at modelling a diverse range of CO2 emission related domains such as energy, resources
and mobility. Such multi-domain tools can help to identify, e.g., high impact districts in need of
modernization within the different urban sectors [36].

In a recent study, several urban energy-planning tools have been assessed based on their overall
user friendliness related to spatial scale, output time and energy services with a few having been
considered suitable for widespread use [37]. District energy modeling also supports the development
of adequate technical and economical solutions for the existing building stock, as energy efficiency and
renewable energy measures can be potentially more cost-effectively integrated at a multi-building scale.
IEA Task 75 is specifically dedicated to the development of solutions for existing urban districts [38].
These developments show, that there is a noticeable shift towards the system perspective, which becomes
ever more important, as with the exponential increase in information and communication technology,
buildings act as distributed consumers, producers and storage of energy and thus develop into active
players in the energy system. Similarly, the clustering of buildings to larger entities becomes more
relevant as synergies related to energy efficiency and renewable energy sources can be exploited [14,15].

In his recently published book on the Green New Deal, the economist Jeremy Rifkin argues that
a factor in his so called third industrial revolution towards a de-carbonized energy system lies in
the digitalization of the energy networks. He stipulates that paradigm changes can occur when new
communication technology converges with new energy sources and new forms of mobility. Thus he
concludes that the world is on verge of a third industrial revolution as the Internet is connected to the
energy system and to the mass transport systems of e-mobility [39]. Consequently, the assessment of
the flexibility of buildings is significant in this context.

2.3. The Potential of Load Shifting in Buildings for the Integration of RES

The transition towards a sustainable energy system relies heavily both on the lowering of the
overall demand and the provision of the required energy by renewable sources. The transformation
from a centralized market to an intelligent smart grid requires a fundamental change in how we
conceive the production, distribution, storage, and supply of energy [40]. As outlined above, in this
context, buildings play a crucial role as they are significant consumers of energy but can at the same
time provide surface areas for the integration of de-centralized solar energy systems and storage
potential by means of their thermal mass and building services systems.

Aggregating buildings for cooperative energy management can yield substantial energy savings by
exploiting their load shifting capabilities and utilizing shared energy systems. Aggregating buildings
to clusters allow the exploitation of the variation in energy demand in different building types [15].
Determining efficient control strategies to allow a data driven and robust optimization strategy are
necessary to use the potentials at a larger scale [41]. For electrical smart grids (SGs) the integration of
renewable energy (RE) generation also depends largely on efficient demand response (DR). Increasing
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the share of RES implies that both storage systems and DR have to be jointly considered as with an
increasingly higher share of RES the flexibility in the grids decrease without adequate management of
demand and supply. Studies undertaken in specific micro-grids analyzing the effects of high renewable
energy penetration highlight that adequate methods must be applied for an effective demand response
management [42]. In order to provide de-centralized storage devices in buildings that increase the
participation of end-users in the operation of the grids, micro-storage solutions must be properly
planned and managed in order to provide optimized results [43]. Peer to peer (P2P) energy trading
can also enable direct energy trading between energy consumers and prosumers. This reduces the
exchange between the microgrid and the large-scale utility grids and can subsequently support the
wide-ranging penetration of renewable energy into the power grid [44].

Whilst the electrical load shifting undoubtedly dominates the discussions related to smart grids,
the thermal integration and consideration of intelligent thermal grids must not be neglected. Integrating
PV (photovoltaic) systems in buildings, the so-called building integrated PVs (BIPVs) can, from an
architectural and building technical point of view, more easily be achieved compared to solar thermal
systems. There is nevertheless still a demand to also incorporate thermal renewables into the urban
fabric. Solar thermal collectors, heat pumps, systems based on biomass or waste heat from auxiliary
sources can all provide low emission alternatives to fossil-based systems. In a forecast scenario for
the European heating and cooling fuel deployment an increase in the share of renewable energy from
16.7% in 2012 to 25.9% in 2030 is possible under the current policy scenario. This is driven mostly by
an increased deployment of RES and a simultaneously falling final energy demand due to stricter
building efficiency [45].

There is a growing awareness, that district heating networks should also react to the de-centralization of
the energy market and subsequently allow the integration of small-scale supply, mostly based on RES,
into their systems [46]. This would also allow the use of so-called waste heat (usually low temperature
heat) from industrial processes, wastewater or reject heat from cooling systems. Several studies suggest
that there is a significant potential to exploit these yet untapped resources [47,48]. Especially data
centers, with their large demand in power and cooling energy represent both a potential for waste heat
as well as renewable energy integration. A recent study has found that regional climate studies can
provide an effective way of improving the efficiency of data centers in both the upstream renewable
energy supply and the downstream waste heat reuse [48].

Although supply temperature from so called prosumers (customers that consume as well as
produce energy) is usually lower than typical supply temperature, the thermal networks need
to effectively manage and control their system to increase the share of decentralized renewable
integration [49]. A thorough analysis on the exact scale and potential of the renewable input is
however crucial to determine the feasibility of the de-centralized option. Defining a model that
combines prosumers, central supply as well as market and emissions aspects can be accomplished
by applying stochastic optimization algorithms. However, achieving a fair distribution of economic
benefits between a central heat plant and multiple consumers remains a challenging task [50].

A study comparing several scenarios from the (classical) central heat-plant setup, to an agent-based
approach and prosumer centric solutions comes to the conclusions that no approach has emerged
as superior to the others and that each solution is justified under certain circumstances. It stresses
subsequently that mathematical optimization is crucial in determining the best way forward [51].
While economic benefits are achieved in most scenarios, it is a non-trivial task to construct a market
model that distributes these benefits in a fair way between the central heat plant and the prosumers.

Focusing on exergy with the aim to use energy efficiently and reduce carbon emissions presents
yet another modelling approach. By considering the match between the grade of energy on the demand
and supply side analytical models can provide useful decision support for the planning of low- or
zero energy districts [52]. Combining heating and power models by providing modeling solutions
for the design of co-generation is an essential cornerstone on the development of decision support
mechanisms at the district scale. Multi-criteria optimization allows the focus not just on minimization
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of operation and maintenance system costs, but also taking into account time-varying loads, tariffs,
and ambient conditions [53]. The intelligent coupling of heat and power demand and supply and
subsequent co-generation is of particular importance on that scale as thermal and electrical loads
can more efficiently be balanced on multiple and different building types with varying demands.
Integrating renewable energy systems thus requires a multi-objective approach that considers both
economical as well as environmental functions [54]. Quantifying relevant characteristics regarding the
generation, distribution, and storage of energy in districts consequently represents a highly relevant
aspect in the increased integration of RES into the urban environment. Current assessments and
simulation tools on a district scale address the energy related aspects, however load shifting is still
mostly considered from the perspective of the utility provider and thus mostly neglected in appraisals
focusing on the characteristics of smart buildings and districts.

3. Methodology

Following the initial concept for the development of a quantitative approach on a building scale,
the below outlined methodology aims at upscaling the concept to a bigger dimension. The numerical
model-based approach provides an assessment of whole districts (or even larger entities) based on
their overall energy storage capacity, load shifting potential and their ability to actively interact with
the energy grids. With this methodology, districts or larger conglomerates of buildings can be rated
and subsequently categorized with a single indicator per energy type. In addition, the resulting
CO2 savings potential compared to an equivalent non-interactive system can be defined, which in
turn highlights the probable benefits of the load shifting. This last aspect is of particular importance
for future funding schemes or other incentives tied to CO2 emission savings. Since load shifting
increases the efficiency of the overall system and subsequently the efficient use of renewable energy,
the equivalent savings should be calculated and highlighted. Subsequently the proposed methodology
aims at providing an answer to the following questions:

“What is the potential of the district to take energy from the grid, store it over a certain period
of time and again dispatch it back to the grid? What are the potential CO2 emission savings
associated with the load shifting potential of the district?”

In a first step, the previously published methodology is improved based on stakeholder feedback.
Based on the adapted equations, the approach is enlarged from the single building to multiple buildings
thus allowing the application on a whole district or any bigger logically connected series of buildings.
The last sub-section finally provides an estimation for the equivalent CO2 savings, which might be of
particular importance for the communication of the benefits of increasing the load shifting capabilities
in buildings.

3.1. Adaptation of the Previously Published Methodology

Following the publication of the initial methodology on the quantitative assessment of the load
shifting potentials in buildings [16], a series of discussions were held with relevant stakeholders to
gain insight related to the usefulness and potential application of the methodology. Whilst the overall
approach to provide a simplified numerical assessment has been positively acknowledged, it has
been critically reviewed, that the proposed calculation does not require minimum efficiency standards
related to the storage system. It was noted that this could essentially mean that a series of highly
inefficient (and potentially environmentally adverse) storage technologies could result in an equally
good SRI as highly efficient (and less ecologically detrimental) systems. This could be of particular
importance if the SRI is used in future application for any funding mechanisms. Thus, in order not to
favor cheap and inefficient storage technologies via the definition of the SRI, the original approach has
been extended by a simple extension to include a barrier in regard to minimal efficiency related to the
storage type and system.
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The preceding equation with the variables as outlined below has been originally published [16]
and reads as follows:

SRI =
AC(

1 + e−6(( SC
ED ∗ηSC∗(1−ζSC))−1)

) (1)

where ED refers to the energy demand of the building per energy source for the selected time period τ,
SC, the storage capacity of the respective storage in the building, and ηSC, the efficiency factor of the
storage capacity (here the efficiency for loading as well as unloading the storage must be considered).
ηSC = ηC * ηD. ηC denotes the efficiency factor of the storage capacity for charge. ηD refers to the
efficiency factor of the storage capacity for discharge, ζSC, the storage loss during the selected period
in full storage (e.g., through self-discharge or associated heat losses), and AC the activity coefficient for
the building.

Depending on the activity of the building, four different activity coefficients have previously been
distinguished: (1) no grid available n/a; (2) no interaction with the grid, the activity coefficient is 0;
(3) passive interaction with the grid, the activity coefficient is 1; (4) active interaction with the grid the
activity coefficient is 2. (“ . . . In this context “no interaction with the grid” means that no storage or
load shifting potential is available, the building is a simple consumer. A “passive interaction with
the grid” requires the building to offer storage and/or load shifting potential to the grid. The load
shifting is however only one-directional from the grid to the building. The “active interaction with
the grid” stands for an energy flexible building that provides storage and/or load shifting capabilities
and offers bi-directional load shifting from the grid to the building as well as from the building to
the grid. This building would be able to produce as well as consume energy and consequently be
a prosumer . . . ”) [16].

From this equation the required characteristics for the SRI methodology can be achieved. An initial
validation of the methodology has also been described in the previous publication [16]. Following the
comments for improvements as outlined above, a function has been added to regulate the SRI regarding
the storage efficiency. The following variables are necessary for the amendment of the equation:

AF: Attenuation Factor to regulate the SRI related to storage efficiency.
EPmin: Definition of the required minimal efficiency of the storage system. Substitute for the definition:
EPmin := ηmin·(1− ζmax) with ηmin the minimal required efficiency factor and ζmax the maximal
required losses.
Λ: Definition point of the minimal efficiency λ = 1/EPmin. At this point the Attenuation Factor (AF) is
always 0.63.
k: defines how fast the SRI veers with a low efficiency towards 0. With a low k the SRI is slowly reduced.
With a high k the AF (SRI will be cut off) is rapidly reduced with minimal efficiency from 1 to 0.
EP: Energy Performance, i.e., the efficiency of the system EP := ηSC·(1− ζSC).

AF = 1− e−(λ·EP)k
(2)

As shown in Figure 2 the pinch-off characteristics of k influence the overall energy performance as
there is a vast difference if k = 5 or k = 100 as displayed in the figure. The graphic shows the main
properties of the function used to calculate the Attenuation Factor (AF). The x shows the definition
point for the minimum acceptable efficiency of the storage system. Based on this limit, the parameter k
can be used to define how quickly the SRI approaches zero when the EP decreases. A version for a
slow decline is shown for the curve k = 5. The curve with k = 100 shows a rapid decline of the SRI for a
decreasing EP. That means with a large k a cut off of the SRI, by a continuous function, is achieved at
the definition limit for the minimal EP. In this case, if the EP is greater than EPmin, the SRI remains the
same as in the first definition and consequently the basic properties are retained. In Figure 2, Equation
(2) has been applied.
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Figure 2. Pinch-off characteristics relating to k.

Following this logic, the SRI including the above outlined function for the regulation of the storage
efficiency can be derived as follows based on Equations (1) and (2):

SRI =
AC · e−(

ηSC ·(1−ζSC)

ηmin ·(1−ζmax)
)

k

(
1 + e−6(( SC

ED ·ηSC·(1−ζSC))−1)
) (3)

Based on this adapted equation the required characteristics for the SRI methodology can be achieved.
The new function now considers the regulation of the storage efficiency and thus avoids the use of
potentially inefficient storage technologies.

Figure 3 below depicts the SRI curves based on the modified Equation (3) for the various activity
coefficients. Graph (a) shows the SRI curves with the activity coefficient 1 and (b) shows the SRI curves
with the activity coefficient 2. Both SRIs are calculated with a k = 100.

(a)        (b) 

Figure 3. Pinch-off characteristics relating to k with Activity Coefficient 1 (a) and Activity Coefficient 2 (b).

It is shown that, with a high k, the curve with the EPmin (definition of the minimal efficiency and
maximum losses, yellow curve) reaches a maximum exactly at 0.63 with the AC = 1 and 1.26 with the
AC = 2. However, with the same k, an EP lower than EPmin results in a SRI = 0. Consequently, a bad
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storage efficiency cannot be compensated with a high storage capacity. In Figure 3, Equation (3) has
been applied.

3.2. Enlargement to the District Scale

In order to enlarge the methodology to the district scale, the following variables are added:

N Number of buildings
EDi Energy demand of the building i per energy source for the selected time period τ.
SRIi SRI for the building i.
EDDist Energy demand for the whole district.
SRIDist SRI for the whole district.

SRIDist :=
N∑

i=1

ωi·SRIi (4)

With the weighting factor as follows:

ωi :=
EDi

EDDist
(5)

The weighting factor has been included in order to ensure a fair comparability of districts with
different characteristics. Therefore, this does not represent an average of the district’s SRI, but rather a
weighted average based on the respective share of energy consumption in relation to the total energy
consumption of the district. For example, if a commercial entity has a low SRI with a very high ED,
then a single building with a high SRI and low ED does not compensate for this.

The EDDist can subsequently defined as follows:

EDDist :=
∑N

i=1
EDi (6)

Out of the above equations, the load shifting potential for the whole district can be derived. Based
on the calculation as outlined in the previous publication [16], the equation to estimate the storage
potential reads as follows:

SP = min

⎛⎜⎜⎜⎜⎜⎜⎝52 , max

⎛⎜⎜⎜⎜⎜⎜⎝0,−
ln
(

2
SRI − 1

)
6

+ 1

⎞⎟⎟⎟⎟⎟⎟⎠
⎞⎟⎟⎟⎟⎟⎟⎠ (7)

The estimation of the storage potential of a building is derived from the SRI. The reverse function is
based on the following assumption: The losses and efficiencies were already taken into account when
calculating the SRI. For this reason, and the fact that the SRI is monotonically increasing in terms of
storage efficiency a higher efficiency subsequently implies a higher SRI. The efficiency for the inverse
was chosen with 1, thus the equation is defined as:

ηSC·(1− ζSC) = 1 (8)

Subsequently the energy that can be taken from storage is calculated based on the time τ. Also, the
storage potential of the building is defined with:

SP :=
SC
ED

(9)

In order to maintain the properties of the SRI with regard to the building as consumer (one-directional)
or prosumer (bi-directional) the activity coefficient for the inverse is set to 2 (AC = 2). This is following
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the assumption that a storage with an AC = 1 is expected to be less active in shifting loads than a
storage with an AC = 2. Based on the definition of the SRI and the above assumptions:

SRI =
AC(

1 + e−6(( SC
ED ·ηSC·(1−ζSC))−1)

) = 2
1 + e−6(SP−1)

(10)

Following these equations, the SP can be derived as follows:

SP = 1−
ln
(

2
SRI − 1

)
6

(11)

In the extreme areas of SRI = 0 and SRI = 2 the estimate obtained needs to be reasonably
limited. This means that since the approach function is defined on R, it must still be restricted to
R
+
0 . Furthermore, due to rounding errors in the range of SRI ≈ 2, errors could occur which should

be limited by an upper bound. As a suggestion 2.5 was chosen as the upper bound for this study.
Based on these assumptions, the storage potential for buildings can be defined as follows:

SP = min

⎛⎜⎜⎜⎜⎜⎜⎝52 , max

⎛⎜⎜⎜⎜⎜⎜⎝0, 1−
ln
(

2
SRI − 1

)
6

⎞⎟⎟⎟⎟⎟⎟⎠
⎞⎟⎟⎟⎟⎟⎟⎠ (12)

With the equation to calculate the storage potential for the whole district:

LPDist :=
N∑

i=1

SPi · EDi (13)

With the individual coefficients as follows:

SP Storage potential of the building (Relationship of SC/ED; dimensionless).
LPDist Load shift potential for the whole district.
Bi Building i.
SPi Storage potential for building i.
EDi Energy demand for building i.
N Number of Buildings.

The load shifting potential for the whole district serves as an approximation as derived from the
SRI, the SP and the ED as outlined in the above equations and displayed in Figure 4 In this figure,
in field 2 Equation (3) has been applied, in field 3 Equation (12) has been applied, and in field 4 Equation
(13) has been applied.

Figure 4. Assessment of the load shifting potential of the whole district.

418



Energies 2020, 13, 3507

The general assumption is that only buildings with an activity coefficient of 2 (active interaction)
can fully and actively contribute to the load shifting potential in grids. An activity coefficient of
1 (passive interaction) could only contribute to peak shaving but cannot be considered to be fully
contributing to the load shifting potential of the district.

• Step 1: At this first step the level of the individual i-number of building includes the data from the
energy performance certificate.

• Step 2: At this second step, the SRI has been calculated for the i-number of buildings with the
interaction between the energy grid and the building considered separately at this point.

• Step 3: In the third step an a-priori assessment of the storage potential is created from the SRI,
which is based on the storage capacity (SC) and energy demand (ED) of the i-number of buildings.
At this step the proportion of the storage potential (SP) of the building that is available for a load
shifting for the grid is calculated. A building that cannot feed any energy back into the grid is
related to a low SP. Thus, a building that cannot shift loads bi-directionally has to consume the
stored energy itself, which is less beneficial to the network.

• Step 4: In this fourth step, the product of the storage potential (SP) and energy demand (ED)
over all buildings within the district delivers an a priori assessment of the load shifting potential
(LPDist) for a whole district.

As outlined above, the SRI and its subsequent calculations are solely derived from planning data
and does not include any monitoring or real time measured data. It gives decision making support in
the planning phase and provides answers to the question of how much energy can be theoretically
shifted from the grids to the building in addition to the district’s own consumption in the time span
τ. The calculation provides an approximate order to magnitude for planning purposes only. Thus,
this assessment is intended to be applied for a preliminary load shifting analysis of whole districts in
regard to their various networks (electrical, thermal, gas).

3.3. Approximation of CO2 Savings Potential

Whilst the load sifting potential (LP) provides a relevant number for the assessment of whole
districts and cities, it will remain closely linked to infrastructure planning decisions. Arguably, load
shifting alone does not necessarily increase efficiency of the system. However, if it is linked with the
potential to store and dispatch renewable energy, emissions related savings can evidently be made.
Especially wind and solar energy is heavily dependent on current and regionally localized weather
occurrences. Thus, at times there can either be too much or not enough renewable energy in the system,
which would result in wind or solar system being switched off to prevent an overload for the former or
fossil-based systems to substitute the remaining demand for the latter. As outlined in the background
section, in this context, storage plays an existential role.

Subsequently the assumption is, that a widespread expansion of energy storage enables a higher
proportion of renewable energy to be efficiently used. In the area of thermal energy sources, it is also
possible to use waste heat (i.e., low temperature heat from buildings or processes) through sufficient
storage distribution in the network. Centered on this logic, the following procedure is recommended
as a basis for presenting a possible CO2, saving potential based on the SRI. From the estimate of the
load shift potential (LP), an estimate for the potential CO2 savings can be derived:

CO2a = (CO2Curr −CO2renew) · LPDist · year
τ

(14)

With the individual coefficients as follows:

CO2Curr Actual CO2 emissions per kWh.
CO2renew CO2 emissions per kWh from renewable energy sources.
CO2a Potential total CO2 savings per year.
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The calculation follows the postulation that currently renewable energy production cannot be
fully exploited due to limited storage capacities. Thus e.g., wind turbines must be switched off in
times of energy overload in the grid. On the other hand, when there is no wind, the energy must
be produced from conventional, mostly fossil-based sources. With a SRI > 0, the district can store
renewable energy in the amount of LPDist if the grid cannot take up any more energy. If subsequently
energy is in demand again, it can be re-loaded back from the districts to the grid. The extent of the
potential total CO2 savings per year can thus be calculated based on the difference between the CO2

amount of the type of energy produced multiplied by the amount of energy that can be additionally
produced due to the storage capacities of the district.

It should be noted that, since the methodology is focused on load shifting, the resulting CO2

savings are equivalent to potential savings only. That means, without a corresponding renewable
energy generation, there are obviously no CO2 savings in this context.

4. Application of the Methodology in Theoretical District Use Case

Following the testing of the previously published methodology on the building scale with the
use of different building types, the extended methodology has subsequently been applied to a whole
district. The selected theoretical use case should include multiple buildings of different size, type and
age. For this purpose, a building block situated in the 12th district of the City of Vienna has been
used as the SRI has also previously been tested on these buildings [55]. The small district includes
nine buildings, differing in type and age, ranging from an erection date of the 1900s to a building
constructed in 2010. One of the buildings is for office use while the others are multi-family residential
buildings. To simplify the assessment the inner courtyard buildings have been omitted (as no specific
use could be determined for these edifices) and the retail areas on the ground floor have been left out.
Figure 5 shows a partial land use plan of the City of Vienna, highlighting the selected district as well as
an aerial view of the building block.

 

 
  (a)                     (b) 

Figure 5. Partial land use map of the City of Vienna with the selected district highlighted in red (a) and
aerial view of the selected district (b) [56,57].

4.1. Description of Theorectical District Use Case

The building data for this district has been derived from a series of publicly available data, such
as the land use plan of the City of Vienna [56] and imagery derived from Google maps [57]. Data on
typical energy usage depending on the type and age of the building as well as the assumptions on
typical heating, cooling and ventilation systems have been based on the Tabula database [58]. It should
be noted that, for planning purposes, actual building data derived from, e.g., the Energy Performance
Certificate (EPC) or monitored data, should be given preference to proxy data derived from generic
databases. However, for the purpose of this study, the accuracy of the energy figures for the base case
are of lesser importance, as the aim is solely to assess, whether the proposed methodology can be
applied for different types of scenarios for whole districts.
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For the assessment of the load shifting potential of the selected district, various scenarios have
been defined to cover a wide range of possibilities. The selected options follow a previously carried
out study on the SRI validation and are expanded in regard to the scenarios as well as the calculation
for the whole district assessment as described in Section 3 above.

• Base Case: For the base case the buildings have been assessed according to the generic data as
outlined above. For this case it is assumed that the buildings cannot store, actively load or unload
energy to and from the grid. The activity coefficient (AC) is subsequently assumed to be either not
available (n/a) in case of e.g., a thermal energy network or (0) where there is no active interaction
with the grid, e.g., relating to power or gas.

• Scenario 1: For the first new scenario, a moderate refurbishment of the building envelope is
assumed with a 50% improvement compared to the base case. In addition, the gas connection is
substituted with a one-directional thermal grid connection and electrical batteries are considered
for residential as well as office buildings.

• Scenario 2: In this scenario, the building shell is improved by 90% compared to the base case,
thus a high-performance building shell has been implemented. Similar to scenario 1, the gas
connection has been severed and the buildings are connected to a low temperature bi-directional
district heating system. RES and batteries are included in all buildings.

• Scenario 3: For this scenario the district is doubled in size (18 buildings compared to 9 buildings
of the above scenarios) and constitutes a mix of the Base Case and Scenario 1. It is assumed that
half of the buildings remain as described in the base case (i.e., un-refurbished) and the other half
is considered with a moderate refurbishment as described in Scenario 1.

• Scenario 4: In this scenario, the district is tripled in size (27 buildings) and constitutes a mix of
the Base Case, Scenario 1 and Scenario 2. It is assumed that one third of the buildings remains
as described in the base case (i.e., un-refurbished), one third is refurbished and follows the
characteristics of Scenario 1 and the remaining third follows Scenario 2.

For Scenarios 3 and 4 a double and triple size of the original Base Scenario has been defined.
This has been done in order to demonstrate the overall weighting of the SRI across the district.
As outlined in Equations (4)–(6) above, a specific weighting factor has been integrated to ensure
that districts with different characteristics can be fairly compared. As the SRIDist is a single number
it needed to be avoided that the SRI represents a simple average across all buildings but rather a
weighted average based on the respective share of energy consumption in relation to the total energy
consumption of the district.

In Table 1, a description of the energy related properties for the base case as well as subsequent
scenarios is outlined.

Table 1. Description of energy related properties for base case and scenarios, extended from [55].

Scenario
No. of

Buildings
Building Envelope

Electrical
Storage/Grid

Thermal Storage/Grid Gas Storage/Grid

Base Case 9 Un-refurbished No active storage; one
directional connection

No active storage; no
thermal grid

No active storage;
one directional

connection

Scenario 1 9 Improved by 50%
Active storage
bi-directional

connection

No active storage;
one-directional connection

(thermal grid)
No connection

Scenario 2 9 Improved by 90%
Active storage
bi-directional

connection

Active storage
bi-directional connection

(thermal grid)
No connection

Scenario 3 18 Half of the district (9 buildings) as per Base Case/other half of the district (9 buildings) as per Scenario 1

Scenario 4 27 One third of the district (9 buildings) as per Base Case/one third of the district (9 buildings) as per
Scenario 1/one third of the district (9 buildings) as per Scenario 2
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4.2. Results of Theoretical District Use Case

The results of the theoretical use case comprising of the base case and four scenarios are displayed
in the following figures. In Figure 6, the SRI is shown per building for each scenario. It can be seen that,
whilst the base case, Scenario 1 and 2, is comprised of nine buildings in the district (N = 9), in Scenario
3, the district is doubled in size with 18 buildings (N = 18), and in Scenario 4, tripled with 27 buildings
(N = 27). The SRIi for the base case is “0” as the activity coefficient is also “0” (i.e., no interaction with
the grid, buildings are simple consumers). The SRI for all other buildings varies dependent on type,
size, interaction potential and storage capacity. In Figure 6, Equation (3) has been applied.

Figure 6. Smart Readiness Indicator for the individual buildings (SRIi) per district for the Base Case
and Scenarios 1–4.

In Figure 7 the SRIDist for the various scenarios is displayed on a district scale. Since the base
case has an activity coefficient of “0” the SRI for the base case for the district is equally “0”. Scenario 1
rates already better, however Scenario 2, with the optimized refurbishment option and active storage
potential for both electrical and thermal provides the best result. The mix of base case and Scenario 1
which is displayed in Scenario 3 is obviously less good than Scenario 1 as the SRI is weighted across
the district. With half the buildings in Scenario 3 being un-refurbished and offering no load shifting
potential, the results are poorer. Scenario 4, which is a mix of the Base Case, Scenario 1 and Scenario 2
rates second best, as the base case takes up only a third of the overall scenario and the SRI is weighted
across the district. The results highlight that the above described weighting factor does ensure an
objective comparability across the various scenarios. In Figure 7, Equation (4) after Equation (5) after
Equation (6) after Equation (3) have been applied.

The load shifting potential for the overall district is displayed in Figure 8. The LPDist represents,
different to the SRIDist, a total figure. The results show, that Scenario 4 can provide with a total number
of 27 buildings based on a mix of the base case, Scenario 1 and 2 the highest amount of load shifting
in kWh. The base case obviously has no load shifting potential, as there is no interaction with the
grid and the SRIDist as shown above is consequently “0”. Scenario 1 and Scenario 3 have exactly the
same load shifting potential, as they have the same amount of buildings that offer the same storage
capacities, as the base case buildings in Scenario 3 do not contribute at all to the load shifting. Scenario
4 offers the best results due to the highest number of buildings in the district (N = 27) and the relatively
high storage capacity due to the mix of Scenario 1 and 2 (the base case buildings in this scenario equally
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do not contribute to the LPDist). In Figure 8, Equation (13) after Equation (12) after Equation (3) have
been applied.

Figure 7. Smart Readiness Indicator District (SRIDist) for the Base Case and Scenarios 1–4.

Figure 8. Load Shifting Potential (LPDist) for the Base Case and Scenarios 1–4.

In Figure 9, the potential CO2 savings for the district are displayed. The results follow in tendency
the results for LPDist as a higher load shifting potential results in increased CO2 savings. Similar to the
above results, the Base Case does not save any emissions due to the lack of load shifting potential.
Scenario 1 and Scenario 3 show the same results (as is also the case with LPDist) as they both feature the
same load shifting potential and subsequently the same potential for emission savings. Scenario 2 and
4 also feature higher equivalent savings due to their higher storage capacity and improved activity
(bi-directional connection).
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Figure 9. CO2 equivalent savings (CO2 Dist) for the Base Case and Scenarios 1–4.

Evidently, these figures vary, depending on the actual emissions of the energy system (CO2Curr,
actual CO2 emissions per kWh) and the emissions from renewables in the energy system (CO2renew,
CO2 emissions per kWh from renewable energy sources) as outlined in Equation (14). Since this
theoretical use case is based in Vienna, the figures for electrical and thermal energy have been taken from
the Austrian standards [59] with a noted power mix of 417 g/kWh CO2 and district heating from highly
efficient CHP (combined heat and power) with 73 g/kWh CO2. Emissions from renewables have been
calculated with 0 g/kWh CO2. Since the emissions from the current power mix are substantially higher
than the emissions from the current thermal sources, the savings on the electrical side subsequently
exceed the savings from the thermal side, even though the thermal load shifting potential as outlined
in Figure 8 is higher in all four scenarios than the electrical load shifting potential. In Figure 9,
Equation (14) after Equation (13) after Equation (12) after Equation (3) have been applied.

5. Discussion

In this study, an expanded methodology aims at providing a coherent quantitative assessment
of whole districts based on their overall energy storage capacity, load shifting potential, their ability
to actively interact with the energy grids and the resulting CO2 emission savings compared to a
non-interactive system. As the previously published methodology has been discussed with selected
stakeholders, an improvement has been undertaken in order to better adjust the SRI to efficiency
standards. In the new version a cut-off for the efficiency of the storage system has been introduced so
that large scale, but potentially inefficient storage systems cannot easily substitute smaller, but efficient
ones. This is of particular importance in order to avoid that outdated and potentially environmentally
harmful technologies are rewarded with a good result. Thus, the efficiency limit, as stated as one of the
research questions, has been addressed.

The subsequent enlargement towards a district assessment demonstrates that the methodology
can be adapted to bigger and spatially logical entities. The application of the methodology in a
theoretical case study shows that the approach is suitable to define relevant indications of the load
shifting potential by means of SRIDist and LPDist as both indicators deliver meaningful results in this
context. A weighting factor that has been introduced for the SRIDist ensures that districts with different
characteristics in terms of size, type and quality can be fairly compared. With this measure, an entity
that has a low SRI can be avoided, but high energy demand cannot at the same time within a district
be easily compensated with a single entity that has a high SRI but low energy demand. Consequently,
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the methodology has shown to be meaningfully extended to groups of buildings, thus answering to
the second research question.

The SRIDist can also function as a benchmark as whole districts can be assessed based on their
possibility for further development without relying on measured or monitored data from the energy
providers. As outlined in Figures 7 and 8, for example Scenario 1 and Scenario 3 can be compared
based on their potential for expansion. Whilst Scenario 3 features twice as many buildings as Scenario
1, the LPDist is the same for both scenarios as the load shifting potential is the same across both districts
as only half of the buildings in Scenario 3 provide storage capacity. However, from the SRIDist it can be
clearly seen, that in Scenario 3 there is a considerable higher potential for further load shifting as the
SRIDist is considerably lower in Scenario 3 than in Scenario 1. This shows that the SRIDist can provide a
meaningful assessment and comparison of districts that usually greatly differ in size, type, as well as
quality and number of buildings.

The approach is however solely focused on the load shifting potential and ability of the district to
actively interact with the grid. This differentiates the methodology from other more interdisciplinary
approaches such as those outlined, for example, by Garcia-Ayllon [60] and Sharifi [61] where many
other factors such as, e.g., resources and governance, have been taken into account. Also, other schemes
such as the BIQ [28] and the HSBS [29] rating, that have been comprehensively compared to the SRI by
Apanaviciene et al. [27], deliver a much larger, complex set of indicators that are rather dependent
on system and device assessment. Our observation offers information targeted on load shifting,
thus providing a very focused assessment. The approach outlined in this paper is also not technology
specific, but is based on certain qualities, that need to be achieved. This is crucial, as it decouples the
methodology from the technology used and makes the approach future proof, as any new technology
or device can be similarly represented within this novel approach. The methodology in this paper
might therefore serve as one of a series of other quantitative indicators that can be integrated into
broader assessments.

In relation to the possible CO2 savings as stated in the last research question, the methodology
also provides a workable approach. When considering the systems of energy generation, energy
transmission and consumers in relation to the same three systems and adding energy storage, a potential
for CO2 savings can be generated. The assumption is that energy which comes from renewable sources
cannot be produced on demand, but when it can be stored, it can be subsequently released on demand.
It follows that there is the possibility that the magnitude of the LP energy from CO2 neutral but not
demand-driven energy sources can be used. This results in a reduction in CO2-related energy and thus
an indirect reduction in CO2 emissions from energy production. This definition provides a quantitative
assessment of the proportional CO2 savings in relation to the load shifting potential.

Whilst the proposed indicators can be applied for different queries, the following key questions
can be answered with the proposed approach: In which area does a high potential for load shifting
measures in buildings exist? Which areas already provide enough smart buildings and renewable
energy capacity in order to improve the network infrastructure? Is there enough load shifting potential
from buildings near, e.g., a wind farm, in order to actively use it as storage? What are the prospective
CO2 savings associated with the potential load shifting capacity of the district? For those and similar
questions, the proposed initial assessment can provide meaningful results.

There are however also certain limitations to this approach. For one, the assessment of the LPDist
is not based on actual load profiles and should therefore not be used as a substitute for an exact
analysis. Whilst the methodology serves very well for an initial and quick assessment of the load
shifting potential within a defined district it is neither intended nor suitable for detailed capacity sizing
of energy infrastructure. Care should also be taken related to the choice and extent of the area (system
boundaries of the district) under consideration. The SRIDist evaluates only the load shifting potential
of buildings and does not take any information regarding the respective electrical, thermal or gas grids
into account. Thus, any bottlenecks in the network infrastructure are not recognized. This means that
just because the buildings are able to move a certain amount of energy it is not necessarily the case
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that the networks are also able to accommodate this. It is subsequently evident that the proposed
indicators are centered around the assessment of buildings (or multiple buildings) rather than the
energy infrastructure.

For further research, a verification of the indicator could be done with a comprehensive dynamic
building simulation for the assessment of load shifting capacities, which is based on monitoring data
from a wide range of different buildings types. Based on this assessment, the discrepancies of the
monitored and subsequently simulated data with the results from the SRI methodology could be
calculated. With this, the functions of the model could be calibrated in order to match the actual
requirements. In addition, monitoring data derived from buildings varying in typology and energy
profiles could be used to assess how well the calculated approximation matches the actual building
data. A validation of that kind is planned for the future, once the SRI has to be implemented for
Building Regulations purposes. Additionally, a similar indicator that assesses and highlights the free
capacities in different network areas or network nodes could be considered. Conversely, one could also
estimate for an area which SRIDist_Max or LPDist_Max the network infrastructure can endure and thus
monitor the development of load shifting potentials and renewable integration in the area in order to
be vigilant of potentially critical conditions related to the energy infrastructure.

6. Conclusions

This paper proposes a novel quantitative approach for the rating of the load shifting potential of
smart districts and discusses qualitative and quantitative assessments related to energy load shifting at
building and district level. The topic emerged from the new regulations in the Energy Performance
of Buildings Directive (EPBD) where a smart readiness indicator (SRI) has been defined in order to
rate buildings according to their ability to operate and communicate efficiently with energy grids.
Current proposal on the rating of the SRI are mainly focused on qualitative approaches based on
the assessments of experts. Also, they mainly focus on buildings without taking larger entities into
account. As previous studies have shown, there is a clear need for a quantitative approach to allow
objectivity and comparability of the results. The methodology proposed in this publication addresses
this research gap. It builds on a previously published quantitative approach for smart buildings and
extends the application to bigger entities. It also includes findings from stakeholder consultation
and provides an improved version, taking efficiency standards related to energy storage systems into
account. The novel SRIDist can be used to assess whole districts based on their overall energy storage
capacity, load shifting potential and their ability to actively interact with the energy grids. In addition,
it provides an approximation for CO2 savings in relation to a non-interactive system. The key aspect of
the methodology is an application that integrates the use of building and energy data, that is relatively
easily available without the need for monitored data that is either difficult to access or not available at
all at an early planning stage. The methodology also does not rely on specific systems, but rather on
qualities of a system, thus making the approach suitable for future technologies. The application in a
theoretical district use case shows a logical distribution of SRI results across the different scenarios
and supports the meaningfulness of an approximation of complex data within a comparable indicator.
With a simple rating, load shifting potentials in districts can be more easily assessed, thus leading
to a potentially higher integration of renewable energy sources with a volatile generation capacity.
The research subsequently contributes with a theoretical framework to the increased exploitation of
load shifting capacities in building and districts.
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