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Abstract: The 21 papers (from 61 submitted) published in the Special Issue “Radar and Sonar Imaging
Processing” highlighted a variety of topics related to remote sensing with radar and sonar sensors.
The sequence of articles included in the SI dealt with a broad profile of aspects of the use of radar and
sonar images in line with the latest scientific trends. The latest developments in science, including
artificial intelligence, were used.

Keywords: radar; sonar; data fusion; sensor design; target tracking; target imaging; image
understanding; target recognition

1. Introduction

Over the last few years, radar and sonar technology has been at the center of several major
developments in remote sensing in both civilian and defense applications. Although radar technology
has existed for more than 100 years, it is still developing and it is now implemented in many maritime,
air, satellite, and land applications. New technologies, such as sparse image reconstruction and
multistatic active and passive SAR and ISAR imaging, are changing the quality of images and areas of
application. The rapid development of automotive radars in 3D dimensions, able to recognize different
objects and assign the risk of collision, is one example of the progress of this technology. In maritime
radars, the application of FMCW technology is becoming more and more popular, aside from classical
pulse radars. Simultaneously, sonar technology has also been used for dozens of decades, at the
beginning only for military solutions but, today, using 3D versions, it is used for many underwater
tasks, such as underwater surface imaging, target detections, and tracking, among others. The impact
of sonar technologies has been growing, particularly at the beginning of the autonomous vehicle era.
Recently, the influence of artificial intelligence on radar and sonar image processing and understanding
has emerged. Radar and sonar systems are mounted onboard smart and flexible platforms and also
on several types of unmanned vehicles. Both of these technologies focus on the remote detection of
targets and both may encounter many common scientific challenges. Unfortunately, specialists from
the radar and sonar fields do not interact much with each other, slowing down progress in both areas.

The Special Issue entitled “Radar and Sonar Imaging and Processing” was focused on the latest
advances and trends in the field of remote sensing for radar and sonar image processing, addressing
original developments, new applications, and practical solutions to open questions. The aim was to
increase the data and knowledge exchange between these two communities and allow experts from
other areas to understand the radar and sonar problems.

In this article we provide a brief overview of the published papers, in particular the use of
advanced modern technologies and data fusion techniques. These two areas seem to be the right
direction for the future development of radar and sonar imaging and processing.

Remote Sens. 2020, 12, 1811; doi:10.3390/rs12111811 1 www.mdpi.com/journal/remotesensing
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2. Overview of Contributions

2.1. Radar Imaging and Processing

The radar research presented in the Special Issue included many application fields from
satellite level observation via airplane levels and maritime navigation and safety for ground and
underground investigation.

The new method of parallax correction for clouds observed by geostationary satellites is presented
by Bielinski [1]. The parallax shift effect of clouds occurs in satellite imaging, especially in the case of the
high angles of satellite observations. The developed methods were compared with a known analytical
method, namely the Vicente et al./Koenig method. It approximates the position of the cloud by means of
an ellipsoid with the half-axis increased by the height of the cloud with an error of up to 50 m. The next
two methods proposed in the article allow for significant error reduction. The first method proposed by
the author, being an extended version of the Vicente et al./Koenig method, allows researchers to reduce
the error to centimeters. The second method, by adjusting the number of iterations, allows researchers
to reduce the error to a value close to zero. The article presents an example procedure of a numerical
solution using the Newton method and also describes a simulation experiment, verifying the proposed
methods. Due to the fact that the resolution of a functioning geostationary earth observation (EO)
satellite currently ranges from 0.5 km to 8 km and the pixel dimensions are much larger than 50 m,
the proposed method will be applied when the resolution of geostationary EO satellites reaches the
assumed 50 m.

New satellite computing capabilities and extended applications for SAR imaging products have
resulted in research into real-time synthetic aperture radar imaging. The orbit determination data
of the SAR platform in space is essential for the SAR imaging procedure. In the case of real-time
SAR imaging, the orbital determination data on board cannot reach a level of accuracy equivalent
to the orbital ephemeris in ground-based SAR processing, which requires long processing times
using the commonly used ground-based SAR imaging procedures. It is important to investigate
the impact of errors in real-time orbiting data on the quality of the SAR imaging. Yan et al. [2],
instead of the commonly used numerical simulation method, proposed an analytical model of square
phase error approximation (QPE) introduced by orbit determination errors. The model can provide
approximation results at two granulations: approximation with the true anomaly of the satellite
as an independent variable and approximation for all positions in the whole orbit of the satellite.
The proposed analytical approximation model reduces the complexity of the simulation, the calculation
range, and the processing time. Moreover, the model reveals the essence of the process in which
errors are transferred to the QPE calculations. A detailed comparison of the proposed method
with the numerical simulation method demonstrates the accuracy and reliability of the analytical
approximation model.

Due to advantages such as its low power consumption and higher concealment, deceptive jamming
against synthetic aperture radar (SAR) has received extensive attention during the last few decades.
However, large-scene deceptive jamming is still a challenge because of the huge computing burden.
Yang et al. [3] propose a new large-scene deceptive jamming algorithm. First, the time-delay and
frequency-shift (TDFS) algorithm is introduced to improve the jamming processing speed. The system
function of the jammer (JSF) for a fake scatter is simplified to the multiplication of the scattering
coefficient, a time-delay term in the range dimension and a frequency-shift term in the azimuth
dimension. Then, in order to solve the problem that the effective region of the TDFS algorithm is
limited, the scene deceptive jamming template is divided into several blocks according to the SAR
parameters and the imaging quality control factor. The JSF of each block is calculated by the TDFS
algorithm and added together to achieve the large-scene jamming. Finally, the correction algorithm in
squint mode is derived. The simplification and parallel-block processing could improve the calculation
efficiency significantly. The simulation results verified the validity of the algorithm.
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Another interesting approach to SAR data processing is presented by Chen et al. [4]. As a result
of the method developed by the authors, image quality and depth of field have been significantly
improved. The improved method enables the efficient processing of high resolution and low frequency
SAR data in a wide range. It is commonly known that synthetic high resolution, low frequency aperture
radar (SAR) has severe phase-to-immutaneous coupling due to its high bandwidth and long integration
time. High resolution SAR processing methods are essential to concentrating the raw data of such
radars. The generalized surgical scaling algorithm (GCSA) is widely accepted as an attractive solution
to focus low frequency, high bandwidth, and wide beam SAR systems. However, as bandwidth
and/or beam width increases, severe phase coupling reduces the performance of the current GCSA
and degrades imaging quality. This degradation is mainly due to two main reasons: the residual
high order phase coupling and the insignificant error introduced by linear fixed phase point zoom
using the stationary phase principle (POSP). The authors first present the principle of determining the
required range frequency sequence. After compensating for the independent feedback phase sequence
above the third order, the GCSA’s analytically improved GCSA statement based on the Lagrange
inversion is derived. The Lagrange inversion allows for the accurate compensation of the coupling
phase dependent on the high order range. The results of the imaging of the SAR data in the P and L
bands indicate the excellent performance of the proposed algorithm compared to the existing GCSA.

The phenomenon of the periodical penetration of synthetic aperture radar (SAR), which is induced
in various ways, creates challenges in concentrating raw SAR data. To deal with this problem, Qian and
Zhu [5] propose a new method. Complex deconvolution is used to reconstruct the azimuthal spectrum
of the complete data from the raw data acquired in the proposed method. In other words, the proposed
method provides a new approach to dealing with periodically extracted raw SAR data using complex
deconvolution. The proposed method provides a robust implementation of deconvolution to process
raw data obtained from azimuth. The algorithm consists mainly of the phase compensation and
recovery of the azimuth spectrum of raw data using complex deconvolution. The obtained data
become less frequent in the Doppler domain after phase compensation. Then, it is possible to recover
the azimuth spectrum of complete raw data by complex deconvolution in the Doppler domain. Then,
the traditional SAR imaging algorithm is able to focus on the reconstructed raw data in this work.
The effectiveness of the proposed method has been confirmed by simulating a point and surface target.
Furthermore, actual SAR data was used to better demonstrate the validity of the proposed method.

Appreciating the great importance of synthetic aperture radar (SAR) image processing in the
range of moving targets to be defocused due to unknown motion parameters, an effective algorithm
to change the focus of SAR for moving targets is presented in [6]. For fast-moving targets, range
cell migration (RCM), Doppler frequency migration, and Doppler ambiguity are complex problems.
As a result, focusing on fast-moving targets is difficult. The algorithm proposed by Wan et al. [6]
consists mainly of three stages. First, the RCM is corrected by reversing the sequence, multiplying
the matrix complex and improving the second order RCM correction function. Secondly, a 1D scale
Fourier transform is introduced to estimate the remaining chirp speed. Thirdly, a matched filter based
on the estimated chirp speed is proposed to focus the maneuvering target in the azimuth time range.
The method described in the paper is computationally effective as it can be implemented by a fast
Fourier transform (FFT), reverse FFT, and uneven FFT. A new deramp function is proposed to further
solve the serious Doppler ambiguity problem. A procedure for incorrect peak recognition based on
cross-sectional analysis is proposed. Simulated and actual data processing results demonstrate the
validity of the proposed targeting algorithm and false peak recognition procedure.

An interesting approach to imaging using interferometer radars with inverted synthetic aperture
(InISAR) was presented by Zhang et al. [7]. A technique involving the strong scattering of fusion
centers (SSCF) was proposed in order to estimate the parameters of the translational movement of the
maneuvering target. Compared to previous InISAR image recording methods, the SSCF technique is
beneficial due to its high computational efficiency, excellent anti-nose performance, high recording
precision, and simple system structure. Thanks to InNISAR’s one-dimensional, three-output terahertz
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system, the parameters of translational motion in both the azimuth and height directions are precisely
estimated. First of all, motion measurement curves are taken from the spatial spectra of independent
strong dispersion centers, which allows researchers to avoid the adverse effects of noise and the “angular
scintillation” phenomenon. Next, translational motion parameters are obtained by matching motion
measurement curves to phase unwinding and intensity-weighted fusion processing. Finally, ISAR
images are accurately captured by compensating for the estimated translational motion parameters,
and high quality InISAR imaging results are obtained. The validity of the proposed method was
proven by both simulation and experimental results.

The use of radar techniques to classify aircraft objects was undertaken by Wang et al. [8].
With conventional narrow-band radars, detectable target information is limited, and the radar has
difficulty in accurately identifying the type of target. In particular, the probability of classification
can be further reduced if some echo data are omitted. By extracting target characteristics in the time
and frequency domains from the scarce echo data of multi-wave gateways, a classification algorithm
in the conventional narrowband radar is presented to identify three different types of aircraft target,
i.e., helicopter, propeller, and jet. The classical algorithm for the reconstruction of a weak echo of
an object is used to reconstruct the frequency spectrum of single-wave gateways with weak echo data.
The micro-Doppler effect caused by rotating parts of different targets is analyzed, and then features
based on the reconstructed echo data are extracted, such as the amplitude deviation factor, wave entropy
in the time domain, and wave entropy in the frequency domain, in order to identify targets. Finally,
the target characteristics that were extracted from the multi-wave gateways of the reconstructed echo
data are weighted and combined to improve classification accuracy. Finally, the vectors of the combined
elements are fed into the support vector machine model (SVM) for classification. The presented
algorithm can effectively process scarce echo data and achieve a higher classification probability by
combining the characteristics of weighted multi-wave gateway echo data. The results of simulation
tests confirming the correctness of the algorithm are presented.

The problem of protection against the common occurrence of small unmanned aerial vehicles
(UAV) in recent years has been addressed by Nowak et al. [9]. UAV, popularly known as drones,
are used to carry out many tasks, but they are mainly used for observation by both private individuals
and professionals. Intrusions into the airspace of airports or other dangerous events involving drones
have been observed. More and more attention is being paid to finding solutions to prevent such
incidents. The cost analysis excludes in many cases the idea of building stationary UAV detection
systems. It seems to be advisable to develop mobile anti-drone systems using continuous wave
frequency modulated radars (FMCW). The common operation of the radar chain requires that the
measurements be reduced to a common reference surface and that the direction of the radar is
uniform in relation to the north. Adequate measurement of the constant corrections of the measured
angles is a necessity in this case. The authors propose a method involving the quick, simultaneous
calibration of a set of mobile FMCW operating in a network. The method has been tested by means of
a numerical experiment consisting of 95,000 tests. Satisfactory results were obtained to confirm the
assumptions made by improving the north orientation of the radar over the whole range of initial
errors. The conducted experiments allow researchers to put forward a thesis about the advisability of
practical use of the proposed method.

A major part of the Special Issue covered topics related to the maritime use of radar. In the
article by Hessner et al. [10], the authors used X-band marine radar (MR) to obtain data on sea surface
currents. The quality of the measurements was verified by the control system working in near real time.
The obtained results were verified by appropriate measurements using a Doppler acoustic current
measurement device (ADCP). Numerous experiments were carried out under various wave, current,
and weather conditions. The obtained results confirmed the accuracy and reliability of marine surface
currents MR measurements.

Another example of the use of marine navigation radar, this time in the task of collision
prevention, can be found in the article by Lisowski and Mohamed-Seghir [11]. The authors present
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a method of optimizing collision prevention maneuvering in the navigator’s decision support
system. The decision-making process is presented as a multi-stage optimization in a fuzzy and
game environment. In the decision-making process, objective and subjective navigation parameters
are analyzed. An interesting experiment was conducted on the basis of the actual navigation situation
of passing three encountered ships in the Skagerrak Strait, with good and limited visibility at sea.
According to the authors, the presented solution can be practically implemented in the decision support
system of the ship’s navigator.

The next example utilizing automotive radar sensors in the 3D variant in the task of collision
prevention can be found in the article by Stateczny et al. [12]. Measuring the missions of unmanned
vehicles, especially in autonomous missions mode, requires the detection and identification of objects
both on the water and in the shore zone. The authors present the empirical results of their research on
3D automotive radar’s detection capabilities in water environments, which can be used in the future
development of tracking and collision prevention systems for autonomous surface vehicles (ASV).
The conducted experiments concerned the field of radar vision and determination of the detection
range in terms of the detection of various objects, both floating and fixed on the shore. The obtained
results confirm the usefulness of automotive radars for navigation tasks on bodies of water for small
ASVs performing measurement missions, especially performing tasks in an autonomous mode.

Another application of the 3D sensor, this time for future oriented road signs that can display
the speed limit autonomously in cases where the road situation requires it, is presented by
Czyzewski et al. [13]. Future oriented road signs contain a number of types of sensors, among which the
Doppler sensor and acoustic probe, improved by the authors, are presented in the article. The authors
present the method of vehicle detection and tracking, as well as the determination of vehicle speed,
on the basis of Doppler sensor signals working on continuous waves. The algorithm for counting
vehicles and determining their direction of movement by means of an acoustic vector sensor was also
tested experimentally with the use of an improved Doppler radar and a developed sound intensity
probe. The authors also present the assumptions of the method using the spatial distribution of sound
intensity as determined by means of an integrated (3D) sound intensity sensor.

After space, aeronautical, marine, and land-based applications, it is now the turn of the subsurface
application. Kang et al. [14] proposed a three-dimensional underground cavity detection network
(UcNet) to prevent the collapse of furrows in complex urban roads based on radar images (GPR).
UcNet is being developed based on a convulsive neural network (CNN) integrated with the phase
analysis of super-resolution GPR images. CNNs are popularly used for the automatic classification of
GPR data, as the interpretation of GPR mass data from urban roads by experts is usually cumbersome
and time consuming. However, conventional CNNs often provide erroneous classification results
due to the similar characteristics of earth granules automatically taken from any underground objects
such as cavities, wells, gravels, subsoil backgrounds, etc. In particular, properties unrelated to cavities
are often wrongly classified as actual cavities, which reduces the performance and reliability of the
neural network. UcNet improves the detection of underground cavities by generating SR GPR images
of cavities taken from the neural network and analyzing their phase information. The proposed
UcNet is experimentally verified using GPR data collected on site from complex urban roads in
Seoul, South Korea. The results of the validation test reveal that the incorrect classification of
underground cavities is significantly reduced compared to conventional CNN cavities.

2.2. Sonar Imaging and Processing

Sonar imaging and processing covers a wide set of methods and techniques aiming at better
detection and interpretation of the data and information acquired with underwater acoustic systems.
A relatively wide variety of topics is also presented in the papers published in this Special Issue,
relating not only to the processing of raw measurements but also to sonar image analysis, up to
fusion with multi-beam echosounders. The issues undertaken relate to side-scan sonars, multi-beam
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sounders, and synthetic aperture sonar, aiming at better formulation and understanding of the acquired
information. Most of the proposed solutions were verified with real data and some in simulations.

In Zhang et al. [15], the authors described multi-receiver synthetic aperture sonar (SAS) and
propose a new method for providing high resolution images in systems. The idea is to overcome the
problem of the approximation of the point target reference spectrum (PTRS), azimuth modulation,
and coupling term in signal processing, as it results in the degradation of the accuracy of the obtained
images. In the proposed method, the PTRS, azimuth modulation, and coupling term are deduced
based on the accurate time delay. They are further exploited to develop the imaging processor,
which compensates the coupling phase based on the sub-block processing method. It is also important
that the proposed imaging scheme can be easily extended to any other PTRS, as it does not require
the series expansion of the PTRS with respect to the instantaneous frequency. Thus, a novel imaging
algorithm for the multi-receiver SAS, based on the accurate time delay and numerical evaluation
method, is composed. The proposed method was verified firstly in simulation and then with real
data. The results showed that it achieves high performance results compared with traditional methods.
Based on simulations, it has been shown that the effectiveness of the traditional method in focusing is
significantly reduced, as indicated by the residual error. The new method overcomes this problem,
resulting in more accurate images from the multi-receiver SAS.

Other papers are focused more on image processing than imaging itself. Ye et al. [16] proposed
a modified Retinex algorithm (known for its image processing) for processing sonograms in order
to perform gray scale correction. The original side-scan sonar image has uneven gray distribution,
which affects the interpretation of the side-scan sonar image and the subsequent image processing.
Various algorithms were proposed to overcome this problem, including Retinex. The authors propose
the modification of it and the goal is to achieve comparable accuracy with less computational and time
complexity. The idea is to apply sonar image characteristics in the algorithm, and thus an enhanced
Retinex method is obtained. Compared with the commonly used gray scale correction methods
for side-scan sonar images, this method avoids limitations such as the need to know the side-scan
sonar parameters, the need to recalculate or reset the parameters for different side-scan sonar image
processing, and the poor image enhancement effect. The method was verified with a large set of
real data. The research showed that, compared with the latest image enhancement algorithms based
on Retinex, the methods have similar image enhancement indexes, and our method is the fastest.
When it is necessary to adjust the brightness of the corrected image, only the magnitude of constant
coefficient A in the algorithm needs to be adjusted. Usage of the method provides a good basis for
further image processing.

Interesting research on the processing of side-scan sonar images aiming at detection of targets
is presented by Wang et al. [17]. Taking into account the fact that the denoising and detecting of
underwater sonar images is crucial for the proper interpretation of the image, the authors proposed
a new adaptive approach for this. Firstly, an adaptive non-local spatial information denoising method
based on the golden ratio is proposed, and then, a new adaptive cultural algorithm (NACA) is proposed
to accurately and quickly complete the underwater sonar image detection in this paper. For denoising,
the method makes use of earlier developments found in the literature; however, the thresholds for
an adaptive non-local spatial information denoising method are calculated based on the golden ratio.
For detecting NACA, the study makes use of an adaptive initialization algorithm based on the data field
(AIA-DF) and then modification of the quantum-inspired shuffled frog leaping algorithm (QSFLA) is
proposed—a new update strategy is adopted to update cultural individuals. The experimental results,
as presented in the paper, demonstrate that the proposed denoising method can effectively remove
noise and reduce the difficulty of the following underwater sonar image recognition. The method is
also faster and has more advantages in its search ability. Thus, it can be considered an effective and
important method for underwater sonar image detection, resulting in feature extraction for effective
seabed topography.
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Another important issue in side-scan sonar image processing is bottom tracking, which is examined
by Yan et al. [18]. The research aimed at proposing a new method for real-time bottom tracking based on
artificial intelligence (Convolutional Neural Network—CNN) for the processing of an image. Bottom
tracking can be effectively used for accurately obtaining the sonar height from the seabed by finding
the first echo that reaches the seabed. This knowledge about sonar height is crucial for the proper
interpretation of sonar images. The proposed approach consists of three steps for obtaining effective
bottom tracking. First, according to the characteristics of the side-scan backscatter strength sequences,
positive and negative samples are extracted, representing, respectively, the bottom sequences and
water column and seabed sequences to establish the sample sets. Secondly, a one-dimensional CNN is
designed and trained by using the sample set to recognize the bottom sequences. Thirdly, a complete
processing procedure of the real-time bottom tracking method is established by traversing each
side-scan ping datum and recognizing the bottom sequences. This approach introduces the use of
a deep learning algorithm for solving the problem, while most of the methods which have been used
up until now have been based on fixed thresholds and deterministic numerical filtering. The method is
verified with real measured data. The experimental results described in the paper showed that the
proposed method is highly robust to the effects of noise, rich seabed texture, and artificial targets and
proved its accuracy and real-time performance. The average bottom tracking accuracy reached for
the experimental data was 94.7% with a 4.5% miss-ping rate and 99.2% excluding the missing data,
showing that the method provides an effective algorithm for bottom tracking.

Sonar data processing may also be an important issue for navigation. Stateczny et al. [19]
indicate that underwater sonar data can be processed with big data methods. In this particular
research, 3D sonar data were processed and the purpose was the near real-time processing for
so-called comparative navigation. A new approach of acquiring and simultaneously processing a set
of bathymetric observations is presented. It includes fragmentary data acquisition and fast reduction
(the optimum dataset method—OptD) within the acquired measuring strips in almost real time and
the generation of DTMs. The OptD method was modified for this purpose by introducing a loop
(FOR instruction) for fragmentary data processing. All processes in this approach were carried out at
the first stage of data acquisition, but during the measurement the entire data set was not obtained,
but rather a fragment of the data set was obtained. The proposed approach was compared with the
method that uses full sets of bathymetric data. The results showed that it quickly obtained, reduced,
and generated DTMs in almost real time for comparative navigation. The most important step during
the processing was reduction, because a reduced number of data allowed faster 3D bottom model
generation, which can be compared with other types of data within terrain reference navigation. In this
paper, the research was based on the 3D Sidescan 3DSS-DX-450 sonar system, which provides bottom
and water column data.

Xu at al. [20] work not with bottom data but with water column data, showing a very interesting
case of the use of multi-beam measurements. The goal of this research was to propose an effective
method for detecting gas leaks from bottom pipelines based on an analysis of water column images
(WCI). WClIs use the differences in acoustic characteristics, such as backscattering strength or target
strength, to detect solid, liquid, or gas targets by distinguishing them from the background images.
Gas leakages can be detected with the use of so-called motion-estimation techniques. A gas bubble is
considered to move in the consecutive scans and based on this movement can be detected. The authors
proposed to use the optical flow method for this purpose, as it had already been validated using
suspended objects but for different sensors. The entire image processing chain is analyzed including
side lobe suppression, coordinates transformation, and other factors, resulting in the modified optical
flow algorithm adjusted for multi-beam WCI analysis. The method is based on the combination of
motion, and the intensity information of WCI pixels was studied in this paper. The method has been
verified in two experiments with real sensors in real environments (pool and lake) with simulated
gas leakages. It can be seen that the velocities of the gas bubbles obtained based on two variants of
the method had relatively good consistency. The great potential of the method was proved. Further
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research is planned in which bottom tracking technology will be introduced and the influence of sound
velocity changes for the thresholds will be analyzed.

Underwater surveys nowadays are more and more often dealing with more than one data source.
Joint analysis of the various sources can in many cases provide important added value in situational
awareness. An example of this can be found in [21], where Shang et al. propose a new method for
acquiring a high resolution seabed topography and surface details that are difficult to obtain using
MBES or SSS alone. It makes use of the observation that MBES data are well positioned, while SSS
data (especially towed) provides high resolution images but with inaccurate positions. The authors
proposed a method to combine both sources of data. Through taking the image geographic coordinates
as the constraint when using the Speeded-Up Robust Features (SURF) algorithm for initial image
matching, the authors have obtained more correct initial matched points compared to those obtained
without constraint. Then, the finer matching step is conducted by adopting a template matching
strategy which uses the dense local self-similarity (DLSS) descriptor to reflect the shape properties
of the area’s centered feature points. The method was empirically verified with real data, showing
that the proposed method can overcome the limitations of adopting a single MBES or SSS for seabed
mapping. High resolution and high accuracy seabed topography and surface details can be represented
together, which is meaningful for understanding and interpreting seabed topography. Meanwhile, this
paper discusses the accuracy of the reckoned SSS positions and uses it as a reference threshold in the
image matching process. In addition, this paper discusses the impact of sonar frequency on the sonar
backscatter image and provides some useful suggestions when dealing with multi-frequency sonar
image matching.

3. Conclusions

The Special Issue entitled “Radar and Sonar Imaging Processing” comprised 21 articles on many
topics related to remote sensing with radar and sonar sensors. In this paper, we have presented short
introductions of the published articles.

It can be said that both radar and sonar imaging and processing still remains a “hot topic” and a lot
of work in this is being done worldwide. New techniques and methods for extracting information from
radar and sonar sensors and data have been proposed and verified. Some of these will provoke further
research; however, some are already mature and can be considered for industrial implementation
and development.
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Abstract: The effect of cloud parallax shift occurs in satellite imaging, particularly for high angles of
satellite observations. This study demonstrates new methods of parallax effect correction for clouds
observed by geostationary satellites. The analytical method that could be found in literature, namely
the Vicente et al./Koenig method, is presented at the beginning. It approximates a cloud position
using an ellipsoid with semi-axes increased by the cloud height. The error values of this method reach
up to 50 meters. The second method, which is proposed by the author, is an augmented version of
the Vicente et al./Koenig approach. With this augmentation, the error can be reduced to centimeters.
The third method, also proposed by the author, incorporates geodetic coordinates. It is described as a
set of equations that are solved with the numerical method, and its error can be driven to near zero
by adjusting the count of iterations. A sample numerical solution procedure with application of the
Newton method is presented. Also, a simulation experiment that evaluates the proposed methods
is described in the paper. The results of an experiment are described and contrasted with current
technology. Currently, operating geostationary Earth Observation (EO) satellite resolutions vary from
0.5 km up to 8 km. The pixel sizes of these satellites are much greater than for maximal error of
the least precise method presented in this paper. Therefore, the chosen method will be important
when the resolution of geostationary EO satellites reaches 50 m. To validate the parallax correction,
procedure data from on-ground radars and the Meteosat Second Generation (MSG) satellite, which
describes stormy events, was compared before and after correction. Comparison was performed by
correlating the logarithm of the cloud optical thickness (COT) with radar reflectance in dBZ (radar
reflectance — Z in logarithmic form).

Keywords: parallax; cloud; earth observation; geostationary satellite; meteorological radar;
MSG; SEVIRI

1. Introduction

The precision of remote space observations is important when investigating and monitoring various
components of global ecological systems, such as marine, forestry, and climate environments [1-4].
Satellite data integration with external marine and other datasets is crucial in various applications
of remote sensing techniques [5,6]. For climate and meteorological investigations, observations of
clouds and precipitation on a global scale are usually performed using ground-based radar data
and observations from geostationary satellites, due to their high temporal and moderate spatial
resolution [7-9]. However, during data comparison and integration from these sources, the problem
of parallax shift occurs [7,10], which is particularly observable for mid and high latitudes, and also
for longitudes far from the sub-satellite point. Parallax shift is also important for cloud shadow
determination, which is a significant issue for solar farms [11] and for flood detection [12]. Parallax
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phenomena also have a significant impact on the comparison of data from low-orbit satellites from
different sensors [13-16].

In terms of mathematical problem formulation, the parallax shift effect for the geostationary
satellites is actually a special case amongst low-orbit satellites, and it is easier to investigate due to
higher temporal resolution data acquisition and the fixed satellite position.

There have been several attempts to solve parallax shift for geostationary satellites. One of
them was proposed by Roebeling et al. [7,17,18], and was based on liquid water path (LWP) value
pattern matching. This approach was suitable for stormy events and other inhomogeneous cloud
formations, however it usually failed to perform correction in the case of homogeneous spatial LWP
distribution. Another attempt proposed by Greuell et al. and Roebeling [19,20] used a simplified
geometric model, which assumes Earth to be locally flat, as well as a sort of a priori knowledge about
cloud height above the Earth’s surface. There were also attempts by Li, Sun, and Yu [12] to solve this
problem using a spherical model. Finally, there is the Vicente et al./Koenig method [21,22] based on
the geometric properties of parallax shift phenomena, incorporating an ellipsoid model of Earth. The
Vicente et al./Koenig method will be presented further in this paper.

There are two methods proposed by the author in this paper, which are based on the same
assumptions as the Vicente et al./Koenig method. The first is an augmented version of the mentioned
method. This augmentation reduces the correction error to centimeters. The second method proposed
by the author is an original work which is based as before on a priori knowledge of cloud height,
a geodetic equation of an ellipsoid, and numerical methods for solving the equation set. This method
allows the correction error to be reduced to almost zero (assuming Earth to have an ellipsoidal shape).

2. Nature of Parallax Shift Problem and Vicente et al./Koenig Method

2.1. Problem Description

A parallax shift error in satellite observations occurs when the apparent image of the object is
placed in the wrong location on the ellipsoid, considering the ellipsoid’s normal line passing through
the observed point. This geometric phenomena is particularly observable in geostationary and polar
satellite observations due to the high angles of observations, particularly for edge areas of image scenes.
In Figure 1, the problem is presented considering the case of a geostationary satellite. As a result, this
phenomena causes pixel drift from the original position towards the edge of the observation disk.
Consequently, the higher the cloud top layer is, the bigger the shift that occurs.

Figure 1. Parallax shift problem. The violet surface represents an image obtained from a geostationary
satellite. The cloud top (T) is observed by the satellite as T’ (on the violet surface). The result of the
reprojection of point T to ellipsoidal coordinates is I, which is not true the location of the cloud. The
true location of the cloud is denoted as B, and from the perspective of the satellite sensor is observed as
B’ on the violet surface. The square (marked as 1) shows how parallax shift affects the satellite image,
where T’ is an image of the cloud top and B’ is where the cloud top should be placed according to its
geodetic coordinates. The scale of the cloud height is not preserved.
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The position of the cloud top (T) in Cartesian coordinates can be formulated as follows [23]:

x= (N((pg) + h) cos g cos(Ag — Ag)
y= (N(qog) +h) cos g sin(Ag — Ag) 1)
2= (N{pg)(1 - ) + ) sin g

a 2 _ a2

where N(¢p,) = ——=%—— is the prime vertical radius of the curvature, ¢* = is the square of
‘ \J1-¢2sin? gy a

eccentricity, a is Earth’s semi-major axis, b is Earth’s semi-minor axis, I is the cloud top height, pg, A¢ is
the geodetic latitude and longitude, and Ay is the longitude above which the geostationary satellite is
floating. In this case, Equation (1) models the cloud position on a tangent line at coordinates ¢g, A¢
(see Figure 2). This is a more precise model than the flat-earth model or the spherical model. Note that:
all longitudes (A¢, A and Ap) are equal and the same. Subscripts are given to formally distinguish
these values between corresponding latitudes that have different definitions (see Figure 2).
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Figure 2. Three types of latitude: where (g is the geodetic latitude, ¢ is the geocentric latitude, ¢ is
the parametric latitude, P is the point of interest on the ellipsoid, and P* is the image of the point of
interest on a sphere. Based on figures from [23,24].

Pixel displacement in satellite view coordinates is defined as:

Paisp(h) = \/Cf,(fps(h) —ps(0))* + E(As(h) = 15(0))° @)
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where cy and ¢, are constants that allow for sensor inclination angles to be converted to pixels or
distance units in the satellite view space. Also, ¢s(h) and As(h) are defined as:

1 z(h)

@s(h) = tan™ €)
(x(h) = 1)* + y(h)*
B )
As(h) = —tan~! W “4)

where x(h), y(h), and z(h) are cloud top coordinates from Equation (1) as functions of h; I = a + hs—
distance from center of Earth to satellite; a is the Earth’s semi-major axis; /s is the distance from the
surface of Earth to the satellite. In order to illustrate pg;, (1), the following analysis presented in
Figure 3 was performed. Namely, depending on the geographical localization of the affected pixel
and cloud top height, the absolute shift error in observations is expressed in Spinning Enhanced
Visible Infra-Red Imager (SEVIRI) pixel units (In this case cy = ¢y = 31«111_15/;73:)‘ It is worth noting that in
many cases, especially for observations of clouds over 5000 m, this can cause pixel shift in the SEVIRI
instruments used for the purpose of this study.

Absolute error [px]
= N w
= (9] N (9] w (9]

o
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Figure 3. Error in pixels caused by cloud height parallax effect for 5 chosen cites, assuming the
observation is acquired by SEVIRI instrument at longitude of 0°. Spatial resolution was assumed as
3 km/pixel.

Asmentioned earlier, this effect hinders the comparison process between satellite and ground-based
radar data [7]. An example is depicted in Figure 4.
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® Radar data

® Satellite data

Figure 4. Comparison of detected precipitation mask based on ground-based radar data (blue) and
data from Meteosat Second Generation (red). A parallax shift is particularly visible for small storm
clouds in the bottom-right corner. The height of the cloud tops reaches 12 km. The stormy event is
dated July 24, 2015, 13:00 UTC. EuroGeographics was used for the administrative boundaries.

2.2. Vicente et al /Koenig Method

The parallax shift problem is solved using a geometrical model, assuming that the surface of Earth
is an ellipsoid, and with a priori knowledge of cloud top height. One of the approaches considered in
this work is the method proposed by Vicente et al. [21] and implemented by Marianne Koenig [22].
This approach, similar to the rest of the methods presented in this paper, assumes a priori knowledge
of the cloud top height, which can be calculated using the observed brightness temperature [7,25].
In this method, the Cartesian coordinates of the cloud image are described as:

X = Rype(@c) cos @ cos(Ac — Ag)
Y = Ripe(pc) cos e sin(Ac = Ag) ©)
z= Rloc ((PC) sin Pc

where a is Earth’s semi-major axis; b is Earth’s semi-minor axis; & is the cloud top height; ¢. and A. are
the geocentric latitude and longitude (see Figure 2), respectively; Ay is the latitude of the geostationary
satellite position; and Rj,. () is the local radius of ellipsoid for the geocentric latitude model:

a

Rioe ((Pc) = (6)
\/cosz Qc+ Rfmo sin? ¢,
where: .
Rmtio = E (7)
Satellite position (S) is defined as:
Xs = a+ h
ys =0 (8)

zs =0

where a is Earth’s semi-major axis and /s is the distance from the surface of Earth to the satellite.
The correction procedure is as follows:

1.  Designate satellite position S in the Cartesian coordinates system;
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2. Designate the position of cloud top image I in the Cartesian coordinates system using Equation (5);

5

3. Designate vector |IS|;

4. Designate coefficient ¢, which allows Cartesian coordinates of the cloud top to be calculated using
the following equations (see Figure 5):

|OT| = |OI] + c|IS| ©)

where |OT] is described by the ellipsoid parametric equation:

X = (a4 ) cos @y cos(Ap — Ag)
Yo = (a + h) cos @ sin(Ap — Ag) (10)
Z\(;Tl = (b+h)sing,

where ¢, and A, are the parametric latitude and longitude (see Figure 2). Therefore, Equation (9)
can be presented as a set of equations:

(a+h) cos @y cos(Ap — Ag) = o1 + “is
(a+ h) cos gy sin(Ap — Ag) = Yot Vi
CZ —

18]

an

(b+h)sing, = Z\SII +

Squaring each equation and adding them according to their sides leads to a square equation,
which can be solved with respect to c:

2 2 2
(o) +Wteye)  (ateg)
- L _1-0 (12)
(a+h) (b+h)

5. Apply c to calculate the Cartesian coordinates of T - x‘aﬂ, Y

6.  Calculate the geocentric ellipsoidal coordinates of T:

- ,and z - .
|oT| |oT|

Z -
— tan-1 01)
@c = tan e
o Y
011 [0T] (13)
Ae = tan™! —y‘oﬂ +A
c = X 0
o1]

7. If required for further computation, a geodetic latitude can be calculated:

Z —
a2 1ot
g = tan b—zﬁ (14)
X<, +y
|07 |OT]

Note that Equation (10) does not describe the cloud top position as it was defined in Equation (1)
in Section 2.1. The coordinates of the point are shifted to height & above the ellipsoid along the normal
vector. Instead, it describes the point on the ellipsoid with the semi-axes increased by /, therefore this
method is burdened with error because of the inadequacy of the model.
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Figure 5. Vector notation in the Vicente et al./Koenig method.
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3. Parallax Error Correction Methods with Lower Error

3.1. Vicente et al /Koenig Augmentation

The Vicente et al./Koenig method can be augmented in the final steps, where the latitude of the
cloud bottom position is calculated. When using the Vicente et al./Koenig method, it is assumed that
the cloud top is located on the ellipsoid with semi-axes increased by /, and therefore the geodetic
latitude can be calculated taking into account the mentioned assumption:

+h)? Z|5T|

(b+h)* ey
Yo Yion

Py = tan™! (15)

If further computation requires the geocentric latitude, this can be calculated using the
following equation:
b?
— tan~!
@c = tan 3 tan g (16)
This modification allows the correction error to be reduced to centimeters. Details will be presented
in the experimental section.

3.2. Ellipsoid Model with Geodetic Coordinates: Numeric Method

This method incorporates the cloud top position defined in Section 2.1 in Equation (1). With the
described cloud top position, the geostationary satellite observation line should be defined as:

X = —cos Qs cos As + 1
Y = —4COs s sin Ag 17)
zZ = qsings
where [ = a + & is the distance from Earth'’s center to the satellite; 2 is Earth’s semi-major axis; /s is
the distance from the surface of Earth to the satellite; s and As are satellite inclination angles; g is
the distance from the satellite along the observation line. To solve this problem, an intersection point

between the surface above the ellipsoid and the observation line needs to be calculated. Equations (1)
and (17) should be merged, obtaining the following set of equations:

(N(pg) +h) cos g cos(Ag = 10) = g cos pscos As + 1
N(@g) +h)cos pgsin(Ay —Ag) = —4cos @s sin Ag 18)
( ( g) ) g g q
(N((Pg)(l - 62) + h) sin g = gsin @
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The root of the above system of equations (pg and Ag) is the geodetic coordinates of point B.
However, due to the entanglement of the ¢, variable in Equation (18), the root of the equations
was designated using the numerical approach. The above method was implemented in C++ and
Matlab. The Matlab implementation uses the fsolve function [26], which is part of the optimization
toolbox. A detailed configuration of the fsolve function will be presented in the next section. The C++
implementation incorporates the Newton method, which is described below.

To solve the problem using the Newton method, the target function should be defined:

f(‘Pg/ Ag ’1) = [fl (‘Pg/ Ags Q)r fZ((Pgr Ag, q)/ fS((Pg/ Ag, 7)] (19)
where:
fi ((pg, Ag, q)z (N((pg) + h) cos @g cos()\g - )\o) +qcospscosAs —1
fz((pg, Ag, q): (N((pg) + h) oS g sin(/\g - /\0) + g cos pssin A (20)
fs((pg, Ag, q)z (N((pg)(l — ez) + h) sin gg — qsin s
In Equation (19), ‘ f((pg, Ag, q)“ can be interpreted as the distance between the current solution and the

optimal solution, which in the optimal case should be equal to zero. For such a defined cost function,
calculation of the next iteration of the solution for the Newton method is defined as:

P = P = (VAp,)) Aps) (21)

where:
p = (g Ag ] 22)
and:
Vfl Pn
i) - | i @
Vf?)(pn)
and: V._[ D . ] o0
| dpg  dAg  Iq

The stopping condition is defined as:

tr)

However, the convergence of the above-presented approach is difficult to obtain for areas located
near the edges of the observation disk. Therefore, an alternative target function is defined as the
element-wise square of Equation (19):

<e (25)

(A
8(pu) = Efz(;vn))2 (26)

with the gradient defined as:
2fl(pn)vfl( n)
Ve(p,) = | 26(p.)VA(p,) 27)
2f3(pu)Vf: 3( rt)

=|te.)

and the stop condition:

2
<& (28)

Hg(m)
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Another issue that occurs in the numerical calculation problem is the big difference in scale
between Qg Ag, which are expressed in radians, and g, which is expressed in meters. To handle this
problem, all distances (a,b, 1,1, q) should be divided by a. This operation will bring g to a similar scale
as g, Ag.

An example result of parallax correction using the numerical method via the Newton algorithm is
presented in Figure 6. Note that the radar data is better aligned with the satellite data than in Figure 4.

00 200 km

® Radar data

® Satellite data

Figure 6. Comparison of detected precipitation mask based on ground-based radar data (blue) and
data from Meteosat Second Generation with applied parallax correction using a numerical algorithm
(green). Images of small storm clouds from satellite and meteorological radars in the bottom-right
corner seem to overlap. The height of the cloud tops reaches 12 km. The stormy event is dated July 25,
2015, 13:00 UTC. EuroGeographics was used for the administrative boundaries.

4. Parallax Effect Correction Error Simulation

In order to compare the parallax effect correction obtained by the analyzed methods, a simulation
experiment was performed. The main goal of the experiment was to generate several cloud top
positions that simulate geostationary satellite observations, which result in ¢s and A for simulated
cloud top heights. With the ¢ and A; coordinates and a priori knowledge of the cloud height, correction
methods were performed and their results were compared with the original (simulated) cloud position.
The detailed procedure of the experiment is as follows:

1. Prepare a grid of geodetic coordinates: ¢y € (—=90°,90°), A € (-90°,90°), with 1° steps for
each dimension;

2. Transform the grid coordinates to the geostationary view coordinates system, ¢s, As (from now
on called the base ¢s, A5) [27], and back to geodetic coordinates to specify which grid elements are
out of scope; for out-of-scope elements, this operation will return Not a Number (NaN - floating
point special value).

3. Foreachh € {2km, 4 km, 8 km, 12 km, 16 km}, the following steps are performed:

a. For each ¢¢ and A¢ and with £, calculate the x, y, z coordinates using Equation (1);
Using x, y, z, calculate the geostationary view coordinates @5 and As;
With @s, As, and h, run the correction algorithms: Vicente et al./Koenig, Vicente et al./Koenig
augmented, and the numerical geodetic coordinates method;

d.  Each algorithm returns @g, A%, which should be transformed to ¢f, AS;
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e. The distance between the simulated original base ¢s, As and ¢}, A; in the geostationary
view space will be denoted as the correction error.

The correction error is calculated in the geostationary view coordinate space (violet surface on
Figure 1), because it allows the impact of the correction error on a specific satellite sensor to be estimated.
The coordinates in the above equation were expressed as an angle, however expressing them in radians
and multiplying by ks allows the result to be calculated in metric units (meters) as distances on a
sphere of radius /s around a geostationary satellite. This interpretation of geostationary coordinates is
implemented in the PROJ software library [28].

In order to calculate the correction using the geodetic coordinates numerical method, the fsolve [26]
function was applied. All distances were normalized with respect to the radius of the equator. The
parameters of the fsolve function were as follows:

e Algorithm: Levenberg-Marquardt (instead of Newton);
e  Function tolerance: 200m /a;

e Specify objective gradient: yes;

e  Input damping: 1075.

The results of the simulation using the Vicente et al./Koenig method and its augmented version
are presented in Figures 7 and 8. The results using the geodetic coordinates numerical method are
presented in Figures 9 and 10.

In Figure 7, the errors of the Vicente et al./Koenig method and its augmented version are depicted
for certain cloud heights. Note that the error for the augmented version is 10® times smaller than for the
unmodified version. Also, the median of error rises near linearly with the increase of the cloud height.
Also note that the error rises as the distance from the equator and from the central meridian increases.

Figure 8 shows histograms of the errors presented in Figure 7. In the histograms, the error ratio
between Vicente et al./Koenig and its augmented version can also be spotted, which can be estimated
as 10%. Another important piece of information is that for the assumed cloud heights, the maximal
error of the Vicente et al./Koenig method can be estimated at 50 m, and for the augmented version,
it can be estimated at 5 cm.

The errors of the geodetic coordinates numerical method for chosen cloud heights along with
the number of iterations of the numerical method are shown in Figure 9. Note that the error is
below 1 cm for almost the entire disc. The biggest errors appear near the edges in regions where the
Vicente et al./Koenig method failed to compute a result (red NaN regions in Figure 7). The number of
iterations increases as the height of the clouds and the distance from the center of the observation disc
increase. However, during the performed experiments, the value for the majority of cases was less
than or equal to five.

The histograms of errors for the geodetic coordinates numerical method and its number of
iterations are presented in Figure 10. Based on the obtained results, the error histograms seem to be
quite similar between the experiments—almost all values are classified as near zero. However, there
are several occurrences of errors up to 3 meters, which are mainly caused by pixels in regions near the
edge of the observation disc. The iteration histograms evolve along with the cloud height. As can
be seen, the majority of occurrences fall below five iterations. Occurrences above this value refer to
regions near the edge of the observation disc.
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Figure 7. Maps showing error for the Vicente et al./Koenig (a,c,e,g,i) method and its augmented version
(b,d,f,h,j) for several chosen cloud heights. Error are given in meters for the geostationary satellite
coordinate system. NaN values for in-scope regions occur where the algorithm failed to calculate a
solution. For each map, the median (med.) error was calculated.
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Figure 8. Error histograms for the Vicente et al./Koenig method (a,c,e,g,i) and its augmented version
(b,d,f,h,j) for several chosen cloud heights. The Y-axis represents a count of 1 degree pixels, and the
X-axis is the error in meters for the geostationary satellite coordinate system.
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Figure 9. Maps with error (a,c,e,g,i) and number of iterations (b,d,fh,j) for geodetic coordinates
numerical algorithm (Geod. num. alg.) for several chosen cloud heights. Errors are given in meters for
the geostationary satellite coordinate system. For each case, the median (med.) error was calculated.
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5. Discussion

The results of the conducted experiments indicate that the Vicente et al./Koenig parallax effect
correction method error is smaller than 50 meters in the geostationary satellite coordinates system for
cloud heights of up to 16 km. The error for the augmented version of the Vicente et al./Koenig method
proposed by the author allows the error values to be decreased to below 10 cm, which is negligible for
current practical applications. As expected, the error of the geodetic coordinates numerical method is
also negligible because it can be adjusted by the number of iterations. However, the advantage of the
numerical approach is that it corrects the positions of pixels located near the edge of the observation
disc (there is no NaN on Figure 9).

On the other hand, it must be noted that the proposed approach requires greater computational
power than a method with a constant number of steps, such as the Vicente et al./Koenig method.
However, experiments show that this is negligible, as the parallax correction problem was computed
within minutes.

As was mentioned in the introduction, parallax effect correction is significant for the comparison
and collocation of meteorological radar data and geostationary satellite data. This can be demonstrated
by comparing radar reflectance in dBZ:

dBZ = 10log10Z (29)

where Z is radar reflectance. Reflectance is described as the following empirical relation with
precipitation rate R [mm/h] [29]:
Z = 200R'® (30)

and cloud optical thickness (COT) in logarithmic form [30,31].

Figure 11 presents a scatterplot for radar reflectance and cloud optical thickness for satellite data
without parallax effect correction, which should be mutually correlated in ideal cases. The Pearson’s
correlation value for that case is equal to 0.556. On the other hand, Figure 12 presents the same type
of scatterplot but for the satellite data after parallax effect correction (by numerical method from
Section 3.2). The correlation value for the corrected data is equal to 0.683. Note that a threshold
effect occurs on top of both figures (presented as a horizontal set of points equal to 2.4), which is a
consequence of Optimal Cloud Analysis (OCA) algorithm look-up table (LUT) limitations [31]. It is
worth noticing that this effect is less significant for Figure 12, suggesting that data with parallax effect
corrections are improved in terms of geometric accuracy.

Note that despite performed spatial correction, data presented in Figures 6 and 12 still differ.
In this context, it is important to note that these differences are caused by other factors that influence
data acquisition, namely:

e Different nature of the acquisition model, as on-ground radar and MSG satellite acquisition are
registered with a slight temporal shift (less than 15 min);

e Both sensors utilize the different physical natures of acquisition. The on-ground radar is an active
sensor which sends out an electromagnetic signal in the microwave spectrum and measurers the
echo intensity scattered from precipitation particles. On the contrary, MSG SEVIRI is a passive
sensor that measures radiation in a particular electromagnetic bandwidth (visible and near visible
spectrum) coming from the sun and thermal radiance;

e Data acquired by MSG and on-ground radar is also characterized by different spatial resolutions.
Therefore, in order to compare these datasets, additional resampling needs to be performed.
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Without correction, Pearson's correlation:0.55618
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Figure 11. Scatterplot representing the dependence of radar reflectance and cloud optical thickness
(logarithm) data for a stormy event on July 25, 2015, 13:00 UTC, without parallax effect correction
(see Figure 4). The calculated Pearson’s correlation coefficient is 0.556.

With correction, Pearson's correlation:0.6826
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Figure 12. Scatterplot representing the dependence of radar reflectance and cloud optical thickness
(logarithm) for a stormy event on July 25, 2015, 13:00 UTC, with parallax effect correction (see Figure 6).
The calculated Pearson’s correlation coefficient is 0.683.
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Another aspect worth considering is algorithm sensitivity to the uncertainty of cloud top height.
The easiest way to approximate this is to calculate the sensitivity of the parallax error itself due to
changes of cloud top height. The sensitivity of the parallax error in satellite coordinates is defined as a
derivative of pixel displacement (Equation (2)) in respect to h:

Ipaisp (h)

o (31)

Because pixel displacement is nearly linear in respect to /1 (as can be noticed on Figure 3),
the derivative (Equation (31)) should nearly be constant for assumed ¢4 and A¢. Therefore, it can be
approximated as the mean slope i, (1) in respect to h, for instance:

pdz’sp(lz km)

12 km (32)

where: ¢y = ¢y = hs. The displacement sensitivity depends on ¢, and A, therefore its value varies
around the globe. Sensitivity values for cities from Figure 3 are presented in Table 1.

Table 1. The displacement function sensitivity in respect to & for five chosen cities for the geostationary
sensor at longitude 0°. (N — North, S - South, E — East, W - West).

City Geodetic Coordinates Displacement Sensitivity as in Equation (32)
Cape Town fgz;g;: E 0.667
N 04177 N 066
Brasilia 4175 971%43290 VS\I 0.784
Gdarisk ?‘é:gggo 1; 0.827
Tromse ?Zgg%c I];I 0.868

Note that, the displacement sensitivity can be roughly approximated as less than 1. Therefore,
SEVIRI instrument uncertainty of cloud height greater than or equal to 3 km may lead to one pixel size
or greater error.

6. Conclusions

Data integration with data acquired from different sources requires developing additional methods
that aim to reduce the discrepancies resulting from different physical aspects of observation. In this
context, parallax shift correction for satellite data is a process that reduces geometric differences
between observations, and in many cases can significantly improve the quality of corrected data in
comparison with on-ground sources.

Regarding the scope of practical applications of the proposed approaches, it is important to
note that the resolution of currently operating geostationary satellites varies between 1-3 km for a
SEVIRI instrument [32] and 1-8 km for a Geostationary Operational Environmental Satellite (GOES)
imager [33]. The upcoming series of Meteosat Third Generation (MTG) satellites will provide imagery
with a spatial resolution between 0.5 and 2 km [34]. All of the above-presented parallax methods are
effective enough for current and near future geostationary observation satellites, and the usefulness of
the proposed methods is negligible. Selection of the proposed parallax effect correction method will
be significant only when the spatial resolution of geostationary observations is comparable to 50 m.
With high data resolution and precise parallax effect correction, the algorithm influence of precision on
cloud height will become noticeable.
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The parallax shift phenomena also affect the comparison between data collected from geostationary
satellites and low-orbit satellites [14,35]. The parallax shift problem for geostationary satellites could
be treated as a special case for low-orbit satellites. This problem for low-orbit satellites could be
modeled with similar equations to those presented above, however taking into account the position
and orientation of the satellite in the Cartesian coordinates space.

In this paper, the parallax effect was described using an ellipsoidal earth model. However,
ellipsoidal model clearly does not fully reflect the real shape of Earth. Therefore, in situations where
ellipsoidal model precision is insufficient, the numerical model of Earth’s gravitational field and
geoid values should be utilized. In this case, it would be necessary to describe the parallax effects
using differential equations and solve them using a numerical approach. In this case, the most
problematic issue would be to determine perpendicular paths to the equipotential boundaries of
Earth’s gravitational field.
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Abstract: In recent years, most multibeam echo sounders (MBESs) have been able to collect water
column image (WCI) data while performing seabed topography measurements, providing effective
data sources for gas-leakage detection. However, there can be systematic (e.g., sidelobe interference)
or natural disturbances in the images, which may introduce challenges for automatic detection of gas
leaks. In this paper, we design two data-processing schemes to estimate motion velocities based on the
Farneback optical flow principle according to types of WCls, including time-angle and depth-across
track images. Moreover, by combining the estimated motion velocities with the amplitudes of the
image pixels, several decision thresholds are used to eliminate interferences, such as the seabed,
non-gas backscatters in the water column, etc. To verify the effectiveness of the proposed method,
we simulated the scenarios of pipeline leakage in a pool and the Songhua Lake, Jilin Province, China,
and used a HT300 PA MBES (it was developed by Harbin Engineering University and its operating
frequency is 300 kHz) to collect acoustic data in static and dynamic conditions. The results show that
the proposed method can automatically detect underwater leaking gases, and both data-processing
schemes have similar detection performance.

Keywords: multibeam echo sounder; water column image; gas emissions; automatic detection;
optical flow

1. Introduction

Multibeam echo sounders (MBESs) are important remote-sensing acoustical systems whose
primary goal is mapping the seabed. They are also widely used to detect targets in water columns [1].
Many types of MBESs can collect water column image (WCI) data, which carry backscattering signals
of scatters from the transducer to the seabed. The images can be used to detect artificial or natural
structures in water columns, such as gas bubbles rising from seep sites [2-8] or gas pipelines [9],
shipwrecks [10], fish schools [11], in addition to serving as a reference for the quality control of
multibeam bathymetric data.

WClIs use the differences in acoustic characteristics, such as backscattering strength or target
strength, to detect solid, liquid, or gas targets by distinguishing them from the background images.
For the gas emissions discussed in this paper, their appearance in images is flare-like [12] and tends
to rise from the source. In addition, the ascending gases and other scatterers may be deflected by
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water/sea currents [4]. Generally, these may be the result of leaks from man-made structures, such as
underwater gas pipelines, or gases that were released from the seabed. Over the past two decades,
research on gas emissions using image data has mainly focused on the aspects of detection (presence
or absence) and positioning, as well as their quantification [2,12-18]. A typical method in the detection
of gas emissions is to mark the suspected gas target by manually screening the image data collected by
the MBES [1,5,12,16]. Therefore, it is necessary to study methods automatically detecting gas emissions
and improving data processing efficiency [19].

In general, from the perspective of different input data sources, there are two ways to automatically
detect leaking gases using MBES. One way is to detect targets in water columns by processing beam
space data of MBES, such as the multi-detection technique proposed by Christoffersen et al. [20].
Compared to traditional multibeam seabed detection technologies (e.g., the weighted mean-time and
the zero-crossing of the phase difference), multi-detection algorithms have been applied in some MBES
applications and can be applied to detect seabed topography and targets suspended in water columns
at the same time.

Another method is to detect targets using the WClIs as data sources. For instance, some automatic
detection methods of bubble leakage via the images have been presented by Urban et al. and Zhao
et al. [12,15], and were used to localize the bubble vent. However, it is often difficult to avoid the
strong interference from sidelobes when the pixel intensity data in the images are used for target
detection [12,21]. One solution to address this problem is to exclude WCI data outside a minimum
slant range (MSR) [12], while the excluded area may contain part of the target image, if one is present.
Furthermore, if a gas-detection algorithm relies only on image intensity information, without other
auxiliary methods in data interpretation, it cannot confirm whether the detected targets are rising
gases or if it is from other targets, such as underwater artificial structures with the same outline as
gas flares. Therefore, coherent flow structures have been used as a feature of detection [22], and the
motion of rising bubbles was considered [18] to detect leakage via cross-correlation of the WClIs in the
depth-across orientation. This method not only discriminates the presence or absence of spilled gases,
but also distinguishes them from fish, which is one of the major reasons for misdetections. However,
in this method, the potential situation of false but large motion speed due to continuous frame changes
of the strong backscatter pixels from the seafloor has not been considered.

The optical flow method is another motion-estimation technique. It has been validated using
suspended objects (e.g., leaking gases [23] or sulfur dioxide flux) from infrared images or CCD images
and has already been suggested as a promising method for detection of gas leaks moving patterns
by von Deimling et al. [18]. In this paper, two types of information, amplitude and velocity, are
comprehensively considered, and an automatic detection method for underwater gas leaks is designed
to distinguish other strong scatterers in the water such as the seafloor. In addition, the above methods
are mainly based on “depth-across track” (D-T) image, which needs the process of converting from the
beam space data to the D-T image. This paper reduces the above process, and further proposes to
design a more efficient parallel structure based on the beam data. In other words, we use the Farneback
optical flow method to estimate the motion of underwater gas emissions. In our process, the potential
interference of sidelobes on the leaking gas images is suppressed before WCI generation. Subsequently,
we designed two processing schemes corresponding to the two types of images, and the intensities and
velocity information of the images are combined for discrimination. Finally, we tested the effectiveness
of the above two processing schemes by simulating pipeline leakage scenarios in water tanks and
Songhua Lake in China.

2. Materials and Methods

2.1. Water Column Image (WCI) Generation and Sidelobe Suppression

After receiving underwater multi-channel echo signals, the MBES usually needs to perform
array beamforming processing to obtain the time series of echo amplitudes at different beam angles.
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Then, sonar equation [24] can be used to compute the intensity of the echo signals at each beam,
the backscattering strength from the seabed, or the target strength from other targets in water. In general,
these echo data at all beam directions can be visually displayed in two typical WClIs [17,25]. One is
that the amplitude/intensity time series are directly arranged into a two-dimensional data matrix,
which is displayed as a two-dimensional image with coordinate axes corresponding to time and beam
angle, referred to as a “time-angle” (T-A) image. Figure 1a is a T-A image, in which the amplitude
time sequences are obtained using the discrete Fourier transformation (DFT) of the multi-channel
echo signals. Moreover, the T-A image is often used as a data source for seafloor detection methods.
The vertical and horizontal coordinates of this image correspond to the beam angle and the two-way
travel time (TWTT) of the echo signals. In the figure, multi-channel echo data was acquired on the lake
by using the HT300 PA MBES mentioned later. The emission signal of sonar is a CW pulse signal with
a pulse width of 0.1 ms. The other WCl is the amplitude/intensity time series in polar coordinates,
converted into two-dimensional images in Cartesian coordinates, with its horizontal and vertical
coordinates corresponding to the horizontal distance and vertical depth, respectively. This is referred
to as a “depth-across track” (D-T) image (as shown in Figure 1b). The complexity of the coordinate
transformation is embodied in the need to consider the influence of irregular beam space [25], and thus
it may be necessary to interpolate pixels without data in the beam sector of the D-T image. Moreover,
it is necessary to correct the spatial position of the amplitude/intensity data in Cartesian coordinates
by ray tracking when the sound velocity in water varies significantly with the depth. The coordinate
system corresponding to Figure 1b is more suitable for observation with the human eye; thus, it is often
displayed in the display and control software of a sonar system. In addition, from the areas within the
red boxes in Figure 1a, it can be seen that echo energy from the beam, perpendicular to the seabed,
leaks into the main lobe direction of all other beams, such that obvious stripe patterns appear at and
outside the MSR position. Correspondingly, the straight stripe patterns appear curved in Figure 1b.

0.01 0.02 0.03 0.04 0.05 0.06 0.01 0.02 0.03 0.04 0.05 0.06
TWTT (s) TWTT (s)

Depth (m)

-40 30 -20  -10 0 10 20 30 40 -40  -30 20 -10 0 10 20 30 40
Horizon Range (m) Horizon Range (m)

Figure 1. Examples of T-A and D-T images, and the results of sidelobe effect elimination based on
the minimum variance distortionless response (MVDR) beamforming methods [26]. (a,c) are the T-A
images, whose ordinates and horizontal coordinates correspond to the beam angle and two-way travel
time (TWTT). (b,d) are the D-T images, whose ordinates and horizontal coordinate correspond to
vertical depth and horizon range. (a,b) are obtained using a discrete Fourier transformation (DFT)
beamforming method, and (c,d) are the processing results via a MVDR beamforming method.

Currently, in the above WCI generation process, most MBESs must use DFT or fast Fourier
transformation (FFT) techniques to achieve beamforming tasks. These techniques offer simplicity and
good real-time performance; however, they have energy leakage, which can cause sidelobe interference.
Thus, the echo energy from the beam in the direction perpendicular to the seabed or the strong
scattering in the water column leaks into the main lobe direction of all the other beams. For bathymetric
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measurements, a typical effect would be to mistake the flat seabed topography for a curved seabed
topography with both sides upturned. The sidelobe effect here is also called a “tunnel effect” [27].
The sidelobe effect is a strong interference source in seabed topography survey and underwater target
detection. Tangible and physical targets in water columns, gaseous or not, are real structures and
can produce backscatters. However, the sidelobe effect can also produce a false target image and its
intensity level cannot be ignored, which can hinder the MBES to detect real targets. Therefore, it is
important to acquire WCI with suppressed sidelobe effects before the target detection methods are
performed [12,28].

When the sidelobes are eliminated based on MBES, object data can be mainly processed in three
types: channel signals, beam output sequences, and WCls in different stages of data processing of the
MBES. Firstly, the channel signal is processed using beamforming techniques, such as the minimum
variance distortionless response (MVDR) algorithm [26], to suppress the sidelobe leakage. Secondly,
adaptive filters can be used to dispose beam output sequences to offset the sidelobe effect [29]. Finally,
the suppression of sidelobe effects can be achieved by excluding data outside the MSR. In this work,
the MVDR beamforming method is used to process the channel signal data collected by the MBES to
reduce sidelobes in the WCls. The array output of this beamforming method can be expressed as [30]:

F(n) = whx(t,) 1)

where x(t,) is the array data vector; f, is discrete time of echo signal; and w is the array weight
coefficient, which is defined as:
R a(6
o Rilal© "
a(0) "Ry;a(0)

where a(6) is the array manifold vector, H denotes matrix Hermitian transpose, and R, = E[x(te)xH (te)]
is the correlation matrix of the array data. Furthermore, for a spherically isotropic noise field,
the directional gain of the array can be expressed by a directivity index (DI) written as [30]:
|wH a(@)l2

DI =10log IR
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where Ry, represents an isotropic noise correlation matrix whose mnth matrix element is defined as:

_sin[(m —n)kd]
Rovhun = W/ m,

n=12,...,M “)
where M is the number of array elements, d is the element spacing, and k is the wave number. Figure 1c
shows a T-A image obtained by using the MVDR beamforming method with the same data as Figure 1a,
and Figure 1d is the D-T image corresponding to Figure 1c. By comparing the four figures in Figure 1,
it can be seen that the MVDR beamformer can successfully suppress the sidelobe leakage.

2.2. Motion Estimation of Gas Emissions Via Farneback Optical Flow

2.2.1. Motion Estimation Using D-T Images

Leaking gases exist in the form of bubble groups in the water column. They diffuse and rise to
the surface. These gases result in changes in the intensity distribution in multi-frame WCls, which can
be exploited using the optical flow method to estimate the motion information of the gas emissions.
The optical flow calculation [31] uses the variation and correlation of pixel values in two sequential
image frames to determine the “motion” of each pixel location. As a basic condition for the application of
the optical flow method, it is assumed that the pixel values in the two images satisfy dF| (x, y,t f) /dt = 0,
that is:

F(x,y,tf) :F(x+Ax,y+Ay,tf+Atf) 5)
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The generation and extinction of the bubble group, their distribution, and changes in size as they
rise will cause rapid changes in the image, which does not occur in sonar images of fixed-shape objects.
Therefore, to satisfy the above assumptions, the time interval between frames cannot be too long. Thus,
in this paper, when the experimental data is collected in pool and lake, the frame rates of images
are 20 Hz and 16 Hz, respectively. Motion information of leaking gasses has been estimated using
the Farneback optical flow method, which is a classical dense optical flow estimation algorithm for
target motion using images, and its basic principle and implementation are described in detail in [31].
The main idea of this method is to approximate the neighborhood near each pixel of an image as a
quadratic polynomial, and to estimate the displacement field of the two frames using a polynomial
expansion. Specifically, the neighborhood of each pixel of two images (Fy, F) at different times can be
approximated as:

F](Z) :ZTA1Z + b{z +0 6
Fz(z) =zTAyz + bgz +0 ©)

where z is coordinate vector of image pixel, parameter A is a symmetric matrix, b is a vector and cis a
scalar. It is assumed that F; is equal to F; with a global displacement d, that is,

Fy(z) = F1(z—d) @)

By using Equation (6) to expand the two functions at both ends of Equation (7) and making the
coefficients of the items equal, the global displacement can be obtained. From a visual point of view,
an image whose horizontal and vertical axes are represented by the distance is more conducive to
directly show the shape of the target. This is also the reason why D-T images are commonly shown in
the display and control software of the sonar system rather than T-A images. When the displacement is
estimated from two D-T images and divided by the time interval between the two frames, the velocity
of each pixel can be obtained. Scheme A of Figure 2 describes a processing flow from beamforming
processes of multi-channel echo data to estimate velocity fields and detect targets. The multi-channel
echo data are converted into beam space data or a T-A image through the beamforming processing,
and then the D-T image can be produced using a coordinate transformation and interpolation.

Axis Farneback .
Beamforming transformation optical flow Detection
Multi-channel Beam space . Velocity vector
Scheme A > » - > N >
echo data data/T-A image D-T image fiold Target or not
Image intensity
Axis
Beamformi transformation
eamforming >  D-Timage
Scheme B Multrll-cl:iannel » . Beam space | |t oback
echo data ata/T-Aimage | | optical flow_ | Velocity vector
field .
Detection

Image intensity

» Target or not

Figure 2. Two types of data processing schemes in motion estimation of gas emissions.

Some of the methods (e.g., [1,12,17]) to detect gas leaks based on MBESs only used the amplitude/
intensity information of D-T images in Scheme A. However, if the detection is only based on
amplitude/intensity, it cannot automatically distinguish between strong scatterers such as gas leaks and
the seafloor. The motion of rising bubbles was considered [18] to detect leakage via cross-correlation;
however, the potential situation of false but large motion speed due to continuous frame changes
of the strong backscatter pixels from the seafloor has not been considered. In this paper, two types
of information, intensities and velocity vectors, are comprehensively considered, and an automatic
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detection method for underwater gas leaks is designed to distinguish other strong scatterers in the
water such as the seafloor (see Section 2.2.3). Specifically, the D-T images are processed using Farneback
optical flow to obtain the velocity vector field.

Furthermore, in Scheme A, all feature information originates from the D-T images; thus, a process
of converting from the beam space data to the D-T image is required. For a sonar system with automatic
online detection requirements, the serial structure brings with it large hardware costs and affects
real-time computing efficiency. For this reason, this paper further proposes the design of a more
efficient parallel structure based on beam data. This new structure will affect velocity vector estimation;
thus, it is necessary to further derive a corresponding conversion calculation method.

2.2.2. Motion Estimation Using T-A Images

Scheme A in Figure 2 is mainly a serial structure in which stringent requirements are often imposed
on the real-time processing capability of the sonar hardware platform. This paper thus proposes
Scheme B to directly estimate the motion information of the leaking gases using the T-A image, thereby
reducing the processing steps from multi-channel data acquisition to target detection based on velocity.
Moreover, the velocity field estimation can be processed in parallel with the D-T image and bathymetric
estimation algorithms, instead of relying on serial processes as is done in Scheme A. In Scheme B,
the Farneback optical flow method is used to process two frames of the T-A image to obtain relative
displacement (tp, 6p) in the direction of echo time and beam angle axis. When the displacement is
divided by the time interval, the velocity vector (i, vg) in the coordinate system with time/orientation
as the coordinate axis can be obtained. During the hydrographic surveying, with the fluctuation of the
vessel, the sonar array will produce changes in orientation, such as roll and pitch, which will bias the
estimated target motion displacement. Fortunately, modern multibeam sonar products usually have
roll- and pitch-compensation capabilities, and even medium and deep water MBES can compensate
for the heading information, thus avoiding the above-mentioned errors.

The velocity vector (1, vg) estimated from the T-A images can be used to complete the task of
leaking gas detection. There is often a requirement to display velocity information in conjunction with
the D-T image. In such cases, it is necessary to convert (ut, vg) into a motion velocity vector (ux, vy)
with horizontal and vertical displacement per unit time, that is, velocity, as coordinates. Under the T-A
image with time-beam angle as the coordinate system, the coordinate transformation of (fy, 0y) can be

expressed linearly as:
vy [t fo
o )=(o)<(si] ®

Then, the displacement (xg, o) of the point in the Cartesian coordinate system can be expressed as:

c(t+tg) sin(0+6p)—ct sin(0)

( o ): C(H»tg)cos(GiGO)—ctcos(Q) 9)
Yo 2

where c is the speed of sound at the specified depth of the pixel. Then, (ux, vy) can be obtained by the
division of (xp, yo) and time interval.

2.2.3. Detection of Gas Emissions

When using the MBES to detect gas emissions, the possible interference sources include
sidelobe effects, backscatter contributions from non-gas targets in water (e.g., volume reverberation,
seabed reverberation), and background ambient noise, among others [15]. An amplitude threshold
can be used to suppress the interference of volume reverberation with low energy contributions.
This threshold can be set to a dynamic value varying with the frames, or to a fixed value. The following
threshold can be used:

|P(i/j)_Pref| > ko (10)
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where P(i, j) is the value of each pixel in the WCI, k is the adjustable weight factor, and the values
Py and ¢ are the median and standard deviation of all pixel values of the image, respectively. If the
pixel in the frame satisfies Equation (10), then it is judged to belong to a part of a leaking gas image;
otherwise, the pixel value is eliminated.

For a strong backscattering and relatively static target, the same decision criterion as in Equation (10)
can be used, but the data involved in the calculation is replaced by the magnitude of the velocity
estimated, thatis, V = lui + vi. Furthermore, with regard to the relatively flat seabed topography,
when a survey vessel is sailing, the image of the area corresponding to the seabed in WClIs of the
adjacent pings will show the partial changes of the energy distribution in the horizontal direction,
which is mainly due to the statistical fluctuation of the seabed echo energy caused by the fluctuation of
the micro-topography. This phenomenon may also bring about large velocities corresponding to the
seabed portion of the velocity field, and most of the velocity direction should be similar to the seabed
terrain. In consideration of the above situation, a directional threshold is further set to exclude the
target image in the horizontal direction or close to it, in the estimated velocity field. Specifically, in this
paper, the threshold on the velocity direction relative to the horizontal is set at 40 degrees. The rising
gases may be deflected by currents [4], and thus the range of the velocity direction threshold should be
adjusted according to the direction of the ocean current in the sea test. In addition, schools of fish are
also common underwater moving targets. Through this direction threshold, some fish school images
shown in the horizontal direction can be eliminated.

3. Results
3.1. Pool Experiment

3.1.1. Experimental Design and Equipment

In this study, a scene of leaking gases from a pipeline was simulated in a pool, and the acoustic
data was collected by an HT300 PA MBES developed by Harbin Engineering University, China.
As shown in Figure 3, the MBES is mainly composed of an underwater subsystem (i.e., the sonar
head), an interface unit, and a computer. The underwater subsystem is responsible for the emission,
reception, and real-time processing of the underwater acoustic signal. The interface unit is used for
real-time information collection of the auxiliary equipment and network data exchange, and the HTCS
3.4 display and control software of this MBES can be operated on a computer. The sonar system emits
an acoustic wave with a frequency of 300 kHz, a CW pulse signal with a pulse width of 0.1 ms, and a
ping rate of 20 Hz. In addition, its beam width is 2.5° X 1.5° and max swath width is 126°.

The distribution of the bubble size and number of bubbles changes continuously during their
rising process because they are affected by factors such as water depth, nozzle size, pressure in the
pipeline, flow rate, ocean current, and so on. Also, the backscattering strength (or sound attenuation)
of the bubbles is closely related to the signal frequency, bubble size, and the number of bubbles [32-35].
For a nozzle, its size decides the sizes of bubbles. For example, the radius of the detached bubble
could be expressed as a non-monotonic function of the nozzle diameter [36], and the radius showed
an increasing trend during the change of the nozzle diameter (0.1 mm-2 mm). For a single bubble,
the different sizes correspond to different resonance frequencies, and the backscattering strength
reaches a peak at this frequency [35]. The relationship between the scattering cross-section ¢ and a
bubble of a radius a can be expressed as [37]:

= — 4 (11)

(5 [ +

where fj is resonance frequency of the bubble and k is the wave number. This model was applied in [37]
to analyze the relationship between backscattering strength and bubble radius at 40 kHz, 180 kHz and
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300 kHz. In actual applications, MBESs operate at frequencies from 12 kHz to 400 kHz [3,37], and they
have been applied in researching the detection of gas leaks and other targets in water. In general,
in shallow water (<200 m), MBESs with a frequency range of 200-400 kHz are usually used for marine
surveys, and MBESs with these frequencies are also suitable for the deployment of the unmanned
underwater vehicles due to their size. Because the purpose of this paper is to detect underwater pipeline
leaks in offshore waters (usually less than 200 m in depth), and comprehensive consideration of factors
such as maximum sounding capability, resolution of the multibeam sonar, and frequency response
characteristics of the target of interest, this type of MBESs was finally used for experimental research.

During the experiment, the sonar head of the MBES is fixed at 0.5 m below the water surface
with a tilt angle of & = 30", as shown in Figure 4. The maximum coverage angle of this MBES is from
—63 degrees to +63 degrees and the depth of the pool is shallow; thus, in order to enable the sonar
to accurately study the process wherein the bubbles rise to the surface, it is installed vertically with
a 30-degree tilt. The leaking gases are generated by an air compressor and released through a long
rubber tube, which is connected to the nozzle at the bottom of the pool (5 m depth). Figure 5 is a video
capture of the gas leaking scenario during the experiment.

Packaging case

Underwater

subsystem Receive array

Sonar
interface un

Ethernet
cable = Watertight cable Transmit array

Figure 3. A photograph of HT300 PA MBES.

Y Interface
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Figure 4. Schematic diagram of the pool experiment for simulation of leaking gases.
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Figure 5. An underwater video screenshot of the bubbles being released.

3.1.2. Optical Flow Calculation of the Water Column Images (WClIs) Containing Leaking Gases

Figure 6a,b are D-T images taken via the conventional beamformer (CBF) and the MVDR
beamformer, respectively, and both matrix data are normalized and displayed in decibels. The fixed
nozzle diameter is ¢ = 0.6 mm; the output intensity and the output flow rate of the air compressor are
0.1 MPa and 6.3 L/min, respectively; and the sonar head is stationary. In Figure 6a, fan-shaped bright
strings are formed at the MSR, and their brightness is close to the intensity level of gas emissions.
In this experiment, the gassy release area is designed outside the MSR and its purpose is to consider
whether the detection of the gas emissions is still valid when they occur in an area that have significant
interference from sidelobe contamination. Figure 6b shows that the image at the MSR (i.e., the region
where the sidelobe effect energy is the largest) was well-suppressed. There also is sidelobe leakage
outside of the MSR, but the energy level is usually lower than that of the leaking gases.

Using Figure 6b and its adjacent frame images, the motion field distribution of the obtained image
region is an implementation of the Farneback optical flow algorithm in MATLAB with Scheme A.
In Figure 7a, the estimated velocity field is displayed in conjunction with the WCI of Figure 6b.
The direction of the arrow in the figure is indicated as the direction of velocity, and the length of the
arrow is the magnitude of the velocity. Since an estimated velocity value can be obtained for each pixel
of the D-T image, to avoid a large number of arrows being too dense to observe, the velocity matrix
here is subjected to equal interval sampling processing to display. The image of the small frame on
the left side in Figure 7a is the enlarged result of the image in the red frame in the gas release zone.
Figure 7b shows the estimation results of the leaking gas motion obtained by processing the same
data using Scheme B, and the parameters used by the Farneback algorithm are the same as those in
Figure 7a. The estimated velocity is converted to the form of (ux, Uy) for display. Then, Figure 8 shows
a set of WCIs and motion field estimation results after changing the experimental conditions, where the
nozzle is replaced by one with a diameter of 1.2 mm, the output intensity of pressure is set to 0.5 MPa,
and the output flow rate is 51 L/min.
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Figure 6. The WClIs containing gas emissions, obtained by the conventional beamformer (CBF)
beamformer (a) and MVDR beamformer (b).
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Figure 7. The joint display of the WCI and velocity field estimated by frame A (a) and frame B (b),
respectively. The fixed nozzle aperture is ¢ = 0.6 mm and the output intensity of pressure and the
output flow rate was 0.1 MPa and 6.3 L/min, respectively.
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Figure 8. The joint display of the WCI and velocity field estimated by frame A (a) and frame B (b),
respectively. The fixed nozzle aperture is ¢= 1.2 mm and the output intensity of pressure and the
output flow rate are 0.5 MPa and 51 L/min, respectively.

It can be seen from Figures 7 and 8 that the velocity field trends estimated by the two processing
schemes are roughly similar, but the calculated velocity field matrices have different distributions
in the D-T image. The velocity field data calculated by Scheme A and the individual pixels of the
D-T image are sometimes in one-to-one correspondence to their spatial position. However, since the
velocity field matrix calculated using Scheme B is equally spaced when using the coordinate system
with the beam angle and the TWTT as the coordinate axes, the velocity field data near the sonar head
is dense, but gradually becomes sparse as the distance increases. In addition, the velocity field of the
region containing gas can be visually different from those of other regions. The direction of the velocity
in the region containing gas is mostly in the quasi-vertical direction. Since the sonar head is stationary,
the ensonified area on the bottom of the pool has not changed. Under this condition, the energy of
the individual pixels corresponding to the bottom area in different ping images changes very little;
thus, the estimated velocities in this area will be very small, which can be excluded by considering the
magnitude of the velocity.

To quantitatively analyze the consistency of the estimated velocities of the two schemes, a square
with a side of 5 cm is selected as an observation area to calculate magnitudes of the velocity at different
times in this region. The center point coordinate of the observation area is (5.65 m, 3 m). Figure 9
shows the variation of the average of all the estimated velocities in the observation area, along with the
sample time. The horizontal axis is the sample time or the image frame number, and the longitudinal
axis is the average of the magnitudes of the velocities. For each pixel, the corresponding magnitude

of the velocity can be calculated by V = lu§ + vi. The curves plotted in Figure 9a,b respectively
correspond to the results of the two settings of the nozzle sizes and the output intensities of the pressure
conditions, while the data processing is identical. It can be seen from the two figures that the estimated
velocity values of the two frames are relatively similar in general, but there are also a small number of
different cases. This may be because the number and spatial distribution of velocities estimated by
the two frames in the observation area are different. When the difference in velocity values in this
area is large, the two statistical averages will show a large deviation. However, this difference does
not change the nature of the relatively high-speed movement of the gas emissions from the pipelines,
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and thus it will not affect the subsequent detection of gas emissions. For leaking gases from undersea
pipelines, the velocities of bubbles in water columns were composed of two parts [38]. One is the free
rising velocity of the gas bubbles, and the other is the initial velocity when they were ejected at the
nozzle. Considering these contributions, the authors of [38] used Doppler shifts of ultrasonic scanning
to estimate the leaking gases simulated in the laboratory; the estimated velocity is 3.2-9.7 m/s, which is
similar to the results of Figure 9. The echo intensities at different flow rates are further measured and
are shown in Figure 10. In the two data acquisitions, the nozzle diameter is always 0.6 mm; the flow
rates of the air compressor are 21 L/min and 6.3 L/min, respectively; and the multibeam sonar is set
with the same parameters, including the transmit power, fixed gain, and time varying gain. As shown
in Figure 10, the large flow rate corresponds to stronger echo intensity as a whole, which is similar
to the results found in [37]. This phenomenon implies that there is a certain correlation between the
flow rate and the backscattering signal. Compared with results in [39,40], the derived rise velocities
in Figure 9 appear on the lower scale. This may be due to the limited output pressure capability of
the used air compressor and the absence of currents, which affects the intensity and direction of the
motion velocities.

15 T T :
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Figure 9. The magnitudes of the velocities estimated from Scheme A and Scheme B. (a) and (b)
correspond to the two experimental conditions of Figures 7 and 8, respectively.
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Figure 10. Comparison of echo intensities at two flow rate outputs.
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3.1.3. Detection of Gas Emissions

Due to the WClIs and velocity field distributions in the pool experiment, the thresholds of the
image amplitudes and velocity values were set according to Equation (10) to detect gas emissions.
The weight coefficient of the amplitude threshold is 1, and the weight coefficient of the velocity intensity
threshold is 1. By further eliminating the data below the thresholds in Figures 7 and 8, the results can
be seen in Figures 11 and 12, respectively. The velocity field data used in Figure 11a, Figure 12a was
estimated using Scheme A, while the velocity field data in Figures 11b and 12b were estimated using
Scheme B. As can be seen in Figures 11 and 12, the image amplitude and velocity intensity threshold
could be used to exclude images with small velocities but strong backscattering.
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Figure 11. Results obtained by screening the data in Figure 7 using thresholds of image amplitude and
velocity intensity. (a) and (b) correspond to the processing results of Scheme A and Scheme B, respectively.
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Figure 12. Results obtained by screening the data in Figure 8 using thresholds of image amplitude and
velocity intensity. (a) and (b) correspond to the processing results of Scheme A and Scheme B, respectively.
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3.2. Lake Experiment

3.2.1. Experimental Scenario

To quantitatively analyze the estimated velocities of the two schemes under the same conditions, the
above-mentioned pool experiment is a static measurement where the relative position of the measuring
platform and the gas-releasing device is constant. A dynamic experiment is further designed here to
measure the simulated gas emissions from a pipeline using an MBES mounted on a survey vessel.
The experimental site is in Songhua Lake, Jilin Province, China, and the MBES and air compressor used
in the experiment are the same as in the pool experiment. During the experiment, one end of the rubber
tube connecting the nozzles is fixed on a triangular holder seated at a flat bottom of water depth of
about 13 m, while the other end is extended from the bottom to a barge on the coast and connected
to the air compressor. The fixed nozzle aperture is = 1 mm and the output intensity of pressure is
Poyt = 0.68 MPa. When the survey ship is traveling, the MBES collects the underwater target echo at a
ping rate of 16 Hz.

3.2.2. Detection of Gas Emissions

The WClISs in Figure 13 are obtained when the survey ship travels above the leaking gases, and the
velocity field distributions of Figure 13a,b are obtained using Schemes A and B, respectively. From the
partial enlargement of the two figures, the corresponding velocity field of the regions containing gas is
mainly on the upward trend, and the high magnitudes of velocity are also found in the seabed area.
However, as analyzed in Section 2.2.3, the velocity field directions in the seabed area are mostly similar
to the seabed terrain tendency. Correspondingly, the velocity direction threshold is set to 40 degrees.
For instance, the data in Figure 13a are judged only by the amplitude threshold to obtain the detection
result as shown in Figure 14a, and the detection result after additional estimation of the magnitude of
the velocity and direction threshold is shown in Figure 14b.

(a)

0

Depth (m)

Depth (m)

Horizon Range (m)

Figure 13. The joint display of the WCI and velocity field estimated by frame A (a) and frame B (b),
respectively, from the experimental data of a measurement period in Songhua Lake.
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Figure 14. The result of the comprehensive detection of the data in Figure 12 using thresholds of pixel
intensity, velocity magnitude, and velocity direction. (a) is the detection result using only the amplitude
threshold, and (b) is the detection result of adding the magnitude of the velocity and direction threshold.

It is possible to eliminate pixel data with relatively low intensity, low speed, or high horizontal
speeds by comparing Figures 13 and 14 after the detection threshold is set using both the energy and
the displacement of the image pixels. Thus, an image with gas emissions can be detected from the
complex WCI data.

4. Discussion

In this paper, the motion field in continuous multi-frame WClIs was estimated using an optical
flow method. If only the intensity information of each pixel in the WCl is used to detect the leaking
gases, the results could detrimentally include the seabed and other strong interference targets in the
water column. Although the images of the seabed and sidelobe interference could simply exclude
the portion outside the MSR as was done in [12,15], this strategy may also remove parts of the gassy
image, and any strong targets suspended within the MSR region cannot be identified and ignored.
As shown in Figure 15, only the amplitude threshold was used to detect the WCI data measured on a
short survey line in the Songhua Lake. It can be seen from the figure that it is possible to detect other
false targets using only the amplitude threshold, thereby affecting the autonomous and high-accuracy
recognition of the gas emissions. For this reason, the estimated motion vector information was further
used to eliminate the image pixels of relatively low-speed targets or targets whose backscatter is high
but moving horizontally, such as a flat seabed or part of a school of fish. Inevitably, small spots of
discrete distributions, as shown in Figure 14, may appear after the processing. These spots are mainly
residues after the above threshold decision, and they have a low number of pixels with a discrete
distribution. Here, these abnormal pixels can be eliminated by a small sliding window. As shown in
Figure 16, the three-dimensional morphology of the leaking gases with a relatively clean background
was obtained after multi-threshold detection, which achieves the automatic detection of gas emissions.
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Considering that sidelobe contamination may adversely affect the amplitude and velocity threshold
detection, the MVDR beamforming algorithm was used in the beamforming process to suppress
the sidelobes.

In addition, two kinds of schemes were designed for data processing. Similar to [18], in Scheme A,
the velocity of the movement is estimated from the D-T image, so that the dimension of the velocity
vector matrix is consistent with the D-T image, which is more convenient for visual observation.
However, considering that the data processing of Scheme A is mainly a serial structure, and the
automatic and real-time detection of the leaking gases on the sonar hardware platform is also a potential
demand in the future, this paper further proposes directly estimating the gas motion using T-A images
and to judge whether the gas emissions are present or not. In this way, the velocity field estimation
can be processed in parallel with the D-T image generation and the seabed terrain detection process
from the perspective of the data processing flow, and it is not necessary to wait for the conversion
of the image from T-A to D-T, which improves the feasibility of real-time realization in the hardware
platform of the MBES.

To verify the effectiveness of the proposed method, experiments were carried out on pools and
lakes with relatively shallow water depths. The underwater condition may be more complicated with
the increase of water depth. For example, the backscattering strength of the bubbles is also related to
water depth (or ambient hydrostatic pressure Py). The resonance frequency in Equation (11) can be
derived [37] as:

1 3‘)/P()
fo= 2\ p

where p is the density of the water, and y is the ratio of specific heats. It can be seen from the
combination of Equations (11) and (12) that the scattering cross section is also a function of the
hydrostatic pressure. This is especially the case in deep water conditions, where the effect of hydrostatic
pressure is more obvious. Therefore, when the background noise level is isotropic and the leakage
rates and sonar frequencies are the same, the signal-to-noise ratio corresponding to the echo of gases
at different depths will also change. At this point, the amplitude threshold of Equation (10) should
vary with the depth. Therefore, to fully test the detection performance and adjust its adaptability with
changes in depth, in future research we will further carry out experimental verification studies in
deep water environments. Of course, the rising gases may be deflected by ocean currents [4], and be
affected by water density, salinity, temperature, and static pressure, which are important for seismic
oceanography [41]. Therefore, the impact mechanism should be further analyzed and the velocity
direction threshold adjusted according to the above conditions in sea experiments.

In a pool experiment, the MBES is stationary. When experimenting on the lake, the MBES
is installed on the survey vessel and moves along the survey line. With fluctuation of the vessel,
the sonar produces changes in orientation, such as roll and pitch, which will bias the estimated target
motion displacement. Therefore, when processing the data on the lake, motion attitude information is
compensated. In addition, in the pool experiment, the position of the illuminated bottom is unchanged;
thus, the fluctuation of the echo from bottom in WCls of the adjacent pings is very small. When a survey
vessel is sailing, the fluctuation shows more significant changes, which is mainly due to statistical
fluctuation of the seabed echo energy. Therefore, in terms of the bottom part of the velocity field in
Figures 8 and 13, the estimated velocity in the lake experiment appears to be larger than that in the
pool experiment.

This paper aims to detect moving targets through high and low-speed fields, without considering
the rigorous verification of the accuracy of the estimated speed. This will be considered in subsequent
studies, such as using video-in-situ observations [13] for comparison. We will also consider the
combination of the backscattering strength of the bubble group to quantitatively estimate the flow rate
of the leaking gases. In addition, it is assumed that the seabed terrain is relatively flat when the velocity
direction threshold is used. If the terrain changes steeply, the appropriate values of this threshold may
be difficult to obtain. Moreover, fish may be one of the major reasons for misdetections, although the

(12)
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direction threshold is set. Therefore, in future research, seabed detection technology will be applied to
judge the seabed and eliminate seabed image interference. In addition, other features, such as target
shapes, will be considered to eliminate interference from fish.

H (m)

X (m)

w

Y (m) 2

Figure 15. The result of the amplitude threshold detection of WCI data measured on a short survey
line in the Songhua Lake.

Y (m) 25 / X (m)

Figure 16. The result of the multi-threshold detection of WCI data measured on a short survey line in

the Songhua Lake.

5. Conclusions

To achieve automatic detection of leaking gases from underwater pipelines, a detection method
based on the combination of motion and intensity information of WCI pixels was studied in this paper.
The motion of the image pixel was estimated using the Farneback optical flow principle, and two data
processing schemes were designed according to two types of WCI data. Through the data analysis of
two simulation experiments in a pool and a lake, it can be seen that the velocities obtained based on the
above two schemes had relatively good consistency. In addition, after the comprehensive threshold
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selection using amplitude and velocity information, leaking gases could be detected more efficiently.
From the perspective of our designed structure, Scheme B is more suitable for real-time implementation
of sonar hardware platforms, while Scheme A is more suitable for execution in display and control
software, and in post-processing.

In this paper, it is assumed that the trend of seabed topography is relatively flat in the design of the
velocity direction threshold. In future research, bottom-tracking technology will be introduced to judge
and eliminate the seabed image with more complex trends of topography, and morphological features
will also be introduced to judge and eliminate the other high-velocity motion and strong-backscatter
targets in water columns. Moreover, the influence of sound velocity changes for the thresholds will
be analyzed.
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Abstract: Innovative road signs that can autonomously display the speed limit in cases where the
traffic situation requires it are under development. The autonomous road sign contains many types
of sensors, of which the subject of interest in this article is the Doppler sensor that we have improved
and the constructed and calibrated acoustic probe. An algorithm for performing vehicle detection
and tracking, as well as vehicle speed measurement, in a signal acquired with a continuous wave
Doppler sensor, is discussed. A method is also experimentally presented and studied for counting
vehicles and for determining their movement direction by means of acoustic vector sensor application.
The assumptions of the method employing spatial distribution of sound intensity determined with
the help of an integrated three-dimensional (3D) sound intensity probe are discussed. The enhanced
Doppler radar and the developed sound intensity probe were used for the experiments that are
described and analyzed in the paper.

Keywords: Doppler sensor; acoustic vector sensor; road traffic monitoring

1. Introduction

We develop innovative road signs that can autonomously determine and communicate
(visually and over V2X, vehicle-to-everything radio messaging) the speed limit in cases where
the traffic situation requires it in connection with the project that was carried out in our department.
The project entitled “Intelligent Road Signs with V2X Interface for Adaptive Traffic Controlling” is
carried out in response to the demand for improving road safety and traffic efficiency. The developed
system of autonomous road signs will enable the prevention of the most common collisions on highways,
resulting from the rapid stacking of vehicles that results most often from accidental heavy braking [1].
Figure 1 shows an example of a dangerous road situation, together with a system of autonomous
road signs that display and wirelessly transmit (in the V2X standard) decreasing permissible speed as
drivers approach the place with traffic obstruction.

The new design demands for solving various research and construction problems, such as effective
and independent of weather conditions traffic monitoring based on simultaneous analysis of several
types of data representation [2]. The engineering part of the project, as well as previous research
results on this topic, as described in our earlier papers [3,4], were preceded by a series of experimental
studies. Their results showed that measuring speed and traffic density causes a number of problems in
practical conditions. For example, the use of visual analysis for this purpose encounters limitations
that are associated with restrictions on the visibility of vehicles in both RGB and thermal cameras.
The currently popular lidars also have some limitations and they are also relatively expensive. In this
case, an estimation of the traffic exploits optical opacity of cars and laser beam reflections as the
physical principle of working is often accompanied by advanced data processing [5]. Setting the sensor
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perpendicular to the axis of the road makes it impossible to count vehicles in the case of occlusion
(vehicles present on both lanes simultaneously), which causes many missed detections. Inductive loops
or pneumatic cables for counting vehicles are used as a source of reliable data. However, their use
requires installation in the road pavement, which is cumbersome and is only suitable for permanent
installations, rather than for temporary installation of road signs in hazardous locations.

Figure 1. Illustration of the principle of limiting the speed when approaching a dangerous place on the
road using autonomous road signs connected wirelessly to each other. Road signs communicate speed
in a traditional way and also via radio channels using the V2X standard.

Another approach is based on recording anonymous Bluetooth MAC addresses of devices
together with a timestamp as they pass by each detector, and then perform matching the addresses as
vehicles pass through the next detector [6]. Specialized hardware was developed for related research
(not covered in this paper), namely a radio module with software implementing the baseband controller
and the firmware link manager layers. We constructed a practical vehicle counter in this way and
then performed field tests showing that this technology makes a promising method of collecting
real-time statistical traffic data and actual journey times from measurements on long distances, e.g.,
1 km, which is not possible or difficult with other modalities [4]. However, counting vehicles that
are based on the MAC addresses of Bluetooth devices can be unreliable, because these addresses are
associated with both vehicles and mobile phones that are used by pedestrians. There can be several
Bluetooth devices in one vehicle, e.g., audio and communication devices, as well as radio modules that
are embedded in-vehicle diagnostic systems. Gupta et al. presented a different and interesting idea.
They proposed the system for vehicles (i.e., bicycles, cars, trucks) counting by means of variations in
the Wi-Fi signals strength [7]. Another approach that was related to the monitoring of traffic flow
exploited the magnetic sensors to measure the vehicle’s magnetic signature (VMS) evoked by moving
vehicles [8].

Still, measurements of traffic intensity and vehicle speed while using Doppler microwave sensors
find technical and economic justification. For example, a system that is based on high range resolution
based on microwave radar sensor has been previously proposed by other authors to estimate the
traffic flow rate and the flow rate of certain types of the vehicle [9,10]. However, microwave sensors
are exposed to interference due to noise in the radio channels and reaching the receiver by parasitic
reflections and microwave interferences. For this reason, we worked on this issue and presented an
experimentally verified approach in this paper that allows for improving the results that were obtained
while using a microwave radar.
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Acoustic methods of road traffic estimation are, in practice, quite rarely used, although experimental
research in this field is being conducted [11-13]. Our department has also been conducting such research
for some time, which resulted in publications [14,15] and a recently defended doctoral dissertation [16].

A method is presented and experimentally studied for counting vehicles and determining their
movement direction by means of the acoustic vector sensor application and the enhanced Doppler
microwave sensor. The assumptions of the method employing spatial distribution of sound intensity
determined with the help of an integrated three-dimensional (3D) intensity probe are discussed.
The developed intensity probe was used for the experiments that brought the results discussed in
the paper.

2. Materials and Methods
2.1. Vehicle Counting and Speed Measurement with Doppler Sensor

2.1.1. Doppler Sensor

The sensor that was used in the presented research emits a continuous wave with constant
frequency within the K band (24.125 GHz) and it provides a dual-channel (I/Q) signal with frequencies
below ca. 8 kHz, being proportional to the object’s velocity, according to the Doppler effect. The sensor
is characterized by a wide horizontal beam, which allows for capturing a vehicle’s movement within a
sufficiently long road segment (at least 50 m). This is different from the majority of radar sensors used
in practical measurement systems, which measure the vehicle speed within a narrow zone.

The sensor transmits an electromagnetic wave with a constant frequency fo. The frequency f;
of waves reflected from moving objects and received by the sensor differs from f(, according to the
Doppler effect [17,18]. An I/Q mixer produces a difference signal with frequency f;, in two channels:
in-phase (I) and quadrature (Q), which allows for the detection of the object’s direction of movement
(phase difference between I-Q channels is either 90° or —90°). The frequency f; is related to the object’s
velocity v, by an equation:

2 2
fd = |fi’_f0| = er = %Ur = Sv,, 1)

where c is the speed of light. For a K-band sensor, f( = 24.125 GHz, and the scaling factor S ~ 160.94
(vr in m/s). f3 < 8.94 kHz for road vehicles moving with speed up to 200 km/h (55.5 m/s). Therefore,
the difference signal fits in the audio band (it is indeed audible), so standard audio signal processing
algorithms may be applied for vehicle detection and speed measurement.

For practical reasons, it is not possible to directly mount the sensor on the vehicle’s path of
movement, therefore the sensor is usually placed alongside the road (Figure 2). As a result, the sensor
only measures the radial component v, of the velocity vector. As a vehicle moves through the detection
zone of a sensor, v, decreases when the vehicle approaches the sensor, and then increases as it moves
away. This is called a ‘cosine effect’ [19], as the actual velocity is multiplied by a cosine of the angle to
the object (Figure 2). Additionally, the angle difference between the front and the rear of the vehicle
becomes larger as the vehicle moves closer to the sensor, which results in v, values spanning a wider
range. Figure 3 illustrates this, showing a spectrogram of a signal reflected from a road vehicle and
recorded by a Doppler sensor. Signal frequency spans a range (f min, f max), given by:

fmin = SUCOS Amax = Sv; )
2+ y?
d
fmax = SUCOS Ayin = SZ)L 3)
(r+d)* + y?

where Figure 2 explains 7, d, y, and a.
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Figure 2. Measurement of the radial velocity of a vehicle with a Doppler sensor.
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Figure 3. Spectrogram of a Doppler sensor signal recorded when a single vehicle was moving towards
the sensor. The cosine effect is visible in the final phase (time 2.5-4.5s).

Compensation of the cosine effect is problematic. Therefore, frequency is usually taken from the
signal part captured at a large distance between the sensor and the object for speed measurement,
so that the angle « is small (cos a close to 1), the difference between apin and amax is also small,
and therefore the cosine effect is negligible. This approach was used in the proposed algorithm.

2.1.2. Algorithm for Processing of Doppler Sensor Signals

The task of the algorithm is to perform vehicle detection and tracking, as well as vehicle speed
measurement, in a signal that was acquired with a continuous wave Doppler sensor. Figure 4 shows an
overview of the processing algorithm. A dual-channel signal is received from an I/Q Doppler sensor.
The first stage is the signal preprocessing, which suppresses noise and interference in the signal and
then decomposes the signal into two components that represent opposite directions of movement.
In the next stages, signal components that are reflected by moving vehicles are detected, and tracking
of individual vehicles is performed. Finally, a velocity estimate is calculated from each identified
vehicle track. The details of the algorithm are presented in the following Subsections.
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Figure 4. Block diagram of the Doppler sensor and the processing algorithm.
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2.1.3. Suppression of Interference and Noise

The signals obtained from a Doppler sensor are often contaminated with distortions that make
the detection and tracking processes more troublesome (Figure 5a). There are two main types of
distortions that are observed in Doppler sensors. Noise is present in the signal as wide-band spectral
components with random amplitude and phase, as a result of sensor imperfections, the nature of
wave reflection, and environmental factors, such as wind. Electromagnetic interference (EMI) usually
manifests as narrowband spectral components with a constant frequency. They may be induced by
air (e.g., from nearby radio frequency transmitters, such as mobile network stations or airport radars)
and by power lines. The amount of signal distortion depends on the sensor class, its positioning,
and orientation, the quality of power supply, etc. As a result, a procedure for the suppression of
distortions is necessary before the detection and tracking are performed.

a 4500
4000 - ¢ L g L ot T it

3500
E 3000 4 ; -
2 2500
2

el

3 2000

eq

£ 1500 4

1000 1

Time [s]

Figure 5. Spectrograms of road traffic signals: (a) signal recorded by the Doppler sensor, with electromagnetic
interference (EMI) at multiplies of 1 kHz, and a wideband noise, (b) processed signal—suppression of noise,
interference, and signals reflected from vehicles moving away from the sensor.

Noise reduction is usually performed by computing a noise profile and subtracting it from the
signal. Such an approach requires the detection of signal parts containing only noise and constantly
updating the profile. It is also not efficient for EMI removal. Therefore, a novel approach, which is

55



Remote Sens. 2020, 12, 110

based on the phase relationship between I/Q channels, is proposed. An additional benefit of this
algorithm is the separation of the opposite directions of movement [20]. The algorithm is based on the
phase difference A¢ between the 1/Q channels of the sensor signal:

8¢ = argQ(w) - argl(@) )

where Q and I are the spectra of the respective signal channels.

In theory, A¢ should be equal to +90° for signals that are reflected from moving objects. In practice,
A¢ varies within a range, depending on the sensor class. The following observations were made from
the analysis of phase in I/Q sensor signals [20]:

e  signal components reflected from objects approaching the sensor or moving away from it have
Ao following a normal distribution with mean equal to 90° or —90°, respectively;

e  for the noise, A¢ has a normal distribution with the mean value close to 0° and it might overlap
the signal parts, depending on the sensor class; and,

e  EMIis concentrated around A¢ = 0°, as it influences both 1/Q channels in an identical way.

Therefore, the algorithm for suppression of noise and EMI is based on the concept of a ‘phase
filter’, as illustrated in Figure 6. The signal spectrum is multiplied by a weighting function w given by:

1

w(w) - 1+ o7 (u(w)-0.5) ®)
where u is given by:
Ad(w)
=1- -1
u(w) ‘max( %0 ,0) ‘ (6)
for objects moving towards the sensor (‘oncoming’), and
—A
ulw)=1- ‘max(%,o) - 1’ 7)

for objects moving away from the sensor (‘outgoing’), where A¢ is expressed in degrees [20]. The y
parameter controls the shape of the weighting function. As shown in Figure 6, part of the signal energy
is lost if 1 is used as the weighting function (the ‘no y’ case), and the overlap with the noise distribution
is larger than in the case of additional shaping of the function. In the experiments, the authors found
that y = 20 is optimal, providing a proper balance between signal preservation and the suppression of
distortions.

Figure 5b shows the example results of the preprocessing while using the proposed algorithm.
As can be seen, EMI that occurred at multiplies of 1 kHz (most prominent at 4 kHz) is almost completely
removed and wideband noise is significantly suppressed. The remaining speckle-noise results from
the partial overlapping of signal and noise distributions, and from ‘reflected” signals, captured when a
vehicle has already passed the sensor. Such remaining noise components are discarded with amplitude
thresholding in the later stage of processing. As can be seen, two opposite directions of the movement
were separated, so that they may be individually analyzed. The detection and tracking phases are
now significantly easier to perform due to the removal of occlusion by objects that are moving in
opposite directions.
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Figure 6. Polar plot illustrating the concept of phase filtering. Filled areas show distributions of signal
and noise (0 = 30°), dashed lines show the shape of the weighting functions. The outer axis is scaled in
the phase difference between I/Q channels (in degrees), the radial axis shows relative amplitude or gain.

2.1.4. Vehicle Detection, Tracking, and Velocity Estimation

The automatic measurement of the velocity of vehicles in road traffic, being performed by an
unsupervised algorithm, requires performing three stages. First, the detection of spectral components
that represent moving vehicles is performed in the preprocessed signal, in blocks of signal samples
(short term analysis). In the second stage, the detection results have to be assigned to vehicles, so that
changes in the signal frequency (caused by the object movement and the cosine effect) are tracked.
The preprocessing algorithm that is presented in the previous Subsection, by decreasing the level of
noise and interference, allows for easier vehicle detection, and eliminating occlusion from vehicles
moving in the opposite direction allows for easier tracking. Occlusion from vehicles moving in
the same direction still occurs and it is the main problem in the tracking. In the final stage of the
analysis, the estimated velocity is extracted from each vehicle track. It should be noted that the velocity
measurement with an automatic algorithm is much more problematic than where a human operator is
able to relate the measurements to the observed vehicles.

The detection algorithm works on signal spectra that were computed in short windows (e.g., 2048
samples, 42.6 ms for 48 kHz sampling), after multiplication by the weighting function, as described
earlier. The detection works by finding sequences of spectral bins with an amplitude above a threshold
(that should be set according to the signal level and the remaining noise level). The threshold should be
sufficiently low in order to detect weak signals when a vehicle is far from the sensor. Groups of spectral
bins containing the reflected signal become larger when a vehicle approaches the sensor (Figure 3).
In practice, gaps occur in such groups (due to weaker signal components at some frequencies), and such
gaps result in the segmentation of signal parts. These fragments have to be merged in the detection
phase. It is also inevitable that some strong noise components are incorrectly detected as signals.

The tracking algorithm merges the detection results from consecutive time windows. Each stored
track is extrapolated to find the expected frequency in the current window. Linear interpolation is used
in the initial phase and cubic interpolation in the later stage for objects approaching the sensor. Next,
the detected groups of spectral bins are searched for the one closest to the expected value. If such a
group is found, this group is appended to the track, its centroid frequency is computed, and the lowest
and the highest frequency is stored in the track. The track is not updated when no matching group
is found. Additionally, dead tracks are removed from the analysis, and finished tracks (i.e., with a
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sufficient length, and with a minimum frequency below a threshold of ca. 500 Hz, below which the
vehicle is very close to the sensor) are passed to the velocity estimation phase.

The velocity of a vehicle should be measured within an initial (‘thin” and flat) section of a track.
Therefore, a finished track is analyzed in short sections. Frequency computed in each window is
converted to velocity, and then the mean and the standard deviation are computed for each section.
The algorithm selects a section with the highest mean, provided that the standard deviation is below
the threshold. The latter condition allows for the elimination of tracking errors (track following a
group of noise components) from velocity estimation. The computed standard deviation is used as a
representation of the ‘quality” of the result. If the value is obtained from an initial, flat section of a
track, and the standard deviation is low (<0.1 km/h). The value is obtained from the later track part
(with decreasing frequency), which will be reflected by the higher standard deviation, if there is no flat
segment, e.g., due to occlusion by another vehicle ahead. The results with a high standard deviation
(>1.0 km/h) should be discarded.

Figure 7 shows an example of a successful analysis in a signal recorded during the experiments.
Only vehicles moving on the lane closer to the sensor (the oncoming traffic) were analyzed. The results
of the detection stage are shown as gray points. Some of the detected components are assigned to
the tracks of individual vehicles, color dots mark the computed centroids of the detected spectral bin
groups, thus forming continuous tracks. The obtained velocity estimates are also shown in the plot.
All of the estimates had a standard deviation not exceeding 0.25 km/h.

Velocity (kmy/h)

T v T T T
0 1000 2000 3000 4000 5000
Frame number

Figure 7. Example of vehicle detection and velocity measurement with the proposed algorithm. Gray
points indicate the detection results, color dots mark the detection results assigned to the tracks of
individual vehicles (distinguished by a color), values show the obtained velocity estimates (km/h).

2.2. Vehicle Counting and Speed Measurement with Acoustic Vector Sensor

2.2.1. Acoustic Vector Sensor

An intensity-based AVS (Acoustic Vector Sensor) described in this paper consists of three pairs
of pressure sensors (microphones) positioned on three orthogonal axes, in equal distances from the
center point. Each pair of microphones forms a p-p sensor, which is used for measuring the particle
velocity in a given direction. The averaged pressure at the center point is computed as a mean of all six
pressure signals. The intensity on each axis is proportional to the product of the particle velocity and
the averaged pressure. Figure 8 shows the AVS used during experiments. Computation of intensity
and angles are performed by the algorithm, as outlined in Figure 9. The developed algorithm for source
localization and tracking has three main sections. The first part is related to the correction section.
Correction of the pressure signals, as obtained by the microphones, should be applied for the proper
determination of the sound intensity. This correction is realized in two steps. First, the frequency
responses of all microphones are equalized, and the phase response in the microphone pair is also
equalized (block denoted as A&P.Corr in Figure 9). Next, the particle velocity on each axis (ux, uy, uz)
and the average acoustic pressure p are calculated. Then the second step of the correction is performed
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in which phase differences between the particle velocity and the average acoustic pressure signals
are equalized (P.Corr). The authors’ previous publication described the detailed description of the
calibration and correction process [21].

(b) (0

Figure 8. The acoustical vector sensor (AVS) designed by the authors (a), the AVS inside the windscreen

(b), and the AVS during the measurements (c).
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Figure 9. Block diagram of the developed algorithm for detection, localization, and tracking of moving

sound sources.

After these steps, the sound intensity components (ix, iy, iz) can be determined by computing a
product of each intensity component with the averaged pressure signal and by integrating the result [22,
23]. The second part of the algorithm contains smoothing blocks, labeled as S. Noise suppression
procedure has to be applied to each intensity signal in order to make the vehicle detection possible. In
the experiments described in this paper, a Savitzky—-Golay filter was used in order to suppress noise
and to obtain smoothed intensity functions [24]. The optimal values of the filter length (51) and the
polynomial order (3) were experimentally found, as a good balance between the details and noise
present in the processed signals. At the end of the second part, the three smoothed components Ix, Iy,
and Iy are known.
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The last section, labeled as V.D.—vehicle detection block—uses the intensity components and
values of azimuth and elevation angle for making a decision regarding the presence of sound source
(a vehicle in the considered scenario).

2.2.2. Intensity Computation

A three-dimensional (3D) AVS applied during our research is able to measure the acoustic particle
velocity (referred to as “velocity” further in the text) in three orthogonal directions, as well as pressure
in the central point of the sensor. Sound intensity vectors in three orthogonal directions may be
obtained based on the velocity and pressure measurement results.

The acoustic pressure has to be measured at six points located on three orthogonal axes, at identical
distances d from the origin. These points are denoted as x1, x2, y1, y2, z1, and z2, describing their
location in the coordinate system, e.g., point y2 is located at (0, 4, 0) and y1 at (0, —d, 0). Omnidirectional
microphones of the same type are used to measure pressure pj(t) at six locations /. According to the
Euler’s formula [22], velocity vectors u;(t) alongside axes X, Y, Z may be computed as:

u(f) ax 0 0 pa(t) = pa (t)
uy(t) |=| 0 ay 0 |- pya(t)=pu(t) ®)
u.(t) 0 0 a pa(t) =pa(t)

where g; are the scaling factors (determined during calibration procedure). The magnitude of the u;(t)
vector will be denoted as u;(f). Pressure p(t) measured at the origin is averaged from two points at the
given axis and it has to be equal on all three axes. In practice, the pressure is averaged from all six
microphones (as in Equation (9)):

_ () +pa(t) +py(t) +pp(t) +pa(t) +p2(0)

p(t) g )
The sound intensity I at a given axis can be then computed, as [22]:
1
I= Tfp(t)u(t) dt (10)
T

where T is the integration period.
If a single, omnidirectional sound source is put into the system at polar coordinates (7, ¢, 0),
the angles of the sound received by the AVS may then be computed as:

X

Ly
¢ = arctan(I—) (11)

6 = arctan| Lk (12)
JE+I

where Iy, I, I, are the intensity signals measured along the axes of the coordinate system, being oriented
as shown in Figure 10.

In general, the sound intensity is determined by means of the algorithm described above in the
time domain while using broadband signals of acoustic pressure and particle velocity. For purposes
that are considered in this article, it is important to perform sound intensity calculation in the frequency
range related to the acoustic events produced by vehicles moving near the sensor. The frequency
analysis of the background noise and pass-by vehicle sounds were performed to avoid the unwanted
and disturbing sounds emitted by other sound sources during vehicle movement. Figure 11 shows
the results of this analysis. The dotted line indicates the background noise. The solid line depicts
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the spectrum of pass-by vehicle event. It can be noticed that for frequency greater than 6 kHz the
background noise is close to the noise that is emitted by the vehicle. The grasshoppers generated this
high background noise. Low-frequency noise can be produced by the wind and other sound sources
placed far away from the measurement point. For this purpose, the sound intensity analysis was
limited to the frequency range: 400 Hz—4 kHz. It was shown in Figure 11 while using two vertical
dotted lines. In this way, the essential part of the acoustic energy emitted by the moving vehicle was
taken into consideration during the calculation of sound intensity and direction of arrival.

X
Z

Figure 10. Orientation of the acoustic vector sensor relative to the road.
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Figure 11. Acoustic energy distribution in the frequency domain for background noise and for the

pass-by vehicle.

Figure 12 shows an example of the output of the algorithm described above for an acoustic
event evoked by a single pass-by vehicle. The left chart depicted the sound intensity components.
We can indicate the highest values that were obtained for the direction perpendicular to the road
(Iy). Other components have relatively lover values. This observation will be an essential fact during
the development of the vehicle detection module. The right chart includes the direction of arrival
components, being expressed by azimuth and elevation angles. In Figure 13, an example of 120 s of
sound intensity continuous analysis was shown. The acoustic events that are evoked by the vehicles
are clearly visible. An event typical for a group of vehicles occurred around 80 s. The rapid changes of
the azimuth angle can be noticed for this event. It is important to emphasize that no other acoustic
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events than passing vehicles can be observed. It confirms that the frequency range of sound intensity
calculation was correctly selected.
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(a) (b)
Figure 12. The results obtained from the AVS signal recorded for a single-vehicle: (a) intensity
components, (b) azimuth and elevation.2.2.3. Vehicle Detection.
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Figure 13. The results obtained from the AVS signal recorded for several vehicles: (a) intensity
components, (b) azimuth and elevation.

The algorithm works in two stages. The first stage is based on the analysis of sound intensity
signals and it detects acoustic events. The second stage analyses a detection function, based on the
normalized source position, its task is to determine whether the acoustic event represents a vehicle
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passing the sensor and detecting its direction of movement. The detected and verified acoustic events
may be analyzed further, e.g., for the velocity estimation.

In the first stage, the intensity signal is analyzed with a sliding window w of length N, moving with
a step equal to one sample. In the experiments, the window span was about 640 ms. It was found that
using the intensity signal that was measured on the axis perpendicular to the road (Iy) provides better
results than the total intensity. An acoustic event is detected if:

N
1
Wy /2 = max;w; and N; Iy(i) = Tint (13)

where T}, is the minimum average intensity within the window and I is the sample index within the
window. The value of Tj,; must be set according to the amplitude of the analyzed signal, so that both
low-energy and short-term (impulse) acoustic events are discarded.

The second stage of the algorithm analyzes the changes in the normalized position of the sound
source. Position x of the source moving along the trajectory parallel to the X-axis of the system, at a
normalized distance of ¥ = 1 m, is equal to:

x = tan(p) = = (14

where ¢ is the azimuth of the source.

If a vehicle moves along this trajectory with an approximately constant velocity, then smooth
changes in x will be observed, and the direction of these changes will indicate the direction of the
object’s movement. For acoustic events that are not related to moving vehicles, much larger changes in
the source position can be expected. Therefore, the detection metric d, as computed within the same

window as in the first stage, is:
IY i+1) (z) )
- (15)
NZ(IX i+1) (1)

Only the first half of the window is used. In the case of isolated vehicles, the second half
is redundant and, if several vehicles move close to each other, their measured intensities overlap,
which usually causes more distortion in the second part of the window. The sign of d indicates the
direction of movement: vehicles moving towards positive x values have d < 0, vehicles moving in the
opposite direction have d > 0. Additionally, standard deviation within the window might be computed,
similarly to d. It is expected that the standard deviation will be small for vehicles moving past the
sensor, and high for unrelated acoustic events, which might be discarded with a maximum standard
deviation threshold.

Figure 14 presents an example of detection. The maxima of the intensity function is detected as
acoustic events (Figure 14a). The detection function (normalized x position) smoothly changes within
the acoustic events and oscillates randomly when no events are present (Figure 14b). The value of 4
computed for each event indicates the direction of a vehicle’s movement; this is marked with bars
pointing upwards or downwards for d < 0 and d > 0, respectively.

Detections from the reference data are marked with dots, with the direction being indicated in
the same way. It can be observed that most of the vehicles were correctly detected and identified.
For isolated vehicles (frame 28429), the detection function changes smoothly within the whole detection
window, and the analysis is straightforward. When multiple vehicles are moving close to each other,
their detection functions overlap. In some events (e.g., frames 31804 & 31898), the results are correct.
In the case of a heavy occlusion (multiple vehicles on both lanes), the probability of errors increases.
In the presented example, the vehicle in frame 29835 is detected, but its direction is incorrect, due to the
overlap of detection functions from many vehicles, and one vehicle (frame 29742) was missed, as two
intensity maxima from two vehicles merged into a single one.
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Figure 14. Example of the detection results: (a) sound intensity (line) and detected acoustic events (+);
(b) detection function (line), detected vehicles (vertical bars, the direction of bars indicates the direction
of movement), reference data (dots, vertical position indicates the direction of movement).

3. Results

3.1. Test Setup

A test setup was constructed and experiments were performed in a real-world scenario in order
to verify the proposed algorithms. A low-cost RSM2650 Doppler sensor by B+B Sensors [25] was
used. The sensor was connected through a custom-built amplifier and an analog-to-digital converter
(48 kHz sampling rate) to a Raspberry Pi 3B microcomputer. All of the elements, together with an
LTE router and a power supply, were placed in an enclosure (Figure 15). In the first stage of the
research, signals from the sensor were recorded on the microcomputer and then downloaded for offline
analysis. The analysis of the Doppler sensor signal was performed online on the microcomputer in
the experiments described here, and the results (timestamp, velocity, and standard deviation) were
available via the MQTT network protocol. The signal was analyzed in windows of 2048 samples
(42.67 ms) with 75% overlap while using the Blackman window before FFT was computed. The
processing algorithm was implemented in the Python programming language.

The AVS was constructed from six omnidirectional digital MEMS microphones, IvenSense
INMP441 [26], operating at 48 kHz sampling rate with 24-bit resolution. Each microphone was
mounted on a board of ca. 10 x 10 mm size that was connected through an 12S USB digital interface to
a USB port on a computer (Figure 8). The sensor was mounted in a windshield at the bottom side of the
enclosure. The six-channel signal was recorded on the microcomputer and then stored on a hard drive.
The recordings were analyzed offline. Additionally, environmental sensors (temperature, pressure,
precipitation, air quality), as well as a LIDAR sensor and a video camera, were mounted on the
enclosure; these were not used in the experiments described here.

The test system was mounted on the outskirts of Gdarisk, Poland (near Lezno village), geographic
coordinates: 54.344555, 18.443811. The monitored road section had one lane in each direction and the
speed limit was 90 km/h. The measurements were performed on a straight and flat section of the road
(Figure 16), where the typical speed of vehicles is 60 to 80 km/h. The enclosure was mounted 4 m away
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from the road edge and the bottom side of the box was 2.9 m above the ground. The Doppler sensor
was positioned at 3.2 m above the ground, oriented at 45° azimuth, and —18° elevation relative to the
road axis. The algorithm only analyzed the closer lane (eastbound traffic).

Figure 15. The test system mounted on the site. The Doppler sensor is located inside the box marked
with the rectangle, the AVS in a windshield is visible at the bottom right, below the enclosure.

Figure 16. The test road section—a view from the camera mounted in the test system. The first
measurement tubes are mounted at the trees visible in the back, the second pair is positioned near the
bottom right corner of the photo.
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A system based on pneumatic tubes (Metrocount MC5600 Vehicle Counter System) was mounted
on the road in order to obtain reference data for the experiments. Two pairs of tubes were used.
One pair was positioned near the test system, for comparison with the AVS results. The other pair of
tubes were mounted ca. 100 m away, within the zone of Doppler sensor detection. Recordings that
spanned a continuous period of 24 h (July 1st, 14:00 to 2nd July 2019) were obtained, and timestamps
and velocity measured for each vehicle (from both lanes) were used for comparison with the Doppler
and AVS sensors results. The temperature during the recording was 15 °C to 26 °C, average pressure
was 997 hPa, the wind was up to 7 m/s from the West, and there were occasional periods of rainfall
(about 15% of the total time).

3.2. Analysis of Vehicle Counting

Aggregating the detection results in 30-min. periods was undertaken to analyze the results of
vehicle counting on the lane closer to the test setup. Data from the tubes were used as the reference
and it is assumed that there are no detection errors in the recorded data (this was partially confirmed
by reviewing selected sections of the recorded video). Table 1 presents the results that were obtained
for both sensors within the measurement period. For the AVS, a total of 30 min. was missing from the
recorded material due to technical difficulties. Figure 17 shows the vehicle count aggregated in 30 min.
intervals, for the data from the Doppler sensor, analyzed by the proposed algorithm, and data from
the reference device. Figure 18 presents a similar plot calculated for the AVS. The Pearson correlation
coefficient between the sets of the calculated and the reference vehicle counts is 0.994 for the radar and
0.995 for the AVS.

Table 1. Summary of the vehicle detection results.

Sensor Doppler AVS
Analyzed time 24 h 23 h 30 min

Total number of vehicles 2998 2953
True detections 2742 2583
False negatives 256 370
False positives 44 189

Recall 91.46% 87.47%

Precision 98.42% 93.18%

Accuracy 90.14% 82.21%
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Figure 17. Vehicle count in 30-min. intervals—measured with the Doppler sensor and the proposed
algorithm (solid line), and the reference data from the tube detector (dashed line).
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Figure 18. Vehicle count in 30-min. intervals—measured with the AVS and the proposed algorithm
(solid line), and the reference data from the tube detector (dashed line).

‘Ghost tracks” when the algorithm followed noisy components of the signal and produced
duplicated detections mainly caused the observed false-positive results. To conclude, improving the
algorithm accuracy requires its modifications that will make it more robust to the observed errors,
and also tuning the algorithm parameters and, if possible, repositioning the sensor.

The results of vehicle counting that were obtained with the AVS and the proposed algorithm
(Figure 18) were consistent with the results from the Doppler sensor. The number of false-positive and
false-negative results is slightly larger for the AVS, the overall accuracy is lower (82% vs. 90%). The main
source of incorrect detection results is the problem with determining the direction of movement in the
case of occlusion (vehicles on both lanes, moving in opposite directions) and when several vehicles
move close to each other. In such cases, the detection function does not allow for accurate direction
analysis, because the signals from multiple vehicles overlap. As a result, some vehicles were detected,
but their direction was incorrect, as shown in Table 2. However, this problem occurs on both lanes.
In the presented experiment, the number of vehicles on each lane was similar, so that false positive and
false negative results on each lane were mostly balanced. Some vehicles could not be detected at all,
which was mostly due to high occlusion. As shown in Table 2, the number of vehicles in the closer
lane that was not detected is almost equal to the number of vehicles detected with incorrect direction.
The number of vehicles that were not detected is similar on both lanes, while the incorrect detection
of the direction happens more often on the closer lane. The number of false detections is higher in
the further lane, which results from the occlusion. In total, statistics that were obtained in 30-min.
intervals were very similar to those from the Doppler sensor, they also slightly underestimate the real
vehicle count in the case of high traffic. The trend also highly correlates with the reference data.

Table 2. Detailed analysis of vehicle detection in the AVS signal, on both lanes.

Lane Closer Lane Further Lane Both Lanes
Number of vehicles 2953 2940 5893
Detected, correct lane 2583 2691 5274
Detected, wrong lane 191 80 271
Not detected 179 169 348
False detections 109 190 299

3.3. Analysis of Velocity Measurement Using Doppler Sensor

Comparison of velocity measured by the proposed algorithm analyzing signals from the Doppler
sensor and by the reference device cannot be accurately performed due to the fact that the tube-based
system measured the velocity at one point, about 100 m from the sensor, while the Doppler sensor
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measured velocity at different points within the zone approximately 50 to 100 m from the sensor.
Therefore, any observed differences may be caused both by measurement errors and by vehicles
that accelerate or brake within the detection zone. The mean squared difference (MSD) between the
measurements of individual vehicles by both sensors is 19.45, with a standard deviation that is equal to
176.47, and the root of the MSD (RSMD) is 4.41 + 13.28 km/h. The accuracy of measuring the velocity of
individual vehicles with the proposed algorithm is satisfactory while taking the condition mentioned
before into account.

Figure 19 shows the results of averaging the velocity in 30-min. intervals for both data sources.
It can be observed that the results that were obtained from the evaluated algorithm are slightly lower
than for the reference device (MSD 1.93 + 1.68, RMSD 1.39 km/h). Both datasets follow a similar trend
and the Pearson correlation coefficient is 0.92. This confirms that the evaluated algorithm provides
velocity measurements with accuracy that is sufficient for collecting traffic statistics.
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Figure 19. Vehicle velocity in 30-min. intervals—measured with the Doppler sensor and the proposed
algorithm (solid line) and reference data from the tube detector (dashed line, shifted on the time axis
for improved readability). Points represent mean velocity, error bars—standard deviation.

3.4. Analysis of Velocity Measurement Using Acoustic Vector Sensor

The vehicle velocity measurements using the Acoustic Vector Sensor are not so obvious as for the
Doppler sensor. In the beginning, we need to mention that the AVS gives as the possibility to localize
and tracking of moving sound sources. Let us consider a single point sound source moving through a
linear trajectory, parallel to the X-axis of the sensor, with a constant velocity. The position of the source
is P(t) = (x(t), y), where y is constant. The velocity of the source might be expressed as:

_ Ax Ay-tang)  y (IX)

Iy

=2A

At At Y (16)

where ¢ is the azimuth measured by the sensor.

Real vehicles are not single sound sources, but rather a setup of several sources (tires, engine,
exhaust, etc.). Distances between sources, differences in the source power, and in the directivity of
each source all contribute to the obtained results because the vehicles move close to the sensor. It was
confirmed by a computer simulation, in which the azimuth that was computed for a single source and a
setup of four sources, moving with the same velocity, was calculated. The obtained results (Figure 20),
which are consistent with the measurements from the real AVS, indicate that the azimuth that was
obtained for multiple sources moving together (solid line) deviates from the tangential line of the
single-source case (dotted line). This is caused by an additional velocity component, representing the
movement of a virtual sound source within a vehicle, which is nonlinear, with the opposite direction to
the velocity vector of the moving vehicle. The AVS measures the position of a virtual sound source,
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so both velocity components are included. As a consequence, the velocity estimate computed by the
algorithm (which assumes a single source) is lower than the real velocity. The difference depends on a
number of factors, such as the width and the length of a vehicle, distance from the sensor, relative power
of each source, and directivity of the sources. These variables are unknown, so it is not possible to
correct the obtained velocity estimates.
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Figure 20. Computer simulation of the azimuth for a single source (dotted line) and an azimuth
measured by the sensor (solid line).

4. Discussion

The accuracy of the proposed algorithm for vehicle counting in the Doppler sensor signals is
approximately 90%, which is low for systems that are intended to detect each vehicle (e.g., traffic law
enforcement systems), but it is sufficient for the intended application of collecting traffic statistics.
Two main reasons for false-negative results were identified during the analysis of the obtained results.
The first problem is common for all radar-based detection systems: it is difficult to distinguish each
vehicle driving in a ‘train’, where several vehicles move close to each other. The most common error in
the obtained result was skipping one vehicle in a sequence of four or more vehicles moving almost
‘bumper to bumper’. The problem is that since all of the vehicles move with similar velocity, tracks of
these vehicles overlap, and, in some cases, the tracking algorithm merges one track with another. It can
be observed in Figure 17 that false-negative results mainly occur during the rush hours, which confirms
these conclusions. One possible solution to this problem, left for future research, is implementing an
additional algorithm that analyzes low-frequency components (final sections of the tracks) and detects
vehicles moving past the sensor. Such an algorithm is not trivial, as noise and slow objects distort
low frequencies (bicycles, pedestrians). The second problem was related to cars moving with high
velocity, above 100 km/h. In the test system, the sensor was positioned too far from the road (due to
practical constraints), which resulted in a low signal-to-noise ratio, causing a loss of the initial section
of the tracks. For vehicles moving with high velocity, some tracks were too short to provide valid
measurements. Moving the sensor closer to the road, and by decreasing the minimal track length,
which in turn may increase the number of false-positive results, can mitigate this problem.

As discussed earlier, it is not possible to measure the exact velocity of individual cars with the AVS,
as the obtained values underestimate the real velocity. Nevertheless, an attempt was made to calculate
the averaged velocity within the time slots. For this purpose, the velocity of each vehicle was estimated
within sections of the AVS signal, as determined by the vehicle detector. The distance between the
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sensor and the vehicles was chosen as 5.5 m for the closer lane and 8.5 m for the further one—a midpoint
of each lane was selected as an average distance to the sound source. In some cases, due to occlusion
by multiple vehicles present in the detection zone at the same time, the velocity estimation was not
possible in some cases. In fact, as much as 11% of the detected vehicles were discarded from the analysis.
The remaining speed estimates were averaged within 30-min. periods. The results are shown in
Figure 21. Just like the results obtained for the individual vehicles, the averaged values are significantly
lower than the real velocity from the reference device. However, the obtained pseudo-velocity function
correlates with the reference data and Pearson’s coefficient is 0.78. Therefore, the obtained values may
be used as an indicator of relative velocity changes, allowing e.g., for detection of periods in which the
averaged velocity falls below a selected limit, even if the actual velocity cannot be measured with the
AVS. Moreover, the ratio of the obtained estimates to the reference data, as computed for each time
slot, is 0.78 + 0.03 (mean + standard deviation), so it is stable within the whole observation period.
A more accurate estimate of the real velocity is obtained if the obtained estimates are multiplied by the
scaling factor equal to the mean ratio. The results of the experiments indicate that this scaling factor
mainly depends on the distance between the sensor and the road, as other factors, related to individual
vehicles (width, height, and velocity of a vehicle, position on the lane) are averaged and they do not
influence the result. Therefore, the scaling factor might be potentially determined by measuring the
distance between the sensor and the road. This aspect requires further research.
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Figure 21. Velocity estimation from the AVS signal, averaged in 30-min. periods, as compared with the

reference data.

The main advantage of the Doppler sensor is that it is capable of accurate measurement of the
velocity of both individual vehicles and time-averaged statistics. The AVS is not able to achieve that,
because the position of an apparent acoustic source within a vehicle is not constant. The correction of
this effect is a separate problem that is outside of the scope of this paper and it is left for future research.
Nevertheless, after applying an empirically found scaling coefficient, the AVS is able to provide traffic
statistics with sufficient accuracy for the intended purpose, i.e., determining the trends in traffic speed
variations and detection of periods in which the averaged velocity falls below a selected limit.

The vehicle counting accuracy relative to the traffic intensity is similar for both methods;
they underestimate the vehicle count in high traffic scenarios. Both methods achieve accuracy
close to 100% if the traffic intensity is below 100 vehicles per hour.

Although the acoustical vector sensor (AVS) has a lower accuracy than Doppler in vehicle counting
and it is not able to measure the vehicle speed accurately, it has some advantages over the Doppler
sensor. Namely, it does not emit any signals, it is not susceptible to electromagnetic interferences,
and it allows for further analysis of audio signals, such as the assessment of the road surface state
(e.g., wet/dry).
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5. Conclusions

The authors developed and examined two methods for estimating traffic intensity in real traffic
conditions. The first method is based on a microwave Doppler sensor. This method requires that the
sensor emits a microwave signal, so it is an active method. This sensor is susceptible to electromagnetic
interference from nearby sources, such as power lines, radar systems, cellular network base stations,
etc. Additionally, waves that are emitted by the sensor may interfere with other devices operating in
the same frequency range. The second method is based on an analysis of sound intensity vectors by
means of the acoustic vector sensor. This method passively analyses acoustic signals that are emitted
by moving vehicles. The sensor is not affected by electromagnetic interference, but acoustic noise
might influence its operation. Both of the methods were evaluated in a real-world scenario while using
a reference system based on pneumatic tubes. The conclusions are, as follows.

The vehicle counting accuracy of the proposed algorithm using the Doppler sensor signals is
approximately 90%, which is sufficient for the intended application of collecting traffic statistics.
The observed errors result from factors that are common for all radar-based measurement systems,
namely the occlusion of multiple objects, inability to distinguish vehicles moving close to each other
with similar speed, and duplicated detections for some vehicles. Modifications of the proposed
algorithm and tuning its parameters to improve the detection accuracy in difficult situations, such as
those observed in the experiments, is a topic of future research.

For the acoustic vector sensor, the proposed algorithm for vehicle counting provided results that
are consistent with these from the Doppler sensor, with a slightly larger number of false-positive and
false-negative results, and lower overall accuracy (82% vs. 90%). The main problem is related to
determining the direction of movement in the case of occlusion (vehicles on both lanes, moving in
opposite directions) and when several vehicles move close to each other. In such cases, an accurate
direction analysis is problematic because the signals from multiple vehicles overlap. As a result,
vehicles are detected, but their direction of movement is not correctly recognized. The algorithm also
slightly underestimates the real vehicle count in case of high traffic. These problems will be addressed
in future research.

Our observations that were collected in the course of experimental studies show that microwave
sensors and acoustic sensors have application prospects for measuring traffic in order to discover
traffic congestions by autonomous road signs or in other traffic measuring systems. The Doppler radar
that we have improved and the constructed and the calibrated acoustic probe are applicable to perform
vehicle detection and tracking, as well as vehicle speed measurement.

Both methods may be used for statistical analysis of traffic intensity and speed, providing valuable
data for automated traffic management systems. The main advantage of the acoustic sensor over
the microwave sensor is that it does not require sending any signals that could interfere with nearby
devices, and it is not affected by any sources of electromagnetic signals in the vicinity.

The future work will focus on the optimizations of the proposed algorithms, which will lead to
the increased accuracy of vehicle counting and velocity measurement. In the case of the AVS, the main
topic of the research will be related to improving the algorithm for the detection of vehicle direction,
and on developing a method for correction of the moving apparent sound source, which will allow for
velocity measurement with the AVS.
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Abstract: Due to advantages such as its low power consumption and higher concealment, deceptive
jamming against synthetic aperture radar (SAR) has received extensive attention during the past decades.
However, large-scene deception jamming is still a challenge because of the huge computing burden.
In this paper, we propose a new large-scene deceptive jamming algorithm. First, the time-delay and
frequency-shift (TDFS) algorithm is introduced to improve the jamming processing speed. The system
function of jammer (JSF) for a fake scatter is simplified to the multiplication of the scattering coefficient,
a time-delay term in the range dimension and a frequency-shift term in the azimuth dimension. Then,
in order to solve the problem that the effective region of the TDFS algorithm is limited, the scene
deceptive jamming template is divided into several blocks according to the SAR parameters and
imaging quality control factor. The JSF of each block is calculated by the TDFS algorithm and added
together to achieve the large-scene jamming. Finally, the correction algorithm in squint mode is derived.
The simplification and parallel-block processing could improve the calculation efficiency significantly.
The simulation results verified the validity of the algorithm.

Keywords: synthetic aperture radar (SAR); space-borne SAR; deceptive jamming

1. Introduction

Synthetic aperture radar (SAR) is an effective system that uses electromagnetic waves for
high-resolution imaging. Due to the unique advantages of its all-day, all-weather operation, and ability
to penetrate camouflage compared with traditional optical remote sensing methods, SAR has become
a major means of remote sensing and has been widely used, especially in the military field. At the
same time, for the purpose of protecting sensitive targets and regions, electronic countermeasures
against SAR have received intensive attention [1-5].

In general, active electronic interference against SAR is divided into two types: barrage jamming
and deception jamming. The former uses high-power noise to cover the echo signal from the region of
interest (ROI) and makes it impossible to form a clear and distinguishable image [6,7]. The latter emits
an echo signal of a false target by the direct generation or modulation-retransmission method, which
is mixed with the echo of the real target, affecting the image interpretation process and achieving the
purpose of “hidden truth in falsehood” [8-19]. Compared with barrage jamming, deception jamming
belongs to a type of smart jamming method which has lower power consumption, higher concealment,
and more flexible application scenarios; thus, it is more attractive and does not arouse the awareness of
the enemy.
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At present, almost all SAR deceptive jamming methods are based on the modulation and
retransmission mechanism. In each pulse repetition interval (PRI), according to a series of parameters
of the SAR which should be jammed, including kinematic parameters, antenna parameters, and signal
parameters, and combining the jamming scene template, the jammer modulates and retransmits the
intercepted radar pulse to generate a jamming signal, which will form a false image after range and
azimuth compression by the receiver. The deceptive jammer can be regarded as a linear time-invariant
(LTI) system in a single PRI. The problem of obtaining the system function of jammer (JSF) is a focus in
the field of SAR deceptive jamming. A straightforward method is to calculate the signal propagation
delay difference between each scatter in the jamming scene template and the jammer during each
PRI [8]. However, this method is computationally intensive and can hardly guarantee real-time
processing. Subsequent research has mainly focused on reducing the computational complexity and
increasing the processing speed. Usually, parts of the processing are performed in advance to reduce
the computational burden during the implementation of jamming. In the specific implementation,
this is divided into two categories: azimuth time-domain processing and azimuth frequency-domain
processing. The former reduces the computational complexity by approximating the distance equation
and is suitable for the broadside or low squint angle mode, including the inverse range-Doppler
algorithm [9], phase pre-modulation [10], segmented modulation [11,12], and approach of multiple
receivers [13,14]. The latter, including frequency-domain pre-modulation [15], the frequency-domain
three-stage algorithm [16], the inverse Omega-K algorithm [17], etc., needs to perform 2-D Fourier
transform and Stolt interpolation on the jamming scene template [20,21], which can work under a large
squint angle but requires additional information such as the azimuth bandwidth.

Although the methods above improve the computational efficiency of the jamming process to
varying degrees, the large computational burden is still the bottleneck of large-scene deceptive jamming
for SAR. Zhou etc. proposed a large-scene deceptive jamming method by dividing the jamming scene
template into sub-templates according to the depth of focus in the range dimension to simplify the
JSF and decomposing the JSF into the slow-time independent terms generated off-line and slow-time
dependent terms calculated in real-time [11]. However, this algorithm only works for space-borne
SAR operating at the broadside mode, and the computational efficiency is still insufficient. Inspired by
this, we propose a new large-scene deceptive jamming algorithm called time-delay and frequency-shift
with template segmentation (TDFS-TS). First, the complex modulation process is simplified into the
time-delay and frequency-shift operation to increase the computational efficiency. Second, the jamming
scene template is divided both in the range dimension and azimuth dimension according to the imaging
quality control factor. The correction algorithm in the squint situation is derived as well. Compared
with other available deceptive jamming techniques, the proposed method can produce well-focused
large deceptive scenes more efficiently.

This paper is organized as follows. Section 2 provides a detailed description of the TDFS-TS
algorithm. We begin with the analysis of the basic principles of deceptive jamming against SAR; based
on these, we propose the time-delay and frequency-shift (TDFS) jamming algorithm to simplify the
process. Then the template segmentation (TS) method is used to achieve large-scene jamming, and the
correction algorithm in squint mode is described. In Section 3, the TDFS-TS algorithm is verified by
simulation and the computation complexity is analyzed. Section 4 discusses the results and Section 5
concludes this paper.

2. Large-Scene Deceptive Jamming Method Based on TDFS-TS

This section will derive the TDFS-TS deceptive jamming algorithm step by step. First, the principles
of deceptive jamming against SAR are introduced. Then the TDEFS algorithm is proposed which can
significantly improve computational efficiency. The analysis of the jamming signal generated by TDFS
shows that the effective region is limited. To solve this problem, the TS method is introduced, and the
squint correction algorithm is derived to extend the application scope of the jamming algorithm. Finally,
the TDFS-TS algorithm procedure is clarified.
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2.1. Principles of Deceptive Jamming against SAR

The principle of SAR deceptive jamming based on modulation-retransmission is presented in
Figure 1 [17]. The jammer performs a serious of operations including the amplification, down-conversion,
analog-to-digital conversion (A/D), and fast Fourier transform (FFT) on the intercepted radar radio
frequency (RF) signal to obtain the frequency domain representation of the baseband, while the JSF is
calculated based on the template and the SAR parameters including kinematic parameters (platform
position, velocity, etc.), antenna parameters (antenna direction, beam pattern, etc.), and signal parameters
(carrier frequency, PRI, etc.). Then, we multiply the two and perform an inverse fast Fourier transform
(IFFT) to obtain the baseband of the jamming signal and finally perform the digital-to-analog conversion
(D/A), up-conversion, gain control, and retransmission. By repeating the above steps for each pulse,
a false image can be generated by the receiver. The template is an array of false scatters that depicts the
electromagnetic characteristic of the fake scene artificially fabricated by the jammer.

-~ REsignal o lification —»  DO"T L 50 AD -  FFT
intercepted conversion
Kinematic parameters
Antenna parameters
Signal parameters System
function of |
jammer
Template »
RF mgna} ] Gain Up ) D/A IFFT
retransmit control conversion

Figure 1. Principle of synthetic aperture radar (SAR) deceptive jamming.

The JSF is the key to the generation of jamming signals. The following illustrates the basic idea for
JSF in combination with the geometric model of SAR jamming. As shown in Figure 2, we assume that
the SAR platform moves at a constant velocity v and the azimuth time f, = 0 when the plane of zero
Doppler passes through the jammer. A Cartesian coordinate system with the location of the jammer as
the origin is established in a two-dimensional slant range plane. The x-axis points to the range direction
and the y-axis points to the azimuth direction. The shortest slant distance between the jammer and the
SAR is Rjo, and the instantaneous slant distance is Rj(f,;) at azimuth time f,. An arbitrary false point
scatter P is generated by the jammer, the scattering coefficient of P is op and the location is (x, y) in the
coordinate above. Rp(t,) denotes the instantaneous slant distance between P and the jammer.

| Azimuth A y
|| o
P(x,
| RP(ta) ~"————(.y)
SAR L ——————————————

Platform | T R N (_tu) x
' ~= >
| R, O | Jammer Range
| Motion
| Trace

Figure 2. The geometric model of SAR deceptive jamming.
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In order to generate the fake point target P in the SAR image, the JSF at azimuth time ¢, is [17]

\ )

Hp(fr, ty) = op exp[ 2r( fr _A'_fo)w]

where f; is the range frequency, c is the velocity of light, ARp(t,) is the difference between Rp(#,) and
Ry(ta):

2
ARp(ts) = Rp(ts) = Ry(ts) = \/(x +Rp) + (y-vta)’ - R% + (vt,)?. )
By calculating the JSF for each scatter in the template T, the JSF for the deception scene can be
derived as follows:

Hf, 1) = Y Holfit) = Y avexp| (s + ) ®

ZARp(tu) ]
PeT PeT

In the implementation of jamming, the jammer must calculate JSF H(f,, t,) and modulate the
intercepted signal real-time in each PRI. The calculation of Equation (2) is time-consuming, therefore
the method represented by Equation (3) cannot be used directly for large-scene deceptive jamming
unless some improvements are made.

2.2. TDFS-TS Algorithm

2.2.1. Deceptive Jamming Based on TDFS

For space-borne SAR, we can assert that Rjg > x, Rjo > y, and Rjg > vt, throughout the synthetic
aperture time. After the Taylor series expansion, Equation (2) can be approximated as follows [11]:

Yotg ar,, (vts)
ARp(t,) X+ Ry + —(x+Rm) x+R[o 2(xtRp) ] [ 0+ 2Ry, ] @
~x+ _ Yyt
2R]0 Rjo *

With the approximation above, the J[SF—i.e., Equation (1)—can be rewritten as follows:

2
Holf o) =on explnlf+ (3 + 5 - 365
=ap exp[-pon(f + f0) %] exp(j2nfo 5)
. 2 i 2yvte—12
exp(—]anody{T)exp(]znfr yflf{my )

where the third exponential term is independent of f, and t, and is equivalent to introducing a fixed
phase that has no effect on the imaging; thus, it can be ignored. The fourth exponential term can also
be omitted when y is small enough (details will be analyzed in the next subsection). Thus, Equation (5)
can be simplified as follows:

2yot,
Hp(f t) = opexpl 72 +fo)27x]e><p(j2nfo i ) ©)

Actually, at the broadside mode, the azimuth frequency modulation rate of the SAR echo signal
from the location of the jammer is [22]
2f0v2

K, =— X 7
"= Ry @)
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Combined with Equations (6) and (7), we can derive

Hp(fr, ta) = opexp|-j2n(f; +f0)2Tx]exp(—j2ﬂKa%tu). ®)

This is equivalent to delaying the original echo signal 2x/c in fast-time to achieve position
deception in the range dimension and a shifting frequency —K,y/v in slow-time. According to the
frequency shifting property of the linear frequency modulation (LFM) signal, the frequency shifting is
equivalent to time-delaying y/v in slow-time, which can implement position deception in the azimuth
dimension as well.

If the scattering coefficient of the false point target which locates (x, y) in the template is o(x, y),
the JSF for the deception scene can be derived as follows:

H(fr t)) = é', %a(x, ) exp[—jZn(fr + fo)%] exp(janO zcﬁgu)

©)
= %exp(jélnfo )%a(x, v) exp[—j4n(ﬁ+f0)%].

yolg
cRjo

The second summation term in Equation (9) is independent of azimuth time ¢, and only related
to the relative position of each point in the false scene, which can be calculated off-line to reduce the
real-time computational burden. This is the TDFS jamming algorithm, which has the advantages of
simplicity and high computational efficiency.

2.2.2. Jamming Signal Analysis

Due to the approximation and simplification, the TDFS algorithm has high computational
efficiency. However, the approximation and simplification will cause a decline in the image quality of
the deceptive target at the same time. In this subsection, we will analyze the impact of the simplified
operations above on the imaging results by comparing the difference between the jamming signal and
real point target echo in the range-Doppler domain [23].

The echo signal of a real scatter point P(x, y) is represented as follows [22]:

st 10 =t 20 gl 2 e - 2L,y

c

where w,(f,) represents the azimuth amplitude, w,(t,) is the SAR pulse complex envelope, and K; is
the frequency modulation rate of the SAR pulse.
The parabolic approximation of the instantaneous slant range Rp(t,) by Taylor series is [22]

(y=vta)®

2(X+R[0). (11)

2
Rp(ta) = \/(X+R]0) +(y-vts)* =x+Ryp +

We can derive the echo signal expression (12) of the real target point P(x, y) in the range-Doppler
domain by bringing Equation (11) into Equation (10) and using the principle of stationary phase
(POSP) [22]:

SP(tr,fa) = UPWu(fa)er:tr - miﬁ]
2 12)
exp{jnK,[tr - m"cﬁ] - jn% - j2nfa% - j4nfo%R’°},
where Rp(f;) is the range cell migration (RCM) curve of the target in the range-Doppler domain:

(x * RIO)CZ 2

Rp(ﬁl):x+R]0+ 8'02f02 ar

(13)
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and the azimuth frequency modulation rate is

2
K = -—2h (14)

C(X + R[O)

The echo signal will focus on the coordinate (x,y) after range compression, RCM correction
(RCMC), and azimuth compression.
For comparison, when the JSF is Equation (8), the jamming signal is expressed as follows:

2R (fa
SI(tr/ tu) = GPwa(ta)wr[tr - # - %

) (15)
exp{ jATfo [R} ta) +1- ngg]}exp{jnKr[tr - w _ %] }

Similarly, the parabolic approximation and POSP is used to obtain the expression of the jamming
signal in the range-Doppler domain:

2Rp(fa
Sy(tr, fa) = opWa( fu)w,[ty_ /zz(f)]

16)
. 2Rjp(fa ; (
exp{]nK’[tr_ #] ]771{7 = j2nfa% ~ jAntfo i = +]277](051310}
where the RCM of fake target is
R /()C2 2 y

Ryp(fa) = x+Rjo + @fa R T 17)

and the azimuth frequency modulate rate of jamming signal is
27]2 f()
K]a - CR]O (18)

It can be found that there are differences between the real target echo signal and the jamming
signal in the RCM curve and azimuth frequency modulation rate, ignoring the phase terms unrelated
to pulse compression. The effects of these differences on the imaging results and the corresponding
effective region of deceptive jamming are analyzed in detail below.

First, it is obvious that the jamming signal introduces the azimuth frequency modulation rate
error, which will cause a mismatch of the azimuth matched filter and finally lead to the main lobe
broadening of the azimuth pulse compression result. The azimuth frequency modulation rate error is

202 fox

AK, = K]a -K, = —m.

(19)

The effect of AK,; on the main lobe broadening can be measured by the quadratic phase error
(QPE); the expression of QPE is as follows [22]:

2
QPE — nAKa(g) —

210 fyx )(L)Z (20)

CR]Q(X +Rjo 2v
where T = L/v is the synthetic aperture time and L represents the synthetic aperture length.

For a typical Kaiser window with g = 2.5, if the broadening is required to be less than 2%, 5%,
and 10%, the corresponding QPE absolute value should be less than 0.27m, 0.417, and 0.557 [22]. Here,
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we define the azimuth QPE factor ¢; when the condition |QPE| < e is required, the range coordinate x
should satisfy

. 2
I < w ~ e%(%) . @1)
Second, in the range-Doppler domain, the RCM error of the jamming signal is
x5 e v
ORR(f) = Ryplf) = Re(f) = ~goza = 5+ 5 @)

The last term in Equation (22) can be omitted because Rjg > y. The residual RCM introduced by
ARp(f,) in broadside mode is represented as follows:

_ Bsc
a 2’0f0

where B, is the azimuth Doppler bandwidth and can be expressed as [22]

RCM,eq = 'ARP(%) - ARp(—&) 1yl 23)

2

L Zl)f(]L
By = ~|Kpo| = Ry (24)
Combined with Equations (23) and (24), we can simplify the expression of residual RCM:
RCMes = L|y|. (25)
R J0

The residual RCM will result in the main lobe broadening in both range and azimuth dimensions
and the extent of broadening can be measured by the ratio of the residual RCM to the range resolution.
The range resolution p, = ¢/2B, where B is the signal bandwidth. Then, we define the residual RCM
factor n; if we require RCMes < 11pr, the azimuth coordinate y should satisfy

yl < PRy R

lv < == =g (26)

According to [22], the residual RCM should be no more than 0.5 of the range cell; therefore, 1
should be no more than 0.5.

In addition, due to the difference between the false and real point targets in the instantaneous
slant range history, the Doppler center frequency of the jamming signal shifts, and the azimuth main
lobe broadening and ghost targets are introduced. This phenomenon limits the effective azimuth scale
as well; according to [11], the azimuth coordinate y should satisfy

cR v\ L
ly] < U—(PRF - —) -3 27)
where PRF is the pulse repetition frequency and D is the antenna aperture in the azimuth direction.

Equations (21) and (26) describe the effective region of the range and azimuth directions of the
TDES algorithm with the specified azimuth QPE factor ¢ and residual RCM factor 7. The jamming
signals representing the false target located beyond the region will not achieve the desired deception.
Equation (27) described the inherent limitations of SAR deceptive jamming in the azimuth direction,
which is beyond the scope of this article. In the following discussion, we suppose that the size of the
template in the azimuth dimension meets the requirement of Equation (27). When the typical C-band
space-borne SAR parameters (see Table 1 in Section 3) are set as an example, we can calculate the
effective region: |x| < 1.25 km and |y| <0.75 km with ¢ = 0.25 and p = 0.5; i.e., a rectangular area of
2.5km x 1.5 km.
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Table 1. The setting of SAR parameters in simulations.

Carrier . . Platform Shortest Antenna
Frequency Chirp Rate PRI Pulse Width Velocity Slant Range  Aperture

5.30 GHz 0.72 MHz/ps 0.79 ms 41.74 ps 7.06 km/s 989 km 10 m

2.2.3. Template Segmentation

The analysis in the previous subsection shows that the effective region of the TDFS algorithm
is limited. In order to achieve deceptive jamming in a larger scene, we divide the jamming scene
template into several blocks and apply a time-delay and frequency-shift in each block to calculate
the partial JSE, which will be summed to get the JSF on the whole template. As shown in Figure 3,
the template consisting of m X n point scatters is divided into M X N blocks; each block contains
U x V point scatters, namely U = m/M and V = n/N. If the range interval between each point is
Ax and the azimuth interval is Ay, U and V should satisfy the following conditions according to the
limitation of the effective region Equations (21) and (26) with the required ¢ and n:

CRmin c (Rmin )2
< <4s—|——
u_nBLAy' V_4éfOAx L) (28)

where R, is the minimum value of the shortest slant range of all point scatters, which can be
approximated by Rj.

block,, | block, block LA
N Ay 5H B )
block,, | block,, block e o °
- - - : ° iU
¢ template : ~ o : block
~ pq
\\ [ ] [ ] eee [ ]
block, | block, | -« |blockm %

Figure 3. Jamming scene template segmentation diagram.

The scattering coefficients of point scatters in blockpq can be expressed as a matrix Tp;:

011 012 = 01V
021 022 - 02y

To=| . . . .| (29)
oyl ou2 -t ouv

Suppose the coordinate of the blockpq geometric center is (xq, yp), wherep =1, 2, ---, Mand
g=1,2,--+, N. According to Equations (1) and (2), the JSF on the blockpq geometry center Heyyg (fr ta)
is represented as follows:

_f4n(fr + fo)
c

Hepg(frita) = exp{ \/(xq + RIO)2 + (y,, - vtﬂ)z _ R% + (vtﬂ)Z]}, (30)

The jamming signal generated by Heyg(fr, t) can generate a well-focused point target in the center
of blockpq after imaging, which is equivalent to moving the jammer to the geometric center of blockpq.
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Then, we use the TDFS algorithm to generate the JSF on blockpq:

U 47t fouta A
Hy (1) = Hegaf ) X exp| SN (- 452

)
[ w( v+1)] @31)

v
IE Okl €Xp
=

where oy is the element of row k and column / in the matrix Ty,. Finally, the JSF on the whole template
can be derived by summing JSF on all blocks:

M N

H(fr ta) = ZZ pq (frs ta)- (32)
=1

Since the number of blocks is very small compared to the total number of scatters in the template,
Equation (30) has a limited effect on the computing load. In addition, the second summation term of
Equation (31) is independent of slow time f, and can be calculated offline. The template segmentation
method can solve the problem that the effective region of the TDFS algorithm is limited and achieve
the purpose of the rapid generation of large scene deceptive jamming signals.

2.2.4. Correction Algorithm in Squint Mode

The analyses above are based on the broadside mode with the squint angle 8 = 0. In order to
extend the broadside jamming algorithm to squint mode, this subsection will discuss the effect of the
squint angle on the jamming result and the corresponding correction method. It should be pointed out
that the parabolic approximation of the instantaneous slant range in Equation (4) will no longer be
applicable under the condition of a large squint angle, so the jamming method of this article is limited
to the small squint angle and the medium aperture length SAR.

First, the Doppler center frequency of the echo signal f,c = 2vf; sin 8/c, the presence of the squint
angle will result in the non-zero Doppler center frequency. At this time, the azimuth signal can be
regarded as the non-baseband signal, and the frequency modulation rate error will cause the position
offset besides main lobe broadening in pulse compression [22]. According to the pulse compression
principle [22], the azimuth main lobe position offset of scatter with coordinate (x, y) is

AK,
Yors(x, y) = —K—ﬂtacv =xtan6, (33)
-a

where t;,c = —Rjp tan 0/v is the pulse center time of the jamming signal in the azimuth dimension.

On the other hand, when f;c # 0, the RCM error will cause the RCM curve to shift along the range
dimension in addition to introducing the residual RCM, causing main lobe broadening. According to
Equation (22), the offset in the range dimension of fake point P(x, y) is

Xofs(%,y) = DRp(fic) = —% sin® 0 — /sin 0. (34)

The residual RCM will increase at the same time:

Bac " B,csin Qx
Z’Ufo y 4Z)f0

In order to ensure the image quality of the fake scene, the size of the blocks should be reduced.
However, the RCM,s increment is not obvious when the squint angle is small. Thus, it can be ignored
in this paper.

According to the analysis above, the main effect of the squint angle is the location offset of fake
targets in the deceptive image, and the offset depends on the coordinates in the template. This effect

RCMresf|ARp(fac Ba ) ARp(fm )': (35)
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will cause the distortion of the jamming image. Therefore, the coordinates of each scatter in the
template should be corrected. For the false scatter with coordinate (x, y), the corrected coordinate

(%, yc) can be represented as follows:

{ xc:X—xofs(x,y):x-‘r%sinze—i—ysin@, 36)
Yo = Y= Yoss(x,y) = y—xtan 6.

Correspondingly, Equation (31) will be modified as follows:

£y jAmt X sin
Hpg(frrta) = Hepg(fr, fa)k§1 Elcfkl eXP{—%[(l + 01— 1)

+Aysin Q(k - %)]} exp{%[—mc tan 6( - %) + Ay(k - %)]}

(37)

The range and azimuth-related terms in Equation (37) are separable, so Equation (37) can be
rewritten as matrix operations to increase the calculation speed. Here, we define the time-delay
matrixes Hr;, Hr; and frequency-shift matrixes Ha,1, Hap:

jArt( fr+fo) Ax in? 6 V+1
exp _ I foO (1+smz )(1_T+)
JA(frt fo) Ax sin20 Vil
exp|——"—"—(1+ 3= )(2- =
Hr, — S e G , (38)
jAn( fr+ fo) Ax in2 V+1
exp|_1 mU 0 (1 s o) (y - T+)]

exp =
jam(frtfo)Aysin 6 u+1
exp| - LEUrtfo)AysinG ;5 Uil
T e 39)
exp[— j4n(f,+f2)Aysin 0(u _ %)]
_ jAnfovteAxtanO o y41
exp[ C(R[o+xq) (1 2 )]
AT fovtyAx tan O Vil ]
exp|-—F———7—(2- 5=
Ha, = p[ c(Ryo-+xy) (2-5) , (40)
_ jAnfovtaAxtan O v
exP[ c(Rjo+xg) ( 2 )]
Arfovtady (4 Ut
[C(R10+xq) (1 2 )]
jan fovta Ay (2 _ M)]
Ha; = C(Rrow) 2 (41)
jan fovta Ay _u41
EXP[C(R/M’%) (=13 )]
Equation (37) is rewritten as follows:
T
Hpq (fr/ ta) = Hcpq (fr/ ta)[(HTZ ° Haqz) qu(Hrl o Haql)]/ (42)

where ()T represents the matrix transposition and the operator o represents the Hadamard product of

the matrix.
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We can get the JSF on the entire scene by superimposing the JSF on all blocks, which is the same
as Equation (32). The time-delay matrixes Hr; and Hr; are independent of the azimuth time #,, which
can be calculated offline in advance to improve the real-time processing speed.

2.3. TDFS-TS Algorithm Procedure

The prerequisite for the successful implementation of SAR deceptive jamming is to obtain relevant
intelligence on the jamming object, which mainly includes the follows aspects.

e  Kinematic parameters of the SAR platform, including motion trajectory, motion velocity v, etc.
The motion trajectory information is used to establish the jamming coordinate system and
determine Rjo, the shortest distance between the jammer and SAR;

e  Antenna parameters, including the squint angle 0, synthetic aperture length L, etc.;

e  Signal parameters, including the carrier frequency fy, bandwidth B, PRI, etc.

The specific detection methods of the parameters above will not be discussed in this paper;
we simply suppose that the parameters have been obtained in advance.

As shown in Figure 4, the entire procedure includes two parts: preprocessing and real-time
calculation. The first step in the preprocessing stage is template segmentation: according to the parameters
including synthetic aperture length L, signal bandwidth B, shortest slant range of the jammer Rjg and the
given factors ¢ and 1, we divide the template into several blocks based on the limitation of Equation (28);
then, we perform offline calculation and calculate the time-delay matrixes Hr; and Hr, according to
Equations (38) and (39). In the real-time calculation stage, we calculate frequency-shift matrixes Haj, Hag
according to Equations (40) and (41); then, we calculate the JSF on each block based on Equations (30)
and (42); finally, we add the JSF on all blocks to obtain the JSF on the entire scene.

:

Preprocessing
‘ Calculate time-delay ‘

Deception template

Template segmentation

matrixes

Calculate frequency-
shift matrixes

v

Calculate system Real-time
function per block calculation

‘ Summation ‘

System function of jammer
Figure 4. Time-delay and frequency-shift with template segmentation (TDFS-TS) algorithm procedure.
3. Simulation Results

In this section, the effectiveness of the TDFS-TS algorithm is verified by simulating the imaging results
of false point targets and fake scenes, and the computational complexity is analyzed. The simulation
results of the range dimension segmentation (RDS) algorithm proposed by Zhou et al. [11] are used as
a comparison. The main parameters of the radar, which reference the satellite RADARSAT-1, are listed in
Table 1.
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3.1. Fake Point Scatters Case

In order to analyze the imaging result of fake point scatter at different positions after imaging,
a deceptive scene template containing only four-point scatters is set as shown in Figure 5. The four
points Py ~ P3 are arranged in a rectangular shape with a distance of 6 km in the range dimension and
2 km in the azimuth dimension. According to the calculation results in Section 2.2.2, we set the length
of blocks to 2.5 km in the range dimension and 1.5 km in the azimuth dimension. Since the imaging
quality of fake scatters is only related to the position in the block, for the purpose of analyzing the
jamming effect of the algorithm comprehensively, the template segmentation scheme is shown by the
dashed line in Figure 5, meaning that Py is located at the center of block 1, P; is at the edge of block 3 in
the range dimension, P; is at the azimuth edge of block 4, and P3 is at the edge of block 6 in both range
and azimuth dimensions. In addition, the position of the jammer (i.e., the origin position) is set at the
point Py; actually, the position of the jammer has little effect on the imaging result. In the simulation of
the RDS algorithm, the template is divided into three segments with the same segmentation length
(2.5 km) in the range dimension and is no longer segmented in the azimuth dimension.

20 P, e
5 15

= 10 block 4 block 5 block 6
E 05

2 o B Pe

0.5 block 1 block 2 block 3

-1 0 1 2 3 4 5 3

Range(km)
Figure 5. The deceptive scene containing four-point scatters.

Figures 6-9 show the imaging results of the four scatters by the RDS and TDFS-TS algorithm in the
broadside mode and squint mode with the squint angle 0 = 5°, including the close-up image, range
profile, and azimuth profile. Tables 2 and 3 list the imaging quality parameters of range and azimuth
dimensions in the two modes, including 3 dB impulse response width (IRW), main lobe position offset
(MLPO), peak sidelobe ratio (PSLR), and integrated sidelobe ratio (ISLR). It can be seen that, compared
with the RDS algorithm, the performance of the TDFS-TS algorithm is basically equivalent, the RDS
algorithm is more advantageous on IRW, while TDFS-TS is dominant over MLPO. The IRW of TDFS-TS
algorithm is increased especially for the azimuth dimension in squint mode; however, the maximum
broadening does not exceed 3.6%. In the squint mode, the MLPO of the RDS algorithm can reach up
to —80.32 m in the azimuth dimension, which can be eliminated basically by the TDFS-TS algorithm
due to the corresponding correction. Because of the influence of the residual RCM, the MLPO in the
range dimension cannot be completely corrected, but the overall image is affected very little. In short,
the simulation of fake point scatters shows that the TDFS-TS algorithm is effective and has certain
advantages in several areas.
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Figure 6. Simulation results of the RDS algorithm for false point scatters in broadside mode. (a—c) are

the close-up image, range profile, and azimuth profile of Py, respectively; (d—f) are the close-up image,

range profile, and azimuth profile of P; respectively; (g-i) are the close-up image, range profile, and

azimuth profile of P, respectively; (j-1) are the close-up image, range profile, and azimuth profile of

P3, respectively.
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Figure 7. Simulation results of the TDFS-TS algorithm for false point scatters in broadside mode. (a—c)

are the close-up image, range profile, and azimuth profile of Py, respectively; (d—f) are the close-up

image, range profile, and azimuth profile of Py, respectively; (g-i) are the close-up image, range profile,

and azimuth profile of Py, respectively; (j-1) are the close-up image, range profile, and azimuth profile
of P3, respectively.
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Figure 8. Simulation results of the RDS algorithm for false point scatters in squint mode with a squint
angle 0 = 5. (a—c) are the close-up image, range profile, and azimuth profile of Py, respectively; (d—f)
are the close-up image, range profile, and azimuth profile of Py, respectively; (g-i) are the close-up

image, range profile, and azimuth profile of P;, respectively; (j-1) are the close-up image, range profile,
and azimuth profile of P3, respectively.
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Figure 9. Simulation results of the TDFS-TS algorithm for false point scatters in squint mode with
asquintangle @ = 5. (a—c) are the close-up image, range profile, and azimuth profile of Py, respectively;

(d—f) are the close-up image, range profile, and azimuth profile of Py, respectively; (g-i) are the close-up
image, range profile, and azimuth profile of P;, respectively; (j-1) are the close-up image, range profile,
and azimuth profile of P3, respectively.
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Table 2. Comparison of imaging quality parameters between the RDS algorithm and TDFS-TS algorithm
in broadside mode.

Range Dimension Azimuth Dimension

IRW MLPO PSLR ISLR IRW MLPO PSLR ISLR

(m) (m) (dB) (dB) (m) (m) (dB) (dB)
P RDS 7.73 0 -11.78 -12.57 6.77 0 -17.24 -19.50
0 TDFS-TS 7.73 0 -11.78 -12.57 6.77 0 -17.24 —-19.50
P RDS 7.73 0 -11.78 -12.57 6.88 0 -13.47 -15.05
1 TDFS-TS 7.73 0 -11.78 -12.57 6.88 0 -13.39 -14.98
p RDS 7.73 0 -11.78 -12.57 7.39 5.04 -14.46 -14.90
2 TDFS-TS 7.78 -0.21 -12.03 -12.96 7.47 0 -13.95 -13.67
P RDS 7.73 0 -11.77 -12.57 7.53 5.52 —-15.03 -14.24
3 TDFS-TS 7.78 -0.21 -12.04 -12.96 7.60 0.48 -15.12 -12.55

Table 3. Comparison of imaging quality parameters between the range dimension segmentation (RDS)
algorithm and TDFS-TS algorithm in squint mode with squint angle 6 = 5 .

Range Dimension Azimuth Dimension

IRW MLPO PSLR ISLR IRW MLPO PSLR ISLR

(m) (m) (dB) (dB) (m) (m) (dB) (dB)
p RDS 7.73 0 -12.07  -12.79 6.77 0 -17.79 -20.30
O  TDFS-TS  7.73 0 -12.07  -12.79 6.77 0 -17.79 -20.30
P RDS 7.88 —-3.48 -12.79 -13.87 7.07 -80.32 -16.56 -17.91
! TDFS-TS 788 7.69 -1294  -13.92 7.15 -0.98 -18.76 -17.83
p RDS 7.77 2.46 -12.02  -12.60 7.39 29.01 -15.03 -15.45
2 TDFS-TS 774 0.01 -11.68  -1248 7.34 -0.01 -14.59 -14.96
p RDS 7.95 -1.17 -12.36  -1347 8.05 -50.70 -14.05 -14.08
3 TDFS-TS 816 7.73 -13.29 -14.87 8.34 -0.57 -15.95 -14.28

3.2. General Deceptive Scene Case

In this subsection, the TDFS-TS algorithm is applied to yield a fake scene. The jamming object
is RADARSAT-1, whose parameters are listed in Table 1, and the squint angle 6 ~ —1.58". The raw
data of the radar are obtained from the appendix in [22]. The fake scene template is another SAR
image, as shown in Figure 10, whose length in the range dimension is 12.5 km and 4.5 km in the
azimuth dimension. We divide the template according to the same block size calculated in Section 2.2.2,
as shown by the yellow line in Figure 10.

Azimuth

Figure 10. Deceptive jamming template with 12.5 km in the range dimension and 4.5 km in the azimuth
dimension, which is divided into blocks by the yellow line. The block size is 2.5 km x 1.5 km.
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First, the signals generated by the two algorithms are processed to get the images which are shown
in Figure 11 after being amplitude-normalized, and partially enlarged images are shown in Figure 12.
Due to the existence of the squint angle, each segment of the image generated by the RDS algorithm has
geometric distortion, which is especially obvious at the splicing of each segment. Moreover, since the
positions of adjacent scatters in the template are shifted after the imaging process, the image is blurred,
and the ghost targets generated by the Doppler center frequency shifting in the azimuth dimension will
be more obvious after the amplitude normalization. Actually, for the same reason, the brightness of
the image is weakened as well, this phenomenon can be seen in Figures 13 and 14. These problems are
solved by the TDFS-TS algorithm which corrected the geometric distortion caused by the squint angle.

(b)

Figure 11. Imaging results of the fake scene in Figure 10 using (a) the RDS algorithm and (b) the

TDFS-TS algorithm. Parts of the images marked by rectangular boxes are enlarged and shown in
Figure 12.
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Figure 12. Partially enlarged image of Figure 11. (a—c) are the partial enlargement of the image
generated by the RDS algorithm in the yellow, green, and red boxes, respectively; (d—f) are the partial
enlargement of the image generated by the TDFS-TS algorithm in the yellow, green, and red boxes.

(b)
Figure 13. Cont.
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(©

Figure 13. Comparison of jamming results. (a) is the image formed by the original signal, (b) is the
image formed by the superposition of the original signal and jamming signal generated by the RDS
algorithm, and (c) is the image formed by the superposition of the original signal and jamming signal
generated by the TDFS-TS algorithm. Parts of the images marked by rectangular boxes are enlarged
and shown in Figure 14.

(b) (0

(d) (e)

Figure 14. Partially enlarged image of Figure 13. (a—c) are the partial enlargement of the original
image, the jamming image of the RDS algorithm, and the TDFS-TS algorithm, respectively in the yellow
rectangular boxes; (d-f) are the partial enlargement of the original image, the jamming image of the
RDS algorithm, and the TDFS-TS algorithm, respectively in the green boxes.

The imaging results of the superposition of the jamming signal and original signal are shown
in Figure 13, and partially enlarged images are shown in Figure 14. It can be seen that the TDFS-TS
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algorithm achieves a good deception effect, generating clear false targets such as land and buildings
and changing the topographic structure of the protected area. However, the fake scene generated by
the RDS algorithm is not obvious, mainly because of the decrease in brightness caused by geometric
distortion. The jamming power has to increase in order to achieve a satisfactory jamming purpose,
but the ghost targets will be strengthened at the same time. In conclusion, the TDFS-TS algorithm has
certain advantages compared with the RDS algorithm in large-scene jamming.

3.3. Computational Complexity Analysis

The effectiveness of the TDFS-TS algorithm is verified by simulation in the previous subsection.
In this subsection, we will estimate the computational complexity of the TDFS-TS algorithm to assess its
practical value. Assume that the jamming scene template consists of m X n point scatters and is divided
into M X N blocks, each block contains U X V point scatters. Here, for ease of analysis, the addition,
multiplication and power operations are all considered to be a basic operation. The following will
analyze the number of basic operations to obtain the JSF H(f;, t,) at a specific frequency f; and azimuth
time ;.

In the preprocessing stage, calculating an element of matrix Hr; requires 15 basic operations,
and the operation amount of all elements is 15V; however, because the elements in Hr; are actually
a geometric series, the other elements can be generated by multiplying the first element by the common
ratio, meaning that the amount of calculation is reduced to 15 + V. According to the same analysis,
the operation amount of Hr; is 12 + U, so the total computational complexity in the preprocessing
stage is

Core=15+V+12+U=U+V+27. (43)

In the real-time calculation stage, calculating the JSF of a block center requires 20 basic operations,
and a total of 20MN operations are required for all blocks. The operation amount for calculating matrix
Ha, is 15 + V, which needs to be repeated N times. The calculation amount of matrix Hag is 14 + U
and needs to be repeated N times as well. The computational complexity of matrix multiplication in
Equation (42) is 2UV + U + 2V -1, so the operation amount of Equation (42) is 2UV + U + 2V added
to the multiplication with Hcpq( fr,ta), and the calculation of Equation (42) needs to be repeated MN
times. Finally, the operation amount of the summation—i.e., Equation (32)—is MN — 1. Based on the
analysis above, the total amount of computation in the real-time calculation stage is

Cr =20MN+N(15+ V) +N(14+ U) + MN(QUV + U +2V) + MN -1

— 2+ 3+ b+ B) (1 4+ ) -1, (44)

According to the same analysis method, the computational complexity of different jamming
algorithms including TDFS-TS, RDS, TDFS-TS without squint correction (TDFS-TS-WSC) and the basic
algorithm (BA) shown by Equation (3) is derived and shown in Table 4.

Table 4. Computational complexity comparison of different algorithms.

TDFS-TS RDS! TDFS-TS-WSC BA
Preprocessing u+v+27 mn(14 - %) 2uV-U+Vv+11 -
Real-time ”’"(2 + % + % + %) 22mn 21
X L _q 2l 1 (311 413) - 13) V. 20mn -1
u, 29 uv v
calculation +n(1 + Uy 7) -1

1 the segment length in the range dimension of the RDS algorithm is the same as the block size of the
TDFS-TS algorithm.

The block size U and V are determined by the parameters of the jamming object, the scatter density
of the template, and the two imaging quality control factors ¢ and 1. We fix U and V' and observe the
relationship between the computational complexity and the template size m and n. According to the
simulation parameters in Section 4.1, we set U = 267 and V = 539, draw the relationship between
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the computational complexity and the total number of scatters in the template shown in Figure 15.
Here, for the convenience of analysis, we set m = n and take the logarithm of computational amount
for display.
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Figure 15. The relationship between the computational complexity and the total number of scatters in
the template. (a) is the computational complexity in the preprocessing stage and (b) is the computational

o

complexity in the real-time calculation stage.

It can be seen that, no matter in the preprocessing stage or in the real-time calculation stage,
the computational complexity of the TDFS-TS-WSC algorithm is less than that of the RDS algorithm.
In particular, in the real-time calculation stage, the computational complexity can be reduced by
more than one order of magnitude because the TDFS algorithm in Equation (31) simplifies the
calculation procedure significantly. When the squint correction is added, the calculation amount in the
preprocessing stage is reduced, but increased in the real-time calculation stage.

4. Discussion

4.1. Imaging Quality

According to the analysis of the TDFS-TS algorithm in Sections 2.2.2 and 2.2.4, the simplification
in the range dimension leads to a distortion of the azimuth profile including the main lobe broadening
and position offset (in the squint mode), and the residual RCM introduced by the simplification in the
azimuth dimension affects both the range and the azimuth profile. In addition, the inherent limitations
of jamming signal, namely the Doppler bandwidth loss of the fake scatter far away from the jammer in
the azimuth dimension, will broaden the azimuth main lobe. In summary, we can draw the following
conclusions on the TDFS-TS algorithm:

1. The imaging quality of the jamming signal in the range dimension depends on the azimuth
position of the false scatter ;

2. The distortion of the azimuth profile depends on both the range and the azimuth position of the
false scatter;

3. These distortions become severe as the distance between the fake scatter and the block
center increases.

These phenomena can be seen clearly in Table 2: Py and P; are both at the azimuth center of the
block, thus they have the same imaging quality parameters in the range dimension; the imaging quality
parameters of P, and P3 in the range dimension are the same, and worse than that of Py and P; because
the two points are both in the azimuth edge of the block; the situation in the azimuth dimension is
more complicated: affected by both the range and azimuth position, the four points have different
degrees of azimuth distortion, where P; is the worse and Py is the best; the impact of residual RCM
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in the azimuth dimension is greater than that of azimuth chirp rate error by comparing the imaging
quality parameters of P; and P,.

From Table 2 it can be seen that, in the broadside mode, the main lobe positions of P, and P3 in the
range dimension are slightly shifted. This is caused by the residual RCM as well. Due to the existence
of residual RCM, the curve of jamming signal after RCM correction in the range-Doppler domain is
not a straight line but a parabola which is expressed as Equation (22), thus the main lobe in the range
dimension will shift towards the negative direction besides broadening. In the squint mode, the effect
of residual RCM is more complicated, which can be seen in Table 3. Due to the nonlinear nature of the
RCM error shown in Equation (22), the offset in the range dimension expressed in Equation (34) is just
an approximation. In fact, it can hardly be eliminated completely, thus the images of Py, P, and P3
shift to varying degrees in the range dimension. In addition, by comparing the range offset of P; and
P, we can consider that the range coordinate has a greater effect on the range offset in the squint mode.
Although the TDFS-TS algorithm cannot correct the range offset accurately, the maximum residual
offset shown in Table 3 is approximately equal to the range resolution, and has little impact on the
deceptive image shown in Figures 11-13.

In the squint mode, the offset in the azimuth dimension caused by the frequency modulation
rate error can be effectively corrected by the TDFS-TS algorithm; the results are shown in Table 3.
As a comparison, the RDS algorithm divides the template in the range dimension as well, thus the
problem of frequency modulation rate error still exists. Without a correction algorithm, the main lobe
position of the RDS algorithm shift severely in the azimuth dimension and the image is distorted.
In short, the imaging quality of the TDFS-TS algorithm can be guaranteed both in the broadside mode
and in the squint mode with a small squint angle.

4.2. Computational Efficiency

According to the results in Section 3.3, in the broadside mode, the TDFS-TS-WSC algorithm has
a quite high computational efficiency, and the squint correction is time-consuming. This is because the
range coordinate correction is related to the azimuth coordinate and the azimuth coordinate correction
is also related to the range coordinate. Therefore, the range and azimuth coupling terms are added,
resulting in a large number of calculations needing to be completed in the real-time calculation stage,
and the computational efficiency becomes worse. However, due to the calculation of each block being
completely independent in the TDFS-TS algorithm and the introduction of matrix operations, it is
convenient to apply parallel computing technology to greatly increase the calculation speed. Therefore
real-time jamming is feasible. In summary, compared with the RDS algorithm, the TDFS-TS algorithm is
more efficient in the broadside mode, and the application scenario can be extended to the squint mode.

5. Conclusions

In this paper, the large-scene electromagnetic deception of SAR is studied. The primary focus is to
reduce the computational burden during the jamming process. For this purpose, the TDFS algorithm
is proposed, which can improve the computational efficiency significantly. In addition, the focus
capability of the jamming signal must be considered. In order to ensure the deceptive image quality of
the TDFS algorithm in a large scene, the template is divided into several blocks according to the SAR
parameters and imaging quality control factor. The correction algorithm in squint mode is introduced
so that the TDFS-TS algorithm can be used to the SAR with a low squint angle and medium aperture
length. Finally, simulation results and computational complexity analyses show that, compared to
other jamming algorithms, the TDFS-TS algorithm has higher computational efficiency with less image
quality decline in the broadside mode. Furthermore, the application of parallel computation can
partially compensate for the computational performance decline in the squint mode.

The TDFS-TS algorithm is applicable to space-borne SAR operating at broadside mode or a low
squint angle mode. In the future, we will investigate the rapid jamming method against the SAR
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with a significant squint angle and long synthetic aperture. Additionally, other problems such as
intelligence gathering and gain control will also be studied.
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Abstract: As one of the most commonly used acoustic systems in seabed surveys, the altitude of the
side scan sonar from the seafloor is always difficult to determine, especially when raw signal levels
and gain information are unavailable. The inaccurate sonar altitudes would limit the applications
of sonar image geocoding, target detection, and sediment classification. The sonar altitude can
be obtained by using bottom tracking methods, but traditional methods often require manual
thresholds or complex post-processing procedures, which cannot ensure accurate and real-time
bottom tracking. In this paper, a real-time bottom tracking method of side scan data is proposed
based on a one-dimensional convolution neural network. First, according to the characteristics of
side scan backscatter strength sequences, positive (bottom sequences) and negative (water column
and seabed sequences) samples are extracted to establish the sample sets. Second, a one-dimensional
convolution neural network is carefully designed and trained by using the sample set to recognize the
bottom sequences. Third, a complete processing procedure of the real-time bottom tracking method is
established by traversing each side scan ping data and recognizing the bottom sequences. The auxiliary
methods for improving real-time performance and sample data augmentation are also explained in
detail. The proposed method is implemented on the measured side scan data from the marine area in
Meizhou Bay. The trained network model achieves a 100% recognition of the initial sample set as well
as 100% bottom tracking accuracy of the training survey line. The average bottom tracking accuracy
of the testing survey lines excluding missed pings reaches 99.2%. By comparison with multi-beam
bathymetric data and the statistical analysis of real-time performance, the experimental results prove
the validity and accuracy of the proposed real-time bottom tracking method.

Keywords: side scan sonar; bottom tracking; one-dimensional convolutional neural network;
signal recognition; real-time processing

1. Introduction

A side scan sonar can rapidly obtain large-area seabed images, has been widely used in seabed
investigation, and plays an important role in seabed target detection [1-4] and investigation as well as
research of the seabed ecological environment [5,6] due to its low cost and simple installation. A side scan
sonar is usually dragged by a towing line to get close to the bottom of the sea to obtain high-resolution
seabed images. Although the depth of the side scan sonar can be obtained by using depth sensors, the
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height of the sonar from the seabed cannot be accurately obtained [7]. Inaccurate sonar heights will
lead to inaccurate geocoding sonar images [8], confuse the water column information with the seabed
information, and cause serious problems in applications of target recognition and segmentation [9-11],
image interpretation [12,13], and seabed sediment classification [14-16]. The bottom tracking of side
scan data can accurately obtain the sonar height from the seabed by finding the first echo that reaches
the seabed. Meanwhile, real-time bottom tracking can quickly detect changes in sonar height and
seabed terrain, and enhance the safety of sonar equipment and ship navigation.

Side scan sonars can be installed on the vessel or towed close to the seabed from the survey ship.
These sonars acquire high-resolution images by emitting sound pulses and recording the backscatter
strengths from the water column and seabed [17]. The depth of the side scan sonar can be determined
by the depth sensor, whereas the sonar height cannot be easily determined [18]. The sound wave
transmits through the water column, and then arrives at the seabed. Given that the backscatter
strengths from the water column are much lower than those from the seabed, the backscatter strengths
recorded near the bottom positions differ from those recorded in other positions, which makes bottom
position tracking possible [7].

With best practices, i.e., the gains are logged in the recorded files (e.g., *jsf file for EdgeTech
sonars) and the gains are kept track in the processing chain, all useable information, including the
raw signal levels and gains, are available. Then the bottom can usually be easily determined with a
very high signal-to-noise ratio (SNR), which makes the signal level of the bottom tens of dB larger
than in the water column [17]. However, when the gains are lost, detecting the bottom over the
seafloor becomes much harder. Moreover, as the development of the oceanographic survey, more
researchers are stepping into the relative fields of sonar imaging. In many cases, if the researchers are
not there to record enough useable data during the survey, valuable information will be lost and these
researchers can only study the recorded side scan data with very little information. In addition, old side
scanside scan data often need to be reprocessed to find new results or to be compared with the current
study. Given that the recorded side scan data are used for seabed imaging, the depths and gains are
usually not recorded in the data (e.g., eXtended Triton Format * xtf files). In these situations, when the
original sound signal levels are unknown and the echoes have been compensated with unknown gains
(e.g., time varied gains), the recorded side scan data only include the converted backscatter strength
data in special fixed ranges. Thereby, the bottom tracking methods are necessary. Moreover, certain
effect factors, including sonar self-noises, ambient noises, and other object disturbances, also introduce
challenges in bottom tracking methods [19].

To process these types of side scan data, most bottom tracking works are completed by using
the threshold method assisted by expensive commercial software, such as Chesapeake SonarWiz and
EdgeTech Discover [19]. Given that the threshold is usually determined on the basis of the operator’s
experience, this method also requires extensive manual work. Moreover, given the complexity of the
seabed environment, the threshold changes during the processing. Using inappropriate threshold
parameters can lead to incorrect bottom tracking results. Accordingly, researchers are looking for
automatic algorithms to achieve enhanced efficiency. Some researchers have used the filtering method
to remove noise, studied the variation features of the backscatter strengths of the side scan sonar, and
used these feature differences for bottom tracking of the side scan data [20]. Given the continuity of
sonar heights and the symmetry of the port and starboard side scan data, other researchers have built
general models and used dynamic data filtering algorithms, such as Kalman filtering and time series,
to repair abnormal data and improve accuracy [19]. Given the existence of many types of effect factors,
the variations in backscatter strengths typically show a feature of regularity and local randomness.
Traditional methods require manual threshold parameters or time-consuming post-processes, which,
thereby, cannot guarantee accurate and real-time bottom tracking results.

Deep learning algorithms have been widely applied in image recognition and classification [21-24].
The one-dimensional convolutional neural network (1ID-CNN) is a deep learning algorithm for
processing one-dimensional sequence data, and has been proven to be an effective recognition and
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classification method for one-dimensional sequence data [25,26]. After introducing the deep learning
idea, algorithms can simulate the human brain, learn the variation feature of the local backscatter
strength sequence, and fulfill the bottom tracking of side scan sonars. Therefore, on the basis of the
recognition of side scan bottom data sequences through 1D-CNN, this paper presents a new real-time
bottom tracking method for side scan sonar data. First, the operation theory of the side scan sonar and
the characteristics of the side scan backscatter strength data are briefly introduced. Second, according
to the variation features of backscatter strengths, the proposed 1D-CNN model is designed and then
trained by using the established sample sets for recognizing bottom sequences. Third, the bottom
tracking of side scan data is implemented by traversing each ping to use the trained model to detect
the bottom data sequences. Lastly, the proposed method is validated in the experiment by using the
measured side scan data.

2. Theory and Method

This chapter introduces the proposed real-time bottom tracking method using the 1D-CNN model.
The basic theories of side scan operation and data characteristics, the recognition of bottom data
sequences, and bottom tracking using the trained model will be explained successively.

2.1. Side Scan Sonar Operation and Data Characteristics

The operation of a side scan sonar is shown in Figure 1. The side scan sonar, which is usually
a towfish, is towed by the survey vessel using a tow cable to get close to the seabed. The side scan
sonar transducer projects a single wide sound beam (e.g., 50°, as shown in Figure 1) at the port and
starboard sides. After the sound is projected from the side scan transducer, the transducer receives and
records the backscatter strengths in the time sequence at the port and starboard sides, respectively,
and these strengths are used to construct side scan sonar images. During the sound propagation,
the backscatter strengths received from the water column are usually much lower than those received
from the seabed, as shown in Figure 1. The special variations in signal levels (or backscatter strengths)
when the sound arrives at the seabed serve as the basis for the bottom tracking of side scan sonar
data. However, given the effects of sonar self-noise, suspended objects in the water column, and other
instrumental and environmental factors, the many uncertainties in the sonar data introduce difficulties
in bottom tracking.
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Figure 1. Operation of the side scan sonar and one-ping backscatter strength sequence.
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As shown in Figure 1, the acoustic backscatter strengths of a ping have the following characteristics.

e The backscatter strengths in the water column area are much lower than those in the seabed area.
The backscatter strengths in the water column area near the zero position are usually heavily
affected by the self-noise of the side scan sonar.

e When the sound hits the seabed, the transducer receives higher echo signal intensities compared
with those in the water column. Affected by the beam patterns and transmission losses [27],
the strength sequences temporarily increase after the bottom position and, subsequently,
decrease along with an increasing transmission length.

e  The backscatter strength sequences of the port and starboard sides are almost symmetric at the
zero position. However, the bottom tracking position may slightly differ due to the attitude of the
side scan sonar and the seabed terrain slopes [19].

2.2. Recognition of Sonar Data Sequences Using 1D-CNN

When the sound hits the seabed, the local backscatter strength sequence shows a special variation
feature, as illustrated in Figure 1. The proposed method uses the suitable 1D CNN model to recognize
the bottom samples for bottom tracking. In this section, the positive and negative samples were first
extracted to establish the sample sets. The sample sets were normalized and a 1D-CNN model was
carefully designed and trained by using the sample sets.

2.2.1. Sampling

When using 1D-CNN to learn the variation features of the side scan data sequence, the one-ping
backscatter data sequence should be divided into regional sub-sequences as samples, as illustrated in
Figure 2. The sub-sequence/sample size should be properly selected to accurately reflect the variation
characteristics, as discussed in Section 4.1. An improper sample size would cause the network to learn
the wrong information and misjudge the results.

e A very large sample size cannot represent the special variation characteristics of backscatter
strengths and
e A very small sample size can be easily affected by local noise.
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Figure 2. Data sequence sample of a ping data. The positive (bottom) and negative (noise, water
column, and seabed) samples.
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To establish the sample sets, the positive and negative samples need to be selected from raw
sonar backscatter strength data sequences. The positive samples can be detected using the traditional
method with manual intervention, whereas the negative samples should contain the samples in the
water column area, those containing noise, and those in the seabed area, as shown in Figure 2.

2.2.2. Normalization of Sonar Data Sequences

As shown in Figure 2, the samples are in various strength ranges and need to be normalized into
the same range for the network training. These samples can be normalized by using the z-score to
ensure that they are in the same range [28]. Given that the side scan data are usually recorded in a
fixed range (e.g., 0 to 21°-1), the samples can be simply normalized by the equation below.

dB dB
5= M (E'g' 32767)' M

After the normalization, the sample range should be normalized to (0~1), as shown in Figure 3.
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Figure 3. Normalization of the data sequence samples.

2.2.3. Network

The bottom tracking of the side scan sonar data aims to recognize special bottom backscatter
strength sequences, and can be fulfilled via the 1ID-CNN recognition of the normalized data sequences.

1D-CNN is the one-dimensional version of common CNNs, which also contain input layers,
convolution layers, pooling layers, and the output layers. Given the characteristics of our problem,
the input layer of the 1D-CNN contains backscatter strength sequences, whereas the output layer
contains the positive (1) and negative (0) results, as shown in Figure 4.

The input layer contains the one-dimensional normalized backscatter strength samples, and the
median layers are combinations of convolution and pooling layers. The one-dimensional convolution
operation s of the data sequences in discrete form is shown below.

s(t) = (@dxw)(t) = Y d(@)w(t-a) @

a=—00

where d is the input data sequence, w is the activation function, and ¢ is the tth value of d.

The following rectified linear unit (ReLU) h is selected as the activation function for the
convolution layers.

by p(X) = max(X-w + b,0) 3)

where w and b are the trainable parameters, and X is the input data.
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Figure 4. The structure of the one-dimensional convolution neural network (1ID-CNN) with the positive
and negative input samples and the corresponding output results.

After the convolution and pooling layers, the flattened layer reshapes the tensors into vectors,
whereas the fully-connected layer usually uses the ReLU to connect the output layer.
The last layer is the output layer, with the following activation sigmoid function o:

1

T @)

a(x)
where x is the input data.
After each training loop, the loss function is used to calculate the difference between the predicted
results and the ground truth. Given that the bottom tracking problem is a binary classification problem,
the cross-entropy loss function is selected as the following loss function H.

Hy,(y) = -Z y; log(vi) 5)

where y; is the predicted result and y; is the ground truth.

The root mean square propagation optimizer is chosen to update the parameters. After several
loops, if the network learns the variation features of the samples properly, then the loss function would
reach a stable low value, whereas the training and validation accuracies would reach stable high values.
The well-trained 1D-CNN serves as the basis of the real-time bottom tracking method.

2.3. Bottom Tracking Using the Trained 1D-CNN

In this section, the trained network is used for the bottom tracking of the side scan data.
The complete procedures of real-time bottom tracking are explained in detail, along with the auxiliary
methods that can improve real-time performance and recognition accuracy.
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2.3.1. Real-Time Bottom Tracking

By finding the first echo that reaches the seabed, the purpose of bottom tracking aims to accurately
obtain the sonar height from the seabed, then geocode the sonar image, and fulfill other applications.
Given that the trained network model can effectively understand the characteristics of the input
samples, bottom tracking can be accomplished via the 1D-CNN recognition of local backscatter strength
sequences. By traversing the ping data sequence in the propagation direction, the trained 1D-CNN
recognizes the local backscatter strength sequence in each search window, and the predicted score of
each local sequence can be obtained, as shown in Figure 5. The window size should be the same as the
sample size.
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Figure 5. Prediction result for a one-side ping data obtained by using the trained network model with
approximately 300 samples. (a) shows the one-side ping backscatter strength sequences, and (b) shows
the corresponding prediction scores of each window.

The scores of the backscatter strength sequence in each search window are treated as the prediction
results of the trained 1D-CNN. When the sound beam arrives at the seabed, a high score can be
obtained by using the 1D-CNN prediction. Meanwhile, the scores of the data sequences in the other
positions are far lower. Therefore, the maximum score position can be used to determine the bottom
position of each ping.

Given the symmetry between the port and starboard data of each ping, a bottom tracking of the
port and starboard data is carried out. The predicted port and starboard scores are then used to check
the results and to achieve improved robustness to noise. The bottom tracking result of each ping is
obtained on the basis of the port and starboard results. The complete bottom tracking procedures for
each recorded ping is shown in Figure 6.

The bottom tracking accuracy of the survey line as obtained by 1D-CNN is calculated by using
Equation (6) below.

acc = No (6)

where Nj is the number of successful-bottom-tracked pings and Ny is the total number of pings.
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Figure 6. Flowchart of the real-time bottom tracking of side scan data.
2.3.2. Improving Speed: Narrow Search Range

The processing speed of the bottom tracking algorithm for each ping plays a key role in guaranteeing
the real-time performance of the proposed method. Given the stringent hardware computing power
requirements of the deep learning algorithm, the data sequences should be recognized in a limited
search range instead of the whole ping. In the current common hardware platform (AMD R5-2600X
CPU and GTX-2070 GPU), the relationship between different search scopes and corresponding times
was analyzed and shown in Figure 7. The computing speed and search range are linearly dependent on
the same hardware platform, which indicates that narrowing the search range can effectively improve
the computing speed.

According to the continuity of the seabed terrain variation, the bottom tracking position
(sonar height) of the former ping can be used as the initial search position, and the search range can be
determined by the seabed terrain variation or bottom tracking position rate. The relationship between
the bottom tracking position variation rate and search range is shown in Table 1. By combining the
initial search position provided by the previous ping and the bottom tracking position variation rate
between the previous pings, the search range of the proposed method can be adaptively controlled,
to guarantee an excellent real-time performance.
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Figure 7. The relationship between consuming time and search range. The experiment was tested on
the platform with AMD R5-2600X and GTX-2070.

Table 1. Auto-Adapted Search Ranges Depending on the Bottom Position Variation.

Bottom Position Variation Rate r

(Number of Samples/Ping) r<5 5<r<10 10<r<20 20<r<40

Bottom position variation rate r

. r<0.2 02<r<04 04<r<08 08<r<16
(meter/ping)

Search range

(number of samples) 20 40 80 160

Search range

(meter) 0.8 1.6 32 6.4

2.3.3. Improving Accuracy: Sample Data Augmentation

The accuracy and abundance of samples are key in ensuring an accurate bottom sequence
recognition. However, traditional sampling methods are time consuming and require manual
intervention to ensure enough accuracy. During its application, the trained network could process
other types of side scan sonar data in other seabed environments. The network needs to learn the
features of the new data by continuously increasing the number of samples to improve the recognition
accuracy. In this paper, a continuous increase of the samples was realized by using the learning ability
of the network and few manual assistances, as shown in Figure 8.
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Figure 8. Flowchart of sample set establishment and augmentation.
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As the number of samples increases, the recognition accuracy and robustness of the network can
be further improved, and an accurate bottom tracking can be guaranteed.

3. Experiment and Results

To verify the validity and real-time performance of the proposed method, the side scan and
multibeam data measured in Meizhou Bay, Fujian, China in 2012 were selected for the experiment,
as shown in Figure 9. The coverage of the survey area was approximately 13.5 X 2.5 km?, and the
water depth ranged from 10 m to 40 m. The seabed sediments were mainly gravel and silt. According
to the designed route, the measurements of the multibeam and side scan sonars were carried out
successively in the same water area. In the multibeam measurement, Kongsberg EM 3002 with an
operating frequency of 300 kHz, across-track beam aperture of 130° and maximum beam number of
131 was used. Meanwhile, in the side scan measurement, EdgeTech 4100P side scan sonar was towed at
approximately 2 m underwater with an operating frequency of 500 kHz, maximum recorded slant range
of 150 m (corresponding to 3751 sample numbers), vertical angular aperture of 50°, and horizontal
angular aperture of 0.5°. The interval time between pings was 0.15 s on average. The side scan data
were recorded in eXtended Triton Format (*.xtf) files, which only contained the backscatter strengths.
The raw signal levels were unavailable, and the echoes were compensated with unknown gains.
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25°10'12" 25'1012"
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116° 118" 120" 122"
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rm————
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Figure 9. Survey track lines of both the side scan and multibeam sonars in Meizhou Bay, Fujian, China.
The experiment was divided into the following stages.

e  The experiment began by sampling, training, and bottom tracking of a small side scan survey
line. Small sets of samples were initially extracted from the side scan data. Then the proposed
1D-CNN network model was trained to learn the variation features of the sample set. The training
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network was eventually used for bottom tracking, and the predicted value was compared with
the artificially selected truth value.

e The trained network was validated by using additional side scan data of other survey lines to
obtain the tracking results of other lines.

° The bottom tracking result obtained by the proposed method was compared with those
obtained by the traditional method.
. The water depth predicted by using the bottom tracking results were compared with the

ground truth (depths measured by the multibeam sonar).
° The real-time performance of the proposed method was analyzed and validated via
statistical analysis.

e Additional experiments on the side scan data with heavy noise and rich texture were conducted.

3.1. Network Model Establishment and Bottom Tracking

The experiment started with a small side scan survey line of 121 pings. The raw recorded
(*.xtf) data was decoded, and the corresponding waterfall sonar image was constructed, as shown in
Figure 10a. The bottom tracking results were processed by manual recognition, as shown in Figure 10b.
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Figure 10. (a) Side scan waterfall sonar image and (b) manual bottom tracking result of the survey line.

The positive sample sequences were selected as the bottom backscatter strength sequences from
the side scan data, according to the corresponding bottom tracking position. Meanwhile, the negative
sample sequences were uniformly selected in the water column and seabed area. The positive and
negative samples constituted the sample set for the model training. Given that the survey line had
121 pings, the sample set contained 242 positive and 2662 negative samples, respectively.

The sample set was normalized, according to Equation (1), and was imported into the network as
the input layer. The corresponding label (1: positive, 0: negative) was imported as the output layer.
During the training, the samples were randomly divided into training and validation sets in a 70-30%
proportion. The 1D-CNN (Figure 4) was trained to learn the variation features of the data samples.
The training and validation accuracies improved as the training epoch increased, as shown in Figure 11.

As shown in Figure 11, the training accuracy gradually improved as the training epoch increased,
and eventually reached a stable value of 100% after approximately 40 training epochs. The validation
accuracy fluctuated in 10 training epochs and reached a stable value after 20 epochs. The training
and validation losses gradually decreased along with an increasing training epoch, and eventually
decreased to 0. For the small sample set of the selected survey line, the network model proposed in this
paper can effectively learn the features of the positive and negative samples, and accurately recognize
them after training, which is the basis for the real-time bottom tracking of the survey line.

Based on the trained network model, each ping of the survey line was bottom tracked following
the procedure illustrated in Figure 6. The bottom tracking results of the port and starboard side scan
data were then processed (Figure 5) and compared with each other (Figure 12a). The corresponding
bottom tracking result can be displayed in the side scan waterfall image (Figure 12b).
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Figure 11. Training and validation accuracies and losses of the network in 50 epochs.
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Figure 12. Bottom tracking results obtained by using the trained network. (a) This area shows the
bottom positions (sample indexes) of the port and starboard sides, and (b) this area shows the waterfall
image with the bottom tracking lines.

The bottom tracking results of the port and starboard data were highly consistent with each other,
and all bottom position differences were less than four samples (0.16 m) because the seabed topography
of the survey water area was relatively flat. Moreover, the tracking results in the waterfall diagram
were highly intuitive to show the edges of the port and starboard seabed area, which agreed with the
visual results. The comparison between the bottom tracking results and manual ones showed that the
bottom tracking accuracy can reach 100% on the training survey line. These results prove the validity
of the proposed bottom tracking method.

3.2. Method Validation and Comparison

To validate the generalization of the trained model and the effectiveness of the proposed method
for the side scan data of other survey lines in the test area, the trained model was used to recognize
unknown data for the bottom tracking of other survey lines.
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3.2.1. Validation on a Larger Survey Line

The side scan data of a long survey line with 13,504 pings were used for the validation. The survey
line spanned the seabed of two different sediments, which appeared as the clearly lighter and darker
areas in the side scan image, as shown in Figure 13b. At the joint area of the two sediments, the seabed
topography rapidly changed, as shown in Figure 13c. Based on the 1D-CNN model that was trained
by using the sample set of a small survey line, the bottom tracking of the validation survey line was
processed, and the results are shown in Figure 13. During the processing, the search ranges of each
ping were self-adapted to improve the speed, according to Table 1.
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Figure 13. Bottom tracking of a larger survey line. (a) This area shows the port and starboard bottom
tracking results, (b) this area shows the bottom tracking results represented in the side scan waterfall
image, and (c) this part shows the seabed area where the terrain changes rapidly.

As shown in Figure 13a, the port and starboard results were consistent with each other, and
the bottom tracking lines coincided with the edges of the port and starboard seabed in the waterfall
image shown in Figure 13b. After removing the missing ping data of this survey line, the accuracy
of the bottom tracking results reached 99.5%. In the area where the seabed terrain changed rapidly,
the proposed bottom tracking method with auto-adapt search ranges still achieved good tracking
results, which proved the validity of the proposed method in both flat and rugged seabed environments.

3.2.2. Comparison with Other Bottom Tracking Methods

To compare the proposed method with traditional methods, the survey line was processed by
using the last peak method [19]. For real-time processing, the last peak method was used without
post-processing, including Kalman filtering. The tracking results obtained by both methods are shown
in Figure 14.
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Figure 14. Bottom tracking results obtained by using the last peak method and 1D-CNN.

The bottom tracking results obtained by using these two methods were consistent in most positions.
However, the results obtained by the traditional method based on the numeric features were sensitive
to noise, such as water column noise and seabed objects., so the results could possibly be inaccurate
without post-processing. As for the proposed method, by training the sample sets, the network could
properly learn the variation feature of the backscatter strength sequences, and show better robustness
to noise. As more samples were learned, the 1D-CNN could more accurately recognize the side scan
data. The comparison proved the validity and performance of the proposed method.

3.2.3. Comparison Between the Bottom Tracking Depths and Ground Truth (Manual Annotations)

The manual annotations of bottom positions were used as the ground truth for the bottom tracking
results of the side scan sonar data. Additionally, the bathymetric data measured by the multibeam
sonar can be regarded as good references for the bottom tracking results. The depth of the side scan
sonar sensor can be obtained by using its depth sensor, and the sonar height can be calculated by using
the bottom tracking results. Therefore, the depth D of the corresponding seabed can be calculated

using the equation below.

D:nxéxv+d %

where 7 is the nth sample detected as bottom, f is the sampling interval time, v is the sound velocity,
and d is the side scan sonar depth.

The digital elevation model was constructed by using the multibeam bathymetric data in the
selected survey marine area (Figure 13c), as shown in Figure 15a. The track line of the multibeam data
was extracted, and the corresponding water depths are shown in Figure 15d. The seabed depths of the
side scan survey line that corresponded to the multibeam survey line were calculated by using the
manual annotation and the predicted data, as shown in Figure 15b,c.

In the same water area, the seabed depths measured by the multibeam sonar (Figure 15d),
those calculated by using manual annotations (Figure 15b), and the bottom tracking results (Figure 15c)
were consistent with each other. The significant terrain fluctuations in the middle of the region
coincided with the seabed variation shown in Figure 13c. Given that the multibeam and side scan data
were measured at different times and that the multibeam data were not post-processed, the depths
of the multibeam data had some errors and showed slight deviations from the depths calculated by
using the side scan data. The terrain variation trends were consistent with each other, which proves
the accuracy of the bottom tracking data.
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sonar, respectively, and (e) shows the histogram and normal fitting (with the mean y as 1.21 cm and
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The depth errors between the predicted and manual annotated depths were fitted using a normal
curve with the mean u equal to 1.21 cm and standard deviation ¢ equal to 8.57 cm, as shown in
Figure 15e. Given that the errors of manual annotations were within +3 samples (corresponding
to +12.0 cm), the depth errors were less than two times the error (i.e., 24.0 cm) can be acceptable.
By statistical analysis, the depth errors (Figure 15e) within +24.0 cm are in a 99.44% proportion. Thereby,
the accuracy of the bottom tracking results compared with manual annotations is 99.44%.

3.2.4. Real-Time Experiment

To verify the real-time performance of the proposed method, the spend times of each ping were
recorded during the bottom tracking experiment. The bottom tracking results and time sequences are
shown in Figure 16a,b, respectively, whereas the spend times were statistically analyzed to evaluate
the real-time performance, as shown in Figure 16c.
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Figure 16. Real-time experimental results obtained by using AMD R5-2600X and GTX-2070.
The necessary memory to run the algorithm should not be less that 2GB and the graphic memory
should not be less than 8GB. (a) This area shows the bottom tracking results of the line, (b) this area
shows the corresponding spend times of each ping, and (c) this area shows the normal fit of times and
its 99.9% confidence bound at 150 ms.
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Given the auto-adapt search ranges used in the bottom tracking experiment, the spend times of
each ping changed along with the variation rate of the seabed terrain. The spend times of each ping
were fitted by using the normal distribution curve with a mean p of 82.1 cm and a variance o of 0.12 cm.
According to the statistical analysis results, the confidence bound of the side scan sampling interval
time of each ping (150 ms) was 99.9%, which suggests a 99.9% possibility for the calculation time of
each ping to be shorter than the sampling interval time. Moreover, it is guaranteed that, given the
number of predicted sample sequences being less than 60, the calculation speed is always less than
150 ms, where 150 ms is the interval time between two pings. The statistical results proved the real-time
feasibility of the proposed method.

Moreover, if the prior depth range is known, then the search range of each ping would be smaller.
Moreover, with better hardware and multi-thread computing, the calculation speed would be improved,
as discussed in Section 4.4.

3.3. Bottom Tracking of Side Scan Data with Noise and Rich Texture

To obtain the bottom tracking results of the other survey lines in the experimental area,
data augmentation was applied on the sample sets as more survey lines were processed, as shown in
Figure 8. The characteristic side scan data with large noise, rich seabed texture, and artificial targets
were carefully processed and analyzed, as shown in Figure 17. The recorded side scan data contained
missing pings, which had no backscatter strengths or very low backscatter strengths, as shown in
yellow rectangles in Figure 17.

Miss pings

Figure 17. Bottom tracking of the characteristic side scan data with noise (a) and rich seabed texture (b)
and artificial targets (c). The gaps shown in yellow rectangles between the pings are the missing data.

Figure 17a shows that the noises in the water column are relatively large. In the red rectangular
area, the noises in the water column made the seabed and water column data indistinguishable,
or made the edge variation of the seabed abnormal. The bottom tracking accuracy of this survey line
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as obtained by 1D-CNN was 97.3% with a 2.0% miss-ping rate. The accuracy excluding the missing
pings was 99.3%.

Figure 17b shows that the seabed has rich textures and that some noise can be observed in the
water column. The backscatter strength variation of the complex seabed texture would result in clear
light and shade areas, which would interfere with bottom tracking. The bottom tracking accuracy of
this survey line as achieved by 1D-CNN was 93.1% with a 6.1% miss-ping rate. The accuracy excluding
the missing pings was 99.1%.

Figure 17c shows that the seabed contains artificial targets, such as submarine pipelines.
These artificial targets can also cause light and shade areas in the side scan image, which would
significantly affect bottom tracking. The bottom tracking accuracy of this survey line as achieved by
1D-CNN was 94.5% with a 4.9% miss-ping rate. The accuracy excluding the missing pings was 99.4%,
as shown in Table 2.

Table 2. Bottom Tracking Accuracies of the Survey Lines Shown in Figure 17.

Survey Line Tracking Accuracy . . Tracking Accuracy Excluding
(in Figure 17) Using 1D-CNN Miss-Ping Rate the Missing Pings

a 97.3% 2.0% 99.3%

b 93.1% 6.1% 99.1%

c 94.5% 4.9% 99.4%

As shown in Table 2, by means of sample data augmentation, mutual inspection of the port
and starboard results, and auto-adapt search ranges, the proposed method can guarantee the bottom
tracking accuracy of the side scan data with large amounts of noise, a rich seabed texture, and artificial
targets as well as simultaneously realize real-time calculation performance. The average bottom
tracking accuracy of the overall testing survey lines as achieved by 1D-CNN was 94.7% with a 4.5%
miss-ping rate. The tracking accuracy excluding the missing pings was 99.2%. The experiments proved
that the proposed method has high robustness to noise, and can yield accurate results in complex
seabed conditions.

4. Discussion

4.1. Determination of the Sample Size

Sample size is an important factor in accurately recognizing the bottom data samples and further
realizing bottom tracking of the side scan data. If the sample size is too large, then the samples cannot
represent the special variation characteristics of the bottom data sequences. However, if the sample
size is too small, then the samples can be easily affected by local noise. For a better comparison,
bottom tracking experiments were conducted with sample sizes of 10, 20, 40 (chosen in this paper),
and 100, as shown in Table 3.

Table 3. Comparison of results obtained under different sample sizes after a 50-epoch training with 242
positive samples and 2662 negative samples.

Sample Size (Number of Sample Training Validation Bottom Tracking
Recorded Samples) Size (m) Accuracy (%) Accuracy (%) Accuracy (%)
10 04 98.1 98.6 0.0
20 0.8 99.7 100 98.3
40 1.6 99.9 100 100
100 4.0 100 100 46.3

As shown in Table 3, when the sample size was as small as 10, although the training and validation
accuracies were high enough, the bottom tracking accuracy was 0%, which suggests that the variation
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characteristics of the samples can be easily affected by noise. When the sample size was as large as 20,
the training and validation accuracies were improved, and the bottom tracking accuracy reached as high
as 98.3%. When the sample size was 40 (as used in this paper), the training and validation accuracies
were further improved, and the bottom tracking accuracy increased to 100%, which suggests that the
samples can accurately reflect the variation characteristics of backscatter strengths. However, when the
sample size was 100, although the training and validation accuracies were 100%, the bottom tracking
accuracy was only 46.3%, which suggests that the samples cannot properly reflect the variation
characteristics of bottom backscatter strengths. The comparison results reveal that the proper sample
size of the window should be 40 (as used in this paper) for the side scan sonar.

4.2. Net Comparison

To compare the performance of different networks, given the characteristics of the input sample
data, the networks of different layers were established, trained, and used in bottom tracking experiments.
The results are shown in Table 4.

Table 4. Comparison of Results Obtained by Using the Networks of Different Layers.

Network Layer Training Accuracy (%) AVahdatlo(z} ) B(:tom Trac(l:/l;lg Tl;:lr‘lle 1():)r
10 Epochs 20 Epochs ceuracy &5 ceuracy o &
6 89.5 97.3 98.1 90.0 0.24
8 98.4 99.8 99.6 95.0 0.30
10 98.6 99.6 100 98.3 0.35

As seen from Table 4, with a sufficient number of samples, the deeper networks demonstrated
better learning rates and higher training, validation, and bottom tracking accuracies, but required a
longer calculation time. Meanwhile, each convolution operation would further reduce the data size.
Therefore, the maximum number of network convolution layers was limited due to the limitations in
the input data size. In this paper, a network of 10 layers was adopted (Figure 4).

4.3. Exceptional Situations

The validity of the proposed method was proven by conducting experiments using side scan
data collected from Meizhou Bay. However, in some special cases when the backscatter strengths of
sea bottom cannot be recognized, the proposed method may return invalid results. These possible
exceptional situations are:

1.  The sonar altitude to the seabed is too low (less than 5 m). When the sonar is too close to
the seabed, the variation characteristics of the bottom sequences would be overridden by the
sonar self-noises in the water column area, which would make bottom tracking impossible.
This situation can be avoided by controlling the sonar altitude within the proper range.

2. The backscatter strengths of the seabed are too weak, and are no different from those of the
water column area. This situation may be caused by the low-energy-level sonar emission,
special sediment types, or maloperation of sonar instruments. In this situation, the backscatter
strengths of the seabed are almost in the same range as those of the water column, cannot reflect
the variation characteristics of the bottom echo sequences, and would make bottom tracking
very difficult. This situation can be avoided by increasing the sound energy level, using the
different-frequency sonars, and ensuring careful manual operation.

4.4. Other Methods for Improving Efficiency

The proposed method realizes bottom tracking of side scan data based on 1D-CNN recognition.
In addition to the methods mentioned in this paper, some other ways to improve the efficiency of the
proposed method include:
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1.  Define the depth range in advance. For the pre-surveyed water area, the previous bathymetric
data can be used to define the depth range. The pre-known depth range can be used to
control the detection ranges of the side scan data and to validate the bottom tracking results.
Therefore, the pre-defined depth range can improve the calculation efficiency of the proposed
bottom tracking method.

2. Improve the computing hardware. Given the high computing ability requirements of the deep
learning algorithm, using better computing hardware can improve the calculation of the proposed
method and reduce the bottom tracking time of each side scan ping. With the development of
sonar technologies, given that sonars will have higher sample rates, a better computing hardware
can improve the calculation efficiency of the proposed bottom tracking method.

4.5. Development of Modern Scanning Sonars

With the development of modern sonar technologies including interferometry, the newest scanning
sonar could not only obtain sonar images but also bathymetric data [29] including the following.

1.  Kongsberg GeoSwath sonars can simultaneously offer swath bathymetry and side scan seabed
mapping with sufficient accuracy.

2. Teledyne Blueview’s 3D multibeam scanning sonar can create high-resolution and laser-like
imagery of underwater areas, structures, and objects of interest.

Although these sonars have many advantages, they are only used by a limited number of
companies and research institutions because of their high cost.

The traditional side scan sonar remains one of the most widely used marine survey instruments
because of its very low cost. Moreover, modern data process algorithms may provide new abilities
for the traditional side scan sonar. In this paper, by using a real-time bottom tracking algorithm,
the side scan sonar can measure the seabed depth. This enhances the potential applications of the side
scan sonar.

4.6. Handling of Important Issues

The following important issues should be noted.

Low SNR. Our method processes side scan data that have been compensated and converted in
fixed ranges when most information (e.g., the original signal level and time-varied gain) is unavailable.
Under this situation, the echo intensities are almost in the same range. When the SNR is very
small, the echo intensities of the bottom can be affected by noise, but the variation features remain.
We believe that our method can process side scan data with very small SNR after training of the
corresponding samples.

Obstacles in the water column. When obstacles (e.g., the fish school) exist above the seabed,
the fishes can be easily distinguished by using the trained 1D-CNN with enough negative samples
(i.e., fishes). By training with all types of obstacle samples, the network can distinguish the bottom,
the fishes, and the other obstacle targets from one another. Moreover, when the bottom continuity
hypothesis fails, our method will automatically search for the new bottom position.

Reproducibility. Each step of our method is described in detail, including how to create the
sampmorded side scan data, how to design a suitable 1D-CNN, how to train the network,
and how to use the proposed bottom tracking method. In the experiment, we demonstrate our complete
processing procedure, including the sampling, training, and bottom tracking. We believe that the
reader can easily reproduce our results by using their own side scan data.

5. Conclusions

Based on the 1D-CNN recognition of bottom backscatter strength sequences, this paper develops
a high-accuracy and real-time bottom tracking method of side scan sonar data. This method was
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validated by using the measured side scan data from Meizhou Bay, and the validity of each step of this
method was proven. The side scan sonar data from the experimental area were bottom tracked by using
the proposed method, and the average bottom tracking accuracy reached 94.7% with a 4.5% miss-ping
rate, and 99.2% excluding the missing data. The experimental results showed that the proposed
method is highly robust to the effects of noise, rich seabed texture, and artificial targets and proved its
accuracy and real-time performance. Our method can process side scan data in field measurements
(i.e., when the operator has no control over the SNR, or when fishes or obstacles are present in the water
column, or in analogue simulations by using the recorded data), and in post-processing (i.e., when the
recorded data only contain compensated and converted backscatter strengths). The proposed method
also demonstrates that the real-time sound is possible by using the side scan sonar, which may further
expand the applications of side scan sonars.

Author Contributions: Conceptualization, J.Y. and .M. Methodology, ].Y. Software, J.Y. Validation, ].Y., ].M., and
J.Z. Formal analysis, ].Y. and J.M. Investigation, ].Y. and J.Z. Resources, J.Z. Data curation, J.Y. Writing—original
draft preparation, J.Y. Writing—review and editing, J.Y., .M., and ].Z. Visualization, J.Y. and J.M. Supervision, J.Y.
and J.Z. Project administration, J.Y. and J.M. Funding acquisition, ].Y., ].M., and J.Z. All authors have read and
agreed to the published version of the manuscript.

Funding: The National Natural Science Foundation of China (grant number 41906168, 41576107, and 51804001),
Natural Science Foundation of Anhui Province (grant number 1908085QD161), and the University Science Research
Key Project of Anhui Province (grant number KJ2019A0024) funded this research.

Acknowledgments: The Guangzhou Marine Geological Survey Bureau provided the data in this study. The authors
are appreciative of their support. We gratefully thank the editor and the anonymous reviewers for their valuable
comments and suggestions that greatly improve our manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

References

1.  Blondel, P. Automatic mine detection by textural analysis of COTS sidescan sonar imagery. Int. ]. Remote
Sens. 2000, 21, 3115-3128. [CrossRef]

2. Reed, S;; Petillot, Y.; Bell, J. An automatic approach to the detection and extraction of mine features in
sidescan sonar. IEEE |. Ocean. Eng. 2003, 28, 90-105. [CrossRef]

3. Mishne, G.; Talmon, R.; Cohen, I. Graph-based supervised automatic target detection. IEEE Trans. Geosci.
Remote 2015, 53, 2738-2754. [CrossRef]

4. Acosta, G.G,; Villar, S.A. Accumulated CA-CFAR process in 2-D for online object detection from sidescan
sonar data. IEEE ]. Ocean. Eng. 2015, 40, 558-569. [CrossRef]

5. Collier, ].5.; Humber, S.R. Time-lapse side-scan sonar imaging of bleached coral reefs: A case study from the
Seychelles. Remote Sens. Environ. 2007, 108, 339-356. [CrossRef]

6.  Degraer, S.; Moerkerke, G.; Rabaut, M.; Van Hoey, G.; Du Four, I.; Vincx, M.; Henriet, J.-P.; Van Lancker, V.
Very-high resolution side-scan sonar mapping of biogenic reefs of the tube-worm Lanice conchilega. Remote
Sens. Environ. 2008, 112, 3323-3328. [CrossRef]

7. Capus, C.G,; Banks, A.C.; Coiras, E.; Ruiz, I.T.; Smith, C.J.; Petillot, Y.R. Data correction for visualisation and
classification of sidescan SONAR imagery. IET Radar Sonar Nav. 2008, 2, 155-169. [CrossRef]

8.  Reed, S.; Ruiz, L.T.; Capus, C.; Petillot, Y. The fusion of large scale classified side-scan sonar image mosaics.
IEEE Trans. Image Process. 2006, 15, 2049-2060. [CrossRef]

9.  Huo, G;; Yang, S.X;; Li, Q.; Zhou, Y. A robust and fast method for sidescan sonar image segmentation using
nonlocal despeckling and active contour model. IEEE Trans. Cybern. 2017, 47, 855-872. [CrossRef]

10. Song,Y.;He, B.; Zhao, Y.; Li,G.; Sha, Q.; Shen, Y.; Yan, T.; Nian, R.; Lendasse, A. Segmentation of sidescan sonar
imagery using markov random fields and extreme learning machine. IEEE |. Ocean. Eng. 2019, 44, 502-513.
[CrossRef]

11. Villar, S.A.; Paula, M.D.; Solari, FJ.; Acosta, G.G. A framework for acoustic segmentation using order
statistic-constant false alarm rate in two dimensions from sidescan sonar data. IEEE ]. Ocean. Eng.
2018, 43, 735-748. [CrossRef]

120



Remote Sens. 2020, 12, 37

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

Le Bas, T.P; Huvenne, V.A.L. Acquisition and processing of backscatter data for habitat mapping - Comparison
of multibeam and sidescan systems. Appl. Acoust. 2009, 70, 1248-1257. [CrossRef]

Yan, J. Acquisition and superposition of the high-quality measurement information of multibeam echo sonar
and side scan sonar. Acta Geodaetica et Cartographica Sinica 2019, 48, 400. [CrossRef]

Buscombe, D.; Grams, P.E.; Smith, S.M.C. Automated riverbed sediment classification using low-cost sidescan
sonar. J. Hydraul. Eng. 2016, 142, 06015019. [CrossRef]

Berthold, T.; Leichter, A.; Rosenhahn, B.; Berkhahn, V.; Valerius, J. Seabed sediment classification of side-scan
sonar data using convolutional neural networks. In Proceedings of the 2017 IEEE Symposium Series on
Computational Intelligence (SSCI), Honolulu, HI, USA, 27 November-1 December 2017.

Yan, J.; Zhao, ].; Meng, J.; Zhang, H. A universal seabed classification method of multibeam and sidescan
sonar images in consideration of radiometric distortion. J. Harbin Inst. Technol. 2019, 51, 178-184. [CrossRef]
Blondel, P. The Handbook of Sidescan Sonar; Praxis Publishing Ltd.: Chichester, UK, 2009; pp. 7-9, 35-37.
Capus, C.; Ruiz, LT, Petillot, Y. Compensation for changing beam pattern and residual TVG effects with sonar
altitude variation for sidescan mosaicing and classification. In Proceedings of the 7th European Conference
Underwater Acoustics, Delft, The Netherlands, 5-8 July 2004.

Zhao, J.; Wang, X.; Zhang, H.; Wang, A. A Comprehensive bottom-tracking method for sidescan sonar image
influenced by complicated measuring environment. IEEE . Ocean. Eng. 2017, 42, 619-631. [CrossRef]
Al-Rawi, M.; Elmgren, F.; Frasheri, M.; Ciiriiklii, B.; Yuan, X.; Martinez, J.; Bastos, J.; Rodriguez, J.; Pinto, M.
Algorithms for the detection of first bottom returns and objects in the water column in sidescan sonar images.
In Proceedings of the OCEANS 2017, Aberdeen, UK, 19-22 June 2017.

Ding, J.; Chen, B.; Liu, H.; Huang, M. Convolutional neural network with data augmentation for SAR target
recognition. IEEE Geosci. Remote Sens. 2016, 13, 364-368. [CrossRef]

Bentes, C.; Velotto, D.; Tings, B. Ship Classification in TerraSAR-X images with convolutional neural networks.
IEEE |. Ocean. Eng. 2018, 43, 258-266. [CrossRef]

Williams, D.P. Transfer learning with SAS-image convolutional neural networks for improved underwater
target classification. In Proceedings of the 2019 IEEE International Geoscience and Remote Sensing
Symposium (IGARSS 2019), Yokohama, Japan, 28 July-2 August 2019; pp. 78-81.

Xie, Y. Machine Learning for Inferring Depth from Side-Scan Sonar Images. Master’s Thesis, KTH Royal
Institute of Technology, Stockholm, Sweden, September 2019.

Sun, J.; Xu, G.; Ren, W.; Yan, Z. Radar emitter classification based on unidimensional convolutional neural
network. IET Radar Sonar Nav. 2018, 12, 862-867. [CrossRef]

Abdeljaber, O.; Avci, O.; Kiranyaz, S.; Gabbouj, M.; Inman, D. Real-time vibration-based structural damage
detection using one-dimensional convolutional neural networks. J. Sound Vib. 2017, 388, 154-170. [CrossRef]
Zhao, J.; Yan, J.; Zhang, H.; Meng, J. A new radiometric correction method for side-scan sonar images in
consideration of seabed sediment variation. Remote Sens. 2017, 9, 575. [CrossRef]

Zhao, J.; Meng, J.; Zhang, H.; Yan, ]. A new method for acquisition of high-resolution seabed topography by
matching seabed classification images. Remote Sens. 2017, 9, 1214. [CrossRef]

Bates, C.R.; Oakley, D.J. Bathymetric sidescan investigation of sedimentary features in the Tay Estuary,
Scotland. Int. J. Remote Sens. 2004, 25, 5089-5104. [CrossRef]

@ © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
@ article distributed under the terms and conditions of the Creative Commons Attribution
[

(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

121






remote sensing ﬁw\n\l’y

Atrticle

Aircraft Target Classification for Conventional
Narrow-Band Radar with Multi-Wave Gates Sparse
Echo Data

Wantian Wang, Ziyue Tang, Yichang Chen *, Yuanpeng Zhang and Yongjian Sun

Air Force Early Warning Academy, Wuhan 430019, China; laodifang0120@126.com (W.W.);
tang_zi_yue@163.com (Z.T.); zhangyuanpeng312@163.com (Y.Z.); bmdsun@126.com (Y.S.)
* Correspondence: cyc_2007@163.com; Tel.: +86-134-7620-2876

Received: 27 September 2019; Accepted: 15 November 2019; Published: 18 November 2019

Abstract: For a conventional narrow-band radar system, the detectable information of the target
is limited, and it is difficult for the radar to accurately identify the target type. In particular, the
classification probability will further decrease when part of the echo data is missed. By extracting
the target features in time and frequency domains from multi-wave gates sparse echo data, this
paper presents a classification algorithm in conventional narrow-band radar to identify three different
types of aircraft target, i.e., helicopter, propeller and jet. Firstly, the classical sparse reconstruction
algorithm is utilized to reconstruct the target frequency spectrum with single-wave gate sparse echo
data. Then, the micro-Doppler effect caused by rotating parts of different targets is analyzed, and
the micro-Doppler based features, such as amplitude deviation coefficient, time domain waveform
entropy and frequency domain waveform entropy, are extracted from reconstructed echo data to
identify targets. Thirdly, the target features extracted from multi-wave gates reconstructed echo data
are weighted and fused to improve the accuracy of classification. Finally, the fused feature vectors are
fed into a support vector machine (SVM) model for classification. By contrast with the conventional
algorithm of aircraft target classification, the proposed algorithm can effectively process sparse echo
data and achieve higher classification probability via weighted features fusion of multi-wave gates
echo data. The experiments on synthetic data are carried out to validate the effectiveness of the
proposed algorithm.

Keywords: narrow-band radar; target classification; signal reconstruction; features extraction;
weighted features fusion

1. Introduction

Aircraft target classification is always a difficult problem for traditional narrow-band radar.
Even for the three distinct targets, i.e., helicopter, propeller and jet aircraft, the recognition rate of
traditional narrow-band radar is not high in practical applications. The main reasons for target
recognition probability deteriorating in traditional narrow-band radar include the following three
points: (1) it is limited of range resolution due to the narrow bandwidth of radar transmitting signal;
(2) a traditional mechanical scanning radar has a short dwell time, which results in limited azimuth
resolution; (3) special circumstances such as data missing increase the difficulty of target classification.

In order to overcome the aforementioned problems, many classification methods have been
proposed to improve the aircraft recognition rate. An intuitive idea is to increase the signal bandwidth
of the radar system. It is well known that the enlargement of signal bandwidth can improve the range
resolution of radar, so wide-band radar can provide more information for target classification. The
existing methods of aircraft classification in wide-band radar can be generally divided into three types:
(1) methods based on image processing [1-5]. In Reference [6], the extracted image, instead of radar
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data, was fed into a three-layered feed forward artificial neural network for aircraft classification;
(2) methods based on high-resolution range profile (HRRP) [7-11]. Liu et al. [12] proposed a multi-scale
target classification method based on the scale-space theory through extracting features from HRRP;
and (3) methods based on inverse synthetic aperture radar (ISAR) [13-17]. A shape extraction based
aircraft target classification method using ISAR images is proposed in [18]. Although image processing,
HRRP- and ISAR-based aircraft classification have achieved good simulation results in wide-band radar,
the radar system is more complex and the detectable range is shorter than that in narrow-band radar.
Therefore, it is still of great significance to study aircraft classification based on narrow-band radar.

In recent years, many micro-Doppler parameter estimation methods [19-21] were designed
to tackle the aircraft target classification problem in narrow-band radar. Two techniques of cubic
polynomial fitting and three-point models are developed to estimate the micro-Doppler parameters
from a fraction of the period in real-world scenarios [22]. In Reference [23] the minimal mean-square
error (MMSE)-based method was proposed for estimating the micro-Doppler parameter from a
fraction of the period data. Li et al. [24] proposed the parametric sparse representation and pruned
orthogonal matching pursuit to the micro-Doppler parameter estimation for target classification and
recognition. There are also many methods used in micro-Doppler parameter estimation for aircraft
classification, such as time-frequency transform [25,26], continuous wavelet transform [27], Hough
transform [25] and so on. However, these methods have the same common problem of inaccurate
parameter estimation while the micro-Doppler signal is weak and only single-wave gate echo data
is utilized in the aforementioned methods. Moreover, with echo data missing in narrow-band radar,
Wang et al. [28] proposed a complex Gaussian model [29] based and factor analysis model [30]-based
signal reconstruction methods. On the basis of the complex Gaussian model, the method of directly
reconstructing the time-frequency spectrum of the original is proposed in Reference [31]. Although
these methods mentioned above can effectively reconstruct the echo signals of aircraft, they have not
studied the problem of classification with missing samples.

In addition, for the limited information of narrow-band radar, deep learning and machine
learning [32] based methods have also been introduced to aircraft target classification in recent years.
One of the most frequently used methods is the convolutional neural network (CNN) [33,34]. A novel
landmark and CNN based aircraft recognition method was proposed [35], in which it alleviates the
work of human annotation and can be used for any type of aircraft not contained in the training data set
without retraining, thus it is highly accurate and efficient. Zuo et al. [36] proposed a deep convolutional
neural network (DCNN) [37,38] based aircraft type recognition framework. Additionally, conditional
generative adversarial networks [39], a self-organizing neural network [40] and deep belief net [41]
have been used in aircraft targets classification. The networks used in the aforementioned methods,
as an intelligent technology developed recently, have achieved good performance on aircraft targets
classification, but they should be trained with large-scale datasets, which is quite time-consuming to
acquire and mark with label, and difficult to practice in radar equipment. Also there is still a certain
gap in the actual application of equipment.

In this paper, an aircraft target classification method is proposed for conventional narrow-band
radar with multi-wave gates sparse echo data. By contrast with the previous work where there are
only extract features from single wave gate echo for aircraft classification [10], the proposed method in
this paper uses multiple wave gates echo data for weight feature fusion, and combines sparse theory
to improve the probability of target classification in the case of missing data. Firstly, smoothed [y
norm (SLO) [42] and orthogonal matching pursuit (OMP) [43,44] algorithms are used to reconstruct the
sparse echo data in order to solve the low classification probability. Then we analyse the echo data
with three kinds of aircraft targets in time domain and frequency domain. According to the difference
of micro-Doppler effects [45] of rotating parts due to the difference in structure and rotating speed,
features of the amplitude deviation coefficient, time domain waveform entropy and frequency domain
waveform entropy are extracted to classify targets. Finally, features extracted from multi-wave gates
sparse echo data are weighted and fused to train and test the support vector machine (SVM) [46-48]
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model for classification. Experimental results show that the proposed algorithm can improve the
classification probability, and four wave gates echo data in weighted features fusion used to extract
features is the optimal wave gate number for target classification.

The rest of this paper is organized as follows. The echo model and reconstruction algorithms
are reviewed in Section 2. The proposed algorithm based on multi-wave gates sparse echo data is
summarized in Section 3. Section 4 verifies the effectiveness of the proposed algorithm by simulated
experiments. Conclusions are presented in Section 5.

2. Reconstruction Algorithm of Sparse Echo Data

2.1. Echo Model

In narrow-band radar, the signal wavelength is much smaller than the target size, and the received
signal by radar is composed of echoes reflected by multiple scattering points. For targets with rotors,
such as a helicopter, propeller aircraft and jet aircraft, the echo can reflect not only the translation of
scattering points of the fuselage, but also the fretting characteristics of the scattering points of the
rotor blades.

Take a helicopter as an example; the special geometry between radar and a helicopter is shown
in Figure 1a, in which the distance between the radar and rotor target center is denoted as R¢, and
the angle of pitch is denoted as . Considering a 2-D slant-range plane, the simplified geometry is
shown in Figure 1b. A radar coordinate system XOY and target coordinate system X’O’Y” are set up,
in which the rotor center is denoted as O’. The rotation radius of scattering point P on the rotor blade
is assumed to be r—i.e., the distance from P to O’ is —and the distance from P to the radar is denoted
as Rp. The scattering point P rotates around the target coordinate system center O” with an angular
velocity w, and the rotation angle at the initial time is denoted as 6. Assume that the radial velocity of
the helicopter’s translational motion is v.

(a) (b)

Figure 1. Geometry between radar and rotor target: (a) space geometry; (b) 2-D plane geometry.

In the case of the far field, the instantaneous distance between the scattering point P and the radar
can be written as:
Rp(tm) = Re + vty + rcos (why + 0p), 1)

where t,, = mT, is the slow time, m is the m-th echo pulse, and T} is the pulse repetition period.
In this paper, we take the linear frequency modulation (LFM) as the transmitted signal, which can
be expressed as:
se(F, tw) = rect(F/Ty) exp (12n(fut + ui?/2)), 2)

where rect(-) is the rectangular window,  is the fast time, T}, is the pulse width, f. is the signal carrier
frequency,  is the chirp rate, t is the total time, and t = f + t,,. There are two different time variables
and t in the transmitted signal described in Formula (2), the reason is that the signal carrier frequency
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fc exists on the whole pulse transmission time axis, while the chirp rate u is used to adjust the change
of Doppler frequency within a pulse. The echo signal of scattering point P can be expressed as:

sr(F, tm) = orect(ty/ Ta)rect((F = 2Rp(tm)/c)/ Tp) exp (27e(fe(t = 2Rp(tw) /) + u(f = 2Rp(tm)/)*/2)), (3)

where o is the scattering coefficient of the scattering point P, T, is the observation time, and c is the
speed of light. The target echo signal after pulse compression can be expressed as:

sp(f,tm) = oTpsinc[B(F—2Rp(tm)/c)|rect(ty/Ta) exp (—j4mRc/A)-

exp (<47t(tm +  os (whn + 60)) /A) + w(F ) @

where B is the signal bandwidth, A is the wavelength, and w(f, t,,) denotes the Gaussian white noise

signal. By taking the derivative of the phase, the micro-Doppler frequency can be obtained as:

fop= 1.dp id[—471(vtm +rcos (wtu 4 69))/A]
P = ondt, 2@ dt, -

—2(v — wrsin (wty + 09)) /A, )

It can be seen from the above formula that the Doppler frequency of the scattering point echo
on the target rotor blade is related not only to the radial velocity v of the scattering point echo on the
target rotor blade is related not only to the radial velocity of the translational motion, but also to the
angular velocity w of the rotating component and the blade length r. Because the rotational motion of
scattering points on the fuselage is negligible, it is equivalent to only translational motion. Therefore,
the instantaneous distance between scattering point F on fuselage and the radar can be written as:

RF(tm) ~ Rc + vty, (6)
The echo signal of scattering point F on fuselage after pulse compression can be expressed as:
se(F tm) = oTrsinc[B(f — 2R (tw) /c)]rect(tn / Ta) exp (—j4mRc/A) exp (—jdmoty /A) + w(E tw), (7)

Compared with the echo of blade scatterer in Formula (4), the fuselage echo lacks only the fretting
term. In addition, the Doppler frequency of echo is only related to translational radial velocity, that is
fd—F =-2v / A.

The frequency domain echo of helicopter, propeller aircraft and jet aircraft are simulated as shown
in Figure 2. The simulation parameters of radar and transmitting signal are set as follows, the pulse
repetition frequency F; is 5000 Hz, the pulse-repetition period T; is 0.2 ms, the pulse width T}, is 50 ps,
the signal carrier frequency f. of LFM signal is 1 GHz, the signal bandwidth B is 2 MHz, and the
observation time T is 0.05 s. The parameters of three types of aircraft targets are shown in Table 1.

1 1 1

0.8 0.8 0.8

0.6

04

Normalized amplitude
Normalized amplitude
Normalized amplitude

0.2 0.2 0.2

-0.5 0 0.5 -0.5 0 0.5 -0.5 0 0.5
Normalized frequency Normalized frequency Normalized frequency

(a) (b) (©

Figure 2. Target frequency domain echo: (a) helicopter; (b) propeller; (c) jet.
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Table 1. Three kinds of aircraft targets simulation parameters.

Rotor Length Rotation Velocity Translational
Target Type (m) Blade Number (rad/s) Velocity (km/h)
Helicopter 8 4 20 250
Propeller 2 4 130 500
Jet 1 27 380 800

The rotation plane of the helicopter main rotor is parallel to the ground, so the micro-Doppler
effect produced can be observed easily by conventional ground radar. It can be seen from Figure 2a that
in addition to the fuselage echo, there are strong echo components caused by micro-Doppler motion of
rotor blades in the frequency domain echo of the helicopter, and the micro-Doppler spectrum width of
the helicopter is higher than that of the propeller in Figure 2b, which is due to the fact that the length
of the helicopter rotating parts is significantly longer than that of propeller. In addition, because the
rotating plane of the propeller’s engine blade is perpendicular to the flight direction of the aircraft, the
blade is easily obscured by the fuselage, and its micro-Doppler effect is relatively weak. Because of the
small size of jet engine blades and the particularity of its position, the micro-Doppler effect caused by
blade rotation can hardly be observed by ground radar. It can be seen from Figure 2c that the echo of
the jet aircraft only contains the fuselage component, but not the micro-Doppler component caused by
blade rotation.

2.2. Reconstruction Algorithm

The multi-wave gates echo data can be obtained from the echo reflected by the transmitted signal
after encountering the target during each resolution of the radar antenna in the continuous observation
of the aircraft target by the radar. The definition of multi-wave gates echo data is shown in Figure 3.

Figure 3. The definition of multi-wave gates echo data.

As we can see from Figure 3, it is a radar display that denotes the position relationship between
the radar and the aircraft target from the perspective of top view. Let us assume that the aircraft target
flies in a positive direction along the x-axis with a velocity of v, and the blue two-way arrow line in the
Figure is the signal transmission route. In the rotation of radar antenna, when the aircraft target is seen
for the first time, the aircraft target is located at position A, when the antenna comes to the aircraft
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target after a rotation cycle, the aircraft target is located at position B, the next position is C, and so on.
While the radar irradiates the aircraft target, it will receive the echo data in the area, marked by red,
green and purple square boxes in this Figure, where the aircraft target is located, and we count it as a
wave gate echo. After multiple irradiations, we can obtain multi-wave gates echo data.

It is difficult for conventional narrow-band radar to obtain continuous observation of the same
target for a long time, and it may lead to the loss of target echo pulse in one observation time which can
be called sparse echo data. The description of complete and sparse echo data are shown in Figure 4.

i
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Figure 4. Description of complete and sparse echo data: (a) complete echo data; (b) sparse echo data.

As we can see from Figure 4a, there are M received echo pulses in one observation time which are
called the single-wave gate echo data, among which the pulses marked in red randomly indicate the
echo data that may be lost when the radar receives the echo. From Figure 4b, it can be seen that the
number of pulses of sparse echo data is less than that of complete echo data in one observation time,
we can also say that less echo information is available in sparse echo data, which is not conductive to
aircraft target classification. Therefore, it is feasible and necessary to reconstruct sparse echo data by
appropriate sparse signal recovery methods.

Since the emergence and development of compressed sensing (CS) [49,50] technology, sparse
signal recovery algorithms have mainly been divided into greedy algorithms, non-convex function
minimization algorithms, and Bayesian algorithms. The most typical and widely used greedy algorithm
is orthogonal matching pursuit (OMP), which finds the best matching dictionary unit by solving the
maximum inner product of the residual and the dictionary matrix, then obtains the approximate value
of the sparse vector by using the least square method, and finally obtains the reconstruction signal
by alternately updating the support set and solving the sparse vector. The smoothed Iy norm (SL0)
algorithm is one of the most famous non-convex function minimization algorithms, which transforms
the Iy norm minimization problem into an optimization problem by introducing a smooth Gaussian
function to approach the Iy norm. The reason for doing this is that we can avoid the non-deterministic
polynomial (NP) time hard problem caused by the direct solution of [y norm minimization. Therefore,
we use the SLO and OMP algorithms to reconstruct the sparse echo signal, respectively in this paper.

Assuming that the number of pulses of sparse echo data is M’, and the typical model of CS can be
expressed as:

Y = ®X, 8)
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where Y is an M’ x 1 measurement vector. Actually, Y is the superposition of sparse echo data of
scattering point and fuselage, which can be expressed as:

Y = sp(ty) +se(tw) m=1,2,---,M, ©)

@ is an M’ X N dictionary matrix, and X is an N X 1 sparse vector to be determined. According to
CS theory, the sparse solution X can be obtained by:

X = argmin|X|ly st [[Y-®-X|3<¢, (10)
X

where || -||g and || - ||, donate Ly and L, norms respectively, ¢ is the error threshold in the sparse recovery
processing. The solution for (10) can be obtained by the SLO and OMP algorithms through iteration.
The main steps of the two algorithms are summarized in Tables 2 and 3.

Table 2. Main steps of orthogonal matching pursuit (OMP) reconstruction algorithm.

Input: estimated signal Y € cM, dictionary matrix @ € CM'*N error threshold £€0-

Initialization: let the iterative counter k = 1, residual matrix yy = Y, the index set Ay = @.

Iteration: at the k-th iteration

(1) Update the index set Ay = Ay_1 U Ag, where Ay = argmax |(yk,1, Qi)
i=1,2, ,N

, @; is the i-th column of ®.

(2) Update the support set @5, = [(I> Aerr P /\k], and calculate the signal

X, = argmax|[Y - @, X,ll, = (@5, @5, @5 1Y,

(3) Update the residual matrix vy = Y — ®5, X;.

(4) Increment k, and return to Step (1) until the stopping criterion |[ykll, < g is met. The selection of the error
threshold &g is related to the precision requirement.

Output: Reconstructed signal X = X;.

Table 3. Main steps of smoothed [y norm (SLO) reconstruction algorithm.

Input: estimated signal Y € cM, dictionary matrix @ € CM'*N the search step length a.
Initialization: Choose an appropriate standard deviation parameter decrement sequence [01,02, - -+, d7], the
outer loop number is I, the inner loop number is J. The initial solution is the minimum L2 norm of Y = ®X,
that is Xo = (®1d) " @Y.
Iteration:
(1) The i-th outer iteration, i = 1,2,--- I, at this time 0 = 0;, X = X;_1.
(2) The j-th inner iteration, j = 1,2,---, ]
1. Update the signal with X = X+ ad, where d = [—xl exp (=x1%/26%), -+, —xn exp (—xnz/Zaz)].

2. Project X onto the feasible domain, thatis X « X - <I>H(<I><I>H)71 (®X-Y).
(3) Update the reconstructed signal X; = X.
Output: Reconstructed signal X = X;.

SLO and OMP algorithms are used to reconstruct the sparse frequency domain echoes of three
types of aircraft targets. In order to simulate the sparse echo data in real radar equipment, we randomly
cut half of the pulses in the complete echo data as sparse echo data in this paper, that is the pulse
number of sparse echo data equals M = M/2. The reconstructed results of SLO and OMP algorithms
are shown in Figures 5 and 6, respectively, where the dictionary matrix is the Fourier transform matrix
because the time domain echoes are reconstructed to obtain the frequency domain echoes in this paper
and the error threshold is set as ¢g = 0.0SIIYII%, that is the iteration process is stopped when the residual
energy is equal to or smaller than 5% of the received signal energy. Comparing the complete frequency
domain echoes in Figure 2, we can see that SLO and OMP algorithms can realize the reconstruction of
sparse echo data. Compared with the reconstructed results of SLO and OMP algorithms in Figures 5
and 6, it can be seen that the reconstructed result of SLO algorithm is better than the OMP algorithm in
the similarity to the complete frequency domain echo of Figure 2. The echo data reconstructed by these
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two algorithms are used to extract features, and the simulation experiment of classification probability
will be given in Section 4.

1 1 1
08 08 08
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0.5 0 0.5 0.5 0 0.5 0.5 0 0.5
Normalized frequency Normalized frequency Normalized frequency

(a) (b) ()

Figure 5. Reconstructed frequency domain echoes of SLO algorithm: (a) Helicopter; (b) Propeller; (c) Jet.
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Figure 6. Reconstructed frequency domain echoes of OMP algorithm: (a) helicopter; (b) propeller;
(c) jet.
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3. Classification Algorithm Based on the Weighted Features Fusion of Multi-Wave Gates

By analyzing the characteristics of the helicopter, propeller aircraft and jet aircraft in time and
frequency domains, we can classify three kinds of aircraft targets through the micro-Doppler effect
caused by rotating parts due to the difference in structure and rotating speed.

3.1. Features Extraction

According to the difference of echoes in time domain and frequency domain, this paper classifies
three types of aircraft targets by extracting amplitude deviation coefficient, time domain waveform
entropy and frequency domain waveform entropy. Three feature extraction methods are described
as follows:

1. Amplitude deviation coefficient

The amplitude deviation coefficient g, of the discrete echo signal Y = {y;},i = 1,2,--- , M’ reflects
the proportional relationship between the rotating parts of an airplane target and its fuselage, which
can be defined as: )

gy =0y/Y, (11)
M -2
where g, denotes the amplitude deviation coefficient, o, = Zl (yi—Y) /(M —1) is the variance of
i=

echo amplitude, Y Z yi/ M’ is the mean of echo amplitude, M’ is the length of the echo signal.

Generally speakmg, the higher the complexity of the target structure, such as the helicopter and
propeller aircraft, the larger the proportion of the micro-Doppler modulation component of the rotating
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parts to the radar echo, the greater the overall fluctuation of the echo amplitude and the larger the
amplitude deviation coefficient of the echo.

2. Waveform entropy

Waveform entropy is usually used to describe the waveform characteristics of radar echo signals.
From the analysis of Section 2, it can be seen that there are differences in the blade’s number, length and
rotating speed of the rotating parts in helicopter, propeller aircraft and jet aircraft, so the micro-Doppler
effect of the rotating parts is different in the echo waveform. Therefore, we can distinguish the
difference of waveform between different targets by extracting waveform entropy in time domain and
frequency domain.

Time domain waveform entropy E; and frequency domain waveform entropy E of echo signal
are defined as follows:

w

Ei= —Z pilogy, (pi), (12)
i=1
w

Ef=-)" gilogy () (13)
i=1

’

where p; = y;/ ¥, yjand q; = f;/ }. f; are normalized signals in time domain and frequency domain
=1 =1

respectively, F = {f;}, i = 1,2, - - M’ is the result of fast Fourier transform (FFT) of echo signal Y.

In this paper, three kinds of aircraft target echo models are established, and the time domain and
frequency domain echoes of targets are simulated according to the parameters of the rotor in Table 1.
Then, the amplitude deviation coefficient, time domain waveform entropy and frequency domain
waveform entropy are extracted. We simulate 200 sparse echo signal samples of three types of aircraft
targets respectively from different radar perspectives where one sparse echo signal sample corresponds
to one observation angle which denotes the relationship between the aircraft target’s flying direction
and the radar’s line of sight, and it changes uniformly from 0° to 360" at an interval of 1.8°. Therefore,
the angle varies from different samples, and the dataset includes 600 samples in all. The results of
features extracted from 600 sparse echo signal samples are shown in Figure 7, where the signal to noise
ratio (SNR) of target echo before pulse compression is —13dB, which is defined as SNR = ||Y||% /(M’6?),
where ¢? is the variance of noise.

—#—Helicopter

—*—Helicopter

Time domain waveform entropy

Amplitude deviation coefficient
Frequency domain waveform entropy

0 50 100 150 200
Sample number Sample number Sample number

(a) (b) ()

Figure 7. Results of extracted features: (a) amplitude deviation coefficient; (b) frequency domain
waveform entropy; (c) time domain waveform entropy.

As can be seen from the above figure, in the case of SNR itis —13 dB, because of the difference among
the rotating parts of three types of aircraft targets, the amplitude deviation coefficient, time-domain
waveform entropy and frequency-domain waveform entropy are different among targets. Taking
the amplitude deviation coefficient as an example, it can be seen from Figure 7a that the amplitude
deviation coefficients extracted from the echoes of three kinds of targets have cross-values, which will
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inevitably lead to erroneous judgment in the process of target classification and reduce the classification
probability. The reason may be the low SNR or the change of the angle of view between the aircraft and
the radar, which results in small fluctuation of the extracted features. However, we can also see from
the graph that the mean values of each feature differ greatly among the three kinds of aircraft targets
and are more stable than those extracted from each sparse echo signal sample. Therefore, we need to
adopt appropriate methods to make the features extracted from each sparse echo signal sample close
to the mean value, so as to eliminate the impact of the target echo fluctuation model and improve the
classification probability of the aircraft targets.

3.2. Weighted Features Fusion

On the basis of the above simulation analysis, we propose a target classification algorithm based
on the weighted features fusion of multi-wave gates sparse echo data. This algorithm uses multi-wave
gates echo data to extract features, which are fused by weighting to improve the correct classification
probability. The fused features can be expressed as:

K
F=Y aF, (14)

where F is the fused feature, F; is the feature extracted from the echo data of the i-th wave gate, K is the
number of gates for feature fusion, a; is the weight of the i-th wave gate feature.

In this paper, we consider that the features extracted from different gates have the same contribution
to aircraft target type classification. Therefore, we adopt the same weighting value for feature fusion,
that is to say, the weights a; = 1/K. In Section 3.1, we simulate 200 single-wave sparse echo signal
samples of one aircraft target where one sparse signal sample corresponds to one radar observation
angle. While in the simulation experiment of weighted features fusion, we collect four-wave gates
sparse echo data at each radar observation angle which is set the same as that in Section 3.1 during the
observation of the aircraft target. That is to say, in each observation angle, we reconstruct four-wave
gates sparse echo signal samples, then extract the features from each reconstructed sample and fuse
them as a fusion feature. Therefore, each type of feature consists of 200 fusion features for each aircraft
target. Figure 8 shows the result of the fusion features extracted and fused from four wave gates
echo data. Compared with Figure 7, the cross-value of extracted features between different targets is
significantly reduced under the same SNR, we can also say that the fused features are more clustered
near the mean of all samples.

@
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Figure 8. Result of fusing the features extracted from four wave gates echo data: (a) amplitude deviation
coefficient; (b) frequency domain waveform entropy; (c) time domain waveform entropy.

We know that variance is a measure of the degree of dispersion of a set of data. In this paper, we
calculate the variance of the fused features extracted from four wave gates sparse echo data with SNR
is =13 dB, which is shown in Table 4. For comparison, we also compute the variance of the features
that are not fused. We can see from Table 4 that the variance of the fused features is less than that of the

132



Remote Sens. 2019, 11, 2700

features without fusion, no matter which kind of feature. In other words, fusion of extracted features is
more conducive to distinguishing the three types of aircraft targets mentioned in this paper.

Table 4. Comparison of variance of extracted features whether to fuse or not.

Amplitude Deviation Frequency Domain Time Domain Waveform
Target Type Coefficient (x107%) Waveform Entropy Entropy (x1073)
No Fusion Fusion No Fusion Fusion No Fusion Fusion
Helicopter 8.60 2.19 0.45 0.13 8.50 1.60
Propeller 11.00 2.70 0.98 0.31 18.60 4.80
Jet 0.21 0.14 0.27 0.09 0.31 0.27

3.3. Classification Algorithm

In this paper, support vector machine (SVM) method is used to classify the extracted fusion
features of three types of aircraft targets. SVM was first proposed by Vapink for the classification of
two types of liner separable data [51]. By finding the optimal hyperplane which makes the boundary
distance between the two classes the maximum, the sample data was divided into two types. Later,
it was extended to linear separable data. To solve the problem of three types of aircraft targets
classification in this paper, we use the one-vs-one method to construct an SVM classifier between any
two types, and construct three classifiers in total, and then obtain the final classification result by voting
scheme. Three types of aircraft targets classification method based on SVM that we adopted in this
paper are shown in Figure 9.

Classification
Result

Figure 9. Three-class support vector machine (SVM) model.

In Figure 9, the flow of red dotted box marked is the training process, in which the training dataset
labeled in advance are divided into three parts belonging to different aircraft targets, and the two parts
of them are combined to train three SVM models, respectively. The flow of purple dotted box marked
is the testing process, in which the testing dataset which are completely different from the training
dataset are sent to three trained SVM models, and then vote on the results of the SVM model to get the
final classification results.

To sum up, with the sparse echo data, the classification algorithm of aircraft targets based on
the weighted features fusion of multiple wave gates is summarized in Figure 10. In the proposed
algorithm, the multi-wave gates sparse echo data are obtained as described in Figure 3: K is the number
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of wave gates in weighted feature fusion, and the SLO and OMP methods are used to reconstruct
sparse echoes and by which three types of features are extracted: amplitude deviation coefficient, time
domain waveform entropy and frequency domain waveform entropy. In addition, in order to improve
the classification probability of three types of aircraft targets, a classification algorithm based on the
weighted features fusion of multiple wave gates is proposed. Finally, the fused features are used to
classify three aircraft targets by three class support vector machine model.

Wave gate
serial number
[IN N
. Weighted
Multi- 2 L0 or OMP \ : o
wiwave R SLOor O . > Features ™~ features fusion Classification
gates sparse . reconstruction : . . . .
. . extraction | - with multi-wave based on SVM
echo data algorithm :
K gates
>

Figure 10. Flowchart of the proposed classification algorithm.

4. Experimental Results

4.1. Dataset Details

In experiments, the parameters of radar, transmitting signal and aircraft targets are the same as
those in Section 2.1. In this paper, several groups of comparative experiments are constructed where
the noise is all considered for classification probability. In the classification experiment of complete
echo data, we simulate 200 single-wave gate complete echo signal samples for each aircraft target as
the dataset where one complete signal sample corresponds to one radar observation angle. While the
sparse echo data of multi-wave gates continuously are simulated in one angle in the classification
experiment of sparse echo data, in other words, the dataset contains 200 multi-wave gates sparse echo
signal samples for each aircraft target. What we want to emphasize is that the testing dataset are
completely different from the training dataset with different aircraft target distance and view angle,
and the aircraft target correct classification probability can be obtained by comparing the classification
result of the SVM model with the real label of the aircraft target, which is equal to the number of
correctly classified samples divided by the total number of samples.

4.2. Validity Experiment of Reconstruction Algorithm

With the aim of verifying the validity of SLO and OMP reconstruction algorithm for the classification
of aircraft targets, we conduct an experiment. In this experiment, in order to better simulate the
actual work of radar target classification and recognition, the training dataset of 600 single-wave gate
complete echo data samples are extracted features which are used to train the SVM model. Several
comparative testing experiments are conducted with different testing dataset, two of which take the
reconstructed echo data obtained by SLO and OMP algorithms as the testing dataset, and the results
are shown as the blue curve and the black curve, respectively, in Figure 11. As a comparison, we take
another complete echo data samples as the testing dataset, and the result of average classification
probability is shown as the red curve. In addition, we take the sparse echo data samples as the testing
dataset to verify that the sparse echo data worsen aircraft targets classification due to the loss of several
echo information elements.
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Figure 11. Contrast experiment of reconstruction algorithm.

From Figure 11, we can see that the classification probability of sparse echo data is the lowest,
which distributes around 33%, and does not vary with the change of SNR. This shows that the sparse
echo data loses the components reflecting the micro-Doppler effect of the rotating parts. We can
also say that the helicopter, propeller aircraft and jet aircraft cannot be distinguished correctly by
extracting the three kinds of features through the sparse echo data. The correct classification probability
of the complete echo data is the highest, and with the increase of SNR, the correct classification
probability increases gradually and stabilizes at 99.33%. Although the correct classification probability
of reconstructed echo data obtained by the SL0 and OMP algorithms is lower than that of complete echo
data, it is obviously higher than that of sparse echo data, which verifies the validity of the two kinds
of reconstruction algorithms for reconstructing echo data. When the SNR is lower than —12 dB, the
classification probability of the reconstructed echo data between the two algorithms is similar. When
SNR is higher than —12 dB, the classification effect of the SLO reconstruction algorithm is better than
that of OMP reconstruction algorithm, which is consistent with the reconstructed results of frequency
domain echoes of two kinds of algorithms in Section 2.2.

4.3. Selection of Wave Gate Number in Weighted Features Fusion

Although SLO and OMP reconstruction algorithms can accurately reconstruct the sparse echo
data, the correct classification probability of the extracted features still lags behind that of the complete
echo data. However, as we analyzed in Section 3.2, after using the weighted features fusion method for
the features extracted from the multi-wave gates reconstructed echo data, the fused features are more
clustered near the mean of all samples. Therefore, a classification algorithm based on the weighted
features fusion of multi-wave gates reconstructed echo data is proposed in this paper in order to
improve the classification probability. In this experiment, we compare the influence of the wave gate
number on the probability of target classification in order to get the best wave gate number in weighted
features fusion. The training and testing dataset of features are all extracted from the reconstructed
multi-wave gates echo data. The experimental results are shown in Figure 12.
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Figure 12. Selection experiment of wave gate number.

We can summarize from the above figure that the classification probability among the wave gate
number from one to six in weighted features fusion increases with the raise of SNR. When only one
wave gate reconstructed echo datum is used to extract features which is selected for classification, the
probability is lower than that of multi-wave gates. When the SNR is low, the probability of choosing
two fused wave gates features to classify aircraft targets is lower than that of choosing three to six
wave gates fused features, but with increasing of the SNR, the probability of choosing two fused wave
gates features is similar to that of using more. The experimental results also show that the classification
probability curves of choosing three to six wave gates for weighted features fusion has the same change
rule and is similar with each other under the same SNR. On the one hand, the experimental result
shows that the classification effect of using multi-wave gates reconstructed echo data to classify three
types of aircraft targets is better than that of using only one gate reconstructed echo datum. On the
other hand, by fusing the features extracted from multi-wave gates reconstructed echo data, the fused
features can be close to the mean value, and the number of cross-values of features extracted from
different aircraft targets is reduced. However, if too many wave gates in weighted features fusion
are selected, during this period, there are some differences between the extracted features due to the
change of the aircraft’s motion direction and flight attitude, and the probability of target classification
does not increase with the increase of the number of wave gates. In summary, when the wave gate
number in weighted features fusion is four, the classification probability of aircraft targets is the best.

4.4. Classification Experiment Based on Weighted Features Fusion with Four Wave Gates Sparse Echo Data

In this section, based on the target classification algorithm of multi-wave gates in weighted
features fusion proposed in this paper, we conduct two comparative simulation experiments. One
is that we train the SVM model with the dataset composed of single wave gate complete echo data,
classify aircraft targets with the dataset consisting of four wave gates complete echo data and the
dataset consisting of four wave gates reconstructed echo data respectively. The simulation results are
shown in Figure 13. Another comparative simulation experiment is that we train the SVM model with
the dataset composed of four wave gates complete echo data, while the testing datasets consist of
four wave gates complete echo data and of four wave gates reconstructed echo data, respectively. The
experimental results are shown in Figure 14.
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Figure 13. Classification results of single wave gate echo data for training and four wave gates echo
data for testing.
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Figure 14. Classification results using four wave gates echo data for both training and testing.

Compared with the experimental result of single wave gate echo data as the testing dataset in
Figure 11, we can conclude from the results of four wave gates echo data that the best way to classify
targets, as testing dataset in Figure 13 that the classification probability of the complete echo data is
obviously improved. The classification probability of features extracted from reconstructed echo data
by SLO and OMP algorithms after weighted features fusion is also higher than that of features without
weighted features fusion. Therefore, we come to the conclusion that the echo data of multi-wave gates
to classify the aircraft targets can improve the correct classification probability.

Comparing the experimental results in Figures 13 and 14, the classification probability of using
four wave gates complete echo data for both training and testing is better than that of the single wave
gate complete echo data for training and four wave gates complete echo data for testing, and the
reason for this is that the SVM model can learn more target echo information by using four wave gates
echo data. Moreover, the classification probability of the two kinds of reconstruction algorithms can
reach 99.83% in Figure 14, which verifies the validity of both kinds of reconstruction algorithm and the
effectiveness of the classification algorithm based on weighted features fusion of multi-wave gates
reconstructed echo data. Therefore, it can be summed up that in the process of radar classification
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of three types of aircraft target, we can use four wave gates echo data as far as possible in weighted
features fusion for training the SVM model, in which the parameters of the SVM model trained in this
way are optimal. Also the classification probability of the target is highest when testing with four wave
gates echo data.

5. Conclusions

In this paper, an aircraft target classification algorithm is proposed based on weighted features
fusion of multi-wave gates sparse echo data. Not only are the SLO and OMP algorithms utilized to
reconstruct the sparse echo data to solve the problem of low classification probability in this case,
but also the amplitude deviation coefficient, time domain waveform entropy and frequency domain
waveform entropy are extracted to classify aircraft targets according to the analysis of the micro-Doppler
effect of echo data. The proposed algorithm works on the multi-wave gates echo data in weighted
features fusion, rather than single wave gate echo data, which is helpful for reducing the number
of cross-value features of different targets. Experimental results show that the proposed algorithm
can improve the classification probability of reconstructed echo data obtained by the SLO and OMP
methods, and four wave gates echo data in weighted features fusion used to extract and fuse features
and to both train and test the SVM model is the optimal wave gate number for target classification.

Although our method is effective in aircraft target-type classification, it can still be improved
further. In the future, we not only study the aircraft target classification algorithm within unmanned
aerial vehicle (UAV) types, but also verify the effectiveness of the algorithm in the actual radar
equipment by conducting an experiment with measured data.
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