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Preface to ”Mathematical Modelling in Biomedicine”

Mathematical modelling in biomedicine is a rapidly developing scientific field due to the

fundamental importance of scientific research and applications to public health. Cardiovascular

diseases, cancer, and infectious diseases are the main causes of mortality and morbidity in the

world, and they represent a major challenge for society. Mathematical modelling of physiological

processes in normal and pathological situations can help us understand the underlying processes

and develop efficient treatments. In spite of the considerable progress in this area during the last

decade, many questions remain open because of their complexity, and interpatient variability.

This Special Issue contains 11 papers devoted to various topics in biomedical modelling,

such as blood circulation and the lymphatic system, heart and brain modelling, tumor growth

under anti-angiogenic and radiotherapy, viral infection, and immune response. These works present

the state of the art in these very different areas of biomedical modelling and present interesting

perspectives for the future research in this field.

Vitaly Volpert

Editor
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Abstract: In this work we present a one-dimensional (1D) mathematical model of the coronary
circulation and use it to study the effects of arrhythmias on coronary blood flow (CBF).
Hydrodynamical models are rarely used to study arrhythmias’ effects on CBF. Our model accounts
for action potential duration, which updates the length of systole depending on the heart rate. It also
includes dependency of stroke volume on heart rate, which is based on clinical data. We apply the
new methodology to the computational evaluation of CBF during interventricular asynchrony due to
cardiac pacing and some types of arrhythmias including tachycardia, bradycardia, long QT syndrome
and premature ventricular contraction (bigeminy, trigeminy, quadrigeminy). We find that CBF can
be significantly affected by arrhythmias. CBF at rest (60 bpm) is 26% lower in LCA and 22% lower
in RCA for long QT syndrome. During bigeminy, trigeminy and quadrigeminy, respectively, CBF
decreases by 28%, 19% and 14% with respect to a healthy case.

Keywords: 1D haemodynamics; systole variations; coronary circulation; cardiac pacing; tachycardia;
bradycardia; interventricular asynchrony; long QT syndrome; premature ventricular contraction

1. Introduction

Coronary blood flow (CBF) supplies the myocardium tissue with oxygen and other essential
nutrients. The distal coronary vessels are immersed in the myocardium. Myocardium contractions
produce external pressure to the immersed blood vessels and substantially elevate the terminal
hydraulic resistance. Thus, the dependence of the blood flow in coronary arteries (CA) on the
characteristics of the heart cycle is an essential feature of CBF.

The characteristics of the heart cycle are controlled by the electrical activity of the sinoatrial node
(SAN). The SAN activity is modified by a variety of factors: signals from the sympathetic and the
parasympathetic nervous system and humoral factors. Some pathological processes and artificial
electric stimulation of the myocardium are also among the factors, which can modify the heart activity.

Pathological change of the myocardium contractions due to asynchronous cardiac pacing and
arrhythmias produces violations of the CBF, which, in turn, results in decreased myocardium supply
with nutrients and possible ischemic events. In this work, we use computational modelling to
study changes in CBF, which are produced by several types of pathological heart rhythms including
interventricular asynchrony due to inappropriate pacing, several types of arrhythmia including

Mathematics 2020, 8, 1205; doi:10.3390/math8081205 www.mdpi.com/journal/mathematics1
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bradycardia, tachycardia, long QT syndrome and premature ventricular contraction (bigeminy,
trigeminy, quadrigeminy).

Interventricular asynchrony refers to the decoordination between RV and LV contraction due to
the failure in the electrical conducting system of the heart or asynchronous cardiac pacing. Cardiac
pacing is performed by the pacemakers. The pacemakers stimulate the heart by electrical impulses
and prompt heart beating at a regular rate. Asynchronous electrical activation of the ventricles during
ventricular pacing produces irregular patterns of the mechanical stress [1–3] which, in turn, results in
abnormal ventricle contractions and violation of CBF. Finally, it causes deficiencies in perfusion and
glucose uptake even in the absence of CA disease [4,5]. In this work, we perform numerical simulations
to study the effects of the asynchronous performance caused by pacemakers on the CBF. These results
are also valid for interventricular asynchrony caused by other factors. We simulate asynchrony by
modifying terminal hydraulic resistance in coronary vessels according to their spatial position relative
to the pacemaker. We add shifts in time-dependent hydraulic resistance functions according to the
asynchronous pulse generation.

Abnormal tachycardia is a stable, permanent increase of atria and/or ventricular contractions
at rest above 85–100 beats per minute (bpm). It decreases the atria and ventricular filling and, thus,
decreases the heart output. Various abnormalities in action potential initiation and propagation
are the common reasons of tachycardia [6,7]. Increased physical load and emotional stress are the
possible reasons of tachycardia in elderly people. Myocardial infarction often produces ventricular
tachycardia. Tachycardia is a significant reason for morbidity and mortality in patients with ischemic
heart disease. Tachycardia itself may be a reason for ischemic events and disease due to the changes in
CBF. Bradycardia is a stable, permanent decrease of atria and/or ventricular contractions at rest below
55 bpm. It decreases the heart activity. Analysis of CBF during both tachycardia and bradycardia is
rarely addressed in the literature.

Long-QT syndrome is a life-threatening cardiac arrhythmia syndrome that may cause sudden
cardiac death [8,9]. The problems in myocardium repolarisation after a heart contraction produce
increased QT intervals on the electrocardiogram (ECG) by more than 480 ms. Long-QT syndrome is
associated with high duration of systole and decreased length of diastole. It may decrease CBF with an
associated decrease of nutrient delivery.

Premature ventricular contractions (PVC) produce extra, abnormal heartbeats that disrupt regular
heart rhythm, sometimes causing a skipped beat or palpitations [10]. They can originate from
dysfunctional Purkinje fibres, ventricular or atrial tissue. In this work, we focus on PVCs with a
full compensatory pause: the following SAN impulse occurs on time based on the sinus rate. The heart
rhythms with one, two, or three regular heartbeats between each PVC are called bigeminy, trigeminy,
or quadrigeminy [11]. PVC may increase the risk of developing arrhythmias and lead to chaotic heart
rhythms and cardiomyopathy. Similar to other cases of heart rhythm failure, PVC affects myocardium
contractions and, thus, the average CBF.

Mathematical models of haemodynamics utilise a variety of approaches to simulate blood flow in
a network of vessels [12,13]. Mathematical modelling of the impact of tachycardia and bradycardia on
blood flow [1] and electrophysiology [14] has been a subject of many studies. Coronary circulation
and related haemodynamic indices in the presence of atherosclerosis are also popular topics of
mathematical modelling [2,15–19]. To the best of our knowledge, the blood flow in CA during
abnormal heart rhythms is rarely studied in clinics and by mathematical modelling. In this work,
we present a modification of the previously developed one-dimensional (1D) mathematical model of
the coronary circulation, which was applied to the simulations of blood flow in CA during cardiac
pacing and tachycardia [20]. We apply the new model to the computational evaluation of changes
in CBF during asynchronous cardiac pacing and some types of arrhythmia. Due to the lack of
appropriate patient-specific data on coronary vessels’ structure and properties, we use anatomically
correct arterial networks [21] and typical values of cardiovascular characteristics (vessels’ elasticity,
cardiac output, etc.). A similar dataset can be collected or estimated by using non-invasive data such
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as CT scans, arterial pressure, lifestyle conditions (sex, age, body mass index, smoking, sport) of the
patient and others [22–24]. In our previous work, we considered the stroke volume (SV) and the
ratio between systolic and diastolic phases of the heart cycle as predefined constants based on known
values from the literature. Our present model updates the length of systole depending on the heart
rate (HR). This model is based on the simulated duration of an action potential. We also include a
regression relating SV to HR, which is based on clinical data. We show that these novel features provide
substantially different numerical results on the variations of CBF during tachycardia and bradycardia.
We also apply the new model to simulations of CBF during interventricular asynchrony, some types of
arrhythmias, including long QT syndrome and premature ventricular contraction (bigeminy, trigeminy,
quadrigeminy).

2. Materials and Methods

2.1. 1D Mathematical Model of Blood Flow in the Coronary Vascular Network

The blood flow in the coronary vascular network and the aorta is simulated by a 1D reduced-order
model of unsteady flow of viscous incompressible fluid through the network of elastic tubes. Reviews
and details of the 1D models of haemodynamics can be found in [13,22,25]. The 1D models were
adapted and applied to the coronary circulation in [20,26,27]. In this section, we briefly present this
approach and describe some novel features of the model to account for interactions with myocardium
contractions. The flow in every vessel is described by mass and momentum conservation in the form

∂V

∂t
+

∂F(V)

∂x
= G(V) , (1)

V =

(
A
u

)
, F(V) =

(
Au

u2/2 + p(A) /ρ

)
, G(V) =

(
0
ψ

)
,

where t is the time, x is the distance along the vessel counted from the vessel’s junction point, ρ is the
blood density (constant), A(t, x) is the vessel cross-sectional area, p is the blood pressure, u(t, x) is the
linear velocity averaged over the cross-section, ψ is the friction force,

ψ = −8πμ
u

ρA
, (2)

μ is the dynamic viscosity of blood. Blood density ρ = 1 g/cm3 and blood viscosity μ = 4 cP.
Properties and characteristics of the blood are considered to be constant throughout the computational
domain. This assumption is considered to be accurate in arteries with diameters larger than 1 mm
under physiological conditions [22,25]. The elasticity of the vessel’s wall material is characterised by
the p(A) relationship

p(A) = ρc2 f (A) , (3)

where c is the velocity of small disturbances propagation in the material of the vessel wall, and f (A) is
the monotone S-like function (see [28] for a review)

f (A) =

{
exp (η − 1)− 1, η > 1

ln η, η � 1
, η =

A
Ã

, (4)

where Ã is the cross-sectional area of the unstressed vessel.
The boundary conditions at the vessel’s junctions include the mass conservation condition and

the continuity of the total pressure,

∑
k=k1,k2,...,kM

εk Ak (t, x̃k) uk (t, x̃k) = 0, (5)

3
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pk (Ak (t, x̃k)) +
ρu2 (t, x̃k)

2
= pk+1 (Ak+1 (t, x̃k+1)) +

ρu2 (t, x̃k+1)

2
, k = k1, k2, . . . , kM−1, (6)

where k is the index of the vessel, M is the number of the connected vessels, {k1, . . . , kM} is the range
of the indices of the connected vessels, ε = 1, x̃k = Lk for incoming vessels, ε = −1, x̃k = 0 for
outgoing vessels.

The boundary conditions at the aortic root include the blood flow from the heart, which is set as a
predefined time function QH (t),

u(t, 0) A(t, 0) = QH (t) . (7)

The outflow boundary conditions assume that a terminal artery with index k is connected to the
venous pressure reservoir with the pressure pveins = 8 mmHg by the hydraulic resistance Rk. It is
described by Poiseuille’s pressure drop condition

pk (Ak (t, x̃k))− pveins = Rk Ak (t, x̃k) uk (t, x̃k) . (8)

The hyperbolic system (1) is numerically solved within every vessel by the second-order
grid-characteristic method [29]. The systems of nonlinear algebraic equations, which represent
boundary conditions at the vessel’s junctions (5) and (6), aortic root (7) and at the end points of
terminal arteries (8) are numerically solved by Newton’s method. All formulations of boundary
conditions include a compatibility condition along the characteristic curve of the hyperbolic system (1),
which extends outside the integration domain for every incoming and/or outgoing vessel.

The computational domain is the network of vessels including the aortic root, aorta, left and right
coronary arteries and their branches (Figure A2). Parameters of the aorta, aortic root and coronary
arteries correspond to the physiological values for an adult human (Table A1). The structure of the
coronary vascular network (Figure A1) was derived from a general anatomical model [21].

2.2. Effects of the Heart Rhythm on the Coronary Circulation

The distal coronary arteries are immersed in the myocardium. Thus, myocardium contractions
cause a substantial effect on the blood flow in these vessels. The variations of the heart rhythm change
how the myocardium works. There are three essential features of the heart function, which cause a
substantial effect on the CBF: dependency of the length of systole on the HR; dependency of the SV on
the HR and dramatic increase in peripheral resistance due to compression of the terminal CAs by the
myocardium during systole.

The dependency of systole duration on HR is complex. In this work, we use the action potential
duration at 80% repolarisation (APD80) in a single cardiac cell as an estimation of systole duration.
The action potential waveform and APD of human cardiac cells were simulated with the O’Hara-Rudy
model [30]. We use the implementation of this model with a custom C++ code using the Rush-Larsen
integration technique [31] with an adaptive step [32]. The minimal time step was set to 5 × 10−3 ms.
The model was paced at every HR to steady-state (100 beats). The simulated restitution curve
(i.e., APD80 dependence on HR) is shown in Figure 1. It gives the approximation

τ = 287.09[ms]− 30685.24[ms2]

T[ms]
, (9)

where τ is the length of systole and T is the period of the cardiac cycle.
In this work, we use a simple approximation of the heart outflow QH (t) in the time domain.

We define it as a half-sine function during ventricular systole and set it to zero otherwise,

QH (t) =

⎧⎪⎨⎪⎩SV
π

2τ
sin
(

πt
τ

)
, 0 � t � τ,

0, τ < t � T,
(10)
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where SV is the stroke volume of the left ventricle. Thus, we have

SV =

T∫
0

QH (t) dt. (11)

Figure 1. Relationship between the action potential duration at 80% repolarisation (APD80) and the
period of the cardiac cycle (T).

The heart outflow is a function of two parameters: the SV and the length of the ventricular systole
τ. When studying cardiovascular events with different or variable heart rhythms, it is especially
important that both SV and τ depend on HR. In the wide range of HR values, cardiac output (QCO)
remains constant under pacing conditions [33,34]; i.e.,

QCO = SV · HR. (12)

Thus, SV should be inversely proportional to HR. However, some experimental and clinical
studies on the hearts of conscious dogs, which were paced by an implanted right atrial electrode [35],
and the hearts of normal human foetus, which were auditory stimulated by a sound emitter placed
on the mother’s abdomen [36], report a linear relationship between SV and HR. We use the data
from clinical studies on eighteen vascular surgery patients having general anaesthesia, mechanical
ventilation with tidal volume 6 mL/kg and a transesophageal atrial pacemaker [37]. In this study,
increasing HR from 80 to 110 bpm caused a reduction in SV from 72 to 57 mL. We use these values to
obtain the linear relationship

SV = 112[mL]− HR[bpm]

2[bpm/mL]
. (13)

In this work, we consider the range of HR from 40 to 160 bpm where the linear regression (13) is
close to the inverse relationship. Remarkable nonlinear behaviour is observed for the HR values above
200 bpm [38].

Compression of the terminal CAs during systole by the myocardium is an essential feature of
coronary haemodynamics. To account for this compression, we set Rk = Rk(t) for the boundary
condition (8) in the terminal CAs. Similar to our previous works [20,27,39,40] we assume that the
dimensionless time profile of Rk(t) is the same as the dimensionless time profile of cardiac output (10).

Rk (t) =

⎧⎪⎨⎪⎩Rk + (Rmax
k − Rk) sin

(
πt
τ

)
, 0 � t � τ

Rk, τ < t � T
(14)
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The peak value of the peripheral resistance during systole is set to Rmax
k = 3Rk, where Rk is

the terminal resistance during diastole [41]. It is sufficient for the complete blockage of the flow
in terminal CAs during systole. The values of Rk are set by the following algorithm. We assume
that the total arterio-venous resistance Rtotal of the systemic circulation produces the pressure drop
ΔP = 100 mmHg [42], thus

Rtotal =
ΔP

QCO
(15)

Then we perform three steps. First, we split Rtotal between the terminal resistance of the aorta
Ra = Rtotal/0.9 and the total terminal resistance of the CAs Rcor = Rtotal/0.1. These values produce
the ratio of CBF to CO of about 3–6%. Second, we split Rcor between the total effective resistances
of major CAs and their branches: right coronary artery (RCA) and branches of left coronary artery
(LCA)(circumflex artery and left anterior descending artery). Rcor is divided depending on the
diameters of the major CAs according to Murray’s law with a power of 2.27 [41]. Third, we divide
the total effective resistances of major CAs between their terminal branches according to Murray’s
law with a power of 2.27. We note that the error in measuring diameters of the terminal CAs may be
substantial due to the quality of CT data. The major CAs generally have good visualisation on CT.
The error in measuring their diameters is relatively small. Thus, the second step allows us to decrease
the total error of Rk assessment.

3. Results

3.1. Interventricular Dyssynchrony Due to Asynchronous Cardiac Pacing

Failures in the electrical conducting system of the heart or asynchronous cardiac pacing produce
dyssynchrony between RV and LV contraction. We simulate interventricular dyssynchrony by
introducing a time difference of 30 and 60 ms in resistance functions (14) for the terminal branches
of RCA. The disagreements among regional pre-ejection periods greater than 50 ms are considered
as significant [43]. We associate the early right ventricle contraction with a pacemaker location in the
right ventricle and the late right ventricle contraction with a pacemaker location in the left ventricle.

We calculate the ratios of the average blood flow in the LCA and RCA in the asynchronous
and normal (synchronous) pacing conditions at different HRs. The relative change in the average
blood flow in LCA is less than 0.5% in all cases because resistance functions (14) for the left CAs are
always synchronous to the heart outflow (7) and, therefore, blood flow in LCA is synchronised to the
contractions of the left ventricle.

From Figure 2 we observe that interventricular asynchrony causes significant changes in the
average blood flow in RCA at the normal values of HR. The 60 ms early contraction of the right
ventricular produces 12% increase, while 60 ms late contraction produces approximately the same
decrease. The elevation of HR leads to a decrease in the relative changes in blood flow in RCA,
which tends to the value corresponding to the normal pacing conditions.

Since both RCA and LCA are the branches of the aorta, the left ventricle contractions supply both
RCA and LCA with the blood. It explains the asymmetric behaviour of the relative change of the blood
flow in RCA and LCA.

6
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Figure 2. Relationship between the relative changes in the average blood flow in the right coronary
artery (RCA) for early (right ventricular pacing) and late (left ventricular pacing) right ventricular
contractions and heart rate. Baseline corresponds to the no pacing conditions.

3.2. Tachycardia and Bradycardia

In this section, we present results of CBF simulations at constant HR in the range from 40 to
160 bpm. The values of HR lower than 55 bpm are generally associated with bradycardia, and the
values of HR higher than 85 bpm are related to tachycardia. We take into account the changes in
systole duration (9) and stroke volume (13) with the variations in HR. Figure 3 shows the dependency
between the ratio of average CBF and the average cardiac output (12) in the cases of variable (9) and
constant (35%) ratio of the systole duration to the heart period from HR.

Figure 3. Dependence of fraction of average coronary blood flow (CBF) relative to the average cardiac
output (CO) on the heart rate (HR) for two ways of systole representation: (A) systolic interval
calculated using Equation (9); (B) systolic interval calculated as 35% of the cycle length (τ = 0.35 · 60

HR )

From Figure 3 we observe a substantial difference in the fraction of CBF depending on the model
assumptions. A constant fraction of systole duration leads to the elevation of the fraction of CBF with
the increase in HR. It contradicts the clinical data [44]. The model with a variable fraction of systole
results in the decrease in CBF fraction with the increase in HR. According to (9) the length of systole
increases with the decreasing period of the cardiac cycle (and increasing HR). It leads to the increase in
the relative length of systole and decrease in the relative length of diastole within a cardiac cycle. Thus,
the relative time period with increased peripheral resistance (14) increases.

7
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We also note that the absolute value of the average CO achieves its maximum at 100–120 bpm
(see Figure 4). Figure 5 presents the corresponding values of the average CBF during the constant
and variable fraction of systole. From Figure 5 we observe that average CBF achieves its maximum at
100 bpm for the variable and at 100–120 bpm for the constant fraction of systole. The early decrease in
the average CBF, which is simulated by the model with a variable fraction of systole, accounts for the
integrated effect of the decrease in both SV and diastolic phase of the cardiac cycle. The sensitivity of
the average CBF to the fraction of systole is low for low values of HR. For HR values above 80 bpm,
the assumption of a constant fraction of systole produces overestimated values of the average CBF.
The difference of the absolute values of average CBF at 50, 100 and 160 bpm from the standard value at
60 bpm (see Figure 4) is less than 15% despite the permanent decrease in the fraction of average CBF to
average CO (see Figure 3A), which produces 20% difference at 160 bpm.

Figure 4. Average cardiac output.

Figure 5. Absolute value of average CBF. Variable fraction (9) of systole (A), constant fraction (35%) of
systole (B).

3.3. Long QT Syndrome

Long QT interval on ECG, more than 480 ms for 60 bpm, reflects the delay in myocardium
repolarisation and myocardium relaxation after a heart contraction. It is unclear how the length of
systole changes with HR in the case of a long QT syndrome. We assume that this relation is similar
to (9): τLongQT = a − b

TLongQT
, where TLongQT is a period of the heart cycle during long QT syndrome,

and a, b are constants. We estimate constants a and b from clinical data: for 60 bpm the length of systole

8
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τLongQT = 480 ms [8]; for 113 bpm the length of systole τLongQT = 353 ms [9]. As a result, we derive
a = 624 ms and b = −143774 ms2.

Figure 6 shows the results of blood flow simulations in RCA and LCA during long QT syndrome
for values of HR from 60 to 120 bpm. From Figure 6 we observe that long QT syndrome produces a
significant decrease in CBF in both RCA and LCA (Figure 6), which is more than 25%. It accounts
for the decrease in the diastolic period, which is accompanied by low values of peripheral resistance
according to (14). Elevation of HR results in an increase in blood flow in both RCA and LCA, which
tends to the baseline values. The baseline value is the blood flow simulated by the model with a
variable fraction of systole according to (9).

Figure 6. Relative average blood flow in RCA and LCA during long QT syndrome. Baseline
corresponds to the absence of the long QT syndrome.

3.4. Premature Ventricular Contraction

PVC is an abnormal heartbeat, which occurs earlier than a scheduled normal heartbeat,
which should be initiated by an action potential. The normal heartbeat is missed because the ventricles
have been emptied by PVC. PVC also causes an effect on the subsequent normal pulses due to the
increased ventricular filling after PVC. A regular PVC pattern includes PVC every second (bigeminy),
third (trigeminy) or fourth (quadrigeminy) cardiac cycle.

We simulate PVC by modifying heart outflow function (7) in the following way. We suppose that
systole starts 0.25T earlier than a periodic schedule; SV of the PVC is 71% less than SV of a normal
beat due to insufficient ventricle filling [11]; the beat after PVC occurs on a schedule; the total length
of PVC heartbeat and the following beat is 2T; SV of the heartbeat after PVC is 18% more than SV of
a normal beat due to increased time of ventricle filling [11]. Figure 7 shows an example of modified
heart outflow in the case of quadrigeminy and a HR value of 120 bpm.

We simulate average CBF in the cases of bigeminy, trigeminy and quadrigeminy for HR values
from 40 to 120 bpm. Figure 8 presents the results, which include the fraction of the average CBF overall
cardiac cycles of PVC pattern to the value of average CBF without PVC. From Figure 8, we observe a
substantial decrease in the relative average CBF at low and normal HR. This value decreases with the
increasing HR. The most pronounced effect (more, than 25% decrease at 40 bpm and 30% decrease at
120 bpm) is observed in the case of bigeminy as it produces the most frequent occurrence of PVC.

9
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Figure 7. Modified heart outflow QH(t) at HR = 120 bpm and quadrigeminy.

Figure 8. Relative average CBF with PVC. Baseline corresponds to the absence of PVC.

4. Discussion

In this work, we have presented a modified model of 1D haemodynamics in the network of
coronary vessels, which includes dependencies of systole duration and stroke volume on the length of
the cardiac cycle (or the heart rate). We have simulated interventricular dyssynchrony, which is caused
by asynchronous cardiac pacing of the left and right ventricles. We have analysed coronary blood flow
in the cases of several abnormal heart rhythms, including tachycardia, bradycardia, long QT syndrome
and premature ventricular contraction.

The variable length of systole and SV produces results that are in agreement with clinical data [44].
In contrast to our previous works [20,27,39] we suggest that only terminal resistance rises due to
myocardium contractions during systole, which is different from the models of general muscle
contractions [26,45] and better corresponds to the anatomical features of major CAs laying outside
the myocardium.

Based on experimental and clinical observations [35,36] we used linear regression for the
dependency of SV on HR (13), which works well for the arrhythmia and pacing conditions. We note
that this relationship becomes nonlinear for the values of HR above 160 bpm [38], and our model is
not valid in this case. Some other factors (e.g., regulatory processes) may produce nonlinear behaviour
even in the range from 40 to 160 bpm (e.g., physical exercise conditions).

We implicitly assumed that the length of the heart systole is approximately equal to the ventricular
systole. We neglected atria systole as all applications in this work relate to the activity of the ventricles.
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This assumption may produce some systematic error to the results. More detailed models are needed
for the accurate simulations of the heart rhythm. We also use the single-cell model [30] for simulating
action potential duration restitution curves in a cardiac cell. We assumed that the dependency of
action potential duration at 80% repolarisation (APD80) on the duration of a cardiac cycle correlates
with the similar dependence of the length of the ventricular systole (9). A more accurate approach
should simulate the propagation of the action potential over myocardium and mechanical contractions.
We imply that this process is instantaneous. It also may be a source of systematic error. We note that
approximation (9) correlates with the results of QT interval measurements for different values of HR
derived from ECG data. The length of the QT interval is associated with the length of the electrical and
mechanical systole [46].

The cardiac muscle mechanical contraction is a result of Ca2+ concentration increase
in the cytoplasm, which, in turn, is induced by sarcolemma depolarisation and consequent
calcium-induced-calcium release. Thus, despite quantitative differences in duration, all stages of the
mechanical contraction are closely interrelated. Moreover, previous experiments on non-failing human
hearts demonstrated that the difference between calcium transients measured at 80% recovery (CaTD80)
and APD80 are approximately the same at every pacing cycle length (approximately 80 ± 20 ms for
subendocardial tissue) [47]. A similar correlation was observed between twitch force duration and
calcium transients in rat papillary muscle [48]. On the other hand, cardiac contraction is a complex,
spatially distributed process that could be affected by numerous factors. For example, the blood vessel
pressure changes and consequent baroreflex affect the sympathetic system, which has unequal effects
on action potential, calcium transients and mechanical contraction [49]. However, for the purpose of
this study, which is to qualitatively investigate the principal effects of HR on the CBF, APD80 provides
a reasonable estimate of the mechanical contraction duration.

The developed model of CBF under various heart rhythms allows simulating the effects of medical
treatment. We mention anticoagulant therapy as the primary strategy to prevent atrial fibrillation
(AF) complications, including thromboembolism and stroke. Oral anticoagulants (OACs) such as
vitamin K antagonists, direct thrombin inhibitors, or factor Xa inhibitors are administered routinely
in patients with AF [50,51]. Anticoagulation therapy changes rheological properties of the blood
and modifies oxygen and nutrients delivery to the myocardium by CBF. Adherence to OACs is the
extent to which a patient takes his medication as prescribed. It is estimated as appropriate in 76.6%
of patients with hypertension and other cardiovascular diseases [52]. Persistence is the act of taking
drugs for the prescribed treatment duration. Persistence with OACs therapy is about 50% in a two-year
perspective [53]. Thus, non-adherent and non-persistent patients make a tangible contribution to
negative treatment outcomes. Multiple patient-level factors, as well as social, economic, health system
causes contribute to poor adherence and persistence to OACs making this phenomenon a challenge for
population studies [54]. Mathematical modelling of the CBF during arrhythmia episodes controlling
for OACs therapy adherence and persistence may clarify their effects and give predictions with
respect to possible negative outcomes. Some approaches to mathematical modelling of medication
therapy effects on the CBF have been proposed in [55]. Anticoagulant therapy is not considered yet.
We anticipate further elaboration of our model with respect to anticoagulation therapy as a possible
ongoing endeavour.
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Abbreviations

The following abbreviations are used in this manuscript:

APD80 Action potential duration at 80% repolarisation
AF Atrial fibrillation
bpm Beats per minute
CA Coronary arteries
CBF Coronary blood flow
CO Cardiac output
ECG Electrocardiogram
HR Heart rate
LV Left ventricle
LCA Left coronary artery
OAC Oral anticoagulant
PVC Premature ventricular contraction
RCA Right coronary artery
RV Right ventricle
SAN Sinoatrial node
SV Stroke volume

Appendix A

Figure A1. 3D anatomical model of the coronary arteries [21].

Figure A2. The 1D structure of the 3D anatomical model from Figure A1. Vessels 3–35 are the branches
of LCA, vessels 36–65 are the branches of RCA. Parameters of the vessels are presented in Table A1.
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Table A1. Parameters of the arterial network in Figure A2. k is the index of the vessels, lk is length, dk
is diameter, ck is pulse wave velocity index (see (3)).

k lk, cm dk, mm ck, cm
s k lk, cm dk, mm ck, cm

s

1 5.2 21.7 700 34 1.23 0.9 1200
2 20 25 1094 35 0.71 1.87 1200
3 2.61 4.96 1200 36 1.74 3.46 1300
4 1.83 4.14 1200 37 2.35 1.84 1300
5 2.45 1.78 1200 38 0.38 0.9 1300
6 0.65 0.9 1200 39 0.27 0.88 1300
7 1.58 0.9 1200 40 2.05 1.95 1300
8 2.04 3.04 1200 41 2.42 3.26 1300
9 2.76 1.96 1200 42 0.81 2.53 1300

10 3.3 0.89 1200 43 1.86 1.56 1300
11 1.98 0.96 1200 44 0.75 0.9 1300
12 1.32 2.31 1200 45 0.62 0.88 1300
13 2.66 1.11 1200 46 2.95 1.59 1300
14 3.67 1.78 1200 47 0.47 0.92 1300
15 2.26 0.98 1200 48 0.76 0.93 1300
16 1.94 1.05 1200 49 4.53 2.57 1300
17 0.97 0.9 1200 50 1.84 1.97 1300
18 1.84 0.9 1200 51 1.34 1.07 1300
19 3.13 3.92 1200 52 2.34 1.52 1300
20 4.97 2.91 1200 53 3.17 0.72 1300
21 2.16 1.3 1200 54 1.05 0.54 1300
22 4.05 1.84 1200 55 4.6 1.85 1300
23 2.49 0.9 1200 56 3.37 1.41 1300
24 1.97 0.88 1200 57 2.34 0.6 1300
25 2.47 3.02 1200 58 1.88 0.67 1300
26 2.45 1.78 1200 59 2.42 1.5 1300
27 1.5 1.06 1200 60 3.14 0.88 1300
28 1.11 1.03 1200 61 0.66 1.34 1300
29 2.58 2.39 1200 62 1.47 0.9 1300
30 1.34 1.07 1200 63 0.87 1.15 1300
31 0.71 1.87 1200 64 2.75 0.6 1300
32 2.1 1.02 1200 65 1.23 0.42 1300
33 2.22 1.44 1200
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Abstract: Left ventricular assist devices provide circulatory support to patients with end-stage heart
failure. The standard operating conditions of the pump imply limitations on the rotation speed of the
rotor. In this work we validate a model for three pumps (Sputnik 1, Sputnik 2, Sputnik D) using a
mock circulation facility and known data for the pump HeartMate II. We combine this model with a
1D model of haemodynamics in the aorta and a lumped model of the left heart with valves dynamics.
The model without pump is validated with known data in normal conditions. Simulations of left
ventricular dilated cardiomyopathy show that none of the pumps are capable of reproducing the
normal stroke volume in their operating ranges while complying with all criteria of physiologically
feasible operation. We also observe that the paediatric pump Sputnik D can operate in the conditions
of adult circulation with the same efficiency as the adult LVADs.

Keywords: rotary blood pump; 1D haemodynamics; lumped heart model

1. Introduction

Left ventricular assist devices (LVADs) provide a therapeutic option to treat patients with
end-stage heart failure (HF). LVAD connects the left ventricle (LV) and the aortic arch (AA),
provides pulsatile or continuous blood flow and maintains circulatory support. The total aortic flow is
the sum of the LV and LVAD outflows. Thus, LVAD decreases the work of the LV on ejecting blood
to the aorta. The outflow from the LVAD to the aorta depends on the pressure drop over the LVAD.
The pressure drop over LVAD is a complex interplay of many factors including LV contraction and
ejection, aortic valve function, aorta extensibility and outflow to the distal parts of the systemic arteries.
Modern LVADs are the rotary blood pumps (RBPs) which produce continuous flow to maintain
temporary and permanent circulatory support [1,2]. The area of the pressure–volume (P-V) loop of the
LV represents its stroke work. Dynamic head pressure-bypass flow (H-Q) curves characterise the RBP
function during the cardiac cycle. These two curves correlate with each other [3]. They help to analyze
dynamic interaction between the LV and RBP [4]. The other useful parameters of such analysis are the
stroke work, the hydraulic pump work, and the cardiac mechanical efficiency [5,6].

Clinical efficacy of LVADs has been recently proven [7], although their impact on the
cardiovascular system is not always clear. Algorithms of autonomous optimal control for LVADs
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are still widely discussed. A lot of information on LVADs operation in different regimes is available
from mock circulation facilities [8–10]. Blood flow near aortic valve after implantation of LVAD was
simulated in [11]. However, systematic data of the impact of pump operation in patient’s physiological
conditions are limited due to complexity of measurements and a relatively small number of observable
cases. In this work we develop an in silico model of the left heart and aorta with LVAD which allows
us to simulate the impact of a pump in realistic physiological conditions. Our primary goal is to
study behaviour of RBPs Sputnik 1, Sputnik 2 and Sputnik D [8–10,12,13] in patient’s physiological
conditions. We also compare models of the Sputnik devices with a model of the HeartMate II [14],
the well known and widely used pump.

In Section 2 of this work, we present an integrated model of the left heart function with aortic
and mitral valves dynamic opening and closing (see Section 2.3). The model includes two segments
of the aorta which are simulated by a 1D haemodynamic model (see Section 2.2). We identify the
LVAD model for pumps Sputnik 1, Sputnik 2, Sputnik D by fitting parameters with data from mock
circulation facilities (see Section 2.1). The parameters of the LVAD HeartMate II model are set according
to the literature [14]. The LVAD model is included in the integrated model as a nonlinear lumped
compartment which connects the left ventricle and the aorta. In Section 3.1, the heart and aorta
model is validated in healthy conditions using data from the literature. Essential conditions of the
physiologically feasible pump function include the temporary opening of the aortic valve, the positive
direction of the flow through the LVAD as well as absence of ventricular suction and recovery of
the typical stroke volume [13]. In Section 3.2, we study the haemodynamic effect of every pump in
case of HF accompanied with left ventricular dilated cardiomyopathy in a range of rotational speed
which covers ranges defined by manufacturers. We observe that in the considered conditions none
of the pumps are capable of restoring the normal stroke volume in the ranges recommended by the
manufacturers and at the same time complying with all criteria of physiologically feasible operation.
We show that although Sputnik D was initially designed for paediatric patients, it can operate in the
conditions of adult circulation at a higher pump speed, with about the same efficiency as adult LVADs.
In Section 4 we discuss the results, limitations, conclusions and our future work.

2. Materials and Methods

2.1. Identification of Pump Models

Head pressure–flow rate (H-Q) relationship is a mechanical characteristic of a pump which can
be determined from the laboratory tests. It provides a convenient interface for incorporating the pump
model to a model of the cardiovascular system as a nonlinear compartment. The two options for
deriving the H-Q relationship are the usage of (semi-)empirical formulas and the derivation from the
physical principles. In rather general form H (Q, ω) is a quadratic form which is sometimes extended

with the terms of the flow and pump rotation accelerations H
(

Q, ω,
dQ
dt

,
dω

dt

)
. Here H is the head

pressure, Q is the flow through the pump, ω is the rotation speed of the pump rotor. The Euler head
equation with added quadratic term Q2 due to experimental evidence and the flow inertia term [15]
gives Model 1:

H = aQ2 + bQ + cω2 + d
dQ
dt

. (1)

A similar model [16] with the rotational acceleration of the pump defines Model 2:

H = aQ2 + bQ + cω2 + d
dQ
dt

+ e
dω

dt
. (2)

The steady-flow model based on the conservation laws of mass, momentum and energy [17]
yields Model 3:

H = aQ2 + bQω + cω2. (3)
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An addition to Model 3 of unsteady-flow effects and periphery parts [14] results in Model 4:

Plv − Pp = aQ2 + bQω + cω2 + d
dQ
dt

+ Prec − Hper, (4)

where Pp is the pressure in the junction of the pump outlet and aorta, Plv is the pressure in the LV,

Prec =

{
0, Q > eω

Rrec (Q − eω)2 , Q � eω
, (5)

Hper = −Lper
dQ
dt

+ RperQp
∣∣Qp
∣∣ . (6)

We note that Model 4 is not actually an H-Q relationship. It also includes parameters of the
external (periphery) part which connects the pump to the LV and the aorta. The physical background
of (4) is discussed in [14]. The theoretical Euler head equation gives the terms proportional to ω2

and Qω. The fluid friction losses produce quadratic growth (Q2) with the flow elevation. The flow
detachment at the leading and trailing edges of the blade produces eddy and separation losses
proportional to ω2, Qω and Q2. Part-load recirculation in the blade channels occurs below the design
flow rate. It partly blocks the channels, decreases their effective diameter and increases the head
pressure introducing (Q − eω)2 term. The flow inertia term is proportional to dQ

dt . Fluid friction and
inertia frequency-dependent losses in the peripheral part are included via Hper in (6). See [14] and
references herein for more details.

All the pump models (1)–(4) have physical interpretation. They were successfully validated with
experimental data from different pumps in [14–17]. We take all these models as possible candidates
for the H-Q mathematical relationship of non-pulsatile axial flow LVADs Sputnik D, Sputnik 1 and
Sputnik 2. We use data from laboratory experiments with physical models of the paediatric mock
circulation with Sputnik D [8–10] and the adult mock circulation with Sputnik 1 and Sputnik 2 [8,12]
for validation. Sensors are placed as close to the pumps as possible, thus, we exclude peripheral
term Hper from (4) at the model fitting stage. Experimental setup imitates physiological conditions,
including the Frank-Starling autoregulation mechanism of the heart which regulates the cardiac output
depending on the ventricle preload. The 32% aqueous glycerol solution was used as the model fluid.
Head pressure–flow rate (H-Q) curves for Sputnik D, Sputnik 1 and Sputnik 2 were measured at
various constant pump speeds. For Sputnik D, the data from the range 6 × 103–12 × 103 rpm with the
step 103 rpm were used as the training dataset, and the data from the range 13 × 103–15 × 103 rpm
were used as the test dataset. For Sputnik 1 and Sputnik 2 the data from the range 5 × 103–104 rpm
with the step 200 rpm and a contractility factor of the artificial LV 0.25 were used as the training dataset
and the data from the range 5 × 103–104 rpm and the contractility factor of the artificial LV 0.5 were
used as the test dataset. The contractility factor [8] is a coefficient which decreases the end-systolic
elasticity.

We set head pressure H as a target variable. The parameters of the models were identified by the
damped least-squares method (Levenberg–Marquardt algorithm) [18,19]. We smooth up the raw data
by Savitzky–Golay filter [20] for computing time derivatives of the flow and the rotational speed of
the pump. The coefficient of determination R2 was used as the best-fit criterion. According to results
presented in Table 1, Model 4 provides the best fit with experimental data for all Sputnik pumps.
Table 2 comprises identified parameters of Sputnik pumps for Model 4, as well as Model 4 parameters
of the LVAD HeartMate II from [14]. Due to the lack of experimental data for Sputnik pumps periphery,
we use mean values of the corresponding parameters for HeartMate II from [14].

In the following sections, we incorporate Model 4 into a lumped model of the heart coupled with
a 1D model of the aorta.
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Table 1. Coefficients of determination (R2) for models (1)–(4).

Sputnik D Sputnik 1 Sputnik 2

Model 1 −0.2 0.92 0.93
Model 2 −0.19 0.92 0.94
Model 3 0.87 0.37 0.39
Model 4 0.96 0.93 0.97

Table 2. Parameters of model (4).

Parameter Unit Sputnik D Sputnik 1 Sputnik 2 HeartMate II [14]

a mmHg/(L/min)2 0.48 3.58 × 10−2 −0.46 −0.86
b mmHg/(rpm · L/min) −1.52 × 10−3 −9.86 × 10−4 −5.64 × 10−4 3.21 ×10−4

c mmHg/rpm2 8.49 × 10−7 1.74 × 10−6 1.73 × 10−6 9.54 × 10−7

d mmHg·s2/L −60.06 −83.50 −85.91 −22.97
e (L/min)/rpm 4.92 × 10−5 −2.18 × 10−4 −3.70 × 10−4 3.59 × 10−4

Rrec mmHg/(L/min)2 5.63 4.15 5.59 3.07
Lper mmHg·s2/L 19.33 19.33 19.33 20
Rper mmHg/(L/min)2 0.35 0.35 0.35 0.38

2.2. 1D Mathematical Model of the Blood Flow in Aorta Segments

The blood flow in the aorta is simulated by a 1D reduced-order model of unsteady flow of viscous
incompressible fluid in elastic tubes. The aorta is divided into two segments. The 1D model of the
aorta is connected to the LV at the inlet, to the Windkessel compartment at the outlet and to the pump
compartment between its segments I and II (see Figure 1).

Figure 1. Scheme of the integrated model and notations used throughout the paper: left ventricle (lv),
left atrium (la), pulmonary veins (pv), mitral valve (mi), aortic valve (ao), Windkessel compartment
(WK), left ventricle assist device (LVAD), pump compartment (p).

Reviews and details of 1D haemodynamic models can be found in [21–25]. Algorithms of
patient-specific parameter identification of such models were suggested in [26,27]. In this section,
we briefly present this approach. We consider two 1D segments of the aorta which correspond to
two parts of the ascending aorta (I and II in Figure 1). We assume that the pump is connected to the
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aorta at the aortic arch before the carotid arteries. The flow in every vessel is described by mass and
momentum conservation equations

∂V

∂t
+

∂F(V)

∂x
= G(V) , (7)

V =

(
A
u

)
, F(V) =

(
Au

u2/2 + p(A) /ρ

)
, G(V) =

(
0
ψ

)
,

where t is the time, x is the distance along the vessel counted from the vessel junction point, ρ is the
blood density (constant), A(t, x) is the vessel cross-section area, p is the blood pressure, u(t, x) is the
linear velocity averaged over the cross-section, ψ is the friction force

ψ = −8πμ
u

ρA
, (8)

μ is the dynamic viscosity of the blood. The elasticity of the vessel wall material is characterised by the
p(A) relationship

p(A) = ρc2
0 f (A) , (9)

where c0 is the velocity of small disturbances propagation in the vessel wall, f (A) is the monotone
S-like function (see [28] for the review of other options)

f (A) =

{
exp (η − 1)− 1, η > 1

ln η, η � 1
, η =

A
A0

, (10)

A0 is the cross-sectional area of the unstressed vessel.
The mass conservation condition at the aortic root includes the blood flow through the aortic root

Qao which is also a variable of the heart model from Section 2.3:

uI(t, 0) AI(t, 0) = Qao(t) . (11)

Boundary conditions at the connection of aorta and the pump include mass conservation condition

uI (t, LI) AI (t, LI) + Qpump = uII (t, 0) AII (t, 0) (12)

and the continuity of the total pressure

pI (AI (t, LI)) +
ρu2

I (t, LI)

2
= pII (AII (t, 0)) +

ρu2
I I (t, 0)

2
= pp +

ρ

2

(
Qp

Sp

)2
, (13)

where pp is the static pressure at the output of the pump, Qp is the flow through the pump contributing
to (4), Sp is the cross-section area of the tube which connects the output of the pump and the aorta.

The outflow boundary conditions assume that the terminal part of the aorta is connected to the
Windkessel compartment which describes the rest of the systemic circulation

dQ
dt

=
1

R1

(
dpII (AII (t, LII))

dt
− dpWK

dt

)
, (14)

dpWK
dt

=
Q
C

(
1 +

R1

R2

)
− dpII (AII (t, LII))− p∞

R2C
, (15)

Q = uII(t, LII) AII(t, LII) , (16)

where R1, R2, C, p∞ are parameters presented in Table 3, pWK is pressure in the
Windkessel compartment.
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The formulations of boundary conditions at the aortic root (11), at the connection of the aorta and
the pump (12), (13) and at the terminal part of the aorta (14)–(16) include a numerical discretisation of
compatibility condition along the characteristic curve of the hyperbolic system (7) which leaves the
integration domain for every incoming and/or outgoing segment of the aorta (see [21–23] for details).
The systems of nonlinear algebraic equations, which represent boundary conditions with the time
discretisation of the differential part are numerically solved by the Newton’s method.

The hyperbolic system (7) inside every segment is numerically solved by the second order
grid-characteristic method (see [29] for the details of the method and [21,22] for the features of its
implementation to the 1D model of the blood flow). The analysis of the characteristic curves of (7)
and similar formulations of 1D blood flow model allows implementing discontinuous Galerkin
method [30,31]. The deep analysis of the quasilinear effects in a hyperbolic model blood flow through
compliant axi-symmetric vessels can be found in [32]. The generalised approach to the numerical
implementation of the models describing various nonlinear wave process on graphs is described
in [33].

The parameters of the 1D model are given in Table 3. The cross-sectional area and the length of the
aortic segments I and II are set according to [34]. The parameters of the Windkessel compartment are
set manually. These values allow us to achieve the well known systolic and diastolic aortal pressures
in the normal conditions (rf. Section 3.1). For ρ and μ we use the well known values [35].

Table 3. Parameters of the 1D model of haemodynamics in the segments of the aorta.

Parameter Unit Value Parameter Unit Value

A0,I cm2 7.1 A0,I I cm2 5.7
c0,I cm/s 700 c0,I cm/s 700
LI cm 4.4 LII cm 3
R1 Ba·s/mL 60 R2 Ba·s/mL 1500
C mL/Ba 10−3 p∞ Ba 7000
ρ g/cm3 1.04 μ cP 4

2.3. Integrated Mathematical Model of the Heart Function, Pump and Aortic Flow

The two chamber model of the heart comprises the LV and the left atrium (LA), the mitral
and aortic valves. It connects the pulmonary veins (PV) with the aorta. The nonlinear LVAD
compartment connects the LV with the aorta (see Figure 1). The variable elasticity concept of the
heart contractions [36,37] allows describing the heart chambers dynamics by the following lumped
compartment model

Ik
d2Vk
dt2 + RkPk

dVk
dt

+ Ek (t)
(

Vk − V0
k

)
+ P0

k = Pk, (17)

where k ∈ {lv, la}, indices lv and la refer to the LV and the LA, respectively, Vk(t) is the volume of
the chamber, V0

k is the reference volume of the chamber, Pk(t) is the pressure in the chamber, P0
k is

the reference pressure in the chamber, Ik is the inertia coefficient of the chamber, Rk is the hydraulic
resistance coefficient of the chamber, Ek(t) is variable elasticity which is approximated by

Ek (t) = Ek,d +
Ek,s − Ek,d

2
ek (t) , (18)
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Ek,d and Ek,s are elasticity constants related to the end diastolic and end systolic states of chamber k
(rf. Table 4). For the LV we set

elv (t) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1 − cos

(
t

Ts1
π

)
, 0 � t � Ts1,

1 + cos
(

t − Ts1

Ts2 − Ts1
π

)
, Ts1 < t < Ts2,

0, Ts2 � t � T,

(19)

whereas for the LA

ela (t) =

⎧⎪⎨⎪⎩
0, 0 � t � Tpb,

1 − cos
( t − Tpb

Tpw
2π

)
, Tpb < t < T.

(20)

Here we modify the model [38] by adding to (17) the term proportional to Pk
dVk
dt , which accounts

for viscoelasticity of the myocardium [39–41]. The values of constants Ts1, Ts2, Tpb, Tpw are presented
in Table 4.

The mass conservation law for the LV and LA states

dVlv
dt

= Qmi − Qao − Qp,

dVla
dt

= Qpv − Qmi,
(21)

where Qmi is the flow through the mitral valve, Qao is the flow through the aortic valve, Qp is the flow
through the pump, Qpv is the flow from the PV.

We set the pressure drop ΔP = Ppv − Pla for PV – LA connection, ΔP = Pla − Plv for LA – LV
connection, and ΔP = Plv − p(AI(t, 0)) for LV – AA connection. For unsteady flow in a channel with a
variable cross-section, the pressure drop satisfies the relation [39,42]

ΔP = L (g)
dQ
dt

+ α (g) Q + β (g) Q |Q| , (22)

where g(θ) =
{

θmin � θ � θmax, 0 � g(θ) � 1
}

is a smooth monotone function of the angle of a valve
opening θ [43]:

g (θ) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(
1 − cos θmin)2
(1 − cos θmax)2 , θ < θmin,

(1 − cos θ)2

(1 − cos θmax)2 , θmin � θ � θmax,

1, θ > θmax.

(23)

The value g(θmin) corresponds to the closed valve, while the value g(θmax) = 1 corresponds to
the opened valve. For L = 0, β = 0 we have linear Poiseuille pressure drop condition which also
accounts for the viscous friction losses. By analogy with [44,45] we neglect this term and set α = 0 for
all cases. For L = 0, α = 0 we have the orifice pressure drop condition. The first term in (22) accounts
for the inertia of non-stationary flow. The coefficient β is defined as [42,46,47]

β (A∗) =
ρ

2B∗

(
1

Ã∗
− 1

A∗

)2
, (24)

where parameters Ãmi, Bao and Bmi are defined in Table 4 whereas Ãao = AI(t, 0). For the PV – LA
connection β = const. For both mitral and aortic valves, their cross-section A∗ depends on the angle of
the valve opening, A∗ (θ) = Amax∗ g (θ).
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The dynamics of the aortic and mitral valves is governed by the second Newton law.
Pressure gradient across the valve, vorticity generation and shear forces acting on the valve leaflets [48]
have to be accounted in the model, rf. [43,49]. In this work we set valve dynamics equations as

d2θao

dt2 = −K f
ao

dθao

dt
+ (Plv − Pao)Kp

ao cos θao − Fr
ao (θao) ,

d2θmi
dt2 = −K f

mi
dθmi

dt
+ (Pla − Plv)Kp

mi cos θmi − Fr
mi (θmi) .

(25)

where θao(t) is the angle of the aortic valve opening, θmi(t) is the angle of the mitral valve opening,
K f

ao, Kp
ao, K f

mi, Kp
mi are parameters presented in Table 4, the first term at the right-hand side corresponds

to the friction force, the second term corresponds to the pressure force driving the valve motion, Fr is
the force which helps to avoid physiologically abnormal valve positions (θ < θmin and θ > θmax)

Fr (θ) =

⎧⎪⎪⎨⎪⎪⎩
0, θmin � θ � θmax,

e103(θ−θmax) − 1, θ > θmax,

1 − e103(θmin−θ), θ < θmin.

(26)

The other forces are neglected.
Parameters of the lumped model of the left heart are summarized in Table 4. We take some values

from [38,41,43] and set other values manually basing on the values from [38,43] and keeping them in
the physiological range.

Table 4. Parameters of the lumped model of the left heart. � Parameter is set manually.

Parameter Unit Value Reference Parameter Unit Value Reference

Elv,s
mm Hg

mL 4.0 � θmin
ao 0◦ [38]

Elv,d
mm Hg

mL 0.09 � θmax
ao 75◦ [43]

Ilv
mm Hg·s2

mL 10−7 � θmin
mi 0◦ [38]

Rlv
s

mL 1.5 × 10−3 [41] θmax
mi 75◦ [43]

Ela,s
mm Hg

mL 1.2 � V0
lv mL 5 �

Ela,d
mm Hg

mL 0.3 � V0
la mL 4 �

Ila
mm Hg·s2

mL 10−7 � Ts1 s 0.3 [43]

Rla
s

mL 1.5 × 10−3 [41] Ts2 s 0.35 [43]
Tpw s 0.1 [43] Tpb s 0.9 [43]

Kp rad
s2·mm Hg 104 � K f rad

s 50 [43]

Ppv mm Hg 13 � Sp cm2 1.1 �

Lpv
mm Hg·s2

mL 10−2 � βpv
mm Hg·s2

mL2 4 × 10−4 �

Lmi
mm Hg·s2

mL 5 × 10−10 � Bmi 300 �

Lao
mm Hg·s2

mL 5 × 10−5 � Bao 500 �

Ãmi cm2 5 � Amax
ao cm2 4 �

T s 1 � Amax
mi cm2 4 �

3. Results

Validation of the pump model is addressed in Section 2.1. In Section 3.1, we validate the integrated
model by comparing simulations of the normal heart function with known physiological data from
the literature. In Section 3.2, we analyze the effect of four LVADs in patients with the end-stage HF
associated with the LV dilated cardiomyopathy (DCM).
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3.1. Validation of the Model

The parameters of the integrated model for healthy conditions are shown in Tables 2–4.
Simulations with these parameters without LVAD produce values of stroke volume of LV, systolic and
diastolic pressures in the aortic root which are in a good agreement with the well-known physiological
data [35,50] (rf. Table 5). We observe remarkable difference in the end systolic and end diastolic
volumes of the LV. We note, that these parameters are highly individual. Even in healthy cases
they depend on many factors including age, sex, sports lifestyle etc. [50,51]. Our values fall in the
physiological range: they are typical for men of the age 70–80, women of the age about 40–70 [51] and
other individual cases.

The PV diagram of the LV and time curves of the LV volume, the aortic flow and the aortic
pressure in the terminal point of segment II (rf. Figure 1) in healthy conditions without a pump are
shown in Figure 2. The loop in the lower right part of the PV diagram (rf. Figure 2a) accounts for
the backflow from LV to LA through the mitral valve in early systole. This backflow is a result of
non-instant closing of the mitral valve. Such loop is observed in critically ill patients. It is typical both
for the right ventricle and the atria, but also it may be monitored in the left ventricle [52]. We also
observe aortic regurgitation at the end of systole which accounts for the non-instant closing of the
aortic valve [35,50] (rf. Figure 2c for t ≈ 0.3 s).

(a) PV diagram of LV (b) Volume of LV

(c) Aortic root flow (d) Aortic root pressure

Figure 2. Validation of the integrated model for the heart and the aorta.
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Table 5. Validation of the integrated model for the heart and the aorta in healthy conditions without LVAD.

Parameter Unit [35,50] Model

End systolic LV volume mL 50–70 42
End diastolic LV volume mL 130 121

Stroke volume of LV mL 60–80 79
Systolic pressure in the aortic root mm Hg 130 124
Diastolic pressure in the aortic root mm Hg 78 76

3.2. Haemodynamic Simulations in the Aorta for LV DCM with LVAD

We simulate the haemodynamic characteristics in the left heart and the aorta in the presence
of one of four LVADs (Sputnik 1, Sputnik 2, Sputnik D and HeartMate II) operating at various
rotation speeds under HF conditions. RBPs are applied as long term circulatory support systems in
patients with end-stage HF both as a bridge to heart transplantation and as an alternative to heart
transplantation [53,54]. Some types of HF are accompanied with LV DCM which is the common
indication for the long term LVAD installation. LV DCM is characterized by decreased LV contractility,
thinning of the LV wall and increased cavity volume of the LV. These changes produce substantial
decrease in the cardiac output and related cardiovascular dysfunction. LVAD unloads the LV and
decreases its volume by pumping a portion of blood to the aorta. Thus, it supports the heart and
sometimes may produce conditions for LV wall recovery. We update some parameters of the heart with
LV DCM as shown in Table 6. The other parameters from Table 4 remain intact. The simulations with
these parameters produce values which correlate with physiological data from the literature [53,54]
(see Table 7 for comparison).

Table 6. Parameters of the heart model with LV DCM.

Parameter Unit Value

Ppv mm Hg 10
Elv,d mm Hg/mL 0.04
Elv,s mm Hg/mL 0.44
V0,lv mL 20
Ela,s mm Hg/mL 1.1
Rlv s/mL 5 × 10−4

Rla s/mL 5 × 10−4

Table 7. Comparison of LV DCM simulations without LVAD with the data from the literature [53,54].

Parameter Unit [13,53,54] Model

End systolic LV volume mL 215 227
End diastolic LV volume mL 259 275

Stroke volume of LV mL 44 48
Systolic pressure in the aortic root mm Hg 83 81
Diastolic pressure in the aortic root mm Hg 55 47

We compare the function of the four pumps by setting the same parameters of the heart function
and the aorta for all cases. The normal operating conditions of the pump are defined according to [13].
In the context of our model we formulate them as follows:

1. The aortic valve should be opened within a part of cardiac cycle, i.e., the LV should eject some
portion of blood to the aorta.

2. The flow through the pump should be positive, i.e., it always should be directed from the LV to
the aorta.

3. The ventricular suction is not admitted.
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4. The total ejected volume per cardiac cycle in the aorta should be possibly close to the physiological
value in normal conditions (see Section 3.1).

Figure 3 shows the duration of the opening of the aortic and mitral valves. Duration of the
opening of the aortic and mitral valves at zero speed of the pumps are in agreement with the data on
valve function in the normal conditions [43,49]. Decrease of time of the aortic valve opening starts at
5 × 103 rpm for all four pumps. The permanent closure of the aortic valve is observed at 7 × 103 rpm
for Sputnik 1 and Sputnik 2, at 12 × 103 rpm for Sputnik D and at 8 × 103 rpm for HeartMate II which
produce the upper bounds for the settings of these devices in the considered conditions. The noticeable
increase of the mitral valve opening time starts at 9.5 × 103 rpm for all four pumps. The permanent
opening of the mitral valve is observed beyond the values 12 × 103 rpm for Sputnik 1, 11.5 × 103 rpm
for Sputnik 2, 13.5 × 103 rpm for HeartMate II and is not observed for Sputnik D in the whole range.

Figure 3. Duration of the opening of the aortic and mitral valves. S1—Sputnik 1, S2—Sputnik 2,
SD — Sputnik D, HM2 — HeartMate II. The lower index ao stands for aortic valve, mi stands for
mitral valve.

Figure 4 shows the minimum flow through the pump over the cardiac cycle. We observe
that a negative flow through the pump disappears at 5.75 × 103 rpm for Sputnik 1 and Sputnik 2,
at 8.5 × 103 rpm for Sputnik D and at 7 × 103 rpm for HeartMate II which sets the lower bound for the
settings of these devices in the considered conditions.

Figure 5 shows the volume of the blood which is ejected through the aortic valve, through the
pump and the total volume ejected to the ascending aorta per cardiac cycle. These volumes are
calculated as the time integral of the corresponding flow. Thus, the negative value of the volume
ejected through the pump means that the pump takes the blood from aorta back to the LV (see Figure 4).
The total volume ejected to the ascending aorta per cardiac cycle is an analog of the stroke volume (SV).
In the rest of the paper we refer to it as SV. We observe zero value of the volume ejected through the
aortic valve for the values of the LVAD rotation speed which correspond to the permanent closure of
the aortic valve (see Figure 3). The normal physiological value of the SV is observed at 8.5 × 103 rpm
for Sputnik 1 and Sputnik 2, at 15× 103 rpm for Sputnik D and at 104 rpm for HeartMate II. This means
that none of the four pumps can produce the normal SV in the considered conditions jointly with the
opening of the aortic valve (see Figure 3).
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Figure 4. The minimum flow through the pump.

It is interesting to observe (see Figure 5) that the volume of blood passing through the aortic valve
is close to the normal value at zero rotation speed of the pump rotor. This effect is due to the negative
flow through the pump from the aorta back to the LV (rf. Figure 4). From Figure 5 we notice that
the pumps with speed below 5 × 103 rpm produce the same SV as LV DCM model without a pump.
The effect of the pumps on the SV becomes significant only after decrease of the aortic valve opening
time (rf. Figure 3).

Figure 6 shows the systolic and diastolic pressures in the aortic root. We observe that in a particular
range (up to 7 × 103 rpm for Sputnik 1 and Sputnik 2, up to 12 × 103 rpm for Sputnik D and up to
8 × 103 rpm for HeartMate II ) the pump increases the diastolic pressure. The systolic pressure remains
the same in this range. At the upper bound of this range, the systolic and diastolic pressures are almost
equal, and the pulse pressure tends to zero. The elevation of the systolic pressure starts at the rotation
speed corresponding to the permanent closure of the aortic valve (rf. Figure 3). The pulse pressure
remains almost zero. The flow becomes non-pulsatile.

Figure 7 shows the work of the LV. It decreases with the increase of the pump speed and,
thus, with the rise of the pump work. We observe three specific values of the pump speed. For values
below 5 × 103 rpm, the LV work is almost constant due to the decreasing time of the aortic valve
opening (rf. Figure 3). For values above 5 × 103 rpm, the LV work decreases. The kink of the work
curve at 7 × 103 rpm for Sputnik 1 and Sputnik 2, 12 × 103 rpm for Sputnik D and 8 × 103 rpm for
HeartMate II occurs due to the permanent closure of the aortic valve (rf. Figure 3). The LV performs
almost zero work at 12 × 103 rpm for Sputnik 1 and Sputnik 2, 14 × 103 rpm for HeartMate II. Zero LV
work is not observed for Sputnik D due to the permanent opening of the mitral valve (rf. Figure 3).
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(a) Sputnik 1 (b) Sputnik 2

(c) Sputnik D (d) HeartMate II

Figure 5. Ejected volume per cardiac cycle through the aortic valve, through the pump and the total
value for the segment II of the aorta (see Figure 1). Norm—normal (healthy) value, LV DCM—left
ventricular dilated cardiomyopathy value without pump.

Figure 6. The systolic and diastolic pressures in the aortic root.
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Figure 7. The work of the LV.

4. Discussion

In this work we study the impact of LVADs Sputnik 1, Sputnik 2, Sputnik D and HeartMate II on
haemodynamics in the left heart and the aorta at various pump speeds. For every pump we validate
the model of pressure – flow relationship using data from physical experiments. The pump model is
combined with the 1D model of the aorta and the lumped model of the left heart with valves dynamics.
The model without the pump reproduces successfully the known physiological characteristics of
the heart in the healthy conditions: PV diagram of the LV, the LV volume, the aortic flow and the
aortic pressure. We fit the model parameters to the LV DCM conditions and perform haemodynamic
simulations with the pumps.

We observe different regimes of the heart function depending on the value of the pump speed.
At low rotation speeds, the work of the pump is insufficient, and we observe reverse blood flow
from the aorta to the LV through the pump. Formally, the volume of the blood ejected through the
aortic valve is close to the standard value, but the pump backflow decreases the total amount of blood
ejected to segment II of the aorta and makes it close to the value of LV DCM case without the pump.
Increase of the rotation speed reduces the time of the aortic valve opening until valve’s permanent
closure. Three of the four operating conditions of the normal pump functioning (see Section 3.2) hold
within this range. Unfortunately, none of the pumps are capable of recovering the standard SV within
this range. Further increase of the rotation speed produces non-pulsatile flow and permanent opening
of the mitral valve. The technical characteristics and clinical restrictions limit the in vivo change of the
rotation speed. For Sputnik 1 and Sputnik 2 the range is 5 × 103–104 rpm, for Sputnik D the range is
6 × 103–2 × 104 rpm, for HeartMate II the range is 6 × 103–15 × 103 rpm.

In general, we observe the slight difference between Sputnik 1 and Sputnik 2 in all parameters
(see Figures 3–7). These pumps produce similar impacts on the haemodynamics, although they
have different technical characteristics. Therefore, Sputnik 2 should be preferred as it provides
such benefits as lesser weight, size, etc. [8–10]. The HeartMate II has a wider range of the rotation
speed with acceptable operating conditions and provides flexibility in tuning the device settings.
However, this LVAD recovers the normal SV at a higher rotation speed (see Figures 5a,b,d, which may
require more energy. Sputnik D was initially designed for paediatric patients. It has lesser weight and
size, but it also has less power. In our simulations, we test this LVAD in the adult LV DCM conditions.
We show that it is possible to achieve heart operating conditions which are similar to the conditions
with the adult LVADs. Sputnik D produces these conditions at a higher pump speed.
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In this work we validate the model using the general characteristics of the heart function in the
healthy and LV DCM conditions and data from the test facility. Personalized parameters may produce
a more accurate assessment of LVAD impact.

The following parameters cause a substantial impact on the haemodynamics: elasticity of the aorta
and the heart chambers, the central venous pressure, insufficiency of the heart valves, parameters of
the peripheral circulation (Windkessel model). The dependency of LVAD function on these parameters
should be studied in a future work.

In Section 3.2 we observe that the normal SV is achieved at zero pulse pressure and the closed
aortic valve. Healthy blood flow in systemic arteries is a nonlinear wave phenomenon. The absence
of pulsations may decrease the blood velocity and promote conditions for blood coagulation and
thrombus formation in distal arteries. Thus, the loss of pressure and flow pulsatility in the systemic
circulation in the presence of LVAD should be analyzed.

The variation of the pump speed changes the haemodynamic parameters in the heart and the aorta.
These changes may activate regulatory mechanisms of the heart function. For instance, the change
of the heart rate is associated with a modified duration of the systole and the value of the LV output
through the aortic valve. These effects are beyond the scope of this work.

The changes in the SV and the aortic pressure modify the central venous pressure which, in turn,
changes the LA filling conditions and adjusts the other haemodynamic parameters of the heart function.
A closed model of the cardiovascular system is needed to study such feedback system.
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Abstract: This paper presents current knowledge about the structure and function of the lymphatic
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the lymph nodes, and the whole lymphatic system are considered. The main results and further
perspectives are discussed.
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1. Introduction

The lymphatic system (LS) in the human body complements the cardiovascular system and
provides drainage of interstitial fluid through a complex system of lymphatic vessels and lymph
nodes. Various molecules, pathogens, and immune cells are transported in the organism along the LS.
It performs drainage, transport, immune, and deposit functions, namely, lymph accumulation in the
lymphatic capillary network, lymph nodes, and spleen.

For a long time, the role of the LS was underestimated and it was not sufficiently well studied.
Only in the 20th century, its importance for normal functioning in humans and its role in the
pathogenesis of various diseases were realized [1]. One of the most common disorders related
to the LS is lymphedema, which can develop as a result of surgical treatment and because of
other reasons. It is also reported that solid tumors can create metastases due to malignant cells
travelling along the LS [2]. Recent observations correlate plastic bronchitis with dysfunction of the
LS [3]. Other examples (lymphangioleiomyomatosis, Kaposi’s sarcoma, lymphoceles, lymphatic
malformations, and chylothorax) can be found in [1,4].

The presence of lymphatic structures—meningeal lymphatics or dural lymphatics—in the brain
was recently discovered [5,6], opposing the previous belief that there are no lymphatic vessels in the
brain. This discovery can be important for understanding the pathogenesis of neural diseases, including
Alzheimer’s disease, and for the development of efficient treatments of neurological disorders [7].

Despite progress in investigations of the LS, the parameters of lymph flow in the human body
remain basically unknown because of their difficulty to be investigated: lymphatic vessels are
small, so it is hard to place sensors; lymphs are low scattering and its signals are near the noise
threshold, so the Doppler-type technique has failed until recently; the LS starts from the interstitial
space, so contrast cannot be injected globally; and the LS contains lymph nodes filtrating lymphs,
so regional injections allow contrasting lymphs only to the first node. Moreover, injections of contrast
alter the interstitial pressure and, therefore, the measured parameters. Modern methods of lymph
investigation in vivo [8] are more suitable for lymphangiography than for determination of the
flow parameters. Data about lymph flow velocity are usually calculated by dividing the length
of the imaged vessel by the time of observation [9–14], which allows getting mean lymph velocity

Mathematics 2020, 8, 1467; doi:10.3390/math8091467 www.mdpi.com/journal/mathematics35



Mathematics 2020, 8, 1467

but not the the characterization of lymph pulsations. Moreover, these techniques are invasive and
can alter the flow [15]. Recently, a Doppler optical coherence tomography platform with Doppler
algorithm operating on low signal-to-noise measurements has been developed [16] to get lymph
flow characteristics. It allows getting parameters of lymph flow in vivo including visualization of its
pulsating nature. This approach has certain limitations which do not allow using it widely. However,
it can open new perspectives in the determination of lymph flow parameters.

Some data about lymph flow are available from in vitro experiments. In the common setup, a part
of the cattle mesenteric lymphatic vessel is fixed in the bath with a special solution and the pressure at
both ends, the diameter, and the output flux are measured [17–20]. These data can differ from those
under physiological conditions [15], but they are used in mathematical models as model parameters
and for checking the model output. Mathematical models are used for investigation of lymph flow in
the series of contracting parts of lymphatic vessels called lymphangions. The underlying assumptions
in these models are essential, and depending on them, the models give different, sometimes opposite
results (e.g., [21,22], see Section 3.2). In what follows, we consider lymph transport in different parts
of the LS, the influence of valves and contractions on the flow, their modeling, and results. We will
illustrate the main approaches to lymph flow modeling on the example of the models described
in [23,24] including models developed in the last years and will consider some possible applications.

2. Transport Function of the LS

The lymphatic system (LS) includes lymphatic vessels and lymph nodes. It complements the
cardiovascular system and performs drainage, transport, immune, and deposit functions. About 10%
of blood goes to the LS in the process of capillary filtration [25,26]. The total lymph flux returning
to the venous system is 2–4 L/day [25–28]. The LS absorbs excess fluid, waste products, and large
molecules from the interstitial space and transports it to the veins of the cardiovascular system—to
the left and right venous angles between neck veins—so the LS starts from the interstitial space and
opens into the upper vena cava (Figure 1A). The initial part of the LS is called initial lymphatics.
They absorb lymph (tissue fluids, cells, and large extracellular molecules) from the interstitial space.
Initial lymphatics have one layer of endothelial cells and no or almost no basal membrane. They connect
with anchoring filaments to the surrounding extracellular matrices, and this positioning prevents
them from collapsing even under increased pressure in the interstitial fluid. Endothelial cells of initial
lymphatics form junctions, where big cells can go into, and prevent lymphs from going out from the
initial lymphatics into the interstitial space (Figure 1B). These overlapping cells are called primary
(flap) valves. Here and below, anatomical descriptions are provided according to [1,27,29–31].

From the initial lymphatics, the lymph goes to the collectors, which have three layers of cells
similar to blood vessels. There are secondary valves in these collectors which prevent the backward
flow of lymphs. These valves consist of two or three leaflets located along with the flow (Figure 2A).
Valves divide lymphatic vessels into functional parts, and the parts between adjacent valves are called
lymphangions (Figure 2B). These lymphangions can produce active contractions. Contractions in the
vessels with valves provide the unidirectional flow of lymph (Figure 2B), which is a characteristic
property of lymph flow in the LS.

The network of lymphatic vessels is highly unstructured and contains many lymph nodes, and its
hierarchical structure is shown in Figure 3. Numerous lymph nodes contained in the LS are lymphoid
organs actively participating in the transport function of the LS [32].

It is believed now that lymph flows in the LS are because of the pressure gradient between
the interstitial space and the upper vena cava and because of passive (extrinsic) contractions which
are caused by the movements of muscle tissues, the diaphragm, and big blood vessels nearby and
of active (intrinsic) contractions which are spontaneous contractions of lymphangions. The precise
mechanism of active contractions is not yet well known [33]. One of the open questions is whether
active contractions can produce enough force to drive the lymphs throughout the whole LS. The lymph
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flow cycle includes the entrance of lymphs into the initial lymphatics, the flow into lymphangions,
and the flow into lymph nodes. The biomechanics of lymph flow in all these steps is not yet elucidated.

Figure 1. Structure of the lymphatic system (LS): (A) adapted from [23,34] with permission. Lymphs
enter the LS through the initial lymphatics (lymphatic capillaries), goes to larger lymphatic vessels,
and is filtrated in lymph nodes. Then, it is collected in the trunks and ducts, which are the largest
lymphatic vessels with respect to their diameter. Ducts open to the neck veins, which in turn open to
the upper vena cava, and thus, lymphs return to the blood circulatory system. (B) Initial lymphatics
(lymphatic capillaries): adapted from [35] with permission. Lymphs enter the lymphatic capillary
through junctions between endothelial cells (ECs). These junctions are called primary (flap) valves
because they prevent lymphs from leaving the lymphatic capillary. Capillaries are surrounded by the
intermittent basement membrane. ECs connect to the surrounding extracellular matrix with anchoring
filaments. Anchoring filaments prevent lymph capillaries from collapsing even in increased interstitial
pressure (black arrow).

Figure 2. Structure of the lymphatic vessels: (A) microscopic view of an open secondary valve in the
lymphatic vessel. Reprinted from [36] with permission. The arrow indicates the direction of lymph
flow. (B) A scheme of lymph flow in the lymphatic vessel with secondary valves: republished from [35]
with permission. Secondary valves allow lymphs to flow in one direction and restricts flow in the
backward direction. The part of the lymphatic vessel between adjacent valves is called a lymphangion.
There are smooth muscle cells (SMCs) in the vessel wall which allow wall contractions. Lymphs flow in
the vessel under active (intrinsic) contractions of the lymphatic vessel wall and under passive (extrinsic)
contractions having external nature.
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Figure 3. A schematic representation of the LS. From the bottom to the top: the LS starts from the initial
lymphatics and then the network of lymphatic vessels and lymph nodes, followed by trunks and ducts.
The right lymphatic duct collects lymphs from the right part of the head and body and opens to the
right venous angle. The thoracic duct collects lymphs from the left part of the head and body and both
lower extremities. It opens to the left venous angle between neck veins. About 1/4 of lymphs goes to
the right lymphatic duct, and 3/4 go to the thoracic duct [27,28].

The majority of models of lymph flow in the lymphangion or series of lymphangions are
based on the zero-dimensional (including lumped ones) [17,22,37,38] or one-dimensional (including
quasi-one-dimensional ones) [18,39–41] approaches. “Lumped” models here are models based on
electrical circuit theory, where the network of vessels is substituted with the circuit and where the
voltage, current, and charge are equivalent to pressure, lymph flux, and mass, respectively [38,42,43].
Zero-dimensional models are models with no space distribution of velocity (flux) and pressure
functions. Quasi-one-dimensional models are one-dimensional models in which the cross section may
change. A three-dimensional formulation for lymph flow in the single lymphangion is considered
in [44]. In the works [40,45], models of lymph flow in the whole LS are developed on the basis of
zero-dimensional and quasi-one-dimensional approaches, respectively. The influence of valves and
contractions on the flow distinguishes lymph flows from other physiological flows.

3. Flow in Lymphangions

We will describe lymph flow in this section using the quasi-one-dimensional approach [40]
and other models when they are available. This approach is widely used to model systemic blood
circulation [46,47] and, more recently, to model lymph flow in the lymphatic vessels [18,40,41]. In this
approach, fluid flow is described by a system of hemodynamic equations which are derived from mass
and momentum conservation (or from the Navier–Stocks equations [48]):

∂s
∂t

+
∂us
∂x

= 0, (1)

∂u
∂t

+ u
∂u
∂x

+
1
ρ

∂p
∂x

= f , (2)

where u(x, t) is fluid velocity, p(x, t) is pressure, s(x, t) is cross sections area, ρ = const is density,
x is spatial coordinate, and t is time. The external force f (x, t) corresponds to viscous friction.
Systems (1) and (2) are completed by the relation between the cross-sectional area s and pressure
p. While this system is suitable to describe blood flow in arteries and veins, it cannot be used to
describe lymph flow in lymphatic vessels without modifications because of the presence of valves and
vessel wall contractions.
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3.1. Influence of Valves

Secondary valves in lymphatic vessels prevent backward flow of lymphs and provide its
unidirectional flow. Some investigations report that valves are included in the contraction of
lymphangion [31]. Leaflets of valves can influence the flow. The models of secondary valves are
usually limited by the absence of backward flow and sometimes by the resistance to the incoming flow.

Secondary valves can prolapse in a high adverse pressure gradient, and the presence of backward
flow is one of the diagnostic criteria for lower limb lymphedema [49]. However, it is not known
whether it is the reason for or a consequence of the disease [17]. Some models of valves include the
possibility of prolapse.

There are several ways to represent the influence of valves on the lymph flow. One of them is
to consider adjacent lymphangions as two segments connected with the bifurcation point. In this
representation, the flow in each vessel is described by System (1, 2) and a closing relation. At the point
of bifurcation, conditions on the pressure and flux are stated. Valves are taken into account in the flux
condition at the bifurcation point, and the simplest model for their behavior is as follows [17,37]:

qv ≥ 0, (3)

where qv is the lymph flux through the valve. Condition (3) restricts the backward lymph flow through
the valve. Valve resistance to the incoming flow is considered in [37] on the basis of the data from [50].

A valve model in blood vessels for lumped and one-dimensional approximations is proposed
in [51]. It is sufficiently simple and detailed to describe normal functioning of valves and their
pathologies. This model is used in [39] to describe the valve influence on lymph flow. The equation for
time-varying flux through valve qv has the following form:

d
dt

qv =
1

L(ξ)
(Δp(t)− R(ξ)qv − B(ξ)qv |qv|) , (4)

where Δp is pressure drop on the valve and where L(ξ), B(ξ), R(ξ) are functions of lymphatic
inertia (proportional to ls−1), Bernoulli resistance (proportional to s−2), and viscose resistance to flow
(proportional to ls−2), respectively.

In [22], the valve resistance Rv

(
R = p

q

)
changes in time, depending on pressure gradient in

the lymphangion:

Rv = RVmin + RVmax

⎛⎝ 1
1 + exp

(
sopen

(
Δp − popen

)) + 1

1 + exp
(
−s f ail

(
Δp − p f ail

)) − 1

⎞⎠ . (5)

The transition from the maximal resistance RVmax to the minimal RVmin occurs when pressure
difference Δp before and after the valve reaches some threshold value popen is sufficient to open a valve.
The second sigmoid describes the prolapse effect at the large adverse pressure gradient p f ail . In this
formulation, resistance to backward flow has a large but limited value.

Another way to model the valve influence on lymph flow is to take it into account in the right-hand
part of Equation (2). The valve provides some force influencing the flow in one direction but not in the
opposite direction. This approach is used in [52] to model valve functioning in blood vessels. In [40],
the valves in trunks and ducts are modelled by Equation (3). The valve influence in the smaller vessels
is modelled by the following force in the right-hand side of the momentum equation:

f = −8πν (u)
u
s

, (6)
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where ν (u) is a viscosity coefficient, considered as a function of velocity u having a sigmoidal form.
This function characterizes friction force acting on flow in the backward direction. The sigmoidal form
of this coefficient describes valve resistance to the upcoming flow. A similar approach was used in [41].

The choice of the valve model depends on the modeling task. If valve resistance to the flow is not
important in the investigation, the simple boundary Condition (3) is sufficient. Formulas (4) and (5)
allow for consideration of changing the valve resistance. Formula (6) is suitable for modeling multiple
valves in big networks of lymphatic vessels [40]. It also allows for application of analytical methods to
study lymph flow [53].

3.2. Influence of Contractions

Lymph flow in lymphatic vessels is influenced by active and passive contractions.
Active contractions include a tonic part induced by intravascular pressure, and phase contractions are
spontaneous and periodic (Figure 4). Active contractions are determined by lymphatic vessel wall
properties and lymph chemical composition, while passive contractions occur due to some external
reasons (e.g., muscle contractions or diaphragm movement). Biophysics of active contractions is not
yet known. Many investigations consider the influence of different humoral factors on the amplitude,
phase, and period of contractions, but a consistent theory does not exist. One more important question
is about the coordination of contractions of adjacent lymphangions [17,22], since these data cannot be
obtained from physiological experiments.

Figure 4. Classification of lymphatic contractions: Active (intrinsic) contractions are caused by the
vessel wall properties and the lymph formulae. Passive (extrinsic) contractions occur because of external
factors. Active contractions can be divided into two parts: tonic response and phase contractions.
The tonic response is a long-lasting variation of elastic properties of the vessel wall, and phase
contractions are rapid and periodic. All these types of contractions can be modelled together [17] or
separately [18,22,37–39,41,54,55]

In early works, contractions of lymphangions were modeled using the same approach as in the
models of heart pumping with time-varying elasticity [17]:

E(t) =
Pt(t)

V(t)− V0
, (7)

where V0 is dead volume (theoretical volume at zero pressure), V(t) is measured volume, and Pt is
transmural pressure. Therefore, passive and active contractions are taken into account in this model.
This model was extended in [21], where contractions of two and more (up to four) lymphangions and
their coordination were investigated. In this series of works, it was demonstrated that coordination
of lymphangions minimally affects lymph flow. However, later investigations showed opposite
results [22]. Both works are supported by physiological experiments, and, as discussed in [23],
the reason for such a difference can be related to their design, in particular, the presence of valves can
be essential.

Lymphangion contractions depend on the pressure gradient. Lymphangions contract if the
pressure gradient is negative, and they act as passive conduits if the pressure gradient is positive [56].
Active contractions decrease flow under a positive pressure gradient [17,18]. Therefore, under these
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conditions, more effective drainage occurs without contractions. This result can bring a new
understanding of lymphedema pathogenesis and treatment [17]. In particular, the reduction of
pumping activity in some edemas can facilitate drainage of excessive fluid [17], while it is
conventionally considered a pathogenesis of the disease.

Both components of active contractions are considered together in (7) [17,21]. In other models,
they can be singled out in the pressure–area relationship closing Systems (1) and (2). They are
considered below in Sections 3.2.1 and 3.2.2, and passive contractions are considered in Section 3.2.3.

3.2.1. Modelling of Tonic Response

Tonic response determines how the vessel wall reacts to changing pressure inside the lumen.
It is reported in [31] that elastic properties of lymphatic vessels are close to elastic properties of veins.
More precise characteristic of lymph vessels is not yet determined.

In the quasi-one-dimensional approach, elastic properties of the vessel wall are usually taken into
account in the third equation (also called state equation, tube law, or pressure–area relationship),
which closes Systems (1) and (2) and describes dependence of the cross-sectional area on the
intraluminal pressure:

s = s(p). (8)

Despite the existence of models concerning the cell structure of blood vessels, in the majority
of investigations, empirical curves for the s–p relationship are used [57]. Similar representations are
also used for all existing models of lymph flow on the basis of physiological experiments [18,22,37,39].
Despite the similarity of s–p curves for different pressure–area dependencies, mathematical solutions
(in particular, the velocity of small perturbations) can differ significantly [57]. Let us consider
implementations of tonic reactions in different models of lymph flow in lymphatic vessels.

The simplest pressure–area relationship with a linear dependence is used in [40]:

s = s(p) = s0 + θ(p − p0), (9)

where s0 is the minimum cross-sectional area at pressure p0 and where θ is the coefficient characterising
vessel elasticity. A nonlinear pressure–area relationship

p = pext +
h
r

(
4E
3

(r − r0)

r0
+ σact

)
, (10)

is considered in [37]. Here, h is the lymphangion wall thickness, r is the time-dependent radius, r0

is the resting radius, and E is the elasticity coefficient (Young’s module). Let us note that E in (10)
has an opposite meaning compared to θ in (9): for larger E, the wall is more rigid. The tonic part is
represented by the first term in brackets, while σact characterises phase contractions and pext is external
passive pressure considered as a given function. In this formulation of the pressure–area relationship,
the assumption of the thin vessel wall is imposed, i.e., wall thickness is supposed to be much smaller
than lymphangion radius. A thick wall model is considered in [18]:

Δp = EΔrout
r2

out − r2
in

2(1 − σ2)r2
inrout

− 2πrT
∂2r
∂x2 + 2πrγ

∂r
∂t

, (11)

where Δp = p − pe is the transmural pressure (gradient between pressure inside of the vessel p and
outside of the vessel pe), rin and rout are the internal and external vessel radius respectively, Δrout is the
radius variation caused by the pressure difference, and σ is the Poisson ratio. This formulation takes
into account tube tension T resulting from longitudinal bending of the vessel and the damping term
with coefficient γ. The damping term γ serves as a natural regularization for the explicit numerical
scheme [18], helping to avoid the numerical instability observed in [45].

41



Mathematics 2020, 8, 1467

Another dependence was used in [22,55]:

Δp = pd

(
exp (d/dd)−

(
dd
d

)3
)

, (12)

where d is diameter, and pd and dd are some parameters. The exponent describes wall-stiffening with
strain at positive transmural pressure, and the cubic term describes a progressively diminishing vessel
compliance at negative transmural pressure. Two more refined forms of this relation are used by the
same authors in [58]. A similar approach with more parameters is used in [39]. These parameters are
determined by fitting the data from physiological experiments.

These models describe the elastic properties of lymphatic vessels. The parameters of Equation (9)
can be directly measured from the physiological experiments (for s linearly depending on p).
In (10) and (11), the additional model for Young’s module E is required [59]. Formula (12) closely
represents the considered physiological experiment. However, as discussed in [57], the same s–p
dependence can give different solutions depending on the exact s–p function. Since the level of
uncertainty in parameter determination for lymph flow is very high, a more complex model does not
necessarily work better. Therefore, the final choice of the model depends on the modelling task.

3.2.2. Phase Contractions

Phase contractions represent another type of active contraction. They provide lymph propagation
in the low or inverse pressure gradient between the interstitial space and the upper vena cava.
Lymphedema is associated with failure of these contractions. The precise mechanism of phase
contractions is not known. It is generally recognized that phase contractions are periodic and
have relaxation and contraction times and that the amplitude of contractions seems to depend on
the lymph volume inside the lymphangion just before contraction (diastolic volume). During the
contraction phase, the lymphangion diameter can decrease up to 40% compared to its relaxed
state [60]. The lymphangion length also decreases in the contraction, but existing mathematical
models do not take it into account because of its small contribution compared to the diameter
decrease. Furthermore, in some investigations, valves are reported to actively participate in contraction
activity [31]. In the existing mathematical models, the valves are considered as a passive mechanism
restricting backward flow.

It is not known whether the contractions can produce sufficient force to provide lymph flow
against the gravity force in low or inverse pressure gradients between the interstitial space and upper
vena cava. The models of lymph flow in the series of contracting lymphangions and in the whole LS
are developed to answer this question [17,22,37,38,61]. In [61], and this question is answered positively
with the developed mathematical model (Section 4). However, the evaluated parameters exceed the
physiological values reported in [31,62].

A 3D model for different types of phase contractions shows that lymph flow velocity can be
approximated by Poiseuille profile [44].

Since the precise mechanism of phase contractions is not known, they are modelled by
some periodic, usually trigonometric, function. For example, active contractions in [40] have the
following form:

pph = A sin
(

2π

λ
(x − at)

)
, (13)

where pph is the phase part of active contractions to be added in Equation (9) and where A, λ, and a
are the parameters of a contraction wave: amplitude, wave length, and wave velocity, respectively.

An analytical estimate of pumping efficiency in the vessel with valves described by (6) is presented
in [53]. It is shown that increased frequency of contractions leads to an increase in output flux. The same
is true for increased amplitude. These results are extended in [63], where lymph flow is considered in
a detailed graph of the LS (Figure 5c).
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The trigonometric function is also used in [37], taking into account the current volume of lymphs
in lymphangions and relax time: if these thresholds are not reached, contraction does not happen;
otherwise, contractions are modelled by sinus function with an amplitude depending on lymphangion
volume. A threshold value for the pressure to activate a fixed impulse is also used in [38], and this is
a rare example of the work where lymphangion contraction duality is taken into account. Namely,
contractions under negative pressure gradient are triggered if internal pressure in the lymphangion
rises above a pressure threshold value, and it acts as a simple conduit under positive pressure gradient.
This model reproduces a pulsating flow, and it can be used for the construction of big vessel networks.

Both sinus waves, simple like in (13) and with time delay like in [37], are used in [18], showing
good correlation with the results of physiological experiments. It is supposed that contraction waves in
lymphatic vessel networks propagate in the backward direction, from downstream to upstream,
and that this behavior should be more efficient. Backward propagation (against the valves) of
contraction waves was recorded in these experiments [18]. Cosine waves are used in [22] for every
segment in the chain of lymphangions, and their propagation is investigated. All models reproduce
the pulsating nature of lymph flow.

Phase contractions with switching from the minimal to the maximal values

pph

(
s
s0

, κ

)
= κ (Kmax − Kmin)ψ (s, s0) , (14)

in tube law p = p(s) = pp(s) + pph(s) + pe are modelled in [39]. Tonic pp, phase pph, and passive pe

components are taken into account. Parameter κ ∈ [0, 1] is a state of contractions (designated by s in
original work), which is a solution of the Electro-Fluid-Mechanical contraction (EFMC) model based
on the FitzHugh–Nagumo model for action potentials [64], and ψ is a function of a cross-sectional area
similar to (12).

Figure 5. Examples of graphs of the LS: (a) The graph from [45], reprinted with permission. The graph
contains 29 vessels including 297 lymphangions. The thoracic duct and its feeders are presented,
and other parts have less detailed descriptions. (b) The graph from [65], reprinted with permission.
The graph contains the majority of vessels presented in the anatomical model. The algorithm resolves
mismatches from the anatomical model. Both ducts are presented. (c) The graph from [40]. The graph
is spatially oriented, and thus calculations with respect to gravity force are possible [61]. The vessel
network includes lymph nodes. Both ducts are presented. Also presented are zoom-ins on the region
with the right and the left venous angles (top) and the region of the cisterna chyli (bottom).

In this model, lymphatic vessel contraction activation is similar to heart pacemakers. According to
this assumption, the FitzHugh–Nagumo model is modified and used to describe calcium-dependent
contractions. Modeling results are in agreement with the experimental trends. To our knowledge,
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this is the first model of lymph flow dynamics where humoral factors influencing contractions are
taken into account. The EFMC model opens new perspectives in the study of humoral influence on the
lymph flow contractions in models of lymph flow dynamics.

3.2.3. Passive Contractions

Passive contractions are determined by external factors, such as muscle contractions, massage,
diaphragm movement, etc. They are independent of the characteristics of lymphatic vessels and of the
lymph chemical composition. Passive contractions are usually modeled as some function of pressure
outside the vessel wall, and they are taken into account in pe (Δp = p − pe, see (11)). Consideration
of passive contractions can be essential in models of systemic lymph flow, e.g., in [40], because big
muscles, especially of the lower limbs, and diaphragm excursions can have a significant effect on
lymph flow. In models of contractions in one lymphangion or a series of lymphangions, the function
of external pressure corresponds to the pressure inside the bath containing lymph vessel segment in in
vitro experiments.

4. Systemic Lymph Flow and Graphs of the LS

The LS is highly unstructured, and it has almost no tree structure (Figure 3). As a consequence,
the construction of graphs of the LS is quite difficult. However, there are several works where this
attempt was implemented.

A graph of the LS was constructed in [45] (Figure 5a), and to our knowledge, it is the first reported
attempt to consider systemic lymph flow. This graph starts from the interstitial space in several organs
and contains feeders of the thoracic duct and the thoracic duct itself, while the right lymphatic duct
is not included. It has 296 lymphangions, some of which represent lymph nodes. Lymph flow in the
lymphangions is described with the zero-dimensional model from [37], and the pressure equilibrium
and flux conservation are imposed in the bifurcation points. This model gives a description of fluid
exchange in the interstitial space with equations similar to those describing flow in lymphangions
but including flux from the interstitial space instead of flux from the previous lymphangion. Flux in
the interstitial space is given by a model of Starling law for fluid exchange, and it takes into account
hydraulic and osmotic pressure. The model for tissue fluid exchange was further developed in [62]
with the one-dimensional approach, including the influence of anchoring filaments and primary valves
in the initial lymphatics. This systemic model shows the pulsating nature of lymph flow from the
thoracic duct that is consistent with physiological observations. The parameters of the flow were in
agreement with available physiological data.

The algorithm of automatic construction of a graph of the LS is suggested in [65]. The data from
the Plastic Boy project [66] is used as a source of anatomical structure. These data are not suitable for
calculations as-is, and the constructed algorithm turns this image into a consistent graph of the LS
(Figure 5b). Structural analysis of the LS is provided, including the average degree of lymph nodes
(how many vessels connected to the node). This algorithm can be applied to other anatomical models.
The presence of a graph of the lymphatic system makes it possible to analyze the redistribution of
lymph flow in the human lymphatic system in case of damage and/or difficulty in the outflow of
lymphs from individual lymph nodes, which will allow for prediction of the effects of various injuries
and changes in the organs of the human lymphatic system as well as for prediction of the best methods
for correcting these problems.

One more graph of the LS is constructed in [40] (Figure 5c). It is anatomically adequate, spatially
oriented, and topology consistent with a similar graph of the cardiovascular system [47]. The graph
contains 271 collecting lymphatic vessels, thousands of lymphangions, and 161 lymph nodes. Groups of
lymph nodes form the basis of the graph, and it contains 46 main groups [54]. Flow in the vessels is
described by the quasi-one-dimensional equations including valve and active contraction influence,
and the conditions of pressure equilibrium and mass conservation are imposed in the bifurcation points.
The model of active pumping in this graph and its influence on the total flow are investigated without
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the influence of gravity force [63] and with influence of gravity force [61]. The increase in amplitude
and frequency of phase contractions is shown to increase the output flux. Also, the elasticity and
contractions of lymph nodes have a considerable effect on the output flux [63]. Therefore, the lymph
nodes affect the transport function of the LS, and it is consistent with physiological observations [32].
The frequency of contractions, required to get output flux in physiology adequate intervals, is higher
than reported in the physiological experiments [31,62]; however, in vivo parameters can also differ
from them [15]. The consideration of passive contractions, which are not included in the model now,
may allow for a reduction in the frequency. The results show that active contractions can produce
enough force to make lymphs flow though the whole LS against the pressure gradient [61].

The approach used to construct a spatially oriented graph in [65] requires source images to contain
information about both lymph nodes and lymphatic vessels. Another approach is used to create a
graph in [40]. The basis of this graph is the regional groups of lymph nodes which connect according
to the communication matrix filled in with data from [29]. This approach can be used to construct
personalized graphs of the LS by extracting information about lymph nodes from MRI images and by
connecting them with vessels using the communication matrix according to some anatomical source
(i.e., [29]). The described concept could be the first step towards the creation of personalized graphs of
the LS.

5. Lymph Drainage and Flow in Initial Lymphatics

The LS starts from the initial lymphatics (lymphatic capillaries, terminal lymphatics),
where lymphs arrive from the interstitial space. Characteristic features of lymph drainage from
the interstitial space are the influence of primary valves, which allow lymphs to enter the LS and which
stop it from flowing out of the lymphatic capillaries, and the presence of anchoring filaments, which
prevent initial lymphatics from collapse even in excess pressure in the interstitial fluid (Figure 1B).

In contrast to models of secondary valves, models of the primary valves often take into account
the geometry of the valve—the curvature of the cell [67,68].

Flow into the initial lymphatics can be described by a system of ordinary differential equations,
including flux and pressure balance and taking into account osmotic pressure according to Starling’s
hypothesis [45]. Another model takes into account the primary valves influence given by Condition (3)
and anchoring filaments with additional force in the pressure–area relationship similar to (10) [62].
This model describes pumping of income lymph flow in the LS due to fluctuations in the interstitial
fluid pressure and to the suction effect of adjacent pumping lymphatic vessels.

Primary valve dynamics can also be described by the Stockes equation [67]:

dp
dx

= − 12Qμ

ω(x)3T
, (15)

where T is a unit tissue thickness, p(x) is pressure inside the fluid gap between the cells, Q is flux
through the gap, and μ is dynamic viscosity. This equation must be solved simultaneously with the
equation for cell deflection ω(x):

d4ω(x)
dx4 =

1
EI

Δp(x), (16)

where Δp = p(x)− pL is transendothelial pressure drop, pL is pressure inside the lumen, and E is
Young’s module. Flux through the gap is given by the following expression:

Q =
∫ ω(x)

0
u(x)dy, (17)

where u(x) is flow velocity. Simulation results demonstrate primary valve dynamics for this model:
the flux nonlinearly depends on pressure p with positive pressure gradient Δp, and it equals 0 for
negative pressure gradient.
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This model was extended in [69], where a more precise description of flow around the overlapping
endothelial cells is considered in the same geometry. The computational results correspond to the
available physiological data.

The geometrical structure of the interstitial space with initial lymphatics and blood capillaries is
considered in [68], and a mechanical model for primary valve dynamics concerning their curvatures
is used to describe flow through the junctions between endothelial cells. As a result of this
two-dimensional analysis, the formula for lymph flux per unit length q in terms of the pressure
difference between blood p̂ and lymphatic capillaries p0 was obtained:

q =

⎧⎪⎨⎪⎩
0, p̂ < p0 + pcrit

ξαπrb
απrb + 2ξ

k
μ
( p̂ − (p0 + pcrit)) , p̂ > p0 + pcrit

, (18)

where pcrit is the critical pressure needed to open a valve, ξ is a dimensionless parameter that describes
the effect of geometry on the fluid flux, k is permeability of intestitium, μ is viscosity of interstitial
fluid, and rb is radius of the blood capillary. This model describes fluid exchange between blood and
lymphatic capillaries through the interstitial space.

All considered models describe periodical entering of lymphs into the initial lymphatics.
They provide more precise boundary conditions for models of flow in the lymphangions, and they can
be used to describe lymph drainage in the investigations of lymphedema pathology.

6. The Structure and Function of the Lymph Node

Lymph nodes (LNs), which represent an important part of the lymphatic system, in addition to
merging lymph flows, perform a number of functions related to the human immune system. This is
due to the fact that they contain localized populations of cells that perform protective functions in the
body. Thus, populations of T-lymphocytes are located in the so-called T-cell zone and B-lymphocytes
are grouped in B-cell follicles, which are involved in the production of antibodies specific for the
antigens entering the body. Dendritic and fibroblastic reticular cells are also present in the T-cell zone
and are involved in all aspects of the functioning of lymph nodes. Figure 6 shows the key elements of
the structure of the lymph node. These data are provided according to [70–72].

In the lymph node, T and B lymphocytes are in an inactive, naive state. The populations of these
cells are regulated by fibroblastic reticular cells (FRC) secreting interleukin-7, which is a survival factor
for naive lymphocytes [73]. The FRC network is also involved in maintaining the structural integrity
of the entire organ through threads formed by polymerized collagen (Figure 6) secreted by fibroblastic
reticular cells. The process of immune response in LNs begins with the helper T lymphocyte that has
detected the antigen or with another activated antigen-presenting cell [74]. In this case, a cascade
process occurs: T helper lymphocytes start activation of resting antigen-presenting cells, T effector
lymphocytes and B-lymphocytes, and interleukin-2 is produced to increase the proliferative activity
of T and B-lymphocytes [75]. Activated antigen-presenting cells (APC) fix onto the FRC network
for a period of about 6 hours with the possibility of subsequent reactivation. After that, APCs
begin to express interferon-α. Under the influence of interferon-α, naive T effector lymphocytes
specialize according to the components of the antigen, presented by the antigen-presenting cells’
major histocompatibility complex class I, II (MHC class I, II) [76]. At the same time, the FRC network
is actively involved in stimulating immune response, producing chemokines CCL19 and CCL21.
According to existing data, the lymphocytes interacting with these chemokines exhibit increased motor
activity. This effect does not improve immune response alone, but in synergy with the chemotaxis
effect used by cells to search for foci of infection, chemokines shortened the time from activation to
interaction with the target. Activated B-lymphocytes can also activate resting cells, but their main
function is the production of antibodies specific for the target antigen [74]. At the same time, activated
T effector lymphocytes search for and destroy cells expressing signals characteristic of the desired
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antigen. T effector lymphocytes mainly destroy body cells infected with intracellular parasites (viruses
or bacteria). Macrophages are also involved in the process of the immune response, destroying free
viruses and bacteria. After activation in the lymph nodes, cells of the immune system move into tissues
in which antigens are present to fulfill functions of the immune response. In connection with such a
heterogeneous structure of the lymph nodes, it becomes extremely important to understand how the
lymph flows into the node are distributed ([77,78]). The size of particles that can enter different zones
of the lymph node is limited [77]. Thus, it turns out that huge viruses and bacteria cannot penetrate
into the T-cell zone through the walls of the FRC network due to too large sizes. Therefore, they get
there either through blood vessels or inside the cells that came from outside the lymph node. It should
be noted that the detection of antigens is difficult not only because of the limited methods of their
entry into the T-cell zone. About 93% of lymphs generally passes through the subcapsular sinus of the
LN. This is shown, inter alia, in [78]. It should also be taken into account that part of the lymph from
the lymph node enters the blood vessels system inside LNs.

Figure 6. Lymph node scheme illustrating its key elements: the scheme shows subcapsular sinus
(orange), medullary zone (azure), B-cell follicles (purple), T-cell zone, a network of fibroblastic cells
(gray lines against the background of the T-cell zone), afferent (introducing lymph) and efferent
(excreting lymph), as well as blood vessels.

Due to the complexity of the processes occurring in the lymph nodes and the heterogeneity of the
lymph nodes, it becomes necessary to be able to form various configurations of the lymph nodes to
simulate the processes of cell interactions, fluid flow, and collagen coagulation. Since it is expensive
and time-consuming to restore structures using layer-by-layer scanning, an important area of research
is the development of algorithmic methods for constructing lymph nodes. Algorithms were developed,
and 3D models of the components of the lymph node were built in [79,80]. Three-dimensional models
of key elements of LNs in a voxel format were created with further conversion to a solid-state 3D
model: the shell of the lymph node, trabecular and medullary sinuses, B-cell follicles, and a network of
fibroblastic reticular cells.

Separately, algorithms were developed to build a 3D model of a network of fibroblastic reticular
cells [80]. It appears that a highly damaged network (up to 50%) can still support lymph flow. This is
important for the case of HIV infection where the structure of the fibroblastic reticular cells as well as
the ducts formed by them are gradually destroyed. Damage of the network significantly affects not
only the ability of the T-cell zone of the lymph node to pass lymphs but also the homeostasis of cell
populations and the immune response to HIV in general [80,81].

47



Mathematics 2020, 8, 1467

7. Conclusions and Perspectives

The main goal of investigations of lymph flow is to understand the underlying mechanisms in
order to propose effective therapeutic techniques. In the 90s, the specific lymphatic factor (VEGF–C)
was discovered, and it led to the explosive investigation of LS [82]. The mechanisms of lymph flow are
more clear now, but there are still many open questions.

Mathematical modeling is used with in vitro experiments to get more data, to check the hypothesis
about lymph flow, and to construct new experiments. In [17,21], the authors established conditions for
pumping and conduit acting. In negative pressure difference, the lymphangion acts as an active pump,
and in positive pressure, it acts as a simple conduit. Moreover, in large positive pressure gradients,
active contractions are shown to inhibit lymph flow. This result is supported by a physiological
experiment [18,56]. The meaning of this result in the application to lymphedema pathogenesis and
treatment is discussed in [17]. For some edemas, the inhibition of lymphangion pumping may have a
positive effect.

Pathogenesis and treatment of lymphedema are one of the most important applications of models
of lymph flow in lymphatic vessels. Direct models of lymph flow in lymphatic vessels are not the only
way to address edema pathology: in [83], lymph filtration through the extremity was considered with
diffusion equations instead of considering flow in separate vessels, and some clinical recommendations
(for using of bandages) were proposed.

Another important goal of lymph flow modelling is the investigation of drug distribution in
the LS and various tissues and organs. Insufficient lymphatic circulation is one of possible reasons
for ineffective drug therapy, and such a model for systemic circulation can find its applications not
only for lymphedema treatment but also for other drug-delivery tasks. Lymph drainage from the
interstitial fluid and sorption effect of the secondary lymphatic circulation (vessels with contractions
and secondary valves) are essential for understanding the mechanisms of more efficient drainage in
the cases of different pathologies. The proposed concept for construction of personalized graphs of
the LS could be the first step towards achieving a personalized model of human LS. It opens new
perspectives in these investigations.

Lymph flow in the lymph node may influence the immune response occurring in them.
Modeling the processes of cellular interactions in the lymph nodes as well as the processes of transfer
between nodes through the lymphatic system are critical for understanding the processes that occur in
HIV-infected people. It gives an opportunity to develop the best strategies for drug therapy, to analyze
the effectiveness of existing methods, and to find key relationships in complex immune response
processes. The human immune system depends on many populations of cells represented in the
T-cell zone of the lymph nodes: T-lymphocytes (helpers and effectors); B-lymphocytes, which produce
antibodies when pathogens enter the body; macrophages; and antigen-presenting cells. Certain cell
populations, such as fibroblast reticular cells, are involved in maintaining the homeostasis of naive
lymphocyte populations, and the whole lymphatic system provides a reserve of bandwidth for the
fluid circulation in the body and acts as another filter for intercellular fluid collected by lymphatic
capillaries from tissues.

There are still many open questions in lymph flow mechanics, but close cooperation between
physiologists and mathematicians will help understand it better.
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Abstract: Rotating spiral waves of electrical excitation underlie many dangerous cardiac arrhythmias.
The heterogeneity of myocardium is one of the factors that affects the dynamics of such waves. In this
paper, we present results of our simulations for scroll wave dynamics in a heterogeneous model of the
human left ventricle with analytical anatomically based representation of the geometry and anisotropy.
We used a set of 18 coupled differential equations developed by ten Tusscher and Panfilov (TP06
model) which describes human ventricular cells based on their measured biophysical properties.
We found that apicobasal heterogeneity dramatically changes the scroll wave dynamics. In the
homogeneous model, the scroll wave annihilates at the base, but the moderate heterogeneity causes
the wave to move to the apex and then continuously rotates around it. The rotation speed increased
with the degree of the heterogeneity. However, for large heterogeneity, we observed formation of
additional wavebreaks and the onset of complex spatio-temporal patterns. Transmural heterogeneity
did not change the dynamics and decreased the lifetime of the scroll wave with an increase in
heterogeneity. Results of our numerical experiments show that the apex may be a preferable location
of the scroll wave, which may be important for development of clinical interventions.

Keywords: spiral wave; heterogeneity; heart modeling; myocardium; left ventricle

1. Introduction

Vortices in excitable medium, which are called spiral waves in 2D or scroll waves in 3D, were found
in many physical, chemical, and biological systems [1]. They play an important role in dynamics
of these systems. For example, formation of such vortices in the heart causes cardiac arrhythmias,
which remain the largest cause of death in the industrialized countries [2]. The dynamics of such
vortex in the heart determines the type of cardiac arrhythmia. For example, the drift of a scroll wave
in the ventricles of the heart may result in the onset of an arrhythmia called polymorphic ventricular
tachycardia [3] and a breakup of the vortex into complex spatio-temporal patterns results in the onset of
ventricular fibrillation, which causes cardiac arrest and sudden cardiac death [4]. Therefore, the factors
responsible for drift of scroll waves are of great interest.

In a very general sense, the factors which can cause drift of a scroll wave include geometrical
factors, anisotropy, and tissue heterogeneity. Previous research on generic models showed that,
in homogeneous isotropic medium with high excitability, scroll waves drift to the regions where the
thickness of the domain is minimal [5,6]. This result was recently confirmed in studies using detailed
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models of cardiac tissue [7]. Anisotropy of cardiac tissue also causes drift of vortices in 2D [8] and
3D [9]. Another important factor is the tissue heterogeneity, which will be a main focus of this paper.

The human heart, as in other mammals, has two main types of normal heterogeneity:
transmural [10–12] and apicobasal [13,14]. The transmural heterogeneity in the human left ventricle
(LV) involves an increase in action potential duration (APD) from subendocardial to subepicardial
regions [15]. At the same time, data on the apicobasal heterogeneity are controversial: some papers
report longer APD [13,14] while other show shorter APD [16] at the LV apex in comparison with
the LV base. In a normal heart, this heterogeneity minimizes the dispersion of repolarization of
cardiomyocytes from different regions and, as a consequence, makes the heart contraction maximally
effective [17]. However, in pathological conditions, the heterogeneity amplifies and plays an important
role during cardiac arrhythmias [18,19].

The effect of heterogeneity on vortex dynamics has mainly been studied for 2D vortices, known as
spiral waves. It was shown in generic [20] and in ionic models [21] of cardiac tissue that heterogeneity in
APD causes drift of a spiral wave to the regions of longer period. The effect of transmural heterogeneity
on scroll waves was studied only in generic models [22,23], and it was shown that small heterogeneity
transversal to the plane of rotation of a scroll wave results in the onset of a twisted scroll wave,
i.e., the spiral waves have different rotation phase in different sections [22]. However, a large
heterogeneity can cause a breakup of a scroll wave into a complex spatio-temporal pattern [23].

Because a real heart has regions with different thickness, anisotropy, and heterogeneity, all of these
factors can potentially affect dynamics of scroll waves during cardiac arrhythmia. Recently, studies of
effects of some of these factors on scroll wave dynamics in a model human ventricle were performed.
A three-dimensional model describes the shape and anisotropy of the left ventricle of the human heart
using a small number of parameters and has been verified against histological and DT-MRI data [24].
Using this geometrical model, the effect of the thickness of myocardial wall and anisotropy of cardiac
tissue [7,25] has been studied. It was shown that the scroll wave usually stabilizes at a certain region
of the ventricle; this location is mainly affected by the thickness of the wall and anisotropy.

Recently [26], we studied the effects of apicobasal heterogeneity using a two-variable model of
cardiac tissue by Aliev and Panfilov [27]. This model belongs to a class of low-dimensional models
of cardiac tissue which describe generic properties for waves propagating in the heart, but do not
reproduce a detailed biophysical mechanism for cardiac excitation. We found that heterogeneity has
some effect on the location of the scroll wave, but only if it was extremely large, 200 ms or more.
Although such low-dimensional model reproduces the generic dynamics of waves in the heart [28],
to obtain more qualitative estimates, one needs to use ionic models which describe the underlying
mechanisms of action potential generation. Recently, one such study using a detailed ionic model
for human ventricular cell TP06 was performed [29]. It was shown that the use of the ionic model
substantially affected the observed dynamics of the vortices. In particular, it was found that, in most of
the cases, we do not see any stabilization as we did in the AP model. On the contrary, the scroll wave
drifts to the base of the heart and disappears. The main aim of this paper is to perform a study of scroll
wave dynamics in a realistic ionic model of human ventricular tissue which includes not only correct
shape and anisotropy, but also the heterogeneity of the heart ventricles.

2. Materials and Methods

2.1. Baseline Homogeneous Model. Numerical Approach and Software

The numerical computation of electrophysiological activity requires models at three levels: cell,
tissue, and organ.

We used the LV anatomical model described in [24]. This model is axisymmetric and represents
an average ventricle of a healthy adult human. The LV model was represented as a body of revolution
with the shape fitted to experimental data [30]. The rotation axis is vertical axis Oz. An example of the
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LV model is shown in Figure 1C. The epicardium is the colored surface, and the endocardium is the
mesh surface.

Figure 1. Distribution of APD90 (shown by color, from blue, 353 ms, to red, 248 ms) in the considered
heterogeneous models of the LV. (A) apicobasal heterogeneity is set by a decrease of IKs at the apex
(shades of blue) or ICaL at the base (shades of red). APD90 increases with increase of Ψ from 0 (base)
to π/2 (apex); (B) Transmural heterogeneity is set by decrease of IKs at the subendocardium. γ = 0.1
means subepicardium cells, γ = 0.9, subendocardial; (C) points with maximal difference of APD90 in
cases of apicobasal (Ψ = 0, Ψ = π/2) and transmural (γ = 0.1, γ = 0.9) heterogeneity. Color shows
the z-coordinate; (D) plot of the action potential against time in LV points with maximal heterogeneity.

The model has the following list of parameters. Rb is the LV outer radius on the LV equator;
Zb is the LV height including the apical wall thickness; L is the LV wall thickness at the LV equator;
h is the LV wall thickness at the LV apex; and ε ∈ [0, 1] is a dimensionless parameter influencing the
conicity–ellipticity characteristic of the LV shape.

A spherical-like local coordinate system (γ, ψ, φ) is connected with the LV model. Its coordinate
γ gives position in the wall from the endocardium γ = γ0 to the epicardium γ = γ1; ψ is an analogue
of geographical longitude with the base, ψ = 0, and the apex, ψ = π/2; φ ∈ [0, 2π).

The local coordinates are linked with the cylindrical coordinates (ρ, ϕ, z) by the
following formulae:

ρ = (Rb − γL) (ε cos ψ + (1 − ε)(1 − sin ψ)) ,

ϕ = φ,

z = (Zb − γh) (1 − sin ψ) + (1 − γ)h.

In every LV point, a vector of myofibre direction is defined as described in [24].
The parameters of the anatomical model were kept constant between all our simulations: outer

(epicardial) radius at the base Rb = 33 mm, basal thickness L = 12 mm, full height Zb = 60 mm,
and ellipticity coefficient ε = 0.85.

A set of parameters was taken as reference. The reference ventricle had anisotropy coefficients in
ratio 9:1, transmural fibre rotation angle (FRA) of 147◦, and apical LV thickness h = 6 mm.
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The LV model allows us to easily change LV geometrical parameters—for example, to vary its
thickness at the base and apex. These parameters are important for studying scroll waves drift which
goes, accordingly with scroll waves theory, to a thin place if filament tension is positive.

For the tissue level, we used a monodomain approach [31] and anisotropic medium.
Reaction–diffusion equations describe processes in the modelled body and have the following form:

∂u
∂t

= div(D grad u)− Iion

Cm
, (1)

Iion = IKr + IKs + IK1 + Ito + INa + IbNa + ICaL + IbCa + INaK + INaCa + IpCa + IpK. (2)

Here, u = u(r, t) is the transmembrane potential; the intracellular processes are captured by
Iion = Iion(r, t), which is the sum of the ionic transmembrane currents. Cm is the capacitance of the
cell membrane. In a general sense, this equation shows that the potential difference Vm over the cell
membrane changes due to currents (I) which flow through the membrane. These currents are conveyed
by different ions (Na, K, Ca) and via various biophysical processes. In modern computational cardiac
electrophysiology, the properties of all such currents are fitted to their experimentally measured values
and their dynamics is fitted using additional differential equations. Each of the currents typically
depends on Vm and time, and the time-dependency is normally given by an exponential relaxation
equation for the gating variable(s) g. For example, consider a hypothetical current I∗ which conveys
ion ‘∗’:

I∗ = G∗gα∗gβ
•(Vm − V∗) (3)

dgi
dt

=
g∞

i (Vm)− gi

τi(Vm)
, i = ∗, •, (4)

It has a maximal conductivity of G∗ = const and is zero for V∗, the so-called Nernst potential
for ion ‘∗’. This Nernst potential can be easily computed from the concentrations of specific ions
outside and inside the cell membrane. The time dynamics of this current is given by two gating
variables g∗, g• to the power α, β. The variables g∗, g• approach their voltage-dependent steady state
values g∞

i (Vm) with characteristic time τi(Vm) (4). All parameters and functions are chosen here to fit
experimentally measured properties of the specific ionic current. Most of ionic currents have one or
two gating variables, with α = β = 1. In our simulations we use equations derived and fitted in [32],
which has 18 state variables. Note that a proper description of ionic currents is very important as most
cardiac drugs affect the maximal conductivities of specific ion channels. Furthermore, cardiac tissue
is heterogeneous with respect to expression levels of these channels. Thus, using Equations (2)–(4),
one can model the effect of pharmacological preparations on cardiac tissue, and, as we do in this paper,
study effects of heterogeneity of the heart on cardiac arrhythmias. One of the standard ways to do so
is to make the maximal conductivity of a specific current dependent on space in a manner based on
experimental data. As described in the next subsection, the most important currents accounting for the
heterogeneity are ICaL and IKs.

As in [33], the diffusion matrix D = (Dij) was computed from the unit vectors in fibre direction v

using the formula
Dij = D2δi,j + (D1D2)vivj, (5)

where D1 and D2 are the diffusion coefficients along and across the fibres and δi,j is the
Kronecker symbol.

Ionic model parameters were taken from [32]; they correspond to physiological characteristics
of cardiomyocytes.

A scroll wave was initiated using a standard protocol S1S2 [29] and rotated counterclockwise.
We used a standard boundary condition – zero flux of potential through the LV surface. A uniform
grid with spatial step dr = 0.28 mm was set in Cartesian coordinates.
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To solve the differential Equations (1)–(3), we used a finite difference approach. To approximate
the diffusion term, we used a stencil of 18 points for 3D using the following equation:

L(i, j, k) =
18

∑
l=0

wlVm(l) (6)

where l is an index over the 18 neighbors of the point (i, j, k) including itself, and wl is the weight of
the voltage of a particular neighboring grid point which accounts for its contribution to the Laplacian.
The weights wl were computed based on the conduction tensor Dij and location of the point with
respect to the local boundary. All points outside the heart geometry have weights wl = 0. The weights
were precomputed for each geometry used and allowed an efficient evaluation of the Laplacian during
the simulations. The gating variables in the TP06 model were integrated using the Rush and Larsen
approach [34]. To speed up calculations, voltage-dependent functions in gating variables equations
were precomputed and placed into look-up tables.

Additional details on the integration procedure can be found, for example, in [33].
We studied scroll wave dynamics depending on LV wall thickness at the apex and degree of

heterogeneity. In our simulations, LV basal thickness was L = 12 mm, while apical thickness was
varied to h = 6, 12, 18 mm. We considered the physiological value of the anisotropy ratio D1/D2 = 9.

Our procedure of postprocessing filament coordinates was thoroughly described in [29].
All calculations were performed on a C program on clusters “URAN” (IMM, Ural Branch of

RAS) and “UrFU” of Ural Federal University (Ekaterinburg). The program uses CUDA for GPU
parallelization and was compiled with a Nvidia C Compiler “nvcc”. Computational nodes have
graphical cards Tesla K40m0.

2.2. Heterogeneity Representation

The heterogeneity in the ventricular myocardium is a result of changes of balance between
inward currents (mainly ICaL) and outward potassium currents. Although in reality these currents are
changing in combination, the exact degree of modifiication is not fully quantified. In order to compare
effects of the heterogeneities in the same conditions, we decided to study a separate effect of ICaL and
one of the most important potassium currents IKs.

We considered LV models with the following types of apicobasal heterogeneity:

1. Apicobasal heterogeneity caused by decrease of ICaL current with APDbase < APDapex.
We reduced ICaL current at the LV base to 75%, 50%, and 25% of its original value, which resulted
in the gradients of 14, 28, and 38 ms. We denote these cases as ICaL-75, ICaL-50 and ICaL-25.

2. Apicobasal heterogeneity caused by decrease of IKs current with APDbase < APDapex. We reduced
IKs at the apex to 75%, 50%, and 25% of its original value, which resulted in the APD gradients of
14, 34, and 68 ms. We denote these cases as IKs-75, IKs-50, and IKs-25.

To represent transmural (TM) heterogeneity, we decreased the IK current because IK is the
main current affecting APD, and it is responsible for transmural heterogeneity [35]. We followed
the work [36] and made models with APDepi < APDendo by multiplying IKs conductivity by 75%,
50%, and 25%, which resulted in the APD gradients of 12, 31, and 58 ms. We denote these cases as
IKs-75-TM, IKs-50-TM, and IKs-25-TM.

The effects of the changes of the currents on AP shape are shown in Figure 1D. Figure 1A shows
distribution of APD from apex to base for each type of apicobasal heterogeneity and Figure 1B shows
the three types of transmural heterogeneity.

3. Results

Below, we present results of our simulations for scroll wave dynamics in ventricles of different
geometries and various types of heterogeneity.
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We considered three geometries with the same anisotropy but different in the thickness of the
apex h = 6, h = 12, and h = 18 mm. In all these geometries in homogeneous ventricles, the scroll wave
drifted to the base and disappeared. We studied the dynamics of the scroll waves with the same initial
conditions, but in the presence of the heterogeneity.

We considered two types of regional heterogeneity: apicobasal and transmural.

3.1. Apicobasal Heterogeneity

Figure 2A,B show a typical trajectory of the scroll wave drift in the absence of heterogeneity.
The scroll was initially located between apex and base, then drifted upwards and disappeared after
collision with the boundary at the base. We found that the presence of apicobasal heterogeneity
substantially changed the scroll wave dynamics. Figure 2C shows an example of scroll wave drift from
the same initial conditions, but for a small apicobasal heterogeneity of 14 ms, IKs-75. We see that the
scroll wave drifts to the apex, stabilizes at 8 mm from it, and continues its circumferential rotation with
a speed of 0.19 mm/s.

Figure 2. Examples of average filament trajectory. (A) typical view of the scroll wave in the absence
of heterogeneity; (B) no heterogeneity; drift to the LV base, where the scroll wave disappeared;
(C) apicobasal heterogeneity of 14 ms, IKs-75; drift to the apex, where filament approached a dynamic
attractor with vertical coordinate Ψ = 1.24. The apical thickness h was 6 mm.

We performed 18 computations for six types of the heterogeneity in three LVs of different geometry.
The results are presented in Figure 3, where we mark the type of observed dynamics (e.g., annihillaiton
at the base and breakup) and in case of stabilisation at attractor we show the coordinates of the attractor,
and the drift speed along it.

Our findings were the following. From the 18 cases studied, in only one case (IKs-75 and
h = 18 mm), we observed the same dynamics as in the homogeneous case: annihilation at the base.

In 12 out of 18 cases, we observed a dramatic change of dynamics: instead of annihilation at
the base, the scroll wave stabilized at the apex and then continued moving around it along the circle.
One example of such dynamics was already shown in Figure 2C, where the filament stabilized at 8 mm
from the apex and rotated with a speed of 0.19 mm/s. The apex-base heterogeneity in that case was
14 ms (the corresponding grey columns in Figure 3A). For the same geometry of h = 6 mm and a larger
heterogeneity (IKs-25, DRAB = 68 ms), the scroll wave filament stabilized also at approximately 8 mm
from the apex (ψ = 1.24) and was moving along the circle with speed 2.27 mm/s. The speed of the
motion along the attractor increased with the increase in the heterogeneity. Note that the location of
attractor in most of the cases did not depend on the degree of heterogeneity. However, for h = 18 mm,
we saw that the location of the attractor for ICaL-50 was closer to the base than for ICaL-75.
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Figure 3. Results of numerical experiments on LV models with apicobasal heterogeneity. (A–C) LV
models with apical thickness 6, 12, and 18 mm, respectively. Top row: Attractor coordinate. Dotted bars
mean that scroll wave disappeared at the LV base. Red dotted bars show the cases with wave break
up. Middle row: Linear speed of rotation around the LV axis. Bottom row: Apicobasal dispersion of
repolarization (DRAB) for points with coordinates Ψ = 0 and Ψ = π/2 (see Figure 1).

In the five other cases, all with large heterogeneity, we observed a more complex dynamics.
Here, the initial scroll wave generated waves with a high frequency. Such waves were propagating
toward the apex where the APD and refractory period were the longest and tissue was not able
to recover. As a result, we observed formation of the wave breaks. Figure 4 shows an example of
such process. Here, the scroll wave, whose tip is located at the other side of the LV, generates two
wavebreaks (Figure 4B) which evolve to a complex spatiotemporal pattern (Figure 4C). This occurred
in cases IKs-25 and ICaL-25.

Figure 4. Example of wave break on the LV with apical thickness 6 mm, apicobasal heterogeneity
ICaL-25. (A–C) show wave patterns at t = 63.3 s; t = 63.7 s.; t = 64.9 s.

Interestingly, long filaments with both ends at the epicardial surface sometimes emerged (Figure 5).
Such filament may have a complex behavior which can lead to annihilation of the pattern or formation
of new filaments. However, they never stabilized to attractors as in the previous 12 cases.
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Figure 5. Scroll wave in the LV can have a filament with both ends at the epicardium. (A) the filament
shape at t = 25.4 s for the LV with apical thickness h = 6 mm, apicobasal heterogeneity, IKs-25. We see
that the filament is located between the LV epicardium (colorful surface) and endocardium (meshy
surface); (B) the scroll wave at the same time (red area shows excited cells). Ends of the filament are
marked with white circles.

Overall, we can say that, while a moderate increase in heterogeneity resulted in stabilization of
filament towards the region of longer APD, a larger degree of heterogeneity resulted in the formation
of additional wavebreaks and complex spatio-temporal patterns.

3.2. Transmural Heterogeneity

To investigate the effect of transmural heterogeneity, we performed nine simulations: three LVs
with different geometry with three degrees of heterogeneity, where we changed IKs. This is because IK
is the main ionic current responsible for the transmural heterogeneity. The results of these simulations
are shown in Figure 6.

Figure 6. Results of numerical experiments on LV models with transmural heterogeneity. (A–C):
LV models with apical thickness 6, 12, and 18 mm, respectively. Top row: Attractor coordinates.
Dotted bars mean that scroll wave disappeared at the LV base. Middle row: Scroll wave lifetime (200
means it survived until the end of the simulation). Bottom row: Transmural dispersion of repolarization
(DRTM) for points with coordinates γ = 0.1 and γ = 0.9 (see Figure 1C).
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In seven out of nine cases, we observed the same type of dynamics as in the absence of the
heterogeneity. The scroll wave drifted to base and annihilated there. We saw, however, that the lifetime
of the scroll wave decreased with increase in heterogeneity. In two cases (IKs-25-TM; apex thickness
6 and 12 mm), the scroll wave stabilized at the apex and either rotated with a velocity of 0.19 mm/s
(h = 6 mm) or did not move at all (h = 12 mm).

4. Discussion

In this paper, we study the effects of heterogeneity on scroll wave dynamics in a model of the
left ventricles of the human heart. We used a detailed ionic model for human ventricular cell and
analytical representation of the geometry and anisotropy. We considered two types of heterogeneity:
apicobasal and transmural, and we represent them by changing ICaL and IK currents.

The apicobasal heterogeneity was found to change the dynamics of the scroll wave. Instead of
annihilation at the base, the scroll wave in most of the cases stabilized at the apex. This result can be
explained by the following known dynamics of the spiral wave in cardiac tissue. In [20,21], it was
shown that spiral waves drift to the region of longer APD. Because in our case APD was longest at
the apex, we can assume that stabilization at the apex is a result of such dynamics. Note that for
h = 6 mm and 12 mm the location of the attractor did not change with the degree of the heterogeneity.
However, for h = 18 mm, we had a gradual change of the location of the attractor Ψ = 0.72 for ICaL-75,
while Ψ = 1.2 for ICaL-50. In addition, for h = 18 mm and IKs-75, the scroll wave still drifted to the
base and annihilated there. The mechanisms of the observed phenomenon can be the following. In case
h = 18 mm, the apex is substantially thicker than the base. Because in the absence of heterogeneities
the scroll wave drifts toward the region of minimal thickness, such gradient attempts to push the scroll
wave towards the base. On the other hand, the apicobasal heterogeneity thrusts the scroll wave toward
the apex. As a result of interaction of these opposite processes, we observe a stabilization of the scroll
closer to the apex for larger heterogeneity in ICaL. In addition, the small heterogeneity IKs-75 was not
sufficient to stabilize the scroll and it annihilated at the base.

Another important type of the dynamics is a breakup. Basically in all cases of large heterogeneity,
some form of breakup was observed. These results can also be explained in the following way.
The formation of wavebreak at the regions with a longer refractory period (APD) is one of the most
classical mechanisms of generation of spiral waves in 2D [37]. As in our case, the breakup occurred via
formation of wavebreak at the apex, where the APD is longest, we think that the mechanism [37] is
also responsible for the onset of breakup in our case.

For the transmural heterogeneity, we did not observe substantial effects on the filament dynamics.
It did not change the location of the attractor: in almost all cases as in the control case, the scroll wave
drifted towards the base and annihilated there. We saw a slight decrease in the life time of the scroll
wave, but the effect was small and not significant. In a few cases of largest heterogeneity, we saw
stabilization at the apex. Unfortunately, the mechanisms of such behaviour are not clear. In [22,23],
it was shown that transmural heterogeneity affects the period of rotation of a scroll wave, and in
extreme cases can cause its breakup. However, studies there were perfomed in a simplified model
of cardiac tissue. In [38], a sproing (elongation) of the filament was also observed in a simplified
model of cardiac tissue. However, we did not observe such phenomena and found effects that require
additional study.

It should be noted that filaments have complex dynamics; however, not all complexity of the
dynamics comes from the heterogeneity. As pointed out by Papadimitriou [39], the complexity does
not necessarily require heterogeneity and that is definitely true for filaments. For example, even in
completely homogeneous cardiac tissue, for certain parameter values, one can have a breakup of
filaments due to negative filament tension [40], or dynamic instabilities [41]. In addition, anisotropy by
itself can produce complex filament shapes [42]. It would be interesting to further characterize
complexity of filament dynamics in the heart in a wider range of parameters and study if heterogeneity
will be a determinant for their dynamics as it was in our study.
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In a previous paper [26], we studied scroll wave drift on the Aliev–Panfilov model and
symmetrical LV model with isotropy and anisotropy 9:1 in homogeneous and heterogeneous
myocardium. In that paper, we also found a tendency of scroll wave to move towards the apex
and an increase of the rotation speed of waves with an increase in the heterogeneity. The drift speed in
the AP model was smaller than one found in this paper, which is a result of using of a more accurate
model for cardiac excitation.

Overall, these results show that the scroll wave drifts and stabilizes at the apex of the left ventricle
in the presence of moderate apicobasal heterogeneity. Thus, independently of their initial location,
the scroll waves are after some transient processes more likely to be observed at the apex of the heart.
Therefore, the apex may be a preferable location of the scroll wave. Identification of the location of a
source of cardiac arrhythmias is an important question in practical cardiology. One of the most effective
ways to treat cardiac arrhythmia is a cardiac ablation procedure, during which flexible catheters are
passed into the heart through a blood vessel. Once located near the target region, the catheter is
activated to locally destroy or modify the arrhythmia substrate by delivering radio-frequency energy
or extreme cold. Thus, locating the arrhythmia source is a problem of great importance. In this paper
we show that the source of cardiac arrhythmia is more likely to be located at the apex of the heart.
Hence, the modification of the apex by some sort of ablation, which makes rotation of scroll wave
impossible, can eliminate the cardiac arrhythmia. Recently, a non-invasive method of ablation was
proposed, which enables modifying the tissue not only on the surface but also inside the myocardial
wall by noninvasive delivery of radiation with stereotactic body radiation [43]. For such methodology,
the location of the arrhythmia source is again crucial. Note, however, that ablation in 3D ventricle to
eliminate a scroll wave is a non-trivial issue and needs to be further studied, e.g., using a modeling
methodology applied in our paper.

A limitation of our approach is that we considered only spiral waves with one chirality.
The chirality may substantially affect the dynamics of scroll waves [29]. In this paper, we chose
that particular case for counterclockwise rotation as without heterogeneity we had always one
regime (annihilation at the base). It was thus straightforward to study the effect of heterogeneity
in that situation. The effect of chirality in the presence of heterogeneity should be investigated in a
subsequent study.

We studied transmural and apicobasal heterogeneity separately. It would be also interesting to
study their combined effect on scroll wave dynamics.

In this paper, we performed our studies only in a limited parameter range. This is because such
modeling is extremely challenging, as the studied effects can be observed only in anatomical models of
the heart on a long time scale (of the order of minutes) while typical simulations in anatomical models
of the heart are normally performed for a few seconds (see e.g., [44]). It would be interesting in the
future to extend studies for a larger parameter range and also model direct clinical interventions which
can stop arrhythmias caused by scroll waves, such as catheter ablation.

5. Conclusions

We performed a study of filament dynamics in the left ventricle of the heart using a state-of-art
ionic model for cardiac tissue and combining all the most important factors which can be responsible
for the filament drift: the shape of the ventricle, variation in thickness, anisotropy, and heterogeneity.
Under those conditions, we find that, in spite of the importance of all factors, the apicobasal
heterogeneity was the most important in determining the final position of the filament. For moderate
heterogeneity, the filament was stabilized at the apex of the ventricle, while for a large heterogeneity a
break-up into a complex spatio-temporal pattern was observed. The transmural heterogeneity did
not substantially affect the filament dynamics. As predicting of location of the arrhythmia sources is
important for clinical interventions, our results can help in developing clinical procedures to remove
arrhythmias organized by filaments.

62



Mathematics 2020, 8, 776

Author Contributions: Conceptualization, A.V.P. and O.S.; methodology, A.V.P. and S.P.; software S.P.,
H.D., and P.K.; formal analysis, S.P.; investigation, P.K.; writing—original draft preparation, P.K. and S.P.;
writing—review and editing, P.K., S.P., A.V.P., H.D., and O.S.; supervision, A.V.P. and O.S. All authors have read
and agreed to the published version of the manuscript.

Funding: P.K., S.P., O.S., and A.V.P. were funded by the Russian Science Foundation (project 14-35-00005). A.V.P.,
P.K., and O.S. were funded by the Russian Foundation for Basic Research (#18-29-13008). A.V.P. and O.S. were
funded by RF Government Act #211 of 16 March 2013 (agreement 02.A03.21.0006). P.K. and O.S. work was carried
out within the framework of the IIF UrB RAS theme No. AAAA-A18-118020590031-8. A.V.P. and H.D. were
partially funded by BOF Ghent University.

Acknowledgments: Simulations were performed at the supercomputer Uran of Institute of Mathematics and
Mechanics (Ekaterinburg, Russia) and at the supercomputer of Ural Federal University (Ekaterinburg, Russia).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Winfree, A.T.; Strogatz, S.H. Organizing centres for three-dimensional chemical waves. Nature 1984,
311, 611–615. [CrossRef] [PubMed]

2. Mehra, R. Global public health problem of sudden cardiac death. J. Electrocardiol. 2007, 40, S118–S122.
[CrossRef] [PubMed]

3. Gray, R.A.; Jalife, J.; Panfilov, A.; Baxter, W.T.; Cabo, C.; Davidenko, J.M.; Pertsov, A.M.
Nonstationary Vortexlike Reentrant Activity as a Mechanism of Polymorphic Ventricular Tachycardia
in the Isolated Rabbit Heart. Circulation 1995, 91, 2454–2469. [CrossRef] [PubMed]

4. Katz, A.M. Physiology of the Heart; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2010.
5. Panfilov, A.; Rudenko, A.; Krinsky, V. Scroll rings in three-dimensional active medium with two component

diffusion. Biofizika 1986, 31, 850–854.
6. Panfilov, A.; Aliev, R.; Mushinsky, A. An integral invariant for scroll rings in a reaction-diffusion system.

Phys. D Nonlinear Phenom. 1989, 36, 181–188. [CrossRef]
7. Pravdin, S.; Dierckx, H.; Markhasin, V.S.; Panfilov, A.V. Drift of Scroll Wave Filaments in an Anisotropic

Model of the Left Ventricle of the Human Heart. BioMed Res. Int. 2015, 2015. [CrossRef]
8. Rogers, J.M.; McCulloch, A.D. Nonuniform muscle fiber orientation causes spiral wave drift in a finite

element model of cardiac action potential propagation. J. Cardiovasc. Electrophysiol. 1994, 5, 496–509.
[CrossRef]

9. Dierckx, H.; Bernus, O.; Verschelde, H. A geometric theory for scroll wave filaments in anisotropic excitable
media. Phys. D Nonlinear Phenom. 2009, 238, 941–950. [CrossRef]

10. Nabauer, M.; Beuckelmann, D.J.; Uberfuhr, P.; Steinbeck, G. Regional Differences in Current Density and
Rate-Dependent Properties of the Transient Outward Current in Subepicardial and Subendocardial Myocytes
of Human Left Ventricle. Circulation 1996, 93, 168–177. [CrossRef]

11. Glukhov, A.V.; Fedorov, V.V.; Lou, Q.; Ravikumar, V.K.; Kalish, P.W.; Schuessler, R.B.; Moazami, N.;
Efimov, I.R. Transmural Dispersion of Repolarization in Failing and Nonfailing Human Ventricle. Circ. Res.
2010, 106, 981–991. [CrossRef]

12. Opthof, T.; Janse, M.J.; Meijborg, V.M.; Cinca, J.; Rosen, M.R.; Coronel, R. Dispersion in ventricular
repolarization in the human, canine and porcine heart. Prog. Biophys. Mol. Biol. 2016, 120, 222–235.
[CrossRef] [PubMed]

13. Franz, M.R.; Bargheer, K.; Rafflenbeul, W.; Haverich, A.; Lichtlen, P.R. Monophasic action potential mapping
in human subjects with normal electrocardiograms: Direct evidence for the genesis of the T wave. Circulation
1987, 75, 379–386. [CrossRef] [PubMed]

14. Janse, M.J.; Coronel, R.; Opthof, T.; Sosunov, E.A.; Anyukhovsky, E.P.; Rosen, M.R. Repolarization gradients
in the intact heart: Transmural or apico-basal? Prog. Biophys. Mol. Biol. 2012, 109, 6–15. [CrossRef]

15. Boukens, B.J.; Sulkin, M.S.; Gloschat, C.R.; Ng, F.S.; Vigmond, E.J.; Efimov, I.R. Transmural APD gradient
synchronizes repolarization in the human left ventricular wall. Cardiovasc. Res. 2015, 108, 188–196. [CrossRef]
[PubMed]

16. Szentadrassy, N.; Banyasz, T.; Biro, T.; Szabo, G.; Toth, B.I.; Magyar, J.; Lazar, J.; Varro, A.; Kovacs, L.;
Nanasi, P.P. Apico-basal inhomogeneity in distribution of ion channels in canine and human ventricular
myocardium. Cardiovasc. Res. 2005, 65, 851–860. [CrossRef]

63



Mathematics 2020, 8, 776

17. Solovyova, O.; Katsnelson, L.; Konovalov, P.; Kursanov, A.; Vikulova, N.; Kohl, P.; Markhasin, V. The cardiac
muscle duplex as a method to study myocardial heterogeneity. Prog. Biophys. Mol. Biol. 2014, 115, 115–128.
[CrossRef]

18. Antzelevitch, C. Heterogeneity and cardiac arrhythmias: An overview. Heart Rhythm 2007, 4, 964–972.
[CrossRef]

19. Keldermann, R.H.; ten Tusscher, K.H.; Nash, M.P.; Hren, R.; Taggart, P.; Panfilov, A.V. Effect of heterogeneous
APD restitution on VF organization in a model of the human ventricles. Am. J. Physiol.-Heart Circ. Physiol.
2008, 294, H764–H774. [CrossRef]

20. Rudenko, A.; Panfilov, A. Drift and interaction of vortices in two-dimensional heterogeneous active medium.
Stud. Biophys. 1983, 98, 183–188.

21. Ten Tusscher, K.; Panfilov, A.V. Reentry in heterogeneous cardiac tissue described by the Luo–Rudy
ventricular action potential model. Am. J. Physiol.-Heart Circ. Physiol. 2003, 284, H542–H548. [CrossRef]

22. Panfilov, A.V.; Rudenko, A.N.; Pertsov, A.M. Twisted scroll waves in three- dimensional active media.
Dokl. Akad. Nauk SSSR 1984, 279, 1000–1002.

23. Panfilov, A.V.; Keener, J.P. Twisted scroll waves in heterogeneous excitable media. Int. J. Bifurc. Chaos 1993,
3, 445–450. [CrossRef]

24. Pravdin, S.F.; Berdyshev, V.I.; Panfilov, A.V.; Katsnelson, L.B.; Solovyova, O.; Markhasin, V.S.
Mathematical model of the anatomy and fibre orientation field of the left ventricle of the heart. Biomed. Eng.
Online 2013, 12, 54. [CrossRef]

25. Pravdin, S.F.; Dierckx, H.; Katsnelson, L.B.; Solovyova, O.; Markhasin, V.S.; Panfilov, A.V. Electrical wave
propagation in an anisotropic model of the left ventricle based on analytical description of cardiac architecture.
PLoS ONE 2014, 9. [CrossRef]

26. Konovalov, P.V.; Pravdin, S.F.; Solovyova, O.E.; Panfilov, A.V. Scroll Wave dynamics in a model of the
heterogeneous heart. JETP Lett. 2016, 104, 821–821. [CrossRef]

27. Aliev, R.R.; Panfilov, A.V. A simple two-variable model of cardiac excitation. Chaos Solitons Fractals 1996,
7, 293–301. [CrossRef]

28. Panfilov, A. Three-dimensional organization of electrical turbulence in the heart. Phys. Rev. E 1999,
59, R6251–R6254. [CrossRef]

29. Pravdin, S.F.; Dierckx, H.; Panfilov, A.V. Drift of scroll waves in a generic axisymmetric model of the cardiac
left ventricle. Chaos Solitons Fractals 2019, 120, 222–233. [CrossRef]

30. Streeter, D., Jr. The Heart. In Handbook of physiology; Section 2; American Physiological Society: Bethesda,
MD, USA, 1979; Chapter Gross Morphology and Fiber Geometry of the Heart; Volume I, pp. 61–112.

31. Panfilov, A.; Holden, A. Computer simulation of re-entry sources in myocardium in two and three
dimensions. J. Theor. Biol. 1993, 161, 271–285. [CrossRef]

32. ten Tusscher, K.; Panfilov, A.V. Alternans and spiral breakup in a human ventricular tissue model. Am. J.
Physiol.-Heart Circ. Physiol. 2006, 291, H1088–H1100. [CrossRef]

33. Kazbanov, I.V.; Clayton, R.H.; Nash, M.P.; Bradley, C.P.; Paterson, D.J.; Hayward, M.P.; Taggart, P.; Panfilov,
A.V. Effect of Global Cardiac Ischemia on Human Ventricular Fibrillation: Insights from a Multi-scale
Mechanistic Model of the Human Heart. PLoS Comput. Biol. 2014, 10, e1003891. [CrossRef] [PubMed]

34. Rush, S.; Larsen, H. A practical algorithm for solving dynamic membrane equations. IEEE Trans. Biomed.
Eng. 1978, 4, 389–392. [CrossRef] [PubMed]

35. Pereon, Y.; Demolombe, S.; Baro, I.; Drouin, E.; Charpentier, F.; Escande, D. Differential expression of KvLQT1
isoforms across the human ventricular wall. Am. J. Physiol.-Heart Circ. Physiol. 2000, 278, H1908–H1915.
[CrossRef]

36. ten Tusscher, K.; Noble, D.; Noble, P.J.; Panfilov, A.V. A model for human ventricular tissue. Am. J.
Physiol.-Heart Circ. Physiol. 2004, 286, H1573–H1589. [CrossRef] [PubMed]

37. Krinskii, V. Spread of excitation in an inhomogeneous medium (state similar to cardiac fibrillation).
Biophysics-USSR 1966, 11, 676–683.

38. Henze, C.; Lugosi, E.; Winfree, A. Helical organizing centers in excitable media. Can. J. Phys. 1990,
68, 683–710. [CrossRef]

39. Papadimitriou, F. Geo-mathematical modeling of spatial-ecological complex systems: An evaluation.
Geogr. Environ. Sustain. 2010, 3, 67–80. [CrossRef]

64



Mathematics 2020, 8, 776

40. Biktashev, V.; Holden, A.; Zhang, H. Tension of organizing filaments of scroll waves. Philos. Trans. R. Soc.
London. Ser. A Phys. Eng. Sci. 1994, 347, 611–630.

41. Panfilov, A.V.; Hogeweg, P. Mechanisms of cardiac fibrillation. Science 1995, 270, 1223–1224.
42. Verschelde, H.; Dierckx, H.; Bernus, O. Covariant stringlike dynamics of scroll wave filaments in anisotropic

cardiac tissue. Phys. Rev. Lett. 2007, 99, 168104. [CrossRef]
43. Cuculich, P.S.; Schill, M.R.; Kashani, R.; Mutic, S.; Lang, A.; Cooper, D.; Faddis, M.; Gleva, M.; Noheria, A.;

Smith, T.W.; et al. Noninvasive cardiac radiation for ablation of ventricular tachycardia. N. Engl. J. Med.
2017, 377, 2325–2336. [CrossRef] [PubMed]

44. Arevalo, H.J.; Vadakkumpadan, F.; Guallar, E.; Jebb, A.; Malamas, P.; Wu, K.C.; Trayanova, N.A.
Arrhythmia risk stratification of patients after myocardial infarction using personalized heart models.
Nat. Commun. 2016, 7, 11437. [CrossRef] [PubMed]

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

65





mathematics

Article

Myocardial Fibrosis in a 3D Model: Effect of Texture
on Wave Propagation

Arsenii Dokuchaev 1, Alexander V. Panfilov 2,3,* and Olga Solovyova 1,3,*

1 Institute of Immunology and Physiology, Ural Branch of Russian Academy of Sciences, Ekaterinburg 620049,
Russia; a.dokuchaev@iip.uran.ru

2 Department of Physics and Astronomy, Ghent University, Krijgslaan 281, 9000 Gent, Belgium
3 Laboratory of Computational Biology and Medicine, Ural Federal University, Ekaterinburg 620075, Russia
* Correspondence: alexander.panfilov@ugent.be (A.V.P.); o.solovyova@iip.uran.ru (O.S.)

Received: 21 July 2020; Accepted: 7 August 2020; Published: 12 August 2020

Abstract: Non-linear electrical waves propagate through the heart and control cardiac contraction.
Abnormal wave propagation causes various forms of the heart disease and can be lethal. One of
the main causes of abnormality is a condition of cardiac fibrosis, which, from mathematical point
of view, is the presence of multiple non-conducting obstacles for wave propagation. The fibrosis
can have different texture which varies from diffuse (e.g., small randomly distributed obstacles),
patchy (e.g., elongated interstitional stria), and focal (e.g., post-infarct scars) forms. Recently,
Nezlobinsky et al. (2020) used 2D biophysical models to quantify the effects of elongation of obstacles
(fibrosis texture) and showed that longitudinal and transversal propagation differently depends on
the obstacle length resulting in anisotropy for wave propagation. In this paper, we extend these
studies to 3D tissue models. We show that 3D consideration brings essential new effects; for the
same obstacle length in 3D systems, anisotropy is about two times smaller compared to 2D, however,
wave propagation is more stable with percolation threshold of about 60% (compared to 35% in 2D).
The percolation threshold increases with the obstacle length for the longitudinal propagation, while it
decreases for the transversal propagation. Further, in 3D, the dependency of velocity on the obstacle
length for the transversal propagation disappears.

Keywords: cardiac fibrosis; excitable media; wave break; elongated obstacle

1. Introduction

Non-linear waves of electrical excitation propagate through the heart and initiate cardiac
contraction. Myocardial tissue consists of inter-connected excitable cells—cardiomyocytes forming
so-called myocardial fibers ensuring prevailing conducting pathways in the tissue. In normal
myocardium, the electrical wave propagation is about 2–3 times faster in the longitudinal direction
of the myocardial fibers than in the transversal directions. From a mathematical point of view, the
electrical waves belong to a large class of waves in the Reaction–Diffusion systems which are widely
studied in applied mathematics [1]. The structural properties of the myocardium are accounted in
the models as electro-diffusion anisotropy of the medium with higher diffusion coefficient along
the myofiber direction. In many forms of heart disease, normal wave propagation is disturbed by
an excessive growth of the fraction of connective tissue within myocardium including inexcitable
cells—fibroblasts and myofibroblasts. This pathological condition is called cardiac fibrosis.

Cardiac fibrosis is a common attribute of myocardial diseases of different etiology such as
ischaemic cardiomyopathy and myocardial infarction, dilated cardiomyopathy, aortic stenosis,
hypertrophic cardiomyopathy, and myocarditis [2]. Fibrosis is shown to be a predictor of adverse
outcomes, including heart failure, ventricular arrhythmias, sudden cardiac death and all-cause
mortality [3]. Fibrosis affects excitation propagation in the tissue creating inexitable obstacles,
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and zones of increasing heterogeneity and reduced conduction velocity in the myocardium. This may
essentially increase the risk of arrhythmia induction and sustaining [4]. Experimental studies show
that the frequency of ventricular arrhythmias linearly increases with fibrosis density [5]. On the other
hand, fibrotic connective tissue is much stiffer than myocardium that reduces contractile performance
of the tissue [6].

The pattern and distribution of fibrosis differ between conditions and vary from reversible
diffuse forms to irreversible replacement fibrosis [7]. There are several types of fibrosis with varying
texture between diffuse, patchy, and focal forms [4]. In diffuse fibrosis, small obstacles are randomly
distributed between cardiomyocytes. In interstitial and patchy fibrosis, there are more structured
non-conducing (low-conducting) obstacles elongated in form of stria or patches separating myocardial
fibers. The latter fibrosis textures were shown to be even more arrhythmogenic than compact fibrosis
due to the zig-zag conduction allowing micro-reentry to arise in the tissue [8].

Mathematical models were used to study effects of fibrosis on the myocardial excitation,
and its role in the arrhythmia onset [9–16]. As any mathematical model is an idealisation of reality,
representation of fibrosis in such studies was also simplified. The most important effect of fibrosis is
that fibroblasts are inexcitable cells. Thus most of the studies considered cardiac tissue in the presence
of fibrosis as a mixture of excitable cells (myocytes) described by non-linear differential equations
coupled to each other by the diffusion operator describing electrical current between coupled myocytes.
The fibrotic cells were mainly considered as obstacles [17,18], i.e., cells through which electrical currents
from myocytes cannot flow and thus these cells were described as internal boundaries with no-flux
boundary conditions [19].

Most modelling research has been devoted to the effects of diffuse or compact fibrosis. Effects of
the diffuse fibrosis in the myocardium were considered by A. Panfilov’s group on simplified models of
cardiac tissue [17,18], as well as on modern ionic models [9]. In these studies, the domain representing
cardiac tissue consisted of rectangular (squared or cubic) cells which with some probability were
assigned to be excitable myocytes or inexcitable obstacles simulating fibroblasts. It was shown that
two-dimensional biophysical models of myocardial tissue, in spite of their simplicity, allow one
to find out main scenarios of fibrosis consequences, namely, the progressive slowing down of the
wave propagation velocity, fractalization of its front and more irregular propagation of the excitation
wave, and even predict the conditions for the break-up of spiral waves, i.e., in the settings of intact
myocardium—the transition from tachycardia to life-treating fibrillation. It was found that if external
impulse stimulation was applied to the fibrous tissue, the tendency to arrhythmias increased with an
increase in the degree of tissue fibrosis [18]. Further studies showed that one of the most important
factors influencing the occurrence of arrhythmias was the spatial heterogeneity of fibrosis [10].

Local (compact) fibrosis, as a rule, is associated with development of a myocardial post-infarction
scar that replaces cardiomyocytes. The role in the onset and dynamics of arrhythmias of post-infarction
scar simulated as a compact inexcitable area in myocardial tissue and its border zone simulated as a
surrounding excitable tissue with impaired properties (reduced tissue conductivity and/or cellular
excitability) was considered in the framework of computer modeling [20–22]. A case of compact
fibrosis represented by a small number of large inexcitable regions in myocardial tissue was studied in
paper [23].

Another approach used to study cardiac fibrosis in computational models is to simulate the
electrical coupling between myocytes and fibroblasts. Works using this approach were performed in
papers [24–26] showing emergence of complex dynamics of spiral waves and increase in the likelihood
of arrhythmias depending on the fibroblasts properties and degree of coupling between myocytes
and fibroblasts. A series of works was performed by N. Trayanova’s group, which demonstrates the
effect of myofibroblast density on the probability of arrhythmia (see, for example, [27]). The role of
increasing amount of fibroblasts coupled to cardiomyocytes in induction of atrial fibrillations was
studied in [21].

68



Mathematics 2020, 8, 1352

Effects of more complex structures of fibrosis formed of interstitial stria surrounding myofibers
either randomly or being organized in patchy areas that may replace a large fraction of myocardial
tissue have not been sufficiently studied neither in experiment nor in simulations. Role of the texture
and type of fibrosis in the rhythm disturbances and the risk of their complications is not quantitatively
evaluated. One of the first works demonstrating the importance of the texture and the characteristic
dimensions of unexcitable obstacles in the tissue for the onset of spiral waves was the work of A.
Pertsov’s group (see [28]). In our recent study, [29], we made a first attempt to study the effects of
fibrotic texture representing some features of interstitial fibrosis with primarily linear accumulations
of collagen separating bundles of myocytes with little alteration in the alignment of myocytes or
bundles [30]. One of main features of this pattern is that inexcitable inclusions to cardiac tissue here
have some directional dependency laying between myofibers. In idealised representation they can be
seen as thin elongated obstacles directed along cardiac fibers. In [29], we considered case of parallel
fibers, thus texture of linear inexcitable elements which all have the same orientation and we studied
propagation in such 2D models of myocardium for wave along this direction (longitudinal) and
perpendicular to it (transversal) propagation. Main findings of this study revealed an opposite change
in the conduction velocity (CV) with the obstacle length depending on the direction of the wavefront
propagation. The CV increases with obstacle length if the excitation propagates along the obstacle
strips, while the CV decreases under transverse wavefront propagation. This causes increasing tissue
anisotropy with obstacle elongation [28]. This effect was explained by zig-zag propagation in the
tissue with more short excitation path along the obstacles than across. The 2D model we used has
natural limitations not allowing the wave to propagate in the third spacial direction transverse to the
longitudinal coordinate of the obstacles. In this article, we extend our study of structured fibrosis to
3D myocardial tissue models and analyze if the third spatial dimension and the depth of the 3D tissue
volume affect the characteristics of the excitation wave and the arrhythmogenic power of the fibrosis.

In particular, the aim of this paper is to study in detail effects of randomly generated textures of
fibrosis with various lengths and percentages of obstacles on wave propagation in cardiac tissue slab
of various depth.

2. Materials and Methods

2.1. Electrophysiology Model

To describe propagation of the excitation wave in the myocardial tissue we used a 3-dimensional
monodomain formulation:

Cm
∂V
∂t

= D∇2V − Iion, (1)

where V is transmembrane potential, D —electro-diffusion matrix for anisotropic tissue, in this study
we considered D constant, Iion—sum of all transmembrane ionic currents, described with biophysically
detailed cardiac action potential model TP06 [31].

Initial conditions were set as the rest potential V = Vrest for the cardiac tissue. Boundary conditions
were formulated as the no flux through the boundaries:

�n∇V = 0, (2)

where�n—is the normal to the boundary.
The problem was solved in a 3D cuboid simulating myocardial slab with inclusions of structured

fibrosis. Fibrosis elements of the tissue were simulated as non-conducting inexcitable obstacles and
considered as the boundaries (no flux) for the myocardial elements.

Numerical Methods

To solve the problem (1) and (2) we used a finite-difference method with 18-point stencil
discretization scheme as described in [32] with 0.25 mm for the spatial step and 0.02 ms for the
time step.
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Rush-Larsen formalism [33] was used for TP06 gating variables integration.

2.2. Fibrosis Pattern Generation

We considered 3D finite-difference mesh as matrix X × Y × Z (where X, Y, Z are the numbers of
elements in x, y and z direction) with each element to be either excitable myocardial tissue or inexcitable
fibrosis. In general we used matrices 200 × 200 × 10 elements (or 50 mm × 50 mm × 2.5 mm) in size,
but we also considered matrices with 200 × 200 × Z elements, where Z might be 1, 2, 3 or 5.

Similarly to Nezlobinsky et al. [29], we uniformly distributed fibrosis elements and varied length
of elements (in x-axis direction) and density of elements distribution. To distribute fibrosis elements
through the mesh we implemented two approaches. Fibrosis pattern was generated in the same
manner as described in [29], namely, we subdivided each X × Y × Z matrix in x or y direction into
Y · Z or X · Z rows with size 1 × 200 × 1 or 200 × 1 × 1 respectively. Then we subdivided each row
into blocks of length n and assign it as fibrotic with a probability p. This approach allowed us to set
fibrosis percentage precisely close to desired value.

Examples of wave propagation in a myocardial slab with fibrosis of different texture are shown
in Figure 3. Upper panels A-B show an example of elongated fibrosis texture with linear 3 × 1 × 1
elements of 3 x-node length occupying 60% of the tissue volume. Panel A shows the wave propagation
in the longitudinal direction of the fibrotic obstacles, panel B shows the wave in the transversal
direction. Bottom panel C shows an example of the diffuse fibrosis texture of the same density. Details
on the wave dynamics are described in the Results section.

2.3. Shortest Path Calculation

The shortest possible path of excitation propagation between the opposite sides of the myocardial
cuboid was calculated to demonstrate the zig-zag propagation through the fibrotic texture with
elongated obstacles. We used iterative multi-dimensional binary dilation routine. Figure 1 shows
and 2D example of our algorithm. Firstly, we mark an initial side of the mesh (all cells in left lateral
surface except fibrosis) as “activated” and applied 3D binary dilatation operation until at least one
cell on the opposite side of mesh becomes “activated” (see Figure 1A). Then, starting from this early
approached cell on the opposite side (if there were several points we randomly picked one single
point), we repeated this procedure in backward direction. The number of dilation iterations was taken
as the length of shortest possible path for excitation propagation (see Figure 1B). Very first activated
opposite cells for both steps were then used to calculate the trace of the shortest path.

A B

Figure 1. An example of the shortest path calculation routine. (A) Left lateral side of the myocardial slab
is marked as “activated” and multiple dilation operations are performed. Wave propagates from left to
right. Green color indicates activated cells, white and black indicate non-activated cells and fibrosis
elements respectively. Red ellipse indicates the very first activated cell on the right side. (B) Starting
from the right side activated cell, a number of the dilation operations is performed until any of left side
cells is activated. This number N of dilation iterations is taken as the length of the shortest propagation
path for the given fibrosis texture. Here, blue color shows activated cells. Red ellipse indicates the very
first activated cell on the left side.
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To trace the shortest possible path we build an undirected graph connecting neighbouring “active”
cells in the fibrosis matrix and then breadth-first search algorithm with cells obtained on previous step
assigned to be source and target nodes was used . An example of the shortest possible path trace is
shown in Figure 2.

Figure 2. Traces of the shortest possible path of excitation propagation in the longitudinal (A) and
transversal (B) directions in the model of 60% fibrosis with 4-node length elements.

3. Results

We evaluated properties of the excitation wave propagating either in the longitudinal direction of
the fibrosis stria (along the long face of the strips in the direction of horizontal axis x) and across them
(transversal, along axis y). We varied several parameters: (1) the depth of the myocardial slab from
monolayer, which is equivalent 2D tissue to a 3D multilayer slab (2, 3, 5 and 10 layers); (2) the length
of fibrosis stria from random 0.25 mm cubic elements simulating diffuse fibrosis (number of nodes
n = 1 on axis x) to 1.0 × 0.25 × 0.25 mm3 strips (n = 4) elongated along axis x; (3) the density of the
fibrosis from 10 to 60%.

3.1. Wavefront Velocity Depends on Fibrosis Fraction and Propagation Direction

Representative simulations of the wave propagation in the longitudinal and transverse directions
in the 3D myocardial volume with structural fibrosis of 60% density formed of linear 3 × 1 × 1
elements of 3 x-node length are shown in Figure 3. We compare propagation of the wave initiated by
the stimulation on the left lateral surface and spreading along the obstacle elongation (see panel A) or
on the upper lateral surface and travelling across the obstacles (panel B). We see that the wavefront
has a complex shape due to interaction with obstacles. We also see that the wave propagates along
the obstacles about two times faster than across them. For example, 50 ms after stimulation the wave
propagated at a distance of approximately 25 mm for the longitudinal direction. However, for the
transversal propagation the wavefront covered about 16 mm of the tissue. Panel C shows wave
propagation in the model with diffuse fibrosis of the same density initiated on the upper surface of the
volume. Here, average dynamics of the wave does not depend on the direction as the fibrotic elements
are cubic. The conduction velocity at diffuse fibrosis is much slower than that at the longitudinal
wavefront direction for the elongated obstacles, and is near to that for the transversal wavefront
direction (CV = 0.29 mm/ms in panel C versus 0.48 mm/ms in panel A, and 0.24 mm/ms in panel B).
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Figure 3. Electrical wave propagation in models with structural (panels A,B) and diffuse (panel C)
fibrosis. Panels A,B show a myocardial slab with elongated fibrosis texture of linear 3 × 1 × 1 elements
of 3 x-node length. Wave propagation in the 3D myocardial slab was initiated on the left lateral
surface of the cuboid for the longitudinal propagation (panel A) and on the upper lateral surface for
the transversal propagation (panel B). The red color shows activated cells, the gray color indicates
non-activated cells and transparent cells within the gray zone indicates fibrosis. Fibrosis density is
60%. Snapshots of excitation propagation are shown at 50 (left panels) and 100 ms (right panels) after
excitation onset. The figure illustrates faster excitation propagation for the wavefront co-directed along
the elongation of the fibrosis elements. In this case (panel A, longitudinal wavefront), about two times
larger part of the myocardial volume is activated at the certain time moments as compared to the
wave propagation across the fibrosis elongation (panel B, transversal wavefront). Panel C shows wave
propagation in the model with 60% diffuse fibrosis. Here, excitation wave is initiated at the upper
surface, and is independent of the wavefront direction. The conduction velocity at diffuse fibrosis is
much slower than that at the longitudinal wavefront direction for the elongated obstacles, and is near
to that for the transversal wavefront direction (CV = 0.29 mm/ms in panel C versus 0.48 mm/ms in
panel A, and 0.24 mm/ms in panel B).

Figure 4 shows the dependence of the conduction velocity (CV) on the percentage of the fibrosis
for textures with 0.25 to 1 mm long elements (n = 1, 2, 3, 4 x-nodes). Upper panels A, B show the results
we obtained in a 3D monolayer of the tissue (0.25 mm depth, 1 z-layer). As this case is equivalent
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to 2D model, we use it as a reference for comparison of 2D and 3D models, in particular with the
results reported earlier [29]. We see that the velocity significantly decreases with an increase in the
fibrosis percentage. For the diffuse fibrosis (n = 1) the velocity does not depend on the direction
of activation (see red lines in Figure 4) and is used as the reference to compare with results for
structural fibrosis. In the monolayer model, elongation of obstacles has a pronounced opposite effect
on the longitudinal and transversal CV with increasing longitudinal velocity with obstacle length but
decreasing transversal velocity.

Middle C, D panels in Figure 4 show the results obtained in the multilayer tissue of the 2.5 mm
depth (10 z-layers). It is seen that qualitative effects of fibrosis density and obstacle length on the CV
are similar to that of the monolayer model. At the same time, the tissue depth allowing excitation
to propagate around obstacles in the additional transversal direction (z-axis). It differently affect the
longitudinal and transversal propagation. We see a significant effect of the obstacle length on the
longitudinal CV similar to monolayer case, while the transversal CV in the ten-layer tissue model is
almost independent of the obstacle length in contrast to the monolayer model.

0.25 mm 0.5 mm 0.75 mm 1.0 mm

C D

A BLongitudinal Transversal

0 10 20 30 40 50 60
0.2

0.3

0.4

0.5

0.6

0.7

Fibrosis, %

Ve
lo

ci
ty

 (m
m

/m
s)

0 10 20 30 40 50 60
0.2

0.3

0.4

0.5

0.6

0.7

Fibrosis, %

Ve
lo

ci
ty

 (m
m

/m
s)

0 10 20 30 40 50 60
0.2

0.3

0.4

0.5

0.6

0.7

Fibrosis, %

Ve
lo

ci
ty

 (m
m

/m
s)

0 10 20 30 40 50 60
0.2

0.3

0.4

0.5

0.6

0.7

Fibrosis, %

Ve
lo

ci
ty

 (m
m

/m
s)

Figure 4. Conduction velocity (CV) depending on the fibrosis area in the longitudinal (left) and
transversal (right) wavefront directions in a 3D monolayer of 0.25 mm depth (upper, A,B) and a
multilayer myocardial slab of 2.50 mm depth (middle, C,D). Error bars show the standard deviation
(STD) of the CV in 20 fibrosis pattern samples for each obstacle length. E-F Average wavefront velocities
normalized by the values at the diffuse fibrosis of the same percentage for the 3D monolayer (dashed
lines) and multilayer models (solid lines).

Therefore, the texture of fibrosis produces anisotropic propagation with increasing
longitudinal/transversal anisotropy ratio with the density of fibrosis and obstacle length. This is
illustrated in Figure 5. The anisotropy ratio in multilayer model reaches 2:1 with increase in the fibrosis
density, the dependency is steeper at longer obstacles and more steep in the monolayer vs. multilayer
models. The dependency is non-linear at higher than 25% fibrosis percentage.

73



Mathematics 2020, 8, 1352

0.25 mm 0.5 mm 0.75 mm 1.0 mm

0 10 20 30 40 50 60
1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

Fibrosis, %

An
is

ot
ro

py

Figure 5. Ratio in the conduction velocity between the longitudinal and transversal wavefront direction
as a characteristic of the fibrotic texture anisotropy. Dotted lines show the ratio in the monolayer
models, solid lines—in the multilayer models. Error bars show STD for the same model groups as
in Figure 4.

3.2. Wave Propagation Stopping Depends on the Tissue Depth, Fibrosis Percentage and Wavefront Direction

The CV dependencies in Figure 4 are spanned for different ranges of fibrosis percentage for
monolayer models (panels A,B) and multilayer models (panels C,D), indicating different percolation
threshold for 2D and 3D cases. The fibrosis percentage in the monolayer models is limited by 35%,
after which the wave cannot propagate anymore, while in the multilayer models the wave propagates
for the fibrosis density up to 55%. Close to percolation threshold we observed a steep increase in the
variability of CV for both models (see increasing STD whiskers on the curves in Figure 4). For example,
in the monolayer models with 35% fibrosis and three-node long obstacles, coefficient of variability in
CV is of 21.8% for the longitudinal direction and 11.5% for the transverse direction. In the multilayer
models with 60% fibrosis and three-node long obstacles the coefficients of variability in CV are 1.8%
and 3.6% respectively.

Figure 6 characterizes the percolation threshold statistically: it shows the fraction of models
with failed wave propagation depending on the fibrosis percentage in the mono- (upper panels)
and multilayer (lower panels) model. Here, we used the binary dilation method to analyze if the
wave is able to approach the opposite side of the tissue volume (see Methods section for detail) and
counted a number of models with propagation failing. The dependencies are approximated by logistic
Hill curves.

It is seen that the curves are right-shifted for longitudinal wavefront (left panels) compared
to transversal wavefront (right panels) and in the multilayer models (lower panels) compared to
monolayer models (upper panels). This means that the probability of excitation failure is higher for for
the transversal versus longitudinal wavefront propagation and in the monolayer against multilayer
tissue. Moreover, the curves shift in the opposite directions for the longitudinal and transversal
propagation when the obstacle length is increasing.

We see that for the longitudinal propagation the probability of excitation failure decreases while
for the transversal propagation the probability of excitation failure increases with increase in the
obstacle length.

To clarify these results further we show the dependencies of the percolation threshold FP95 (i.e.,
fibrosis percentage where propagation failure occurs for 95% of models) on the obstacle length for
the longitudinal and transversal propagation in the mono- and multilayer models (Figure 7). It is
seen that FP95 is much higher in the multilayer (upper lines) compared to the monolayer (lower
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lines) models, and FP95 is higher for the longitudinal wavefront direction (solid lines) compared to
the transversal (dotted lines). For longitudinal wave direction the minimal FP95 is observed for the
diffuse fibrosis and FP95 is about 43% for the monolayer models and FP95 and is about 65% for the
multilayer models. For transversal propagation the minimal FP95 is lower than the minimal FP95 for
the longitudinal propagation. It is observed for the fibrosis of 4-node long and FP95 is about 35% for
the monolayer models and FP95 and is about 60% for the multilayer models. Note, that in Figures 4 and
5 we considered the latter fibrosis percentages as upper limits for the mono- and multilayer models.
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Figure 6. Fraction of models with failed wave propagation depending on the fibrosis percentage in the
mono- (upper panels) and multilayer (lower panels) tissue for longitudinal (panels A,C) and transversal
(panels B,D) wavefront direction. Dots show percentage of models, solid lines show approximation by
logistic curves.
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Figure 7. A threshold fibrosis percentage (FP95) for 95% of models with conduction block depending
on the fibrosis obstacle length for longitudinal (solid lines) and transversal (dotted lines) wavefront
direction in the monolayer (lower red lines) and multilayer (upper blue lines) models.
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3.3. Effects of Fibrosis on the Conduction Velocity Depends on the Tissue Depth

In Figure 8 we compare effects of obstacle length on the CV in the ten-layer models (red lines)
with that in the mono-layer models at 35% fibrosis. We see that the length of the obstacle substantially
affects longitudinal propagation and the dependency in 3D is similar to that in 2D. However, for the
transversal propagation the velocity is almost independent on the obstacle length in 3D.
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Figure 8. Dependence of the conduction velocity on the obstacle length in mono- (n = 1, blue lines)
and multilayer (n = 10, red lines) models at 35% fibrosis for longitudinal (Left) and transversal (Right)
wavefront direction.

To quantify further effects of the tissue depth on the degree of CV change with the length of
fibrosis obstacles, we demonstrate the ratio of the average CV for the models with 1 mm (n = 4) obstacle
length to the model of diffuse fibrosis of the same percentage (Figure 9) at different thickness of the
tissue (number of layers is 1, 2, 3, 5, and 10). We see big change in velocity between 1 and 2 layers.
However starting from 3-layer thick tissue, the curves become independent of the number of layers.
So, for both wavefront directions the thickness when 3D effects become dominating is about 0.5 mm.
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Figure 9. Ratio in the conduction velocities between the average CV for the model with fibrosis
of 1 mm (n = 4) obstacle length and the model of diffuse fibrosis (n = 1) of the same percentage.
(Left) longitudinal wavefront direction. (Right) transversal direction. The curves show dependences
of the ratio on the fibrosis percentage at varying tissue depth from 0.25 to 2.5 mm (1 to 10 z-layers).

3.4. Shortest Path for Wave Propagation Depends on the Obstacle 0 and the Tissue Depth

In paper [29], we explained an opposite effect of increasing obstacle length on the longitudinal
and transverse propagation velocity by a zig-zig propagation [8]. It was characterized by estimating
the shortest path length between opposite boundaries of the medium. Here, we use the similar
approach and calculate the shortest path from one to the opposite face of the 3D myocardial slab in
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the longitudinal and transverse direction (see Methods section in detail). As shown in Figure 2 the
path is more straight and short in the longitudinal direction and it is more complex and long in the
transverse direction. The distribution of the shortest path length for the 3D mono- (upper panels)
and multilayer models (lower panels) for the same fibrosis density of 30% for obstacle length n = 4 in
comparison with diffuse fibrosis with n = 1 are shown in Figure 10. It is seen that the average path is
much shorter for the longitudinal wavefront direction than that for the diffuse fibrosis and the latter
is shorter than the path for the transversal wavefront direction. Interestingly, for a particular texture
shown in Figure 2 the ratio of conduction velocities in the longitudinal and transversal directions
is 2.47, which is reasonably close to the ratio of average path lengths (2.23). Note that the average
path length almost does not change with the tissue depth for the longitudinal wavefront direction.
In contrast, the average path for the transverse direction essentially shortens in the multilayer tissue
(116.71 for transverse fibrosis of n = 4 node length and 30% density. see Figure 10) coming closer to the
value for the average value for the diffuse fibrosis models.
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Figure 10. Normalized histograms of the shortest path for the longitudinal propagation and transversal
propagation for n = 4 node length fibrosis and for n = 1 diffuse fibrosis of the same 30% density in the
monolayer (upper) and multilayer (lower) models. 5000 shortest possible trajectories calculated in
5000 fibrosis matrices are used for each histogram.

4. Discussion

In this paper, we extended our previous study on the effects of fibrosis texture on wave
propagation in cardiac tissue by transition from 2D to 3D models with varying depth of the myocardial
slab. First, we checked if the effects we observed in the 2D models are reproduced in the 3D
formulations of a monolayer model with 1 node depth of the tissue. Then, we increased the number of
layers in the slab to evaluate effects of the third spatial dimension on the properties of the wave in the
fibrosis textures of various densities and obstacle elongation. The simple model of straight elongated
obstacle stria in the myocardial tissue were considered as a simplified representation of interstitial
fibrosis [8] localized between myocardial fibers replacing part of cardiomyocytes. To evaluate effects of
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obstacle elongation in comparison with more rounded small elements of the diffuse fibrosis, we varied
the obstacle length considering the texture with fibrosis strips of equal length. Then, we varied fibrosis
percentage in a rather wide range to approach such density where excitation wave stopped due to
obstacle texture blocking the propagation at a certain distance from the initially stimulated area.

We show that the elongation of obstacles has a substantial effect on the waves. It results in
anisotropic wave propagation in which the velocity of the longitudinal propagation increases with
increasing elongation, while the velocity of the transversal direction decreases (Figure 4). The extent of
the effect increases with the fibrosis percentage and with the the obstacle length.

We found that qualitative effects of the fibrosis texture are similar in the 3D and 2D models of the
tissue, which validates main predictions based on the 2D models and allows one to translate them
into the more adequate 3D settings. At the same time we showed that the effects of fibrosis in the 3D
tissue are less expressed due to additional spacial dimension transversal to the obstacle elongation
that allows the wave to find more ways to bypass the fibrotic obstacles. The effects of the third tissue
dimension are more pronounced for the transversal wavefront direction increasing the conduction
velocity in the 3D multilayer models compared to monolayer models and making almost negligible
difference between the CV at various obstacle lengths at the same fibrosis percentage (Figure 4).

We showed that in 3D tissue the dependencies of the tissue anisotropy on the fibrosis density are
much less steep (Figure 5), so the higher fibrosis percentage is needed to approach the same extent of
anisotropy as produced by the 2D models. For instance, an anisotropy of 2:1 was approached at about
30% fibrosis in the monolayer models while the same anisotropy was demonstrated in the models of
60% fibrosis in ten-layer deep models.

We showed that threshold fibrosis density for conduction block is also about twice higher in the 3D
multilayer models as compared to the monolayer models (see Figure 7). Of note, the threshold fibrosis
density increases with obstacle elongation for the longitudinal wavefront direction, while decreases
for the transversal direction that makes much less percentage of fibrosis to be more dangerous.

The geometric approach we used here for determining the shortest path of the wave is the main
approach which was used in most of the papers on fibrosis [12,13,19,34]. In real myocardial tissue,
the path of the wave is governed by the dynamic electrotonic load (source-sink relationship), which
can affect the propagation up to producing local blocks in spite of the geometrical connectivity [3].
In our previous work [29] we specially analyzed if the geometry consideration only is sufficient to
estimate the path and to discriminate the cases of different elongation of the fibrosis elements. We
performed additional simulations initiating a propagation wave by point stimulation at one boundary
and calculating its shortest path to the opposite boundary. We found that the source-sink relationship
slightly increases the path of zig-zag propagation as compared to percolation path for both the
longitudinal and transversal wavefront direction, and an increase in the transversal path was about
15%, while for the longitudinal only about 3%. We also found that the ratio of the average path lengths
and the ratio of the conduction velocities (anisotropy) in the longitudinal and transversal directions
were almost the same for a particular fibrosis texture. Thus, we showed that the percolation path
provided a good estimate for the real path of the wave and the difference in the geometry-based
paths at fibrosis of different textures reflects adequately the real difference rather underestimating
it quantitatively.

These simulations suggest that the severity of the fibrosis effects on the myocardial tissue is
essentially dependent on the local density of the fibrosis and its orientation relative to the myocardial
fibers that can vary depending on the tissue depth and orientation of the myofibers within the
heart chambers.

Our research is a computation prediction on some 3D effects of fibrosis texture on wave
propagation. It would be interesting to compare it with available experimental data. There is a
lot of experimental data which qualitatively confirms the results of our study. In many papers and
in various preparations it was shown that fibrosis decreases the conduction velocity of the wave
propagation (see reviews [3,4]). Further in [35] it was shown that increased interstitial fibrosis affects
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transverse conduction much more than the longitudinal conduction. Further, one of our results is a
complex shape of the wave in the presence fibrosis (Figure 3) is also qualitatively confirmed in [36],
where it was shown that increased fibrosis has also been associated with heterogeneioty of conduction.
It was shown in patients with dilated cardiomyopathy that the amount of myocardial fibrosis correlated
with the severity of abnormal propagation [30].

However, currently quantitative comparison is impossible. This is because it is challenging to
create cardiac tissues with controlled textures of fibrosis in which length interstitial stria gradually
changes. However, we think that using modern technologies of cardiac cell co-cultures [37] and/or
optogenetics [38] it will be possible to mimic multiple elongated obstacles with controlled length and
study wave propagation there. There are also recent developments which allow construction of such
3D preparations [39]. It would be interesting to use these technologies to study wave propagation in
such experimental systems and compare it with the predictions of our modelling.

Our approach has several limitations.
The major limitation is that we studied models of idealised fibrosis formed by linear inexcitable

obstacles of the same length. The geometry and texture of fibrosis in real tissue is much more complex
on many aspects. Fibrosis can be formed not only by fibroblasts, but also by myofibroblasts, which are
much larger in size. Substantial amounts of collagen are present in fibrotic cardiac tissue and have
different space scale and organisation than fibroblasts. Further, direction, size and shape of fibrotic
inclusions are not so regular as we assumed in our paper. It would be interesting to perform studies
on realistic textures of cardiac fibrosis in the human heart similar to those from [40] obtained for 3D
tissue [41] using computational approaches presented in study [42,43]. Further, a novel approach
of modelling which takes into account shapes of cardiac cells can be an interesting tool to better
represent fibrosis textures [26]. In this paper we studied effects of fibrosis texture on the wave
propagation. It would be also interesting to study effects of fibrosis texture on the onset and properties
of cardiac arrhythmias which either occur due to re-entry mechanism of abnormal propagation related
to the structural abnormality of the tissue [44] or due to ectopic activity related to the abnormal
depolarization-repolarization of cardiac cells [45].

We considered 3D isotropic tissue without taking into account pre-excisting anysotrophy of
myocardium due to myofiber structure with different electro-diffusion along and across the fibers.
This is also the task for our future studies on realistic textures of cardiac fibrosis.

Numerical Implications for Fibrosis Modelling

Currently two main approaches are used to represent fibrotic remodeling: (1) modification of the
diffusion tensor in the regions where fibrosis is present [20] and (2) introduction of real obstacles or
internal boundary conditions (this study, [19]). Although, in our view approach (2) can potentially
better represent texture of the tissue and better reproduce mechanisms of initiation of arrhythmias,
its numerical implementation is much more challenging. In our paper we used approach (2), however,
our approach can also be applied for simulations performed using approach (1) in combination with
patient specific data in the following way. For some patients with cardiac myopathy a biopsy of
endocardial tissue is often taken. The bioptic tissue can be studied using histological methods and
a patient specific texture of fibrosis for this given patient is available. This texture can be input to
computer and fibrotic tissue can be modelled as obstacles, as we did in our paper. Then we can compute
the velocities of propagation for wave in three orthogonal directions and based on that calculate
diffusion coefficients as well as a rule for their modification. We illustrate it with a specific example.
We generated a fibrotic texture in a small 3D patch of cardiac tissue (Supplementary Materials Figure S1).
The preexisting anisotropy was 1:0.5:0.5 with respect to velocity. From studies of wave propagation in
3 orthogonal direction we found that for given fibrosis texture (50% fibrosis produced by obstacles of
0.75 mm × 0.25 mm) decrease in velocities can be reproduced by decrease in diffusion coefficient by
1.75, 2.08, 2.08 for the longitudinal and 2 transversal directions. Thus if one wants to introduce effect of
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such fibrosis to the large scale model, the diffusion coefficients in fibrotic regions should be reduced by
such factors, e.g., instead of 1:0.25 :0.25 one should use 0.57:0.12:0.12.

In conclusion, in 3D idealised models for human myocardial tissue, we showed that inexcitable
fibrotic elements produce anisotropy of cardiac tissue that depends on the fibrosis percentage, obstacle
elongation and tissue depth. The anisotropy results from zig-zag propagation depending on the
elongation of fibrosis elements. We showed that a threshold fibrosis density to stop excitation
propagation depends on the obstacle length and tissue depth.

Supplementary Materials: The following are available online at http://www.mdpi.com/2227-7390/8/8/1352/s1,
Figure S1: Electrical wave propagation in a model with structural fibrosis and a reduced model simulating
propagation timing in the fibrosis tissue. Table S1: Electro-diffusion coefficients (D), anisotropy (longitudinal to
transverse ratio) and conduction velocity (CV) in the models with structural fibrosis and corresponding reduced
model.
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Abstract: The effects of two cardiomyopathy-associated mutations in regulatory sarcomere protein
tropomyosin (Tpm) on heart function were studied with a new multiscale model of the cardiovascular
system (CVS). They were a Tpm mutation, Ile284Val, associated with hypertrophic cardiomyopathy
(HCM), and an Asp230Asn one associated with dilated cardiomyopathy (DCM). When the molecular
and cell-level changes in the Ca2+ regulation of cardiac muscle caused by these mutations were
introduced into the myocardial model of the left ventricle (LV) while the LV shape remained the
same as in the model of the normal heart, the cardiac output and arterial blood pressure reduced.
Simulations of LV hypertrophy in the case of the Ile284Val mutation and LV dilatation in the case of
the Asp230Asn mutation demonstrated that the LV remodeling partially recovered the stroke volume
and arterial blood pressure, confirming that both hypertrophy and dilatation help to preserve the LV
function. The possible effects of changes in passive myocardial stiffness in the model according to
data reported for HCM and DCM hearts were also simulated. The results of the simulations showed
that the end-systolic pressure–volume relation that is often used to characterize heart contractility
strongly depends on heart geometry and cannot be used as a characteristic of myocardial contractility.

Keywords: mathematical modeling; cardiac mechanics; multiscale simulation; cardiomyopathies;
left ventricle remodeling

1. Introduction

The inherited cardiac diseases, hypertrophic (HCM) and dilated (DCM) cardiomyopathies, can be
caused by mutations in genes encoding sarcomere proteins expressed in heart muscle. At least
31 mutations in the TPM1 gene encoding regulatory protein tropomyosin (Tpm) are associated with
HCM, DCM, or, more rear, left ventricular non-compaction [1–3]. HCM is characterized by a thickening
of the left ventricular (LV) wall occurring in the absence of other diseases. This remodeling often
results in a decrease in the volume of LV cavity and obstruction of the LV outflow tract. DCM is
characterized by an increased volume of the LV cavity and a reduced ejection fraction in the absence of
coronary artery diseases. The remodeling of the LV geometry is believed to play an adaptive role in
the protection of the heart function despite impaired myocardial mechanics [4]. Changes in passive
mechanical properties of LV myocardium upon HCM and DCM were also found [5–7].

Tpm is a coiled-coil dimer of parallel α-helices that serves as a gatekeeper in Ca2+ regulation of the
actin–myosin interaction in sarcomeres of striated muscles. The Tpm molecules bind to each other in
a head-to-tail manner and form a continuous strand located in a helical groove on the surface of an actin
filament. The strand controls the availability of actin sites for the binding of motor domains of myosin
molecules—myosin heads. Another regulatory protein, troponin (Tn), binds Tpm in a 1:1 stoichiometry
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and forms, together with the fibrillary actin and Tpm, a regulated thin filament. Tn controls Tpm
movement with respect to the axis of an actin filament in a Ca2+-dependent manner [8,9]. The regulation
of muscle contraction is highly cooperative: relatively small changes in intracellular Ca2+ concentration
cause large changes in force and actin–myosin ATPase rate. Modeling [10–12] suggests that the local
movements of a stiff Tpm strand (caused by Ca2+ binding to Tn or myosin binding to actin) are
transmitted to neighbor parts of the strand, providing high cooperativity.

Tpm mutation Asp230Asn is associated with DCM, while the Ile284Val one is associated with
HCM. Both significantly change the Ca2+ regulation of the myosin–actin interaction measured in
the in vitro motility assay or experiments with single cardiomyocytes [13–15]. These molecular and
cellular level changes are believed to underlie the impairment of the heart function. Two questions
remain unanswered: (1) how the changes in the actin–myosin interaction at the molecular and cellular
levels caused by the Tpm mutations affect the pumping function of the heart and the LV particularly;
and (2) how does the remodeling of the LV wall associated with the cardiomyopathies change the heart
function? To address these questions, we performed a computer simulation of the heart mechanics
using a recently developed multiscale LV model [16] incorporated into a simple lumped parameter
model of circulation [17]. A model of myocardial mechanics used in the multiscale model was described
previously [18]. It describes all major mechanical features of cardiac muscle including the force–velocity
and stiffness–velocity relations, tension responses to step-like and ramp changes in muscle length,
high cooperativity of Ca2+-force relation, and its length-dependence, etc. Here, we used available
experimental data to modify model parameters to account for the changes in the Ca2+ regulation of
myocardial mechanics at the molecular and cellular levels caused by the cardiomyopathy-associated
Tpm mutations. Then we simulated the effect of these changes on the movement of the LV wall during
heartbeats. We also simulated the effects of remodeling of the left ventricle—hypertrophy and stenosis
of the outflow tract for the Ile284Val mutation and the dilatation for the Asp230Asn one—on the
calculated cardiac output. The effects of changes in the passive myocardial stiffness associated with
HCM and DCM [5–7] were also estimated.

2. Materials and Methods

2.1. Cardiac Muscle Mechanics and Regulation

A model of cardiac muscle mechanics was described in detail previously [18]. The myocardium
was treated as an anisotropic incompressible material with passive elastic and active stress components.
Passive elastic stress was a sum of an isotropic hyper-elastic part and a part caused by the tension
of titin filaments in sarcomeres. The overall passive stiffness was highly non-linear and anisotropic.
The active tension was essentially one-dimensional acting along the axis of muscle fibers. It depended
on two molecular variables that characterize the actin–myosin interaction: the fraction of myosin heads
bound to actin n, and their ensemble averaged distortion δ. These cell-level variables were defined
by a system of kinetic ordinary differential equations (ODE) specifying the interactions of contractile
and regulatory proteins. Regulation of the contraction was determined by kinetic variables A1 and A2,
which represent the fractions of available myosin binding sites on actin in the overlap zone and outside
this zone, respectively. The kinetic equations for the variables accounted for the Ca2+ regulation of
the thin filaments. The balance equation for Ca2+ concentration in cytoplasm included the terms
of Ca2+ influx (set as a given function of time), Ca2+ binding to troponin and to other cytoplasmic
proteins, and Ca2+ uptake from cytoplasm. Variation of the average micro-distortion depended on
the sliding velocity of the myosin and actin filaments, thus being defined by the macroscopic strain
rate tensor. The full set of equations describing the passive and active stress components in terms
of continuum mechanics and the kinetic equations for the interaction of contractile and regulatory
proteins and Ca2+ dynamics are given in [18] and Appendix A. For the values of the model parameters,
see Supplementary Materials Table S1.
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2.2. Geometry of the Left Ventricle

The LV was approximated by a body of rotation with a shape and distribution of the fiber
orientation similar to those observed in human hearts. Despite the axial symmetry of the LV model,
all three strain components—radial, axial and angular—were present, so that the ventricle was able
to expand, contract, and twist during a heartbeat cycle. The fiber angle with respect to a plane
perpendicular to the axis of symmetry changed linearly from +80◦ at the endocardium to −55◦ at
the epicardium. To describe an increase in ventricular stiffness near its base and the peculiarities of
ventricular anatomy near the apex, an additional anisotropic elastic stress of circumferential collagen
fibers was added to the stress tensor in the base, and an isotropic elastic stress term depended on
the number of bound myosin heads was added in the apex to account for the fiber disorder. The LV
model used here was described in detail previously [16,17] (see also Appendix A and Supplementary
Materials Table S2).

2.3. Model of Circulation

A lumped parameter model of systemic and pulmonary circulations that included the LV ventricle
model treated the atria and the right ventricle as viscoelastic reservoirs with non-linear passive and
time-varied active stiffness and viscosity [17]. Pressures and blood flows in different parts of the
vascular bed were described by a system of ODEs. The compliances, hydraulic and inertial resistances
of aorta, large systemic and pulmonary arteries and veins, and the resistances of the systemic and
pulmonary microcirculation were parameters of these equations. These parameters were set up to
describe the characteristic values and the time course of the pressures, volumes, and blood flows in
different parts of the CVS of healthy humans. The model also accounted for changes in the inertial
and hydraulic resistance upon constrictions of the left ventricular outflow tract and was capable of
describing the changes in pressures caused by aortal valve stenosis of different severity. The model
was described in detail previously [17] (see also Appendix A and Supplementary Materials Table S3).

2.4. Numerical Simulation and the Model Validation

The finite element (FE) method formulated in small increments was implemented to solve the
problem, as described in detail [16,17]. Triangular FEs with linear displacement interpolation were
used. The incompressibility equations were set up and solved for every two triangles connected into
a quadrilateral element.

The CVS model used here was validated thoroughly. Our cell-level model of myocardium
reproduced a large set of uniaxial experiments describing tension time courses and calcium transients
in isometric twitches and load-dependent relaxation in mixed isometric/isotonic modes of contraction
correctly. Validation of the model was presented in detail [18]. Our CVS model, the choice of the
parameters for the hemodynamics block of the model and the comparison of hemodynamic values
(ventricle and atrial pressures and volumes, pressures in different vessels, blood flow through the
mitral valve) was discussed and validated [17]. Not only did the model reproduce typical time-courses
of hemodynamical values in healthy humans correctly, but it also was successfully used to simulate the
aortic and mitral valve stenosis and insufficiency. The results of the numerical research matched the
data of clinical guidelines for the classification of the valves pathologies quantitatively. The numerical
methods implemented here are commonly used and have been validated for the convergence, which was
checked by variation of the time-step and the size and number of the FEs [16,17]. Local strains of our
simulated axisymmetric left ventricle fit clinical data [16].

2.5. Modeling Cell-Level Effects of Two Cardiomyopathy-Associated Mutations

We assumed that the Asp230Asn and Ile284Val Tpm mutations did not affect the kinetics,
the unitary force, and the unitary myosin displacement during its interaction with actin. The kinetics of
Ca2+ release and uptake in myocardial cells was also assumed to be the same as in normal myocardium.
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Only the parameters of the equations that describe Ca2+ binding to Tn, strain-dependence of the
binding, and the number of myosin filaments per cross-section area in the myocardial model were
changed to simulate the effects of the mutations.

Sequeira et al. [15] studied the Ca2+–force relationship in single permeabilized myocardial cells
from the LV of a patient with HCM-associated Ile284Val Tpm mutation and healthy donors. They had
found that maximal tension at saturating Ca2+ concentration decreased by approximately 55% upon the
Ile284Val Tpm mutation, while the Ca2+ concentration required for half-maximal activation decreased
by a third. Besides, the length-dependent activation [19] in the cells from the HCM patient was
significantly reduced as compared to that in healthy donors [15]. The maximal sliding velocity of
reconstructed thin filaments containing Ile284Val Tpm in vitro was the same as of those with wild-type
(WT) Tpm [20]. To simulate these experimentally observed changes, we decreased the density of
myosin filaments per cross-section area (leading to a decrease in the maximal active tension) and the
parameter of length-dependency of the activation while increasing the parameter of the Tn affinity for
Ca2+ (thus increasing Ca2+ sensitivity). The model parameters and changes introduced to simulate
the effects of the Tpm mutations listed above are described in Supplementary Materials Table S4.
The resulting dependencies of isometric tension and the activation level in the overlap zone A1 on
dimensionless Ca2+ concentration are shown in Figure 1 (red).

 
Figure 1. The dependence of the normalized isometric tension (a) and thin filament activation A1 (b) on
the dimensionless concentration of Ca2+ ions for the simulation of normal cardiac muscle (blue) and
of those with the Ile284Val (red) and Asp230Asn (green) tropomyosin (Tpm) mutations. Continuous,
dashed, and dotted lines correspond to sarcomere lengths of 2.2 μm, 2.0 μm, and 1.8 μm, respectively.

We could not find in the literature detailed characteristics of changes in the Ca2+ regulation
and mechanical properties of human cardiac muscle caused by the Asp230Asn Tpm mutation.
Several individuals from two families carrying the mutation have shown a mild or severe heart failure
with the ejection fraction reduced down to 20% and significantly increased end-diastolic diameter of
the left ventricle [13]. In vitro studies of the effects of the Asp230Asn Tpm mutation on Ca2+ regulation
of myosin ATPase in the presence of regulated thin filaments and Ca2+ binding to thin filaments have
shown a reduced Ca2+ sensitivity and decreased Ca2+ affinity for the thin filaments [13]. LV mechanics
in vivo and in situ at the cellular and molecular levels were studied in transgenic mice carrying the
Asp230Asn mutation [14]. A significantly reduced Ca2+ sensitivity and the cooperativity of Ca2+

regulation were found in vitro in the presence of the Asp230Asn Tpm mutation compared to WT
Tpm [14,21]. To simulate the experimentally observed changes, we varied two model parameters in the
regulation block of our model: the cooperativity parameter and the Tpm affinity for Ca2+. The details
are described in Supplementary Materials Table S4. The effects of these changes on the calculated
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dependencies of isometric tension and the activation level on Ca2+ in the overlap zone A1 are shown in
Figure 1 (green).

2.6. Modeling LV remodeling for HCM and DCM-Associated Tpm Mutations

The approximating geometry for the left ventricle shape was set up by the expressions from [22].
A detailed description of the approximation and the algorithm used to search for the unloaded initial
configuration were described previously [16].

Sequeira et al. [15] reported that the maximal end-diastolic thickness of the septal wall of the
hypertrophic left ventricle of the patient with the Ile284Val Tpm mutation was about 16 mm, while in
healthy donors, it was 13 mm. The average end-diastolic thickness of the ventricle wall in a large
population of healthy people was approximately 7 mm in men and 6 mm in women [23] with
maximal septal wall thickness being, on average, 8.2 mm in men and 6.9 mm in women. It was also
reported [24,25] that the end-systolic volume of the hypertrophic LV and the short radius of its cavity
are, generally, slightly decreased.

In order to simulate the remodeling accompanying HCM according to the above cited data, the
inner and outer end-systolic basal radii and the thickness of the ventricular apex were changed as
described in Supplementary Materials (Table S5, HCM). These changes resulted in the increase in the
end-diastolic LV wall thickness to 11 mm from 6 mm in the model of the normal LV.

To simulate ventricular dilatation caused by the Asp230Asn Tpm mutation, we changed the
near-end-systolic geometry in accordance with the data reported for the transgenic mice [14].
In particular, the parameter choice was based on the relative value of the increase in the end-diastolic
size and volume of the LV cavity of the mice. The changes in the model parameters made to simulate
DCM caused by the mutation are specified in the Supplementary Materials (Table S5, DCM).

2.7. Modeling Changes in Passive Myocardial Stiffness Accompanying HCM and DCM

In the simulation of the LV remodeling described above (Section 2.6), no changes in the passive
myocardial stiffness accompanying HCM or DCM were taken into account. There are no data on
the passive properties of the LV myocardium associated with the Tmp mutations simulated here.
However, there are clinical research data for similar HCM and DCM cases. A decrease in the titin-based
stiffness in patients with the end-stage heart failure caused by nonischemic DCM was found [5].
These changes correlated with an increased expression of the long N2BA titin isoform in DCM
myocardium as compared to its expression in normal myocardium, where the shorter N2B isoform was
mainly expressed. Interestingly, no changes in the strain–stress diagram were found after removing
the titin stress component by high ionic strength solutions. To reproduce these DCM data in our model,
we increased the contour titin length [26] from 0.35 μm in normal myocardium to 0.725 μm in DCM
myocardium, leaving the isotropic stress–strain relation the same as in normal myocardium.

In clinical research, the myocardial stiffness estimated by the measurement of shear wave velocity
was 2–3 times higher in HCM patients than in healthy volunteers [7]. In rats with LV hypertrophy
caused by aortic banding, titin stiffness increased significantly, while non-titin components showed
only the slightest increase [6]. As the data are controversial, we tested the effects of an increase in each
of two components of passive myocardial stiffness: a twofold increase in the isotropic extracellular
stiffness or a decrease in titin contour length (0.24 μm instead of 0.35 μm in normal myocardium model).

3. Results

3.1. Simulation of Hemodynamic Changes Caused by the Asp230Asn and Ile284Val Tpm Mutations Without
the LV Remodeling

To understand how the cell-level changes in mechanical properties of cardiac muscle caused by
the Tpm mutations might affect the heart function, we simulated steady-state heartbeats at a rate of
60 heartbeats per min by the model with the default ‘normal’ LV size and shape [16,17], while the
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model parameters of Ca2+ regulation were changed as described in Section 2.5 (see also Supplementary
Materials, Table S4) and shown in Figure 1. All other parameters of the model were the same as those
for the normal heart model. The simulations performed with the model parameters corresponding to
the normal right ventricle showed blood redistribution from the pulmonary circulation to the systemic
one and a significant LV overfill. To overcome this problem in the absence of available data regarding
changes in the right ventricle geometry and function caused by the mutations, we decreased the
parameter of maximal isovolumetric pressure for the right ventricle to obtain the same end-diastolic
LV volume as that in the normal heart model. The parameter was decreased from 85 to 70 mm Hg for
the simulation of the Ile284Val Tpm mutation and to 60 mm Hg for the case of the Asp230Asn one.
The duration of the right ventricle systole remained unchanged for simplicity. The hemodynamic
variables obtained during the heartbeat simulations are shown in Figure 2.

 
Figure 2. The results of the simulations of heartbeats for model of the normal (Norm) left ventricle (LV)
cardiac muscle and those with the Ile284Val (hypertrophic cardiomyopathy, HCM) and Asp230Asn
(dilated cardiomyopathy, DCM) Tpm mutations. VRV, VLV are volumes of the right and left ventricles,
respectively; PA, PLV, PRV, and PPA are pressures in aorta, left and right ventricles and pulmonary
artery, respectively. The color code is shown on top of the plots.

The end-diastolic and end-systolic LV volumes for the model of the normal heart were 127 mL
and 45 mL, respectively, while the ejection fraction was 65%. These hemodynamic characteristics as
well as the systolic (121 mm Hg) and diastolic (81 mm Hg) aortic pressures were close to those reported
for healthy humans. The simulation of heartbeats in the presence of the Ile284Val Tpm mutation
associated with HCM showed a mild reduction in the heart performance: the stroke volume and
the rejection fraction reduced to 75 mL and 59%, respectively, while the systolic and diastolic aortic
pressure decreased to 105 mm Hg and 75 mm Hg, respectively (Figure 2, HCM). The simulations of
the effect of the Ile284Val Tpm mutation also showed a prolongation of LV systole from 189 ms in the
normal heart model to 253 ms. Simulation of the effects of the Asp230Asn Tpm mutation resulted
in more severe hemodynamic changes. The stroke volume and the LV ejection fraction reduced to
65 mL and 51%, respectively. The aortic blood pressure was also decreased compared to that in the
simulations with the normal LV and was equal to 98/65 mm Hg (Figure 2, DCM).

3.2. Changes in Ca2+ Transients Caused by the Tpm Mutations

The changes in the cell-level model parameters caused by the Tpm mutations affected the time
course of the intracellular variables describing myocardial activation, as shown in Figure 3.
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Figure 3. The time course of the normalized Ca2+ concentration in the cytosol (c), the level of activation
of the Tpm–Tn (troponin) system in the overlap zone of sarcomeres (A1), and the fraction of myosin
heads bound to actin (n) in a mid-wall finite element located near the LV equator. The results obtained
in the normal LV model (Norm) and those with normal LV geometry and cell-level parameters
characteristic for the HCM and for DCM Tpm mutations are shown.

In the HCM model, the peak systolic values of A1 and n increased compared to their normal
values, while the Ca2+ peak decreased (Figure 3, HCM). These changes are caused by the shift of the
force-Ca2+ toward lower Ca2+ concentration (Figure 1) and by a reduction of the free intracellular Ca2+

concentration due to its binding to Tn. In contrast, in the DCM model, the peaks of A1 and n were
reduced, while the peak of the free Ca2+ concentration was enhanced (Figure 3, DCM).

3.3. Simulation of Hemodynamic Changes Caused by the Tpm Mutations and the LV Remodeling

The end-diastolic and end systolic shapes of the normal model LV and those with DCM and HCM
are shown in Figure 4.

The model of dilated LV with the Asp230Asn Tpm mutation showed higher end-diastolic
and end-systolic volumes than those of the normal LV (Figure 4). The fiber strain in the DCM LV model
was noticeably smaller than in the normal LV model. In contrast to DCM that caused more uniform
distribution of sarcomere length than in the normal LV model, the model of HCM LV was characterized
by a higher transmural difference in sarcomere length. This resulted in very short sarcomeres at the
end of systole in the subepicardium.

The twist of the LV apex with respect to the base for the model of normal LV between systole
and diastole was 16.3◦. It decreased to 6.4◦ for the DCM model and increased to 37.9◦ for the HCM
model. The higher twist may be responsible for the sarcomere length heterogeneity observed in the
HCM simulation (Figure 4). We have also measured the global longitudinal strains (GLS) of the
simulated LVs with the standard procedure used in 2D echocardiography. In simulations, GLS was
decreased moderately in HCM LV (−15.1%) and drastically in DCM LV (−11.1%) compared to the
value of approximately 18.7% for normal LV. The animations showing the changes in the LV shape
during a heartbeat are given in the Supplementary Materials (Video S1).

The results of the simulation of the effects of the Tpm mutation and the LV remodeling (dilatation
for the Asp230Asn mutation and hypertrophy for the Ile284Val one) on systemic and pulmonary
hemodynamics are shown in Figure 5.
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Figure 4. The end-diastolic (top) and end-systolic (bottom) LV geometry for the models of the normal
(Norm), dilated (DCM), and hypertrophic (HCM) LV obtained during the simulations. The color code
shows sarcomere length.

 

Figure 5. The results of simulations of hemodynamic variables during a heartbeat for the model of
normal LV myocardium and normal LV geometry (a) and those with the DCM- and HCM-associated
Tpm mutations and LV remodeling (b,c,d). (b) The cell level effects of the Asp230Asn TPM mutation
were combined with LV dilatation as described in Methods; (c) the cell-level effects of the Ile284Val
Tpm mutation were combined with LV hypertrophy as described in Methods; (d) the same as (c) plus
the stenosis of the LV outflow tract. The color codes for the pressures and volumes are shown.

90



Mathematics 2020, 8, 1169

An increase in the volume of the LV cavity (dilatation) in the model with the Asp230Asn Tpm
mutation led to partial compensation of a decrease in the LV performance caused by the changes in Ca2+

sensitivity (Figure 5b). The stroke volume and the aortic blood pressure reduced, although remaining
close to those in the normal heart model (70 mL, 107/71 mm Hg versus 82 mL and 121/81 mm Hg,
respectively) while the ejection fraction was reduced significantly to 39% (compared to 65%).

The LV hypertrophy was accompanied by an increase in passive LV stiffness: at a ’normal’
end-diastolic LV pressure (EDLVP) of 5.3 mm Hg, the LV volume was only 92 mL. Our simulation of the
remodeled LV was performed with the ‘normal’ initial values of the hemodynamic variables (excluding
the LV volume) and the ‘healthy’ right ventricle (default values of E3RV, Table S3). Such conditions
resulted in an increased LV preload of 8.6 mm Hg and the end-diastolic volume of 105 mL. Simulation of
the effect of LV hypertrophy for the HCM-associated Ile284Val Tpm mutation also resulted in a more
complete recovery of the hemodynamic parameters (Figure 5c). The aortic pressure of 120/80 mm Hg
and the stroke volume of 79 mL were close to those calculated for the normal heart model (121/81 mm Hg,
82 mL), while the ejection fraction increased to 75%. When the stenosis of the LV output tract (maximal
orifice area 1 cm2 at aortic area of 3 cm2) was taken into account in the model of HCM caused by the
Tpm mutation, the peak LV systolic pressure increased up to 184 mm Hg, while the aortic pressure
(112/79 mm Hg) and the stroke volume (78 mL) reduced slightly compared to the HCM model without
the stenosis (Figure 5d). The peak pressure gradient (72 mm Hg) was similar to that in a patient with
this mutation [15].

As one would expect, a decrease in titin stiffness in the LV myocardium at DCM led to a slight
increase in the end-diastolic LV volume at fixed values of end-diastolic pressure and to an increase in
the stroke volume and arterial blood pressure. An increase in any component of the passive myocardial
stiffness in the LV myocardium at HCM led to a further impairment of LV diastolic function and
decreased LV performance (Table 1).

Table 1. The effects of passive myocardial stiffness on the model LV performance at HCM and DCM.

LV Hemodynamic
Characteristics

HCM + Normal
Passive

Stiffness

HCM + Stiff
Titin

Component

HCM + Stiff
Isotropic

Component

DCM +Normal
Passive

Stiffness

DCM + Soft
Titin

Component

Low Preload

End-diastolic pressure,
mm Hg 6.4 4.3

Peak pressure, mm Hg 115.2 112.6 92.5 105.4 108.5

End-diastolic volume,
mL 92.2 88.3 73.2 157.5 165.1

Stroke volume, mL 67.7 64.1 48.3 64 66.1

Ejection fraction, % 73 73 66 41 40

Average Preload

End-diastolic pressure,
mm Hg 8.7 5.1

Peak pressure, mm Hg 128.4 123.1 99.3 110.7 113.2

End-diastolic volume,
mL 104.9 99.2 80 169.8 176.6

Stroke volume, mL 79 74 54.8 67.3 68.9

Ejection fraction, % 75 75 69 40 40

91



Mathematics 2020, 8, 1169

Table 1. Cont.

LV Hemodynamic
Characteristics

HCM + Normal
Passive

Stiffness

HCM + Stiff
Titin

Component

HCM + Stiff
Isotropic

Component

DCM +Normal
Passive

Stiffness

DCM + Soft
Titin

Component

High Preload

End-diastolic pressure,
mm Hg 11.5 5.8

Peak pressure, mm Hg 141.1 133 108.6 115.2 118.3

End-diastolic volume,
mL 117.9 109.5 88.8 181.5 191

Stroke volume, mL 89.9 83.1 63 70.2 72.1

Ejection fraction, % 76 76 71 39 38

3.4. Simulation of the Effects of the Tpm Mutations and the LV Remodeling on the Pressure-Volume Loops

The LV pressure–volume loops (PV-loops) obtained at different preloads are often used to estimate
the systolic and diastolic functions of the heart chambers. In particular, the slope of the line plotted
through the end-systolic point of the loops, the so-called end-systolic pressure–volume relationship
(ESPVR) is believed to characterize the LV contractility [27]. Figure 6 shows the PV-loops obtained in
the simulations of normal and cardiomyopathic LVs. To probe the LV performance at various preloads,
initial blood pressures in systemic and pulmonary veins were varied.

Figure 6. The LV pressure–volume loops obtained from the simulation of the LV with normal cardiac
muscle and normal geometry (blue) and the simulations of DCM (green) and HCM (red). Different loops
were obtained at different preloads. (a) PV loops obtained with normal LV geometry; (b) PV loops
obtained for the remodeled LVs with DCM and HCM at default passive myocardial stiffness. The dashed
straight lines are the ESPVR lines plotted for each simulation case.

Both HCM and DCM resulted in a decrease in the slope of ESPVR if the LV remodeling was
not considered, and only changes in myocardial properties caused by the Tpm mutations were
taken into account (Figure 6a. This agrees with the idea that the slope characterizes myocardial
contractility [28]: the DCM-associated mutation decreases the Ca2+ sensitivity of active tension, while
the HCM-associated mutation decreases the maximal active tension and length-dependent activation
(Figure 1).

LV dilatation led to a further decrease in the ESPVR slope compared to the effect of the Asp230Asn
Tpm mutation alone (Figure 6b, green). The slope of ESPVR in the DCM simulations decreased by
a factor of approximately 2.5 compared to the normal LV model. On the contrary, the LV hypertrophy
(Figure 6b, red) dramatically increased the ESPVR slope compared to that in the absence of hypertrophic
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remodeling and even compared to the slope in the simulations of the normal heartbeat, despite impaired
myocardial properties.

4. Discussion

4.1. Cell-Level Changes in Ca2+ Regulation and Cardiac Function

When the molecular-level effects of the Asp230Asn Tpm mutation [13,14] were introduced into our
myocardial model, the amplitude of Ca2+ transient increased as was observed in transgenic mice [14],
while the activation level (A1) and the fractions of actin-bound myosin heads (n) decreased compared to
the model of normal heart (Figure 3, DCM). When changes in Ca2+ regulation found in myocardial cells
with the HCM-associated Ile284Val Tpm mutation [15] were simulated, the amplitude of Ca2+ transient
decreased, while the fraction of actin bound myosin heads increased (Figure 3, HCM). These effects
result from a combination of several factors: change in Ca2+ sensitivity of the thin filaments caused by
the mutations (Figure 1) and Ca2+ binding to Tn affecting the free Ca2+ concentration. Despite the
difference, changes in the cell-level model parameters corresponding to those caused by both the HCM
and DCM Tpm mutations decreased arterial blood pressure, stroke volume, and ejection fraction
compared to the model of normal LV (Figure 2).

4.2. Effects of LV Remodeling

To simulate the effect of the remodeling accompanying DCM or HCM, we changed the LV geometry
in the model according to available data for the Asp230Asn and Ile284Val Tpm mutations, respectively.

The LV dilatation (Figure 4, DCM) partially, although not completely, compensated for the loss
of the stroke volume caused by the Asp230Asn Tpm mutation (Figure 5b). In this case, a partial
restoration of the heart function was accompanied by a further reduction in the ejection fraction to
a value close to those found in members of two families with the mutation [13]. Compensation of the
stroke volume at a decreased ejection fraction was also observed in transgenic mice [14]. We suppose
that the compensation occurred due to the increase in the end-diastolic volume of the LV, which
provided the normal stroke volume despite the Starling’s law of the heart estimated by the PV loops
being violated (Figure 6b green).

A decrease in passive myocardial stiffness due to an increase in the contour length of titin in the
model had only a slight effect on the heart performance, enhancing the compensatory effect of LV
dilation a little (Table 1). The results of the simulation show that the changes in cardiac titin observed
in myocardial samples from DCM patients [5] might be a part of the LV remodeling that helps preserve
its function.

When the LV hypertrophy that accompanied the Ile284Val Tpm mutation was included in
the LV model, it resulted in nearly full compensation of the stroke volume and the aortic blood
pressure at preserved initial hemodynamic conditions, which provided an increased preload of the LV.
At the ‘normal’ values of the preload, no compensation was observed. When stenosis of the outflow
tract, which accompanied the LV hypertrophy in a patient with the Ile284Val Tpm mutation [15],
was accounted for, the stroke volume and the ejection fraction were close to their values for the model
of normal LV at elevated preload (Figure 5c,d). The results of our simulations suggest that the wall
thickening is able to compensate for the reduction of active force and the impaired length-dependent
Ca2+ activation caused by the Ile284Val Tpm mutation. However, an increase in the isotropic or
anisotropic (titin) component of passive myocardial stiffness along with the wall thickening led to an
even more severe impairment of LV diastolic and systolic function (Table 1). The hypertrophy also led
to heterogeneity in sarcomere length distribution across the LV wall (Figure 4) and to an increase in the
LV twist.

Significant values of the decrease in the LV twist and absolute values of GLS in our simulation of
the DCM LV were similar to those observed in DCM patients [29–31]. The decrease in the LV GLS
obtained here was also close to that in DCM patients [30–32]. An increase in the LV twist compared to
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control was observed in patients with HCM. The observed increase varied, being either significantly
lower than that calculated here [33,34] or close to it [30]. The decrease in the calculated GLS was also
similar to that in HCM patients [30,34–36]. An increase in the isotropic (extracellular) or anisotropic
(titin) component of the passive myocardial stiffness in the HCM LV model worsened the LV function by
impairing its diastolic function (Table 1). The increase in passive stiffness together with the thickening
of the LV wall itself are the factors impairing LV diastolic function.

4.3. PV Loops Depend on Not Only on Myocardial Contractility but Also LV Geometry

Our simulation of PV loops for the normal and cardiomyopathic LVs resulted in the following
conclusions and suggestions.

Firstly, the ESPVR slope does characterize the contractile properties of cardiac muscle at fixed
LV geometry, as was initially suggested by Suga and Sagawa [27]. The simulated ESPVRs had lower
slopes for the cases of both HCM-and DCM-associated mutations in not remodeled LV compared
to those for the normal LV model (Figure 6a). The decrease in the ESPVR slope was caused by the
impaired properties of the muscle: the decreased Ca2+ sensitivity for the DCM mutation and the
decreased maximal force with a simultaneous reduction in the length-dependence of Ca2+ activation
for the HCM mutation.

Secondly, in the simulations of the dilated LVs with the Asp230Asn Tpm mutation, the ESPVR
slope was even lower than in the LV with the same mutation and normal geometry. The decrease in
the ESPVR slope by a factor of 2.5 in the simulations of the DCM LVs compared to the model of normal
LV is similar to that observed [14] for WT and transgenic mice. A possible explanation for the further
reduction in ESPVR is as follows. An enlargement of the LV cavity at a normal wall thickness leads to
a decrease in the end-systolic myocardial stress at the same end-systolic blood pressure.

Thirdly, the LV hypertrophy that accompanies the Ile284Val Tpm mutation (in contrast to the effects
of the LV dilatation) led to an even steeper ESPVR slope than that obtained for the normal LV model
(Figure 6b. We were not able to find any PV-loop data for this particular mutation, but an increase in
the ESPVR slope for the patients with heart failure, concentric HCM, and non-impaired ejection fraction
was reported [37,38]. We suppose that the increase in the ESPVR slope for the HCM LV, compared to
that with the Ile284Val Tpm mutation and normal geometry, was caused by an increase in the thickness
of the LV wall and, possibly, by the enhanced Ca2+ sensitivity of cardiac muscle. From our results and
published clinical data, we can suggest that the ESPVR slope is strongly affected by changes both in the
contractile properties of the myocardium and the LV geometry and cannot be used as a characteristic
of myocardial contractility for hypertrophic LVs.

4.4. Relation to Previous Works

A number of models were suggested to simulate heart work in health and disease. A simple 0D
lumped parameter model [39] was used to simulate the heartbeats of normal and DCM hearts. In this
model, the myocardial dysfunction was described by a decrease in the end-systolic LV elastance, which
is a value that is difficult to relate to the specific changes in cardiac muscle characteristics underlying
DCM. A multiscale model of the CVS containing an accurate cell-level description of myocardial
electromechanics and simple thin-wall spherical approximation of the ventricles [40] was applied to
study the ventricular contractility at different preload and calcium kinetics in myocytes. The model
was further validated [41], being able to reproduce some experimental data including the effects of an
anesthetic on hemodynamics through its influence on the Ca2+ sensitivity of myofilaments. A more
sophisticated 3D electromechanical model of a DCM heart was used to estimate the efficiency of an
LV-assist device [42]. Although these authors used more realistic anatomy of the ventricles than the
one in our model and included electrophysiological processes, the description of the active tension was
too simplified to reproduce the changes in active tension and its regulation caused by the mutations.
Several models were suggested to describe heart remodeling (see reviews [43,44]). Some models of
this kind describe electromechanics of failing heart including concentric and eccentric hypertrophy.
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For example, model [45] described electrophysiology, ventricle anatomy, and passive myocardial
mechanics in some detail, while the specification of active tension did not allow one to simulate the
effects of the Tpm mutations. A 3D simulation of the diastolic function of DCM heart that considered
its detailed remodeling including the changes in a number of sarcomeres in cardiomyocytes was
presented [46]. Concentric hypertrophy was simulated by a detailed 3D electromechanical model [47],
where cardiac muscle electrophysiology was described by a bidomain model and its mechanics were
specified by a detailed cardiac cell model [48]. The authors examined the effects of heart remodeling
(concentric hypertrophy) caused by aortic stenosis on heart performance and did not investigate any
effects of mutations of sarcomere proteins.

4.5. Limitations

Our simulation was based on a simplified axisymmetric LV model. The 3D models [49] are too
expensive computationally for a thorough investigation of the effects of the Tpm mutations. These effects
are caused by rather uniform cell-level changes in cardiomyocytes, so that a 2D approximation appears
to be sufficient for their simulation. Besides, no 3D data are available for the LV geometry of
patients with the Tm mutations considered here. For these reasons, the use of a model with reduced
dimensionally and detailed description of the cell-level mechanics and Ca2+ regulation seems to be
a reasonable simplification.

In our simulations, we did not take into account any alteration of the distribution of the orientation
of cardiac fibers in the LV wall as a long-time effect of HCM and DCM accompanying the remodeling
of the LV geometry [50,51]. This can be the reason for the discrepancy between our estimation of the LV
twist upon HCM and some clinical data. The absence of the right ventricle in our finite element model
may be another reason for the discrepancy in the LV twist calculation. It should also be noticed that the
LV remodeling was set in a straightforward manner without the consideration of any assumptions on
the kinetics of growth and/or structural rearrangement [43,44,46]. We also were not able to reproduce
possible alterations in myocardium electrical excitability and conductivity including the remodeling
of the gap junctions accompanying the cardiomyopathies [52], because our model did not contain
a description of myocardium electrophysiology.
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Appendix A

A.1. Cell Model of Myocardium [18]

Cauchy stress tensor T was specified by the following equation:

T =

(
∂Φ(I1, I2)

∂I1
+ I1

∂Φ(I1, I2)

∂I2

)
F− ∂Φ(I1, I2)

∂I2
F2 − pE + B(Ttit + TA) (A1)
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F is the Finger deformation tensor, I1, I2 are its first and second invariants;
E is the unit tensor, p is the Lagrange factor caused by incompressibility;
B is the anisotropy tensor equal to the tensor square of the unit vector

→
c f aligned with the direction of

muscle fibers in deformed muscle B =
→
c f ⊗ →c f .

The isotropic elastic strain energy Φ was taken in the form similar to that used by
Guccione et al. [53]:

Φ = a0exp
(
a1

(
(I1 − 3)2 − 2(I2 − 2I1 + 3)

))
, (A2)

where a0, a1 are constant parameters. The difference from the work [53] is the absence of anisotropic
part, which, in our model, was included only in the last term of the Equation (A1).

Ttit is the anisotropic passive tension of the intra-sarcomere cytoskeleton mainly caused by titin
filaments; TA is the active tension produced by the actin–myosin interaction. Titin tension was specified
by the equation based on the worm-like chain model [26].

Ttit =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
NM

6kBT
Lp

(
1
4

(
1− Ls−Ls0

Lc

)−2
+ Ls−Ls0

Lc
− 1

4

)
, Ls ≥ Ls0,

NM
9kBT
LpLc

(Ls − Ls0), Ls < Ls0.
(A3)

Ls and Ls0 are the deformed and reference sarcomere lengths, NM is the number of the myosin
filaments per unit cross-section area of muscle in its initial reference state; Lc is the total, or ‘contour’,
length of a titin molecule, Lp is so-called persistence length; kB and T are the Boltzmann constant and

absolute temperature. The deformed sarcomere length is described by the equation Ls = Ls0

√ →
c f 0G

→
c f 0,

where G is the right Cauchy–Green deformation tensor,
→

c f 0 is the unit vector aligned with fibers in
unstrained muscle.

Cross-bridge kinetics was based on the Lymn–Taylor cycle, in which a specific part of a myosin
molecule (myosin head) can be in a free state or attached to actin filament in two different ways:
a weakly bound and force generating strongly bound state. Thus, the active tension was specified as
TA = EcbNMNcbW(Ls)n(δ+ θh). Here, Ncb is the total number of myosin heads per one-half of a myosin
filament; W(Ls) is the length of the overlap zone of the thick and thin filaments in a half-sarcomere
normalized for its maximal value; Ecb is the constant cross-bridge stiffness, n is the probabilities of
a myosin head being attached to the actin filament, θ is the fraction of strongly bound cross-bridges
among n, and h is a cross-bridge distortion during transition from the weakly bound state to the
strongly bound one. The kinetic equations for n and θ are as follows

∂n
∂t

= f+(δ)(A1 − n) − f−(δ)n, (A4)

∂nθ
∂t

= H+(δ)n(1− θ) −H−(δ)nθ⇒ (H+, H− � f+, f−)⇒ θ =
H+(δ)

H+(δ) + H−(δ)
. (A5)

Here, f+, f−, H+, H− are kinetic rates that depend on ensemble-averaged cross-bridge distortion δ.
The equation for the normalized cross-bridge distortion δ′ = δ/h was

∂δ’
∂t

=
1
2h
∂Ls

∂t
− (A1 − n)

n
f+(δ’)δ’, (A6)

and the kinetic rates were set as

f+(δ’) = f 0
+

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1, δ′ ≤ 0,
δ’20

(δ0−δ’)2 , δ′ > 0,
, f−(δ’) = f 0

+

{
bcb + ccbδ’2, δ′ ≤ 0
bcb +

δ’
δ0−δ’ , δ

′ > 0,
H+(δ’)
H−(δ’)

= e−Δδ’. (A7)
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In Equation (4), A1 is the probability that a binding site of actin in the overlap region of the actin
and myosin filaments is in the open state for the myosin head. The similar probability for the region
outside the overlap zone was denoted by A2. The kinetics of these variables depended on c (Ca2+

concentration in cytoplasm normalized by ‘normal’ half-activation concentration c0
50), cooperativity

parameter m (the Hill coefficient), sarcomere length via parameter ks, and the number of strongly
bound cross-bridges via parameter kn. Wa is the length of the overlap zone normalized by the actin
length per half sarcomere.

∂A1

∂t
=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
α+

(
c(1−A1)

1
m − c50A1

1
m

(1+ks(Ls−Ls0)/Ls0)(1+knnθ)

)
, ∂Wa(Ls)

∂t ≤ 0,

α+

(
c(1−A1)

1
m − c50A1

1
m

(1+ks(Ls−Ls0)/Ls0)(1+knnθ)

)
+

∂Wa(Ls)
∂t

(A2−A1)
Wa(Ls)

, ∂Wa(Ls)
∂t > 0,

(A8)

∂A2

∂t
=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
α+

(
c(1−A2)

1
m − c50A2

1
m

(1+ks(Ls−Ls0)/Ls0)

)
+

∂Wa(Ls)
∂t

(A2−A1)
(1−Wa(Ls))

, ∂Wa(Ls)
∂t ≤ 0,

α+

(
c(1−A2)

1
m − c50A2

1
m

(1+ks(Ls−Ls0)/Ls0)

)
+

∂Wa(Ls)
∂t , ∂Wa(Ls)

∂t > 0,
(A9)

(
1 + kBCBCa

(c·c0
50+kBC)

2

)
∂c
∂t = ICa(t) − (Y1Ca/c0

50)(c2−c2
0)

c2·c0
50+Y2

2Ca
−

(
CTn/c0

50

)
∂(A1Wa(Ls)+A2(1−Wa(Ls)))

∂t . (A10)

α+ is a characteristic rate constant of the Ca-troponin; ICa(t) = I0
Ca(exp(−k1Cat) − exp(−k2Cat)) is

a given inflow of Ca2+ ions to the cell normalized by с0
50. The parameters of this block of the model

and their values are presented in Table S1.

A.2. Left Ventricle Approximation

LV approximation was set by the following expressions for Cartesian coordinates (r, z) through
the curvilinear coordinates (γ, ψ) with parameters ε, rin, rout, hin, and hout [16,22].

r = (rin + γ(rout − rin))(εcosψ+ (1− ε)(1− sinψ)),
z = (hin + γ(hout − hin))(1− sinψ) + (1− γ)(hout − hin).

(A11)

A.3. Hemodynamics Model [17]

Passive pressures of the right ventricle and the atria were described as follows.

PLAPas = E1LA ·
(
eE2LAVLA(t) − eE2LAV0LA + μa1

∂VLA(t)
∂t

)
,

PRA_Pas = E1RA ·
(
eE2RAVRA(t) − eE2RAV0RA + μa1

∂VRA(t)
∂t

)
,

PRV_Pas = E1RV ·
(
eE2RVVRV(t) − eE2RVV0RV

)
.

(A12)

Here, P**_Pas are passive elastic parts of chamber pressures, V** are their volumes, and V0**, E1, E2,
and μa1 are constant parameters. Subindices LA, RA, and RV stand for the left atrium, right atrium,
and right ventricle, respectively. Active pressures of the right ventricle and the atria were found from
ordinary differential equations. Due to the introduction of time delay with relaxation time τ and the
analogue of force–velocity equation, those described the pressure time-course more accurately than
the pressure–volume dependencies with time-dependent stiffness coefficients commonly used in other
lumped parameter models.

τ
∂PLA_Act(t)

∂t + PLA_Act(t) = FLA_Act(t) ·
(
μa2

∂VLA(t)
∂t + E3LA

)
,

τ
∂PRA_Act(t)

∂t + PRA_Act(t) = FRA_Act(t) ·
(
μa2

∂VRA(t)
∂t + E3RA

)
,

τ
∂PRV_Act(t)

∂t + PRV_Act(t) = FRV_Act(t) ·
(
μv

∂VRV(t)
∂t + E3RV

)
.

(A13)
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Here, P**_Act are active parts of chamber pressures, and E3, μv, and μa2 are constant parameters.
F**_Act depended on activation time-functions e(t) and on the volumes V providing the Starling’s law for
the atria and the right ventricle; kV, VMin, and VMax are the parameters for the pressure–volume relation.

FLA_Act = ea(t) ·
(
kV + (1− kV) ·

( VLA−VLA_Min
VLA_Max−VLA_Min

))
,

FRA_Act = ea(t) ·
(
kV + (1− kV) ·

( VRA−VRA_Min
VRA_Max−VRA_Min

))
,

FRV_Act = ev(t) ·
(
kV + (1− kV) ·

( VRV−VRV_Min
VRV_Max−VRV_Min

))
.

(A14)

Activation functions were set as follows

ea =

⎧⎪⎪⎨⎪⎪⎩
0.5

(
1− cos

(
2 (t−ta)π

Ta

))
, ta ≤ t < ta + Ta

0, otherwise,

ev =

⎧⎪⎪⎨⎪⎪⎩
0.5

(
1− cos

(
2 (t−tv)π

Tv

))
, tv ≤ t < tv + Tv

0, otherwise,

(A15)

where ta and tv are the times of contraction initiations for the atria and ventricles, respectively; and Ta,
Tv are the systole durations.

The full system of ordinary differential equations for other hemodynamic variables is

dVRV
dt = QiRV −QoRV,

dVRA
dt = QiRA −QiRV,

dVLV
dt = QiLV −QoLV + CLV

dPLV
dt ,

dVLA
dt = QiLA −QiLV, LiLV

dQiLV
dt + RiLVQiLV = PLA − PLV,

LoLV
dQoLV

dt + RoLVQoLV = PLV − PA1,
LA

dQA
dt + RAQA = PA1 − PA2,

QiRA = PV−PRA
RiRA

,

QiRV = PRA−PRV
RiRV

,

LoRV
dQoRV

dt + RoRVQoRV = PRV − PAPulm, CA1
dPA1

dt = QoLV −QA,
CA2

dPA2
dt = QA − PA2−PV

Rper
− PA2−PC

RC
,

CV
dPV
dt = PA2−PV

Rper
−QiRA,

CC
dPC
dt =

PA2−PC
RC

,

CAPulm
dPAPulm

dt = QoRV − PAPulm−PVPulm
RperPulm

,

CVPulm
dPVPulm

dt = QiLA +
PAPulm−PVPulm

RperPulm
.

(A16)

QiRV, QoRV, QiLV, QoLV, QiRA, and QiLA are blood flows through the tricuspid valve, pulmonary
valve, mitral valve, aortic valve, and the flows through systemic and pulmonary veins, respectively;
QA is the arterial flow. R and L are hydraulic and inertial resistances of the vessels and chamber
entrances (subindex i) and exits (subindex o); Rper and RperPulm are the peripheral vascular resistances
of systemic and pulmonary circulation systems; C represents the compliances of the vascular reservoirs
presented in the model; RC and CC characterize the viscoelastic properties of the systemic arteries.
Indexes A1, A2, V, APulm, and VPulm corresponded to the aorta, large arteries, systemic veins,
pulmonary arteries, and veins, respectively.
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A.4. Local Hydraulic Valve Resistances in the Cases of the Valve Pathologies

The equations for the flows through the aortic and mitral valves in Equation (A16) were modified
introducing the quadratic hydraulic valvular resistance and the dependencies of the resistances on
orifice area.

L∗∗ S0
S

dQ∗∗
dt +

(
R∗∗ + Rsq|Q∗∗|

)
Q∗∗ = Δp,

Rsq = CsqεReζsqS−2,

εRe =
5∑

i=0
bi(lg(Re))i,

ζsq =
(
Cζ

(
1− S

S0

)0.375
+ 1− S

S0

)2
.

(A17)

S is the orifice area, and S0 is an area of a completely open valve in healthy conditions; Re is the
Reynolds number, Cζ and bi are parameters.
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Abstract: Periodic traveling waves are observed in various brain activities, including visual, motor,
language, sleep, and so on. There are several neural field models describing periodic waves assuming
nonlocal interaction, and possibly, inhibition, time delay or some other properties. In this work
we study the influences of asymmetric connectivity functions and of time delay for symmetric
connectivity functions on the emergence of periodic waves and their properties. Nonlinear wave
dynamics are studied, including modulated and aperiodic waves. Multiplicity of waves for the
same values of parameters is observed. External stimulation in order to restore wave propagation in
a damaged tissue is discussed.

Keywords: neural field model; integro-differential equation; waves; brain stimulation

1. Introduction

1.1. Brain Activity and Periodic Travelling Waves

The brain displays a variety of highly nonlinear, complex dynamics across multiple spatial and
temporal scales [1]. About 86 × 109 neurons of the human brain entertain complex and fluctuating
interactions. Understanding the dynamics of these interactions and the mechanisms underlying their
control remains a technical and theoretical challenge. In other words, when healthy brain processes
evolve toward abnormal and pathological states as a result of disease, degeneration or traumatic injury,
how can a therapeutic intervention be used to reposition the control parameters and guide the dynamics
back toward a healthy state? These brain processes are described today as interacting networks of
nodes/hubs and edges which for the whole brain constitute the human connectome [2]. While the
connectome is focused on anatomical connections, the dynamics of the networks are represented
by functional connections (also called the dynome [1]). For example, brain functional connections
described as a graph explore how signals are transmitted along neuroanatomical pathways and interact
with local dynamics. Functional connections are often investigated via modeling [1]. One possibility
is to use mathematical models to identify how an outside intervention such as neural electrical
stimulation can modify local dynamics and how local dynamics will in turn affect other brain regions.

Cortical brain dynamics are investigated by means of periodic traveling waves (TW) characterized
by their speed and frequency [3]. They describe the distribution of electric potential in the brain cortex.
They are measured as a mean field potential (averaged macroscopic level). Propagating waves
are observed during various types of brain activity. They provide subthreshold depolarization to
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individual neurons and increase their spiking probability. According to Muller et al. [3], TW “travel
over spatial scales that range from the mesoscopic (single cortical areas and millimetres of cortex) to
the macroscopic (global patterns of activity over several centimeters) and extend over temporal scales
from tens to hundreds of milliseconds.” It has been proposed that TW mediate information transfer in
the cortex.

Propagating waves increase the probability of neuron firing due to depolarization of neuronal
membrane [4]. In [3] it was suggested that TW can be “spontaneously generated by recurrent circuits or
evoked by external stimuli and travel along brain networks at multiple scales, transiently modulating
spiking and excitability as they pass.” The phase relations between oscillations in different cortical
regions produce the TW, and depending on the distance, axonal conduction delays can reach up to tens
of milliseconds. These TW correlate with the subject’s performance, propagate in specific directions
and synchronize distributed cortical networks that are communicating [5].

Botella-Soler et al. [6] identified for each subject the set of intracranial contacts that showed
a larger percentage of detected events during slow wave cortical activity. They called these contacts
“hubs” because the slow wave events in their travel through the cortical networks seemed to have
a great probability of passing through the region close to the contact. Using probabilities, they were
able to reconstruct a preferential propagation network for each subject. Slow waves have been reported
to propagate across cortical areas at about 1m/s with multiple propagation paths and several points
of origin. It seems that the slow waves have a preference to start in the prefrontal cortex and to
end in posterior and temporal regions of the cortex. These waves appear to shape and strengthen
neuronal networks.

Let us also note that time delays are intrinsic to the dynamics of brain networks, nodes and edges.
Propagation speed along axons depends on axonal length and diameter. Conduction times along
neural circuits also depend on degree of fiber myelination. The introduction of time delays in models
can lead to significant changes in brain dynamics. They can be averaged or treated as distributed
delays. In this paper we address the question of the effects of these delays in the dynamics of periodic
cortical waves.

Thus, according to the biological observations, TW propagate in the cortex, activating and
coordinating different parts of the brain. In this work, we study some of their properties. In the next
section, we introduce the model. Then we present stability analysis which determines the conditions
of wave appearance. Their nonlinear dynamics will be discussed in Section 3.

1.2. Neural Field Model

Neural field models were first introduced in [7]. Periodic traveling waves are described by several
models (see [8–12] and Appendix A). In this work we consider one equation model with delay, and we
discuss two mechanisms of the emergence of such waves, which were not sufficiently investigated
previously. The first mechanism is related to the asymmetric connectivity functions [13], and the
second one is determined by the delay in the response function. It is known that the loss of stability
of the homogeneous in the space solution in this model does not lead to the bifurcation of periodic
waves [8]. We show that they still appear for some larger values of time delay. We consider the
one-dimensional neural field equation for the electric potential in the brain cortex written in the form

∂u
∂t

= D
∂2u
∂x2 + Wa − Wi − σu, (1)

where D is the diffusion coefficient; Wa and Wi are given by the expressions

Wa(x, t) =
∫ ∞

−∞
φa(x − y)Sa

(
u
(

y, t − |x − y|
qa

− τa

))
dy, (2)

Wi(x, t) =
∫ ∞

−∞
φi(x − y)Si

(
u
(

y, t − |x − y|
qi

− τi

))
dy (3)
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and characterize neuron activation and inhibition. These expressions describe the intensity of signal
coming from all points y to the point x; Sa(u) and Si(u) are smooth functions; qa and qi are the
excitation speeds; |x − y|/qa,i is the time delay due to the excitation propagation from the point y to
the point x; φa and φi are the connectivity functions,

φa(r) =

{
a1e−b1r , r > 0
a3eb3r , r < 0

, φi(r) =

{
a2e−b2r , r > 0
a4eb4r , r < 0

, (4)

where ai, bi are some positive constants. Response functions Sa(u) and Si(u) are non-negative,
non-decreasing functions usually considered as sigmoid-type functions; τa and τi are time delays
in neuron response to the activating and inhibitory signals. The last term on the right-hand side of
Equation (1) describes signal decay with a decay rate σ > 0.

Neural field models are often considered without the diffusion term in the studies of both
brain oscillations and traveling waves (see, e.g., [14–17]). In the case of small diffusion coefficients,
its influence is not essential [18]. It can describe the ephaptic effect [19], ion diffusion and gap junction.
The integral terms in Equation (1) characterize nonlocal neuron communication due to axons and
dendrites. The speeds qa and qi of electric impulse propagation along axons are of the order 2–4 m/s,
while the speed of wave propagation is one-two orders of magnitude less [20] (p. 213). Thus, we will
consider a large speed limit qa = qi → ∞:

∂u
∂t

= D
∂2u
∂x2 +

∫ ∞

−∞
(φa(x − y)Sa (u (y, t − τa))− φi(x − y)Si (u (y, t − τi))) dy − σu. (5)

Up to the diffusion term, which is not very essential for small diffusion coefficients, this model is
a particular case of the two equation model considered in [8]. If the kernels in the two equations are
the same, then the system can be reduced to the single equation.

Different neural field models describe the propagation of periodic traveling waves (see
Appendix A). In this work we will consider two other mechanisms of their emergence. One of them is
related to asymmetric kernels φa and φi, whose existence is confirmed by the experimental observations
and used in theoretical considerations [13,21]. Another one is determined by the secondary bifurcation
due to time delay for symmetric connectivity functions. Similarly to [8], we observe that the loss
of stability of the homogeneous in space stationary solution leads to the appearance of periodic
time oscillations independent of the space variable or of stationary periodic in space solutions.
Periodic traveling waves bifurcate in the instability region, and they are unstable close to the bifurcation
point. We will see that they can become stable under further change of parameters.

We studied the dynamics of the periodic waves, including their non-uniqueness for the same
values of parameters. This property seems to us important, since the co-existence of waves with
different frequencies is experimentally observed.

2. Stability

2.1. Linearization and Eigenvalues

In this section we will consider the Equation (5) on the interval 0 < x < L with periodic boundary
conditions. We extend the function u(x, t) by periodicity on the whole axis, −∞ < x < ∞, so that the
integrals in Equation (5) are well defined. Let u0 be a solution of the equation

φ∗
a Sa(u) + φ∗

i Si(u)− σu = 0,
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where φ∗
a =

∫ ∞
−∞ φa(x)dx, φ∗

i =
∫ ∞
−∞ φi(x)dx. Then u0 is a stationary solution of Equation (5).

Linearizing this equation about u0, we obtain the eigenvalue problem:

Dv” + S′
a(u0)e−λτa

∫ ∞

−∞
φa(x − y)v(y)dy − S′

i(u0)e−λτi

∫ ∞

−∞
φi(x − y)v(y)dy − σv = λv. (6)

Here, v is a small perturbation of the stationary solution u0. Applying the Fourier transform, we get

S′
a(u0)e−λτa φ̃a(ξ)− S′

i(u0)e−λτi φ̃i(ξ)− Dξ2 − σ = λ, (7)

where

φ̃a(ξ) =
a1b1

b2
1 + ξ2

+
a3b3

b2
3 + ξ2

+ iξ

(
a1

b2
1 + ξ2

− a3

b2
3 + ξ2

)
,

φ̃i(ξ) =
a2b2

b2
2 + ξ2

+
a4b4

b2
4 + ξ2

+ iξ

(
a2

b2
2 + ξ2

− a4

b2
4 + ξ2

)
are Fourier transforms of the functions φa and φi, respectively. Let us note that Fourier transform
of non-integrable functions is considered in the sense of generalized functions. Using Fourier series
instead of Fourier transform allows one to use a classical function instead of generalized functions.
However, the advantage of the Fourier transform is that the periodicity of solutions is not imposed.

Set λ = iν. Separating the real and imaginary parts in Equation (7), we obtain:

S′
a(u0) cos(ντa)

(
a1b1

b2
1 + ξ2

+
a3b3

b2
3 + ξ2

)
+ S′

a(u0)ξ sin(ντa)

(
a1

b2
1 + ξ2

− a3

b2
3 + ξ2

)
− (8)

S′
i(u0) cos(ντi)

(
a2b2

b2
2 + ξ2

+
a4b4

b2
4 + ξ2

)
− S′

i(u0)ξ sin(ντi)

(
a2

b2
2 + ξ2

− a4

b2
4 + ξ2

)
− Dξ2 = σ,

− S′
a(u0) sin(ντa)

(
a1b1

b2
1 + ξ2

+
a3b3

b2
3 + ξ2

)
+ S′

a(u0)ξ cos(ντa)

(
a1

b2
1 + ξ2

− a3

b2
3 + ξ2

)
+ (9)

S′
i(u0) sin(ντi)

(
a2b2

b2
2 + ξ2

+
a4b4

b2
4 + ξ2

)
− S′

i(u0)ξ cos(ντi)

(
a2

b2
2 + ξ2

− a4

b2
4 + ξ2

)
= ν.

2.2. Symmetric Connectivity Functions with Time Delay

If the symmetry condition

a1 = a3, a2 = a4, b1 = b3, b2 = b4 (10)

is satisfied, then Equations (8) and (9) are as follows:

S′
a(u0) cos(ντa)

a1b1

b2
1 + ξ2

− S′
i(u0) cos(ντi)

a2b2

b2
2 + ξ2

− Dξ2/2 = σ/2, (11)

− S′
a(u0) sin(ντa)

a1b1

b2
1 + ξ2

+ S′
i(u0) sin(ντi)

a2b2

b2
2 + ξ2

= ν/2. (12)

We can express ξ2 through ν from the last equation and substitute them into Equation (11).
The resulting equation with respect to ν should be solved numerically or asymptotically. Since the
calculations are sufficiently complex, we will consider here a simplified case where τa = 0. Numerical
simulations show that periodic waves can exist in this case (Section 3). Our aim here is to analyze their
bifurcations from the homogeneous in space solution. Assuming that ν ≥ 0, we also get the conjugate
solution −ν.
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If τa = 0, then Equations (11) and (12) are as follows:

S′
a(u0)

a1b1

b2
1 + ξ2

− S′
i(u0) cos(ντi)

a2b2

b2
2 + ξ2

− Dξ2/2 = σ/2, (13)

S′
i(u0) sin(ντi)

a2b2

b2
2 + ξ2

= ν/2. (14)

By the stability boundary we will understand here the value σ = σ0 such that system (13), (14)
does not have solutions for σ > σ0, and it has at least one solution for σ < σ0. This stability boundary
σ0 is uniquely defined and it can be negative.

Proposition 1. At the stability boundary, ξ = 0 or ν = 0.

Proof. Consider Equation (14) as an equation with respect to ν for a fixed ξ. It has a solution ν �= 0 if
and only if

2τiS′
i(u0)

a2b2

b2
2 + ξ2

> 1. (15)

Suppose that this condition is satisfied for some ξ0 > 0, and denote by ν(ξ) solution of Equation
(14) in the vicinity of ξ = ξ0 > 0, and ν0 = ν(ξ0) > 0. Assume that the corresponding value σ0 belongs
to the stability boundary.

Taking into account Equation (14), we can write Equation (13) as follows:

2S′
a(u0)

a1b1

b2
1 + ξ2

− ν cot(ντi)− Dξ2 = σ. (16)

Let ξ1 be sufficiently close to ξ0 such that condition (15) remains satisfied, and ξ1 < ξ0.
Considering ν(ξ0) < π/τi, we get ν(ξ1) > ν(ξ0). Therefore,

ν(ξ1) cot(ν(ξ1)τi) < ν(ξ0) cot(ν(ξ0)τi).

Set
F(ξ) = 2S′

a(u0)
a1b1

b2
1 + ξ2

− ν(ξ) cot(ν(ξ)τi)− Dξ2.

Thus, F(ξ1) > F(ξ0). Hence, σ0 = F(ξ0) cannot belong to the stability boundary since σ1 = F(ξ1) > σ0,
and system (13), (14) has a solution for σ = σ1. This contradiction shows that ξ0 = 0 when ν0 �= 0.

Let 2π/τi < ν(ξ0) < 5π/(2τi). Then there is another solution ν1(ξ0) of Equation (14) such that
π/(2τi) < ν1(ξ0) < π/τi. Therefore, cos(ν1(ξ0)τi) < 0, cos(ν(ξ0)τi) > 0, and

σ0 = F(ξ0) < 2S′
a(u0)

a1b1

b2
1 + ξ2

0
− ν1(ξ0) cot(ν1(ξ0)τi)− Dξ2

0.

Hence, σ0 cannot belong to the stability boundary.
Finally, in all other cases with ν(ξ0) > 5π/(2τi) we obtain a contradiction similarly to the two

cases considered before. This contradiction shows that at the stability boundary, either ξ = 0 or
ν = 0.

Let us now determine the stability boundary with respect to time delay for a fixed σ. If ν = 0,
then from Equation (13) we get

σ =
α1

b2
1 + ξ2

− α2

b2
2 + ξ2

− Dξ2, (17)
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where α1 = 2S′
a(u0)a1b1, α2 = 2S′

i(u0)a2b2. Assuming that ν �= 0, we set βi = αi/(b2
i + ξ2), i = 1, 2.

Then sin(ντi) = ν/β2,

β1 −
√

β2
2 − ν2 = σ, ν2 = β2

2 − (β1 − σ)2.

Example 1. Consider the values of parameters: S′
a(u0) = S′

i(u0) = 20, a1 = a2 = 4, b1 = 40, b2 = 20, α1 =

6400, α2 = 3200, σ = 0.01, Then we find

ξ = 0, β1 = 4, β2 = 8, ν2 ≈ 48, ν ≈ 6.93, τi =
1
ν

arcsin
ν

β2
= 0.151,

and
ξ = π, β1 = 3.975, β2 = 7.805, ν2 ≈ 45.123, ν ≈ 6.717, τi =

1
ν

arcsin
ν

β2
= 0.154

Hence, the homogeneous in space oscillations appear for a smaller value of time delay than periodic traveling
waves. Therefore, these waves are unstable in the vicinity of the bifurcation point. We will see in the next section
that they become stable for larger values of time delay.

2.3. Asymmetric Connectivity Function without Time Delay

If conditions (10) do not not hold, then eigenvalue (7) has a nonzero imaginary part,
λ(ξ) = α(ξ) + iν(ξ),

α(ξ) =
saa1b1

b2
1 + ξ2

+
saa3b3

b2
3 + ξ2

− sia2b2

b2
2 + ξ2

− sia4b4

b2
4 + ξ2

− Dξ2 − σ,

ν(ξ) = saξ

(
a1

b2
1 + ξ2

− a3

b2
3 + ξ2

)
− siξ

(
a2

b2
2 + ξ2

− a4

b2
4 + ξ2

)
, (18)

sa = S′
a(u0), si = S′

i(u0). Condition α(ξ) = 0 determines the stability boundary,

σ =
saa1b1

b2
1 + ξ2

+
saa3b3

b2
3 + ξ2

− sia2b2

b2
2 + ξ2

− sia4b4

b2
4 + ξ2

− Dξ2 ≡ Φ2(ξ). (19)

If σ < Φ2(ξ) for some values of ξ, then the solution loses its stability due to a pair of complex
conjugate eigenvalues λ(ξ) = α(ξ)± iν(ξ). For α = 0 corresponding to the stability boundary, the
bounded solution of the linearized equation can be written as follows:

u(x, t) = eiνteiξx + e−iνte−iξx = cos(νt + ξx).

We find ξ from equality α(ξ) = 0 and ν from (18). The frequency of the periodic wave equals ξ

and its speed c = −ν/ξ can be determined from (18):

c = −sa

(
a1

b2
1 + ξ2

− a3

b2
3 + ξ2

)
+ si

(
a2

b2
2 + ξ2

− a4

b2
4 + ξ2

)
. (20)

Different waves with the frequencies satisfying condition σ < Φ(ξ) can exist for the same values
of parameters. Their speed can be increasing or decreasing functions of frequency according to (20).

3. Numerical Results

Numerical simulations of Equation (5) in a bounded interval 0 ≤ x ≤ L with periodic boundary
conditions will be started in the case without time delay and continued with the case of time delay in
the response functions Sa(u) = Sb(u) = arctan(hu), h > 0. We will finish this section with modeling
of the stimulation of the damaged tissue in order to restore wave propagation.
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The numerical method uses an implicit finite difference scheme with Thomas’s algorithm for the
inversion of the tridiagonal matrix. Initial conditions are considered either in the form of a piece-wise
constant function or a sinus-like function with a given periodicity. The continuation method is used
to follow the branches of solutions. In this case, the value of some parameter gradually changes.
As an initial condition for the new value of parameter, we take the result of the simulation obtained
for the previous value of parameter. The time step was usually taken as 0.05 and the space step
0.005. The accuracy of numerical simulations was controlled by decreasing the time and space steps.
The typical values of parameters used in numerical simulations are presented in Table A1. Their specific
values are give below.

3.1. Wave Propagation without Time Delay

In the case without time delay (τa = τi = 0) and with symmetric connectivity functions φa and
φi, where a1 = a3, a2 = a4, b1 = b3, b2 = b4, periodic in space stationary solutions bifurcate from the
constant solution. Linear stability analysis shows that traveling waves with nonzero speed do not
bifurcate in this case.

If the connectivity functions are not symmetric, then traveling waves with nonzero speed are
observed (see Figures 1 and 2). Linear stability analysis allows the determination of the wave speed
and frequency near the bifurcation point. Let us consider an example with the following values of
parameters: a1 = 3, a2 = 4, a3 = 3, a4 = 1, b1 = 40, b2 = 20, b3 = 40, b4 = 20, D = 10−3, h = 20, L = 2.
Analysis of the function α(ξ) (Section 2.3) shows that it has a maximum at ξ = 20.53. It is positive for
σ < σc = 0.4 resulting in the bifurcation of the periodic wave with the speed given by Equation (20).
For the chosen values of parameters, we get c = −0.54. Numerical simulations show the emergence of
a periodic wave with 7 periods in the interval [0, L] and with the corresponding frequency ξ = 21.98.
Since the number of periods is an integer, the frequency of the wave observed in numerical simulations
is not precisely equal to the analytical value. The wave with the closest frequency emerges since the
corresponding eigenvalue has the maximal real part in comparison with the waves with other periods.
The speed of this wave c = −0.52 is close to the analytical value.

For the values of parameters far from the stability boundary, two types of solutions are observed
in numerical simulations: periodic waves with a constant speed (Figure 1) and aperiodic waves with
oscillating speed (Figure 2). In the first case, the wave has conventional form w(x − ct), where w(x) is
a periodic in space function and c is a constant. In the second case, the amplitude of spatial peaks and
the wave speed oscillate.

Figure 1. A snapshot of periodic wave described by Equation (5) for τa = τi = 0 (left) and a zoom-in on
the lower part of the graph (right). The values of parameters are as follows: D = 10−4, σ = 0.01, L = 2,
a1 = a2 = 0.6, a3 = a4 = 4, b1 = b3 = 40, b2 = b4 = 20. Here Sa(u) = Si(u) = arctan(hu), and h = 20.
Here and in all examples below, the stationary solution u0 = 0.
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Figure 2. A snapshot of aperiodic wave described by Equation (5) for τa = τi = 0 (left) and a zoom-in
on the lower part of the graph (right). Periodic (Figure 1) and aperiodic waves can exist for the same
values of parameters. Convergence of solutions to one of them is determined by the initial conditions.
The values of parameters are as follows: D = 10−4, σ = 0.01, L = 2, a1 = a2 = 0.6, a3 = a4 = 4,
b1 = b3 = 40, b2 = b4 = 20. Here Sa(u) = Si(u) = arctan(hu), and h = 20.

Different periodic regimes can co-exist for the same values of parameters. Figure 3 shows the
dependence of the wave speed on the values a1(= a2) for all other parameters fixed. There are three
branches of solutions corresponding to different spatial frequencies. Thus, there are three different
periodic waves for the same values of parameters with the speeds depending on their frequency.

Figure 3. The speed of periodic waves for different values of the parameters a1 = a2. Three curves
correspond to different values of the spatial frequency: (1) solution with 12 periods in the interval [0, L],
(2) 13 periods, (3) 14 periods. Branching in curve 1 shows the transition to modulated oscillations with
the maximal and minimal values of the oscillating speed. The values of parameters are as follows:
D = 10−4, σ = 0.01, L = 2, a3 = a4 = 4, b1 = b3 = 40, b2 = b4 = 20. Here Sa(u) = Si(u) = arctan(hu),
and h = 20.

For a sufficiently small a1, transition to modulated waves can occur (curve 1) with the amplitude
and speed depending on time. Such solutions can be qualitatively approximated by the function
u(x, t) = (k1 + ε sin(k2x + k3t)) sin(k4x + k5t), where ki are some constants. For even smaller values of
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a1, transition to aperiodic oscillations is observed for all three branches of solutions. These oscillations
can coexist with periodic or modulated periodic waves for the same values of parameters.

3.2. Time Delay and Symmetric Connectivity Functions

3.2.1. Initial Conditions

As it was discussed in the previous section, the loss of stability of the homogeneous in space
stationary solution leads either to the homogeneous in space time oscillations or to the stationary
periodic in space solutions. Consider time delay as a bifurcation parameter. If it exceeds a critical
value, then time oscillations emerge. Periodic traveling waves bifurcate for a larger value of time delay,
and they are unstable in the vicinity of the bifurcation point. Numerical simulations show that they
can become stable under a further increase of τ. Nevertheless, periodic time oscillations homogeneous
in space remain stable. Therefore, we need to choose some particular initial conditions in order to get
periodic traveling waves.

The simulations presented in this section were carried out with two types of initial conditions.
In the first case, we consider the equation

∂u
∂t

= D
∂2u
∂x2 + I(x, t) (21)

on the time interval 0 ≤ t ≤ T0. Here I(x, t) = I0 cos(px + qt), and the initial condition u(x, 0) = 0.
The result of this simulation is considered as the initial condition for Equation (5). We set I0 = 0.5, q =

0.015, T0 = 20; the value of p is taken 3, 6, 9 depending on the required space periodicity.
The second type of initial conditions is used in the continuation method. The results of the

simulations of Equation (5) for some values of parameters are used as initial conditions for some other
values of parameters.

3.2.2. Multiplicity of Waves and Parameter Dependence

An example of periodic traveling waves with different initial conditions and the same values
of parameters are shown in Figure 4. We observe one, two and three-period waves generated by
function I(x, t) for p = 3, 6 and 9. These waves have different speeds and amplitudes. The waves with
larger wavelengths have higher speeds and amplitudes. If time delay is sufficiently small, then the
waves become unstable, and the transition to periodic time oscillations independent of the space
variable is observed. If the value I0 is small enough, then the solution converges to the homogeneous
time oscillations.

Figure 4. Three types of periodic waves observed for the same values of parameters and having
different spatial frequency and speed: one-period wave with speed −0.027 (left); two-period wave
with speed −0.012 (middle); three-period wave with speed −0.0094. The values of parameters are as
follows: D = 10−4, σ = 0.01, L = 2, τa = 0, τi = 12, a1 = a2 = a3 = a4 = 4, b1 = b3 = 40, b2 = b4 = 20.
Here Sa(u) = Si(u) = arctan(hu), and h = 20.
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Increase of time delay leads to the increase of the wave amplitude and to the decrease of its speed
(Figure 5). Wave propagation is determined by the transmission of activating signal between the
neurons. Since time delay retards this transmission, the speed decreases. This result was previously
obtained analytically for monotone waves [22]. Since the activating signal propagates slower with
time delay, the local response and the wave amplitude increase.

Figure 5. The absolute value of the speed (1a, 2a) and the amplitude (1b, 2b) for the one-period wave
(1a, 1b) and two-period wave (2a, 2b) depending on τi. Connected points correspond to stable solutions;
separate points to unstable solutions. The latter lead to the appearance of stationary solutions periodic
in space. The values of parameters are as follows: D = 10−4, σ = 0.01, τa = 0, a1 = a2 = a3 = a4 = 4,
b1 = b3 = 40, b2 = b4 = 20. Here Sa(u) = Si(u) = arctan(hu), and h = 20.

Let us note that the critical value of time delay τi ≈ 1.5 found in numerical simulations and
the value of the wave speed near the bifurcation point c ≈ −2 correspond to the analytical values
determined in the example in Section 2.2 (Figure 5, curves 1a, 1b). The analytical value of the
speed c = −ν/ξ = −2.13 at the bifurcation point is slightly different from the numerical value.
Since the periodic wave is unstable near the bifurcation point, we can determine its speed in numerical
simulations only at some distance from the critical value τi.

Figure 6 shows the dependence of periodic waves on the value b2 (equal to b4). The wave
amplitude and speed decrease with the increase of b2. There is a critical value b2 ≈ 40 for which the
speed becomes zero, and a transition to another branch of solutions is observed. These are stationary,
periodic in space solutions with growing amplitude as b2 increases. It is interesting to note the
existence of weakly oscillating time periodic solutions in a narrow interval between traveling waves
and stationary solutions.

The results presented above were obtained for a single delay τi in the inhibition term while
τa = 0. If we fix τi = 1 and increase τa beginning from τa = 0, then the amplitude and the speed of
traveling waves are not monotonous. The former first decreases, passes through the minimum and
then increases, while the latter increases in the beginning and decreases for larger values of the delay
(not shown).
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Figure 6. Dependence of the amplitude of the observed regimes on b2(= b4). Periodic traveling
waves are located on branch 1; stationary solutions on branch 3. A short branch 2 contains weakly
oscillating solutions. The values of parameters are as follows: D = 10−4, σ = 0.01, L = 2, τa = 0, τi = 1,
a1 = a2 = a3 = a4 = 4, b1 = b3 = 40. Here Sa(u) = Si(u) = arctan(hu), and h = 20.

3.3. Stimulation

Wave propagation can be different in a damaged tissue [23]. In this section we discuss its possible
restoration by external stimulation. This question was considered in [24] for monotonous wave fronts.

3.3.1. Exact Solution of the Stimulation Problem

Let us write Equation (5) for the normal tissue

∂u
∂t

= D
∂2u
∂x2 + J(u)− σu, (22)

where
J(u) =

∫ ∞

−∞
φa(x − y)Sa (u (y, t − τa)) dy −

∫ ∞

−∞
φi(x − y)Si (u (y, t − τi)) dy,

and a similar equation for the damaged tissue

∂v
∂t

= D
∂2v
∂x2 + J∗(v)− σv, (23)

where
J∗(v) =

∫ ∞

−∞
φ∗

a (x − y)S∗
a (v (y, t − τa)) dy −

∫ ∞

−∞
φ∗

i (x − y)S∗
i (v (y, t − τi)) dy,

and ∗ denotes the functions for the damaged tissue. In the presence of stimulation I(x, t) this equation
is as follows:

∂z
∂t

= D
∂2z
∂x2 + J∗(z)− σz + I(x, t). (24)

We will choose this function such that solution z(x, t) of Equation (24) becomes equal solution
u(x, t) of Equation (22). We set z(x, t) = u(x, t), and substitute u(x, t) in Equation (24). Then

I(x, t) =
∂u
∂t

− D
∂2u
∂x2 − J∗(u) + σu = J(u)− J∗(u).

Thus, the stimulation function

I(x, t) = J(u)− J∗(u)

113



Mathematics 2020, 8, 1076

gives solution of the complete reconstruction problem.

3.3.2. Approximate Solution of the Stimulation Problem

The stimulation function suggested above uses the solution u(x, t) which may not be known for
the patient with the damaged brain tissue. In this case, some approximate solutions of the stimulation
problem can be used. Consider the integral J∗(v) in the following form:

J∗(v) =
∫ ∞

−∞
W(x)W(y) (φa(x − y)Sa (v (y, t − τa))− φi(x − y)Si (v (y, t − τi))) dy,

where W(x) = w0 < 1 for x1 ≤ x ≤ x2, x1, x2 ∈ (0, L), and W(x) = 1 outside the interval [x1, x2].
Hence, the connectivity function decreases if x or y belongs to the damaged area [x1, x2]. If we set
w0 = 0, then the connectivity function vanishes if one of the two points x or y (neurons) belongs to the
damaged area.

Without damage, the periodic traveling wave solution of Equation (22) and the integral J(u) can
be approximated by a cosine function (Figure 7). Hence, we will look for the stimulation function
in the form approximating the periodic wave: I(x, t) = I0(x) cos(px + qt). We set p = 6, q = 1 to
approximate the frequency and the speed of the wave in the normal tissue. We set I0(x) = i0 for
x1 ≤ x ≤ x2, and I0(x) = i1 outside the interval [x1, x2]. The results of numerical simulations are
presented in Figure 7 with the comparison of the normal tissue, damaged tissue without stimulation
and damaged tissue with stimulation. We observe a periodic wave in the normal tissue. The behavior
of the solution is completely different in the damaged tissue. The solution is close to 0 at the damaged
interval (green in the middle figure), and it oscillates periodically in time from both sides of this
interval. Stimulation restores the wave propagation with the same frequency and speed. The choice
of the stimulation amplitude i0 = 0.6 and i1 = 0.1 (for the example in the figure) is important. If we
set i0 = 0.6, i1 = 0, the stimulation is not successful; there is no wave propagation. Thus, stimulation
should be done not only inside the damaged interval but also around it.

Figure 7. Periodic traveling wave in the normal tissue and the integral J(u) (left). Snapshots of
solutions in the damaged tissue for two different moments of time (a) and (b) (middle). Solution with
stimulation becomes close to the periodic wave (right). The values of parameters are as follows:
D = 10−4, σ = 0.01, L = 2, τa = 0, τi = 1, a1 = a2 = a3 = a4 = 4, b1 = b3 = 40, b2 = b4 = 20,
Sa(u) = Si(u) = arctan(hu), h = 20, p = 6, q = 1, i0 = 0.6, i1 = 0.1. Green interval [0.5, 1.07] shows the
damaged tissue, w0 = 0.
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4. Discussion

Brain functioning is determined by large scale networks of epicenters (hubs) located in the
cortex and connected by white matter fiber tracks. The structure of these networks depends on the
particular type of the brain activity (motor, language and so on) and on the inter-individual variation.
The epicenters exchange information by means of signaling along the cortex or along the white matter
fibers. Apparently, this signaling occurs in the form of traveling waves. Periodic traveling waves
are observed in thalamus, visual cortex, hippocampus and other parts of the brain. There is more
and more evidence that they play the key roles in brain functioning. However, their exact roles and
organization are not known. Their characteristics, such as speed, frequency and amplitude, can vary in
wide limits (Appendix B), and it is not clear how they are initiated and stop, and how they are related
to some particular types of activities. For example, periodic waves are observed in the beginning of
produced speech, and they inverse their direction at the end [25]. The corresponding mechanisms
governing these activities are not yet understood. These investigations are at the stage of accumulation
of biological data and of elaboration of different models whose role and utility will become clearer
with time.

Neural field models are widely used to study brain patterns, including stationary structures,
pulses, wave fronts, and periodic waves. There are a number of models which describe periodic waves
(Appendix A) since it is relatively easy to find these waves on the basis of linear stability analysis
of the homogeneous in space stationary solution. The mechanisms of this instability can be related
to a combination of inhibition, time delay, refractoriness (also a variant of time delay) and nonlocal
interaction. In this work we study the influence of asymmetry of connectivity functions and of time
delay in neuron response.

Neuron connectivity is provided by numerous axons whose density decrease approximately
exponentially as a function of distance [26,27]. In modeling, the connectivity functions are usually
considered to be symmetric; that is, axon connections between points x and y have the same density as
between y and x. There is some evidence that connectivity can be asymmetric [13].

In this work we study periodic waves emerging due to the asymmetry of the connectivity
function and due to time delay in the response function. Both of them correspond to the existing
biological mechanisms. They allow us to study periodic waves in the minimal model which consists
of a single integro-differential equation. Other models contain two equations (Appendix A). In the
case of asymmetric connectivity function, periodic waves bifurcate due to the loss of stability of the
homogeneous in space stationary solution. They become unstable, while bifurcating periodic waves
are stable. This is different in the case of time delay. Periodic waves bifurcate from the unstable
stationary solution because of space-independent oscillations. Increasing time delay leads to their
stabilization.

Though the model contains quite many parameters, using some combination of parameters
reduces their number. Next, there are some additional relations between the parameters which
determine the stability boundary. Furthermore, there are some physical estimates, such as the decay
rate of neuron connectivity function or the value of time delay. Finally, the wave speed and frequency,
which depend on parameters, should be in some experimentally observed range. Altogether, these
constraints determine some limited intervals of parameter variation (Appendix B).

Cortex Damage and Stimulation

The network of hubs related to some brain function (connectome) can be damaged because
of stroke or other factors leading to partial or complete loss of the corresponding function.
Post-stroke patient recovery is often incomplete, and usually limited to six months after the accident.
Various stimulation techniques are discussed in the literature, but their results are controversial [28].

Post-stroke brain damage can influence propagation of brain waves between the hubs of the
connectome. Traveling waves in the cortex can have several functions, including activation of some of
its parts. This activation facilitates firing of individual neurons [4]. TW reflect information originating
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from right and left hemispheres, traveling short and long distances, and containing various time delays.
In other words, TW coordinate multiple faster and slower speech events by preparing the arrival of
signals traveling along white matter tracts to specific hubs. In particular, direct brain recording (ECoG)
showed the presence of TW during consonant-vowel syllables’ pronunciation [25]. Summarizing the
results by Gross et al. [29] examining how brain waves help us make sense of speech in healthy
subjects, Weaver [30] indicated the presence of different time scales in speech production from tens
of milliseconds (phoneme) to hundreds of milliseconds (intonation). Today, the language networks
have been identified with precision, including phonological processing, speech planning, language
semantics, spatial cognition and other functions [31].

We address in this work the question about possible restoration of cortex waves by external
stimulation. We show that appropriate choice of injected current allows the recovery of wave speed
and frequency, possibly leading to a better communication between the hubs of the connectome.
This proof of concept is the first step on the long road to a possible application of this approach to
patient rehabilitation.
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Appendix A. Periodic Waves in Different Models

Two equations with time delay.

In the work [8] a single neuron population model (excitation)

τ
∂u
∂t

=
∫ ∞

−∞
P(x − y)ψ(u(y, t − d))du − u (A1)

and a two population model (excitation and inhibition)

τ
∂u
∂t

=
∫ ∞

−∞
(P11(x − y)ψ1(u(y, t − d))− P12(x − y)ψ2(v(y, t − d)) dy − u (A2)

τ
∂v
∂t

=
∫ ∞

−∞
(P21(x − y)ψ1(u(y, t − d))− P22(x − y)ψ2(v(y, t − d)) dy − v (A3)

are considered. Here P(x) and Pij(x) are symmetric positive functions. A particular example of
step-wise constant functions is studied. Periodic traveling waves cannot exist for the first model.
They are observed for the second model. The existence of pulse solutions in a similar model without
delay was studied in [32].

One equation with distributed speed and delay.

Equation with a distributed propagation speed and time delay is considered in [9]:

L
(

∂u
∂t

)
= α

∫ ∞

0
g(v)

∫ ∞

−∞
K(z)S(u(x + z, t − |z|/v))dzdv+

β
∫ ∞

0
f (τ)

∫ ∞

−∞
F(z)S(u(x + z, t − τ))dzdτ, (A4)
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where L is a second-order differential operator; the functions K(z) and F(z) include both activatory
and inhibitory kernels. Different regimes are observed: periodic in time and independent of space,
stationary periodic in space, periodic traveling waves.

The model with distributed time delay is considered in [10]

u(x, t) =
∫ ∞

−∞
w(x − y)dy

∫ t

−∞
η(t − s) f (u(y, s − |x − y|/v))ds.

The same regimes as above and oscillating Turing structures are observed.

Neural field model with linear adaptation.

It is a two equation model

τ
∂u
∂t

= −u − βv +
∫

D
w(x − y)F(u(y, t))dy, (A5)

1
α

∂v
∂t

= u − v, (A6)

where the second variable represents a linear adaptation (see [11] and the references therein). A large
variety of waves and patterns are observed, including stationary periodic in space solutions, traveling
waves, modulated traveling waves and stationary and oscillating bumps.

Neural field model with refractoriness.

Periodic traveling waves are also found in one-equation model without inhibition term but with
neuron refractoriness (time delay after firing) [12]:

1
r

∂u
∂t

= −u +

(
1 −
∫ t

t−1
u(x, s)ds

)
f (w ⊗ u).

Here ⊗ denotes spatial convolution.

Appendix B. The Values of Parameters

Periodic traveling waves behave as cos(βt + ξx) with the time frequency β, space frequency ξ

and speed c = −β/ξ. With the interval length L = 2 cm, we get ξ = 2π/L ≈ 3 cm−1.
Let us consider the example of the simulations in Figure 5 with τ = 1 and wave speed 0.3. If this

value of τ corresponds to the characteristic time delay 10 ms ([9,33] Chapter 2.3.1), that is, the time
unit in the simulation corresponds to 0.01 s, then c = 0.3 × 100 = 30 cm/s.

The time frequency β = cξ = 90 s−1 belongs to the upper limit of the observed range. The value
of the wave speed, and respectively, the time frequency linearly dependent on it can be decreased by
the variation of parameters ai and bi.

Connectivity functions can be estimated from the data in [26,27]. It exponentially decreases with
the rate of decrease in the interval 3–10 times at the at the distance 0.03 cm. This corresponds to the
exponential exp(−μx) with μ in the range 30 ÷ 40 cm−1.

Propagation speed measures vary depending of the methodology used. When macroscopic
waves are recorded from EEG or from ECoG which have low spatial and high temporal resolutions,
the propagation speeds varies between 1 and 10 m/s. As indicated by Muller et al. [3], these results are
compatible with the range of axonal conduction speeds of myelinated white matter fibers in the cortex.
However, when measuring mesoscopic waves’ propagation speed using local field potential (LFP)
from multielectrode arrays (MEAs) or from optical imaging signals recorded with voltage-sensitive
dyes (VSDs) having high spatial and temporal resolution, the propagation speeds varies from 0.1
to 0.8 m per second, consistent with the axonal conduction speed of the unmyelinated long-range
horizontal fibers within the superficial layers of the cortex, as indicated by Muller et al. [3].
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Summary of parameters.

Parameters of the model are summarized in the following table. Let us note that all parameters
are dimensionless. They can be recalculated to dimensional values as in the example above.

Table A1. Typical values of parameters of the model.

Parameter Name Unit Typical Value

D diffusion coefficient length2/time 10−4

L length of the interval length 2
a1, a2, a3, a4 factors in connectivity functions 1/length 1 ÷ 5
b1, b2, b3, b4 exponents in connectivity functions 1/length 20 ÷ 40
S′

a(0), S′
i(0) growth rate of response functions 1/time 20

τa, τi time delay in response functions time 1 ÷ 10
σ potential decay rate 1/time 0.01
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Abstract: It has been hypothesized that solid tumors with invasive type of growth should possess
intrinsic resistance to antiangiogenic therapy, which is aimed at cessation of the formation of new
blood vessels and subsequent shortage of nutrient inflow to the tumor. In order to investigate this
effect, a continuous mathematical model of tumor growth is developed, which considers variables of
tumor cells, necrotic tissue, capillaries, and glucose as the crucial nutrient. The model accounts for
the intrinsic motility of tumor cells and for the convective motion, arising due to their proliferation,
thus allowing considering two types of tumor growth—invasive and compact—as well as their
combination. Analytical estimations of tumor growth speed are obtained for compact and invasive
tumors. They suggest that antiangiogenic therapy may provide a several times decrease of compact
tumor growth speed, but the decrease of growth speed for invasive tumors should be only modest.
These estimations are confirmed by numerical simulations, which further allow evaluating the effect
of antiangiogenic therapy on tumors with mixed growth type and highlight the non-additive character
of the two types of growth.

Keywords: mathematical oncology; spatially distributed modeling; reaction-diffusion-convection
equations; computer experiment
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1. Introduction

The use of mathematical methods has currently become a necessity in oncology. The identification
of tumor cells [1], the design of nanomedical systems [2], and real-time adaptation of radiotherapy [3]
are just a few examples of problems for which the solution already benefits from the use of simulation
studies. One specific mathematical approach is the modeling of tumor growth and treatment, wherein
a whole tumor and its microenvironment are considered as a single complex system. Its main goals
are gaining new insights into various aspects of cancerous tumors [4,5] and the suggestions for the
optimization of treatment protocols [6,7].

Clearly, a mathematical model of tumor growth must capture at least some of the most essential
features of cancer cells’ behavior and their interaction with the microenvironment. The most notable
property of cancer cells is their ability for unlimited growth under favorable conditions [8]. However,
tumor growth in tissue is restrained, first of all by the limited availability of nutrients. These aspects
were taken into consideration already in the first non-spatially distributed phenomenological models
of tumor growth [9,10]. Accounting for another hallmark of cancer—tissue invasion and metastasis—is
possible in models that explicitly consider the spatial distribution of cancer cells. In continuous models,
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the intergrowth of tumor in normal tissue is usually realized via the introduction of parabolic terms,
which include the intrinsic motility of tumor cells as a parameter [11,12]. As a rule, these models
neglect the convective motion, which arises due to the proliferation of tumor cells. This process by
itself can provide an increase in tumor volume even under zero cell motility. Accounting for it can
be realized via hyperbolic equations and by itself results in a compact type of tumor growth [13,14].
Such a mechanism is often crucial for low-grade tumors, while the invasive type of growth usually
begins to play an increasing role during their progression.

One more hallmark of cancer is sustained angiogenesis, i.e., the formation of new blood vessels
that leads to an increase in tumor nutrient supply and thus promotes its growth. This process was
incorporated in various ways in mathematical models of different complexity, from the ones governed
by ordinary differential equations [15,16], to the complicated multiscale hybrid models [17,18].

The first antiangiogenic drug, bevacizumab, was approved for medical use in 2004 and is
utilized currently along with about a dozen other angiogenesis inhibitors. Today, the majority of
approved administration schemes, which include antiangiogenic drugs, combine them with various
chemotherapeutic agents, which are aimed at direct cell killing [19]. Early experiments on mouse
tumor models showed promising results regarding the use of antiangiogenic drugs in monotherapy
regimes as well, since their administration as single agents allowed achieving significant delays in
tumor growth. However, in the majority of the clinical trials, the administration of mono-AAT did not
lead to any notable increase in survival [20]. Such a discrepancy is supposed to be linked to one obvious
qualitative difference between preclinical and clinical tests: while the former were mostly conducted on
localized primary tumors, the latter were mainly focused on the late-stage diseases [21]. Only relatively
recently have clinical trials for early-stage localized tumors been initiated. Their preliminary data
suggest the efficiency of mono-AAT for such tumors, at least in terms of tumor mass reduction [22].

Various mechanisms of resistance to treatment have been proposed in order to explain this
effect [23]. One such mechanism is the accentuated invasiveness of tumor cells, which allows them
to move away from nutrient-deprived zones. There exists a significant amount of experimental
evidence that AAT accelerates tumor progression towards increasingly invasive phenotypes [21,24].
Based on this observation, it has been hypothesized that the tumors, which initially have an invasive
phenotype, should possess intrinsic resistance to AAT, while compactly growing tumors should be
more susceptible to it [23].

In this work, a continuous model of a monoclonal tumor growth in tissue is presented, which is
able to reproduce this effect. The model allows accounting for both types of tumor growth, as well
as their combination. Analytical estimations of tumor growth speed are obtained for tumors with
both of the pure types of growth, which allow assessing the effect of antiangiogenic therapy on
them. Numerical simulations are presented, which show good agreement with analytical estimations.
They further allow evaluating the effect of antiangiogenic therapy on tumors with a mixed type of
growth and provide insights into the mechanism of the interaction between the two types of growth,
highlighting their non-additive character.

2. Model

2.1. Equations

The mathematical model of tumor growth, considered herein, represented a simplification of
the model, previously developed by our research group. Its different versions were used for the
investigation of several aspects of tumor growth and treatment [25–27]. There were four variables in
this version of the model, which were a function of space and time coordinates, x and t: the density of
tumor cells n(x, t), the fraction of necrotic tissue m(x, t), the concentration of glucose g(x, t), and the
density of capillaries surface area c(x, t). All the variables, as well as all the used parameters should be
strictly non-negative due to their physical meaning. The one-dimensional planar case was considered
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in this work, which was suitable for the consideration of a large spherically-symmetrical tumor.
The following set of equations governs the dynamics of the model variables:

tumor cells:
∂n
∂t

=

proliferation︷ ︸︸ ︷
Bn · [1 − σ(g)]

death︷ ︸︸ ︷
−Mn · σ(g)

migration︷ ︸︸ ︷
+Dn

∂2n
∂x2

convection︷ ︸︸ ︷
−∂(In)

∂x
;

necrotic tissue:
∂m
∂t

=

death︷ ︸︸ ︷
Mn · σ(g)

convection︷ ︸︸ ︷
−∂(Im)

∂x
;

glucose:
∂g
∂t

=

inflow︷ ︸︸ ︷
Pc[1 − g]

consumption︷ ︸︸ ︷
−Qn · [1 − σ(g)]

diffusion︷ ︸︸ ︷
+Dg

∂2g
∂x2 ;

capillaries:
∂c
∂t

=

degradation︷ ︸︸ ︷
−R[n + m]c;

where σ(g) =
1
2
[1 − tanh(ε{g − gcr})];

∇I = Bn · [1 − σ(g)] + Dn
∂2n
∂x2 .

(1)

2.1.1. Tumor Cells

The term tumor cell proliferation implies that it happens ceaselessly under a sufficient level
of glucose, which was chosen to be the key nutrient, since it is indispensable for cell division [28].
With the fall of glucose level, the rate of proliferation slows down, and tumor cells die by necrosis.
The drainage of necrotic tissue was neglected. The exact rates of the processes of cell proliferation and
death were governed by a sigmoid function σ(g). Tumor cells were able to migrate throughout the
tissue, which was governed by a diffusion-like term. The convective terms described the bulk motion
of tissue elements, the velocity field I being determined by the dynamics of tumor cells. The expression
for it was derived under the assumption of the constancy of the total density of tumor cells, necrotic
tissue, and normal cells, which was normalized to unity. The normal cells were not considered in the
model explicitly; however, it was assumed that the passive motion due to the arising convective flow
was the only part of their dynamics.

2.1.2. Glucose and Capillaries

The dynamics of glucose is comprised of its inflow from the capillaries into the tissue, consumption
by tumor cells, and diffusion throughout the tissue. The inflow of glucose is governed primarily by
the process of passive diffusion through the walls of capillaries [29]. Therefore, the rate of glucose
inflow is proportional to the density of the capillaries’ surface area and to the difference in glucose
concentrations in blood and in tissue. Glucose concentration in blood was considered to be constant
and was normalized to unity.

The capillary network degrades inside the tumor. This process has various reasons of a
mechanical [30] and chemical nature [31], the details of which are difficult to account for in a
reliable manner. Therefore, the degradation of capillaries was described by a rather phenomenological
term. The volume of capillaries was considered to be negligible compared to the volume of cells,
and therefore, their dynamics did not affect the convective velocity field. The convective motion of
capillaries was also neglected. The normal density of capillaries’ surface area was normalized to unity.

2.1.3. Angiogenesis and Antiangiogenic Therapy

A more or less straightforward consideration of angiogenesis would require the introduction of an
additional variable for the concentration of the main pro-angiogenic factor VEGF, which would affect
the dynamics of capillaries. Such an approach has been utilized previously in different continuous
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models of tumor growth [12,32,33], including our models [27,34]. Herein, a more concise method
was used for the sake of analytical study. It was assumed that during the growth of an untreated
tumor, the concentration of VEGF was so high that it provided the maximum possible angiogenic effect
throughout all the considered part of the tissue (the rate of this effect was limited by the number of
receptors on endothelial cells). In fact, there are two separate effects, induced by VEGF, that affect the
inflow of glucose from the capillaries and therefore needed to be considered in this model. One of them
is the increase of the capillary density due to the formation of new capillaries. Another effect is the
increase of the vascular permeability [35,36]. Due to the above-described assumption of the uniform
action of VEGF, accounting for the latter effect came down to the increase in the value of parameter P,
since it corresponded to the uniform identical increase in the permeability of all capillaries in the tissue.
Assuming further that the local increase of the capillaries’ surface area density, c, was proportional to
its own local value throughout the tissue, one may conclude that for the consideration of the glucose
inflow in tissue, an increase of c was equivalent to an analogous increase in the value of parameter P.
Thus, the total effect of angiogenesis was accounted for in this model by the increase in the value of a
single parameter P. Since AAT leads to the normalization of the structure of capillaries and further
normalization of their density [37,38], its action as reflected by a decrease of P to a value, which was
assumed to correspond to normal tissue.

2.2. Parameters

The parameters of the model were estimated according to the data of various experimental works.
The basic set of parameters is listed in Table 1. The dimensionless model values of the parameters were
the approximations of their normalized values, which were obtained with the use of the following
normalization parameters: tn = 1 h for time, xn = 10−2 cm for length, gn = 1 mg/mL for glucose
concentration, cn = 100 cm2/cm3 for normal capillary surface area density, which was close to its
average value for human muscle [29], and nn = 3 × 108 cells/mL for the maximum density of tumor
cells. The latter value was taken from the experimental work on the in vitro growth of multicellular
tumor spheroids [39]. The values for the proliferation rate of tumor cells and their glucose consumption
rate were also estimated according to the data of this work; however, it was assumed that these values
should be proportionally diminished during the growth of a relevant tumor in tissue. The basic
coefficient of tumor cells’ motility corresponded to highly motile glioma cells [40]. This parameter
is set to zero in Section 3.1 in order to focus on the compact type of tumor growth and is varied
in Section 3.3 in order to consider tumors with a mixed type of growth. The value for capillaries’
degradation rate was chosen in order to correspond to experimental observations, which showed
that capillaries with adequate blood filling were very scarce inside the core of the tumors with radii
of several millimeters [41]. The rate of death of tumor cells was taken to be significantly higher
that that of their proliferation. The values of the parameters of function σ(g) could not be assessed
straightforwardly, since the form of this function was chosen for phenomenological reasons. Therefore,
it was merely taken to be rather close to a stepwise function, with the transition of tumor cells from
proliferation to death happening at the concentrations of glucose an order of magnitude lower than
that in blood. Importantly, the use of these values of variables M, gcr, and ε allowed keeping the
concentrations of glucose positive within the necrotic zone.
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Table 1. Basic set of model parameters.

Parameter Description Estimated Value Model Value Based on

B tumor cells’ proliferation rate 0.01 h−1 0.01 [39]
Q tumor cells’ glucose consumption rate 6.2 × 10−17 mol/(cells·s) 12 [39]
Dg glucose diffusion coefficient 2.8 × 10−6 cm2/s 100 [42]
P angiogenesis parameter 1.1 × 10−5 cm/s 4 [29]

gcr critical level of glucose 0.56 mM 0.1 see the text
Dn tumor cells’ motility 2.4 × 10−4 cm2/day 0.1 [40]
M tumor cells’ death rate 0.05 h−1 0.05 see the text
R capillaries’ degradation rate 1.7 × 10−10 mL/(cells·s) 0.2 [41]
ε tumor cells’ sensitivity to glucose level – 100 see the text

In order to consider the effect of angiogenesis on tumor growth, the value of angiogenesis
parameter P was varied up to a value ten times greater than the basic one. Such a limit was selected as
a very approximate product of two estimated factors. Firstly, experiments in various mouse tumor
models showed that the local density of microvessels near a tumor could increase three to six times [43].
Secondly, in the work [34], it was shown that a 2.5-fold increase in the permeability of tumor capillaries
to glucose due to the action of VEGF was a physiologically reasonable estimation.

2.3. Numerical Solving

During numerical simulations, the set of equations Equation (1) was solved in a region with a
size of several centimeters. The exact size X was adjusted for each case in order to be sufficiently
small to spare computational time without imposing noticeable edge effects, while for all the variables,
the zero-flux boundary condition was used at both edges. The convective flow speed was set to zero at
the left boundary, where x = 0, resulting in the following equation for it:

I(x, t) =
∫ x

0
Bn(r, t) · [1 − σ(g(r, t))]dr + Dn

∂n(x, t)
∂x

.

The following initial conditions were used, which represented a normal tissue with a small,
0.01 mm in width, colony of tumor cells, located near the left boundary, where capillaries were absent:⎧⎪⎪⎪⎨⎪⎪⎪⎩

n = 1,
m = 0,
g = 1,
c = 0

f or x <= 0.1;

⎧⎪⎪⎪⎨⎪⎪⎪⎩
n = 0,
m = 0,
g = 1,
c = 1

f or x > 0.1. (2)

The method of splitting into physical processes was used for all variables, i.e., kinetic equations,
diffusion equations, and convective equations were solved successively during each time step.
The implicit Crank–Nicholson scheme was used for the glucose diffusion equation. Since the glucose
diffusion term provided maximum rate of local change among all the variables and thus required
a sufficiently small time step even for implicit solving, it was decided to solve the cell migration
equation by a simpler explicit forward Euler scheme, and all kinetic equations by the explicit Euler
method. Convective equations were solved using the flux-corrected transport algorithm with explicit
anti-diffusion stage. The last method was introduced in the work [44], while other classical methods
were described in many books (see, e.g., [45]). The choice of time and space steps is justified in the
following sections. For optimization purposes, the function σ(g) was not recalculated every time;
instead, it was precalculated for about ten thousand values of g, evenly distributed on the segment
[0, 1], and only thusly obtained values were used during the calculations as approximations of the
actual values of σ(g).

The tumor growth speed Vgr(t) was calculated as the rate of change of tumor radius, which was
evaluated as the maximum space coordinate, at which n ≥ 0.1. In all the simulations, after an initial
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transitional period, the speed of tumor growth seemed to tend asymptotically to some constant value.
In order to ensure that this value could be estimated with suitable precision, for each simulation,
the part of the function V(t), obtained after the manually designated initial transitional period, was
fitted via the least-squares method by a function of the form:

Vgr(t) = V +
k

∑
i=1

aie−bit,

wherein the value k = 3 was selected manually as the one providing sufficiently fine approximation.
A simulation was stopped manually if the current tumor growth speed and V, expressed in mm/week,
were equal up to three decimal places. If it did not happen until the proximity of the tumor to the
right boundary notably affected its growth speed, the simulation was rerun in a larger region. Further
throughout the text, this limiting value V is meant for tumor growth speed.

For some simulations, the number of tumor cells was estimated analogically as:

N = lim
t→∞

∫ X

0
n(x)dx,

the integral being calculated numerically by the elementary rectangle rule.
The computational codes were implemented in C++ and can be found in the Supplementary Materials.

3. Results

3.1. Compact Type of Growth

At first, let us obtain an analytical estimation for the growth speed of a solid tumor with zero cell
motility, i.e., Dn = 0, which thus has a purely compact type of growth. For this purpose, let us seek the
solution of Equation (1) in the form of a wave, traveling with constant shape and speed V in an infinite
region. In such a case, the governing equations can be reduced to a system of ordinary differential
equations by introducing the traveling coordinate frame z = x − Vt:

tumor cells: Bn · [1 − σ(g)]− Mn · σ(g)− ∂(In)
∂z

+ V
∂n
∂z

= 0;

necrotic tissue: Mn · σ(g)− ∂(Im)

∂z
+ V

∂m
∂z

= 0;

glucose: Pc[1 − g]− Qn · [1 − σ(g)] + Dg
∂2g
∂z2 + V

∂g
∂z

= 0;

capillaries: −R[n + m]c + V
∂c
∂z

= 0;

where σ(g) =
1
2
[1 − tanh(ε{g − gcr})];

I(z) =
∫ z

−∞
Bn(r) · [1 − σ(g(r))]dr;

V = lim
z→+∞

I(z).

(3)

The living part of the tumor was considered as a planar front, which propagated towards the right
boundary, which represented the normal tissue, and left the necrotic zone behind it. That is formalized
by the following boundary conditions:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

n = 0,
m = 1,
∂g
∂z = 0,
c = 0,
I = 0

f or z → −∞;

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

n = 0,
m = 0,
g = 1,
c = 1,
∂I
∂z = 0,

f or z → +∞. (4)
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Further, in order to obtain an analytically tractable case, let us consider the following limitations:

• ε → ∞, i.e., all the tumor cells either proliferate or die at a given position at a given moment;
• M → ∞, i.e., tumor cells die instantaneously;
• R → ∞, i.e., there are no capillaries inside the tumor.

The last condition is sensible only if the tumor has a clear boundary, i.e.,

∃xb : ∀x > xb, n(x) + m(x) = 0,

These limitations result in the following system:

tumor cells:

{
n = 0 i f g ≤ gcr,

Vn′ − (In)′ + Bn = 0 i f g > gcr;

necrotic tissue: m =

{
1 i f g ≤ gcr,

0 i f g > gcr;
glucose: Dgg′′ + Vg′ + Pc[1 − g]− Qn = 0;

capillaries: c =

{
1 i f n + m = 0,

0 i f n + m > 0;

where I(z) =
∫ z

−∞
Bn(r)dr; V = lim

z→+∞
I(z),

(5)

where primes denote differentiation with respect to z.
Finally, let us specify the form of the tumor cells’ distribution in the sought solution as a limiting

case of a piecewise function, which can be equal only to zero and one, like the functions for necrotic
tissue and capillaries’ distribution. Thus, the sought solution has the form depicted in Figure 1,
where the origin of the z-axis is placed at the front of the tumor for convenience. This solution
can be split up into three regions: (1) necrotic core, (2) proliferating rim of yet unknown width L,
in which n = 1 and g > gcr, and (3) normal tissue. The expression for the tumor growth speed is now
simplified to:

V = I(0) = BL.
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1
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n

c/2

m

g

growth

direction

tumor

center

I
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core

II

proliferating
rim

III

normal
tissue

o

g=g
cr

Figure 1. The form of the solution of Equation (5), which is searched for analytically.

The distribution of glucose has to be found in order to estimate tumor growth speed.
This procedure, described in Appendix A, yields the following implicit expression for L:

1 − Q
B
+

QDg

B2L2 [1 − e−BL2/Dg ][1 − 2

1 +
√

1 + 4DgP/(B2L2)
] = gcr. (6)
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Its numerical solving resulted in L ≈ 1.325 under the values of the parameters used, taken from
the basic parameter set (see Table 1), which led to the tumor growth speed V ≈ 0.223 mm/week.
There was under a ten-fold greater value for angiogenesis parameter, i.e., P = 40, L ≈ 2.602 and
V ≈ 0.437 mm/week, which meant almost a two-fold increase in tumor growth speed. These values
were in good correspondence with the speeds of the in vitro growth of multicellular tumor spheroids,
experimentally obtained in the work [39] (≈0.5 mm/week), based on which several values of the model
parameters were estimated.

The estimation of V can be significantly simplified due to the presence of a small parameter:

δ =
BL2

Dg
=

V
Dg/L

,

the smallness of which is due to the fact that the tumor growth speed should be significantly lower
than the characteristic speed of glucose diffusion within the proliferating rim. For example, for the
values of parameters from their basic set, δ ≈ 1.7 × 10−4. Expansion of the expression (6) in a Taylor
series up to o(δ) yields:

gcr = 1 − Q
B
+

Q
B
[1 −

√
B
P

√
δ − δ

2
(1 − B

P
) + o(δ)].

Moreover, it is convenient to neglect B/P as a small parameter compared to one, e.g.,
B/P ≈ 2.5 × 10−3 for the basic values of the model parameters. This allows obtaining the equation for
an approximate value of proliferating rim width, L̃:

gcr = 1 − Q√
PDg

L̃ − Q
2Dg

L̃2,

which can be solved, only its positive root having physical meaning. That leads to the following
formula for approximate tumor growth speed:

Ṽ = BL̃ = B
√

Dg

{√
1
P
+ 2

1 − gcr

Q
−
√

1
P

}
, (7)

which under the considered parameter values provides the values of tumor growth speed, equal up to
three decimal places to the ones derived numerically from Equation (6). Note that this expression has
a limit under P → ∞:

Ṽlim = B

√
2Dg

Q
(1 − gcr),

that is ≈0.651 mm/week under the basic set of parameters. Thus, the speed of growth of a considered
tumor cannot increase more than three-fold due to angiogenesis. Under P = 40, it is about two-thirds
of its limit value, while under P = 80, it would be around three-quarters of it.

These estimations allow suggesting that for compactly growing tumors, AAT may provide a
several times decrease of their growth speed. Of note, there is no account for the drainage of necrotic
tissue in the model, while its consideration should enhance the result. Moreover, in this case, AAT
might be able to lead to a complete tumor growth stop, as well as its shrinkage, which is sometimes
observed experimentally [46].

The estimations of tumor growth speed under finite values of ε, M, and R are quite difficult if at
all impossible to perform analytically, and they were performed via numerical simulations. However,
at first, it was examined how well the results, obtained in a numerical experiment, could correspond
to the already obtained analytical estimations. For this purpose, the sets of four simulations with
different time and space steps were conducted for each of the six values of the angiogenesis parameter
within the considered range P ∈ [4, 40]. In each of the simulations, the time step τ and space step h
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related as τ = h2. The values of R and M were chosen to be close to the maximum values allowed by
numerical calculations, i.e., R = M = 0.1/τ. The value of ε was chosen to be 105, which practically
resulted in a stepwise function σ(g) due to the method of its implementation in the code.

The dots in Figure 2a denote the values of tumor growth speed, obtained numerically in these
simulations. The analytically obtained values are designated by crosses of the corresponding colors
on the vertical axis. For every used value of P, the best fit quadratic function was built in order
to approximate the numerical value for the tumor growth speed under h → 0, τ → 0, M → ∞,
and R → ∞. The thusly obtained values were in a good correspondence with the analytical ones,
being only slightly smaller than them. The discrepancy between the values increased with the increase
of P, constituting less than 1% under P = 4 and less than 5% under P = 40. Figure 2b–e shows the
distributions of the model variables on the 20th day of simulations under the values of parameters,
designated by the corresponding letters in Figure 2a. They showed that, expectedly, the numerically
obtained profiles of tumor cells differed from stepwise functions; however, their front edges were
getting steeper under finer discretization. Of note, the tumors that were obtained under coarser
discretization, shown in Figure 2c,e, had greater radii on the 20th day than the corresponding tumors
obtained under finer discretization, shown in Figure 2b,d. This did not reflect the relation between
the growth speeds of the tumors in these simulations, since these profiles were obtained during the
transitional period of tumor growth. As Figure 2a shows, tumor growth speed changed differently
with the refinement of the discretization under different values of P.
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Figure 2. (a) The dots denote the values of tumor growth speed V, obtained numerically in the
simulations of Equation (1) under designated values of angiogenesis parameter P and space step h,
with time step τ = h2, Dn = 0, R = M = 0.1/τ, ε = 105 and the values of other parameters taken
from the basic set. The dashed lines represent the best fit quadratic functions for every value of P.
The crosses on the vertical axis mark the analytically derived values of tumor growth speed for the
values of P used. (b–e) The distributions of the model variables on the 20th day of simulations under
the values of the parameters, designated by the corresponding letters in (a).

The analogical results, obtained in simulations with the values of parameters ε, R, and M, taken
from the basic set, are shown in Figure 3. With the use of the basic values for these parameter,
the approximated numerical values for tumor growth speed increased modestly for each considered
value of P, becoming ≈1.8–2.4% higher than the corresponding analytically estimated values. Certainly,
a further decrease of either ε or R, as well as the increase of either proliferation rate B, or glucose
consumption rate Q, or glucose diffusion coefficient Dg, would lead to a further increase in tumor
growth speed. However, too large alterations of the values of these parameters would lead to
physically meaningless results involving negative glucose concentrations and/or explosive tumor
growth, thus indicating the limitations of the presented model. Of note, the decrease of M by itself
had only a small effect on the tumor growth speed, as well as on the profile of glucose concentration,
but its change largely influenced the border between the profiles of necrotic tissue and tumor cells,
which were considered to be yet alive.
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Figure 3. (a) The dots denote the values of tumor growth speed V, obtained numerically in the
simulations of Equation (1) under designated values of angiogenesis parameter P and space step h,
with time step τ = h2, Dn = 0, and the values of other parameters taken from the basic set. The dashed
lines represent the best fit quadratic functions for every value of P. The crosses on the vertical axis mark
the analytically derived values of tumor growth speed for the values of P used. (b–e) The distributions
of the model variables on the 20th day of simulations under the values of the parameters, designated
by the corresponding letters in (a).

3.2. Invasive Type of Growth

Now, let us obtain an analytical estimation for the growth speed of a solid tumor with non-zero
cell motility Dn, but neglecting the bulk motion of tissue elements, expressed in Equation (1) by
hyperbolic terms. Once again, the solution was sought in the form of a wave, traveling with a constant
shape and speed V in an infinite region. The boundary conditions are now modified as:⎧⎪⎪⎪⎨⎪⎪⎪⎩

n = 0,
m = m∗,
g = g∗,
c = 0

f or z → −∞;

⎧⎪⎪⎪⎨⎪⎪⎪⎩
n = 0,
m = 0,
g = 1,
c = 1

f or z → +∞, (8)

where g∗ and m∗ are introduced as the limiting constant values of glucose concentration and necrotic
tissue fraction at z → −∞. For the estimation of V, it is necessary to consider the asymptotic behavior
of the solutions at z = ±∞. For this purpose, let us linearize the system (1) at the boundary values (8),
neglecting the convective terms, and thus obtain two systems of ODEs with constant coefficients:⎧⎪⎪⎪⎨⎪⎪⎪⎩

Dnn′′− + Vn′− + Bn− · [1 − σ(g∗)]− Mn− · σ(g∗) = 0;
Vm′− + Mn− · σ(g∗) = 0;
Dgg′′− + Vg′− + Pc−[1 − g∗]− Qn− · [1 − σ(g∗)] = 0;
Vc′− − Rm∗c− = 0.

and: ⎧⎪⎪⎪⎨⎪⎪⎪⎩
Dnn′′

+ + Vn′
+ + Bn+ · [1 − σ(1)]− Mn+ · σ(1) = 0;

Vm′
+ + Mn+ · σ(1) = 0;

Dgg′′+ + Vg′+ − Pg+ − Qn+ · [1 − σ(1)] = 0;
Vc′+ − R[n+ + m+] = 0,

where primes denote differentiation with respect to z = x − Vt and subscripts − and + refer to the
linearized problems at z → −∞ and z → +∞, respectively. The solutions to these problems should
be sought in the form (n′±, n±, m±, g′±, g±, c±)T ∼ k±exp(μ±z), which reduces these systems of linear
differential equations to eigenvalue problems.
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For z → −∞, the eigenvalues are:

μ−
1,2 = 0, μ−

3 = Rm−/V, μ−
4 = −V/Dg,

μ−
5,6 = [−V/2 ±√V2/4 + Dn{Mσ(g−)− B[1 − σ(g−)]}]/Dn,

where μ−
3 is positive, μ−

4 is negative, and μ−
5,6 have opposite signs, since Mσ(g−)− B[1 − σ(g−)] > 0,

i.e., the death rate exceeds the proliferation rate at sufficiently low values of z, which follows from the
physical meaning of the model.

For z → +∞, the eigenvalues are:

μ+
1,2 = 0, μ+

3,4 = [−V/2 ±
√

V2/4 + DgP]/Dg,

μ+
5,6 = [−V/2 ±√V2/4 − Dn{B[1 − σ(1)]− Mσ(1)}]/Dn,

where μ+
3,4 have opposite signs and, depending on the value of V, μ+

5,6 are either complex numbers
with negative real parts, or real numbers with opposite signs, or both are equal to zero. Therefore,
for sufficiently low values of V, the solution may oscillate for large values of z, yielding regions with
negative values of n and m, which is physically unrealistic. Thus, the following restriction on tumor
growth speed is sufficient for physically reasonable solutions:

V ≥ Vmin = 2
√

Dn{B[1 − σ(1)]− Mσ(1)} ≈ 2
√

BDn, (9)

the last two values being extremely close under the basic set of parameters, differing by less
than 10−13% even under a decrease of ε up to the value of 20. For the basic set of parameters,
Vmin ≈ 1.063 mm/week, which was in a good correspondence with the speed of growth of highly
invasive tumors [40]. Formula (9) corresponds well to the well-known result regarding Fisher’s
equation, which can be written out in the notation used herein as:

∂n
∂t

= Bn(1 − n) + Dn
∂2n
∂x2 . (10)

For this equation, the range of the speed of monotone waves satisfies:

V ≥ V f
min = 2

√
BDn,

this result not being affected by the alteration of the proliferation term as long as the proliferation rate
tends to B for n → 0. For Fisher’s equation, it is known that if its initial conditions have a compact
support, i.e.,

n(x, 0) = n0(x) ≥ 0, n0(x) =

{
1 i f x ≤ x1,

0 i f x ≥ x2,
(11)

where x1 < x2 and n0(x) is continuous in x1 < x < x2, then the solution n(x, t) of Equation (10)
evolves to a traveling wavefront solution with the speed V f

min = 2
√

BDn [47].
The numerical simulations of the system (1) under the neglect of convective terms with the initial

conditions (2), which represent a function with a compact support, show that they evolve to the
wavefronts, traveling with speeds very close to 2

√
BDn. For the basic set of parameters, numerical

simulations gave V ≈ 1.061 mm/week, yielding the same tumor growth speed up to three decimal
places (as well as the same number of cells N ≈ 1.383) under space steps h = {0.2, 0.1, 0.05, 0.025}
and time steps τ = h2. Thus, much coarser discretization could provide more accurate results for the
considered system under the neglect of convective terms. A dozen simulations under other values of
parameters, chosen randomly from the ranges B ∈ [0.05, 0.3] and Dn ∈ [0.001, 0.4], as well produced
the values of tumor growth speeds that differed from 2

√
BDn by no more than 0.5%.
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Since the considered system could be viewed as an augmentation of Fisher’s model, the obtained
results suggested that the introduced modifications should not affect the wave speed of its solution,
which evolved from a function having a compact support, or at least they should lead to only a
very small correction of it within the physiologically justified range of parameters. Most importantly,
the parameter P is not present in Formula (9), which implies that angiogenesis should not influence the
growth speed of a considered invasive tumor at all. Numerical modeling speaks in favor of this result.
The simulations under six values of the angiogenesis parameter within the considered range P ∈ [4, 40]
yielded tumor growth speeds equal up to three decimal places, which is illustrated by Figure 4a.
The simulations were run with space step h = 0.1 and time step τ = h2 = 0.01, which nevertheless did
not allow saving a sufficient amount of computational time, compared to the simulations of Section 3.1,
since in this case, the tumor growth speed tended sufficiently slower to a constant value, thus requiring
longer simulation on larger domains.

Of note, the number of tumor cells notably grew with the increase of P, as Figure 4a shows,
resulting in an ≈72% increase under 10-fold magnification of the basic value of P = 4. This effect
was well noticeable when comparing the profiles of tumor cells under P = 4 and P = 40, which are
depicted in Figure 4b,c on the 20th day of tumors growth.
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Figure 4. (a) The red dots denote the values of tumor growth speed V; the green dots denote the
values of number of tumor cells N, which were obtained numerically in the simulations of Equation (1)
with the neglect of hyperbolic terms (i.e., I = 0) under designated values of angiogenesis parameter
P, values of other parameters, taken from the basic set, space step h = 0.1, and time step τ = 0.01.
The dashed lines are interpolations of data points. (b,c) The distributions of the model variables on the
20th day of simulations under P = 40 and P = 4 correspondingly.

3.3. Mixed Type of Growth

The conclusion of the indifference of invasive tumor growth speed to angiogenesis was valid
under the full neglect of the convective component of tumor growth. However, it was reasonable to
assume that simultaneously accounting for it should nevertheless lead to a non-zero effect of AAT
on the growth speed of an invasive tumor, since the convective component of tumor growth should
be affected by the number of its cells. In order to evaluate the effect of antiangiogenic therapy on
tumors with a mixed type of growth, the sets of six simulations under different values of angiogenesis
parameter P were conducted for eight values of tumor cell motility Dn. As a compromise between
computing resources and accuracy, the values of space step h = 0.01 and time step τ = 10−4 were
used. The obtained tumor growth speeds are designated in Figure 5a, where the data for the case with
zero cell motility, already shown in Figure 3a, is added.

Let introduce the parameter of “maximum antiangiogenic effect” as:

(V|P=40 − V|P=4)/V|P=40,
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which indicates how the tumor growth speed would slow down upon a decrease of angiogenesis
parameter P from 40 to four, the latter corresponding to the normal microvasculature level.
Its dependence on tumor cell motility is shown in Figure 5b, while under Dn = 0, it was ≈48%.
The graph suggests that the effect of mono-AAT should inversely correlate with the invasiveness
of the tumor; however, it should be non-zero even for highly invasive tumors, since the maximum
antiangiogenic effect, obtained under high values of tumor cell motility, Dn = 0.1 and Dn = 0.33,
was ≈13% and ≈11%, correspondingly.
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Figure 5. (a) The dots denote the values of tumor growth speeds V, obtained numerically in the
simulations of Equation (1) with space step h = 0.01 and time step τ = 10−4, under designated values
of angiogenesis parameter P and tumor cell motility Dn and the values of other parameters taken from
the basic set. The dashed lines are interpolations of data points. (b) The graph of “maximum angiogenic
effect”, based on the data, shown in (a), which shows how the tumor growth speed would slow down
upon the decrease of angiogenesis parameter P from 40 to four under designated values of Dn.

An interesting property of the considered tumors with a mixed type of growth was the fact that
their growth speed was not equal to the sum of two speeds: Vcomp that was obtained in the absence of
cell motility—i.e., during purely compact growth—and Vinv ≈ 2

√
BDn that was obtained in absence

of convective flows—i.e., during purely invasive growth. This property is illustrated in Figure 6,
which shows the dependence of the parameter (V − Vcomp)/Vinv on P for different Dn. This parameter
may be treated as the ratio of the increase in tumor growth speed, caused by the mobilization of
initially immotile cells, to the speed of pure invasive growth itself. The reason for the non-additivity of
the growth speeds was the fact that the redistribution of the tumor cells, caused by their migration,
led to the change in the number of cells in the proliferating state and altered the convective velocity
field. This effect had an ambiguous character. Firstly, the protrusion of tumor cells’ profile towards the
region with a normal density of microvasculature led to the increase in the effective rate of capillaries’
degradation, which resulted in a decrease of glucose inflow to the tumor and a subsequent decrease
of the pool of proliferating cells. Secondly, this protrusion itself enlarged the pool of tumor cells,
located in the region with a concentration of glucose sufficient for their proliferation. The first aspect
dominated under small values of Dn, leading to a much smaller increase in tumor growth speed, than
2
√

BDn. This effect was more pronounced under high values of P, since in this case, tumors had more
cells, and therefore enlarged sizes of such protrusions that led to accelerated degradation of capillaries.
According to the simulations, a tumor with motile cells may even grow slower than the same tumor
with immobilized cells. The second aspect dominated under high values of Dn, resulting in the fact
that the tumor growth speed was higher than Vconv + Vdi f under Dn = 0.33 for all the considered
values of P.
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Figure 6. The dots denote the ratios of the differences of tumor growth speed V and Vcomp, which is
the growth speed of the same tumor under zero cell motility, to Vinv, which is the growth speed of
the same tumor under the neglect of convective flows. All values were obtained numerically in the
simulations of Equation (1) with space step h = 0.01 and time step τ = 10−4 under designated values
of angiogenesis parameter P and tumor cell motility Dn and the values of other parameters taken from
the basic set. The dashed lines are interpolations of data points.

4. Discussion

The goal of this paper was to study, by means of mathematical modeling, the effect of
mono-antiangiogenic therapy (AAT) on monoclonal tumors, which have different types of growth.
The analytical estimations performed allowed suggesting that AAT may provide a several times
decrease of growth speed for compact tumors, but the decrease of growth speed for invasive tumors
should be much less significant. Thus, the tumors, which initially had an invasive phenotype,
should possess intrinsic resistance to AAT, while compactly growing tumors should be more susceptible
to it. This conclusion corresponds well to the preclinical and clinical data [21,23]. To the best of my
knowledge, this effect was not reproduced before via a continuous model of tumor growth, while this
ability of the model should be crucial for the investigation of AAT.

The presented model was built on the fundamental principle that the diffusion and consumption of
nutrients limit the growth of a solid tumor. This principle underlines a multitude of existing continuous
models that account for spatio-temporal interactions between tumor cells and nutrients (see, e.g., [48]
for a review). The main distinguishing feature of the presented model was the simultaneous accounting
of the intrinsic motility of malignant cells and the convective motion, arising due to their proliferation,
which allowed considering two types of tumor growth, as well as their combination. Despite the
relative simplicity that this approach has under the assumption of the spherical symmetry of a tumor,
it is relatively rarely used, and usually one of the two types of tumor growth is ignored in continuous
models. Some of the few exceptions were the work [49], which provided a theoretical justification for
the phenomenon of the dominance of a metastatically active population in an avascular heterogeneous
tumor, and the work [50], which explained from a theoretical point of view the effect of tumor cells’
migration within a multicellular tumor spheroid. The works [51,52], which also utilized such an
approach, were devoted to the investigation of the fingering instability of the avascular tumor surface
in the two-dimensional case. This instability could be regarded as a way for a tumor to counteract the
diffusional limitations of nutrient inflow. While this phenomenon may affect the tumor growth speed
quantitatively, the main qualitative results of the presented work, obtained under the assumption of
radial symmetry, could hardly be affected in higher dimensions.

The presented model accounts for glucose as the main nutrient, since it is an indispensable
substrate for cell division [28], while most of the relevant models consider tumor cell proliferation to
be dependent on oxygen [48]. While such a difference may not be of major importance to the model
presented herein, as well as to the models of avascular tumor growth, it should be noted that the
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approach for modeling the dynamics of oxygen with implicit accounting of tumor vasculature should
differ from that for glucose due to the specific features of their blood transport, transvascular transport,
and tumor metabolism, which were discussed in the previous paper by our research group [34].

The account of angiogenesis, utilized herein, is rather schematic; however, it allows considering
the two major effects of AAT on a qualitative level, allowing performing analytical estimations
that suit the purposes of this work. Under more straightforward consideration of angiogenesis,
i.e., the introduction of a separate variable for VEGF, which would affect the dynamics of capillaries,
one would obtain a distribution of capillaries with non-uniform alterations in their density and
permeability [27,34]. However, for every simulation of such an extended model, there will exist a
corresponding value of P, which would provide the same increase in tumor growth speed in the
simplified model presented herein. Interestingly, the analytical expression for the speed of growth of a
compact tumor with no capillaries inside it allowed obtaining a limit of its growth speed under the
infinite increase in the number of capillaries and/or in their permeability. However, the estimations
with physiologically based values of parameters suggested that achieving more than ≈ 80% of this
limit value of speed was unlikely for real tumors. The analytical expression for the speed of growth
of invasive tumor indicated that angiogenesis did not influence it at all under the neglect of the
convective component of tumor growth, which was confirmed by numerical simulations. However,
the simulations, which accounted for both reasons of growth, suggested that in terms of tumor speed
reduction, the maximum possible angiogenic effect for highly invasive monoclonal tumors should be
around 10–15%.

Importantly, the neglect of convective motion would have led to the misleading conclusion of
the indifference of tumor growth speed to angiogenesis for low-invasive tumors as well, since it was
not affected by the exact value of tumor cell motility. It should be noted that the accounting of the
convective component of tumor growth should be also crucial for modeling of other types of antitumor
therapy, since the decrease in the number of tumor cells, caused by any treatment, in reaction-diffusion
models should lead to an underestimated decrease of tumor growth speed.

The numerical simulations performed highlighted the non-additive character of the two types
of tumor growth. Namely, the addition of a small enough motility to initially immobilized tumor
cells should lead to a notably smaller increase in tumor growth speed that could be expected from
the analytical estimations of the speed of tumor invasion. Interestingly, the simulations suggested
that a low-invasive tumor may even grow slower than the same tumor with immobilized cells.
Under sufficiently high cell motility, on the contrary, the two types of tumor growth produced a
synergistic effect.
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Appendix A. Analytical Estimation of Compact Tumor Growth Speed

The distribution of glucose in Figure 1 is searched as a piecewise function that must be
continuously differentiable for the continuity of glucose concentration and its flow:

g(z) = gI(z), z < −L;
g(z) = gII(z), − L < z < 0;

g(z) = gII I(z), 0 < z;

g(−L) = gI(−L) = gII(−L) = gcr, g′I(−L) = g′I I(−L);
g(0) = gII(0) = gII I(0), g′I I(0) = g′I I I(0).

Within the necrotic core, the equation for glucose turns into:

Dgg′′I + BLg′I = 0,

the general solution of which is:
gI = CI

1 + CI
2e−BLz/Dg ,

for which the boundary conditions allow only for:

gI = gcr.

Within the proliferating rim, the equation for glucose is converted into:

−Q + Dgg′′I I + BLg′I I = 0,

the general solution of which is:

gII = CII
1 + CII

2 e−BLz/Dg +
Qz
BL

.

Stitching of gI and gII at z = −L yields:

gI(−L) = gII(−L) : gcr = CII
1 + CII

2 eBL2/Dg − Q
B

;

g′I(−L) = g′I I(−L) : 0 = −BL
Dg

CII
2 eBL2/Dg +

Q
BL

.

Therefore:
CII

1 = gcr +
Q
B
[1 − Dg

BL2 ]; CII
2 =

QDg

B2L2 e−BL2/Dg .

For normal tissue, the glucose equation transforms into:

P[1 − gII I ] + Dgg′′I I I + BLg′I I I = 0,

the general solution of which is:

gII I = 1 + CIII
1 exp(

−BL −
√

B2L2 + 4DgP

2Dg
z) + CIII

2 exp(
−BL +

√
B2L2 + 4DgP

2Dg
z).
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Since the glucose concentration is limited at z → +∞, then CIII
2 = 0. Stitching of gII and gII I at

z = 0 results in:

gII(0) = gII I(0) : CII
1 + CII

2 = 1 + CIII
1 ;

g′I I(0) = g′I I I(0) : −BL
Dg

CII
2 +

Q
BL

=
−BL −

√
B2L2 + 4DgP

2Dg
CIII

1 .

Substituting the values of CII
1 and CII

2 into these equations allows obtaining the following implicit
expression for L:

1 − Q
B
+

QDg

B2L2 [1 − e−BL2/Dg ][1 − 2

1 +
√

1 + 4DgP/(B2L2)
] = gcr. (A1)
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Abstract: A spatially-distributed continuous mathematical model of solid tumor growth and
treatment by fractionated radiotherapy is presented. The model explicitly accounts for three time and
space-dependent factors that influence the efficiency of radiotherapy fractionation schemes—tumor
cell repopulation, reoxygenation and redistribution of proliferative states. A special algorithm
is developed, aimed at finding the fractionation schemes that provide increased tumor cure
probability under the constraints of maximum normal tissue damage and maximum fractional
dose. The optimization procedure is performed for varied radiosensitivity of tumor cells under the
values of model parameters, corresponding to different degrees of tumor malignancy. The resulting
optimized schemes consist of two stages. The first stages are aimed to increase the radiosensitivity
of the tumor cells, remaining after their end, sparing the caused normal tissue damage. This allows
to increase the doses during the second stages and thus take advantage of the obtained increased
radiosensitivity. Such method leads to significant expansions in the curative ranges of the values of
tumor radiosensitivity parameters. Overall, the results of this study represent the theoretical proof of
concept that non-uniform radiotherapy fractionation schemes may be considerably more effective
that uniform ones, due to the time and space-dependent effects.

Keywords: mathematical oncology; spatially-distributed modeling; reaction-diffusion-convection
equations; computer experiment; gradient descent

MSC: 35K57; 35Q92; 92C05

1. Introduction

Approximately half of the patients, diagnosed with cancer, undergo radiotherapy (RT) [1].
The effect of irradiation on cancer and normal cells can be mathematically expressed via classical
linear-quadratic model, which is known to fit experimental data well in a wide range of clinical
parameters [2]. According to this model, the fraction of cells, which survive after a single radiation
dose D, can be estimated as

S(D) = e−αD−βD2
, (1)

where α and β are radiosensitivity parameters of cells. Usually cancer cells have higher values of linear
radiosensitivity parameter α that corresponding normal cells. However, normal tissues as a rule have
greater α/β ratio, which restricts the use of high radiation doses [3]. One option to reduce normal
tissue damage is to concentrate the radiation dose within the tumor mass. However, such option
carries significant risks even for tumors with clear boundaries, due to the leakage radiation [4].
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Other option to spare normal tissues is to fractionate the total dose, that is, to divide it into much
smaller fractions, administered over a period of several weeks. The efficiency of a fractionation
scheme depends on the effects that are widely referred to as the four “R”s of radiotherapy [5]. Two of
the effects—reoxygenation and redistribution of cell cycle—indicate that the radiosensitivity of a
cell depends on the surrounding concentration of oxygen and on the current stage of its cell cycle.
In particular, hypoxic and non-proliferating cells are more radioresistant [6]. The third effect is the
repopulation of tumor cells that takes place between the irradiations. The fourth effect is the repair of
sublethal damage, which can be neglected, unless the time interval between irradiations is as short as
several hours [7].

The most typical RT fractionation schemes consist of fractions of 1.8 to 2.0 Gy, delivered once a day
on weekdays within the period of several weeks [3]. However, different fractionation protocols were
shown to lead to improvement in tumor cure and patient survival for most of the patients for some of
the tumor types [8]. Importantly, in clinical practice optimization of RT fractionation is significantly
complicated by a number of factors, including the great variability of tumors, belonging to the same
type, and related ethical problems, associated with the fact that alternative protocols may worsen
outcome for some of the patients. Of note, in the vast majority of the tested schemes the irradiation
doses are distributed equally between the fractions. At that, the varied parameters of the schemes
are the number of the fractions, the interval between them and the fractional dose, which are related
through the constraint on total normal tissue damage.

Given the practical difficulties, mathematical modeling can be a powerful tool, providing insights
into the problem of optimization of RT fractionation. Different approaches exist in this field that have
their pros and cons. The use of non-spatially distributed phenomenological models of tumor growth,
expressed in ordinary differential equations, often allows to obtain the globally optimal solutions for
the considered problems via analytical methods [9–11]. However, these methods become complicated
and even unsolvable under introduction of complex non-linear terms, aimed to account for time-
and space-dependent effects [12] or for tumor-specific features [13]. In such cases, various heuristic
approaches are used, ranging from direct comparison of the schemes [14] to more complex techniques
like simulated annealing [13], which can not guarantee the global optimality of the solution. However,
such methods can yield significant results, one of which has already been verified in a preclinical
study [13].

Crucially, the use of ordinary differential equations can allow for only phenomenological
consideration of the reoxygenation and redistribution of the cell cycle—the effects that result are
the spatiotemporal variability of tumor cells’ radiosensitivity [12,14]. Their explicit consideration is
possible in spatially-distributed models, which can be divided in two types—a continuous model,
expressed in partial differential equations (PDEs), and discrete models that usually treat every
tumor cell as a separate agent but use PDEs for the consideration of dynamics of nutrients and
other substances. However, to the best of our knowledge, the existing works on RT fractionation
optimization that use continuous spatially-distributed models, only account for homogeneous and
constant radiosensivity of tumor cells. That leads to the conclusion of optimality of standard radiation
fractionation schemes [15,16]. Reoxygenation and redistribution of cell cycle can be straightforwardly
incorporated into agent-based models. However, the complexity of such models and numerical costs
of their simulations lead to practical impossibility of solving optimization tasks via them, at least under
current level of computer technology. As a rule, in the corresponding works several fractionation
schemes are compared directly, moreover, the considered numbers of tumor cells are several orders of
magnitude less that the relevant numbers for the human tumors [17–19]. These factors significantly
limit the usefulness of such models.

In this work, we present a spatially-distributed continuous mathematical model of solid tumor
growth and treatment by fractionated RT that explicitly accounts for tumor cell repopulation,
reoxygenation and redistribution of proliferative states. With the use of a specially-developed
algorithm, we find the optimized fractionation schemes for varied radiosensitivity of tumor cells
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under the values of model parameters that correspond to different degrees of tumor malignancy.
The resulting schemes lead to significant expansions in the curative ranges of the values of tumor
radiosensitivity parameters.

2. Model

2.1. Equations for Tumor Growth

The mathematical model of tumor growth, considered herein, was based on our models,
previously used for the investigation of various aspects of tumor growth and treatment [20–23].
There were five variables in this version of the model, which were the functions of space and time
coordinates, r and t: the density of tumor cells n(r, t), the density of normal cells h(r, t), the fraction
of necrotic tissue m(r, t), the concentration of glucose g(r, t) and the concentration of oxygen ω(r, t).
The main simplification of this version of the model was the absence of an explicit variable for the
capillaries, from which the nutrients flow into the tissue. Instead it was assumed that their local density
was proportional to the local fraction of the normal cells in the tissue.

The following set of equations governed the dynamics of the model variables under the absence
of radiotherapy:

tumor cells:
∂n
∂t

=

proliferation︷ ︸︸ ︷
Bn

g
g + g∗

death︷ ︸︸ ︷
−εMh(ω)n

migration︷ ︸︸ ︷
+DnΔn

convection︷ ︸︸ ︷
−∇(In);

normal cells:
∂h
∂t

=

death︷ ︸︸ ︷
−[Mh(ω) + Mn]h

convection︷ ︸︸ ︷
−∇(Ih);

necrotic tissue:
∂m
∂t

=

cell death︷ ︸︸ ︷
εMh(ω)n + [Mh(ω) + Mn]h

convection︷ ︸︸ ︷
−∇(Im);

glucose:
∂g
∂t

=

inflow︷ ︸︸ ︷
Pgh[1 − g]

consumption︷ ︸︸ ︷
−[Qg

nn + Qg
hh]

g
g + g∗

diffusion︷ ︸︸ ︷
+DgΔg;

oxygen:
∂ω

∂t
=

inflow︷ ︸︸ ︷
Pωh[S(ωA)− S(ω)]

consumption︷ ︸︸ ︷
−[{Qω

n
g

g + g∗ + Qω
h

g∗

g + g∗ }n + Qω
h h]

ω

ω + ω∗

diffusion︷ ︸︸ ︷
+DωΔω;

where n + m + h = 1;

Mh(ω) =

{
0 i f ω ≥ ω∗;

M[{ω/ω∗}2 − 2{ω/ω∗}+ 1] i f ω < ω∗;
S(ω) = 1/[1 + {ω0.5/ω}χ].

(2)

2.1.1. Dynamics of Cells and Necrotic Tissue

The term of tumor cells proliferation implied that the rate of this process was proportional to
the rate of glucose consumption by tumor cells. This assumption was made on the basis that glucose
is indispensable nutrient for biosynthesis [24]. Glucose is also a crucial energetic nutrient for tumor
cells [25]; however, they are known to obtain energy under its depletion via multiple ways in order
to increase their survival [26–28]. Therefore, the limiting nutrient in the model for the cell survival
was oxygen, tumor cells being more or at least equally resistant to its depletion that the normal cells,
that is, ε ≤ 1. The function of cell death rate Mh(ω) was chosen to be smooth, tending to its maximum
value under the full absence of oxygen, and equal to zero for the levels of oxygen which exceed the
critical value ω∗. Normal cells also died in the presence of tumor cells, which was introduced in the
model to coarsely reflect two processes: the inability of normal cells to remain viable in acidic tumor
microenvironment [29] and the degradation of capillary network inside the tumor [30].
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Tumor cells were able to migrate throughout the tissue, which was governed by a diffusion-like
term. Directed migration of tumor cells was neglected [31]. The convective terms described the bulk
motion of the tissue elements, the velocity field I being determined by the dynamics of tumor cells.
The drainage of necrotic tissue was neglected. Due to the assumption of the constancy of the total
density of tumor cells, necrotic tissue, and normal cells, which was normalized to unity, the following
expression for the gradient of I was obtained:

∇I = Bn
g

g + g∗ + DnΔn. (3)

2.1.2. Dynamics of Nutrients

Model dynamics of both nutrients accounted for the same physiological processes—inflow of
nutrients from the capillary network into the tissue, their consumption by tumor and normal cells and
their diffusion within the tissue, the latter being much faster for oxygen. The form of the terms for the
inflow of oxygen and glucose differed due to significant distinctions in the mechanisms of their blood
and transvascular transport. The inflow of glucose is governed primarily by the process of passive
diffusion through the pores in the walls of capillaries [32]. Therefore, the rate of the glucose inflow
was taken to be proportional to the difference in glucose concentrations in blood and in tissue, and to
the capillaries density, which, as it was mentioned above, was assumed to be in linear relationship
with the density of normal cells. Glucose concentration in blood was considered to be constant and
was normalized to unity.

Oxygen, as lipid-soluble substance with low molecular weight, passes directly through the
capillary walls and flows into the tissue at much greater rate that glucose. Oxygen levels in arterial and
venous blood differ more than twice even under normal conditions [33], which implies that its blood
concentration should not be treated as constant. Moreover, the inflow of oxygen into the tissue is not
proportional to the difference of its concentrations in capillary blood and tissue due to the complicated
blood transport of oxygen, which molecules are carried in blood in two forms—bound to hemoglobin
and unbound from it. Overall, the used term for the oxygen inflow assumed that the rate of this
process is proportional to the difference between the fraction of oxygen-saturated hemoglobin under
two values of unbound oxygen concentration—the one in arterial blood, which enters the capillaries,
and the one in tissue. The function S(ω) represented oxygen-hemoglobin dissociation curve, the form
of which is well-known in physiology [34]. For more detailed explanation of the assumptions, which
underpinned the term of oxygen inflow, we refer the readers to our previous work [35].

The nutrient consumption was described via the terms of the classical Michaelis-Menten type.
Tumor cells are known to consume nutrients much faster that normal cells, in order to support their
proliferative activity, therefore, Qg

n > Qg
h, Qω

n > Qω
h . The rate of oxygen consumption by tumor

cells fell down to the rate of oxygen consumption by normal cells under the decrease in tumor cells
proliferation rate, caused by the glucose shortage [36].

2.1.3. Numerical Solving of Tumor Growth Model

The set of Equations (2) was solved numerically with assumption of the spherical symmetry of
the tumor. The size of the computational region L was adjusted in order to be sufficiently small to
spare computational time without imposing noticeable edge effects. The convective flow speed was
set to zero at the left boundary, which represented the center of the tumor, where initially r = 0. For all
the variables, the zero-derivative boundary conditions were used at both edges. The following initial
conditions were used for tumor cells, normal cells and necrotic tissue:⎧⎪⎨⎪⎩

n = 0.1,
m = 0,
h = 0.9

f or r <= 0.1;

⎧⎪⎨⎪⎩
n = 0,
m = 0,
h = 1

f or r > 0.1. (4)
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Equations for glucose and oxygen were considered in the quasi-stationary approximation,
due to the fast dynamics of these variables, and were solved using the tridiagonal matrix algorithm.
The equation for normal cells was not solved explicitly, the relation h = 1 − n − m being used for
determining their density. For tumor cells and necrotic tissue the method of splitting into physical
processes was used, that is, kinetic equations, migration equation and convective equations were solved
successively during each time step. The implicit Crank-Nicholson scheme was used for the tumor cells
migration equation. Convective equations were solved using the flux-corrected transport algorithm
with the implicit anti-diffusion stage. The kinetic equations were solved by the simple explicit Euler
method, which was justified by the relative smallness of the used time steps, adjusted for the solution of
the transport equations. The flux-corrected transport algorithm was introduced in Reference [37], while
other classical methods were described in many books (see, for example, Reference [38]). The choice of
the time and space steps for different simulations is justified in Appendix A.

The computational code was implemented in C++ and can be found in the Supplementary Materials.

2.2. Equations for Radiotherapy

For the description of radiotherapy (RT), we relied on the classical linear-quadratic model, which
was discussed in Section 1. We accounted for two effects that lead to spatiotemporal heterogeneity of
the radiosensitivity of tumor cells. The first one is oxygen enhancement effect, which was introduced
herein in the form presented in Reference [39], where the corresponding terms were deduced from the
experimental data. The second effect is the decrease in radiosensitivity of quiescent cells, which was
considered herein with the assumption that it fell along with the decrease in the cells’ proliferation rate.
We neglected the duration of each irradiation and assumed that the number of cells and the density of
necrotic tissue changed in result of it instantaneously, which was realized in a code in a straightforward
manner. We did not consider explicitly the death of normal cells due to RT, however, the total damage
of the normal tissue was the crucial parameter for the optimization of RT fractionation, which is
discussed in Section 2.3. Overall, the equations that expressed the densities of tumor cells and necrotic
tissue after a single irradiation with the dose D through their values before it were as follows:

n1|postRT = n1|preRT · exp({−α [OERα(ω) · γ(g) · D]− β
[
OERβ(ω) · γ(g) · D

]2}),
m|postRT = m|preRT + [n1|preRT − n1|postRT ];

where OERi(ω) =
ω ∗ OERi,m + Km

ω + Km
, i = α, β; γ(g) =

g + kg∗

g + g∗ .

(5)

2.3. Optimization of Radiotherapy Fractionation

The task of finding the optimized fractionation of RT was formalized the following way. During all
the simulations, the first irradiation was performed at the moment t = t0, when tumor radius,
evaluated as the maximum space coordinate, at which n + m ≥ 0.1, reached 1 cm. We considered
the RT schemes, which consisted of 42 doses of radiation, some of which could be zero, which were
administered successively at 24 h interval. Therefore, each scheme D could be expressed as a vector
of non-negative numbers, representing the values of doses, expressed in grays: D = (Di), i ∈ [1, 42].
As the standard reference scheme we used the following vector that corresponded to one of the typical
courses in clinical practice, consisting of 30 doses of 2 Gy, delivered every weekday over six weeks [3]:

Dst = (Dst
i ), Dst

i =

{
0 i f i = 6 + 7[k − 1] ∨ i = 7k, k ∈ N;

2 otherwise;
i ∈ [1, 42]. (6)
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However, we did not impose the condition of the obligatory presence of days-off in the tested
fractionation schemes. All the considered schemes had to satisfy two constraints, related to the normal
tissue damage:

NTDh(D) ≡ 42
∑

i=1
[(α/β)h · Di + D2

i ] ≤ NTDmax ≡ NTDh(D
st); (7)

Di < Dmax ∀i. (8)

The first inequality was analogical to the condition that the biologically effective dose, delivered to
the normal tissue, could not exceed its value for the standard fractionation scheme. The second
inequality corresponded to the acute reactions and indicated that each dose could not exceed a certain
threshold. The aim of the search was to find the scheme D, which would decrease the value of the
following objective function F(D) as much as possible:

F(D) = min
t
(lgN(D, t)), where N(D, t) ≡ n̂r̂3 · 4π

∫ X
0 n(D, r, t)r2dr, (9)

where n̂ and r̂ are the normalization parameters of the model for the number of tumor cells and length.
Thus, the aim of the optimization procedure was to find the fractionation scheme, leading to the
most efficient eradication of tumor cells, which should correspond to the increase in the tumor cure
probability (TCP). The following formula was used for the estimation of TCP:

TCP(D) = e
−min

t
(N(D,t))

, (10)

which can be interpreted as the fraction of eradicated tumors among the identical tumors that have
undergone the same treatment, under the assumption that the number of surviving cells throughout
these tumors at the end of the treatment follows a Poisson distribution with the average of N.

For the search of the optimized RT fractionation schemes and the optimized values of the objective
functions, Algorithm 1 was developed and implemented in the program code. Its repeating steps 2
and 3 represented an adaptation of the classical gradient descent method for the considered problem.
Like the classical method, these steps could find only local optimum, and the aim of step 4 was to try
to further optimize this result. The meaning of the actions, performed during step 4, is explained in
Section 3.3. By themselves, steps 2–4 could yield different results depending on the initial scheme.
By testing different initial schemes under various model parameters, we found out that these steps
most often produced the best results with the use of the most optimal uniform fractionation scheme
as the initial. The search for such scheme was performed during the step 1. The procedures of
normalization of the schemes, with the aim of their compliance with the above-mentioned restrictions,
were performed iteratively.
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Algorithm 1: Optimization of dose fractionation for radiotherapy.
Data: Distribution of variables of tumor growth model, governed by Equations (2), at t = t0.
Run simulation of radiotherapy (RT), governed by Equations (5), with fractional doses Dst;
Remember the value of the objective function Fst;
Step 1. Search for the optimal uniform fractionation scheme: j = 42;
while j = 42 ∨ (DUFj

1 ≤ Dmax ∧ j ≥ 1) do

DUFj
i = {0.5[

√
(α/β)2

h + 4 · NTDmax/j − (α/β)h] f or i ∈ [1, j]; 0 f or i ∈ [j + 1, 42]};

if DUFj
1 ≤ Dmax then Simulate RT with the scheme DUFj, remember FUFj, j = j − 1;

Choose jUF
opt : FUFjUF

opt =
42

min
i=j

FUFi;

if FUFjUF
opt < Fst then Dopt = DUF

jUF
opt , Fopt = FUFjUF

opt , jmax = jUF
opt ;

else Dopt = Dst, Fopt = Fst, jmax = 42;
Stop = 0;
while Stop = 0 do

kn = 1;
while kn > kmin

n do
Step 2. Search for the “gradient”:

for j = 1, 2, ..., jmax do

Dj = Dopt; Dj
j = Dopt

j + δS; Normalize Dj according to Equation (7), not altering
the doses, equal to Dmax;

Simulate RT with the scheme Dj; Remember Fj;
Step 3. Going down the “gradient”: n = 1; kn = 1; F0

D = Fopt; StopS3 = 0;
while (Fn

D < Fn−1
D ∨ (n = 1 ∧ kn > kmin

n )) ∧ StopS3 = 0 do

Dn
j = {Dopt

j + knnδD · [Fopt − Fj] f or j ∈ [1, jmax]; Dn
j = 0 f or j ∈ [jmax + 1, 42]};

Normalize Dn according to Equations (7) and (8);
Simulate RT with the scheme Dn; Remember Fn

D;
if Fn

D < Fn−1
D then

if kn = 1 then n = n + 1;
else Dopt = Dn, Fopt = Fn

D, , StopS3 = 1;

else if n > 1 then Dopt = Dn−1, Fopt = Fn−1
D ;

else kn = kn/2. ;

Step 4. Trying to improve the final part of the scheme:

if Dopt
jmax

< Dmax then

j f in =
jmax
min
j=1

j : Dopt
j > k f in · Dopt

jmax
; NTDbeg ≡

j f in−1

∑
i=1

[(α/β)h · Dopt
i + {Dopt

i }2]; j = jmax;

while j = jmax ∨ (DSFj
j ≤ Dmax ∧ j ≥ j f in) do

DSFj
i = {Dopt

i f or i ∈ [1, j f in − 1]; 0 f or i ∈ [j + 1, 42];

0.5[
√
(α/β)2

h + 4 · (NTDmax − NTDbeg)/(j − j f in + 1)− (α/β)h] f or i ∈ [j f in, j]};

if DSFj
j ≤ Dmax then Simulate RT with DSFj, remember FSFj, j = j − 1;

Choose jSF
opt : FSFjSF

opt =
jmax
min
i=j

FSFj;

if FSFjSF
opt < Fopt then Dopt = DSF

jSF
opt , Fopt = FSFjSF

opt , jmax = jSF
opt;

else Stop = 1;

else Stop = 1;

Result: Dopt, Fopt.
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2.4. Parameters

The values of the model parameters, with which the simulations were performed, are listed
in Table 1. For some parameters, three values are designated, which belonged to the parameter
sets that were assumed to correspond to different levels of tumor malignancy—high, intermediate
and low. The way the values of these parameters changed with the increase in tumor malignancy
reflected the stronger manifestation of some of the hallmarks of cancer: self-sufficiency in growth
signals and insensitivity to anti-growth signals, evading apoptosis, stimulating growth of new vessels
and invasion into normal tissue [40]. The dimensionless model values of the parameters were the
approximations of their normalized values, which were obtained with the use of the following
normalization parameters—t̂ = 1 h for time, r̂ = 10−2 cm for length, D̂ = 1 Gy for radiation dose,
ĝ = 1 mg/mL for glucose concentration, ω̂ = 1 mM for oxygen concentration, n̂ = 3 × 108 cells/mL
for maximum density of cells. The latter value was taken from the experimental work on the in vitro
growth of multicellular tumor spheroids [36]. The values of the proliferation rate of tumor cells B
and their nutrients consumption rates Qg

n and Qω
n were also estimated according to the data of this

work with the assumption that these values should be proportionally diminished during the growth
of a relevant tumor in tissue. Furthermore, it was assumed that B, Qg

n and Qω
n should proportionally

increase with tumor malignancy.

Table 1. Model parameters. Different values are designated for: HM—high malignant tumor,
IM—intermediate malignant tumor, LM—low malignant tumor.

Parameter Description Model Value Based on

Cells:

B tumor cells’ proliferation rate HM: 0.01 [36] + see the text
IM: 0.005

LM: 0.0025

M normal cells’ death rate parameter 0.01 [41]

ε ratio of death rates of tumor and normal cells HM: 0.3 [41] + see the text
due to the lack of oxygen IM: 0.7

LM: 1

Dn tumor cells’ motility HM: 0.01 [42] + see the text
IM: 0.001

LM: 0

Nutrients:

Pg glucose inflow parameter HM: 20 [32]
IM: 10
LM: 4

Qg
n tumor cells’ glucose consumption rate HM: 12 [36] + see the text

IM: 6
LM: 3

Qg
h normal cells’ glucose consumption rate 0.3 [43]

g∗ Michaelis constant for glucose consumption rate 0.007 [44]

Dg glucose diffusion coefficient 100 [45]

Pω oxygen inflow parameter HM: 50.8 [46] + see the text
IM: 35.8
LM: 25.4

ωA oxygen concentration in artery 5.87 [47]

ω0.5 oxygen concentration, at which 1.56 [48]
hemoglobin saturation is 50%
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Table 1. Cont.

Parameter Description Model Value Based on

χ Hill coefficient 2.55 [48]
for oxygen-hemoglobin dissociation curve

Qω
n tumor cells’ oxygen consumption rate HM: 63 [36] + see the text

IM: 31.5
LM: 15.75

Qω
h normal cells’ oxygen consumption rate 8 [43]

ω∗ Michaelis constant for oxygen consumption rate 0.005 [44]

Dω oxygen diffusion coefficient 720 [49]

Radiotherapy:

α tumor cells’ linear radiosensitivity parameter 0.07–0.21 see the text

β tumor cells’ quadratic radiosensitivity parameter α/10 see the text

OERα,m maximum OERα under aerobic conditions 2.5 [39]

OERβ,m maximum OERβ under aerobic conditions 3 [39]

Km Michaelis constant for oxygen enhancement effect 0.193 [39]

k ratio of radiosensitivity of quiescent HM: 1 see the text
and proliferating tumor cells IM: 0.5

LM: 0.2

Optimization procedure:

(α/β)h alpha-beta ratio for normal tissue 3 [3]

Dmax maximum fractional dose 5 [11]

δS the amount of radiation dose added to each fraction 0.2 see the text
during the search for the “gradient”

δD the coefficient of fractions alteration during the “descent” 4 see the text

kmin
n minimum parameter of fractions alteration 0.001 see the text

during the “descent”

k f in the threshold coefficient for determining 0.98 see the text
the second stage of the scheme

The death rates parameters M and ε were assessed based on experimental data on cell behavior
under extreme nutrient deprivation [41]. The death rate of tumor cells fell with the increase in tumor
malignancy, reflecting the increased tolerance of malignant cells to nutrient deprivation. The coefficient
of high malignant tumor cells’ motility Dn was an order of magnitude lower than the value which
corresponds to high malignant glioma, one of the most invasive types of cancer [42]. The parameter of
glucose inflow Pg was estimated as the product of the experimental values of permeability of capillaries
to glucose and normal capillary surface area density for human muscle [32]. The values of normal cells’
rates of nutrients consumption for human muscle at rest were also used. The oxygen inflow parameter
Pω was adjusted so that the initial oxygen concentration lied within its normal range for human muscle
at rest [46]. The values of Pg and Pω for low malignant tumor were obtained under the assumption of
absence of tumor-induced angiogenesis, that is, the formation of new blood vessels. Their increase
with tumor malignancy reflected the stimulation of angiogenesis by tumor, and followed different
trends due to the following reasoning (see our previous work [35] for details). As was mentioned in
Section 2.1.2, the inflow of glucose should be proportional to the density of capillaries and to their
permeability, both of these parameters increasing due to the tumor-induced angiogenesis. On the
contrary, oxygen inflow in tissue is not affected by the alterations in the number and sizes of capillaries’
pores. Moreover, it should be at first approximation proportional to the blood flow rather than to the
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capillaries’ density. Therefore, the inflow of oxygen should increase much slower than the inflow of
glucose, in the result of angiogenesis.

Radiosensitivity parameters are known to vary dramatically between various tumor cell lines [50]
and, moreover, can significantly differ even for tumors of the same type [51]. Therefore, the parameters
of tumor cells’ radiosensitivity were varied within a physiologically justified range in order to
investigate the potential for optimization of RT fractionation under various response of tumor to
the treatment. At that, the alpha-beta ratio for tumor cells was kept constant and equal to 10 [3].
The alpha-beta ratio for normal tissue (α/β)h was close to its experimental value for human muscle [3].
The value of the ratio of radiosensitivity of quiescent and proliferating tumor cells k for low malignant
tumor was selected based on the fact that the radiosensitivity of quiescent and proliferating normal
cells can differ five or more times [52]. Experimental data suggests that such difference should be
leveled with the increase in tumor malignancy [53,54], therefore, the value of k increased up to unity
with the increase in tumor malignancy. Other parameters of the optimization algorithm were adjusted
manually in order to decrease the computational time as much as possible without noticeable distortion
of the solution.

3. Results

3.1. Simulation of Tumor Growth and Radiotherapy

Figure 1 illustrates the single numerical simulation of the intermediate malignant tumor growth
and radiotherapy (RT) with standard fractionation scheme Dst (see Equation (6)) and the values of
tumor cells’ radiosensitivity α = 10β = 0.1. In the same way as it happened under other parameter
values as well, after initial phase of exponential growth the living tumor cells concentrated at the tumor
rim, closer to the source of nutrients, which in this model was considered to be proportional to the
density of normal cells h = 1 − n − m. Due to the active consumption of glucose and oxygen by tumor
cells, the proliferation rate of deeper located cells declined, and more deeper located cells began to die.
Therefore, most of the volume of sufficiently large tumors was occupied by necrotic tissue, as Figure 1a
demonstrates. Figure 1b corresponds to the day of the first irradiation. The radiosensitivity of tumor
cells increased from the center of the tumor to its rim, where the most actively proliferating cells were
situated and the concentration of oxygen was the highest throughout the tumor. During the first
irradiation, approximately 79% of tumor cells survived in the nutrient-depleted regions, while only
12% of tumor cells survived in the outer layers of the tumor rim. The death of tumor cells due to this
and following irradiations led to the gradual rise of the levels of nutrients that, in its turn, resulted in
increase of radiosensitivity of tumor cells. Figure 1c demonstrates the 10th day of RT, by which eight
irradiations were performed, the number of tumor cells decreased by 20 times and the levels of glucose
and oxygen in the tumor center reached correspondingly 32% and 74% of their values in the normal
tissue. Therefore, the effective radiosensivity of tumor cells sufficiently increased and became almost
constant throughout the tumor. During the next irradiation, ≈10.8% of tumor cells died in the outer
layers of the tumor rim, and ≈11.5%—in the deeply located regions.

Figure 1d shows the dynamics of the total number of tumor cells N(t) and the number of
proliferating tumor cells Np(t), estimated by the following formulas:

N(t) ≡ n̂r̂3 · 4π
∫ X

0
n(r, t)r2dr;

Np(t) ≡ n̂r̂3 · 4π
∫ X

0
n(r, t)

g(r, t)
g(r, t) + g∗ r2dr.

(11)

In the considered simulation, the total number of tumor cells decreased during the RT course
from ≈0.43 billion to ≈18 cells, at that the fraction of proliferating cells Np(t)/N(t) increased from
≈26% to ≈99.3%. Due to the nature of the model, tumor regrowth always happened after treatment,
even if the total number of tumor cells that remained after RT, was less than one. Figure 1e shows
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the dynamics of the average oxygen pressure within the viable tumor rim, expressed in mmHg and
estimated as

〈pO2〉 = 17.024 · Ω(t), where Ω(t) ≡ [n̂r̂3 · 4π
∫ L

0
ω(r, t)n(r, t)r2dr]/N(t); (12)

along with the dynamics of the oxygen pressure at the tumor center, that is, at the point r = 0.
The former quantity cannot be straightforwardly measured in experiment, however, it can give a
better estimation of the efficiency of the first irradiations. The latter quantity was up to five orders of
magnitude smaller during the free tumor growth that 〈pO2〉, but their values became almost equal
during RT.
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Figure 1. (a–c) The distributions of the variables, obtained in the numerical simulations of tumor
growth with radiotherapy, administered by the standard scheme under the values of the model
parameters, corresponding to intermediate malignant tumor and values of tumor cells’ radiosensitivity
α = 10β = 0.1 on the 325th day, 326th day (the day when the first irradiation was performed) and
335th day of tumor growth. (d) The total number of tumor cells (solid line) and the estimated number
of proliferating tumor cells (dashed line) during the same simulation. (e) The average oxygen pressure
within the viable tumor rim (solid line) and the oxygen pressure in the tumor center (dashed line)
during the same simulation.

3.2. Optimization of Radiotherapy Fractionation

Figure 2 shows the numerically obtained values of tumor control probability (TCP), estimated by
Equation (10), for standard and optimized fractionation schemes for different types of tumor. Some of
the optimized schemes are also shown, which were obtained under the designated values of tumor
radiosensitivity α = 10β. The solid lines interpolate the graphs of TCPs by the functions of the
following form:

TCP(α) = 0.5[1 + tanh(γ{α − αcr})], (13)

where γ and αcr are the fitting parameters. Let us introduce the following quantity as a high-level
estimate of the effectiveness of RT fractionation optimization for different tumor types:

Δα = αst
cr − α

opt
cr ,

where αst
cr and α

opt
cr are the fitting parameters in Equation (13) for standard and optimized RT

fractionation schemes of the considered tumor type. Roughly speaking, this quantity denotes the
increase in the curative range of the values of tumor radiosensitivity parameters due to the RT
fractionation optimization.
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Figure 2. The tumor cure probability for fractionated radiotherapy of (a) high malignant tumor
(b) intermediate malignant tumor (c) low malignant tumor and (d) high malignant tumor with
decreased radiosensitivity of quiescent cells, under varied tumor radiosensitivity parameters α = 10β

for standard fractionation scheme (red dots) and schemes, found by optimization procedures with
Algorithm 1 (green dots). The solid lines are interpolations of data points. Inlets show the optimized
schemes under designated values of tumor radiosensitivity. Some of the schemes, obtained without the
use of step 4 of the algorithm, are denoted by gray dots.

152



Mathematics 2020, 8, 1204

Figure 2a–c correspond to high malignant (HM), intermediate malignant (IM) and low malignant
(LM) tumors, the values of model parameters for which are listed in Table 1. The proliferation rates of
these tumors’ cells related as 4:2:1. This fact by itself stimulated increase in tumor cell number with
the tumor malignancy. Other factors that contributed to the same effect were the decrease in tumor
cells’ death rate and the enhancement of nutrient inflow. However, at the moment, when these tumors
reached the radii of 1 cm—at which the beginning of RT took place—their numbers of cells did not
differ drastically and were equal to ≈0.51 billion, ≈0.43 billion and ≈0.43 billion correspondingly.
This was due to the fact that tumor cells’ rates of nutrients consumption also increased with the tumor
malignancy, significantly reducing the pools of proliferating and alive cells. The presence of tumor cell
motility in the cases of IM and HM tumors also led to a slight decrease in their numbers of tumor cells.
However, it should be noted that in general case the variation of this parameter may have ambiguous
effect on the total amount of tumor cells, which was discussed in our previous work [55].

The most prominent feature of all of the optimized RT fractionation schemes, obtained for these
tumors for all values of α, is the fact that they could be clearly divided into two stages. The first stages
were comprised of non-equal doses, which were noticeably less that the maximum fractional dose of
Dmax = 5 Gy. In every case they lasted until the following two quantities became smaller than one by
no more than several percent: the first quantity was the ratio of the oxygen level inside the tumor to its
value for the normal tissue Ω(t)/ω(L, t) (see Equation (12)); the second quantity was the fraction of
proliferating tumor cells Np(t)/N(t) (see Equation (11)). Thus, to the end of the first stages tumor cells
radiosensitivity became close to its maximum level throughout all the pool of tumor cells. The aim
of the second stages was to get advantage of the increased radiosensitivity of tumor cells. Therefore
they represented a uniform sequence of doses, which were equal or close to the maximum fractional
dose. The aim of the first stages was, therefore, to reach close to maximum sensitivity of tumor cells,
reducing both the effective dose, delivered to normal tissues during the first stages (see Equation (7)),
and their duration. The first aspect is crucial for the opportunity of increasing the number of more
efficient irradiations during the second stage. The decrease of duration of the first stages, as well as of
the whole courses, is crucial due to the process of tumor cells repopulation—that is, the shorter the
treatment, the more effective it should be under the same amount of eradicated cells, since fewer acts
of cell division should take place during its course.

For every considered value of α, the optimized RT schemes became longer with the decrease
of tumor malignancy. This was due to the fact that quiescent tumor cells were more radioresistant
in IM and especially LM tumors, because of the smaller value of the parameter k, which was equal
to 1, 0.5 and 0.2 for HM, IM and LM tumors. Consequently, with the decrease of tumor malignancy
it took longer time for radiation to eradicate enough tumor cells for the necessary increase in the
level of glucose that would convert the remaining tumor cells into proliferative state, thus increasing
their radiosensitivity. Therefore, the durations of the optimized RT courses were the shortest for HM
tumors, which allowed to significantly decrease the influence of cell repopulation on the outcome of the
treatments. Overall, the efficiency of RT fractionation optimization increased with tumor malignancy:
the values of Δα for LM, IM and HM tumors were ≈0.008, ≈0.014 and ≈0.028 correspondingly.
Quite surprisingly, the three interpolated functions of optimized TCPs turned out to be very close to
each other. For every value of α the optimized treatments for each of the three tumor types yielded
very close TCP values, differing by no more than 7%, and the corresponding values of αcr for these
tumors differed by less than 1%. On contrary, the efficiency of standard RT schemes significantly
declined with the increase in tumor malignancy for every value of α. Of note, this happened despite
the fact of greater radiosensitivity of HM tumor cells under glucose deficiency, and was due to their
increased repopulation rate under normal level of glucose. It should be noted, however, that such
qualitative outcome might change under different parameter values.

Since the presence of a radioresistant population within a malignant tumor may be of significant
practical interest [56], we performed an analogical set of simulations for the fourth set of parameters,
which corresponded to HM tumor with the only modification of decreased radiosensitivity of quiescent
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cells k = 0.2. The corresponding results are shown in Figure 2d. Expectedly, the standard fractionation
schemes were the less effective for this case among the four considered parameter sets under any value
of α. The length of the first stages of the schemes were significantly increased. Moreover, for the lowest
values of α there were no second stages in the optimized schemes, since such weak therapies could not
eradicate enough tumor cells for sufficient increase in the level of nutrients. The second stages became
well-pronounced at α = 0.1 and their lengths increased with the increase of α, as it happened under
another parameter sets as well. However, the optimization procedures led to the value of Δα ≈ 0.028,
close to its value for HM tumor with k = 1.

3.3. Efficiency of the Optimization Algorithm

As was already mentioned, Algorithm 1 can provide at best the local optimal schemes. It should
be noted that for some of the parameter values slightly more effective schemes that the ones, shown in
Figure 2, were obtained by manual manipulations or by replacing the scheme, produced by step 1,
with other initial schemes for the following steps. Of especial importance is the fact that these
manipulations did not lead to any noticeable change of the TCP graphs. However, such cases, in which
further optimizations can be provided, are worth being noticed. The simplest case is removing of initial
zero fractions produced by the algorithm, like in the depicted optimized scheme for LM tumor with
α = 0.07. Less trivial case took place when the search for the optimal uniform fractionation scheme,
performed during step 1, yielded a bimodal distribution. In such case, setting another initial scheme
for the following steps could optimize the result. For example, the optimized scheme for HM tumor
with α = 0.19 is obtained with the initial uniform scheme with 9 irradiations of ≈4.47 Gy, produced by
step 1. Its replacement by the uniform scheme with 13 irradiations of ≈3.53 Gy, which by itself results
in 30% greater minimum number of tumor cells that the previous uniform scheme, allowed to produce
an optimized scheme, resulting in halved minimum number of tumor cells, compared to the depicted
optimized scheme. It did not lead to a noticeable change of TCP, since it was already close to 100%,
however, it should be noted that such manipulation might turn out to be important under some other
used parameter values.

Another possibility for the slight optimization of some of the schemes is the increase of several
doses in the second stage of the scheme, if they are less than Dmax, by the expense of another doses.
Such manipulation was not included in the algorithm for simplicity, since it was checked to provide
only very slight improvements. However, the closeness of the doses of the second stages to the
maximum fractional dose was by itself significant. For IM and LM tumors with sufficiently high
values of α the first three steps of the algorithm by themselves yielded the schemes with doses of
the second stage, equal to each other, but significantly less than Dmax. Further slight variations of
the fractionation, performed during steps 2 and 3, were ineffective. This result corresponds well to
the findings, described previously in other studies, which considered homogeneous and constant
radiosensivity of tumor cells [15,16]. The aim of step 4 was to redistribute the fractions of the second
stage, keeping them equal, which always resulted in close to maximum values of single doses. Two of
the schemes, produced for IM and LM tumors with α = 0.22 without the use of step 4, are shown in
Figure 2 via gray dots. The improvements, introduced by step 4, allowed to decrease the minimum
number of tumor cells more than threefold in both cases.

Of note, under neglect of the constraint on the maximum fractional dose (see Equation (8)),
Algorithm 1 generally produced the optimized schemes, consisting of longer first stages with smaller
doses and second stages, consisting of a few strong irradiations, which most frequently were a couple
of doses close to 10 Gy. Furthermore, easing the constraint on normal tissue damage (see Equation (7))
by increasing the value of (α/β)h resulted in more and more shorter optimized schemes with greater
doses. These results are not surprising; moreover, Equation (1) immediately suggests that under
absence of any time-dependent effects and any constraints increasing a single fraction should always
be more efficient that its fractionation. Thus, in agreement with the clinical concepts, discussed in
Section 1, the presented model indicates that dose fractionation is dictated by the constraints on
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normal tissue damage and by the alterations of tumor cells’ radioresistance (which involves both
reoxygenation and redistribution of proliferative states), while cell repopulation restricts the efficiency
of the fractionation scheme.

4. Discussion

In this work, we presented a spatially-distributed continuous mathematical model of solid
tumor growth and treatment by fractionated radiotherapy (RT). The model explicitly accounted
for three factors that influence the efficiency of RT fractionation schemes—tumor cell repopulation,
reoxygenation and redistribution of proliferative states. The main goal of this study was the search for
optimized fractionation protocols that would increase the tumor cure probability under the constraints
of maximum normal tissue damage and maximum fractional dose. For this goal, a special algorithm
was developed. Its first step compared different uniformly fractionated RT schemes. By itself it showed
that the length of an optimal treatment should grow with the decrease of the relative radiosensitivity
of non-proliferating tumor cells, which occupied the main part of tumor at the beginning of RT. The
next two steps of the algorithm represented an adaptation of the classical gradient descent method.
They suggested dividing all the fractionation schemes in two stages. Fractionation during the first
stages followed different trends, but their aim was always to spare the doses for the second stage,
at that eradicating enough tumor cells for the levels of nutrients to increase close to their normal levels.
Such approach brought the radiosensitivity of the remaining tumor cells close to the maximum level.
If this goal was possible to achieve, the second stages began, which consisted of large equal doses.
Of note, the qualitatively similar recommendation of a dose boost during the final part of the therapy
was suggested in a previous theoretical study, which used another constitutive assumptions and
considered treatment regimens, in which a patient is treated in several sessions, separated by weeks or
months [57]. The aim of the fourth step of the algorithm was to optimize the number of fractions and
the doses during the second stage, which previous steps could not do. Optimized RT fractionation
schemes did not contain days-off, unlike standard clinical schemes. It should be noted that the current
model neglected the change of radiosensitivity during the cell cycle for the proliferating cells, as well as
the fact that cells do not die immediately due to irradiation [58]. The introduction of these aspects into
the model may somehow alter the appearance of the optimized schemes, found by the used algorithm.
However, they would hardly affect the main qualitative findings of this study.

We performed the optimization procedures using the objective function of minimum number
of tumor cells during the treatment. Certainly, other objective functions can be incorporated within
the introduced algorithm. One of them, which we implemented as well during the study, is the delay
in tumor regrowth, which always happened during the simulations (see Section 3.1). The model
simulations showed that only a rather moderate increase of it can be achieved for the considered
parameter values under the restriction of maximum treatment duration of 6 weeks. However,
the results suggested that sufficient tumor growth delays might be obtained for much longer treatments
of slowly-proliferating tumors, which is in agreement with other theoretical studies [59,60]. Moreover,
the presented model did not account for the drainage of necrotic tissue, which should be crucial for
such problem. Furthermore, in this light, a very interesting augmentation of the model may be an
introduction of concurrent antiangiogenic therapy, which not only influences the drainage of necrotic
tissue [61], but also affects the intratumoral oxygen level in a complicated manner [62]. These factors
should influence the outcome of combined radiotherapy and antiangiogenic therapy. Therefore,
their consideration should provide insights into the ways of optimization of such treatment. This task
lies within the scope of our future plans.

We tried to incorporate in the model the most basic features of malignant tumors, relevant for the
considered task, and we varied the model parameters, assuming that some hallmarks of cancer should
manifest themselves stronger with the increase in tumor malignancy. Certainly, this was a very general
approach, and the results of this work are of purely qualitative nature. In our opinion, an important
outcome of this study is the theoretical proof of concept that non-uniform RT fractionation schemes
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may be significantly more effective that uniform ones, due to the time and space-dependent effects.
We hope that the presented algorithm would be useful for further, more specific, tasks. At that, one of
the important aspects to be focused on is the consideration of a separate radioresistant population of
cancer stem cells. Its determining role in optimization of RT treatment was already noticed in previous
studies on mathematical modeling [18,63].
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Appendix A. Choice of Discretization

The choice of discretization for the numerical simulations was dictated by two goals. The first
goal was sparing computing resources, the importance of which was increased due to the fact that a
lot of simulations of different treatment courses should have been preformed for a single optimization
task. Namely, the optimization tasks, discussed in Section 3.2, required an average of ≈882 treatment
simulations, with their minimum and maximum numbers of 66 and 3560. The second goal was
providing sufficient accuracy of the solution. Since the model described biological objects, for which
significant variability is natural, there was no need to pursue the degree of accuracy that would be
necessary for solving, for example, physical problems, and the main aim was to capture the qualitative
behavior of the model properly.

The considered low malignant tumor had zero cell motility, therefore, the only transport term
for the tumor cells was the convective term in its case. As it was mentioned in Section 2.1.3,
the corresponding equation was solved by the flux-corrected transport algorithm [37]. This algorithm
is of indeterminate order, and the crucial condition for its workability is

|I(r, t)
dt
dr

| < 1
2

∀r ∀t,

where I is the field of the convective flow speed, dt and dr are the time and space steps.
The flux-corrected transport algorithm consists of two stages. The first stage solves the convective
equation, maintaining the total number of tumor cells and the non-negativity of their density profile.
However, it introduces erroneous diffusion, reduction of which is the aim of the second stage.
The simulations for the intermediate malignant and high malignant tumors included Crank-Nicholson
method for the solution of tumor cell migration equation. Its main deficiency is the introduction of the
spurious oscillations, which amplitude increases with the increase of Dndt/dr2, where Dn is tumor
cell motility. Obviously, the decrease of the time step under constant space step should increase the
accuracy of the Crank-Nicholson method. However, such action would play an ambiguous role on the
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accuracy of the flux-corrected transport algorithm, since more frequent calculations within a single
unit of time should amplify its total erroneous diffusion.

Figure A1 shows the dependence of the low malignant, intermediate malignant and high
malignant tumor growth speeds V, expressed in mm/week (which implies its multiplication by
the factor of 16.8), on the time and space steps, equal to each other. The tumor growth speed was
estimated via the method, described in our previous work [55], as the asymptotic value of the rate
of change of the tumor radius, which was evaluated as the maximum space coordinate, at which
n + m ≥ 0.1. The low malignant tumor growth speed changed non-monotonically with the refinement
of discretization, reflecting the increase of the erroneous diffusion, introduced by the flux-corrected
transport algorithm. This effect was not pronounced for the intermediate malignant tumor. This tumor
had non-zero cell motility, therefore, the migration equation was solved in its case, and its accuracy
fell under such refinement of discretization. Nevertheless, the tumor cell motility was sufficiently
low in this case for this effect to remain unnoticed on this graph. However, this effect was strongly
pronounced for the high malignant tumor with sufficiently high cell motility. Moreover, the utilized
numerical approach turned out to be unstable for high malignant tumor under dr = dt = 0.01.
Overall, based on these graphs and on the amount of computing resources, spent under different
discretizations, time and space steps dr = dt = 0.1 were chosen to be used for all the simulations.

(a) (b) (c)dr,dt dr,dt dr,dt

V, mm/week V, mm/week V, mm/week

Figure A1. The values of the tumor growth speeds V, obtained numerically in the simulations
of Equation (2) under designated space steps dr and time steps dt and the values of the model
parameters, corresponding to: (a) low malignant tumor, (b) intermediate malignant tumor and (c) high
malignant tumor.
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Abstract: Parameter estimation in mathematical models that are based on differential equations
is known to be of fundamental importance. For sophisticated models such as age-structured
models that simulate biological agents, parameter estimation that addresses all cases of data points
available presents a formidable challenge and efficiency considerations need to be employed in
order for the method to become practical. In the case of age-structured models of viral hepatitis
dynamics under antiviral treatment that deal with partial differential equations, a fully numerical
parameter estimation method was developed that does not require an analytical approximation
of the solution to the multiscale model equations, avoiding the necessity to derive the long-term
approximation for each model. However, the method is considerably slow because of precision
problems in estimating derivatives with respect to the parameters near their boundary values,
making it almost impractical for general use. In order to overcome this limitation, two steps have
been taken that significantly reduce the running time by orders of magnitude and thereby lead to a
practical method. First, constrained optimization is used, letting the user add constraints relating
to the boundary values of each parameter before the method is executed. Second, optimization
is performed by derivative-free methods, eliminating the need to evaluate expensive numerical
derivative approximations. The newly efficient methods that were developed as a result of the above
approach are described for hepatitis C virus kinetic models during antiviral therapy. Illustrations are
provided using a user-friendly simulator that incorporates the efficient methods for both the ordinary
and partial differential equation models.

Keywords: parameter estimation; constrained optimization; derivative free optimization; multiscale
models; differential equations; viral hepatitis

1. Introduction

Chronic viral hepatitis (hepatitis C, hepatitis B, and hepatitis D) is a major public health concern.
Approximately 500 million individuals worldwide are living with chronic viral hepatitis; above a
million of those who are infected die each year, primarily from cirrhosis or liver cancer resulting from
their hepatitis infection [1–3]. Deaths related to chronic hepatitis are as many as those due to human
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immunodeficiency virus (HIV) infection, tuberculosis, or malaria [4], and are projected to exceed the
combined mortality associated with HIV infection, tuberculosis, and malaria by 2040 [5]. Only a small
subset of patients are cured with currently available drugs for hepatitis B and hepatitis D. As such,
a deeper understanding of hepatitis B and D infection dynamics is needed to enable the development
of more curative therapeutics. Despite the significant advances in hepatitis C therapy, it is widely
acknowledged that cost remains a major barrier for achieving global elimination. Thus, there still exists
a need for affordable therapy with similar high efficacy and with much shorter treatment durations
and vaccine development.

Mathematical models have been developed to provide insights into viral hepatitis and host
dynamics during infection and the pathogenesis of infection [6–11] . The standard biphasic model for
viral infection is a set of three ordinary differential equations (ODEs) with three variables. This ODE
model has been used to study hepatitis C virus (HCV), hepatitis B virus (HBV), and hepatitis D
virus (HDV) kinetics during antiviral treatment. It contributed to the assessment of antivirals efficacy
and to our understanding of their mechanism of action [9,12–18]. The ODE model can be further
simplified (termed biphasic mode) by assuming that target cells remain constant during antiviral
treatment. The biphasic model has been extensively used for modeling HCV [19–27], HBV [28–31],
or HDV [32–35] kinetics during antiviral treatment. Notably, we recently showed in a proof-of-concept
pilot study that using the biphasic model in real time (i.e., on treatment) can shorten HCV treatment
duration (and cost) with direct-acting antivirals without compromising efficacy or patient safety [36],
which confirmed our retrospective biphasic modeling reports in more than 250 patients [37–41].

Modeling efforts using ODEs for understanding the intracellular viral hepatitis genome dynamics
have been done in [7,42–46]. Recently, partial differential equation (termed PDE, age-structured or
multiscale) models for HCV infection and treatment were developed [47–50]. These PDE models are an
extension to the classical biphasic models in which the infected cell is a “black box”, producing virions
but without any consideration of the intracellular viral RNA replication and degradation within the
infected cell [42,43,51]. The multiscale models consider the intracellular viral RNA in an additional
equation for the variable (R), with the introduction of age-dependency in addition to time-dependency,
making it a PDE model. They are considerably more difficult to solve and to perform parameter
estimation on compared to the biphasic model. Unlike the construction of numerical schemes in other
applications, for example in the nonlinear diffusion of digital images [52–54] where accuracy can be
limited, herein it is advisable to construct a stable and efficient scheme that belongs to the Runge–Kutta
family with a higher accuracy than in nonlinear diffusion. Our numerical solution strategy was
outlined in [55–57] and herein we continue [57] by providing an efficient parameter estimation method
that follows this strategy.

Parameter estimation (or calibration) of multiscale HCV models with HCV kinetic data measured
in treated patients is challenging. To overcome this, several strategies have been employed. The first
strategy, employed in [48], utilizes an analytical solution named long-term approximation for solving
the model equations along with calling the Levenberg–Marquardt [58,59] as a canned method for
performing the fitting. The second strategy, employed in [60], transforms the multiscale model to a
system of ODEs and, as such, simple parameter estimation methods can be used in the same manner
as the biphasic model. The third strategy, employed in [50] that also deals with spatial models of
intracellular virus replication, is based on the method of lines and utilizes canned methods for both the
numerical solution of the resulting equations (Matlab’s ode45) and for performing the fitting (Matlab’s
fmincon). While these strategies are adequate for specific cases, they rely on canned methods and
are problematic when it comes to the user’s capability to access and control them. For these reasons,
we have developed our own open source code released free of charge for the benefit of the community
that allows the user to make modifications to the model and provides prospects for future development,
while ensuring that it is practical in running time and enabling the user to insert constraints for the
parameters that need to be estimated. In contrast to these approaches, our strategy does not rely
on any canned method but fully implements our own optimization routine, thus making it suitable
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to other multiscale model equations by modifications inside the routine and an early preparation
of the multiscale model equations by taking derivatives with respect to the parameters before the
optimization procedure.

The general ideas that have led to [57], including the parameter estimation procedure described
in this reference, have been laid out in order to remain self-contained. The motivation of the
present work is to develop a tool that can provide similar calibration values in significantly less
time. More specifically, the main contribution herein is as follows. Because of precision problems
in [57] encountered with Levenberg–Marquardt that caused the parameter estimation procedure
to become highly non-efficient, we developed an efficient constrained optimization procedure that
is based on damped Gauss–Newton instead such that we avoid problematic use of derivatives,
while alternatively offering the possibility to apply Powell’s Constrained optimization by linear
approximation (COBYLA) [61] for the optimization procedure. In the following sections, we describe
the model and the optimization procedure that is used in our HCVMultiscaleFit simluator. Illustrations
of simultations using HCVMultiscaleFit are provided and the efficiency and practicality relative to the
initial version put forth in [57] are discussed.

2. Methods

2.1. Development of Mathematical Models

2.1.1. The Standard Biphasic Model

The three variables this model keeps track of are the target cells T, in Equation (1), the infected
cells I in Equation (2), and the free virus V in Equation (3). The target cells T are produced at constant
rate s, die at per capita rate d, and are infected by virus V at constant rate β. The infected cells I
increase with the new infections at rate βV(t)T(t) and die at constant rate δ. The virus V is produced
at rate p by each infected cell and is cleared at constant rate c. The ε term denotes the effectiveness of
the anti-viral treatment that decreases the production from p to (1 − ε)p. Formally, the ensemble of
ODEs for this model is:

dT(t)
dt

= s − βV(t)T(t)− dT(t) (1)

d I(t)
dt

= βV(t)T(t)− δI(t) (2)

dV(t)
dt

= (1 − ε)pI(t)− cV(t). (3)

From the mathematical perspective, the standard biphasic model is relatively much simpler than
the multiscale model. Although it is nonlinear, it can be solved analytically when assuming that T is
constant (target cells remain constant during antiviral treatment).

2.1.2. The Multiscale HCV Model

A multiscale PDE model for HCV infection and treatment dynamics was introduced in [47–49].
Intracellular HCV RNA plays a biologically significant role during the HCV replication and multiscale
models are considering it by additional equations for the RNA that are age-dependent, with the most
complete model to date that was recently put forth in [50].

The multiscale model [47–49] can be formulated as follows:

dT(t)
dt

= s − dT(t)− βV(t)T(t) (4)

∂ I(a, t)
∂t

+
∂ I(a, t)

∂a
= −δI(a, t) (5)
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dV(t)
dt

= (1 − εs)
∫ ∞

0
ρR(a, t)I(a, t)da − cV(t) (6)

∂R(a, t)
∂t

+
∂R(a, t)

∂a
= (1 − εα)αe−γt − ((1 − εs)ρ + κμ

)
R(a, t), (7)

with the initial and boundary conditions T(0) = T̄, V(0) = V̄, I(0, t) = βV(t)T(t), I(a, 0) = Ī(a),
R(0, t) = 1, and R(a, 0) = R̄(a). The initial condition R(0, t) = 1 reflects the assumption that a cell is
infected by a single virion and therefore there is only one vRNA in an infected cell at age zero.

The four variables this model keeps track of are the target cells T in Equation (4), the infected
cells I in Equation (5), the free virus V in Equation (6), and the intracellular viral RNA R in an infected
cell in Equation (7).

The target cells T are produced at constant rate s, and decrease by the number of cells infected
by virus in blood V at constant rate β and their death rate d. The infected cells I die at constant
rate δ. The quantity of intracellular viral RNA R depends on its production α and its degradation μ

and expulsion from the cell ρ. The quantity of free virus V depends on the number of assembled
and released virions and their clearance rate c. The parameter γ represents the decay of replication
template under therapy. The decrease in viral RNA synthesis is represented by εα, the reduction in
secretion by εs, and the increase in viral degradation by κ ≥ 1.

The parameters that were used in the multiscale model described in [48] are depicted in Table 1.
The model forms an example of our parameter estimation calibration method for PDE models
developed herein that can easily be extended to include additional parameters.

Table 1. The 12 parameters of the model.

s (cells mL−1) Influx rate of new hepatocytes
d (d−1) Target cell loss/death rate constant
β (mL d−1 virion−1) Infection rate constant
δ (d−1) HCV-infected cell loss/death rate constant
ρ (d−1) Virion assembly/secretion rate constant
c (d−1) Virion clearance rate constant
α (vRNAd−1) vRNA synthesis rate
μ (d−1) vRNA degradation
κ Enhancement of intracellular viral RNA degradation
γ (d−1) Loss rate of vRNA replication complexes
εs Treatment vs. secretion/assembly effectiveness
εα Treatment vs. production effectiveness

An important consideration in this model is that the treatment starts after the infection has reached
its steady state. The steady states of the different variables are R̄(a, t), Ī(a, t), V̄, and T̄. The term N
represents the total number of virions produced by infected cells.

These values have been previously derived in [48] and can be expressed as follows:

T̄ = c/βN (8)

V̄ = (βNs − dc)/(βc) (9)

Ī(a) = βV̄T̄e−δa (10)

R̄(a) =
α

ρ + μ
+

(
1 − α

ρ + μ

)
e−(ρ+μ)(a) (11)

N =
ρ(α + δ)

δ(ρ + μ + δ)
(12)
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It has been shown that the equations for I(a, t) and R(a.t) can be solved by the method of
characteristics to yield:

I(a, t) =

{
βV(t − a)T(t − a)e−δa a < t
Ī(a − t)e−δt = βV̄T̄e−δ(t−a) = (βNs − dc)/(βN)e−δa a > t

(13)

and

R(a, t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1−εα)αe−γt

(1−εs)ρ+κμ−γ
+

(
1 − (1−εα)αe−γ(t−a)

(1−εs)ρ+κμ−γ

)
e−((1−εs)ρ+κμ)a a < t

(1−εα)αe−γt

(1−εs)ρ+κμ−γ

+

(
α

ρ+μ +
(

1 − α
ρ+μ

)
e−(ρ+μ)(a−t)

− (1−εα)α
(1−εs)ρ+κμ−γ

)
e−((1−εs)ρ+κμ)t

a > t

(14)

whereas the equations for V(a, t) and T(a, t) cannot be solved analytically without any approximations.
The equations for V(a, t) and T(a, t) when using the short-term and long-term approximations can be
found in [48].

2.2. Data Description

Calibration of the model was performed with data from treated patients by [48]. The data points
to fit the model and on which the error is computed are only V. We assume that we start at a steady
state and begin by computing the steady state given the initial parameters by using Equation (8).
While the raw data are not available, we used the freely accessible tool of [62] to retrieve it from the
figures directly. A visual example for one patient is available at [57].

In our method, we mostly use the default parameters from [48] that are shown in Table 2. The main
difference concerns parameter s. The pre-treatment steady state viral load V̄ in each patient is different.
Since V̄ is a necessary value in computing the long-term approximation, it was approximated as the
pre-treatment viral load observed per patient. In the full model that we are implementing, we do
not directly use V̄. Instead, we have from Equation (9) that V̄ is a function of many parameters,
in particular s which is not present in the long term approximation that was outlined in [48]. Inspired
by the method of [48], we chose to also fix V̄. The counterpart in our method is that s changes per
patient being, by Equation (9), equal to

(
V̄βc + dc

)
/
(

βN
)
, where N is from Equation (12).

More details about preparing the system with data from patients and the model parameters
are available in [57]. Herein, the methods are different from [57] and are significantly more efficient,
but the model parameters and the system preparation are exactly the same.

Table 2. Default parameters that are used herein. Parameter s comes from Equation (9), taking V̄ as the
max Virions value.

α 40 d−1 β 5 × 10−8 mL d−1

c 22.3 d−1 δ 0.14 d−1

μ 1 d−1 d 0.01 d−1

ρ 8.18 d−1 s
(
V̄βc + dc

)
/
(

βN
)
cells/mL

2.3. Solving the Model Equations

In [48], the multiscale model equations were solved by analytical approximations but, as discussed
in [56], those analytical approximations have limitations that should be alleviated. The long-term
approximation is an underestimate of the PDE model since some infection events are being ignored.
Moreover, for each multiscale model, the long-term approximation needs to be derived analytically,
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which is not a trivial task. Thus, numerical solutions provide an attractive alternative and could be
easier to adjust when introducing changes to the model. A more general and comprehensive approach
to parameter fitting without relying on analytical approximations would be useful. In addition,
although it was shown recently that it is possible to transform the PDE multiscale model to a
system of ODEs [60], this transformation problematically introduces some of the boundary conditions,
e.g., ζ, as new parameters inside the model equations. A numerical approach to parameter fitting of
multiscale models was recently put forth and described in [50], by the use of the method of lines and
canned methods that are available in Matlab. Our new numerical approach that originated in [56] and
described in [57] in detail does not rely on canned methods, with considerable benefits.

For the numerical solution of the multiscale model equations, properties such as approximation,
stability, and convergence were discussed in [56] and numerical robustness was discussed in [55,56].
Future work should expand towards the advanced treatment of properties as covered in [63,64].
Concerning the numerical solution itself, we showed in [56] that the full implementation of the
Rosenbrock method is preferable over the use of a canned solver in terms of efficiency and stability.
Therefore, the Rosenbrock method has been implemented for the purpose of our parameter fitting
method as well. In order to apply the Rosenbrock method, it is simplest to represent the system to be
solved as a vector f of two functions:

y′ = f (t, y) =
[

dT
dt , dV

dt

]ᵀ
=
[
s − dT − βVT,

(1 − εs)
∫ ∞

0
ρR(a, t)I(a, t)da − cV

]ᵀ
,

(15)

where y is a vector with the values of [T, V]ᵀ and the transpose symbol can be omitted from now on
for brevity. This representation has originated in [56] for convenience with formulating the numerical
schemes described in that reference. This function depends on three variables, t, V and T. While V
and T are the values at the time point we are evaluating, inside the equation of I, the function V(t − a)
and T(t − a) do depend on t directly. In our implementation, when computing the integral, we need
to divide into two cases. If a > t, we analytically determine the values of R(a, t) and I(a, t) for small
time steps a. When a < t, the system was previously solved at times τ0, . . . , τn. Therefore, we evaluate
the integrals at times a0 = t − τ0, . . . , an = t − τn, ensuring that the required values of V(t − a) and
T(t − a) are already known, following the scheme presented in [56].

The Rosenbrock method additionally requires the Jacobian matrix, denoted by f ′. As was shown
in [57], the Jacobian can be controlled and, with some proper computational simplifications to avoid
singularities that were shown to yield correct results in [57], we can implement the Rosenbrock method
convincingly for both solution and parameter estimation of the multiscale models.

2.4. Parameter Estimation

2.4.1. Preliminaries

As outlined in [48], the HCV multiscale model has 12 parameters (Table 1) and the nonlinear
differential equations that comprise it are stiff [56]. In addition, the integral term in the equation
complicates matters, as described in [56,57]. Parameter fitting is known to be a difficult problem in
general and for multiscale models, in particular, one needs to approach it carefully with the use of
robust techniques for the optimization, but, at the same time, these techniques can be made highly
efficient for practical computations. The novelty in this work is described next.

For efficiency reasons, we revert from the Levenberg–Marquardt method for optimization that
was used in albeit different ways in both [48,57] and implement significant improvements. Already
in [57], we have noticed that more difficult fitting cases take several hours to perform, and this situation
needs to be remedied for a practical use of our simulator. The reason for the lengthy running times
was non-trivial and only after a considerable period of time, having tried the simplest numerical
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method for the solution of the equations (the Euler method instead of the Rosenbrock method)
and not noticing a significant time reduction in the parameter estimation calculation, we began to
understand that the problem lies in the optimization method being used. We then examined interior
point methods for performing constrained optimization instead of the Levenberg–Marquardt method
we used in [57] and found out that the Hessian calculations in these interior point methods are
problematic, causing precision problems near the parameter boundaries that are the source of running
time accumulations. There was definitely a need to avoid the use of derivatives and therefore two
alternative approaches were taken. The first was to try a constrained damped Gauss–Newton strategy,
which can also be looked at as a simple version of Levenberg–Marquardt without gradient descent,
or alternatively Levenberg–Marquardt is a pseudo second-order method with added derivatives to
approximate the Hessian and thereby adds complications that should better be avoided. While in
general Levenberg–Marquardt is considered more robust than Gauss–Newton, for our constrained
application, the simplicity of the damped Gauss–Newton in terms of derivative calculations relative
to Levenberg–Marquardt, in which also the Lagrange parameter needs to be calculated at each step,
makes the damped Gauss–Newton significantly preferable. The second approach taken was that,
while developing our own damped Gauss–Newton method for the constrained application, we also
examined a completely derivative-free approach based on COBYLA (Constrained Optimization by
Linear Approximation). These two approaches turned out to be complementary to each other as by
default the quicker and sometimes somewhat more accurate damped Gauss–Newton can be tried first,
but, when it fails, COBYLA can provide a good alternative or it can even be used from the start and all
along a research study as the difference in the calculated error that has been minimized is quite small.
This contribution allows for reaching an overall procedure for parameter estimation that is practical
and by orders of magnitude less demanding in computing time relative to [57], which provides a
technical breakthrough from the computational standpoint.

Thus, two newly developed methods have been introduced to perform constrained optimization
for this application in an efficient manner: LSF (Least Squares Fitter using Gauss–Newton) with
a flowchart shown in Figure 1 and Powell’s COBYLA (Constrained Optimization by Linear
Approximation) with a pseudocode shown in Algorithm 1. The latter is a derivative-free optimization
method that solves the constrained optimization by linear programming. The former is a constrained
optimization that performs linearization in the manner described herein.

In both approaches, the objective function to be minimized is described as follows. The objective
consists of adjusting the parameters of a model function to best fit a data set. A simple data set consists
of n points (data pairs) (xi, yi), i = 1, . . . , n, where xi is an independent variable and yi is a dependent
variable whose value is found by observation. The model function has the form f (x, p), where m
adjustable parameters are held in the vector p. The goal is to find the parameter values for the model
that best fits the data. The fit of a model to a data point is measured by its residual, defined as the
difference between the actual value of the dependent variable and the value predicted by the model:

ri = yi − f (xi, p) (16)

The least-squares method obtains the optimal parameter values by minimizing the sum of
squared residuals:

S =
n

∑
i=1

(ri)
2 =

n

∑
i=1

(yi − f (xi, p))2 (17)
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Figure 1. A flowchart of our constrained damped Gauss–Newton method.

2.4.2. Optimization by a Constrained Version of Nonlinear Least Squares (Gauss–Newton Method)

If we assume that f (x) is twice continuously differentiable, then we can utilize Newton’s method
to solve the system of nonlinear equations:

∇ f (x) = J(x)Tr(x) = 0, (18)

which provides local stationary points for f (x), where r(x) is the vector of residuals associated with
data points as functions of parameter vector x and J is the Jacobian. Written in terms of derivatives of
r(x) and starting from an initial guess x0, this version of the Newton iteration scheme takes the form:

xk+1 = xk −
[

J(xk)
T J(xk) + S(xk)

]−1
J(xk)

Tr(xk), k = 0, 1, 2, . . . (19)

where S(xk) denotes the matrix:

S(xk) =
m

∑
i=1

ri(xk)∇2ri(xk). (20)

In order to obtain the correction Δxk = xk+1 − xk, a linear system is solved by a direct or
iterative method: [

J(xk)
T J(xk) + S(xk)

]
Δxk = −J(xk)

Tr(xk). (21)
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For our application, we use the Gauss–Newton method, which neglects the second term S(xk) of
the Hessian, and the computation of the step Δxk involves the solution of the linear system:[

J(xk)
T J(xk)

]
Δxk = −J(xk)

Tr(xk), (22)

and xk+1 = xk + Δxk.
In our application, we use the following steps that comprise a damped Gauss–Newton strategy:

• Start with an initial guess x0 and iterate for k = 0, 1, 2, . . .
• Solve minΔxk‖J(xk)Δxk + r(xk)‖2 to compute the correction Δxk.
• Choose a step length αk so that there is enough descent.
• Calculate the new iterate xk+1 = xk + αkΔxk.
• Check for convergence.

We choose αk to be 1.0 at the beginning of the algorithm and decrease it by dividing by two each
time the error increases relative to the previous iteration. More sophisticated damping strategies such
as the Armijo–Goldstein step-length principle are not suitable in our application because of constraints
violation that is described next. We also extend the Damped Gauss–Newton method to be constrained
in the following way: in the case that one of the parameters, during the convergence process, exceeds
its bounds (constraints provided in the GUI by the user), the algorithm assigns to this parameter its
corresponding bound value instead. For this reason, we cannot apply the Armijo–Goldstein condition
and need to revert to a simple damping strategy that is suitable with our constrained modification of a
damped Gauss–Newton method. A flowchart of our method is shown in Figure 1.

2.4.3. Optimization by Derivative-Free Methods (COBYLA Method)

Should the Gauss–Newton method fail to carry out the optimization of Equation (18), a helpful
alternative is the COBYLA algorithm, a derivative-free simplex method originally developed by
Powell [65]. The parameters in the algorithm have mathematical meanings that are outside the scope
of the model employed, as will be shown herein, and a pseudocode of the algorithm is available in
Algorithm 1. In general, a simplex method seeks to minimize an objective function using simplices,
where simplex refers to the convex hull of a set of n + 1 points in n-dimensional space. Such an
algorithm begins by evaluating the objective function at the vertices of an initial simplex, and then
strategically adjusting the simplex so that the objective function attains generally smaller values at the
vertices of the new simplex than it did at those of the previous simplex. At each iteration, a vertex of
the simplex may be altered, or the simplex itself rescaled, so as to guide the simplex into a region at
which the objective function is minimized. When sufficient accuracy is attained, the vertex of the final
simplex at which the objective function is smallest is returned as the function’s minimizer.

A major benefit of both the Gauss–Newton and COBYLA algorithms is in reducing and even
abolishing the use of derivatives of the objective function. In our model, the Hessian matrix associated
with our objective function imposes a heavy computational burden on the optimization problem,
and methods that do not require it are preferable. Numerical results indicate that COBYLA is generally
very effective when the Gauss–Newton method fails; the latter, however, is quicker and more accurate
than COBYLA. By default, we use the Gauss–Newton method, and, when it fails, the user is prompted
to initiate COBYLA. The details of the COBYLA algorithm are described in Appendix A, beginning with
a description of the Nelder and Mead simplex method from which it is derived.
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Algorithm 1: COBYLA method.

1 begin

2 ρ ←− ρbeg

3 μ ←− 0
4 Branch ←− (∗)
5 Form the initial simplex
6 loop

7 Ensure that x0 is the optimal vertex and that Flag = ON iff the simplex is acceptable
8 if Branch = (∗) or Flag = ON then

9 Generate x∗

10 if ‖x∗ − x0‖2 ≥ 0.5ρ then

11 if μ is not large enough then

12 Revise μ

13 if x0 is not optimal vertex then

14 Continue
15 end

16 end

17 Calculate f (x∗) and { ci(x∗) : i = 1, 2, . . . , m }
18 if Φ(x∗) < Φ(x0) or the change may help acceptability then

19 Revise the simplex
20 end

21 if (Φ(x∗)− Φ(x0))/(Φ̂(x∗)− Φ̂(x0)) ≥ 0.1 then

22 Branch ←− (∗)
23 Continue
24 end

25 end

26 if Flag = ON then

27 if ρ ≤ ρend then

28 Break
29 else

30 Branch ←− (∗)
31 Update ρ and μ

32 end

33 else

34 Branch ←− (Δ)
35 end

36 else

37 Calculate xΔ , f (xΔ) and { ci(xΔ) : i = 1, 2, . . . , m }
38 Make xΔ a vertex of the simplex
39 Branch ←− (∗)
40 end

41 endloop

42 end

2.5. Method Scope and Other Approaches

The strategy that was introduced in [57] and also implemented herein prepares the multiscale
model equations for parameter fitting by working on them directly as an initial step. This strategy is
beneficial in postponing approximations to later steps and ensuring full control of the user during the
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whole fitting procedure. It should be noted that, for each parameter introduced in future multiscale
models, the derivative with respect to the new parameter needs to be taken and more equations
need to be derived, as illustrated in this section. However, this technical procedure is significantly
less complicated than deriving analytical approximations to a modified model with a change in the
parameters. In our package, the code is written in Java and at present the method is hard coded for the
model; therefore, some technical expertise is needed if a new model is given and the method needs
to be hard coded in Java for the new model. In future work we plan to separate the model from the
method and make it generic, which needs to be done only once and then it can easily handle various
modifications to the model and become modeler friendly. Until that time, we do rely on some amount
of expert knowledge, but, overall, it should still be easier than deriving analytical approximations to a
modified model.

The importance of parameter estimation to the model was already noted in previous studies.
It was addressed in [48] and attempts to come up with improved strategies were tried thereafter in [60]
and in [50]. Here, we briefly relate to each of these approaches in order to remain self-contained.
More information can be found in [57].

2.5.1. Parameters Change When Transforming a PDE Multiscale Model to a System of ODEs

An approach taken in [60] showed how a PDE multiscale model of hepatitis C virus can be
transformed to a system of ODEs. In principle, parameter estimation should then become easier,
avoiding the complications in dealing with the PDE multiscale model. However, there are side effects
introduced in such a transformation, as can be noticed in Equation (9) of [60] where the boundary
condition R(t, 0) = ζ gets inside the differential equations. Consequently, as admitted in the discussion
of that reference, all parameters in Equations (7)–(10) must be estimated including ζ. The inclusion
of boundary conditions as new parameters inside the model equations is a drawback compared to
parameter estimation performed on the original multiscale model equations before the transformation.
Another drawback from the perspective of parameters change is the fact that the simplest PDE
multiscale model appearing in [47] was used in the transformation to ODEs, but important additions
such as the inclusion of parameter γ as in [48] are not taken into account. It is not obvious how
to include the parameter γ and other developments to the multiscale model inside the system of
ODEs. Finally, any information regarding the age of the cell since infection is lost. Thus, if one would
wish, for example, to vary the parameter α from infection to a certain time; this is not possible.
In summary, while the transformation works for the simplest multiscale model, it is limited in
considering developments to the multiscale model and the parameters in the system of ODEs are not
the same as the parameters in the multiscale model.

2.5.2. Problematic Issues in Strategies Relying on Canned Methods

The previous approaches for parameter fitting of the multiscale model with age are all relying on
canned methods. The two main strategies are the ones worked out in [48,50]. In [48], the long-term
approximation is used for the solution of the multiscale model equations and Levenberg–Marquardt is
used as a canned method. One drawback of such an approach is that it is limited to the multiscale
model under treatment. In addition, the analytical approximation would change when various
multiscale models are introduced and the elaborative derivations would need to be carried for each
one, with restrictions that are incorporated by the approximation being used. Finally, as elaborated
in [57], the use of a canned method is distancing the user away from having control over the main
optimization procedure and the ability to tune it from the programming standpoint.

3. Results

Having described the newer and significantly more efficient methods for parameter estimation
relative to [57], we present the new results obtained for both the biphasic model [26] and multiscale
models [47–50]. We first provide a basic illustration with the mutliscale model in which run-time and
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performance comparisons between methods are generated. Then, in Appendix B, for each type of
model, some examples are described. The results are presented using a newer (efficient) version of the
user-friendly simulator that we have initially developed in [55,57] for both biphasic and multiscale
models. We start from the biphasic model in Appendix B and end with the multiscale model in
Appendix C. The simulator with a GUI is freely available at http://www.cs.bgu.ac.il/~dbarash/
Churkin/SCE/Efficient/Parameter_Estimation (the efficient version, with the option to either select
the biphasic or the multiscale model).

For a basic comparison between all relevant parameter estimation methods, we apply our new
methods on the difficult case of the retrieved data points that was also used for this purpose in [57]
to compare our efficient methods with the previous ones. Results were obtained after a few minutes
instead of the several hours that was reported in [57], making our tool practical also for difficult cases.
As in [57], we fitted the four treatment parameters κ, εs, εα and γ and all other parameters were selected
with the values of Table 2.

We show in Table 3 the different values of those four parameters and sum of squared-errors fitted
with the various methods (new efficient ones vs. previously published ones) to the data emanating
from a patient. In the rightmost column, we fitted the long-term approximation with the retrieved
data points using the scipy.optimize.curve_fit method, which is a Python implementation of a
simple Levenberg–Marquardt scheme as a canned method. The next column to the right are the values
obtained previously by the use of Levenberg–Marquardt along with the numerical method to solve the
model equations as outlined in [57]. In the left columns are the values obtained by our new efficient
methods. The small differences assure us that the significant efficiency achieved, thereby making our
simulator a practical and useful tool, did not result in less accuracy.

Table 3. Values of the parameters when fitted to the patient digitized data. The rightmost column has
the values when the retrieved data points are fitted to the long-term approximation as in [57]. The left
columns contain the fitted parameter values by our efficient methods. Except for the rightmost column,
all methods are combined with the Rosenbrock numerical scheme. The fixed parameters have the
values shown in Table 2. Run-time comparison is reported in seconds in the last row.

Gauss–Newton (LSF) COBYLA Levenberg–Marquardt Long-Term

εs 0.609 0.598 0.602 0.600
εα 0.995 0.994 0.995 0.994
κ 6.210 6.375 6.219 6.160
γ (d−1) 0.137 0.177 0.139 0.140
accuracy (sum error2) 0.538 0.582 0.538 0.587
run-time (s) 194 3698 70118 <1

To further illustrate the tool we provide, we show in Figure 2 the starting configuration after the
data was inserted as input. The shown fitting curve is the one for default parameters (not considering
data points) before running any fitting method. In Figures 3 and 4, the final results are shown when
selecting LSF and COBYLA, respectively. In Figures 5 and 6, we present the curves of all methods
shown in the same simulator window and in a separate graph, to which Table 3 corresponds.
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Figure 2. Start fit that emanates from data of a patient reported in [48]. The fitting curve corresponds
to default parameters before fitting with our methods. The multiscale model is used.

Figure 3. End fit using Gauss–Newton (LSF) that emanates from data of a patient reported in [48].
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Figure 4. End fit using COBLYA that emanates from data of a patient reported in [48].

Figure 5. Comparison between the line fits of different methods inside the simulator window for the
retrieved data points of patient HD that was reported in [48].
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Figure 6. Comparison between the line fits of different methods for the retrieved data points of patient
HD that was reported in [48].

4. Discussion

A practical and user-guided automatic procedure for parameter estimation is an important goal
to achieve for mathematical models that are based on differential equations. It enables users to test
a variety of fitting scenarios, either for the model calibration or model calibration with validation,
by inserting different available data points of patients used for the fitting and fixed parameter values.
The motivation is to use the parameters obtained by the fitting procedure to perform successful
predictions for other data, where other data are data of new patients that form initial conditions
to the model and successful predictions mean that the solution of the model equations yields a
correct extraction of important quantities such as time to cure. In the context of viral dynamic
models, even a simple model such as the biphasic model [26] that is beneficial to be tested by
users requires a nonlinear method for the least squares minimization because a linear method is
not sufficient [57]. The development of more complicated models such as viral dynamic models that
consider intracellular viral RNA replication, namely age-structured PDE multiscale models to study
viral hepatitis dynamics during antiviral therapy [47–50], presents a need for even more sophisticated
strategies that perform parameter estimation while solving the model equations simultaneously.
Efficient methods as developed herein are crucial such that the parameter estimation can be performed
in a reasonable time.

From the parameter estimation standpoint, as previously outlined [57] and briefly mentioned in
the Introduction, multiscale models are even more challenging than the biphasic model. Not only is
conducting a search in at least a 10-parameter search space more difficult than in a 4-parameter search
space, but also the task of solving the model equations themselves and how to connect the equations
solution to the optimization procedure requires more sophistication. Previously, this was approached
in [48] by using the long-term approximation along with a canned method for Levenberg–Marquardt,
and in [50] by the method of lines and then employing Matlab’s 4th order Runge–Kutta solver along
with a canned method available in Matlab called fmincon for the optimization. While these strategies
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work sufficiently well for specific cases because of their use of canned methods, they are problematic
from the standpoint of the user’s capability to access and control them. Thus far, to the best of our
knowledge, no specific source code for viral hepatitis kinetics besides our initial attempt at [57] (more
general software such as DUNE, DuMuX, and UG4 for the solution of PDE models are available
at [66–68] and would be worthwhile exploring in the future) has been released free of charge for
the benefit of the community and while these strategies were described coherently in the context of
presenting multiscale models, they were not intended to provide to the user a comprehensive solution
of their own. There is clearly a need to provide the user with a free of charge simulator that is effortless
to operate and a code that can be accessed for dissemination and future development. Furthermore,
it should be practical in running time and allow inserting constraints for the parameters that need
be estimated, which is not available in our initial attempt of [57] because of reverting to the standard
non-constrained Levenberg–Marquardt method for the optimization and encountering numerical
precision problems that were difficult to detect when developing the complete strategy for parameter
estimation in our initial attempt.

The strategy we presented herein is a direct continuation to [57] and requires no canned methods
utilization. It works directly on the multiscale model equations, preparing them in advance for the
optimization procedure by taking their derivatives with respect to the parameters, in contrast to solving
them first by an analytical approximation or performing the method of lines as a first step. For the
solution of the model equations, the Rosenbrock method described in [55] is employed, as was shown
to be advantageous in comparison to other solution schemes in [56]. For the constrained optimization
procedure, as a departure from [57], either the Gauss–Newton or COBYLA are employed in full (not as
a canned method) such that the user has access to the source code at each point in the procedure.
Both Gauss–Newton and COBYLA are significantly more efficient in their constrained optimization
procedure relative to the Levenberg–Marquardt employed in [57]. More complicated patient cases that
took several hours of run time simulation in [57] (19.48 h reported in Table 3 for Levenberg–Marquardt)
are now calculated in a few minutes (3.23 min reported in Table 3 for Gauss–Newton) on a standard
PC, and simpler cases that took several minutes are now performed in seconds. Thus, the obtained
results are much faster to compute than the existing solutions without sacrificing accuracy. The whole
method is provided in a form of a model simulator with a user-friendly GUI, letting the user insert
parameter constraints.

We note by passing that the aforementioned general software DUNE, DuMuX, and UG4 [66–68]
are written in C++ using the MPI library allowing for massively parallel evaluations in the context
of HPC, which might allow significantly more extended data sets to consider in the future. Thus,
High Performance Computing (HPC) might also be an option for future development.

The code is open source and is divided into several packages: two fitter packages and a third
default package with solver (Solver.java) class and GUI (GUI.java) class. The default package also
contains different helper classes, like a class with all parameters and adapter classes to define the
objective function for the fitters. The code is flexible and it is easy to add any new model solver class
or any new parameters fitting class, library, or package. We use adapter design pattern to connect
between the model solver and the parameters fitting algorithm. Thus, to add a new solver or fitter,
one should add the solver/fitter code to the project and implement the adapter class that matches
the interface of the model solver to the objective function interface of the parameters fitting method.
In addition, one should change 2–3 rows in the GUI.java class to make use of a new solver/fitter from
the GUI interface.

5. Conclusions and Future Work

The efficient methods described herein make the simulator a practical tool that is distributed free
of charge for the benefit of the community and the dissemination of viral hepatitis models. Furthermore,
the methods for parameter estimation employed can conceptually be used in other mathematical
models in biomedicine.
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Future work would include the development of the code in several directions. First, the code can
be made more modular such that the modeler can easily implement the method for a different model or
a modified version of one of these models. In this way, portability of the method to other models can be
achieved such that a significant modification of the code is not needed as a consequence of a change in
the model, ensuring that the modification is relatively straightforward. Second, at present, individual
fits to individual time course profiles is available, which is useful when one wants to describe viral
dynamics within one patient. The code can be developed for use also for fitting the in vitro time
course profiles of pooled patient datasets. Thus, as future work, having the option to import and fit
the models to repeated/multiple measurements would be useful.

From the numerical perspective, it might be possible to try weak methods for the solution of
the model equations such as finite elements, finite volumes, or discontinuous Galerkin as described
in [63,64]. The two time scales might present different challenges as compared to PDEs that are
dependent on time and space in their partial derivatives. Independently, much of the computations
are present in the optimization stage as compared to the solution stage and therefore efforts centered
on the model equations solution could focus on simplified strategies, if at all possible, for the benefit of
gaining more efficiency.

Finally, machine learning methods can be used to improve parameter estimation. There are
already enough patient cases, as more than 250 patients have been modeled, which can be used to
prepare the data for the parameter estimation of our simulator. Machine learning can then be used for
outliers’ removal, replacement of the incorrect and missed data with the correct one (currently done
manually), and correction of the data for the parameters and time to cure estimation. The machine
learning algorithm can then be integrated with the parameter estimation method to yield an overall
improved procedure.
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Appendix A. Details of the COBYLA Method

The original simplex method, devised by Spendley, Hext, and Himsworth [61,69], seeks to advance
a simplex towards a minimizer of f (x) : Rn → R by reflecting vertices at which f is large across
opposite faces of the simplex in the hopes of reducing f . If the initial simplex has vertices x0, x1, . . . , xn,
ordered so that f (x0) ≤ f (x1) ≤ . . . ≤ f (xn), then xn is the vertex at which f is largest, and is
considered for revision. The vector x̂, defined below, is proposed as a replacement:

x̂ :=
2
n

(
n−1

∑
i=0

xi

)
− xn, (A1)

=
1
n

(
n−1

∑
i=0

xi

)
+

⎛⎝ 1
n

(
n−1

∑
i=0

xi

)
− xn

⎞⎠ , (A2)

:= x̄ + (x̄ − xn). (A3)

Note that the vector x̄ is the centroid of the convex hull of the points x0, x1, . . . , xn−1, so that x̂ is
the reflection of the vertex through the face of the simplex opposite xn. As such, the volume of the
simplex is preserved if the vertex exchange xn → x̂ is made, with the swap occurring if f (x̂) < f (xn−1).
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If f (x̂) is comparable to f (xn), the assumption is made that f is minimized in the area between xn and
x̂, so that the change xn → x̂ simply bypasses this region. To access this interior region, the simplex is
rescaled without replacing any of the vertices with x̂. The optimal vertex, x0, is left alone, and each
vertex xk, for k = 1, . . . , n, is replaced with (1/2)(x0 + xk). Both such changes to the simplex are
illustrated in the case n = 2 in Figure A1.

Figure A1. Illustration of the original simplex method. The points x0, x1, and x2 form the initial simplex.
(A) The point x̄ is the midpoint of the line joining x0 and x1, and x̂ is the reflection of x2 through this
line. If f (x̂) < f (x1), x2 is replaced by x̂, shifting the location of the simplex. (B) If f (x̂) ≥ f (x1),
x2 is replaced with (1/2)(x2 + x0) and x1 is replaced with (1/2)(x1 + x0), reducing the volume of
the simplex.

The Nelder–Mead method [70] expands on this basic simplex method, removing much of the
inefficiency that arises when rescalings result in a small simplex that takes longer to converge to the
function’s minimizing region. It does so by moving the vertex xn to a new point along the line joining
xn and x̂, strategically chosen to reduce f as much as possible. A generic expression for the new vertex,
xnew, is now,

xnew := x̄ + θ(x̄ − xn), (A4)

where θ > 0 may be different at each iteration. In the case of a linear f , we have that

f (xnew) = f (x̄) + θ( f (x̄)− f (xn)) ≤ f (x̄), (A5)

where the last equality above follows from the fact that f (xn) ≥ f (xk) for all k = 0, 1, . . . , n − 1,
which implies f (x̄) ≤ f (xn). Regarding the linear case as a proxy for the more general case, we expect
such a vector xnew to decrease the value of f , if θ is chosen well. One particular implementation bases
the choice of θ—and thus the new vertex—on the value of f (x̂) relative to the value of f at other
vertices. The new vertex, x̌, is defined as such:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

2x̂ − x̄ if f (x̂) < f (x0), (A6a)
1
2
(x̄ + x̂) if f (x0) ≤ f (x̂) < f (xn−1), (A6b)

1
2
(xn + x̄) if f (xn−1) ≤ f (x̂). (A6c)

The choices in Equations (A6a)–(A6c) are obtained by taking θ = 2, (1/2), (−1/2), respectively,
in Equation (A4), and are depicted in Figure A2. If f (x̂) < f (x0), as in Equation (A6a), then f decreases
so significantly along the line from xn to x̂ that choosing a new vertex, 2x̂ − x̄, even further down the
line is presumed to result in a greater reduction. If f (x0) ≤ f (x̂) < f (xn−1), as in Equation (A6b),
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the reduction in f is less significant, and the new vertex is placed between x̂ and the face of the simplex
opposite xn. If f (xn−1) ≤ f (x̂), as in Equation (A6c), the reduction in f at x̂ is minimal, and x̌ is placed
between xn and the face of the opposite simplex, as placement of the vertex near x̂ is not warranted.

x2

x1

x0

θ =
−1

2
θ =

1

2
θ = 2

Figure A2. Illustration of the Nelder–Mead method. The points x0, x1 and x2 form the initial simplex.
The vertex x2 is replaced with a vertex of the form xnew = x̄ + θ(x̄ − x2). If f (x̂) < f (x0), θ = 2,
if f (x0) ≤ f (x̂) < f (xn−1), θ = 1/2, and if f (xn−1) ≤ f (x̂), θ = −1/2.

The COBYLA algorithm is used to minimize an objective function f (x) : Rn → R subject to the
set of m ∈ N constraints,

{ci(x) ≥ 0 : i = 1, 2, . . . , m}, (A7)

where ci(x) : Rn → R for each i = 1, · · · , m. As derivatives are omitted from the algorithm entirely,
no smoothness assumptions are required for the functions f , ci; they must simply be well-defined
on Rn. After generating the initial simplex from an initial guess as to the location of the minimizer,
the optimal vertex is identified and labeled x0. In this case, a vertex of the simplex is considered
optimal if Φ(x0) ≤ Φ(xk), for k = 1, · · · , n, where the xk are the other n vertices of the simplex,
and Φ(x) is defined by

Φ(x) = f (x) + μ[max{−ci(x) : i = 1, · · · , m}]+, (A8)

with [x]+ = max{x, 0}, and μ ≥ 0 a constant parameter. The optimality of a point x is thus affected
by both the value of f (x) and how closely it satisfies the constraints in Equation (A7). If ci(x) ≥ 0
for all i = 1, · · · , m, then Φ(x) = f (x), but if at least one constraint is violated, then Φ(x) > f (x),
lessening the “worth” of the point x as an approximation to the minimizer. From there, each iteration
of the algorithm generates a new candidate vertex, designed to either replace an existing vertex
with one that decreases Φ(x) or improves the shape of the simplex. The shape of the simplex is
particularly crucial in this algorithm because its vertices are used to define linear programming
problems, from which new candidate vertices designed to improve the optimality condition are
derived. Specifically, if {xk : k = 0, · · · , n} are the vertices of the current simplex, we let f̂ (x) : Rn → R

be the unique affine function that passes through points (xk, f (xk)) ∈ Rn+1, and, analogously, we let
ĉi(x) : Rn → R be the unique affine function that passes through the points (xk, ci(xk)). Should the
shape of the simplex be “acceptable”—in a way to be defined later—a new candidate vertex is chosen
to improve optimality by minimizing f̂ (x) subject to the constraints {ĉi(x) ≥ 0}. Should the simplex
be of an unacceptable shape, the linear programming problem may be ill-defined or fail to provide a
reasonable approximation to the functions f (x), ci(x). If this newly generated vector improves the
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value of Φ, it replaces a vertex of the simplex. This process continues until a pre-determined final
trust region radius, which represents the desired accuracy of the approximation to the minimizer,
is achieved.

The algorithm takes as inputs an initial guess, x0, as to the location of the minimizer, and the
constants ρbeg, ρend > 0, which represent the initial and final trust region radii. Additionally, μ is set
to zero. At the start, the initial simplex is generated from x0 and ρbeg. The vector x0 is one vertex,
with the other vertices, xk, k = 1, . . . , n, defined by xk = x0 + ρbegek, for k = 1, . . . , n. Here, ek is the
k-th coordinate vector. After each xk is generated, f (xk) is computed, and the labels of the vectors x0

and xk are swapped if f (xk) < f (x0), to ensure that f is minimized at x0. After the initial simplex is
defined, the algorithm proceeds to advance the simplex at each iteration by either generating a new
candidate vertex, denoted x∗, to decrease Φ(x), or an alternate vertex, denoted xΔ, to improve the
shape of the simplex. Each iteration begins by ensuring that x0 is the optimal vertex–and relabeling
vertices if it is not–before assessing the suitability of the simplex. For this, denote by σk the Euclidean
distance from the vertex xk to the face of the simplex opposite xk, and, by ηk, the length of the segment
joining xk to x0. The simplex is deemed to have an acceptable shape if and only if σk ≥ αρ and ηk ≤ βρ

for all k = 1, . . . , n, where α, β satisfy 0 < α < 1 < β. These conditions prevent the development of
flat, degenerate simplices, which would result in poorly-formulated linear programming problems.
If the simplex is of an unacceptable shape, a vertex xΔ is generated; otherwise, a candidate vertex x∗

is computed.
The iteration immediately following formation of the initial simplex always generates a vertex

x∗, as the initial simplex satisfies σk = ηk = ρbeg for all k = 1, . . . , n, and is thus always acceptable.
The loop that generates such an x∗ in general is described below; in the very first iteration, ρ = ρbeg.
The vector x∗ is generated by minimizing f̂ (x) subject to the constraints in Equation (A7) and the trust
region condition,

||x − x0||2 ≤ ρ, (A9)

as illustrated in Figure A3. Should the constraints in Equations (A7) and (A9) be inconsistent with one
another, the candidate x∗ is chosen by minimizing the “greatest constraint violation” function, M̂(x),
defined by,

M̂(x) := max{−ĉi(x) : i = 1, . . . , m} (A10)

subject to the trust region constraint in Equation (A9). This process is illustrated in Figure A4. If there
exist multiple x∗ that satisfy M̂(x∗) = min{M̂(x) : ||x − x(0)||2 ≤ ρ}, then the x∗ that minimizes f̂ (x)
is chosen from among those that minimized M̂(x). If there are multiple such minimizers of f̂ (x),
then the one that minimizes ||x − x0||2 is chosen.

When the appropriate x∗ is identified, the condition ||x∗ − x0||2 < 1
2 ρ is tested. If ||x∗ − x0||2 ≥ 1

2 ρ,
the relative “size” of the parameter μ is evaluated. To this end, denote by μ̄ the smallest value of μ for
which Φ̂(x∗) ≤ Φ̂(x0), where

Φ̂(x) = f̂ (x) + μ[max{−ĉi(x) : i = 1, . . . , m}]+ = f̂ (x) + μ[M̂(x)]+. (A11)

If Equations (A7) and (A9) are consistent with one another, then x∗ had been chosen to minimize
f̂ (x), and it follows that Φ̂(x∗) = f̂ (x∗) ≤ f̂ (x0) = Φ̂(x0). In this case, μ̄ = 0. Should Equations (A7)
and (A9) be inconsistent, then x∗ had been chosen to minimize M̂(x) as in Equation (A10), implying
that M̂(x0)− M̂(x∗) ≥ 0. If M̂(x0)− M̂(x∗) = 0, then M̂ has at least two minimizers, and x∗ had
been chosen to minimize f̂ (x), implying Φ̂(x∗) ≤ Φ̂(x0) from Equation (A11). If M̂(x0)− M̂(x∗) > 0,
there exists a μ̄ sufficiently large to guarantee f̂ (x0) − f̂ (x∗) + μ

(
M̂(x0)− M̂(x∗)

)
> 0, even if

f̂ (x0)− f̂ (x∗) < 0, implying Φ̂(x∗) ≤ Φ̂(x0) for μ ≥ μ̄. If the current value of μ satisfies μ ≥ 2
3 μ̄,

then μ is considered “sufficiently large” and its value is left alone. Otherwise, μ is increased to 2μ.
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Figure A3. Minimization of f̂ The candidate vertex x∗ is computed by minimizing f̂ (x) subject to the
constraints ĉ1, ĉ2 ≥ 0 within the trust region ||x − x0||2 ≤ ρ. (top) The region of optimization (green) is
the intersection of the trust region ||x − x0||2 ≤ ρ with the half planes defined by the affine constraints
ĉ1 ≥ 0 and ĉ2 ≥ 0. (bottom left) The function, f̂ , to be minimized is represented graphically by the
plane (blue) passing through points (x0, f (x0)), (x1, f (x1)), (x2, f (x2)). (bottom right) The vertex x∗ is
defined to be the point within the region of optimization (green) at which f̂ (blue) is minimized.
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ĉ1
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R
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Figure A4. Minimization of M̂ Should the constraints ĉi(x) ≥ 0 be inconsistent with one another within
the trust region ||x − x0||2 ≤ ρ, the candidate vertex x∗ is chosen to minimize M̂ := max{−ĉi(x) :
i = 1, . . . , m}. (top) The constraints ĉ1(x) ≥ 0 and ĉ2(x) ≥ 0 are inconsistent within the region
||x − x0||2 ≤ ρ. (bottom left) Graphs of the affine functions −ĉ1(x) (blue) and −ĉ2(x) (green). (bottom
right) The vertex x∗ is defined to be the point within the trust region (black circle) at which M̂
is minimized.
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If μ is increased, it may no longer be the case that x0 is optimal, in the sense that there may exist
some k between 1 and n for which Φ(xk) < Φ(x0). From the form of Φ in Equation (A8), this reversal
of the original order relation Φ(xk) ≥ Φ(x0) as μ increases can only occur if [M(x0)]+ > [M(xk)]+,
with M(x) defined as:

M(x) := max{−ci(x) : i = 1, . . . , m}. (A12)

If x0 is no longer optimal, the process returns to the start of the loop, from which it first rearranges
the labeling of the vertices so as to label the optimal one x0. No change was made to the vertices
of the simplex beyond this relabeling, and if the simplex had been acceptable previously, it will
remain acceptable. In this case, another candidate vertex x∗ will be computed with respect to the
new x0. The process of generating x∗, increasing μ, and then relabeling the vertices can only happen
a finite number of times; the labels of the vertices x0 and xk are only switched if M(x0) > M(xk),
meaning that the value of M decreases each time a vertex exchange is made. Thus, increasing μ can
only change the order relation between the values Φ(xk) until the optimal vertex x0 also satisfies
M(x0) = min{M(xk) : k = 0, . . . , n}, at the latest.

If μ is sufficiently large and x0 is optimal, or once these conditions have been achieved, the possible
replacement of one vertex with the new candidate vertex x∗ is considered. The values of f (x∗) and
ci(x∗) are computed, and the simplex is revised to incorporate x∗ as a vertex if Φ(x∗) < Φ(x0), or if
such a revision will improve acceptability of the simplex. The choice of which existing vertex should
be replaced with x∗ is determined by the predicted effect of the change on the acceptability conditions
and the volume of the simplex. For this, consider the quantity σ̄k, defined to be the Euclidean distance
from x∗ to the face of the simplex opposite xk. If xk is replaced with x∗, but all other vertices are left
unchanged, the volume, V∗, of the new simplex is related to the volume, Vk, of the original simplex by
the formula,

V∗ = σ̄k

σk Vk. (A13)

This follows from the standard formula for the volume of a simplex in Rn, which yields
Vk = (1/n)VHσk, V∗ = (1/n)VH σ̄k, where VH is the volume of the convex hull of the n points
x0, x1, . . . , xj−1, xj+1, . . . , xn. It is considered advantageous for a change in the vertices to increase the
volume of the simplex, and, as such, vertices xk for which σ̄k > σk are sought for replacement by x∗.
Specifically, consider the set J defined by

J := {j : σ̄j ≥ σj} ∪ {j : σ̄j ≥ αρ}, (A14)

thus consisting of indices j for which xj could be replaced with x∗ either without decreasing the volume
of the simplex or without disturbing the acceptability condition σj ≥ αρ. To consider the effect of a
change on the acceptability condition ηk ≤ βρ, note that, if a vertex is replaced by x∗, the optimal vertex
of the new simplex will be either the previous optimal vertex, x0, or the vertex x∗ itself. Denoting the
new optimal vertex by x̄0, if J is nonempty, let � ∈ N be defined as

� := min{k ∈ N∩ [1, n] : ‖xk − x̄0‖2 = max{‖xj − x̄0‖2 : j ∈ J}}, (A15)

so that x(�) is the vertex with smallest index at a maximal distance from the optimal vertex. If ‖x� −
x̄0‖2 > δρ, for 1 < δ ≤ β, then xk is replaced by x∗. If these conditions are not met, the simplex is
revised regardless, as long as either Φ(x∗) < Φ(x0) or there exists an index k for which σ̄k > σk—that
is, if Φ is smaller at the new candidate vertex, or a change increases the simplex’s volume. In this case,
x0 is replaced by x�, where � is now defined as

� := min{k ∈ N∩ [1, n] : σ̄k�σk = max{σ̄j�σj : j ∈ N∩ [1, n]}}. (A16)

Note that, even though the simplex is updated whenever Φ(x∗) < Φ(x0), the vertex to discard
is chosen based on the effect the change will have on the volume and acceptability of the simplex,
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with no regard for the values of Φ at different vertices. This process almost always results in an update
to the simplex, with an update failing to occur only if Φ is not decreased at x∗, no vertex swap would
increase the volume of the simplex, and either J is empty or ‖xj − x̄0‖2 ≤ δρ for all j = 1, . . . , n. The set
J is empty if each hypothetical vector swap actually decreases the volume of the simplex and fails to
maintain the first acceptability condition, σ̄j ≥ αρ.

After potentially making a vector replacement, the progress made in reducing Φ as the simplex
advances is examined. If sufficient progress is not made, the trust region radius, ρ, will be reduced.
To determine if such a reduction should be made, the change in Φ at x∗ is compared to the change
in Φ̂. The condition

Φ(x∗)− Φ(x0)

Φ̂(x∗)− Φ̂(x0)
≤ 0.1 (A17)

is tested. If Cond. (A17) fails, then the improvement to Φ is at least 10% of the improvement to Φ̂.
This improvement is considered significant enough, and the iteration returns to the start of the loop to
generate a successive x∗, assuming the simplex is still acceptable. If Cond. (A17) fails, the improvement
to x∗ will be less than 10% of the improvement to Φ̂, and a decrease in the trust region radius is called
for. Before the trust region radius is assessed, the acceptability of the simplex is checked. If the simplex
is unacceptable, the iteration returns to the start of the loop, and generates an alternate vertex xΔ. If the
simplex is acceptable, the condition ρ ≤ ρend is tested. If ρ ≤ ρend, the final trust region radius has
been reached, and the algorithm terminates. If ρ > ρend, further advances to the simplex are required
to reduce the trust region radius to its final value. The iteration returns to the start of the loop, and will
generate a new candidate, x∗, as the acceptability of the simplex has already been verified. Before this,
ρ and μ are updated. If ρ > 3ρend, then ρ is decreased by half. If ρ ≤ 3ρend, then ρ is set to ρend itself.

It is considered sensible to update μ whenever ρ is updated, as the value of μ can become quite
large. A constraint function ci(x) is regarded as “significant” to Φ if i ∈ I, where

I := {i ∈ N∩ [1, m] : cmin
i < (1/2)cmax

i }, (A18)

with cmin
i and cmax

i representing the minimum and maximum values of ci at the vertices of the current
simplex. If I is empty, μ = 0, and if I is nonempty, μ is set to the value,

{maxk=0,1,...,n f (xk)− mink=0,1,...,n f (xk)}
min{[cmax

i ]+ − cmin
i : i = 1, . . . , m} , (A19)

assuming that the quantity in Equation (A19) is less than the current value of μ.
If after generating the candidate vector x∗ the condition ‖x∗ − x0‖2 < 1

2 ρ is met, much of the
previously described process is omitted. The algorithm proceeds as it did after advancing the simplex
and verifying Cond. (A17), by first checking the acceptability of the simplex and revising, if necessary,
and then checking the condition ρ ≤ ρend. As before, if ρ ≤ ρend, the algorithm terminates, and,
if ρ > ρend, ρ and μ are updated as previously described and the process returns to the start of the loop
to generate a new x∗.

It only remains to describe the process of updating the simplex to improve its acceptability. This is
done by generating an alternate vertex, xΔ, to replace one of the vertices of the simplex. Recall that,
if the simplex is unacceptable, then there either exists a j ∈ N ∩ [1, n] such that σk < αρ or such that
ηk > βρ. If the latter is true, define � ∈ N∩ [1, n] to be the index that satisfies

η� = max{ηk : k = 1, . . . , n}. (A20)

Otherwise, define � to be the index that satisfies

σ� = min{σk : k = 1, . . . , n}. (A21)
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The vertex x� is then one that violates one of the acceptability conditions most egregiously, either
by being the closest to the optimal vertex or the farthest from its opposite face. The vertex x� will be
replaced by, xΔ, where xΔ is defined by

xΔ = x0 ± γρv�, (A22)

where v� is the unit vector perpendicular to the face of the simplex opposite the outgoing vertex x�,
and γ ∈ (α, 1). The + or − is chosen to minimize Φ̂. The new vertex xΔ, illustrated in Figure A5,
maintains the general position of x� relative to the opposite face of the simplex, while satisfying
σΔ = ηΔ = ‖xΔ − x0‖2 = γρ ∈ (αρ, βρ). Even though the acceptability condition is not violated at
the new vertex xΔ, acceptability may still be violated at other vertices. After replacing x� with xΔ,
the process always generates a vertex of the type x∗, as opposed to conducting several replacements
to improve acceptability. As described previously, the algorithm continues to advance the simplex
by replacing current vertices with improvements of the form x∗ and xΔ until the condition ρ ≤ ρend
is achieved.

x1

x0 + γρv�

x0 − γρv�

x2
x0

Figure A5. Illustration of the new vector xΔ, generated to improve the shape of the simplex. The vertex
x1 is replaced with either xΔ = x0 + γρv� or xΔ = x0 − γρv�, whichever point results in a smaller value
of Φ̂.

Appendix B. Parameter Estimation in the Biphasic Model

We begin with the standard model for HCV dynamics, the biphasic model of Neumann et al. [26].
Although the model is nonlinear, it can be solved analytically when assuming that the target cells T
variable is constant. We incorporated the analytical solution described in [26] to our simulator and
performed parameter estimation using a constrained optimization Gauss–Newton solver to solve the
minimum least squares problem, which is more efficient and stable than the non-constrained nonlinear
solver with a damping factor described in [57]. There can be instances in which the Gauss–Newton
solver fails, although it is the simplest and most efficient, in which case the COBYLA solver should
be used instead by selecting its option in the simulator or it can be used in all instances from the
start. Figures A6 and A7 present fitting results from two patients (Pts). Figure A6 corresponds to
Pt3 who was treated with mavyret [36] where LSF was selected for the optimization (default). In a
case that corresponds to Pt285003 who was treated with epclusa [36] where LSF was selected for the
optimization (default), a warning appeared because of a failure, after which Figure A7 corresponds to
the same case, but this time COBYLA was selected for the optimization and succeeded to yield a fit.
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Our current method has recently been used in [71,72]. A webpage with user instructions is available at
http://www.cs.bgu.ac.il/~dbarash/Churkin/SCE/Efficient/Parameter_Estimation/Biphasic.

Figure A6. Biphasic model fitting example with data taken from [36] of a patient who was treated with
mavyret. The LSF method (default) is recommended for use.

Figure A7. Biphasic model fitting example with data taken from [36] of a patient who was treated with
epclusa. In this particular case, COBYLA was selected instead of LSF and succeeded to yield a fit.
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Appendix C. Parameter Estimation in the Multiscale Model

Extending to the multiscale model for HCV dynamics, we perform parameter estimation on the
model taken from [48]. As previously described, in our simulator, we solved the model equations
using the Rosenbrock method [55] and performed parameter estimation after preparing the derivative
equations using a full implementation of our developed Gauss–Newton (LSF) and COBYLA methods
that are suitable to our application domain without reverting to canned methods.

To illustrate the tool we provide, we first show in Figure A8 the result of fitting to generated
data points from the default values of the parameters c ρ, when starting away from their real values
(with initial guesses of ρ = 7.95, c = 22.5) and selecting the LSF method. The predicted values after
running LSF ( ρ = 5.0, c = 31.0) are very close to their real values (error of 2.58 · 10−6) and run-time
was 40 s. In Figure A9, we show the result of the selecting the COBYLA method for the case as in
the previous figure. The predicted values after running COBYLA are even slightly closer to their real
values (error of 1.34 · 10−8) for this particular case and run-time was 109 s. Thus, starting from initial
guesses that are far from the real values can be handled, indicating the robustness of our methods.
Run-times of our methods were significantly faster than a run-time of 1680 s (with even a larger error
of around 0.5 showing much less robustness) when using the Levenberg–Marquardt method that
was implemented in [57]. A webpage with user instructions is available at http://www.cs.bgu.ac.il/
~dbarash/Churkin/SCE/Efficient/Parameter_Estimation/Multiscale.

Figure A8. Fitting the parameters c and ρ of the multiscale model to generated data points using the
LSF method.
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Figure A9. Fitting the parameters c and ρ of the multiscale model to generated data points using the
COBYLA method.
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Abstract: This work is devoted to the investigation of virus quasi-species evolution and diversification
due to mutations, competition for host cells, and cross-reactive immune responses. The model consists
of a nonlocal reaction–diffusion equation for the virus density depending on the genotype considered
to be a continuous variable and on time. This equation contains two integral terms corresponding to
the nonlocal effects of virus interaction with host cells and with immune cells. In the model, a virus
strain is represented by a localized solution concentrated around some given genotype. Emergence
of new strains corresponds to a periodic wave propagating in the space of genotypes. The conditions
of appearance of such waves and their dynamics are described.
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1. Introduction

Human infections with rapidly evolving viruses such as the human immunodeficiency virus
(HIV) or the hepatitis C virus (HCV) remain a challenge for health-care systems. Infections are usually
initiated by one or few virions that then replicate and generate a swarm of progeny viruses with distinct
but related genomes [1,2]. Collectively these swarms of viruses are called a virus quasi-species [3–7].
This quasi-species nature enables viruses to rapidly evolve within an infected host organism and
adapt to constraints mediated by immune responses or antiviral drugs [8,9]. It also allows viruses to
broaden their host cell tropism and to spread to diverse tissues [10]. Well studied examples for virus
adaptation are the development of drug resistance or the generation of variants within virus-specific
cytotoxic T lymphocyte (CTL) epitopes that diminish immune recognition and destruction of infected
cells [11–13]. Since the immune system can also adapt to respective virus changes [14], an increase in
the number of CTL target regions over time of infection as well as successive shifts in the hierarchy of
immunodominance have been observed [15,16].
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Gaining a mechanistic understanding of the dynamic interplay between the processes of virus
replication, mutation, and elimination by immune responses and drug-based treatment requires
the development of mathematical models which could be used to predict the generation of viral
variants that escape the immune recognition and confer resistive to antiviral drugs. The existing
models of virus evolution are based on the concept of quasi-species. i.e., an ensemble of related
genomes [4]. The models can be formulated either as deterministic high-dimensional systems of ODEs,
describing the densities of individual strain [15,17] or stochastic models with genetic algorithms [18].
The cooperative interactions in viral populations are considered to be key for linking the quasi-species
dynamics in a changing virus-host environment with the genetic markers of viral evolution and the
disease pathogenesis [10,19]. This implies that nonlocal interactions between the quasi-species in the
genotype space need to be considered to predict the evolution of viruses to form distinct phenotypes.

Nonlocal reaction–diffusion equations represent an appropriate framework to describe evolution
of biological species [20–22]. These equations take into account nonlocal consumption of resources
characterizing intraspecific competition and possibly leading to the emergence of multi-modal
population density distributions. Considered to be depending on a morphological characteristic and
on time, localized in-space distributions can be interpreted as biological species, and the emergence
of multi-modal distributions corresponds to the appearance of new species. In this work we will
study virus quasi-species and will analyze the emergence of new strains in the space of genotypes.
We consider the nonlocal reaction–diffusion equation

∂u
∂t

= D
∂2u
∂x2 + ru(1 − qJ(u))− u f (S(uτ))− σ(x)u (1)

introduced in the previous work [23] devoted to the existence and dynamics of virus strains, but not to
the emergence of new strains since this question is different both from the biological and modelling
points of view. Here u(x, t) is a dimensionless virus density distribution depending on its genotype
x considered to be a continuous variable and on time t. The diffusion term in the right-hand side
of this equation characterizes virus mutations, and the other terms describe virus reproduction, its
elimination by immune response and by genotype-dependent mortality, either natural or caused by
an antiviral treatment.

We describe the virus reproduction and immune response terms in more detail. We begin with the
diffusion term. Assuming that there is a sequence of reversible mutations with consecutive genotypes
xi, we can write the equation for the density ui of virus with genotype xi:

dui
dt

= μ(ui−1 − ui) + μ(ui+1 − ui),

where μ is the frequency of mutations. This equation represents a discretization of the diffusion
equation with the diffusion coefficient proportional to μ.

The virus reproduction rate is conventionally considered either proportionally to its density u or,
if we take into account the limitation on the quantity of the host cells where virus can multiplicate,
as a logistic term ru(1 − qu). Here r is a proportionality coefficient, and q is a positive constant
corresponding to the inverse carrying capacity in population dynamics. The latter case implicitly
signifies that there is one-to-one correspondence between the virus genotype and the type of infected
cells. In a more general and biologically realistic setting we should accept that viruses with different
genotypes can infect the same cells. In this case, we replace the conventional logistic term by the term
ru(1 − qJ(u)), where J(u) =

∫ ∞
−∞ φ(x − y)u(y, t)dy. The kernel φ(x − y) in this integral characterizes

the efficacy of host cell infection depending on the difference in genotypes. In general, it is a decreasing
function of the modulus of its argument. Its exact form in the applications is not known, and different
examples will be considered below. The integral is taken in the infinite limits for convenience of
presentation. It implies that the genotype space is sufficiently large, and it can be mathematically
approximated as a real line.
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The reproduction rate with the integral J(u) corresponds to nonlocal consumption of resources
in population dynamics [22,24]. If we replace the kernel φ(x) by the δ-function, then we obtain the
previous “local” case. Finally, if cell contamination is independent of virus genotype, then we have
the integral I(u) =

∫ ∞
−∞ u(y, t)dy corresponding to the global consumption of resources. Behavior of

solutions of Equation (1) can be essentially different in these three cases.
Virus elimination by immune cells is proportional to the virus density u and to the concentration

of immune cells C. Since immune response is stimulated by the antigen (virus), then the concentration
of immune cells can be considered to be a function of virus density C = f (u). The function f (u)
characterizes the intensity of immune response. It is positive and growing for some limited interval of
values of u where the antigen stimulates the immune response, and it is decreasing for u sufficiently
large due to the exhaustion and death of immune cells provoked by large virus concentrations [25–27].
The qualitative form of this function is well described by the dependence f (u) = (k1u + k2)e−k3u with
some positive constants k1, k2, and k3. The approximation of the concentration of immune cells as
a function of virus density can be derived from a more complete model under the assumption of large
reaction rate constants [28].

Clonal expansion of immune cells requires several cell proliferations and differentiations, and it
usually takes 3–4 days. Therefore, the rate of virus elimination by immune cells can take into account
this time delay if it is not negligible in the time scale of virus evolution. In this case, the corresponding
term becomes u f (uτ), where uτ = u(x, t − τ). Furthermore, similar to virus reproduction, virus
elimination is also nonlocal in the genotype space. In [23] it was described by the term

∫ ∞
−∞ θ(x −

y) f (S(uτ)(y, t))dy, where S(uτ)(y, t) =
∫ ∞
−∞ ψ(y − z)u(z, t − τ)dz. The inner integral S characterizes

a cross-reactive stimulation of immune response by different antigens, while the outer integral describes
a cross-reactive virus elimination by different immune cells. Both assumptions are biologically justified.
However, this model becomes excessively complex, and we will restrict ourselves here only to the
inner integral assuming the outer term is local, i.e., that the kernel θ(x) is replaced by the δ-function.

The last term in the right-hand side of Equation (1) describes virus mortality with the rate
depending on its genotype. The viability interval, i.e., the rate of genotypes where virus multiplication
rate exceeds its mortality can depend on its intrinsic features and on an antiviral treatment.

Some particular cases of Equation (1) are studied in the literature. Considered without immune
response and genotype-dependent mortality, this nonlocal reaction–diffusion equation and some
its variations were widely studied in relation to various applications [29–32] and from the point of
view of their mathematical properties [33–36]. One of the main features of this equation is that its
homogeneous in-space stationary solution can become unstable leading to the emergence of periodic
in-space solutions. We will return to this question below. The local equation (J(u) → u, S(u) → u)
with time delay in the immune response term was suggested in [23,26,27,37] as a model of virus spread
in tissues. The presence of time delay can lead to complex patterns of wave propagation.

In our previous work [23] we studied the existence and dynamics of virus strains considered to
be localized solutions (pulses) in the space of genotypes, with the understanding that a virus strain
can be characterized by its most frequent genotype with a narrow density distribution around it.
The existence and stability of such solutions is not a priori given. In the local bistable equation such
solutions exist but they are not stable. In the local monostable equation such solutions do not exist.
It was previously shown that stable pulses exist for the nonlocal bistable equation [38]. In [23], it
was revealed that persistent virus strains can exist due to the interaction of nonlocal (global) virus
reproduction with immune response or with genotype-dependent mortality rate. This modelling
approach allows us to investigate the competition of different strains and the emergence of resistant
strains due to treatment.

In this work we will study the question about the emergence of new strains. From the
modelling point of view, these two cases, existence of stable strains and emergence of new strains
are complementary, they are not observed at the same time. The former corresponds to stable pulses
while the latter to periodic travelling waves. A nonlocal reaction–diffusion equation describing the
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emergence of biological species was suggested in [22]. It represents a particular case of Equation (1)
without immune response and genotype-dependent mortality. We will show that immune response
plays an important role in the dynamics of virus quasi-species.

2. Bifurcations of Periodic Structures

An important property of nonlocal reaction–diffusion equations is that the homogeneous in-space
stationary solution can lose its stability with respect to spatial perturbations leading to the emergence
of periodic solutions. This property was revealed and studied in some models of population
dynamics [22,39]. Here we will study it for the models of infection development described by
the equation

∂u
∂t

= D
∂2u
∂x2 + ru(1 − qJ(u))− u f (S(uτ)) (1)

similar to Equation (1) but without the genotype-dependent mortality term. We will analyze various
particular cases of this equation.

2.1. Single Nonlocal Term

We consider the reaction–diffusion equation

∂u
∂t

= D
∂2u
∂x2 + ru(1 − qJ(u))− f (u)u (2)

for all real x, where

J(u) =
∫ ∞

∞
φ(x − y)u(y, t)dy,

the function φ(x) is bounded and non-negative. We will suppose that
∫ ∞
−∞ φ(x)dx = 1. In what

follows, we set r = q = 1. Let u0 > 0 be a solution of the equation

f (u) = 1 − u. (3)

Then u0 is a stationary solution of Equation (2). We will study stability of this stationary solution.
To linearize Equation (2) about u = u0, we look for its solution in the form u = u0 + veλt, where v

is a small perturbation and we obtain the eigenvalue problem

Dv′′ − u0(J(v) + f ′(u0)v) = λv. (4)

Applying the Fourier transform, we get

λ = −Dξ2 − u0(φ̃(ξ) + f ′(u0)), (5)

where φ̃(x) is the Fourier transform of the function φ(x). If we replace φ(x) by the δ-function, instead
of (5) we have

λ = −Dξ2 − u0(1 + f ′(u0)). (6)

Assuming that
1 + f ′(u0) > 0, (7)

we conclude from (6) that λ < 0 for all real ξ.
Let us now analyze equality (5). Since φ̃(0) = 1, then λ(0) < 0. Suppose that φ(x) is an even

function, φ(x) = φ(−x) for all x. Then

φ̃(ξ) =
∫ ∞

−∞
φ(x) cos(ξx)dx,
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φ̃(0) = 1, and φ̃(ξ) < 1 for all ξ �= 0. Assuming that λ = 0 in (5) for some ξ, we obtain the
stability boundary:

φ̃(ξ) = − f ′(u0)− Dξ2/u0. (8)

This equality should be satisfied for some real ξ. Its value is related to the wave number of the
corresponding eigenfunction. If we consider a bounded interval with periodic boundary conditions,
then ξ = 2πk/L, where L is the length of the interval and k = 1, 2, 3 . . .

2.2. Examples

Consider the functions

φ1(x) =
√

a
π

e−ax2
, φ2(x) =

a
2

e−a|x| , φ3(x) =

{
1/(2N) , |x| ≤ N

0 , |x| > N
.

Then

φ̃1(ξ) = e−ξ2/(4a) , φ̃2(ξ) =
a2

a2 + ξ2 , φ̃3(ξ) =
1

ξN
sin(ξN) .

Figure 1 (left) shows a graphical solution of Equation (8) for the function φ3(x). The curves
corresponding to the functions in the left-hand side and in the right-hand side of this equation touch
each other. The corresponding values of parameters belong to the stability boundary. For lesser values
of the diffusion coefficient, the homogeneous in-space stationary solution u− loses its stability resulting
in the emergence of a periodic in-space solution.

Figure 1. (Left) Graphical solution of Equation (8): functions (sin(ξN))/(ξN) and − f ′(u0)− Dξ2/u0,
where N = 0.1, f ′(u0) = −0.34, D = 0.00033, u0 = 0.93. (Right) Graphical solution of Equation (11):
the function φ(ξ) + bψ̃(ξ) for the values of parameters b = 1, N1 = 3, N2 = 5 (solid line), N1 = 3, N2 =

3 (dashed line), and the function −D/u−ξ2 with D/u− = 0.1508 (point line).

Let us note that Fourier transforms of the functions φ1(x) and φ2(x) are positive. Therefore,
if f ′(u−) ≥ 0, then Equation (8) does not have solution, and solution u− is stable. If f ′(u−) < 0, it
has a solution for sufficiently small values of the diffusion coefficient. Thus, emergence of periodic
solutions is determined by the interaction of virus mutations, nonlocal competition for host cells and
immune response. In terms of virus population distribution in the space of genotypes, these periodic
solutions correspond to different virus strains.

2.3. Double Nonlocal Equation

Consider Equation (1) with two nonlocal terms J(u) and S(u) and without time delay (τ = 0).
For simplicity of presentation, we set f (u) = bu. In the stationary case, we obtain the equation

Du′′ + u(1 − J(u)− bS(u)) = 0.
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Let us recall that J(u) =
∫ ∞
−∞ φ(x − y)u(y)dy, S(u) =

∫ ∞
−∞ ψ(x − y)u(y)dy. Assuming

that
∫ ∞
−∞ φ(y)dy =

∫ ∞
−∞ ψ(y)dy = 1, we get a homogeneous in-space stationary solution

u− = 1/(1 + b) of this equation. Linearizing the equation about this stationary solution, we
obtain the eigenvalue problem:

Dv′′ − u−(J(v) + bS(v)) = λv. (9)

Applying the Fourier transform to (9), we get

λ = −Dξ2 − u− (φ̃(ξ) + bψ̃(ξ)) . (10)

Consider the functions

φ(x) =

{
1/(2N1) , |x| ≤ N1

0 , |x| > N1
, ψ(x) =

{
1/(2N2) , |x| ≤ N2

0 , |x| > N2

Then
φ̃(ξ) =

1
ξN1

sin(ξN1) , ψ̃(ξ) =
1

ξN2
sin(ξN2) .

Stability boundary is determined by the equation

φ̃(ξ) + bψ̃(ξ) = −Dξ2/u− (11)

obtained from Equation (10) with λ = 0. An example of graphical solution of this equation is shown
in Figure 1. The stability boundary corresponds to the case where the functions in the left-hand side
and in the right-hand side of this equation touch each other (solid and point lines). If they intersect
(dashed and point lines), then the stationary solution is unstable. For the fixed values of N1, N2 and b,
stability conditions are determined by the diffusion coefficient.

Proposition 1. For any positive values N1, N2 and b there exists a critical value Dc of the diffusion coefficient
such that the stationary solution u− = 1/(1 + b) is stable for D > Dc and unstable for D < Dc.

The proof of this proposition is straightforward. It is sufficient to note that the function
φ(ξ) + bψ̃(ξ) has negative values for any values of parameters.

Dependence of the stability conditions on N1 and N2 is more complex. Both can have stabilizing
or destabilizing effect on the solution. In the example in Figure 1, decreasing the value N2 leads to the
instability of the solution (solid and dashed lines).

2.4. Delay Equation

Stability of solutions of the delay equation

∂u
∂t

= D
∂2u
∂x2 + ru(1 − qu)− f (uτ)u (12)

without nonlocal terms was studied in [37]. Spatial perturbations of the homogeneous in-space
solution can lead to a complex spatiotemporal behavior with standing wave, travelling waves and
aperiodic dynamics.

Nonlocal delay equation.

Consider now Equation (1) with a single nonlocal term and with time delay:

∂u
∂t

= D
∂2u
∂x2 + ru(1 − qJ(u))− u f (uτ). (13)
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In what follows, we set r = q = 1. Linearizing this equation about a stationary solution u = u0,
we obtain the eigenvalue problem

Dv′′ − u0

(
J(v) + f ′(u0)e−λτv

)
= λv.

Applying the Fourier transform, we get

λ = −Dξ2 − u0

(
φ̃(ξ) + f ′(u0)e−λτ

)
.

For λ = 0 we obtain Equation (8) for the stability boundary. Therefore, as it can be expected, time
delay does not influence the bifurcation of stationary solution. Consider now the bifurcation of time
periodic solution. We set λ = iν, where ν is a real number. Then separating the real and imaginary
part in the last equation we obtain:

ν = u0 f ′(u0) sin(ντ), Dξ2 + u0φ̃(ξ) + u0 f ′(u0) cos(ντ) = 0.

Set z = ντ. Then

cos z = −Dξ2/u0 + φ̃(ξ)

f ′(u0)
, τ =

z
u0 f ′(u0) sin z

. (14)

We find the value of z from the first equation and the value of τ from the second equation. The first
equation has a solution if and only if

∣∣Dξ2/u0 + φ̃(ξ)

f ′(u0)

∣∣ ≤ 1. (15)

In the case of the local equation where φ̃(ξ) = 1, the minimum of the numerator is reached at
ξ = 0. Therefore, the loss of stability occurs with the space independent perturbations assuming that
| f ′(u0)| < 1. For the nonlocal equation the loss of stability can occur for ξ �= 0 and for | f ′(u0)| ≥ 1.

Consider the case where the function f (u) is linear, f (u) = k1u. If k1 > 1 and N1 is sufficiently
small, then the homogeneous in-space solution u0 can lose its stability with respect to temporal
perturbation for the time delay τ large enough. If τ is less than a critical value then temporal and
spatial perturbations decay (Figure 2, left). If we increase N for the other parameters fixed, then the
constant solution u0 can lose its stability with respect to spatiotemporal perturbations. Figure 2 (right)
shows the emergence of a spatiotemporal pattern at the center of the interval. It propagates and
gradually fills the whole spatial domain. Let us now take k1 < 1. Then time oscillations in the local
problem (N1 = 0) decay for any time delay. In the nonlocal problem and N1 sufficiently large various
spatiotemporal patterns can be observed (Figure A1 in Appendix A).

199



Mathematics 2020, 8, 117

Figure 2. Numerical simulations of Equation (13) for the linear function f (u) = k1u. Spatial and
temporal perturbation decay if the solution u− is stable (left). The spatial perturbation at the center
of the interval leads to the emergence of a spatiotemporal pattern propagating from the center and
gradually filling the whole spatial domain (right). The value of parameters: r = 1, q = 1, k1 = 1.5, D =

10−5, τ = 3, N1 = 0.01 (left) and N1 = 0.1 (right), t = 50. Here and in all figures below, L = 1,
unless another value is indicated.

3. Emergence of Strains as Periodic Wave Propagation

3.1. Propagation Of Waves

We study in this section propagation of described by Equation (1) assuming for simplicity that the
second integral term S(u) becomes local, i.e., the kernel ψ(x) is the replaced by the δ-function:

∂u
∂t

= D
∂2u
∂x2 + ru(1 − qJ(u))− u f (uτ). (1)

Local and delay equations.

To study the behavior of solutions, we begin with the local case. Then we get conventional
reaction–diffusion equation

∂u
∂t

= D
∂2u
∂x2 + F(u), (2)

where the function F(u) = ru(1 − qu)− u f (u) can have different numbers of zeros depending on the
values of parameters. Besides the zero u+ = 0, there can exist up to three positive zeros, the maximal
zero u− and possibly one or two intermediate zeros u1 and u2.

Monostable case. If there is only one positive zero u−, then F′(u+) > 0, F′(u−) < 0. The [u+, u−]-waves,
i.e., the waves with the limits u(±∞) = u± at infinity, exist for all values of the speed greater than or
equal to some minimal speed c0. These waves are stable in appropriate weighted spaces [24].

Bistable case. In the bistable case, F′(u±) < 0, and there is an additional zero u1 ∈ (u+, u−).
The [u+, u−]-wave exists for a single value of speed c1, and this wave is globally asymptotically stable.

Monostable–bistable case. In this case, there are two intermediate zeros, u1, u2, u1 < u2, and F′(u+) > 0,
F′(u1) < 0, F′(u2) > 0, F′(u−) < 0. The monostable [u+, u1]-waves, i.e., the waves with the limits
u(±∞) = u± at infinity, exist for all values of the speed greater than or equal to some minimal
speed c0. The bistable [u1, u−]-wave exists for a single value of speed c1. If c1 > c0, then there exist
[c+, c−]-waves for all speeds c ∈ [c0, c1). If c1 ≤ c0, then such waves do not exist, and there is a system
of two waves propagating one after another with different speeds and a growing distance between
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them. All these properties including convergence of solutions of the Cauchy problem to waves and
systems of waves can be found in [40].

Delay reaction–diffusion equation

∂u
∂t

= D
∂2u
∂x2 + ru(1 − qu)− u f (uτ) (3)

is a particular case of Equation (1) where the integral J(u) is replaced by u. In numerical simulations
this equation is considered in a sufficiently long interval 0 < x < L with the homogeneous Neumann
boundary conditions and with some initial condition u(x, t) = u0(x),−τ ≤ t ≤ 0, where u0(x) = u0

for 0 ≤ x ≤ x0 and u0(x) = 0 otherwise. Here u0 and x0 are some positive constants. Equation (3) was
introduced in [27] to study spatial models of infection development in tissues. The influence of time
delay on the wave propagation manifests itself in the most spectacular way in the monostable–bistable
case where c0 > c1, and there is a system of two waves propagating with different speeds. The presence
of time delay can lead to the emergence of complex spatiotemporal structures between the two waves.
Some examples of numerical simulations are shown in Figure 3.

Existence of waves described by this equation was proved in [41,42]. Since conventional
monotonicity conditions and the maximum principle are not applicable in this case, the proof of
the wave existence requires sophisticated mathematical techniques. There are only a few works where
the wave existence is proved for the delay reaction–diffusion equation in the bistable case without the
monotonicity condition (see also [33]).

Figure 3. Snapshots of different regimes of wave propagation in numerical simulations of Equation (3)
in the monostable–bistable case. The speed of the monostable wave is greater than the speed
of the bistable wave, and the distance between them grows (upper row, left). The intermediate
equilibrium between the wave becomes unstable, and the monostable wave is space periodic (upper

row, middle). This periodic wave can be followed by complex spatiotemporal oscillations (upper row,

right). The lower row shows the position of local maxima of the same solutions on the (x, t)-plane.
Reprinted from [37] with permission.

3.1.1. Nonlocal Equation

The presence of the nonlocal term in Equation (1) can influence the regimes of wave propagation
presented above for the local equation. Let us recall that the homogeneous in-space stationary solution
u− can be stable or unstable depending on the values of parameters. In particular, for a sufficiently
small diffusion coefficient or for a sufficiently large N in the definition of the kernel φ(x):

φ(x) =
1

2N

{
1 , |x| ≤ N
0 , |x| > N

(4)
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this solution loses its stability resulting in the bifurcation of a periodic in-space stationary solution.
If this solution is stable, then the regimes of wave propagation are the same as before (monostable,
bistable, monostable–bistable). Suppose now that it is unstable and consider, first, the monostable case.
Then there are two transition: the first one is provided by the [u+, u−]-wave, the second one is the
transition from the constant solution u− to the periodic solution up(x). If the speed c0 of the former is
greater than the speed cp of the latter, then they propagate one after another one with a growing distance
between them (Figure 4, left). If cp > c0, then they merge and form a single periodic wave (Figure 4,
right). These different regimes are also observed in the bistable and monostable–bistable cases.

Figure 4. Numerical simulations of Equation (1) show the waves propagating from the center of the
interval towards its boundaries in the monostable case. In the first monostable case (left) the periodic
perturbation propagates slower than the [u+, u−]-wave, and the distance between them grows. In the
second monostable case (right), the periodic perturbation propagates faster, it merges with the wave,
and they form a single periodic wave. The values of parameters: D = 10−5, r = 1, q = 1, k1 = 5, k3 = 3,
N = 0.035 (left), N = 0.1 (right); f (u) = k1ue−k3u, τ = 0.

Next, consider Equation (1) with time delay and, for simplicity of presentation, with a linear
function f (u). In this case, we have a monostable equation with two stationary points u+ = 0 and
u− > 0. Stability analysis of the homogeneous in-space stationary solution u− with respect to spatial
and temporal perturbations was carried out in Section 2. If this point is stable, then we observe
propagation of a usual [u+, u−]-wave with a constant speed and a constant profile. However, this
wave is not necessarily monotonic with respect to x, as it is the case for the local equation. Damped
oscillation behind the wave occur for N sufficiently large (Figure 5, left).

Behavior of solutions becomes more complex if the solution u− is unstable. If the spatiotemporal
perturbation of this solution propagates in space with the speed less than the speed of the
[u+, u−]-wave, then this wave propagates with a constant speed and a constant profile, possibly
with decaying spatial oscillations behind the wave front. This wave is followed by the region of
spatiotemporal oscillations (Figure 5, right). If the perturbations of the solution u− propagate faster
than the [u+, u−]-wave, then they merge and form an oscillating wave propagating with a variable
speed (not shown).

Let us recall that in the monostable case the waves exist for all values of the speed greater than
or equal to the minimal speed c0. The value of the minimal speed is determined by the linearized
problem at 0, and it does not depend on N and τ if the wave remains stable.
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Figure 5. Numerical simulations of Equation (1) with f (u) = k1u. If the solution u− is stable, then there
is a [w+, w−]-wave propagating with a constant speed and profile with possible spatial oscillations
independent of time (left). If this solution is unstable, then this wave is followed by spatiotemporal
oscillations (right). The values of parameters: r = 1, q = 1, L = 2, D = 10−5, k1 = 0.9, τ = 3, N = 0.25,
τ = 2 (left), τ = 4 (right), t = 150.

3.1.2. Bifurcations of Waves and Pulses

Existence and stability of pulses and waves for Equation (1) depends on the width N of the
support of the kernel φ(x).

Let us recall that the local reaction–diffusion equation with a bistable function F(u) has a positive
stationary solution decaying at infinity (pulse solution) if and only if IF =

∫ u−
u+

F(u)du > 0.
This stationary solution is unstable. It also has a stable [u+, u−]-wave whose speed is positive under the
same condition on the integral IF. Similar properties hold for the nonlocal equation with N sufficiently
small. With an increase of N, the wave becomes non-monotone as a function of x but it still has
a constant speed and profile.

Periodic structures and waves appear as the width N of the support of the kernel φ(x) exceeds
a critical value N1

c for which the corresponding eigenvalue of the linearized problem crosses the
origin. If we further increase the value of N, then instead of periodic waves we observe stable pulses.
Thus, there are two bifurcations with a transition from simple waves to periodic waves (through
an intermediate regime with two waves) and from periodic waves to pulses. The first bifurcation
occurs due to the essential spectrum crossing the origin. The second one is a nonlocal bifurcation
where the speed of the periodic wave decreases as N approaches a critical value N2

c , and it becomes
zero for N exceeding the critical value. At the same time, the spikes of the periodic wave become
pulses. Let us note that multiple pulses are not stationary solutions of Equation (1), they slowly move
from each other with a decaying speed.

3.2. Emergence of Strains

Virus density distribution u(x, t) as a function of its genotype x and time t characterizes the
existence of virus strains and their evolution. In this context, a strain is a positive localized solution of
Equation (1), i.e., a solution with maximum at some x0 (most frequent genotype) and rapidly decaying
as the distance |x − x0| increases. Existence and stability of stationary localized solutions (pulses) of
Equation (1) was studied in [23]. They correspond to persisting virus strains. In this section, we will
study the emergence of new strains due to propagating of periodic waves. As it was discussed in the
previous section, stable pulses and waves are mutually exclusive.
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3.2.1. Initiation of Periodic Waves

Suppose that the initial virus distribution u0(x) represents a non-negative function with a narrow
support at the center of the interval. For a properly chosen values of parameters the solution of
Equation (1) with this initial condition develops to a periodic travelling wave. At the first stage of this
dynamics, the solution rapidly growth remaining localized at the center of the interval (Figure 6a).
It reaches a maximal level, and then the peak gradually decreases and becomes wider (Figure 6b,c).
At some moment of time, two other peaks appear from each side of the first one. After a short transient
period, they converge to approximately the same height. If the interval is sufficiently large, then other
peaks will appear after some time gradually filling the whole interval (Figure 4, right). This is a typical
dynamics of the initiation of periodic waves which occurs under the conditions presented in Section 2.

Let us also note that new strains (peaks) appear at some distance from the first one by a genetic
jump and not as a gradual evolution of the original strain. The value of the virus density between
them is close to zero. This is not the case for a large diffusion coefficient (mutation rate) where new
strains appear continuously (Appendix A, Figure A2). If the diffusion coefficient is large enough, then
the strains do not form, and viruses with any genotype exist. This is determined by the stability of the
stationary points (Section 2).

Figure 6. Emergence of a periodic wave in numerical simulations of Equation (1). (a) At the first stage,
solution growth remaining localized at the center of the interval. (b) Then it decreases and widens,
and after some time, other peaks of solution appear. (c) Another representation of the same solution as
in (b). Values of parameters: D = 10−5, r = 1, q = 1, N = 0.2, τ = 0, f (u) = 0, the maximum of the
initial condition 0.9, t = 75.

3.2.2. the Influence of Immune Response

We consider the function of immune response in the form f (u) = (k1u + k2)e−k3u. In order
to explain the influence of immune response on the emergence of strains, consider the function
F(u) = ru(1 − qu − f (u)). If k2 = k3 = 0, then F(u) has a single positive zero u−, and this is
a monostable case. For the values of k1 sufficiently small, behavior of solution of Equation (1) is similar
to the case where f (u) ≡ 0 with the propagation of a periodic wave and the emergence of new strains
(Figure 6). If k1 is large enough, then the equilibrium u− becomes stable, and there is a stationary
[u+, u−]-wave without emerging peaks, as it is the case of a periodic wave.
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Let us recall that the growing branch of the function f (u) corresponds to the antigen stimulated
immune response while the decreasing characterizes death or exhaustion of immune cells due to
high virus concentration. Thus, if we consider only the growing branch, then a strong immune
response (large k1) does not eliminate infection but prevents the formation of virus strains. Instead of
the localized solutions with separated peaks, the virus density distribution converges to a constant
positive solution.

In the case where the decreasing branch of the immune response function is present (k2 = 0,
k3 �= 0), the function F(u) can have up to three positive zeros u1 < u2 < u−. As we discussed above,
this is a monostable–bistable case where the behavior of solutions depends on the values of parameters
and on the choice of initial condition. Set u0(x) = u0 for x1 ≤ x ≤ x2 and u0(x) = 0 otherwise.
If u0 is small enough, then the solution represents a monostable wave (Figure 7, left) without strain
formation. If u0 is sufficiently large, then for the same values of parameters as before, the central peak
is formed followed after some time by the appearance of two monostable waves of low amplitude
(Figure 7, right).

Figure 7. Numerical simulations of Equation (1) with two different initial conditions and the same
values of parameters: D = 10−5, r = 1, q = 1, N = 0.2, τ = 0, f (u) = k1e−k3u, k1 = 1, k3 = 0.6,
the maximum of the initial condition equals 0.1 (left) and 0.9 (right), x1 = 0.48, x2 = 0.52, t = 75.

Furthermore, the width x2 − x1 of the support of the initial condition can also influence this
behavior. A counterintuitive result is that increasing the support of the initial condition leads to the
disappearance of the high amplitude peak and to the convergence of solution to the low amplitude
monostable wave. The explanation of this effect is that two pulses (peaks) form if the support is
sufficiently wide. They compete with each other, their amplitude becomes less than for a single pulse,
it is not sufficient to overcome the threshold and to form a stable central pulse.

Under further increase of k3, propagation of a periodic wave, as it is described above, is observed.
If k2 �= 0, then f (0) > 0, i.e., immune response is nonzero even without antigen due to memory cells.
Depending on the values of parameters, solution can form a stable pulse, vanish, or initiate simple or
periodic waves described above.

3.2.3. Effect of the Delay of the Antiviral Immune Response

In the case of a nonlocal equation with time delay in the immune response term, spatial structures
presented in the previous paragraph can become oscillating. Some examples of virus strain evolution
are shown in Figure 8. The left and middle figures are obtained for the same values of parameters
with different initial conditions. If the initial virus load is large enough, then there is a dominating
virus strain and some other strains with low virus density and a complex spatiotemporal behavior.
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If the initial virus load is sufficiently small, then the dominating central strain does not exist, and there
is only a variety of different genotypes with low densities. Changing the properties of the immune
response (function f (u)), we observe stable stationary strains similar to those in Figure 4 (right image)
after the initial front propagation.

Figure 8. Numerical simulations of Equation (1). Virus evolution with time delay in the term describing
the immune response represented as level lines of the solution u(x, t) on the (x, t)-plane. Different
regimes coexist for the same values of parameters depending on the initial conditions, with high initial
viral load (left) and low initial viral load (middle). Values of parameters: D = 10−4, r = 1, q = 1,
N = 0.1, f (u) = k1e−k3u, k1 = 8, k3 = 3, t = 80 (left and middle), k3 = 6, t = 50 (right); the maximum
of the initial condition 0.9 (left), 0.1 (middle and right).

3.2.4. the Influence of Genotype-Dependent Mortality

We will finish this section with the analysis of the genotype-dependent mortality on the emergence
and evolution of virus quasi-species. In order to show this influence more precisely, we consider it in
the case without immune response, f (u) ≡ 0. Set σ(x) = 0 for x∗1 ≤ x ≤ x∗2 and σ(x) = 1 otherwise.
Figure 9 (left) shows the emergence of virus strains for x∗1 = 0.3, x∗2 = 0.7 and N = 0.09. The initial
condition has a support at the center of the interval. Similar to the case of initiation of a periodic wave,
there is one strain in the beginning of the simulation, and two other strain appear sometime later.
These three strains fill the whole admissible interval where σ(x) = 0, and new strains do not appear
outside of this interval because virus mortality rate is greater there that its reproduction rate.

Figure 9. Numerical simulations of Equation (1). Virus evolution without immune response and
with the genotype-dependent mortality σ(x) represented as level lines of the solution u(x, t) on the
(x, t)-plane. Values of parameters: D = 10−5, r = 1, q = 1, N = 0.09 (left), N = 0.08 and 0.09 (middle),
N = 0.2 (right).

In the middle figure, we begin the simulation with N = 0.08 with five emerging strains. When they
become steady and do not evolve any more, we change the value of N to N = 0.09, as in the previous
simulation. However, this time we observe the regime with four strains instead of three strains
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observed previously. Hence, different stationary regimes can exist for the same values of parameters,
and the initial condition determines the convergence to each of them.

Finally, consider the case where N = 0.2 (Figure 9, right). As before, there is single peak of
solution at the center of the interval in the beginning of the simulation. However, after some time, it
disappears giving rise to two other peaks. Such behavior is determined by the size of the admissible
interval: it cannot support three wide peaks, and the two of them from the sides suppress the one at
the center of the interval. Thus, virus tends to fill the admissible interval in the most efficient way, that
is, to maximize its total density.

4. Discussion

4.1. Virus Quasi-Species

Speciation is considered to be a general property of the living matter [43]. It manifests itself
in the emergence of biological species and in a variety of other systems [44]. In the framework
of mathematical modelling, speciation appears due to a non-homogeneous density distributions
u(x, t). In biological populations, x can be a morphological characteristic or some characterization of
the genotype.

Describing virus quasi-species dynamics, we observe some similarities with the general speciation
theory due to the competition for host cells but also some specific features because of the presence
of the immune response and of the genotype-dependent mortality. If we consider the virus density
distribution u(x, t) as a function of its genotype x and of time t, then a virus quasi-species (strain or
variant genome) corresponds to a localized solution with a maximal value at some genotype x0 and
rapidly decaying as the distance |x − x0| increases. In the case of persistent strains, the most frequent
genotype x0 is fixed but it can be also time-dependent for the evolving strains.

Existence of virus strains considered to be a positive stationary density distribution decaying
at infinity (in the approximation of an infinite genotype space) is not a priori given. In the previous
work [23] we revealed two mechanisms providing the existence and stability of such solutions. In the
first case, the existence of virus strains is determined by the genotype-dependent mortality where
the virus can survive only inside some viability interval. The maximum of the density distribution is
achieved in the middle of the corresponding viability interval. The second mechanism is determined
by the immune response under the assumption that the immune response function f (u) decreases
for large u. In this case, the virus can survive and form a persistent strain if its concentration is
sufficiently high, and if the competition with other strains for host cells occurs in a sufficiently wide
range of genotypes.

In mathematical terms, virus strains correspond to stable pulse solutions of the corresponding
nonlocal reaction–diffusion equations. Existence of stable pulses does not occur for the conventional
local equations.

4.2. Emergence of New Quasi-Species: Summary of the Results

It is important to note that stable pulses and periodic travelling waves are mutually exclusive, they
are not observed for the same values of parameters. In this work we study periodic travelling waves.
Emergence of new peaks in the virus density distribution during the wave propagation corresponds to
the emergence of new virus strains.

From the mathematical point of view, the conditions of the emergence of periodic travelling
waves can be determined by the linear stability analysis of the homogeneous in-space stationary
solutions. In order to show the influence of different factors on the stability conditions, this analysis
is carried out in Section 2 for the single nonlocal term, for both nonlocal terms and for the nonlocal
delay equation. In the presence of a single nonlocal term, periodic spatial structures bifurcate from
the constant solution if the diffusion coefficient D is sufficiently small and if the kernel φ(x) of the
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integral satisfies certain conditions. In particular, for a piece-wise constant kernel, its support should
be sufficiently large.

In the case of two nonlocal terms, the qualitative behavior of solutions is similar. The interaction
of the nonlocal terms can have stabilizing or destabilizing effect depending on the values of parameters.
The influence of time delay (and a single nonlocal term) on the stability conditions depends on the
immune response function resulting in temporal or spatiotemporal oscillations.

The transition between a virus-free equilibrium and an infected equilibrium is provided by
travelling waves (Section 3). In the case without nonlocal terms or time delay, this is a conventional
wave with a constant speed and profile or two waves propagating one after another with different
speeds. The nonlocal terms can result in the emergence of periodic waves, while time delay can lead to
a complex spatiotemporal pattern formation.

Let us note that the qualitative behavior of solutions is quite robust, and it is not very
sensitive to the particular choice of the immune response function and of the integral kernels.
The range of genotypes is supposed to be sufficiently large to neglect the influence of the boundaries.
Mathematically, we can consider the whole real axis. In numerical simulations, we consider a bounded
sufficiently large interval. In most cases, we stop the simulations before the wave approaches the
boundary of the interval. In some cases (Figure 8), we continue the simulations to reveal spatiotemporal
pattern formation inside the interval. In this case, periodic boundary conditions are more convenient
because they do not influence the behavior of the solution inside the interval. Dirichlet or Neumann
boundary conditions can influence the behavior of solutions. Thus, periodic boundary conditions do
not have here biological significance, but they are more appropriate for mathematical modelling.

4.3. Biological Interpretations

Suppose that the initial viral load is localized in a narrow interval of genotypes (e.g., a founder
virus in the HIV case). Due to its multiplication and mutations, the density distribution grows and
widens. Viruses with different genotype begin to compete for the host cells leading to the appearance
of new strains at some distance to avoid the competition with the existent strains. This description
of speciation is generic [22], it is not specific for virus quasi-species. Specific features of virus
diversification and strain emergence are related to the immune response.

If we take into account the cross-reactivity in the immune response, i.e., different antigens can
stimulate the same immune cells, then the immune response interferes with virus competition for the
host cells. This interaction is quite complex and can act in different ways on different strains. However,
if the mutation rate (diffusion in the genotype space) is sufficiently small, then the speciation of virus
quasi-species will necessarily occur. The critical conditions leading to the emergence of new strains
depend on the parameters of the problem, and the immune response can have both stabilizing and
destabilizing effect.

The influence of immune response becomes easier to determine if we neglect cross-reactivity.
Assuming that the immune response function f (u) is increasing due to the stimulation of immune
response by the virus antigens, the model predicts that immune response acts to suppress the formation
of new strains. If the growth rate of the function f (u) is sufficiently high, then the speciation of the
virus density distribution completely disappears. In this case, instead of a discrete set of virus strains
our study predicts that a uniform density distribution as a function of virus genotype will take place.

The situation becomes again more complex if we consider also a decreasing branch of the immune
response function, which appears due virus-induced death of immune cells, and time delay in the
immune response required for the clonal expansion of immune cells. In this case, along with periodic
travelling waves described above, complex nonlinear dynamics of solutions can take place with various
patterns of emerging and disappearing strains.

Genotype-dependent virus mortality restrains the evolution of virus species to the admissible
interval. The emergence and the evolution of virus strains within the viability interval depend on the
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values of parameters and on the initial viral load. Let us note that different virus density distributions
can be observed for the same values of parameters.

Concluding this discussion, we point out the limitations of the model considered in this work due
to various simplifying assumptions. We do not take into account the presence of different immune cells
and of cytokines participating in the immune response, complex intracellular regulation of cell fate
and of virus multiplication. On the other hand, these and other simplifications allow us to reveal some
generic properties of the evolution of virus quasi-species, which would be more difficult to identify in
a more complex model. This modelling framework provides a starting basis for further investigations
and for the introduction of more detailed models.
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Appendix A. Additional Simulations

Patterns bifurcating due to the instability of the homogeneous in-space solutions.

Figure A1. Numerical simulations of Equation (13) for the linear function f (u) = k1u. Level lines of
the solution u(x, t) on the plane (x, t) (left). Two snapshots of solution (right). The value of parameters:
r = 1, q = 1, k1 = 0.95, N = 0.1, τ = 4, D = 0.0001 (left), D = 0.00001 (right), t = 150.

Initiation and propagation of periodic waves.
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Figure A2. Level lines of the solution u(x, t) of Equation (1) on the (x, t)-plane. Values of parameters:
r = 1, q = 1, N = 0.2, τ = 0, f (u) = 0 (left and middle), the maximum of the initial condition 0.9,
D = 0.0001, t = 35 (left) and D = 0.0005, t = 20 (right).

Figure A3. Level lines of the solution u(x, t) of Equation (1) on the (x, t)-plane. Values of parameters:
r = 1, q = 1, N = 0.1, τ = 0, f (u) = 0 (left and middle), the maximum of the initial condition 0.9,
D = 0.00001, t = 130 (left) and D = 0.0001, t = 75 (right).

Propagation of waves in the case of time delay in the immune response term.

Figure A4. Level lines of the solution u(x, t) of Equation (1). The values of parameters: r = 1, q = 1,
L = 2, D = 10−5, k1 = 0.9, τ = 4, N = 0.05 (left), N = 0.1 (right), t = 150.
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