
Mesh-Free and 
Finite Element-
Based Methods for 
Structural Mechanics 
Applications

Printed Edition of the Special Issue Published in 
Mathematical and Computational Applications

www.mdpi.com/journal/mca

Nicholas Fantuzzi
Edited by

 M
esh-Free and Finite Elem

ent-Based M
ethods for Structural M

echanics Applications   •   N
icholas Fantuzzi



Mesh-Free and Finite Element-Based
Methods for Structural
Mechanics Applications





Mesh-Free and Finite Element-Based 
Methods  for  Structural 
Mechanics  Applications

Editor

Nicholas Fantuzzi

MDPI • Basel • Beijing • Wuhan • Barcelona • Belgrade • Manchester • Tokyo • Cluj • Tianjin



Editor

Nicholas Fantuzzi

University of Bologna

Italy

Editorial Office

MDPI

St. Alban-Anlage 66

4052 Basel, Switzerland

This is a reprint of articles from the Special Issue published online in the open access journal

Mathematical and Computational Applications (ISSN 2297-8747) (available at: https://www.mdpi.com/

journal/mca/special issues/str mech appl).

For citation purposes, cite each article independently as indicated on the article page online and as

indicated below:

LastName, A.A.; LastName, B.B.; LastName, C.C. Article Title. Journal Name Year, Volume Number,

Page Range.

ISBN 978-3-0365-0136-9 (Hbk)

ISBN 978-3-0365-0137-6 (PDF)

© 2021 by the authors. Articles in this book are Open Access and distributed under the Creative

Commons Attribution (CC BY) license, which allows users to download, copy and build upon

published articles, as long as the author and publisher are properly credited, which ensures maximum

dissemination and a wider impact of our publications.

The book as a whole is distributed by MDPI under the terms and conditions of the Creative Commons

license CC BY-NC-ND.



Contents

About the Editor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

Nicholas Fantuzzi

Special Issue “Mesh-Free and Finite Element-Based Methods for Structural Mechanics
Applications”
Reprinted from: Math. Comput. Appl. 2020, 25, 75, doi:10.3390/mca25040075 . . . . . . . . . . . . 1
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Nonlocal FEM Formulation for Vibration Analysis of Nanowires on Elastic Matrix with
Different Materials
Reprinted from: Math. Comput. Appl. 2019, 24, 38, doi:10.3390/mca24020038 . . . . . . . . . . . . 117

Slimane Ouakka and Nicholas Fantuzzi

Trustworthiness in Modeling Unreinforced and Reinforced T-Joints with Finite Elements
Reprinted from: Math. Comput. Appl. 2019, 24, 27, doi:10.3390/mca24010027 . . . . . . . . . . . . 131

Yansong Li and Shougen Chen

A Complex Variable Solution for Lining Stress and Deformation in a Non-Circular Deep Tunnel
II Practical Application and Verification
Reprinted from: Math. Comput. Appl. 2018, 23, 43, doi:10.3390/mca23030043 . . . . . . . . . . . . 161

Serge Dumont, Franck Jourdan and Tarik Madani

4D Remeshing Using a Space-Time Finite Element Method for Elastodynamics Problems
Reprinted from: Math. Comput. Appl. 2018, 23, 29, doi:10.3390/mca23020029 . . . . . . . . . . . . 175

v



Herbert Moldenhauer

Integration of Direction Fields with Standard Options in Finite Element Programs
Reprinted from: Math. Comput. Appl. 2018, 23, 24, doi:10.3390/mca23020024 . . . . . . . . . . . . 193

vi



About the Editor

Nicholas Fantuzzi is a Senior Assistant Professor at the University of Bologna. He graduated

with honors in Civil Engineering in 2009 and obtained his PhD in Structural Engineering and

Hydraulics in 2013. He is the owner of the Italian National Academic Qualification as Associate

Professor in Mechanics of Solids and Structures. He has been the teacher of the courses “Modelling of

Offshore Structures” and “Advanced Structural Mechanics” in the International Master in Offshore

Engineering since 2017. His research interests are mechanics of solids and structures, fracture

mechanics, implementation of numerical methods for the design of structures, application of

composite materials in offshore engineering, and design and strengthening of offshore components

with numerical simulations. He is currently working on the application of finite element and

mesh-free methods in solids mechanics and mechanics of materials. He is the Visiting Scholar at City

University of Hong Kong (2018) and Visiting Professor at Zhejiang University (2019), Chongqing

University (2019, 2020), and currently at University of Rijeka (2020). He has won international

awards, as well as having been a Keynote speaker at four international conferences. Moreover,

he has co-organized 14 international conferences on composite materials, composite structures and

computational methods. He is also the Section Editor-in-Chief of “Mathematical and Computational

Applications”, MDPI Publishing, as well as being a reviewer for more than 90 international journals.

He has written more than 100 international peer reviewed journal papers, 8 books and more than 70

abstracts in national and international conferences.

vii





Mathematical 

and Computational 

Applications

Editorial

Special Issue “Mesh-Free and Finite Element-Based
Methods for Structural Mechanics Applications”

Nicholas Fantuzzi

Department of Civil, Chemical, Environmental, and Materials Engineering, University of Bologna, Viale del
Risorgimento 2, 40136 Bologna, Italy; nicholas.fantuzzi@unibo.it

Received: 1 December 2020; Accepted: 2 December 2020; Published: 2 December 2020

Authors of the present Special Issue are gratefully acknowledged for writing papers of very high
standard. Moreover, the reviewers are also acknowledged for providing punctual and detailed reviews
that improved the original manuscripts. Finally, the Guest Editor would like to thank Professors Oliver
Schütze and Gianluigi Rozza (Editors-in-Chief of the MCA) for the opportunity to publish this Special
Issue and Everett Zhu for accurately managing the editorial process.

The present Special Issue aimed to present relevant and innovative research works in the field
of numerical analysis. The problem of solving complex engineering problems has been always a
major topic in all industrial fields, such as aerospace, civil and mechanical engineering. The use of
numerical methods increased exponentially in the last few years due to modern computers in the field
of structural mechanics. Moreover, a wide-range of numerical methods has been presented in the
literature for solving such problems. Structural mechanics problems are dealt with by using partial
differential systems of equations that might be solved by using the two main classes of methods:
Domain-decomposition methods, or the so-called finite element methods, and mesh-free methods
where no decomposition is carried out. Both methodologies discretize a partial differential system
into a set of algebraic equations that can be easily solved by computer implementation. The aim of the
present Special Issue was to present a collection of recent works on these themes and a comparison of
the novel advancements of both worlds in structural mechanics applications.

This Special Issue collects 10 (ten) contributions from several countries and topics all within the
field of numerical analysis. This Special Issue is devoted to scientists, mathematicians and engineers
who are investigating recent developments in analysis and state-of-the-art techniques on mathematical
applications in numerical analysis.

Mota et al. [1] presented an assessment on porous functionally graded plates. In particular,
this work aimed to assess the influence of different porosity distribution approaches on the shear
correction factor, used in the context of the first-order shear deformation theory, which in turn may
introduce significant effects in a structure’s behavior. To this purpose, porous functionally graded
plates with varying composition through their thickness were carried out. The bending behavior of
these plates was studied using the finite element method with two quadrilateral plate element models.

Bellora and Vescovini [2] discussed the implementation of a continuation technique for the
analysis of nonlinear structural problems, which is capable of accounting for geometric and
dissipative requirements. The present strategy can be applied for solving quasi-static problems,
where nonlinearities can be due to geometric or material response. The present procedure has been
demonstrated to be robust and able to trace the equilibrium path in structures characterized by
complex responses. Several examples are presented and discussed for a combination of material and
geometry nonlinearities.

The noise emitted by ships is one of the most important noises in the ocean, and propeller noise is
one of the major components of ship noise. Ebrahimi et al. [3] carried out a calculation of propeller
noise using numerical methods because evaluation of propeller noise in the laboratory, despite the
high accuracy and good reliability, has high costs and is very time-consuming. Software for numerical
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calculation of propeller noise, based on FW-H equations, was developed and the results were validated
by experimental results.

Bacciocchi and Tarantino [4] presented a work on the study of natural frequencies of functionally
graded orthotropic laminated plates using a finite element formulation. The main novelty of the
research was the modeling of the reinforcing fibers of the orthotropic layers assuming a nonuniform
distribution in the thickness direction. The Halpin–Tsai approach was employed to define the overall
mechanical properties of the composite layers starting from the features of the two constituents
(fiber and epoxy resin). The analyses were carried out in the theoretical framework provided by
the first-order shear deformation theory (FSDT) for laminated thick plates. Nevertheless, the same
approach was used to deal with the vibration analysis of thin plates, neglecting the shear stiffness of
the structure. This objective was achieved by properly choosing the value of the shear correction factor,
without any modification in the formulation.

Patel et al. [5] presented a trans-disciplinary, integrated approach that used computational
mechanics experiments with a flow network strategy to gain fundamental insights into the stress flow
of high-performance, lightweight, structured composites by investigating the rostrum of paddlefish.
The evolution of the stress in the rostrum was formulated as a network flow problem, which was
generated by extracting the node and connectivity information from the numerical model of the
rostrum. The changing kinematics of the system was provided as input to the mathematical algorithm
that computes the minimum cut of the flow network. The flow network approach was verified using
two simple classical problems.

Uzun and Civalek [6] presented the free vibration behaviors of various embedded nanowires
made of different materials. The investigation was carried out by using Eringen’s nonlocal elasticity
theory. Silicon carbide nanowire (SiCNW), silver nanowire (AgNW) and gold nanowire (AuNW)
were modeled as Euler–Bernoulli nanobeams with various boundary conditions such as simply
supported (S-S), clamped simply supported (C-S), clamped–clamped (C-C) and clamped-free (C-F).
The interactions between nanowires and medium were simulated by the Winkler elastic foundation
model. The Galerkin weighted residual method was applied to the governing equations to gain
stiffness and mass matrices. In addition, the influence of temperature change on the vibrational
responses of the nanowires were also pursued as a case study.

As required by regulations, finite element analysis can be used to investigate the behavior of
joints that might be complex to design due to the presence of geometrical and material discontinuities.
The static behavior of such problems is mesh dependent; therefore, these results must be calibrated by
using laboratory tests or reference data. Once the finite element model is correctly setup, the same
settings can be used to study joints for which no reference is available. The work by Ouakka and
Fantuzzi [7] analyzed the static strength of reinforced T-joints and sheds light on the following aspects:
shell elements are a valid alternative to solid modeling; the best combination of element type and
mesh density for several configurations is shown; the ultimate static strength of joints can be predicted,
as well as when mechanical properties are roughly introduced for some FE topologies.

Li and Chen [8] presented a new complex variable method for stress and displacement problems
in a noncircular deep tunnel with certain given boundary conditions at infinity. In order to overcome
the complex problems caused by noncircular geometric configurations and the multiply-connected
region, a complex variable method and continuity boundary conditions were used to determine stress
and displacement within the tunnel lining and within the surrounding rock. The coefficients in the
conformal mapping function and stress functions werre determined by the optimal design and complex
variable method, respectively. The new method was validated by FLAC3D finite difference software
through an example.

A Space-Time Finite Element Method (STFEM) is proposed by Dumont et al. [9] for the resolution
of mechanical problems involving three dimensions in space and one in time. Special attention was paid
to the nonseparation of the space and time variables because this kind of interpolation is well suited
to mesh adaptation. For that purpose, a 4D mesh generation was adopted for space-time remeshing.
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This original technique does not require coarse-to-fine and fine-to-coarse mesh-to-mesh transfer
operators and does not increase the size of the linear systems to be solved, compared to traditional
finite element methods. Computations were carried out in the context of the continuous Galerkin
method. The present method was tested on linearized elastodynamics problems. The convergence and
stability of the method were studied and compared with existing methods.

Finally, Moldenhauer [10] investigated two-dimensional differential equations of the kind y′ = f (x, y)
that can be interpreted as a direction fields. Commercial finite element programs can be used for this
integration task without additional programming, provided that these programs have options for
the calculation of orthotropic heat conduction problems. The differential equation to be integrated
with arbitrary boundaries was idealized as an finite element model with thermal 2D elements.
Possibilities for application in the construction of fiber-reinforced plastics (FRP) arise, since fiber
courses, which follow the local principal stress directions, make use of the superior stiffness and
strength of the fibers.

Conflicts of Interest: The author declares no conflict of interest.
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Abstract: The known multifunctional characteristic of porous graded materials makes them very
attractive in a number of diversified application fields, which simultaneously poses the need to deepen
research efforts in this broad field. The study of functionally graded porous materials is a research
topic of interest, particularly concerning the modeling of porosity distributions and the corresponding
estimations of their material properties—in both real situations and from a material modeling
perspective. This work aims to assess the influence of different porosity distribution approaches on
the shear correction factor, used in the context of the first-order shear deformation theory, which in
turn may introduce significant effects in a structure’s behavior. To this purpose, we evaluated porous
functionally graded plates with varying composition through their thickness. The bending behavior
of these plates was studied using the finite element method with two quadrilateral plate element
models. Verification studies were performed to assess the representativeness of the developed and
implemented models, namely, considering an alternative higher-order model also employed for
this specific purpose. Comparative analyses were developed to assess how porosity distributions
influence the shear correction factor, and ultimately the static behavior, of the plates.

Keywords: functionally graded materials; porosity distributions; first-order shear deformation theory;
shear correction factor; higher-order shear deformation theory; equivalent single-layer approach

1. Introduction

Material science has undergone great evolution in recent years, representing an extremely
important field for the development of many technological areas for several reasons, such as those
related to a sustainable economic and environmental nature. The introduction of the functional
gradient concept in the context of composite particulate materials has contributed to the design of
advanced materials able to meet specific objectives, through spatial variation in composition and/or
microstructure [1,2].

Functional gradient materials (FGMs) were developed in Japan in the late 1980s for thermal
insulation coatings [2]. With more than three decades of history, and being a part of a wide variety
of composite materials, materials with functional gradients continue to be the object of attention.
This is due to their tailorability, arising from a gradual and continuous microstructure evolution and,
consequently, of locally varying material properties in one or more spatial directions. Therefore, FGMs
can be appropriately idealized to meet certain specifications [3,4].

Composite materials can generally be described as systems composed of a matrix and a
reinforcement, the material properties of which surpass those presented by each constituent
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individually [5]. The gradual and continuous evolution of their material properties provide FGMs
with better mechanical behavior than traditional composite materials [6]. Among other characteristics
possessed by some FGMs, such as low thermal conductivity and low residual stresses, these materials
also make it possible to minimize the stress discontinuities of conventional laminated composites [5,7,8].
FGMs’ high resistance to temperature and the absence of interface problems gives them great importance
in several engineering applications, which is why these composite materials have been extensively
studied and used in the past two decades in a wide range of science fields requiring improved
mechanical and thermal performances [5–7]. This broad range of applications justifies the need to study
and predict the responses of FGMs’ components [9]. In the past year, Li et al. developed several studies
involving, among other topics, a stability and buckling analysis of functionally graded structures such
as cylinders and arches [10–14].

Considering the continuous mixture concept behind their composition, FGMs can be constituted
of two or more material phases. Hence, the resulting local material properties depend on this mixture
evolution, allowing for a design according to the desired functions and specifications [15]. From the
literature, the most common FGMs are constituted of two material phases, often one ceramic and one
metal [6,11].

The manufacturing process of sintering, which is common in the production of FGMs, is responsible
for the formation of micro voids or porosities within the materials, making important the introduction of
porosity effects at the structures’ design stage [9]. The literature contains various studies which include
dynamic and static analyses of functionally graded porous plates and beams [16–21]. In addition, there
are several studies considering ring and arch structures, especially those developed by Li et al. in the
past year [13,22–27].

Functionally graded porous materials (FGPs) combine both porosity and functional gradient
characteristics, where the porosity may have a graded evolution across the volume, providing desirable
properties for some applications (as in biomedical implants), and undesirable in others where voids
may cause serious problems (as in the aeronautical sector). The change in porosity in one or more
directions can be caused by local density effects or pore size alteration. Functionally graded porous
materials possess a cell-based structure, which can be classified as open or closed (i.e., containing
interconnected or isolated pores, respectively) [15].

Porous gradient materials also present a multifunctional character, where, among other aspects,
one may highlight a high performance-to-weight ratio and resistance to shock; nevertheless, it is
important to note that pores imply a local loss of stiffness. The latest advances in manufacturing
processes allow the consideration of the development of porous materials with a functional gradient,
using methods such as additive 3D printing. Thus, it becomes possible to design porous structures with
designed variable stiffness, which can be customized for specific engineering applications, optimizing
performance and minimizing weight [28]. Due to the relevant role that such materials have in a range
of applications, it is important to have a wider perspective of the contexts where one can find them.

Mechanical or more generically structural components made of porous materials, bioinspired
materials, can be designed for sensitive and very precise operating conditions—for example, robotic,
prosthetic, and aeronautical components, among others [28]. Most of the materials used in engineering
are dense; however, porous materials are also of great interest and applicability in fields such as in
membranes [3]. Bioinspired materials thus have great potential for current technologies, as their unique
characteristics allow them to meet various design requirements [28]. Natural or man-made, porous
compacts or foams—the types of porous materials are many and diverse. Bones, wood, ceramics,
and aluminum foams are just a few examples [29]. In the field of biomaterials, the inclusion of porosities
allows diversification of their applicability, with ceramic and polymeric scaffolds being examples of
this [3].

In the biomedical field, a bone implant must guarantee a functional gradient that mimics real bone
stiffness variations. With functionally graded porous scaffolds it is possible to obtain the variations
in mechanical and biological properties required for bone implants, as the presence of a porosity
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gradient is imperative for bone regeneration. Thus, functionally graded porous scaffolds for bone
implants are designed to achieve the ideal balance between porosity and mechanical properties [30].
Since bone implants have various requirements, it is important to have ceramic porous materials with a
wide and diversified range of pore sizes and morphologies in order to accomplish these requirements.
Therefore, different porous hydroxyapatite structures have been developed to mimic natural bone’s
bimodal structure [31]. Since implants with no porosity show weak tissue regeneration and implant
fixation capability, the introduction of a pore distribution in these alloys’ structures leads to bone-like
mechanical properties, allowing cellular activity [32].

In another field [33], membranes produced according to the Fuji process present a structure with
relatively wide pore surface, followed by a gradually tightening pore size and a clearing of pores,
finishing with an isotropic structure. Thus, these membranes can be mentioned as an example of
an asymmetric structure from the porosity perspective, being implemented in several applications,
with filtration and medical diagnosis being some examples. Porous membranes are the object of
research related to materials and structure optimization [34].

Membranes can also be used for gas separation applications, typically possessing a microporous
substrate, a mesoporous intermediate layer (or more), and a microporous top layer (or more).
Regarding materials, α-Al2O3 is the most frequent, but TiO2, ZrO2, SiC, and their combinations are
also very common [35]. For industrial wastewater treatment applications, ceramic microfiltration
membranes made of Al2O3, SiO2, ZrO2, TiO2, and their composites present excellent behavior.
These specific membranes possess multi-layered asymmetric structures, with a macroporous support
followed by intermediate layers of graded porosity [36]. The use of ceramic membranes extends to
catalytic membrane reactors due to the huge resistance to high temperatures and aggressive chemical
environments. In this case, the membranes usually present disk-like, planar, tubular, and hollow fiber
designs [37]. According to Sopyan et al., the material properties of porous ceramics (e.g., Young’s
modulus and flexural strength) depend exponentially on the ceramics’ total porosity [31].

Secondary batteries technology uses porous membranes to isolate cathode and anode from each
other, preventing a short circuit, and to allow the charge transport. Therefore, these membranes should
be simultaneously excellent electric insulators and good ion conductors, presenting a great safety
level. In this field of action there are microporous, ultrafiltration. and nanofiltration membranes, with
organic polymers being the most used materials [34].

Metallic foams are another example of materials whose mechanical properties depend on the
porosity characteristics. Recently, they have been gaining use among applications of aluminum and
other alloys since the combination of properties intrinsic to metal alloys with the effects of porosity are
of great interest, highlighting the low density and high energy absorption. The change in the porosity
characteristics of these materials (e.g., pore size) makes it possible to obtain properties suitable for
specific applications. Aluminum foams find use in structural applications, as well as automotive and
aeronautics industries, as examples [38].

A well-defined spatial porosity gradient is a requirement of solid foams for some specific
applications like filtration, energy adsorption, and tissue engineering. Therefore, control over
porosity in terms of morphology, pore size, and pores’ connectivity is a challenge in the development
of fabrication processes, since these parameters have a great influence on the porous materials’
performance [39]. In their work, Costantini et al. mentioned that a pore size gradient confers an
increased strength and energy absorption to a material, and that this kind of material needs a more
precise characterization of the porosity gradient concerning the mechanical properties [39].

Since pores can have different dimensions and distributions, porous materials can appear
with different porosity gradients. In a typical rectangular plate, there are several possible porosity
gradient configurations. Regardless of the specific distribution, the relevance should be placed on the
correspondence to the design requirements [3], knowing that the heterogeneity and spatial gradient
characteristic of porous materials will play an extremely important role in the resulting mechanical
properties [40].
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The Young modulus and shear modulus are strongly influenced by several factors, from the
manufacturing process, to the size, shape, and distribution of the pores. Consequently, the analytical
prediction of porous materials’ properties is not simple because of the randomness present in their
structures, and the need of a knowledge of the microstructure that is as accurate as possible in order to
obtain a significant numerical prediction [29].

Concerning porosity distributions, Nguyen et al. [41] studied the mechanical behavior of porous
FGPs. To this purpose they took into account two different porosity distributions, varying both through
the thickness direction (namely, the so-called even and uneven distributions). Zhang and Wang [15]
produced eight different porous material structures with different pore distributions, including gradient
distributions, and subjected them to some mechanical tests in order to evaluate important materials
properties like Young’s modulus. With this work they developed techniques to estimate the effective
Young’s modulus of functionally gradient porous materials. Having verified that there is an obvious
relation between this material property and porosity, the relationship between both is not necessarily
linear. However, the experimental results constitute a good basis for validating material properties
obtained through theoretical models.

With this introductory section, the importance of porous materials becomes clear, particularly
regarding the development of porosity distribution models that best represent the effects on the
respective effective material properties.

Hence, the present work presents three porosity distribution models, two of which are based on
the reference literature, and respective estimates of material properties. For these cases, we performed
a set of parametric studies focused on the static behavior of porous plates with a functional gradient
in order to characterize the influence of the shear correction factor, associated with the use of the
first-order shear deformation theory. These studies were performed via the finite element method
considering an equivalent single layer approach. To the best of our knowledge, there are no previously
published works focusing on the assessment of the influence of the shear correction factor in the static
bending behavior of porous plates. Hence, this study addresses this, considering the characterization of
the neutral surface deviation from the mid-plane surface, which also provides an illustrative measure
of the medium’s heterogeneity, typical of graded mixture and porous materials.

2. Materials and Methods

Considering the wide and varied number of applications of porous materials briefly discussed
in the introductory section, the prediction of their mechanical properties is very relevant. Several
models to predict the Young modulus of porous materials have recently been proposed, including
linear, quadratic, and exponential models, although these are not suitable for porosities which are
too low or too high [29]. Carranza et al. evaluated the Young modulus of metallic foams with fractal
porosity distribution, and the respective estimates were close to the experimental results. In this way,
they proved the expected effect, and verified that the appropriate choice of the porosity distribution
model is an important factor [38].

2.1. Functionally Graded Materials

The flexibility in tailoring material properties makes FGMs very interesting for many applications
in diverse engineering and science fields like bioengineering, mechanics, and aerospace.

The procedures for manufacturing FGMs are designed in order to obtain a specific spatial
distribution of the constitutive phases. The continuous and gradual spatial distribution is responsible
for the unique morphology and properties of these materials that make them stand out from others [1].
The gradual evolution of the phases can be varied, and there may even be different variations in more
than one direction in the same FGM [2]. Figure 1 illustrates one example of material distribution
though one direction of a dual-phase FGM.
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 Eb 

Et 

Bottom surface 

Top surface 

Figure 1. Example of dual-phase functional gradient material (FGM) mixture, with variation in
one direction.

As a consequence of the gradual evolution of the bulk fractions and microstructure of FGMs,
the respective macroscopic properties also present gradual changes. The gradual evolution of the
material properties characteristic of FGMs makes it possible to design them in order to achieve specific
mechanical, physical, or biological properties [1]. Since the volume fraction of the constituent phases
can vary gradually in one or more directions, the present work considers the particular case of a
dual-phase FGM plate in which this variation occurs in one only direction—specifically the thickness
direction, as in [42]. In this case, the evolution of the volume fraction according to the direction of the z
axis occurs according to the following power law:

V f =
( z

h
+

1
2

)p
, (1)

where h and z represent, respectively, the plate’s thickness and the thickness coordinate, where the origin
corresponds to the FGM plate’s middle surface, thus z ∈ [−h/2, h/2]. Representing this material distribution,
Figure 2 presents the volume fraction evolution through the thickness for some power law exponent
values. As can be seen, the exponent p dictates the volume fraction behavior along the plate’s thickness.

Figure 2. Evolution of the volume fraction through the thickness direction.
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As the volume fraction of the phases of the constituents of FGMs is a function of the z coordinate,
so too are the corresponding material properties. The effective material properties of an FGM can be
estimated by the Voigt rule of mixtures, according to:

PFGM = (Pt − Pb)V ft + Pb (2)

where PFGM is the FGM property, and Pt and Pb represent the corresponding property at top and
bottom surfaces, respectively. This approach is suitable for FGMs whose phases are not very different
from each other [43].

2.2. Porosity Distributions

Functionally graded porous materials combine characteristics of both FGMs and porous materials.
Beyond the great rigidity–weight ratio, the incomparable mechanical properties they present explains
why these distinctive materials are widely used in a wide range of diverse fields [44].

Despite great developments in manufacturing processes, the formation of micro-voids or porosities
is still a fact [4], and in some specific applications this can be even desirable and designed for. Regardless
of the specific case, as a consequence of these pores, the material’s strength will become lower, and this
should be included in mechanical behavior studies [44].

The present work considers three types of porosity distributions through the thickness, the first
one being proposed by Kim et al. [45] and applied in several studies, such as those developed by
Coskun et al. [46] and by Li and Zheng [22]. The last two were inspired in the uniform distribution
mentioned by Du et al. [47], whose studies focus on open-cell metal foams rectangular plates considering
different porosity distributions through the thickness.

• Porosity Model M1:

Concerning porous FGMs, Kim et al. [45] considered, among other things, a porosity distribution
through the thickness given by:

Φ(z) = φcos
[
π
2

( z
h
− 1

2

)]
, (3)

where z represents the thickness coordinate, h represents the plate’s thickness, and φ is the maximum
porosity value.

Thus, the rule of mixtures is affected by this distribution and the effective Young modulus (E) and
Poisson’s ratio (υ) can be estimated as follows:

E(z) =
[
(Et − Eb)

( z
h
+

1
2

)p
+ Eb

]
(1−Φ(z)), (4)

υ(z) =
[
(υt − υb)

( z
h
+

1
2

)p
+ υb

]
(1−Φ(z)). (5)

In both Equations (4) and (5), the indexes t and b indicate the top and bottom surfaces, respectively.
Figure 3 illustrates, in a normalized form, the porosity distribution through the thickness, showing

an evolution from an absence of pores in the bottom surface to a maximum porosity in the top surface,
and the normalized Young’s modulus evolution through the thickness for different maximum porosity
values and power law exponents, elucidating how this model of porosity distribution affects this
material property.

The next two porosity distribution models were based on the uniform distribution referred to in [47].
In both models, the porosity coefficient (e0) is given by Equation (6), and parameter β can be

calculated through the relation in Equation (7).

e0 = 1− Eb
Et

, (6)
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β =
1
e0
− 1

e0

( 2
π

√
1− e0 − 2

π
+ 1

)2
, (7)

 
(a) (b) 

Figure 3. Normalized: (a) porosity model M1 and (b) Young’s modulus (E(z)) through the
thickness direction.

• Porosity Model M2:

In this model, the material properties, namely Young’s modulus and Poisson’s ratio, are estimated
by Equations (8) and (9), and the graph of the evolution of the normalized Young modulus through the
thickness is presented in Figure 4.

E(z) =
[
(Et − Eb)

( z
h
+

1
2

)p
+ Eb

]
(1− e0β), (8)

υ(z) =
[
(υt − υb)

( z
h
+

1
2

)p
+ υb

]
(1− e0β). (9)

Figure 4. Variation of the normalized Young’s modulus (E(z)) through the thickness for porosity model M2.
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• Porosity Model M3:

This model introduces to the previous one a porosity gradient through the thickness, with the
respective effective materials properties being given by:

E(z) =
[
(Et − Eb)

( z
h
+

1
2

)p
+ Eb

][
1− e0βcos2

(
2π

z
h

)]
, (10)

υ(z) =
[
(υt − υb)

( z
h
+

1
2

)p
+ υb

][
1− e0βcos2

(
2π

z
h

)]
. (11)

Figure 5 shows the variation of the normalized Young’s modulus through the thickness. Note that
the porosity distribution fluctuates between maxima and minima along the thickness.

Figure 5. Porosity model M3: normalized Young’s modulus (E(z)) through the thickness.

Note that on the upper surface the normalized Young’s modulus takes the same value for all
power law exponents evaluated once the equality E(z) = Et(1− e0β) is verified. On the opposite
surface, Young’s modulus is given by E(z) = Eb(1− e0β), which justifies the fact that the corresponding
p = 0 curve constitutes an exception from the others, since this particular case corresponds to a plate
made up of a single phase whose Young’s modulus is given by Et, while in the remaining cases the
bottom face corresponds to the phase with Young’s modulus given by Eb.

In all three porosity distribution models, the shear modulus is estimated by:

G(z) =
E(z)

2(1 + υ(z))
. (12)

In Figures 3b, 4 and 5, the curve corresponding to the case of null power law exponent without
porosity is also presented. In this case the represented material property is given by Equation (2),
taking the value of Et. Thus, the corresponding normalized form takes the value 1 through the entire
plate thickness.

2.3. Constitutive Relation and Finite Element Models

The static behavior of porous plates with functional classification was evaluated for a set of
studies through finite element analysis based on the first-order shear deformation theory (FSDT) and
on third-order shear deformation theory (HSDT). According to FSDT the displacement field can be
described by:

u(x, y, z) = u0(x, y) + z·θ0
x(x, y),

12
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v(x, y, z) = v0(x, y) + z·θ0
y(x, y), (13)

w(x, y, z) = w0(x, y),

where u(x,y,z), v(x,y,z), and w(x,y,z) are the displacements of a certain plate coordinate point, and u0(x,y),
v0(x,y) and w0(x,y) represent the displacements of a mid-plane point associated to them. The normals to
the mid-plane rotations are represented by θ0

x and θ0
y, respectively. Thus, this model considers a total of

five degrees of freedom per node, q =
[
u0, v0, w0,θ0

x,θ0
y

]
. Considering small deformations, the elasticity

kinematic relation leads to the following strain field, omitting dependencies for simplicity reasons:

εx = ε0
x + z·k0

x
εy = ε0

y + z·k0
y

γxy = γ0
xy + z·k0

xy

γxz = γ0
xz

γyz = γ0
yz

(14)
ε0

x = ∂u0

∂x
ε0

y = ∂v0

∂y

γ0
xy = ∂u0

∂y + ∂v0

∂x

k0
x =

∂θ0
x
∂x

k0
y =

∂θ0
y

∂y

k0
xy =

∂θ0
y

∂x +
∂θ0

x
∂y

γ0
xz = θ

0
x +

∂w0

∂x
γ0

yz = θ
0
y +

∂w0

∂y

where εx, εy, and γxy correspond to the two in-plane normal strains and to the in-plane total shear strain,
respectively. The interlaminar transverse shear strains are represented by γyz and γxz. This strain
field is characterized by a null normal transverse strain (εz = 0), denoting thickness inextensibility.
Since the FGM considered in the studies carried out can be considered as an isotropic material, the
constitutive law governing the relationship between the stress and strain fields is given by:⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

σx

σy

σxy

σyz

σxz

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
Q11 Q12 0 0 0
Q12 Q22 0 0 0

0 0 Q66 0 0
0 0 0 k·Q44 0
0 0 0 0 k·Q55

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
·

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
εx

εy

γxy

γyz

γxz

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (15)

The coefficients Qij, provided by [48], stand for the elastic coefficients, which in the present work
depend on the z coordinate due to the variation in material properties through the thickness direction:

Q11 = Q22 =
EFGM(z)

1−υ2
FGM(z)

Q12 =
υFGM(z)·EFGM(z)

1−υ2
FGM(z)

,

Q44 = Q55 = Q66 = GFGM(z).

(16)

The HSDT displacement field also considered in this work for comparison purposes was proposed
by Kant et al. [49], and is given by:

u(x, y, z) = u0(x, y) + z·θ0
x(x, y) + z3·θ∗x(x, y),

v(x, y, z) = v0(x, y) + z·θ0
y(x, y) + z3·θ∗y(x, y), (17)

w(x, y, z) = w0(x, y) + z2·w∗(x, y).

As can be observed, this higher-order displacement field not only allows for in-plane displacements
that vary as cubic functions of the thickness coordinate, but it also allows for thickness extensibility.
This higher-order theory was implemented for comparison purposes, but was not the main focus of
the present work.

The finite element method was used for the study presented in this work. This method is widely
used due to its great versatility, able to solve a wide range of physical problems ruled by differential
equations. In this numerical method, the domain of a certain problem is discretized into elementary
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subdomains, which obey continuity and equilibrium requirements between adjacent subdomains. The
resolution of a problem by the finite element method can generically be described by three steps [49,50],
as follows. After the pre-processing stage, where all aspects related to the domain discretization and
topology, material and geometrical characteristics, loading and boundary conditions are accomplished,
one proceeds to the analysis phase where the intended analysis is performed and primary variables
are obtained. The results of this analysis can then be post-processed in order to obtain other derived
physical quantities of interest in the third and final phase of this method. The plates analyzed in the
present work had a rectangular geometry configuration (Figure 6) with a graded material distribution,
as already mentioned.

 
Figure 6. Plate geometry.

Taking into consideration their geometry, the plates were discretized into quadrilateral finite
elements. To enable a more comprehensive study, we considered bilinear and biquadratic quadrilateral
plate finite elements from the Lagrange family, as illustrated in Figure 7. The bilinear element (a)
contained one node at each vertex (four nodes in total), while the biquadratic element (b) additionally
contained a center node and one node at the midpoint of each side, resulting in a total of nine nodes.
Each node possessed five degrees of freedom—three translations and two rotations associated to the
plate mid-plane, as previously mentioned.

 

(a) (b) 

Figure 7. Plate elements from Lagrange family: (a) bilinear element; (b) biquadratic element.

As the main aim of the present work is related to the assessment of the influence of the shear
correction factor on the static bending of FGP plates, the procedure considered to achieve the global
equilibrium equations to be solved was based on the minimization of the plates’ potential energy. This
mathematical formulation yields for each element a set of equilibrium equations. Considering the
whole discretized domain where continuity and equilibrium aspects ensure the discretized model will
be representative, we finally obtain the global equilibrium equation:{

f
}global = [K]global·{u}global, (18)

where {u}global denotes the problem solution (i.e., the generalized nodal displacements),
{
f
}global

represents the generalized forces applied to the plates, and [K]global is the global stiffness matrix. The
solution of the problem is obtained after the imposition of the plates’ boundary conditions.
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2.4. Shear Correction Factor

The studies developed in this work are based on FSDT, which requires the introduction of a shear
correction factor on the transverse shear components of the elastic stiffness coefficients matrix in order
to redress the uniform transverse shear stresses/strains arising from the deformation kinematics based
on the displacement field. Despite this need, FSDT-based models continue to be widely used in the
modeling of structures, due to their lower computational cost when compared to other theories and
also due to their applicability domain. It is possible to conclude that, even considering a bilinear
element, results were very good when compared to other authors’ alternative solutions and with
biquadratic elements, while also having a lower computational cost. Regarding the homogeneous
plates, the shear correction value considered was 5/6. However, the overall heterogeneity of FGMs due
to the gradual evolution of their properties makes it desirable to calculate the correction factor for each
specific case [6,43,51].

Shear correction factors determined through predictor–corrector procedures that use iteration
processes depend on plate geometry, as well as boundary and load conditions. Therefore, the factors
thus determined are limited to a given system and cannot be applied to different configurations. The
use of energy considerations for the calculation of shear correction coefficients is quite common in
studies involving laminated composite materials and FGMs [51]. Nguyen et al. [51] worked on this
subject concerning FGMs, comparing the strain energies obtained from the average shear stresses and
from the equilibrium to calculate the shear correction factors. Efraim and Eisenberg developed a shear
correction factor depending on Poisson’s ratio and the volume fractions of both material phases present
in a functionally graded plate [52]. Working on FGPs, Li et al. [53] calculated the shear correction
factor as a function of the power law exponent, thickness-to-length ratio (a/h), and of some constant
coefficients that depend on the material phases involved.

The shear correction factor used in the present work (here represented by k) was estimated using a
formulation similar to the one used by Singha et al. [54]. Accordingly, the reference surface used for the
shear correction factor calculation was the neutral one and not the mid-surface as usual. To this purpose
we considered an FGP with thickness h as illustrated in Figure 8, where zms and zns are the coordinates
of a point in the thickness direction relative to the medium and neutral surfaces, respectively.

Figure 8. Medium and neutral surfaces.

According to this formulation, the shift of the neutral surface (d) is given by:

d =

∫ h/2
−h/2 E(zms)·zms dzms∫ h/2
−h/2 E(zms) dzms

. (19)

The shear correction factor is then derived from the equivalent energy principle, and can be
determined by Equation (20) [54]:
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k =

(∫ h
2−d

− h
2−d

(∫ zns

− h
2−d E(ξ)· ξdξ

)
dzns

)2

∫ zns

− h
2−d Q55 dzns·

∫ h
2−d

− h
2−d

(∫ zns
− h

2−d
E(ξ)· ξdξ

)2

G(zns)

. (20)

As applied to determine shear correction factor, all calculations carried out a posteriori were
simply affected by a referential translation according to the coordinate vector (0, 0, −d).

3. Results

The present section, dedicated to the presentation of results and their preliminary discussion,
comprises a first verification study, after which a set of case studies considering different porosity
distributions models are presented and analyzed concerning their influence on neutral surface shift,
shear correction factor, and maximum transverse displacement.

3.1. Verification Studies

3.1.1. Shear Correction Factor

In the course of the literature review, no studies were found on the correction factor in the context
of FGMs considering porosity distributions. For this reason, this first verification study regarding the
approach applied to the correction factor determination was carried out considering a metal/ceramic
functionally graded plate where the volume fraction of the ceramic phase is given by Equation (1).
To this purpose, a square plate with unitary length and aspect ratio of 100 was considered, according
to [43]. The results obtained for different power law exponents and Young’s modulus ratios between
both ceramic and metallic phases are presented in Table 1, showing an excellent agreement with the
reference results for all parameter values considered.

Table 1. Shear correction factor for different material parameters.

p
Ec/Em

1 2 4 6

k [43] k k [43] k k [43] k k [43] k

0 5/6 0.8333 5/6 0.8333 5/6 0.8333 5/6 0.8333
1 5/6 0.8333 0.8320 0.8320 0.8305 0.8305 0.8305 0.8305
2 5/6 0.8333 0.8095 0.8095 0.7804 0.7804 0.7662 0.7662
5 5/6 0.8333 0.7891 0.7891 0.7175 0.7175 0.6643 0.6641
10 5/6 0.8333 0.7989 0.7989 0.7316 0.7318 0.6743 0.6746

p
Ec/Em

8 10 15 20

k [43] k k [43] k k [43] k k [43] k

0 5/6 0.8333 5/6 0.8333 5/6 0.8333 5/6 0.8333
1 0.8308 0.8308 0.8312 0.8312 0.8319 0.8319 0.8323 0.8323
2 0.7593 0.7594 0.7563 0.7563 0.7555 0.7556 0.758 0.7580
5 0.6238 0.6235 0.5923 0.5919 0.5381 0.5377 0.5046 0.5043
10 0.6262 0.6266 0.5856 0.5860 0.5073 0.5080 0.4513 0.4521

3.1.2. Porosity Distribution Model 1 (M1)

The first porosity model (M1) was submitted to verification studies. For this, and according to
reference [6], an FGM square plate with 17.6 μm thickness and an aspect ratio of 20 was considered.
Regarding the constituent materials, the Young moduli of the top and bottom surfaces were assumed
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to be Et = 14.4 GPa and Eb = 1.44 GPa respectively, and in this particular study, the Poisson ratio was
considered constant, assuming the value of 0.38. The plate, simply supported, was considered under a
uniformly distributed load with 100 kPa magnitude and was discretized in a 10 × 10 mesh of four
node finite elements (Q4).

The normalized transverse displacement and the respective relative deviation to the reference,
presented in Table 2, were obtained by Equations (21) and (22), respectively.

w =
Eb·h3

q0·a4
w
(

a
2

,
b
2

, 0
)
, (21)

δ(%) =
wpresent −wre f erence

wre f erence
·100(%). (22)

Table 2. Results of the porosity distribution model 1 (M1) verification study.

p φ w δ (%)

0
0 4.220 × 10−3 1.49

0.2 4.798 × 10−3 0.43
0.5 6.242 × 10−3 −0.57

1 0.5 1.452 × 10−2 0.26
5 0.5 2.685 × 10−2 −0.18

The small relative deviations observed make it possible to conclude that there is very good
agreement between the present model and the reference results, although a different approach was
applied. In particular, the higher relative deviation occurs when considering an isotropic homogeneous
material without porosities (p = 0, φ = 0).

3.2. Case Studies

In order to perform a set of parametric studies relevant for this work’s objectives, we carried out
simulations on a set of case studies, in which FGM square plates with 25 mm thickness and aspect
ratio 20 were considered. The material properties involved in the studies presented in this section are
given in Table 3, and the volume fraction of TiO2 is given by Equation (1). The plates were considered
simply supported and submitted to a uniform load with 100 kPa of magnitude.

Table 3. Material properties.

Material Young’s Modulus (GPa) Poisson’s Ratio

Aluminum (Al) 70 0.33
Titanium Oxide (TiO2) 230 0.27

The case studies show the influence of the different porosity distribution models in the neutral
surface shift, shear correction factor, and maximum transverse displacement for a range of power law
exponents. The influence of finite element type used was also studied.

3.2.1. Influence on Neutral Surface Shift and Shear Correction Factor

In this subsection we present the studies performed to explore the effects of the porosity distribution
on the neutral surface shift and shear correction factor.

• Porosity Distribution Model 1 (M1):

When considering porosities distributed according to model M1, it is important to evaluate how the
maximum porosity value combined with the power law exponent affects the neutral surface shift and the
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shear correction factor. For this purpose, the following sets of values were respectively considered for
the maximum porosity value and for the exponent of the power law: φ = {0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6}
and p = {0, 1, 2, 5, 10}. The results obtained are presented in Table 4, Figures 9 and 10.

Table 4. Porosities distribution M1: neutral surface’ shift and shear correction factor.

φ p d (m) d/h k

0

0 0 0 5/6
1 2.2222 × 10−3 0.0889 0.8279
2 2.7027 × 10−3 0.1081 0.7828
5 2.4631 × 10−3 0.0985 0.7344

10 1.7921 × 10−3 0.0717 0.7499

0.1

0 −2.3222 × 10−4 −0.0093 0.8316
1 2.0233 × 10−3 0.0809 0.8289
2 2.4955 × 10−3 0.0998 0.7843
5 2.2257 × 10−3 0.0890 0.7359

10 1.5422 × 10−3 0.0617 0.7505

0.2

0 −4.9832 × 10−4 −0.0199 0.8297
1 1.7903 × 10−3 0.0716 0.8304
2 2.2520 × 10−3 0.0901 0.7865
5 1.9481 × 10−3 0.0779 0.7378

10 1.2519 × 10−3 0.0501 0.7513

0.3

0 −8.0630 × 10−4 −0.0323 0.8275
1 1.5138 × 10−3 0.0606 0.8325
2 1.9620 × 10−3 0.0785 0.7894
5 1.6190 × 10−3 0.0648 0.7403

10 9.1039 × 10−4 0.0364 0.7522

0.4

0 −1.1669 × 10−3 −0.0467 0.8248
1 1.1805 × 10−3 0.0472 0.8353
2 1.6107 × 10−3 0.0644 0.7934
5 1.2227 × 10−3 0.0489 0.7436

10 5.0299 × 10−4 0.0201 0.7534

0.5

0 −1.5948 × 10−3 −0.0638 0.8217
1 7.7050 × 10−4 0.0308 0.8390
2 1.1761 × 10−3 0.0470 0.7988
5 7.3631 × 10−4 0.0295 0.7477

10 8.5279 × 10−6 0.0003 0.7546

0.6

0 2.1109 × 10−3 0.0844 0.8177
1 2.5421 × 10−4 0.0102 0.8439
2 6.2495 × 10−4 0.0250 0.8059
5 1.2505 × 10−4 0.0050 0.7529

10 −6.0425 × 10−4 −0.0242 0.7560

Independent of the φ value, the neutral surface shift increased from p = 0 to p = 2, where it had its
maximum value, then decreasing from p = 2 to p = 10. Additionally, for all maximum porosity values
considered, except for the case where φ = 0.6, the shear correction factor decreased for power law
exponents between 0 and 5, increasing for the last transition from p = 5 to p = 10. This is explained by
the fact that, for higher values of the power law exponent, the functionally graded plate approaches a
homogeneous isotropic composition, and at the limit where p tends to infinity, the plate will consist of
a single phase (aluminum in this case), so the value of the shear correction factor tends to the typical
value 5/6.

When the maximum porosities took the values 0 or 0.1, the shear correction factor decreased
from p = 0 to p = 5, increasing for higher values of power law exponent. For the remaining values of
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maximum porosities this factor increased in the transition from p = 0 to p = 1, decreased from p = 1 to
p = 5, and increased again until p = 10.

φ

Figure 9. Porosity distribution model M1: evolution of neutral surface shift.

Figure 10. Porosity distribution model M1: evolution of shear correction factor.

In the case of an isotropic homogeneous plate (p = 0), the shear correction factor decreased when
the maximum porosity values increased. This was also true for the neutral surface shift, excepting for
the abrupt increase in the transition between φ = 0.5 and φ = 0.6. For other power law exponents, as
the maximum porosity values increased the neutral surface shift decreased and the shear correction
factor increased.

• Porosity Distribution Models 2 and 3 (M2 and M3):

Concerning these models, we evaluated the influence of the power law exponent, taking the
set of integers from 0 to 10. Figures 11 and 12 show the evolution of neutral surface shift and shear
correction factor, respectively, for both distribution models M2 and M3. The curves show a neutral
surface shift behavior similar to the one observed in the previous study and a shear correction factor
with a decreasing behavior up to p = 5, after which it increased with the exponent of the power law.
This behavior was similar in both models. The porosity distribution M3 led to smaller neutral surface
shifts, and the difference between both models increased with increasing power law exponent.

The porosity distribution model M3 generated lower values for the shear correction factor, with
the difference between the two models decreasing with the increase in the power law exponent, as
opposed to what was observed for the neutral surface shift.
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Figure 11. Porosity distribution models M2 and M3: evolution of neutral surface shift.

Figure 12. Porosity distribution models M2 and M3: evolution of the shear correction factor.

3.2.2. Influence on Absolute Maximum Transverse Displacement

In the studies presented in this section, the absolute maximum transverse displacement corresponds
to the magnitude of the plate’s center displacement given the considered boundary and load conditions.
The results include both 4-node (Q4) and 9-node (Q9) plate finite element results, using the calculated
shear correction factor (Section 2.4) here denoted by kcalc and the often used value of 5/6. The relative
deviations presented were determined by the following equations:

δQ4(%) =

wQ4

(k= 5
6 )
−wQ4

(kcalc)

wQ4
(kcalc)

·100(%), (23)

δQ9(%) =

wQ9

(k= 5
6 )
−wQ9

(kcalc)

wQ9
(kcalc)

·100(%). (24)

In the convergence study presented for porosity distribution model 1, the relative deviations
were determined by Equation (25), where the index i denotes the order of the data in the respective
results table.

δmesh(%) =
wi −wi−1

wi−1
·100(%), i ≥ 2 (25)
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• Porosity Distribution Model 1 (M1):

We developed convergence studies in order to evidence the reason for the discretization selection.
To illustrate them, we present the results obtained for two sets of distinct parameterizations of maximum
porosities and power law exponent values, considering Q4 finite elements and FSDT. The results
achieved and presented in Table 5 show that the mesh refinement from 10 × 10 elements presents a
deviation of less than 0.2%. Based on this evidence, the following studies were performed considering
a mesh of 10 × 10 elements.

Table 5. Porosity distribution model M1: convergence study.

φ p Mesh w( a
2 , b

2 ,0) (m) δmesh (%)

0.1 1

4 × 4 −1.3855 × 10−4 -
6 × 6 −1.4035 × 10−4 1.30
8 × 8 −1.4091 × 10−4 0.39

10 × 10 −1.4116 × 10−4 0.18
12 × 12 −1.4129 × 10−4 0.10
14 × 14 −1.4137 × 10−4 0.06
16 × 16 −1.4142 × 10−4 0.04
18 × 18 −1.4146 × 10−4 0.03
20 × 20 −1.4149 × 10−4 0.02

0.5 5

4 × 4 −2.5263 × 10−4 -
6 × 6 −2.5597 × 10−4 1.32
8 × 8 −2.5701 × 10−4 0.40

10 × 10 −2.5747 × 10−4 0.18
12 × 12 −2.5773 × 10−4 0.10
14 × 14 −2.5788 × 10−4 0.06
16 × 16 −2.5798 × 10−4 0.04
18 × 18 −2.5804 × 10−4 0.03
20 × 20 −2.5809 × 10−4 0.02

The results obtained regarding transverse displacement at the plate’s center are presented in
Table 6. In this study, the displacement increased with increasing maximum porosity for all power law
exponents considered, as expected.

Table 6. Porosity distribution model M1: plates center transverse displacement for different finite
models and shear correction factor approaches.

φ p
Q4 Q9

kcalc k= 5/6 kcalc k= 5/6

w( a
2 , b

2 ,0) (m) δQ4 (%) w( a
2 , b

2 ,0) (m) δQ9 (%)

0

0 −7.9330 × 10−5 0.00 −7.9625 × 10−5 0.00
1 −1.3168 × 10−4 −5.14 −1.3215 × 10−4 −4.96
2 −1.5267 × 10−4 −7.17 −1.5321 × 10−4 −6.94
5 −1.7054 × 10−4 −5.51 −1.7114 × 10−4 −5.33
10 −1.8510 × 10−4 −2.95 −1.8574 × 10−4 −2.85

0.3

0 −9.9540 × 10−5 −0.94 −9.9930 × 10−5 −0.93
1 −1.6493 × 10−4 −1.81 −1.6556 × 10−4 −1.70
2 −1.9003 × 10−4 −3.06 −1.9075 × 10−4 −2.91
5 −2.1256 × 10−4 −1.83 −2.1335 × 10−4 −1.73
10 −2.3281 × 10−4 −0.50 −2.3367 × 10−4 −0.46

0.6

0 −1.3788 × 10−4 −5.65 −1.3845 × 10−4 −5.55
1 −2.2603 × 10−4 0.13 −2.2695 × 10−4 0.14
2 −2.5832 × 10−4 0.03 −2.5936 × 10−4 0.07
5 −2.9115 × 10−4 −0.07 −2.9231 × 10−4 −0.06
10 −3.2350 × 10−4 −0.91 −3.2479 × 10−4 −0.91

21



Math. Comput. Appl. 2020, 25, 25

Comparing the results with 4-node elements and different shear correction factor approaches,
the relative deviation increased from p = 0 to p = 2, decreasing with increasing power law exponents.
Moreover, the increase in maximum porosity value resulted in a relative deviation increase for p =
0—the opposite behavior to that verified for the intermediate power law exponents. When considering
p = 10, the relative deviations showed an oscillating behavior with increasing maximum porosity value.
However, for maximum porosity values of 0.5 and 0.6 and intermediate power law exponents these
deviations were nearly zero, except for the case of null power law exponent. The same behavior was
verified when doing the same comparative study with 9-node elements, except for the specific case
considering a maximum porosity value of 0.6.

Additionally, we verified that when considering the common value of 5/6 for the shear correction
factor, the relative deviation between the results observed for Q4 and Q9 elements was very low,
presenting a decreasing behavior with increasing maximum porosity value, except for p = 0, where
the opposite was verified. With the other approach, this relative deviation also presented very low
values, although the increase of maximum porosity value resulted in higher deviations for all power
law exponents considered.

Figure 13 shows the plate’s center displacement for different power law exponents and maximum
porosity values, obtained considering Q4 finite elements. In the figure, it is clear that higher
maximum porosity values corresponded to higher maximum transverse displacement magnitudes for
all exponents, with the effect being more pronounced when considering larger exponents.

φ

Figure 13. Porosity distribution model M1: evolution of plate’s center transverse displacement.

In order to compare the results obtained by applying different shear deformation theories, keeping
the configurations considered above, the plate’s center displacement was determined by applying the
third-order shear deformation theory (HSDT) proposed by [49], and also implemented by the authors for
this purpose. The results obtained are presented in Table 7, with the relative deviations determined by:

δHSDT(%) =
wHSDT −wFSDT

wFSDT
·100(%). (26)

When considering a homogeneous isotropic material (p = 0), the deviation between the results
obtained was very small for low maximum porosity values, increasing with the increase in porosity.
Fixing the power law exponent, the increase of maximum porosities values led to a decrease in the
relative deviations, except for the exponent p = 10 where the transition between φ = 0.4 and φ = 0.5
led to an increase in the relative deviation. For all the maximum porosity values presented, there were
slighter relative deviations in cases where the evolution of the material’s constitution through the
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thickness was smoother (i.e., for lower and higher power law exponents), except for the case where
φ = 0.6, for which the highest power law exponent presented a relative deviation higher than the
other non-nulls.

Table 7. Porosity distribution model M1: plate’s center transverse displacement for different shear
deformation theories.

φ p wFSDT( a
2 , b

2 ,0) (m) wHSDT( a
2 , b

2 ,0) (m) δHSDT (%)

0

0 −7.9330 × 10−5 −7.9359 × 10−5 0.04
1 −1.3168 × 10−4 −1.2363 × 10−4 −6.11
2 −1.5267 × 10−4 −1.3980 × 10−4 −8.43
5 −1.7054 × 10−4 −1.5964 × 10−4 −6.39
10 −1.8510 × 10−4 −1.7875 × 10−4 −3.43

0.1

0 −8.5029 × 10−5 −8.4957 × 10−5 −0.08
1 −1.4116 × 10−4 −1.3402 × 10−4 −5.05
2 −1.6335 × 10−4 −1.5175 × 10−4 −7.10
5 −1.8250 × 10−4 −1.7308 × 10−4 −5.16
10 −1.9861 × 10−4 −1.9351 × 10−4 −2.57

0.2

0 −9.1656 × 10−5 −9.1228 × 10−5 −0.47
1 −1.5208 × 10−4 −1.4588 × 10−4 −4.08
2 −1.7562 × 10−4 −1.6538 × 10−4 −5.83
5 −1.9628 × 10−4 −1.8833 × 10−4 −4.05
10 −2.1425 × 10−4 −2.1017 × 10−4 −1.91

0.3

0 −9.9540 × 10−5 −9.8380 × 10−5 −1.17
1 −1.6493 × 10−4 −1.5965 × 10−4 −3.20
2 −1.9003 × 10−4 −1.8120 × 10−4 −4.64
5 −2.1256 × 10−4 −2.0596 × 10−4 −3.10
10 −2.3281 × 10−4 −2.2936 × 10−4 −1.48

0.4

0 −1.0919 × 10−4 −1.0672 × 10−4 −2.27
1 −1.8050 × 10−4 −1.7601 × 10−4 −2.49
2 −2.0744 × 10−4 −2.0002 × 10−4 −3.58
5 −2.3237 × 10−4 −2.2687 × 10−4 −2.36
10 −2.5551 × 10−4 −2.5202 × 10−4 −1.37

0.5

0 −1.2147 × 10−4 −1.1671 × 10−4 −3.92
1 −2.0008 × 10−4 −1.9602 × 10−4 −2.03
2 −2.2932 × 10−4 −2.2304 × 10−4 −2.74
5 −2.5747 × 10−4 −2.5241 × 10−4 −1.97
10 −2.8446 × 10−4 −2.7959 × 10−4 −1.71

0.6

0 −1.3788 × 10−4 −1.2913 × 10−4 −6.35
1 −2.2603 × 10−4 −2.2146 × 10−4 −2.02
2 −2.5832 × 10−4 −2.5238 × 10−4 −2.30
5 −2.9115 × 10−4 −2.8491 × 10−4 −2.14
10 −3.2350 × 10−4 −3.1455 × 10−4 −2.77

• Porosity Distribution Models M2 and M3:

The results presented in Tables 8 and 9 were obtained considering porosity distribution models
M2 and M3, for Q4 and Q9 finite element discretizations and different shear correction factor
approaches, respectively.
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Table 8. Porosity distribution model M2: plate’s center transverse displacement for different finite
elements and shear correction factor approaches.

p
Q4 Q9

kcalc k= 5/6 kcalc k= 5/6

w( a
2 , b

2 ,0) (m) δQ4 (%) w( a
2 , b

2 ,0) (m) δQ9 (%)

0 −1.6403 × 10−4 0.00 −1.6472 × 10−4 0.00
1 −2.7631 × 10−4 −5.20 −2.7747 × 10−4 −5.01
2 −3.2144 × 10−4 −7.21 −3.2278 × 10−4 −6.95
3 −3.4037 × 10−4 −7.01 −3.4178 × 10−4 −6.76
4 −3.5137 × 10−4 −6.28 −3.5282 × 10−4 −6.05
5 −3.5972 × 10−4 −5.50 −3.6120 × 10−4 −5.31
6 −3.6697 × 10−4 −4.81 −3.6848 × 10−4 −4.64
7 −3.7359 × 10−4 −4.22 −3.7512 × 10−4 −4.06
8 −3.7975 × 10−4 −3.72 −3.8131 × 10−4 −3.58
9 −3.8552 × 10−4 −3.29 −3.8710 × 10−4 −3.17

10 −3.9093 × 10−4 −2.94 −3.9254 × 10−4 −2.83

Table 9. Porosity distribution model M3: plate’s center transverse displacement for different finite
elements and shear correction factor approaches.

p
Q4 Q9

kcalc k= 5/6 kcalc k= 5/6

w( a
2 , b

2 ,0) (m) δQ4 (%) w( a
2 , b

2 ,0) (m) δQ9 (%)

0 −1.1377 × 10−4 −0.10 −1.1422 × 10−4 −0.10
1 −1.8911 × 10−4 −4.98 −1.8984 × 10−4 −4.80
2 −2.2387 × 10−4 −7.09 −2.2473 × 10−4 −6.85
3 −2.3900 × 10−4 −6.79 −2.3991 × 10−4 −6.56
4 −2.4781 × 10−4 −5.91 −2.4875 × 10−4 −5.71
5 −2.5454 × 10−4 −5.01 −2.5551 × 10−4 −4.84
6 −2.6041 × 10−4 −4.24 −2.6140 × 10−4 −4.09
7 −2.6576 × 10−4 −3.59 −2.6677 × 10−4 −3.46
8 −2.7070 × 10−4 −3.07 −2.7173 × 10−4 −2.96
9 −2.7529 × 10−4 −2.64 −2.7633 × 10−4 −2.54

10 −2.7953 × 10−4 −2.29 −2.8059 × 10−4 −2.21

In general, both porosity distribution models led to the same verifications about relative deviations.
Like in the previous study, the relative deviations δQ4 and δQ9 increased for increasing power law
exponents between p = 0 and p = 2, after which these deviations presented a decreasing behavior.
Additionally, comparing Q4 and Q9 results denoted by kcal we verified that the relative deviation was
maximal when p = 0, and presented a decreasing behavior with increasing power law exponent. When
k = 5/6, the relative deviation of Q4 and Q9 to Q4 with kcalc also increased from p = 0 to p = 2, then
decreased with increasing power law exponent in both comparative analyses.

Figure 14 depicts the behavior of the plate’s center transverse displacement, using Q4 finite
elements, for the power law exponents considered, evidencing the fact that porosity distribution model
M3 provided smaller displacements than model M2, and the increase in the exponent of the power law
induced a greater difference between the results obtained with each model.

24



Math. Comput. Appl. 2020, 25, 25

φ

Figure 14. Evolution of the plate’s center transverse displacement with the power law exponent.

Similar to the M1 porosity distribution model, the plate’s center displacements for models M2
and M3 were also obtained, considering the same third-order shear deformation theory. The results
obtained for both porosity distribution models with the different shear deformation theories are shown
in Table 10, where the relative deviations presented were determined by Equation (26). The results
show a behavior similar to the one observed and described for model M1 about the effect of the power
law exponent on the relative deviation.

Table 10. Porosity distribution models M2 and M3: plate’s center transverse displacement for different
shear deformation theories.

p M2 M3

wFSDT( a
2 , b

2 ,0) (m) wHSDT( a
2 , b

2 ,0) (m) δHSDT (%) wHSDT( a
2 , b

2 ,0) (m) wHSDT( a
2 , b

2 ,0) (m) δHSDT (%)

0 −1.6403 × 10−4 −1.6407 × 10−4 0.03 −1.1377 × 10−4 −1.1308 × 10−4 −0.60
1 −2.7631 × 10−4 −2.6157 × 10−4 −5.34 −1.8911 × 10−4 −1.7729 × 10−4 −6.25
2 −3.2144 × 10−4 −2.9782 × 10−4 −7.35 −2.2387 × 10−4 −2.0457 × 10−4 −8.62
3 −3.4037 × 10−4 −3.1621 × 10−4 −7.10 −2.3900 × 10−4 −2.1909 × 10−4 −8.33
4 −3.5137 × 10−4 −3.2917 × 10−4 −6.32 −2.4781 × 10−4 −2.2945 × 10−4 −7.41
5 −3.5972 × 10−4 −3.3992 × 10−4 −5.50 −2.5454 × 10−4 −2.3807 × 10−4 −6.47
6 −3.6697 × 10−4 −3.4941 × 10−4 −4.79 −2.6041 × 10−4 −2.4565 × 10−4 −5.67
7 −3.7359 × 10−4 −3.5798 × 10−4 −4.18 −2.6576 × 10−4 −2.5247 × 10−4 −5.00
8 −3.7975 × 10−4 −3.6582 × 10−4 −3.67 −2.7070 × 10−4 −2.5862 × 10−4 −4.46
9 −3.8552 × 10−4 −3.7302 × 10−4 −3.24 −2.7529 × 10−4 −2.6421 × 10−4 −4.02
10 −3.9093 × 10−4 −3.7967 × 10−4 −2.88 −2.7953 × 10−4 −2.6928 × 10−4 −3.67

In the present work, the three porosity distributions analyzed showed some similarities regarding
the estimation of effective material properties. Noting that for the materials considered, the product
e0β assumed an approximate value of 0.49, we can then compare this case for models 2 and 3 (M2 and
M3) to the case where in model 1 (M1) the maximum porosity value took the value 0.5. In this sense,
Table 11 presents the results obtained under these conditions, considering a Q4 plate model and a shear
correction factor determined with Equation (20), with respect to neutral surface shift, shear correction
factor, and plate’s center displacement.
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Table 11. Results obtained with the three porosity distribution models considered.

p Model 1 (φ = 0.5) Model 2 Model 3

d/h k w( a
2 , b

2 ,0) (m) d/h k w( a
2 , b

2 ,0) (m) d/h k w( a
2 , b

2 ,0) (m)

0 −0.0638 0.8217 −1.215 × 10−4 0 5/6 −1.640 × 10−4 2.6 × 10−25 0.7632 −1.138 × 10−4

1 0.0308 0.8390 −2.001 × 10−4 0.0889 0.8291 −2.763 × 10−4 0.0845 0.7590 −1.891 × 10−4

2 0.0470 0.7988 −2.293 × 10−4 0.1081 0.7853 −3.214 × 10−4 0.1033 0.7199 −2.239 × 10−4

5 0.0295 0.7477 −2.575 × 10−4 0.0985 0.7371 −3.597 × 10−4 0.0899 0.6791 −2.545 × 10−4

10 0.0003 0.7546 −2.845 × 10−4 0.0717 0.7519 −3.909 × 10−4 0.0604 0.7074 −2.795 × 10−4

These results indicate that porosity distribution M2 promoted greater displacement of the plate’s
center, whereas model M3 led to smaller displacements. Regarding the neutral surface shift, in the case
of model M1, it started to assume a negative value when p = 0 (the highest shift for the exponents
evaluated). Then, the neutral surface approached the medium surface and moved away, presenting
this behavior from p = 0 to p = 2, after which the neutral surface shift assumed smaller and smaller
values in the sense of a new approximation between the neutral and medium surfaces as the exponent
of the power law increased. In models M2 and M3 the neutral surface shift presented a monotonic
increasing behavior from p = 0 to p = 2, starting with coincident neutral and medium surfaces when p
= 0, then decreasing with increasing power law exponents, presenting higher neutral surface shifts
than those verified with model 3.

Regarding the shear correction factor, there was an oscillating behavior observed in model M1,
with an increasing trend between p = 0 and p = 1, a decreasing one between p = 2 and p = 5, and
finishing with an increasing trend again from p = 5 to p = 10. In models M2 and M3, this factor
presented a decreasing behavior with increasing power law exponents until p = 5, and then increases
from p = 5 to p = 10. It is important to note that in the results presented in Table 11 the null power
law exponent corresponds to a material constituted only by titanium oxide, but with the presence of a
porosity distribution.

In the particular case of model M3 considering p = 0, the neutral surface presented a shift from the
medium surface that can numerically be considered as zero. However, it is important to highlight that
this result does not lead to the expected shear correction factor value of 5/6, as verified with model M2.
For this reason, the authors decided to maintain the value of 2.6 × 10−25 for the respective normalized
neutral surface shift, d/h.

4. Discussion and Conclusions

The analyses carried out on the various case studies led to the following conclusions:

• In all porosity distributions models studied, the neutral surface shift increased for power law
exponents between 0 and 2, and for larger exponents it showed a decreasing behavior.

• The studies of the influence of porosity distribution model M1 on the shear correction factor
showed that for a certain power law exponent the shear correction factor increased with increasing
maximum porosity values, except for the case in which p = 0 which corresponds to a plate
constituted only by TiO2. The increasing behavior was more pronounced when the power law
exponent took the value 2, and was less pronounced for the higher power law exponents considered.

• Concerning the influence of the porosity distribution models on the deviation from the neutral
surface, models M2 and M3 resulted in behaviors similar to each other and similar to those verified
in the corresponding analysis carried out on model M1, with model M2 leading to lower neutral
surface shifts. The difference between the models increased with increasing power law exponents.

• With respect to the shear correction factor, porosity distribution models M2 and M3 showed
a similar behavior, with M3 presenting lower values (i.e., leading to higher corrections of the
transverse shear stiffness coefficients). In this case, the difference between both models decreased
with increasing power law exponents.
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• Regarding the maximum transverse displacement, and in correspondence to the expected trend,
all case studies showed an increasing behavior with the increase in maximum porosity values and
power law exponents. In the case of model M1, for a certain power law exponent the increase
in the plate’s center displacement became more pronounced as the maximum porosity value
increased. The increase in the magnitude of the maximum transverse displacement with the
increase of power law exponent is explained by the fact that higher exponents correspond to a
smaller volume fraction of the stiffer phase, TiO2.

• The last study carried out to promote a comparison between the three porosity distributions
demonstrated that model M2 led to higher displacements of the plate’s center, while model M3 led
to lower ones. Except for the case of null power law exponent, in which model M2 presented the
higher shear correction factor and model M3 the lower one, in the remaining power law exponents
considered model M1 and model M3 presented the higher and the lower shear correction factors,
respectively. Moreover, the shear correction factor presented a similar behavior with the increase
of power law exponent in both models M2 and M3, decreasing from p = 0 to p = 5, and increasing
in the last transition between p = 5 and p = 10. The first model had a different behavior concerning
the shear correction factor and power law exponent relation, first presenting an increase in the
transition between p = 0 and p = 1, decreasing for the intermediate exponents, and increasing in
the transition between the two largest exponents presented.

• The results regarding the maximum absolute plate displacement obtained with the plate elements
Q4 and Q9 were quite close to each other in most of the studied configurations. Therefore,
depending on the application, in order to obtain a shorter computing time the Q4 model may be a
good choice, resulting in an accuracy similar to the one obtained with the Q9 model.

• When comparing the relative deviations between the results obtained with the present FSDT and
HSDT, model M1 showed an increasing relative deviation with increasing maximum porosity
values when considering a null power law exponent. For all three porosity distribution models,
the lower relative deviations obtained, corresponded to the lower and to the highest power law
exponents (i.e., to smoother material evolutions through the thickness).

• In the future, it is important to give continuity to the development of theoretical models to
describe the real porosity distributions and how they influence the resulting material properties
and, consequently, the constitutive relations. Obtaining more accurate predictions of porous
functionally graded material properties and/or designed ones, will continue to be an important
research topic in order to allow for higher-quality predictions of structures’ behavior.

• Another important aspect and a limitation of the present work is related to the behavior prediction
of thicker plate structures with different porosity models, wherein higher-order models are
expected to behave better. However, it will be important to compare the response achieved via
higher-order models with the present results under comparable situations.
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Abstract: Discussed is the implementation of a continuation technique for the analysis of nonlinear
structural problems, which is capable of accounting for geometric and dissipative requirements.
The strategy can be applied for solving quasi-static problems, where nonlinearities can be due to
geometric or material response. The main advantage of the proposed approach relies in its robustness,
which can be exploited for tracing the equilibrium paths for problems characterized by complex
responses involving the onset and propagation of cracks. A set of examples is presented and discussed.
For problems involving combined material and geometric nonlinearties, the results illustrate the
advantages of the proposed hybrid continuation technique in terms of efficiency and robustness.
Specifically, less iterations are usually required with respect to similar procedures based on purely
geometric constraints. Furthermore, bifurcation plots can be easily traced, furnishing the analyst
a powerful tool for investigating the nonlinear response of the structure at hand.

Keywords: continuation methods; bifurcations; limit points; cohesive elements

1. Introduction

Nonlinear analyses are commonly performed during the design phases of advanced, modern
constructions. An example can be found in the design process of lightweight aerospace structures,
where the capability of accurately predicting the behaviour in the post-buckling range is a task
of paramount importance. The problem can often be studied by considering just nonlinearties
of geometrical nature, where analytical and semi-analytical approaches can be successfully
employed [1–5]. However, a proper assessment of damage tolerance demands for numerical
simulations capable of predicting also the propagation of cracks, thus including nonlinear effects related
to the material response. Meaningful examples illustrating the relevance of nonlinear phenomena
in structural problems can be found, e.g., in the works of Refs. [6,7], while qualitative aspects on
branching of cracks are reported in Ref. [8]. Due to the inherent complexity of responses involving both
geometrical and material nonlinearities, the finite element approach is often the most straightforward
one for performing the analysis. In this context, many numerical techniques were developed in the
years for handling the peculiar aspects that characterize the response of structures in the nonlinear
field. Arc-length strategies have been widely used for solving problems characterized by the presence
of limit points. The presence of the load parameter as additional unknown of the problem allows
the load to be increased or decreased throughout the iterative process. Pioneering work in this field
is due to Riks [9] and Wemper [10]. Noteworthy are the successive efforts to develop the updated
normal path method by Ramm and the spherical arc-length by Crisfield [11]. Despite the efficiency
in capturing the elastic response of the structure, classical arc-length approaches can be inadequate
in the presence of delamination phenomena, as the constraint equation is based on global quantities,

Math. Comput. Appl. 2019, 24, 94; doi:10.3390/mca24040094 www.mdpi.com/journal/mca31



Math. Comput. Appl. 2019, 24, 94

while the failure process tends to involve few degrees of freedom. To overcome these limitations,
different strategies were proposed based on the modification of the constraint equation to consider
the local nodes involved in the delamination process [12–14] or by enriching the constraint equation
with information regarding the energy dissipated during the process [15–17]. An example is found
in Ref. [18], where path following techniques were discussed in the framework of Embedded Finite
Element Method (E-FEM).

Another class of numerical solution techniques refers to the so-called continuation approach.
These path-following techniques were originally introduced by Davidenko [19,20] in the early fifties.
They rely on the idea of transforming a nonlinear system of equations into a differential one. The system
is parametrized with respect to a solution parameter, and is solved as an initial value problem [21–23].
The application of continuation methods to nonlinear structural analyses offers several interesting
features. It allows to trace the primary equilibrium path of the structure, also in presence of snaps [24],
to detect and compute the critical points [24–26] and to trace the bifurcation branches [27,28]. As a result,
continuation methods enable to trace the complete bifurcation diagram of the structure, which is of
particular interest for gathering deeper insight into the behavior of the structure.

While a consistent number of examples concerning the use of continuation methods for the
nonlinear analysis of elastic structures are available in the literature, relatively few applications can be
found for handling problems characterized by the presence of crack propagation phenomena. To the
best of the authors’ knowledge, no continuation methods were specifically developed for problems
involving strain-softening responses.

In this article a novel continuation approach is proposed, offering the capability of
handling structural responses characterized by geometrically and materially nonlinear problems.
The continuation is performed referring to a modified version of the the Riks’ method [24] in
conjunction with a constraint regarding the dissipated energy [15,16]. The approach tries to combine
the efficiency of geometric-based procedures in the elastic field, with that of the dissipative ones in the
presence of damage. The resulting approach can accurately trace the equilibrium paths and shows
excellent robustness on bifurcation branches dominated by dissipative phenomena.

The performance of the approach is demonstrated by means of five numerical examples.
The first two ones illustrate the ability of the methods to compute the bifurcation diagram of
simple elastic problems. Then, test cases characterized by mixed geometric-material nonlinearities are
assessed. Finally, the application of the methods as quasi-static solution strategies is demonstrated in
a challenging example dominated by material nonlinearities.

The paper is organized as follows. Introductory aspects on continuation methods are presented
in Section 2, where the formulation of the nonlinear finite element approximation is briefly presented.
The detection of critical points is discussed in Section 3 by introducing algorithmic aspects for
classifying bifurcations and limit points, while the technique for implementing branch-switching
is the subject of Section 4. Geometric and dissipative constraint equations are introduced in Section 5,
and an overview of the method is provided in Section 6. The application of the method to a set of
nonlinear problems is illustrated in Section 7, where test cases involving geometrically and materially
nonlinear responses are presented.

2. Preliminaries

Continuation methods are a class of numerical techniques for computing the approximate solution
of a system of parametrized nonlinear equations [19,20]. Denoting with λ̃ the quantity adopted for the
parametrization, the procedure consists in constructing an approximation xi of x(λ̃i) for a sequence of
parameter values λ̃1, . . . , λ̃N in the interval of definition of the parameter itself.

Within the context of the finite element approach, the nonlinear equilibrium equations of
a structure can be represented, in their general form, as:

fint(a)− λf̂ = 0 (1)
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where fint defines the vector of the internal forces, and f̂ provides the shape of the external forces.
Nodal displacements are denoted as a, while λ is the load parameter.

The system of Equation (1) can be seen in terms of continuation techniques after noticing that the
set of equations defines implicitly a curve c of solution points that can be continuously parametrized
by means of the parameter λ̃. Starting from an initial equilibrium solution condition defined by
[a0, λ0]—which, in turn, corresponds to an initial value λ̃0 of the parameter λ̃—the continuation
problem consists in calculating the locus of solutions given by the branch c(λ̃). The process is
terminated when a target point is reached.

The choice of the parametrization is a focal aspect in the development of a continuation technique.
This choice is, in general, not unique and, according to its definition, different methods can be
obtained. One possibility is given by the adoption of the load factor λ, leading to a force-control
approach. Another choice consists in considering the displacements of a subset of nodes, which leads
to a displacement-based control. These two kinds of parametrization are inadequate for handling
turning points, where the surfaces λ = const and ai = const are tangent to the equilibrium path,
and no intersections can be found. On the contrary, a more suitable approach consists in adopting
a parametrization that is always nearly orthogonal to the equilibrium path, so that an intersection
between the surface and the path is always ensured. This is the case of a parametrization based
on the arc-length of the curve s [24]. By introducing a parametrization based on s, the load factor
λ becomes an additional unknown and a scalar constraint equation must be added to Equation (1).
The augmented system is then obtained as:

H =

{
fint(a)− λf̂ = 0

g(a, λ, s) = 0
(2)

where g(a, λ, s) is the general expression of the additional constraint equation.
Starting from the initial solution [a0, λ0], the equilibrium path c(s) can be regarded as the solution

of the initial value problem obtained by differentiating the augmented system in Equation (2) with
respect to s:

dH(c)

dc
c′ = 0, ‖ c′ ‖= 1, c(0) = [a0, λ0] (3)

where (·)′ denotes the derivative with respect to the path parameter s.
The solution of Equation (3) can be achieved by using predictor-corrector techniques:

the differential problem is initially integrated coarsely, then an iterative method is used as a stabilizer
for solving locally H(c(s)) = 0.

It is worth observing that predictor-corrector continuation methods are considerably different if
compared to the predictor-corrector techniques for the numerical integration of initial value problems.
In fact, despite the similarity between the two strategies, the corrector process in the continuation methods
thrives on the powerful contractive properties of the solution set H−1(0) for iterative methods such as Newton’s
method [21]. This property is not valid for the solution curves of general initial value problems, where
the corrector process converges, in the limit, to an approximating point, whose quality depends on the
size of the step.

One can observe that the system of Equation (3) involves the presence of derivatives with respect
to the parameter s, which is one of the main differences between arc-length and continuation methods.
This is an essential feature of continuation methods and allows to easily detect critical points along
the equilibrium path and to trace bifurcation branches. The main drawback is given by the need for
solving a linear system for computing the derivatives, and to perform an eigenvalue decomposition
for detecting critical points.

With this regard, the development of a continuation algorithm capable of tracing the complete
bifurcation diagram relies on the definition of:
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• a method for detecting and computing critical points, and capable of distinguishing between limit
and bifurcation points

• a method for moving from the primary path to a bifurcational branch
• a strategy to follow the equilibrium path along the solution branches

Different continuation methods can be realized by referring to different parametrizations and
constraint equations. The performance of the method can be modified by adopting different strategies
to perform the prediction or the correction. In addition, a consistent number of procedures can be
adopted to perform branch-switching or detect critical points. As result, it is possible to create a wide
range of methods characterized by different performance.

In the implementation proposed here, critical points are detected looking at the positive
eigenvalues of the stiffness matrix, while their classification is based on the analysis of the stiffness
parameter; the eigenvector injection method is adopted for switching from the primary to the
bifurcational path, while a novel energy-based path-following technique is proposed for performing
the continuation.

3. Critical Points

In this section, the procedure for detecting and approximating the critical points is described.
Critical points are equilibrium points corresponding to the singularity of the tangent stiffness matrix K.
According to the theory of stability of conservative systems, the stability of an equilibrium configuration
is ensured by the positive definiteness of the quadratic form Q, defined as:

Q(a) =
1
2

aTKa (4)

where K is the tangent stiffness matrix. The transition state between a stable and an unstable
equilibrium configuration is characterized by the appearance of a singularity in the matrix K. It follows
that critical points define the limits of stability of the equilibrium path. The k-th critical point can be
defined by means of the following generalized eigenvalue problem:

(K − ωkI)vk = 0 (5)

where ωk and vk are the k-th eigenvalue and eigenvector of the stiffness matrix, respectively, whereas I

is the identity matrix.
The eigenvalues ωk are supposed to be arranged according to the sequence

ω1 ≤ ω2 ≤ · · · ≤ ωN (6)

where N is the dimension of the stiffness matrix. When the critical state is reached, one or more
eigenvalues ωk in the sequence of Equation (6) are zero.

Critical points can be divided into limit and bifurcation points. In particular the following two
conditions are considered: {

λ′ = 0, Limit Point

f̂Tvk = 0, Bifurcation Point
(7)

The first condition of Equation (7) states that the load does not vary with respect to the path
parameter in the neighborhood of a limit point. This also means that limit points are equilibrium
configurations associated with a local maximum or minimum of the applied load. In most cases, limit
points separate stable and unstable equilibrium paths, although this is not a rule. The presence of
a limit point is commonly associated with snap-through phenomena, causing sudden snaps to a stable
configuration and not adjacent to the original one. In the neighborhood of limit points there exists one
unique branch, thus no further equilibrium branches need to be traced.
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On the contrary, multiple equilibrium configurations exist in the neighbourhood of a bifurcation
point, each of these solutions belonging to a different equilibrium branch and characterized by a
different tangent. During the solution process, it is then necessary to distinguish between limit and
bifurcation points to establish whether the continuation should be carried out along the emanating
branches or not. For this purpose, a procedure based on the evaluation of the stiffness parameter Sp

is adopted.

3.1. Stiffness Parameter

The stiffness parameter is a scalar quantity defined as [26]:

Sp =
da
dλ |T0 f̂

da
dλ

T
f̂

(8)

where the subscript 0 defines the initial state.
The value of Sp provides a relative measure of the incremental stiffness along the direction in

which the solution is moving. During the incremental solution process, this parameter is computed
through substitution of the increments into the derivatives, leading to the incremental expression:

Sp =
1

Δλ0
ΔaT

0 f̂

1
Δλj

ΔaT
j f̂

=
Δλj

Δλ0

ΔaT
0 f̂

ΔaT
j f̂

(9)

where Δa0 and Δλ0 are the increments computed in the first load step, and Δaj and Δλj are the total
increments computed at the current load step. As seen from Equation (9), the initial value of Sp is equal
to one. Whenever the structure loses stiffness with respect to the initial value, viz. ΔaT

j f̂ > ΔaT
0 f̂ and

Δλj < Δλ0, the parameter Sp becomes smaller than one. On the other hand, if the structure undergoes
a stiffening response, i.e., ΔaT

j f̂ < ΔaT
0 f̂ and Δλj > Δλ0, Sp is greater than the unity. Furthermore, the

stiffness parameter is positive on stable equilibrium branches and negative on unstable branches. As a
matter of fact, Sp turns out to be negative for unstable branches because, in such cases, the increment
of the load parameter is negative.

An important feature of the stiffness parameter is that, in correspondence of the limit points,
it satisfies the condition:

Sp = 0 (10)

as implicit in the definition of limit point itself. On the other hand, the relative stiffness is different from
zero in the presence of a bifurcation point and, after crossing the point, the sign of Sp does not change.

It is worth observing that the condition of Equation (10) is hardly met during the numerical
solution of the problem, as the solution is computed for a discrete set of points only. For this reason,
the detection of the limit point is performed referring to a numerical approach, described in the next
section, for checking the condition given by Equation (10).

3.2. Detection and Classification

Among the various strategies for the computation of critical points [23,25], the approach proposed
here is based on the analysis of the sign of the eigenvalues of the tangent stiffness matrix. This approach
is simple and robust, and is associated with a relatively small computational effort. It is preliminarly
assumed that the eigenvalues of K are well separated, which implies that multiple or clustered
bifurcations cannot be handled.

The tangent stiffness matrix K of a structure, evaluated in its initial, undeformed state, is a positive
definite quantity. When a critical point is reached, one eigenvalue, at least, becomes null and, just after
crossing the point, the eigenvalue becomes negative. Based on this consideration, it is straightforward
to implement the condition:

sign(ωk(si)) �= sign(ωk(si−1)) (11)
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The critical points subsequent to the first one are captured by monitoring the sign of the lowest
positive eigenvalue. In particular, the following condition is employed:

Npos(si) < Npos(si−1) (12)

where Npos is the number of positive eigenvalues of the tangent stiffness matrix K.
This strategy is particularly simple as the counting of the positive eigenvalues of K is just needed.
Once a critical point is detected, the classification between limit and bifurcation points relies upon

the valuation of the stiffness parameter (see Equation (10) as outlined in the pseudo-code reported
in Algorithm 1.

Algorithm 1 Classification of critical points.
if sign(Sp(si)) �= sign(Sp(si−1)) then

Critical point = Limit
else if sign(Sp(si)) = sign(Sp(si−1)) then

Critical point = Bifurcation
end if

Note, si−1 and si are the values of the path parameter s just before and just after the critical point,
respectively. The criterion summarized in Algorithm 1 is based on the fact that the stiffness parameter
undergoes a change of sign whenever a limit point is crossed. Hence, the critical point is a limit point
if a change of sign is detected in Sp, otherwise it is a bifurcation point.

3.3. Approximation

Once critical points are identified and classified, an approximation of the critical state is needed.
In continuation methods, bifurcation points are used as initial solutions for tracing bifurcation branches.
It follows that the quality of the prediction affects the convergence of the solution along the bifurcation
branches. An accurate prediction is then sought. On the other hand, the requirements on the accuracy
of the limit point predictions are less strict, as no equilibrium branches emanate from them.

Based on these observations, limit points are determined by means of a linear approximation
seeking for the zero of Sp(s). Given the quantities Sp(si−1), Sp(si), the linear approximation reads:

Sp(s) = Sp(si−1) +
Sp(si)− Sp(si−1)

Δλ
[λ(s)− λ(si−1)]

a(s) = a(si−1) +
Δa

Δλ
[λ(s)− λ(si−1)]

(13)

where si−1 and si are the values of the path parameter in the converged equilibrium points before and
after the critical point, respectively, and:

Δλ = λ(si)− λ(si−1)

Δa = a(si)− a(si−1)
(14)

Setting Sp(s) = 0 in Equation (13), and denoting with an asterisk the critical state, the critical load
λ(s∗) = λ∗ is obtained as:

λ∗ = λ(si−1)− Δλ

Sp(si)− Sp(si−1)
Sp(si−1) (15)
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while the deformed configuration a(s∗) = a∗ is obtained after substituting Equation (15) into the
second of Equation (13), and is obtained as:

a∗ = a(si−1) +
Δa

Δλ
(λ∗ − λ(si−1)) (16)

This strategy is fast and tends to guarantee satisfactory precision for obtaining an estimate of the
limit points.

Regarding the approximation of the bifurcation points, an iterative procedure is implemented to
achieve improved accuracy. It is based on the polynomial approximation of the critical point x̃(s∗),
and seeks the zero of ωk(s). In turn, the polynomial approximation is obtained through a Taylor
expansion of ωk(s) as:

ωk(s) = ωk(si) + ω′
k(si)(s − si) (17)

where si corresponds to the value of the path parameter at the converged equilibrium solution before
the critical point.

A first estimate of the critical state x̃∗ = x̃(s∗), relative to the point x̃(si), is given by:

x̃∗ = x̃(si) + x̃′(si)Δs∗ (18)

where the vector of the unknowns x̃ and its derivative x̃′ are defined as:

x̃ =
{

aT λ
}T

x̃′ =
{

a
′T λ′

}T
(19)

and:

Δs∗ = s∗ − si = −ωk(si)

ω′
k(si)

(20)

and:

ω′(si) ∼= ω(si)− ω(si−1)

si − si−1
(21)

Improved robustness can be achieved by modifying Equation (18) as:

x̃(si+1) = x̃(si) + ηΔs∗x̃′(si) (22)

where η is a scale factor, chosen while keeping in mind that small values are associated with high
accuracy, but high costs, while the opposite holds for high values of η. In the present study, a proper
tradeoff between quality and computational costs was found by taking η equal to 0.1.

A new value of ωk, corresponding to the point x̃(si+1), can be computed and, according to
Equations (18) and (20), a new estimate of x̃∗ and Δs∗ is also available. The procedure is repeated until
convergence is met according to the criterion:∣∣∣∣Δs∗

Δs0

∣∣∣∣ ≤ tolΔs (23)

where Δs0 is the step length adopted to start the analysis, where tolΔs is the tolerance defined by the
user. Based on an extensive set of preliminary investigations, a value of tolΔs = 5 × 10−3 is set by
default in the algorithms proposed in this work. To prevent excessively long loops, the criterion of
Equation (23) is accompanied by a check on the maximum number of iterations.

4. Branch-Switching Method

After detecting the critical points, a numerical strategy is needed to compute the initial solution,
which is then used to start the continuation procedure along the bifurcation branches. An extensive
review of branch-switching methods is available in [25]. In the present method, the eigenvector
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injection method is adopted. It relies on the idea of perturbing the configuration at the critical state by
using the eigenvector vk associated with the eigenvalue ωk(s∗) = 0 [27].

The perturbation is introduced according to:

a0 = a∗ + ξ
vk

‖ vk ‖ (24)

where ξ is a scale factor defined as:

ξ = ±‖ a∗ ‖
τ̃

(25)

and τ̃ is a scalar variable prescribed by the user and referred to as buckling mode scale factor, while
the sign of ξ determines the side of the bifurcation branch to be traced.

The initial solution is completed by:
λ0 = λ∗ (26)

The tangent vector in [a0, λ0] is approximated as:

a′0 = sign(ξ)
vk

‖ vk ‖ (27)

λ′
0 = 0 (28)

After computing the initial solution, it is possible to start the continuation process, and the
equilibrium points along the branch are so identified.

It is highlighted that a proper choice of τ̃ is needed for guaranteeing convergence on the desired
branch. If this value is too small, the eigenvector injection method is likely to diverge, whereas a too
large value may determine a perturbation size incapable of deviating the solution on the bifurcation
branch, and the continuation process is likely to converge on the primary path again [27].

Usually, suitable values of τ̃ are in the range between 10 and 100. However, no general rules exist
for properly selecting the value of τ̃, and a trial and error strategy is, generally, the only viable solution.

To deal with this problem, it is necessary that the branch-switching algorithm allows the restart of
the analysis of the bifurcation branch with a different value of τ̃.

5. Path-Following Continuation Technique

In most cases, continuation techniques are developed by adopting a geometric constraint in
Equation (2), an example of which is given by the Riks continuation technique [24]. This kind
of constraint is well-suited for those problems dominated by nonlinearities of geometric type.
On the contrary, the adoption of a geometric constraint can be source of convergence difficulties
whenever the nonlinearities are mainly due to the material response that would lead to localized
failure [16]. For instance, this is the case of delamination phenomena, where the strain field is localized
in the surroundings of the crack tip. It follows that geometric constraints based on global quantities
can be inadequate to capture the deformation process.

Starting from a recent arc-length technique proposed by the authors [17], the continuation
technique proposed here tries to overcome the above mentioned difficulties by adopting a modified
version of the Riks technique in conjunction with an approach based on the evaluation of the dissipated
energy, as outlined in the next sections.

5.1. Modified Riks Method

The modified Riks continuation method is a modified version of the technique described in [24]
and relies on a constraint equation involving the displacement vector a and its derivative a′.

As opposed to original implementation proposed by Riks, the equation is adopted here in a
modified form, where the contribution due to the load parameter is prevented from entering the
equation. In particular, the constraint equation is formulated as:
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g(a, s) = a
′T
1 (a − a1)− (s − s1) = 0 (29)

where a1 denotes an equilibrium point on the path, while s1 is the value of the arc-length at this point;
the terms a defines an arbitrary point on the surface defined by the constraint equation.

An extensive set of preliminary analyses revealed that Equation (29) offers the main advantage of
preventing the doubling back of the solution, a problem often encountered when adopting the classical
Riks formulation.

The continuation procedure is performed referring to a predictor-corrector technique, where the
increments Δa and Δλ are decomposed as:

Δa = Δaj + da , Δλ = Δλj + dλ (30)

where Δa and Δλ are the total increments at the current step, Δaj and Δλj are the iterative increments
at the last iteration j, and da and dλ are the iterative increments referred to the current (j + 1)iteration.

The predictor solution is computed according to:

Δa0 = a1 + a′1Δs Δλ0 = λ1 + λ′
1Δs (31)

The corrector phase is performed referring to the Newton’s method, which is applied to solve the
augmented system of Equation (2) using Equation (29) as constraint, so:{

Kda − f̂dλ = r

a′1Δa = Δs
(32)

where r is the residual at the end of the j-th iteration, defined as:

r = Δλj f̂ − fint(Δaj, Δλj) (33)

Substituting Equation (30) in Equation (32), the iterative increments da and dλ are obtained as:

da = aIdλ + aI I (34a)

dλ = −a
′T
1 aI I

a
′T
1 aI

(34b)

having assumed that Δs ≈ a
′T
1 Δaj, and

aI = K−1f̂ aI I = K−1r (35)

It is worth noting that Equation (34)b resembles the expression of dλ of the Riks arc-length
method [24]. However, the two equations differ in the term a′1 of Equation (34)b, viz., the derivative of
the displacement vector in the last converged equilibrium point, which is replaced by the displacement
increment of the predictor step Δa1 in the Riks formulation.

To gather insight into the constraint equation developed here, it is possible to compare
Equations (34)b and (29), and re-write the constraint as:

a′1
Tda = 0 (36)

The expression of Equation (36) defines a hyperplane in the subspace of displacements, which
is normal to the vector a′1. In addition, Equation (36) can be thought as the projection of the Riks
constraint equation onto the subspace of displacements.
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After reaching convergence, the tangent vector x̃′ = [a′, λ′] is computed by solving the linear
system obtained from the differentiation of Equation (32) with respect to s. The linear system is
derived as: {

Ka′ − f̂λ′ = 0

a
′T
1 a′ − 1 = 0

(37)

The vector [a′, λ′] defines the direction of the tangent vector, but not its orientation [22]. To this
aim the scalar β is introduced as:

β =
ΔaTa′

‖ ΔaTa′ ‖ (38)

On the basis of the sign assumed by β, the orientation is defined by reversing x̃′ when β < 0 .
This criterion imposes that the tangent vector points towards the direction that forms an angle smaller
than 90◦ with respect to the last computed displacement increment Δa.

5.2. Dissipated Energy Method

The adoption of a purely geometric constraint equation can be inadequate for analyzing those
probelms characterized by material nonlinearities, especially in the presence of strain-softening
responses. To overcome these difficulties, a second constraint, to be used in conjunction with the
previous geometric one, is introduced.

The method makes use of the energy release rate G. In the context of the finite element
approximation, it is obtained as [16]:

G =
1
2
(
λȧT − λ̇aT)f̂ (39)

where the symbol ˙( ) denotes differentation with respect to time.
Applying a forward Euler approximation of Equation (39), the expression of the energy dissipated

in the current step, Δτ, is obtained as:

Δτ = (τ − τ1) =
1
2
(
λ1ΔaT − ΔλaT

1
)
f̂ (40)

where τ is the total dissipated energy and τ1 the amount of energy dissipated up to the last converged
equilibrium condition. From inspection of Equation (40), a constraint equation for the continuation
method can be derived as:

g(Δa, Δλ) =
1
2
(
λ1ΔaT − ΔλaT

1
)
f̂ − (τ − τ1) = 0 (41)

where the parametrization is now performed with respect to the parameter τ, i.e., the dissipated energy,
instead of the arc-length s. More specifically, the constraint specified by Equation (41) imposes that the
energy dissipated in the current load step is equal to the amount (τ − τ1).

As done for the modified Riks continuation, a predictor-corrector method is employed for solving
the governing equations. However, derivatives are now taken with respect to the parameter τ.
The predictor step is then:

Δa0 = a1 + a′1Δτ Δλ0 = λ1 + τλ′
1Δτ (42)

while the corrector phase is based upon the Newton solution of Equation (2) together with Equation (41),
leading to the linearized system: {

Kda − f̂dλ = r
1
2 λ1Δa − 1

2 aT
1 Δλ = Δτ

(43)
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By substituting Equation (30) into Equation (43), the system can be represented in matrix form as:[
K −f̂

hT w

]{
da

dλ

}
=

{
r

−g1

}
(44)

where:
hT =

∂g
∂a

w =
∂g
∂λ

(45)

and:
g1 = g (Δa1, Δλ1) (46)

The iterative increments da and dλ are computed from Equation (44) applying the
Sherman–Morrison formula [16]):{

da

dλ

}
=

{
dI
−g1

}
− 1

hTdI I − w

{
(hTdI + g1)dI I

−hTdI − g1(1 + hTdI I − w)

}
(47)

where the terms dI and dI I are the solutions of the following linear systems:

KdI = r, KdI I = −f̂ (48)

After reaching convergence, the tangent vector [a′, λ′] is computed through the solution of the
linear system obtained by taking the derivative with respect to τ of Equation (43):{

Ka′ − f̂λ′ = 0
1
2 λ1a′Tf̂ − 1

2 λ′aTf̂ − 1 = 0
(49)

As observed in the previous section, the orientation of the tangent vector is not available from the
solution of Equation (49), and the evaluation of the parameter β of Equation (38) is thus performed.

5.3. Switching from Geometric to Dissipation-Based Constraints

Aiming at combining the advantages (and ranges of employment) of the techniques previously
outlined, a single continuation approach is developed based on the geometric and dissipation strategies.
As a matter of fact, the strategy based on the dissipated energy cannot be adopted in the context
of purely elastic conditions, as it would fail to converge to the equilibrium solution. Similarly,
convergence issues could arise when the modified Riks approach is adopted in the presence of
damage phenomena. For this reason, the two approaches are combined referring to amount of energy
dissipated. In particular, two threshold values are defined, namely Δτswitch and Δτsback.

The analysis is started by adopting the modified Riks continuation method to trace the first load
steps, which are always elastic, provided their size is chosen to be sufficiently small. When the energy
dissipated in the current step exceeds Δτswitch, the dissipative continuation technique is activated.
Then, as soon as the energy dissipated during the current step falls below Δτsback, the solution strategy
is switched back to the modified Riks continuation. In absence of specific motivations, the two
thresholds can be generally be taken equal each other. The approach is summarized in Algorithm 2.

Algorithm 2 Switch between two continuation techniques.

if Δτ ≥ Δτswitch then

Dissipative Method
else if Δτ < Δτsback then

Modified Riks Continuation Method
end if
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It is remarked that the adoption of the two mentioned strategies determines the presence of a
double parametrization, as the modified Riks continuation method is parametrized with respect to the
arc-length s, and the dissipated energy constraint equation relies on the parameter τ. This peculiarity
may be source of difficulties whenever a critical point is detected between two equilibrium points
computed by means of different strategies (e.g., one adopting the modified Riks continuation method
and the other adopting the dissipative procedure). This aspect has to be carefully monitored during
the solution process, and possible critical points so obtained should be recomputed.

6. Implementation

To clarify the various steps involved in the solution process, an overview of the method is
provided in the flowchart of Figure 1. The relevant equations adopted at each steps are reported by
observing that they vary according to the continuation strategy currently active – this can be either the
modified Riks or the dissipation-based method.

Continuation

Predictor

Corrector

Compute DE

Tangent computation
- Compute tangent vector
- Define tangent orientation

Critical point detection
- Compute eigs of K
- Compute Npos
- Compute Sp
- Extimate critical point

Critical point
approximation

Method = DE update Δs Method = Riks update Δτ

Check convergence Branch continuation

Terminate

while err<tol

if Npos < Npos,old

if method = Riks if method = DE

if Δτ > Δτswitch else if Δτ < Δτsback else

if conditions are met

Figure 1. Flowchart of the continuation procedure.

At the beginning of the procedure, the modified Riks method is set by default, so all the equations
reported henceforth are those relative to the Riks approach during the first loop. The initial predictor
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step is performed on the basis of Equation (31) or (31), while Newton-Raphson iterations are repeated
during the corrector phase referring to Equation (37) or (43). The procedure is arrested when the error
is below the threshold defined by the tolerance. The successive step consists in the evaluation of the
dissipated energy, which is used subsequently to define the continuation algorithm. The evaluation of
the tangent vector requires the solution of the linear systems according to Equation (37) or (49), while
the parameter β of Equation (38) is adopted for defining the orientation.

The successive phase consists in detecting the critical points, which is performed by evaluating
the eigenvalues of the stiffness matrix K. Depending on the number of positive eigenvectors and the
value of the stiffness parameter, it can be established whether a critical point is obtained, and its nature,
i.e., bifurcation or limit. After detecting a critical point, the approximation procedure is activated
following the procedure outlined in Section 3.3.

The method to be used in the subsequent step is defined by comparing the dissipated energy
Δτ with the threshold values defined by the user. In the presence of dissipation phenomena, the
method is set as DE, otherwise the Riks continuation is maintained. Note that the switch between the
two strategies is controlled by the algorithm outlined in Algorithm 2.

The step length is finally updated following the approach presented in Ref. [17], and convergence
is finally checked. Whenever one or more bifurcation points are detected throughout the iteration
process, the continuation along the secondary equilibrium path is performed.

7. Results

In this section, the continuation strategy is applied to the analysis of problems involving both
geometric or material nonlinearities. These kind of nonlinearities can be present independently or in
combination. All the simulations are performed using the open source finite element code PyFem [29],
that was used as underlying framework for implementing the numerical procedure. The elements used
for the analyses are nonlinear four-node, plane-strain continuum elements. To model delamination
phenomena, the cohesive element proposed by Camanho et al. [30] was implemented in PyFem. Mesh
sizes were defined on the basis of preliminary convergence studies. In those analyses involving the
use of cohesive elements, the mesh size was chosen to guarantee a proper description of the process
zone, referring to the length lp defined by [31,32]:

lp = γ
EGc

N2 (50)

where γ is a scalar nondimensional parameter, here taken as 0.884, E denotes the Young’s modulus,
Gc is the fracture toughness in mode I, and N is the interfacial strength.

It is noted that the ability of the method to converge to the correct solution and to successfully trace
the bifurcation diagrams is strongly affected by the choice of the parameter τ̃. To this aim, preliminary
tests were carried out to properly choose the value of the parameter.
The section of results is organized as follows. Two preliminary test cases, an axially compressed
column and a simple one-degree-of-freedom (one-DOF) problem, are discussed in Sections 7.1 and 7.2
to illustrate the application of the method to geometrically nonlinear problems. The application of
the continuation approach is then presented for two problems, a beam and an arch embedding initial
cracks, in Sections 7.3 and 7.4, where materially nonlinear responses are of concern. Bifurcation
plots are presented for these two cases, and the robustness of the approach is illustrated against an
alternative formulation based on a purely geometric constraint equation. Finally, the procedure is
presented as a mean for solving quasi-static problems for a relatively complex nonlinear example,
a perforated beam loaded in mode I, which is discussed in Section 7.5.

7.1. Subcritical Bifurcation (One-DOF Problem)

This first example deals with the nonlinear response of a simple 1-DOF problem characterized
by the presence of a sub-critical bifurcation point. It follows that equilibrium branches emanating
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from the bifurcation are, in this case, unstable. The structure is composed by a rigid truss and a linear
spring, as illustrated in Figure 2. The length l is equal to 10 mm, while the stiffness of the spring is
kg = 100 N/mm. An horizontal load of intensity P is applied at the free end of the rigid bar.

Figure 2. Sketch of the truss-spring system.

The numerical model is obtained by using a linear spring element and truss with a very high
stiffness value to simulate the ideal infinite value.

The numerical predictions obtained with the proposed continuation method are compared with
the analytical solution of the problem, which is given by:

P(θ) = kgl cos (θ) (51)

where θ is the rotation angle and P the applied load. The results are summarized in Figure 3.

Figure 3. Bifurcation plot for the spring-truss example.

As observed, perfect matching is achieved when comparing the analytical and the numerical
solution. The continuation procedure correctly identifies the overall bifurcation plot, and provides an
accurate description of the three equilibrium paths emanating from the bifurcation point. Note that
the solution process is carried out without activation of the dissipative continuation technique as the
response is purely elastic.

7.2. Supercritical Bifurcation (Axially Compressed Column)

The second assessment regards the analysis of a column subjected to a compressive end load.
The bifurcation is defined as supercritical as both sides of the bifurcation branch are locally stable
equilibrium paths characterized by increasing values of the load factor [23]. A sketch of the structure is
provided in Figure 4. The column is fixed at one end and free at the second one, while a concentrated
force is applied at the free end. The overall length l is equal to 10 mm and the thickness h is 1 mm.
An isotropic homogeneous material of modulus E = 230 GPa and ν = 0.25 is assumed. Ten finite
elements are used for discretization.
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Figure 4. Cantilever beam with end compressive load.

The problem does not involve any kind of dissipative phenomena, so the modified Riks
continuation approach is maintained throughout the solution process. The results are compared
against those obtained by using the Crisfield arc-length approach, whose implementation in the PyFem
code was already assessed in Ref. [17]. It is worth noting that the Crisfield method is not developed for
tracing bifuraction diagrams in one single run. For this reason, two distinct nonlinear analyses were
performed by assuming initial imperfections with opposite sign and shape equal to the first buckling
mode. On the contrary, the continuation method allows to plot the bifuraction diagram in one single
run, with no need for introducing initial imperfections.

The results are summarized in Figure 5, where the axial displacement of the bottom-most corner
of the column is reported against the axial load.
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Figure 5. Bifurcation plot for axially compressed column.

The close matching with the results obtained using the Crisfield method demonstrates the ability
of the continuation method to deal with the solution of equilibrium branches arising from supercritical
bifurcation points.

In addition, the quality of the prediction can be noted by inspection of the region in the
neighborhood of the bifurcation. As seen from the zoom of the plot, the continuation approach
provides a precise description of the equilibrium branches departing from the critical point. In contrast,
the Crisfield approach undergoes small oscillations, and convergence to spurious equilibrium
configurations is observed in proximity of the bifurcation. Again, it is remarked that no initial
imperfections are needed within the context of the continuation approach, so the bifurcation is
precisely detected.

7.3. Beam Containing an Initial Crack

Previous test cases are restricted to geometrically nonlinear phenomena, and material
nonlinearities are not accounted for. In the example presented here, a beam containing an initial
delamination is considered and the propagation of the crack is accounted for by making use of cohesive
elements characterized by a bilinear cohesive law. Further details regarding the implementation of
these elements in the PyFem code are available in [33]. A sketch of the structure is reported in Figure 6.
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Figure 6. Beam with initial crack.

The beam’s length and thickness are denoted with l and h, respectively. The central portion of the
beam is characterized by the presence of an initial crack, whose length is equal to a. The material is
isotropic with modulus E = 230 GPa and Poisson’s ratio 0.25, and a plane strain constitutive law is
assumed.

The structure is hinged at the bottom left vertex, while the translation along the direction normal
to the beam axis is constrained at the bottom right end. The load is introduced in the form of
a compressive force per unit length of magnitude p.

As seen from Figure 6, the structure is divided into two equal parts with respect to the midline
running parallel to the beam axis. The two outer portions are connected by means of two layers
of cohesive elements. The fracture toughnesses in mode I and II are taken as 0.5 N/mm, while
the interfacial strengths are fixed at 1.0 N/mm2. The penalty stiffness of the cohesive elements is
5000 N/mm3.

The centrally located pre-damaged area is simulated by means of cohesive elements with reduced
properties, whose aim is to avoid interpenetration between the upper and lower parts of the structure
during the deformation process [32].

The finite element model is composed of 200 nonlinear shell elements and 20 cohesive elements.
Note, the mesh size is chosen in order to guarantee the presence of 4/5 elements in the process zone,
whose size is estimated referring to Equation (50).

In the first part of the procedure, the primary equilibrium path is computed. Starting from the
undeformed configuration, the load is progressively increased, and the corresponding equilibrium
points are found. During this first phase, the eigenvalues of the stiffness matrix are determined at each
step of the iterative process, and the presence of critical points is verified. Whenever a critical point is
detected, it is approximated referring to the procedure outlined in Section 3, depending on whether
it is a limit or a bifurcation point. As an example, the initial part of the primary path is reported in
Figure 7a, just after the detection of the first bifurcation point. The procedure is then switched to the
continuation procedure, and the tracing of the equilibrium path restarts from the last equilibrium point
available. The complete primary path up to a load of 300 N is presented in Figure 7b together with the
four bifurcation points detected.
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Figure 7. Primary equilibrium path: (a) detection of the first critical point, (b) full equilibrium path.
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As reported in Figure 7b, the primary path is characterized by an almost linear behaviour,
consisting of a progressive shortening of the beam with no bending deflections. After the first
bifurcation point, the primary equilibrium path becomes unstable. However, the absence of initial
imperfections and the symmetry of the problem make its computation possible. It is also noted that no
damage phenomena are associated with this primary equilibrium configurations.

In the second phase of the solution process, the equilibrium branches departing from the
bifurcation points are computed. The branch associated with a positive sign of the first buckling
mode is plotted in Figure 8a, while the branch obtained by assuming a negative sign is reported in
Figure 8c. The two corresponding deformed shapes are presented in in Figure 8b,d, respectively.
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Figure 8. Computation of the first bifurcation branch: (a) positive side of the branch, (b) corresponding
deformed shape, (c) negative side of the branch, (d) corresponding deformed shape.

In a similar fashion, the procedure is repeated for all the bifurcations points. The results of Figure 9
illustrate the force-displacement curves and the corresponding deformed shapes during the evaluation
of the fourth equilibrium branch.

The curve of Figure 9c corresponds also with the complete bifurcation diagram, comprehensive
of all the equilibrium paths departing from the bifurcation points detected.
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Figure 9. Computation of the fourth bifurcation branch: (a) positive side of the branch, (b) corresponding
deformed shape, (c) negative side of the branch, (d) corresponding deformed shape.

A summary of the deformed configurations obtained at the end of the loading process along the
four equilibrium branches is reported in Figure 10.

From Figure 10 it can be noted that all the deformed shapes but the third one exhibit the typical
buckled pattern of pristine beams. In this case, the deformed configurations are characterized by one to
three half-waves, and a partial damaging of the cohesive elements is observed due to the shear transfer
mechanism between the upper and lower portion of the beam. As result, the fracture is dominated
by a mode II mechanism. As observed from Figure 9c, the corresponding load-deflection curves are
associated with a slight drop of load just after the bifurcation point, motivated by the contemporary
onset of the buckling half-waves and damage mechanism in mode II. Afterwards, no additional load is
carried by the structure, and the shortening happens at a constant load level.

A different response is observed for the third equilibrium branch, whose post-buckled pattern is
reported in Figure 10c. In this case, the damage mechanism is governed by mode I component, with a
clear opening between the upper and lower portions of the structure. The propagation is unstable and
sudden, and is responsible for a drastic drop of load, not clearly visible from the complete bifurcation
diagram. For clarity purposes, the force-displacement curve is reported in Figure 11 by restricting
the plot to the third equilibrium branch, where the collapse induced by the onset of the buckling
phenomenon can be fully appreciated.
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(a) (b)

(c) (d)

Figure 10. Post-critical deformed shapes along the equilibrium paths 1 to 4: (a) path 1, (b) path 2,
(c) path 3, (d) path 4.
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Figure 11. Detail of the force-displacment curve for the equilibrium branch 3.

The unloading phase happens in a steep manner, along a path which is close, but distinct, from
loading one. After the drop of load, all the cohesive elements are completely damaged, thus the
solution is arrested.

It is interesting to investigate the performance of the method in terms of number of iterations
along the equilibrium branches previously considered. The results are summarized in Table 1 with
regard to two different solution procedures. In one case, denoted with hybrid, the procedure refers
to the combined geometric-dissipative approach summarized in Figure 1; in the other case, denoted
with geometric, the dissipative constraint is removed, and the procedure is forced to adopt the purely
geometric Riks constraint. As far as the number of iterations is a function of the parameter τ̃ of
Equation (25), a preliminary assessment was performed to obtain the values of τ̃—reported in the
brackets—guaranteeing the smallest number of iterations.
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Table 1. Number of increments using different constraint equations. (τ̃ in the parenthesis).

Constraint N. of Incr. N. of Iter.

Primary Branch 1 Branch 2 Branch 3 Branch 4 Tot Tot
Hybrid 10 18 (10) 90 (10) 35 (50) 40 (20) 193 332

Geometric 15 40 (10) 22 (10) 38 (20) 31 (30) 146 150

As summarized in Table 1, the adoption of the dissipative constraint determines an increase
of the total number of iterations with respect to the modified Riks case. The increase is motivated
by the mainly geometric nature of the post-critical configurations associated with the equilibrium
branches 1, 2 and 4. In these cases, the sources of nonlinearity can be mostly attributed to the deflected
patterns, as seen from Figure 10, thus the advantages offered by a dissipation based-criterion cannot
be fully appreciated. On the contrary, the number of iterations is slightly smaller when the combined
dissipative-geometric constraint is adopted for tracing the third equilibrium branch, i.e., the one
characterized by the opening of the initial crack. While the comparison in terms of iterations seems to
suggest the adoption of a purely geometric constraint, it is important to notice that the quality of the
predictions in the two cases is not equal. In particular, the adoption of a geometric constraint tends
to determine relatively large increments, and the step size can be hardly controlled. It follows that
the equilibrium path is not accurately described. On the other hand, the adoption of a dissipative
constraint provides an excellent control of the step size, so enabling to trace the equilibrium branches
with improved degree of refinement.

7.4. Fixed-Fixed Arch

An additional example is discussed regarding the configuration illustrated in Figure 12.

Figure 12. Arch subjected to distributed pressure.

The structure is an arch characterized by a radius R equal to 10 mm, an arc-length angle θ of π/4
radians, and a radius-to-thickness ratio of 100. The material elastic properties are those considered
in the previous example. The two ends of the beam are fixed, while a uniformly distributed force
per unit length p is applied along the radial direction at the upper and lower surface of the arch,
as illustrated in Figure 6. In order to account for material nonlinear responses, a layer of cohesive
elements is introduced along the midline of the arch. In this case the fracture toughnesses in mode I
and II are 0.5 N/mm, while the interfacial strengths are equal to 15 N/mm2. The mesh is made of 100
nonlinear shell elements and 50 cohesive elements.

The bifurcation plot is presented in Figure 13 by reporting the nodal displacement of the central
upper node versus the nodal force applied at the same node.
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Figure 13. Bifurcation plot of the arch subjected to distributed pressure.

In this case, two critical points are detected along the primary path. The first one is a bifurcation
point, as seen from the equilibrium path emanating from it. The second one is a limit point, and
corresponds to a local maximum of the load carried by the structure. The primary path is now
characterized by a nonlinear behaviour, where a progressive reduction of the linear stiffness is observed.
No damage phenomena are observed along the major part of this path, as cohesive elements display
the initiation of damage mechanisms just in the surroundings of the limit point.

The secondary equilibrium branch is characterized by an unloading phase, associated with a
progressive failure of all the cohesive elements in mode II. From the curve of Figure 13, it can be
observed the step-wise shape of the secondary equilibrium path, which is related to the failure of
the interface elements. In any case, the layer of cohesive elements is distributed along all the overall
structure, thus the role played by dissipative phenomena is significant.

To further address the relevance of dissipative phenomena, a comparison is presented between
the performances achieved by considering the geometric-dissipative constraint, and those obtained
with a run based on the adoption of a purely geometric constraint. The number of increments and
iterations to complete the analysis are summarized in Table 2, where the optimal value of the parameter
τ̃ is reported in the brackets.

Table 2. Number of increments using different constraint equations. (τ̃ in the parenthesis).

Constraint N. of Incr. N. of Iter.

Primary Branch 1 Total
Hybrid 47 160 (20) 207 276

Geometric 47 160 (30) 207 445

In this test, the advantages offered by the use of the hybrid constraint are clearer. While the number
of increments along the two paths is, by chance, identical, the total number of iterations is much smaller
when the energy control is active. The reduction of iterations determines a gain of approximately 15%
in terms of computational time. In fact, the post-bifurcational response is dominated by the material
nonlinearities, so the control over the dissipated energy is the more efficient approach.

7.5. Perforated Beam

This final example illustrates the use of the continuation approach as a mean for solving
a nonlinear problem characterized by a complex response, where nonlinearites are due to geometric
and material behaviour. The numerical solution strategy is not used here for tracing the bifurcation
plot, but for obtaining the primary equilibrium path, as commonly done when solving a nonlinear
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quasi-static problem. The problem was analyzed using arc-length hybrid strategies in a previous work
form the authors [17].

The analysis regards the mode I opening of a cantilever beam characterized by the presence of five
equally spaced, square holes. The beam is loaded at the tip by means of two concentrated forces, as
indicated in Figure 14, where all the relevant geometric dimensions are reported. An isotropic material
is considered, with modulus equal to 1000 MPa and Poisson’s ratio 0.3.

Figure 14. Cantilever perforated beam: geometry and dimensions.

To capture the onset and the propagation of the crack, a layer of cohesive elements is introduced
along the horizontal line of symmetry of the structure. The fracture toughnesses in mode I and
II are equal to 0.01 N/mm, while the interfacial tensile and shear strength are taken as 1 N/mm2.
A penalty stiffness of 100 N/mm3 is assumed. The resulting finite element model is composed of 288
two-dimensional, plane-strain continuum elements, and 24 cohesive elements.

The curves reporting to the vertical displacement of the loaded nodes are plotted against the
applied load in Figure 15. The comparison is presented for two different strategies. In one case
the continuation method is applied as implemented, thus allowing the automatic switch between
geometric and dissipative constraint. In the second case the constraint is forced to be of purely
geometric, with the scope of illustrating the advantages due to the hybrid continuation approach
presented here.

�
(5
�

6

�

�

�

�

�

	




�

�



��

�(5��6

� � � � � 	

Figure 15. Force-displacement curve using different constraints.

As seen from the figure, the adoption of a purely geometric constraint leads to a premature failure
of the analysis, which terminates along the first descending branch of the curve. On the contrary, the
hybrid implementation is capable of capturing the subsequent portions of the equilibrium path. Note
that each sudden drop is due to the opening of the holes. After the first peak, a snap-back behaviour can
be observed, where a secondary snap characterizing the unloading phase. Indeed, a partial recovery of
the load-carrying capability is observed in the post-peak region, followed by another snap-back.
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The deformed shapes at the end of the analysis are reported in Figure 16.

(a) (b)

Figure 16. Deformed configuration at the end of the analysis by using: (a) geometric constraint,
(b) hybrid constraint.

While the initiation of the opening of the first crack coincides with the failure of the purely
geometric approach (Figure 16a), the improved robustness properties of the hybrid method are clearly
visible from Figure 16b.

It is useful to illustrate the comparison between the two strategies in terms of numerical
performance of the solution procedure, as done in Table 3.

Table 3. Summary of numerical performance for the perforated cantilever beam.

Constraint N. of Incr. N. of Iter. Step Cuts N. of Fully Damaged Coh. Els

Geometric 17 59 3 2
Hybrid 35 85 1 12

The results provide a clear picture of what highlighted by inspection of the force-displacement
response. In particular, the geometric continuation is capable of obtaining the solution in the initial
part of the curve, where 17 increments are performed. At the onset of the first crack, the step length
is reduced 3 times, demonstrating the difficulties experienced by the method to obtain the solution.
Then, after reaching the complete damaging of two cohesive elements, the analysis is terminated.

On the other hand, the hybrid strategy is capable of reaching the condition characterized by
a number of 12 completely damaged cohesive elements. No step length reductions are observed.
Clearly, the total time for the analysis and the number of increments are higher.

8. Conclusions

This work discussed the development and implementation of a numerical continuation
technique for analyzing structural problems characterized by geometric and material nonlinearities.
The continuation strategy can be successfully applied for detecting bifurcation and limit points as well
as tracing the equilibrium paths, which is a useful mean for gathering insight into the response of
the structure. For instance, the complete post-buckling behaviour can be assessed by performing one
single quasi-static analysis, with no needs to introduce initial imperfections in the finite element model.

The effectiveness of the current implementation was checked by means of illustrative examples,
where cohesive elements were employed for capturing the onset and propagation of cracks.
Main advantage of the approach is the robustness of the numerical solution strategy, which is
based upon a hybrid constraint equation that includes both geometric and dissipative considerations.
Thus crack propagation phenomena can be accurately predicted, whilst standard geometric-based
approaches tend to undergo converge issues. In addition, the method can be used as a technique
for solving quasi-static nonlinear problems, when the analysis of secondary equilibrium paths is not
of concern. The effectiveness of the approach was illustrated with a test case characterized by the
presence of sharp snap-backs, and secondary snap-backs. The analyst can benefit for the adoption of
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a unique, integrated solution scheme, which can be used for solving the structural boundary value
problem, as well as exploring multiple equilibrium paths with improved robustness.
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Abstract: The noise emitted by ships is one of the most important noises in the ocean, and the propeller
noise is one of the major components of the ship noise. Measuring the propeller noise in a laboratory,
despite the high accuracy and good reliability, has high costs and is very time-consuming. For this
reason, the calculation of propeller noise using numerical methods has been considered in recent years.
In this study, the noise of a propeller in non-cavitating conditions is calculated by the combination of
the panel method (boundary element method) and solving the Ffowcs Williams-Hawkings (FW-H)
equations. In this study, a panel method code is developed, and the results are validated by the
experimental results of the model tests carried out in the cavitation tunnel of the Sharif University of
Technology. Software for numerical calculation of propeller noise, based on FW-H equations, is also
developed and the results are validated by experimental results. This study shows that the results of
the panel method code have good agreement with experimental results, and that the maximum error
of this code for the thrust and torque coefficients is 4% and 7%, respectively. The results of the FW-H
noise code are also in good agreement with the experimental data.

Keywords: panel method; marine propeller; noise; FW-H equations; experimental test

1. Introduction

In recent years, the use of numerical methods has become very common in modeling the flow
around marine propellers. Although the experimental methods have a higher accuracy and reliability
than numerical methods, the higher costs and the need for special equipment has caused numerical
methods to be preferred.

The boundary element method (BEM) is one of the methods used to solve the governing equations
of fluid mechanics, acoustics, electromagnetics, etc. In this method, using mathematical theorems,
the equations from the interior of the solution domain are transferred to the boundaries of the domain.
Therefore, compared to other numerical methods such as finite element or finite volume method which
interior of domain should be considered, BEM exhibits less solution time and computation cost and
therefore it is preferred to other methods.

The panel method is one of boundary element methods. In this method, the surface of the body
is divided into small panels and a combination of source and doublets is distributed to each panel.
After calculating the strength of sources and doublets, velocity and pressure distribution on surface
panels can be obtained. For lifting bodies, a wake surface should be assumed at the trailing edge of
body, and the effect of panels of this surface on body panels should be considered.

In recent decades, the panel method has been widely used to solve the flow around the bodies,
especially marine propellers. A literature review shows that a lot of research has been done on the
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use of the panel method for the hydrodynamic analysis of objects. For instance, Hess and Smith [1],
in 1962, invented the panel method for analyzing the motion of three dimensional bodies in fluid.
The formulation of these researchers was presented for the arbitrary three dimensional bodies and
could not be used for lifting bodies. In 1972, Hess [2] developed this method for lifting bodies and
calculated the pressure distribution around an aircraft model and lift force. The panel method was
first used in 1985 by Hess and Valarezo [3] to model the flow around the ship propeller. In this study,
they obtained the pressure distribution around a propeller using quadrilateral panels and calculated
the thrust and torque coefficients. In 2010, Baltazar et al. [4] modeled cavitation around a propeller
using the panel method. The results of this study show that the panel method can model cavitation on
propeller blades with good accuracy. Also, several papers have been published between the years 1985
to 2010, but most have done similar work.

In 2010, Gaggero et al. [5] modeled the flow around the propeller using the panel method and
computational fluid dynamics. The results of the panel method show that this method has a good and
acceptable accuracy compared to the CFD method.

According to the importance of propeller noise, various methods have been proposed to reduce it.
Methods used to reduce the noise of marine propellers can be divided into two main methods, namely:

- Using equipment
- Modification of the geometry

Each of these methods is fully described in a review paper published by Ebrahimi et al. [6].
In recent years, calculating the noise of marine propellers using numerical methods has also been
developed by researchers. For numerical calculation of noise, a numerical method such as panel
method is required to obtain flow quantities and then these quantities are used as input for calculation
of noise for a receiver at the desired location. Seol and Park [7] carried out several experiments on a
propeller model in MOERI cavitation tunnel and measured the noise of propeller in cavitating and
non-cavitating condition. Also, they used combination of time domain acoustic analogy and panel
method for the numerical investigation of the propeller noise.

In another study by Kellett et al. [8] in 2013, the noise generated by the propeller of a LNG carrier
ship was measured numerically and experimentally. Bagheri et al. [9] conducted a research on a three
bladed propeller of the Gawn series and used the ANSYS Fluent commercial software for calculation of
the propeller noise. Testa et al. [10] calculated the noise of E779A propeller model by using the FW-H
equations in presence of unsteady sheet cavitation. They also used potential-based panel method for
modelling flow around propeller. Gorji et al. [11] performed a research on calculation of noise of a
marine propeller using a RANS solver in the low frequencies band.

Bagheri et al. [12] carried out some numerical and experimental tests on the noise of marine
propellers and the effects of cavitation on the sound pressure level of propeller. They used viscous
flow with FW-H solver for noise calculation.

In present research, a boundary element method is used for hydrodynamic analysis of marine
propellers. Also, the FW-H equations are used for acoustic performance analysis of these propellers.
For this purpose, two codes have been developed by authors and their results validated using
experimental tests carried out in cavitation tunnel of Sharif University of Technology. The most
significant novelty of our paper is that we used experimental noise measurements to validate the
results of the FW-H equations code.

2. Formulation of the Panel Method

For development of the panel method formulation for marine propeller, the flow around
propeller in computational domain of Ω is assumed to be irrotational, incompressible and inviscid.
By these assumptions, the flow governing equations (Navier-Stokes equation) are simplified into
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the three-dimensional Laplace equation where is ∇2φ. By using Green’s second identity, the general
solution of this equation is as follows [13]:∫

Ω

(
φ1∇2φ2 −φ2∇2φ1

)
dV =

∫
S

(φ1∇φ2 −φ2∇φ1) · →ndS (1)

On the right-hand side of the Equation (1), integrating is done on the surface S, which includes
the body surface, Kutta strip and wake surfaces of the object (Figure 1). If the points P, Q and O are
defined as the control point, source point and the origin of the coordinates, respectively, the distance

vector
→
R is defined as follows: →

R =
→

OQ− →OP r =
∣∣∣∣∣→R∣∣∣∣∣ (2)

Figure 1. Body surface, Kutta strip and wake surface.

Now, if we suppose φ1 = 1/r and φ2 = φ, where φ is potential of flow, Equation (1) becomes:∫
Ω

(1
r
∇2φ

)
dV −

∫
Ω

(
φ∇2 1

r

)
dV =

∫
S

(
1
r
∇φ−φ∇1

r
) · →ndS (3)

In the case where P is outside of the domain Ω, then φ1 and φ2 satisfy Laplace’s equation [13].
Therefore, the first and second terms on the left-hand side of Equation (3) will be zero. Then:∫

S

(
1
r
∇φ−φ∇1

r
) · →ndS = 0 (4)

In the case of flow around the propeller, the point P is located on the body surface. When point P
approaches to point Q and r → 0, the above integral is singular (1/r→∞). Therefore, the point P
should be excluded from S using a small hemisphere of radius ε. Therefore, the integration region will
change to S + Sε: ∫

S

(
1
r
∇φ−φ∇1

r
) · →ndS +

∫
Sε

(
1
r
∇φ−φ∇1

r
) · →ndS = 0 (5)
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Using mathematical methods, the value of second integral is −2πφ(P). Then Equation (5) becomes:

φ(P) =
1

2π

∫
S

(
1
r
∇φ−φ∇1

r
) · →ndS (6)

This equation gives the potential of flow (φ) at any point of body surface in terms of ∇φ and
φ on the boundaries of domain. In Equation (6), the first and second terms of the integral can be
interpreted as a dipole with strength of φ and a source with strength of ∇φ, respectively. To expand
the above equation, as shown in Figure 1, the integration surface S is divided to body surface (SB),
Kutta strip (SK), and wake surface (SW). Also, NB, NK and NW are number of panels on body surface,
Kutta strip, and wake surface, respectively.

Therefore, Equation (6) can written as below:

φ(P) =
1

2π

∫
SB

(
1
r
∇φ−φ∇1

r
) · →ndS +

1
2π

∫
SK+SW

(
1
r
∇φ−φ∇1

r
) · →ndS (7)

The thickness of Kutta and wake surfaces are assumed to be zero. Then, ∇φ · →n for these surfaces
becomes zero. So:

φ(P) =
1

2π

∫
SB

(
1
r
∇φ−φ∇1

r
) · →ndS− 1

2π

∫
SK+SW

φ∇1
r
· →ndS (8)

This formulation is equivalent to distributing a source with strength of ∂φ/∂n on each panel of
the body surface and a doublet with strength of φ on each panel of the body surface, Kutta strip and
wake surface. For greater simplicity, the strength of doublets on the Kutta strip and wake surface are
displayed by μ. The final form of Equation (8) is as follows:

φ(P) = − 1
2π

∫
SB

→
n · ∇φ

r
dS +

1
2π

∫
SB

φ
→
n · →r

r3 dS +
1

2π

∫
SK

μ
→
n · →r

r3 dS +
1

2π

∫
SW

μ
→
n · →r

r3 dS (9)

2.1. Boundary Conditions

Applying boundary conditions is one of the most important steps in solving problems by numerical
methods. The first boundary condition that is applied is the non-entrance condition. If the propeller
assumed to be rigid, the fluid particles cannot enter into the surface and the normal velocity will be
zero on the surface of the propeller. If the propeller is operating in a uniform axial flow with velocity

of
→
V∞ and rotates with angular velocity of

→
ω, as shown in Figure 1, the total velocity of point A on

propeller blade is:
→
v A =

→
V∞ +

→
r ×→ω (10)

Then, the non-entrance condition for all panels of body surface is [14]:(
∇φ · →n

)
i
=
(→

v A · →n
)
i
i = 1, . . . , NB (11)

Then, Equation (9) becomes:

φ(P) = − 1
2π

∫
SB

→
v A · →n

r
dS +

1
2π

∫
SB

φ
→
n · →r

r3 dS +
1

2π

∫
SK

μ
→
n · →r

r3 dS +
1

2π

∫
SW

μ
→
n · →r

r3 dS (12)
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We can rewrite the above equation in series form as follows:

φi +
NB∑

j = 1
i � j

Aijφ j +
NK∑
j=1

Aijμ j =
NB∑
j=1

Bij
( →

v A · →n
)

j
−

NW∑
j=1

Aijμ j i = 1, . . . , NB

Aij = − 1
2π

∫
panel j

→
n · →PQ∣∣∣∣∣ →PQ

∣∣∣∣∣3 ds

Bij = − 1
2π

∫
panel j

1∣∣∣∣∣ →PQ
∣∣∣∣∣ds

(13)

where the points P and Q are assumed to be the center of panel i and j, respectively. Aij and Bij
are known as influence coefficients and can be calculated according to Delhommeau [15]. The first
and second terms in right-hand side of Equation (13) are obtained from non-entrance boundary
condition and from previous time step, respectively. Therefore, the unknowns of the above equation
are the strength of doublets on body panels and doublets on Kutta strip, hence NB + NK unknowns.
Another boundary condition that is used to solve this problem is the Kutta condition. This condition
for lifting bodies states that the flow should leave trailing edge smoothly and the velocity of flow there
be finite [13]. One of the best ways to apply this condition is presented by Morino [16]:

μi = (φi)
u − (φi)

l i = 1, . . . , NK (14)

This means that strength of Kutta strip doublets is equal to difference of strength of upper (φ)u

and lower (φ)l doublets. Equation (13) will give NB equations and NK equations will be added to
system of equations by applying Kutta condition. Finally, by solving this set of NB + NK equations,
all NB + NK unknowns will be obtained.

2.2. Hydrodynamic Forces

After the calculation of velocity potential, the total velocity on each panel can be calculated using
numerical differentiation methods. Then, the unsteady Bernoulli’s equation was used for calculation
of total pressure [17]:

p− p∞
ρ

= −1
2

∣∣∣∣∣ →∇φ−→v A

∣∣∣∣∣2 + 1
2

∣∣∣∣→v A

∣∣∣∣2 − ∂φ∂t (15)

where
→∇φ and ∂φ/∂t denote the surface gradient and time derivate of velocity potential. Propeller

thrust can be calculated by integration of pressure forces on panels of propeller surface. Also, viscous
forces should be obtained by using empirical formulas for surface friction coefficient (CD) of each
panel [18]:

CD =
0.0986(

log10 Rel − 1.22
)2 (16)

where Rel is local Reynolds number based on radial location of panel (xr) and is Uxr/v. The viscous
drag of each panel is calculated as below [17]:

→
FD =

1
2
ρ ·CD ·

∣∣∣∣→v tot

∣∣∣∣→v tot (17)
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where
→
v tot =

→
v +

→
v re f and

→
v re f = −→v A. Also,

→
v is blade surface perturbation velocity and can be

obtained by taking surface gradient of velocity potential on blade panels. Then, total force and torque
of propeller are obtained as [19]:

→
F =

∫
(p · →n +

→
FD)dS

→
M =

∫ →
r × (p · →n +

→
FD)dS

(18)

Flowchart of panel method for calculation of hydrodynamic coefficient of propeller is shown in
Figure 2. Initially, geometry of propeller and panels are generated by a function. A Kutta strip is
also created due to geometric considerations, propeller rotation and flow velocity. In the next step,
a function calculates the influence coefficients for the sources and doublets. Then, the systems of
linear equations of Equation (13) is formed and then solved using iterative methods. By solving the
equations, the velocity potential is obtained on the panels of body surface. With numerical derivation
of potentials, velocity and pressure and on each panel are calculated and hydrodynamic coefficients of
propeller are obtained. This process repeated until the solution converges. In this flowchart,

→
v m is

the mean perturbation velocity of the points located on wake and Kutta surface. If these points are
located in Xold position in time t, new position (Xnew) of points in time t + dt can be obtained using the
following equation:

Xnew = Xold +
→
v m · dt (19)

where
→
v m is calculated as below [19]:

→
v m =

1
4π

∑
SB

(
→
n · →v A)

→
r
r3 dS +

1
4π

∑
SB

φ

→
dl×→r

r3 +
1

4π

∑
SW+SK

μ

→
dl×→r

r3 (20)

Figure 2. Flowchart of panel method.
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3. Validation of Results of Panel Method

One of the most common propellers that has been used for the validation of numerical methods is
the DTMB 4119 propeller. This propeller is shown in Figure 3. Also, the main particulars and details of
geometry are given in Tables 1 and 2, respectively.

 

Figure 3. DTMB 4119 propeller.

Table 1. Main Particulars of DTMB 4119 Propeller [20].

Number of Blades 3
Diameter 0.20 m

Blade Sections Profile NACA 66 modified (a = 0.8)
Design Advance Ratio (J) 0.833

Table 2. Geometry of DTMB 4119 Propeller [20].

r/R c/D P/D Skew Rake tmax/c fmax/c

0.2 0.3200 1.1050 0 0 0.2055 0.0143
0.3 0.3635 1.1022 0 0 0.1553 0.0232
0.4 0.4048 1.0983 0 0 0.1180 0.023
0.5 0.4392 1.0932 0 0 0.0916 0.0218
0.6 0.4610 1.0879 0 0 0.0696 0.0207
0.7 0.4622 1.0839 0 0 0.0542 0.0200
0.8 0.4347 1.0811 0 0 0.0421 0.0197
0.9 0.3613 1.0785 0 0 0.0332 0.0182
0.95 0.2775 1.0770 0 0 0.0323 0.0163

1 0.0800 1.0750 0 0 0.0316 0.0118

P is propeller pitch, r is radius of each section, R is propeller radius, c is chord of each section,
D is propeller diameter, tmax is Maximum thickness of each section and fmax is maximum camber.
For the validation of the results of numerical modeling for hydrodynamics and noise of DTMB 4119
propeller, some experiments were carried out with a model propeller in a cavitation tunnel of the
Marine Engineering Laboratory of Sharif University of Technology (Figure 4). For measuring the thrust
and torque of propeller model, a H29 dynamometer has been used in this tunnel.
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Figure 4. Cavitation Tunnel of Sharif University of Technology.

The developed code can also create the geometry of the propeller and generate mesh for it. For this
purpose, the profile of propeller blades, the number of blades, the rake and skew angle and the
desired grid size should be specified as input. In the panel method, it is not common to specify mesh
dimensions. Because of the cosine spacing of panels in chordwise and spanwise directions, the exact
size of panels cannot be specified. Grid size is shown as m × n which m and n are number of elements
in chordwise and spanwise, respectively. For optimization of the grid size, thrust coefficient for design
advance ratio (J = 0.833) is calculated for some different grids, and error of numerical results compared
with experimental results for each grid size are presented in Table 3 and Figure 5. All simulations are
carried out using Intel Core i7 2.6 GHz and 8 GB of RAM. Also, the CPU times for the panel method
are given in Table 3.

Table 3. CPU Time and error for different grids (J = 0.833).

Grid Numerical Result Experimental Result Error (%) CPU Time (sec.)

10 × 10 0.128

0.15

14.6 242
10 × 15 0.132 12 521
20 × 20 0.144 4 1224
30 × 30 0.146 2.6 2545

Figure 5. CPU Time and error for different grids (J = 0.833).

It can be seen from Figure 5 that the grid size of 20 × 20 compared to other grids has more
appropriate CPU time and error, and then the grid is used to simulate propeller. After simulation of
flow around DTMB 4119 propeller, wake surface and hydrodynamic coefficients of propeller (Thrust,
torque and efficiency) are obtained. In Figure 6, the wake surface of the propeller is shown for different
advance ratios.
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( 0.833)J  ( 0.7)J  ( 0.5)J  

Figure 6. Wake surface of propeller for different advance ratios.

As shown in Figure 6, in low advance ratios which ship speed is low and propeller load is high
(heavy duty conditions of propeller), disks of wake surface are closer together and wake rollup is
intense but in higher advance ratios, disks of wake surface are more spacious and rollup is very low.
Numerical simulation of propeller is performed by developed code for various advance ratios and
Figure 7 compares the hydrodynamic coefficients of the propeller obtained by the panel method with
experimental data.

 

Figure 7. Hydrodynamic coefficients of DTMB 4119 propeller.

The pressure distribution in the advance ratio of J = 0.833 for different radial sections of the
propeller blade is compared with experimental measurements [21] in Figure 8.
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(a) (b) 

Figure 8. Experimental and panel method results for pressure distribution at (a) r/R = 0.3 and (b) r/R = 0.7.

According to Figure 7, there is satisfactory agreement between the hydrodynamic coefficients
obtained from the panel method and experimental results. The maximum error of the trust coefficient
calculated by the panel method is about 4% and for torque coefficient is about 7%. As can be seen
in Figure 8, pressure distribution obtained from the panel method is in good agreement with the
experimental data. This shows that the accuracy of the panel method results is acceptable. One reason
for the greater error of the torque coefficient is the use of empirical formulas in the calculation of the
friction resistance of each panel. According to the above results, the panel method can be used for
hydrodynamic performance analysis of marine propellers.

4. Acoustic Formulations

In most acoustic problems, rigid bodies located in the fluid flow have very important effects on
the generated noise. For this reason, Williams and Hawkings [22] in 1969 developed the Lighthill
equations [23] with the assumption of rigid bodies. The equations presented by these researchers in
acoustic science are known as the FW-H model. For solving the FW-H equation, Farassat et al. [24]
presented a method that can predict the generated noise of moving object with arbitrary geometry.
According to this formulation, total sound pressure can (p′) expressed as below [24]:

p′
(→

x , t
)
= p′T

(→
x , t

)
+ p′L

(→
x , t

)
(21)

where p′T and p′L denote the thickness and loading pressure, respectively. Thickness pressure is due to
the fluid displacement caused by movement of the body within the fluid and classified as monopole
noise source. Another phenomenon caused by the motion of the non-symmetric body in fluid is the
distribution of positive and negative pressure on the face and back of the body. In fact, this pressure
distribution is the main source of trust force in propellers. Pressure difference on both sides of the
body create a dipole noise source which is referred as loading pressure. This solution is obtained with
assumption of low Mach number, and hence the quadrupole noise can be neglected. These components
are calculated through the following relations [24]:

4πp′T
(→

x , t
)
=
∫
S

[
ρ(

.
vn+v .

n)

r(1−Mr)
2

]
ret

dS +
∫
S

[
ρvn

(
r

.
Mr+cMr−cM2

)
r2(1−Mr)

3

]
ret

dS

4πp′L
(→

x , t
)
= 1

c

∫
S

[ .
Lr

r(1−Mr)
2

]
ret

dS + 1
c

∫
S

[
Lr−LM

r2(1−Mr)
2

]
ret

dS

+ 1
c

∫
S

[
Lr
(
r

.
Mr+cMr−cM2

)
r2(1−Mr)

3

]
ret

dS

(22)
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where ρ is fluid density in kg/m3, c is sound speed in m/s,
→
v is the noise source velocity in m/s,

→
r is

distance vector from noise source to receiver in m, r is magnitude of
→
r in m, Mach number is

→
M =

→
v /c,

L = p · →n is pressure force in N and p is hydrodynamic pressure in Pa. The dot over variables means
time derivate of the variable. The ret subscript in this equation means that the calculations must be
done using values at the retarded time.

In the first step of noise calculation, the flow around the body is simulated using the panel
method and flow quantities such as pressure and velocity are obtained for panels on the body surface.
Then, for receiver in position of

→
x and time of ti, retarded time (τi, j) is obtained for panel j. After this

step, all quantities required in Equation (20) must be calculated for each panel at the retarded time,
numerical integrals of the equation are solved for each panel, and the acoustic pressure of each element
is obtained. By summing up the acoustic pressures of all the elements, a total acoustic pressure is
obtained for the specified receiver. Flowchart of noise calculation using FW-H equations is shown in
Figure 9.

Figure 9. Flowchart of noise calculation using FW-H equations.

5. Noise of DTMB 4119 Propeller

The noise generated by the propeller is one of the most important components of the vessels
noise [6]. Therefore, measuring and calculating the propeller noise is one of the interesting research
subjects in naval engineering. In the first step, the results of the developed FW-H code for noise
calculation should validated using experimental results obtained in cavitation tunnel. For measuring
the noise of propeller, a TC4042 hydrophone has been used in cavitation tunnel of Sharif University of
Technology. The arrangement of this validation hydrophone is shown in Figure 10. Also, the location
of this hydrophone is given in Figure 11.
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Figure 10. Arrangement of TC4042 hydrophone on cavitation tunnel.

. 

Figure 11. Location of validation hydrophone.

For validation of results of FW-H code, noise measurements done in cavitation tunnel under
below conditions:

- Flow velocity: 2.2 m/s
- Propeller RPM: 792
- Advance ratio (J): 0.833

The time history of acoustic pressure as measured by validation hydrophone is shown in Figure 12.

68



Math. Comput. Appl. 2019, 24, 81

Figure 12. Time history of acoustic pressure measured by validation hydrophone.

In the post-processing stage, acoustic pressure from time domain in transferred to frequency
domain by using the fast Fourier transform (FFT) and the sound pressure level is calculated using the
following formula [25]:

SPL
(→

x , t
)
= 20 log10

(
p′/pre f

)
(23)

where pre f is the reference pressure and related to threshold of a normal human hearing for frequency
of 1 kHz which for water is 1 μPa [26]. The numerical results of noise obtained by own developed
code compared by experimental results in Figure 13. Propeller and flow conditions are the same as the
experimental setup.

 
Figure 13. Validation of FW-H code results.

It can be seen that there is good agreement between the numerical and experimental results of
propeller noise, especially in frequencies under 250 Hz. It seems that main sources of error of numerical
results are:

- Error of panel method code for calculation of pressure and flow velocity: As mentioned in the
previous sections, the results of the thrust and torque of the panel method have 4% and 7%
error in comparison with the experimental results. Since the FW-H equations use panel method
outputs, the above error causes an error in calculating the noise of the impeller.

- The error of FW-H code for noise calculation: FW-H equations include some integrals that are
calculated numerically on the source of noise. Therefore, the numerical calculation error of these
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equations can cause error in the value of noise. Also, in the solution presented in this study,
the quadrupole sources of noise are neglected, which could cause a slight error in the value of
propeller noise.

- The reflection of sound inside the cavitation tunnel is another reason for the difference between
the experimental and numerical results. The restricted space of the cavitation tunnel causes the
reverberation of sound emitted by the propeller, which results in an error in the measured noise
values. For investigating the effects of sound reverberation on noise data, special equipment is
needed which is not available in our laboratory.

Seol et al. [27] and Yang et al. [28] carried out some numerical studies on DTMB 4119 propeller,
but since the specifications of the propeller used are not the same as the propeller model in our
laboratory, the results cannot be compared.

By looking more precisely into results, it founds that both experimental and numerical results
have peaks in some frequencies. It seems that these are Blade Passing Frequencies (BPF) of propeller.
For the propeller, the rate at which the blades pass by a fixed position is called the BPF. This frequency
is known as the blade passing frequency (BPF) of the blade. As regards the propeller, the BPF and its
higher harmonics can be calculated as:

BPF = Z× rps× h (Hz) (24)

where Z is number of propeller blades, rps is the frequency of propeller rotation in Hz and h is no of
harmonic. When receiver is located in an asymmetric location relative to blades, the noise of propeller
in BPFs will have local peaks in comparison to other frequencies. For the receiver, which is located in
the hub plane of the propeller, at an equal and constant distance from the blades at all times, BPF could
not be seen in the SPL diagram. For noise diagrams in Figure 13, rps is 13.2 and Z is 3. Therefore, BPF
for three first harmonics of propeller is about 39.6, 79.2 and 118.8 Hz and noise results have peaks in
the first two frequencies.

After the validation of FW-H code, propeller noise calculations were made for four hydrophones
(receivers). Two hydrophones located in the propeller rotation plane and two hydrophones located
in front of propeller hub. The location of hydrophones and their coordinates are given in Figure 14
and Table 4.

Figure 14. Location of hydrophones.
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Table 4. Coordinates of hydrophones.

X(m) Y(m) Z(m)

H1 1 0 0
H2 2 0 0
H3 0 1 0
H4 0 2 0

The noise of the propeller as calculated by the FW-H code for hydrophones H1 and H2 are
presented in Figure 15. Noise predictions were made at a flow speed of 2.2 m/s and RPM of 792 where
J = 0.833.

Figure 15. Sound pressure level of propeller in hydrophones H1 and H2.

Results shown in Figure 15 reveals that by increasing the distance of hydrophone from propeller,
noise of H2 decreased significantly in comparison with H1. Also, in Figure 16, the propeller noise in
hydrophones H3 and H4 are presented.
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Figure 16. Sound pressure level of propeller in hydrophones H3 and H4.

As can be seen in Figure 16, with an increase of distance from the propeller, noise decreased
significantly. Also, in both hydrophones, at a blade passing frequency of 18.22 Hz, the noise has a peak
value which is also indicated in the Figure 16. By comparing Figures 15 and 16, it can be seen that the
SPL in front of the propeller hub is higher than the SPL in the propeller rotational plane.

6. Conclusions

Measuring and calculating the noise of marine propellers is very important. In this research,
the combination of the panel method and FW-H equations has been used to calculate the non-cavitating
noise of marine propellers. In the first step, a numerical panel method code is developed to solve the
flow around the propeller and calculate the propeller hydrodynamic coefficients. The results of this
code in comparison with the experimental results had maximum error of 4% and 7% for thrust and
torque coefficients, respectively.

Then, a noise calculation code based on FW-H acoustic equations was developed, which uses the
outputs of the panel method code as inputs and calculates the noise of the propeller for the desired
receiver. The results of this code are in good agreement with the noise of the propeller obtained using
results from a test carried out in cavitation tunnel of Sharif University. Using this code, the propeller
noise is measured for four hydrophones with different distances and orientations. With increasing
distance from the propeller, the noise of the propeller has been significantly reduced. For the
hydrophones located on the rotation plane of the propeller, as predicted by theory and experiments on
propeller noise, the maximum noise has occurred at the blade passing frequency. The results show that
the SPL in front of the propeller hub is higher than SPL in the propeller rotational plane.

According to the above results, the combination of the panel method and FW-H equations can be
used for hydrodynamic and acoustic analysis of marine propellers.
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Abstract: This paper aims to present a finite element (FE) formulation for the study of the natural
frequencies of functionally graded orthotropic laminated plates characterized by cross-ply layups.
A nine-node Lagrange element is considered for this purpose. The main novelty of the research is the
modelling of the reinforcing fibers of the orthotropic layers assuming a non-uniform distribution
in the thickness direction. The Halpin–Tsai approach is employed to define the overall mechanical
properties of the composite layers starting from the features of the two constituents (fiber and epoxy
resin). Several functions are introduced to describe the dependency on the thickness coordinate
of their volume fraction. The analyses are carried out in the theoretical framework provided by
the first-order shear deformation theory (FSDT) for laminated thick plates. Nevertheless, the same
approach is used to deal with the vibration analysis of thin plates, neglecting the shear stiffness of the
structure. This objective is achieved by properly choosing the value of the shear correction factor,
without any modification in the formulation. The results prove that the dynamic response of thin
and thick plates, in terms of natural frequencies and mode shapes, is affected by the non-uniform
placement of the fibers along the thickness direction.

Keywords: finite element modelling; laminated composite plates; non-uniform mechanical properties

1. Introduction

The finite element (FE) method currently represents the most-utilized computational approach
to solve several engineering problems and in applications whose solutions cannot be obtained
analytically [1]. The technological advancements in computer sciences have allowed a fast and easy
diffusion of this technique, especially in terms of structural mechanics problems. The key to the success
of the FE method lies in the reduction of complex problems into simpler ones in which the reference
domain is made of several discrete elements, and in its easy computational implementation. This idea
was first highlighted by Duncan and Collar [2,3], and successively emphasized by Hrennikoff [4],
Courant [5], Clough [6], and Melosh [7].

The approximate solutions that can be obtained by means of the FE approach are accurate and
representative of the physical problem under consideration [8,9]. To the best of the authors’ knowledge,
the progression and development of this technique are well-described in many pertinent books, such
as the ones by Oden [10], Oden and Reddy [11], Hinton [12], Zienkiewicz [13], Reddy [14], Onate [15],
Hughes [16], and Ferreira [17]. These books should be used as references for the theoretical background
of the numerical approach at issue. For completeness purposes, it should be recalled that various and
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alternative approaches have been developed in past decades to obtain approximated but accurate
solutions to several complex structural problems, not only based on the FE method [18–21].

An intriguing application that is efficiently solved by means of the FE methodology is about
the structural response of plates and panels made of composite materials [22–24]. With respect to an
isotropic and conventional medium, a composite material can reach superior performance by combining
two (or more) constituents. A typical example of this category are fiber-reinforced composites, in
which the high-strength fibers are the main load-carrying elements, whereas the matrix has the task of
keeping them together and protecting the reinforcing phase from the environment [25–28]. In general,
a micromechanical approach should be employed to evaluate the overall mechanical properties of
these materials, starting from the features of the single constituents. The review paper by Chamis
and Sendeckyj represents a fundamental contribution is this direction [29]. One of the most effective
approaches that can be used toward this aim is the one proposed by Halpin [30] and Tsai [31,32], who
developed a semi-empirical method and expressed the mechanical properties of the constituents in
terms of Hill’s elastic moduli [33,34]. Further details concerning the micromechanics of fiber-reinforced
composite materials can be found in [35].

The use of a versatile numerical method also allows us to investigate the structural response of
composite structures with non-uniform mechanical properties. In particular, in the present paper the
reinforcing fibers are characterized by a gradual variation of their volume fraction along the plate
thickness, following the same idea of functionally graded materials [36–52]. With respect to this
class of materials, in which the composites turn out to be isotropic, the layers of the plate assume
orthotropic features and can also be oriented. This topic clearly falls within the aim of the optimal
design of composite structures [53–58]. It should be mentioned that a similar approach is followed in
the design of functionally graded carbon-nanotube-reinforced composites, due to the advancements in
nanostructures and nanotechnologies [59–68].

In this paper, the research is organized in two main sections. After this brief introduction, the
FE formulation for laminated thick and thin plates is presented in Section 2. Here, the theoretical
framework is based on the well-known first-order shear deformation theory (FSDT) for laminated
composite structures [69,70]. The effect of the shear correction factor is also discussed in order to
deal with thin plates [71]. In addition, the micromechanics approach based on the Halpin–Tsai model
is described in detail, by also introducing the topic of variable mechanical properties. Section 3
presents the results of the numerical applications. As a preliminary test, the accuracy and convergence
features of the numerical approach are discussed by means of the comparison with the semi-analytical
solutions available in the literature for thin and thick laminated composite plates. Then, the natural
frequencies of functionally graded orthotropic cross-ply plates are presented for several mechanical
configurations. Finally, Appendix A is added to define the terms of the fundamental operators of the
proposed FE formulation.

2. Finite Element (FE) Formulation for Laminated Thick and Thin Plates

The theoretical framework of the current research is based on the first-order shear deformation
theory (FSDT). The governing equations are presented in this section by developing the corresponding
FE formulation. The following kinematic model is assumed within each discrete element of the
plate [69]:

U(e)
x (x, y, z, t) = u(e)

x (x, y, t) + zφ(e)x (x, y, t)

U(e)
y (x, y, z, t) = u(e)

y (x, y, t) + zφ(e)y (x, y, t)

U(e)
z (x, y, z, t) = u(e)

z (x, y, t)

, (1)

where U(e)
x , U(e)

y , U(e)
z are the three-dimensional displacements of the structure, whereas the degrees of

freedom of the problem are given by three translations u(e)
x , u(e)

y , u(e)
z and two rotations φ(e)x ,φ(e)y defined

76



Math. Comput. Appl. 2019, 24, 52

on the plate middle surface. These quantities can be conveniently collected in the corresponding vector
u(e), defined below

u(e) =
[

u(e)
x u(e)

y u(e)
z φ

(e)
x φ

(e)
y

]T
. (2)

The coordinates x, y, z specify the local reference system of the plate and t is the time variable.
The superscript (e) clearly specifies that this model is valid for each element. The geometry of the plate
is fully described once the lengths Lx, Ly of its sides and its overall thickness h are defined. It should be
recalled that for a laminate structure one gets

h =

NL∑
k=1

(zk+1 − zk), (3)

in which zk+1, zk stand for the upper and lower coordinates of the k-th layer, respectively. The degrees
of the freedom (2) are approximated in each element by means of quadratic Lagrange interpolation
functions. As can be noted from Figure 1, nine nodes are introduced in each subdomain. As a
consequence, the degrees of freedom assume the following aspect:

u(e)
x (x, y, t) =

9∑
i=1

Ni(x, y)u(e)
x,i (t) = Nu

(e)
x

u(e)
y (x, y, t) =

9∑
i=1

Ni(x, y)u(e)
y,i (t) = Nu

(e)
y

u(e)
z (x, y, t) =

9∑
i=1

Ni(x, y)u(e)
z,i (t) = Nu

(e)
z

φ
(e)
x (x, y, t) =

9∑
i=1

Ni(x, y)φ(e)x,i (t) = Nφ
(e)
x

φ
(e)
y (x, y, t) =

9∑
i=1

Ni(x, y)φ(e)y,i (t) = Nφ
(e)
y

, (4)

where Ni represents the i-th shape function, whereas u(e)
x,i , u(e)

y,i , u(e)
z,i ,φ(e)x,i ,φ(e)y,i denote the nodal

displacements, which can be included in the corresponding vectors

u
(e)
x =

[
u(e)

x,1 · · · u(e)
x,9

]T
, u

(e)
y =

[
u(e)

y,1 · · · u(e)
y,9

]T
, u

(e)
z =

[
u(e)

z,1 · · · u(e)
z,9

]T
φ

(e)
x =

[
φ
(e)
x,1 · · · φ(e)x,9

]T
,φ(e)

y =
[
φ
(e)
y,1 · · · φ(e)y,9

]T . (5)

On the other hand, the shape functions linked to the nine nodes of the finite element are included
in the vector N, defined below:

N =
[

N1 · · · N9
]
. (6)

For the sake of clarity, it should be recalled that the nodes are identified in each element by
following the numbering specified in Figure 1.

At this point, the nodal degrees of freedom can be collected in a sole vector u(e) to simplify
the nomenclature:

u(e) =
[

u
(e)
x u

(e)
y u

(e)
z φ

(e)
x φ

(e)
y

]T
=
[

u(e)
x,1 · · · u(e)

x,9 u(e)
y,1 · · · u(e)

y,9 u(e)
z,1 · · · u(e)

z,9 φ
(e)
x,1 · · · φ(e)x,9 φ

(e)
y,1 · · · φ(e)y,9

]T , (7)

and to write the definitions (4) by using the following matrix notation:
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⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

u(e)
x

u(e)
y

u(e)
z

φ
(e)
x

φ
(e)
y

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
N 0 0 0 0
0 N 0 0 0
0 0 N 0 0
0 0 0 N 0
0 0 0 0 N

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

u
(e)
x

u
(e)
y

u
(e)
z

φ
(e)
x

φ
(e)
y

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
⇔ u(e)

5×1
= N

5×(9×5)
u(e)

(9×5)×1
. (8)

The size of each matrix is indicated under the corresponding symbol. It is important to
specify that the same approximation is employed for all degrees of freedom (both translational
and rotational displacements).

φ

φ

 

Figure 1. Nine-node quadratic Lagrange rectangular element.

As mentioned in the books by Reddy [14] and Ferreira [17], it is convenient to introduce the
natural coordinates ξ, η within the reference finite element, which is called the master element (or
parent element). In this reference system, which is also depicted in Figure 1, the shape functions
Ni = Ni(ξ, η) assume the following definitions:

N1 = 1
4

(
ξ2 − ξ

)(
η2 − η

)
N2 = 1

4

(
ξ2 + ξ

)(
η2 − η

)
N3 = 1

4

(
ξ2 + ξ

)(
η2 + η

)
N4 = 1

4

(
ξ2 − ξ

)(
η2 + η

)
N5 = 1

2

(
1− ξ2

)(
η2 − η

)
N6 = 1

2

(
ξ2 + ξ

)(
1− η2

)
N7 = 1

2

(
1− ξ2

)(
η2 + η

)
N8 = 1

2

(
ξ2 − ξ

)(
1− η2

)
N9 =

(
1− ξ2

)(
1− η2

) , (9)

for ξ, η ∈ [−1, 1]. The same functions are also used to describe the geometry of each discrete element
according to the principles of the isoparametric FE formulation. The coordinate change between the
physical domain and the parent element is accomplished through the relations shown below

x(e) =
9∑

i=1

Ni(ξ, η)x
(e)
i , y(e) =

9∑
i=1

Ni(ξ, η)y(e)i , (10)

where the couple x(e)i , y(e)i defines the coordinates of the i-th node of the generic element. For the sake
of conciseness, these quantities can be collected in the corresponding vectors x(e), y(e):

xe =
[

x(e)1 · · · x(e)9

]T
, ye =

[
y(e)1 · · · y(e)9

]T
. (11)

The Jacobian matrix J related to the coordinate change (10) can be now introduced in order to
evaluate the derivatives with respect to the natural coordinates of the parent element:
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J =

⎡⎢⎢⎢⎢⎢⎢⎢⎣ ∂x
(e)

∂ξ
∂y(e)

∂ξ
∂x(e)
∂η

∂y(e)

∂η

⎤⎥⎥⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

9∑
i=1

x(e)i
∂Ni
∂ξ

9∑
i=1

y(e)i
∂Ni
∂ξ

9∑
i=1

x(e)i
∂Ni
∂η

9∑
i=1

y(e)i
∂Ni
∂η

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ =
[

Bξ
Bη

][
x(e) y(e)

]
=

[
Bξx

(e) Bξy
(e)

Bηx
(e) Bηy

(e)

]
, (12)

where the vectors Bξ, Bη collect the derivatives of the shape functions (9) with respect to ξ, η

Bξ =
[
∂N1
∂ξ · · · N9

∂ξ

]
, Bη =

[
∂N1
∂η · · · N9

∂η

]
. (13)

At this point, the compatibility equations can be presented to define the strain components in
each element. In particular, the membrane strains are given by

ε
(e)
x =

∂u(e)
x
∂x

= Bxu
(e)
x , ε(e)y =

∂u(e)
y

∂y
= Byu

(e)
y ,γ(e)xy =

∂u(e)
y

∂x
+
∂u(e)

x
∂y

= Bxu
(e)
y + Byu

(e)
x . (14)

On the other hand, the bending and twisting curvatures can be defined as follows:

k(e)x =
∂φ

(e)
x

∂x
= Bxφ

(e)
x , k(e)y =

∂φ
(e)
y

∂y
= Byφ

(e)
y , k(e)xy =

∂φ
(e)
y

∂x
+
∂φ

(e)
x

∂y
= Bxφ

(e)
y + Byφ

(e)
x . (15)

Finally, the shear strains assume the following definitions:

γ
(e)
xz =

∂u(e)
z
∂x

+ φ
(e)
x = Bxu

(e)
z + Nφ

(e)
x ,γ(e)yz =

∂u(e)
z
∂y

+ φ
(e)
y = Byu

(e)
z + Nφ

(e)
y . (16)

Note that the derivatives of the shape functions with respect to the physical coordinates x, y are
introduced and collected in the corresponding vectors Bx, By. They can be computed as follows by
inverting the Jacobian matrix (this procedure is admissible if its determinant is greater than zero):[

Bx

By

]
= J−1

[
Bξ
Bη

]
. (17)

The following matrix notation can be used to collect and define the strains previously introduced
in (14)–(16): ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ε
(e)
x

ε
(e)
y

γ
(e)
xy

k(e)x

k(e)y

k(e)xy

γ
(e)
xz

γ
(e)
yz

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Bx 0 0 0 0
0 By 0 0 0

By Bx 0 0 0
0 0 0 Bx 0
0 0 0 0 By

0 0 0 By Bx

0 0 Bx N 0
0 0 By 0 N

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

u
(e)
x

u
(e)
y

u
(e)
z

φ
(e)
x

φ
(e)
y

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
⇔ η(e)

8×1
= B

8×(9×5)
u(e)

(9×5)×1
. (18)

The vector η(e) collects the aforementioned strain components. Such terms are needed to compute
the stress resultants in each element by means of the constitutive relation shown below in matrix form:
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⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

N(e)
x

N(e)
y

N(e)
xy

M(e)
x

M(e)
y

M(e)
xy

T(e)
x

T(e)
y

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A11 A12 A16 B11 B12 B16 0 0
A12 A22 A26 B12 B22 B26 0 0
A16 A26 A66 B16 B26 B66 0 0
B11 B12 B16 D11 D12 D16 0 0
B12 B22 B26 D12 D22 D26 0 0
B16 B26 B66 D16 D26 D66 0 0
0 0 0 0 0 0 κA44 κA45

0 0 0 0 0 0 κA45 κA55

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ε
(e)
x

ε
(e)
y

γ
(e)
xy

k(e)x

k(e)y

k(e)xy

γ
(e)
xz

γ
(e)
yz

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (19)

in which N(e)
x , N(e)

y , N(e)
xy are the membrane forces, M(e)

x , M(e)
y , M(e)

xy the bending and twisting moments,

and T(e)
x , T(e)

y the shear stresses. On the other hand, κ stands for the shear correction factor.
For moderately thick and thick plates, which are commonly studied through the FSDT, the shear
correction factor is generally assumed equal to 5/6. Nevertheless, the same structural model can be
employed to accurately investigate the mechanical behavior of thin plates, which are usually analyzed
in the theoretical framework provided by the classical laminated plate theory (CLPT), taking the
Kirchhoff hypothesis into account. This theory neglects the shear stresses, and the same circumstance
can be obtained from the FSDT by setting 106 as the shear correction factor. In other words, the effect
of shear stresses is negligible if the shear stiffness is extremely large [71].

The stress resultants can be also expressed as follows in extended matrix form in terms of nodal
displacements, having in mind the definitions (18)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

N(e)
x

N(e)
y

N(e)
xy

M(e)
x

M(e)
y

M(e)
xy

T(e)
x

T(e)
y

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A11Bx + A16By A12By + A16Bx 0 B11Bx + B16By B12By + B16Bx

A12Bx + A26By A22By + A26Bx 0 B12Bx + B26By B22By + B26Bx

A16Bx + A66By A26By + A66Bx 0 B16Bx + B66By B26By + B66Bx

B11Bx + B16By B12By + B16Bx 0 D11Bx + D16By D12By + D16Bx

B12Bx + B26By B22By + B26Bx 0 D12Bx + D26By D22By + D26Bx

B16Bx + B66By B26By + B66Bx 0 D16Bx + D66By D26By + D66Bx

0 0 κA44Bx + κA45By κA44N κA45N

0 0 κA45Bx + κA55By κA45N κA55N

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

u
(e)
x

u
(e)
y

u
(e)
z

φ
(e)
x

φ
(e)
y

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(20)

or in compact matrix form
S(e)
8×1

= C
8×8

B
8×(9×5)

u(e)

(9×5)×1
, (21)

where the meaning of the constitutive operator C can be deduced from Equation (19). It should
be observed that the mechanical properties are the same in each element, and the corresponding
coefficients are defined as (

Aij, Bij, Dij
)
=

NL∑
k=1

zk+1∫
zk

Q
(k)
i j

(
1, z, z2

)
dz, (22)

where Q
(k)
i j represents the stiffnesses of the k-th orthotropic layer, which can be oriented as θ(k).

Once the orientation of the fibers is defined, the following relations are employed to compute the

coefficients Q
(k)
i j :
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Q
(k)
11 = Q(k)

11 cos4 θ(k) + 2
(
Q(k)

12 + 2Q(k)
66

)
sin2 θ(k) cos2 θ(k) + Q(k)

22 sin4 θ(k)

Q
(k)
12 =

(
Q(k)

11 + Q(k)
22 − 4Q(k)

66

)
sin2 θ(k) cos2 θ(k) + Q(k)

12

(
sin4 θ(k) + cos4 θ(k)

)
Q
(k)
22 = Q(k)

11 sin4 θ(k) + 2
(
Q(k)

12 + 2Q(k)
66

)
sin2 θ(k) cos2 θ(k) + Q(k)

22 cos4 θ(k)

Q
(k)
16 =

(
Q(k)

11 −Q(k)
12 − 2Q(k)

66

)
sinθ(k) cos3 θ(k) +

(
Q(k)

12 −Q(k)
22 + 2Q(k)

66

)
sin3 θ(k) cosθ(k)

Q
(k)
26 =

(
Q(k)

11 −Q(k)
12 − 2Q(k)

66

)
sin3 θ(k) cosθ(k) +

(
Q(k)

12 −Q(k)
22 + 2Q(k)

66

)
sinθ(k) cos3 θ(k)

Q
(k)
66 =

(
Q(k)

11 + Q(k)
22 − 2Q(k)

12 − 2Q(k)
66

)
sin2 θ(k) cos2 θ(k) + Q(k)

66

(
sin4 θ(k) + cos4 θ(k)

)
Q
(k)
44 = Q(k)

44 cos2 θ(k) + Q(k)
55 sin2 θ(k)

Q
(k)
45 =

(
Q(k)

44 −Q(k)
55

)
sinθ(k) cosθ(k)

Q
(k)
55 = Q(k)

55 cos2 θ(k) + Q(k)
44 sin2 θ(k)

, (23)

where the quantities Q(k)
i j are defined below in terms of the engineering constants of the corresponding

layer, which are the Young’s moduli E(k)
11 , E(k)

22 , the shear moduli G(k)
12 , G(k)

13 , G(k)
23 , and the Poisson’s

ratio ν(k)12 :

Q(k)
11 =

E(k)
11

1− ν(k)12 ν
(k)
21

, Q(k)
22 =

E(k)
22

1− ν(k)12 ν
(k)
21

, Q(k)
12 =

ν
(k)
12 E(k)

22

1− ν(k)12 ν
(k)
21

, Q(k)
66 = G(k)

12 , Q(k)
44 = G(k)

13 , Q(k)
55 = G(k)

23 . (24)

It should be recalled that the Poisson’s ratio ν(k)21 can be evaluated by using the well-known relation

for orthotropic materials ν(k)21 = E(k)
22 ν

(k)
12 /E(k)

11 .
The engineering constants are computed by means of the Halpin–Tsai approach, once the

mechanical features of the reinforcing fibers and the epoxy resin of the orthotropic fiber-reinforced
layers are known. As highlighted in [35], this methodology can be applied by using Hill’s elastic
moduli and a semi-empirical approach. The reinforcing fibers are modeled as a transversely isotropic
material, and the following engineering constants are required to characterize them: the Young’s
moduli EF

11, EF
22, the shear modulus GF

12, and the Poisson’s ratios νF
12, νF

23. The Hills’s elastic moduli of
the fibers kF, lF, mF, nF, pF are given by:

kF =
EF

22

2
(
1− νF

23 − 2νF
21ν

F
12

) , lF = 2νF
12kF, mF =

1− νF
23 − 2νF

21ν
F
12

1 + νF
23

kF,

nF = 2
(
1− νF

23

)EF
11

EF
22

kF, pF = GF
12

. (25)

On the other hand, the epoxy resin is modeled as an isotropic medium characterized by its Young’s
modulus EM and its Poisson’s ratio νM. The Hill’s elastic moduli of the matrix kM, lM, mM, nM, pM are
defined below:

kM =
EM

2(1 + νM)(1− 2νM)
, lM = 2νMkM, mM =

(
1− 2νM

)
kM,

nM = 2
(
1− νM

)
kM, pM =

(
1− 2νM

)
kM

. (26)

At this point, the overall mechanical properties of the composite material can be computed in
terms of the Hill’s elastic moduli k, l, m, n, p:
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k =
kM(kF + mM)VM + kF(kM + mM)VF

(kF + mM)VM + (kM + mM)VF

l = VFlF + VMlM +
lF − lM
kF − kM

(k−VFkF −VMkM)

m = mM
2VFmF(kM + mM) + 2VMmFmM + VMkM(mF + mM)

2VFmM(kM + mM) + 2VMmFmM + VMkM(mF + mM)

n = VFnF + VMnM +

(
lF − lM
kF − kM

)2

(k−VFkF −VMkM)

p =
(pF + pM)pMVM + 2pFpMVF

(pF + pM)VM + 2pMVF

, (27)

where VF, VM are the volume fractions of the fibers and of the matrix, respectively. They are related by
the following relation: VM = 1−VF. In the current research, a non-uniform distribution of the fibers is
defined along the plate thickness. Therefore, the volume fraction of the reinforcing fibers turns out to
be a function of the thickness coordinate VF = VF(z) = ṼF f (k)(z), in which ṼF represents a constant
value. This idea is representative of functionally graded materials. Several distributions f (k)(z) can be
introduced toward this aim, and can be applied in each layer separately. The following functions are
used in this paper:

f (k)(z) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f (k)UD(z) = 1

f (k)O (z) = 1− 1
2

∣∣∣∣∣∣2(z− zk)

zk+1 − zk
− 2(zk+1 − z)

zk+1 − zk

∣∣∣∣∣∣
f (k)X (z) =

1
2

∣∣∣∣∣∣2(z− zk)

zk+1 − zk
− 2(zk+1 − z)

zk+1 − zk

∣∣∣∣∣∣
f (k)V (z) =

z− zk
zk+1 − zk

f (k)A (z) =
zk+1 − z
zk+1 − zk

. (28)

For the sake of completeness, these functions are depicted in Figure 2.

(a) (b) (c) (d) 

Figure 2. Through-the-thickness variation of f (k): (a) f (k)O ; (b) f (k)X ; (c) f (k)V ; (d) f (k)A .

Once the Hill’s elastic moduli (27) are computed, the engineering constants of the k-th fiber
reinforced composite layer can be evaluated as well. The definitions shown below are required for
this purpose:

E(k)
11 = n− l2

k
, E(k)

22 =
4m

(
kn− l2

)
kn− l2 + mn

, ν(k)12 =
l

2k
, G(k)

12 = G(k)
13 = p, G(k)

23 = m. (29)

It should be noted that these quantities are all functions of the thickness coordinate z due to

the relations (28). As a consequence, the material properties Q
(k)
i j defined in (23) depend also on the

coordinate z, and the integrals in (22) have to be computed numerically. The function “trapz” embedded
in MATLAB was employed toward this aim.
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At this point, the Hamilton’s variational principle can be applied to obtain the equations of motion
and the corresponding weak form [23]. As a result, it is possible to write the dynamic fundamental
system in each element as follows:

K(e)
(9×5)×(9×5)

u(e)

(9×5)×1
+ M(e)

(9×5)×(9×5)

¨

u

(e)

(9×5)×1
= 0, (30)

where the stiffness matrix of the element is denoted by K(e), whereas the mass matrix is identified

by M(e). On the other hand, the vector
¨

u

(e)

collects the second-order derivatives with respect to the
time variable t of the nodal displacements (7). By definition, the stiffness matrix K(e) assumes the
following aspect:

K(e) =

∫
x

∫
y

BT
(9×5)×8

C
8×8

B
8×(9×5)

dxdy =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
K11 K12 K13 K14 K15

K21 K22 K23 K24 K25

K31 K32 K33 K34 K35

K41 K42 K43 K44 K45

K51 K52 K53 K54 K55

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (31)

where the operators Ki j of size 9 × 9 are illustrated in Appendix A. Analogously, the mass matrix M(e)

can be written as follows:

M(e) =

∫
x

∫
y

NT
(9×5)×5

m
5×5

N
5×(9×5)

dxdy =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
M11 0 0 M14 0

0 M22 0 0 M25

0 0 M33 0 0
M41 0 0 M44 0

0 M52 0 0 M55

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (32)

where the operators Mi j of size 9 × 9 are also illustrated in Appendix A. The matrix m instead collects
the inertia terms and assumes the definition shown below:

m =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
I0 0 0 I1 0
0 I0 0 0 I1

0 0 I0 0 0
I1 0 0 I2 0
0 I1 0 0 I2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (33)

in which

Ii =

NL∑
k=1

zk+1∫
zk

ρ(k)zidz, (34)

where ρ(k) is the density of the k-th layer. Its value can be obtained by means of the rule of mixture,
combining the densities of the reinforcing fibers ρ(k)F and of the matrix ρ(k)M :

ρ(k) = VFρ
(k)
F + VMρ

(k)
M . (35)

Note that the density is also a function of the thickness coordinate z due to the through-the-thickness
variation of the volume fraction of the fibers. Therefore, the integrals in (34) have to be computed
numerically as well.
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2.1. Numerical Evaluation of the Fundamental Operators

It is well-known that the integrals in definitions (31) and (32) require a tool to be computed
numerically. In the current research, the Gauss–Legendre rule is used. According to this approach, the
infinitesimal area dxdy is evaluated in the master element as follows, through the determinant of the
Jacobian matrix: dxdy = detJdξdη. Consequently, the integral of a generic two-dimensional function
F(x, y) can be written as ∫

x

∫
y

F(x, y)dxdy =

1∫
−1

1∫
−1

F(ξ, η)detJdξdη. (36)

At this point, the integral is converted into a weighted linear sum by introducing the roots of
Legendre polynomials ξI, ηJ and the corresponding weighting coefficients WI, WJ:

1∫
−1

1∫
−1

F(ξ, η)detJdξdη ≈
M∑

I=1

N∑
J=1

F
(
ξI, ηJ

)
detJ|ξI ,ηJ

WIWJ. (37)

The values of the roots of Legendre polynomials and the corresponding weighting coefficients
used in the numerical integration are listed in Table 1. Recall that the full integration is performed by
setting N = M = 3. On the other hand, the reduced integration is accomplished for N = M = 2 as far
as the shear terms are concerned. In other words, the elements of the stiffness matrix which involve the
mechanical properties A44, A45, A55 are computed by means of the reduced integration. This procedure
aims to avoid the shear locking problem as highlighted in the book by Reddy [14]. For the sake of
completeness, the roots of Legendre polynomials are also depicted in Figure 1, for both the full and
reduced integrations.

Table 1. Roots of Legendre polynomials and weighting coefficients for the numerical integration.

N, M ξI, ηJ WI, WJ

2 ±1/
√

3 1

3 ±√3/5 5/9

0 8/9

Finally, the assembly procedure is performed to enforce the C0 compatibility conditions among
the elements in which the reference domain is divided. In other words, the model is characterized by
continuous displacements at the interfaces of the elements. The global discrete system of governing
equations assumes the following aspect:

K
Ndo f s×Ndo f s

u
Ndo f s×1

+ M
Ndo f s×Ndo f s

¨
u

Ndo f s×1
= 0, (38)

where the number of degrees of freedom is given by Ndo f s = 5×NP, NP being the number of nodes of
the discrete domain. With reference to Equation (38), K, M clearly stand for the global stiffness and
mass matrices, whereas u is the vector of the nodal displacements of the global system defined below:

u =
[

ux,1 · · · ux,NP uy,1 · · · uy,NP uz,1 · · · uz,NP φx,1 · · · φx,NP φy,1 · · · φy,NP

]T
, (39)

in which the numbering is performed following the scheme in Figure 3. Finally,
¨
u is the vector that

collects the second-order time derivatives of the nodal displacements.
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Figure 3. Example of a discrete domain and node numbering.

2.2. Natural Frequency Analysis

Once the discrete fundamental system (38) is defined and the proper boundary conditions are
enforced, the separation of variables provide the following relation:(

K−ω2M
)
d = 0, (40)

in which ω represents the circular frequencies of the structural system, whereas the vector d collects the
corresponding modal amplitudes. The natural frequencies of the plate can be evaluated as fn = ω/2π.
It can be observed that the expression (40) is a generalized eigenvalue problem. In the present research,
the function “eigs” embedded in MATLAB was employed to obtain the natural frequencies and the
mode shapes of the laminated composite plates.

3. Numerical Applications

The formulation illustrated in the previous section was implemented in a MATLAB code.
The current approach was first validated by means of the comparison with the semi-analytical
solutions provided by Reddy in his book [23], for both thin and thick simply-supported plates with an
antisymmetric cross-ply layup. In these circumstances, a uniform distribution of the fiber was assumed
along the plate thickness.

The convergence analysis was also performed for the sake of completeness. Subsequently, the
natural frequencies of functionally graded orthotropic laminated plates are discussed. The geometry
of the plates considered in the numerical applications was defined by Lx = Ly = 1 m, whereas their
lamination scheme was given by

(
0
◦
/90

◦
/0
◦
/90

◦)
. The four layers were characterized by the same

value of ṼF = 0.6, whereas their thickness was assumed as 2.5 × 10−3 m for thin plates and as 2.5 ×
10−2 m for the thick ones. The mechanical properties of the constituents (Carbon fibers and epoxy
resin) are listed in Table 2.

Table 2. Mechanical properties of the layer constituents.

Constituent Young’s Moduli Shear Moduli Poisson’s Ratios Density

Carbon fibers
EF

11 = 230 GPa GF
12 = 50 GPa νF

12 = 0.20
ρF = 1800 kg/m3

EF
22 = 15 GPa νF

23 = 0.25

Epoxy resin EM = 3.27 GPa - νM = 0.38 ρM = 1200 kg/m3
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3.1. Convergence and Accuracy

The convergence analysis was performed by increasing the number of discrete elements up to
256, which means 16 elements along each principal direction. The results of this test are presented in
Table 3 for a thin plate and in Table 4 for the thicker ones, in terms of the first ten natural frequencies.
A very good accuracy was obtained by using only eight finite elements per side, for both cases under
consideration. In particular, the percentage error for the first mode shapes was lower than 0.4%
if 64 elements were used. Therefore, the formulation and the numerical approach were validated.
Only the bending mode shapes were considered in the analyses.

Table 3. Convergence features of the numerical approach and comparison of the first ten natural
frequencies (Hz) with the semi-analytical solutions provided by Reddy [23] for a simply-supported
thin plate with a through-the-thickness uniform distribution of the reinforcing fibers. CLPT: classical
laminated plate theory.

Mode CLPT Ref. [23]
4 Elements
Ndofs=125

16 Elements
Ndofs=405

64 Elements
Ndofs=1445

256 Elements
Ndofs=5445

1 43.9262 44.4153 43.9592 43.9284 43.9265
2 123.1041 135.1515 124.3804 123.1900 123.1096
3 123.1041 135.1515 124.3804 123.1901 123.1096
4 175.6547 192.6267 177.6096 175.7865 175.6632
5 265.0021 505.8042 278.5590 265.9668 265.0653
6 265.0021 505.8084 278.5590 265.9668 265.0653
7 300.0618 533.0928 313.2389 300.9965 300.1230
8 300.0618 533.0928 313.2389 300.9965 300.1230
9 395.0350 751.5685 415.3231 396.4841 395.1299
10 465.3946 838.4999 515.4317 470.6168 465.7466

Table 4. Convergence features of the numerical approach and comparison of the first ten natural
frequencies (Hz) with the semi-analytical solutions provided by Reddy [23] for a simply-supported
thick plate with a through-the-thickness uniform distribution of the reinforcing fibers. FSDT: first-order
shear deformation theory.

Mode FSDT Ref. [23]
4 Elements
Ndofs=125

16 Elements
Ndofs=405

64 Elements
Ndofs=1445

256 Elements
Ndofs=5445

1 397.3772 400.9285 397.6161 397.3928 397.3782
2 939.4637 987.3930 946.0547 939.9116 939.4924
3 939.4637 987.3930 946.0547 939.9116 939.4924
4 1285.7309 1295.8113 1293.1889 1286.2465 1285.7646
5 1640.7304 2202.4349 1687.2607 1644.1525 1640.9552
6 1640.7304 2219.9298 1687.2607 1644.1525 1640.9552
7 1869.3853 2219.9298 1905.9136 1872.1146 1869.5668
8 1869.3853 2224.7306 1905.9136 1872.1146 1869.5668
9 2313.9852 2486.7150 2349.5762 2316.8723 2314.1827
10 2372.3369 3354.9399 2442.9101 2385.5578 2373.2355

For completeness, the convergence features of the proposed approach are presented in graphical
form in Figure 4, where the relative error er = fn/ fn,exact − 1 was computed for increasing values of the
degrees of freedom (Ndo f s). The graphs are presented in logarithmic scale. It can be observed that a
good convergence was reached for both thin and thick plates.
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(a) (b) 

 
(c) (d) 

 
(e) (f) 

Figure 4. Convergence graphs for thin (CLPT) and thick (FSDT) laminated plates in terms of natural
frequencies: (a) first frequency; (b) second frequency; (c) third frequency; (d) fourth frequency; (e) fifth
frequency; (f) sixth frequency.

3.2. Natural Frequency Analysis of Functionally Graded Orthotropic Plates

In this section, four different through-the-thickness fiber distributions are analyzed. These four
schemes, as well as the functions f (k) employed in each layer, are summarized in Table 5. The layers
were numbered from the bottom to the top surface of the plate. As far as the mechanical and geometric
features of the plates are concerned, the same values of the previous section were used. Due to
the results of the convergence analyses, the plates were discretized by using ten finite elements
per side. The first fourteen natural frequencies of a simply-supported thin plate for the various
through-the-thickness distributions of the reinforcing fibers specified in Table 5 are presented in Table 6,
whereas Table 7 collects the same results for a simply-supported thick plate. Finally, the first six mode
shapes are also depicted in graphical form. In particular, Figure 5 presents the mode shapes related to
the thin plates, whereas the same results for the thick plates are shown in Figure 6. Note that the mode
shapes assumed different aspects by varying the through-the-thickness distributions of the fibers in the
four layers, keeping their orientation constant. Analogously, the values of natural frequencies were
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affected by the non-uniform distribution of the fibers along the thickness of the structures, for both
thin and thick configurations.

Table 5. Definition of the through-the-thickness distribution of the reinforcing fibers.

Scheme Layer 1 Layer 2 Layer 3 Layer 4

Scheme 1 f (1)UD f (2)UD f (3)UD f (4)UD
Scheme 2 f (1)O f (2)O f (3)O f (4)O
Scheme 3 f (1)X f (2)X f (3)X f (4)X
Scheme 4 f (1)V f (2)UD f (3)UD f (4)A

Table 6. First fourteen natural frequencies (Hz) of a simply-supported thin plate for several
through-the-thickness distributions of the reinforcing fibers.

Mode Scheme 1 Scheme 2 Scheme 3 Scheme 4

1 43.9271 33.5339 35.0923 34.5204
2 123.1397 93.9281 97.6817 96.4943
3 123.1397 93.9281 97.6817 96.4994
4 175.7093 134.1367 140.3692 138.0894
5 265.4059 202.3576 209.7406 207.6677
6 265.4059 202.3576 209.7406 207.6780
7 300.4527 229.2791 239.2330 235.8151
8 300.4527 229.2791 239.2330 235.8250
9 395.6415 302.0350 316.0631 310.9587
10 467.6067 356.4637 368.9774 365.6794
11 467.6067 356.4637 368.9774 365.6944
12 494.2235 376.9847 392.0326 387.3268
13 494.2235 376.9847 392.0326 387.3477
14 565.8001 431.8446 451.1608 444.3823

Table 7. First fourteen natural frequencies (Hz) of a simply-supported thick plate for several through-the-
thickness distributions of the reinforcing fibers.

Mode Scheme 1 Scheme 2 Scheme 3 Scheme 4

1 397.3836 306.5341 318.4900 319.8942
2 939.6493 734.9017 753.9989 780.5089
3 939.6493 734.9017 753.9989 780.5337
4 1285.9465 1008.8635 1036.0206 1077.1948
5 1642.1651 1300.8952 1322.6235 1405.6371
6 1642.1651 1300.8952 1322.6235 1405.6638
7 1870.5349 1480.8980 1510.3561 1600.6668
8 1870.5349 1480.8980 1510.3561 1600.6865
9 2315.2138 1839.1055 1872.3302 1997.7076
10 2377.9654 1899.9655 1921.4452 2077.7168
11 2377.9654 1899.9655 1921.4452 2077.7322
12 2545.0693 2031.1334 2059.3510 2219.4198
13 2545.0693 2031.1334 2059.3510 2219.4394
14 2888.3228 2306.5360 2339.2521 2523.7454
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(a) (b) (c) (d) 

Figure 5. First six mode shapes for a simply-supported laminated thin plate with different fiber
distributions: (a) Scheme 1 (uniform); (b) Scheme 2; (c) Scheme 3; (d) Scheme 4.
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Figure 6. First six mode shapes for a simply-supported laminated thick plate with different fiber
distributions: (a) Scheme 1 (uniform); (b) Scheme 2; (c) Scheme 3; (d) Scheme 4.
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4. Conclusions

A FE formulation was presented and implemented to investigate the natural frequencies of
functionally graded orthotropic thin and thick plates with cross-ply layups. The layers of the structures
were modeled as fiber-reinforced materials with orthotropic features. The fibers were characterized
by a gradual variation of their volume fraction along the thickness of the plates. Toward this aim,
several functions depending on the thickness coordinate were introduced. Their effects on the
free vibrations were discussed. The research proved that the natural frequencies, as well as the
corresponding mode shapes, were affected by the non-uniform placement of the fibers in the thickness
direction. In particular, the dynamic response of laminated plates could be changed by varying the
through-the-thickness distributions of the volume fraction of the reinforcing fibers, keeping the fiber
orientation and the thickness of the various layers constant. The same considerations were deduced
for thin and thick plates.
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Appendix A

The following definitions are required to compute the terms of the element stiffness matrix K(e)

introduced in Equation (31). Recall that the operator at issue is symmetrical. The submatrices K
(e)
i j for

i, j = 1, 2, . . . , 5 assume the following aspects:

K11 =
∫
x

∫
y

(
BT

x

(
A11Bx + A16By

)
+ BT

y

(
A16Bx + A66By

))
dxdy

K12 =
∫
x

∫
y

(
BT

x

(
A12By + A16Bx

)
+ BT

y

(
A26By + A66Bx

))
dxdy

K13 = 0
K14 =

∫
x

∫
y

(
BT

x

(
B11Bx + B16By

)
+ BT

y

(
B16Bx + B66By

))
dxdy

K15 =
∫
x

∫
y

(
BT

x

(
B12By + B16Bx

)
+ BT

y

(
B26By + B66Bx

))
dxdy

(A1)

K21 = KT
12

K22 =
∫
x

∫
y

(
BT

y

(
A22By + A26Bx

)
+ BT

x

(
A26By + A66Bx

))
dxdy

K23 = 0
K24 =

∫
x

∫
y

(
BT

y

(
B12Bx + B26By

)
+ BT

x

(
B16Bx + B66By

))
dxdy

K25 =
∫
x

∫
y

(
BT

y

(
B22By + B26Bx

)
+ BT

x

(
B26By + B66Bx

))
dxdy

(A2)

K31 = KT
13

K32 = KT
23

K33 =
∫
x

∫
y

(
BT

x

(
κA44Bx + κA45By

)
+ BT

y

(
κA45Bx + κA55By

))
dxdy

K34 =
∫
x

∫
y

(
BT

x

(
κA44N

)
+ BT
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Analogously, the following definitions are needed to evaluate the terms of the element mass
matrix M(e) introduced in Equation (32), which also turns out to be symmetrical. The submatrices
M

(e)
i j , for i, j = 1, 2, . . . , 5 assume the following aspects:
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Abstract: This work presents a transdisciplinary, integrated approach that uses computational
mechanics experiments with a flow network strategy to gain fundamental insights into the stress flow
of high-performance, lightweight, structured composites by investigating the rostrum of paddlefish.
Although computational mechanics experiments give an overall distribution of stress in the structural
systems, stress flow patterns formed at nascent stages of loading a biostructure are hard to determine.
Computational mechanics experiments on a complex model will involve a high degree of freedom
thereby making the extraction of finer details computationally expensive. To address this challenge,
the evolution of the stress in the rostrum is formulated as a network flow problem generated by
extracting the node and connectivity information from the numerical model of the rostrum. The flow
network is weighted based on the parameter of interest, which is stress in the current research.
The changing kinematics of the system is provided as input to the mathematical algorithm that
computes the minimum cut of the flow network. The flow network approach is verified using two
simple classical problems. When applied to the model of the rostrum, the flow network approach
identifies strain localization in tensile regions, and buckling/crushing in compressive regions.

Keywords: biostructure; rostrum; paddlefish; Polyodon spathula; maximum-flow/minimum-cut;
stress patterns

1. Introduction

A fundamental understanding of the response of a structural system to external loading conditions
is important in determining if the design is able to withstand the prescribed external load. Numerous
methods are available to quantify the response of a structural system to external loads. Existing
methods, such as acoustic emission [1–7] and digital image correlation [8–17], offer the capability
to experimentally measure/quantify/determine strains/deformations. From a modelling perspective,
there are continuum-based [18–20] and discrete- or lattice-based [21–23] approaches that not only satisfy
the physical laws governing the systems, but also provide abundant information required for structural
analysis. Finite element analysis has been used to study the mechanical properties of bioinspired
structures. Flores-Johnson et al. [24] carried out simulations on bioinspired, nacre-like composite plates.
Nacre, found in mollusk shells, is a biological material that shows remarkable mechanical performance

Math. Comput. Appl. 2019, 24, 47; doi:10.3390/mca24020047 www.mdpi.com/journal/mca97



Math. Comput. Appl. 2019, 24, 47

because of its hierarchical geometry spanning multiple length scales [25]. Flores-Johnson et al. [24]
found that the nacre-like plates demonstrated superior performance as compared to standard bulk
plates under blast loadings. Tran et al. [26] conducted a study to analyze the response of a bioinspired
composite plate based on nacre structure subjected to underwater impulsive loading. They discovered
that the bioinspired composite structure spread the damage over a larger area, thereby decreasing stress.
Although a considerable amount of research is performed on biostructures and bioinspired structures,
there is yet a lack of understanding on what imparts superior performance to biostructures. Numerical
analysis provides the overall response of the structural system under an external loading condition.
However, additional information is required to understand the influence of the local topology on
the global structural response and overall performance of the system. To our knowledge, advanced
mathematical algorithms have not been used with continuum-based models to gain fundamental
insight into the structural response of biostructures. Since biostructures are geometrically optimized at
the coarsest level of hierarchy, the information obtained at the local topology level provides insights
that could be used to identify optimal geometrical configurations that impart superior characteristics
to biostructures.

Any conceivable problem dealing with the transmission of information can be solved by abstraction
to a network or a graph [27]. These abstractions involve representing the system in terms of a transmission
medium and the internal details that block the information flow, i.e., flow bottlenecks. From this viewpoint,
maximum flow and minimum cut are two of the most widely used algorithmic approaches in network
flow theory [27]. Maximum flow governs the amount of information that can be transmitted through the
network. Minimum cut embodies a set of edges in the network that form the bottlenecks to transmission.
Tordesillas et al. examined the formation of bottlenecks in transmission of force through the contact
network by applying network flow theory [27–29]. The location and formation of the bottlenecks are
influenced by the local as well as global characteristics of the structural system. The early identification
of bottlenecks in force transmission opens new avenues for detection, as well as manipulation of the
approaching failure in granular systems.

Lefort et al. [30] used image analysis that employed an integration of a numerical model with
Ripley’s function [31] to identify patterns in the fracture process zone (FPZ) in a quasibrittle material.
Macrocracks in a quasibrittle material are formed by the combination of microcrack propagation, interaction,
and coalescence, situated within the FPZ. Ripley’s function is used to characterize randomness in the spatial
spreading of point distributions and to identify the spreading and development of diverse patterns, e.g.,
cell migration [31], tree [32] and plant [33] dissemination, and disease transmission [34]. Lefort’s research
could open up new paths that would result in nonlocal continuum modeling at the macroscale level.

The mathematical approaches used for dense granular systems and quasibrittle materials
demonstrate that local topological interactions are a major contributor to the global structural response.
To gain an understanding of failure mechanisms, it is essential to capture the activity around the failure
site at the nascent stage of loading. Obtaining this insight at the onset of loading may provide insight
into failure mechanisms and possibly suggest novel approaches to alter the process and location of
failure. Additionally, if the location of the failure is identified earlier, there is a possibility of developing
a relationship that aids in quantifying the external force required for the structural system to fail at that
location. This knowledge can be used for designing new structural systems, and for the assessment of
existing critical infrastructure.

Biostructures have, in general, demonstrated superior characteristics as they evolved to serve
multiple and specific functions [35]. The biostructure of interest here is the snout, or rostrum, of the
paddlefish (Polyodon spathula). This large North American freshwater fish is related to sturgeons.
Unlike those fish with their short thick rostra, the paddlefish has an elongated, flattened rostrum that in
adults may be in the range of 29–59% of its body length, and in breadth in the range of 8–17% of body
length [36]. The rostrum was once believed to be a simple digging or stirring implement, but is now
known to be a complex hydrodynamic and electrosensory structure [37]. This prominent structure is
easily observed and is supported internally by a distinctive skeleton of ossified cartilage comprised of
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large axial rods with two posterior buttresses at the base and with numerous small stellate elements
lateral to the axis (Figure 1).

The rostrum’s lattice-like architecture with complex geometry appears to contribute to its unique
strength and resilience. This research is motivated by an earlier feasibility study that concluded that the
nonuniform geometry of the rostrum is one of its toughening mechanisms used to mitigate failure [38].
Since biostructures in general and the paddlefish rostrum in particular are made of heterogeneous
materials and also have hierarchical geometry, it is difficult to identify the major contributor to their
superior structural response. A fundamental understanding of how this lattice-like architecture
functions has the potential to provide novel insights into applications over a wide range of disciplines
(e.g., protective panels, novel building materials, body and vehicle armor, and ship design, among
other possible uses). This research seeks to use an integrated transdisciplinary approach that feeds
information from computational mechanics experiments on biostructures to a mathematical algorithm
to identify the patterns formed at the early stages of loading of the biostructure.

Patel et al. developed the methodology of using network theory with finite element analysis in
their previous work [39], which used a single source and sink combination to analyze the stress flow
pattern on the rostrum. They also presented the procedure of preparing the data in an appropriate
format from finite element binary database files to an abstract mathematical domain in their recent
publication [40]. Patel et al. have also developed bioinspired structural systems to analyze the
relationship of structural resiliency and geometrical complexity [39]. This work extends their previous
research to include a multiple combination of source and sink. Since the material is in the linearly
elastic regime, the solution from the mathematical algorithm can be superimposed. The addition of
this aspect to the current analysis assisted in capturing the shear and flexure pattern in a four point
bending of a simply supported concrete beam.

Figure 1. Paddlefish from the lower Mississippi River showing the unique rostrum of the species.
(Upper photo) Adult fish 1 m long contained in a mobile swim tunnel; (lower photo) dried and
skeletonized rostrum. Photo taken by Dr. Jan Jeffrey Hoover, USACE.

The paper is organized as follows. In Section 2, a brief introduction to network flow is provided,
and Section 3 describes the procedure to formulate the biostructure as a network flow problem.
In Section 4, the proposed approach is verified using two classical problems. Details of the computational
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mechanics experiments are discussed in Section 5, followed by results in Section 6, and conclusions
follow in Section 7.

2. Network Flow

A brief introduction of the basic concepts of network flow is now provided. A flow network is a
directed graph with two distinguished vertices, called a source and a sink, coupled with a non-negative
real-valued function called the capacity function [27,41,42].

A network N is defined as a set comprising:

1. directed graph G (V, E), where V is a finite set of vertices, and E is a subset of ordered pairs of
vertices representing the edges;

2. vertex s ∈ V that has only outgoing edges represented as the source node;
3. vertex t ∈ V that has only incoming edges represented as the sink node; and
4. positive function c: E→ R+ called the capacity function.

Flow f on a network N is defined by real-valued function f : E→ R+. Flow f is a feasible flow
vector if it satisfies the following constraints:

1. Capacity constraint ∀u, v ∈ V requires that f (u, v) ≤ c(u, v); flow cannot exceed the capacity of the
respective edge.

2. Conservation of flow ∀u, v ∈ V − (s, t) requires that

(a)
∑

vεV f (u, v) = 0,
(b) the total flow entering a node must equal the total flow leaving that node provided the

node is not a source or sink node, and

3. the total flow leaving the source node s must be equal to the total flow entering sink node t.

Given a flow network G(V, E), with source s and sink t, such that there are no incoming edges at the
source and no outgoing edges at the sink, the maximum flow problem involves finding a function f
that satisfies the capacity and conservation constraints described above; its value is defined as follows:

val(f ) =max(f )

A cut of a flow network G(V,E) is defined as a set of vertices (E1, E2) that partition V into E1 and
E2= V − E1, such that s ∈ E1 and t ∈ E2. If f is a flow, then the net flow across the cut (E1, E2) is defined
as f (E1, E2). The capacity of the cut (E1, E2) is c(E1, E2).

A minimum E1 −E2 cut problem involves minimizing c(E1, E2). That would mean the identification
of E1 and E2 in such a manner so as to find the minimal capacity of the (E1, E2) cut.

In combinatorial optimization theory, the maximum-flow/minimum-cut theorem states that in a
flow network G(V, E), the maximum quantity of flow f travelling from source node s to sink node t is
identical to the total weight of the edges in the minimum cut. Essentially speaking, the maximum
flow in the network is equal to the smallest total weight of the edges that, if removed, would cause the
source to be totally disconnected from the sink.

The network flow approach has previously been applied to characterize stress transmission in various
synthetic and natural materials with complex microstructures, for example, sand [29,43], photoelastic
disks [29], and concrete [5]. In these studies, microstructural data on the internal connectivity and
edge capacities were obtained from high-resolution imaging experiments (e.g., X-ray CT, birefringence
analysis) and discrete-element (DEM) models.

3. Formulation of the Biostructure as Network Flow Problem

The flow of stress in a structural system can be interpreted as a directed graph that facilitates the
investigation of failure mechanisms. Intuitively, the transmission of information at a given point in the

100



Math. Comput. Appl. 2019, 24, 47

structural system is the rate at which the information (i.e., variables such as stress, displacement, kinetic
energy, elastic or plastic strain in the structural system) travels. Each edge in a directed graph can
be compared to a channel through which information is transmitted. Each edge has a corresponding
capacity that is representative of the maximum rate at which information can be passed through the
edge. Vertices of the graph are the points where the edges connect. Two special nodes identified as
source and sink govern the flow. The edges connected to these special nodes are assigned infinite
capacity [27,29]. The selection of these special nodes is dependent on the type of boundary conditions
implemented on the model. For example, if the model is subjected to constant uniform pressure in the
vertical direction, the nodes on the top or bottom surface of the model are chosen to act as the source
and sink, respectively. Since the flow of stress is symmetric, altering the assignment of source and sink
does not change the flow pattern.

A flow network N (V, E, A, U, s, t) [27,29] is constructed from the computational-mechanics model,
such that:

1. V represents the nodes obtained from the finite element model of the biostructure. As shown in
Figure 2a, for a hexahedral element in a finite element model, nodes are 1, 2, . . . , 8.

2. E represents the edges, connecting the nodes in V, indicating connectivity A between the nodes.
The edges of a hexahedral element, as shown in Figure 2a, are {(1, 2), (2, 3), (3, 4), (4, 1)} for Face 1.

3. Each edge (u, v) ∈ Ehas a capacity U associated with it that is representative of the maximum amount
of flow that could be transmitted through the edge. Capacity calculation for Edge (1, 2) is shown in
Figure 2c. Capacity for Edge (1, 2) is the average of the von Mises stresses at Nodes 1 and 2.

4. Von Mises stresses (as shown in Figure 3) at each node are calculated using the average of the
integration points shown in Figure 2d.

Figure 2. (a) Node numbering in an eight-node hexahedral element. (b) Hexahedral element faces
in an eight-node hexahedral element. (c) Capacity calculation for edges in flow network graph.
(d) Integration points on an eight-node hexahedral.
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Figure 3. Von Mises stress equation expressed by the six stress components.

Each time frame from the computational-mechanics experiment is constructed as a network flow
graph, where each graph depicts the flow of the variable of interest in response to the external loading
condition. For each network, the maximum flow and minimum cut is calculated. As stated by the
maximum-flow/minimum-cut theorem, the value of the maximum flow is equal to the capacity of the
minimum cut.

The procedure outlined above for the proposed flow network approach is outlined in the flowchart
shown in Figure 4. As shown in Figure 4, the flow network is constructed using the nodes and
connectivity information from the computational mechanics experiment. Capacity C of the flow network
was obtained from the Von Mises stresses produced from the binary output database files of the
computational-mechanics experiment. The mathematical algorithm was executed on the abstract domain.
The solution obtained from the mathematical algorithm was mapped back to the physical domain
using the coordinate information of the nodes. Paraview was used for visualizing the solution of the
mathematical algorithm. As mentioned above, the procedure of formulating the solution from finite
element analysis as a flow network graph was carried out in four stages. As shown in Figure 4, in Stage
1, the flow network was constructed using the nodes and connectivity information from finite element
analysis. In Stage 2, the weight of the flow network was obtained using the parameter of interest (stresses,
in the current study, were also acquired from finite element analysis). In Stage 3, the flow network graph
was created. In Stage 4, the flow network graph was provided as input to the mathematical algorithm
that computes the minimum cut of the flow network graph. The details of the procedure involved in the
four stages mentioned above is described in the previous work of Patel et al. [40].

The flow network graph in the current study was developed using data obtained from finite
element simulation. The Abaqus/Standard solver was used for conducting static analysis. The choice
of Abaqus/Standard for performing these analyses is justified based on the algorithm that it employs
for static and low-speed dynamic events, where highly accurate stress solutions are required. Analysis
was executed in two steps. Gravity load (self-weight) is applied to the models in the initialization stage.
Pressure load was applied to the models in the second stage. The pressure load applied to the model
was obtained by multiplying the total load with the time increment of the finite element simulation.
Geometric nonlinearity was taken into account in the simulations.
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Figure 4. Flowchart depicting the steps involved in formulating a small part of rostrum as a network
flow problem.

4. Verification of Approach on Known Datasets

The customary method for verifying a new approach is to use a problem that is simple enough to
have an analytical solution and similar enough to the phenomena that are being simulated so that
a meaningful extrapolation to the actual problem is feasible. By doing so, numerical and analytical
solutions can be compared, and the fundamental shortcomings of the numerical approach used to solve
the problem can be identified. To verify the current research methodology, two simple problems were
chosen. The problem descriptions and methodology implementations follow in the subsections below.

4.1. Problem 1: Three-Point Bending of a Simply Supported Beam

The Abaqus/Standard solver [44] was used to carry out a computational-mechanics experiment
on a simply supported concrete beam. The length of the beam was 216 inches, the width was 36 inches,
and the thickness was 6 inches. A mass density of 8.67 × 10−11 slug/in3, Young’s modulus of 3 × 106 psi,
and Poisson’s ratio of 0.3 were used for the concrete material model [45,46]. The Abaqus mesh consisted
of 73,278 quadratic tetrahedral elements comprising 117,709 nodes. The schematic of the loading
condition on the simply supported concrete beam is displayed in Figure 5.

Figure 5. Schematics of three-point bending of a simply supported concrete beam.
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The maximum principal stresses obtained from the computational-mechanics experiment are
plotted in Figure 6, which gives the overall stress distribution in the beam subjected to a concentrated
load of 100 MPa at the center. The simulation was carried out using the dynamic, explicit method
in Abaqus for a total time of 0.005 s. Geometric nonlinearity effects were included. The node and
connectivity information were extracted from the computational mechanics model to construct a
flow network. The network was weighted based on the Von Mises stress values from the Abaqus
output database file. The von Mises stresses are equivalent tensile stresses derived from the stress
deviator [47].

Figure 6. Maximum principal stresses for three-point bending of a simply supported concrete beam.

Source and sink combinations were selected from high-stress areas. The result of the network
flow analysis is shown in Figure 7. The source in this case was chosen in the area where the load
was applied. The sink was selected in the area where maximum deformation occurs for this classical
problem (i.e., the midpoint of the beam parallel to where the source was selected). Figure 7 shows
the result of network flow analysis. The minimum cut identified by the mathematical algorithm is
represented by the blue line in Figure 7. The minimum cut denotes a set of edges in the flow network
that inhibit flow transmission or form transmission bottlenecks, i.e., flow network analysis highlights
the members of the beam where the failure mechanism initiates. For this problem, network analysis
shows the typical behavior of a beam subjected to a concentrated load at the center line. A failure
for this classical problem initiates with a crack at the bottom face sheet at the beams midspan and
continues to grow as the load increases. Hence, the proposed methodology for detecting the failure
mechanisms at the nascent stage of loading from the computational-mechanics experiment and flow
network approach was verified using a simple problem with a known solution.

Figure 7. Flow network analysis for three-point bending of a simply supported concrete beam.

4.2. Problem 2: Four-Point Bending of a Simply Supported Beam

The dimensions and material of the model used for Problem 2 are identical to the concrete beam
used in Problem 1. For this problem, the concrete beam was a simply supported beam with two equal
forces applied equidistant from the supports, as shown in Figure 8 [45,46].
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Figure 8. Schematics of four-point bending of a simply supported concrete beam.

The maximum-flow/minimum-cut algorithm was executed in seven scenarios. The source node in
each scenario was chosen to be a vertex where the force is applied while the sink node in each scenario
was chosen to be a point in an area where a stress transition was visually identified. The sink nodes
were selected by looking at the maximum principal stresses, shown in Figure 9. Seven sink nodes were
selected. The mathematical algorithm was executed seven times using this source–sink combination.
The results were superimposed as the material is in the linear elastic regime.

Figure 9. Maximum principal stresses for four-point bending of a simply supported concrete beam.

Figure 10 shows the superimposed result obtained by running the maximum-flow/minimum-cut
algorithm. The minimum cut clearly identified the shear patterns on the left and right corners,
and flexure patterns in the center are highlighted by the white lines in Figure 10. These shear and
flexure patterns govern the phenomena of the failure mechanism in this classical problem. The network
flow strategy identified these patterns at the onset of loading when the material was still in the linear
elastic regime.

Figure 10. Flow network analysis of four-point bending of a simply supported concrete beam.
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5. Computational Mechanics Experiments on the Rostrum

Computational mechanics experiments were carried out on the rostrum of the paddlefish.
Simulations were performed in the U.S. Army Engineer Research and Development Centers High
Performance Computing facilities located in Vicksburg, MS. The computational model was generated
from the tomography (CT scan) of the paddlefish rostrum. The grey tones of the scanned image of
the rostrum helped identify the three parts of the rostrum (tissue, hard cartilage, and soft cartilage).
Figure 11 shows the tissue component of the rostrum. The tissue is the outermost layer of the rostrum
that encompasses the hard cartilage, shown in Figure 11. The soft cartilage is located in the central
portion of the rostrum. The mesh assembly cross-section shows the location of the three components
of the rostrum in the actual model. The component parts of the rostrum were individually imported
into commercial software Abaqus. The parts were meshed using a combination of hexahedral and
tetrahedral elements. The model used in the current research comprises 119,712 hexahedral elements,
1,300,451 tetrahedral elements, 375,361 nodes, and 1,126,083 total degrees of freedom.

Figure 11. Abaqus mesh model of the rostrum. Dorsal view of tissue and hard cartilage on the left,
lateral view of soft cartilage and oblique lateral sagittal section of mesh assembly on the right.

5.1. Material Properties

Nano-indentation experiments carried out on the rostrum revealed the material properties of
the components of the rostrum [48]. The three parts of the rostrum, as shown in Figure 11, have
considerably different material properties [49]. Taking this into consideration, a similar variation in
material properties was maintained when selecting the materials for finite element analysis. Table 1
shows the three commercially available materials selected to represent the rostrum components shown
in Figure 11.

Table 1. Commercial materials selected to model the rostrum.

Part Commercial Material Elastic Modulus

Tissue Vinyl ester epoxy 2.9 GPa
Hard cartilage Polyethylene fibers 66 GPa
Soft cartilage Polyethylene/epoxy(as isotropic) 49,762 MPa

5.2. Force and Displacement Boundary Conditions

A uniform pressure was applied on the top surface of the rostrum, displayed in purple shading in
Figure 12. A fixed-plate boundary condition was implemented on the rostrum by restraining the three
components of displacement. A uniform pressure of 50 MPa was applied in the loading direction,
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shown in Figure 12. Pressure was applied perpendicular to each element face on the top surface of the
rostrum, displayed in purple shading in Figure 12, thereby following the surface contour.

Figure 12. Force and displacement boundary conditions implemented on the rostrum.

6. Results

Although computational-mechanics experiments provide the overall distribution of stresses in
the structural system, information about stress-flow patterns formed at nascent stages of loading
is missing. Identification of the stress-flow patterns in the linear elastic regime may lead to novel
insight into failure mechanisms through identification of the location of stress concentration areas
developed due to change in geometry and material properties. To obtain these stress patterns,
the rostrum is formulated as a network flow model by utilizing node and connectivity information
from the computational-mechanics model. The network is weighted based on the Von Mises stresses
obtained from the output database file produced from the computational-mechanics experiments on
the rostrum. The maximum-flow/minimum-cut algorithm described in Reference [39] was used to
identify the stress-flow patterns when the rostrum is subjected to a uniform pressure load. A seamless,
platform-independent interface was developed to formulate the rostrum as a network flow problem
and compute the maximum flow/minimum cut of the network.

Source and sink nodes were identified and provided as input to the maximum-flow/minimum-cut
algorithm. For the rostrum, these nodes were selected based on the displacement contours shown
in Figure 13. The source and sink nodes were identified at the edges and center of the maximum
displacement area on the top and bottom surfaces of the rostrum, represented by red coloring in
Figure 13. As verified earlier in Problem 2, the mathematical algorithm was executed three times using
the source/sink combination shown in Figure 13. The results were superimposed, as the material was
in the linear elastic regime. Reversing the selection of source and sink nodes on the top and bottom
surfaces does not change the result obtained using the maximum-flow/minimum-cut algorithm.
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Figure 13. Displacement contours of the rostrum subjected to uniform pressure loading with a fixed
plate boundary condition showing the location of source/sink. Cases 1 and 3 were chosen at the edges,
and Case 2 in the center of the maximum displacement contour. Dorsal view of rostrum.

6.1. Flow Network Analysis on Soft Cartilage of the Rostrum

Figure 14a shows the maximum principal stresses on the bottom surface of the soft-cartilage part
of the rostrum. Although stresses progressively increased in the early stages of loading, they were
evenly distributed across the entire bottom surface, thereby providing no insight into the phenomena
of the failure mechanism. In contrast, Figure 14b displays the output obtained by executing the
maximum-flow/minimum-cut algorithm using the source/sink combination, shown earlier in Figure 9,
and superimposing the results as validated in Problem 2. The minimum cut embodies a set of vertices
that inhibit the transmission of information, i.e., stresses in the current analysis. The minimum cut
on the bottom surface of the soft cartilage is along the edges where there is a change in material
properties. The failure initiates at this position owing to change in geometry and material properties.
The red regions at the tip and base of the bottom surface are also located at the areas where material
properties change. The maximum-flow/minimum-cut algorithm detected the failure sites at nascent
stages of loading.
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Figure 14. Soft cartilage of paddlefish rostrum. (a) Maximum principal stress obtained from finite
element analysis. (b) Minimum cut obtained from mathematical analysis on bottom surface of rostrum’s
soft cartilage. Nodes are colored by their respective locations on the source (red) or sink (blue) side of
the minimum cut.

Figure 15a shows the maximum principal stresses on the top surface of the soft-cartilage part of
the rostrum. As observed earlier in Figure 14a, finite element analysis shows stresses progressively
increasing as the external load increases, as expected. On the other hand, Figure 15b shows the
minimum cut obtained by running the maximum-flow/minimum-cut algorithm. The interface between
the red and blue nodes is the location of the failure site. The failure for the top surface of the rostrum
initiates along the edges where there is a change in the material properties. The red region at the base
of the top surface falls in areas where there is contact between components with varying material
properties. Hence, the flow network strategy successfully identified the local regions where failure
mechanisms were expected to initiate.
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Figure 15. Soft cartilage of paddlefish rostrum. (a) Maximum principal stress obtained from finite
element analysis. (b) Minimum cut obtained from mathematical analysis on top surface of rostrum’s
soft cartilage. Nodes are colored by their respective locations on the source (red) or sink (blue) side of
the minimum cut.

6.2. Flow Network Analysis on Hard Cartilage of Rostrum

Figure 16a shows the maximum principal stresses on the bottom surface of the hard-cartilage
part of the rostrum. Overall stresses progressively increased with the increase in external loading,
as expected. Figure 16b displays the minimum cut obtained from the maximum-flow/minimum-cut
algorithm. Nodes are colored by their respective locations on the source (red) or sink (blue) side
of the minimum cut. The failure sites are located in the interface between the red and blue nodes.
As seen in Figure 16b, these regions are located in the center part of the hard cartilage. Since the lattice
region of the hard cartilage is not a continuous pattern, failure does not travel though the lattice region.
The minimum cut picks up a region in the lattice where stress concentration is high and nodes are
prone to failure. The center part of Figure 16b clearly displays strain localization, which is a typical
mode of failure of a structural system under tensile loading. Hence, the research strategy implemented
in the current work successfully identified the failure mechanisms at the nascent stages of loading.
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Figure 16. Hard cartilage of paddlefish rostrum. (a) Maximum principal stress obtained from finite
element analysis. (b) Minimum cut obtained from mathematical analysis on bottom surface of rostrum’s
hard cartilage. Nodes are colored by their respective locations on the source (red) or sink (blue) side of
the minimum cut.

Figure 17a displays the maximum principal stresses on the top surface of the hard-cartilage
part of the rostrum. Although finite element analysis gives the overall distribution of stresses in the
structural system, the underlying details that govern the phenomena of failure mechanism are hard
to determine from the stresses. Figure 17b, on the contrary, shows the minimum cut obtained by
executing the maximum-flow/minimum-cut algorithm. The central part of Figure 17b clearly highlights
the crushing/buckling behavior that is typically seen in compressive failure. A major part of the
failure sites in this case were also located in the region where there was a change in geometry and
material properties, which is a typical region where failure initiates. Again, the current methodology
successfully identified the sites of failure at the nascent stages of loading.
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Figure 17. Hard cartilage of paddlefish rostrum. (a) Maximum principal stress obtained from finite
element analysis. (b) Minimum cut obtained from mathematical analysis on top surface of rostrum’s
hard cartilage. Nodes are colored by their respective locations on the source (red) or sink (blue) side of
the minimum cut.

6.3. Flow Network Analysis on Rostrum Tissue

Figure 18a shows the minimum cut obtained from flow network analysis on the bottom surface
of the rostrum using the source–sink combination shown Figure 9. As seen in Figure 18a, the flow
network captured the failure patterns at much earlier stages of loading that were not evident
in the computational-mechanics results shown in Figure 18b. At low pressure levels, the strain
localization patterns are captured on the tip of the central region of Figure 18a. As pressure increases,
the strain-localization patterns are formed all along the central region of the rostrum tissue. Trusslike
patterns are captured on the tissue part of the rostrum, as seen in Figure 18a. In contrast, the maximum
principal stresses seen in Figure 18b did not show evidence of such patterns. The strain localization
patterns captured through the flow network strategy are typically observed in a structural system
under tensile loading. At a pressure of 7.143 MPa, Figure 18a also does not show any failure sites at
the base of the tissue part of the rostrum indicative of it being stronger than the remaining part of the
rostrum. This is the region that is attached to the mouth of the paddlefish, and this particular structural
system is optimized for performance in this area. The flow network strategy captured this pattern at
nascent stages, when the material was still in the linearly elastic regime.

Figure 19a displays the minimum cut obtained by using the flow network approach on the top
surface of the rostrum. As seen in Figure 19a, at lower stresses the minimum cut is clearly formed in
the right and left side of the rostrum. This is the region where the material properties of this component
of the rostrum drastically change. As pressure increases, patterns are formed in the center and base
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region. As pressure increases in Figure 19a, there is also an absence of failure sites at the left and right
corners of the base region of the rostrum. This behavior is similar to the one observed on the top
surface of the rostrum. This is indicative of the identification of the stronger part of the rostrum at the
nascent stage of loading.

Figure 18. Tissue of paddlefish rostrum. (a) Network flow analysis on the bottom surface of rostrum
subjected to uniform pressure loading with a fixed plate boundary condition. Nodes are colored by
their respective locations on the source (red) or sink (blue) side of the minimum cut. (b) Maximum
principal stresses on the bottom surface of rostrum.

Figure 19. Tissue of paddlefish rostrum. (a) Network flow analysis on the top surface of the rostrum
subjected to uniform pressure loading with a fixed plate boundary condition. Nodes are colored by
their respective locations on the source (red) or sink (blue) side of the minimum cut. (b) Maximum
principal stresses on the top surface of rostrum.
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7. Conclusions

This work successfully used the maximum-flow/minimum-cut algorithm for early detection
of failure mechanisms in the paddlefish rostrum under uniform pressure loading and a fixed plate
boundary condition. The transdisciplinary approach proposed in the current study was verified using
two classical problems before implementing it on the complex biostructure.

The flow network approach was able to identify failure for the problem involving the three-point
bending of a simply supported concrete beam. The proposed approach was able to identify the shear
and flexure patterns for four-point bending of a simply supported concrete beam. The shear and flexure
patterns identified by the flow network approach govern the phenomena of the failure mechanism in
this classical problem. Failure patterns were identified at the onset of loading when the material was
still in the linear elastic regime.

When applied to a complex biostructure, the flow network strategy was able to identify the strain
localization in the tensile region, and the crushing behavior in the compressive region of the rostrum.
Additionally, the flow network approach was able to identify the failure sites at locations where the
material properties as well as the geometry of the component parts of the rostrum change, i.e., at the
interface regions. The interface regions are typically where the failure initiates. This information can
be used to efficiently design smart structural systems. The guidance regarding the selection of the
source and sink nodes was obtained from the stress and deformation contours obtained from the
computational mechanics experiments.

8. Comments on the Transdisciplinary Approach

This work successfully identified the stress-flow patterns in a complex biostructure through
efficient use of flow network strategy. The approach used in the current work reduces the computational
time, and cost since it is not required to run finite element analysis to failure. Stress patterns were
identified when the material was in the linearly elastic regime. This approach laid the foundation of an
efficient design–test–build cycle for the rapid prototyping of bioinspired structures. The flow network
approach reduces the size of the problem since we concentrate on the parameter of interest, i.e., stress
in the current study.

Author Contributions: Investigation, R.P.; resources, A.T.; supervision, G.R.; writing—review and editing, G.R.,
D.T., E.P., J.J.H., and J.P.

Acknowledgments: The authors acknowledge the financial support provided by U.S. Army Engineer Research
and Development Center (ERDC) under PE 0601102, Project T22 “Research in Soil and Rock Mechanics”,
Task 01. The support and resources from the Engineer Research and Development Center Department of Defense
Supercomputing Resource Center (ERDC DSRC) under the subproject Environmental Quality Modeling and
Simulation are gratefully acknowledged. Permission was granted by the Director of the Information Technology
Laboratory to publish this information.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Aggelis, D.G. Classification of cracking mode in concrete by acoustic emission parameters. Mech. Res. Commun.
2011, 38, 153–157. [CrossRef]

2. Carpinteri, A.; Lacidogna, G.; Niccolini, G.; Puzzi, S. Critical defect size distributions in concrete structures
detected by the acoustic emission technique. Meccanica 2008, 43, 349–363. [CrossRef]

3. Farhidzadeh, A.; Salamone, S.; Singla, P. A probabilistic approach for damage identification and crack
classification in reinforced concrete structures. J. Intell. Mater. Syst. Struct. 2013, 24, 1722–1735. [CrossRef]

4. Farhidzadeha, A.; Mpalaskasb, A.C.; Matikasb, T.E.; Farhidzadehc, H.; Aggelis, D.G. Fracture mode
identification in cementitious materials using supervised pattern recognition of acoustic emission features.
Constr. Build. Mater. 2014, 67, 129–138. [CrossRef]

114



Math. Comput. Appl. 2019, 24, 47

5. Kageyama, K.; Murayama, H.; Ohsawa, I.; Kanai, M.; Nagata, K.; Machijima, Y. Acoustic emission monitoring
of a reinforced concrete structure by applying new fiber-optic sensors. Smart Mater. Struct. 2005, 14, s52–s59.
[CrossRef]

6. Ohtsu, M.; Uchida, M.; Okamoto, T.; Yuyama, S. Damage assessment of reinforced concrete beams qualified
by acoustic emission. ACI Struct. J. 2002, 99, 411–417.

7. Shiotani, T.; Aggelis, D.G.; Makishima, O. Global monitoring of large concrete structures using acoustic
emission and ultrasonic techniques: Case study. J. Bridge Eng. 2009, 14, 188–192. [CrossRef]

8. Bahlouli, N.; Guil, S.M.; Ahzi, S.; Laberge, M. Stress-strain response of biomaterials by a digital image
correlation method: Application to tecoflex. J. Mater. Sci. Technol. 2004, 20, 114–116.

9. Carroll, J.; Efstathiou, C.; Lambros, J.; Sehitoglu, H.; Hauber, B.; Spottswood, S.; Chona, R. Investigation of
fatigue crack closure using multiscale image correlation experiments. Eng. Fract. Mech. 2009, 76, 2384–2398.
[CrossRef]

10. Fazzini, M.; Mistou, S.; Karama, M. Identification of elastomers by digital image correlation. In Proceedings
of the 5th European Conference on Constitutive Models for Rubber, Paris, France, 4–7 September 2007.

11. Goh, C.P.; Ratnam, M.M.; Ismail, H. Large in-plane deformation mapping and determination of young’s
modulus of rubber using scanner-based digital image correlation. Exp. Tech. 2015, 40, 1117–1127. [CrossRef]

12. Gonzáles, G.L.; González, J.A.; Castro, J.T.; Freire, J.L. A J-integral approach using digital image correlation
for evaluating stress intensity factors in fatigue cracks with closure effects. Theor. Appl. Fract. Mech. 2017, 90,
14–21. [CrossRef]

13. Lopez-Crespo, P.; Shterenlikht, A.; Yates, J.; Patterson, E.; Withers, P. Some experimental observations on
crack closure and crack-tip plasticity. Fatigue Fract. Eng. Mater. Struct. 2009, 32, 418–429. [CrossRef]

14. Mudassar, A.A.; Butt, S. Improved digital image correlation method. Opt. Lasers Eng. 2016, 87, 156–167.
[CrossRef]

15. Sutton, M.A.; McNeill, S.R.; Helm, J.D.; Chao, Y.J. Advances in Two-Dimensional and Three Dimensional
Computer Vision. In Photomechanics; Springer: Berlin/Heidelberg, Germany, 2000; pp. 323–372.

16. Sutton, M.A.; Orteu, J.J.; Schreier, H. Image Correlation for Shape, Motion and Deformation Measurements: Basic
Concepts, Theory and Applications; Springer Science and Business Media: New York, NY, USA, 2009.

17. Vasco-Olmo, J.; Díaz, F.; García-Collado, A.; Dorado-Vicente, R. Experimental evaluation of crack shielding
during fatigue crack growth using digital image correlation. Fatigue Fract. Eng. Mater. Struct. 2015, 38,
223–237. [CrossRef]

18. Hallgren, M.; Bjerke, M. Non-linear finite element analyses of punching shear failure of column footings.
Cem. Concr. Compos. 2002, 24, 491. [CrossRef]

19. Mamede, N.F.; Ramos, A.P.; Faria, D.M. Experimental and parametric 3D nonlinear finite element analysis
on punching of flat slabs with orthogonal reinforcement. Eng. Struct. 2013, 48, 442–457. [CrossRef]

20. Shu, J.; Plos, M.; Zandi, K.; Johansson, M.; Nilenius, F. Prediction of punching behavior of RC slabs using
continuum non-linear FE analysis. Eng. Struct. 2016, 15, 15–25. [CrossRef]

21. Borderie, C.L.; Lawrence, C.; Menou, A. Approche mésoscopique du comportement du béton: Apport de la
représentation géométrique. Revue Européenne de Génie Civil 2007, 11, 407–421. [CrossRef]

22. Grassl, P.; Grégoire, D.; Rojas-Solano, L.B.; Pijaudier-Cabot, G. Meso-scale modelling of the size effect on the
fracture process zone of concrete. Int. J. Solids Struct. 2012, 49, 1818–1827. [CrossRef]

23. Grégoire, D.; Verdon, L.B.; Lefort, V.; Grassl, P.; Saliba, J.; Regoin, J.P.; Loukili, A.; Pijaudier-Cabot, G.
Mesoscale analysis of failure in quasi-brittle materials: Comparison between lattice model and acoustic
emission data. Int. J. Numer. Anal. Methods Geomech. 2015, 39, 1639–6164. [CrossRef]

24. Flores-Johnson, E.; Shen, L.; Guiamatsia, I.; Nguyen, G.D. A numerical study of bioinspired nacre-like
composite plates under blast loading. Compos. Struct. 2015, 126, 329–336. [CrossRef]

25. Flores-Johnson, E.; Shen, L.; Guiamatsia, I.; Nguyen, G.D. Numerical investigation of the impact behavior of
bioinspired nacre-like aluminum composite plates. Compos. Sci. Technol. 2014, 96, 13–22. [CrossRef]

26. Tran, P.; Ngo, T.D.; Mendis, P. Bioinspired composite structures subjected to under water impulsive loading.
Comput. Mater. Sci. 2014, 82, 134–139. [CrossRef]

27. Bertsekas, D.P. Network Optimization: Continuous and Discrete Models (Optimization, Computation, and Control);
Athena Scientific: Nashua, NH, USA, 1998.

28. Lin, Q.; Tordesillas, A. Towards an optimization theory for deforming dense granular materials: Minimum
cost maximum flow solutions. J. Ind. Manag. Optim. 2014, 10, 337. [CrossRef]

115



Math. Comput. Appl. 2019, 24, 47

29. Tordesillas, A.; Tobin, S.T.; Cil, M.; Alshibli, K.; Behringer, R.P. Network flow model of force transmission in
unbonded and bonded granular media. Phys. Rev. E 2015, 91, 062204. [CrossRef]

30. Lefort, V.; Pijaudier-Cabot, G.; Grégoire, D. Analysis by Ripley’s function of the correlations involved
during failure in quasi-brittle materials: Experimental and numerical investigations at the mesoscale.
Eng. Fract. Mech. 2015, 147, 449–467. [CrossRef]

31. Ripley, B.D. Modelling spatial patterns. J. R. Stat. Soc. Ser. B Methodol. 1977, 39, 172–212. [CrossRef]
32. Duncan, R.P. Flood disturbance and the coexistence of species in a lowland podocarp forest, south Westland,

New Zealand. J. Ecol. 1993, 81, 403–416. [CrossRef]
33. Stamp, N.E.; Lucas, J.R. Spatial Patterns and Dispersal Distances of Explosively Dispersing Plants in Florida

Sandhill Vegetation. J. Ecol. 1990, 78, 589–600. [CrossRef]
34. Diggle, P.J.; Chetwynd, A.G. Second-Order Analysis of Spatial Clustering for Inhomogeneous Populations.

Biometrics 1991, 47, 1155–1163. [CrossRef]
35. Weiner, S.; Wagner, H.D. The material bone: Structure-Mechanical Function Relation. Annu. Rev. Mater. Sci.

1998, 28, 271–298. [CrossRef]
36. Hoover, J.J.; George, S.G.; Killgore, K.J. Rostrum size of paddlefish (Polyodon spathula) (Acipenseiformes:

Polyodontidae) from the Mississippi Delta. Copeia 2000, 1, 288–290. [CrossRef]
37. Kuhajda, B.R. Polyodontidae: Paddlefishes; Johns Hopkins University Press: Baltimore, MD, USA, 2014.
38. Riveros, G.A.; Patel, R.R.; Hoover, J.J. Swimming and Energy Dissipation Enhancement Induced by the Rostrum

of the Paddlefish (Polyodon spathula): A Multiphysics, Fluid-Structure Interaction Analysis. In Proceedings of
the Materials Research Society Fall Meeting, Boston, MA, USA, 29 November–4 December 2015.

39. Patel, R.R.; Riveros, G.A.; Thompson, D.S.; Acosta, F.J.; Perkins, E.J.; Hoover, J.J.; Peters, J.F.; Tordesillas, A.
Early Detection of Failure Mechanisms in Resilient Biostructures: A Network Flow Study; ERDC: Vicksburg, MS,
USA, 2017.

40. Patel, R.R.; Valles, D.; Riveros, G.A.; Thompson, D.S.; Perkins, E.J.; Hoover, J.J.; Peters, J.F.; Tordesillas, A.
Stress flow analysis of biostructures using the finite element method and the flow network approach.
Finite Elem. Anal. Des. 2018, 152, 46–54. [CrossRef]

41. Bondy, J.A.; Murty, U.S.R. Graph Theory. In Graduate Texts in Mathematics; Springer: New York, NY, USA, 2008.
42. Jungnickel, D. Graphs, Networks and Algorithms. In Algorithms and Computation in Mathematics 5, 3rd ed.;

Springer: Berlin, Germany, 2008.
43. Tordesillas, A.; Pucilowski, S.; Tobin, S.; Kuhn, M.R.; Ando, E.; Viggiani, G.; Druckrey, A.; Alshibli, K. Shear

bands as bottlenecks in force transmission. Eur. Phys. Lett. 2015, 110, 58005. [CrossRef]
44. Dassault Systems. Abaqus 6.13 Using Abaqus Online Documentation. Available online: http://dsk.ippt.pan.

pl/docs/abaqus/v6.13/pdf_books/HELP.pdf (accessed on 26 April 2019).
45. Riveros, G.A.; Gopalaratnam, V.S. Fracture response of reinforced concrete deep beams finite element

investigation of strength and beam size. Appl. Math. 2013, 4, 1568. [CrossRef]
46. Riveros, G.A.; Gopalaratnam, V.S. Shear Response of Reinforced Concrete Deep Beam: Validating Fracture Mechanics

Based Numerical Modelling with Experiments; American Concrete Institute: Farmington Hills, MI, USA, 2015.
47. Segalman, D.J.; Fulcher, C.W.G.; Reese, G.M.; Field, R.V., Jr. An Efficient Method for Calculating RMS von

Mises Stress in a Random Vibration Environment. J. Sound Vib. 1998, 230, 393–410. [CrossRef]
48. Deang, J.; Horstemeyer, M.; Williams, L.; Perkins, E.; Allison, P.; Riveros, G. Paddlefish rostrum as a structure for

bioinspiration: Analysis and modeling of the of the stress state and strain rate dependence behavior of cartilage.
In Proceedings of the TMS Annual Meeting and Exhibition, Nashville, TN, USA, 14–18 February 2016.

49. Allison, P.G.; Deang, J.F.; Diaz, A.J.; Poda, A.R.; Hoover, J.J.; Horstemeyer, M.F.; Perkins, E.J. Characterization
of paddlefish (Polyodon spathula) rostrum stellate bones. Bioinspired Biomim. Nanobiomater. 2013, 3, 63–68.
[CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

116



Mathematical 

and Computational 

Applications

Article

Nonlocal FEM Formulation for Vibration Analysis of
Nanowires on Elastic Matrix with Different Materials

Büşra Uzun 1 and Ömer Civalek 2,*
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Abstract: In this study, free vibration behaviors of various embedded nanowires made of different
materials are investigated by using Eringen’s nonlocal elasticity theory. Silicon carbide nanowire
(SiCNW), silver nanowire (AgNW), and gold nanowire (AuNW) are modeled as Euler–Bernoulli
nanobeams with various boundary conditions such as simply supported (S-S), clamped simply
supported (C-S), clamped–clamped (C-C), and clamped-free (C-F). The interactions between nanowires
and medium are simulated by the Winkler elastic foundation model. The Galerkin weighted residual
method is applied to the governing equations to gain stiffness and mass matrices. The results are given
by tables and graphs. The effects of small-scale parameters, boundary conditions, and foundation
parameters on frequencies are examined in detail. In addition, the influence of temperature change
on the vibrational responses of the nanowires are also pursued as a case study.

Keywords: nonlocal elasticity theory; Galerkin weighted residual FEM; silicon carbide nanowire;
silver nanowire; gold nanowire

1. Introduction

Nanoscale structures/materials have very different characteristics. Nanostructures/nanomaterials
have attracted great attention because their extraordinary features, such as high strength, low density, high
elasticity modulus, and high hardness [1–4], have become the focus of researchers. The aforementioned
unique properties of such structures, materials, and rapid developments in nanotechnology has led to
use of these structural elements in designing micro- and nanoelectro mechanical systems (MEMS and
NEMS) such as resonators, atomic force microscopes, switches, actuators, and sensors.

Some experimental studies have revealed the deformation behaviors of micro-/nanosized
structures [5,6]. However, experiments are very difficult and quite expensive on these scales because
high precision test devices are needed. On the other hand, atomistic modeling such as molecular
dynamic simulations is computationally expensive and requires a long period of time. Consequently,
this option is limited to structures that have only a few atoms [7].

To understand and accurately interpret the mechanical properties and behaviors of nanoscale
structures, use of models based on continuum mechanics may be a better alternative than experiments
and atomistic modelling. Unfortunately, classical continuum theories are not sufficient to predict
and estimate size dependency because they lack internal/additional material length scale parameters.
In ultrasmall scales (micrometer dimension, nanometer dimension) interactions between atoms and
molecules have increasing importance and cannot be neglected. Therefore, the solution to classical
continuum theories, which does not take into account size effects, does not give accurate results.
In order to obtain more accurate results, higher-order continuum theories such as couple stress
theory [8–10], modified couple stress theory [11], strain gradient theory [12], modified strain gradient
theory [13], and nonlocal elasticity theory [14] have been developed and contain various length scale
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parameters. These theories were used by many researchers for various analyses such as buckling [15],
bending [16,17], free vibration [18,19], forced vibration [20], and nonlinear vibration [21].

Rahmanian et al. [22] presented free vibrations of single-walled carbon nanotubes (SWCNT)
on a Winkler elastic foundation via nonlocal elasticity theory. In this study, SWCNT was modeled
as both beam and shell structures. Demir and Civalek [23] reported thermal vibration formulation
of a nonlocal Euler–Bernoulli beam embedded in an elastic matrix. Finite element formulation for
Eringen’s nonlocal elasticity theory was employed via Hermitian cubic shape functions. Thermal
vibrational behaviors of silicon carbide nanowire on an elastic matrix were investigated for simply
supported (S-S) and clamped–clamped (C-C) boundary conditions. Finite element formulations
of nonlocal elastic Euler–Bernoulli and Timoshenko beam theories were achieved by Pradhan [24].
Vibration, buckling, and bending analyses of carbon nanotubes with four different boundary conditions
were performed by the Galerkin finite element technique. Rajasekaran and Bakhshi Khaniki [25]
reported static deformation, stability, and free vibration responses of small-scale beams. A finite
element model of axial, functionally graded, nonuniform small-scale beams was investigated by using
nonlocal strain gradient theory. Eltaher et al. [26] pursued free vibration analysis of functionally graded
Euler–Bernoulli nanobeams by using Eringen’s nonlocal elasticity theory. Finite element results were
given for a dynamic analysis of the nanobeam. Nejad and Hadi [27] studied bending analysis of
non-homogeneous nanobeams. Eringen’s nonlocal elasticity theory was utilized in Euler–Bernoulli
nanobeams made of bi-directional, functionally graded material. Murmu and Pradhan [28] studied
the thermo-mechanical vibration response of embedded carbon nanotubes surrounded by an elastic
matrix based on nonlocal elasticity theory. Reddy [29] developed nonlocal beam models based on
four different beam theories. Static bending, free vibration, and buckling analyses of nanobeams
are performed in this study. Tornabene et al. [30] presented a multiscale approach for three-phase
carbon nanotube (CNT)/polymer/fiber-laminated nanocomposite structures. Detailed formulations
can be found in the literature [31–35] about CNT-reinforcement or the finite element method (FEM).
More recently, Uzun et al. [36] investigated the free vibration responses of carbon nanotubes and boron
nitride nanotubes based on nonlocal elasticity theory. Nonlocal natural frequencies are obtained for
various cross-section geometries.

In the present study, free vibration analysis of three kinds of nanowires resting on a Winkler
elastic foundation with various boundary conditions are performed. Simply supported (S-S), clamped
simply supported (C-S), clamped–clamped (C-C), and clamped-free (C-F) boundary conditions are
selected. Silicon carbide nanowire (SiCNW), silver nanowire (AgNW), and gold nanowire (AuNW)
are modeled as nonlocal Euler–Bernoulli beams, and their vibration behaviors are investigated using
the finite element method (FEM). A Galerkin weighted residual method is utilized to govern equations
and matrices, and the Winkler foundation parameter and small-scale parameter are gained. Effects
of boundary conditions, temperature rise, and small-scale and Winkler foundation parameters of
frequency values are investigated and compared for three kinds of nanowires.

2. Euler–Bernoulli Nanobeam Resting on a Winkler Elastic Foundation

The nonlocal stress tensor σi j at point x is expressed as follows [14]:

σi j, j = 0, (1)

σi j(x) =
∫

Ω
K(|x′ − x|), τ)CijklεkldΩ(x′), (2)

where K(|x′ − x|, τ) is the Kernel function, |x′ − x| is the distance in the Euclidean form, τ = e0a/l is
a material constant that depends upon the internal characteristic lengths (a) and external characteristic
length (l), and e0 is a material constant that is determined experimentally. Cijkl and εkl represent the
fourth-order elasticity and the strain tensors, respectively, and Ω is the region occupied by the body.
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The nonlocal constitutive formulation is [28]:

[1− τ2l2∇2]σi j = Cijklεkl. (3)

x, y, z depict length, width, and height of the beam, respectively and u1, u2, u3 are the displacements in
the x, y, z directions. The displacements for a Bernoulli–Euler beam can be written as below [17]:

u1(x, z, t) = −z
∂w(x, t)
∂x

, u2(x, z, t) = 0, u3(x, z, t) = w(x, t). (4)

εi j is the strain tensor, expressed as:

εi j = 0.5(∂ui, j + ∂uj,i). (5)

From Equation (5) we find the strains of the Euler–Bernoulli beam as follows:

εxx = −z
∂2w(x, t)
∂x2 , εxy = εyx = εxz = εzx = εyy = εyz = εzy = εzz = 0. (6)

Stress σ for the linear elastic materials is expressed as follows:

σ = Eε, (7)

where E is the elastic modulus of the material. If εxx, the only nonzero component of strain, is written
in Equation (7), σxx is obtained as:

σxx = −Ez
∂2w(x, t)
∂x2 . (8)

Moment (M) and the moment of inertia (I) are given by:

M =

∫
A

zσxxdA, I =
∫
A

z2dA, (9)

where A represents the cross-section area.
For the transverse vibration of an Euler–Bernoulli beam (shown in Figure 1) resting on a Winkler

elastic foundation, the equilibrium conditions are:

∂V(x, t)
∂x

= −q(x, t) + ρA
∂2w(x, t)
∂x2 + kww(x, t), (10)

V(x, t) =
∂M(x, t)
∂x

, (11)

∂2M(x, t)
∂x2 = −q(x, t) + ρA

∂2w(x, t)
∂x2 + kww(x, t), (12)

where ρ, q(x,t), and kw are the mass density, distributed load, and Winkler foundation
parameter, respectively.

The nonlocal constitutive relations can be simplified in the following form for a one-dimensional
case [14,29]:

σxx − (e0a)2 ∂
2σxx

∂x2 = Eεxx. (13)

By multiplying z on both sides of Equation (13) and integrating the cross-sectional area of the
beam, we obtain: ∫

A
zσdA− (e0a)2

∫
A

z
∂2σ

∂x2 dA =

∫
A

zEεdA = 0. (14)
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Substituting Equations (6) and (9) into (14), we get:

M(x, t) − (e0a)2 ∂
2M(x, t)
∂x2 = −EI

∂2w(x, t)
∂x2 . (15)

By differentiating Equation (15) twice with respect to variable x and substituting Equation (12)
into Equation (15), we obtain the governing equation for the vibration of an Euler–Bernoulli nanobeam
resting on a Winkler elastic foundation, as below:

EI
∂4w(x, t)
∂x4

+ ρA
∂w2(x, t)
∂t2 + kww− (e0a)2 ∂

2

∂x2

[
ρA
∂2w(x, t)
∂t2 + kww

]
= 0. (16)

Figure 1. Euler–Bernoulli beam resting on a Winkler foundation.

3. Solution to the Vibration Problem

3.1. Galerkin Weighted Residual Method

The shape function for beam ϕ is as follows [37,38]:

ϕ=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
ϕ1

ϕ2

ϕ3

ϕ4

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭=
⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1− 3ξ2 + 2ξ3

L
(
ξ− 2ξ2 + ξ3

)
3ξ2 − 2ξ3

L
(
−ξ2 + ξ3

)
⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭, (17)

where ξ = x/L is a non-dimensional local coordinate. In order to obtain the weak form of the governing
equation of an Euler–Bernoulli nanobeam resting on a Winkler elastic foundation, the residue can be
expressed as:[

EI
∂4w(x, t)
∂x4

+ ρA
∂w2(x, t)
∂t2 + kww− (e0a)2 ∂

2

∂x2

(
ρA
∂2w(x, t)
∂t2 + kww

)]
= residue. (18)

To determine the weighted residue, Equation (18) is multiplied by a weighting function ϕ.
When the weighted residual is integrated over the length:∫ L

0

[
ϕEI
∂4w(x, t)
∂x4

+ ϕρA
∂w2(x, t)
∂t2 + ϕkww−ϕ(e0a)2 ∂

2

∂x2

(
ρA
∂2w(x, t)
∂t2 + kww

)]
dx = 0. (19)

Equation (19) is integrated by parts. According to the chain rule, in the general form:∫ L

0

[
EI
∂2ϕ

∂x2

∂2ϕT

∂x2 + ρAϕϕT ..
w + kwϕϕ

T − (e0a)2ρA
∂ϕ

∂x
∂ϕT

∂x
..
w− (e0a)2kw

∂ϕ

∂x
∂ϕT

∂x

]
dx = 0. (20)
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By using the shape function in Equation (17) and the non-dimensional local coordinate,
bending stiffness matrix Kb, Winkler foundation stiffness matrix Kw, and the mass matrix M,
the following are obtained:

Kb = EI

L∫
0

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
ϕ′′1
ϕ′′2
ϕ′′3
ϕ′′4

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
{
ϕ′′1 ϕ′′2 ϕ′′3 ϕ′′4

}
dx; (21a)

Kb =
EI
L3

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
12 6L −12 6L
6L 4L2 −6L 2L2

−12 −6L 12 −6L
6L 2L2 −6L 4L2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦; (21b)

Kw1 = kw

L∫
0

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
ϕ1

ϕ2

ϕ3

ϕ4

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
{
ϕ1 ϕ2 ϕ3 ϕ4

}
dx; (22a)

Kw1 =
kw

420

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
156L 22L2 54L −13L2

22L2 4L3 13L2 −3L3

54L 13L2 156L −22L2

−13L2 −3L3 −22L2 4L3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦; (22b)

Kw2 = (e0a)2kw

L∫
0

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
ϕ′1
ϕ′2
ϕ′3
ϕ′4

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
{
ϕ′1 ϕ′2 ϕ′3 ϕ′4

}
dx; (23a)

Kw2 =
(e0a)2kw

30L

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
36 3L −36 3L
3L 4L2 −3L −L2

−36 −3L 36 −3L
3L −L2 −3L 4L2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦; (23b)

M1 = ρA

L∫
0

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
ϕ1

ϕ2

ϕ3

ϕ4

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
{
ϕ1 ϕ2 ϕ3 ϕ4

}
dx; (24a)

M1 =
ρA
420

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
156L 22L 54L −13L2

22L2 4L3 13L2 −3L3

54L 13L2 156L −22L2

−13L2 −3L3 −22L2 4L3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦; (24b)

M2 = (e0a)2ρA

L∫
0

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
ϕ′1
ϕ′2
ϕ′3
ϕ′4

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
{
ϕ′1 ϕ′2 ϕ′3 ϕ′4

}
dx; (25a)

M2 =
(e0a)2ρA

30L

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
36 3L −36 3L
3L 4L2 −3L −L2

−36 −3L 36 −3L
3L −L2 −3L 4L2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (25b)
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The vibration of the Euler–Bernoulli beam is found as follows:

|K −ω2M| = 0, (26)

where K = Kb + Kw1 + Kw2, M =M1 +M2, and ω is frequency.

3.2. Thermal Effect on the Vibrational Response of Embedded Nanowires

Here, the effect of temperature change on the natural frequencies of embedded nanowires in
a thermal environment is investigated. Equation (16) can be rewritten in the presence of thermal
loading as:

(EI −NT(e0a)2)
∂4w
∂x4

+ kww + (NT − kw(e0a)2)
∂2w
∂x2 + ρA

∂2w
∂t2 − ρA(e0a)2 ∂4w

∂x2∂t2 = 0, (27)

where the additional term NT is the axial load resulting from the temperature change and can be
defined as [28]:

NT =
EA

1− 2v
αΔT, (28)

in which α is the thermal expansion coefficient in the axial direction, ΔT is the temperature change,
and v is Poisson’s ratio. It is notable that only an axial load resulting from temperature change exists
for the nanowires in this study [28].

The following Navier’s solution procedure is applied to achieve simply supported (S-S) nanowires
as an illustrative example:

w(x, t) =
∑∞

n=1
Wn sin βeiωnt, (29)

where n is the mode number, Wn is the unknown Fourier coefficient, and β = nπx
L . Using Equation (29) in

Equation (27) yields the following relation for small-scale-dependent natural frequencies of embedded
S-S nanowires that includes the thermal effect:

ωn =

√√√√
β4
(
EI −NT(e0a)2

)
+ kw − β2

(
NT − kw(e0a)2

)
ρA

(
1 + β2(e0a)2

) . (30)

4. Results and Discussion

In this section, frequency values of nanowires were obtained with various non-dimensional
small-scale parameters (e0a/L), different non-dimensional Winkler foundation parameters (KW), different
boundary conditions, and different number of elements (N). The material properties for the three
nanowires are listed in Table 1. The results obtained were shown in tables and graphs. The dimensionless
Winkler parameter used for the results is expressed as the formula below:

KW =
kwL4

EI
. (31)

Table 1. Material properties of the nanowires.

Material Properties SiCNW AuNW AgNW

E(GPa) 524.8 79 82.7
v 0.14 0.42 0.37

ρ
(
kg/m3

)
3100 19,320 10,490

α(1/) 3.7 × 10−6 14.2 × 10−6 19.68 × 10−6
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Table 2 presents the natural frequencies of nanowires with C-C, C-S, S-S, and C-F boundary
conditions. Finite element solutions for the three nanowires were compared with each other. It was
clearly observed from the table that the highest frequency value occurred for both SiCNW and the C-C
boundary condition, while the lowest value was seen in both AuNW and C-F boundary conditions.

Table 2. The first three natural frequencies (GHz) of isolated nanowires for four different boundary
conditions (KW = 0, e0a/L = 0.1).

Mode Number
SiCNW

C-C C-S S-S C-F

1 21.8286 15.0969 9.7369 3.5540
2 52.7211 43.2195 34.5672 19.7887
3 88.6384 77.4034 66.8450 48.0785

Mode Number
AuNW

C-C C-S S-S C-F

1 3.3525 2.3186 1.4954 0.5458
2 8.0970 6.6378 5.3089 3.0392
3 13.6133 11.8878 10.2662 7.3840

Mode Number
AgNW

C-C C-S S-S C-F

1 4.6550 3.2195 2.0764 0.7579
2 11.2430 9.2167 7.3716 4.2200
3 18.9025 16.5066 14.2550 10.2529

Tables 3–6 show natural frequencies of embedded simply supported nanowires for KW = 1,
KW = 10, KW = 100, and KW = 1000, respectively, with different e0a/L values. It was found from these
tables that frequency values increased as KW values increased, but frequencies decreased by increasing
e0a/L. Moreover, it was evident that small-scale effects became more considerable for higher modes.

Table 3. The first three natural frequencies (GHz) of embedded nanowires corresponding to various
values of e0a/L (KW = 1).

Mode Number

SiCNW

e0a/L

0.0 0.1 0.2 0.3

1 10.2583 9.7916 8.7034 7.4989
2 40.8373 34.5827 25.4413 19.1602
3 91.8603 66.8530 43.0600 30.6452

Mode Number

AuNW

e0a/L

0.0 0.1 0.2 0.3

1 1.5755 1.5038 1.3367 1.1517
2 6.2719 5.3113 3.9073 2.9427
3 14.1081 10.2675 6.6133 4.7066

Mode Number

AgNW

e0a/L

0.0 0.1 0.2 0.3

1 2.1876 2.0881 1.8560 1.5992
2 8.7087 7.3749 5.4255 4.0860
3 19.5896 14.2567 9.1827 6.5352
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Table 4. The first three natural frequencies (GHz) of embedded nanowires for various values of e0a/L
(KW = 10).

Mode Number

SiCNW

e0a/L

0.0 0.1 0.2 0.3

1 10.7171 10.2713 9.2398 8.1152
2 40.9550 34.7215 25.6298 19.4097
3 91.9126 66.9249 43.1716 30.8018

Mode Number

AuNW

e0a/L

0.0 0.1 0.2 0.3

1 1.6460 1.5775 1.4191 1.2464
2 6.2900 5.3326 3.9363 2.9810
3 14.1162 10.2785 6.6304 4.7306

Mode Number

AgNW

e0a/L

0.0 0.1 0.2 0.3

1 2.2855 2.1904 1.9704 1.7306
2 8.7338 7.4045 5.4656 4.1392
3 19.6007 14.2720 9.2065 6.5686

Table 5. The first three natural frequencies (GHz) of embedded nanowires with respect to various
values of e0a/L (KW = 100).

Mode Number

SiCNW

e0a/L

0.0 0.1 0.2 0.3

1 14.5292 14.2035 13.4764 12.7318
2 42.1135 36.0808 27.4431 21.7480
3 92.4347 67.6401 44.2722 32.3263

Mode Number

AuNW

e0a/L

0.0 0.1 0.2 0.3

1 2.2314 2.1814 2.0697 1.9554
2 6.4679 5.5414 4.2148 3.3401
3 14.1964 10.3883 6.7994 4.9648

Mode Number

AgNW

e0a/L

0.0 0.1 0.2 0.3

1 3.0984 3.0290 2.8739 2.7151
2 8.9809 7.6944 5.8524 4.6379
3 19.7121 14.4245 9.4412 6.8937
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Table 6. The first three natural frequencies (GHz) of embedded nanowires against various values of
e0a/L (KW = 1000).

Mode Number

SiCNW

e0a/L

0.0 0.1 0.2 0.3

1 34.2564 34.1196 33.8234 33.5336
2 52.3064 47.5839 41.4190 37.8864
3 97.5017 74.4150 54.0595 44.8040

Mode Number

AuNW

e0a/L

0.0 0.1 0.2 0.3

1 5.2612 5.2402 5.1947 5.1502
2 8.0333 7.3081 6.3612 5.8187
3 14.9746 11.4288 8.3026 6.8811

Mode Number

AgNW

e0a/L

0.0 0.1 0.2 0.3

1 7.3053 7.2761 7.2130 7.1512
2 11.1545 10.1475 8.8328 8.0794
3 20.7926 15.8693 11.5284 9.5546

In Table 7, the frequency values of C-C nanowires are given by analytical and finite element
solutions for e0a/L = 0.2. For the finite element solution, as the element number increased, the results
approached the real value.

Effects of both temperature rise and the Winkler parameter on the first three natural frequencies
of nanowires are revealed in Table 8. It is apparent from the table that an increase temperature rise
led to a decrease in frequency, contrary to the Winkler parameter. Also, it can be emphasized that the
frequencies of AuNW were more affected than the other nanowires because of their related material
properties, given in Table 1. Moreover, it can be observed that the influence of temperature rise was
more prominent for lower modes and smaller Winkler parameters.

Table 7. Convergence of the present results with the analytical results of different element numbers.

Mode Number
SiCNW

N = 4 N = 5 N = 6 N = 7 N = 8 N = 9 N = 10 Analytical

1 18.9418 18.9252 18.9189 18.9162 18.9148 18.9141 18.9137 18.9129
2 38.0339 37.8398 37.7549 37.7155 37.6955 37.6845 37.6781 37.6656
3 56.8236 57.2104 56.8478 56.6515 56.5467 56.4878 56.4529 56.3826

Mode Number
AuNW

N = 4 N = 5 N = 6 N = 7 N = 8 N = 9 N = 10 Analytical

1 2.9091 2.9066 2.9056 2.9052 2.9050 2.9049 2.9048 2.9047
2 5.8413 5.8115 5.7985 5.7924 5.7894 5.7877 5.7867 5.7848
3 8.7271 8.7865 8.7308 8.7007 8.6846 8.6755 8.6702 8.6594

Mode Number
AgNW

N = 4 N = 5 N = 6 N = 7 N = 8 N = 9 N = 10 Analytical

1 4.0394 4.0359 4.0345 4.0340 4.0337 4.0335 4.0334 4.0332
2 8.1109 8.0695 8.0514 8.0430 8.0387 8.0364 8.0350 8.0323
3 12.1179 12.2003 12.1230 12.0811 12.059 12.0462 12.0388 12.0238
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Table 8. The first three small-scale-dependent natural frequencies (GHz) of embedded nanowires for
different Winkler parameters and temperature changes (e0a/L = 0.1, d = 1 nm, and L = 20 d).

Mode Number

SiCNW

ΔT = 0 ΔT = 30 °C

Kw = 100 Kw = 500 Kw = 1000 Kw = 100 Kw = 500 Kw = 1000

1 17.7768 31.4013 42.7034 17.3120 31.1405 42.5119
2 45.1580 52.0507 59.5551 44.4297 51.4201 59.0047
3 84.6569 88.5259 93.1362 83.7854 87.6928 92.3448

Mode Number

AuNW

ΔT = 0 ΔT = 30 °C

Kw = 100 Kw = 500 Kw = 1000 Kw = 100 Kw = 500 Kw = 1000

1 2.7628 4.8802 6.6368 0.9103 4.1246 6.1026
2 7.0182 8.0895 9.2558 4.6945 6.1824 7.6454
3 13.157 13.7583 14.4748 10.5767 11.3159 12.177

Mode Number

AgNW

ΔT = 0 ΔT = 30 °C

Kw = 100 Kw = 500 Kw = 1000 Kw = 100 Kw = 500 Kw = 1000

1 3.8362 6.7764 9.2153 1.8782 5.8932 8.5868
2 9.7450 11.2325 12.8519 7.0859 9.0229 10.9734
3 18.2689 19.1038 20.0987 15.2661 16.2559 17.4143

Effects of nanoscale and foundation parameters on the first five natural frequencies are respectively
depicted in Figures 2 and 3. It can be concluded from these figures that size dependency was more
pronounced for higher modes, while the natural frequencies in lower modes were more affected
from foundation parameters. As stated before, it was clear that the natural frequencies decreased and
increased by increasing e0a/L and KW, respectively.

Figure 4 displays the variation of fundamental frequencies of the three embedded nanowires with
respect to temperature rise for various small-scale parameter values. It can be recognized from the
figure that the effect of e0a/L was more prominent for SiCNW than the other ones. On the other hand,
the influence of temperature rise was more significant for gold and silver nanowires than the silicon
carbide nanowire.

 
Figure 2. Variation of the first five natural frequencies of nanowires with respect to e0a/L.
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Figure 3. Effect of the Winkler parameter on the first five natural frequencies of nanowires.

(a) SiCNW (b) AuNW (c) AgNW 

Figure 4. Variation of the fundamental frequency for several e0a/L against temperature rise (L = 30 d,
Kw = 1000).

5. Conclusions

Three types of nanowires, SiCNW, AgNW, and AuNW, are modeled as nonlocal Euler–Bernoulli
nanobeams resting on a Winkler elastic foundation. Frequency values of these nanowires are obtained
via a finite element solution, and results are given by tables and graphs. The effect of temperature
change on the vibrational responses of simply supported nanowires is also examined as a case study.
It can be concluded from the results that among all boundary conditions, C-C has the highest frequency
values and C-F has the lowest ones. Also, it can be emphasized that by increasing the Winkler parameter
value, frequency values increase, while by increasing non-dimensional small-scale parameter (e0a/L),
frequency value decreases. When we compare the frequency values of nanowires, SiCNW has the
highest frequency values, while AuNW has the lowest frequency values because of its different material
properties. Additionally, it is revealed that the effects of temperature change and small-scale parameters
on the frequencies of nanowires are both considerable and negligible depending on the values of the
involved material properties.
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38. Işık, Ç. Mikro ve Nano Ölçekli Mekanik Sistemlerin Modellenmesinde Yerel Olmayan Sonlu Eleman Formülasyonu;

Akdeniz Üniversitesi: Antalya, Turkey, 2018. (In Turkish)

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

129





Mathematical 

and Computational 

Applications

Article

Trustworthiness in Modeling Unreinforced and
Reinforced T-Joints with Finite Elements

Slimane Ouakka and Nicholas Fantuzzi *

DICAM Department, University of Bologna, Viale del Risorgimento 2, 40136 Bologna, Italy; souakka@gmail.com
* Correspondence: nicholas.fantuzzi@unibo.it; Tel.: +39-051-2093494

Received: 26 November 2018; Accepted: 16 February 2019; Published: 20 February 2019

Abstract: As required by regulations, Finite Element Analyses (FEA) can be used to investigate the
behavior of joints which might be complex to design due to the presence of geometrical and material
discontinuities. The static behavior of such problems is mesh dependent, thus these results must be
calibrated by using laboratory tests or reference data. Once the Finite Element (FE) model is correctly
setup, the same settings can be used to study joints for which no reference is available. The present
work analyzes the static strength of reinforced T-joints and sheds light on the following aspects: shell
elements are a valid alternative to solid modeling; the best combination of element type and mesh
density for several configurations is shown; the ultimate static strength of joints can be predicted,
as well as when mechanical properties are roughly introduced for some FE topologies. The increase
in strength of 12 unreinforced and reinforced (with collar or doubler plate) T-joints subjected to axial
brace loading is studied. The present studies are compared with the literature and practical remarks
are given in the conclusion section.

Keywords: numerical modeling; joint static strength; finite element method; parametric investigation;
reinforced joint (collar and doubler plate)

1. Introduction

Joints in offshore engineering are crucial because they are key components in the design of
jacket structures. The study of joints is generally performed after a pre-dimensioning of the complete
jacket has been carried out. Jacket structures are investigated using simple lattice models made of
beams which simulate the tubular elements of the whole structures. Such simple model is extremely
convenient for global structural analysis but does not give enough detail regarding local structural
failure such as fatigue cracking at joints. For this reason, several authors in the past and recent years
investigated the problem of static and dynamic strength of offshore extensively [1–17]. Among these,
Moffat et al. [1] investigated the effect of the chord length and the applied boundary conditions on
the static strength of tubular T-joints. Ring stiffened DT-joints (cross shaped) have been studied by
Marcus et al. [3]; the dynamic performance of collar plate reinforced joints was studied by Qu et al. [10].
Numerical and experimental studies on the ultimate strength of KT-joints (K shaped) were presented
by Li et al. [15].

On the other hand, in the recent studies some researchers have investigated in detail the
concertation of the stress and its distribution in critical areas [18–23], where Lostsberg [18],
Osawa et al. [19] and Lotfollahi-Yagin et al. [20] have focused on the stress hot spots in tubular
joints, whereas, Cheng et al. [21] investigated how the concertation of the stress affect the fatigue.

In addition to the aforementioned researches, other studies that involved joints should be
mentioned [24–46], such as the work by Xia et al. [24] regarding the hysteretic behavior of stiffened
T-joints. Furthermore, Dong et al. [28] presented long-term fatigue analysis of multi-planar tubular
joints. Finally, experimental tests were performed on joints using white light speckle method by
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Liu [32]. Numerical implementation and coupling of finite elements of different topology in the
study of joints were proposed by Pey et al. [33], and a good review on finite and boundary element
methods was given by Mackerle [34,35]. Regarding the topic of composite structures, the work by
Chowdhury et al. [41] and Shen et al. [42] should be cited for their application to practical engineering
practices for the static and fatigue strength of joints. Finally, the parametric study on composite joints
by Liu et al. [46] is mentioned for their thorough description of this particular problem.

The present work investigates tubular joints made of steel Circular Hollow Sections (CHSs) that
are the main structural components of steel off-shore structures such as jackets, compliant towers,
jack-ups, etc. In these kinds of structures, the CHSs members are joined in a point, forming a tubular
simple joint by welding the profiled ends of the secondary members, the braces, onto the circumference
of the main member, the chord.

Due to their crucial rule, some guidelines and methods have been introduced, to guarantee the
needed serviceability and to understand the strength behavior of these type of element, the most used
are: American Petroleum Institute (API) [47], International Organization for Standardization (ISO) [48],
American Bureau of Shipping (ABS) [49], and Eurocode3 (EC3) [50].

Several types of reinforcement are available nowadays in order to enhance the strength of tubular
joints. One typology that can be found often in off-shore is schematically shown in the sections depicted
in Figure 1, where the collar plate (a) consists in flat surface around the brace-chord intersection,
whereas the doubler plate (b) is a surface in between the two elements. These two methods are widely
used since they can be an important improvement either for rehabilitation purposes in old structures
or for new structures.

(a)

Figure 1. Scheme of specimens: (a) collar plate reinforcement and (b) doubler plate reinforcement.
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Thus, for a better understanding of the static strength of joints with the introduction of the two
types of reinforcement, 12 T-Joint specimens subjected to axial brace load (6 in compression and 6 in
tension) have been studied, with different geometric and material parameters. T-joints have been
selected in this investigation even though several types of joints can be formed in lattice structures
such as Y, K, and X joints or their combinations. Based on this study, conclusions can be obtained in
assessing the reinforcing efficiency.

The aforementioned guidelines [47–50] suggest using FE models whenever new configuration of
joint are treated, but the sharp geometric discontinuities (wherein stress concentrations occur) in the
tubular joints lead to a mesh dependence for the results and so such FE models need to be calibrated
by considering reference data such as laboratory tests. In the present paper, the works [4,5] have been
considered as a reference.

The reference paper [5] considers a 3-D solid FE model, on the contrary the present research
simplifies the problem by modeling the joints with less degrees of freedom and a much simpler
geometric description. Shell elements are used in this research because of their simplicity and the
lower cost in terms of computational time with respect to solid elements. Moreover, the geometry
of FE models made of solid elements is more difficult to generate and assemble with respect to 2-D
shell elements. In the reference 3-D simulations [5] the authors decided to deploy solid elements
instead of 2-D elements, mainly because: the contact algorithm will only identify contact between two
members if the shell elements (which represent the mid-surfaces of each member) touch each other,
thereby incorrectly allowing penetration of one member into the other, in addition to preventing the
uncertainty in modeling the welded area of the brace-chord intersection. Therefore, succeeding in
solving the aforementioned limits, as will be showed in the following sections, shell elements can be
used instead of solid elements as in the present research.

The present work considers the commercial finite element ABAQUS package, since it offers
an attractive alternative to generate reliable data, provided that the accuracy of the FE model is firstly
verified against test evidence. In particular, ABAQUS 6.14 will be used for all the simulations.

2. Previous Researches

The aim of the work, as has been already aforementioned, is to improve the understanding of
the static behavior of plate reinforced joints, by building an FE model with shell elements. This is
generally required from the regulations when new joint configurations are studied, but since stress
concentrations computed by FE are mesh dependent, they need to be calibrated with the help of
laboratory tests [4].

The reference papers present an experimental investigation and a numerical simulation.
The numerical simulation has been considered here to have the possibility of discussing the improvement
that have been obtained by the use of a different element topology. In this section, relevant information
will be summarized. However, for an exhaustive description of the tests, the reader is invited to the
articles [4,5].

2.1. Experimental Investigations

Laboratory tests are one useful way to calibrate numerical simulations. The basic configuration
and the T-joint geometries are illustrated in Figure 1. The experimental program consists of 12 tests,
of unreinforced and reinforced with collar or doubler plates, as depicted in Figure 1. Joints have been
tested under both compression and tension loading. The geometric data indicated in Figure 1 are
listed in Table 1, except for the joint lengths that are constant for all twelve specimens, respectively:
l0 = 2840 mm, l1 = 1100 mm, and ld = lc = 305 mm.
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Table 1. Geometrical details of the twelve T-joint specimens.

Type d0 d1 t0 t1 td Brace Loading

EX − 01 Unreinforced 409.5 221.9 8.1 6.8 - Compression
EX − 02 Unreinforced 409.5 221.9 8.1 6.8 - Tension
EX − 03 Collar 409.5 221.9 8.1 6.8 6.4 Compression
EX − 04 Collar 409.5 221.9 8.5 6.8 6.4 Tension
EX − 05 Collar 409.5 221.9 12.8 8.4 8.3 Compression
EX − 06 Collar 409.5 221.9 12.8 8.4 8.3 Tension
EX − 07 Doubler 409.5 221.9 8.5 6.8 6.6 Compression
EX − 08 Doubler 409.5 221.9 8.2 6.5 6.4 Tension
EX − 09 Unreinforced 409.5 114.7 8.5 5.9 - Compression
EX − 10 Unreinforced 409.5 114.7 8.5 5.9 - Tension
EX − 11 Doubler 409.5 114.7 8.5 5.9 6.6 Compression
EX − 12 Doubler 409.5 114.7 8.5 5.9 6.6 Tension

The materials used in each test are fabricated from carbon steel pipe, using the guidelines
given from the API 5L Gr. B/ASTM A106-94A; while the welding procedure follows AWS D1.1.
Table 2 indicates the measured yield stress for each steel component of the chord fy,0, brace fy,1,
and reinforcement fy,d.

Table 2. Material properties and yield stresses of the twelve T-joint specimens.

fy,0
[N/mm2]

fy,1
[N/mm2]

fy,d

[N/mm2]

EX − 01 285 300 -
EX − 02 285 300 -
EX − 03 285 300 461
EX − 04 276 300 461
EX − 05 276 275 464
EX − 06 276 275 464
EX − 07 276 300 461
EX − 08 312 284 461
EX − 09 276 312 -
EX − 10 276 312 -
EX − 11 276 312 461
EX − 12 276 312 461

Each specimen is pin-supported at the chord ends to minimize the possibility of axial load, and the
brace is bolted at the top. The load is applied through a displacement-controlled actuator that has a
rated compression capacity of 2000 kN, a tension capacity of 1200 kN, and range of displacement of
±200 mm. In all tests, the load is applied at initial stage at rate of 0.3 mm/min for the linear part and
increased up to 1.2 mm/min through the Instron 8800 controller [4].

2.2. Numerical Simulations

The present section illustrates the details of the numerical simulations performed with 3-D solid
elements in the reference [5]. Strength and weaknesses of all the modeling details provided are
listed below.

The analysis considers the dimensions of the tubular members reported in Table 1, whereas for the
materials proprieties Table 2 has been considered. Major aspects of the reference FE strategy adopted
for the T-joints test, such as element type, mesh density, and contact interaction, are described below.

The T-joint specimen is simply supported with symmetric brace axial load [5], therefore the model
has been simplified by considering a quarter of the whole model; and solid elements were selected
to model the tubular joints, obviously these elements account for the joint dimensions in all three
directions. Alternatively, mesh size is composed in such a way to be relatively smaller where the
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stress gradient is more critical, therefore the density of the mesh decreases from the vicinity of the
intersection to the end of the brace or chord.

In the reference [5], the authors stated that: “Weld geometry was modeled using a ring of shell
elements along the brace-chord” and that: “the penetration weld between the brace and the doubler
plate is modeled in accordance with the measured dimensions obtained from the T-joint specimens”.
However, the graphical representation, presented in the papers [4,5], shows solid elements also for
the welded area, instead of the mentioned shell elements. Therefore, a detailed size of the weld is not
given in [4] or [5].

Since in this case the plate reinforced joints are loaded by an axial force/displacement, contact shall
occur between bottom surface of the reinforcement and the external surface of the chord. Thus, contact
plays a main rule as transferring mechanism from the secondary element (brace) to the primary one
(chord), and this is a source of nonlinearity in the FE analysis. Due to the fact that both reinforcement
and chord walls are deformable bodies, a deformable-deformable contact interaction is defined using a
“master-slave” algorithm in the numerical analysis, with no friction between the members is assumed.

According to the experimental investigations, the axial load is applied using the displacement
control method by prescribing the vertical displacement of the nodes at the brace tip.

The true stress-strain relationship enforced in these simulations is related to the yielding point
of each material, as given in Table 2 , and can be represented by a bilinear relationship. No further
hardening in the true stress-true strain behavior is assumed after the peak load in the engineering
stress-strain curve, i.e., the true stress-true strain curve is assumed to remain horizontal beyond this
point as for elastic-perfectly plastic model, as shown in Figure 2a. Contrastingly, the welds are assumed
to have the same material properties as the base metal.

(a) (b)

Figure 2. True stress-strain relationships: (a) without hardening and (b) with 10% hardening.

The use of this simplification in the true stress-strain relationship is commonly used in the design
of structures because allows the designer to stay in the safety size due to the fact that no hardening is
considered. This approximation, though, can lead to a result slightly different from the real behavior.
For this, in Section 6, in addition to the elastic-perfectly plastic model, a model where the hardening is
taken into account, as in Figure 2b, will also be considered.

2.3. Comparison Setup

More detailed information about the results of the two investigations will be given in the next
section while showing the results of the work made during this research. However, in this section
the main point of data collecting and how the results have been shown by the authors of [4,5] will be
given. In general, the results of the two papers can be summarized in just one, since they are two parts
of the same study. The results given by the references are given in terms of load-ovalization curves
and deformed shapes.
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The load-ovalization curves are presented, where the ovalization indicates the deformation of the
chord cross section at the center of the T-joint, which is calculated by subtracting the height of point
fixed simultaneously at the bottom of the chord and at the center of the joint, δB, from the average
value of four fixed points (in the one quarter FE model of course will be only two) on the brace near
the intersection with the chord, δA. These points are obtained by the transducer reading in case of
experimental investigation, whereas for the FE model by using RP (Reference Point) as shown in
Figure 1. The ultimate load for each test is identified simply by selecting the peak of each curve,
and these values are listed in Table 3, where Fu,test is for the experimental investigations [4] while
Fu,num for the numerical simulations [5]. At the same time, the two phases of the joint behavior, such as
the linear phase and the plastic one, can be deducted.

Table 3. Ultimate load obtained in the numerical simulation [5].

Fu,test

[kN]
Fu,num

[kN]
Fu,num/Fu,test

EX − 01 305.1 310.9 1.02
EX − 02 543.2 557.8 1.03
EX − 03 425.6 431.4 1.01
EX − 04 609.2 648.9 1.07
EX − 05 780.0 798.5 1.02
EX − 06 1065.3 1069.3 1.00
EX − 07 415.8 446.4 1.07
EX − 08 708.0 712.2 1.01
EX − 09 200.1 193.0 0.96
EX − 10 407.8 393.7 0.97
EX − 11 305.0 309.3 1.01
EX − 12 520.0 506.2 0.97

The experimental [4] and numerical [5] results are not only evaluated in terms of load-ovalization
curves but also by comparison of deformed sliced “rings”, taken at the center of the T-joints after the
tests and numerical analyses were completed. Then at the end of the tests, for some of the specimens,
sections or “rings” were obtained for the joint elements, chord and brace.

In conclusion, all the results obtained from these two papers will be used in the fundamental step
of calibration of the FE model of the present work. In the following section the results of the present
FE simulations will be compared to the ones of the previous studies and comments and highlights will
be provided.

3. Present Modeling

Commercial finite element packages offer an attractive and cheaper alternative to the laboratory
experiments, but at the same time they require the use of sophisticated hardware, and also need the
help of other software to post-processing the results. Hence, different software have been used, such as
Abaqus/CAE 6.14-1 [51], Matlab R2017a, and AutoCAD 2017. The hardware used is the Intel(R)
Core(TM) i7-4700MQ CPU @ 2.40GHz 2.40 GHz with 12GB of RAM.

This section addresses various aspects of all the steps that have been performed to study and
simulate the state of T-joints subjected to the axial force. The cheaper shell elements have been used in
this work, whereas the numerical simulation made in [5] considered solid elements.

The dimensions of the tubular members and reinforcement plates assumed in this research are in
accordance with the measured dimensions of the test specimen of the papers as sketched in Figure 1,
for which the values are reported in Table 1. In contrast, Table 2 summarizes the measured yield stress
for each chord fy,0, brace fy,1, and reinforcement fy,d.

Although the type of element material is specified in the reference papers [4,5] as carbon steel,
the characteristics of this typology of material are not unique, especially concerning Young’s Modulus
(E) and Poisson ratio (ν), where E ranges from 203 to 210 GPa whereas ν ranges from 0.25 to 0.3.
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With the help of preliminary simulations, the more fitting values of these have been demonstrated
to be E = 210 GPa and ν = 0.3. These values were obtained by comparing the normalized load R,
defined as R = Fu,test/ fy,0 · t2

0 of the EX-01, where t0 is the chord thickness, with the one given by the
experimental investigations, as reported in Table 4.

Table 4. Values of E and ν of preliminary simulations [17].

Specimen
Experimental
Investigation

Preliminary
Simulation 1

E = 203 ν = 0.25

Preliminary
Simulation 2

E = 210 ν = 0.25

Preliminary
Simulation 3

E = 210 ν = 0.30

fy,0 [N/mm 2
]

285 285 285 285
t0 [mm] 8.1 8.1 8.1 8.1

R = Fu,test/ fy,0 · t2
0 16.32 13.95 14.09 14.11

AutoCAD 3D was selected to draw the T-joint tubular elements. Although ABAQUS gives the
possibility to directly represents different geometries, AutoCAD is a more suitable software for this
kind of parametric research since it gives the possibility to easily modify and change elements on it.
Afterwards, only a quarter of the joint has been imported in the FE packages, this idealization does not
make any differences in the results and reduces the total computational effort.

Starting from the first adjustments of the simulations, the three cases are discussed below:
unreinforced, collar plate reinforcement, and doubler plate reinforcement.

Three native parts have been created for the reinforced cases (chord, brace, and reinforcement
plate), and only two for the unreinforced case because no reinforcement is present. Some internal
parts have been introduced in the part module, with their respective edges. In other words, due to
the fact that the joint is made of several parts and contact must be implemented in order to connect
the different parts together, construction edges (from CAD) are kept in the FE model also in order to
simplify the following step.

Once all the parts are created (in their own coordinate system), they should be assembled in the
Abaqus Assembly module [51] that is used to create instances of the parts and to position the instances
relative to each other in a global coordinate system. The instances made for all the three cases are
one for each part. Then for the unreinforced case, two instances have been generated, one for the
chord and the other for the brace; whereas for the reinforced cases a third instance that represents the
reinforcement is present.

The displacement induced by the controlled actuator in the experimental investigation [4] is at an
initial stroke rate of 0.3 mm/min, and then progressively increased up to 1.2 mm/min through the
Instron 8800 controller. During the simulations in the present study, two types of step sequences are
analyzed: the first automatic step sequence, and the second fixed step sequence, i.e., varying the load
range during the simulations.

The automatic step sequence has the same step range for the whole simulation. While the fixed
ones in order to reproduce the experimental investigation have two different ranges, in particular the
second step starts at the starting point of the material plasticization which has been identified during
the automatic step sequence.

The restraints that have been adopted for the FE model are in accordance with the experimental
investigation; where the specimen is pin-supported at the chord ends and the brace end is bolted to
the Instron actuator mounted on top of the brace, where the load is obtained as reaction force from the
boundary condition at the brace tip. Since one-quarter of the whole specimen has been modeled, along
with symmetry planes, peculiar boundary conditions have been considered as XSYMM (along the
x-axis) and ZSYMM (along the z-axis) [51].

Material properties of the elements are modeled in accordance to the experimental investigation
as listed in Table 2, whereas the Young’s modulus and Poisson ratio are taken from the preliminary
simulations already described Table 4. The true stress-strain curve that has been assumed by var
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der Vegte et al. [5] in his numerical simulations is represented by a multilinear relationship and
subsequently converted into a true stress-true strain relationship, and no further hardening in the true
stress-true strain behavior is assumed after the peak load, i.e., the curve is assumed horizontal beyond
this point.

Since no more detailed information is given about the true strain-stress curve, in this study,
the elastic-perfectly plastic model is assumed to fit these characteristics as shown in Figure 2a. Due to
the lack in the reference paper [5] for what concerns the latter relationship, in this research some
hardening will be considered during the simulations, by introducing a hardening of 10% for all the
materials, as depicted in Figure 2b, to verify the reliability of the elastic-perfectly plastic model.

Currently, the following types of constraints have been used in the simulations, the multi-point
constraints (MPC) [51], which allows the restriction imposed by the boundary conditions (BCs) along
the whole circumference, and the TIE [51], which instead has been used to connect the edges of the
elements to simulate the welded connections. However, since the brace is directly welded to the chord
in the unreinforced cases, no separation will occur between the two elements and the two parts have
been merged (i.e., combine two elements in one instance [51]) into a single one.

During the development of the contact between the chord and the reinforcement made for the
reinforced T-joints, contact mechanical properties are imposed by fixing the relevant points, such as
tangential and normal behavior in the contact interaction propriety. The tangential behavior was
imposed as “Frictionless”, while the normal behavior as “Hard” contact. The contact properties are
also imposed to “Allow separation after contact” since, in the case of the reinforced plate, separation
between the plate and the chord that are linked, by the “tie” constraints, might occur. After the contact
property is defined, surface-to-surface contact interaction is set up. Here the sliding is finite, and no
adjustments are required since the two surfaces lie in the same plane. A further important feature
is “Contact controls” option, which helps the convergence of the simulation without considering the
penetration of one member into the other, as after solved using the Top/Bottom surface function [51].

The final results will be given in terms of load-ovalization curves; the ovalization was detected by
the use of the transducers, so four reference points around the brace near the brace-chord intersection
precisely at 20 mm distance, and one placed under the chord at the center of the T-joint have been
introduced. The load detection is done by inserting an additional point at the tip of the brace,
the reaction force at that point is indeed the opposite of the load applied. For the sake of further
comparison, the deformed shape at the center of the joint will be considered

The FE mesh is a key point in modeling, since it has a huge influence on the results of the simulations
in these kinds of elements, as will be seen when analyzing the results. The mesh module [51] allows
generating meshes of parts and assemblies. For each FE model, four mesh densities are generated, and for
each of them four types of elements are considered.

The four mesh densities analyzed are:

• Coarse mesh (average size 50 mm)
• Medium mesh (average size 20 mm)
• Fine mesh (almost the same number of elements as the medium ones but the size decreases from

the ends to the intersection)
• Article mesh (same number of nodes on the edges shown in [5])

The four element types are:

• S4R (4 nodes with reduced integration)
• S4 (4 nodes without reduced integration)
• S8R (8 nodes with reduced integration and six degrees of freedom (DOF))
• S8R5 (8 nodes with reduced integration and five DOF)
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In the “Mesh controls”, the “Structured” technique with element shape as “Quad-dominated” [51]
was used for all the simulations. These two selections are able to carry out a regular mesh made
(mostly) by quadrilaterals.

The four aforementioned meshes are used in this work to better understand the fitting of the
results depending on the element size. In three of the four densities cases, the medium, fine, and article
one, shown in Figure 3b–d, the doubling of the lines in the reinforcement area can be noticed. This is
because the contact interaction algorithm needs two different meshes in order to have a reliable result
of the contact [51]. In particular, the “slave surface” should have a finer mesh with respect to the
“master surface”.

(a) (b)

(c) (d)

Figure 3. Meshes used in the simulations and their nomenclature: (a) coarse mesh, (b) medium mesh,
(c) fine mesh, and (d) article mesh.

The coarse and medium mesh densities are obtained by imposing a unique size on the instance
of the T-joint. The larger mesh has a size of 50, whereas the medium has a global size of 20,
as depicted respectively in Figure 3a,b. The total number of elements is equal to 466 in coarse
mesh, while 2745 elements are generated for the medium mesh. In the remaining cases, i.e., the fine
and the article meshes depicted respectively in Figure 3c,d, the element sizes are varied in such a way
that relatively smaller elements are used where the stress gradient is more critical. Therefore, the mesh
density decreases from the vicinity of the intersection to the end of the brace or chord, and therefore
smaller sizes in the vicinity of the brace-chord intersection. This strategy, to decrease the size while
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getting close to the critical area, is frequently used in FE analysis, because it allows to have an accurate
study of the area most influential thanks to the small sizes, and at the same time to reduce the
computational effort, due to increase of the sizes far from the critical point. Fine mesh has almost the
same number of elements of the medium mesh, but their sizes, as aforementioned, are decreasing
while going close to the intersection. For the article mesh, as in the fine one, the sizes are smaller near
the intersection, this mesh is obtained from the mesh used by var der Vegte et al. [5]. Precisely, an equal
number of nodes at each edge with almost the same factor of variation (decrease in size) is considered,
so a total of 341 elements is obtained. In particular, by using the proportion between the geometries
of the specimens in Table 1 and the graphic dimensions displayed by var der Vegte et al. [5], it was
possible to discretize the FE model as depicted in Figure 4, in order to have the same nodes of the
paper [5] at edges as previously stated.

(a) (b) (c)

Figure 4. True article mesh density subdivision: (a) chord, (b) brace, and (c) reinforcement. [3]

From Figure 4a–c, it can be seen that the reinforcement and its respective area in the chord have
different repartition, in particular three of the edges of the chord are increased by two units, i.e.,
from six to eight spaces. This is done to help the contact interaction as aforementioned. As a result,
a total of 341 elements is obtained. For the final view of the specimen in the case of the article mesh
please consider Figure 3d.

4. Results

The results of the research will be shown in this section, comparing them with the results of the
two researches [4,5] discussed in Section 2. Therefore, in order to overlap the outcomes, the numerical
results of this research are shown in terms of load-ovalization curves and deformed shapes. The
numerical values of both solutions are considered at the end of the loading process (e.g., end of the
curves provided by the references).

Due to mesh size and the element type, sixteen different simulations have been performed. The
load-ovalization curves obtained from the simulations are presented for all the element types and
density sizes of the meshes. These will be compared to the literature research by overlapping the
graphs, afterwards the results will be discussed and evaluated. The graphs from the literature are
made of black lines and they follow these criteria:

Experimental Investigations, Compression Load, EX-odd number
Numerical Simulations, Compression Load, EX-odd number
Experimental Investigations, Tension Load, EX-even number
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Numerical Simulations, Tension Load, EX-even number

When the results of this work will be presented no specification will be made in between the
compression and tension specimens, since each specimen has the same trend to the respective reference
case, i.e., the compression case of this research will overlap the reference cases, and so for the
tension cases.

The graphs have as X-axis the ovalization that refers to the deformation of the chord cross-section
at the center of the T-joint, which is calculated by subtracting a reference point at the chord bottom
from average of the points in the brace; whereas the Y-axis, instead, represents the load applied at the
brace tip, obtained by the opposite of the reaction force at the same point. Each of the following graphs
will be shown with the curves of all the four types of density mesh that have been analyzed.

4.1. Curves With Automatic Step Sequence

In this section, the curves are represented in terms of the automatic step sequence. So far, a single
step size is applied to the model through the constant step range, and all the four types of elements will
be considered (S4R, S4, S8R, and S8R5). For what concerns the figures that will be described, these will
represent respectively the Mises stress and PEEQ (Equivalent Plastic Strains) [51] of the specimens.

4.1.1. S4R Element Type

The graphs reported in Figure 5 represent the simulations done for meshes using the S4R element
type (that are those given by default from the program), with an automatic step range. It is remarked
that the lower curve for each graph refers to the compression specimens (i.e., EX-01 to EX-11 with
odd numbers), whereas the higher one represents the tension specimens (i.e., EX-02 to EX-12 with
even numbers).

Generally, for all the graphs it is easy to see a good fitting between the reference curves and the
present work, especially for the unreinforced cases and for the coarse mesh of collar plate EX-03 and
EX-04. The coarse mesh of EX-01, EX-02, EX-03, and EX-04 are depicted in Figure 6a–d.

Unreinforced cases show an inferior maximum stress but are distributed in almost all the chord,
whereas the case of collar reinforced plate is characterized by higher maximum value but concentrated
in the reinforcement. It is obvious that unreinforced cases have higher values in terms of plastic
deformations with respect to the reinforced ones.

The above good fitting is not relatively the case of EX-06, where the present curves are slightly
below the reference curves, the marked difference is also influenced by the fact that this is the thicker
case, which causes higher values. However, this difference is repeated for all the element types
with improvements in S8R, so further discussions are left when the results for these elements will
be discussed.

From the curves can be seen two irregular trends, one is the temporary variation in the force
values such as for the EX-10, EX-12 with the coarse mesh and slightly in EX-07 and EX-08 with the
article mesh; and the second trend is the change in direction of the ovalization (where can be seen a
turning back of the curves) such as for fine mesh of EX-01, EX-02, EX-04, EX-06, and EX-08. The first
trend is not a model problem but is a consequence of the plasticity of the elements, so it is more related
to the FE implementation than the actual modeling, in any case this happens after the maximum
ovalization of the reference papers is reached. In addition, this behavior does not affect the specimens
in compression. Contrastingly, the second trend is due to the fact that a small part of a corner of a
quarter’s brace rises in an unexpected way, as shown in Figure 7b for the fine mesh of the specimen
EX-08. It is remarked that this behavior occurs just in the fine mesh, and this might be caused by the
fragility of the mesh type (in fact, that does not occur in the S8R, which is the stronger).
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(a) (b)

(c) (d)

(e) (f)

Figure 5. Load-Ovalization curves with S4R element type: (a) Unreinforced Ex-01-02, (b) Collar Plate
Ex-03-04, (c) Collar Plate Ex-05-06, (d) Doubler Plate Ex-07-08, (e) Unreinforced Ex-09-10, and (f)
Doubler Plate Ex-11-12.
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(a) (b)

(c) (d)

Figure 6. Mises stress and PEEQ representations: (a) Unreinforced Ex-01, (b) Unreinforced Ex-02,
(c) Collar Plate Ex-03, and (d) Collar Plate Ex-04.

(a) (b) (c) (d)

Figure 7. Ovalization change in fine mesh of Ex-08: (a) before the corner rise, (b) corner rise with S4R,
(c) corner rise with S4, and (d) no corner rise S8R.

4.1.2. S4 Element Type

The major difference between the S4 element type and the previous, the S4R, is that in S4 elements
no reduced integration is excepted. This similarity between the S4 and S4R is directly reflected by the
results of the load-ovalization curves depicted in Figure 8, from which can be seen there are no big
changes from the load-ovalization curves in Figure 5.

Relevant differences can be observed for fine meshes. In the tension cases EX-04 and EX-08
shown in Figure 8b,d, the “hook” is no longer present at the tail of each curve. Moreover, another
improvement can be seen in EX-06 in Figure 8c where the reverse curve trend in terms of ovalization is

143



Math. Comput. Appl. 2019, 24, 27

avoided for the medium mesh. While this remains in the fine mesh, such behavior as aforementioned
is due to the rise of a part of the chord and this effect is depicted in Figure 7c.

(a) (b)

(c) (d)

(e) (f)

Figure 8. Load-Ovalization curves with S4 element type: (a) Unreinforced Ex-01-02, (b) Collar Plate
Ex-03-04, (c) Collar Plate Ex-05-06, (d) Doubler Plate Ex-07-08, (e) Unreinforced Ex-09-10, and (f)
Doubler Plate Ex-11-12.

4.1.3. S8R Element Type

In Figure 9 the S8R element is considered. With this type of element, the problem of the drop-in
force (due to model exceeding plasticization at the end of the process) of the two previous cases is
avoided. But several simulations end before the maximum ovalization (around 80 mm in the references)
is reached, especially in the unreinforced case such as the article and coarse mesh of the specimen
EX-01, the article mesh of specimen EX-03, and medium and fine mesh of the specimen EX-10.
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In the case of the EX-06, that is the one that defers more from the references, but with the S8R
element type the differences are reduced. The article mesh solution in Figure 9c has still a different
shape with respect to the references but the curves coincide at their ends.

(a) (b)

(c) (d)

(e) (f)

Figure 9. Load-Ovalization curves with S8R element type: (a) Unreinforced Ex-01-02, (b) Collar Plate
Ex-03-04, (c) Collar Plate Ex-05-06, (d) Doubler Plate Ex-07-08, (e) Unreinforced Ex-09-10, and (f)
Doubler Plate Ex-11-12.

As results in the EX-06 and EX-07 the smaller stress and plasticization can be seen, this is due
to the increase in thickness of all the elements, which almost doubled with respect to the other cases.
In addition, to this first improvement, for the specimen EX-08 using the S8R element, in the fine
mesh the change in direction of the ovalization is also avoided. See Figure 7d where at the end of the
simulation no rise of the corner part is present.
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4.1.4. S8R5 Element Type

The last element type considered in this research is the S8R5 element type. The S8R5 has just five
DOF, this means that there is a simplification respect to the S8R, and this simplification results in the
inability to submit all the simulations. The load-ovalization curves of S8R element type depicted in
Figure 9 are very close in shape to those of S8R5 reported in Figure 10, but an important issue is solved
definitely and no reverse in ovalization is present for all the cases. To notice that was not possible to
complete all the simulations because of the complexity of the S8R5 elements type, which does not
always allow finding the convergence.

(a) (b)

(c) (d)

(e) (f)

Figure 10. Load-Ovalization curves with S8R5 element type: (a) Unreinforced Ex-01-02, (b) Collar
Plate Ex-03-04, (c) Collar Plate Ex-05-06, (d) Doubler Plate Ex-07-08, (e) Unreinforced Ex-09-10, and (f)
Doubler Plate Ex-11-1.

4.2. Curves With Fixed Step Sequence

The plasticization of the T-joint is a key point for the fixed step sequence, since the starting point of
the plasticization defines the application of the second step range. From the results of the simulations
of EX-01 and EX-02 of the automatic step sequence, the starting period of the plastic behavior of the
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material of the T-joint is identified. The set of all these values for the two specimens EX-01 and EX-02 are
reported in Table 5, which shows that the plasticization starts at the very early stage of the simulations.

So fixed step sequence introduces one more step respect to the automatic one, as in the
experimental investigation. For this reason, the simulations have been done for the first two specimens
EX-01 and EX-02 as reported for all the four-element type in Figure 11, and once it emerged that no
relevant changes in the results are present, it was understood that for this type of model the range
application of the load/displacement makes no differences.

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 11. Load-Ovalization curves unreinforced Ex-01 and Ex-02: (a) automatic step S4R, (b) fixed
step S4R, (c) automatic step S4, (d) fixed step S4, (e) automatic step S8R, (f) fixed step S8R, (g) automatic
step S8R5, and (h) fixed step S8R5.
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Table 5. Starting point of the plasticization for Ex-01 and Ex-02 [17].

Element Type Mesh EX-01 and Ex-02 Density Mesh Starting Point of Plastic Behavior

S4R

Coarse
Medium

Fine
Article

0.009
0.009
0.009
0.009

S4

Coarse
Medium

Fine
Article

0.009
0.009
0.009
0.009

S8R

Coarse
Medium

Fine
Article

0.009
0.006
0.006
0.006

S8R5

Coarse
Medium

Fine
Article

0.009
0.006
0.006
0.006

4.3. Deformed Shapes

Other comparisons between the present research and the references [4,5] are discussed in this
section. Through considering sections or rings of the tubular elements, from which it is possible to
observe the ovalization and associated yield hinges, as well as the separation between the chord and
doubler/collar plate.

In the experimental investigation and the numerical simulation [4,5], after the tests were
completed, for some of the specimens, sections or “rings” were obtained from the chord and brace.
The results have been presented firstly for the specimens with diameter ratio (where β = d1/d0), i.e.,
from the EX-01 to EX-08, and then for the specimens with β = 0.28, i.e., from the EX-09 to EX-12.
Alternatively, in the numerical simulation of var der Vegte et al. [5] the deformed rings, which have
been showed, are just some that have the diameter ratio β = 0.54. Therefore, some gaps can be seen in
the representation of the rings for what concern to the reference [4,5].

In the following the ovalization shapes will be shown, compared with the papers’ results, where
these are present. The same experimental subdivision will be considered. The research simulations
exceed the length of this paper’s simulation in most cases, whereby in the section will be taken from
the same ovalization as literature cases. In addition, in this paper for further investigations of the
shapes will be selected the ones that have the best fit in the load-ovalization curves.

4.3.1. Failure of the Specimens with β = 0.54 under Compression

Specimens under compression in the brace element with diameter ratio equal to 0.54 are EX-01,
EX-03, EX-05, and EX-07. These are all represented in the experimental investigation, whereas in the
numerical simulation reference to EX-05 is missing.

Specimen EX-01

Figure 12a,b shows the overall view of the unreinforced specimens of the Experimental Case
(EC) (reference figures from [4,5]) and the Research Case (RC) (the present simulations). The present
contour plots represent the MISES stresses.
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(a) Present (b) Refs. [4,5]

(c) Present (d) Refs. [4,5]

(e) Present (f) Refs. [4,5]

(g) Present (h) Refs. [4,5]

(i) Present (j) Refs. [4,5]

Figure 12. Overall and detail views: (a) Overall view Ex-01 RC, (b) Overall view Ex-01 EC, (c) Detail
view Ex-05 RC, (d) Detail view Ex-05 EC, (e) Detail view Ex-09 RC, (f) Detail view Ex-09 EC, (g) Detail
view Ex-11 RC, (h) Detail view Ex-11 EC, (i) Detail view Ex-10 RC, and (j) Detail view Ex-10 EC. (With
permission from ASCE)
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Figure 13a–c shows the sliced ring (chord and short portion of brace) from specimen EX-01,
and here, different from the overall view, the case of Numerical Case (NC) (FE simulation from the
references [4,5]) is also present. From the paper’s results can be seen the two yield hinges adjacent to
brace-chord intersection become clear, while in the research case, however, this cannot be seen and
the shape does not follow the same trend. As aforementioned the step taken is at ovalization 100 mm,
which corresponds to the period 0.672 of 1 Abaqus simulation time period.

(a) Present (b) Refs. [4,5] (c) Refs. [4,5]

(d) Present (e) Refs. [4,5] (f) Refs. [4,5]

(g) Present (h) Refs. [4,5]

(i) Present (j) Refs. [4,5]

Figure 13. Cont.
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(k) Present (l) Refs. [4,5]

Figure 13. Sliced rings of specimens subjected to compression with β = 0.54: (a) Ex-01 RC, (b) Ex-01
EC, (c) Ex-01 NC, (d) Ex-03 RC, (e) Ex-03 EC, (f) Ex-03 NC, (g) Ex-05 RC, (h) Ex-05 EC, (i) Ex-07 RC, (j)
Ex-07EC, (k) particular Ex-07 RC, and (l) particular Ex-07 EC. (With permission from ASCE)

Specimen EX-03

For the specimen EX-03 the papers presented only the sliced result. Figure 13d–f shows the
sliced ring of specimen EX-03. Between this specimen and the previous one it can be immediately
noticed the significant strength enhancement offered by the collar reinforcement to the chord section
for EX-03. The step taken here is at ovalization 80 mm, which corresponds to the period 0.476 of
1 Abaqus simulation time period.

Specimen EX-05

Figure 12c,d shows the detail of the chord indentation side view of the reinforced specimen
EX-05; also, here the work case is showed in form of MISES stress, where plastic deformation is near
the intersection chord-brace, whereas the chord bottom part remained relatively straight with no
deformation and no stress concentration. Figure 13g,h shows the sliced ring from specimen EX-05,
here the NC was not available in the results. The bending in this case is more severe than that
of specimen EX-03, some results of the relatively higher strength of the chord, as can be seen in
load-ovalization curves. Ovalization 80 mm corresponds to the period 0.614 of 1 Abaqus simulation
time period.

Specimen EX-07

As far as EX-07 is concerned, the papers presented only the sliced result, as depicted in Figure 13i,j.
The separation from the chord outer surface of the doubler plate (which at the original shape fits the
chord perfectly) can be observed. As can be seen in Figure 13k,l, RC also has this effect but with no
such emphasis as in the papers’ cases. This behavior is due to the fact while the brace compresses the
chord, the wall of the latter has a different rotation with respect to the reinforcement; in the FE model
the modeling of the contact and ties have played a fundamental role. In this the ovalization 80 mm
corresponds to the period 0.531 of 1 Abaqus simulation time period.

4.3.2. Failure of the Specimens with β = 0.54 under Tension

In the following, the specimens under tension in the brace element with diameter ratio equal to
0.54 will be considered. These specimens are EX-02, EX-04, EX-06, and EX-08. Here the experimental
investigation results are given for EX-04, EX-06, and EX-08, while in the numerical simulation just the
EX-08 is given.

During the experimental test, some specimens buckle such as EX-02 and EX-04; while for the
numerical simulations the buckling was not taken into account. Also, in the present research, the
buckling is not covered, but is left as future development.

Specimens with Buckling EX-02, EX-04, and EX-08

Even if in this research the buckling is not taken into account, due to the initial purpose which
is that of building a reliable model made of shell elements, a good match has been found in the
load-ovalization curves as can be seen also here in the deformed shapes of the specimen where the
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buckling occurred in the physical experiment [4]. However, the buckling was also not considered in
the previous numerical simulation [5], and the results in terms of deformed shape from the numerical
simulation were not provided.

EX-02, EX-04, and 08 are the three cases where the specimens buckle. The doubler plate
specimen EX-08 subjected to brace tension has a similar pattern to the EX-04, with pronounced chord
plasticization. In Figure 14a–c the separation of the doubler plate from the chord at the brace-doubler
intersection is illustrated. This separation can be seen both in the reinforced and unreinforced case,
also without considering the buckling effect.

(a) Present (b) Refs. [4,5] (c) Refs. [4,5]

(d) Present (e) Refs. [4,5]

Figure 14. Sliced rings of specimens subjected to tension with β = 0.54: (a) Ex-08 RC, (b) Ex-08 EC,
(c) Ex-08 NC, (d) Ex-06 RC, and (e) Ex-06 EC. (With permission from ASCE)

Specimen EX-06

EX-06 is the thicker specimen with collar reinforcement subjected to brace tension. Its deformed
shape is shown in Figure 14d,e. For this specimen the experimental test was terminated after the
tensile capacity of the actuator was reached at 1200 kN, in RC the simulation also stops earlier, and at
the end of time period 1 the ovalization is equal to 38 mm instead of 80 mm in the references [4,5].

4.3.3. Failure of the Specimens with β = 0.28 under Compression

In the following specimens under compression with β = 0.28 are shown, and this is the case of
EX-09 and EX-11. For both cases the NC does not show any result, so they will be compared only for
the EC with the present research.

Specimen EX-09

Figure 12e,f shows the localized indentation of the chord of unreinforced specimen EX-09 subjected
to compression, which has a similar behavior of the respective specimen with higher diameter ratio
EX-01. For the sake of comparison, Figure 15a,b presents its sliced ring. The step taken here is at
ovalization 80 mm, which corresponds to the period 0.450 of 1 Abaqus simulation time period.
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(a) Present (b) Refs. [4,5]

(c) Present (d) Refs. [4,5]

(e) Present (f) Refs. [4,5]

Figure 15. Sliced rings of specimens subjected to compression/tension with β = 0.28: (a) Ex-09
RC, (b) Ex-09 EC, (c) Ex-11 RC and (d) Ex-11 EC, (e) Ex-10 RC, and (f) Ex-10 EC. (With permission
from ASCE)

Specimen EX-11

Figure 12g,h shows the localized indentation of the chord of the reinforced specimen EX-11
subjected to compression; besides the appreciable indentation at the intersection area, the doubler
plate is observed to bulge out of its plane. Contrastingly, Figure 15c,d presents its sliced ring. The step
taken here is at ovalization 80 mm, which corresponds to the period 0.537 of 1 Abaqus simulation
time period.

4.3.4. Failure of the Specimens with β = 0.28 under Tension

In the following the last two specimens examined are EX-10 and EX-12, with small ratio but
subjected to tension. Only EX-10 will be showed here, since EX-12 in the experimental investigation
was stopped due to brittle failure that occurred through punching shear fracture of the brace out of the
doubler plate.

Specimen EX-10

Figure 12i,j shows a detailed view of the brace-chord intersection of the unreinforced specimen
EX-10 subjected to brace tension; also, after severe plasticization, the joint exhibited brittle shear failure
of the chord wall at one side of the intersection. In the EC the focus is at the weld zone that is not
present in the RC. Alternatively, Figure 15e,f presents its sliced rings, which shows very similar shapes.
The time step taken here is at ovalization 80 mm, for a period 0.443 of 1 Abaqus simulation time period.
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5. Summary and Conclusions

The FE analyses with the use of shell elements in this research have been directed to simulate the
static behavior of a set of 12 unreinforced and reinforced test cases, on uniplanar T-joints under axial
brace load carried out by Choo et al. [4]. In addition to the investigation conducted by Choo et al. [4],
the numerical simulation of var der Vegte et al. [5] has been taken into account. Even though a FE
study is already present, there the authors have decided to use the more computationally expensive
3-D model made by solid elements. The present research tries to solve the issues faced in [5] and sheds
light on the importance of the mechanical data in FE modeling. Some peculiar data that are missing in
the reference papers were discussed.

The results are presented in terms of restraining force versus ovalization of the chord under the
applied force and also in terms of deformed shapes, by considering sections or rings of the tubular
elements. Based on the results presented in the previous sections, where several parametric settings
have been considered, the following conclusions and considerations can be made.

• The difference in terms of load application does not affect the results in relevant way, since the
results obtained by the automatic step sequence (i.e., unique stroke range) and those obtained
by the fixed step sequence (i.e., two stroke ranges as in the experimental investigation) for the
first two specimens are almost the same, except in some cases of the fixed step where it was
not possible to find the convergence for all, due to the complexity caused by the double step.
Therefore, the automatic step sequence was considered for the remaining samples that besides
being simpler also allows an easier convergence.

• Automatic step sequence and the true stress-strain relationship without hardening after the peak load
were considered. For these settings, four different mesh densities (coarse, medium, fine, and article)
each one analyzed with four-element types (S4R, S4, S8R, and S8R5) were analyzed, respectively.
Generally, it was possible to see that all load-ovalization curves fit quite well in the initial (linear) part
with the reference investigation, and then go slightly below in the post-peak, and finally to converge
almost in final value. In the first group of element types, i.e., S4R and S4, it can be seen that there is
an abnormal shape of the curves, with the reverse of the ovalization, when the elements size of the
mesh used are relatively small such as in the medium and fine mesh. This is valid when β = 0.54,
i.e., the diameter of the brace is more than half of the chord one. While if this ratio is decreased to
β = 0.28 this does not occur. In contrast, the second group of element types with a higher number of
nodes solves the issue of the change in direction of the ovalization for all the cases, even though a
higher number of nodes leads to no convergence for some specimens.

• Due to the fact that the automatic step sequences, with no hardening simulations, have the relevant
and complete data, these were compared to the references by cutting rings from the center of the
chord of each specimen. The ring of the research shows a perfect matching to the experimental case
under compression. In the research study, as in the numerical reference, the buckling that occurs
in some of the tension cases of the experimental research was not considered. However, the shapes
obtained by this research kept good accordance, even in the specimens where buckling occurred.

• Although the reliability of shell elements is the object of this research, a 3-D model with the
same setting used by var der Vegte et al. [5] was built to verify the reliability of the preliminary
parameters considered in the model with those of the numerical simulation [5], since assumptions
were done in the first stage due to lack in the data in the reference papers. From the results of
the 3-D model of this study, as depicted in Figure 16a, the load-ovalization curves in Figure 16b
have been obtained where almost similar shapes and characteristics of the main model made by
shells with S4 element type can be seen. Thus, it is possible to deduce that some relevant data are
missing in the paper.

• The model considered in this research is able to show comparable strength characteristics as
in [4,5]. In fact, the T-joints considered in this study show a great improvement in terms of
strength of the specimen reinforced by doubler plate or a collar plate as compared to the strength
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of the unreinforced joints. An enhancement of almost 40% was reached for β = 0.54 as in the
experimental case, but a smaller value was found for β = 0.28 where the research value is five per
cent smaller than the experimental one of sixteen percent. Therefore, it can be said that the two
types of reinforcement have the capacity to distribute the brace axial load to a larger region of the
chord, with consequent improvement in terms of strength enhancement.

• Through the use of shell elements instead of the more expensive (in terms of computational
cost) solid elements, the contact problem and the introduction of the element thickness have
been solved. It turned out that shell elements with 8 nodes and reduced integration are suitable
for this type of structures; this type of elements gives a reliable solution already starting from
coarse meshes. Whereas the S4R elements type given by default from the software gives less
precise results.

• The missing data in the reference papers have inevitably lead to some differences in the results,
partially solved by the use of a different true stress-strain relationship. However, due to the good
agreement between the research and the experimental results, the former can be developed
through parametric studies to extend the above considerations to different types of joints.
Moreover, the present research can be considered for studies involving composite materials
as reinforcing phase for damaged or weak joints.

(a) (b)

Figure 16. Three-Dimensional model C3D20R: (a) medium mesh global view and (b) Load-Ovalization
curves, shell, and solid elements comparison using for both medium meshes (size 20).

6. Future Developments

The authors analyzed, in the first instance, T-joints with shell elements. Since small deviations
have been noticed, solid elements models have been generated to test the same joints as in [5].
However, the following conclusions are drawn to a future development of the present paper, which will
consider a deep analysis of the mechanical properties used in the experimental testing. As a matter of
fact, as a preliminary study the solid models are comparable to the shell ones by considering the same
input data.

The differences between the reference studies [4,5] and the present ones are in the
“large deformation” part of the curves. The linear elastic branch is so small that it cannot be seen in the
plots, but it is very clear that the curves have two segments, and both are nonlinear.

Due to this change, which seemed to be a consequence of the previous assumption done for the
material properties, where the true stress-true strain relationship was taken as elastic-perfectly plastic
model reported in Figure 2a. Hence, it has been decided to introduce a hardening of 10% in the true
stress-strain relationship for the first two specimens as reported in Figure 2b, differently to what was
written in the reference paper [5].
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The outcome of this setting, as depicted in Figure 17, gives for the tension cases a very close match
of the curves for almost 90% of each simulation, while in compression some differences can still be
noted. True strain-stress relationship closer to the real behavior of the steel material (left to future
studies) can solve this last deference.

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 17. Load-Ovalization curves unreinforced Ex-01 and Ex-02 with 10% hardening: (a) S4R without
hardening, (b) S4R with hardening, (c) S4 without hardening, (d) S4 with hardening, (e) S8R without
hardening, (f) S8R with hardening, (g) S8R5 without hardening, and (h) S8R5 with hardening.
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Abstract: A new complex variable method is presented for stress and displacement problems in a
non-circular deep tunnel with certain given boundary conditions at infinity. In order to overcome
the complex problems caused by non-circular geometric configurations and the multiply-connected
region, a complex variable method and continuity boundary conditions are used to determine stress
and displacement within the tunnel lining and within the surrounding rock. The coefficients in the
conformal mapping function and stress functions are determined by the optimal design and complex
variable method, respectively. The new method is validated by FLAC3D finite difference software
through an example. Both the new method and the numerical simulation obtained similar results
for the stress concentration and the minimum radial displacement occurred at a similar place in the
tunnel. It is demonstrated that the new complex variable method is reliable and reasonable. The new
method also provides another way to solve non-circular tunnel excavation problems in a faster and
more accurate way.

Keywords: non-circular deep tunnel; complex variables; conformal mapping; elasticity;
numerical simulation

1. Introduction

With the rapid economic development in China, which has caused the expansion of road and
railway networks from east to west and to areas in the northeast that are surrounded by mountains,
the construction of tunnels is broadly used to improve existing transportation networks. Lining is
the primary support adopted to ensure rock pressure. It has been of high interest in determining
stress fields within lining using analytical methods. Analytical solutions for stress distribution within
circular lining and around circular and elliptical holes have been proposed by many authors (Bobet [1,2];
Lee and Nam [3]; Timoshenko and Goodier [4]).

Many studies have been carried out to determine the stress and deformation of tunnels by
applying numerical methods, which have been generally used to provide an understanding of how the
stress and deformation of lining are influenced by different parameters. Numerical methods are largely
employed to find the stress and deformation stages of lining in the preliminary stages of design.

Muskhelishvili’s [5] complex variable method is one of the useful analytical approaches that fully
expounded a basic theory of complex potential functions in order to address some issues of plane
elasticity mechanics. Based on this method, Exadaktyol and Stavtopoulou [6,7] proposed a closed-form
plane strain solution for stress and displacement around semicircular holes. Verruijt [8,9] calculated
the stress and displacement components around a circular tunnel in an elastic half-plane. Zhao and
Yang [10] obtained a general solution for deep square tunnels with different pressure coefficients.
Kargar et al. [11] made an attempt to study lining stress and deformation in a non-circular deep tunnel
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using the Cauchy integral formula of complex variable methods. Li and Chen [12] obtained analytical
solutions for a non-circular tunnel lining in power series forms. However, the analytical solutions for
stress and displacement found in the above-mentioned literature have seldom come to an available
expression for non-circular deep tunnels, especially non-circular deep tunnels with a lining, except for
Kargar et al. [11] and Li [12].

When considering the problem with circular support, the solution is much easier. When a
non-circular lining is included, the problem considers a multiply-connected region and conformal
mapping, which increases the complexity of the problem. Kargar’s [11] method can calculate the
stress of a non-circular deep tunnel with a lining, although the method needs to integrate. The
integral is too complex and difficult to calculate. Li’s [12] method only considered the non-circular
tunnel lining without thinking about the surrounding rock around the lining. In order to simplify the
calculation, Li [12] assumed that the surrounding rock has a certain given surface traction applied to
the lining. In this study it will be shown that these difficulties can be surmounted at last for the case of
a non-circular deep tunnel with certain boundary conditions at infinity, by a new complex variable
method in power series forms.

Based on the research findings proposed, an attempt was made in this paper to find the stress
distribution and radial displacement of the lining in a non-circular deep tunnel, considering the
boundary conditions of the surrounding rocks by applying a complex variable power series method,
which is more efficient, simple and accurate. Finally, the new method was validated by the FLAC finite
difference software through an example.

2. Problem Statement and General Consideration

The problem refers to a non-circular tunnel with lining in an elastic geomaterial. The tunnel is
located at great depth compared with the tunnel dimension; the problem is considered a single hole
with support in an infinite plane. The infinite plate on the complex plane is divided into the two
isotropic homogenous regions of S1 and S2 bounded by contours L1 and L2. The regions S1 and S2

refer to the lining and the surrounding rock, respectively. The boundary of the tunnel lining inside
(L1) is free of stress, and the rock-lining interface (L2) satisfies the continuity boundary conditions.
It is assumed that the region S1 in the z-plane can be mapped conformally onto a ring (O1) in the
ζ-plane. The surrounding rock, region S2 in the z-plane, can be mapped conformally onto the region
O2, which is the area outside the L2 outline in the ζ-plane, see Figure 1. The general formula of the
conformal mapping function is determined based on the Laurent series as follows:

w(ζ) = R(ζ+
∞

∑
k=0

Jkζ
−k) (1)

where R is positive real number reflecting the hole’s size, and the Jk are generally complex numbers,
which are determined by the shape of the tunnel. In most situations it is accurate enough to only
take the first few of Jk of the series. θ and ρ are assumed to be two polar coordinates of point ζ in the
ζ-plane.

 

Figure 1. Conformal mapping of the tunnel in the z-plane in to two concentric circles in the ζ-plane.
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In the complex variable method [5,13,14], the solution is expressed in terms of two functions ϕ
and ψ, which must be analyzed in the region S1 occupied by the elastic material. The stresses are
determined based on the stress functions in the equations:

σθ + σρ = 4Re
[
ϕ′(ζ)
w′(ζ)

]
(2)

σθ − σρ + τρθ =
2ζ2

ρ2
1

w′(ζ)

[
w(ζ)

ϕ′′ (ζ)w′(ζ)−ϕ′(ζ)w′′ (ζ)

w′(ζ)w′(ζ) +ψ′(ζ)
]

(3)

where σρ, σθ and τρθ are the radial, circumferential and tangential stress components, respectively.
The displacements are given by

2G(uρ + iuθ) =
ζ

ρ

w′(ζ)
|w(ζ)|

[
κϕ(ζ)− w(ζ)

w′(ζ)ϕ
′(ζ)−ψ(ζ)

]
(4)

where G is the shear modulus of the elastic material, and κ is determined by Poisson’s ratio υ,
κ = 3 − 4υ and κ = 3−υ

1+υ are plane strain and plane stress, respectively. In this paper, plane strain
conditions are assumed. Based on the Kargar’s [11] method and Chen [15], the stress functions ϕ1 and
ψ1 in the region O2 have the following expansions:

ϕ1(ζ) = Γw(ζ) +ϕ0(ζ) (5)

ψ1(ζ) = Γ′w(ζ) +ψ0(ζ) (6)

where

ϕ0(ζ) =
∞

∑
k=0

hkζ
−k (7)

ψ0(ζ) =
∞

∑
k=0

mkζ
−k (8)

where hk, mk are generally complex numbers, which must be determined from boundary conditions.
ϕ0(ζ) and ψ0(ζ) are holomorphic functions with ϕ0(∞) = 0 and ψ0(∞) = 0, Γ and Γ′ are real

and complex constants with regard to the stress state at infinity, which are determined as follows:

Γ =
1
4
(σ1 + σ2) =

1 + K
4

γH (9)

Γ′ = −1
4
(σ1 − σ2)e−2iα = −1 − K

4
γH (10)

where σ1 and σ2 are the principal stress components at infinity; α is the angle made between the
σ1 direction and the x axis; K is the lateral pressure coefficient; γ and H are the unit weight of the
surrounding rock and the depth of tunnel, respectively.

The stress functions ϕ2(ζ) and ψ2(ζ), which are represent region O1, have the following Laurent
series expansions:

ϕ2(ζ) =
∞

∑
k=0

akζ
k +

∞

∑
k=1

bkζ
−k (11)

ψ2(ζ) =
∞

∑
k=0

ckζ
k +

∞

∑
k=1

dkζ
−k (12)

where ak, bk, ck, dk are generally complex numbers that must be determined from boundary conditions.
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Stress functions ϕ1(ζ), ψ1(ζ), ϕ2(ζ) and ψ2(ζ) should satisfy the continuity boundary conditions
on R2 circles and satisfy the boundary conditions on R1 circles. The displacement at lining and rock
should be equal on the boundary R2. It can be concluded as:

uR2
ρ1 + iuR2

θ1 = uR2
ρ2 + iuR2

θ2 (13)

where uR2
ρ1 and uR2

θ1 are the lining displacement components of boundary R2 in the ρ and θ

directions, and uR2
ρ2 and uR2

θ2 are the rock displacement components of boundary R2 in the ρ and
θ directions, respectively.

The stress at lining and rock should be equal on boundary R2. It can be concluded as:

fR2
1 = fR2

2 (14)

where fR2
1 and fR2

2 are displacement components of boundary R2 in the lining and rock, respectively.
The stress at the lining on the boundary R1 should be 0. It can be concluded as:

fR1
1 = 0 (15)

Based on Chen [15], the boundary conditions (13)–(15) can be rewritten. Equation (13) is expressed
as:

κ1
G1

ϕ0(t2)− 1
G1

(
w(t2)

w′(t2)
ϕ′

0(t2) +ψ0(t2)

)
= κ2

G2
ϕ2(t2)− 1

G2

(
w(t2)

w′(t2)
ϕ′

2(t2) +ψ2(t2)

)
(16)

The stress boundary condition of Equation (14) is expressed as:

ϕ1(t2) +
w(t2)

w′(t2)
ϕ′

1(t2) +ψ1(t2) = ϕ2(t2) +
w(t2)

w′(t2)
ϕ′

2(t2) +ψ2(t2) (17)

The stress boundary condition of Equation (15) is expressed as:

ϕ2(t1) +
w(t1)

w′(t1)
ϕ′

2(t1) +ψ2(t1) = 0 (18)

where t1 and t2 are the point of the boundary R1 and R2 in the ζ-plane, respectively. uρ1 and uθ1 are
the displacement components of the lining–rock interface in the ρ and θ directions.

The expressions Γw(ζ) and Γ′w(ζ) should not be incorporated into continuity Equation (16) since
they define initial ground stress and deformation in the surrounding rock when tunnels are excavated.
Equations (16) and (17) are concerned with the continuity of deformation and the stress field across the
lining–rock interface due to the no-slip condition. Equation (18) is concerned that the tunnel lining
inside (L1) is entirely free of stress.

3. Solution

In order to eliminate the difficulties caused by the power series, Equations (16)–(18) are rewritten
in the form:

κ1
G1

ϕ0(t2)w′(t2) − 1
G1

w(t2)ϕ′
0(t2)− 1

G1
ψ0(t2)w′(t2)

= κ2
G2

ϕ2(t2)w′(t2)− 1
G2

w(t2)ϕ′
2(t2)− 1

G2
ψ2(t2)w′(t2)

(19)

ϕ1(t2)w′(t2)+ w(t2)ϕ′
1(t2) +ψ1(t2)w′(t2)

= ϕ2(t2)w′(t2) + w(t2)ϕ′
2(t2t) +ψ2(t2)w′(t2)

(20)

ϕ2(t1)w′(t1) + w(t1)ϕ
′
2(t1) +ψ2(t1)w′(t1) = 0 (21)
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The form of an infinite polynomial times another infinite polynomial, such as ϕ0(t2)w′(t2) of
Equation (19), is hard to calculated and merge so that the equation cannot be calculated. To acquire a
solution for Equations (19)–(21), Li’s method needs to be introduced, which converts the form of the
multiplication of two infinite polynomials to an infinite matrix, which can be easily calculated and
merged for a computer.

From the power series theory of the complex variable method written by Chen [15], the first factor
of Equation (19) on the left can be rewritten as follows:

κ1
G1

ϕ0(t2)w′(t2) = κ1
G1

∞
∑

k=0
hvρ

−vσ−v +
+∞
∑

v=−∞
vLvρ

v−1σ1−v

= κ1
G1

(
∞
∑

k=0
hvρ

−vσ−v +
0
∑

v=−∞
vLvρ

v−1σ1−v

+
∞
∑

k=0
hvρ

−vσ−v +
+∞
∑
0

vLvρ
v−1σ1−v

) (22)

where k is substituted by v to facilitate the calculation. σ is the angle of the point of the boundary; ρ is
the radius of the boundary circle in the ζ-plane, which equals 1 at the lining–rock interface. σ and ρ

can be related by ζ = ρσ, where σ = exp (iθ). Lv can be calculated by R and Jk, and Equation (1) is
rewritten in the form:

w(ζ) =
+∞

∑
v=−∞

Lvζ
−v (23)

The first item on the right of the Equation (22) must be expanded as follows:

κ1
G1

0
∑

v=−∞
vLvρ

v−1σ1−v
∞
∑

v=0
avρ

vσv =

− κ1
G1

(L−1ρ
−2σ2 + 2L−2ρ

−3σ3 + 3L−3ρ
−4σ4 + · · ·)(h0 + h1ρ

−1σ−1

+ h2ρ
−2σ−2 + h3ρ

−3σ−3 + · · · )

(24)

where the positive power of σ in Equation (24) is obtained as:

σ1 − κ1
G1

(h1L−1ρ
−3σ+ 2h2L−2ρ

−5σ+ 3h3L−3ρ
−7σ+ · · ·)

σ2 − κ1
G1

(h0L−1ρ
−2σ2 + 2h1L−2ρ

−4σ2 + 3h2L−3ρ
−6σ2 + · · ·)

σ3 − κ1
G1

(2h0L−2ρ
−3σ3 + 3h1L−3ρ

−5σ3 + 4h2L−4ρ
−7σ3 + · · ·)

· · · · · ·

(25)

The zero and negative powers of σ in Equation (24) can be derived:

σ0 − κ1
G1

(h2L−1ρ
−4 + 2h3L−2ρ

−6 + 3h4L−3ρ
−8 + · · ·)

σ−1 − κ1
G1

(h3L−1ρ
−5σ−1 + 2h4L−2ρ

−7σ−1 + 3h5L−3ρ
−9σ−1 + · · ·)

σ−2 − κ1
G1

(h4L−1ρ
−6σ−2 + 2h5L−2ρ

−8σ−2 + 3h6L−3ρ
−10σ−2 + · · ·)

· · · · · ·

(26)

The second item on the right of Equation (22) can be expanded as follows:

κ1
G1

+∞
∑

v=1
vLvρ

v−1σ1−v
∞
∑

v=0
hvρ

−vσ−v

= κ1
G1

(· · ·+ 3L3ρ
2σ−2 + 2L2ρ

1σ−1 + L1)(h0 + h1ρ
−1σ−1 + h2ρ

−2σ−2

+ h3ρ
−3σ−3 + · · · )

(27)

165



Math. Comput. Appl. 2018, 23, 43

There are only zero and negative powers of σ in the above Equation (23), which can be derived
as follows:

σ0 κ1
G1

h0L1

σ−1 κ1
G1

(h1L1ρ
−1σ−1 + 2h0L2ρσ

−1)

σ−2 κ1
G1

(h2L1ρ
−2σ−2 + 2h1L2σ

−2 + 3h0L3ρ
2σ−2)

· · · · · ·

(28)

The general formula of Equation (29) are determined based on the expanded functions of Equation
(25) as follows:

κ1

G1

∞

∑
k=0

hkρ
−2k−v(k + v − 1)L−k−v+1σ

v (29)

The general formula of Equation (30) is determined based on the expanded functions of Equations
(26) and (28) as follows:

− κ1

G1

∞

∑
k=0

hkρ
−2k+v(k − v − 1)L−k+v+1σ

−v v = 0, 1, 2, 3 · · · (30)

Based on the power series of the complex variable method written by Chen [15], which have been
presented in Equations (22)–(30), the other items of Equation (19) can be determined and separate the
positive and negative exponents of Equation (19); the positive power system of Equation (19) can be
expanded as follows:

κ2
G2

∞
∑

k=0
akρ

2k−v(k − v + 1)Lk−v+1σ
v − κ2

G2

∞
∑

k=1
bkρ

−2k−v(k + v − 1)L−k−v+1σ
v

− 1
G2

∞
∑

k=1
akρ

2k+v−2kLk+v−1σ
v + 1

G2

∞
∑

k=1
bkρ

−2k+v−2kL−k+v−1σ
v

+ 1
G2

∞
∑

k=0
ckρ

−v(k + v − 1)L−k−v+1σ
v

− 1
G2

∞
∑

k=1
dkρ

−v(k − v + 1)Lk−v+1σ
v

+ κ1
G1

∞
∑

k=0
hkρ

−2k−v(k + v − 1)L−k−v+1σ
v

− 1
G1

∞
∑

k=0
hkρ

−2k+v−2kL−k+v−1σ
v + 1

G1

∞
∑

k=0
mkρ

−v(k − v + 1)Lk−v+1σ
v

= 0
v = 1, 2, 3 · · ·

(31)

The negative power system of Equation (19) can be expanded as follows:

κ2
G2

∞
∑

k=0
akρ

2k+v(k + v + 1)Lk+v+1σ
−v − κ2

G2

∞
∑

k=1
bkρ

−2k+v(k − v − 1)L−k+v+1σ
−v

− 1
G2

∞
∑

k=1
akρ

2k−v−2kLk−v−1σ
−v + 1

G2

∞
∑

k=1
bkρ

−2k−v−2kL−k−v−1σ
−v

+ 1
G2

∞
∑

k=0
ckρ

v(k − v − 1)L−k+v+1σ
−v

− 1
G2

∞
∑

k=1
dkρ

v(k + v + 1)Lk+v+1σ
−v

+ κ1
G1

∞
∑

k=0
hkρ

−2k+v(k − v − 1)L−k+v+1σ
−v

− 1
G1

∞
∑

k=0
hkρ

−2k−v−2kL−k−v−1σ
−v

+ 1
G1

∞
∑

k=0
mkρ

v(k + v + 1)Lk+v+1σ
−v

= 0
v = 1, 2, 3 · · ·

(32)
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The positive power system of Equation (20) is determined as follows:

∞
∑

k=0
akρ

2k−v(k − v + 1)Lk−v+1σ
v − ∞

∑
k=1

bkρ
−2k−v(k + v − 1)L−k−v+1σ

v

+
∞
∑

k=1
akρ

2k+v−2kLk+v−1σ
v − ∞

∑
k=1

bkρ
−2k+v−2kL−k+v−1σ

v

− ∞
∑

k=0
ckρ

−v(k + v − 1)L−k−v+1σ
v +

∞
∑

k=1
dkρ

−v(k − v + 1)Lk−v+1σ
v

+
∞
∑

k=0
hkρ

−2k−v(k + v − 1)L−k−v+1σ
v +

∞
∑

k=0
hkρ

−2k+v−2kL−k+v−1σ
v

− ∞
∑

k=0
mkρ

−v(k − v + 1)Lk−v+1σ
v

= 2Γ
∞
∑

k=0
Lkρ

2k−v(k − v + 1)Lk−v+1σ
v

− 2Γ
∞
∑

k=1
L−kρ

−2k−v(k + v − 1)L−k−v+1σ
v

− Γ′ ∞
∑

k=0
Lkρ

−v(k + v − 1)L−k−v+1σ
v

+ Γ′ ∞
∑

k=1
L−kρ

−v(k − v + 1)Lk−v+1σ
v

v = 1, 2, 3 · · ·

(33)

The negative power system of Equation (20) can be expanded as follows:

∞
∑

k=0
akρ

2k+v(k + v + 1)Lk+v+1σ
−v − ∞

∑
k=1

bkρ
−2k+v(k − v − 1)L−k+v+1σ

−v

+
∞
∑

k=1
akρ

2k−v−2kLk−v−1σ
−v − ∞

∑
k=1

bkρ
−2k−v−2kL−k−v−1σ

−v

− ∞
∑

k=0
ckρ

v(k − v − 1)L−k+v+1σ
−v +

∞
∑

k=1
dkρ

v(k + v + 1)Lk+v+1σ
−v

+
∞
∑

k=0
hkρ

−2k+v(k − v − 1)L−k+v+1σ
−v +

∞
∑

k=0
hkρ

−2k−v−2kL−k−v−1σ
−v

− ∞
∑

k=0
mkρ

v(k + v + 1)Lk+v+1σ
−v

= 2Γ
∞
∑

k=0
Lkρ

2k+v(k + v + 1)Lk+v+1σ
−v

− 2Γ
∞
∑

k=1
Lkρ

−2k+v(k − v − 1)L−k+v+1σ
−v − Γ′ ∞

∑
k=0

Lkρ
v(k − v − 1)L−k+v+1σ

−v

+ Γ′ ∞
∑

k=1
L−kρ

v(k + v + 1)Lk+v+1σ
−v

v = 1, 2, 3 · · ·

(34)

where ρ is the radius of the circle, which equals 1 at the lining–rock interface.
The positive power system of Equation (21) is determined as follows:

∞
∑

k=0
akρ

2k−v(k − v + 1)Lk−v+1σ
v − ∞

∑
k=1

bkρ
−2k−v(k + v − 1)L−k−v+1σ

v

+
∞
∑

k=1
akρ

2k+v−2kLk+v−1σ
v − ∞

∑
k=1

bkρ
−2k+v−2kL−k+v−1σ

v

− ∞
∑

k=0
ckρ

−v(k + v − 1)L−k−v+1σ
v +

∞
∑

k=1
dkρ

−v(k − v + 1)Lk−v+1σ
v

= 0
v = 1, 2, 3 · · ·

(35)

The negative power system of Equation (20) can be expanded as follows:

167



Math. Comput. Appl. 2018, 23, 43

∞
∑

k=0
akρ

2k+v(k + v + 1)Lk+v+1σ
−v − ∞

∑
k=1

bkρ
−2k+v(k − v − 1)L−k+v+1σ

−v

+
∞
∑

k=1
akρ

2k−v−2kLk−v−1σ
−v − ∞

∑
k=1

bkρ
−2k−v−2kL−k−v−1σ

−v

− ∞
∑

k=0
ckρ

v(k − v − 1)L−k+v+1σ
−v +

∞
∑

k=1
dkρ

v(k + v + 1)Lk+v+1σ
−v

= 0
v = 1, 2, 3 · · ·

(36)

where ρ is the radius of the circle, which equals 0.8633 at the lining–atmosphere interface.
Equations (31)–(36) can be written as a set of linear equations:

[[A] [B] [C] [D] [H] [M]](6v+3)×(6k+4)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

[a](k+1)×1
[b]k×1
[c](k+1)×1
[d]k×1
[h](k+1)×1
[m](k+1)×1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
= [F](6k+3)×1 (37)

where [A], [B], [C], [D], [H], [M] represent the coefficients of the ak, bk, ck, dk, hk and mk terms in the
equations, respectively. [F] represents the coefficient of the right side of each equation; [a], [b], [c], [d],
[h], and [m] represent the unknowns, respectively. The coefficients ak, bk, ck, dk, hk and mk required
in the final stress function are obtained by Equation (37).

As Equation (26) has 6k + 4 unknowns and 6v + 3 conditions, where v → ∞ and k → ∞ ,
there cannot be a unique solution. It can be easily seen that Equation (37) is linearly related when
k → ∞ and ρ = 1. The number of conditions in the equation set is reduced from (6v + 3) to (6v + 2).
Considering that ϕ0(∞) = 0 and ψ0(∞) = 0, the coefficients hk and mk can take any value if k → ∞ . It
is indicated that h∞ and m∞ can take zero. Since the coefficients h∞ and m∞ are known, the number of
unknown coefficients in the equation set is reduced from (6k + 4) to (6k + 2). The number of unknown
coefficients equals the boundary conditions, in which all the coefficients have been determined
uniquely. Equations (5), (6), (11) and (12) are obtained by the calculated coefficients, and the stress and
deformation of the non-circular deep tunnel are obtained through Equations (2)–(4).

4. Implementation

In this section, the new complex variable method is applied to an example and a comparison is
provided with FLAC finite difference software in order to verify the formula.

4.1. Fundamental Assumption

(a) The tunnel is assumed to have an infinite length; the surrounding rock mass is homogeneous,
isotropic and linear elastic and without creep or viscous behaviors. (b) The tunnel’s length and depth
are assumed to far outweigh its diameter; the surrounding rock mass conforms to the plane strain
condition (κ = 3 − 4υ).

4.2. Comparison of the New Analytical Solution with That of the Numerical Simulation Results

The tunnel distribution diagram is presented and a 3916 zones and 13887 grid-points finite mesh
calculation model was used to simulate stress and displacement distribution in Figure 2. The horizontal
displacement of the finite mesh calculation model is constrained by the left and right boundary, the
vertical displacement is constrained by the bottom boundary, and the top boundary is free and
unconstrained. The numerical model is concerned with continuity of deformation and the stress field
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across the lining–rock interface due to the no-slip condition. The tunnel lining inside should be entirely
free of stress.

The calculation parameters are shown in Table 1.

  
(a) (b) 

Figure 2. (a) Tunnel distribution diagram (Unit: m) and (b) Finite mesh calculation model.

Table 1. Main physical parameter for tunnel calculation.

Material Type
Elasticity Modulus E

(MPa)
Poisson’s Ratio v Density (kN·m−3)

Lateral Pressure
Coefficient K

Shale 25,000 0.3 26 0.5
Lining 30,000 0.2 25 0.5

According to Lv’s [16,17] method and the geometry of the tunnel (in Figure 2), the conformal
mapping function (Equation (1)) was determined and provided by a self-programming optimal design
software as follows:

w(ζ) = 8.0339(ζ+ 0.3121 − 0.0697ζ−1 + 0.0338ζ−2 − 0.0087ζ−3 − 0.0068ζ−4) (38)

where coefficient k = 4 is close enough to Equation (1). The radius ρ = 0.8633 is related to ζ by ζ = ρσ,
where σ = exp (iθ). It is assumed that the tunnel lining inside (L1) can be mapped conformally onto a
circle (R1). When the radius ρ = 1 the L2 can be mapped conformally onto R2.

As an example, the boundary condition across the lining–rock interface and tunnel lining inside
can be determined by Equations (13)–(15). The boundary conditions at infinity can be expressed
through Equations (9) and (10).

Based on Equation (37), a simple computer program written by MATLAB was applied to solve
the problem.

As the coordinates of the analytical solution and numerical simulation are different, it is necessary
to rewrite the results. The comparison of the rewritten results between the analytical solution and
numerical simulation are shown below.

Figure 3 shows the circumferential stress along the rock–lining interface predicted by the new
analytical solution and the FLAC finite difference software. It can be observed that the maximum
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circumferential stress happens at a position of an 85-degree angle (i.e., the widest part of the tunnel) and,
moreover, the circumferential stress of the new analytical solution has not declined rapidly, but creates
a stress concentration at α = 115◦. The circumferential stress along the inner lining periphery is
presented in Figure 4a, demonstrating good agreement between the new analytical solution and the
numerical simulation apart from an 85-degree angle. Normal stress and shear stress along the inner
lining periphery is illustrated in Figure 4b,c; the maximum value of the analytical solution for normal
stress and shear stress are about 200 KPa and 100 KPa, respectively, and the maximum value of the
numerical simulation of normal stress and shear stress are about 350 KPa and 600 KPa. The analytical
solution is smaller than the numerical simulation. The analytical solution is more accurate than the
numerical simulation.

 
(a) 

 
(b) 

Figure 3. Circumferential stress along the rock–lining interface (a) from the lining side (b) from the
rock side.
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(a) 

 
(b) 

 
(c) 

Figure 4. Stress along the inner lining periphery (a) circumferential stress (b) normal stress
(c) shear stress.

Figure 5 shows the radial displacement of the tunnel along the rock–lining interface predicted by
the analytical solution. It could be demonstrated that the radial displacement along the rock–lining
interface was in good agreement with the displacement boundary condition, which proves its
high accuracy.
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Figure 5. Radial displacement along the rock–lining interface predicted by the analytical solution.

The radial displacement of the tunnel along the inner lining periphery is illustrated in Figure 6,
which shows that the radial displacement of the analytical solution and numerical simulation are
all zero at α = 75◦. It was demonstrated that the numerical solution agrees well with the analytical
solution. Considering the results of Figure 5, the analytical solution had good agreement with the
displacement boundary condition, thus the analytical solution results were reasonable.

Figure 6. Radial displacement along the inner lining periphery.

The discrepancies between the new analytical solution and the numerical simulation described
above, especially Figure 4, may be due to the fact that the grid size in the numerical modeling is not
small enough to produce accurate results. The stress information of the numerical simulation is stored
in zones not in grid points, and the stress cannot be accurately expressed along a specified boundary.

5. Conclusions

In this paper, the stress and displacement of a non-circular deep tunnel and within their lining
supports were studied using a new analytical solution, which is based on the basic theory of complex
variables and plane elasticity [17], and the following conclusions can be made.

The analytic functions were exactly established to predict the stress and displacement distribution
of the non-circular deep tunnel within their lining supports, but it is obviously not entirely true that
the stress and displacement value is only determined by the in-situ stress boundary conditions
and coefficient of the elasticity modulus, Poisson’s ratio, lateral pressure and material density.
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The analytical solution for radial displacement was smaller than the numerical simulation results,
however, and further study will be needed to develop these functions.

Due to the fact that the grid size in modeling was not small enough to produce accurate results
and stress information was stored in zones, not in grid points in the numerical simulation, the stress
cannot be accurately expressed along a specified boundary. But the analytical solution results were not
affected by grid size and zones in the numerical modeling.

The curves of the stress value showed that the new analytical solution and numerical simulation
were in reasonable agreement. Both solutions predicted a normal stress concentration at the lower and
upper corners of the tunnel, and both maximum circumferential stress results occurred in the widest
part of the tunnels. The normal and shear stress values of the tunnel along the inner lining periphery
were almost zero, which proved its high accuracy.

Although numerical simulation is the main tool for solving tunnel excavation problems, especially
non-circular tunnels, the complex variable method can provide another way to solve non-circular
tunnel excavation problems in a faster and more accurate way.
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Abstract: In this article, a Space-Time Finite Element Method (STFEM) is proposed for the resolution
of mechanical problems involving three dimensions in space and one in time. Special attention will
be paid to the non-separation of the space and time variables because this kind of interpolation is well
suited to mesh adaptation. For that purpose, we have developed a technique of 4D mesh generation
adapted to space-time remeshing. A difficulty arose in the representation of 4D finite elements and
meshes. This original technique does not require coarse-to-fine and fine-to-coarse mesh-to-mesh
transfer operators and does not increase the size of the linear systems to be solved, compared to
traditional finite element methods. Space-time meshes are composed of simplex finite elements.
Computations are carried out in the context of the continuous Galerkin method. We have tested the
method on a linearized elastodynamics problem. Our technique of mesh adaptation was validated on
elementary examples and applied to a problem of mobile loading. The convergence and stability of
the method are studied and compared with existing methods. This work is a first implementation of
4D space-time remeshing. A stability criterion for the method is established, as well as a convergence
rate of about two. Using simplex elements, it is possible to develop a technique of mesh adaptation
able to follow a mobile loading zone.

Keywords: finite elements; space-time; elastodynamics; mesh adaptation

1. Introduction

The STFEM (Space-Time Finite Element Method) can be regarded as an extension of the classical
finite element method, applied to a boundary problem resulting from a non-stationary problem.
Currently, several approaches exist. One can quote for example the Large Time INcrement method
(LATIN [1]), the discontinuous Galerkin method [2–4] and our method, which is a continuous Galerkin
method [5,6]. In most publications on the discontinuous Galerkin method, like in [7], the interpolation
functions are assumed to be a product of functions of space variables and functions of time variables.
We will see in this paper that special attention will be paid to the non-separation of the space and time
variables. The reason for this choice is not motivated by the accuracy of the numerical results, but rather
by what constitutes the aim of our study: remeshing. We will see that this kind of interpolation is well
suited to mesh adaptation. The space-time mesh adaptation we developed is based on a method of
mesh generation not structured in space and time. The construction of 4D meshes collides with the
limits of representation. To overcome this difficulty, we propose an automatic method of construction
inspired by what can be achieved in 2D and 3D. Our technique of mesh adaptation was applied
to a problem of mobile load like contact forces. Our approach makes possible the building of an
evolutionary mesh able to follow the clamping zone.

Math. Comput. Appl. 2018, 23, 29; doi:10.3390/mca23020029 www.mdpi.com/journal/mca175
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Moreover, this technique does not require a mesh-to-mesh transfer operator and allows the
preservation of the exact sizes of the linear systems on each space-time slab.

Let us note that one of the drawbacks of the STFEM such as defined in the works of [8,9] is
the size of the linear systems to be solved, since it is necessary to solve the full 4D problem at once.
The use of a laminated mesh allows us to avoid the assembling of the total matrix of the problem
and permits us to consider only submatrices. This drastically reduces the size of the systems to be
solved. The size of these linear systems is exactly the same as that obtained in the case of approaches
coupling an incremental method of finite differences type to solve time integration, with the “classical”
finite element method being used to solve the space problem.

Another large group of methods is based on semi-discretisation, whereby finite elements are used
in space and finite differences are used in time. Even if this well-known technique is simpler to use in
a classical framework, the remeshing required is expensive due to the necessity of the construction of
interpolation/restriction operators between the grids.

The paper is organized as follows. In Section 2, the elastodynamics problem is formulated, and
the space-time finite element method is developed. The 4D mesh generation is presented in Section 3,
and a paragraph is specially devoted to adaptive mesh refinement. Numerical results are presented
and discussed in Section 4.

2. Principle of the Method

We consider the motion of an elastic body within the small perturbations hypothesis. Let Ω be the
set taken up by the body and [0, T] a time interval. The body is submitted to volume force density fd,
boundary force density Fd on its boundary part ∂1Ω and imposed displacements ud on its boundary
part ∂0Ω (∂Ω = ∂0Ω ∪ ∂1Ω, ∂0Ω ∩ ∂1Ω = ∅). The dynamic problem is: seek the displacement u and
the Cauchy stress tensor σ such that:⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

div(σ(x, t)) + fd(x, t) = ρü(x, t) ∀(x, t) ∈ Ω×]0, T[
σ(x, t)n(x, t) = Fd(x, t) ∀(x, t) ∈ ∂1Ω × [0, T]
u(x, t) = ud(x, t) ∀(x, t) ∈ ∂0Ω × [0, T]
u(x, t) = u0(x) ∀(x, t) ∈ Ω × {0}
u̇(x, t) = u̇0(x) ∀(x, t) ∈ Ω × {0}
σ(x, t) = aε(x, t) ∀(x, t) ∈ Ω × [0, T]

(1)

where ρ is the specific mass, ü is the second derivative of the displacement with respect to time, u0 is the
initial displacement, u̇0 is the initial velocity, a is the Hooke tensor and ε is the infinitesimal linear strain
tensor. The aim of this study is to use a finite element method. Then, the previous dynamic problem
has to be considered as a boundary problem on the time interval [0, T]. For that purpose, as in the cases
of the discontinuous Galerkin method [2,10,11] and the LArge Time INcrement (LATIN) method [1,12],
the variational formulation is written on the whole space-time domain Ω × [0, T]. The variational
formulation of the previous boundary problem can be written as follows:

Find u ∈ Uad such that:

∫ T

0

∫
Ω
(ρüv + aε(u) : ε(v)− fdv) dxdt =

∫ T

0

∫
∂1Ω

Fdvdsdt,

∀v ∈ U0
ad

(2)

where Uad is the set of displacements, regular enough, which verifies the boundary kinematic
conditions and the initial conditions, v is the virtual displacement and U0

ad is the set of virtual
displacements, regular enough, which verify boundary kinematic conditions only.
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The first term on the left-hand side of Equation (2) is integrated by parts in time in order to
determine the first derivative of u and the initial velocity. It gives:

∫ T

0

∫
Ω

ρüvdxdt = −
∫ T

0

∫
Ω

ρu̇v̇dxdt

+
∫

Ω
[ρu̇T(x)v(x, T)− ρu̇0(x)v(x, 0)]dx

(3)

where u̇T(x) is the velocity at time t = T.
The space-time finite element method (STFEM) was firstly proposed in [5,6]. Their discretisation

used structured space-time meshes obtained as the Cartesian product of spatial elements and a time
interval, which is not generally suitable for space-time mesh adaptations. Since then, numerous papers
on STFEM have been published. Most of them, like [11,13], deal with the discontinuous Galerkin
method in time, but the discretisation also uses structured meshes obtained as the Cartesian product
of spatial elements and a time interval. However, the STFEM proposed in [2] has been developed on
unstructured meshes. It also employs the discontinuous Galerkin method in time and incorporates
stabilizing terms of the least squares type. The space and time discontinuities of all variables are taken
into account. In our study, we use a continuous Galerkin method. Classical Lagrange polynomials
are used. The finite elements are isoparametric. On a space-time finite element Ee (Figure 1), the
displacement verifies:

u(x, t) =
ne

∑
i=1

ϕe
i (x, t)ue

i (4)

where ne is the total number of nodes of the element Ee, ϕe
i are the interpolation functions and ue

i the
nodal displacements. Using matrix notation, one has:

u(x, t) = Ne(x, t)Ue where Ue = (ue
1, ..., ue

ne)
T and Ne(x, t) = (ϕe

1(x, t), ..., ϕe
ne(x, t)) (5)

ue
2

ue
3

ue
1

Ee

2

t

1

3

x

Figure 1. 2D space-time finite element.

The same interpolation is used for the virtual displacement v. Then:

v(x, t) = Ne(x, t)Ve where Ve = (ve
1, ..., ve

ne)
T (6)

Let p be the total number of space-time elements; the previous discretization gives:

∫ T

0

∫
Ω

ρu̇v̇dxdt =
p

∑
e=1

VT
e MeUe (7)
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where:

Me =
∫ T

0

∫
Ee

ρ
∂NT

e
∂t

∂Ne

∂t
dxdt (8)

is the elementary matrix relative to the inertia forces. One can notice that Me is symmetric. Concerning
the discretization of the initial and final impulses’ contributions, one has:

∫
Ω
[ρu̇T(x)v(x, T)− ρu̇0(x)v(x, 0)]dx =

p

∑
e=1

VT
e Λe (9)

where Λe is the elementary vector relative to the initial and final impulses. It is defined by:

Λe = [
∫

Ee
⋂

ΩT

ρNT
e u̇Tdx −

∫
Ee
⋂

Ω0

ρu̇0dx] (10)

where Ω0 is the domain at time t = 0 and ΩT is the domain at time t = T.
Similarly, let Be be the matrix such that:

ε(u(x, t)) = Be(x, t)Ue , (11)

the virtual works of internal and external forces are respectively discretized by:

∫ T

0

∫
Ω

aε(u) : ε(v)dxdt =
p

∑
e=1

VT
e KeUe (12)

and: ∫ T

0

∫
Ω

fdvdxdt +
∫ T

0

∫
∂1Ω

Fdvdsdt =
p

∑
e=1

VT
e Fe (13)

where the elementary matrix Ke relative to internal forces is:

Ke =
∫ T

0

∫
Ee

BT
e aBedxdt (14)

and the elementary vector Fe relative to external forces is:

Fe =
∫ T

0

∫
Ee

NT
e fddxdt +

∫ T

0

∫
Ee
⋂

∂1Ω
NT

e Fddsdt. (15)

This space-time discretization leads to the following linear system:

([M̃u] + [K̃u]){U} = {Fu}+ {Λ} (16)

where [M̃u] is the assembled matrix relative to the inertia forces, [K̃u] is the assembled matrix relative
to the internal forces, {Fu} is the nodal vector of external forces, Λ is the nodal vector of impulses and
{U} is the nodal vector of displacements. One can note that the matrices [M̃u] and [K̃u] are symmetric.
In order to have band matrices, and because we have in mind making computations incrementally
in time, the meshes are built to be stratified in time, as in Figure 2. Moreover, the node numbering is
conducted in such a way that all nodes in a same stratum have close numbers, then the left-hand side
of the system (16) verifies.
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t

t

t

x

5 6 7 8

9 1110 12

2 3 41

Figure 2. 2D regular space-time mesh.

([M̃u] + [K̃u]){U} = [T]{U} =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

[T11] [T12] 0 0 0 0
[T21] [T22] [T23] 0 0 0

0 [T32] [T33] [T34] 0 0
. . . . . .
0 0 0 [Tn/n−1] [Tn/n] [Tn/n+1]

0 0 0 0 [Tn+1/n] [Tn+1/n+1]

⎞⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎝

{U0}
{U1}

.

.

.
{Un}

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.

Using the space-time mesh described in Figure 2, one has:

{Uj} =

⎛⎜⎜⎜⎝
uj+1
uj+2
uj+3
uj+4

⎞⎟⎟⎟⎠ for j = 0, ..., n.

With this numbering, the total matrix [T] and the sub-matrices [Tij] are band matrices.

Comments:

• Choosing a Lagrange interpolation for displacements implies that displacements are continuous,
but the velocities are discontinuous. As a consequence, integration by parts as in (3) is not totally
rigorous, and it could be necessary to use the discontinuous Galerkin formulation, which amounts
to writing the derivative of velocity within the theory of distributions. We will preserve the
formulation in (3), knowing that the error here is of the same order as in the case of traditional
finite elements in space. Indeed, with a Lagrange interpolation local displacements are continuous,
whereas the global deformation is discontinuous.

• Even if it is not absolutely necessary, the advantage of using a laminated mesh such as defined
here is that it becomes possible, rather than assembling the total matrix [T], to only assemble the
sub-matrices [Tij]. This considerably reduces the size of the systems to be solved. More precisely,
the size of these linear systems is exactly the same as that obtained in the case of approaches based
on the coupling of finite incremental differences in time with finite elements in space. Moreover,
the method is not limited to simplex elements, and the spatial position of each set of nodes can
vary from one time plane to the other. It is one of the main advantages of the method.
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• We specify that the nodal vector relating the boundary conditions with velocity {Λ} is written as:

{Λ} = ({Λ0}, 0, ..., 0, {Λn})T

where {Λ0} is given starting from conditions of initial velocity while {Λn} is unknown.
Consequently, the resolution of System (16) is the following:

The first system of equations,

[T11]{U0}+ [T12]{U1} = {F0}+ {Λ0} (17)

provides {U1}; the system of equations:

[Ti/i−1]{Ui−2}+ [Ti/i]{Ui−1}+ [Ti/i+1]{Ui} = {Fi−1} 2 ≤ i ≤ n , (18)

provides the displacements {Ui}; and the last system of equations,

[Tn+1/n]{Un−1}+ [Tn+1/n+1]{Un} = {Fn}+ {Λn} , (19)

gives {Λn}.
• Finally, the matrices of resolution [Ti/i+1] are generally non-symmetric, even if the total matrix

[T] is symmetric. Thus, for the algorithm presented above, a non-symmetrical solver should be
used. This can appear penalizing in terms of computing time. However, since the final objective
is to use this approach to deal with problems of contact with friction and since the nonlinear
resolution we developed in [14] is of the Gauss–Seidel nonlinear type, asymmetries do not affect
computing time.

3. 4D Mesh and Remeshing

In order to propose a remeshing technique, it is firstly necessary to be able to build 4D meshes.
Obtaining only one 4D finite element does not pose real problems, even if some difficulties in graphic
representation arise (see Figure 3). On the contrary, building a 4D mesh, even the most elementary
is far from being commonplace, except in the case of regular meshes formed by finite elements
of multiplexing type (functions of interpolation obtained as the products of functions of space by
functions of time). However, in the general case and in particular with the problem of remeshing,
which is what is of interest here, the meshing remains an issue.

3.1. 4D Mesh Generation

Figure 3 identifies parts of elementary 2D, 3D and 4D meshes with their node numbering.
One denotes by n0 the total number of nodes at time t = 0 of the entire space mesh, and we assume
this total number is the same at time t = h.

For the 2D mesh, the connectivities are
i, j, n0 + i
j, n0 + i, n0 + j.

For the 3D mesh, the connectivities are
i, j, k, n0 + i
j, k, n0 + i, n0 + j
k, n0 + i, n0 + j, n0 + k.

Using the previous building of connectivities, obtained by circular permutations, we propose the
following generalization of connectivities for the 4D mesh.

i, j, k, l, n0 + i
j, k, l, n0 + i, n0 + j
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k, l, n0 + i, n0 + j, n0 + k
l, n0 + i, n0 + j, n0 + k, n0 + l.

t t

x

x

y

t

2D

3D

4D

j

n0+i

k

i

i j

n0+i n0+j

i

jk

n0+j
n0+k

l

n0+l

n0+k n0+j

n0+i
t=h

t=h
t=h

t=0 t=0

t=0

Figure 3. 2D, 3D and 4D space-time mesh.

This 4D mesh is constituted by four hypertetrahedrons (The hypertetrahedron is the
four-dimensional tetrahedron. Other names of this element type are simplex or pentatope). We propose
to build 4D space-time meshes, resulting from unspecified 3D space meshes, by applying the building
technique developed above, for each 3D finite element of the 3D space mesh. However, in this case,
it must be checked that the total space-time volume is covered by the 4D mesh. For this purpose, we
computed the sum of the volumes of the hypertetrahedrons of the 4D mesh and compared it with the
total volume generated by the 3D object multiplied by the time interval.

For a 3D mesh made up of tetrahedrons, the interfaces between the elements are triangles. In 4D,
these interfaces are tetrahedrons (see the diagram at the bottom of Figure 4). Therefore, we must thus
check that for our technique of mesh generation, all couples of adjoining 4D finite elements have a
common tetrahedron. As we use a building technique containing circular permutations, it is necessary
to respect a particular order in the numbering of the nodes of each 3D finite element. A way of doing
this is to arrange the nodes of each 3D element in ascending order. Table 1 gives an example of a table
of connectivities for an elementary 4D mesh, resulting from the 3D space mesh represented by the
left-hand diagram of Figure 4. Let us note that this 4D mesh contains eight finite elements, against
two for the 3D mesh source, and that n0 = 5. It is observed that the connectivities are arranged in
ascending order. In this case, it is checked that the tetrahedra filling the space-time interface (diagram
at the right-hand of Figure 4) are common to the adjoining elements. Indeed, Elements 1 and 5 contain
the tetrahedron (1; 2; 4; 6), and Elements 2 and 6 contain the tetrahedron (2; 4; 6; 7). Lastly, Elements 4
and 7 contain the tetrahedron (4; 6; 7; 9). Let us notice that the tetrahedron (1; 2; 3; 4; 5) at time t and
the related tetrahedron (6; 7; 8; 9; 10) (not represented) at time t + Δt could also have different shapes
and could be localized at different places (see for example Figure 5). In this case, the triangles (1; 2; 4)
and (6; 7; 9) in the right part of Figure 4 can be different.
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Figure 4. 3D initial mesh (scheme at the left); part of the 4D mesh generated by the triangle (1; 2; 4)
common to the two finite elements of the 3D initial mesh (scheme at the right).

Table 1. Table of connectivities of the 4D space-time mesh resulting from the elementary 3D space
mesh of Figure 4.

Element Number Node 1 Node 2 Node 3 Node 4 Node 5

1 1 2 3 4 6
2 2 3 4 6 7
3 3 4 6 7 8
4 4 6 7 8 9
5 1 2 4 5 6
6 2 4 5 6 7
7 4 5 6 7 9
8 5 6 7 9 10

3.2. Remeshing Technique

In this section, we present our technique of space-time mesh adaptations. In the literature, many
articles on mesh adaptations [2,3,15–21] can be found. Among these papers, a large number deals
with space-time mesh adaptations. They use the discontinuous Galerkin method. In most of them, the
approach is incremental, i.e., remeshing is carried out at given steps of time. Generally, the values of the
unknown of the new mesh are obtained by approximation or interpolation from those of the old mesh,
which we will call “mesh-to-mesh transfer”. Moreover, the interpolation used is of a multiplexing type;
the function of interpolation is defined by the product of a function of space by a function of time.

In [22], we proposed an incremental technique for mesh adaptation, which does not
require mesh-to-mesh transfer. It was coupled with problems of rubbing contact (see [14]).
In addition, we developed a non-incremental technique of mesh adaptation, based on non-structured
space-time meshes.

Some teams have already worked on this problem. One can quote the works of Hugues
and Hulbert [2,3], Tezduyar et al. [20,21] and Idesman et al. [9,23]. They use the continuous or
discontinuous Galerkin method. In these approaches, calculations are carried out on the whole
space-time domain Ω × [0, T]. Thus, for a field Ω of dimension d and a total number N of nodes of the
space-time mesh, the dimension of the linear problem to be solved is d × N, which quickly becomes
large when d = 2 or d = 3. A solution to decrease the computational time is to use parallel computations.
This is the option chosen in [8,9].

In the context of the continuous Galerkin method, we suggested, in [22,24], a non-incremental
solution, which substitutes the concept of a step of time by that of a “space-time front”.
Erickson et al. [16] have also proposed an advancing-front mesh generation, in the context of the
discontinuous Galerkin method. This technique was successfully used by Miller et al. [25] in their
multi-field space-time discontinuous Galerkin method, for d = 1 and 2 in linearized elastodynamics
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applications. The advantage of this frontal resolution is that it decreases the size of the linear systems
to be solved. Due to technical difficulties, the frontal resolution in the case of d = 3 has not yet
been implemented. Nevertheless, we propose a particular incremental remeshing technique based
on the construction of 4D space-time meshes that are able to follow an evolutionary loaded zone.
This technique of mesh generation uses simplex finite elements. Figure 5 gives an illustration of the
technique. The principle is to maintain the same number of nodes during the simulation, but to locate a
sufficiently large number of them under the loaded area. In this particular case, it is possible to preserve
the matrices Ti/i−1, Ti/i, Ti/i+1 identical for all i, which involves a reduction of the computational time.
An example of mechanical application is provided in the following section. This technique is aimed at
applications in simulating problems of wear between two bodies in contact.

t

Figure 5. Space-time mesh generation by rotation of the loaded area. The loaded area is represented
by arrows.

4. Numerical Analysis

Our space-time finite elements method was programmed using MATLAB software and was
validated on elementary examples.

4.1. Stability

Preliminary results on the stability of the method have been established in [22] and compared
with the Newmark integration scheme. Here, we summarize the main results. Let δ and θ be two real
parameters; the Newmark integration scheme reads:{ {U̇i+1} = {U̇i}+ Δt

[
(1 − δ) {Üi}+ δ{Üi+1}

]
{Ui+1 = {Ui}+ Δt{U̇i}+ Δt2

[(
1
2 − θ

)
{Üi}+ θ{Üi+1}

]
where Δt is the time step of integration, {U̇i+1} and {Üi+1} are respectively the assembled vector of
nodal velocities and accelerations at time (i + 1)Δt. We showed in [22] that:

• For 1D space-time elastodynamic applications, the use of the STFEM method with linear simplex
elements is similar to the use of the implicit Newmark integration scheme with δ = 1/2 and
θ = 1/3. The method is then unconditionally stable.

• For 2D space-time elastodynamic applications, the use of the STFEM method with linear simplex
elements is similar to the use of the explicit Newmark integration scheme with δ = 1/2 and θ = 0.
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The method is then conditionally stable. Classically, the time step has to verify the CFLcondition:
Δt ≤ minJ

2
ωJ

, where each ωJ is the frequency of a normal mode of vibration.
• For higher dimensions (3D and 4D), no direct relationship between the STFEM and the Newmark

method has been established. Nevertheless, we noted that our method required sufficiently small
space-time slabs, of the same order of the discretization time step necessary with explicit methods
of integration.

• Furthermore, the use of the STFEM method with multiplex elements is similar to the use of
the implicit Newmark integration scheme with δ = 1/2 and θ = 1/3, for 1D, 2D, 3D and 4D
space-time applications. In this case, the method is unconditionally stable.

In the present study, a specific numerical investigation has been carried out to estimate the stability
conditions for the STFEM method with linear simplex elements for 4D space-time elastodynamic
applications. The stability was tested on a beam of length L = 0.1 m and a square section of
0.01 × 0.01 m2 (see Figure 6). The Young modulus E was equal to 1000 Pa; the Poisson’s ratio ν

was equal to 0.3; and the density ρ was equal to 680 kg/m3.

Figure 6. Geometry and 3D mesh of a beam with h = 6.6 × 10−3 m.

We built boundary conditions in order to obtain the following analytic solution:

u(x, t) = cos(
πx1

L
) cos(

πct
L

)e1 (20)

where c is the velocity of the wave propagation. On Faces (1) and (2), null Neumann conditions were
imposed. On the other four faces (Σc), Dirichlet conditions were imposed in order to satisfy the analytic
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solution (20). The volume external force density fd was assumed to be vanishing. This imposes that
the wave velocity c must verify:

c =

√
E

ρ(1 + ν)
(1 +

ν

ρ(1 − 2ν)
)

Results plotted in Figure 7 give the dependence of the time discretization (size of the space-time
slab) Δt on the average size h of the 3D finite elements, to ensure the stability of the method.

h (m)

Δ
t(
s
)

Figure 7. Size of the time step of discretization Δt necessary for stability with respect to the average
size h of the 3D finite elements.

Linear fitting suggests that the stability criterion is:

Δt ≤ αh

with α � 1/2c. Indeed, in our example, c = 1.407 m/s.

4.2. Convergence

In the case of simplex finite elements, the convergence with the STFEM method is comparable to
the convergence with the Newmark scheme, for the 1D and 2D problem. Concerning the convergence
analysis of the STFEM in 4D, we used the previous example. The time step of discretization Δt is
scaled with respect to h, using the stability criterion obtained in the previous paragraph. We computed
the maximum error over space at the last time step between the analytic solution and the numerical
solution for each mesh size h. The results are plotted in Figure 8.
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Figure 8. Maximum error over the space, at the last time step, between the analytic solution and the
numerical solution for each mesh size h, in the logarithmic scale.

We can note that the convergence rate for the method is nearly quadratic.

5. Numerical Results on Mesh Adaptation

To illustrate our technique of mesh adaptation, we consider the example of a brake disc subjected
to the clamping of a plate on one of its faces (see the source model with the coarse mesh in Figure 9) and
blocked on the opposite face. The disc is made of steel with a Young’s modulus equal to 210,000 MPa,
a Poisson’s ratio equal to 0.3 and a density equal to 7800 kg/m3. The internal radius of the disc is equal
to 40 mm; its external radius is equal to 100 mm; and its thickness is 10 mm. Two 3D initial meshes
have been tested: a coarse mesh, which contains 634 nodes and 1752 elements, refined only in the area
of the clamping, and a fine mesh, which contains 6476 nodes and 25,856 elements and has a uniform
mesh fineness over all the sample.

The clamping area is modeled by a constant pressure of 100 MPa. This area is moved along the

circumference of the disc with a rotational speed equal to that of the propagating wave V = 1
2πR

√
E
ρ ,

where R = 70 mm is the average radius of the disc. For both 3D initial meshes, we built an incremental
4D space-time mesh, which preserves the 3D mesh at each time step, by imposing an axial rotation to
keep the finest zone of the 3D mesh under the loading area. An illustration is shown schematically in
Figure 5.

The results of the calculations presented were obtained for space-time slabs of 10−7 s (this is
equivalent to using a time step equal to 10−7 s). The vertical displacements obtained with fine and
coarse meshes have been compared for points located on a circle of control, of radius R equal to 70 mm
(see Figure 10).
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Figure 9. 3D initial coarse mesh: the mesh is finer under the clamping zone.

Figure 10. Location zone of checked displacements: circle of radius equal to 70 mm.

Numerical values are gathered in Figure 11 for the results at time t = 2.10−5 s and in Figure 12 for
the results at time t = 4.10−5 s. Each check point is defined by its angle, in polar coordinates.

Numerical comparisons show that the coarse and fine meshes give similar results in the clamping
zone. However, apart from this zone, the results are somewhat different. Let us note that nodal
displacements cannot be identical because dynamic effects depend on the fineness of the mesh.
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Figure 11. Comparison of vertical displacements for points situated on the circle of control, expressed in
mm, at time t = 2.10−5 s. Each check point is defined by its angular coordinate, expressed in radians.

Figure 12. Comparison of vertical displacements for points situated on the circle of control, expressed
in mm, at time t = 4.10−5 s. Each check point is defined by its angular coordinate, expressed in radians.

Figures 13 and 14 show the norm of incremental displacements at time t = 2.10−5 s and
t = 4.10−5 s for the coarse and the fine mesh, respectively. For the coarse mesh, we can observe
that the refined zone really remains under the zone of clamping. The distribution of the norm of
node displacements is similar for the two positions of the load. It is important to note that they are
incremental displacements and not total displacements.
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Finally, it must be noted that the computational time is 6.6-times faster using the coarse mesh.

Figure 13. Isovalues of the norm of nodal displacements, expressed in mm, at t = 2.10−5 s for the
coarse mesh (image at the top) and for the fine mesh (image at the bottom).
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Figure 14. Isovalues of the norm of nodal displacements, expressed in mm, at t = 4.10−5 s for the
coarse mesh (image on the top) and for the fine mesh (image on the bottom).

6. Conclusions

The method we have presented for space-time mesh generation for 4D domains, using simplex
elements, made it possible to develop a technique of mesh adaptation able to follow a mobile loading
zone. This original technique has been carried out to ensure a minimal computational time and does
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not require coarse-to-fine and fine-to-coarse mesh transfer operators. The convergence and stability of
the method were studied and compared with existing methods. This approach opens the way to 4D
remeshing. It allows, thanks to simplex elements, remeshing in both space and in time.

However, to demonstrate the all the capacities of this method, it is necessary to go much further
in the mechanical applications and to propose a technique of 4D mesh adaptation using the frontal
approach, as presented in [14,16,22,25].
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Abstract: The two-dimensional differential equation y’ = f(x,y) can be interpreted as a direction field.
Commercial Finite Element (FE) programs can be used for this integration task without additional
programming, provided that these programs have options for the calculation of orthotropic heat
conduction problems. The differential equation to be integrated with arbitrary boundaries is idealized
as an FE model with thermal 2D elements. Its orthotropic thermal conductivities are specified as
k1 = 1 and k2 = 0. In doing so, k1 is parallel to y´, and k2 is oriented perpendicular to this. For this
extreme case, it is shown that the isotherms are identical to the solution of y’ = f(x,y). The direction
fields, for example, can be velocity vectors in fluid mechanics or principal stress directions in structural
mechanics. In the case of the latter, possibilities for application in the construction of fiber-reinforced
plastics (FRP) arise, since fiber courses, which follow the local principal stress directions, make use of
the superior stiffness and strength of the fibers.

Keywords: direction field; tensor line; principal stress; tailored fiber placement; heat conduction

1. Introduction

Orthotropic materials can have extremely different thermal conductivities, for example, in printed
circuit boards. The tracks conducting current are made of copper (Cu) and are electrically insulated
against the plastic plate. Due to its low thermal conductivity (k2), the Cu conducting track (k1) is heated
to a constant, relatively high temperature. It can be considered as an isothermal line. The thermal
heat flow in the plastic due to conduction is very low. For example, if there are two Cu conducting
tracks with constant but different temperatures, then a steady temperature gradient independent of k2

prevails in the plastic between them, even if k2→0. The Cu-tracks can be described by their position
y = y(x), and they control the temperature distribution in the insulator. Alternatively, the position
can be described by y’(x) together with their starting positions. If these tracks are infinitely densely
distributed, the direction field of the Cu-conductance k1 is described by y´ = f(x,y). Insulation works
perpendicular to the Cu-tracks when k2 << k1. Should the (infinitely densely) guided conduction paths
be directed parallel to an arbitrary direction field y’ = f(x,y), then the following hypothesis shall be
mathematically verified:

Hypothesis: The isotherms of an orthotropic steady-state 2D thermal conduction problem with the thermal
conductivities k1 and k2 are tangential to an arbitrarily prescribed direction field y´ = f(x,y) provided that the
local orientation of k1 follows the direction field y´, and perfect insulation exists perpendicular to this (k2 = 0).

The integration method, which can be derived from the hypothesis, is the topic of the dissertation
by the author [1]; however, this was published without mathematical verification. Two-dimensional
direction fields of the type y´ = f(x,y) can describe physically different processes. In fluid mechanics,
the vectorial direction field y´ = v(x,y)/u(x,y) of the velocity components u and v are tangential to the
streamlines. The general solution of the direction field to be integrated provides the flow field in the
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form of streamlines. This task is solved by default in Computational Fluid Dynamics (CFD) codes and
is therefore not pursued further here. In stress analysis, the visualization of principal stress (PS) lines
is not present in commercial FE programs. The visualization of stream and tensor lines is the subject of
numerous investigations. A representative selection is given by [2–6].

Beyer [2] investigated in his dissertation principal stress trajectories arising in civil engineering
and in constructions of fiber-reinforced plastics. He established an algorithm for their visualization
in two and three dimensions. The procedure is similar to the method shown in Figure 1; however,
improved accuracy is gained with his variable and iterative step control.

Figure 1. Shell under lateral pressure p = 0.15 MPa, bedded elastically (Kf = 1000 N/mm); typical
dimensions Δx, Δy, and Δz, modulus E = 50 GPa, thickness t = 2 mm. (a) stress trajectories, standard
integration begins in the red start elements; (b) PS directions from a linear static analysis; (c) detail,
standard integration begins in element A. Improved accuracy is gained with mesh refinement.

Delmarcelle [3,4] investigated symmetric tensor fields by studying their topological structure.
The basic constituents of tensor topology are the degenerate points where eigenvalues (or principal
stress values) are equal to each other. Separatrices and degenerate points are the basic constituents
of tensor field topology. A separatice is the tensor line (PS line) between two degenerate points.
Knowledge of the topological structure of tensor fields is important, as standard integration methods
need this information.

With standard integration methods the uniform distribution of tensor lines depends critically on
the placement of starting points (elements), see Figure 1. Jobard’s algorithm [5] for the placement of
evenly-spaced PS lines (in his paper: streamlines) is based on a separating distance between adjacent
PS lines to control their density. If a PS line is too close to another one, it is abruptly cut. With respect
to fiber placement in FRP construction this may have adverse consequences. Trichoche [6] extends the
work of Delmarcelle [3,4] to broaden the scope of topology-based vector and tensor field visualization.
One focus in his work is on turbulent flows. The streamline distribution is extremely complex for
turbulent flows with its local, small-scale details. Another focus is instabilities in structural problems.
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Visualization of stress trajectories should permit detection and identification of bifurcation to provide
insight into the time-dependent structural evolution. These issues are beyond the scope of this paper.

All these papers lead to specialized algorithms, which are not public. Therefore, it is desirable to
investigate the possibilities of integrating vectorial and tensorial direction fields within FE programs
without programming efforts or additional software. PS lines in FRP constructions are of particular
interest since fiber courses, which follow the local PS directions, make use of the superior stiffness and
strength properties of the fibers [1,7–10].

To demonstrate some disadvantages with conventional standard integration methods, Figure 1
shows an integration procedure developed by the author [1] (p. 16) applied to the bottom of a
shell structure.

Figure 1b shows the PS directions of the blue principal stress trajectories on the bottom of the
shell. In the middle plane and on the top of the shell there are other PS directions since membrane
and bending stresses occur simultaneously. These directions stem from an eigenvalue problem of the
stress tensor, whose eigenvectors (principal stress directions) remain indefinite in the sign. The PS
directions can therefore switch the sign from one element to its neighboring element. The integration
pattern in Figure 1c takes this problematic situation into account by replacing the direction vector
with a bidirectional element. The bidirectional element intersects two opposing element sides and
thereby allows the integration to be continued in the two neighboring elements with their directional
elements. Each start element (marked in red) in Figure 1a provides two individual fiber courses with
the procedure just described, corresponding to the two PS directions. A regular placement of the
start elements in no way guarantees a uniform distribution of the PS lines. A homogenization of the
fiber courses is achieved only with considerable effort. A further disadvantage of this procedure is
immediately apparent; each individual trajectory (fiber) must be calculated separately. Should the
designer change the fiber volume ratio for reasons of strength, then the procedure must be repeated
from the beginning.

This problem is substantially simplified through the hypothesis set out above, which can be
modeled by means of the orthotropic heat conduction in FE programs. Since the two-dimensional
direction field of the principal stresses describes a planar stress condition, shells with an arbitrary
boundary can also be processed. An additional advantage is that all of the PS trajectories (fiber courses)
can be calculated by means of a single thermal analysis. If the fiber volume ratio is subsequently
increased, correspondingly more isotherms (fiber courses) are extracted from the existing continuous
temperature field.

The recommended calculation alternative for the integration of y´ = f(x,y) is based on the drastically
changing properties of Fourier’s law for k1/k2→∞. The following section provides a mathematical
verification of the hypothesis set out above. The practicability of the integration method is based on
independence from thermal boundary conditions; the isotherms always follow the direction field in
nonsingular areas. However, the (weighted) distance of the isotherms from each other is influenced by
the boundary conditions and can be controlled by them. In Section 3, the procedure is based on some
rules and these are demonstrated practically through examples. The influence of the orthotropy ratio
k1/k2, as well as the influence of singularities on the course of the isotherms, is investigated.

2. The Integration of Direction Fields by Means of the Orthotropic Heat Equation

The direction field is given through an ordinary differential equation of the first order in the
Cartesian coordinate system (x,y):

y′ = f (x, y). (1)

In accordance with the hypothesis in the previous section, it shall be demonstrated that orthotropic
heat conduction can be used for the integration of this equation.
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2.1. The Anisotropic Fourier Heat Conduction Law and the Heat Conduction Equation

Verification of the hypothesis: In the two-dimensional case, Fourier’s anisotropic heat conduction
law with respect to a Cartesian coordinate system is given by Equation (2), and the steady heat balance
without internal heat sources by Equation (3), [11]:

qx = −
(

kxx
∂T
∂x

+ kxy
∂T
∂y

)
, (2a)

qy = −
(

kyx
∂T
∂x

+ kyy
∂T
∂y

)
, (2b)

∂qx

∂x
+

∂qy

∂y
= 0. (3)

These equations are combined, resulting in the anisotropic heat conduction equation:

∂

∂x

(
kxx

∂T
∂x

)
+

∂

∂x

(
kxy

∂T
∂y

)
+

∂

∂y

(
kyx

∂T
∂x

)
+

∂

∂y

(
kyy

∂T
∂y

)
= 0. (4)

Orthotropic (principal) thermal conductivities k1 and k2 being oriented according to the direction
field of Equation (1) should be transformed into the Cartesian system. The transformation equations
for the 2D heat conduction tensor are analogous to a 2D stress tensor, and can be illustrated using
trigonometric relationships with Mohr’s (Stress) Circle, as shown in Figure 2.

Figure 2. Transformation between local and global conductivity tensors k in the temperature field
T(x,y): (a) Angle α and (π/2) − α between the local system (1,2) and the global x-axis, q = heat flux
density; (b) Mohr’s Circle for k1 > 0 and k2 = 0; (c) Mohr’s Circle for k1 > 0 and k2 > 0 by analogy with
Mohr’s Stress Circle.

kxx = k1 cos2 α + k2 sin2 α =
k1

1 + tan2 α
+

k2 tan2 α

1 + tan2 α
=

k1

1 + f 2 +
k2 f 2

1 + f 2 , (5a)

kxy = kyx = (k1 − k2) sin α cos α = (k1 − k2)
f

1 + f 2 , (5b)

kyy = k1 sin2 α + k2 cos2 α =
k1 f 2

1 + f 2 +
k2

1 + f 2 . (5c)

The hypothesis in Section 1 is based on extreme orthotropic conductivity ratios, k1/k2→∞ and
therefore can be validated only for k2 = 0. Setting k2 = 0 in Equation (5) and substituting the simplified
expression in Equation (2) we have:

qx = −
(

k1
∂T
∂x

+ k1 f
∂T
∂y

)
/(1 + f 2), (6a)
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qy = −
(

k1 f
∂T
∂x

+ k1 f 2 ∂T
∂y

)
/(1 + f 2). (6b)

The heat conduction Equation (4) is solved in the FE programs. Substitution of Equation (5)
into (4), together with k2 = 0, results in:

∂

∂x

(
k1

1 + f 2
∂T
∂x

)
+

∂

∂x

(
k1 f

1 + f 2
∂T
∂y

)
+

∂

∂y

(
k1 f

1 + f 2
∂T
∂x

)
+

∂

∂y

(
k1 f 2

1 + f 2
∂T
∂y

)
= 0. (7)

The solution T(x,y) of Equation (7) can be visualized by isotherms, which represent a direction
field yT´. An isotherm is characterized by a constant temperature C. Its equation in implicit form is
given by F(x,y) = T(x,y) − C = 0. A directional element of this curve has the slope:

y′T = −∂F/∂x
∂F/∂y

= −∂T/∂x
∂T/∂y

. (8)

The question arises as to which properties Equation (6) shows if the direction fields from
Equations (1) and (8) are equated:

y′ = f (x, y) = f = −∂T/∂x
∂T/∂y

= y′T , i.e., f = −∂T/∂x
∂T/∂y

. (9)

Use of “f ” from Equation (9) in the numerators of Equation (6) results in:

qx = −
(

k1
∂T
∂x

+ k1

(
−∂T/∂x

∂T/∂y

)
∂T
∂y

)
/(1 + f 2) = 0, (10a)

qy = −
(

k1

(
−∂T/∂x

∂T/∂y

)
∂T
∂x

+ k1

(
−∂T/∂x

∂T/∂y

)2 ∂T
∂y

)
/(1 + f 2) = 0. (10b)

The first and second term for qx and qy cancel out, and the right hand sides in Equations (10a) and
(10b) become zero. Back-substitution of (∂T/∂x)/(∂T/∂y) = −f into Equation (10) results in:

qx = qy =
∂T
∂x

+ f
∂T
∂y

= 0. (11)

For this extreme case (k2 = 0), both heat flux components [qx, qy] = q are identical to zero. Therefore,
the heat flux components q1 and q2 parallel to the orthotropic (principal) thermal conductivities (k1, k2)
in Figure 2a are also zero. The resulting isotherms do not contradict their definition; the heat flux along
an isotherm is zero and, perpendicular to this, the heat flux is also zero due to k2 = 0, and the equating
of Equations (1) and (8) was justified: If the heat fluxes are zero for any direction field y´ = f(x,y),
then their divergence div(q) in the form of Equation (3) or (4) is also zero. The latter is the heat
conduction equation, which is solved in FE programs for steady-state problems without internal heat
sources. From Fourier’s law with the unknowns T and q, a directly solvable equation has been formed
for T alone provided that k2 = 0. Whether the orthotropic heat conduction problem in Equation (11)
is solved, which is not generally available as a calculation option in FE programs, or Equation (7) is
solved by means of an FE program, the same isotherms result and are tangential to the given direction
field y´ = f(x,y). Whenever k2 > 0, the proof does not work.

2.2. The Relationship between the Isotherms of Extremely Orthotropic Heat Conduction and the Characteristics
of a Partial Linear Differential Equation of the First Order

A linear partial differential equation of the first order is:

A(x, y)
∂T
∂x

+ B(x, y)
∂T
∂y

= 0 (12)

197



Math. Comput. Appl. 2018, 23, 24

and is discussed in detail in the literature [12–14]. The required function T(x,y) depicts a surface in
three-dimensional space. The theory of the “characteristic method” [12–14] for solving Equation (12)
implies that its characteristics are the contour lines of T(x,y) and can be calculated with the ordinary
differential equation:

dy
dx

= B(x, y)/A(x, y) (13)

with A �= 0. The similarity of Equations (11) and (12) is obvious for A = 1:

∂T
∂x

+ B
∂T
∂y

=
∂T
∂x

+ f
∂T
∂y

= 0. (14)

Along the characteristics, the solution variable T is constant. Therefore, they can be interpreted as
isotherms. Equation (14) physically describes the convective transport of the T variable. Equation (12) is
valid for a partial differential equation with two independent variables. If x and y are used, then there is
a time-independent situation in 2D space. If x is used and t instead of y, then there is a time-dependent
situation in 1D space, the latter associates the transport character of Equation (12). A simple transport
equation reads [12]:

∂T
∂t

+ u
∂T
∂x

= 0 (15)

with time t and the convection velocity u = dx/dt. The variable T represents temperature here; it could
also stand for mass, momentum, or energy. In order to demonstrate the particular properties of Fourier
heat conduction (k2 = 0) in a simple example, f = y’ = 1 is substituted in Equation (11) and u = 1 in
Equation (15). Therefore, both equations are formally identical. The location variable y in Equation (11)
corresponds to the time variable t in Equation (15), y and t are interchangeable. By simple integration of
Equation (13), dy/dx = f = 1, the isotherms are represented by the straight lines y = x + C. Figure 3 shows
the corresponding solution for Equations (11) and (15), which was obtained with the FE program
ABAQUS (Dassault Systèmes, Vélizy-Villacoublay, France).

The initial condition for T(t = 0, x0 ≤ x ≤ x1) and T(y = 0, x0 ≤ x ≤ x1) is given by a parabolic
temperature distribution. The orientation of k1 is given by the vector (1, 1) in the entire solution area.
Extreme orthotropy is achieved by zero-setting of k2 whereby k2 is perpendicular to k1.

The isotherms in Figure 3 depict both the general solution for the two-dimensional Equation (11)
in the x-y plane as well as the time-dependent solution for the one-dimensional Equation (15) in the x-t
plane. The isotherms follow the direction field y´ = 1, not only inside the rectangular area but also on
the boundary.

The hypothesis in Section 1 restricts usage to steady state problems. If the FE user investigates the
behavior of the (extreme) orthotropic heat conduction beyond this restriction also in the time domain
(with three independent variables: x, y, t), then the isotherms are no longer parallel to the specified
direction field for finite times. The parabolic start temperature distribution propagates, corresponding
to the thermal diffusivity a = k1/(cρ) with finite velocity (c = specific heat, ρ = density). As can be seen
from Figure 4, the illustratively plotted 0.01·Tmax–isotherms at time t1 < t2 < t3 are not parallel to the
direction field y´ = 1. This only applies for the steady-state case when t→∞.
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Figure 3. The Fourier heat conduction equation with k1/k2→∞ is hyperbolic and has transport character.
The diagram is valid for the x-y plane as well as for the x-t plane. As an example, the direction field
y´ = f(x,y) = 1 is integrated with the orthotropic heat conduction (k2 = 0).

Figure 4. The steady-state problem from Figure 3 analyzed in the time domain. The isotherms are
parallel to the given direction field y´ = 1 only for the final steady state when t→∞.
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2.3. Temperature Boundary Conditions for Extremely Orthotropic Heat Conduction

The Equations (4) and (7) are solved in FE programs. These are second order and require Dirichlet
or Neumann boundary conditions. Non-specified conditions at the boundary include ∂T/∂n = q = 0

(n = normal vector perpendicular to the boundary). In case of extreme orthotropy when k1 > 0 and
k2 = 0, the latter condition is always fulfilled according to Equation (11) both internally as well as on
the boundary; therefore, in principle, no further conditions need to be specified. However, without
specification of a reference temperature, the FE solution is singular. If a reference temperature Tref
is specified at an arbitrary node, we only obtain the trivial solution T(x,y) = Tref. Therefore, at least
two different temperatures at two different nodes need to be specified in order to obtain a non-trivial
solution. All temperature boundary conditions, which are specified at two or more nodes, provide
isotherms that are tangential to the given direction field y´ = f(x,y). The difference between a two-node
and a multiple-node boundary condition manifests itself through different weightings with respect
to the location of the isotherms. In order to obtain appropriate solutions, the direction field must be
viewed in connection with the physical task, see Figure 5. This figure shows a disc (half-model) with
an elliptical hole under pure bending.

Figure 5. FRP disc with hole under bending: (a) Linearly increasing temperature boundary conditions
for σ1 and σ2 trajectories yield a uniform distribution of fibers (isotherms); (b) parabolic temperature
boundary conditions yield a weighted distribution of fibers, which carries a bending moment
more effectively.

From a practical point of view, FRP constructions should have a uniform fiber placement. This is
achieved with an orthotropic heat conduction analysis, specifying a linear temperature distribution
for y > 0 along the right boundary (Figure 5a). The isotherms, as representatives of the σ1 trajectories,
are then distributed equidistantly. For y < 0, T = 0 is defined. The σ2 trajectories are calculated in
a further orthotropic heat conduction analysis. These require a linear temperature distribution for
y < 0 and T = 0 for y > 0. Both isotherm images are superimposed and result in the two fiber layers
in Figure 5a.

Should the objective be concentrated on load-related fiber placement, then a linear weighted
distribution of isotherms is achieved by defining a parabolic temperature distribution for y > 0
(σ1 trajectories) and y < 0 (σ2 trajectories) along the right boundary; see Figure 5b.
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The two-node temperature boundary condition is likewise possible. For example, to determine
the σ1 trajectories, specification of T(L,h/2) = Tmax and T(L,0) = 0 provides similar results, though the
isotherms are not distributed equidistantly on the right boundary; see also Section 3.1.

In Section 2.1 it was shown that in cases of extreme orthotropy (k1 > 0, k2 = 0), the differential
Equation (7) of the second order and the Fourier heat conduction Equation (11) of the first order
physically describe the same situation. In Section 2.2, it was shown that the Fourier heat conduction
Equation (11) can be traced back to the general linear differential Equation (12). The integration of the
corresponding characteristic Equation (13) provides characteristics identical to the isotherms in the
Fourier heat conduction Equation (11). The theory of the characteristics also includes the treatment of
boundary conditions [14], the rules of which can be applied completely to the Fourier heat conduction
Equation (14). Figure 6 shows the most important rule.

Figure 6. The solution curves T(x,y) of the direction field y´ = f(x,y) are simultaneously the characteristics
of the Fourier heat conduction Equation (11). The specification of arbitrary boundary conditions along
P2P3 is not permitted since this curve is a characteristic or isoline (y = const.).

According to this, Equation (12) is integrated through the specification of the solution variables
T along a curve Γ. However, only the specification on the P1P2 curve is permitted. Since a solution
variable is constant on a characteristic, arbitrary specifications along P2P3 are not permitted. Furthermore,
arbitrary specifications along P3P4 lead to contradictory definitions with the specifications along P1P2.
The curve Γ must not necessarily lie on the exterior boundary, but can also cross the integration area.

3. Procedure and Application Examples

The direction field y´ = f(x,y) to be integrated very often originates from FE analysis in the form of
PS directions. The procedure for their integration shall be determined with the help of some rules:

1. Calculation of the PS directions in all elements (disc, plate, or shell). If this is not provided by
the respective FE program used, they can be calculated via the stress components [σxx σyy σxy].
For example, y´ = dy/dx = tanα = σxy/(σxx − σ2); see also Figure 2c. Plates and shells have
variable stresses across the thicknesses. The direction field therefore must be evaluated for every
“thickness integration point”.

2. Replacement of the structural elements with thermal elements.
3. Transmission of the PS directions (Step 1) to local systems, depending on the FE program used,

(ABAQUS: *Orientation).
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4. Assignment of orthotropic thermal conductivities k1 and k2 in these local systems with extreme
ratios, e.g., k1/k2 > 104. (k2 = 0 is permitted in ABAQUS.)

5. Definition of thermal boundary conditions according to Section 2.3.
6. The ratios k1/k2 > 104 and k2/k1 > 104 provide the PS trajectories for the first and for the second

principal stress, respectively.

It should be emphasized that the integration of the PS directions for the calculation of the real
fiber course is a separate task, independent of the structural analysis. The PS direction field of the
structural calculation is adopted as material orientation for the thermal conductivities in the thermal
analysis. The boundary conditions are independent in both analyses and have nothing in common
with each other.

3.1. Influence of the Orthotropy Ratio k1/k2 on the Integration Accuracy

The influence of the orthotropy ratio k1/k2 on the integration accuracy is demonstrated by the
following example. Figure 7 shows a perforated disc under axial tension. Due to symmetry, a quarter
model is sufficient (Ux = 0, Uy = 0). The supplementary material accompanying this paper includes the
ABAQUS input for this example.

Figure 7. Perforated disc under axial tension and calculation of the PS lines (isotherms) dependent on
heat conduction orthotropy k1/k2, where the orientation of k1 and k2 corresponds to the PS directions
σ1 and σ2: (a) k1/k2 = 1; (b) k1/k2 = 16; (c) k1/k2 = 128; (d) k1/k2 = 4096; (e) algebraic signs of the two
principal stresses; this point is addressed in Section 3.4.

The task is to place the fibers in the direction of the largest principal stress for an FRP construction.
The PS directions portray the direction field y´ = f(x,y), which shall be integrated. The elements of the
mechanical model are replaced with heat conduction elements whose heat conduction k1 is oriented
parallel to the previously calculated PS directions of σ1. The k2 direction is orthogonal to k1. Now the
ratio k1/k2 is successively increased, thus the isotherms get more and more tangential to the PS direction
of σ1. The influence of the two-node temperature boundary condition at points P2 and P3 (Figure 7d)
on the course of isotherms is no longer perceptible for k1/k2 > 104. Under such simple boundary
conditions, it must be ensured that their positions are meaningful. If both temperatures are determined
at points P1 and P2, then, practically, two different temperatures are defined on one isotherm.
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The relatively uniform distribution of the PS trajectories is remarkable, although only a very
simple temperature boundary condition was selected. Should the desired outcome be a distribution of
isotherms exactly equidistant between P2 and P3, the temperature along this line must be specified as
linearly increasing. Since the isotherms represent the fiber course, the constant line load along P3P2
is uniformly carried by the fibers. The maximum load in the perforated disc at points A and B in
Figure 7e is approximately three times the applied tension, which is well reflected by the fiber course.

At this point, the transport character of the Fourier heat conduction equation in Figure 7d
and Equations (14) and (15) shall be emphasized again. The specification of a linear temperature
distribution on the boundary P3P2 is transported along its characteristics without diffusion effects,
and these characteristics follow the user defined direction field y´ = f(x,y).

3.2. The Influence of Singularities on the Course of the Isotherms

In cases of stress singularities, the following distinctions are made: An isotropic (or neutral)
point with an undefined PS direction occurs if the two principal stresses σ1 and σ2 are identical.
If both principal stresses are zero, then a classic singularity is present. Points with concentrated
loads are neither one nor the other. Their isoclines are particularly concentrated at the point of force
transmission. What does the course of stress trajectories (represented by isotherms) look like in the
vicinity of these points? This can be studied using an example of a circular ring under diametrically
opposed single forces. Figure 8a shows the course of the isoclines and stress trajectories that were
determined photoelastically by Frocht [15].

Figure 8. Circular ring under diametrically opposed single forces, r2/r1 = 2: (a) Photoelastic isoclines
(left) and trajectories (right) [15]; (b) Verification with ABAQUS, isoclines (left), σ1 trajectories and σ2

trajectories (right).

The experimental results were verified through an FE stress analysis (ABAQUS) followed by an
orthotropic heat conduction analysis in order to determine the trajectories, as shown in Figure 8b.
Modeling a quarter of the disc is sufficient due to the symmetry. The stress calculation provides the PS
directions. In the subsequent heat conduction calculation, these PS directions serve as local systems
for the thermal conductivities k1 and k2. Two of these systems are illustratively plotted in the fourth
quadrant of Figure 8b. The system k1 = 1, k2 = 0 provides the isotherms as σ1 trajectories. With k1 = 0,
k2 = 1, the σ2 trajectories are determined. The calculation of the isoclines is helpful in order to localize
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the singular points A, D, E, H, and K (Figure 8b, left). The isoclines result from Equation (16), i.e.,
the contour lines of the stress expression on the right side must be visualized; see also Figure 2c.

y′ = f (x, y) = tan α =
σxy

σxx − σ2
= const. (16)

In the trajectories image (right), the singular points appear with the designations B, C, F,
G, and L, and are either of the “non-interlocking” type (B, C, F, G) or “interlocking” type (L).
This evaluation is useful since a uniform distribution of the isotherms (fibers) is desirable, which is
only achievable with knowledge of the singularities. This is shown in Figure 9a for the σ2 trajectories
(with σ2 < σ1). A uniform distribution is achieved through a linearly increasing temperature along RF,
with continuation along JL.

Figure 9. Circular ring analogous to Figure 8: (a) Determination of the σ2 trajectory through
specification of a linearly increasing temperature along RF and JL; (b) Simplified analysis with a
two-node temperature boundary condition; T0 and TL for the σ1 trajectories, T0 and TL for the
σ2 trajectories.

Specifying a linear increase in temperature from R to J is incorrect since the σ2 trajectory along RF
turns into the σ1 trajectory at point F along FJ. The FJ boundary segment itself is an isotherm and no
variable temperature specification is allowed there.

The existence of a singular point on a load-free boundary of a 2D structure always results in this
change of trajectories. This property is responsible for the fact that efforts need to be made regarding
the specification of suitable temperature boundary conditions in order to obtain uniformly distributed
isotherms. Should the temperature be defined only along RF, then only a part of the structure will
show isotherms. A further boundary segment with temperature boundary conditions must then be
applied in order to capture the rest of the structure. In Figure 9a, this is segment JL. The procedure is
the same when looking for σ1 trajectories. The temperature is defined as linearly increasing along PB
with continuation along LN.

The aim of calculating strictly uniformly distributed isotherms (trajectories) can only be achieved
locally. Figure 9a shows uniformly distributed σ1 trajectories along PB; however, these end up unevenly
distributed on the PR boundary.

On the perforated disc (Figure 7), the trajectory change mentioned above does not occur
along the right boundary of P2P3. This boundary is free from singularities. The specification of
two temperatures at points P2 and P3 is sufficient. We can generally use this simple two-node
boundary condition (Section 2.3) for all 2D discs and 3D shells and get—depending on the number
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of singularities—correspondingly weighted isotherm distributions. Figure 9b shows this simple
procedure for the circular ring with its singularities. The isotherms shown there are less uniformly
distributed than in Figure 9a, but this is adequate for a first overview.

The circular ring problem (Figure 8) contains the most important forms of singularities: Isotropic
points of the “interlocking” and “non-interlocking” type, as well as concentrated point loads. Errors in
representation of isotherms are inevitable since they do not fulfil y´ = f(x,y) in the near vicinity of the
singularity. In fact, the isotherms in close proximity there evade in a sideways direction depending on
the model mesh size. The model in Figure 8b, in comparison to Figure 8a, is clearly fine enough to
minimize this error. The element size is virtually the same all over; 60 elements were used (with four
nodes respectively) along JN. Through further mesh refinement in the area of singularities, the error
can be kept arbitrary small.

3.3. The Principal Stress Trajectories in Shell Structures

A conventional method for the calculation of principal stress trajectories in a shell was shown in
Figure 1. Disadvantages resulted from the uneven fiber placement, which originates from the separate
calculation of each individual fiber. In integrating the direction field, it is not practically possible to
select optimal start positions (start elements) beforehand.

In contrast to this is the method of integration by means of an orthotropic heat conduction
calculation. Even with a two-node temperature boundary condition with Q0: T = 0 ◦C, Q1: T = 1 ◦C in
Figure 10a, a better fiber distribution can be attained than is depicted in Figure 1a. This temperature
distribution, shown in Figure 10a, provides the approximate position of three local temperature
extremes at the positions P0, P1 and P2.

Figure 10. Shell structure analogous to Figure 1: (a) Isotherms with a two-node temperature boundary
condition at Q0 and Q1; (b) Isotherms with a three-node temperature boundary condition at P0, P1, P2,
right: Temperature field for extraction of any number of isotherms (fibers).

By repeating the heat conduction analysis with a three-node temperature boundary condition
(P0: T = 0 ◦C, P1: T = 1 ◦C, P2: T = 2 ◦C, Figure 10b), the uniformity of the isotherms is improved.
A specification of the linear varying temperatures along boundary segments analogous to the previous
section would yield further improvement. However, in light of the result in Figure 10b, it does not
appear to be crucial.
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The right half of Figure 8b highlights another aspect: The continuous temperature field is infinitely
dense with respect to the isotherms, so an arbitrary number of contours can be visualized, avoiding
calculation of trajectories one after another (Figure 1).

3.4. Optimization of Fiber Placement in FRP Constructions

In order to demonstrate a useful application beyond the visualization of tensor lines, the fiber
placement in FRP constructions is highlighted. Fiber courses, which follow local PS directions, use the
superior stiffness and strength properties of the fibers. In plane stress structures the fiber courses
due to σ1 and σ2 are perpendicular to each other, forming a curvilinear cross-ply (CCP) laminate.
With regard to optimality, attention must be paid to the algebraic signs of principal stresses.

Fiber placement in the direction of principal stresses is optimal according to net theory [16],
and this is also valid for CCP-laminates if ignoring the support of the matrix. To be on the safe side,
the carrying capacity of the construction can be calculated by using a fiber failure criterion. A design
based on an inter-fiber failure must additionally take into account the contribution of the matrix.
In this case CCP-laminates are optimal only in areas with principal stresses showing different algebraic
signs. However, if the algebraic signs are the same, then the curvilinear balanced angle-ply (CBAP)
laminate is the better choice according to classical lamination theory [17]. This design differs from the
(right-angled) CCP-laminate through a correction angle ±β regarding the σ1 direction. The direction
field y´ for the largest principal stress σ1 is then represented by two direction fields: y´ + β and y´ − β,
as shown in Figure 11.

Figure 11. Perforated disc (detail) similar to Figure 7e. In areas with the same principal stress algebraic
sign, the CBAP-laminate is optimal: (a) Correction angle ±ß regarding the σ1 direction; (b) Integration
of the modified direction field.

For example, the perforated disc (Figure 7e) contains the areas σ1·σ2 < 0 (CCP-laminate is optimal)
and σ1·σ2 > 0 (CBAP-laminate is optimal). In the latter case the modified direction fields can also be
integrated without restriction by means of the orthotropic heat conduction analysis. The correction
angle β is dependent on the material and the principal stress ratio σ1/σ2 [17]. It should be noted that
the orthotropic heat conduction is suitable for the integration of arbitrary direction fields even if they
are modified for reasons determined by the engineer. Reference is made to Moldenhauer [1] (pp. 54–60]
and [18] for further details and consideration of particular aspects of load-related optimization (layer
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thickness distribution, loading condition range, and nonlinearity of stress distribution over the shell
thickness).

4. Discussion and Conclusions

The method presented in this paper is suitable for integrating arbitrary vectorial and tensorial 2D
direction fields by means of commercial FE programs, provided that the FE programs have options for
the analysis of orthotropic heat conduction. The calculated isotherms represent the integral curves
of these direction fields inside and on the edge of the 2D structure (disc or shell). The procedure is
based on some rules (Section 3), which concern only the standard input of the FE program. Additional
programming is not required. Two temperatures at two different positions shall be specified as
a minimum for thermal boundary conditions. The isotherms arising from this can still run in a
non-uniform way. Uniformity is achieved while linearly varying temperatures along a boundary
segment are specified (Figure 5a). Should the direction field or the differential equation y´ = f(x,y)
exhibit singularities on the boundary, then the definition of the boundary conditions must be carefully
adjusted (Figure 9). In this case, a preliminary visualization of the isoclines, Equation (16), and/or an
analysis with the two-node temperature boundary condition is helpful. The precision of the integration
depends on the element size of the FE model.

In comparison with the traditional integration methods, significant improvements arise with the
new procedure:

• The integration of the direction fields can take place with standard FE programs with options for
an orthotropic heat conduction analysis. No additional programming is necessary.

• Any number of isotherms can be extracted from the integrated continuous temperature field.
• Quick and accurate results are obtained with a simple two-node temperature boundary condition;

however, the distribution of isotherms may be non-uniform if singular points are present in the
direction field.

• As the computed temperature field is continuous, valuable additional information can be extracted
from this field. For example, the density of the isotherms (tensor lines) can be computed by
displaying the temperature gradients, see [1] (p. 96).

• Applying the proposed integration method to stress tensors it should be noted that principal
stress direction fields can originate from linear or nonlinear analyses, see [1] (p. 74). If principal
shear stress (or strain) directions are evaluated in the plastic range then the trajectories can be
regarded as slip-lines, see [1] (pp. 41–44).

• Civil engineering: Aligning reinforcement in concrete structures parallel to PS directions is a
meaningful tool to effectively increase the low tension strength of concrete, see also [1] (p. 78).

Mathematical aspects were the focus of this paper. An important application seems to be on FRP
constructions. Aligning fiber courses along PS lines make the most of the superior stiffness and strength
properties of fibers. Calculation of these fiber courses by integrating the PS directions followed by the
evaluation of this optimized FRP design can be done with one and the same FE program. To evaluate
and optimize an FRP construction based on PS lines, some practical aspects should be highlighted.

As with all FRP problems, the optimization success is greatest when a special load case is
investigated. In reality, loads and boundary conditions change frequently, and the principal stress
directions change accordingly. However, the associated degradation of the optimization method affects
alternative optimization strategies as well. If one load case dominates other load cases, the optimization
effort can be worthwhile nevertheless. A CCP- or CBAP-laminate can be combined with textile preforms
and can be stitched onto standard laminates. This technique is known as tailored fiber placement
(TFP). The layer with the fiber course aligned to the trajectories covers the critical load case, and the
standard laminate the other load cases. In 2D, the TFP stitching technique has been used for a long
time [10]. In 3D, textile preforming or tape laying are possible options.
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The effort for the proposed method appears to be very high in the case of plates and shells,
since the PS directions for superimposed membrane and bending stress vary across the thickness.
The integration of the stress components [σxx σyy σxy] over the thickness produces normal forces
N = [Nxx Nyy Nxy] and bending moments M = [Mxx Myy Mxy]. FE programs generally provide these
section forces and moments N and M, which are both constant across the thickness. Their principal
directions (1,2) can be computed in analogy to Equation (16), i.e., y1´ = Nxy/(Nxx − N2), y2´ = −1/y1´.
It makes sense to arrange the M-layers on the inside and outside and the N-layers in the middle of the
shell. Symmetric layers are then obtained with [M1/M2/N1/N2]S, see also [1] (pp. 64–73).

When evaluating a TFP laminate, one is faced with the variable fiber volume fraction due to
the diverging and converging streamline nature of the fiber course. The fiber volume fraction is
an important input quantity to define laminate stiffness with dependence on local fiber volume
and local fiber orientation. The gradient of the temperature field is a measure for the local fiber
volume. Displaying the gradient of the temperature field is identical to displaying the isotropic heat
flux, q = k·grad(T) with k = k1 = k2. For extreme orthotropy (k1/k2→∞) we have an orthotropic heat
flux, which is zero everywhere, see Equation (11). If the temperature field is based on isotropic
conduction with constant k, then the isotropic heat flux is the correct gradient. For this reason, the
nodal temperatures from the orthotropic analysis must be used as prescribed nodal temperatures in an
additional thermal run. More details can be found in [1] (p. 96).

Provided that the course of the isotherms (trajectories) shall be used for fiber placement in FRP
constructions, the visualized isotherms must be converted into polylines with x-, y-, and z-coordinates.
TECPLOT (Bellevue, WA, USA) is suitable as a commercial solution for this. Alternatively, a Fortran
program can be used, for which the source code is contained in DeVries [19].

Supplementary Materials: The following are available online at http://www.mdpi.com/2297-8747/23/2/24/s1.
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