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Sensors are one of the key factors in the success of the Internet of Things (IoT); however,
these sensors are not conventional types that simply convert physical variables into electrical signals.
They have substantially evolved into something more complex and sophisticated and perform a
technically and economically viable role in most IoT applications. Sensors have traditionally been
functionally simple devices that convert physical variables into electrical signals or create changes in
electrical properties. While this functionality is a crucial starting point, sensors have extra functionalities
such as very low power consumption, self-identification and self-verification, and they are wireless
and physically small enough to “disappear” unobtrusively into any environment. In addition,
information from multiple sensors can be combined and correlated to make conclusions about latent
problems, for example, temperature sensor and vibration sensor data can be used to detect the onset
of mechanical failure. In some cases, multiple sensor functions are available in one device, in others,
the functions are combined in software to create a “soft” sensor. It has become evident that sensor
intelligence, apart from facilitating connectivity, also has many other benefits including predictive
maintenance, more flexible manufacturing, and improved productivity.

This is the third in a series of Special Issues dedicated to Sensor Signal and Information
Processing (SSIP) [1]. The first two series of SSIP were published in 2018 and 2019, respectively [2–4].
SSIP has become an overarching field of research that is focused on the mathematical foundations
and practical applications of signal processing algorithms that learn, reason, and act. It bridges the
boundary between theory and application to develop novel, theoretically-inspired methodologies
that target both longstanding and emergent signal processing applications. The core of SSIP lies
in its use of nonlinear and non-Gaussian signal processing methodologies combined with convex
and nonconvex optimization. SSIP encompasses new theoretical frameworks for statistical signal
processing (e.g., deep learning, latent component analysis, tensor factorization, and Bayesian methods)
coupled with information theoretical learning, and novel developments in these areas are specialized
in the processing of a variety of signal modalities including audio, bio-signals, multi-physics signals,
images, multispectral and video, among others. In recent years, many signal processing algorithms
have incorporated some forms of computational intelligence as part of their core framework in problem
solving. These algorithms have the capacity to generalize and discover knowledge for themselves and
to learn new information whenever unseen data are captured. The focus of this Special Issue is on a
broad range of sensors, signal and information processing involving the introduction and development
of new advanced theoretical and practical algorithms. It includes twenty works focused on sensor
signal and information processing based on diverse technologies for different applications.

Permutation entropy (PE) is a powerful complexity measure for analyzing time series and it has
the advantage of easy implementation and high efficiency. In order to improve the performance of
PE, Li et al. [5] have recently proposed improved methods by introducing amplitude information and
distance information. Weighted-permutation entropy (W-PE) uses variance information to weight
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each arrangement pattern, which has good robustness and stability in the case of high noise level
and can extract complexity information from data with spike features or abrupt amplitude changes.
Dispersion entropy (DE) introduces amplitude information by using the normal cumulative distribution
function. It is not only able to detect the change of simultaneous frequency and amplitude, but also is
superior to the PE method in distinguishing different data sets. Reverse permutation entropy (RPE)
is defined as the distance to white noise in the opposite trend to PE and W-PE, and it has high stability
for time series with varying lengths. To further improve the performance of PE, the authors have
proposed a new complexity measure known as reverse dispersion entropy (RDE), which takes PE as its
theoretical basis and combines the advantages of DE and RPE by introducing amplitude information
and distance information.

Along the same line of time series research, Parathai et al. [6] have proposed a solution based
on complex non-negative matrix factorization (CMF) for events classification from a noisy mixture.
It encodes the spectra pattern and estimates the phase of the original signals in the time-frequency
representation through an adaptive L1 sparsity CMF algorithm. The features enhance the efficiency
of the temporal decomposition process. The support vector machine-based one-versus-one strategy
was applied with a mean supervector to categorize the demixed sound into the matching sound-event
class. The rapid development of sensor technology has given rise to the emergence of huge amounts of
tensor data. For various reasons, such as sensor failures and communication loss, the tensor data may
be corrupted by both small noises and gross corruptions. Fang et al. [7] have studied the Stable Tensor
Principal Component Pursuit (STPCP), which aims to recover a tensor from its corrupted observations.
The proposed model is based on the tubal nuclear norm, which has shown superior performance in
comparison with other tensor nuclear norms. It is shown theoretically that the underlying tensor and
the sparse corruption tensor can be stably recovered under tensor incoherence conditions.

Indoor positioning using Wi-Fi signals is an economic technique. Its main drawback is that
multipath propagation distorts these signals, thus leading to inaccurate localization. One approach to
improve the positioning accuracy consists of using fingerprints based on channel state information (CSI).
Wang et al. [8] have proposed a new positioning method that consists of three stages. In the first stage,
a model is built for the fingerprints of the environment. This model obtains a precise interpolation
of fingerprints at positions where a fingerprint measurement is not available. In the second stage,
the model is then used to obtain a preliminary position estimate based only on the fingerprint measured
at the receiver’s location. Finally, the preliminary estimation with the dynamical model of the receiver’s
motion are used to obtain the final estimation. The obtained experimental results from the proposed
method show that it has a promising future.

The automatic sleep stage classification technique can facilitate the diagnosis of sleep disorders
and free medical experts from labor-consuming work. Shen et al. [9] have proposed an improved
model-based essence features that combines locality energy and dual state space models for
automatic sleep stage detection on single-channel electroencephalograph signals. The experimental
results have shown high classification accuracy compared with state-of-the-art methods. Similarly,
motor imagery (MI)-based brain-computer interface (BCI) systems detect electrical brain activity
patterns through electroencephalogram signals to forecast user intention while performing movement
imagination tasks. As the microscopic details of individuals’ brains are directly shaped by their
rich experiences, musicians can develop certain neurological characteristics, such as improved brain
plasticity following extensive musical training. Riquelme-Ros et al. [10] have developed a new
approach to assess the performance of pianists as they interacted with an MI-based BCI system and
compared it with that of a control group. The outcome indicates that musical training could enhance
the performance of individuals using BCI systems.

In image processing, the recognition of scene changes plays an essential role in a variety of
real-world applications, such as scene anomaly detection. Most scene understanding research
has focused on static scenes and most existing scene change captioning methods detect scene
changes from single-view color images, neglecting the underlying three-dimensional structures.
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Previous three-dimensional scene change captioning methods have used simulated scenes consisting
of geometry primitives, making them unsuitable for real-world applications. To solve these problems,
Qiu et al. [11] have proposed an end-to-end framework for describing scene changes from various
input modalities, namely, RGB images, depth images, and point cloud data, which are available in
most robot applications. In a similar development, Kim and Kudo [12] have proposed a new class
of nonlocal Total Variation (TV), in which the first derivative and the second derivative are mixed.
Since most existing TV only considers the first-order derivative, it suffers from problems such as
staircase artifacts and loss in smooth intensity changes for textures and low-contrast objects, which is
a major limitation in improving image quality. The proposed nonlocal TV combines the first and
second order derivatives to effectively preserve smooth intensity changes. The non-rigid multi-modal
3D medical image registration is highly challenging due to the difficulty in constructing a similarity
measure and the solution of non-rigid transformation parameters. Yang et al. [13] have proposed a novel
structural representation-based registration method to address these problems. Firstly, an improved
modality independent neighborhood descriptor (MIND) based on the foveated nonlocal self-similarity
is designed for effective structural representations. Subsequently, the foveated MIND-based spatial
constraint is introduced into the Markov random field (MRF) optimization to reduce the number of
transformation parameters and restrict the calculation of the energy function in the image region
involving non-rigid deformation. Finally, the accurate and efficient 3D medical image registration
is realized by minimizing the similarity measure-based MRF energy function. Experiments on real
magnetic resonance and ultrasound images with unknown deformation were also done to demonstrate
the practicality and superiority of the method.

Deformable image registration is still a challenge when the considered images have strong
variations in appearance and large initial misalignment. A huge performance gap currently remains for
fast-moving regions in videos or strong deformations of natural objects. Ha et al. [14] have combined a
U-Net architecture that is weakly supervised with segmentation information to extract semantically
meaningful features with multiple stages of non-rigid spatial transformer networks parameterized
with low-dimensional B-spline deformations. The models are compact, very fast in inference,
and demonstrate clear potential for a variety of challenging tracking and/or alignment tasks in
computer vision and medical image analysis. Compressive sensing (CS) spectroscopy is well known
for developing a compact spectrometer that consists of two parts: compressively measuring an input
spectrum and recovering the spectrum using reconstruction techniques. Kim et al. [15] have proposed
a residual convolutional neural network for reconstructing the spectrum from the compressed
measurements. The proposed network comprises learnable layers and a residual connection between
the input and the output of these learnable layers. The proposed network has produced stable
reconstructions under noisy conditions.

Although deep learning has achieved great success in many applications, its usage in
communication systems has not been well explored. Zha et al. [16] investigated algorithms for
multi-signal detection and modulation classification, which are significant in many communication
systems. In their work, a deep learning framework for multi-signal detection and modulation
recognition is proposed. Compared to some existing methods, the signal modulation format,
center frequency, and start-stop time can be obtained from the proposed deep learning scheme.
The control effect of various intelligent terminals is affected by the data sensing precision. Usually,
the filtering method is based on the typical soft computing method used to promote the sensing level.
Bai et al. [17] have proposed a neuron-based Kalman filter to overcome limitations due to the difficult
recognition of the practical system and the empirical parameter estimation in the traditional Kalman
filter. The neuro units optimize the filtering process to reduce the effect of the unpractical system model
and hypothetical parameters. It is shown that the neuro-filter is effective in noise elimination within the
soft computing solution. IoT systems generate a large volume of data all the time. How to choose and
transfer which data are essential for decision-making is a challenge. This is especially important for
low-cost and low-power designs where data volume and frequency are constrained by the protocols.
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Tsapparellas et al. [18] have presented an unsupervised learning approach using Laplacian scores to
discover which types of sensors can be reduced without compromising the decision-making. Here,
a type of sensor is a feature. A comparative study has shown that when fewer types of sensors are
used; the accuracy of the decision-making remains at a satisfactory level.

In defect detection, the surface quality of aluminum ingot is crucial for subsequent products,
so it is necessary to adaptively detect different types of defects on the surface of milled aluminum
ingots. Liang et al. [19] have proposed a two-stage detection to quickly apply the calculations to
a real production line. A mask gradient response-based threshold segmentation is developed to
extract the target defects. An inception-v3 network with a data augmentation technology and the
focal loss is further proposed to overcome the class imbalance problem and improve the classification
accuracy. The gearbox is one of the most fragile parts of a wind turbine. Yin et al. [20] have developed
a fault diagnosis method for wind turbine gearboxes based on optimized long short-term memory
neural networks with cosine loss (Cos-LSTM). The loss is converted from Euclid space to angular
space by cosine loss, thus eliminating the effect of signal strength and improving the diagnosis
accuracy. The energy sequence features and the wavelet energy entropy of the vibration signals are
used to evaluate the Cos-LSTM networks. The effectiveness of the method is verified with the fault
vibration data collected on a gearbox fault diagnosis experimental platform. To suppress noise in
signals, a denoising method on the basis of the singular value decomposition (SVD) and the Akaike
information criterion (AIC) is proposed in [21], which is called AIC-SVD. To verify the effectiveness
of AIC-SVD, it is compared with wavelet threshold denoising and empirical mode decomposition
with a Savitzky–Golay filter. The proposed method is self-adaptable and robust while avoiding the
occurrence of over-denoising.

In wireless communication, a frequency-hopping (FH)-based dual-function multiple-input
multiple-output (MIMO) radar communications system enables simultaneous implementation of a
primary radar operation and a secondary communication function. The set of transmit waveforms
employed to perform the MIMO radar task is generated using FH codes. However, as the radar
channel is time-variant, it is necessary for a successive waveform optimization scheme to continually
obtain target feature information. Yao et al. [22] have developed a method to enhance target detection
and feature estimation performance by maximizing the mutual information (MI) between the target
response and the target returns, and then minimizing the MI between successive target-scattering
signals. Chen et al. [23] propose a geometric calibration method using sparse recovery to remove
the linear array push-broom sensor bias. By using the sparse recovery method, the number and
distribution of ground control points needed are greatly reduced. Meanwhile, the proposed method
effectively removes short-period errors by recognizing periodic wavy patterns in the first step of the
process. Finally, Sun et al. [24] have proposed a blind modulation classification method based on
compressed sensing using a high-order cumulant and cyclic spectrum combined with the decision
tree-support vector machine classifier. The proposed method solves the problem of low identification
accuracy under single-feature parameters and reduces the performance requirements of the sampling
system. Through calculating the fourth-order, eighth-order cumulant and cyclic spectrum feature
parameters by breaking through the traditional Nyquist sampling law in the compressed sensing
framework, six different cognitive radio signals are effectively classified. The results indicate that
accurate and effective modulation classification can be achieved, and this provides a theoretical basis
and technical advance for the field of optical-fiber signal detection.

Funding: This research received no external funding.
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Abstract: Permutation entropy (PE), as one of the powerful complexity measures for analyzing
time series, has advantages of easy implementation and high efficiency. In order to improve the
performance of PE, some improved PE methods have been proposed through introducing amplitude
information and distance information in recent years. Weighted-permutation entropy (W-PE) weight
each arrangement pattern by using variance information, which has good robustness and stability in
the case of high noise level and can extract complexity information from data with spike feature or
abrupt amplitude change. Dispersion entropy (DE) introduces amplitude information by using the
normal cumulative distribution function (NCDF); it not only can detect the change of simultaneous
frequency and amplitude, but also is superior to the PE method in distinguishing different data sets.
Reverse permutation entropy (RPE) is defined as the distance to white noise in the opposite trend
with PE and W-PE, which has high stability for time series with varying lengths. To further improve
the performance of PE, we propose a new complexity measure for analyzing time series, and term it as
reverse dispersion entropy (RDE). RDE takes PE as its theoretical basis and combines the advantages of
DE and RPE by introducing amplitude information and distance information. Simulation experiments
were carried out on simulated and sensor signals, including mutation signal detection under different
parameters, noise robustness testing, stability testing under different signal-to-noise ratios (SNRs),
and distinguishing real data for different kinds of ships and faults. The experimental results show,
compared with PE, W-PE, RPE, and DE, that RDE has better performance in detecting abrupt signal
and noise robustness testing, and has better stability for simulated and sensor signal. Moreover,
it also shows higher distinguishing ability than the other four kinds of PE for sensor signals.

Keywords: permutation entropy (PE); weighted-permutation entropy (W-PE); reverse permutation
entropy (RPE); reverse dispersion entropy (RDE); time series analysis; complexity; sensor signal

1. Introduction

Due to the continuous development of measurement technology and the constant updating of
high sensitivity sensor equipment, the accuracy of measured time series is greatly improved, which is
conducive to the further analysis and processing of time series [1,2]. The complexity of time series is
one of the most important means to represent the characteristics of time series. Entropy, as an effective
complexity measure of time series, has been widely developed and used in different fields. Classic
examples include permutation entropy (PE) [3], sample entropy (SE) [4], approximate entropy (AE) [5],
fuzzy entropy (FE) [6], and multi-scale ones. However, among these different kinds of entropy, PE has
successfully attracted attention from academics and practitioners by virtue of its own advantages.

In 2002, PE was first suggested in a scientific article by Bandt and Pompe [7]. As a complexity
measure, PE introduced arrangement into time series, and determined each arrangement pattern
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according to the neighboring values. PE has the characteristics of easy implementation and high
computation efficiency. With its own advantages, PE has been widely used in different fields, including
the medical field [8], mechanical engineering field [9,10], economic field [11,12], and underwater
acoustic field [13,14]. Aiming at weaknesses of PE, many revised PE methods have been proposed to
improve the performance of traditional PE.

In 2013, Fadlallah et al. brought forward weighted-permutation entropy (W-PE) and first applied it
to electroencephalogram signal processing [15]. In order to solve the limitation of PE, W-PE introduced
amplitude information to weight each arrangement pattern by using variance information. Compared
with PE, W-PE responds better to the sudden change of amplitude, in addition, it has better robustness
and stability than PE at low signal-to-noise ratio (SNR). As an improvement of PE, W-PE has important
influence and status in different fields [16–18]. For example, W-PE can show a better performance than
PE in distinguishing Alzheimer’s disease patients from normal controls [19].

In 2016, Rostaghi and Azami proposed dispersion entropy (DE) to quantify the complexity of
time series and first applied it to electroencephalograms and bearing fault diagnosis database [20].
Unlike W-PE, DE introduced amplitude information to map the original signal to the dispersion signal
by using the normal cumulative distribution function (NCDF). Compared with PE, DE has a better
ability to detect the change of simultaneous frequency and amplitude, and also has a better ability
to distinguish different datasets and requires less computation time. In [21], PE, AE, and DE were
compared, the results suggest that DE leads to more stable results in describing the state of rotating
machinery, and it is more suitable for real-time applications.

In 2017, reverse PE (RPE) was put forward by Bandt and employed to identify different sleep
stages by using electroencephalogram data [22]. Since RPE is defined as the distance from white
noise, it has the opposite trend with PE, W-PE, and DE. In [23,24], RPE was used for feature extraction
of underwater acoustic signals, compared with PE, RPE has more stable performance and a higher
classification recognition rate.

To improve the performance of PE and integrate the advantages of DE and RPE, we propose a
new complexity measure for analyzing time series in this paper, and term reverse dispersion entropy
(RDE) through introducing amplitude information of DE and distance information of RPE. In the next
section, RDE is described in detail through comparison with PE, W-PE, RPE, and DE. In Sections 3
and 4, simulation experiments are carried out to further compare and analyze five kinds of PE. Finally,
we summarize the total research work in Section 5.

2. Reverse Dispersion Entropy

RDE, as a new complexity measure for analyzing time series, takes PE as its theoretical basis
and combines the advantages of DE and RPE. The flow chart of PE and RDE are shown in Figure 1.
As shown in Figure 1, all steps of PE and RDE are different except for phase space reconstruction.

Figure 1. The flow chart of permutation entropy (PE) and reverse dispersion entropy (RDE).

The specific steps of RDE and detailed comparisons with the other four entropies are as
follows [7,15,20,22]:

Step 1: mapping time series to c classes.
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(1) Mapping by normal cumulative distribution function (NCDF)
For a time series X =

{
x(i), i = 1, 2, · · · , T

}
with T values, we map X to Y ={

y(i), i = 1, 2, · · · , T
}

by NCDF, where y(i) ranges from 0 to 1.
(2) Mapping by round(c.y(i) + 0.5).
We map Y to Z =

{
z(i), i = 1, 2, · · · , T

}
by using round(c.y(i) + 0.5), where c is the number of

classes and z(i) is a positive integer from 1 to c. There is no difference in this step between DE and RDE.
Step 2: phase space reconstruction.
We reconstruct Z into L. embedding vectors with the time delay τ and embedding dimension m,

respectively. The matrix consisting of all embedding vectors can be represented as follows:⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

{
z(1), z(1 + τ), · · · , z(1 + (m− 1)τ)

}
...

...{
z( j), z( j + τ), · · · , z( j + (m− 1)τ)

}
...

...{
z(L), z(L + τ), · · · , z(L + (m− 1)τ)

}

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(1)

where the number of embedding vectors L is equal to T − (m− 1)τ. There is no difference in this step
between PE, W-PE, RPE, and RDE.

Step 3: mapping each embedding vector to a dispersion pattern.
Since the embedding dimension and the number of classes are m and c, respectively, there exists

cm dispersion patterns, and each embedding vector can be mapped to a dispersion pattern π. For PE
and W-PE, there exist m! arrangement patterns, which is different from DE and RDE. However, there is
also no difference in this step between DE and RDE.

Step 4: calculating the relative frequency of each dispersion pattern.
The relative frequency of i−th dispersion pattern can be expressed as follows:

P(πi) =
Number{πi}

N − (m− 1)τ
(1 ≤ i ≤ cm) (2)

In truth, P(πi) represents the proportion of the number of i−th dispersion patterns to the number
of embedding vectors. The four kinds of entropy are the same in this step.

Step 5: calculating RDE.
Like RPE, RDE is defined as the distance to white noise by combining distance information. It can

be expressed as:

HRDE(X, m, c, τ) =
cm∑

i=1

(
P(πi) − 1

cm

)2
=

cm∑
i=1

P(πi)
2 − 1

cm (3)

when P(πi) = 1/cm, the value of HRDE(X, m, c, τ) is 0 (minimum value). In step 5, the calculation
formulas of PE, W-PE, and DE are the same based on the definition of Shannon entropy, however,
the calculation formula of RDE is the same as that of RPE by combining distance information.

When there is only one dispersion pattern, that is P(πi) = 1, the value of HRDE(X, m, c, τ) is 1− 1
cm

(maximum value). Therefore, the normalized RDE can be expressed as:

HRDE =
HRDE(X, m, c, τ)

1− 1
cm

(4)

Based on the test of simulation signals and real sensor signals, the recommended parameters of
RDE are shown in Table 1. More details about PE, W-PE, DE, and RPE can be found in [7,15,20,22].
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Table 1. The recommended parameters of RDE.

Parameters τ m c T

Values 1 2, 3 4, 5, 6, 7, 8 T > cm

3. Simulations with Synthetic Signals

3.1. Simulation 1

To demonstrate the ability of RDE to detect mutation signals, we carried out a simulation
experiment similar to [15]. The synthetic signals are as follows:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

y = x + s

x =

{
50, (t = 0.498)
0, (t >= 0&t <= 1)

s = randn(t)

(5)

where the synthetic signal y with the sampling frequency of 1 kHz is composed of white Gaussian
noise s and impulse signal x. The time domain waveform of y is shown in Figure 2. Five entropies
are calculated by using a sliding window of 80 samples with 70 overlapped ones. For DE and RDE,
the parameter c is 6. For all five entropies, the embedding dimension and time delay are 2 and 1.
The five entropies of y are shown in Figure 3. Table 2 shows 5 entropies in the windows from 42 to
51. As shown in Figure 3 and Table 2, when the windows contain the impulse signal, the values of
DE and RDE have a significant decrease and increase. For further comparison, the means of the five
entropies and their variation ratios are shown in Table 3. A is the means of 82 windows without an
impulse signal, B is the means of 8 windows with an impulse signal, and the variation ratio is the ratio
of maximum to minimum of A and B. As shown in Table 3, for PE, W-PE, and RPE, A and B are very
close, and the variation ratios are from 1.0002 to 1.04; for DE and RDE, there are obvious differences
between A and B, the variation ratios are obviously greater than 1; DE has a variation ratio of 2.1503,
and RDE has a variation ratio of up to 21.8034. The simulation results show that DE and RDE can
detect mutation signals, and RDE with the highest variation ratio has better performance than the
other four entropies in detecting mutation signals.

Table 2. The 5 entropies in the windows from 42 to 51.

Window 42 43 44 45 46 47 48 49 50 51

PE 0.995 0.993 0.995 0.997 0.995 0.996 0.997 0.998 0.997 0.996
W-PE 0.998 0.999 0.998 1.000 0.999 0.998 1.000 0.998 0.999 0.997
RPE 0.005 0.006 0.005 0.005 0.004 0.005 0.006 0.005 0.005 0.006
DE 0.934 0.432 0.434 0.435 0.436 0.435 0.433 0.434 0.436 0.935

RDE 0.012 0.265 0.257 0.252 0.248 0.252 0.256 0.256 0.255 0.011

Table 3. The means of the five entropies and their variation ratios.

Parameters PE W-PE RPE DE RDE

A (Means of 82 windows) 0.9962 0.9980 0.0052 0.9345 0.0117
B (Means of 8 windows) 0.9964 0.9995 0.0050 0.4346 0.2551
Max(A, B)/Min(A, B) 1.0002 1.0015 1.0400 2.1503 21.8034
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Figure 2. The time domain waveform of y.

Figure 3. The five entropies of y. W-PE: weighted-permutation entropy; RPE: reverse permutation
entropy; DE: dispersion entropy.

3.2. Simulation 2

Based on the recommended parameters range of RDE, we changed the embedding dimension
of simulation 1 to 3. In view of T > cm and the sliding window of 80 samples, c can be set to four.
Like simulation 1, simulation 2 was carried out with different parameters from simulation 1. The five
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entropies of y are shown in Figure 4. As shown in Figure 4, when the windows contain the impulse
signal, the values of W-PE and DE have a significant decrease, and the values of RDE have a dramatical
increase. Unlike simulation 1, W-PE with the embedding dimension of three can detect the mutation
signal, the simulation results show that the value of embedding dimension can affect the capability of
W-PE in detecting mutation signals.

Figure 4. The five entropies of y.

Like Table 3, the means of the five entropies and their variation ratios are shown in Table 4. A is
the means of 82 windows without an impulse signal, B is the means of eight windows with an impulse
signal, and the variation ratio is the ratio of maximum to minimum of A and B. As shown in Table 4,
for PE and RPE, A and B are close, and the variation ratios are almost 1 (1.0021 and 1.1468, respectively);
for W-PE and DE, there are obvious differences between A and B, the variation ratios are obviously
greater than 1 and less than 2 (1.5037 and 1.958, respectively); RDE has a variation ratio of up to 14.0143.
The simulation results show that W-PE can detect mutation signals with the embedding dimension of
three, DE and RDE can also detect mutation signals under different parameters, and RDE with the
highest variation ratio have better performance than other four entropies in detecting mutation signal.

Table 4. The means of the five entropies and their variation ratios.

Parameters PE W-PE RPE DE RDE

A (Means of 82 windows) 0.9844 0.9765 0.0109 0.8805 0.0140
B (Means of 8 windows) 0.9823 0.6494 0.0125 0.4497 0.1962
Max(A, B)/Min(A, B) 1.0021 1.5037 1.1468 1.9580 14.0143

3.3. Simulation 3

In order to verify the robustness of RDE to noise, we carried out noise robustness testing by using
the same impulse signal x in simulation 1, and the synthetic signals y with different SNRs can be
obtained by adding white Gaussian noise to x. All parameters are consistent with simulation 1. We set
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the embedding dimension and time delay to three and one for the five entropies and set c to six for DE
and RDE.

The five entropies of synthetic signal under different SNRs from −10 dB to 10 dB are shown in
Figure 5, and each entropy value is the mean under 1000 calculations. As shown in Figure 5, the values
of PE and RPE have barely changed for different SNRs and are close to 1 and 0, respectively; the values
of W-PE and DE monotonically decrease with the increase of SNR; the values of RDE monotonically
increase with the increase of SNR. For further comparison of W-PE, DE, and RDE, the three entropies
under −10 dB and 10 dB and their variation ratios are shown in Table 5. A and B are the entropies
under 10 dB and −10 dB, and Max(A, B)/Min(A, B) is the ratio of maximum to minimum of A and B.
As shown in Table 5, for W-PE and RDE, there are differences between A and B, the variation ratios
are 1.3909 and 1.6993, respectively; RDE has a variation ratio of up to 94.3. Therefore, RDE can better
reflect the difference under different SNRs than the other four entropies. The simulation results show
that RDE with the highest variation ratio has better robustness to noise than the other four entropies.

Figure 5. The five entropies of synthetic signal under different signal-to-noise ratios (SNRs).

Table 5. The three entropies under −10 dB and 10 dB and their variation ratios.

Parameters W-PE DE RDE

A (10 dB) 0.7160 0.5839 0.0943
B (−10 dB) 0.9959 0.9922 0.0010

Max(A, B)/Min(A, B) 1.3909 1.6993 94.3000

3.4. Simulation 4

In order to prove the stability of RDE for synthetic signal, we carried out stability testing by using
the cosine signal of different lengths with the frequency of 100 Hz. For the five entropies, we set the
embedding dimension and time delay to three and one and set c to six for DE and RDE. The five
entropies of cosine signal with the frequency of 100 Hz are shown in Figure 6, the initial data length
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is 2000 sampling points, and 100 sampling points are added each time until the data length reached
12,000 sampling points.

(a) PE (b) WP-E 

(c) RPE (d) DE 

 
(e) RDE 

Figure 6. The five entropies of cosine signal with the frequency of 100 Hz.

As shown in Figure 6, the five entropies change in varying degrees with the increase of data length;
the values of W-PE are from 0.43145 to 0.43165, the variation ranges of W-PE (10− 4) are one order of
magnitude lower than ones of PE (10− 3) and RPE (10− 3); the values of DE are from 0.4283653 to
0.4283657, the values of RDE are from 0.095814 to 0.0958144, and the variation ranges of DE ((10− 7)
and RDE (10− 7) are smaller than ones of W-PE. The mean and standard deviation of five entropies for
the cosine signal of different lengths are shown in Table 6. As shown in Table 6, RDE has the smallest
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standard deviation compared with the other four entropies. The stability testing results indicate that
DE and RDE have better stability than the other three entropies under different length data.

Table 6. The mean and standard deviation of five entropies for the cosine signal of different lengths.

Parameters PE W-PE RPE DE RDE

mean value 0.7334 0.4316 0.1982 0.4284 0.0958
standard deviation 5× 10−4 3× 10−5 9× 10−5 9× 10−8 8× 10−8

3.5. Simulation 5

In order to prove the stability of RDE for synthetic signal, we carried out stability testing by using
the cosine signal cos(200πt) under 10 dB. The data length of each sample is 2000, we calculated the
5 entropies of 100 samples. The five entropies of cosine signal under 10 dB are shown in Figure 7.
As shown in Figure 7, the entropy values of the same category are at the same level and have very
little difference.

Figure 7. The five entropies of cosine signal under 10 dB.

To more intuitively compare the stability of the five entropies, the complexity feature boxplots of
five entropies for cosine signal under 10 dB are shown in Figure 8. As shown in Figure 8, PE, W-PE,
RPE, and DE have obvious fluctuations, however, RDE has the smallest fluctuation range compared to
the other four entropies. The mean and standard deviation of the five entropies for the cosine signal
under 10 dB are shown in Table 7. As shown in Table 7, RDE has the smallest standard deviation
compared with the other four entropies. The experimental results show that RDE has better stability
than the other four entropies under noisy conditions.
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Figure 8. The complexity feature boxplots of five entropies for cosine signal under 10 dB.

Table 7. The mean and standard deviation of five entropies for the cosine signal under 10 dB.

Parameters PE W-PE RPE DE RDE

mean value 0.8510 0.7034 0.1154 0.7770 0.0173
standard deviation 0.0073 0.0113 0.0056 0.0048 0.0006

4. Application for Real Sensor Signals

4.1. Simulation 1

In order to compare the ability of five entropies to distinguish real sensor signals, we carried out
complexity testing by using three kinds of ship signals, termed as ship 1, ship 2, and ship 3. Each
sample was 5000 points with a sampling frequency of 44.1 kHz. The five entropy distributions of three
kinds of ship are shown in Figure 9, and each kind of ship includes 100 samples. As shown in Figure 9,
compared with the distributions of PE, W-PE, and RPE, the distributions of DE and RDE were easier to
distinguish the three kinds of ship signals.

The complexity feature boxplots of five entropies for three kinds of ship are shown in Figure 10,
and the mean and standard deviation of five entropies for three kinds of ship are shown in Table 8.
As shown in Figure 10 and Table 8, compared with the other four entropies, RDE had the smallest
fluctuation range and standard deviation for each ship signal. The experimental results show that RDE
has better stability for ship signals.

Table 8. The mean and standard deviation of five entropies for three kinds of ship.

PE W-PE RPE DE RDE

mean value of ship 1 0.7325 0.4617 0.2039 0.5731 0.0637
standard deviation of ship 1 0.0096 0.0111 0.0069 0.0088 0.0033

mean value of ship 2 0.8259 0.5550 0.1347 0.7179 0.0284
standard deviation of ship 2 0.0065 0.0096 0.0049 0.0150 0.0030

mean value of ship 3 0.7862 0.5051 0.1646 0.6308 0.0472
standard deviation of ship 3 0.0112 0.0150 0.0083 0.0094 0.0028
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(a) PE (b) W-PE 

(c) RPE (d) DE 

 
(e) RDE 

Figure 9. The five entropy distributions for three kinds of ship.

To further prove the distinguishing ability of RDE, we used a support vector machine (SVM) to
distinguish the three kinds of ship signals; the classification results by five entropies for three kinds of
ship are shown in Table 9. As seen in Table 9, PE and W-PE have a recognition rate of less than 95%;
DE and RPE have a recognition rate of more than 95%; RDE has the highest recognition rate of up to
99%. The experimental results show that RDE has better distinguishing ability for ship signals.
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(a) Ship 1 (b) Ship 2 

(c) Ship 3 

Figure 10. The complexity feature boxplots of five entropies for three kinds of ship.

Table 9. The classification results by five entropies for three kinds of ship.

PE W-PE RPE DE RDE

92.67% 93.33% 96% 98.33% 99%

4.2. Simulation 2

Like simulation 1 in Section 4.1, we carried out complexity testing by using three kinds of rolling
bearings signals, termed as fault 1, fault 2, and fault 3, which come from the Case Western Reverse
Laboratory [25]. Each sample is 2000 points with a sampling frequency of 12 kHz. The mean and
standard deviation of the five entropies for three kinds of fault are shown in Table 10, and each kind of
fault includes 50 samples. As shown in Table 10, for PE, W-PPE, RPE, and DE, the mean values of fault
1 and fault 2 are very close, which makes it difficult to distinguish the two faults; for RDE, there are
obvious differences in the mean values of the three faults, and it has the smallest standard deviation
compared to the other four entropies. The experimental results show that RDE has better stability for
rolling bearing signals.
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Table 10. The mean and standard deviation of five entropies for three kinds of fault.

PE W-PE RPE DE RDE

mean value of fault 1 0.7752 0.4932 0.1785 0.7378 0.0221
standard deviation of fault 1 0.0063 0.0040 0.0054 0.0045 0.0009

mean value of fault 2 0.9702 0.8820 0.0226 0.9480 0.0023
standard deviation of fault 2 0.0023 0.0069 0.0018 0.0028 0.0001

mean value of fault 3 0.9717 0.9045 0.0214 0.9227 0.0039
standard deviation of fault 3 0.0024 0.0073 0.0018 0.0135 0.0009

To further prove the distinguishing ability of RDE for rolling bearing signals, we used an SVM to
distinguish three kinds of rolling bearing signals; the classification results by five entropies for three
kinds of rolling bearing signals are in Table 11. As seen in Table 11, PE and W-PE have a recognition
rate of less than 80%; RPE has a recognition rate of more than 80%; DE and RDE have a recognition
rate of less than 95%; RDE has the highest recognition rate of up to 100%. The experimental results
show that RDE has better distinguishing ability for rolling bearing signals.

Table 11. The classification results by five entropies for three kinds of rolling bearing signals.

PE W-PE RPE DE RDE

74.67% 77.33% 83.33% 96.67% 100%

5. Conclusions

This paper proposed a new complexity measure for analyzing time series and termed RDE.
A large number of simulation experiments was carried out to verify the effectiveness of this complexity
measure. Its main contributions are as follows:

1. Compared with PE, W-PE, RPE, and DE, RDE had better performance in detecting mutation
signals under different embedding dimensions.

2. Compared with PE, W-PE, RPE, and DE, RDE had better robustness to noise and also better
stability in the case of different length data and the presence of noise.

3. For real signals, RDE had better distinguishing ability and stability than PE, W-PE, RPE, and DE.

Overall, as an effective complexity metric, RDE could be used to analyze more real sensor signals
in different fields.
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Abstract: This paper proposes a solution for events classification from a sole noisy mixture that
consist of two major steps: a sound-event separation and a sound-event classification. The traditional
complex nonnegative matrix factorization (CMF) is extended by cooperation with the optimal adaptive
L1 sparsity to decompose a noisy single-channel mixture. The proposed adaptive L1 sparsity CMF
algorithm encodes the spectra pattern and estimates the phase of the original signals in time-frequency
representation. Their features enhance the temporal decomposition process efficiently. The support
vector machine (SVM) based one versus one (OvsO) strategy was applied with a mean supervector to
categorize the demixed sound into the matching sound-event class. The first step of the multi-class
MSVM method is to segment the separated signal into blocks by sliding demixed signals, then
encoding the three features of each block. Mel frequency cepstral coefficients, short-time energy,
and short-time zero-crossing rate are learned with multi sound-event classes by the SVM based OvsO
method. The mean supervector is encoded from the obtained features. The proposed method has
been evaluated with both separation and classification scenarios using real-world single recorded
signals and compared with the state-of-the-art separation method. Experimental results confirmed
that the proposed method outperformed the state-of-the-art methods.

Keywords: audio signal processing; sound event classification; nonnegative matric factorization;
blind signal separation; support vector machines

1. Introduction

Surveillance systems have become increasingly ubiquitous in our living environment.
These systems have been used in various applications including CCTV in traffic and site monitoring,
and navigation. Automated surveillance is currently based on video sensory modality and machine
intelligence. Recently, intelligent audio analysis has been taken into account in surveillance to
improve the monitoring system via detection, classification, and recognition sound in a scenario.
However, in a real-world situation, background noise has interfered in both the image and sound of a
surveillance system. This will hinder the performance of a surveillance system. Hence, an automatic
signal separation and event classification algorithm was proposed to improve the surveillance system
by classifying the observed sound-event in noisy scenarios. The proposed noisy sound separation

Sensors 2020, 20, 4368; doi:10.3390/s20164368 www.mdpi.com/journal/sensors21
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and event classification method is based on two approaches (i.e., blind signal separation and sound
classification, which are introduced in the sections to follow, respectively).

The classical problem of blind source separation (BSS), the so-called “cocktail party problem”,
is a psycho-acoustic spectacle that alludes to the significant human-auditory capability to selectively
focus on and identify the sound-source speaker from the scenarios. The interference is produced by
competing speech sounds or a variety of noises that are often assumed to be independent of each
other. In the case of only a single microphone being available, this reduces to the single channel blind
source separation (SCBSS) [1–4]. The majority of SCBSS algorithms work in time-frequency domain,
for example, binary masking [5–7] or nonnegative matrix factorization (NMF) [8–11]. NMF has been
continuously developed with great success for decomposing underlying original signals when a sole
sensor is available. NMF was developed using the multiplicative update (MU) algorithm to solve
its parametrical optimization based on a cost function such as the Kullback–Liebler divergence and
the least square distance. Later, other families of cost functions have been continuously proposed,
for example, the Beta divergence [12], Csiszar’s divergences, and Itakura–Saito divergence [13].
Additionally, iterative gradient update was presented where a sparsity constraint can be included into
the optimizing function through regularization by minimizing penalized least squares [14] and using
different sparsity constraints for dictionary and code [15]. The complex nonnegative matrix factorization
(CMF) spreads the NMF model by combining a sparsity representation with the complex-spectrum
domain to improve the audio separability. The CMF can extract the recurrent patterns of the phase
estimates and magnitude spectra of constituent signals [16–18]. Nevertheless, the CMF lacks the
generalized mechanics used for controlling the sparseness of the code. However, the sparsity parameter
is manually determined for the above proposed methods. Approximate sparsity is an important
consideration as they represent important information. Many sparse solutions have been proposed in
the last decade [19–25]. Nonetheless, the optimal sparse solution remains an open issue.

Sound event classification (SEC) has vastly been exploited by many researchers. Sound can be
categorized into speech, music, noise, environmental sound, or daily living sound [26]. Sound events
are available in all classes, for example, car horn, traffic, walking, or knocking, etc. [27,28]. Sound-events
contain significant information that can be used to describe what has happened or to predict what will
happen next in the future. Most algorithms of the SEC methods are conveyed from sound classification
approaches such as sparse coding, deep learning, and support vector machine (SVM). These approaches
have been exploited to categorize a sound event in both indoor and outdoor scenarios. In recent years,
the deep learning approach has been used to classify the sound-event. A deep learning framework can
be established with two convolutional neural networks (CNNs) and a deep multi-layer perceptron
(MLP) with rectified linear units (ReLU) as the activation function [29,30]. A Softmax function that is
the final activation function is used to classify the sound into its corresponding class. The Softmax
function is considered as the generalization of the logistic function, which aims to avoid overfitting.
One of the advantages of deep learning is that it does not require feature extraction for the input
sound. However, a deep neural network requires large training samples and despite a plethora of
research, there is a general consensus that deep neural networks are still difficult to fine tune and
generalize to test data. Moreover, it does not lend itself to the explanation as to why a certain decision
is being made. Separate from the deep learning framework, another SEC approach is support vector
machines [31,32], which has been practically presented to solve the classifier problem in various fields.
The SVM algorithm relies on supervised learning by using the fundamental concept of statistic and
risk minimization. The main process of the SVM is to draw the optimal separating hyperplane as the
decision boundary located in such a way that the margin of separation between classes is maximized.
The SVM approach is considered as supervised learning algorithm that is comprised of two sections:
(1) a training section to model feature space and an optimal hyperplane, and (2) a testing section
to use the SVM model for separating the observed data. The margin denotes the distance of the
closest instance and the hyperplane. SVM has the desirable properties in that it requires only two
differentiating factors to categorize two classes and a hyperplane that can be constructed to suit for an

22



Sensors 2020, 20, 4368

individual problem, even in the nonlinear case by selecting a kernel. Second, SVM provides a unique
solution, since it is a convex optimization problem.

The rest of this paper is organized as follows. Section 2 presents the proposed noisy sound
separation and event classification method, respectively. Next, Section 3 demonstrates and analyzes
the performance of the proposed method. Finally, conclusions are drawn up in Section 4.

2. Background

Noisy mixed signals observed via a recording device can be stated as: y(t) = s1(t) + s2(t) + n(t)
where s1(t) and s2(t) denote the original sounds, and n(t) is noise. This research is focused on
two sound events in a single recorded signal. The proposed method consists of two steps: noisy
sound separation and sound event classification, which is illustrated in Figure 1, where y(t) and
Y(ω, t) denote a sound-event mixture in the time domain and time-frequency domain, respectively.
The terms Wk(ω), Hk(t), φk(ω, t) are spectral basis, temporal code or weight matrix, and phase
information, respectively. The term λk(t) represents sparsity and ŝj(t) is an estimated sound event
source. The abbreviations MFCC, STE, and STZCR stand for Mel frequency cepstral coefficients,
short-time energy, and short-time zero-crossing rate, respectively. The proposed method is consecutively
elaborated in the following parts.

Transformation

Estimation Signal Parameters 

Estimation L1 Sparsity  

Mixture Decomposition 

Feature Encoding 

Classification 

MFCC, STE, STZCR 

Sound event class 

Feature Encoding 

Training MSVM 

model 

MSVM 

Model 

Separation 
(CMF) 

Training 

Evaluation 

Figure 1. Signal flow of the proposed method.
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2.1. Single-Channel Sound Event Separation

The problem formulation in time-frequency (TF) representation is given by an observed complex
spectrum, Y f ,t ∈ C, to estimate the optimal parameters θ = {W, H, φ} of the model. A new
factorization algorithm named as the adaptive L1-sparse complex non-negative matrix factorization
(adaptive L1-SCMF) is derived in the following section. The generative model is given by

Y(ω, t) =
K∑

k=1

Wk(ω)Hk(t)Zk(ω, t) = X(ω, t) + ε(ω, t) (1)

where Zk(ω, t) = ejφk(ω,t) and the reconstruction error ε(ω, t) ∼ NC

(
0,σ2

)
is assumed to be independently

and identically distributed (i.i.d.) with white noise having zero mean and variance σ2. The term ε(ω, t)
is used to denote a modeling error for each source. The likelihood of θ = {W, H, φ} is thus written as

P(Y|θ ) =
∏

f ,t

1
πσ2 exp(−

∣∣∣Y(ω, t) − X(ω, t)
∣∣∣2

σ2 ) (2)

It is assumed that the prior distributions for W, H, and φ are independent, which yields

P(θ|λ) = P(W)P(H|λ)P(φ) (3)

The prior P(H|λ) corresponds to the sparsity cost, for which a natural choice is a generalized
Gaussian prior. When p = 1, P(H|λ) promotes the L1-norm sparsity. L1-norm sparsity has been
shown to be probabilistically equivalent to the pseudo-norm, L0, which is the theoretically optimum
sparsity [33,34]. However, L0-norm is non-deterministic polynomial-time (NP) hard and is not useful
in large datasets such as audio. Given Equation (3), the posterior density [35,36] is defined as the
maximum a posteriori probability (MAP) estimation problem, which leads to minimizing the following
optimization problem with respect to θ. Equations of Gaussian prior and maximum a posteriori
probability (MAP) estimation are expressed in Appendix A.

The CMF parameters have been upgraded by using an efficient auxiliary function for an iterative
process. The auxiliary function for f (θ) can be expressed as the following: for any auxiliary variables

with
∑
k

Y
k
(ω, t) = Y(ω, t), for any βk(ω, t) > 0,

∑
k
βk(ω, t) = 1, for any Hk(t) ∈ R, H

k
(t) ∈ R, and p = 1.

The term f (θ) ≤ f+
(
θ,θ

)
with an auxiliary function was defined as:

f+
(
θ,θ

)
≡

∑
f ,k,t

∣∣∣∣Yk
(ω, t) −Wk(ω)Hk(t)·ejφk(ω,t)

∣∣∣∣2
βk(ω, t)

+
∑
k,t

[(
λk(t)

)p
(
p
∣∣∣∣Hk

(t)
∣∣∣∣p−2

Hk(t)2 + (2− p)
∣∣∣∣Hk

(t)
∣∣∣∣p)− logλk(t)

]
(4)

where θ =
{
Y

k
(ω, t), H

k
(t)

∣∣∣∣ 1 ≤ f ≤ F, 1 ≤ t ≤ T, 1 ≤ k ≤ K
}
. The function f+

(
θ,θ

)
is minimized w.r.t.

θwhen
Y

k
(ω, t) = Wk(ω)H

k
(t)·ejφk(ω,t) + βk(ω, t)(Y(ω, t) −X(ω, t)) (5)

H
k
(t) = Hk(t) (6)
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2.2. Formulation of Proposed CMF Based Adaptive Variable Regularization Sparsity

2.2.1. Estimation of the Spectral Basis and Temporal Code

In Equation (4), the update rule for θ is derived by differentiating f+
(
θ,θ

)
partially w.r.t. Wk(ω)

and Hk(t), and setting them to zero, which yields the following:

Wk(ω) =

∑
t

Hk(t)
βk(ω,t)

Re
[
Y

k
(ω, t)∗·ejφk(ω,t)

]
∑

t
Hk(t)2

βk(ω,t)

(7)

Hk(t) =

∑
f

Wk(ω)
βk(ω,t)

Re
[
Y

k
(ω, t)∗·ejφk(ω,t)

]
∑

f
Wk(ω)2

βk(ω,t)
+ (λk(t))p p

∣∣∣∣Hk
(t)

∣∣∣∣p−2 (8)

The update rule for the phase, φk(ω, t), can be derived by reformulating Equation (4) as follows:

f+
(
θ,θ

)
=

∑
k, f ,t

∣∣∣∣∣Yk
(ω,t)

∣∣∣∣∣2− 2Wk(ω)Hk(t)Re
[
Y

k
(ω,t)·e− jφk(ω,t)

]
+Wk(ω)2Hk(t)2

βk(ω,t)
+

∑
k,t
λk(t)

(∣∣∣∣Hk
(t)

∣∣∣∣−1
Hk(t)2 −H

k
(t)

)
−∑

k,t
logλk(t)

= A− 2
∑

k, f ,t

∣∣∣Bk(ω, t)
∣∣∣ cos

(
φk(ω, t) −Ωk(ω, t)

) (9)

where A denotes the terms that are irrelevant with φk(ω, t), Bk(ω, t) = Wk(ω)Hk(t)Y
k
(ω,t)

βk(ω,t)
, cos Ωk(ω, t) =

Re
[
Y

k
(ω,t)

]
∣∣∣∣Yk

(ω,t)
∣∣∣∣ , and sin Ωk(ω, t) =

Im
[
Y

k
(ω,t)

]
∣∣∣∣Yk

(ω,t)
∣∣∣∣ . Derivation of (9) is elucidated in Appendix B.

The auxiliary function, f+
(
θ,θ

)
in Equation (4) is minimized when cos

(
φk(ω, t) −Ωk(ω, t)

)
=

cosφk(ω, t) cos Ωk(ω, t) + sinφk(ω, t) sin Ωk(ω, t) = 1, namely, cosφk(ω, t) = cos Ωk(ω, t) and
sinφk(ω, t) = sin Ωk(ω, t). The update formula for ejφk(ω,t) eventually leads to

ejφk(ω,t) = cosφk(ω, t) + j sinφk(ω, t)

=
Y

k
(ω,t)∣∣∣∣Yk
(ω,t)

∣∣∣∣
(10)

The update formula for βk(ω, t) and Hk(t) for projection onto the constraint space is set to

βk(ω, t) =
Wk(ω)Hk(t)∑
k Wk(ω)Hk(t)

(11)

Hk(t) ← Hk(t)∑
k Hk(t)

(12)

2.2.2. Estimation of L1-Optimal Sparsity Parameter λk(t)

This section aims to facilitate spectral dictionaries with adaptive sparse coding. First, the CMF
model is defined as the following terms:
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W =

[
I⊗W1(ω)

...I⊗W2(ω)
... · · · ...I⊗WK(ω)

]
,

ejφ(t) =

[
ejφ1(t)... · · · ...ejφK(t)

]

y = vec(Y) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Y1(:)
. . .

Y2(:)
. . .
...
. . .

YK(:)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, h =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

H1(t)
. . .

H2(t)
. . .
...
. . .

HK(t)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, λ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

λ1(t)
. . .
λ2(t)
. . .
...
. . .
λK(t)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, φ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

φ1(:, t)
. . .

φ2(:, t)
. . .
...
. . .

φK(:, t)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
W◦ejφ(t) 0 . . . 0

0 W◦ejφ(t) 0
...

... 0 W◦ejφ(t) 0

0 . . . 0 W◦ejφ(t)t

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(13)

where “⊗” and “◦” are the Kronecker product and the Hadamard product, respectively. The term
vec(·) denotes the column vectorization and the term I is the identity matrix. The goal is then set to
compute the regularization parameter λk(t) related to each Hk(t). To achieve the goal, the parameter p
in Equation (4) is set to 1 to acquire a linear expression (in λk(t)). In consideration of the noise variance
σ2, Equation (4) can concisely be rewritten as:

F(h,λ) =
1

2σ2 ‖ y− Ah ‖2F +λTh− (logλ)T
1 (14)

where the h and λ terms indicate vectors of dimension R× 1 (i.e., R = F× T ×K), and the superscript
‘T’ is used to denote complex Hermitian transpose (i.e., vector (or matrix) transpose followed by
complex conjugate). The Expectation–Maximization (EM) algorithm will be used to determine λ

and h is the hidden variable where the log-likelihood function can be optimized with respect to λ.
The log-likelihood function satisfies the following [12]:

ln p
(
y
∣∣∣∣λ, A, σ2

)
≥

∫
Q(h) ln

⎛⎜⎜⎜⎜⎜⎜⎜⎝p
(
y, h

∣∣∣∣λ, A, σ2
)

Q(h)

⎞⎟⎟⎟⎟⎟⎟⎟⎠ dh (15)

by applying the Jensen’s inequality for any distribution Q(h). The distribution can simply verify
the posterior distribution of h, which maximizes the right-hand side of Equation (15), is given by

Q(h) = p
(
h
∣∣∣∣y,λ, A, σ2

)
. The posterior distribution in the form of the Gibbs distribution is proposed

as follows:

Q(h) =
1

Zh
exp[−F(h)] where Zh =

∫
exp[−F(h)]dh (16)

The term F(h) in Equation (16) as the function of the Gibbs distribution is essential for simplifying
the adaptive optimization of λ. The maximum-likelihood (ML) estimation of λ can be decomposed
as follows:

λML = arg max
λ

∫
Q(h) ln p(h

∣∣∣λ)dh (17)

In the same way,

σ2
ML = arg max

σ2

∫
Q(h) ln p

(
y
∣∣∣∣h, A, σ2

)
dh (18)
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Individual element of H is required to be exponentially distributed with independent decay
parameters that delivers p(h

∣∣∣λ) = ∏
g
λg exp

(
−λghg

)
, thus Equation (17) obtains

λML = arg max
λ

∫
Q(h)

(
lnλg − λghg

)
dh (19)

The term h denotes the dependent variable of the distribution Q(h), whereas other parameters
are assumed to be constant. As such, the λ optimization in Equation (19) is derived by differentiating
the parameters within the integral with respect to h. As a result, the functional optimization [37] of λ
then obtains

λg =
1∫

hgQ(h)dh
(20)

where g = 1, 2, . . . , R, λg denotes the gth element of λ. Notice that the solution h naturally splits
its elements into distinct subsets hM and hP, consisting of components ∀m ∈ M so that hm > 0
and components ∀p ∈ P so that hP = 0. The sparsity parameter is then obtained as presented in
Equation (21):

λg =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1∫

hgQM(hM)dhM
= 1

hMAP
g

if g ∈ M
1∫

hgQ̂P(hP)dhP
= 1

ug
if g ∈ P

(21)

and its covariance X is given by

Xab =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(
C
−1
P

)
ab

, if a, b ∈ M

u2
pδab, Otherwise.

(22)

where Q̂P
(
hP ≥ 0

)
=

∏
p∈P

1
up

exp
(−hp

up

)
, CP = 1

σ2 A
T
PAP and up ← up

−b̂p+

√
b̂2

p+4
(Ĉu)p

ũp

2(Ĉu)p
. The function

QM
(
hM

)
will be expressed as the unconstrained Gaussion with mean hMAP

M and covariance C
−1
M based

on a multivariate Gaussian distribution. Similarly, the inference for σ2 can be computed as

σ2 =
1

N0

∫
Q(h)

(
‖y− Ah‖2

)
dh (23)

where

ĥg =

{
hMAP

g if g ∈ M
ug if g ∈ P

The core procedure of the proposed CMF method is based on L1-optimal sparsity parameters.
The estimated sources are discovered by multiplying the respective rows of the Wk(ω) components
with the corresponding columns of the Hk(t) weights and time-varying phrase spectrum ejφk(ω,t).
The separated source ŝ j(t) is obtained by converting the time-frequency represented sources into the
time domain. Derivation of L1-optimal sparsity parameter, is elucidated in the Appendix C.
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2.3. Sound Event Classification

Once the separated sound signal is obtained, the next step is to identify the sound event.
A multiclass support vector machine (MSVM) is employed to achieve the goal. The MSVM is
comprised of two phases: the learning phase and the evaluation phase. The MSVM is based on one

versus one strategy (OvsO) that splits observed c classes into c(c−1)
2 binary classification sub-problems.

To train the th MSVM model, the MSVM will construct hyperplanes for discriminating each observed
data into its corresponding class by executing the series of binary classification. Starting from the
learning phase, sound signatures are extracted from the training dataset in the time-frequency domain.
The sound signatures that were studied in this research were the Mel frequency cepstral coefficients
(MFCC: MF), short-time energy (STE: E(t)), and short term zero-crossing rate (STZCR: STZ(t)), which

can be orderly expressed as: MF = 2525 × log[1 + ( f /7)], E(t) =
∞∑

τ=−∞
[y(t)· fw(t− τ)]2, Z(t) =

∞∑
τ=−∞

∣∣∣sgn[s(τ)] − sgn[s(τ− 1)]
∣∣∣· fw(t− τ) where fw(t) denotes the windowing function. The training

signals are segmented into small blocks, then the individual block is extracted to the three signature
parameters. The mean supervector is then computed as an average of individual feature of all
blocks for each sound event input. Thus, the mean feature supervector (O) with a corresponding
sound-event-label vector ((w)) is paired together (i.e., (ψ(O, w))) and supplied to the MSVM model.
The discriminant formula can be expressed as:{̂, β

}
= arg max



{
αTψ(O, w; β)

}
= arg max



{
max
β

|w|∑
i=1
αTψ

(
Oi|β, wi

)} (24)

where
(
Oi|β, wi

)
, i = 1, . . . , M represents the ith separated sound signals; the weight vector α is

employed for individual class  to compute a discriminant score for the O; the i term is the index
of the block order (β); and the function αTψ(O, w; β) measures a linear discriminant distance of the
hyperplane with the extracted feature vector from the observed data. The MSVM based OvsO strategy
for class th and other, the hyperplane, can be maximized as αTψ(O, w; β) + b and can then be learned
via the following equation as

min
α,ξ

1
2
‖α‖2 + C

M∑
i=1

ξi (25)

where ξi ≥ 0, b is a constant. The term
M∑

i=1
ξi denotes a penalty function for tradeoff between a large

margin and a small error penalty. The optimal hyperplane can be determined by minimizing 1
2‖α‖2

to maximize the condition (i.e., αTψ(O, w; β) + b ≥ 1 − ξi ). If the conditional term is greater than
1− ξi , then the estimated sound event belongs to the th class. Otherwise, the estimated sound event
classifies into other classes.

The overview of the proposed algorithm is presented in the following table as Algorithm 1.
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Algorithm 1 Overview of the proposed algorithm.

(1) Compute Y(ω, t) = STFT(y(t)) from the noisy single-channel mixture y(t).

(2) Initial values Wk(ω), Hk(t), βk(ω, t), fixing the value of φk(ω, t) at ejφk(ω,t) =
Y(ω,t)
|Y(ω,t)| , and calculate λk(t)

and σ2 .
(3) Update θ =

{
X, H

}
, θ =

{
Wk(ω), Hk(t), φk(ω, t)

}
, βk(ω, t).

(4) Update parameters (21) and (23) until convergence is reached as determined by the rate of change of the
parameters update falling within a pre-determined threshold.

(5) Estimation of each source by multiplying the respective rows of the spectral components Wk(ω) with the

corresponding columns of the mixture weights Hk(t) and time-varying phrase spectrum ejφk(ω,t). (i.e.,∣∣∣∣∣∣^Si

∣∣∣∣∣∣.2 =
Ki∑

k=1
Wi

k
f Hi

k
t ·e

jφi
(k)
f ,t and construct the binary TF mask for the ith source

Mi( f , ts) :=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩ 1, if

∣∣∣∣∣∣^Si( f , ts)

∣∣∣∣∣∣.2 >
∣∣∣∣∣∣^S j( f , ts)

∣∣∣∣∣∣.2, i � j

0, otherwise
).

(6) Convert the time-frequency represented sources into time domain to obtain the separated sources ŝ j(t)

i.e., ŝ j(t) = STFT−1

⎛⎜⎜⎜⎜⎜⎝
∣∣∣∣∣∣^Si

∣∣∣∣∣∣2
⎞⎟⎟⎟⎟⎟⎠.

(7) Classify the th sound event by computing the optimal hyperplane αTψ(O, w; β) + b by minimizing the

following equation: min
α,ξ

1
2 ‖α‖2 + C

M∑
i=1
ξi .

3. Experimental Results and Analysis

The performance was evaluated on recorded sound-event signals in a low noisy environment
at 20 signal-to-noise ratios (SNRs). The sound-event database had a total of 500 recorded signals
containing four event classes: speech (SP), door open (DO), door knocking (DK), and footsteps (FS).
An overview of the experimental setup is given as the following: all signals had a 16-bit resolution and
a sampling frequency of 44.1 KHz. A 2048 length of Hanning window with 50% overlap was used for
signal processing. Nonlinear SVM with a Gaussian RBF kernel was used for constructing the MSVM
learning model. Other kernels such as polynomials, sigmoid, and even linear function were tested, but
the best performance was delivered by the Gaussian kernel. A 4-fold cross-validation strategy was
used in the training phase for tuning the classifier parameters when using 80% of the recorded signals
(n = 400) from the sound-event database.

The performance of the proposed noisy sound separation and event classification (NSSEC) method
was demonstrated and presented into the following two sections: (1) the separating performance,
and (2) the MSVM classifier.

3.1. Sound-Event Separation and Classification Performance

Event mixtures consist of two sound-event signals in low noisy environment at 20 dB
SNRs. A hundred sound-event signals of four classes were randomly selected and then mixed
to generate 120 mixtures of six types (i.e., DO + DK, DO + FS, DO + SP, DK + FS, DK + SP,
and FS + SP). The separation performance measured the signal-to-distortion ratio (SDR) (i.e.,
SDR = 10 log10

(
‖starget‖2/‖einter f + enoise + earti f ‖2

)
where einter f , enoise, and earti f ). The SDR represents

the ratio of the magnitude distortion of the original signal by the interference from other sources.
The proposed separation method was compared with the state-of-the-art NMF approach (i.e., CMF [38],
NMF-ISD [14,39], and SNMF [40–42] methods). The cost function was the least squares with
500 maximum number of iterations.
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3.1.1. Variational Sparsity Versus Fixed Sparsity

In this implementation, several experiments were conducted to investigate the effect of sparsity
regularization on source separation performance. The proposed separation method was evaluated by
variational sparsity in the case of (1) uniform constant sparsity with low sparseness e.g., λk

t = 0.01
and (2) uniform constant sparsity with high sparseness (e.g., λk

t = 100). The hypothesis is that the
proposed variational sparsity will significantly yield improvement of the audio source separation
when compared with fixed sparsity.

To investigate the impact of uniform sparsity parameter, the set of sparsity regularization values
from 0 to 10 with a 0.5 interval were determined for each experiment of 60 mixtures of six types.
Results of the uniform regularization given by various sparsity (i.e., λk

t = 0, 0.5, . . . , 10) is illustrated
in Figure 2.

Figure 2. Separation results of the proposed method by using different uniform regularization.

Figure 2 illustrates that the best performance of the unsupervised CMF was in a range of 1.5–3,
which yielded the highest SDR of over 8dB. When the term λk

t was set too high, the low spectral
values of sound-event signals were overly sparse. This overfitting sparsity Hk(t) caused the separation
performance toward a tendency to degrade. Conversely, the underfitting sparsity Hk(t) occurred
when the term λk

t was set too low. The coding parameter Hk(t) could not distinguish between the two
sound-event signals. It was also noticed that if the factorization is non-regularized, this will cause the
separation results to contain a mixed sound. According to the uniform sparsity results in Figure 2, the
separation performance of the proposed method varies depending on the assigned sparsity values.
Thus, it is challenging to find a solution for the indistinctness among the sound-event sources in the TF
representation to determine the optimal value of sparseness. Thus, this introduces the importance of
determining the optimal λ for separation. Table 1 presents the essential sparsity value on the separation
performance by comparing the proposed method given by variational sparsity against the uniform
sparsity scheme. The average performance improvement of the proposed adaptive CMF method
against the uniform constant sparsity was 1.32 dB SDR. The SDR results clearly indicate that the
adaptive sparsity yielded the surpass separation performance over the constant sparsity scheme. Hence,
the proposed variational sparsity improves the performance of the discovered original sound-event
signals by adaptively selecting the appropriate sparsity parameters to be individually adapted for

each element code (i.e., λg =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1∫

hgQM(hM)dhM
= 1

hMAP
g

if g ∈ M
1∫

hgQ̂P(hP)dhP
= 1

ug
if g ∈ P

and σ2 = 1
N0

∫
Q(h)

(
‖y− Ah‖2

)
dh

where ĥg =

{
hMAP

g if g ∈ M
ug if g ∈ P

). Consequently, the optimal sparsity facilitates the estimated spectral

dictionary via the estimated temporal code. The quantitative measures of separation performance
were performed to assess the proposed single-channel sound event separation method. The overall
average signal-to-distortion ratio (SDR) was 8.62 dB as illustrated in Figure 3.
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Table 1. Comparison of average SDR performance on three types of mixtures between uniform
regularization methods and the proposed method.

Mixtures Methods SDR

DO + DK
Proposed method 7.63

(Best) Uniform regularization sparsity 6.59

DO + FS
Proposed method 9.06

(Best) Uniform regularization sparsity 8.74

DO + SP
Proposed method 8.45

(Best) Uniform regularization sparsity 6.91

DK + FS
Proposed method 7.04

(Best) Uniform regularization sparsity 6.35

DK + SP
Proposed method 9.72

(Best) Uniform regularization sparsity 7.78

FS + SP
Proposed method 9.81

(Best) Uniform regularization sparsity 7.42

Figure 3. Average SDR results of six-mixture types.

Each sound-event signal has its own temporal pattern that can be clearly noticed in TF
representation. Examples of sound-event signals in the TF domain are illustrated in Figure 4.
Through the adaptive L1-SCMF method, the proposed single-channel separation method can generate
complex temporal patterns such as speech. Thus, the separation results clearly indicate that the
performances of noisy source separation perform with high SDR values.

Figure 4. Cont.
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Figure 4. Example of time-frequency representation of four sound event classes.

3.1.2. Comparison of the Proposed Adaptive CMF with Other SCBSS Methods Based on NMF

This section presents the adaptive CMF separating performance against the state-of-the-art NMF
methods (i.e., CMF, SNMF, and NMF-ISD). In the compared methods, the experimental variables such
as the normalizing time-frequency domain were computed by using the short-time Fourier transform
(i.e., 1024-point Hanning window with 50% overlap). The number of factors was two, with a sparsity
weight of 1.5. One hundred random realizations of twenty second-event mixtures were executed.
As a result, the average SDRs are presented in Table 2. The proposed adaptive CMF method yielded
the best separating performance over the CMF, SNMF, and NMF_ISD methods with the average
improvement SDR at 2.13 dB. The estimated door open signals obtained the highest SDR among the
four event categories.

Table 2. Comparison of average SDR and SIR performance on three types of mixtures between SCICA,
NMF-ISD, SNMF, CMF, and the proposed method.

Mixtures Methods SDR

Door Open

Proposed method 8.38
CMF 7.11

SNMF 6.23
NMF-ISD 6.17

Door Knocking

Proposed method 8.13
CMF 7.06

SNMF 6.52
NMF-ISD 6.55

Footsteps

Proposed method 8.36
CMF 7.89

SNMF 6.62
NMF-ISD 6.06

Speech

Proposed method 9.60
CMF 6.73

SNMF 5.61
NMF-ISD 5.32

The sparsity parameter was carefully adapted using the proposed adaptive L1-SCMF method
exploiting the phase information and temporal code of the sources, which is inherently ignored by
SNMF and NMF-ISD and has led to an improved performance of about 2 dB in SDR. On the other
hand, the parts decomposed by the CMF, SNMF, and NMF-ISD methods were unable to capture the
phase spectra and the temporal dependency of the frequency patterns within the audio signal.
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Additionally, the CMF and NMF-ISD are unique when the signal adequately spans the positive
octant. Thus, the rotation of W and opposite H can obtain the same results. The CMF method can easily
be over or under sparse resolution of the factorization due to manually determining the sparsity value.

3.2. Performance of Event Classification Based on MSVM Algorithm

This section elucidates the features and performance of the MSVM-learning model.
The MSVM-learning model was investigated to obtain the optimal size of the sliding window
and then determine the significant features that led to the classification performance. Finally, the
efficiency of the MSVM model was evaluated. These topics are presented in order in the following parts.

3.2.1. Determination Optimal Window Length for Feature Encoding

For the MSVM method, sound-event signals are segmented into small blocks for encoding feature
parameters by using a fixed-length of the sliding window. The sets of feature vectors are computed
using the mean supervector and then loaded to the MSVM model for learning and constructing
the hyperplane. The size of blocks can affect the information of the feature vectors, which leads to
the classifier performance. The block’s size will affect the α, hence modifying the block size will
mark the learning efficiency of the MSVM model. Therefore, in order to obtain the optimal value
of α, the optimal block size was exploited by training the MSVM model given various lengths of
window sizes (i.e., 0.5, 1, 1.5, and 2.0 s) to learn the 400 noisy sound-event signals of four event classes
with cross-validation.

The experimental results are plotted in Figure 5, where the block size varies from 0.5 to 2.0 with
0.5 increments. The MSVM model of the 1.5 s block size yielded the best sound-event classification at
100% accuracy. The sliding window function benefits from SVM to learn an unknown sound event by
generating the set of blocks from the observed event, regarded as a number of observed events. As a
result, a set of sound event characteristics were computed for each block (i.e., Oi|β, wi in Equation (24)).

Figure 5. Classification performance of the original and combination source MSVM with various
block sizes.

The optimal length of the window size can capture the signature of the sound event. If the
window length is too short, the encoded features will then deviate from the character of the sound
event. In addition, the mean supervector is computed from the set of features of all blocks, which
can be regarded as the mean of the probability distribution of the features. This mean supervector
advantages the MSVM to reduce misclassifications when compared to the conventional SVM. Hence,
the STFT of all experiments set the window function at 1.5 s.

3.2.2. Determination of Sound-Event Features

Each sound-event signal was encoded with three features: Mel frequency cepstral coefficients
(MFCCs), short-time energy (STE), and short-time zero-crossing rate (STZCR). MFCCs are represented
as a frequency domain feature that is evaluated in a similar assembly to the human ear (i.e.,
logarithmic frequency perception). STE is the total spectrum power of an observed event.
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The STZCR denotes the number of times that the signal amplitude interval satisfies the condition (i.e.,
STZCR = (1/T − 1)

∑ T−1
t=1 [[{stst−1 < 0} where [[{stst−1 < 0} is 1 if the condition is true and 0 otherwise).

The STZCR features of four sound-event classes are illustrated in Figure 6.

(a) Door open         (b) Door knocking 

(c) Footstep         (d) Speech 
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Figure 6. STZCR patterns of four sound-events (a–d).

The STZCR feature represents unique patterns of four sound-event classes. The four sound-event
patterns are different in shape and data range. Similarly, the MCFFs and STE features extract distinctive
patterns of all event classes, except for the patterns between door knocking and footstep, as illustrated
in Figure 7.
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Figure 7. Cont.
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(b) STE patterns 
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Figure 7. MFCCs (a) and STE (b) patterns of door knocking and footstep.

Figure 7 aims to compare the characteristics of similar sound events such as door knocking and
footsteps. Thus, MFCCs and STE features were used to illustrate the patterns of sound events. Figure 7a
represents the five orders of MFCC features to compare patterns between door knocking and walking
while the STE features are shown in Figure 7b.

The proposed method separated the six categories of mixtures, then classified each estimated
sound event signal into its corresponding class. Classified results of the six categories are presented as
confusion matrixes below:

Actual

Predict DO DK DO FS DO SP

DO 19 3 DO 12 8 DO 19 5

DK 3 15 FS 4 16 SP 3 13

DK FS DK SP FS SP

DK 12 4 DK 16 2 FS 14 6

FS 9 15 SP 5 17 SP 3 17

The classification of the proposed method was measured by Precision = TP/(TP + FP),
Recall = TP/(TP + FN), and F1-score = 2 × (Precision × Recall)/(Precision + Recall). The TP and
TN terms refer to the true positive and true negative, while the FP and FN terms mean false positive and
false negative. The scores of Precision, Recall, and F1-score were 0.7667, 0.7731, and 0.7699, respectively.

Each feature represents unique characteristics of an individual sound event. Thus, features were
matched into seven cases for exploiting their influence on the MSVM classifiers (i.e., {(MFCC), (STE),
(STZCR), (MFCC, STE), (MFCC, STZCR), (STE, STZCR), (MFCC, STE, STZCR)}).

As shown in Figure 8, the MSVM model given by MFCCs and STZCR yielded the best classified
accuracy at 100%, with less deviation among the other cases. Therefore, the separated signals were
then classified by the proposed MSVM method given by the MFCC and STZCR vectors and the 1.5 s
window function. The computational complexity of the proposed method was analyzed by two steps.
First, the adaptive L1-SCMF method was NP-hard. Big-O of the adaptive L1-SCMF method consists
of spectral basis (m), temporal code (n), and phase information that rely on components (k). Thus,

Big-O of the separation step is (mn)O(k2). For MSVM steps, it is a polynomial algorithm where Big-O is

O
(
n3

)
. Therefore, the computational complexity of the proposed method based on Big-O is (mn)O(k2).

All experiments were performed by a PC with Intel® Core™ i7-4510U CPU2.00 GHz and 8 GB RAM.
MATLAB was used as the programming platform.

35



Sensors 2020, 20, 4368

Figure 8. Classification performances of multi-class MSVM of various sets of features and length of
event signal.

3.2.3. Performance of MSVM Classifier

The MSVM-classifier performance is presented in terms of percentage of the corrected sound-event
classification. The 240 separated signals of four classes from the proposed separation method were
individually identified by the MSVM classifier.

Figure 9 compares the classification performance on the four classes of individual sound events.
The best classification accuracy was door open, followed by footstep, door knocking, and speech.
On the other hand, the classification results based on the mixed sound events are illustrated in Figure 10.
The MSVM model delivered the highest performance of the door-open event with 84% accuracy.

From the above experiments, the proposed method yields an average classification accuracy of
76.67%. The MSVM method can well discriminate and classify the mixed event signals with high
classification accuracy (i.e., the mixture of door open with door knocking and door knocking with
speech were correctly classified with above 80% accuracy). Due to the MFCC and STZCR features
in the individual event, these signals had obvious distinguishable patterns, as shown in the example
of STZCR plots in Figure 6. Despite the SDR scores of the separated signals between door open and
door knocking being relatively low (as given in Figure 3), the MSVM yielded the highest classification
accuracy for the door open with door knocking mixture (DO + DK). This is attributed to the fact that
interference remaining in the separated event signals causes the extracted MFCC and STZCR vectors
to deviate from their original sound event vectors.

Figure 9. Average percentage of classification accuracy from the perspective of event group of the
proposed NSSEC method.
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Figure 10. Classification performance of NSSEC model with 1.5 s block size.

4. Conclusions

A novel solution for classification of the noisy mixtures using a single microphone was presented.
The complex matrix factorization was proposed and extended by adaptively tuning the sparse
regularization. Thus, the desired L1-optimal sparse decomposition was obtained. In addition, the
phase estimates of the CMF could extract the recurrent pattern of the magnitude spectra. The updated
equation was derived through an auxiliary function. For classification, the multiclass support vector
was used as the mean supervector for encoding the sound-event signatures. The proposed noisy sound
separation and event classification method was demonstrated by using four sets of noisy sound-event
mixtures, which were door open, door knocking, footsteps, and speech. Based on the experimental
results, first, the optimal window length of STFT was found where 1.5 s of the sliding window yielded
the best separation performance. The second was two significant features that were ZCR and MFCCs.
These parameters were set for examining the proposed method. The proposed method achieved
outstanding results in both separation and classification. In future work, the proposed method will be
evaluated on a public dataset such as the DCASE 2016, alongside the comparison with other machine
learning algorithms.
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Appendix A. Single-Channel Sound Event Separation

The prior P(H|λ) corresponds to the sparsity cost, for which a natural choice is a generalized
Gaussian prior:

P(H|λ) =
∏
k,t

pλk(t)
2Γ(1/p)

exp (−
(
λk(t)

)p∣∣∣Hk(t)
∣∣∣p) (A1)

where λk(t) and p are the shape parameters of the distribution. When p = 1, P(H|λ) promotes
the L1-norm sparsity. L1-norm sparsity has been shown to be probabilistically equivalent to
the pseudo-norm, L0, which is the theoretically optimum sparsity [29,30]. However, L0-norm is
non-deterministic polynomial-time (NP) hard and is not useful in large datasets such as audio. Given
Equation (3), the posterior density is defined as
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P(θ|Y,λ) ∝ P(Y|θ)P(H|λ) (A2)

The maximum a posteriori probability (MAP) estimation problem leads to minimizing the
following optimization problem with respect to θ:

f (θ) =
∑
f ,t

∣∣∣Y(ω, t) − X(ω, t)
∣∣∣2 + ∑

k,t

[(
λk(t)

)p∣∣∣Hk(t)
∣∣∣p − logλk(t)

]
(A3)

subject to
∑
f

Wk(ω) = 1 (k = 1, . . . , K).

The CMF parameters has been upgraded by using an efficient auxiliary function for an iterative
process. The auxiliary function for f (θ) can be expressed as the following: for any auxiliary variables

with
∑
k

Y
k
(ω, t) = Y(ω, t), for any βk(ω, t) > 0,

∑
k
βk(ω, t) = 1, for any Hk(t) ∈ R, H

k
(t) ∈ R, and p = 1.

The term f (θ) ≤ f+
(
θ,θ

)
with an auxiliary function was defined as

f+
(
θ,θ

)
≡

∑
f ,k,t

∣∣∣∣Yk
(ω, t) −Wk(ω)Hk(t)·ejφk(ω,t)

∣∣∣∣2
βk(ω, t)

+
∑
k,t

[(
λk(t)

)p
(
p
∣∣∣∣Hk

(t)
∣∣∣∣p−2

Hk(t)2 + (2− p)
∣∣∣∣Hk

(t)
∣∣∣∣p)− logλk(t)

]
(A4)

where θ =
{
Y

k
(ω, t), H

k
(t)

∣∣∣∣ 1 ≤ f ≤ F, 1 ≤ t ≤ T, 1 ≤ k ≤ K
}
. The function f+

(
θ,θ

)
is minimized w.r.t.

θwhen
Y

k
(ω, t) = Wk(ω)H

k
(t)·ejφk(ω,t) + βk(ω, t)(Y(ω, t) −X(ω, t)) (A5)

H
k
(t) = Hk(t) (A6)

Appendix B. Estimation of the Spectral Basis and Temporal Code

In Equation (4), the update rule for θ is derived by differentiating f+
(
θ,θ

)
. partially w.r.t. Wk(ω)

and Hk(t), and setting them to zero, which yields the following:

Wk(ω) =

∑
t

Hk(t)
βk(ω,t)

Re
[
Y

k
(ω, t)∗·ejφk(ω,t)

]
∑

t
Hk(t)2

βk(ω,t)

(A7)

Hk(t) =

∑
f

Wk(ω)
βk(ω,t)

Re
[
Y

k
(ω, t)∗·ejφk(ω,t)

]
∑

f
Wk(ω)2

βk(ω,t)
+ (λk(t))p p

∣∣∣∣Hk
(t)

∣∣∣∣p−2 (A8)

The update rule for the phase, φk(ω, t), can be derived by reformulating Equation (A1) as follows:

f+
(
θ,θ

)
=

∑
k, f ,t

∣∣∣∣Yk
(ω,t)

∣∣∣∣2− 2Wk(ω)Hk(t)Re
[
Y

k
(ω,t)·e− jφk(ω,t)

]
+Wk(ω)2Hk(t)2

βk(ω,t)
+

∑
k,t
λk(t)

(∣∣∣∣Hk
(t)

∣∣∣∣−1
Hk(t)2 −H

k
(t)

)
−∑

k,t
logλk(t)

= A− 2
∑

k, f ,t

Wk(ω)Hk(t)
∣∣∣∣Yk

(ω,t)
∣∣∣∣

βk(ω,t)

⎛⎜⎜⎜⎜⎜⎝Re
[
Y

k
(ω,t)·e− jφk(ω,t)

]
∣∣∣∣Yk

(ω,t)
∣∣∣∣

⎞⎟⎟⎟⎟⎟⎠
= A− 2

∑
k, f ,t

∣∣∣Bk(ω, t)
∣∣∣Re

[(
Y

k
(ω,t)(r)+ jY

k
(ω,t)(i)

)
(cosφk(ω,t)− j sinφk(ω,t))

]
∣∣∣∣Yk

(ω,t)
∣∣∣∣

= A− 2
∑

k, f ,t

∣∣∣Bk(ω, t)
∣∣∣ cosφk(ω, t)cos Ωk(ω, t) + sinφk(ω, t)sin Ωk(ω, t)

= A− 2
∑

k, f ,t

∣∣∣Bk(ω, t)
∣∣∣ cos

(
φk(ω, t) −Ωk(ω, t)

)

(A9)
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where A denotes the terms that are irrelevant with φk(ω, t), Bk(ω, t) = Wk(ω)Hk(t)Y
k
(ω,t)

βk(ω,t)
, cos Ωk(ω, t) =

Re
[
Y

k
(ω,t)

]
∣∣∣∣Yk

(ω,t)
∣∣∣∣ , and sin Ωk(ω, t) =

Im
[
Y

k
(ω,t)

]
∣∣∣∣Yk

(ω,t)
∣∣∣∣ . The auxiliary function, f+

(
θ,θ

)
in (A4) is minimized when

cos
(
φk(ω, t) −Ωk(ω, t)

)
= cosφk(ω, t) cosk(ω, t) + sinφk(ω, t)sin Ωk(ω, t) = 1, namely, cosφk(ω, t) =

cos Ωk(ω, t) and sinφk(ω, t) = sin Ωk(ω, t). The update formula for ejφk(ω,t) eventually leads to

ejφk(ω,t) = cosφk(ω, t) + j sinφk(ω, t)

=
Re

[
Y

k
(ω,t)

]
+Im

[
Y

k
(ω,t)

]
∣∣∣∣Yk

(ω,t)
∣∣∣∣

=
Y

k
(ω,t)∣∣∣∣Yk
(ω,t)

∣∣∣∣
(A10)

The update formula for βk(ω, t) and Hk(t) for projection onto the constraint space is set to

βk(ω, t) =
Wk(ω)Hk(t)∑
k Wk(ω)Hk(t)

(A11)

Hk(t) ← Hk(t)∑
k Hk(t)

(A12)

Appendix C. Estimation of L1-Optimal Sparsity Parameter λk(t)

This section aims to facilitate spectral dictionaries with adaptive sparse coding. First, the CMF
model is defined as the following terms:

W =

[
I⊗W1(ω)

...I⊗W2(ω)
... · · · ...I⊗WK(ω)

]
,

ejφ(t) =

[
ejφ1(t)... · · · ...ejφK(t)

]

y = vec(Y) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Y1(:)
. . .

Y2(:)
. . .
...
. . .

YK(:)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, h =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

H1(t)
. . .

H2(t)
. . .
...
. . .

HK(t)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, λ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

λ1(t)
. . .
λ2(t)
. . .
...
. . .
λK(t)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, φ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

φ1(:, t)
. . .

φ2(:, t)
. . .
...
. . .

φK(:, t)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
W◦ejφ(t) 0 . . . 0

0 W◦ejφ(t) 0
...

... 0 W◦ejφ(t) 0

0 . . . 0 W◦ejφ(t)t

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(A13)

where “⊗” and “◦” are the Kronecker product and the Hadamard product, respectively. The term
vec(·) denotes the column vectorization and the term I is the identity matrix. The goal is then set to
compute the regularization parameter λk(t) related to each Hk(t). To achieve the goal, the parameter p
in Equation (A3) was set at 1 to acquire a linear expression (in λk(t)). In consideration of the noise
variance σ2, Equation (A3) can concisely be rewritten as:

F(h,λ) =
1

2σ2 y− Ah2
F + λ

Th− (logλ)T
1 (A14)
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where the h and λ terms indicate vectors of dimension R× 1 (i.e., R = F×T ×K), and the superscript ‘T’
is used to denote complex Hermitian transpose (i.e., vector (or matrix) transpose), followed by complex
conjugate. The Expectation–Maximization (EM) algorithm is used to determine λ and h is the hidden
variable, where the log-likelihood function can be optimized with respect to λ. The log-likelihood
function satisfies the following [12]:

ln p
(
y
∣∣∣∣λ, A, σ2

)
≥

∫
Q(h) ln

⎛⎜⎜⎜⎜⎜⎜⎜⎝p
(
y, h

∣∣∣∣λ, A, σ2
)

Q(h)

⎞⎟⎟⎟⎟⎟⎟⎟⎠ dh (A15)

by applying the Jensen’s inequality for any distribution Q(h). The distribution can simply verify
the posterior distribution of h that maximizes the right-hand side of Equation (A19) is given by

Q(h) = p
(
h
∣∣∣∣y,λ, A, σ2

)
. The posterior distribution in the form of the Gibbs distribution is proposed

as follows:

Q(h) =
1

Zh
exp[−F(h)] where Zh =

∫
exp[−F(h)]dh (A16)

The term F(h) in Equation (A16) as the function of the Gibbs distribution is essential for simplifying
the adaptive optimization of λ. The maximum-likelihood (ML) estimation of λ can be decomposed
as follows:

λML = arg max
λ

ln p
(
y
∣∣∣∣λ, A, σ2

)
= arg max

λ

∫
Q(h)

(
ln p

(
y
∣∣∣∣h, A, σ2

)
+ ln p(h

∣∣∣λ))dh

= arg max
λ

∫
Q(h) ln p(h

∣∣∣λ)dh

(A17)

In the same way,

σ2
ML = arg max

σ2
ln p

(
y
∣∣∣∣λ, A, σ2

)
= arg max

σ2

∫
Q(h)

(
ln p

(
y
∣∣∣∣h, A, σ2

)
+ ln p(h

∣∣∣λ))dh

= arg max
σ2

∫
Q(h) ln p

(
y
∣∣∣∣h, A, σ2

)
dh

(A18)

Individual element of H is required to be exponentially distributed with independent decay
parameters that delivers p(h

∣∣∣λ) = ∏
g
λg exp

(
−λghg

)
, thus Equation (20) obtains

λML = arg max
λ

∫
Q(h)

(
lnλg − λghg

)
dh (A19)

The term h denotes the dependent variable of the distribution Q(h) whereas other parameters are
assumed to be constant. As such, the λ optimization in (A19) is derived by differentiating the parameters
within the integral with respect to h. As a result, the functional optimization of λ then obtains

λg =
1∫

hgQ(h)dh
(A20)

where g = 1, 2, . . . , R, λg denotes the gth element of λ. The iterative update for σ2
ML is given by

σ2
ML = arg max

σ2

∫
Q(h)

(−N0
2 ln

(
πσ2

)
− 1

2σ2 ‖y− Ah‖2
)
dh

= 1
N0

∫
Q(h)

(
‖y− Ah‖2

)
dh

(A21)
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where p
(
y
∣∣∣∣h, A, σ2

)
=

(
πσ2

)−N0/2
exp

(
−
(
1/2σ2

)
‖y− Ah‖2

)
and N0 = K × T. However, the integral

forms in Equations (A20) and (A21) are complex to compute and analyzed analytically. Thus, an
approximation to Q(h) is exploited. Notice that the solution h naturally splits its elements into distinct
subsets hM and hP consisting of components ∀m ∈M such that hm > 0 and components ∀p ∈ P such
that hP = 0. Hence, this can be derived as follows:

F(h,λ) = F
(
hM,λM

)
+ F

(
hP,λP

)
+ G (A22)

Defined F
(
hM,λM

)
= 1

2σ2 ‖y − AMhM‖2 + λT
MhM − (logλ)T

M1M, F
(
hP,λP

)
= 1

2σ2 ‖y − APhP‖2 +
λT

PhP − (logλ)T
P1P, and G = 1

2σ2

[
2
(
AMhM

)T(
APhP

)
− ‖y‖2

]
. Here, the term ‖y‖2 is a constant and the

cross-term
(
AMhM

)T(
APhP

)
measures the orthogonality between AMhM and APhP, where AM and

AP denote the sub-matrix of A that corresponds to hM and hP. To obtain a simplified expression in
Equation (A22), the F(h) function can be approximated as F(h,λ) ≈ F

(
hM,λM

)
+ F

(
hP,λP

)
and the G

can be safely discounted since its value is typically much smaller than F
(
hM,λM

)
and F

(
hP,λP

)
. Thus,

the approximation of Q(h) can be expressed as

Q(h,λ) = 1
Zh

exp[−F(h,λ)]

≈ 1
Zh

exp
[
−
(
F
(
hM,λM

)
+ F

(
hP,λP

))]
= 1

ZM
exp

[
−F

(
hM,λM

)]
1

ZP
exp[− F

(
hP,λP

)
]

= QM
(
hM

)
QP

(
hP

)
(A23)

Defining ZM =
∫

exp
[
−F

(
hM,λM

)]
dhM and ZP =

∫
exp

[
−F

(
hP,λP

)]
dhP. With the purpose of

characterizing QP
(
hP

)
, some positive deviation to hP is needed to be allowed for, whereas the hP values

will reject all negative values due to CMF only accepting zero and positive values. Thus, hP admits
zero and positive values in QP

(
hP

)
. The approximation of the distribution QP

(
hP

)
is then utilized in

the Taylor expansion as the maximum a posterior probability (MAP) estimate. Therefore, with hMAP,
one obtains

QP
(
hP ≥ 0

)
∝ exp

⎧⎪⎪⎨⎪⎪⎩−
[ (
∂ F
∂h

)∣∣∣∣∣
hMAP

]T

P
hP − 1

2 hT
PCPhP

⎫⎪⎪⎬⎪⎪⎭
= exp

[
−
(
ChMAP − 1

σ2 A
T

y + λ
)T

P
hP − 1

2 hT
PCPhP

] (A24)

where CP = 1
σ2 A

T
PAP and C = 1

σ2 A
T

A. The integration of the term QP
(
hP

)
in Equation (A24) is hard to

derive in its closed form expression for analytical evaluation, which subsequently prohibits inference of
the sparsity parameters. A fixed form distribution is employed for computing variational approximate
QP

(
hP

)
. As a result, the closed form expression is obtained. Subsequently, the term hP only takes on

nonnegative values, so a suitable fixed form distribution is to use the factorized exponential distribution
given by

Q̂P
(
hP ≥ 0

)
=

∏
p∈P

1
up

exp
(−hp

up

)
(A25)

By minimizing the Kullback–Leibler divergence between QP and Q̂P, the variational parameters
u =

{
up

}
where ∀p ∈ P can be derived as:

u = arg= min
u

Q̂P
(
hP

)
ln

Q̂P(hP)
QP(hP)

dhP

= arg= min
u

Q̂P
(
hP

)[
ln Q̂P

(
hP

)
− ln QP

(
hP

)]
dhP

(A26)
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Solving Equation (A26) for up leads to the following update [37]:

up ← up

−b̂p +

√
b̂2

p + 4
(Ĉu)p

ũp

2
(
Ĉu

)
p

(A27)

The approximate distribution for components hM can be obtained by substituting F
(
hM,λM

)
into

QM
(
hM

)
as follows:

QM
(
hM

)
= 1

ZM
exp

[
−F

(
hM,λM

)]
∝ exp

[
−
(

1
2 hT

MCMhM − 1
σ2 yTAMhM + λMhM

)] (A28)

In Equation (A28), the function QM
(
hM

)
will be expressed as the unconstrained Gaussion with

mean hMAP
M and covariance C

−1
M based on a multivariate Gaussian distribution. The term CM denotes

the sub-matrix of C. The sparsity parameter is then obtained by substituting Equations (A24), (A25),
and (A28) into Equation (A20) as presented in Equation (A29):

λg =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1∫

hgQM(hM)dhM
= 1

hMAP
g

if g ∈ M
1∫

hgQ̂P(hP)dhP
= 1

ug
if g ∈ P

(A29)

and its covariance X is given by

Xab =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(
C
−1
P

)
ab

, if a, b ∈ M

u2
pδab, Otherwise.

(A30)

Similarly, the inference for σ2 can be computed from Equation (24) as

σ2 =
1

N0

∫
Q(h)

(
‖y− Ah‖2

)
dh (A31)

where

ĥg =

{
hMAP

g if g ∈ M
ug if g ∈ P

The core procedure of the proposed CMF method is based on L1-optimal sparsity parameters.
The estimated sources are discovered by multiplying the respective rows of the Wk(ω) components
with the corresponding columns of the Hk(t) weights and time-varying phrase spectrum ejφk(ω,t).
The separated sources ŝ j(t) are obtained by converting the time-frequency represented sources into
time domain.
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Abstract: The rapid development of sensor technology gives rise to the emergence of huge amounts
of tensor (i.e., multi-dimensional array) data. For various reasons such as sensor failures and
communication loss, the tensor data may be corrupted by not only small noises but also gross
corruptions. This paper studies the Stable Tensor Principal Component Pursuit (STPCP) which
aims to recover a tensor from its corrupted observations. Specifically, we propose a STPCP model
based on the recently proposed tubal nuclear norm (TNN) which has shown superior performance
in comparison with other tensor nuclear norms. Theoretically, we rigorously prove that under
tensor incoherence conditions, the underlying tensor and the sparse corruption tensor can be stably
recovered. Algorithmically, we first develop an ADMM algorithm and then accelerate it by designing
a new algorithm based on orthogonal tensor factorization. The superiority and efficiency of the
proposed algorithms is demonstrated through experiments on both synthetic and real data sets.

Keywords: tensor principal component pursuit; stable recovery; tensor SVD; ADMM

1. Introduction

In recent years, different types of tensor data have emerged with the significant progress of
modern sensor technology, such as color images [1], videos [2], functional MRI data [3], hyper-spectral
images [4], point could data [5], traffic stream data [6], etc. Thanks to its multi-way nature, tensor-based
methods have natural superiority over vector and matrix-based methods in analyzing and processing
ubiquitous modern multi-way data, and have found extensive applications in computer vision [1,7],
data mining [5], machine learning [2], signal processing [8], to name a few. In real applications,
the acquired tensor data may often suffer from noises and gross corruptions owing to many different
reasons such as sensor failure, lens pollution, communication interference, occlusion in videos,
or abnormalities in a sensor network [9], etc. At the same time, many real-world tensor data, such
as face images or videos, have been shown to have some low-dimensional structure and can be well
approximated by a smaller number of “principal components” [8]. Then, a question naturally arises:
how to pursue the principal components of an observed tensor data in the presence of both noises and
gross corruptions? We will answer this question in this paper and refer to the proposed methodology
as Stable Tensor Principal Component Pursuit (STPCP).

The tensor low-rankness is an ideal model of the property that a tensor data can be well
approximated by a small number of principal components [8]. In the last decade, low-rank tensor
models have attracted much attention in many fields [10]. There are multiple low-rank tensor
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models since there exist different definitions of tensor rank. Among these models, the low CP rank
model [11] and the low Tucker rank model [1] should be the most famous two. The low CP rank
model approximates the underlying tensor by the sum of a small number of rank-1 tensors, whereas
the low Tucker rank model assumes the unfolding matrix along each mode are low rank. To estimate
an unknown low-rank tensor from corrupted observations, it is a natural option to consider the rank
minimization problem which chooses the tensor of lowest rank as the solution from a certain feasible
set. However, tensor rank minimization, even in its 2-way (matrix) case, is generally NP-hard [12] and
even harder in higher-way cases [13]. For tractable solutions, researchers turn to a variety of convex
surrogates for tensor rank [1,14–18] to replace the tensor rank in rank minimization problem. Methods
based on surrogates for the tensor CP rank and Tucker rank have been extensively explored in both
the theoretical side and the application side [14,17,19–24].

Recently, the low-tubal-rank model [16,25] has shown better performance than traditional
tensor low-rank models in many tensor recover tasks such as image/video inpainting/denoising/
sensing [2,25,26], moving object detection [27], multi-view learning [28], seismic data completion [29],
WiFi fingerprint [30], MRI imaging [16], point cloud data inpainting [31], and so on. The tubal rank
is a new complexity measure of tensor defined through the framework of tensor singular value
decomposition (t-SVD) [32,33]. At the core of existing low-tubal-rank models is the tubal nuclear norm
(TNN) which is a convex surrogate for the tubal rank. In contrast to CP-based tensor nuclear norms or
Tucker-based tensor nuclear norms which models low-rankness in the original domain, TNN models
low-rankness in the Fourier domain. It is pointed out in [25,34,35] that TNN has superiority over
traditional tensor nuclear norms in exploiting the ubiquitous “spatial-shifting” property in real-world
tensor data.

Inspired by the superior performance of TNN, this paper adopts TNN as a low-rank regularizer in
the proposed STPCP model. Specifically, the proposed STPCP aims to estimate the underlying tensor
data L0 ∈ Rn1×n2×n3 from an observation tensor M polluted by both small dense noises and sparse
gross corruptions as follows:

M = L0 + S0 + E0, (1)

where S0 is a tensor denoting the sparse corruptions and E0 is a tensor representing small dense noises.
Model (1) is also known as robust tensor decomposition in [36,37].

Our STPCP model is first formulated as a TNN-based convex problem. Then, our theoretical
analysis gives upper bound on the estimation error of L0 and S0. In contrast to the analysis in [37],
the proposed STPCP can exactly recovery the underlying tensor L0 and the sparse corruption tensor S0
when the noise term E0 vanishes. For efficient solution of the proposed STPCP model, we develop
two algorithms with extensions to a more challenging scenario where missing observations are also
considered. The first algorithm is an ADMM algorithm and the second algorithm accelerates it using
tensor factorization. Experiments show the effectiveness and the efficiency of the designed algorithms.

We organize the rest of this paper as follows. In Section 2, we briefly introduce basic preliminaries
for t-SVD and some related works. The proposed STPCP model is formulated and analyzed
theoretically in Section 3. We design two algorithms in Section 4 and report experimental results in
Section 5. This work is concluded in Section 6. The proofs of theorems, propositions, and lemmas are
given in the appendix.

2. Preliminaries and Related Works

In this section, some preliminaries of t-SVD are first introduced. Then, the related works
are presented.

Notations. We denote vectors by bold lower-case letters, e.g., a ∈ Rn, matrices by bold upper-case
letters, e.g., A ∈ Rn1×n2 , and tensors by underlined upper-case letters, e.g., A ∈ Rn1×n2×n3 . For a
given 3-way tensor, we define its fiber as a vector given through fixing all indices but one, and its
slice as a matrix obtained by fixing all indices but two. For a given 3-way tensor A, we use Aijk to
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denote its (i, j, k)-th element; A(k) := A(:, :, k) is used to denote its k-th frontal slice. Ã is used to
denote the tensor after performing 1D Discrete Fourier Transformation (DFT) on all tube fibers A(i, j, :)
of T, ∀i = 1, 2, · · · , n1, j = 1, 2, · · · , n2, which can be efficiently computed by the Matlab command
Ã = fft(A, [], 3). We use dft3(·) and idft3(·) to represent the 1D DFT and inverse DFT along the tube
fibers of 3-way tensors, i.e., dft3(A) := fft(A, [], 3), idft3(A) := ifft(A, [], 3).

For a given matrix M ∈ Rn1×n2 , define the nuclear norm and spectral norm of M respectively as:

‖M‖∗ :=
p

∑
i=1

σi(M), and ‖M‖sp := max{σi(M)},

where p = min{n1, n2}, and σ1(M) ≥ · · · ≥ σp(M) are the singular values of M in a non-ascending
order. The l0-norm, l1-norm, Frobenius norm, l∞-norm of a tensor A ∈ Rn1×n2×n3 is defined as:

‖A‖0 := ∑
ijk

1(Aijk �= 0), ‖A‖1 := ∑
ijk

|Aijk|, ‖A‖F :=
√

∑
ijk

A2
ijk, ‖A‖∞ := max

ijk
|Aijk|,

where 1(C) is an indicator function whose value is 1 if the condition C is true, and 0 otherwise.
Given two matrices A = (aij) ∈ Cn1×n2 , B = (bij) ∈ Cn1×n2 , we define their inner product

as follows:
〈A, B〉 = tr(AHB) = ∑

ij
āijbij,

where AH denotes conjugate transpose of matrix A and āij denotes the conjugation of complex number
aij. Given two 3-way tensors A, B ∈ Rn1×n2×n3 , we define their inner product as follows:

〈A, B〉 := ∑
ijk

AijkBijk.

2.1. Tensor Singular Value Decomposition

We first define 3 operators based on block matrices which are introduced in [33]. For a given
3-way tensor A ∈ Rn1×n2×n3 , we define its block vectorization bvec(·) and the inverse operation
bvfold(·) in the following equation:

bvec(A) :=

⎡⎢⎢⎢⎢⎣
A(1)

A(2)

...
A(n3)

⎤⎥⎥⎥⎥⎦∈ R
n1n3×n2 , bvfold(bvec(A)) = A.

We further define the block circulant matrix bcirc(·) of any 3-way tensor A ∈ Rn1×n2×n3 as follows:

bcirc(A) :=

⎡⎢⎢⎢⎢⎣
A(1) A(n3) · · · A(2)

A(2) A(1) · · · A(3)

...
. . . . . .

...
A(n3) A(n3−1) · · · A(1)

⎤⎥⎥⎥⎥⎦ ∈ C
n1n3×n2n3

Equipped with above defined operators, we are now in a position to define the t-product of
3-way tensors.

Definition 1 (t-product [33]). Given two tensors A ∈ Rn1×n2×n3 and B ∈ Rn2×n4×n3 , the t-product of A
and B is a new 3-way tensor C with size n1 × n4 × n3:

C = A ∗ B =: bvfold (bcirc(A)bvec(B)) . (2)
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A more intuitive interpretation of t-SVD is as follows [33]. If we treat a 3-way tensor
A ∈ Rn1×n2×n3 as a matrix of size n1 × n2 whose entries are the tube fibers, then the tensor t-product
can be analogously understood as the “matrix multiplication” where the standard scalar product is
replaced with the vector circular convolution between the tubes (i.e., vectors):

C = A ∗ B ⇔ C(i, j, :) =
n2

∑
k=1

A(i, k, :) � B(k, j, :), ∀i = 1, 2, · · · , n1, j = 1, 2, · · · , n4, (3)

where � represent the operation of circular convolution [33] of two vectors a, b ∈ Rn3 defined as
(a � b)j = ∑n3

k=1 akb1+(j−k)modn3
.

We also define the block diagonal matrix bdiag(·) of any 3-way tensor A ∈ Rn1×n2×n3 and its
inverse bdfold(·) as follows

bdiag(A) :=

⎡⎢⎢⎣
A(1)

. . .
A(n3)

⎤⎥⎥⎦∈ R
n1n3×n2n3 , bdfold(bdiag(A)) = A.

We also use A (or A) to denote the block diagonal matrix of tensor Ã = dft3(A) (i.e., the Fourier
version of A) i.e.,

A = bdiag(Ã) :=

⎡⎢⎢⎣
Ã
(1)

. . .

Ã
(n3)

⎤⎥⎥⎦∈ C
n1n3×n2n3 .

Then the relationship between DFT and circular convolution further indicates that the conducting
t-product in the original domain is equivalent to performing standard matrix product on the Fourier
block diagonal matrices [33]. Since matrix product on the Fourier block diagonal matrices can
be parallel written as matrix product of all the frontal slices in the Fourier domain, we have the
following relationships:

C = A ∗ B ⇔ C = AB ⇔ C̃
(k)

= Ã
(k)

B̃
(k)

, k = 1, 2, · · · , n3. (4)

The relationship between the t-product and FFT also indicates that the inner product of two 3-way
tensors A, B ∈ Rn1×n2×n3 and the inner product of their corresponding Fourier block diagonal matrices
A, B ∈ Cn1n3×n2n3 satisfy the following relationship:

〈A, B〉 = 1
n3

〈
Ã, B̃

〉
=

1
n3

〈
A, B

〉
.

When A = B = X, one has:

‖X‖F =
1√
n3

‖X‖F.

We further define the concepts of tensor transpose, identity tensor, f-diagonal tensor and
orthogonal tensor as follows.

Definition 2 (tensor transpose [33]). Given a tensor A ∈ Rn1×n2×n3 , then define its transpose tensor A of
size n2 × n1 × n3 which can be formed through first transposing all the frontal slices of A and then exchanging
each k-th transposed frontal slice with the (n3 + 2 − k)-th transposed frontal slice for all k = 2, 3, · · · , n3.
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For example, consider 3-way tensor A = [A(1)|A(2)|A(3)|A(4)] ∈ Rn1×n2×4 with 4 frontal slices,
the tensor transpose A of A is:

A = [(A(1))|(A(4))|(A(3))|(A(2))] ∈ R
n2×n1×4.

Definition 3 (identity tensor [33]). The identity tensor I ∈ Rn×n×n3 is a tensor whose first frontal slice is the
n-by-n identity matrix with all other frontal slices are zero matrices.

Definition 4 (f-diagonal tensor [33]). We call a 3-way tensor f-diagonal if all the frontal slices of it are
diagonal matrices.

Definition 5 (orthogonal tensor [33]). We call a tensor Q ∈ Rn×n×n3 an orthogonal tensor if the following
equations hold:

Q ∗ Q = Q ∗ Q = I.

Then, the tensor singular value decomposition (t-SVD) can be given as follows.

Definition 6 (Tensor singular value decomposition, and Tensor tubal rank [38]). Given any 3-way tensor
X ∈ Rn1×n2×n3 , then it has the following factorization called tensor singular value decomposition (t-SVD):

X = U ∗ Σ ∗ V, (5)

where the left and right factor tensors U ∈ Rn1×n1×n3 and V ∈ Rn2×n2×n3 are orthogonal, and the middle
tensor Σ ∈ Rn1×n2×n3 is a rectangular f -diagonal tensor.

A visual illustration for the t-SVD is shown in Figure 1. It can be computed efficiently by FFT and
IFFT in the Fourier domain according to Equation (4). For more details, see [2].

Figure 1. A visual illustration of t-SVD.

Definition 7 (Tensor tubal rank [38]). The tensor tubal rank of any 3-way tensor X ∈ Rn1×n2×n3 is defined
as the number of non-zero tubes of Σ in its t-SVD shown in Equation (5), i.e.,

rtubal(A) := ∑
i
1(Σ(i, i, :) �= 0). (6)

Definition 8 (Tubal average rank [38]). The tubal average rank ra(A) of any 3-way tensor A ∈ Rn1×n2×n3

is defined as the averaged rank of all frontal slices of Ã as follows,

ra(A) :=
1
n3

n3

∑
k=1

rank
(

Ã
(k)
)

. (7)
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Definition 9 (Tensor operator norm [2,38]). The tensor operator norm ‖F‖op of any 3-way tensor
F ∈ Rn1×n2×n3 is defined as follows:

‖F‖op := sup
‖A‖F≤1

‖F ∗ A‖F. (8)

The relationship between t-product and FFT indicates that

‖F‖op := sup
‖A‖F≤1

‖F ∗ A‖F = sup
‖A‖F≤

√
n3

‖F · A‖F = ‖A‖sp. (9)

Definition 10 (Tensor spectral norm [38]). The tensor spectral norm ‖A‖sp of any 3-way tensor
F ∈ Rn1×n2×n3 is defined as the matrix spectral norm of A, i.e.,

‖A‖sp := ‖A‖sp. (10)

We further define the tubal nuclear norm.

Definition 11 (Tubal nuclear norm [2]). For any tensor A ∈ Rn1×n2×n3 with t-SVD A = U ∗ Σ ∗ V,
the tubal nuclear norm (TNN) of A is defined as:

‖A‖TNN := 〈Σ, I〉 =
r

∑
i=1

Σ(i, i, 1), (11)

where r = rtubal(A).

To understand the tubal nuclear norm, first note that

rtubal(A) = ∑i 1(Σ(i, i, :) �= 0)
(i)
= ∑i 1(Σ̃(i, i, :) �= 0)

(ii)
= ∑i 1(‖Σ̃(i, i, :)‖1 �= 0)

(iii)
= ∑i 1(Σ(i, i, 1) �= 0), (12)

where (i) holds because of the definition of DFT [2], (ii) holds by the property of l1-norm, and (iii)
is a result of DFT [2]. Thus, the tubal rank of A is also the number of non-zero diagonal elements
of Σ(i, i, 1), i.e., the first frontal slice of tensor Σ in the t-SVD of A. Similar to the matrix singular
values, the values Σ(i, i, 1), i = 1, 2, · · · , n3 are also called the singular values of tensor A. As the matrix
nuclear norm is the sum of matrix singular values, the tubal nuclear norm can be similarly understood
as the sum of tensor singular values.

One can also verify by the property of DFT [2] that:

‖A‖TNN =
r

∑
i=1

Σ(i, i, 1) =
n3

∑
k=1

r

∑
i=1

Σ̃(i, i, k) =
1
n3

n3

∑
k=1

‖Ã
(k)‖∗ =

1
n3

‖A‖∗, (13)

which indicates that the TNN of A ∈ Rn1×n2×n3 is also the averaged nuclear norm all frontal slices of
Ã. Thus, TNN indeed models the low-rankness of Fourier domain.

Now, we will show that the low-tubal-rank model is ideal to some real-world tensor data, such as
color images and videos.

First, we consider a natural image of size 256 × 256 × 3, shown in Figure 2a. In Figure 2b, we plot
the distribution of its singular values, i.e., the values of Σ(i, i, 1) along with the index i. As can be seen
from Figure 2b, there are only a small number of singular values with large magnitude, and most of
the singular values are close to 0. Then, we can say that some natural color images are approximately
low tubal rank.
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(a) (b)

Figure 2. The distribution of tensor singular values Σ(i, i, 1) in a natural color image. (a) the sample
image, (b) the distribution of Σ(i, i, 1).

Then, consider a commonly used YUV sequence Mother-daughter_qcif (These data can be download
from the following link https://sites.google.com/site/subudhibadri/fewhelpfuldownloads.) whose
first frame is shown in Figure 3a. We use the Y components of the first 30 frames, and get a tensor
of size 144 × 176 × 30 and show the distribution of tensor singular values in Figure 3b. We can see
from Figure 3b that similar to Figure 2b, there are only a small number of singular values with large
magnitude, and most of the singular values are close to 0. Then, we can say that some videos can be
well approximately low tubal rank.

(a) (b)

Figure 3. The distribution of tensor singular values Σ(i, i, 1) in a video sequence. (a) the first frame of
the video, (b) the distribution of Σ(i, i, 1).

For TNN and tensor spectral norm, we highlight the following two lemmas.

Lemma 1. [2] TNN is the convex envelop of the tensor average rank in the unit ball of tensor spectral norm
{T ∈ Rn1×n2×n3 |‖T‖sp ≤ 1}.

Lemma 2. [2] The TNN and the tensor spectral norm are dual norms to each other.

2.2. Related Works

In this subsection, we briefly introduce some related works. The proposed STPCP is tightly related
to the Tensor Robust Principal Component Analysis (TRPCA) which aims to recover a low-rank tensor
L0 and a sparse tensor S0 from their sum M = L0 + S0. This is a special case of our measurement
Model (1) where the noise tensor E0 is a zero tensor.
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In [39], the SNN-based TRPCA model is proposed by modeling the underlying tensor as a low
Tucker rank one

min
L,S

‖L‖SNN + ‖S‖1 s.t. L + S = M, (14)

where SNN (Sum of Nuclear Norms) is defined as ‖L‖SNN :=
K
∑

i=1
αk‖L(k)‖∗, where αk > 0 and L(k) is

the mode-k matricization of L [40].
Model (14) indeed assumes the underlying tensor to be low Tucker rank, which can be too strong

for some real tensor data. The TNN-based TRPCA model uses TNN to impose low-rankness in the
final solution L as follows

min
L,S

‖L‖TNN + λ‖S‖1 s.t. L + S = M. (15)

As shown in [2], when the underlying tensor L0 satisfy the tensor incoherent conditions, by solving
Problem (15), one can exactly recover the underlying tensor L0 and S0 with high probability with
parameter λ = 1/

√
max{n1, n2}n3.

When the noise tensor E0 is not zero, the robust tensor decomposition based on SNN is proposed
in [36] as follows:

min
L,S

1
2
‖M − L − S‖F + λ1‖L‖SNN + λ2‖S‖1, (16)

where λ1 and λ2 are positive regularization parameters. The estimation error on L and S is analyzed
with an upper bound in [36].

In [37], the TNN-based RTD model is proposed as follows:

min
L,S

1
2
‖M − L − S‖F + λ1‖L‖TNN + λ2‖S‖1, s.t.‖L‖∞ ≤ α, (17)

where α is an upper estimate of l∞-norm of the underlying tensor L0. An upper bound on the estimation
error is also established. However, in the analysis of Model (17), the error does not vanish as the noise
tensor E0 vanishes which means the analysis cannot guarantee exact recovery in the noiseless setting
(which can be provided by the analysis of TNN-based TRPCA (15) by Lu et al. [2]).

The Bayesian approach is also used for robust tensor recovery. The CP decomposition under
sparse corruption and small dense noise is considered [41], and tensor rank estimation is achieved
using Bayesian approach. In [42], CP decomposition under missing value and small dense noise is
considered with rank estimation similar to [41]. A sparse Bayesian CP model is proposed in [43] to
recover a tensor with missing value, outliers and noises. In [44], a fully Bayesian treatment is proposed
to recover a low-tubal-rank tensor corrupted by both noises and outliers.

3. Theoretical Guarantee for Stable Tensor Principal Component Pursuit

In this section, we formulate the proposed STPCP model and give the main theoretical result
which upper bounds the estimation error and guarantees exact recovery in the noiseless setting.

3.1. The Proposed STPCP

As for the measurement Model (1), we further assume that the noise tensor E0 has bounded
energy measured in F-norm, i.e., ‖E0‖F ≤ δ. Please note that the limited energy assumption is very
mild, since most signals are of limited energy.

To recover the low-rank tensor L0 and the sparse tensor S0, we first produce the following
optimization problem:

(L̂, Ŝ) = argmin
L,S

‖L‖TNN + λ‖S‖1, s.t. ‖M − L − S‖F ≤ δ, (18)

52



Sensors 2019, 19, 5335

where λ is a positive parameter balancing the two regularizers. The motivation is to use TNN as a
low-rank regularization term to exploit the low-dimensional structure in the signal tensor, whereas
tensor l1-norm is used to impose sparsity in the corruption tensor (since we assumes it to be sparse).

The relationship between Model (18) and existing models are discussed in Remark 1 and Remark 2.

Remark 1. The following models can be seen as special cases as the proposed STPCP Model (18);

(I). When δ = 0, i.e., in the noiseless case, the proposed model degenerates to the TRPCA Model (15) [2].
(II). When n3 = 1, then the stable tensor PCP Model (18) degenerates to the Stable Principal Component

Pursuit (SPCP) [45] which aims to pursuit the principal components modeled by low-rank matrix L0
from it observation M corrupted by both noises E0 and sparse corruptions S0. The SPCP is formulated
as follows:

min
L,S

‖L‖∗ + λ‖S‖1, s.t. ‖M − L − S‖F ≤ δ. (19)

(III). When n3 = 1 and δ = 0, the proposed STPCP further degenerates to Robust Principal Component
Analysis (RPCA) [46] given as follows

min
L,S

‖L‖∗ + λ‖S‖1, s.t. L + S = M. (20)

Remark 2. The differences from the proposed Model (18) and TNN-based RTD Model ((17) [37]) is as follows.
First, our model does not need to upper estimate the l∞-norm of the underlying tensor. Second, our model is a
constrained optimization problem, whereas Model (17) is an unconstrained optimization problem.

3.2. A Theorem for Stable Recovery

To analyze the statistical performance of Model (18), we should assume on the underlying
low-rank tensor L0 that it is not sparse. Only by this assumption, L0 can be identified from its mixture
with sparse S0. Such an assumption can be described by the tensor incoherence condition [2,47], which
is used to provide an identifiablility for low-rank L0.

Definition 12 (Tensor incoherence condition [2,47]). Given a 3-way tensor T ∈ Rn1×n2×n3 with tubal
rank r, suppose it has the skinny t-SVD T = U ∗ Λ ∗ V, where U ∈ Rn1×r×n3 , V ∈ Rr×n2×n3 are orthogonal
tensors, and Λ ∈ Rr×r×n3 is an f -diagonal tensor. Then, T is said to satisfy the tensor incoherent condition
(TIC) with parameter μ(T) if the following inequalities hold:

max
i∈[n1]

‖U ∗ e̊i‖F ≤
√

rμ(T)
n1n3

, (21)

max
j∈[n2]

‖V ∗ e̊j‖F ≤
√

rμ(T)
n2n3

, (22)

‖U ∗ V‖∞ ≤
√

rμ(T)
n1n2n3

. (23)

where e̊i ∈ Rn1×1×n3 is a tensor column basis with only the (i, 1, 1)-th element being 1 and all the others being 0,
and e̊j ∈ Rn2×1×n3 is also a tensor column basis with only the (j, 1, 1)-th element being 1 and all the others
being 0.

Assumption 1. Suppose the true tensor L0 in the measurement model (1) satisfies tensor incoherence condition
with parameter μ.

Assumption 1 intrinsically ensures that the row bases and column bases of L0 do not align well
with the canonical row and column bases. Thus, the low-rank L0 is not sparse, which avoids the
ambiguity that low-rank component can also be sparse in the measurement Model (1).

We should also force the sparse component in Model (1) is not low rank.
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Assumption 2. Assume the support Ω of S0 is drawn uniformly at random.

Now we can establish an upper bound on the estimation error of L̂ and Ŝ in Problem (18).

Theorem 1 (An Upper Bound on the Estimation Error). Suppose L0 and S0 satisfy Assumption 1 and
Assumption 2, respectively. If the tubal rank r of L0 and the sparsity (i.e., the l0-norm) s of S0 are respectively
upper bounded as follows:

r ≤ cr min{n1, n2}
μ log2(n3 max{n1, n2})

, and s ≤ csn1n2n3 (24)

where cl and cs are two sufficiently small numerical constants independent on the dimensions n1, n2 and n3.
Then the estimator defined in Model (18) satisfy the following inequalities:

‖L̂ − L0‖F ≤
(√

1 +
1

max{n1, n2}
+ 8(1 + 2

√
2)
√

min{n1, n2}n3

)
δ

‖Ŝ − S0‖F ≤
(√

1 + max{n1, n2}+ 8(1 + 2
√

2)
√

n1n2n3

)
δ,

(25)

with probability at least 1 − c1(n3 max{n1, n2})−c2 (over the choice of support of S0), where c1 and c2 are
positive constants independent on the dimensions n1, n2 and n3.

The proof of Theorem 1 are given in the appendix. In Theorem 1, estimation errors on L0 and S0
are separately established. It indicates that the estimation error scales linearly with the noise level δ,
which is in consistence with the result in [37].

Remark 3. A significant progress over [37] is that in the noiseless setting where E0 vanishes, our analysis
can provide exact recovery guarantee of L0 and S0. This is because the tensor incoherence condition adopted in
our analysis intrinsically ensures that the low-rank tensor L0 is not sparse and thus can be separated from the
sparse corruption tensor, whereas the non-spiky condition adopted in [37] fails to provide identifiability in the
measurement Model (1).

For Theorem 1, we also give the following remark.

Remark 4. The error bounds established in Theorem 1 are consistent with the theoretical analysis for the special
cases shown in Remark 1.

(I). When δ = 0, i.e., in the noiseless case, the error bounds in Theorem 1 will vanish, which means exact
recovery of L0 and S0 can be guaranteed. This result is consistent with the analysis in [2] for TNN-based
TRPCA Model (15).

(II). When n3 = 1, the error bound on the sparse component in Theorem 1 is consistent with the error bound
shown in Equation (8) of [45]. The upper bound on error of the low-rank component in Theorem 1 is
sharper than that given in Equation (8) of [45].

(III). When n3 = 1 and δ = 0, the proposed STPCP has consistent theoretical guarantee with the analysis of
RPCA [46].

4. Algorithms

In this section, we design two algorithms. The first algorithm is based on the framework of
ADMM [48] which has been extensively used in convex optimization with good convergence behavior.
However, ADMM requires full SVDs on large matrices in each iteration which is high computational
burden in high-dimensional settings. Thus, the second algorithm is proposed to solve this issue by
using a factorization trick which can instead conducting SVDs on much smaller matrices.
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4.1. An ADMM Algorithm

The proposed estimator (18) is equivalent to the following unconstrained problem:

min
L,S

1
2
‖L + S − M‖2

F + γ(‖L‖TNN + λ‖S‖1), (26)

where γ is a positive parameter balancing the data fidelity term and the regularization term.
Besides being corrupted by noises and outliers, the observed tensor M may also suffer from

missing entries which can be taken as outliers with known positions in many applications. Thus, it is
more practical to consider the recovery of L0 against outliers S0, noises E0 and missing entries shown
in the following measurement model:

M = B � (L0 + S0 + E0), (27)

where tensor B ∈ Rn1×n2×n3 denote the missing mask where Bijk = 1, if the (i, j, k)-th entry of L is
observed and Bijk = 0 otherwise, and � denotes element-wise multiplication. Taking into consideration
of missing entries, Model (26) can be further modified as:

min
L,S

1
2
‖B � (L + S − M)‖2

F + γ(‖L‖TNN + λ‖S‖1). (28)

By adding auxiliary variables to Problem (28), we obtain:

min
K,L,R,S

1
2
‖B � (L + S − M)‖2

F + γ‖K‖TNN + γλ‖R‖1

s.t. K = L, R = S.
(29)

The Augmented Lagrangian (AL) of Problem (29) is given as follows:

Lρ(L, S, K, R, Y1, Y2) =
1
2
‖B � (L + S − M)‖2

F + γ‖K‖TNN + γλ‖R‖1

+ 〈Y1, K − L〉+ ρ

2
‖K − L‖2

F + 〈Y2, R − S〉+ ρ

2
‖R − S‖2

F,
(30)

where Y1, Y2 ∈ Rn1×n2×n3 are Lagrangian multipliers and ρ is a penalty parameter.
According the strategy of ADMM, we update prime variables (L, S) and (K, R) by alternative

minimization of AL in Problem (29) as follows:

• Update (L, S). We update (L, S) by minimizing Lρ with other variables fixed as follows:

(Lt+1, St+1)

= argmin(L,S) Lρ(L, S, Kt, Rt, Yt
1, Yt

2)

= argmin(L,S)
1
2‖B � (L + S − M)‖2

F +
〈
Yt

1, Kt − L
〉
+ ρ

2‖Kt − L‖2
F +

〈
Yt

2, Rt − S
〉
+ ρ

2‖Rt − S‖2
F.

(31)

Taking derivatives of the right-hand side of Equation (31) with respect to L and S respectively,
and setting the results zero, we obtain:

B � (Lt+1 + St+1)− B � M − Yt
1 + ρ(Lt+1 − Kt) = 0

B � (Lt+1 + St+1)− B � M − Yt
2 + ρ(St+1 − Rt) = 0.

(32)
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Resolving the above equation group yields:

Lt+1 =
(
ρ(B + ρ1)� Kt + ρB � M + (B + ρ1)� Yt

1 − B � Yt
2 − ρB � Rt)� (ρ(2B + ρ1)) ,

St+1 =
(
ρ(B + ρ1)� Rt + ρB � M + (B + ρ1)� Yt

2 − B � Yt
1 − ρB � Kt)� (ρ(2B + ρ1)) ,

(33)

where � denotes entry-wise division and 1 denotes the tensor all whose entries are 1.
• Update (K, R). We update (K, R) by minimizing Lρ with other variables fixed as follows:

(Kt+1, Rt+1)

= argmin(K,R) Lρ(Lt+1, St+1, K, R, Yt
1, Yt

2)

= argmin(K,R) γ‖K‖TNN + γλ‖R‖1 +
〈

Yt
1, K − Lt+1

〉
+ ρ

2‖K − Lt+1‖2
F +

〈
Yt

2, R − St+1
〉
+ ρ

2‖R − St+1‖2
F.

(34)

Please note that Problem (34) can further be solved separately as follows:

Kt+1 = argmin
K

γ‖K‖TNN +
〈

Yt
1, K − Lt+1

〉
+

ρ

2
‖K − Lt+1‖2

F

= S
‖·‖TNN
γρ−1

(
Lt+1 − ρ−1Yt

1

)
.

(35)

and
Rt+1 = argmin

R
γλ‖R‖1 +

〈
Yt

1, R − St+1
〉
+

ρ

2
‖R − St+1‖2

F

= S
‖·‖1
γλρ−1

(
St+1 − ρ−1Yt

2

)
,

(36)

where S
‖·‖TNN
τ (·) is the proximity operator of TNN [5]. and S

‖·‖1
τ (·) is the proximity operator of

tensor l1-norm given as follows [49]:

S
‖·‖1
τ (A) := argmin

X
τ‖X‖1 +

1
2
‖X − A‖2

F = sign(A)� max{(|A| − τ, 0},

In [5], a closed-form expression of Sτ(·) is given as follows:

Lemma 3 (Proximity operator of TNN [5]). For any 3D tensor A ∈ Rn1×n2×n3 with reduced t-SVD
A = U ∗ Λ ∗ V, where U ∈ Rn1×r×n3 and V ∈ Rn2×r×n3 are orthogonal tensors and Λ ∈ Rr×r×n3 is
the f-diagonal tensor of singular tubes, the proximity operator S‖·‖TNN

τ (A) at A can be computed by:

S
‖·‖TNN
τ (A) := argmin

X
τ‖X‖TNN +

1
2
‖X − A‖2

F = U ∗ ifft3(max(fft3(Λ)− τ, 0)) ∗ V,

• Update (Y1, Y2). The Lagrangian multipliers are updated by gradient ascent as follows:

Yt+1
1 = Yt

1 + ρ(Kt+1 − Lt+1),

Yt+1
2 = Yt

2 + ρ(Rt+1 − St+1).
(37)

The algorithm is summarized in Algorithm 1. The convergence analysis of Algorithm 1 is
established in Theorem 2.
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Algorithm 1 Solving Problem (29) using ADMM.

Input: The observed tensor M, the parameters γ, λ, ρ, δ.
1: Initialize t = 0, L0 = S0 = K0 = R0 = Y0

1 = Y0
2 = 0 ∈ Rn1×n2×n3

2: for t = 0, · · · , Tmax do

3: Update (Lt+1, St+1) by Equation (33);
4: Update (Kt+1, Rt+1) by Equations (35)–(36);
5: Update (Yt+1

1 , Yt+1
2 ) by Equation (37);

6: Check the convergence criteria:

(i) convergence of variables: ‖At+1 − At‖∞ ≤ δ, ∀A ∈ {L, S, K, R},

(ii) convergence of constraints: max{‖Kt+1 − Lt‖∞, ‖Rt+1 − St+1‖∞} ≤ δ.
7: end for

Output: (L̂, Ŝ) = (Lt+1, St+1).

Theorem 2 (Convergence of Algorithm 1). For any ρ > 0, if the unaugmented Lagrangian
L(L, S, K, R, Y1, Y2) has a saddle point, then the iterations L(Lt, St, Kt, Rt, Yt

1, Yt
2) in Algorithm 1 satisfy

the residual convergence, objective convergence and dual variable convergence of Problem (29) as t → ∞.

The proof of Theorem 2 is given in the Appendix A.
In a single iteration of Algorithm 1, the main cost comes from updating Lt which involves

computing FFT, IFFT and n3 SVDs of n1 × n2 matrices [47]. Hence Algorithm 1 has per-iteration
complexity of order O

(
n1n2n3(n1 ∧ n2 + log n3)

)
. Thus, if the total iteration number is T, then the total

computational complexity is:

O
(

Tn1n2n3(min{n1, n2}+ log n3)
)

. (38)

4.2. A Faster Algorithm

To reduce the cost of computing TNN which is a main cost of Algorithm 1, we propose the
following lemma which indicates that TNN is orthogonal invariant.

Lemma 4. Given a tensor X ∈ Rr×r×n3 , let Q ∈ Rn1×r×n3 a two semi-orthogonal tensors, i.e., Q ∗ Q = I ∈
Rr×r×n3 and r ≤ min{n1, n2}. Then, we have the following relationship:

‖Q ∗ X‖TNN = ‖X‖TNN.

The proof of Lemma 4 can be found in the appendix. Equipped with Lemma 4, we decompose
the low-rank component in Problem (28) as follows:

L = Q ∗ X, s.t. Q ∗ Q = Ir,

where Ir ∈ Rr×r×n3 is an identity tensor. The similar strategy has been used in low-rank matrix recovery
from gross corruptions by [50]. Furthermore, we propose the following model for Problem (28):

min
Q,X,S

1
2
‖B � (Q ∗ X + S − M)‖2

F + γ(‖X‖TNN + λ‖S‖1)

s.t. Q ∗ Q = Ir,
(39)

where r is an upper estimation of tubal rank of the underlying tensor r∗ = rtubal(L0).
In contrast to Model (28), the proposed Model (39) is a non-convex optimization problem. That

means Model (39) may have many local minima. We establish a connection between the proposed
Model (39) with Model (28) in the following theorem.
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Theorem 3 (Connection between Model (39) and Model (28)). Let (Q∗, X∗, S∗) be a global optimal solution
to Problem (39). Furthermore, let (L�, S�) be the solution to Problem (28), and rtubal(L�) ≤ r, where r is the
initialized tubal rank. Then (Q∗ ∗ X∗, S∗) is also the optimal solution to Problem (28).

The proof of Theorem 3 can be found in the appendix. Theorem 3 states that the global optimal
point of the (non-convex) Model (39) coincides with solution of the (convex) Model (28). It further
indicates that the accuracy of Model (39) cannot exceed Model (28), which can be validated numerically
in the experiment section.

To solve Model (39), we also use the ADMM framework.
First, by adding auxiliary variables, we have the following problem:

min
L,S,R,Q,X

1
2
‖B � (L + S − M)‖2

F + γ(‖X‖TNN + λ‖R‖1)

s.t. Q ∗ X = L; R = S; Q ∗ Q = Ir.
(40)

The augmented Lagrangian of Problem (40) is:

L′
2(L, S, R, Q, X) =

1
2
‖B � (L + S − M)‖2

F + γ(‖X‖TNN + λ‖R‖1)

+
〈
Y1, Q ∗ X − L

〉
+

ρ

2
‖Q ∗ X − L‖2

F + 〈Y2, R − S〉+ ρ

2
‖R − S‖2

F

s.t. Q ∗ Q = Ir.

(41)

According the strategy of ADMM, we update prime variables (L, S) and (Q, X, R) by alternative
minimization of AL in Problem (41) as follows

• Update (L, S): We update (L, S) by minimizing L′
ρ with other variables fixed as follows

(Lt+1, St+1)

= argmin(L,S) L′
ρ(L, S, Qt, Xt, Rt, Yt

1, Yt
2)

= argmin(L,S)
1
2‖B � (L + S − M)‖2

F +
〈
Yt

1, Qt ∗ Xt − L
〉
+ ρ

2‖Qt ∗ Xt − L‖2
F +

〈
Yt

2, Rt − S
〉
+ ρ

2‖Rt − S‖2
F.

(42)

Taking derivatives of the right-hand side with respect to L and S respectively, and setting the
results zero, we obtain:

B � (Lt+1 + St+1)− B � M − Yt
1 + ρ(Lt+1 − Qt ∗ Xt) = 0

B � (Lt+1 + St+1)− B � M − Yt
2 + ρ(St+1 − Rt) = 0,

(43)

Resolving the above equation group yields:

Lt+1 =
(
(1 + ρ)Qt ∗ Xt + B � M + Yt

1 − Rt)� (2B + ρ1),

St+1 =
(
(1 + ρ)Rt + B � M + Yt

2 − Qt ∗ Xt)� (2B + ρ1).
(44)
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• Update Q. We update Q by minimizing L′
ρ with other variables fixed as follows:

min
Q∗Q=Ir

Lρ(Lt+1, St+1, Q, Xt, Rt, Yt
1, Yt

2)

= min
Q∗Q=Ir

〈
Yt

1, Q ∗ Xt − Lt+1
〉
+

ρ

2
‖Q ∗ Xt − Lt+1‖2

F.

= min
Q∗Q=Ir

ρ

2
‖Q ∗ Xt − (Lt+1 − ρ−1Yt

1)‖2
F

= P
(
(Lt+1 − ρ−1Yt

1) ∗ (Xt)
)

,

(45)

where operator P(·) is defined in Lemma 5 as follows.

Lemma 5 ([51]). Given any tensors A ∈ Rr×n2×n3 , B ∈ Rn1×n2×n3 , suppose tensor B ∗ A has t-SVD
B ∗ A = U ∗ Λ ∗ V, where U ∈ Rn1×r×n3 and V ∈ Rr×r×n3 . Then, the problem:

min
Q∗Q=Ir

‖P ∗ A − B‖2
F (46)

has a closed-form solution as:
Q = P(B ∗ A) := U ∗ V. (47)

• Update (X, R):We update (X, S) by minimizing L′
ρ with other variables fixed as follows:

min
(X,R)

Lρ(Lt+1, St+1, Qt+1, X, R, Yt
1, Yt

2)

= min
(X,R)

γ‖X‖TNN + γλ‖R‖1 +
〈

Yt
1, Qt+1 ∗ X − Lt+1

〉
+

ρ

2
‖Qt+1 ∗ X − Lt+1‖2

F

+
〈

Yt
2, R − St+1

〉
+

ρ

2
‖R − St+1‖2

F.

(48)

Please note that Problem (48) can further be solved separately as follows:

Kt+1 = argmin
X

γ‖X‖TNN +
〈

Yt
1, Qt+1 ∗ X − Lt+1

〉
+

ρ

2
‖Q ∗ X − Lt+1‖2

F

= argmin
X

γ‖X‖TNN +
ρ

2
‖Qt+1 ∗ X − (Lt+1 − ρ−1Yt

1)‖2
F

(i)
= argmin

X
γ‖X‖TNN +

ρ

2
‖X − (Qt+1) ∗ (Lt+1 − ρ−1Yt

1)‖2
F

= S
‖·‖TNN
γρ−1

(
(Qt+1) ∗ (Lt+1 − ρ−1Yt

1).
)

(49)

and
Rt+1 = argmin

R
γλ‖R‖1 +

〈
Yt

1, R − St+1
〉
+

ρ

2
‖R − St+1‖2

F

= S
‖·‖1
γλρ−1

(
Kt+1 − ρ−1Yt

2

)
.

(50)

The equality (i) in Equation (49) holds because according to Q ∗ Q = I, we have:
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min
X

‖Q ∗ X − Y‖2
F = min

X

1
n3

‖Q · X − Y‖2
F

= min
X

1
n3

‖Y‖2
F −

2
n3

〈
Q · X, Y

〉
+

1
n3

‖Q · X‖2
F

= min
X

1
n3

‖Y‖2
F −

2
n3

〈
X, Q

H
Y
〉
+

1
n3

‖X‖2
F

= min
X

1
n3

‖X − Q
H

Y‖2
F

= min
X

ρ

2
‖X − Q ∗ Y‖2

F.

(51)

• Update (Y1, Y2). The Lagrangian multipliers are updated by gradient ascent as follows:

Yt+1
1 = Yt

1 + ρ(Qt+1 ∗ Xt+1 − Lt+1),

Yt+1
2 = Yt

2 + ρ(Rt+1 − St+1).
(52)

The algorithmic steps are summarized in Algorithm 2. The complexity analysis is given as follows.
In each iteration of Algorithm 2, the update of L requires FFT/IFFT, and n3 multiplications

of n1-by-r and r-by-n2 matrices, which costs O
(
(n1n2 + rn1 + rn2)n3 log n3 + rn1n2n3

)
; updating

S costs O
(
n1n2n3

)
; updating of Q involves FFT/IFFT and n3 SVDs of n1-by-r matrices, which

costs O
(
rn1n3 log n3 + r2n1n3

)
; updating X involves FFT/IFFT and n3 SVDs of r-by-n2, which costs

O
(
rn2n3 log n3 + r2n2n3)

)
. Then, the per-iteration computational complexity of Algorithm 2 is

dominated by:
O
(

max
{

n1n2n3 log n3, r2(n1 + n2)n3

})
.

Since the low-tubal-rank assumption r � min{n1, n2} is adopted in this paper, the per-iteration
of Algorithm 2 is much lower than Algorithm 1.

Algorithm 2 Solving Problem (40) using ADMM.

Input: The observed tensor M, an upper estimation r of rtubal(L0), the parameters γ, λ, ρ, δ.
1: Initialize t = 0, L0 = S0 = R0 = Y0

1 = Y0
2 = 0 ∈ Rn1×n2×n3 , Q0 = 0 ∈ Rn1×r×n3 , X0 = 0 ∈

Rr×n2×n3 .
2: for t = 0, · · · , Tmax do

3: Update (Lt+1, St+1) by Equation (42);
4: Update Qt+1 by Equation (45);
5: Update (Xt+1, Rt+1) by Equations (49)–(50);
6: Update (Yt+1

1 , Yt+1
2 ) by Equation (52);

7: Check the convergence criteria:

(i) convergence of variables: ‖At+1 − At‖∞ ≤ δ, ∀A ∈ {L, S, R, Q, X}
(ii) convergence of constraints: max{‖Qt+1 ∗ Xt+1 − Lt‖∞, ‖Rt+1 − St+1‖∞} ≤ δ.

8: end for

Output: (L̂, Ŝ) = (Lt+1, St+1).

5. Experiments

5.1. Synthetic Data

We first verify the correctness of Theorem 1. Specifically, we check whether the following two
statements indicated in Theorem 1 hold in experiments on synthetic data sets:
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(I). (Exact recovery in the noiseless setting.) Our analysis guarantees that the underlying low-rank
tensor L0 and sparse tensor S0 can be exactly recovered in the noiseless setting. This statement
will be checked in Section 5.1.1.

(II). (Linear scaling of errors with the noise level.) In Theorem 1, the estimation errors on L0 and S0
scales linearly with the noise level δ. This statement will be checked in Section 5.1.2.

Signal Generation. With a given tubal rank r0, we first generate the underlying tensor
L0 ∈ Rn1×n2×n3 by L0 = A ∗ B/n3, where tensors A ∈ Rn1×r0×n3 and B ∈ Rr0×n2×n3 are generated
with i.i.d. standard Gaussian elements. Then, the sparse corruption tensor S0 is generated by choosing
its support uniformly at random. The non-zero elements of S0 will be i.i.d. sampled from a certain
distribution that will be specified afterwards. Furthermore, the noise tensor E0 is generated with
entries sampled i.i.d. from N (0, σ2) with σ = c‖L0‖F/

√
n1n2n3, where we set constant c is to control

the signal noise ratio. Finally, the observed tensor M is formed by M = L0 + S0 + E0.

5.1.1. Exact Recovery in the Noiseless Setting

We first check Statement (I), i.e., exact recovery in the noiseless setting. Specifically, we will
show that Algorithm 1 and Algorithm 2 can exactly recover the underlying tensor L0 and the
sparse corruption S0. We first test the recovery performance of different tensor sizes by setting
n = n1 = n2 ∈ {100, 160, 200} and n3 = 20, with (rtubal(L0), ‖S0‖0) = (0.05n, 0.05n2n3). The non-zero
elements of tensor S0 is sampled from i.i.d. symmetric Bernoulli distribution, i.e., the possibility of
being 1 or −1 are 1/2. The results are shown in Table 1. It can be seen that both Algorithm 1 and
Algorithm 2 can obtain relative standard error (RSE) smaller than 1e − 5 by which we can say that L0
and S0 are exact recovered. We can also see that Algorithm 2 runs much faster than Algorithm 1.

Table 1. Performance of Algorithm 1 and Algorithm 2 in both accuracy and speed for different tensor
sizes when the gross corruption. Outliers from symmetric Bernoulli, observation tensor M ∈ Rn×n×n3 ,
n3 = 30, rtubal(L0) = 0.05n, ‖S0‖1 = 0.05n2n3, noise level c = 0, r = max

{
�2rtubal(L0)�, 15

}
.

n rtubalL0 ‖S0‖0 Method rtubalL̂
‖L̂−L0‖F
‖L0‖F

‖Ŝ−S0‖F
‖S0‖F

time/s

100 5 1 × 104 Algorithm 1 5 5.13 × 10−6 5.27 × 10−6 3.63
Algorithm 2 5 4.92 × 10−6 5.12 × 10−6 1.76

160 8 2.56 × 104 Algorithm 1 8 3.86 × 10−6 3.52 × 10−6 9.52
Algorithm 2 8 4.48 × 10−6 4.08 × 10−6 4.42

200 10 4 × 104 Algorithm 1 10 3.46 × 10−6 3.59 × 10−6 14.16
Algorithm 2 10 4.12 × 10−6 4.63 × 10−6 7.44

We then test whether the recovery performance can be affected by the distribution of the
corruptions. This is done by choosing the non-zeros elements of S0 from i.i.d. standard Gaussian
distribution. The experimental results are reported in Table 2. We can find that both Algorithm 1 and
Algorithm 2 can exactly recover the true L0 and S0 and Algorithm 2 runs much faster than Algorithm 1.

We also conduct STPCP by Algorithm 1 and Algorithm 2 with missing entries. After generating
L0, S0 and E0, we get the observation by Model (27). We choose the support of B uniformly at random
with possibility 0.8 and then set elements in the chosen support to be 1. Thus, %20 of the entries
are missing. The corrupted observation M is then formed by M = B � (L0 + S0 + E0). We show the
recover results in Table 3. We can see that the underlying low-rank tensor L0 can be exactly recovered
and the observed part of the corruption tensor B � S0 can also be exactly recovered (Please note that it
is impossible to recover the unobserved entries of a sparse tensor S0 [52]).
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Table 2. Performance of Algorithm 1 and Algorithm 2 in both accuracy and speed for different
tensor sizes when the gross corruption. Outliers from standard Gaussian distribution, observation
tensor M ∈ Rn×n×n3 , n3 = 30, rtubal(L0) = 0.05n, ‖S0‖1 = 0.05n2n3, noise level c = 0, r =

max
{
�2rtubal(L0)�, 15

}
.

n rtubalL0 ‖S0‖0 Method rtubalL̂
‖L̂−L0‖F
‖L0‖F

‖Ŝ−S0‖F
‖S0‖F

time/s

100 5 1 × 104 Algorithm 1 5 2.7 × 10−6 2.6 × 10−6 4.43
Algorithm 2 5 2.9 × 10−6 3.2 × 10−6 1.82

160 8 2.56 × 104 Algorithm 1 8 4.76 × 10−6 4.08 × 10−6 10.45
Algorithm 2 8 4.24 × 10−6 4.05 × 10−6 5.15

200 10 4 × 104 Algorithm 1 10 3.78 × 10−6 3.64 × 10−6 18.97
Algorithm 2 10 3.78 × 10−6 3.63 × 10−6 8.04

Table 3. Performance of Algorithm 1 and Algorithm 2 in both accuracy and speed for different tensor
sizes when the gross corruption. Outliers from symmetric Bernoulli, observation tensor M ∈ Rn×n×n3 ,
n3 = 30, rtubal(L0) = 0.05n, ‖S0‖1 = 0.05n2n3, noise level c = 0, r = max

{
�2rtubal(L0)�, 15

}
, with %20

random missing entries.

n rtubalL0 ‖B � S0‖0 Method rtubalL̂
‖L̂−L0‖F
‖L0‖F

‖Ŝ−B�S0‖F
‖B�S0‖F

time/s

100 5 8 × 103 Algorithm 1 5 7.52 × 10−6 5.97 × 10−6 3.87
Algorithm 2 5 7.50 × 10−6 5.96 × 10−6 1.69

160 8 2.048 × 104 Algorithm 1 8 4.46 × 10−6 5.17 × 10−6 9.64
Algorithm 2 8 5.60 × 10−6 4.71 × 10−6 4.46

200 10 3.2 × 104 Algorithm 1 10 4.78 × 10−6 4.04 × 10−6 14.78
Algorithm 2 10 5.13 × 10−6 4.20 × 10−6 7.77

5.1.2. Linear Scaling of Errors with the Noise Level

We then verify Statement (II) that the estimation errors have linear scale behavior with respect to
the noise level. The estimation errors are measured using the mean-squared-error (MSE):

MSE(L̂) =
‖L̂ − L0‖2

F
n1n2n3

, MSE(Ŝ) =
‖Ŝ − S0‖2

F
n1n2n3

,

for the low rank component L0 and the sparse component S0, respectively. We test tensors of 3 different
size by choosing n ∈ {60, 80, 100} and n3 = 20. The tubal rank rtubal(L0) of L0 and sparsity s of S0
are set as (rtubal(L0), s) = (5, 0.1n2n3). We vary the signal noise ratio c = 0.03 : 0.03 : 0.6 which is
in proportional of the noise level δ. We run the proposed Algorithm 1, test 50 trials, and report the
averaged MSEs. The MSEs of L̂ and S0 versus c2 are shown in sub-figures (a) and (b) in Figure 4.
We can see that the estimation error has linear scaling behavior along with the noise level as Theorem 1
indicates. Since the results for n = 80 and n = 100 are quite similar to the case of n = 60, they are
simply omitted.
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(a)

(b)

Figure 4. The MSEs of L̂ and S0 versus c2 for tensors of size 60× 60× 20 where the tubal rank rtubal(L0)

of L0 and sparsity s of S0 are set as (rtubal(L0), s) = (5, 0.1n2n3). (a): MSE of L̂ vs c2. (b): MSE of Ŝ vs c2.

5.2. Real Data Sets

In this section, experiments on real data sets (color images and videos) are carried out to evaluate
the effectiveness and efficiency of the proposed Algorithms 1 and 2. Besides noises and sparse
corruptions, we also consider missing values which is more challenging. The proposed algorithms are
compared with the following typical models:

(I). NN-I: tensor recovery based on matrix nuclear norms of frontal slices formulated as follows:

min
L,S

1
2
‖B � (M − L − E)‖F + γ

n3

∑
k=1

(‖L(k)‖∗ + λ‖S(k)‖1). (53)

This model will be used for image restoration in Section 5.2.1. Please note that Model (53) is
equivalent to parallel matrix recovery on each frontal slice.

(II). NN-II: tensor recovery based on matrix nuclear norm formulated as follows:

min
L,S

1
2
‖B � (M − L − E)‖F + γ‖L‖∗ + γλ‖S‖1, (54)
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where L = [l1, l2, · · · , ln3 ] ∈ Rn1n2×n3 with lk := vec(L(k)) ∈ Rn1n2 defined as the
vectorization [40] of frontal slices L(k), for all k = 1, 2, · · · , n3. This model will be used for
video restoration in Section 5.2.2.

(III). SNN: tensor recovery based on SNN formulated as follows:

min
L,S

1
2
‖B � (M − L − E)‖F + γ

3

∑
i=1

αm‖L(i)‖∗ + γ‖S‖1, (55)

where L(i) ∈ R
ni×∏j �=i nj is the mode-i matriculation of tensor L ∈ Rn1×n2×n3 , for all i = 1, 2, 3.

We solve the above Model (53)–(55) using ADMM implemented by ourselves in Matlab. The
effectiveness of the algorithms is measured by Peaks Signal Noise Ratio (PSNR):

PSNR := 10 log10

(
n1n2n3‖L0‖2

∞

‖L̂ − L0‖2
F

)
.,

Please note that a larger PSNR value indicates higher quality of L̂.

5.2.1. Color Images

Color images are the most commonly used 3-way tensors. We test the twenty 256-by-256-by-3
color images which have been used in [37], and carry out robust tensor recovery with missing entries
(see Figure 5). Following [37], for a color image L0 ∈ Rn×n×3, we choose its support uniformly at
random with ratio ρs and fill in the values with i.i.d. symmetric Bernoulli variables to generate S0.
The noise tensor E0 is generated with i.i.d. zero-mean Gaussian entries whose standard deviation is
given by σ = 0.05‖L0‖F/

√
3n2. Then, we form the binary observation mask B by choosing its support

uniformly at random with ratio ρobs. Finally, the partially observed corruption M = B� (L0 + S0 + E0)

are formed.

Figure 5. The 20 color images used.

We consider two scenarios by setting (ρobs, ρs) ∈ {(0.9, 0.1), (0.8, 0.2)}. For NN (Model (53)),
we set the regularization parameters λ = 1/

√
nρobs (suggested by [46]), and set parameter γ = ‖E0‖sp

where ‖E0‖sp is estimated as 6.5σ
√

3ρobsn log(6n) (suggested by [5]). For SNN, the parameters are
chosen to satisfy γ = 0.05, α1 = α2 =

√
3nρobs, α3 = 0.01

√
3nρobs. For Algorithm 1 and Algorithm 2,

we set γ = 0.3‖E0‖sp, and λ = 1/
√

3nρobs. The initialized rank r in Algorithm 2 is set as 60.
In each setting, we test each color image for 10 times and report the averaged PSNR and time.
For quantitative comparison, we show the PSNR values and running times in Figures 6 and 7 for
settings of (ρobs, ρs) = (0.9, 0.1) and (ρobs, ρs) = (0.8, 0.2), respectively. Several visual examples are
shown in Figure 8 for qualitative comparison for the setting of (ρobs, ρs) = (0.8, 0.2). We can see
from Figures 6–8 that the proposed Algorithm 1 has the highest recovery quality and the proposed
Algorithm 2 has the second highest quality but the fastest running time.
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(a)

(b)

Figure 6. The quantitative comparison in PSNR and time on color images. First, 10% entries of each
image is corrupted by i.i.d. symmetric Bernoulli variable, then polluted by Gaussian noise of noise
level c = 0.05, and finally 10% of the corrupted entries are missing uniformly at random. (a): the PSNR
values of each algorithm; (b): the running time of each algorithm.

(a)

Figure 7. Cont.
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(b)

Figure 7. The quantitative comparison in PSNR and time on color images. First, 20% entries of each
image is corrupted by i.i.d. symmetric Bernoulli variable, then polluted by Gaussian noise of noise
level c = 0.05, and finally 20% of the corrupted entries are missing uniformly at random. (a): the PSNR
values of each algorithm; (b): the running time of each algorithm.

Figure 8. The visual results for image recovery of different algorithms. First, 20% entries of each
image is corrupted by i.i.d. symmetric Bernoulli variable, then polluted by Gaussian noise of noise
level c = 0.05, and finally 20% of the corrupted entries are missing uniformly at random. (a): the
original image; (b): the corrupted image; (c) image recovered by Algorithm 1; (d) image recovered
by Algorithm 2; (e) image recovered by the matrix nuclear norm (NN)-based Model (53); (f) image
recovered by the SNN-based Model (55).
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5.2.2. Videos

In this subsection, video restoration experiments are conducted on four broadly used YUV videos
(They can be downloaded from https://sites.google.com/site/subudhibadri/fewhelpfuldownloads:
Akiyo_qcif, Scilent_qcif, Carphone_qcif, and Claire_qcif.) Owing to computational limitation,
we simply use the first 32 frames of the Y components of all the videos which results in four
144-by-176-by-30 tensors. For a 3-way data tensor L0 ∈ Rn1×n2×n3 , To generate corruption S0,
the support is chosen uniformly at random with ratio ρs and then elements in the support are filled in
with i.i.d. symmetric Bernoulli variables. The noise tensor E0 is also generated with i.i.d. zero-mean
Gaussian entries whose standard deviation is given by σ = 0.05‖L0‖F/

√
n1n2n3. Then, the binary

observation mask B is formed thorough choosing its support uniformly at random with ratio ρobs.
Finally, the partially observed corruption M = B � (L0 + S0 + E0) are formed.

We also consider two scenarios by setting (ρobs, ρs) ∈ {(0.9, 0.1), (0.8, 0.2)}. NN-II Model (54) is
used in video restoration. For NN-II, we set the regularization parameters λ = 1/

√
n1n2ρobs (suggested

by [46]), and set parameter γ = ‖E0‖sp where ‖E0‖sp is estimated as 6.5σ
√

ρobsn1n3 log((n1 + n2)n3)

(suggested by [5]). For SNN, the parameters are chosen to satisfy γ = 0.05, α1 = α2 =
√

n1n3ρobs, α3 =

5
√

n1n3ρobs. For Algorithm 1 and Algorithm 2, we set γ = 0.3‖E0‖sp, and λ = 1/
√

max{n1, n2}n3ρobs
after careful parameter tuning. The initialized rank r in Algorithm 2 is set as 60. In each setting, we test
each video for 10 times and report the averaged PSNR and time. For quantitative comparison, we show
the PSNR values and running times in Table 4. It can be seen that Algorithm 1 has the highest recovery
quality and the proposed Algorithm 2 has the second highest quality but the fastest running time.

Table 4. PSNR values and running time (in seconds) of different algorithms on video data. First,
ρsn1n2n3 entries of each image is corrupted by i.i.d. symmetric Bernoulli variable, then polluted by
Gaussian noise of noise level c = 0.05, and finally (1 − ρobs)n1n2n3 of the corrupted entries are missing
uniformly at random. The items with highest PSNR values are highlighted with bold face, and the
items with shortest running time are highlighted with underline.

Data Set (ρobs, ρs) Index NN, Model (54) SNN, Model (55) Algorithm 1 Algorithm 2

Akiyo
(0.9,0.1) PSNR 31.74 32.09 33.94 33.36

time/s 29.48 51.13 20.10 12.39

(0.8,0.2) PSNR 30.59 30.70 32.44 32.07
time/s 30.65 51.17 19.53 14.92

Silent
(0.9,0.1) PSNR 28.26 30.39 31.74 31.23

time/s 28.91 49.79 21.21 14.76

(0.8,0.2) PSNR 26.95 27.60 30.42 30.07
time/s 36.51 60.81 22.43 15.62

Carphone
(0.9,0.1) PSNR 26.87 28.79 29.15 28.94

time/s 28.55 47.17 22.12 14.41

(0.8,0.2)) PSNR 26.12 26.43 28.17 27.99
time/s 26.72 49.21 20.55 14.74

Claire
(0.9,0.1) PSNR 30.56 32.20 34.27 34.02

time/s 29.75 47.32 21.43 13.52

(0.8,0.2) PSNR 29.94 30.43 32.96 32.78
time/s 29.43 50.46 19.47 13.04

6. Conclusions

This paper studied the problem of stable tensor principal component pursuit which aims to recover
a tensor from noises and sparse corruptions. We proposed a constrained tubal nuclear norm-based
model and established upper bounds on the estimation error. In contrast to prior work [37], our
theory can guarantee exact recovery in the noiseless setting. We also designed two algorithms, the first
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ADMM algorithm can be accelerated by the second Algorithm which adopts a factorization strategy.
We validated the correctness of our theory by simulations on synthetic data, and evaluated the
effectiveness and efficiency of the proposed algorithms via experiments on color images and videos.

For future directions, it is a natural and interesting extension to consider recovery of 4-way
tensors [35] with arbitrary linear transformation [53,54]. It is also interesting to use tensor
factorization-based methods [55,56] for STPCP. Another challenging future direction is developing tools
to verify whether the unknown tensor satisfies the tensor incoherence condition from its incomplete or
corrupted observations.

For extensions of the proposed approach to higher-way tensors, we produce the following
two ideas:

1. By recursively applying DFT over successive modes higher than 3 and then unfolding the
obtained tensor into 3-way [57], the proposed algorithms and theoretical analysis can be extended
to higher-way tensors.

2. By using the overlapped orientation invariant tubal nuclear norm [58], we can extend the
proposed algorithm to higher-order cases and obtain orientation invariance.
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Appendix A. Proofs of Lemmas and Theorems

Appendix A.1. The Proof of Theorem 1

Appendix A.1.1. Key Lemmas for the Proof of Theorem 1

Before Proving Theorem 1, we should define some notations and operators first.
Suppose L0 ∈ Rn1×n2×n3 with tubal rank r has the skinny t-SVD L0 = U ∗ Λ ∗ V, where

U ∈ Rn1×r×n3 , V ∈ Rr×n2×n3 are orthogonal tensors, and Λ ∈ Rr×r×n3 is an f -diagonal tensor. Define
the following set:

T :=
{

U ∗ A + B ∗ V | A ∈ R
r×n2×n3 , B ∈ R

n1×r×n3
}
⊂ R

n1×n2×n3 . (A1)

Then, define the projector onto T for any tensor T ∈ Rn1×n2×n3 as follows:

PT(T) := U ∗ U ∗ T + T ∗ V ∗ V − U ∗ U ∗ T ∗ V ∗ V,

PT⊥(T) := (I − U ∗ U) ∗ T ∗ (I − V ∗ V).
(A2)

Let Ω⊥ be the complement of Ω ⊂ [n1]× [n2]× [n3] which is the support of S0. Then, define two
operators PΩ,PΩ⊥ as follows:

PΩ(T) := ∑
(i,j,k)∈Ω

〈
T, e̊i ∗ ėk ∗ e̊j

〉
, PΩ⊥(T) := ∑

(i,j,k)∈Ω⊥

〈
T, e̊i ∗ ėk ∗ e̊j

〉
, (A3)

for any T ∈ Rn1×n2×n3 .
Define two sets Γ and Γ⊥ as follows:

Γ = {(A, A) | A ∈ R
n1×n2×n3}, Γ⊥ = {(A,−A) | A ∈ R

n1×n2×n3}. (A4)
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Then, for any tensors Xι, Xs ∈ Rn1×n2×n3 , the projectors of the tensor X = (Xι, Xs) into the sets Γ
and Γ⊥ are given as follows, respectively:

PΓ(X) =

(
Xι + Xs

2
,

Xι + Xs
2

)
, PΓ⊥(X) =

(
Xι − Xs

2
,

Xs − Xι

2

)
. (A5)

For any tensors Xι, Xs ∈ Rn1×n2×n3 , define two operators on X = (Xι, Xs) as follows:

(PT ×PΩ)(X) = (PT(Xι),PΩ(Xs)), (PT⊥ × PΩ⊥)(X) = (PT⊥(Xι),PΩ⊥(Xs)). (A6)

Also define two norms as follows:

‖X‖F =
√
‖Xι‖2

F + ‖Xs‖2
F, ‖X‖F,μ =

√
‖Xι‖2

F + μ2‖Xs‖2
F. (A7)

where μ is a constant that will be determined afterwards.
We first give Lemma A1 which can be seen as a modified version of Lemma C.1 in [2].

Lemma A1. Assume that ‖PΩPT‖ ≤ 1
2 , and λ ≤ 1

2
√

n3
. Suppose there exists a tensor G∗ satisfying the

following conditions: ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

PT(G
∗) = U ∗ V,

‖PT⊥(G∗)‖sp ≤ 1
2

,

‖PΩ(G
∗ − λsign(S0))‖F ≤ λ

4
,

‖PΩ⊥(G∗)‖∞ ≤ λ

2
.

(A8)

Then for any perturbation Δ ∈ Rn1×n2×n3 , one has:

‖L0 + Δ‖TNN + λ‖S0 − Δ‖1

≥ ‖L0‖TNN + λ‖S0‖1 +
( 3

4 − ‖PT⊥(G)‖sp
)
‖PT⊥(Δ)‖TNN +

( 3
4 λ −PΩ⊥(‖G‖∞)

)
‖PΩ⊥(Δ)‖1.

(A9)

Proof. Let Gι ∈ ∂‖L0‖TNN, i.e., any sub-gradient of ‖·‖TNN at L0, then it satisfies:

PT(Gι) = U ∗ V, ‖PT⊥(Gι)‖sp ≤ 1. (A10)

Gι ∈ ∂‖L0‖TNN and Gs ∈ ∂(λ‖S0‖1). According to the convexity of ‖·‖TNN and ‖·‖1, we have:

‖L0 + Δ‖TNN ≥ ‖L0‖TNN + 〈Gι, Δ〉 , λ‖S0 − Δ‖1 ≥ λ‖S0‖1 − 〈Gs, Δ〉 . (A11)

By choosing Gι = U ∗ V + P ∗ Q, where P and Q comes from the skinny t-SVD of PT⊥(Δ) =
P ∗ Σ ∗ Q, one has:

〈Gι, Δ〉 = 〈G, Δ〉+ 〈Gι − G, Δ〉 = 〈G, Δ〉+ 〈PT⊥(Gι),PT⊥(Δ)〉 − 〈PT⊥(G),PT⊥(Δ)〉
= 〈G, Δ〉 − (1 − ‖PT⊥(G)‖sp)‖PT⊥(Δ)‖TNN.

(A12)

Also, by choosing Gs = λsign(S0)− sign(PΩ⊥(Δ)), one has:

− 〈Gs, Δ〉 = − 〈G, Δ〉 − 〈Gs − G, Δ〉
= − 〈G, Δ〉 − 〈PΩ(λsign(S0)− G),PΩ(Δ)〉 − 〈PΩ⊥ (Gs),PΩ⊥ (Δ)〉+ 〈PΩ⊥ (G),PΩ⊥ (Δ)〉
≥ − 〈G, Δ〉 − ‖PΩ(λsign(S0)− G)‖F‖PΩ(Δ)‖F + ‖PΩ⊥ (Δ)‖1 − ‖PΩ⊥ (G)‖∞‖PΩ⊥ (Δ)‖1

≥ − 〈G, Δ〉 − λ

4
‖PΩ(Δ)‖F + (1 − ‖PΩ⊥ (G)‖∞)‖PΩ⊥ (Δ)‖1

(A13)
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Also note that:

‖PΩ(Δ)‖F ≤ ‖PΩPT(Δ)‖F + ‖PΩPT⊥(Δ)‖F

≤ ‖PΩPT(Δ)‖F + ‖PΩPT⊥(Δ)‖F

≤ 1
2
‖Δ‖F + ‖PΩPT⊥(Δ)‖F

≤ 1
2
‖PΩ(Δ)‖F +

1
2
‖PΩ⊥(Δ)‖F + ‖PΩPT⊥(Δ)‖F

(A14)

which leads to:

‖PΩ(Δ)‖F ≤ ‖PΩ⊥(Δ)‖F + 2‖PΩPT⊥(Δ)‖F ≤ ‖PΩ⊥(Δ)‖1 + 2
√

n3‖PT⊥(Δ)‖TNN. (A15)

Putting things together, we have:

‖L0 + Δ‖TNN + λ‖S0 − Δ‖1 − (‖L0‖TNN + λ‖S0‖1)

≥
(

1 − λ
√

n3

2
− ‖PT⊥(G)‖sp

)
‖PT⊥(Δ)‖TNN +

(
3
4

λ −PΩ⊥(‖G‖∞)

)
‖PΩ⊥(Δ)‖1.

(A16)

Since λ ≤ 1
2
√

n3
, it holds that:

‖L0 + Δ‖TNN + λ‖S0 − Δ‖1

≥ ‖L0‖TNN + λ‖S0‖1 +

(
3
4
− ‖PT⊥(G)‖sp

)
‖PT⊥(Δ)‖TNN +

(
3
4

λ −PΩ⊥(‖G‖∞)

)
‖PΩ⊥(Δ)‖1,

for any perturbation Δ ∈ Rn1×n2×n3 .

Lemma A2. Suppose that ‖PΩPT‖ ≤ 1/2, then for any X = (Xι, Xs), we have:

‖PΓ(PT ×PΩ)(X)‖2
F,μ ≥ 1 + μ2

8
‖PT ×PΩ(X)‖2

F. (A17)

Proof. According to the definitions of PΓ and PT ×PΩ, we have:

PΓ(PT ×PΩ)(X) =

(PT(Xι) + PΩ(Xs)

2
,
PT(Xι) + PΩ(Xs)

2

)
. (A18)

Then, we have:

‖PΓ(PT ×PΩ)(X)‖2
F,μ = (1 + μ2) · 1

4
·
(
‖PT(Xι)‖2

F + ‖PΩ(Xs)‖2
F + 2 〈PT(Xι),PΩ(Xs)〉

)
=

(1 + μ2)

4

(
‖PT(Xι)‖2

F + ‖PΩ(Xs)‖2
F + 2 〈PΩPTPT(Xι),PΩ(Xs)〉

)
≥ (1 + μ2)

4

(
‖PT(Xι)‖2

F + ‖PΩ(Xs)‖2
F − 2‖PΩPT‖‖PT(Xι)‖F‖PΩ(Xs)‖F

)
≥ (1 + μ2)

4

(
‖PT(Xι)‖2

F + ‖PΩ(Xs)‖2
F − 2 · 1

2
‖PT(Xι)‖F‖PΩ(Xs)‖F

)
≥ (1 + μ2)

4

(
‖PT(Xι)‖2

F + ‖PΩ(Xs)‖2
F −

‖PT(Xι)‖2
F + ‖PΩ(Xs)‖2

F
2

)

=
(1 + μ2)

8
‖PT ×PΩ(X)‖2

F.

(A19)

Hence completes the proof.
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Appendix A.1.2. Proof of Theorem 1

Proof. For X = (L, S), define ‖X‖� = ‖L‖TNN + λ‖S‖1. Let X̂ = (L̂, Ŝ),X∗ = (L0, S0). According to the
optimality of (L̂, Ŝ) and the feasibility of (L0, S0), we directly have:

‖X̂‖� ≤ ‖X∗‖�, (A20)

‖L̂ + Ŝ − M‖F ≤ δ, (A21)

‖L0 + S0 − M‖F ≤ δ. (A22)

Let Δι = L̂ − L0, Δs = Ŝ − S0. Then, we have:

‖Δι + Δs‖F = ‖L̂ + Ŝ − M − (L0 + S0 − M)‖F ≤ ‖L̂ + Ŝ − M‖F + ‖L0 + S0 − M‖F ≤ 2δ. (A23)

Define the pair of error tensors Δ = X̂ − X∗ = (Δι, Δs). The goal is to bound ‖Δ‖F,μ.
First, we use the decomposition Δ = PΓ(Δ) + PΓ⊥(Δ), and let ΔΓ = PΓ(Δ) = (ΔΓ

ι , ΔΓ
s ) =

(Δι+Δs
2 , Δι+Δs

2 ), ΔΓ⊥ = PΓ⊥(Δ) = (ΔΓ⊥
ι , ΔΓ⊥

s ) = (Δι−Δs
2 , Δs−Δι

2 ) for simplicity. Then, we have:

‖Δ‖F,μ = ‖ΔΓ + ΔΓ⊥‖F,μ ≤ ‖ΔΓ‖F,μ + ‖ΔΓ⊥‖F,μ. (A24)

Please note that ΔΓ
ι = ΔΓ

s = Δι+Δs
2 , thus ‖ΔΓ‖F,μ can be bounded easily as follows:

‖ΔΓ‖F,μ =
√
‖ΔΓ

ι ‖2
F + μ2‖ΔΓ

s ‖2
F =

√
1 + μ2

2
‖Δι + Δs‖F ≤ δ

√
1 + μ2. (A25)

Then, it remains to bound ‖ΔΓ⊥‖F,μ. Due to the triangular inequality:

‖ΔΓ⊥‖F,μ ≤ ‖(PT ×PΩ)Δ
Γ⊥‖F,μ + ‖(PT⊥ × PΩ⊥)ΔΓ⊥‖F,μ, (A26)

(A) bound ‖(PT⊥ × PΩ⊥)ΔΓ⊥‖F,μ. According to the convexity of ‖·‖� we have

‖X∗ + Δ‖� = ‖X∗ + ΔΓ + ΔΓ⊥‖� ≥ ‖X∗ + ΔΓ⊥‖� − ‖ΔΓ‖�. (A27)

Using Lemma A1, we have:

‖X∗ + ΔΓ⊥‖�≥ ‖X∗‖� +
( 3

4 − ‖PT⊥(G)‖sp
)
‖PT⊥(ΔΓ⊥

ι )‖TNN +
( 3

4 λ −PΩ⊥(‖G‖∞)
)
‖PΩ⊥(ΔΓ⊥

s )‖1

≥ ‖X∗‖� + 1
4‖(PT⊥ × PΩ⊥)ΔΓ⊥‖�.

(A28)

Combining Equations (A20), (A27) and (A28), we have:

‖ΔΓ‖� ≥
1
4
‖(PT⊥ × PΩ⊥)ΔΓ⊥‖� (A29)
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Then, with μ =
√

n3λ, we reach a bound on ‖(PT⊥ × PΩ⊥)ΔΓ⊥‖F,μ as follows:

‖(PT⊥ × PΩ⊥)ΔΓ⊥‖F,μ ≤ ‖PT⊥(ΔΓ⊥
ι )‖F + μ‖PΩ⊥(ΔΓ⊥

s )‖F

≤ √
n3‖PT⊥(ΔΓ⊥

ι )‖TNN + μ‖PΩ⊥(ΔΓ⊥
s )‖1

≤ √
n3

(
‖PT⊥(ΔΓ⊥

ι )‖TNN + λ‖PΩ⊥(ΔΓ⊥
s )‖1

)
≤ √

n3‖(PT⊥ × PΩ⊥)ΔΓ⊥‖�
≤ 4

√
n3‖ΔΓ‖�

≤ 4
√

n3

(
‖ΔΓ

ι ‖TNN + λ‖ΔΓ
s ‖1

)
≤ 4

√
n3

(√
min{n1, n2}‖ΔΓ

ι ‖F + λ
√

n1n2n3‖ΔΓ
s ‖F

)
= 4

√
n3

(√
min{n1, n2}+ λ

√
n1n2n3

)
‖ΔΓ

ι ‖F

≤ 4
√

n3

(√
min{n1, n2}+ λ

√
n1n2n3

)
δ.

(A30)

(B) bound ‖(PT ×PΩ)Δ
Γ⊥‖F,μ. Please note that:

PΓ(Δ
Γ⊥) = 0 = PΓ(PT ×PΩ)(Δ

Γ⊥) + PΓ(PT⊥ × PΩ⊥)(ΔΓ⊥), (A31)

which means:

‖PΓ(PT ×PΩ)(Δ
Γ⊥)‖F,μ = ‖PΓ(PT⊥ × PΩ⊥(ΔΓ⊥))‖F,μ ≤ ‖PT⊥ × PΩ⊥(ΔΓ⊥)‖F,μ. (A32)

According to Lemma A2, we have:

‖(PT ×PΩ)(Δ
Γ⊥)‖F,μ ≤ ‖PT(Δ

Γ⊥
ι )‖F + μ‖PΩ(Δ

Γ⊥
ι )‖F

≤
√

1 + μ2
√
‖PT(Δ

Γ⊥
ι )‖2

F + ‖PΩ(Δ
Γ⊥
s )‖2

F

=
√

1 + μ2‖PT ×PΩ(Δ
Γ⊥)‖F

≤
√

1 + μ2 ·
√

8√
1 + μ2

· ‖PΓ(PT ×PΩ)(Δ
Γ⊥)‖F.

(A33)

According to Equations (A32) and (A33), we obtain:

‖(PT ×PΩ)(Δ
Γ⊥)‖F,μ ≤ 2

√
2‖(PT⊥ × PΩ⊥)(ΔΓ⊥)‖F,μ. (A34)

Thus, combing Equations (A24), (A25), (A30) and (A34), and setting μ =
√

n3λ, we obtain:

‖Δ‖F,μ ≤
(√

1 + n3λ2 + 4(1 + 2
√

2)
(√

min{n1, n2}n3 + n3λ
√

n1n2

))
δ. (A35)

Since λ = 1√
max{n1,n2}n3

, we have:

‖Δ‖F,μ ≤
(√

1 +
1

max{n1, n2}
+ 8(1 + 2

√
2)
√

min{n1, n2}n3

)
δ, (A36)
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which indicates that:

‖L̂ − L0‖F ≤
(√

1 +
1

max{n1, n2}
+ 8(1 + 2

√
2)
√

min{n1, n2}n3

)
δ

‖Ŝ − S0‖F ≤
(√

1 + max{n1, n2}+ 8(1 + 2
√

2)
√

n1n2n3

)
δ.

(A37)

Moreover, according to the analysis in [2], the conditions ‖PΩPT‖ ≤ 1
2 and Equation (A8)

in Lemma A1 hold with probability at least 1 − c1(n3 max{n1, n2})−c2 , where c1 and c2 are
positive constants.

In this way, the proof of Theorem 1 is completed.

Appendix A.2. Proof of Theorem 2

Proof. The key idea is to rewrite Problem (29) into a standard two-block ADMM problem.
For notational simplicity, let:

f (x) =
1
2
‖L + S − Y‖2

F, g(z) = γ‖K‖TNN + γλR(S),

where x, y, z and A are defined as follows:

x =

[
vec(L)
vec(S)

]
, y =

[
vec(Y1)

vec(Y2)

]
, z =

[
vec(K)

vec(R)

]
, A =

[
diag(vec(B)) 0

0 diag(vec(B))

]
,

and vec(·) denotes an operation of tensor vectorization (see [40]).
It can be verified that f (·) and g(·) are closed, proper convex functions. Then, Problem (29) can

be re-written as follows:
min

x,z
f (x) + g(z)

s.t. Ax − z = 0.

According to the convergence analysis in [48], we have:

objective convergence: lim
t→∞

f (xt) + g(zt) = f � + g�,

dual variable convergence: lim
t→∞

yt = y�,

constraint convergence: lim
t→∞

Axt − zt = 0,

where f �, g� are the optimal values of f (x), g(z), respectively. Variable y� is a dual optimal point
defined as:

y� =

[
vec(Y�

1)

vec(Y�
2)

]
,

where (Y�
1, Y�

2) is the dual component of a saddle point (L�, S�, K�, R�, Y�
1, Y�

2) of the unaugmented
Lagrangian L(L, S, K, R, Y1, Y2).

Appendix A.3. Proof of Lemma 4

Proof. Let the full t-SVD of X be X = U ∗ Λ ∗ V, where U, V ∈ Rr×r×n3 are orthogonal tensors and
Λ ∈ Rr×r×n3 is f -diagonal. Then:

‖X‖TNN =
∥∥U ∗ Λ ∗ V∥∥

∗ =
∥∥U · Λ · V∥∥

∗ =
∥∥Λ

∥∥
∗. (A38)
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Then Q ∗ X = (Q ∗ U) ∗ Λ ∗ V. Since

(Q ∗ U) ∗ (Q ∗ U) = U ∗ Q ∗ Q ∗ U = I, (A39)

we obtain that:
‖Q ∗ X‖TNN =

∥∥Q ∗ X
∥∥
∗

=
∥∥(Q ∗ U) ∗ ΛV∥∥

∗

=
∥∥(Q ∗ U) · Λ · V∥∥

∗
=
∥∥Λ

∥∥
∗.

(A40)

Thus, ‖Q ∗ X‖TNN = ‖X‖TNN.

Appendix A.4. Proof of Theorem 3

Proof. Please note that (Q∗ ∗ X∗, S∗) is a feasible point of Problem (28), then we have:

1
2
‖B � (L� + S� − M)‖2

F + γ(‖L�‖TNN + λ‖S�‖1)

≤ 1
2
‖B � (Q∗ ∗ X∗ + S∗ − M)‖2

F + γ(‖Q∗ ∗ X∗‖TNN + λ‖S∗‖1)

=
1
2
‖B � (Q∗ ∗ X∗ + S∗ − M)‖2

F + γ(‖X∗‖TNN + λ‖S∗‖1)

(A41)

By the assumption that rtubal(L�) ≤ r, there exists a decomposition L� = Q� ∗ X�, such that
(Q�, X�, S�) is also a feasible point of Problem (39).

Moreover, since (Q∗, X∗, S∗) is a global optimal solution to Problem (39), then we have that

1
2
‖B � (Q∗ ∗ X∗ + S∗ − M)‖2

F + γ(‖X∗‖TNN + λ‖S∗‖1)

≤ 1
2
‖B � (Q� ∗ X� + S� − M)‖2

F + γ(‖X�‖TNN + λ‖S�‖1).

By L� = Q� ∗ X�, we have:

‖L�‖TNN = ‖Q� ∗ X�‖TNN = ‖X�‖TNN. (A42)

Thus, we deduce:

1
2
‖B � (Q∗ ∗ X∗ + S∗ − M)‖2

F + γ(‖X∗‖TNN + λ‖S∗‖1)

≤ 1
2
‖B � (L� + S� − M)‖2

F + γ(‖L�‖TNN + λ‖S�‖1).
(A43)

According to Equations (A41) and (A43), we further have:

1
2
‖B � (Q∗ ∗ X∗ + S∗ − M)‖2

F + γ(‖X∗‖TNN + λ‖S∗‖1)

≤ 1
2
‖B � (L� + S� − M)‖2

F + γ(‖L�‖TNN + λ‖S�‖1).
(A44)

In this way, (Q∗ ∗ X∗, S∗) is also the optimal solution to Problem (28).
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Abstract: Indoor positioning using Wi-Fi signals is an economic technique. Its drawback is that
multipath propagation distorts these signals, leading to an inaccurate localization. An approach to
improve the positioning accuracy consists of using fingerprints based on channel state information
(CSI). Following this line, we propose a new positioning method which consists of three stages. In the
first stage, which is run during initialization, we build a model for the fingerprints of the environment
in which we do localization. This model permits obtaining a precise interpolation of fingerprints at
positions where a fingerprint measurement is not available. In the second stage, we use this model
to obtain a preliminary position estimate based only on the fingerprint measured at the receiver’s
location. Finally, in the third stage, we combine this preliminary estimation with the dynamical
model of the receiver’s motion to obtain the final estimation. We compare the localization accuracy
of the proposed method with other rival methods in two scenarios, namely, when fingerprints used
for localization are similar to those used for initialization, and when they differ due to alterations in
the environment. Our experiments show that the proposed method outperforms its rivals in both
scenarios.

Keywords: indoor localization; CSI; fingerprinting; Bayesian tracking

1. Introduction

The global positioning system (GPS) permits solving the positioning problem in a reliable
manner. However, this approach is limited to outdoor environments, since GPS signals do not reach
indoor receivers. A number of techniques are available for indoor positioning systems [1,2]. These
techniques include the use of ultra-wideband signals [3–5], Wi-Fi signals [6–8], bluetooth signals [9,10],
radio-frequency identification [11–13], odometry measurements [14], etc. However, the accuracy of
positioning systems based on these techniques is severely affected by the multipath propagation of
signals. Therefore, obtaining a high-precision and reliable indoor positioning method has become the
main research problem in various location-based services.

A popular technique consists of using Wi-Fi signals for indoor positioning. The main reason
for doing so is the widespread and low cost of these signals in comparison with other alternatives,
e.g., Zigbee, Bluetooth, ultrasound, ultra-wideband, etc. There are two main approaches for indoor
positioning using Wi-Fi signals, namely, geometric mapping and fingerprinting [6]. Geometric mapping
is based on the estimation of geometric parameters, such as distance or angles with respect to certain

Sensors 2020, 20, 2854; doi:10.3390/s20102854 www.mdpi.com/journal/sensors79



Sensors 2020, 20, 2854

reference points [15,16]. The problem with this approach is, as we mentioned earlier, the irregularities
in the signals caused by multipath effects. To go around this, the fingerprint approach builds a database
of certain features obtained from the received Wi-Fi signals, depicting a unique pattern based on its
location. The positioning problem then becomes one of finding the best match for the signal received
at an unknown location from the information available within the database.

For an indoor positioning system, which kind of signal feature is selected as a fingerprint is critical,
as it must faithfully represent its location. A popular choice for this feature is a vector of received
signal strength indicators (RSSIs) from multiple Wi-Fi access points (APs) [17,18]. Then, the position
is estimated as the one from the database with the highest similarity score with the fingerprint of the
received signal. The disadvantage of this method is that each location is only matched to one within
the database. To solve this, Youssef [19] estimates the position by building its conditional probability
given the available measurements. A theoretical backing for this approach is given by the fact that RSSI
measurements can be approximately considered normally distributed with negligible accuracy loss [20].

The advantages of using RSSI as fingerprints are its simplicity and low computational
requirements. However, since the database only stores signal features at a finite number of points, the
accuracy drops significantly at other points. This is because RSSI does not contain all the information
available in the Wi-Fi signal, which could be used to improve the positioning accuracy. The whole
available information appears in the channel state information (CSI). This is a complex vector whose
entries represent the gain (amplitude and phase) of each subcarrier of the OFDM channel [6]. In [21],
CSI was used to propose the fine-grained indoor localization (FILA) method. In this method, the
fingerprint is chosen to be the square sum of CSI amplitudes. A popular choice of fingerprint consists
of using the real vector formed by the amplitudes of each subcarrier [22–24]. However, the instability
of CSI amplitudes limit the accuracy achievable with this kind of fingerprints. In an attempt to go
around this, inter-subcarrier phase differences are used as fingerprints in [25]. A drawback of this
approach is that CSI phases are highly sensitive to hardware imperfections. To cope with this, a phase
calibration method was proposed in [26] to compensate for hardware effects.

Regardless of the choice of fingerprint, two approaches are available for estimating the position.
The first one consists in dividing the area into regions, and using a classifier, based on machine learning
techniques, to decide the region at which the receiver is located. In [27], this is done using a neural
network, and in [28], a random forest model. A drawback of these methods is that the positioning
accuracy is determined by the regions’ size.

The second positioning approach aims at solving the above limitation by interpolating a position
from those available within the fingerprint database. In [21], this is done using Pearson correlation
coefficients between the measured fingerprints at the unknown location and the fingerprints from
the database. In [26], this is done using a three-hidden-layer deep network, a deep autoencoder is
used in [29,30], a deep convolutional neural networks in [31] and a k-nearest neighbor average in [25].
Nevertheless, a common problem with these methods is that their inaccuracy is still significant at
locations outside the database.

For moving targets, the above positioning techniques are used for carrying out a Bayesian tracking
task, which uses, at each sample time, all available measurements to provide a position estimate [32,33].
The case in which positioning is based on Wi-Fi signals, the information provided by these signals are
often combined (fused) with certain extra information, such as infra-red motion sensors [34], inertial
sensors [35], orientation sensors and landmarks [36].

In this work, a new fingerprint method for indoor positioning and Bayesian tracking is proposed,
based on CSI. Following [26], we also calibrate phases. However, instead of using them as fingerprints,
we use their differences with respect to the first subcarrier. We do so because these phase differences
change more smoothly than absolute phases as we move along a straight line. This largely simplifies
the task of interpolating fingerprints at locations outside the database. To do the interpolation, we
construct a model of the room’s fingerprints, i.e., a function mapping positions within the room to
fingerprints. We do so using a Gaussian kernel expansion. Using this model, the positioning task is
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split into two steps. In the first one, we obtain a preliminary estimate of the position using only the
fingerprint measured by the receiver. To this end, we use the maximum likelihood criterion. In the
second stage, we combine this preliminary estimation with a dynamic model of the receiver’s motion,
to obtain the final estimation. We do so using a Bayesian tracking technique. The most popular
among these techniques are extended Kalman filtering and particle filtering. The advantage of the
former is its computational efficiency. However, since it is based on linearizing a non-linear model,
it is often inaccurate to the extent that it can lead to the instability of the estimate. Particle filtering,
on the other hand, can be made arbitrarily accurate. However, its computational complexity makes
it often unfeasible for real-time applications. In order to obtain a reliable and numerically efficient
Bayesian tracking implementation, we use a recently proposed technique called maximum likelihood
Kalman filtering [37]. It uses the maximum likelihood estimate obtained in the first step, guarantees
the stability of the estimate and is asymptotically optimal as the dimension of the fingerprint vector
tends to infinity [37]. To summarize, the contribution of our paper is to effectively combine the use
of phase information, its calibration and phase differences for fingerprints, and to apply Gaussian
kernel modeling and maximum likelihood Kalman filtering for positioning. The resulting algorithm is
shown, via experiments, to have more accurate position estimates, in comparison with other available
algorithms, at locations outside the database.

The rest of this paper is organized as follows. In Section 2 we describe how we build fingerprints.
In Section 3 we formulate the positioning problem. The proposed localization method is introduced in
Section 4. Experimental results are given in Section 5 and concluding remarks in Section 6.

2. Choice of Fingerprints

2.1. Channel State Information

In an OFDM system, the signal received from a multipath channel can be described as

r = Cs + n, (1)

where r = [r1, · · · , rL] ∈ CL and s = [s1, · · · , sL] ∈ CL represent the received and transmitted signal
vectors, respectively, L is the number of subcarriers, n is additive noise, C = diag(c) ∈ CL×L is the
channel frequency response (CFR) matrix, with c = [c1, · · · , cL] and cm denoting the channel’s gain at
the m-th subcarrier.

We call vector c the CSI. According to the 802.11n protocol, this vector is used to recover s from
r by equalizing the channel distortion caused by multipaths. Hence, the CSI c is readily available in
every OFDM receiver.

2.2. Phase Information

The CSI value cm, at each subcarrier m = 1, · · · , L, is a complex number. Most CSI-based
fingerprint methods choose amplitudes |cm| as their fingerprints. However, Sen et al. [38] proposed
a linear calibration method for the (raw) phase information ∠cm. As we show below, the calibrated
phases so obtained are more stable than amplitudes, in the sense that they incur smaller changes
between consecutive measurements. We summarize this calibration method below.

We assume that raw CSI measurements c have certain packet-by-packet random phase shifts due
to synchronization errors at the receiver. More precisely, let θm = ∠cm denote the raw phase of the
m-th subcarrier and φm denote the ideal phase that we would have received if there were no random
phase shifts. We then have

θm = φm +
2π

LΔt
lm + q, (2)

where q denotes the unknown center frequency shift and Δt denotes the delay due to both, packet
detection delay (PDD) and sampling frequency offset (SFO). By lm, we denote the m-th entry of the
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subcarrier index vector l, and, as above, L is the number of subcarriers. For example, in the 20 MHz
bandwidth 802.11n protocol, L = 56 and

l = [−28,−27, ...,−2,−1, 1, 2, ..., 27, 28] .

In order to compensate for the effects of random phase shifts, we use

φm = θm − olm − q, (3)

with

o =
θL − θ1

lL − l1
,

q =
1
L

L

∑
m=1

θm.

Figure 1 illustrates the effect of phase calibration. On the left, we see 100 raw measurements of
the CSI at subcarrier m = 1, and on the right, the same CSI measurements with calibrated phases. We
see how, after calibration, phases are more stable than amplitudes.

Figure 1. (Left) Complex values, in polar coordinates, corresponding to subcarrier m = 1 of 100 raw
channel state information (CSI) measurements. (Right) The same values after phase calibration.

2.3. Phase Differences

The calibrated phase is stable at a fixed position. However, it changes drastically from one position
to another. This occurs because, theoretically, for a subcarrier at 2.4 GHz, the phase goes through an
entire cycle in a wavelength distance (about 12.5 cm). This is much shorter than the distance between
positions used to build the fingerprint database. To go around this, instead of using the compensated
phases φm, m = 1, · · · , L, we use their differences ψm = φm+1 − φ1, m = 1, · · · , L − 1, with respect to
the first component, and unwrap them so as to avoid that jumps |ψm+1 − ψm|, m = 1, · · · , L − 2, are
bigger than or equal to π. This is equivalent to consider that the frequency of the first subcarrier is zero,
and the frequencies of each other subcarriers are 312.5 KHz, 625 KHz,..., 20 MHz. Then, the smallest
wavelength among these subcarriers becomes (300 × 106 m/s)/(20 × 106 Hz) = 15 m. Figure 2,
shows how phase differences change more consistently than plain phases in a sequence of three points,
arranged in a straight line, 0.5 m away from each other.

We use ym, m = 1, · · · , L − 1, to denote the resulting unwrapped calibrated phase differences
(UCPDs), and use them as fingerprints for indoor localization.
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Figure 2. (Left) Compensated CSI phase at three adjacent positions. (Right) Phase differences at the
same positions.

3. Problem Description

We consider a room (R2) having A Wi-Fi access points (APs) with B antennas. At time
t ∈ N, a receiver, having D antennas, is located at x(t) ∈ R2, within the room. The OFDM
channel establishing the communication between each AP and each receiver’s antenna, has L,
subcarriers, whose frequencies are fm ∈ R, m = 1, · · · , L. The UCPD of the m-th subcarrier of
the channel from AP a antenna b to receiver antenna d is denoted by y(a,b,d)

m (t), m = 1, · · · , L − 1.
Let y(a,b,d)(t) =

[
y(a,b,d)

1 (t), · · · y(a,b,d)
L−1 (t)

]
∈ RL−1 be the set of all UCPDs of the same channel,

y(a,b)(t) =
[
y(a,b,1)(t), · · · , y(a,b,D)(t)

]
be the set of all UCPDs from AP a antenna b and y(t) =[

y(1,1)(t), · · · , y(A,1)(t), ..., y(1,B)(t), · · · , y(A,B)(t)
]

be the set of all UCPDs. The fingerprint at x(t)

is given by y(t) ∈ RN , with N = (L − 1)ABD.
We assume that x(t) and y(t) are generated by the following model:

ξ(t + 1) = Fξ(t) + w(t), (4)

y(t) =h (Jξ(t)) + ι(t), (5)

where the state ξ(t) =
[
x(t), ẋ(t)

]
contains the position and velocity of the receiver at time t,

F ∈ R4×4 is the state-transition matrix, w(t) ∼ N (0, Q) is the process noise, ι(t) ∼ N (0, R) is the
measurement noise, w(t) and ι(t) are white and jointly independent, and J = [I , 0], with I being the
identity matrix, is a selection matrix such that Jξ(t) = x(t).

We assume that matrices F and Q, as well as the fingerprints y(t) are known. On the other hand,
matrix R and the map j : R2 → RN are not known.

Problem 1. Based on the above model and assumptions, our goal is to estimate, at each t ∈ N, the receiver’s
location x(t).

4. Proposed Positioning Method

The proposed method is formed by three stages. The first one is called initialization. In this stage,
we estimate the fingerprint model j : R2 → RN . The second one (static positioning), uses the estimated
model and the output Equation (5) to obtain a first estimate x̌(t) of the receiver’s location x(t), at
time t ∈ N, given the fingerprint y(t). In the third stage (dynamic positioning), the estimated location
x̌(t) obtained in the second stage is combined with the dynamic motion model (4) to obtain the final
estimation x̂(t) of x(t).
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4.1. Fingerprint Modeling

The goal of this stage is to obtain estimates of both, the map h : R2 → RN and the matrix
R ∈ RN×N . To do so, we rely on a collection of points pi ∈ R2, i = 1, · · · , I, at each of which K
measurements gi,k ∈ RN , k = 1, · · · , K of the fingerprint are available. The ground truth of each pi is
known.

It follows from (5) that
gi,k = h (pi) + ιi,k, (6)

with ιi,k ∼ N (0, Q) being jointly independent. Let ḡi =
1
K ∑K

k=1 gi,k. We then have

ḡi = h (pi) + ῑi,

ῑi =
1
K

K

∑
k=1

ιi,k.
(7)

Since ῑi ∼ N
(

0, 1
K Q

)
, for large K we can do the following approximation

ḡi ≈ h (pi). (8)

We can then obtain an estimate ĵ of j by approxmating h(p) using a Gaussian kernel expansion of
the form

h(p) ≈ ĥ (p, α) =
I

∑
i=1

αi exp
(
−γ ‖p − pi‖2

)
, (9)

where α = [α1, · · · , αI ]
. Following [39], we choose γ = 1

2 I1/3. Then, using (8), we estimate α as
follows

α̂ = arg min
α

I

∑
i=1

[
ĥ(pi, α)− ḡi

]2
. (10)

Finally, in order to obtain an estimate R̂ of R, we do

R̂ ≈ 1
I

I

∑
i=1

1
K − 1

K

∑
k=1

(gi,k − ḡi) (gi,k − ḡi)
. (11)

4.2. Static Positioning

Knowing the estimate α̂, we can replace (5) by

y(t) = ĥ (Jξ(t), α̂) + ι̂(t). (12)

with ι̂(t) ∼ N (0, R̂). We can then obtain an estimate x̌(t) of x(t) using the maximum likelihood
criterion, i.e.,

x̌(t) = arg max
x

Lt(x), (13)

where
Lt(x) = log p (y(t)|Jξ(t) = x) , (14)

denotes the log-likelihood function and

p (y(t)|Jξ(t) = x) = N
(

y(t); ĥ (x, α̂) , R̂
)

. (15)
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4.3. Dynamic Positioning

We aim to use a Bayesian tracking method to estimate ξ(t) based on the model (4), (12), and then
obtaining x(t) from the estimated value of ξ(t). In principle, this could be done using the typical
approaches for Bayesian tracking, namely, extended Kalman filtering (EKF) and particle filtering (PF).
However, since EKF is based on linearizing the non-linear measurement Equation (5), its result is
inaccurate and it often causes instability of the estimate. On the other hand, while this problem can
be solved using PF, which can be made arbitrarily accurate by using enough particles, the number
of required particles makes this method impractical for real-time applications. In order to obtain
an accurate and numerically tractable Bayesian tracking implementation, we use a method called
maximum likelihood Kalman filter [37]. We summarize it below.

We want to compute

ξ̂(t) = E {ξ(t)|Y(t)} (16)

=
∫

ξ(t)p (ξ(t)|Y(t)) dξ(t),

where Y(t) = {y(1), · · · , y(t)}. In order to compute p (ξ(t)|Y(t)) we alternate two steps, namely,
prediction and update, which are described below.

4.3.1. Prediction

In this step we assume that ξ(t)|Y(t) ∼ N (μ(t|t), Σ(t|t)), with μ(t|t) and Σ(t|t) known. We aim
to compute μ(t + 1|t) and Σ(t + 1|t) such that ξ(t + 1|t)|Y(t) ∼ N (μ(t + 1|t), Σ(t + 1|t)). We do so
using a typical Kalman filtering prediction step, i.e.,

μ(t + 1|t) = Fμ(t|t),
Σ(t + 1|t) = FΣ(t|t)F + Q.

(17)

4.3.2. Update

In this case, we assume that ξ(t)|Y(t − 1) ∼ N (μ(t|t − 1), Σ(t|t − 1)), with μ(t|t − 1) and Σ(t|t −
1) known. We aim to compute μ(t|t) and Σ(t|t) such that ξ(t)|Y(t) ∼ N (μ(t|t), Σ(t|t)). In this case,
we cannot do a typical Kalman filtering step, because the measurement equation is nonlinear. To go
around this, we use the estimate x̌(t) obtained by the static positioning method described in Section 4.2.
More precisely, we compute

μ(t|t) = Σ(t|t)
(

Σ−1(t|t − 1)μ(t|t − 1) + Λ(t)λ(t)
)

,

Σ(t|t) =
(

Σ−1(t|t − 1) + Λ(t)
)−1

,
(18)

where

λ(t) = J x̌(t),

Λ(t) = JČ(t)J,

and
Č(t) = −∇2Lt (x̌(t)) ,

with ∇2Lt (x) denoting the Hessian of Lt evaluated at x (recall that x̌(t) is computed from (13)).

4.3.3. Final Step

Using the above, at each t, we can compute μ(t|t) and Σ(t|t) such that ξ(t)|Y(t) ∼
N (μ(t|t), Σ(t|t)). Then, using (16), we obtain
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ξ̂(t) = μ(t|t), (19)

and finally
x̂(t) = Jμ(t|t). (20)

5. Experiments

5.1. Static Positioning

In this section, we will experimentally compare our proposed method with three rival methods,
namely, the FILA method [21], the DeepFi method [22] (amplitude-based fingerprinting), and the
PhaseFi method [26] (Phase-based fingerprinting), described in Section 1. We use TP-Link WDR4310
routers, having the OpenWrt platform installed, and working at a package rate of 100 packets per
second. We obtain CSI measurements from the Atheros CSI Tool [40]. For every AP/receiving
antenna pair, this tool produces a complex vector whose entries are the amplitude and phase of certain
subcarriers from the IEEE 802.11n standard. More precisely, for a 20 MHz channel, values are available
for 56 subcarriers; for a 40 MHz channel, values are available for 114 subcarriers. 10 bits are used to
represent both, the real and imaginary parts of each subcarrier’s gain. The ground truth position of the
receiver is obtained using a motion capture camera, which we believe to be sufficiently reliable for our
testing purposes.

We use two experimental setups. The first one is an empty room. This setup permits evaluating
the positioning performance of the different methods in the ideal situation in which fingerprints
used for positioning are as similar as possible to those used during the initialization stage. The setup
is depicted in Figure 3, showing the wireless access point in a corner. The figure also shows the
I = 70 positions (marked as initialization points) used as ground truth positions for constructing
the fingerprint model. In addition, there are 26 points for testing the static and dynamic positioning
algorithms. Figure 4 shows the first entry of the averaged fingerprints ḡi at each initialization point pi,
i = 1, · · · , I, together with the value yield by the estimated model ĥ(p, α̂).

The second setup is an office including people as well as objects like desks, chairs and lab
benches. This setup permits evaluating the robustness of the different methods, in the sense of how
the performance deteriorates when fingerprints differ from those used to build the model during
initialization. The setup is depicted in Figure 5, showing desks represented by rectangles, the wireless
access point, the positions of the I = 56 initialization points and 24 testing points.

Figure 3. Empty room layout for method comparison. The wireless access point is placed in the
lower-left corner.
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Figure 4. First entry of the averaged fingerprint ḡi (dots) and the value yield by the model ĥ(p, α̂).

AP

Figure 5. Office layout for method comparison. The wireless access point is placed in the upper-right
corner, and rectangles represent desks.

Figures 6 and 7 show the cumulative distribution function (CDF) of the positioning error
(in meters), (i.e., the relative number of points at which the localization error is smaller than each
distance error in the horizontal axis) for the aforementioned four methods and the two setups. Tables 1
and 2 show the minimum and mean positioning errors also for the four methods and both setups.
These results show that our proposed method significantly outperforms the FILA, DeepFi and PhaseFi
methods in both scenarios.
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Figure 6. Positioning error CDF (empty room).

Figure 7. Positioning error CDF (office).

Table 1. Positioning error (empty room).

Methods Mean Error [meters] Minimum Error [meters]

Static positioning 1.0970 0.3196
PhaseFi 1.4722 0.5021

FILA 2.3825 0.5511
DeepFi 2.0283 0.3210
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Table 2. Positioning error (office).

Methods Mean Error [meters] Minimum Error [meters]

Static positioning 1.4551 0.2763
PhaseFi 1.8722 0.4395

FILA 2.5826 0.4863
DeepFi 2.6770 1.0355

5.2. Dynamic Positioning

The dynamic positioning method makes use of the state-transition Equation (4). In order to design
this state equation, we use the following model

px(t + 1) = px(t) + Tvx(t) + wx(t),

py(t + 1) = py(t) + Tvy(t) + wy(t),

vx(t + 1) = vx(t) + ιx(t),

vy(t + 1) = vy(t) + ιy(t),

(21)

where pζ and vζ , ζ ∈ {x, y}, denote the position and velocity, respectively, in the ζ axis. We choose

T = 1 (seconds). We assume that wx, wy, ιx and ιy are mutually independent, wx ∼ wy ∼ N
(

0, σ2
p

)
,

with σ2
p = 10−4, and ιx ∼ ιy ∼ N

(
0, σ2

ι

)
, with σ2

ι = 2.5 × 10−4. We therefore have

F =

⎡⎢⎢⎢⎣
1 0 T 0
0 1 0 T
0 0 1 0
0 0 0 1

⎤⎥⎥⎥⎦ , and Q = diag
(

σ2
p , σ2

p , σ2
ι , σ2

ι

)
.

To evaluate this performance, we moved the receiver over a trajectory that is well modeled by this
equation. This trajectory is shown in red in Figures 8 and 9. Figure 8 shows the trajectory estimated by
our static positioning method. Figure 9 shows the one estimated using a particle filter [41], and the one
estimated by our proposed dynamic positioning method based on the maximum likelihood Kalman
filter. Table 3 shows the maximum tracking errors, as well as their means, given by the three methods.
We see that the proposed dynamic positioning method offers a significant accuracy improvement over
its static counterpart, as well as over particle filtering.

Table 3. Tracking Result.

Methods Mean Error [meters] Maximum Error [meters]

Static positioning 0.9879 2.4325
Particle filter 1.6475 2.8131

Dynamic positioning 0.4602 1.0706
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Figure 8. Static positioning result.

Figure 9. Comparison of the dynamic positioning results yield by particle filtering and our proposed
dynamic positioning method.

6. Conclusions

We proposed a new fingerprint-based method for indoor localization based on CSI. The proposed
method uses unwrapped calibrated phase differences as fingerprints, and consists of three stages.
In the first one (fingerprint modeling), a model of the room’s fingerprints is constructed. In the
second stage (static positioning) we use this model, together with the maximum likelihood criterion,
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to obtain a preliminary position estimate based only on the fingerprint measured at the receiver. Finally,
in the third stage (dynamic positioning), we use a maximum likelihood Kalman filter to combine this
preliminary estimate with a dynamic model for the receiver’s motion, to obtain the final estimate. We
present experimental results comparing the localization accuracy of the proposed method with that of
other rival methods. This is done in two scenarios, namely, in the ideal one in which fingerprints used
for localization are similar to those used for initialization, and in a more realistic scenario, in which
these fingerprints differ due to alterations in the environment. Our experiments show that our method
is more accurate than its rivals in both situations.

The proposed three-stage technique also applies to other types of measurements. A future research
direction is to find out how much improvement this technique brings to measurements using Bluetooth
and ultra-wideband signals. How to fuse different types of measurements, and how much additional
improvement this may bring, will be of interest too. The maximum likelihood Kalman filter method
that we use in the dynamic positioning stage is only valid if the motion model of the receiver is linear
and Gaussian. However, non-linear motion models are sometimes used, particularly in robotics. An
extension of the proposed method consists in modifying the dynamic localization stage so as to handle
these kinds of non-linear models. While this is out of the scope of the present work, it is a future
research direction as well.
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Abstract: The automatic sleep stage classification technique can facilitate the diagnosis of sleep
disorders and release the medical expert from labor-consumption work. In this paper, novel improved
model based essence features (IMBEFs) were proposed combining locality energy (LE) and dual state
space models (DSSMs) for automatic sleep stage detection on single-channel electroencephalograph
(EEG) signals. Firstly, each EEG epoch is decomposed into low-level sub-bands (LSBs) and high-level
sub-bands (HSBs) by wavelet packet decomposition (WPD), separately. Then, the DSSMs are estimated
by the LSBs and the LE calculation is carried out on HSBs. Thirdly, the IMBEFs extracted from the
DSSM and LE are fed into the appropriate classifier for sleep stage classification. The performance of
the proposed method was evaluated on three public sleep databases. The experimental results show
that under the Rechtschaffen’s and Kale’s (R&K) standard, the sleep stage classification accuracies
of six classes on the Sleep EDF database and the Dreams Subjects database are 92.04% and 78.92%,
respectively. Under the American Academy of Sleep Medicine (AASM) standard, the classification
accuracies of five classes in the Dreams Subjects database and the ISRUC database reached 79.90% and
81.65%. The proposed method can be used for reliable sleep stage classification with high accuracy
compared with state-of-the-art methods.

Keywords: EEG; sleep stage; wavelet packet; state space model

1. Introduction

Automatic sleep stage classification is an important research focus due to its importance for
the study of sleep related disorders. There are currently two classification criteria for sleep stages.
According to Rechtschaffen’s and Kale’s (R&K) recommendations, sleep stages can be divided into six
stages: The Awake stage (Awa), rapid Eye Movement stage (REM), Sleep stage 1 (S1), Sleep stage 2
(S2), Sleep stage 3 (S3), Sleep stage 4 (S4) [1]. Another sleep stage classification standard was provided
by the AASM. In this standard, there are five sleep stages: Awa, N1 (S1), N2 (S2), N3 (the merging of
stages S3 and S4) and REM [2]. Usually, the detection of each sleep stage requires manual marking
by professionals, which requires a lot of work and may produce erroneous markings. Therefore, it is
imperative to study the method for automatic sleep stage classification.

According to the characteristics of the adopted features, currently commonly used automatic
detection methods can be divided into the following two categories. The first is the method based on
statistical features (such as spectral energy) extracted from the one-dimensional EEG signal. The other
is the implicit features, which can be obtained by training deep-learning based classifiers. Hassan et
al. computed various spectral features by Tunable-Q factor wavelet transform (TQWT) on sleep-EEG
signal segments [3]. With the random forest classifier, they achieved accuracies of 90.38%, 91.50%,
92.11%, 94.80%, 97.50% for 6-stage to 2-stage classification of sleep states on the Sleep-EDF database.
Diykh et al. adopted different structural and spectral attributes extracted from weighted undirected
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networks to automatically classify the sleep stages [4]. Kang et al. present a statistical framework to
estimate whole-night sleep states in patients with obstructive sleep apnea (OSA)—the most common
sleep disorder [5]. In this framework, they extracted 11 spectral features from 60903 epochs to estimate
per-night sleep stages with a 5-state hidden Markov model. Abdulla et al. used graph modularity of
EEG segments as the features to feed an ensemble classifier which achieved the accuracy of 93.1% with
20265 epochs from Sleep EDF database [6].

In [7], Ghimatgar et al. constructed a features pool by the relevance and redundancy analysis
on the sleep EEG epochs. With a random forest classifier and a Hidden Markov Model, this method
was evaluated on three public sleep EEG database scored according to R&K and AASM guidelines.
They achieved overall accuracies in the range of (79.4–87.4%) and (77.6–80.4%) for six-stage (R&K)
and five-stage (AASM) classification, respectively. Taran et al. proposed an optimized flexible
analytic wavelet transform (OFAWT) to decompose EEG signals into band-limited basis or sub-bands
(SBs) [8]. The experimental results yields classification accuracies for the classification of six to two
sleep stages 96.03%, 96.39%, 96.48%, 97.56% and 99.36%, respectively. Sharma et al. computed
the discriminatory features namely fuzzy entropy and log energy by the wavelet decomposition
coefficients [9]. This approach yielded an accuracy of 91.5% and 88.5% for six-class classification task
using small and large datasets, respectively. Hassan et al. extracted various statistical moment based
features decomposed by the Empirical Mode Decomposition (EMD) and achieved a good performance
on a small database [10]. They also decomposed EEG signal segments using Ensemble Empirical Mode
Decomposition (EEMD) to extract various statistical moment based features and achieved 88.07%,
83.49%, 92.66%, 94.23% and 98.15% for 6-state to 2-state classification of sleep stages on Sleep-EDF
database [11]. Sharma et al. adopted the Poincare plot descriptors and statistical measures which
are calculated by the discrete energy separation algorithm (DESA) as the features [12]. Moreover,
the classification accuracy of the two to six categories on 15136 epochs from the Sleep-EDF database
was 98.02%, 94.66%, 92.29%, 91.13% and 90.02%, respectively.

Besides the conventional features extraction method, some researchers choose the convolutional
neural network (CNN) to classify sleep stages with the time–frequency images which are converted by
one-dimensional EEG signals. Zhang et al. converted EEG data to a time–frequency representation via
Hilbert–Huang transform and employed an orthogonal convolutional neural network (OCNN) as the
classifier [13]. They achieved a total classification accuracy of 88.4% and 87.6% on two public datasets,
respectively. Similarly, Xu et al. employed multiple CNN on multi-channel EEG signals to classify
the sleep stages [14]. Mousavi [15] directly fed the raw EEG signals to a deep CNN with nine layers
followed by two fully connected layers, without involving feature extraction and selection. This method
achieved the accuracy of 98.10%, 96.86%, 93.11%, 92.95%, 93.55% for two to six class classification.
Long short-term memory (LSTM) is an artificial recurrent neural network (RNN) architecture used in
the field of deep learning. It can not only process single data points (such as images), but also entire
sequences of data (such as speech or EEG signal). Korkalainen et al. used a combined convolutional
and LSTM neural network on the public database and achieved sleep staging accuracy of 83.7% with a
single frontal EEG channel [16]. Michielli et al. proposed a novel cascaded RNN architecture based on
LSTM for automated scoring of sleep stages on single-channel EEG signals [17]. The network performed
four and two classes classification with a classification rate of 90.8% and 83.6%, respectively.

Most of the existing studies only adopted a few epochs or a single database when evaluating the
performance of these method and some do not use the k-fold cross-validation, which will cause large
fluctuations in the experimental results. Therefore, although the published researches have achieved
positive results in automatic sleep stage classification, there is still a need for further validation and
improvements to the existing methods. In this paper we proposed a novel IMBEFs extracted from
LE and DSSM for automatically detecting the sleep stages with a high degree of accuracy. LE and
DSSM are estimated from the two sets coefficients of LSBs and HSBs. The two sets coefficients are
coming from the WPD of the sleep EEG epoch based on two wavelet bases separately. After comparing
with various kinds of classifiers, the Bagged Trees was finally selected as the suitable classifier for
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this method to identify the sleep stages. In addition, experiments are conducted on three public sleep
databases and the results are compared with state of the art published work in order to fully evaluate
and validate the performance of the proposed method.

The paper is organized as follows: In Section 2, the experimental material and methodology of
the proposed method are descripted in detail. Section 3 resents the experimental results. In Section 4,
the results and findings of this paper are discussed. The conclusions of the paper are drawn in Section 5.

2. Materials and Methods

2.1. Sleep State Classes

According to the AASM and R&K standards, the classes of sleep stages can be divided into
two to six classes. Moreover, under the AASM standard, it can be divided into two to five classes.
The difference is that the N3 stage of AASM includes the S3 and S4 stages of the R&K standard.
The detailed description of classes considered in this work are shown in Tables 1 and 2.

Table 1. The class description considered in this work under the Rechtschaffen’s and Kale’s
(R&K) standard.

Classes 6 Classes 5 Classes 4 Classes 3 Classes 2 Classes

Stages Awa vs. REM
vs. S1 vs. S2
vs. S3 vs. S4

Awa vs. REM
vs. S1 vs. S2
vs. S3, S4

Awa vs. REM
vs. S1, S2 vs.
S3, S4

Awa vs. REM
vs. NREM (S1,
S2, S3, S4)

Awa vs.
Asleep (REM,
S1, S2, S3, S4)

Table 2. The class description considered in this work under the American Academy of Sleep Medicine
(AASM) standard.

Classes 5 Classes 4 Classes 3 Classes 2 Classes

Stages Awa vs. REM
vs. N1 vs. N2
vs. S3, S4

Awa vs. REM
vs. N1, N2 vs.
N3

Awa vs. REM
vs. NREM
(N1, N2, N3)

Awa vs.
Asleep (REM,
N1, N2, N3)

2.2. Datasets

2.2.1. Sleep EDF (S-EDF) Database

The S-EDF database have 197 whole-night Polysomnography (PSG) sleep recordings, containing
EEG, EOG, chin EMG and event markers [18,19]. All the Hypnograms (sleep patterns) were manually
scored by well-trained technicians according to the R&K criteria. In this study, 34 EEG recordings from
26 subjects aged 25 to 96 years are randomly selected.

2.2.2. DREAMS Subjects (DRMS) Database

The DRMS Database consists of 20 whole-night PSG recordings coming from healthy subjects,
annotated in sleep stages according to both the R&K criteria and the new standard of the AASM [20].
Data collected were acquired in a sleep laboratory of a Belgium hospital using a digital 32-channel
polygraph (BrainnetTM System of MEDATEC, Brussels, Belgium). The sampling frequency was
200 Hz.

2.2.3. ISRUC(Subgroup 3, ISRUC3) Database

The ISRUC3 database is the third subgroup of ISRUC database [21]. The data were obtained from
human adults, including healthy subjects, subjects with sleep disorders and subjects under the effect of
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sleep medication. Each recording was randomly selected between PSG recordings that were acquired
by the Sleep Medicine Centre of the Hospital of Coimbra University (CHUC).

The S-EDF database was only labeled under the R&K criteria. Moreover, the ISRUC3 database
was only labeled by the AASM criteria. The DRMS database was not only labeled by R&K criteria
but also the AASM criteria. The annotations of S-EDF database and DRMS database were produced
visually by a single expert. The ISRUC3 database was scored by two experts and the label made by
the second expert was used in this paper. The Pz-Oz channel of the S-EDF database is used according
to the recommendations of various studies [3–7]. At the same time, for the DRMS database, as the
researches [9–12] recommended, the Cz-A1 channel was adopted in this work. Moreover, for the
ISRUC database, the C3-A2 channel is the best choice [7]. Table 3 lists the detailed information of the
above three databases.

Table 3. The specification of the electroencephalograph (EEG) databases included in this study.

Scoring Manual R&K Criteria AASM Criteria

dataset name S-EDF database DRMS database DRMS database ISRUC3
database

Epoch length(Seconds) 30 20 30 20
Number of subjects 26 20 20 10
Recoding Files 34 20 20 10
Age 25–96 20–65 20–65 30–58
Gender(male-female) 17–17 4–16 4–16 9–1
Sampling frequency (Hz) 100 200 200 200
EEG channel Pz–Oz Cz–A1 Cz–A1 C3–A2

Stage Number of epochs

Awa 7,3835 5601 3559 1702
REM 6744 4555 3019 1238
S1(N1) 3017 1788 1480 1123
S2(N2) 1,7249 1,3274 8251 2850
S3(N3) 2288 2112 3956 1976
S4 1510 3071 – –
Total Number of Epochs 10,4643 3,0401 2,0265 8889

2.3. Method

Figure 1 shows the schematic outline of the proposed IMBEFs based sleep statge classification
algorithm comprising preprocessing, wavelet package decomposition, locality energy calculation,
state space models estimation, features extraction, classifier training and performance evaluation.

Figure 1. A schematic outline of the proposed improved model based essence features (IMBEFs) based
sleep stage classification algorithm.

2.3.1. EEG Data Preprocessing

Firstly, all the single-channel data will be extracted by the Matlab and EEGLAB [22] tools from the
three database described previously. According to the prior work [5–11], the 0–35 Hz low pass filter can
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be used to eject the most of artifact. Once the dataset is filtered, it will be exported as one-dimensional
vector without time information and saved as txt file which also can be denoted as the Formula (1).

X = [x1, x2, . . . , xk, . . . , xM] , k ∈ [1, M], xk ∈ R (1)

where X is the vector containing the sampled EEG xk and where M is the length of vector.
Furthermore, we use a window of length j to divide the full data X across time without overlap.

That is X is converted into [X1, X2, . . . , Xi, . . . , XL]
T which can be described as (2).

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

X1

X2
...

Xi
...

XL

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1 x2 · · · xj
xj+1 xj+2 · · · x2j

...
... · · ·

...
x(i−1)j+1 x(i−1)j+2 · · · xi×j

...
...

...
...

x(L−1)j+1 x(L−1)j+2 · · · xL×j

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
L =

⌊
M
j

⌋
, i ∈ [1, L]

(2)

where j = Te × Fs. The Te is the length of each epoch. Moreover, the Fs is the sampling frequency of
the database. For the S-EDF database, the Te = 30 and the Fs = 100, so the j is 3000. Moreover, for the
ISRUC3 database, the Te = 20 and the Fs = 200, so the j is 4000.

2.3.2. Wavelet Package Decomposition

WPD is a powerful tool to analyze non-stationary EEG signals. In essence, WPD is a wavelet
transform where the discrete-time signal is passed through more filters than the discrete wavelet transform,
which can provide a multi-level time-frequency decomposition of signals [23]. Compared with discrete
wavelet transform, WPD can provide more frequency resolutions. In the discrete wavelet transform,
a signal is split into an approximation coefficient and a detail coefficient [24]. The approximation coefficient
is then itself split into a second-level approximation coefficients and detail coefficients and the process is
repeated. A wavelet packet function ωm

l,d(q) is defined as (3):

ωm
l,d(q) = 2l/2ωm(2lq − d) (3)

where l and d are the scaling (frequency localization) parameter and the translation (time localization)
parameter, respectively; m = 0, 1, 2, . . . is the oscillation parameter.

Wavelet packet (WP) coefficients of the EEG epoch Xi are embedded in the inner product of the
signal with every WP function, denoted by pi,m

l (d), d = ...,−1, 0, 1, ... and given below:

pi,m
l (d) = ∑ xi(q)ωm

l,d(q) (4)

where pi,m
l (d) denotes the m-th set of WPD coefficients at l-th scale parameter and d is the translation

parameter. All frequency components and their occurring times are reflected in pi,m
l (d) through change

in m, l, d. Each coefficient pm
l (d) measures a specific sub-band frequency content, controlled by scaling

parameter l and oscillation parameter m. The essential function of WPD is the filtering operation
through low-pass filter h(d) and high-pass filter g(d). For the l-th level of decomposition, there are
2l sets of sub-band coefficients Ci

l,m , of length j/2l . The wavelet packet coefficients of epoch Xi are
given as

Ci
l,m = {pi,m

l (d)|d = 1, 2, ..., j/2l} (5)
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It can be seen from the (5) that each node of the WP tree is indexed with a pair of integers (l, m),
where l is the corresponding level of decomposition and m is the order of the node position in the
specific level. Here, the level lLE and wavelet basis ωLE of WPD on the epoch Xi for LE calculation will
be confirmed in the Section 3. Moreover, the wavelet basis ωDSSM for DSSM will be confirmed in the
same section.

2.3.3. Locality Energy Calculation

The wavelet package energy Ei
lLE ,m at the m-th node on the level lLE of epoch Xi can be defined as

follows [25].

Ei
lLE ,m = ∑ |pi,m

l (d)|2 = |Ci
lLE ,m|2, m = {1, 2, . . . , 2lLE} (6)

Then, the locality energy features (LEFs) of each Epoch can be defined as {Ei
lLE ,m|m =

1, 2, . . . , 2lLE}.

2.3.4. Dual State Space Models Estimation

As we have described before, after the wavelet packet decomposition, the low-level (the first level)
coefficients will be used to estimate the dual state space models which can denoted by the difference
Equation (7). {

uk+1 = Auk + Kek
yk = Buk + ek

(7)

The yk ∈ Ci
1,m is the coefficient at instant k ∈ [1, 2, . . . , j/2]. Vector uk ∈ Rn×1 is the state vector

of process at discrete time instant k and contains the numerical value of n states. Matrix A ∈ Rn×n

is the dynamical system matrix. K ∈ Rn×1 is the steady state Kalman gain. B ∈ R1×n is the output
matrix, which describes how the internal state is transferred to the outside world in the observations
yk. The ek ∈ R denotes zero mean white noise.

With the traditional subspace algorithm such as N4SID, the matrix Â, B̂, K̂ of the state space
model of dynamic system can be estimated [26]. In this paper, the order nDSSM of dual state space
models will be determined by the experiments in the Section 3. Moreover, the parameter matrixes of
state space model estimated by the first level wavelet coefficients Ci

1,m can be expressed as

Âi
1,m =

⎡⎢⎢⎣
ai,m

1,1 · · · ai,m
1,nDSSM

... · · ·
...

ai,m
nDSSM ,1 · · · ai,m

nDSSM ,nDSSM

⎤⎥⎥⎦
B̂i

1,m =
[
bi,m

1 bi,m
2 . . . bi,m

nDSSM

]
K̂i

1,m =
[
ki,m

1 bi,m
2 . . . ki,m

nDSSM

]T

i ∈ [1, L] , m = {1, 2}

(8)

Then the DSSM Si of the Xi can be defined as:

Si =

[
si

1
si

2

]
=

[
ai,1

1,1 · · · ai,1
nDSSM ,nDSSM bi,1

1 · · · bi,1
nDSSM ki,1

1 · · · ki,1
nDSSM

ai,2
1,1 · · · ai,2

nDSSM ,nDSSM bi,2
1 · · · bi,2

nDSSM ki,2
1 · · · ki,2

nDSSM

]
(9)

So, the parameters extracted from DSSM here is called DSSM Features (DSSMFs) can be defined
as DSSMFs =

[
si

1 si
2
]
.
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2.3.5. IMBEFs Construction

According to the previously calculated LEFs Ei
lLE ,m and the parameters Si of the DSSM, the features

IMBEFs of epoch Xi here are given by

Fi
DSSM =

[
Ei

lLE ,1 . . . Ei
lLE ,2lLE

si
1 si

2

]
(10)

The feature dimension can be calculated by the Equation (11).

DimDSSM = 2lLE + 2(n2
DSSM + 2 × nDSSM) (11)

Here, the general form of features extracted from LE and multiple state space models (MSSM)
which are estimated by the lMSSM-th level WPD coefficients can be depicted as Equation (12).

Fi
MSSM =

[
Ei

lLE ,1 . . . Ei
lLE ,2lLE

si
1 . . . si

2lMSSM

]
(12)

The dimension of the Fi
MSSM can be calculated by

DimMSSM = 2lLE + 2lMSSM (n2
MSSM + 2 × nMSSM) (13)

where nMSSM is the order of MSSM. Usually, the nMSSM range from 5 to 10. Assume the nMSSM = 5,
DimDSSM = 2lLE + 2lMSSM × 40. Then if lMSSM > 2, the DimMSSM will be too large. So the lMSSM is set
to 1 in this paper, which means there are two state space models.

3. Experiments and Results

In this section, there are four experimental parts. The first is the experiment for selecting a suitable
classifier among several candidate classifiers. Then is the determination of the most suitable wavelet
basis ωDSSM and model order nDSSM for DSSM estimation. Next is the selection of the wavelet basis
ωLE and the level lLE for the LE calculation. Finally, the test experiment will be conducted on the
S-EDF database and ISRUCS3 database with the ωDSSM, ωLE, nDSSM and lLE determined according to
the previous experiments.

In the process of selecting these parameters, the DRMS database was adopted for testing under the
both R&K and AASM standards. There are several conventional verification strategies, including k-fold
cross-validation, leave one-subject-out cross-validation (LOOCV) and corss-dataset validation, etc.
In this paper, many commonly-used databases are adopted to verify the performance of the algorithm,
in which the S-EDF database and the DRMS database contains lots of subjects. However, some subjects
contained in these database possess unevenly distributed samples, which means the incomplete sleep
stages. Consequently, the 10-fold cross-validation method would be more suitable for the performance
verification in this research. In 10-fold cross-validation, the original sample is randomly partitioned into
10 equal size subsamples. Of the 10 subsamples, a single subsample is retained as the validation data
for testing the model and the remaining nine subsamples are used as training data. The cross-validation
process is then repeated 10 times, with each of the 10 subsamples used exactly once as the validation
data. The 10 results from the folds can then be averaged to produce a single estimation. The advantage
of this method is that all observations are used for both training and validation and each observation
is used for validation exactly once. The accuracy (ACC) and Cohen’s Kappa Coefficient (Kappa) are
computed to evaluate the overall classification performance.

ACC =
TP + TN

TP + TN + TN + FN
× 100% (14)

Kappa =
ACC − pe

1 − pe
(15)
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where TP, TN, FP and FN represent the number of true positive, true negative, false positive and false
negative examples respectively. And pe is the hypothetical probability of agreement by chance.

3.1. Classifier Comparison and Selection

In this section, an algorithm is designed to search the best classifier for the method proposed in
this paper. The detailed steps are shown in the Algorithm 1 below. In this algorithm, according to
the distribution and characteristic of the samples, the candidate classifiers are including Linear
Discriminant, Quadratic Discriminant, Quadratic SVM, Fine KNN, Bagged Trees and RUSBoosted
Trees. The candidate wavelet bases include the db1, db2, db3, db4, db5, db6, db8, db16, db32, sym2,
sym8, sym16, coif1, coif3 and dmey. The order of DSSM range from 5 to 10. Here only the DSSMFs are
used for training and validation.

Table 4 shows the experiment results of Algorithm 1. As can be seen from Table 4, the Bagged Trees
is the optimal classifier in the classification of two to six classes. At the meantime, the corresponding
order of DSSM is 6. In addition, in the two class classification, the optimal wavelet basis is sym2;
the others, however, are db1. Furthermore, the comparison of different classifiers in two classes
classification under the condition of nDSSM = 6 are listed in Table 5. It can be seen from Table 5 that
the accuracy of sym2 is 95.79%, which is a little higher than the 95.71% of db1 and 95.72% of db2.
Therefore, considering the results in Tables 4 and 5 , the Bagged Trees will be used as the classifier for
subsequent experiments.

Table 4. The outputs of Algorithm 1.

Classes Optimal Classifier ωDSSM nDSSM Accuracy(%)

2 Bagged Trees sym2 6 95.79
3 Bagged Trees db1 6 88.29
4 Bagged Trees db1 6 83.07
5 Bagged Trees db1 6 81.45
6 Bagged Trees db1 6 78.57

Table 5. Comparison of different classifiers in two class classification with different wavelet. The
nDSSM = 6. Highest values are highlighted in boldface.

Accuracy (%) db1 db2 db3 db4 db5 db6 db8 db16 db32 sym2 sym8 sym16 coif1 coif3 dmey

Linear Discriminant 94.21 93.94 94.33 93.93 93.52 93.17 92.53 91.72 91.66 93.90 92.35 91.68 93.98 92.59 92.24
Quadratic Discriminant 92.94 93.73 94.42 92.89 91.90 91.07 91.15 87.63 87.13 93.68 90.99 88.37 94.14 91.29 87.27

Quadratic SVM 95.13 95.01 95.16 94.88 94.62 94.43 94.14 93.71 93.47 95.09 94.13 93.59 95.12 94.25 93.68
Fine KNN 91.96 90.96 92.62 91.05 90.06 89.82 88.70 87.60 86.58 90.84 88.43 87.00 90.61 89.52 88.22

Bagged Trees 95.71 95.72 95.70 95.59 95.42 95.43 95.16 94.93 95.00 95.79 95.04 94.82 95.71 95.29 95.01
RUSBoosted Trees 94.28 94.08 94.68 94.41 94.07 93.94 93.75 93.02 93.08 94.05 93.78 92.79 94.20 93.76 93.20
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Algorithm 1: Search the Optimal Classifier.
Input:

WBS:the candidate wavelet base array, including the db1, db2, db3, db4, db5, db6 ,db8 ,db16,
db32, sym2, sym8, sym16, coif1, coif3, dmey;
CCA:the candidate classifier array,including the Linear Discriminant, Quadratic Discriminant,
Quadratic SVM, Fine KNN, Bagged Trees and RUSBoosted Trees;
SSMOV:the state space model order array range from 5 to 10;
Output: the optimal classifier array OCA , the corresponding order array COV and wavelet

basis array CWBA
1 Initialize the samples matrix SM, validation Accuracy VA = 0, the matrix VAM to store the

VA, the current classifier CC, the current wavelet basis CWB, the current model order CMO,
temp value TMP = 0 ;

2 for i ∈ [1, 5] do

3 for j ∈ [1, 6] do

4 CMO = SSMOV(j);
5 for k ∈ [1, 15] do

6 CWB = WBS(k);
7 Select and Construct the SM according to the CMO and CWB
8 for m ∈ [1, 6] do

9 CC = CCA(m);
10 Put the SM into CC for training and verification with 10-fold cross-validation

method, get the VA
11 VAM(m + (j − 1)× 6, k) = VA
12 end

13 end

14 end

15 for n ∈ [1, 36] do

16 for p ∈ [1, 15] do

17 TMP = 0
18 if VAM(n, p) > temp then

19 OCA(i)= CCA(n%6);
20 COV(i) = SSMOV(ceil(n/6));

/* the ceil(X) rounds X to the nearest integer greater than or
equal to X. */

21 CWBA(i) = WBS(p);
22 end

23 end

24 end

25 end

26 Output the OCA, COV, CWBA;

3.2. Wavelet Basis Comparison and Selection

After the classifier is determined, the model order nDSSM and wavelet basis ωDSSM should be
further confirmed through the grid search method. This process can be seen in the step 1 of the
Figure 2. The candidate wavelets include db1, db2, db3, db4, db5, db6, db8, db16, db32, sym2, sym8,
sym16, coif1, coif3 and dmey. The candidate model order is 5 to 10. The Following Tables 6–14 are the
experiments results of the DRMS database without LEFs, in which the highest accuracy values are
highlighted in bold.
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Figure 2. The diagram of the parameter optimization process.

Table 6. The accuracy (%) of the two class sleep stage classification with different wavelet bases and
different order of DSSM under R&K standard. Only DSSMFs are used, no LEFs.

ωDSSM

db1 db2 db3 db4 db5 db6 db8 db16 db32 sym2 sym8 sym16 coif1 coif3 dmey

n D
SS

M

5 95.52 95.55 95.69 95.59 95.17 95.16 95.09 94.98 94.96 95.72 94.94 94.92 95.54 95.07 95.24
6 95.71 95.72 95.70 95.59 95.42 95.43 95.16 94.93 95.00 95.79 95.04 94.82 95.71 95.29 95.01
7 95.63 95.54 95.57 95.70 95.61 95.38 95.28 94.70 94.80 95.59 95.31 94.58 95.60 95.21 94.94
8 95.47 95.51 95.51 95.64 95.50 95.23 95.15 94.85 94.47 95.45 95.16 94.75 95.44 95.20 94.62
9 95.57 95.52 95.54 95.62 95.71 95.34 95.12 94.93 94.33 95.49 95.26 94.55 95.45 95.21 94.45
10 95.38 95.45 95.46 95.57 95.54 95.28 95.23 94.72 94.12 95.48 95.10 94.76 95.44 95.23 94.32

Table 7. The accuracy (%) of three class sleep stage classification with different wavelet bases and
different order of DSSM under R&K standard. Only DSSMFs are used, no LEFs.

ωDSSM

db1 db2 db3 db4 db5 db6 db8 db16 db32 sym2 sym8 sym16 coif1 coif3 dmey

n D
SS

M

5 87.90 87.92 87.72 88.04 86.70 86.73 86.18 85.50 85.25 87.86 86.11 85.55 87.54 86.03 85.43
6 88.29 88.03 88.26 88.05 87.85 87.70 86.72 85.38 85.25 87.82 86.54 85.20 87.90 87.09 85.65
7 87.88 87.72 88.13 87.94 87.67 87.76 87.20 84.85 84.27 87.88 87.43 85.00 87.96 87.18 84.82
8 87.67 87.87 88.10 87.96 87.86 87.68 87.24 85.66 84.15 87.88 87.53 85.83 87.71 87.16 84.20
9 87.81 87.79 88.07 87.83 87.96 87.81 87.55 85.99 83.85 87.84 87.55 86.37 87.67 87.24 83.79
10 87.62 87.88 87.84 88.02 87.80 87.78 87.58 86.14 83.93 87.92 87.52 86.62 87.27 87.16 83.53

Table 8. The accuracy (%) of four class sleep stage classification with different wavelet bases and
different order of DSSM under R&K standard. Only DSSMFs are used, no LEFs.

ωDSSM

db1 db2 db3 db4 db5 db6 db8 db16 db32 sym2 sym8 sym16 coif1 coif3 dmey

n D
SS

M

5 82.61 82.69 82.51 82.93 81.36 81.37 80.29 79.83 79.53 82.88 80.59 79.59 82.13 80.49 79.76
6 83.07 82.71 82.76 82.78 82.29 82.23 81.40 79.63 79.16 82.71 81.07 79.43 82.58 81.75 79.79
7 82.38 82.78 82.81 82.42 82.20 82.35 81.45 78.91 78.37 82.76 81.70 79.03 82.45 81.69 78.62
8 82.29 82.40 82.69 82.32 82.33 82.06 81.51 79.78 78.02 82.39 81.83 79.69 82.36 81.36 78.28
9 82.29 82.56 82.54 82.49 82.24 82.25 81.76 80.00 77.68 82.35 81.99 80.35 82.53 81.58 78.00
10 82.09 82.48 82.71 82.71 82.10 82.38 81.95 79.95 77.70 82.56 81.65 80.50 81.93 81.57 77.48
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Table 9. The accuracy (%) of five class sleep stage classification with different wavelet bases and
different order of DSSM under R&K standard. Only DSSMFs are used, no LEFs.

ωDSSM

db1 db2 db3 db4 db5 db6 db8 db16 db32 sym2 sym8 sym16 coif1 coif3 dmey

n D
SS

M

5 81.14 81.15 80.66 81.17 79.79 79.83 79.04 78.55 78.30 81.20 79.27 78.41 80.51 79.30 78.72
6 81.45 81.38 81.42 81.17 81.00 80.60 79.92 78.38 78.13 81.33 79.66 78.15 81.19 80.23 78.71
7 80.80 80.87 81.00 80.88 80.63 80.48 79.87 77.75 77.08 80.91 80.27 77.53 80.87 80.07 77.61
8 80.95 81.07 81.08 80.92 80.62 80.52 80.13 78.13 76.89 81.00 80.15 78.48 80.85 80.16 77.20
9 80.95 80.90 80.75 80.88 80.67 80.56 80.27 78.73 76.72 80.86 79.99 78.93 80.64 79.97 76.78
10 80.64 80.86 80.97 80.94 80.71 80.72 80.29 78.42 76.62 80.93 80.22 78.94 80.47 79.90 76.12

Table 10. The accuracy (%) of six class sleep stage classification with different wavelet bases and
different order of DSSM under R&K standard. Only DSSMFs are used, no LEFs.

ωDSSM

db1 db2 db3 db4 db5 db6 db8 db16 db32 sym2 sym8 sym16 coif1 coif3 dmey

n D
SS

M

5 78.01 77.96 77.56 77.94 76.47 76.46 75.44 74.99 74.58 77.67 75.80 75.02 77.17 75.58 74.99
6 78.57 78.20 78.26 78.16 77.75 77.56 76.88 75.41 75.07 78.40 76.43 75.02 78.38 77.02 75.34
7 77.31 77.39 77.52 77.38 76.89 77.00 76.32 74.11 73.63 77.39 76.54 74.22 77.03 76.77 74.09
8 77.36 77.43 77.47 77.40 76.93 76.84 76.15 74.76 73.07 77.58 76.55 74.75 77.18 76.21 73.54
9 77.25 77.38 77.56 77.44 76.94 76.89 76.39 74.91 73.01 77.22 76.79 75.21 77.07 76.34 73.10
10 76.76 77.31 77.66 77.59 76.99 76.89 76.64 74.64 72.88 77.24 76.34 75.22 77.08 76.45 72.47

From Tables 6–10, we can see that under the R&K standard, when the order of the DSSM is 6 and
the wavelet basis is selected as db1, the classification accuracy for three to six classes can reach the
highest. When the wavelet basis is selected as sym2, the accuracy of the two classes is the highest.
Through further analysis, it can be seen that in the results of two class classification, the difference
between the accuracy of the db1 and the highest is very small.

Table 11. The accuracy (%) of two class sleep stage classification with different wavelet bases and
different order of DSSM under AASM standard. Only DSSMFs are used, no LEFs.

ωDSSM

db1 db2 db3 db4 db5 db6 db8 db16 db32 sym2 sym8 sym16 coif1 coif3 dmey

n D
SS

M

5 95.09 95.01 95.20 94.99 94.63 94.53 94.63 94.67 94.44 95.10 94.40 94.54 94.91 94.54 94.56
6 95.59 95.63 95.68 95.55 95.42 95.29 95.10 94.75 94.79 95.73 95.02 94.79 95.72 95.12 94.90
7 95.19 95.21 95.50 95.30 95.11 94.89 94.91 94.33 94.26 95.13 94.99 94.35 95.18 95.00 94.30
8 94.82 95.14 95.09 95.31 94.90 94.73 94.71 94.25 93.83 95.17 94.62 94.16 94.99 94.74 94.03
9 95.16 95.28 95.28 95.10 95.26 95.04 94.96 94.16 93.79 95.22 94.68 94.25 95.11 94.81 93.97
10 95.07 95.20 95.18 95.40 95.09 94.98 94.95 94.24 93.41 95.10 94.72 94.20 95.17 95.09 93.46

Table 12. The accuracy (%) of three class sleep stage classification with different wavelet bases and
different order of DSSM under AASM standard. Only DSSMFs are used, no LEFs.

ωDSSM

db1 db2 db3 db4 db5 db6 db8 db16 db32 sym2 sym8 sym16 coif1 coif3 dmey

n D
SS

M

5 87.12 87.04 86.90 87.17 85.81 85.84 85.13 84.83 84.69 86.97 84.81 84.82 86.45 85.45 84.85
6 87.52 87.35 87.55 87.63 87.12 86.88 86.16 84.49 84.61 87.26 85.87 84.48 87.21 86.46 84.85
7 87.62 87.32 87.83 87.49 87.15 87.30 86.58 84.55 83.95 87.49 87.00 84.38 87.44 86.85 84.18
8 86.92 87.56 87.59 87.44 87.15 87.26 86.73 85.55 83.23 87.20 86.77 85.10 87.14 86.67 83.53
9 87.52 87.28 87.68 87.43 87.34 87.43 87.16 85.56 83.36 87.55 86.95 85.74 87.20 86.86 83.07
10 87.38 87.51 87.52 87.62 87.14 87.46 87.32 85.64 83.19 87.37 87.02 86.09 87.25 86.87 82.79
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Table 13. The accuracy (%) of four class sleep stage classification with different wavelet bases and
different order of DSSM under AASM standard. Only DSSMFs are used, no LEFs.

ωDSSM

db1 db2 db3 db4 db5 db6 db8 db16 db32 sym2 sym8 sym16 coif1 coif3 dmey

n D
SS

M

5 81.26 80.82 80.65 80.97 79.27 78.90 78.14 77.80 77.40 80.52 78.48 77.86 80.22 78.13 77.87
6 81.51 80.87 81.18 81.12 80.44 79.86 79.35 77.16 77.01 80.89 79.27 77.35 80.81 79.40 77.56
7 81.13 80.91 81.40 80.86 80.29 80.21 79.61 76.98 75.92 80.74 80.05 77.19 80.48 79.60 76.52
8 80.22 80.60 80.34 80.56 80.10 79.67 79.37 77.82 75.32 80.66 79.42 77.89 80.15 79.41 76.05
9 80.66 80.75 80.77 80.47 80.25 80.38 79.72 77.46 75.54 81.07 79.89 78.11 80.89 79.82 75.01
10 80.50 80.83 81.06 81.29 80.33 80.43 80.21 77.78 75.52 80.69 79.53 78.34 80.15 79.87 74.99

Table 14. The accuracy (%) of five class sleep stage classification with different wavelet bases and
different order of DSSM under AASM standard. Only DSSMFs are used, no LEFs.

ωDSSM

db1 db2 db3 db4 db5 db6 db8 db16 db32 sym2 sym8 sym16 coif1 coif3 dmey

n D
SS

M

5 78.70 78.49 78.22 78.83 77.07 76.94 76.10 75.16 75.45 78.70 76.34 75.41 77.90 76.14 75.82
6 78.72 78.55 78.54 78.67 77.74 77.73 77.08 75.36 74.99 78.58 77.22 75.15 78.29 77.21 75.72
7 78.57 78.49 78.38 78.15 77.95 77.77 77.42 74.81 73.54 78.41 77.19 74.64 77.93 77.02 74.52
8 78.06 78.11 77.94 77.83 77.43 77.56 77.09 75.55 73.45 78.23 77.35 75.33 77.87 77.18 73.64
9 78.28 78.30 78.30 77.74 77.77 78.03 77.64 75.49 73.27 78.60 77.41 75.88 78.14 77.11 73.29
10 77.91 78.29 78.26 78.29 77.87 77.83 77.63 75.12 73.25 78.20 77.49 75.55 78.26 77.37 72.38

As can be seen from Tables 11–14, when the order nDSSM is 6, the highest classification accuracy
can be obtained in two to five classes sleep state classification. Moreover, in the three to five classes
classifications, when the wavelet basis is db1, the highest classification accuracy can be achieved. In the
two classes of sleep classification, when the wavelet base is db1, the accuracy is 0.14% lower than
the highest accuracy. Combining the classification results of the above tables, in order to facilitate
subsequent calculations, the db1 was uniformly used as the wavelet basis for DSSM estimation and
the model order of DSSM adopts 6.

Then, the wavelet basis ωLE and level lLE which are required to calculate LE should be further
determined according to the experimental results in the next step. That is, on the basis of the features
previously extracted from the DSSM, LEFs will be added which have been shown in the Step 2 of the
Figure 2. Tables 15–19 are the classification accuracies of 2–6 classes under the R&K standard, in which
the highest accuracy values are highlighted in bold.

Table 15. The accuracy (%) of two class sleep stage classification with different ωLE and lLE under
R&K standard.

ωLE

db1 db2 db3 db4 db5 db6 db8 db16 db32 sym2 sym8 sym16 coif1 coif3 dmey

l L
E

3 95.71 95.69 95.70 95.84 95.68 95.64 95.68 95.71 95.64 95.67 95.66 95.77 95.69 95.70 95.69
4 95.74 95.69 95.74 95.96 95.69 95.75 95.71 95.63 95.71 95.71 95.58 95.70 95.73 95.56 95.63
5 95.82 95.89 95.90 96.17 95.88 95.87 95.81 95.72 95.85 95.80 95.74 95.74 95.89 95.74 95.72
6 95.80 95.71 95.93 96.06 95.70 95.73 95.69 95.67 95.58 95.84 95.81 95.63 95.82 95.65 95.49
7 95.76 95.74 95.64 95.70 95.71 95.57 95.61 95.57 95.60 95.58 95.53 95.72 95.64 95.54 95.51

Table 16. The accuracy (%) of three class sleep stage classification with different ωLE and lLE under
R&K standard.

ωLE

db1 db2 db3 db4 db5 db6 db8 db16 db32 sym2 sym8 sym16 coif1 coif3 dmey

l L
E

3 88.12 88.07 87.91 88.48 88.12 88.11 88.21 87.86 87.97 88.09 88.02 87.96 88.15 88.10 88.10
4 88.22 88.22 88.22 88.59 88.81 88.12 87.86 88.08 87.91 88.02 88.05 87.92 88.02 87.85 87.94
5 88.51 88.56 88.61 88.72 88.89 88.75 88.14 88.18 88.09 88.47 88.37 88.14 88.64 88.18 87.98
6 88.11 88.09 88.00 88.66 88.73 88.00 87.88 87.63 87.54 88.17 87.70 87.84 87.82 87.76 87.43
7 87.92 87.76 87.58 88.62 88.62 87.65 87.27 87.34 87.35 87.83 87.49 87.39 87.61 87.46 87.27
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Table 17. The accuracy (%) of four class sleep stage classification with different ωLE and lLE under
R&K standard.

ωLE

db1 db2 db3 db4 db5 db6 db8 db16 db32 sym2 sym8 sym16 coif1 coif3 dmey

l L
E

3 82.87 82.76 82.98 83.06 82.99 82.80 82.87 82.98 82.75 82.85 82.82 82.91 82.87 82.97 83.02
4 82.97 82.91 83.23 83.54 83.02 82.89 82.85 82.86 82.83 82.93 82.92 82.68 82.89 82.79 82.75
5 83.53 83.52 83.53 83.97 83.71 83.25 83.04 82.99 83.18 83.57 83.07 83.07 83.38 82.98 82.84
6 83.25 82.91 83.67 83.80 82.55 82.76 82.25 82.38 82.40 82.91 82.42 82.11 82.87 82.37 82.17
7 82.57 82.57 82.52 82.60 82.40 82.29 81.93 81.90 82.03 82.56 82.13 81.92 82.43 81.85 81.89

Table 18. The accuracy (%) of five class sleep stage classification with different ωLE and lLE under
R&K standard.

ωLE

db1 db2 db3 db4 db5 db6 db8 db16 db32 sym2 sym8 sym16 coif1 coif3 dmey

l L
E

3 81.24 81.42 81.52 81.66 81.45 81.29 81.31 81.28 81.35 81.37 81.19 81.13 81.27 81.32 81.30
4 81.49 81.55 81.67 81.93 81.70 81.09 81.18 81.10 81.21 81.30 81.45 81.33 81.43 81.28 80.97
5 81.87 81.66 82.32 82.28 81.61 81.42 81.09 80.95 81.01 81.34 80.93 80.92 81.19 81.01 80.79
6 81.59 81.48 81.29 81.82 81.07 80.98 80.67 80.85 80.75 81.52 80.90 80.89 81.36 80.68 80.44
7 81.07 81.04 80.89 81.47 80.70 80.38 80.58 80.59 80.56 80.80 80.69 80.44 80.76 80.47 80.55

Table 19. The accuracy (%) of six class sleep stage classification with different ωLE and lLE under
R&K standard.

ωLE

db1 db2 db3 db4 db5 db6 db8 db16 db32 sym2 sym8 sym16 coif1 coif3 dmey

l L
E

3 78.25 78.39 78.44 78.52 78.18 78.35 77.99 78.08 78.15 78.29 78.06 78.03 78.21 78.14 78.20
4 78.63 78.64 78.67 78.80 78.67 78.65 78.56 78.54 78.54 78.62 78.44 78.45 78.63 78.48 78.28
5 78.91 78.91 78.88 78.92 78.23 78.42 78.38 78.22 78.38 78.77 78.24 78.20 78.81 78.44 77.98
6 78.45 78.35 78.26 78.64 77.97 77.90 77.88 77.68 77.78 78.36 77.74 77.57 78.22 77.64 77.36
7 77.92 77.66 77.48 77.55 77.31 77.22 77.25 77.08 77.63 77.60 77.45 77.18 77.81 77.22 77.02

As can be seen from Tables 15–19, when lLE = 5, the ωLE is db4, the accuracy of two, four and six
classes is the highest. Moreover, when the ωLE is set to the db5 and db3, the classification accuracy of
three and five classes can reach the highest respectively. The Table 20 is the confusion matrix of six
classes sleep state classification on DRMS database with IMBEFs under the R&K standard. As shown in
the Table 20, the sensitivity of Awa, REM, S1, S2, S3 and S4 are 93.68%, 81.16%, 14.37%, 89.29%, 25.71%
and 77.99%, respectively. Moreover, the overall accuracy of the six classes classification is 78.92%.

Table 20. The confusion matrix of six classes sleep state classification on DRMS database under the
R&K standard. The lLE = 5, ωLE = db4, nDSSM = 6, ωDSSM = db1.

Automatic Classification

Awa REM S1 S2 S3 S4 Sen (%) Overall Accuracy (%)

E
x

p
e

rt

Awa 5247 96 85 155 3 15 93.68

78.92

REM 203 3697 86 566 1 2 81.16
S1 418 784 257 328 1 0 14.37
S2 262 731 62 11852 248 119 89.29
S3 20 0 0 1022 543 527 25.71
S4 174 0 0 231 271 2395 77.99

Tables 21–24 show the classification accuracy of 2–5 classes with LEFs on the DRMS database
under the AASM, in which the highest accuracy values are highlighted in boldface. As can be seen
from these tables, after adding LEFs, the accuracy of each classification has been greatly improved.
Among them, the highest accuracy can be obtained when using the LEFs extracted from the 5 level
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WPD and there are three corresponding wavelet bases, which are db1, db2 and db4. When the wavelet
basis is selected as db4, the accuracy of two classes and four classes can reach the highest. In addition,
the accuracy of three and five classes are 88.22% and 79.90% respectively, which is not much different
from 88.26% and 79.97% of the corresponding highest classification accuracy. Therefore, the parameter
of lLE will be set as 5 and ωLE will be set as db4 in this paper.

Table 21. The accuracy (%) of two class sleep stage classification with different ωLE and lLE under
AASM standard.

ωLE

db1 db2 db3 db4 db5 db6 db8 db16 db32 sym2 sym8 sym16 coif1 coif3 dmey

l L
E

3 95.39 95.21 95.34 96.18 95.25 95.25 95.33 95.21 95.26 95.99 95.28 95.21 95.35 95.24 95.30
4 96.00 95.70 95.84 96.24 95.75 95.37 95.34 95.25 95.34 96.24 95.31 95.24 95.85 95.39 95.43
5 95.87 95.91 95.94 96.48 95.95 95.36 95.41 95.46 95.45 96.41 95.45 95.52 95.53 95.40 95.45
6 95.61 95.37 95.79 96.16 95.33 95.36 95.37 95.28 95.25 96.34 95.38 95.42 95.32 95.30 95.27
7 95.42 95.31 95.26 95.90 95.38 95.26 95.24 95.34 95.34 95.35 95.21 95.30 95.38 95.22 95.11

Table 22. The accuracy (%) of three class sleep stage classification with different ωLE and lLE under
AASM standard.

ωLE

db1 db2 db3 db4 db5 db6 db8 db16 db32 sym2 sym8 sym16 coif1 coif3 dmey

l L
E

3 87.99 87.92 87.62 87.56 87.75 87.67 87.52 87.85 87.55 87.63 87.64 87.77 87.73 87.51 87.59
4 87.80 87.65 87.67 87.71 87.68 87.64 87.51 87.69 87.77 87.76 87.78 87.70 87.79 87.58 87.88
5 88.00 88.26 88.04 88.22 87.96 87.99 87.85 87.92 87.84 88.17 88.04 88.04 88.04 87.99 87.87
6 87.89 87.78 87.75 87.71 87.42 87.64 87.59 87.34 87.55 87.64 87.58 87.34 87.82 87.44 87.26
7 87.13 87.71 87.43 87.92 87.23 87.62 87.38 87.39 87.52 87.75 87.55 87.34 87.51 87.58 87.11

Table 23. The accuracy (%) of four class sleep stage classification with different ωLE and lLE under
AASM standard.

ωLE

db1 db2 db3 db4 db5 db6 db8 db16 db32 sym2 sym8 sym16 coif1 coif3 dmey

l L
E

3 81.14 81.43 81.45 81.42 81.23 81.40 81.44 81.53 81.33 81.57 81.07 81.55 81.65 81.29 81.15
4 81.64 81.47 81.36 81.36 81.46 81.33 81.25 81.47 81.37 81.75 81.09 81.31 81.61 81.26 81.37
5 81.79 82.03 81.91 82.08 81.84 81.93 81.59 81.82 81.73 82.23 81.51 81.65 82.12 81.64 81.40
6 81.83 81.66 81.66 81.76 81.39 81.40 81.37 81.32 80.99 81.51 81.16 81.01 81.85 80.99 80.65
7 81.35 81.28 81.19 81.47 81.06 80.96 80.93 80.66 80.75 81.37 80.85 80.68 81.40 80.50 80.40

Table 24. The accuracy (%) of five class sleep stage classification with different ωLE and lLE under
AASM standard.

ωLE

db1 db2 db3 db4 db5 db6 db8 db16 db32 sym2 sym8 sym16 coif1 coif3 dmey

l L
E

3 79.24 79.02 78.87 79.20 79.08 78.99 78.86 78.96 78.77 78.89 79.16 79.09 79.03 78.66 79.09
4 79.41 79.26 79.33 79.25 79.14 78.80 79.08 79.03 78.91 78.93 78.82 79.16 79.05 79.03 79.01
5 79.97 79.54 79.48 79.90 79.45 79.34 79.36 79.38 79.62 79.77 79.36 79.15 79.53 79.43 79.05
6 79.10 79.29 79.20 79.23 79.13 78.94 78.89 78.68 78.64 79.20 78.86 78.52 79.39 78.43 78.01
7 79.04 78.69 78.89 78.85 78.67 78.39 78.48 78.33 78.16 78.98 78.71 78.22 78.66 78.30 77.67

The confusion matrix of five classes sleep state classification is listed in the Table 25. As can be
seen in this table, the overall accuracy is 79.90%. The sensitivity of Awa, REM, N1, N2, N3 are 92.89%,
81.22%, 17.57%, 85.52% and 78.79%. Furthermore, the receiver operating characteristic (ROC) curve of
the classifier trained by this dataset with the confirmed parameter is shown in Figure 3.

As can be seen in the Figure 3, when the positive samples is Awa, the true positive rate is 0.93
and the false positive rate is 0.05. In addition, when the positive samples are REM, N2 and N3,
the corresponding positive sample rates are 0.81, 0.86 and 0.79. When the positive samples are N1,
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the area under the curve (AUC) area is only 0.18. Moreover, the issue of low classification accuracy of
S1(N1) will be discussed in the Section 4.

Table 25. The confusion matrix of five classes sleep state classification on DRMS database under the
AASM standard. The lLE = 5, ωLE = db4, nDSSM = 6, ωDSSM = db1.

Automatic Classification

Awa REM N1 N2 N3 Sen(%) Overall Accuracy (%)

E
x

p
e

rt

Awa 3306 53 68 111 21 92.89

79.90
REM 131 2452 93 330 13 81.22
N1 341 480 260 389 10 17.57
N2 229 499 50 7056 417 85.52
N3 77 1 0 761 3117 78.79

Figure 3. The ROC curve of the classifier to classify the five classes of DRMS database under the
AASM standard.

3.3. Experiments on S-EDF and ISRUC3 Database

After experiments on the DRMS database, through the comprehensive comparison and selection,
the classifier is selected as the Bagged Tress, nDSSM is set to 6, lLE is set to 5, ωDSSM is set to db1 and
ωLE is set to db4. In order to further evaluate the performance of the method proposed in this paper,
we will use these parameters to conduct experiments on the S-EDF database and the ISRUC3 database.

The classification accuracy and Cohen’s Kappa Coefficients of the 2–6 classes on the S-EDF
database are shown in Table 26. Furthermore, the confusion matrix of six class classification is listed
for further analysis in Table 27.

109



Sensors 2020, 20, 4677

Table 26. The classification accuracy and Cohen’s Kappa Coefficient of 2–6 class sleep classification on
S-EDF database.

6 Classes 5 Classes 4 Classes 3 Classes 2 Classes

Accuracy 92.04% 92.50% 93.87% 94.90% 98.74%
Cohen’s Kappa Coefficient 0.8266 0.8364 0.8646 0.8834 0.9697

Table 27. the Confusion matrix of six classes sleep state classification on S-EDF database.

Automatic Classification

Awa REM S1 S2 S3 S4 Sen (%) Overall Accuracy (%)

E
x

p
e

rt

Awa 73165 483 46 141 0 0 99.09

92.04

REM 876 4819 61 988 0 0 71.46
S1 578 1174 583 682 0 0 19.32
S2 375 863 76 15631 254 50 90.62
S3 71 0 0 1003 1055 159 46.11
S4 23 0 0 171 256 1060 70.20

Similarly, the method proposed in this paper was also tested on the ISRUC3 database.
The experimental results are shown in the following Tables 28 and 29.

Table 28. The classification accuracy and Cohen’s Kappa Coefficient of 2–5 class sleep classification on
ISRUC3 database.

Classes 5 Classes 4 Classes 3 Classes 2 Classes

accuracy 81.65% 84.68% 90.54% 96.18%
Cohen’s Kappa Coefficient 0.7629 0.7729 0.8112 0.878

Table 29. The confusion matrix for five classes case on ISRUC3 database.

Automatic Classification

Awa REM N1 N2 N3 Sen(%) Overall Accuracy (%)

E
x

p
e

rt

Awa 1537 13 84 53 15 90.31

81.65
REM 36 1032 89 68 13 83.36
N1 91 135 648 242 7 57.70
N2 68 85 128 2312 257 81.12
N3 15 1 2 229 1729 87.50

As can be seen from Table 28, the classification accuracies of two to five classes are 96.18%, 90.54%,
84.68% and 81.65%, respectively. In the five class classification, the sensitivity of Awa, REM, N1, N2,
N3 are 90.31%, 83.36%, 57.70%, 81.12% and 87.50%, respectively.

4. Discussion

Table 30 shows the comparison of the classification accuracy from two to six classes of the
various published method and the method proposed in this paper on the DRMS database under the
R&K standard.
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Table 30. The accuracy comparison of various published methods on DRMS database under the R&K
standard. Highest accuracy in each case is highlighted in bold.

Epoch Mumber 6 Classes (%) 5 Classes (%) 4 Classes (%) 3 Classes (%) 2 Classes (%) Cross-Validation

Hassan et al. [3] 30401 70.73 73.50 79.12 84.4 93.3 10-fold
Hassan et al. [11] 30401 68.74 73.05 78.8 82.96 94.02 0.5/0.5

Shen et al. [27] 30401 78.2 80.9 82.7 87.7 94.9 10-fold
Proposed method Without LEFs 30401 78.52 81.26 82.81 87.95 95.59 10-fold
Proposed method with IMBEFs 30401 78.92 82.28 83.97 88.72 96.17 10-fold

As can be seen from the Table 30 above, when the only DSSMFs is used, the method proposed in
this paper has a certain improvement in accuracy compared with the others. After adding LEFs on
the basis of DSSMFs, the classification accuracies of two to six classes are improved by 1.27%, 1.02%,
1.27%, 1.38% and 0.72% compared with our previous study [27].

It can be seen from Table 31 that the method proposed in this paper has a certain improvement in
the sleep stage classification of 3–5 classes on the DRMS database compared with the current existing
methods. The N1 sensitivity of this method on the DRMS database is 17.57%, which is higher than
14.3% of Ghimatgar [7]. Moreover, Table 32 is the accuracy comparison of various published methods
on S-EDF database.

Table 31. The accuracy comparison of various published methods on the Dreams Subjects database
under the AASM standard. Highest accuracy in each case is highlighted in bold.

Epoch number 5 Classes (%) 4 Classes (%) 3 Classes (%) 2 Classes (%) Cross-validation

Hassan et al.[3] 20265 72.28 79.44 83.75 95.2 10-fold
Hassan et al.[11] 20265 74.59 80.0 85.42 97.2 10-fold

Ghimatgar et al.[7] 20265 78.08 80.38 86.88 94.8 20-fold
Proposed Method Without LEFs 20265 78.72 80.9 87.52 95.7 10-fold
Proposed Method with IMBEFs 20265 79.90 82.08 88.22 96.48 10-fold

Table 32. The accuracy comparison of various published methods on the S-EDF database under the
R&K standard. Highest accuracy in each case is highlighted in bold.

Epoch Number 6 Classes (%) 5 Classes (%) 4 Classes (%) 3 Classes (%) 2 Classes (%) Cross-Validation

Hassan et al. [3] 15188 90.38 91.50 92.11 94.8 97.5 0.5/0.5
Abdulla et al. [6] 23806 93 – – – – -

Ghimatgar et al. [7] 15188 89.91 91.11 92.19 94.65 98.19 0.5/0.5
Ghimatgar et al. [7] 40100 79.13 81.86 83.71 88.39 95.98 0.5/0.5

Hassan et al. [10] 15188 88.62 90.11 91.2 93.55 97.73 0.5/0.5
Hassan et al. [11] 15188 88.07 83.49 92.66 94.23 98.15 0.5/0.5
Sharma et al. [12] 15139 90.03 91.13 92.29 94.66 98.02 10-fold CV

Michielli et al. [17] 10280 – 86.7 – – – 10-fold CV
Shen et al. [27] 103505 91.9 92.3 93.0 93.9 98.6 10-fold CV

Sharma et al. [28] 85900 91.5 91.7 92.1 93.9 98.3 10-fold CV
Liang et al. [29] 3708 – 83.6 – – – 0.5/0.5
Hsu et al. [30] 2880 – 87.2 – – – 10-fold CV

Hassan et al. [31] 15188 89.6 90.8 91.6 93.9 97.2 0.5/0.5
Zhu et al. [32] 14963 87.5 88.9 89.3 92.6 97.9 10-fold CV
Jiang et al. [33] 36972 – 91.5 – – – 2-fold CV

Rahman et al. [34] 15188 90.26 91.02 92.89 94.1 98.24 0.5/0.5
Supratak et al. [35] 41950 – 79.8 – – – 20-fold CV
Proposed Method 104368 92.04 92.50 93.87 94.90 98.74 10-fold CV

It can be seen from Table 32 that when a large number of samples are used, the accuracy is also
improved compared with other published methods. Among them, the accuracy for the classification of
four classes is 93.87%, while the Sharma [28] is 92.1% and the Shen [27] is 93.0%. In the classification of
two classes, Abdulla et al. [6] has the highest accuracy of 93%; however, the number of epoch they used
is only 23806. The sensitivity of S1 in this paper is 19.32%, which is higher than 18.3% of Ghimatgar [7]
and 15.9% of Shen [27].

The experiments results of the proposed method on ISRUC3 database are also compared with
other methods, which can be seen in the following Table 33.

111



Sensors 2020, 20, 4677

Table 33. The accuracy comparison of the ISRUC3 database with the AASM standard. Highest accuracy
in each case is highlighted in bold.

Epoch number 5 Classes 4 Classes 3 Classes 2 Classes

Overall Accuracy Ghimatgar et al.[7] 8889 77.56 82.74 88.26 93.76
Proposed Method 8889 81.65 84.68 90.54 96.18

Cohen’s kappa Coefficient Ghimatgar et al.[7] 8889 0.71 0.75 0.77 0.79
Proposed Method 8889 0.7629 0.7729 0.8112 0.878

As can be seen from the Table 33, compared with Ghimatgar [7], the detection accuracy of two and
three classes is improved by more than 2 points. The sensitivity of S1 in Table 29 is 57.70%, which is
higher than 33% of Ghimatgar [7]. Furthermore, the Cohen’s kappa Coefficient is also much higher
than Ghimatgar [7].

It should be noted that the classification of S1 which is an enormous challenge to all of the
published method. From neurophysiological standpoint, S1(N1) is a transition phase and is a mixture
of wakefulness and sleep resulting in similarity with the neural oscillations of S1 and Awa. In REM state,
the cortex shows 40–60 Hz gamma waves as it does in waking. So the S1 state is often misclassified
as REM or Awa state during the visual inspection by experts [3,11]. This is why many of the S1
epochs are misclassified as REM, Awa or S2 stages in this work. In addition, with different databases,
the classification accuracy of S1 (N1) are also different. The detection accuracy of N1 on the ISRUC3
database reached 57.7%; on the DRMS database and the S-EDF database, however, it is less than 20%.
This is also related to the different proportions of S1 stages in each database. Under the same AASM
standard, on the ISRUC3 database, the S1 accounted for 12.65%; however, on the DRMS database,
the S1 accounted for only 7.3%. Furthermore, under the R&K standard, the sensitivity of S3 on the
S-EDF and DRMS databases is low, only 46.11% and 25.71%, respectively. The reason relate to this
phenomenon rely mainly on that the S3 is a transition phase of S2 and S4. Thus the further research
should be conducted to improve the S3 detection accuracy. Moreover, as can be seen in Table 20, a large
number of S3 is misclassified as S2 and the other large part is misclassified as S4. Similarly, in Table 27,
almost half of S3 epochs are misclassified as S2 and a small part are misclassified as S4. In addition,
when under the AASM standard, after combining the S3 and S4 into N3, the sensitivity of N3 has been
improved. As shown in Table 25, only 761 epochs of N3 were misclassified as N2; however, in Table 20,
1022 epochs of S3 were misclassified as S2 and 231 epochs of S4 were misclassified as S2. Therefore,
the AASM standard is more suitable for guiding the researchers to annotate the sleep stages than the
R&K standard.

5. Conclusions

In this paper, a novel IMBEF based automatic sleep stage classification method is proposed.
Moreover, a grid search strategy was presented to determine a suitable model order nDSSM and a
wavelet basis ωDSSM for estimating the DSSM among 15 candidate wavelets and 6 candidate model
orders. With the same search strategy, a proper wavelet basis ωLE and the WPD level lLE for LE
calculation are determined under 15 candidate wavelets and multilevel decomposition. The fused
IMBEFs extracted from the DSSM and LE would be used as the input features of the suitable
classifier which can be selected by comparing a variety of classifiers’ experiment results. In order to
precisely verify the performance of the proposed IMBEF based automatic sleep stage classification
method, experiments were carried out on three public databases. The comparison results with other
state-of-the-art methods show that the proposed algorithm can achieve higher accuracy.

We demonstrated in this paper measurable improvements in automatic sleep stage classification,
providing better understanding and diagnostic of the sleep phenomenon, clearly essential in medical,
wellness and other fields.
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Abstract: Motor imagery (MI)-based brain-computer interface (BCI) systems detect electrical brain
activity patterns through electroencephalogram (EEG) signals to forecast user intention while
performing movement imagination tasks. As the microscopic details of individuals’ brains are
directly shaped by their rich experiences, musicians can develop certain neurological characteristics,
such as improved brain plasticity, following extensive musical training. Specifically, the advanced
bimanual motor coordination that pianists exhibit means that they may interact more effectively
with BCI systems than their non-musically trained counterparts; this could lead to personalized BCI
strategies according to the users’ previously detected skills. This work assessed the performance of
pianists as they interacted with an MI-based BCI system and compared it with that of a control group.
The Common Spatial Patterns (CSP) and Linear Discriminant Analysis (LDA) machine learning
algorithms were applied to the EEG signals for feature extraction and classification, respectively.
The results revealed that the pianists achieved a higher level of BCI control by means of MI during
the final trial (74.69%) compared to the control group (63.13%). The outcome indicates that musical
training could enhance the performance of individuals using BCI systems.

Keywords: brain-computer interface; motor imagery; machine learning; internet of things; pianists

1. Introduction

A brain-computer interface (BCI) system uses various techniques to recognize brain activity and
transform this biological signal into a command that can be used by computer systems to complete
certain tasks [1]. At the same time, it provides feedback to the user on how the intentions are being
transformed into actions. In short, a BCI system transforms mental activity into a command that can
affect the surroundings without the user making a physical effort. This command can be used for
various applications, such as moving orthopedic prostheses through imagery [2]. Using a similar
strategy, a recent work explored the use of noninvasive neuroimaging to enhance the control of a
robotic device to complete daily tasks [3]. Similarly, BCIs are also used to synthesize speech by people
who are unable to communicate due to neurological impairments [4]. BCIs have also been used
to improve rehabilitation after a stroke, translating brain signals into the intended movements of a
paralyzed limb [5] and, more recently, for the control through thought of applications for smart homes
or robots within the Internet of Things (IoT) context [6,7].
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It has been established that musical practice involves the activation of numerous areas of the
brain that carry out different yet complementary functionalities to perform the complex task of playing
a musical instrument, including reading a score, performing complex, highly specific movements,
performing from memory, increased attention and concentration levels during performance, controlling
the tuning of the instrument, and even improvisation. It is not unreasonable to conclude that musicians’
brains have anatomical and functional differences compared to non-practitioners [8]. Therefore, the
musician’s brain offers a unique example with which to investigate what influence musical exercise
can have on brain structures.

Of all the abilities musicians possess, their high motor coordination capacity is especially interesting.
Engaging in a musical profession requires years of practice, with a great deal of time each day devoted
to rehearsing specific and concrete movements involving the fine musculature of the hands or body.
This undoubtedly effects a greater skill in handling the instrument, which is reflected in the individual’s
brain structures. The hand movements eventually display greater precision and coordination after the
years of practice necessary to become a good musician.

Motor imagery, as a strategy to control a BCI system, has been investigated in groups of people
with different characteristics, such as airplane pilots carrying out motor imagery tasks [9]. The present
work aims to explore the handling of a BCI system through motor imagery by musicians, specifically
pianists, for potential applications. It is hereby assumed that motor imagery control would be more
intuitive for pianists and they would, therefore, achieve better performance, building on their previous
muscle memory experience. Hence, this research aims to examine motor imagery in pianists to
instantiate the benefits of musical education as well as show whether it is possible to consider a
personalized BCI strategy for each subject according to their previously identified skills.

Following these introductory aspects, Section 2 outlines the prior work on the subject. Section 3
explains the experimental phase, detailing the characteristics of the test subjects, the resources used,
and the method of data collection. The results are presented in Section 4. The work ends with the
conclusions and future avenues for research in Section 5.

2. Music Training and Motor Imagery

Musicians’ brains have been studied extensively over the last few years as a textbook case of
neuroscience research. Given that the main theme of this paper is to explore whether musical training
(specifically in pianists) has an influence on the control of a BCI system through motor imagery,
this section will present the previous work supporting this hypothesis.

Numerous examples in the literature have analyzed the neuroscientific foundations of music.
The work of [10] presents an exhaustive review of how musical production and perception influence
cognitive abilities, involving the areas of the auditory cortex and the motor cortex. Münte et al. [8]
already examined the neuroanatomical peculiarities of musicians’ brains, highlighting their greater
neuroplasticity. Later works, such as [11], delved further into the preceding ideas. Indeed, learning to
play an instrument is a highly complex task that involves the interaction of higher-order cognitive
functions and leads to behavioral, structural, and functional changes in the brain. Consequently, due
to the need to constantly engage in musical practice, multiple differences have been shown to appear
in the following areas of musicians’ brains:

• Corpus callosum. This connects both cerebral hemispheres. It has been observed to be larger in
professional musicians, especially those who began musical studies at an early age [12]. This larger
size implies a higher interhemispheric transfer rate.

• Motor cortical regions. Numerous studies have shown that professional musicians have a much
greater symmetry between the two hemispheres and that the representation of the hand in the
motor cortex is much larger in musicians [13].

• Cerebellum. This structure, among other cognitive functions, is involved in the temporal
sequencing and coordination of movements, which is undoubtedly fundamental in musical praxis.
It has been demonstrated that musicians possess a greater cerebellum volume [14]. Furthermore,
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it has been proven that this greater size is related to the intensity of musical training (number of
hours practiced per day throughout life) as well as the fact of having initiated this training at an
early age.

• Brain stem. This structure deals with basic sensory mechanisms. It has been possible to register
faster reactions in musicians responding to certain musical and linguistic stimuli [15].

Taking the above into account, it can be stated that there is a positive correlation between the
intensity and frequency of musical practice and the anatomical changes in the brain structures.

Musical performance is the complex activity responsible for these structural changes. It is
considered extremely complex as it requires three special skills, i.e., the basic motor controls of
coordination, sequencing, and spatial organization of movement [16]. Coordination refers to a good
arrangement of the rhythmic aspect of music, while sequencing and spatial organization of movement
imply the musician playing the notes on the instrument. It has been observed that more complex
note sequences require the activity of structures such as the basal ganglia, dorsal premotor cortex,
and cerebellum. The spatial organization of the different movements required to play an instrument
involves the integration of different channels of spatial, sensory, and motor information, whereby the
activation of the parietal, sensorimotor, and premotor cortex is observed.

In addition, audiomotor interactions occur in the brain when performing music as well as in the
passive activity of listening to music. The premotor cortex is the link between the auditory system and
the motor control, and for this activation to occur, the person must have an identified sound/action
relationship [16].

It is evident that musical practice involves an increase in motor skills. In concrete studies focused
on secondary motor areas, musicians show a much smaller activation area in these zones than
non-musicians, demonstrating that pianists require smaller neural networks than non-musicians
when it comes to motor skills, which in turn indicates that they are more efficient in controlling
movements [17,18]. For example, practicing a complex fingering task for several months leads to an
increase of approximately 25% in the primary motor area activation (M1). Furthermore, while musicians
repeating the same sequence show a small area of activation (habituation) when a new music piece is
trained for the first time, there is a larger area of activation (enhancement) [19]. During a fingering task
performed by musicians and non-musicians, the former showed a rapid increase in the primary motor
cortex (M1), while this was not seen in the latter [20].

Another study has shown that there are functional changes in the brains of children after 15 months
of music training [10]. Two groups were studied, one receiving musical training and the other not.
In the initial phase, the authors of such study found no differences between the groups. However, after
the indicated period, it was found that the children who had been trained improved in motor control
and melodic-rhythmic tasks, which supports the fact that the changes seen in adults (musicians) are
due to musical practice.

As can be seen, intensive musical training leads not only to structural but also functional
modifications in the youth’s brain. However, these changes can also be induced in adults,
thus preserving areas of gray and white substance [21].

With this, functional changes in the motor cortex occur. The motor cortex changes when performing
simple piano exercises with five fingers and also increases the activity of the basal ganglia and the
cerebellum. Most significantly, these changes take place either if the practice is performed physically
or mentally [15]. In fact, the musician’s brain is a paradigm of neuroplasticity [8].

Considering the above, it seems clear that musicians have greater motor coordination capacity
than non-musicians, derived from intensive musical practice. However, the present study focuses
on the performance of motor imagery. The question is whether undertaking music training in a
mental (imagined) way can improve both motor coordination and the actual exercise. Indeed, using
transcranial magnetic stimulation (TMS), Pascual-Leone et al. [22] demonstrated that the mere mental
practice of an exercise in fingering a specific sequence for two hours a day over five days was sufficient
to produce a certain reorganization of the motor cortex.
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Subsequently, it was shown that the areas involved in motor imagery are approximately the same
as those activated in real musical perception [23]. The same conclusion was drawn in another study [24]
examining the MRI activity of seven pianists and seven participants with no musical experience. A few
years earlier, [25] had indicated that many professional athletes and musicians can use movement
imagery to improve their motor skills.

In the specific case of pianists, the most recent study by Zabielska-Mendyk et al. [26] compared
the EEG patterns of pianists and non-pianists while executing both real and imagined fingering of
different complexities. The power of the alpha and beta bands (mu rhythm modulation) decreased
with decreasing fingering complexity (in both real and imagined cases), and this only occurred with
the pianists; the non-musicians did not exhibit this attenuation. This capacity varies according to
the experience in years that the musician accumulates, which is acquired progressively, as per [27].
This result already suggests a different behavior in terms of BCI performance.

Throughout these reviewed studies, it seems clear that circumstances may exist that improve
the motor imagery skills of some individuals over those of others. However, how this advantage can
lead to better performance when using a BCI system has thus far not been described. The presence
of significant differences in this performance was investigated by Dobrea et al. [28], while it has
been suggested that certain individual traits act as precursors in predicting performance in using a
BCI system [29]; other predictors include spatial (motor) skills, which encompass the practice of a
musical instrument.

Notably, some people appear to have no capacity to control a BCI, a phenomenon that numerous
analysts in the literature have termed “BCI illiteracy” [30]. Hereby, it should be noted that BCIs are
generally not easy to control, and even with proper instruction, some users cannot control their systems
as desired. Nevertheless, BCI illiteracy is an inadequate concept for clarifying the trouble that users
can have when working with BCI frameworks. First, it is a methodologically frail idea that depends on
the imperfect assumption that BCI users have physiological or useful qualities that forestall capable
performance during BCI use [31]. Second, the term BCI illiteracy invites a comparison between learning
to use BCIs and spoken or written language acquisition. Hence, to avoid conceptual snares in terms of
how BCI use may or may not relate to language learning, some researchers have chosen to use the
term “BCI inefficiency”.

Various aspects associated with music are widely used to control BCI systems. For example,
Makeig et al. [32] set out to control a BCI system by recreating the emotions produced by different
pieces of music. In other words, they sought to recognize the emotions generated by a melody. Up to
84% success in certain experiments was achieved with this method.

Next, as this article uses motor imagery to control a BCI system, it reviews the literature evaluating
the performance achieved through this control strategy. In [30], the authors explored the different
outcomes in motor imagery achieved with different participants, drawing a distinction between
the variability among different participants and that among different states of the same participant.
They covered previous works, comparing personal characteristics, psychological mood, and anatomical
and physiological aspects, concluding that all these components are essential when discussing future
BCI performance.

Randolph et al. [33] developed what has become one of the main works through which we delimit
our study area and define our research hypothesis. The authors considered factors such as age, sex,
playing sports, playing video games, taking psychiatric medication, and playing a musical instrument.
They concluded that a series of personal characteristics influence the modulation of the mu rhythm,
leading to better outcomes in the control of a BCI. Specifically, having motor dexterity of the hands
leads to better control over a BCI device. Furthermore, they examined the characteristics of age,
time spent typing per day, the performance of hand-arm movements, and whole-body movements.
They found that both age and hand-arm movements correlate positively with the ability to modulate
rhythm induced by both real and imagined movements. The possibility of doing sports or playing a
musical instrument is implied within these movements.

118



Sensors 2020, 20, 4452

A large proportion of motor training occurs when the brain anticipates a movement being
executed, i.e., if substantial repetition occurs prior to a movement, cerebral training results in a wave
anticipating the movement [34]. Overall, some previous studies have pointed to the importance of
the chosen movement used to control the BCI system. For instance, [28] discussed different types of
tasks, e.g., motor, mathematics, and linguistics skills, whereby the motor tasks included movements of
the fingers of the hand (left/right) and arm (left/right), while Soriano et al. [35] reviewed the different
imagined movements that have been used in BCI. In terms of specific results, [36] showed that the
movements of the right hand generate a differentiated signal on the EEG and cause hemodynamic
activity in the motor cortex of the left hemisphere, detected by fMRI. When such movements are
imagined, they generate similar, but less stable, patterns [37].

Other movements that have been examined in this context include grasping with the hand [38],
the general use of the fingers (fingering) [39], the use of the index finger [40], the use of the big toe [41],
and the maximum contraction of the hand [37]. Soriano et al. [35] undertook a comparison of these
movements. However, despite the wealth of previous research, there is no specific study analyzing the
performance of BCI system control by professional pianists using their high-level skills with fingers
and hands.

3. Methodology

3.1. Sample Characteristics

This work aims to investigate whether pianists can control a BCI system by means of motor
imagination more efficiently than non-musicians. To this end, we conducted an experiment analyzing
the BCI performances of a group of pianists and a group of non-pianists (generally non-musicians),
which functioned as a control group. The characteristics of the participants in both groups were
collected, such as their sex and age as well as other more specific features, such as musical practice,
the practice of other activities that involve finger movement (typing, video games), and playing sports.

The sample size in this experiment was 8 individuals, with 4 in each group. During the experiment,
all participants were duly informed of how it would be conducted (passive and non-invasive
measurement) as well as how the collected data would be handled. Furthermore, the anonymity
of their personal and EEG data was guaranteed at all times. All experimentation was conducted in
accordance with the Declaration of Helsinki and the ethics committees of the involved institutions
were asked for approval before the sessions began.

In the case of the pianist group, participants were sought who had at least 10 years of musical
training. Both men and women were included, some of whom were still in the process of musical
training. The group rehearsed for an average of 5.75 h a day, ensuring significant skill in motor
coordination. The characteristics of this group are summarized in Table 1.

Table 1. Description of the group of pianists.

Characteristic Values

Subjects 4
Sex 2 men and 2 women

Level of education 2 students and 2 professionals

Mean Standard Deviation

Age (years) 24.50 ±1.50
Time playing (years) 12.75 ±1.78

Musical practice (hours/day) 5.75 ±1.47

Various factors were considered in the creation of the control group (non-pianists). First, the
study avoided including people in this group who had some musical ability, either with the piano
or another instrument. Second, as revealed in the previous literature, some factors can increase the

119



Sensors 2020, 20, 4452

performance in using BCI management systems, such as the practice of tasks that involve digital motor
coordination (video games, typing, other professions that require precision motor skills, etc.) and the
practice of sports that result in a substantial improvement in motor coordination. Therefore, an attempt
was made to choose participants in such a way as to minimize these aspects. Table 2 summarizes the
characteristics of the control group.

Table 2. Description of the control group.

Characteristic Values

Subjects 4
Sex 2 men and 2 women

Mean Standard Deviation

Age (years) 32.75 ±5.44
Sport (hours/week) 3.50 ±1.11

Digital practice (hours/day) 1.63 ±0.96

The non-pianists in the control group were asked about their musical knowledge and musical
practice. Those who volunteered for the control group and showed some musical knowledge and/or
practiced with musical instruments of any kind (piano or other) were not selected. Likewise, those
who practiced a sport at an almost professional level were not selected. Furthermore, all members of
the control group had a normal level of digital activity that did not go beyond one or two hours a day
spent on work-related typing on a computer keyboard and all practiced sport only sporadically.

The time that the participants in the control group spent on motor practice is contrasted with that
of the pianists, as these all began their piano studies at around 10 years of age and had had professional
careers lasting between 10 and 15 years. Their beginning at an early age and their years of practice
was estimated to translate to about 6 h of daily finger practice (more on some days). This amount
undoubtedly exceeded that of the control group, not only in terms of motor coordination but also
long-term musical orientation, which has been shown to create characteristic brain structures. In the
case of the pianist group, the hours spent on other fine motor coordination practices were also collected,
but these values were very close to those of the control group and were also irrelevant compared to the
hours of musical practice.

3.2. Resources Used and EEG Acquisition

Enobio-8 is the wireless and portable sensor system that we have used for EEG recording.
This device consists of a neoprene helmet with 39 holes to cover the main positions of the distribution
according to the 10–20 system. The helmet makes it possible to use dry and wet electrodes. The electrodes
chosen for this experiment are of the dry type. Eight electrodes are used in this case located at F3, F4,
T7, C3, CZ, C4, T8 and Pz according to 10/20 system. Figure 1 shows the location of the electrodes.

120



Sensors 2020, 20, 4452

Figure 1. Electrodes location.

We must also take into account two more electrodes which will be used as grounding for the
system, which allows the rest of the signals to be correctly referenced. They are attached to an Ag/AgCl
EEG measurement patch with a conductive semi-liquid gel with low impedance, placed under the lobe
of each ear. The electrical signals from the cortex are collected and subsequently sent to a computer
via Bluetooth.

The accuracy of the system is approximately 0.005 μV. Knowing that the voltage we are working
with ranges between 10 and 100 μV, the accuracy of the results is at least 0.005%.

The channels were recorded with a sampling frequency of 500 Hz. The recordings had a dynamic
range of ±100 μV for all sessions. A notch filter at 50 Hz was enabled. We placed two electrodes at the
mastoid bone as an EEG ground.

In addition, different standard software is used in the experiment for signal acquisition and
post-processing:

• OpenVibe 2.2.0. This program is used as an interface between the computer and the user
since it shows mental tasks and produces feedback. OpenVibe can also be used as a generic
real-time EEG acquisition, processing and display system, allowing the online analysis of results,
applying a feature extractor and classifier throughout the course of the experiment to perform the
feedback task.

• Matlab R2016b. MATLAB, through toolboxes dedicated to Machine Learning, makes it possible
to carry out an offline analysis, which will allow us to test the characteristics extractor and the
classifier with different time windows.

3.3. Experimental Timeline

In order to find out if the research hypothesis has been fulfilled, the experiment was carried out in
which the EEG signal of a group of pianists and a control group was analyzed. To do so, the motor
imagery of two dichotomous movements was used, one of the left hand and the other of the right
hand, which served to control a BCI system, and the success rate of each individual and each group
was analyzed.

The most widely used training method for the BCI (and, therefore, followed in this study) is that
based on the Graz Principle [42], developed at the Institute of Neural Engineering of the Technological
University of Graz (Austria). This procedure is divided into two stages:
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• Stage 1. Training the system to recognize the signal, which allows the computer to record brain
information, which will be used to extract some spatial characteristics and divide them into classes.
With this training, feature extraction is adjusted, and the classifier algorithm is trained.

• Stage 2. User feedback to teach subjects how to control the BCI. At this stage, the subject receives
feedback from the computer and can see how the system perceived their actions, analyzing and
modulating their own brain activity. This feedback consists of a blue bar shown in the screen that
matches the interpretation of the Machine Learning algorithms trained in the first stage.

Three sessions of three trials each with 40 sequences per trial were carried out with each subject.
The first trial of each session corresponds to the first stage described above, followed by the second
trial, which develops the second stage. The third trial repeats the second stage in order to increase the
number of data collected. Table 3 summarizes the above.

Table 3. Classic training method.

Trial 1 Trial 2 Trial 3

Session 1
Training Feedback Feedback

40 sequences 40 sequences 40 sequences

Session 2
Training Feedback Feedback

40 sequences 40 sequences 40 sequences

Session 3
Training Feedback Feedback

40 sequences 40 sequences 40 sequences

3.4. EEG Processing

In the first trial, no feedback was produced, since only data collection was carried out, which
will be used to train the system through a feature extraction and a classifying algorithm. To do this,
a spatial filter obtained by Common Spatial Pattern (CSP) and a Linear Discriminant Analysis (LDA)
classifier were used, as will be explained later. However, for trials 2 and 3 of each session, a feedback
was performed that consists of showing the user what the BCI system interprets they are thinking,
according to the previously trained algorithms (online analysis). However, once the data collection of
each subject was completed during the three sessions, an offline analysis was carried out, using as well
CSP and LDA.

CSP is a mathematical technique used in signal processing to separate multivariable signals
into sub-components with different variances. The CSP method was first proposed under the name
Fukunaga-Koontz Transform in [43] as an extension of Principal Component Analysis (PCA) and has
been widely used in BCI to maximize the distance between two classes of motions.

A CSP filter maximizes the variance of filtered EEG signals from one motion class while minimizing
it for signals from the other class. The development of this technique comes naturally when we try to
maximize the difference of variances between the two signals by spatially filtering them.

LDA is a Machine Learning technique used to perform supervised linear classification, based on a
range of observations that can be divided into groups or classes [44]. The problem is basically to assign
the right class to each observation. Linear classifiers are those that base their decision according to
some hyper plane by assigning each class to one side of the subspace evaluated.

LDA is a simple and very stable technique, which will allow us to perform the type of classification
we need without the use of any other parameter. This method is based on the assumption that we have
two classes that follow a normal distribution. For each class, the parameters of mean and variance are
modeled to get the distribution that best describes it and then the Bayes’ theorem is used to calculate
the probability of belonging to each of the classes.

The combination of CSP and LDA has been widely used in MI-based BCI to maximize the distance
between two classes of movements [9,45]. There are some methods which observe the different activity
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between bilateral sides of hemispheres during the imagery, but some of these methods are too complex
or demand too much computing time, so it is hard to apply them in real-time applications. CSP and
LDA have also the characteristic of being 2-class methods. A CSP filter maximizes the variance
of filtered EEG signals from one motion class while minimizing it for signals from the other class.
After using this method, the goal is to train a classifier in such a way that it is able to estimate the class
to which an observation belongs from observations of which we know the class, so LDA was used.

3.5. Experiment Deployment

The approximate time necessary for setting up and conducting the experiment was 45 min for
each session, which required a certain availability of the subjects. Between each session, it was ensured
that there was a rest period for each subject of at least four days. Between trials we provided 10 min in
order to let the volunteer rest.

The procedure is similar as that depicted in BCI Competition IV [46]. The subjects were
right-handed and had normal vision. All volunteers were sitting in a chair, with a flat screen monitor
placed 1 m away at eye level.

Taking the existing literature into account, the subjects were asked to imagine specific movements
of the hands and fingers. This movement will consist of a drumming of the fingers of the hand,
accompanied by a swinging of the wrist up and down. Before carrying out the experiment, each subject
was recommended to practice it in a real way to assimilate the physical sensation and, subsequently, to
repeat it in an imagined way. Furthermore, during the experiment, it was recommended that subjects
be careful not to make any parasitic movements with their hands, eyes or head, which could have
jeopardized the accuracy of the calculation. This fact was explained at the beginning of the experiment
and it was discussed in the following sessions.

The structure of the entire experiment can also be described with the diagram shown in Figure 2.
Each session would begin with the donning of the helmet for EEG analysis. Subsequently, a first
phase would be carried out with each subject that will allow adjustments to both the extraction of
characteristics and the training of the classifier (online analysis). Once the parameters are adjusted,
the system is ready to be able to present real-time feedback on the screen. Subsequently, two iterations
are carried out in which the subject can see in real time the interpretation that the system makes
of his movement imagery. This process will be repeated over three days and the data will later be
analyzed offline.

 

Signal Acquisition Preprocessing 

Feature 

Extraction (CSP) + 

Classification  

Feedback 

Stimuli 

Motor 

imagery 

Figure 2. Experiment deployment.

A timing detail of each sequence can be seen in Figure 3. In second 0, the system presents a back
screen. In second two presents a green cross and, 2 s later appear and arrow for 1.25 s. The arrow
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indicates de MI that the user must done. If the arrow point at left, the user must imagine the movement
of the right hand and, if the arrow point left the user must imagine the movement with the other
hand. Only in Trials 2 and 3 the system shows feedback as a blue line at second 5 and, it changes its
longitude according to the output of the classifier. At second 8 the screen turns black and below there
is a random time near 2 s in order to avoid synchronization between user and the timing protocol.
For the presentation of the stimuli we used the previously named OpenVibe software.

Figure 3. Timing of the brain-computer interface (BCI) System.

3.6. Offline Analysis

Once the data is recorded and the experimental phase is ended, we repeated the computation of
the EEG offline but this time with a much more elaborate processing, since during the offline analysis
the subject is not present, and then a more time-consuming algorithm can be used.

MATLAB is used to preprocess the subjects’ EEG data. In the offline analysis, we enabled a notch
filter at 50 Hz. This is due to the AC lines of the electrical supplies, which can introduce oscillations
at 50 Hz and hence, noise oscillations in the EEG recordings. In addition, the data were low-pass
filtered and high-pass filtered with cut-off frequencies of 1 Hz and 100 Hz, respectively, in order to
eliminate frequencies which are impossible to be produced by the brain, thereby improving the signal
cleanliness. Detection of artifacts is carried out with visually routines. An “artifact” can be described
as any component of the EEG signal that is not directly produced by human brain activity, but induced
by muscle activity, cardiac activity, respiration, and mainly blinks. The proximity of the eyes to frontal
electrodes and the intensity of the blinking can produce a big distortion of the EEG that is sometimes
impossible to be cleaned. To the trained eye, it is easy to detect, in an EEG graph, the presence of
artifacts and their importance. The most notable artifacts are removed by rejecting the piece of data
containing the artifact, forcing to discard in some cases the whole data of some volunteers.

To obtain the performance results of each subject, a combination of the CSP and LDA algorithms
executed with leave-one-out cross validation has been used. Leave-one-out cross-validation is a certain
cross-validation case where the number of folds is equal to the instances in the data set. Hence, the
learning algorithm is applied one time for each instance, using all the other measurements as the
training set and using the selected instance as a unique item test-set.

3.7. Statistical Analysis

In order to appreciate differences in the performances between groups based on statistical support,
some verification must be done. Firstly, a Shapiro-Wilk test has been performed with the goal of
checking normal distribution. In this test, the null hypothesis (H0) considers that the data set came
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from a normally distributed population. The Shapiro-Wilk Test is very appropriate for small sample
sizes (<50 samples).

Next, the parametric Welch’s T-test has been used to estimate if pianists’ performances differ
significantly from non-pianists’ achievements. This is a two-sample test which is used to test the
hypothesis that two populations have equal means. So, the null hypothesis (H0) considers equal means
between the two groups under discussion.

In both cases, a significance level α = 0.05 is assumed to be appropriate.

4. Results

To carry out the experiment explained above, samples were taken from 8 subjects, 4 of whom
were pianists and the other four were not (non-musicians), functioning as a control group.

In a controlled motor imagery BCI experiment, accuracy of between 80% and 90% is expected after
6–9 training sessions of 20 min each [47]. Different investigations have presented different thresholds
for the “efficiency” of the BCI, but a reference value for acceptable results is 70% [29]. However,
according to the state of the art, certain subjects may have difficulties using BCI systems.

Control of BCI systems requires learning both the system and the user; there must be mutual
adaptation. Due to this, it is expected that the yields in the classification will increase with the user’s
training. Thus, the first two were introductory and learning, achieving the best performance on the
third and last day.

These results are obtained from the offline analysis with the MATLAB program, using the 80
sequences together from trials 2 and 3 combined, from each session. Due to this, we will focus on the
presentation of the results concerning the last day (session 3). The first trial of each day was used to
train the CSP+LDA used in the online analysis in order to provide the closed loop feedback to the user.

Offline processing allows various results to be obtained, since the cross-validation technique can
be applied to different subsets of data. This analysis will be done on the second and third trials of the
third session, in which the user had feedback. Various authors such as [48] consider the first trial to
be a training phase to give participants the opportunity to learn how to carry out the motor imagery,
concentrating their analysis on the following phases. Moreover, the performance on the set of the 40
sequences of the second trial will be studied and we will also proceed with the 40 sequences of the
third trial. In addition, independently, the 80 sequences of both tests will be taken together. The results
corresponding to the group of pianists are summarized in Figure 4, and those of the control group,
below (Figure 5).

Figure 4. Offline results of the group of pianists in the third session. Measurements in Run 2 and 3
were taken from feedback trials.
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Figure 5. Offline results of the non-pianist group in the third session. Measurements in Run 2 and 3
were taken from feedback trials.

As stated above, a Shapiro–Wilk test can determine whether the data present a normal distribution.
The results indicated that the data was normally distributed (p-values > 0.05). To compare the means
of both groups, we performed the parametric Welch’s T-test. The results indicated in an overall
consideration that the performance of the pianists differed significantly from that of the non-pianists
(p-value = 0.0344445, α = 0.05). Figure 6 indicates the comparison between Runs (2, 3 and 2-and-3),
showing that, in all circumstances, the difference between the averages is large enough to be statistically
relevant and below the significance level of 0.05.

Figure 6. Comparison of offline results in both groups. Measurements in Run 2 and 3 were taken from
feedback trials.

The scalp topography illustrates how the physiological sources project to the scalp. Figure 7 shows
two examples of projected EEG signal after a CSP filter [49]. Subplots (a) and (b) present topographies
of Pianist 3 in right and left MI along Run 2 and 3 at 22 Hz. Subplots (c) and (d) present topographies
of Non pianist 2. All of them were computed along Run 2 and 3 at 22 Hz. Dense red or blue areas
show where the greatest differences in the projected signals were found. As can be seen, for Pianist 3,
channel F4 and Cz were the most actives, being C3 and C4 in the medium scale of colors. However,
in Non-Pianist 2, channels C3, C4 and Pz are marked with strong red color. In general, we observe a
greater area of activation in the Non-Pianist subject as compared with that in the Pianist participant.
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Figure 7. Examples of Projected electroencephalogram (EEG) signal after a Common Spatial Pattern
(CSP) filter for Left and Right MI of Pianist 3 and Non-Pianist 2. Subfigures (a) and (b) belong to Pianist
3 (left/right, respectively), and subfigures (c) and (d) belong to Non-pianist 2 (left/right, respectively).

5. Discussion

Despite the disparity of results depending on the set of sequences analyzed, some conclusions can
be outlined. Paying attention to the group of pianists, we can see that almost all of them, whatever
the test taken, achieve yields in the third session greater than 70%. Pianist 1 would be a possible
BCI-Inefficient user, although, as we have seen, we could only confirm this after 6 or 9 training sessions.
This kind of users would require a different approach in order to improve their performance. In this
sense, some studies have been developed with the aim of deploy a specific design of the experiment [50].
This would explain why the subject has not evolved or shown better performance. Among all of them,
Pianist 3 stands out, reaching an almost perfect efficiency of 97.5% in the third trial. This result is very
striking, considering that these rates are usually reached in more advanced sessions.

A common aspect in both groups is the drop in performance in the third trial, which occurs in
5 of the 8 cases. Mood, motivation, frustration, etc., are factors that determine the performance of
the BCI. In total, the trial lasts an hour, and it is quite difficult to maintain the optimal concentration
state during that time, carrying out the movement imagery tasks. Tejedor [51] calls it the “maturation
effect”, so that the optimum point of the results of a group of participants who are undergoing an
experiment would be between the beginning (where the procedure is not yet mastered) and the end
(where tiredness, fatigue, lack of interest, etc. come into play). In addition to this concept, Tejedor
indicates that we have also to bear in mind the “experimental mortality”, this is, the dropout of the
volunteers along the experiment due to a lack of interest or change in the familiar/labor circumstances.
Frustration can also trim the learning curve when we are considering inexperienced subjects. For such
reason, motivation is an important issue to take into account in order to get acceptable results [52].

Comparing both figures, it is quite evident to conclude that the performance of pianists is, in
general, higher than that of the control group, which seems to suggest that the proposed research
hypothesis is fulfilled. Indeed, when calculating the mean of the results in each of the trials of the third
session (the second, the third, and the set of second and third), we observe that the average is always
higher in the pianists, as shown by the Figure 6, where the standard deviations of each mean value are
also indicated.
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Not only is it significant that the means are superior, regardless of the way in which the data is
processed, but also that the performance is always close to 70%. Furthermore, recall that these results
are impoverished by the presence of a supposed subject with BCI illiteracy, which would also explain
why the mean of the set of trials 2 and 3 remains a few hundredths away from the optimal value of BCI
performance. In the case of the group of non-pianists, except for some partial results, this figure is not
reached. It is striking that the fourth subject of the group of non-pianists has an extremely low result
when joining the two sessions.

The present study was intended to examine the analysis of the performance of a BCI device by
means of the motor imagery carried out by pianists. In this sense, this work has synthesized some
relevant results regarding the neurobiological differences that musical practice entails, showing that
said functional specialization entails significant anatomical differences. Moreover, the foundations of
the technology of the brain-computer interfaces have been exposed. These artifacts are able to detect
the electrical activity of the brain with electrodes that perform an EEG and, through processing with
machine learning algorithms, this biological signal is transferred into an order that can have different
applications, such as the control of smart homes or robots.

The musician’s brain is a paradigmatic case of neuroscience. However, in the existing literature,
no previous study has been found that analyzes the performance of musicians with BCI systems,
using motor imagery. The literature does seem to show that having musical prowess suggests better
performance, but in the absence of a specific study in this regard, it was questionable whether, in
fact, musical training and structural differences in the brain of musicians entailed better performance.
To answer this hypothesis, an experimental procedure based on BCI has been designed for this paper.

Music is a global activity that involves the development of different capacities and intelligences:
it improves memory, concentration, reading, self-esteem, emotional intelligence, psychomotricity, etc.
In this sense, given the need to control BCI devices in the future, we can affirm that musical practice
could improve motor coordination as well as neural plasticity, as revealed in the literature review,
hence favoring their optimal use. To conclude that musical training is one of the factors that favors
performance with motor imagery does nothing more than claim the importance of musical education
in our society.

6. Conclusions

In this work, the performance of a set of pianists as they interacted with an MI-based BCI system
was assessed and compared with a control group. The Common Spatial Patterns (CSP) and Linear
Discriminant Analysis (LDA) machine learning algorithms were applied to the EEG signals for feature
extraction and classification, respectively. The results revealed that the pianists achieved a higher mean
level of BCI control—by means of MI—during the final trial (74.69%) in comparison to the control
group (63.13%).

Regarding the above, it can be concluded that there seems to be indications that musical training
is indeed a factor that improves the performance of a BCI device through movement imagery. As
mentioned before, the performances achieved by the pianists in the last trial are on the order of 10
points higher than the non-pianists, regardless of the data set analyzed, which suggests that the
previous hypothesis is true.

In future research, these results could be completed, on the one hand, by expanding the sample and,
on the other, by supporting training for several sessions in order to reach more definitive conclusions.
With this, we could explore the improvement of the performance of the two cases we found that were
BCI inefficient. As we cannot venture a hypothesis based on only three sessions, with a greater number
of measurements, we would be able to explore the evolution of these participants and deepen our
understanding of so-called BCI illiteracy.
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Abstract: This study proposes a framework for describing a scene change using natural language
text based on indoor scene observations conducted before and after a scene change. The recognition
of scene changes plays an essential role in a variety of real-world applications, such as scene anomaly
detection. Most scene understanding research has focused on static scenes. Most existing scene
change captioning methods detect scene changes from single-view RGB images, neglecting the
underlying three-dimensional structures. Previous three-dimensional scene change captioning
methods use simulated scenes consisting of geometry primitives, making it unsuitable for real-world
applications. To solve these problems, we automatically generated large-scale indoor scene change
caption datasets. We propose an end-to-end framework for describing scene changes from various
input modalities, namely, RGB images, depth images, and point cloud data, which are available
in most robot applications. We conducted experiments with various input modalities and models
and evaluated model performance using datasets with various levels of complexity. Experimental
results show that the models that combine RGB images and point cloud data as input achieve
high performance in sentence generation and caption correctness and are robust for change type
understanding for datasets with high complexity. The developed datasets and models contribute to
the study of indoor scene change understanding.

Keywords: image captioning; three-dimensional (3D) vision; deep learning; human-robot interaction

1. Introduction

There have been significant improvements in artificial intelligence (AI) technologies for
human–robot interaction (HRI) applications. For example, modern intelligent assistants (e.g.,
Google Assistant [1]) enable the control of household appliances through speech and allow
remote home monitoring. HRI experiences can be improved through the use of AI technologies,
such as the semantic and geometric understanding of 3D surroundings [2–5], the recognition
of human gestures [6,7], actions [8,9], emotions [10,11], speech recognition [12,13], and dialog
management [14,15]. A fundamental problem in indoor scene understanding is that scenes often change
due to human activities, such as the rearranging of furniture and cleaning. Therefore, understanding
indoor scene changes is essential for many HRI applications.

Developments in graphic processing units and convolutional neural network (CNN)-based
methods have led to tremendous progress in 3D recognition-related studies. Various 2D approaches
have been adapted for 3D data, such as recognition [3–5], detection [16], and segmentation [17].
Researchers have proposed a series of embodied AI tasks that define an indoor scene and an agent that
explores the scene and answers vision-related questions (e.g., embodied question answering [18,19]),
or navigates based on a given instruction (e.g., vision-language navigation [20,21]). However, most 3D
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recognition-related studies have focused on static scenes. Scene change understanding is less often
discussed despite its importance in real-world applications.

Vision and language tasks, including visual question answering [22–24], image captioning [25–30],
and visual dialog [31,32], have received much attention due to their practicality in HRI applications.
These tasks correlate visual information with language. The image captioning task aims to describe
image information using text, and thus can be used to report scene states to human operators in HRI
applications. Several recent image captioning methods describe a scene change based on two images of
the scene [33,34]. However, they use single-view image inputs and neglect the geometric information
of a scene, which limits their capability in scenes that contain occlusions. Qiu et al. [35] proposed scene
change captioning based on multiview observations made before and after a scene change. However,
they considered only simulated table scenes with limited visual complexity.

To solve the above problems, we propose models that use multimodality data of indoor
scenes, including RGB (red, green, and blue) images, depth images, and point cloud data (PCD),
which can be obtained using RGB-D (RGB-Depth) sensors, such as Microsoft Kinect [36], as shown
in Figure 1. We automatically generated large-scale indoor scene change caption datasets that contain
observations made before and after scene changes in the form of RGB and depth images taken from
multiple viewpoints and PCD along with related change captions. These datasets were generated by
sampling scenes from a large-scale indoor scene dataset and objects from two object model datasets.
We created scene changes by randomly selecting, placing, and rearranging object models in the scenes.
Change captions were automatically generated based on the recorded scene information and a set of
predefined grammatical structures.

Figure 1. Illustration of indoor scene change captioning from multimodality data. From the input of two
observations (consisting of RGB (red, green, and blue) and depth images captured by multiple virtual
cameras and point cloud data (PCD)) of a scene observed before and after a change, the proposed
approach predicts a text caption describing the change. The multiple RGB and depth images are
obtained from multiple viewpoints of the same scene via virtual cameras. Each virtual camera takes an
RGB and a depth image from a given viewpoint.

We also propose a unified end-to-end framework that generates scene change captions from
observations made before and after a scene change, including RGB images, depth images, and PCD.
We conducted extensive experiments on input modalities, encoders, and ensembles of modalities with
datasets under various levels of complexity. Experimental results show that the models that combine
RGB images and PCD can generate change captions with high scores in terms of conventional image
caption evaluation metrics and high correctness in describing detailed change information, including
change types and object attributes. The contributions of our work are four-fold:

• We automatically generated the first large-scale indoor scene change caption dataset, which will
facilitate further studies on scene change understanding.

• We developed a unified end-to-end framework that can generate change captions from
multimodality input, including multiview RGB images, depth images, and PCD, which are
available in most HRI applications.
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• We conducted extensive experiments on various types of input data and their ensembles.
The experimental results show that both RGB images and PCD are critical for obtaining high
performance, and that the use of PCD improves change type prediction robustness. These results
provide perspectives for enhancing performance for further research.

• We conducted experiments using datasets with various levels of complexity. The experimental
results show that our datasets remain challenging and can be used as benchmarks for
further exploration.

2. Related Work

2.1. 3D Scene Understanding

CNN-based methods have promising performance in various 3D scene understanding tasks,
such as 3D object recognition [3–5], 3D detection [16], 3D semantic segmentation [17], and shape
completion [37]. These methods use CNN structures to learn the underlying 3D structures based on
data in various formats, such as multiview RGB images, RGB-D images, PCD, and meshes.

Su et al. [38] proposed a network for 3D object recognition based on multiview RGB images.
They proposed a multiview CNN (MVCNN) structure for aggregating information via a view pooling
operation (max or average pooling) from the CNN features of multiview images. Kanezaki et al. [39]
proposed a framework for feature extraction from multiview images that predicts object poses and
classes simultaneously to improve performance. Esteves et al. [40] suggested that existing MVCNNs
discard useful global information and proposed a group convolutional structure to better extract the
global information contained in multiview images. Eslami et al. [2] proposed a generative query
network (GQN) that learns 3D-aware scene representations from multiview images via an autoencoder
structure. Several studies have focused on 3D understanding based on RGB-D data. Zhang et al. [41]
proposed a network for depth completion from a single RGB-D image that predicts pixel-level geometry
information. Qi et al. [42] proposed a 3D detection framework that detects objects in RGB images and
fuses depth information to compute 3D object regions. Recent CNNs that utilize PCD have also shown
promising results. Qi et al. proposed PointNet [3], which is a structure for extracting features from
raw PCD via the aggregation of local information by symmetric functions (e.g., global max pooling).
They later proposed PointNet++ [4] for obtaining better local information. Zhang et al. [5] proposed
a simple yet effective structure that aggregates local information of PCD via a region-aware max
pooling operation.

Considering the availability of RGB-D data in HRI applications, we propose models that use
multiview RGB and depth images and PCD. We adopt an MVCNN and a GQN for scene understanding
based on RGB images, an MVCNN for aggregating multiview depth information, and PointNet for
processing PCD.

2.2. Indoor Scene Datasets

Due to the high complexity and diversity of visual information, training a CNN-based indoor
scene understanding method usually requires a massive amount of data. SUNCG [43] is a widely used
dataset that consists of simulated 3D indoor scenes generated using computer graphics technologies.
Several indoor scene datasets with scanned models of real scenes have recently been made publicly
available [44–46]. The Gibson [44] dataset consists of 572 scenes and a simulator, which allows training
for multiple embodied AI tasks, such as visual navigation. Matterport3D [45] contains 90 indoor scenes
that are densely annotated with semantic labels. The Replica [46] dataset consists of 18 high-resolution
(nearly photorealistic) scenes.

Several datasets for embodied AI tasks have been built based on the above 3D datasets.
The Embodied Question Answering (EQA) v1.0 [18] dataset consists of scenes sampled from the
SUNCG dataset with additional question–answer pairs. The authors further extended the EQA
task for realistic scene setting by adapting the Matterport3D dataset to their Matterport3D EQA
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dataset [19]. The Room-to-Room dataset [20] added navigation instruction annotation to the
Matterport3D dataset for the vision-language navigation task. In these datasets, the states of the
scenes are static. Qiu et al. [35] proposed a simulated dataset for scene change captioning from
multiview RGB images. However, they generated scenes with a solid background color, limiting the
visual complexity. In contrast, we combine the Matterport3D dataset with two open source object
model datasets, namely, NEDO item database [47] and YCB dataset [48], for creating scene change
datasets, where scene changes are constructed by rearranging objects in 3D scenes. To the best of our
knowledge, our dataset is the first large-scale indoor scene change dataset.

2.3. Change Detection

Change detection is a long-standing task in computer vision due to its practicality in real-world
applications, such as scene anomaly detection, and disaster influence analysis. Change detection
from street view images or videos has attracted much attention because it allows algorithms to
focus on changed regions, decreasing the cost of image or video recognition [49,50]. Alcantarilla
et al. [49] proposed a method that first reconstructs 3D geometry from video input and then inputs
coarsely registered image pairs into a deconvolutional network for change detection. Zhao et al. [50]
proposed a method with an encoder–decoder structure for pixel-level change detection based on street
view images.

Change detection is also important in robot applications [51–53]. Ambrus et al. [51] proposed
a method that distinguishes static and dynamic objects by reconstructing and comparing PCD of a
room scene observed at different time steps. Fehr et al. [52] proposed a 3D reconstruction method that
reconstructs static 3D scenes based on RGB-D images of scenes with dynamic objects. Jinno et al. [53]
proposed a framework for updating a 3D map by comparing the existing 3D map with newly observed
3D data that may contain new or removed objects.

Existing change detection methods that utilize RGB images lack 3D geometry understanding.
Several methods have been proposed for detecting changes from 3D data in various formats,
such as RGB-D images and PCD, for robot applications. However, most works are limited to
relatively small-scale datasets and do not specify detailed changes, such as the attributes of changed
objects. In contrast, we consider change detection based on multimodality input, including RGB and
depth images and PCD. Our models describe detailed scene changes, including change types and
object attributes.

2.4. Change Captioning

The image captioning task has been widely discussed. Various image captioning
methods have been proposed to achieve high-performance sentence construction by using
attention mechanisms [25,26] or exploring relationships between vision and language [27,28].
Generating image captions with high diversity has also been widely discussed [29,30]. However,
most existing image captioning methods generate descriptions from single-view images.

Several recent works have discussed captioning based on images that include
scene changes [33–35]. Difference Description with Latent Alignment (DDLA) [33] generates
change descriptions from two video frames observed from different time steps of a given scene.
In DDLA, an image indicating the pixel-level difference between input frames is computed and a
CNN is used for generating captions from this difference image. The DUal Dynamic Attention model
(DUDA) [34] uses a dual attention structure for focusing regions of images before and after a change
and a dynamic attention structure, which dynamically selects information from image features before
or after a change, or the difference between them. DUDA is more robust to camera transformation
compared to DDLA. However, both DDLA and DUDA neglect the 3D geometry information of scenes
and thus are less suitable for scenes with occlusions. Qiu et al. [35] proposed a method that generates a
compact scene representation from multiview images and then generates captions based on the scene
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representation. However, they performed experiments using scenes with solid colored backgrounds,
and only considered RGB images from a fixed number of cameras.

In contrast, we explore and evaluate several input modalities, namely, RGB and depth images
(with random camera position changes), and PCD. We conducted extensive experiments on various
ensembles of these modalities. We also conducted experiments on datasets with complex and diverse
visual information.

3. Approach

In robot applications, the ability to recognize scene changes is essential. We propose a framework
that generates scene change captions from image pairs taken before and after a scene change.
Our framework correlates the after-change scene with the before-change scene and provides detailed
change descriptions, including change types and object attributes. Due to the availability of RGB-D
data in robot applications, we developed models that use RGB and depth images of scenes observed
from multiple viewpoints and PCD. Our framework can be trained end-to-end using raw images, PCD,
and related change captions. Moreover, our framework enables inputs from one or more modalities.
In the following subsections, we give the details of the proposed framework.

3.1. Overall Framework

As shown in Figure 2, our framework generates a change caption from the input of observations
taken before and after a scene change. A scene observation consists of RGB and depth images observed
from multiple viewpoints and PCD.

Figure 2. Overall framework. From before- and after-change scene observations of a scene, the proposed
framework generates a text caption describing the scene change via three components, namely, a scene
encoder that encodes the input composed of various modalities, a scene fusion component that
combines the before- and after-change features rbef and raft, a caption generator that generates a caption
from the output of the scene fusion component.

Our framework comprises three components: a scene encoder, which processes input modalities
with respective encoders; a scene fusion component, which combines the features of observations taken
before and after a scene change; and a caption generator, which generates text captions from fused
scene representations. Our framework can be further enhanced by adding more modalities, such as
normal maps. Moreover, the scene fusion component and caption generator can also be improved by
adopting novel approaches. We give the details of these three components in the remaining subsections.
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3.2. Scene Encoder

The scene encoder component transforms an observation of a scene consisting of multiview RGB,
depth images, and PCD into a feature vector to express semantic and geometric information for the
scene. As shown in Figure 2, we first extract feature vectors from multiview RGB images, multiview
depth images, and PCD separately with respective encoders. Then, the information is aggregated via a
concatenation operation. We experimented with two encoder structures, namely, MVCNN and GQN,
for encoding multiview RGB images and MVCNN for depth images.

RGB/depth encoder (MVCNN): This network is adapted from Su et al. [38]. In our
implementation (Figure 3a), we first extract features from each viewpoint (we transformed
depth images to RGB images through the applyColorMap function with mapping parameter
COLORMAP_JET defined in OpenCV [54]) via ResNet101 [55]. Then, we apply convolution operation
(separated weights) to extracted features and compute a weight vector via fully connection and softmax
function. Then, we use another convolution layer to ResNet101-extracted features and multiply the
output with the weight vector. Finally, a 4 × 4 × 128 × 8-dimensional feature vector is obtained.

Figure 3. Detailed network structure for the encoders used in this study.

RGB encoder (GQN): Eslami et al. [2] proposed GQN, which recovers an image from a given
viewpoint through a scene representation network and a generation network. We adapt GQN
(tower-structure [2], Figure 3b) to extract a scene representation from multiview RGB images in
two stages. During the pretraining stage, we train the overall GQN using multiview scene images.
Then, we discard the generation network of GQN and use the pretrained scene representation network
to aggregate information from multiview images.

PCD encoder (PointNet): We use PointNet, proposed by Qi et al. [3], for extracting features from
PCD. PointNet transforms raw PCD into a feature vector that can be used for a range of downstream
tasks, such as classification and segmentation. The detailed structure used in this work is shown
in Figure 3c.

After processing these modalities separately, we resize features to 1 × 1 × k-dimensional
vectors (k is different for three modalities) and combine features using a concatenation operation.
The concatenation operation makes it possible to change the number of input feature vectors, enabling
both single- and multimodality inputs.

3.3. Before- and After-Change Scene Fusion

We process the observation pairs taken before and after a scene change using the process described
in the previous subsection. The two feature vectors are combined via the fusion method proposed by
Park et al. [34].

Specifically, we denote the feature vector of the before-change scene as rbef and that of the
after-change scene as raft. We first compute the vector difference rdiff of rbef and raft via the
following formulation.

rdiff = raft − rbef (1)
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Then, we concatenate rbef, raft, and rdiff to create a compact feature vector as the caption
generator’s input.

3.4. Caption Generator

The caption generator predicts a change caption from the output of the scene fusion component.
As shown in Figure 2, we used a two-layer long short-term memory (LSTM) [56] structure for caption
generation. Notably, the caption generator can be replaced by other language models, such as a
transformer [57].

The overall network is trained end-to-end with the following loss function to minimize the
distance L between generated captions x and ground truth captions y:

L = −log(P(y|x)) (2)

4. Indoor Scene Change Captioning Dataset

Due to the high semantic and geometric complexity, training tasks targeting indoor scene
understanding require a large amount of training data. Moreover, the construction of indoor scene
datasets often requires a lot of manual labor. To the best of our knowledge, there is no existing
large-scale indoor scene change captioning dataset.

To solve the above problems, we propose an automatic dataset generation process for indoor
scene change captioning based on the existing large-scale indoor scene dataset Matterport3D [45] and
two object model datasets, namely, NEDO [47] and YCB [48]. We create the before- and after-change
scenes by arranging object models in indoor scenes. We set four atomic change types: add (add an
object to a scene), delete (delete an object), move (change the position of an object), and replace (replace
an object with a different one). We also set a distractor type in our dataset that indicates only camera
position changes compared to original scenes. Implementing changes in the original 3D dataset is an
alternative approach for creating datasets; however, this will result in artifacts, such as large holes after
an object is deleted or moved from its original position. Thus, we sample object models from existing
object model datasets and arrange them in 3D scenes to create before- and after-change scenes.

In the following subsections, we give the details of the automatic dataset generation process and
the datasets created for experiments.

4.1. Automatic Dataset Generation

4.1.1. Scene and Object Models

We generated before- and after-change scene observation pairs based on arranging object models
in 3D scenes. We used the Matterport3D dataset (consisting of 3D mesh models of 90 buildings with
2056 rooms) as our scene source. We selected 115 cuboid rooms that contain fewer artifacts (e.g., large
holes in geometry) from the Matterport3D dataset. The object models used in our dataset generation
were sampled from the NEDO and YCB datasets. We list the object class and instances in Table 1.

Table 1. Set-ups of object classes and instances for datasets used in this study.

Setups Class (Number of Instances)

10-object setup barsoap (2); cup (2); dishwasher (2); minicar (2); snack (2)

85-object setup snack (12); dishwasher (11); tv dinner (11); minicar (7); barsoap (5); cup (5); plate (3); soft drink (3); sponge (3);
air brush (2); baseball (2); bowl (2); facial tissue (2); magic marker (2); sauce (2); water bottle (2); weight (2); glass
(1); glue (1); shampoo (1); soccer ball (1); tape (1); teddy bear (1); timer (1); toilet tissue (1); tooth paste (1)

4.1.2. Virtual Camera Setups

We took RGB and depth images from multiple camera viewpoints along with PCD for each scene
observation. To obtain an overall observation for each room scene, as shown in Figure 4, we used
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cuboid rooms and set eight virtual cameras (four corners and four centers of edges of the ceiling) for
observing scenes. Each virtual camera was set to look at the center of the room. In addition, to enhance
robustness to camera position transformation, we added random offsets of [–10.0 cm, +10.0 cm] in
three dimensions for each camera during the dataset acquisition.

Figure 4. Virtual camera set-ups. Eight virtual cameras (four corners and four centers of edges of the
ceiling) are set to look at the center of the room.

The data acquisition process can be implemented by using a single RGBD camera to observe a
scene multiple times from various camera viewpoints.

4.1.3. Generation Process

We use AI Habitat [58] as the simulator for data acquisition. AI habitat enables generating RGB
and depth images of given viewpoints from a mesh file. We generated each before- and after-change
scene observation pair and related change captions in four steps. We first randomly selected a room
scene from the scene sets and object models (three to five) from the object sets. The AI Habitat
simulator provides a function named “get_random_navigable_point()”, which computes a random
position where the agent can walk on based on the mesh data and semantic information (semantic label
information, such as “floor” and “wall”, for each triangle vertex, provided in Matterport3D dataset).
In the second step, we utilized the function to obtain random navigable positions and arranged objects
on those positions. We took eight RGB and depth images and generated PCD as the original scene
observation through the AI Habitat simulator. The Matterport3D dataset provides mesh data of
every building and position annotation for each room. We generated PCD by transforming vertices
of mesh data (triangular mesh) into points of PCD. We extracted PCD for each room from PCD of
building based on room position annotation (3D bounding box annotation of rooms provided by the
Matterport3D dataset). Next, we implemented the four change types (add, delete, move, and replace)
for the original scene along with a distractor (only camera position transformation) and obtained scene
observations. The change information, including change type and object attributes, was recorded.
Finally, we generated five change captions for each change type and the distractor based on the
recorded change information and predefined sentence structure templates (25 captions in total for each
scene). We show an example of our dataset in Figure 5. The above process makes it easy to generate
datasets with various levels of complexity by adjusting scene and object numbers, change types, and
sentence templates.

We currently used PCD generated from meshes, which contains fewer artifacts, such as holes and
less occlusion. To further improve the practicality of our method, we plan to use PCD generated from
RGBD images and conduct experiments to discuss the effects of occlusion and artifacts.

4.2. Dataset Statistics

We generated dataset s15_o10 with 9000 scenes for training and 3000 scenes for testing. In s15_o10,
we used 15 scenes and 10 object models (10-object set-up in Table 1). We used the s15_o10 dataset to
evaluate the performance obtained with various input modalities, encoders, and ensembles.

To evaluate model performance under more complex scene settings, we adjusted the number of
scenes and objects and generated dataset s15_o85 with 85 object models (85-object set-up in Table 1)
and dataset s100_o10 with 100 scenes. The other settings of s15_o85 and s100_o10 are the same as
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those for s15_o10. The detailed dataset statistics are shown in Table 2. Experiments with these three
datasets are presented below.

Figure 5. Dataset instance example of adding an object. From the top row: before-change RGB
images observed from eight virtual cameras; after-change RGB images; before-change depth images;
after-change depth images; before- and after-change PCD; five ground truth change captions.

Table 2. Statistics for datasets used in this study.

Dataset No. of Scenes No. of Captions Change Types Viewpoints Scene Types Object Classes Objects Per Scene
(Train/Test) (Train/Test)

s15_o10 (9000/3000) (225,000/75,000) 5 8 15 10 2–6

s15_o85 (9000/3000) (225,000/75,000) 5 8 15 85 2–6
s100_o10 (9000/3000) (225,000/75,000) 5 8 100 10 2–6

5. Experiments

We used datasets s15_o10, s15_o85, and s100_o10 for training and evaluation. Specifically, we first
used s15_o10 for the comparison of different input modalities, encoders (MVCNN and GQN for RGB
images), and ensembles of input modalities. We then used s15_o85 and s100_o10 for assessing the
models’ abilities under more complex scene setups with an increased number of objects and scenes.

We adopted several conventional image captioning evaluation metrics in each experiment.
In addition to these metrics, we conducted a caption correctness evaluation to examine the detailed
information given by the generated captions (change types and object attributes).

5.1. Evaluation Metrics

We used four conventional evaluation metrics widely adopted in image captioning: BLEU-4 [59],
ROUGE [60], SPICE [61], and METEOR [62]. These metrics evaluate the similarities between the
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generated captions and the ground truth captions. BLEU-4 is used to evaluate the recall of words or
phrases (multiple words) of generated captions in the ground truth captions. ROUGE evaluates the
recall of ground truth captions in generated captions. SPICE considers the correctness of the sentence
structures of generated captions. METEOR introduces the similarity between words to encourage the
generation of captions with diverse words.

The correctness of change type and object attributes is important in the change captioning task.
Therefore, in addition to the above metrics, we conducted a caption correctness evaluation. We neglect
the correctness of the sentence structure and extract change type, class, color, and object (including
class and color, such as “red cup”) from the generated captions and compute the accuracy when
compared to the ground truth captions. This evaluation indicates how well the generated captions
reflect the detailed change information.

5.2. Implementation Details

Here, we give the details of all the implementations. We set the input image size of both MVCNN
and GQN to 64 × 64. We set the point number of PCD to 5000 for PointNet by random selecting
points from PCD of rooms. For the pretraining process of GQN, we set the learning rate to 10−4 and
trained the overall GQN network for 10 epochs in all experiments. For the overall framework training
(including all single modalities and ensembles), we set the learning rate to 10−3 for PointNet and 10−4

for MVCNN and the decoder. All ablations were trained for 40 epochs. We used the Adam optimizer
in all experiments.

5.3. Experiments on Input Modality and Model Ablations

We first used dataset s15_o10 to evaluate the performance of various input modalities, encoders,
and ensembles. Here, we implemented four single-modality ablations, namely, depth images with the
MVCNN encoder, RGB images with MVCNN and GQN encoders, and PCD with the PointNet encoder.
We implemented five two-modality ablations containing two different input modalities, where the
RGB images were processed using MVCNN and GQN encoders. We also implemented two ensembles
with three modalities, where different RGB encoders were adopted.

Evaluation results on the test split of s15_o10 in terms of conventional evaluation metrics are
shown in the top 11 rows of Table 3. The four single-modality ablation results show that PCD with
the PointNet encoder obtained the best performance and that depth with the MVCNN encoder
obtained the lowest scores for all metrics. RGB images with the GQN encoder outperformed the
ablation with the MVCNN encoder. PCD contain geometric and object edge information, which is
an advantage in a task that requires recognizing object change and detailed object attributes. GQN
was trained to obtain a compact scene representation from multiview images, which likely made it
better at correlating multiview information compared to MVCNN. Depth images do not contain color
information and it is difficult to obtain object shapes from them, making it challenging to understand
a scene change from only depth images. We found that although depth images alone performed
poorly, ensembles containing RGB (MVCNN or GQN encoder) and depth images outperformed RGB
images alone. We think that this resulted from the geometric information in depth images, which is
difficult to extract from RGB images. The two ensembles with three input modalities outperformed all
single-modalities and ensembles with two input modalities composed of their subsets. Scene change
captioning performance can thus be enhanced by using both geometric and RGB information.

The caption correctness evaluation results are shown in the top 11 rows in Table 4. We found
that ablation with RGB input (GQN encoder) outperformed PCD input in terms of object correctness,
whereas PCD obtained higher accuracy in change type prediction (single modality). The abundant
geometric and edge information contained in PCD is beneficial for change type prediction. We also
found that models with both RGB and PCD (or depth) input obtained higher object correctness than
that of single modalities. This result indicates that combining geometric and RGB information leads to
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a better understanding of detailed object information, which is critical for obtaining high performance
in this task.

Table 3. Results of evaluation using s15_o10 (top 11 rows), s15_o85 (middle 6 rows), and s100_o10
(bottom 6 rows). The highest scores are shown in bold.

Modality (Encoder) ROUGE SPICE METEOR BLEU-4 [59]
[60] [61] [62] Overall Add Delete Move Replace Distractor

Depth (MVCNN) 58.36 18.46 26.50 36.93 21.30 39.15 42.22 32.90 45.11
RGB (MVCNN) 65.53 26.52 34.80 49.43 25.73 49.83 54.18 51.83 60.60
RGB (GQN) 81.98 36.02 48.49 71.01 59.59 77.31 59.52 68.52 85.80
PCD (PointNet) 89.75 35.32 49.34 76.17 62.89 79.19 77.98 71.73 96.19
Depth,RGB (MVCNN,MVCNN) 80.74 34.44 46.30 67.58 55.04 71.82 69.25 63.41 75.80
Depth,RGB (MVCNN,GQN) 84.52 36.51 50.71 74.46 63.99 77.12 65.49 71.48 90.22
Depth,PCD (MVCNN,PointNet) 84.41 27.74 43.03 65.91 54.84 68.73 59.37 58.00 98.85
RGB,PCD (MVCNN,PointNet) 89.31 36.40 50.50 75.65 65.97 80.02 75.76 70.93 91.00
RGB,PCD (GQN,PointNet) 92.36 41.36 57.00 84.74 81.65 89.87 70.67 80.77 99.41
Depth,RGB,PCD (MVCNN,MVCNN,PointNet) 89.87 35.99 52.11 79.02 64.18 82.38 77.06 73.49 96.51
Depth,RGB,PCD (MVCNN,GQN,PointNet) 93.38 44.29 58.46 86.33 83.32 89.69 80.21 82.84 98.55

Depth (MVCNN) 57.56 15.27 24.19 36.46 12.44 33.70 30.21 19.83 74.73
RGB (MVCNN) 57.31 15.17 24.80 35.67 18.08 31.78 32.46 29.78 59.91
RGB (GQN) 63.90 18.94 29.05 43.75 23.83 42.51 34.60 34.96 77.00
PCD (PointNet) 80.44 21.04 34.98 52.02 33.26 52.79 55.59 53.63 52.66
Depth,RGB,PCD (MVCNN,MVCNN,PointNet) 81.26 23.76 38.72 59.79 43.52 60.90 43.64 55.96 95.98
Depth,RGB,PCD (MVCNN,GQN,PointNet) 78.83 24.49 36.86 57.11 39.74 59.96 41.75 43.27 97.69

Depth (MVCNN) 56.06 16.51 24.56 33.46 16.45 31.00 35.64 29.72 48.53
RGB (MVCNN) 65.72 25.02 33.80 47.01 31.74 43.49 51.31 51.69 50.32
RGB (GQN) 65.23 23.91 32.24 47.10 35.31 46.79 47.36 39.92 58.85
PCD (PointNet) 82.93 26.29 41.48 63.30 47.22 66.04 49.33 62.50 99.60
Depth,RGB,PCD (MVCNN,MVCNN,PointNet) 87.99 35.72 49.68 75.31 60.49 77.45 73.79 68.44 96.72
Depth,RGB,PCD (MVCNN,GQN,PointNet) 86.07 35.97 47.23 73.10 60.46 74.30 63.08 67.83 99.02

Table 4. Results of change caption correctness evaluation using s15_o10 (top 11 rows), s15_o85 (middle
6 rows), and s100_o10 (bottom 6 rows). The highest scores are shown in bold.

Modality (Encoder) Accuracy (%)
Change Type Object Color Class

Depth (MVCNN) 44.54 26.82 35.11 36.78
RGB (MVCNN) 49.26 49.52 62.16 53.18
RGB (GQN) 74.48 69.41 79.54 71.88
PCD (PointNet) 97.24 53.65 59.20 65.44
Depth,RGB (MVCNN,MVCNN) 73.59 62.53 73.74 66.38
Depth,RGB (MVCNN,GQN) 78.44 72.46 81.84 74.91
Depth,PCD (MVCNN,PointNet) 93.03 39.64 48.75 52.06
RGB,PCD (MVCNN,PointNet) 93.37 58.52 70.68 65.29
RGB,PCD (GQN,PointNet) 93.94 74.39 83.85 77.39
Depth,RGB,PCD (MVCNN,MVCNN,PointNet) 93.09 63.02 73.32 69.32
Depth,RGB,PCD (MVCNN,GQN,PointNet) 94.96 75.35 84.05 78.30

Depth (MVCNN) 52.42 9.13 22.10 19.73
RGB (MVCNN) 46.38 17.23 38.99 23.34
RGB (GQN) 59.68 17.33 34.45 26.77
PCD (PointNet) 96.17 14.62 27.53 27.28
Depth,RGB,PCD (MVCNN,MVCNN,PointNet) 92.55 23.51 44.92 32.18
Depth,RGB,PCD (MVCNN,GQN,PointNet) 90.75 20.29 37.65 32.18

Depth (MVCNN) 42.88 19.85 29.70 31.29
RGB (MVCNN) 50.66 43.58 58.18 47.73
RGB (GQN) 52.00 40.28 52.13 45.72
PCD (PointNet) 90.49 33.73 44.60 47.13
Depth,RGB,PCD (MVCNN,MVCNN,PointNet) 91.54 55.28 69.60 61.64
Depth,RGB,PCD (MVCNN,GQN,PointNet) 90.07 48.20 59.93 55.77

We show two example results in Figure 6. For the first example (object moved), all ensembles
predict change captions correctly. Ablations with depth images and RGB images (MVCNN encoder)
correctly determined the related object attributes (cyan minicar) but failed to predict the correct change
type (move). In contrast, the single-modality ablation with PCD predicted the correct change type
but gave the wrong color. For the second example (distractor with no object change), all models with
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PCD and the ensemble with RGB (GQN encoder) and depth images gave correct change captions.
However, the other models predicted wrong change captions. These results indicate that combining
modalities enhances performance, and that PCD can provide geometry information, which is beneficial
for predicting change type.

Figure 6. Example results for s15_o10. From the top row: before-change RGB images observed from eight
virtual cameras for first example; after-change RGB images; ground truth and generated captions for
various models; before-change RGB images for second example; after-change RGB images (distractor
with only camera position transformation); ground truth and generated captions. Correct captions are
shown in green and false captions are shown in red.

5.4. Experiments on Dataset Complexity (Object Class Number)

In this experiment, we evaluated model performance under a more complex set-up s15_o85,
where the object instance number was 85 (10 objects in s15_o10). We conducted experiments on four
single-modality and two three-modality ablations.

The results of conventional evaluation metrics are shown in the middle six rows of Table 3.
The performance for all ablations is lower than that for s15_o10. Notably, the performance of models
with RGB images and the GQN encoder degraded significantly. This result indicates that the GQN
encoder is less robust to scene set-ups with high complexity. Similar to s15_o10, for single-modality
input, PCD with PointNet performed the best. Ensembles outperformed single modalities.

The caption correctness evaluation is shown in the middle six rows of Table 4. The performance of
all modalities degraded compared to that for s15_o10 in terms of object correctness. However, models
with PCD, including both single modalities and ensembles, tended to be more robust for change type
prediction. This result indicates that the geometry and edge information make change type prediction
more consistent.
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We show one example result (object deleted) in Figure 7 (top) . All single modalities failed to give
correct captions, whereas the two ensembles predicted the correct caption. Single-modality models
with depth or RGB images gave the wrong change type, whereas that with PCD correctly predicted the
change type (delete). s15_o85 is more challenging than s15_o10 because it included more objects (85 vs.
10). Combining different modalities is effective for handling datasets with relatively high complexity.

Figure 7. Example results for s15_o85 and s100_o10. From the top row: before-change RGB images
observed from eight virtual cameras for example from s15_o85; after-change RGB images; ground truth
and generated captions for various models; before-change RGB images for example from s100_o10;
after-change RGB images; ground truth and generated captions. Correct captions are shown in green
and false captions are shown in red.

5.5. Experiments on Dataset Complexity (Scene Number)

Here, we evaluate four single-modality and two three-modality ablations with dataset s100_o10,
which included 100 scenes (15 scenes in s15_o10 and s15_o85).

The experimental results (bottom six rows of Table 3) for conventional evaluation metrics show
that the performance of all ablations degraded compared to that for s15_o10. This is especially true for
RGB images with the GQN encoder, which indicates that GQN is less suitable for large-scale scene
datasets. Similar to s15_o10, PCD with PointNet obtained the highest scores and depth images showed
poor performance. Ensembles tended to outperform single modalities. The caption correctness results
(bottom six rows of Table 4) also show that performance degraded (especially for object correctness)
compared to that for s15_o10. PCD with the PointNet encoder and ensembles tended to be more robust
for caption type prediction.

One example result (object addition) for s100_o10 is shown in Figure 7 (bottom). Here, PCD with
the PointNet encoder and the ensemble model with PCD, depth, and RGB images (MVCNN encoder)
correctly predicted the change caption. For s100_o10, which contains 100 scenes, the performance
of GQN encoder dramatically degraded, which may have influenced the performance of the
ensemble model.
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5.6. Discussion

The experiments using s15_o10, s15_o85, and s100_o10 indicate that for single modalities, PCD
with the PointNet encoder consistently obtained the highest scores for most conventional caption
evaluation metrics and the depth images with MVCNN encoder obtained the low scores in most
experiments. A further evaluation of caption correctness indicated that models with RGB images
(both MVCNN and GQN encoders) performed well in recognizing object attributes and those with
PCD performed well in predicting change types. Model performance can be enhanced by adopting
ensembles. In addition, both the RGB images and PCD are crucial for obtaining high performance
with ensembles. Additional depth images improve the performance of models with RGB images but
degrade that of models with PCD alone.

We found that for all modalities, performance degraded in experiments using datasets with more
objects (s15_o85) and more scenes (s100_o10). However, models with PCD and the PointNet encoder
tended to be relatively robust for change type prediction. Regarding the two types of RGB encoder,
GQN outperformed MVCNN for s15_o10. For s15_o85 and s100_o10, the performance of GQN encoder
significantly degraded, becoming worse than that of MVCNN. This result indicates that compared to
MVCNN, the GQN network is less suitable for in large-scale scene-setting.

The experimental results reported here will facilitate future research on scene change
understanding and captioning. To understand and describe scene changes, both geometry and color
information are critical. Because we used the concatenation operation to aggregate the information
of various modalities, introducing an attention mechanism to dynamically determine the needed
features could help enhance model performance. We evaluated model performance under complex
scene settings through experiments using s15_o85 and s100_o10. It is important to further study the
adaptiveness of models to scene complexity by conducting more experiments using diverse dataset
setups. PCD used in this study consist of scenes and object models with integral shapes that are
beneficial in change captioning task. However, in real-world applications, obtaining PCD with integral
object shapes is challenging. One way to enhance the practicality of our work is to conduct experiments
on partially observed PCD further.

To the best of our knowledge, our work is the first attempt for indoor scene change captioning.
It is an essential future direction to adapt existing indoor scene change detection methods, such as
those in [51–53], to the change detection task and conduct comparison experiments between our work
and existing change detection methods.

6. Conclusions

This study proposes an end-to-end framework for describing scene change based on before- and
after-change scenes observed by multiple modalities, including multiview RGB and depth images
and PCD. Because indoor scenes are constantly changing due to human activities, the ability to
automatically understand scene changes is crucial for HRI applications. Previous scene change
detection methods do not specify detailed scene changes, such as change types or attributes of changed
objects. Existing scene change captioning methods use RGB images and conduct experiments using
small-scale datasets with limited visual complexity. We automatically generated large-scale indoor
scene change captioning datasets with high visual complexity and proposed a unified framework
that handles multiple input modalities. For all experiments, models with PCD input obtained the
best performance among single-modality models, which indicates that the geometry information
contained in PCD is beneficial for change understanding. The experimental results show that both
geometry and color information are critical for better understanding and describing scene changes.
Models with the RGB images and PCD have promising performance in scene change captioning
and exhibit high robustness for change type prediction. Because we used a concatenation operation
for aggregating information from various modalities, model performance could be enhanced by
introducing an attention mechanism to determine the required features. Experiments on datasets with
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high levels of complexity show that there is still room for improvement, especially for object attribute
understanding. We plan to conduct more experiments on the adaptiveness to scene complexity.
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CNN Convolutional Neural Network
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PCD Point Cloud Data
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GQN Generative Query Network
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Abstract: We propose a new class of nonlocal Total Variation (TV), in which the first derivative and
the second derivative are mixed. Since most existing TV considers only the first-order derivative, it
suffers from problems such as staircase artifacts and loss in smooth intensity changes for textures
and low-contrast objects, which is a major limitation in improving image quality. The proposed
nonlocal TV combines the first and second order derivatives to preserve smooth intensity changes
well. Furthermore, to accelerate the iterative algorithm to minimize the cost function using the
proposed nonlocal TV, we propose a proximal splitting based on Passty’s framework. We demonstrate
that the proposed nonlocal TV method achieves adequate image quality both in sparse-view CT and
low-dose CT, through simulation studies using a brain CT image with a very narrow contrast range
for which it is rather difficult to preserve smooth intensity changes.

Keywords: image reconstruction; computed tomography; compressed sensing; nonlocal total
variation; sparse-view CT; low-dose CT; proximal splitting; row-action; brain CT image

1. Introduction

Nonlocal Total Variation (TV) [1–6] was proposed as an improved version of ordinary TV. Nonlocal
TV can use a weighting function (e.g., the weight of nonlocal means filter) by taking the intensity
difference between the pixel pair into account, and can obtain higher image quality than the ordinary
TV that uses only pairs of adjacent pixels.

Since G. Gilboa and S. Osher (2009) [5] proposed nonlocal operator, nonlocal TV has been widely
applied to image reconstruction problems in sparse-view CT and low-dose CT [1–4].

H. Kim et al. (2016) [2] applied nonlocal TV to sparse-view CT and showed that nonlocal TV
improves image quality over ordinary TV and incorporating the reweighted L1 norm into nonlocal TV
further improves tissue contrast and structural details. Following this, K. Kim et al. (2017) [3] applied
nonlocal TV to low-dose CT and showed nonlocal TV is effective for low-dose noise (Poisson noise).

D. Lv et al. (2019) [4] proposed a hybrid prior distribution (called NLTG prior) that combines
nonlocal TV with Gaussian distribution. Additionally, they showed the possibility of applying NLTG
prior to a large class of image reconstruction problems, especially when reference images were available.

However, the most existing nonlocal TV studies [2–4] are based on the first-order derivative, and
still contain the staircase artifact problem as a potential drawback. Since the first-order derivative is
too sensitive to the pixel values, even linear intensity changes are detected as false edges, which leads
to staircase artifacts in the same way as local TV does [7–9].

On the other hand, higher-order derivatives (the second-order or more) possesses a potential risk
that, as the order of differentiation is larger, its ability enhance image edges is smaller leading to an
image blurring problem.
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In previous studies, to overcome the disadvantage of using only the first-order or only the
second-order, Bredies et al. (2010) [10] proposed Total Generalized Variation (TGV) that involves and
balances higher-order derivatives and showed impressive results in the denoising problem. After that
work, Ranftl et al. (2014) [11] proposed a nonlocal version of TGV.

Our proposed method is also a combined method of the first and second order derivatives.
We define the regularization term as a weighted sum of two terms, where the first term is the ordinary
nonlocal TV based on the first-order and the second term is based on the second-order. Additionally,
in this paper, we introduce a newly discovered idea called nonlocal Total K-Split Variation, which is
based on the second-order derivative using nonlocal regularization. This idea allows us to preserve
smooth intensity changes well.

Furthermore, to accelerate the iterative algorithm associated with the proposed nonlocal TV, we
propose a specially designed proximal splitting based on Passty’s framework. In this proximal splitting,
as the number of dividing the cost function into small subfunctions increases, the faster convergence
is achieved [12–14]. The structure of final iterative algorithm is row-action type with respect to both
the data-fidelity term and the regularization term [15–17], which converges to a minimizer very
quickly [18–22].

Finally, in order to demonstrate the performances of combining the first and second order
derivatives in reconstructed images, we use a brain CT image, in which a very narrow contrast range
is used to display the image, where it is very difficult to preserve smooth intensity changes. Also,
simulation studies are performed for both the sparse-view CT and the low-dose CT. We demonstrate
that the proposed nonlocal TV method achieves adequate image quality within a small number
of iterations.

2. Methodology

2.1. Problem Definition

We define the following unconstrained cost function:

argmin
→
x≥0

J(
→
x ) = f (

→
x ) + u(

→
x ) =

∥∥∥∥A
→
x −→b

∥∥∥∥2

2
+ βω

∥∥∥W
→
x
∥∥∥1

1, (1)

where f
(→

x
)
= ‖A→x −→b ‖

2

2 is the data-fidelity term, and u
(→

x
)
= βω‖W→x ‖11 is the regularization term,

and A =
{
ai j

}
is the I × J system matrix, β is the hyper-parameter to control regularization strength, and

ω is the weight of regularization term, and W is the sparsifying transform to make W
→
x sparse. Image

reconstruction is an inverse problem to recover the image of attenuation coefficients
→
x =

(
x1, x2, . . . , xJ

)T

from the measured projection data
→
b = (b1, b2, . . . , bI)

T.
In the sparse-view CT [23,24], by using the projection data corresponding to less than 100

directions (the conventional CT uses 1000–2000 projection data), the equation A
→
x =

→
b becomes

severely underdetermined, i.e., the dimension J of unknowns
→
x is larger than the dimension I of

measurements
→
b (I < J). In this case, the regularization term acts to avoid the ill-posed problem by

introducing the prior knowledge that most components of the vector W
→
x are close to 0.

On the other hand, in the low-dose CT, the equation A
→
x =

→
b becomes inconsistent due to Poisson

noise
→
n (A

→
x −→b =

→
n ). In this case, the regularization term helps to reduce the effect of Poisson noise

→
n by a smoothing.
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First, we begin by the modified anisotropic nonlocal TV based on the first-order derivative
expressed as

Nonlocal TV = uTV
(→

x
)
= βt

J∑
j=1

∑
j′∈Ω

ω j j′
∣∣∣xj − xj′

∣∣∣, (2)

where xj is the intensity in the pixel j, and xj′ is the intensity in a distant pixel j′, and ω j j′ is the weight
of smoothing assigned for each pixel pair

(
xj, xj′

)
.

Next, we describe a newly discovered regularization term based on the second-order derivative
called nonlocal Total K-split Variation (TKV). The main idea is to consider more derivatives around xj
and xj′ as

Nonlocal TKV = uTKV
(→

x
)
=
β(1− t)

8

J∑
j=1

∑
j′∈Ω

8∑
k=1

ω j j′
∣∣∣∣(xj − xjk

)
−

(
xj′ − xj′k

)∣∣∣∣, (3)

where xjk is the adjacent pixel value of xj, xj′k is the adjacent pixel value of xj′ . We remark that the TKV
term is divided into a sum of eight terms dependent of the direction to take the pixel difference as
shown in Figure 1.

Figure 1. Definition of the pixel location in the proposed regularization term corresponding to
k = 1, 2, 3, · · · , 7, 8.

In the proposed method, we assume that the reconstructed image
→
x is close to piecewise-polynomial

of first order. Under this assumption, our proposed regularization term is designed to include both the
first and second order derivatives as

u
(→

x
)
= β

J∑
j=1

∑
j′∈Ω

ω j j′

⎡⎢⎢⎢⎢⎢⎣t∣∣∣xj − xj′
∣∣∣+ (1− t)

8

8∑
k=1

∣∣∣∣(xj − xjk

)
−

(
xj′ − xj′k

)∣∣∣∣⎤⎥⎥⎥⎥⎥⎦, (0 < t < 1), (4)

where the proposed regularization term is a combination of two terms (u
(→

x
)
= uTV

(→
x
)
+ uTKV

(→
x
)
).

Additionally t is the trade-off parameter between nonlocal TV and TKV. If t is large, the reconstructed
image becomes closer to that of nonlocal TV. If t is small, the reconstructed image becomes closer to
that of nonlocal TKV. To match the strength of the first term into that of the second term, we divide the
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second-order derivative based nonlocal TKV into 8 directions. Figure 1 shows the location of pixels
appearing in uTV

(→
x
)

and uTKV
(→

x
)

for k = 1, 2, 3, · · · , 7, 8.

2.2. Accelerated Algorithm Using the Proximal Splitting with Passty’s Framework

To accelerate the iterative algorithm to minimize the cost function, we propose a specially designed
proximal splitting with Passty’s framework. The ordinary proximal splitting is able to minimize a cost
function consisting of a sum of only two component terms, where the proximity operator corresponding
to each subfunction is applied alternately [12,13]. On the other hand, by using Passty’s framework
which is not well-known in the image reconstruction community, a cost function can be divided into
a number of much simpler subfunctions [14]. This results in considerable benefits for optimization
problems appearing in CT reconstruction. By applying the proximity operator corresponding to each
subfunction alternately, the proposed algorithm possesses a form of row-action type [15–17], which
converges to a minimizer very quickly [18–22].

We begin by a brief review the proximal splitting with Passty’s framework. Let us consider a
convex minimization problem formulated as

argmin
→
x

J
(→

x
)
, (5)

where J
(→

x
)

is a lower semi-continuous (lsc) convex function.

The proximity operator corresponding to the function J
(→

x
)

is defined as

→
x = proxαJ

(→
z
)
≡ argmin

→
x

(J
(→

x
)
+

1
2α
‖→x −→z ‖22), (6)

where α is the parameter called step-size. We note that J
(→

x
)

can be a non-differentiable function such
as component terms of TV or nonlocal TV. The proximity operator is a non-expansive mapping such
that its fixed-points

→
x satisfying

→
x = proxαJ

(→
x
)

coincides with a minimizer of J
(→

x
)

for any α > 0.

Therefore, the minimization problem of J
(→

x
)

can be solved by the iterative formula expressed as
→
x
(n+1)

= proxαJ

(→
x
(n))

(i.e., proximal algorithm). Next, we are going to explain the proximal splitting

with Passty’s framework.
[Passty’s framework] Let us consider the case where J

(→
x
)

can be divided into a sum of subfunctions
as:

J
(→

x
)
=

I∑
i=1

Ji
(→

x
)
. (7)

The iterative algorithm can be constructed by applying the proximity operator corresponding to
each subfunction Ji

(→
x
)
(i = 1, 2, . . . , I) as below

→
x
(n+1)

= proxα(n) JI
· · · · ·proxα(n) J2

·proxα(n) J1

(→
x
(n))

. (8)

Furthermore, let us consider the case where Ji
(→

x
)

is a sum of two subfunctions, like our cost
function including data-fidelity term and regularization term as

Ji
(→

x
)
= fi

(→
x
)
+ u

(→
x
)
. (9)
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The update can be constructed by applying two operators corresponding to each subfunction
alternately as below

→
x
(n+1)

= proxα(n)u·proxα(n) fi

(→
x
(n))

. (10)

Finally, we show in Algorithm 1 the optimization model applied to this paper:

Algorithm 1: Proximal splitting with Passty’s framework 
Give an initial vector . Execute the following. 

In Passty’s framework, by increasing the number to divide the cost function into smaller
subfunctions, the better convergence can be expected. In this paper, this division is performed as
follows. First, the data-fidelity term is divided as shown in Equation (7) in such a way that each
subfunction fi

(→
x
)

contains only a single term corresponding to projection data bi. Therefore, the final
algorithm can be designed in the form of a row-action type algorithm such as ART method.

We mention that u
(→

x
)

can also be divided into a sum of many subfunctions. In this paper, we

divide u
(→

x
)

as finely as possible similarly to the case of the data-fidelity term. This idea leads to
a significant benefit to simplify the processing of nonlocal TV+TKV term as well as improving the
convergence speed. With respect to the regularization term u

(→
x
)
, we perform a division described in

Section 2.3.2.

2.3. Optimization

In this section, we focus on how to divide the cost function and how to derive the resulting
iterative algorithm.

2.3.1. Update the Data-Fidelity Term

The data-fidelity term can be divided into I subfunctions as below

(11)

where I is the number of projection data, and
→
a i is i-th row vector of the system matrix A, and bi is i-th

component of projection data. Furthermore, we note that fi
(→

x
)

is a subfunction corresponding to the
data-fidelity term.

The minimization problem for the data-fidelity term can be defined as

→
x
(n,i+1)

= proxα(n) fi

(→
x
(n,i))

= argmin
→
x

{(→
a

T
i
→
x − bi

)2
+

1
2α(n)

‖→x −→x (n,i)‖22
}

. (12)

By introducing a slack variable , the above minimization problem for each subfunction
fi
(→

x
)

can be converted into the constrained minimization below

(13)
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The Lagrange function can be defined by

L fi

(→
x , z,λ

)
= (z− bi)

2 +
1

2α(n)
‖→x −→x (n,i)‖22 + λ

(
z−→a T

i
→
x
)
, (14)

where λ is the Lagrange multiplier called the dual variable.
Finally, by optimizing the Lagrange function, we obtain the following expression of row-action

type iteration.

→
x
(n,i+1)

=
→
x
(n,i)

+ α(n)
bi−→a

T
i
→
x
(n,i)

1/2+α(n)‖→a i‖22
→
a i, α(n) =

α0
1+εn ,

(
i ∈ R[I]

)
,

(α0 : initial value of step size, ε : deceleration rate of step-size, R[I] : ordered subsets
) (15)

where α(n) is the step-size parameter to control the convergence, and n is the number of main iterations.
After updating all elements of projection data, n is increased by 1. The step-size α(n) is diminished
gradually to zero as the iteration proceeds (i.e. diminishing step-size rule). In Passty’s framework, it is
known that this diminishing contributes to ensuring an exact convergence to a minimizer, thereby,
avoiding the so-called limit cycle problem. Furthermore, we introduce a random-access order of
projection data R[I] to enable a fast convergence within 20–30 iterations [19,20]. The mathematical
detail to derive the update formula in Equation (15) has been already described in our previous
studies [19–22].

2.3.2. Update the Regularization Term

We describe how to divide the regularization term. The modified anisotropic nonlocal TV
possesses the following structure and is called L1 based group LASSO here. The L1 based group LASSO
possesses a very simple structure, where each absolute value term can be considered a group element.

uTV
(→

x
)
= βt

J∑
j=1

∑
j′∈Ω

ω j j′
∣∣∣xj − xj′

∣∣∣ = βt G∑
g=1

[
ω j j′

∥∥∥→x j −→x j′
∥∥∥1

1

]
g
= βt

G∑
g=1

uTV
g

(→
x
)
, ( j = g). (16)

where g is the group index, and the group index g corresponds to the pixel index j, and the TV term
can be divided into G groups (G subfunctions). Furthermore, the group itself becomes a subfunction
uTV

g

(→
x
)
.

In the case of the TKV term, it can be divided into (G× 8) subfunctions as below

uTKV
(→

x
)
=
β(1− t)

8

8∑
k=1

G∑
g=1

[
ω j j′

∥∥∥(→x j −→x jk

)
−

(→
x j′ − →x j′k

)∥∥∥1

1

]
g
=
β(1− t)

8

8∑
k=1

G∑
g=1

uTKV
g

(→
x
)
. (17)

The detailed structure of the TV term is shown in Figure 2. Among the elements of the group, the
pixel j is common and distant pixel j′ has different values for each other.
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Figure 2. Raster scanning during the update ( j′ = 1, 2, 3, . . . ).

The sequential update is related to raster scanning.
In the TV term, when assuming that xj and xj′ are updated simultaneously, xj is updated

sequentially J′ times, and xj′ is updated once respectively.
In the case of TKV term, when assuming that xj, xjk , xj′ , xj′k are updated simultaneously, xj is

updated sequentially (J′ × 8) times, and xj′ is updated sequentially eight times. Following this, xjk and
xj′k (the adjacent pixels) are updated once respectively.

[Update the TV term] First, we consider updating the pixel j.
The proximity operator for a subfunction can be defined as follows

argmin
→
x j

(ω j j′ ‖→x j −→x
(n)
j′ ‖11 +

1
2α(n)

‖→x j −→x
(n, j′)
j ‖22), (18)

where x(n)j′ is the current updated solution as a constant approximation, which is the image updated
from the data-fidelity term. The above L1 norm minimization problems can be solved with the
following soft-thresholding.

S∇
(
x(n, j′)

j

)
= x(n, j′)

j −
⎧⎪⎪⎪⎨⎪⎪⎪⎩

∇, τ > ∇
−∇, τ < −∇
τTV (otherwise)

,(
τTV = (x(n, j′)

j − x(n)j′ ),∇ = α(n)βtω j j′
)
,

(19)

where S∇
(
x(n, j′)

j

)
is the soft-thresholding function. The solution (S∇

(
x(n, j′)

j

)
) corresponding to otherwise

is simply x(n)j′ .
For better convergence, although it is possible to update only pixel j, we update the pixel j and

j′ simultaneously.
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For updating the pixel j and j′, we further divide a subfunction uTV
g

(→
x
)

into two subfunctions
as below

uTV
(→

x
)
= βt

G∑
g=1

uTV
g

(→
x
)
= βt

G∑
g=1

[
ω j j′ ‖→x j −→x j′ ‖11

]
g

= βt
G∑

g=1

⎡⎢⎢⎢⎢⎢⎢⎢⎣
⎡⎢⎢⎢⎢⎢⎣ω j j′

∥∥∥∥∥∥→x j−→x j′
2

∥∥∥∥∥∥1

1

⎤⎥⎥⎥⎥⎥⎦
xj

+

⎡⎢⎢⎢⎢⎢⎣ω j j′

∥∥∥∥∥∥→x j−→x j′
2

∥∥∥∥∥∥1

1

⎤⎥⎥⎥⎥⎥⎦
xj′

⎤⎥⎥⎥⎥⎥⎥⎥⎦
g

= βt
G∑

g=1

[
p
(→

x j
)
+ p

(→
x j′

)]
g
.

(20)

where p
(→

x j
)
= [ ]xj

, p
(→

x j′
)
= [ ]xj′ .

The proximity operator for each subfunction (proxα(n)p

(→
x
(n, j′)
j

)
, proxα(n)p

(→
x
(n)
j′

)
) can be defined

as follows

argmin
→
x j

(ω j j′

∥∥∥∥∥∥→x j −
→
x
(n, j′)
j +

→
x
(n)
j′

2

∥∥∥∥∥∥
1

1
+ 1

2α(n)

∥∥∥∥→x j −→x
(n, j′)
j

∥∥∥∥2
2),

argmin
→
x j′

(ω j j′

∥∥∥∥∥∥−→x j′ +
→
x
(n, j′)
j +

→
x
(n)
j′

2

∥∥∥∥∥∥
1

1
+ 1

2α(n)

∥∥∥∥→x j′ − →x
(n)
j′

∥∥∥∥2
2),

(21)

where x(n, j′)
j and x(n)j′ are the current updated solution as a constant approximation, which is the image

updated from the data-fidelity term.
Finally, the above L1 norm minimization problems can be solved with the

following soft-thresholding.

S∇
(
x(n, j′)

j

)
= x(n, j′)

j −
⎧⎪⎪⎪⎨⎪⎪⎪⎩

∇, τ > ∇
−∇, τ < −∇
τTV (otherwise)

,

S∇
(
x(n)j′

)
= x(n)j′ +

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∇, τ > ∇
−∇, τ < −∇
τTV (otherwise)

,(
τTV =

(
x(n, j′)

j − x(n)j′

)
/2, ∇ = α(n)βtω j j′

)
,

(22)

where S∇
(
x(n, j′)

j

)
and S∇

(
x(n)j′

)
are soft-thresholding functions. By dividing a subfunction and updating

for each variable as shown in Equations (20)–(22), the solution (S∇
(
x(n, j′)

j

)
, S∇

(
x(n)j′

)
) corresponding to

otherwise becomes the average of x(n, j′)
j and x(n)j′ ((x(n, j′)

j + x(n)j′ )/2). Compared to Equation (19), this
weak average that occurs otherwise can reduce the error in convergence and improve the stability of
convergence.

158



Sensors 2020, 20, 3494

[Update the TKV term] We update the pixel j, jk, j′, j′k simultaneously. For updating the pixel j,

jk, j′, j′k, we further divide a subfunction uTKV
g

(→
x
)

into four subfunctions as below

uTKV
(→

x
)
=
β(1−t)

8

8∑
k=1

G∑
g=1

uTKV
g

(→
x
)
=
β(1−t)

8

8∑
k=1

G∑
g=1

[
ω j j′

∥∥∥(→x j −→x jk

)
−

(→
x j′ − →x j′k

)∥∥∥1

1

]
g

=
β(1−t)

8

8∑
k=1

G∑
g=1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎡⎢⎢⎢⎢⎢⎢⎣ω j j′

∥∥∥∥∥∥ (
→
x j−→x jk

)−(→x j′−→x j′k
)

4

∥∥∥∥∥∥
1

1

⎤⎥⎥⎥⎥⎥⎥⎦
xj

+

⎡⎢⎢⎢⎢⎢⎢⎣ω j j′

∥∥∥∥∥∥ (
→
x j−→x jk

)−(→x j′−→x j′k
)

4

∥∥∥∥∥∥
1

1

⎤⎥⎥⎥⎥⎥⎥⎦
xjk

+

⎡⎢⎢⎢⎢⎢⎢⎣ω j j′

∥∥∥∥∥∥ (
→
x j−→x jk

)−(→x j′−→x j′k
)

4

∥∥∥∥∥∥
1

1

⎤⎥⎥⎥⎥⎥⎥⎦
xj′

+

⎡⎢⎢⎢⎢⎢⎢⎣ω j j′

∥∥∥∥∥∥ (
→
x j−→x jk

)−(→x j′−→x j′k
)

4

∥∥∥∥∥∥
1

1

⎤⎥⎥⎥⎥⎥⎥⎦
xj′k

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
g

=
β(1−t)

8

8∑
k=1

G∑
g=1

[
q
(→

x j
)
+ q

(→
x jk

)
+ q

(→
x j′

)
+ q

(→
x j′k

)]
g
,

(23)

where q
(→

x j
)
= []xj

, q
(→

x jk

)
= []xjk

, q
(→

x j′
)
= []xj′ , q

(→
x j′k

)
= []xj′k

.

The proximity operator for each subfunction (proxα(n)q

(→
x
(n, j′,k)
j

)
, proxα(n)q

(→
x
(n)
jk

)
, proxα(n)q

(→
x
(n,k)
j′

)
,

proxα(n)q

(→
x
(n)
j′k

)
) can be defined as follows

argmin
→
x j

(ω j j′

∥∥∥∥∥∥∥→x j −
3
→
x
(n, j′ ,k)
j +

→
x
(n)
jk

+
→
x
(n,k)
j′ −→x

(n)
j′k

4

∥∥∥∥∥∥∥
1

1

+ 1
2α(n)
‖→x j −→x

(n, j′,k)
j ‖22),

argmin
→
x jk

(ω j j′

∥∥∥∥∥∥∥−→x jk +

→
x
(n, j′ ,k)
j +3

→
x
(n)
jk
−→x (n,k)

j′ +
→
x
(n)
j′k

4

∥∥∥∥∥∥∥
1

1

+ 1
2α(n)
‖→x jk −

→
x
(n)
jk ‖22),

argmin
→
x j′

(ω j j′

∥∥∥∥∥∥∥−→x j′ +

→
x
(n, j′ ,k)
j −→x (n)

jk
+3
→
x
(n,k)
j′ +

→
x
(n)
j′k

4

∥∥∥∥∥∥∥
1

1

+ 1
2α(n)
‖→x j′ − →x

(n,k)
j′ ‖22),
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→
x
(n)
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are the current updated solution as a constant approximation, which
is the image updated from the TV term.
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Finally, the above L1 norm minimization problems can be solved with the
following soft-thresholding.

S∇
(
x(n, j′,k)

j

)
= x(n, j′,k)

j −
⎧⎪⎪⎪⎨⎪⎪⎪⎩

∇, τ > ∇
−∇, τ < −∇
τTKV (otherwise)

,

S∇
(
x(n)jk

)
= x(n)jk

+

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∇, τ > ∇
−∇, τ < −∇
τTKV (otherwise)

,

S∇
(
x(n,k)

j′

)
= x(n,k)

j′ +
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where S∇
(
x(n, j′,k)

j

)
, S∇

(
x(n)jk

)
, S∇

(
x(n,k)

j′

)
, S∇

(
x(n)j′k

)
are soft-thresholding function.

2.3.3. The Weight

In this paper, we used the weight of nonlocal means filter [25] as

ω j j′ =
exp(−max(‖B(xj) − B(xj′)‖22 − 2σ2, 0)/h2)∑

j′∈Ω exp(−max(‖B(xj) − B(xj′)‖22 − 2σ2, 0)/h2)
, (26)

where ‖B(xj) − B(xj′)‖22 means the average Euclidean distance between patches (B
(
xj
)
, B

(
xj′

)
) centered

in an interest pixel xj and a distant pixel xj′ .
Theoretically, the weight must be a fixed value as a hyper-parameter of the regularization term.

However, there have been previous studies showing that reweighting at each iteration contributes to
better image quality [2,9]. Additionally, the larger the size of weight (Ω), the better the performance
of removing artifacts or noise. As long as the computer is capable of processing, we recommend
increasing the size of the weight. However, if the size of the weight is too large, the calculation cost
will increase enormously as compared with the image quality improvement. Therefore, it is important
to decide the size of the weight while paying attention to cost performance considering the level of
artifacts or noise. Figure 3 shows the cost performance of changing the size of weight.

 
(a) Image quality improvement (PSNR) 

 
(b) Computation time [ms] 

Figure 3. Cost performance of changing the size of weight. (a) Image quality improvement (PSNR), (b)
Computation time [ms].
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Next, we describe the proper estimation of the weight. If the ground truth image is known, the
weight can be calculated from the ground truth image. However, in the image reconstruction, only the
projection data is given and the reconstructed image and the weight must be estimated simultaneously
from the projection data. Therefore, we construct the optimization by alternating the estimation of the
reconstructed image and the weight.

We show the reweighting process of optimization including the data-fidelity term and
regularization term:

(27)

where the weight is calculated once as common to nonlocal TV and TKV and the weight is calculated
from the image updated from the data-fidelity term. The span parameter S determines how often
regularization is performed in the main iteration n. If S is small, many regularization updates
are performed in one iteration. Theoretically, the smaller the S, the more accurate the convergence.
However, since nonlocal TV has a large amount of computational complexity, it is desirable to determine
an appropriate value of S.

Figure 4 shows how the size of weight (Ω) influences image quality and computation time.

Figure 4. Demonstration of how the size of weight (Ω) influences image quality and computation time.

3. Experimental Results

We performed simulation studies using a brain CT image. The reason behind using the brain
image is as follows. In the brain CT imaging, the reconstructed images are shown with a compressed
gray scale range much larger compared to the other CT imaging like chest imaging or abdominal
CT imaging. Therefore, preserving smooth intensity changes and avoiding the staircase artifacts are
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much important in the brain case. Additionally, simulation studies were performed for both the
sparse-view CT (the number of projection data was 64) and the low-dose CT (the number of photons was
3× 106). The reconstructed image consisted of 512× 512 pixels, where the pixel size was 0.0585 (cm2).
We compressed the range showing the reconstructed images to [7.82, 62.30] HU, where this contrast
range was determined based on the contrast range used in clinical brain CT imaging. To evaluate
image quality, standard RMSE, PSNR, SSIM values were used as metrics. The number of iterations in
image reconstructions was 20 for nonlocal TV, TKV, and TV+TKV, which was determined by the fact
that changes in image were small enough with this iteration number. We also showed the reconstructed
images by the standard Filtered Back-Projection (FBP), and differences in image quality by changing
values of the hyper-parameter t (i.e., the trade-off parameter between nonlocal TV (first derivative) term
and the TKV (second derivative) term). The ground truth image and the FBP reconstructions are shown
in Figure 5. The reconstructed images in the case of sparse-view CT are shown in Figure 6. In Figure 7,
we show the used brain CT image with three display gray-scale ranges, from which we observe that
the staircase artifacts are severe when the range of display gray-scale range is small. The reconstructed
images in the case of low-dose CT are shown in Figure 8. In Figures 9–11, we show convergence
properties of our iterative algorithm based on Passty’s proximal splitting framework. In Figures 12
and 13, to show the effect of acceleration by Passty’s proximal splitting, we incorporated the TV+TKV
term into SIRT (simultaneous iterative reconstruction technique) which is a non-row-action method (a
type of the standard iterative algorithm) and compared this with row-action based on our proposed
nonlocal TV+TKV. From these figures, it can be observed that our algorithm converged very quickly.
It is well-known that the standard iterative algorithms such as Chambolle–Pock [26] and proximal
gradient algorithms require several hundreds of iteration up to the convergence. The benefit of our
iterative algorithm mainly originates from the fact that our algorithm is of row-action type.

Figure 5. (a) Ground truth, (b) FBP with 64 projection data with no noise, (c) FBP with 256 projection
data with the number of photon counts 3× 106. All images are displayed with the same window of
[7.82, 62.30] HU.
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Figure 6. The reconstructed images of sparse-view CT (64 projection data with no noise). (a) Ground
truth, (b) Nonlocal TV (t = 1.0), (c) Nonlocal TKV (t = 0.0), (d) Nonlocal TV+TKV (t = 0.3) were
compared. All images are displayed with the same window of [7.82, 62.30] HU.

 
Figure 7. Demonstration of appearance of the staircase artifacts with various gray-scale ranges in
displaying the brain CT image. (a) Window Width [−346.27, 416.40] HU, (b) Window Width [−128.36,
198.49] HU, (c) Window Width [7.82, 62.30] HU.
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Figure 8. The reconstructed images of low-dose CT (256 projection data and the number of photon
counts 3×106). (a) Ground truth, (b) Nonlocal TV (t = 1.0), (c) Nonlocal TKV (t = 0.0), (d) Nonlocal
TV+TKV (t = 0.3) were compared. All images are displayed with the same window of [7.82, 62.30] HU.

 

(a) Sparse-view CT (b) Low-dose CT 

Figure 9. RMSE for each iteration. (a) Sparse-view CT, (b) Low-dose CT.
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(a) Sparse-view CT (b) Low-dose CT 

Figure 10. PSNR for each iteration. (a) Sparse-view CT, (b) Low-dose CT.

 

(a) Sparse-view CT (b) Low-dose CT 

Figure 11. SSIM for each iteration. (a) Sparse-view CT, (b) Low-dose CT.

 

Figure 12. The reconstructed images of sparse-view CT (64 projection data with no noise). SIRT nonlocal
TV+TKV and row-action accelerated nonlocal TV+TKV (our proposed method) were compared. All
images are displayed with the same window of [7.82, 62.30] HU.
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Figure 13. The reconstructed images of low-dose CT (256 projection data and the number of photon
counts 3× 106). SIRT nonlocal TV+TKV and row-action accelerated nonlocal TV+TKV (our proposed
method) were compared. All images are displayed with the same window of [7.82, 62.30] HU.

4. Discussion

The experimental results Table 1 showed that the reconstructed image by nonlocal TV+TKV was
closest to the ground truth image, with good RMSE, PSNR and SSIM values. Furthermore, no isolated
points caused by outliers of the soft-thresholding, which often appear in the TV-class reconstruction
methods, were visible. In the sparse-view CT, the result of nonlocal TV (t = 1.0) using only the
first-order derivative was of very high-contrast, but the staircase artifacts appeared in the smooth
intensity changes. In other words, the region with small intensity changes was over-smoother by the
regularization as if the oil-painting. In the low-dose CT, the result of nonlocal TV showed isolated
points in the region closer to the center of the image. In both the sparse-view CT and the low-dose CT,
nonlocal TKV (t = 0.0) using only the second-order derivative was able to preserve fine soft tissues
well including textures and low-contrast objects, however, it suffered from the blurring in the edge
parts. This is because, by using a large weight in the second-order derivative, the threshold value
(τTKV) of the soft-thresholding operation becomes very small (i.e., τTV � τTKV).

Table 1. Summary of each method.

Nonlocal TV Nonlocal TKV Nonlocal TV + TKV

Convergence Good Not bad Good

High contrast Yes No Yes

Smooth intensity change No Yes Yes

5. Conclusions

In this paper, we proposed a new concept in nonlocal TV, in which the first and second order
derivatives are combined in the regularization term. By combining the two terms, we were able to
compensate for each other’s weaknesses, i.e., staircase artifact and loss in smooth intensity changes in
the first derivative and image blurring in the second derivative. Furthermore, we proposed a specially
designed proximal splitting algorithm that is based on Passty’s framework. The key idea is to split the
original cost function to minimize as finely as possible to accelerate convergence and simplify necessary
computations. This allows as to make the final iterative algorithm into a form of row-action type, which
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is known to converge very quickly compared to other standards such as Chambolle–Pock algorithm
and proximal gradient. In our experiments, we experimentally confirmed that the proposed algorithm
converges within 20 iterations even for the case of brain CT imaging in which the requirement of image
contrast is very severe. The simulation results with the brain CT image were performed for both the
sparse-view CT and the low-dose CT. We showed that our proposed algorithm works well in practice.

As future work, our proposed nonlocal TV can be compared with the latest technology e.g., deep
leaning [27,28] or other applied methods such as low-rank minimization [29,30].

Recently, image reconstruction methods using deep learning have been actively investigated. Our
proposed method can be compared with existing deep leaning [27,28] as advanced compressed sensing.
Additionally, our proposed method can be applied to low-rank TV, which can improve image quality
by combing low-rank minimization and Total Variation [29,30].

Author Contributions: Conceptualization, Y.K. and H.K.; methodology, Y.K.; software, Y.K.; validation, Y.K. and
H.K.; formal analysis, Y.K. and H.K.; investigation, Y.K. and H.K.; resources, Y.K. and H.K.; data curation, Y.K. and
H.K.; writing—original draft preparation, Y.K.; writing—review and editing, Y.K. and H.K.; visualization, Y.K.;
supervision, H.K.; project administration, H.K.; funding acquisition, H.K. All authors have read and agreed to the
published version of the manuscript.

Funding: This work was supported by JST CREST Grant Number JPMJCR1765, Japan.

Conflicts of Interest: The authors declare no conflicts of interest.

References

1. Kim, Y.; Kudo, H.; Chigita, K.; Lian, S. Image reconstruction in sparse-view CT using improved nonlocal
total variation regularization. In Proceedings of the SPIE Optical Engineering + Applications, San Diego,
CA, USA, 10 September 2019.

2. Kim, H.; Chen, J.; Wang, A.; Chuang, C.; Held, M.; Pouliot, J. Non-local total-variation (NLTV) minimization
combined with reweighted L1-norm for compressed sensing CT reconstruction. Phys. Med. Biol. 2016, 61,
6878–6891. [CrossRef]

3. Kim, K.; El Fakhri, G.; Li, Q. Low-dose CT reconstruction using spatially encoded nonlocal penalty. Med. Phys.
2017, 44, e376–e390. [CrossRef] [PubMed]

4. Lv, D.; Zhou, Q.; Choi, J.K.; Li, J.; Zhang, X. NLTG Priors in Medical Image: Nonlocal TV-Gaussian (NLTG)
prior for Bayesian inverse problems with applications to Limited CT Reconstruction. Inverse Prob. Imaging
2019, 14, 117–132. [CrossRef]

5. Gilboa, G.; Osher, S. Nonlocal Operators with Applications to Image Processing. Multiscale Model. Simul.
2009, 7, 1005–1028. [CrossRef]

6. Bresson, X. A Short Note for Nonlocal TV Minimization. Technical Report. Available online: http://citeseerx.
ist.psu.edu/viewdoc/download?doi=10.1.1.210.471&rep=rep1&type=pdf (accessed on 15 June 2020).

7. Chambolle, A. An algorithm for Total variation Regularization and Denoising. J. Math. Imaging. 2004, 20,
89–97.

8. Rudin, L.; Osher, S.; Fatemi, E. Nonlinear total variation based noise removal algorithms. Physica D 1992, 60,
259–268. [CrossRef]

9. Zhang, X.; Xing, L. Sequentially reweighted TV minimization for CT metal artifact reduction. Med. Phys.
2013, 40, 1–12. [CrossRef]

10. Bredies, K.; Kunisch, K.; Pock, T. Total generalized variation. SIAM J. Imag. Sci. 2010, 3, 492–526. [CrossRef]
11. Ranftl, R.; Bredies, K.; Pock, T. Non-local total generalized variation for optical flow estimation. Lect. Notes

Comput. Sci. 2014, 8689, 439–454.
12. Parikh, N.; Boyd, S. Proximal Algorithms. Available online: https://web.stanford.edu/~{}boyd/papers/pdf/

prox_algs.pdf (accessed on 15 June 2020).
13. Combettes, P.L.; Pesquet, J.C. Proximal splitting methods in signal processing. In Fixed-Point Algorithms for

Inverse Problems in Science and Engineering; Springer: New York, NY, USA, 2011.
14. Passty, G.B. Ergodic convergence to a zero of the sum of monotone operators in Hilbert space. J. Math. Anal.

Appl. 1979, 72, 383–390. [CrossRef]

167



Sensors 2020, 20, 3494

15. Herman, G.T.; Meyer, L.B. Algebraic reconstruction techniques can be made computationally efficient
(positron emission tomography application). IEEE Trans. Med. Imaging 1993, 12, 600–609. [CrossRef]

16. Tanaka, E.; Kudo, H. Subset-dependent relaxation in block-iterative algorithms for image reconstruction in
emission tomography. Phys. Med. Biol. 2003, 48, 1405–1422. [CrossRef] [PubMed]

17. Wang, G.; Jiang, M. Ordered subset simultaneous algebraic reconstruction techniques (OS SART). J. of X Ray
Sci. Technol. 2004, 12, 169–177.

18. Dong, J.; Kudo, H. Proposal of Compressed Sensing Using Nonlinear Sparsifying Transform for CT Image
Reconstruction. Med. Imaging Technol. 2016, 34, 235–244.

19. Dong, J.; Kudo, H. Accelerated Algorithm for Compressed Sensing Using Nonlinear Sparsifying Transform
in CT Image Reconstruction. Med. Imaging Technol. 2017, 35, 63–73.

20. Dong, J.; Kudo, H.; Kim, Y. Accelerated Algorithm for the Classical SIRT Method in CT Image Reconstruction.
In Proceedings of the 5th International Conference on Multimedia and Image Processing, Nanjing, China,
10–12 January 2020; pp. 49–55.

21. Kudo, H.; Takaki, K.; Yamazaki, F.; Nemoto, T. Proposal of fault-tolerant tomographic image reconstruction.
In Proceedings of the SPIE Optical Engineering + Applications, San Diego, CA, USA, 3 October 2016.

22. Kudo, H.; Dong, J.; Chigita, K.; Kim, Y. Metal artifact reduction in CT using fault-tolerant image reconstruction.
In Proceedings of the SPIE Optical Engineering + Applications, San Diego, CA, USA, 10 September 2019.

23. Li, M.; Yang, H.; Kudo, H. An accurate iterative reconstruction algorithm for sparse objects: Application to 3
D blood vessel reconstruction from a limited number of projections. Phys. Med. Biol. 2002, 47, 2599–2609.
[CrossRef] [PubMed]

24. Kudo, H.; Suzuki, T.; Rashed, E.A. Image reconstruction for sparse-view CT and interior CT-introduction to
compressed sensing and differentiated backprojection. Quant. Imaging Med. Surg. 2013, 3. [CrossRef]

25. Buades, A.; Coll, B.; Morel, J.M. On image denoising methods. Available online: http://citeseerx.ist.psu.edu/
viewdoc/download?doi=10.1.1.100.81&rep=rep1&type=pdf (accessed on 15 June 2020).

26. Sidky, E.Y.; Jørgensen, J.H.; Pan, X. Convex optimization problem prototyping for image reconstruction in
computed tomography with the Chambolle–Pock algorithm. Phys. Med. Biol. 2012, 57, 3065–3091. [CrossRef]

27. Han, Y.; Ye, J.C. Framing U-Net via Deep Convolutional Framelets: Application to Sparse-View CT.
IEEE Trans. Med. Imaging 2018, 37, 1418–1429. [CrossRef]

28. Jin, K.H.; McCann, M.T.; Froustey, E.; Unser, M. Deep Convolutional Neural Network for Inverse Problems
in Imaging. IEEE Trans. Image Process. 2017, 26, 4509–4522. [CrossRef]

29. Shi, F.; Cheng, J.; Wang, L.; Yap, P.-T.; Shen, D. Low-Rank Total Variation for Image Super-Resolution.
Med. Image Comput. Comput. Assist. Interv. 2013, 16, 155–162. [PubMed]

30. Niu, S.; Yu, G.; Ma, J.; Wang, J. Nonlocal low-rank and sparse matrix decomposition for spectral CT
reconstruction. Inverse Probl. 2018, 34. [CrossRef] [PubMed]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

168



sensors

Article

Non-Rigid Multi-Modal 3D Medical Image
Registration Based on Foveated Modality
Independent Neighborhood Descriptor

Feng Yang 1,2, Mingyue Ding 1 and Xuming Zhang 1,*

1 Department of Biomedical Engineering, School of Life Science and Technology, Ministry of Education Key
Laboratory of Molecular Biophysics, Huazhong University of Science and Technology, Wuhan 430074, China;
fyang@foxmail.com (F.Y.); myding@hust.edu.cn (M.D.)

2 School of Computer and Electronics and Information, Guangxi University, Nanning 530004, China
* Correspondence: zxmboshi@hust.edu.cn; Tel.: +86-27-877-923-66

Received: 15 August 2019; Accepted: 23 October 2019; Published: 28 October 2019

Abstract: The non-rigid multi-modal three-dimensional (3D) medical image registration is highly
challenging due to the difficulty in the construction of similarity measure and the solution of
non-rigid transformation parameters. A novel structural representation based registration method
is proposed to address these problems. Firstly, an improved modality independent neighborhood
descriptor (MIND) that is based on the foveated nonlocal self-similarity is designed for the effective
structural representations of 3D medical images to transform multi-modal image registration into
mono-modal one. The sum of absolute differences between structural representations is computed as
the similarity measure. Subsequently, the foveated MIND based spatial constraint is introduced into
the Markov random field (MRF) optimization to reduce the number of transformation parameters and
restrict the calculation of the energy function in the image region involving non-rigid deformation.
Finally, the accurate and efficient 3D medical image registration is realized by minimizing the
similarity measure based MRF energy function. Extensive experiments on 3D positron emission
tomography (PET), computed tomography (CT), T1, T2, and proton density (PD) weighted magnetic
resonance (MR) images with synthetic deformation demonstrate that the proposed method has higher
computational efficiency and registration accuracy in terms of target registration error (TRE) than the
registration methods that are based on the hybrid L-BFGS-B and cat swarm optimization (HLCSO),
the sum of squared differences on entropy images, the MIND, and the self-similarity context (SSC)
descriptor, except that it provides slightly bigger TRE than the HLCSO for CT-PET image registration.
Experiments on real MR and ultrasound images with unknown deformation have also be done to
demonstrate the practicality and superiority of the proposed method.

Keywords: medical image registration; similarity measure; non-rigid transformation; computational
efficiency; registration accuracy

1. Introduction

In recent years, the non-rigid three-dimensional (3D) multi-modal medical image registration
has attached significant attention [1–4]. This mainly stems from two aspects. Firstly, the different
3D imaging modalities are often fused to produce the precise diagnosis, since they can provide
complementary information for interpreting the anatomy, tissue, and organ. As the necessary
prerequisite for image fusion, multi-modal medical image registration is significant in relating clinically
significant information from the different images. However, the relationship of intensity values in
multi-modal 3D medical images might be highly complicated due to differences between the imaging
principles, which leads to the difficulty in the construction of the appropriate similarity measure.
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Secondly, non-rigid deformation generally cannot be ignored for the soft organs that are easy to
deform. Accordingly, the non-rigid transformation must be used as a deformation model in the
non-rigid multi-modal medical image registration. However, the non-rigid transformation often
involves numerous parameters, which will render accurate image registration difficult [5–8]. Therefore,
the non-rigid multi-modal 3D medical image registration has become a challenging task [9–12].

The grey information and spatial information of 3D images are generally considered at the same
time in order to construct a suitable similarity measure for non-rigid multi-modal 3D medical image
registration. The typical similarity measure construction method is to combine the mutual information
(MI) and spatial information [13]. Rueckert et al. [14] proposed using the second-order MI to encode
the local information by considering both intensity information and structural information of images.
However, this method needs to use a four-dimensional (4D) histogram to calculate the similarity
measure. The number of grey levels cannot be too large in order to avoid the curse of dimensionality of
high dimensional histograms. Pluim et al. [15] put forward a method that combines the normalized MI
with the gradient amplitude and direction for rigid multi-modal image registration. Loeckx et al. [16]
presented the image registration method that is based on the conditional MI. This method adopted the
3D joint histogram including the grey levels and the spatial information distribution of the reference
and float images. However, the MI for 3D images in itself is computationally complicated and its
combination with the spatial information will further lead to high computational complexity for the
above registration methods.

The structural representation methods have been presented to more effectively measure the
similarity between the different images [17–22]. Wachinger et al. [17] presented the entropy images
based structural representation method. In this method, the entropy images were produced by
calculating the histogram of image blocks, and then the sum of squared differences (SSD) on the
entropy images was used as the similarity measure for image registration. As this method tends to
produce the blurred entropy images, it cannot ensure the satisfactory registration results. Heinrich
et al. [18] proposed a modality independent neighborhood descriptor (MIND) for the non-rigid
multi-modal image registration. Based on the concept of image self-similarity that was introduced in
non-local means image denoising, the MIND first extracted the distinctive and multi- dimensional
features based on the intensity differences within a search region around each voxel in each modality.
Subsequently, the SSD between MIND representations of two images was used as the similarity metric
within a standard non-rigid registration framework. Although the MIND is robust to non-functional
intensity relations and image noise, it cannot provide the effective structural representation for the
complicated medical images with the weak, discontinuous, and complex details, because it only utilizes
the similarity of image intensities. The self-similarity context (SSC) descriptor, an improved version of
MIND, was proposed in [19]. The SSC descriptor was designed to find the context around the voxel of
interest. The point-wise distance between SSC descriptors was used as the metric for the deformable
registration on a minimum spanning tree while using dense displacement sampling (deeds) [20].
Zhu et al. [21] explored the self-similarity inspired local descriptor for structural representation based
on the low-order Zernike moments with good robustness to image noise. This method cannot work
well for ultrasound (US) images and positron emission tomography (PET) images with blurred features
due to the ignorance of high-order Zernike moments with better feature representation ability than the
low-order ones.

The solution of deformation parameters involved in the transformation model, as a high
dimensional optimization problem, is a very challenging task apart from the difficulty in the construction
of similarity measure for the non-rigid multi-modal 3D medical image registration. One approach to
solve this problem is to use the local optimization methods (e.g., the L-BFGS-B method [23]), the global
optimization methods (e.g., the evolutionary strategies [24] and the particle swarm optimization
(PSO) [25]), as well as the combined methods (e.g., the hybrid L-BFGS-B and cat swarm optimization
(HLCSO) method [26]). However, these methods cannot produce the satisfactory registration results
in the case of the high-dimensional optimization problem. Another popular method is to reduce the
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dimension of transformation parameters while using the geometric transform models that are based
on knowledge [27–30]. In these methods, it is required to have enough understanding of material
properties of organs or tissues to establish a suitable geometric transform. However, some organs
and tissues are so complicated that the existing methods cannot accurately characterize their material
properties. Meanwhile, when determining the geometry and the boundary conditions, it is necessary
to accurately segment the anatomy of medical images, which indeed is a very challenging task. Some
alternative methods can be adopted to address this challenging problem. For example, by means of
the mask image, the areas in the images that involve no non-rigid deformation can be covered up to
reduce the number of the deformation field variables that are involved in the optimization process.
However, the shape of such areas might often be irregular, thereby accurately leading to the difficulty
in determining the mask image.

We have proposed a novel registration method using an improved modality independent
neighborhood descriptor (MIND) based on the foveated nonlocal self-similarity to address these
problems in the construction of similarity measure and the solution of non-rigid transformation
parameters. The contributions of our work lie in the two aspects. For one thing, we have designed the
foveated MIND (FMIND) for the effective structural representations of 3D medical images, thereby
ensuring accurate image registration. One the other hand, the spatial constraint method based
on the FMIND is proposed and introduced into the Markov random field (MRF) optimization to
reduce the number of non-rigid transformation parameters and restrict the calculation of the energy
function in the image regions involving local non-rigid deformation, thereby ensuring efficient image
registration. Extensive experiments on multi-modal medical images demonstrate that the proposed
method is provided with higher registration accuracy, except for computed tomography-positron
emission tomography (CT-PET) images and higher computational efficiency than other evaluated
registration methods.

2. Methods

2.1. The Framework of the FMIND Based Image Registration Method

Figure 1 shows the flowchart of the proposed image registration based on the FMIND.
Firstly, the FMIND is constructed based on the foveated nonlocal self-similarity and it is applied to
the reference image IR and the float image IF to produce the corresponding structural representations
FMIND (IR) and FMIND (IF), respectively. Afterwards, the objective function, i.e., the energy function,
is established based on the free-from deformation (FFD) model and the similarity measure defined
as the sum of absolute differences (SAD) between FMIND(IR) and FMIND(IF). Finally, the FMIND
based spatial constraint is introduced to produce the mask image for the MRF discrete optimization.
During the iterative optimization, the deformation vector, which is a vector of parameters defining the
deformation field, is produced at each iteration. The final optimal deformation vector T’ will be obtained
once the optimization procedure is terminated, and it is utilized to produce the registration result.

 
 
 
 
 

 
 
 
 
 

Reference 
image 

Float 
image 

Structural 
representation 

based on FMIND 

Spatial constraint 
based on FMIND 

SAD between 
two FMINDs 

       Final 

Structural 
representation 

based on FMIND 

The energy 
function 

Mask image  

MRF optimization 

Registration 
result 

Figure 1. Flowchart of the foveated modality independent neighborhood descriptor (FMIND) based
image registration.
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2.2. The Foveated Modality Independent Neighborhood Descriptor

The FMIND is presented based on the characteristics of human visual system (HVS). In the HVS,
the distribution of cone cells is uneven. The foveation has the highest density. If the foveation is taken
as the center, the cell density will fall fast when it is extended around. The optic nerve cells have
similar characteristics. Therefore, when we watch a point in an image, this point will have the highest
sensitivity and the sensitivity will drop with the increasing distance to the point. Inspired by the
characteristics of the HVS, Alessandro Foi et al. [31] have proposed calculating the patch similarity
based on the Euclidean distance d FOV between the the foveated patches, defined as:

d FOV(I, x1, x2) = ‖I FOV
x1

− I FOV
x2
‖22 (1)

where I FOV
x1

and I FOV
x2

denote the foveated patches that were obtained by foveating the image I at the
two fixation points x1 and x2. By applying the foveation operator F to the image I, the foveated patch
I FOV
x is produced as:

I FOV
x (u) = F[I, x](u), u ∈ S (2)

where u denotes the location of any pixel in the foveated image patch S. In [31], the designed foveation
operators mainly include the isotropic and anisotropic foveation operators. As the latter has more
advantages than the former in describing the image edges and textures, it will be used as the foveation
operator. This operator is defined as:

Fρ,θ[I, x](u) =
∑
ξ∈Z2

I(ξ+ x)vρ,θ
u (ξ− u), ∀u ∈ S (3)

where vρ,θ
u denotes the blur kernel and it is mainly structured by the elliptical Gaussian probability

density function (PDF), ρ determines the elongation of the Gaussian PDF, and θ denotes the angular
offset, respectively. The blur kernel vρ,θ

u is defined as [31]:

vρ,θ
u =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
√

K(0)gρ,∠u+θ

1
2
√
π

√
K(0)
K(u)

u � 0

√
K(0)g 1

2
√
π

u = 0
(4)

where
√

K(0) = ‖vu‖1,
√

K(u) = ‖vu‖2, g 1
2
√
π

denote the elliptical Gaussian PDF with the standard

deviation of 1
2
√
π

and ∠u+θ determines the orientation of the axes of the elliptical Gaussian PDF.
Figure 2 gives an example of two anisotropic foveation operators, where S is a 7 × 7 foveated

patch, θ = 0, and the different kernel elongation parameters ρ = 2 and ρ = 6 are used, respectively.
Clearly, this radial design of these anisotropic foveation operators is consistent with HVS features,
which thereby leads to the effective structural representation of images for the FMIND.

  
(a) (b) 

Figure 2. Anisotropic foveation operators with a 7 × 7 foveated patch and θ = 0. (a) ρ = 2; and, (b) ρ = 6.
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We will propose the FMIND based on the foveated nonlocal self-similarity between different
image patches in the same image borrowing the idea of self-similarity in the non-local means denoising.
The FMIND is expressed as:

FMIND(I, x, r) =
1
n

exp
(
−d FOV(I, x, x + r)

V FOV(I, x)

)
r ∈ R (5)

where R denotes a search window centered at x, d FOV(I, x, x + r) denotes the distance between the
foveated image patches I FOV

x and I FOV
x+r ; n is a normalization constant to ensure that the maximum of

FMIND(I, x, r) is 1; V FOV(I, x) denotes the variance of the foveated image patch I FOV
x centered at x

in the image I, and it controls the attenuation degree of this function in Equation (5). The variance
V FOV(I, x) is estimated as the mean of foveated distances for all the pixels in the foveated patch S.

V FOV(I, x) =
1
|S|

∑
m∈S

d FOV(I, x, x + m) (6)

where |S| denotes the number of pixels in S.
The structural information around the pixel x in the image I will be described by one-dimensional

vector of size |R|, where |R| denotes the number of pixels in the search window R by means of the FMIND.
After obtaining the FMIND for the reference and float images, the similarity metric SADF(I(x), J(x))
between two pixels at the same position x in the images I and J can be expressed as the mean SAD
between FMIND(I, x, r) and FMIND(J, x, r) of pixels in R.

SADF(I(x), J(x)) =
1
|R|

∑
r∈R

∣∣∣FMIND(I, x, r)−FMIND(J, x, r)
∣∣∣ (7)

where R takes a six-neighborhood in this paper.

2.3. MRF Optimization Based on the Spatial Constraint

2.3.1. Discrete Optimization Based on the MRF

After obtaining the similarity measure for the two different modal images, we will use the FFD
as the transformation model and use Markov random field (MRF) optimization [32] to obtain the
transformation parameters in the FFD. The reason for choosing this discrete optimization method is
that it does not need to calculate the gradient of the energy function in the process of optimization,
which thereby facilitates producing the good registration result by avoiding falling into the local
minimum. In this method, the image registration problem will be converted into the MRF based
discrete optimization problem.

EMRF(l) =
1
|G|

∑
p∈G

⎛⎜⎜⎜⎜⎜⎜⎜⎝Vp
(
lp
)
+λ

∑
q∈N(p)

Vpq
(
lp, lq

)⎞⎟⎟⎟⎟⎟⎟⎟⎠ (8)

Vp
(
lp
)
=

∫
Ω

SADF
(
I(x), J ◦ Tlp(x)

)
dx (9)

Vpq
(
lp, lq

)
= ‖Tlp − Tlq‖1 (10)

where E denotes the general form of a first-order MRF, i.e., the energy function and λ is a constant;
G is the set of vertices and |G| denotes the number of vertices in G, where G can be regarded as the
vertex set in the FFD, because this method uses the FFD as the deformation model; N(p) and N(q)
refer to the neighborhood of vertices p and q, respectively; l is the discrete labelling while lp and lq are
the labels that are assigned to the vertices p and q, respectively; Vp

(
lp
)

denotes the data item of the
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energy function EMRF(l), while Vpq
(
lp, lq

)
represents its smooth regularization and it takes the L1-norm

to encourage the neighboring nodes p and q to keep the displacement.
Accordingly, the MRF optimization, actually, is to seek to assign a label that is associated with the

deformation to each vertex, so that the energy function in Equation (8) is minimized. In this paper,
the fast primal-dual (Fast-PD) [33] algorithm will be used for the MRF optimization to produce the
registration result. More details about the Fast-PD algorithm can be found in [33].

2.3.2. Spatial Constraint Based on the FMIND

When the above registration method is applied to three-dimensional (3D) medical images,
the number of deformation field variables will be large. If all pixels’ displacement along the x, y, and z
directions is considered, the number of dense deformation field variables will be 3·|Ix|·|Iy|·|Iz|, where |Ix|,
|Iy| and |Iz| denote the number of pixels in the x, y, and z dimensions of the image I, respectively.
For example, there will be 50,331,648 deformation field variables when |Ix| =|Iy|=|Iz| = 256. It is indeed
very time-consuming to address such a high dimensional optimization problem.

In the reference and float images, sometimes only some areas involve non-rigid deformation.
In addition, the non-rigid registration is unnecessary for some smooth areas. For these regions,
the mask can be used to indicate that they will be excluded from the registration process. In this
way, we can not only reduce the number of variables for describing the deformation field, but also
focus the calculation of the energy function in the image areas that indeed involve the local non-rigid
deformation. However, the shape of areas without non-rigid deformation is often irregular. Generally,
manual intervention or image segmentation is needed for obtaining the appropriate mask image.
However, these technologies cannot ensure that the satisfactory mask image can be produced for US
and PET images due to their low image contrast, blurriness, and edge discontinuousness.

We will put forward the spatial constraint method based on the FMIND to address the above
problem. From Equation (7), it can be seen that SADF(I(x), J(x)) contains the corresponding
relationship of the local spatial information at the pixel x in the images I and J. This information can be
used to reduce the number of variables for describing the deformation field and limit the control nodes
in the deformation field to move in the areas with the local non-rigid deformation. In the FMIND based
spatial constraint method, the vertex set G will be divided into the set Gs of static vertices and the set Gd
of dynamic vertices based on the local spatial information included in the FMIND. The vertices in Gs are
similar to those in the smooth areas and the areas that involve no deformation. Meanwhile, the vertices
in Gd are similar to those in the non-smooth areas involving the deformation. The calculation of
the energy function can be restricted in the areas involving the non-rigid deformation through the
movement of these dynamic vertices with the local non-rigid deformation. In this way, the number of
deformation field variables will decrease from 3·|Gx|·|Gy|·|Gz| to 3·|Gd,x|·|Gd,y|·|Gd,z|, where |Gd,x|, |Gd,y|,
and |Gd,z| denote the number of vertices in x, y, and z dimensions of Gd. By utilizing the FMIND based
spatial constraint, we can obtain the division of vertices, thereby generating the mask image without
manual intervention and image segmentation.

There will be two requirements that no vertices of the whole MRF model will be omitted and no
repeated division of vertices will be done to ensure the effective division of G in the FMIND based
spatial constraint method. Correspondingly, the logical relationship among G, Gs, and Gd can be
expressed as G = Gs ∪Gd and ∅ = Gs ∩ Gd, where ∅ denotes the empty set. We have designed the
following vertex partition algorithm according to the above requirements. For any vertex pi, j, k of the

set G in the MRF model, i.e., G =
{
pi, j, k|1 ≤ i ≤ |G x|, 1 ≤ j ≤ |G y|, 1 ≤ k ≤ |G z

∣∣∣}, we will check the
similarity metric SADF for each pixel x in the local image patch LP(pi, j, k) with radius RLP, which takes
pi, j, k in G as the center, as shown in Figure 3. Let con denote the number of pixels in LP(pi, j, k) whose
similarity 1-SADF(I(x), J(x)) is greater than a certain threshold δ. If the ratio of con to the patch size∣∣∣LP(pi, j, k)

∣∣∣ is greater than the static factor ε, pi, j, k will be regarded as a static vertex. In a similar
way, we can determine other static vertices to generate the final set Gs. Accordingly, Gd will be easily
computed as Gd = G − Gs.
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Figure 3. The illustration of the local image block LP(pi, j, k).

Obviously, the performance of the vertex partition algorithm depends on three key parameters
RLP, δ, and ε. Here, δ will influence the decision of whether two pixels are similar and ε is used to
adjust the probability that pi, j, k is divided into Gs. Section 3.1 discusses the choice of these parameters.
Algorithm 1 shows the detailed implementation of the proposed vertex partition algorithm.

Algorithm 1. Partition of the vertex set G

Input: FMIND(I, x, r), FMIND(J, x, r), G, δ, ε, RLP
Output: Gs, Gd
(1) Gs = ∅;
(2) for (i = 1; i ≤ |Gx|; i = i++)
(3) for (j = 1; j ≤ |Gy|; j = j++)
(4) for (k = 1; k ≤ |Gz|; k = k++)
(5) con = 0;
(6) while x ∈ LP

(
pi, j, k

)
(7) if (1-SADF(I(x), J(x))> δ)
(8) con++;
(9) end if
(10) end while
(11) if ( con∣∣∣LP(pi, j, k)

∣∣∣> ε)
(12) Gs = pi, j, k ∪Gs;
(13) end if
(14) end for
(15) end for
(16) end for
(17) Gd = G − Gs;
(18) return Gs, Gd;

3. Results

In this section, we will first discuss the selection of several key parameters in the FMIND method,
and then use the method based on the anatomical landmarks selected by doctors to compare registration
accuracy and efficiency of the proposed FMIND method with those of the entropy images based SSD
(ESSD) [17], MIND [18], SSC [19], and HLCSO [26] methods. For the appreciation of registration
performance, we have used four datasets with synthetic deformation, including simulated 3D MR
images in BrainWeb database [34], 3D CT and MR images in NA-MIC database [35], 3D CT and PET
images in NA-MIC database [36], and real 3D MR images from Retrospective Image Registration
Evaluation project [37]. Besides, we have used the real MR and US images with unknown real
deformation in the Brain Images of Tumors for Evaluation (BITE) database [38] available at [39]
to appreciate the practicality of the proposed method. Here, the implementation efficiency of the
evaluated registration methods is appreciated by their running time. For all evaluated methods,
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they are implemented on the personal computer with 2.40 GHz CPU and 4 GB RAM while using the
mixed programming of Matlab and C++.

In the case of synthetic deformation, the registration accuracy is appreciated by the target
registration error (TRE) [40], defined as:

TRE =
1
N

∑N

i=1

√
(TLx − TDx)

2 +
(
TLy−TDy

)2
+ (TLz−TDz)

2 (11)

where TL is the synthetic deformation (i.e., the ground truth generated by using a linear combination
of radial basis functions), TD is the deformation that is estimated by the registration methods, and N
denotes the number of landmarks selected manually based on doctors’ advice from the reference
images. For each pair of reference and float images, different synthetic deformations will be applied to
the float image for 25 times and we will manually select 90 (N = 90) landmarks from each 3D reference
image to compute the TRE. The mean of TREs values for registering 25 deformed images will be used
to appreciate the registration accuracy. Figure 4 gives an example of chosen landmarks in one slice of
simulated 3D PD weighted image and real 3D T1 weighted image for MR image registration, 3D CT
image for CT-MR image registration and 3D CT image for CT-PET image registration.

 

  (a)                  (b) 
 
 
 

                   (c)                                      (d) 

Figure 4. Landmarks in one slice of three-dimensional (3D) medical images. (a) simulated proton
density (PD) weighted image; (b) real T1 weighted image; (c) abdomen computed tomography (CT)
image; and, (d) whole-body CT image.

3.1. Parameter Setting

In the FMIND method, we will fix θ = 0, S to be a 5× 5 foveated patch in Equation (3) and λ = 0.01
in Equation (8). The remaining parameters include the kernel elongation parameter ρ, the image
patch radius RLP, the similarity threshold δ, and the static factor ε. We will conduct experiments on
three pairs of simulated MR images (T2-T1, PD-T2, and PD-T1) from BrainWeb database in order to
effectively determine these parameters, where the former and the latter will be used as the reference
and float images, respectively. These simulated MR images are realistic MRI data volumes that are
produced by an MRI simulator while using three sequences (T1, T2, and PD weighted) and a variety of
slice thicknesses, noise levels, and levels of intensity non-uniformity.
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3.1.1. The Kernel Elongation Parameter ρ

Figure 5 shows the TRE values of the FMIND method using different ρ values. For the purpose
of evaluating the influence of ρ on registration accuracy, we have set the significant level α = 0.05
in one-way Analysis of Variance (ANOVA) [41]. The obtained significance value P is 0.001, which
means that ρ has a significant impact on registration accuracy of the FMIND method. From Figure 5,
we can see that the TRE achieves the minimum value when ρ = 2. Thus, we have fixed ρ = 2 in the
proposed method.

Figure 5. The target registration error (TRE) with different ρ values.

3.1.2. The Image Patch Radius RLP

Figure 6 shows the TRE values and computational time of the FMIND method while using the
different RLP values. Likewise, one-way ANOVA with α = 0.05 is used to evaluate the influence of
RLP on the registration results. The obtained significance value P is 0.001 for registration accuracy
and P is 0.007 for registration efficiency. Therefore, RLP has the significant impact on both registration
accuracy and efficiency. It can be seen from Figure 6a that the TRE significantly declines when RLP
varies from 2 to 7, and it tends to be stable when RLP varies from 7 to 10. Besides, Figure 6b indicates
that the registration time gradually increases for the increasing RLP. The reason is that, for a larger RLP,
the more pixels need to be processed in the vertex partition algorithm. Therefore, we have set RLP as 7
to achieve the trade-off between registration accuracy and efficiency.

 
(a) (b) 

Figure 6. The TRE and computation time with different RLP. (a) TRE (voxels); (b) Time (minutes).

3.1.3. The Similarity Threshold δ

Figure 7 shows the effect of δ. For one-way ANOVA with α = 0.05, the obtained P values are 0.001
for both registration accuracy and efficiency, which means the significant impact of δ on the registration
performance of the FMIND method. From Figure 7a, we can see that the TRE significantly declines
when δ varies from 0.3 to 0.8. The reason is that for a larger δ in this range, fewer control vertices are
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divided into the static ones and the number of dynamic control vertices increases, thereby resulting
in a smaller TRE. Meanwhile, the TRE tends to be stable when δ varies from 0.8 to 1.0. The reason is
that, for the threshold δ in this range, the number of dynamic control vertices will increase to a certain
value, so that the variation of δ will have little effect on the TRE. Besides, Figure 7b indicates that
the registration time significantly increases with the increasing δ. It is easy to understand that, for a
larger δ, the increasing dynamic control vertices will lead to more processing time. Therefore, we set δ
as 0.8 to balance the registration accuracy and efficiency.

(a) (b) 

Figure 7. The TRE and computation time with different δ. (a) TRE (voxels); and, (b) Time (minutes).

3.1.4. The Static Factor ε

Figure 8 shows the effect of the static factor ε on registration accuracy and efficiency. As ε is
also used to divide the control vertices, it has a similar effect on registration performance to the
similarity threshold δ. According to Figure 8a,b, ε has the opposite effect on TRE and computational
time. We have chosen ε = 0.9 for the FMIND method based on the comprehensive consideration of
registration performance.

 
(a) (b) 

Figure 8. The TRE and computation time with different ε. (a) TRE (voxels); and, (b) Time (minutes).

3.2. Comparison of Registration Performance

3.2.1. Registration Results of Simulated T1, T2 and PD Images

In order to quantitatively and qualitatively compare the registration performance of the FMIND
method and other methods on 3D T1, T2 and PD weighted MR images, we will test them on three
pairs of simulated T2-T1, PD-T2, and PD-T1 images of size 256 × 256 × 32. For all evaluated methods,
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the mean and the standard deviation (std) of TRE values as well as the P values for the t-test with
the significance level α = 0.05 are computed and are shown in Table 1. In Table 1, “/” means that no
registration is implemented. It is shown that all of the P values are less than 0.002, which indicates
that there exists significant difference between the FMIND method and any other compared method
in terms of TRE. Specifically, as regards the registration of T2-T1 images, the mean and the standard
deviation of TRE values for the MIND method are 2.2 voxel and 0.5 voxel, respectively. By comparison,
the FMIND method has the lower mean (1.8 voxel) and standard deviation (0.2 voxel) of TRE values
than the MIND method. This is mainly due to the advantage of the proposed FMIND in describing the
structural information of multi-modal MR images over the MIND method.

Table 1. The TRE for all evaluated methods and the P values for the t-test between the FMIND method
and other compared methods operating on the T2-T1, PD-T2, and PD-T1 image pairs.

Methods

TRE (Voxels)

T2-T1 PD-T2 PD-T1

Mean Std P Mean Std P Mean Std P

/ 4.8 2.7 4.8 2.7 4.9 2.9
ESSD 2.7 0.8 2.8 × 10−4 2.8 0.8 4.4 × 10−4 2.9 0.9 8.2 × 10−4

MIND 2.2 0.5 6.4 × 10−4 2.3 0.6 5.2 × 10−4 2.3 0.5 3.2 × 10−4

HLCSO 2.0 0.2 1.2 × 10−3 2.1 0.3 1.7 × 10−3 2.2 0.4 2.6 × 10−4

FMIND 1.8 0.2 1.9 0.3 2.0 0.3

Figure 9 visually shows the registration results of 3D PD-T1 images for all the evaluated methods.
Here, it should be noted that the background regions in these images are removed and the same
operation will be implemented for other experiments in the rest of this paper. The comparison among
Figures 9f and 9c–e shows that the registration result of the FMIND method is more similar to the
reference image that is shown in Figure 9a than those of the ESSD, MIND, and HLCSO methods.
Especially for the tissue indicated by the red boxes in Figure 9, the FMIND can recover its deformation
better than other evaluated methods.

  
        (a)                 (b)                  (c) 

   
 

 

 

 

 

 

(d)                  (e)                  (f) 

Figure 9. The registration results of all evaluated methods operating on 3D PD-T1 images. (a) PD
image (reference image); (b) T1 image (float image); (c) ESSD; (d) MIND; (e) hybrid L-BFGS-B and cat
swarm optimization (HLCSO); and, (f) FMIND.
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Table 2 lists the implementation time of all evaluated methods on 3D T1, T2, and PD weighted
MR images. It can be observed that the FMIND method, on average, takes approximately 44 min
to produce the registration results, and it has the highest computational efficiency among all of the
methods. The reason lies in that the FMIND method can generally reduce the number of deformation
field variables by utilizing the FMIND based spatial constraint for MRF optimization.

Table 2. Computation time for all evaluated methods operating on the T2-T1, PD-T2, and PD-T1
image pairs.

Methods

Time (Minutes)

T2-T1 PD-T2 PD-T1

Mean Std Mean Std Mean Std

ESSD 53.8 7.4 52.2 9.6 55.3 8.8
MIND 62.2 11.4 61.7 11.1 63.5 13.9

HLCSO 98.4 18.8 97.2 17.4 102.6 21.5
FMIND 44.2 7.2 45.4 6.8 46.3 8.0

3.2.2. Registration Results of CT and MR Images

To appreciate registration performance of all evaluated methods operating on CT and MR images
from NA-MIC database, these methods are implemented to correct the synthetic deformation that
is applied to the float image, where the CT and MR images will be used as the reference and float
images, respectively. Here, the liver CT and MR images of size 256 × 256 × 32 are intra-operatively and
pre-operatively acquired, respectively. Due to strong differences in image contrast between CT and
MR images, their registration is difficult.

Table 3 lists the TRE and P values of t-test for the FMIND method and other methods. As you
can see, among all the compared methods, the FMIND method has the highest registration accuracy
by providing the lower TRE than other methods. Meanwhile, all the P values are less than 0.003,
which indicates the significant difference between the FMIND method and any other method in terms
of TRE.

Table 3. The TRE for all evaluated methods and the P values for the t-test between the FMIND method
and other compared methods operating on the three-dimensional CT-magnetic resonance (3D CT–MR)
image pairs.

Methods
TRE (Voxels)

Mean Std P

/ 6.7 2.9
ESSD 3.3 1.0 4.7 × 10−4

MIND 2.7 0.8 2.9 × 10−3

HLCSO 2.5 0.7 1.6 × 10−3

FMIND 2.3 0.7

Figure 10 shows the registration results of 3D CT-MR images for all the evaluated methods.
As shown in Figure 10c,d, the ESSD and MIND method cannot effectively correct the deformation that
is involved in the MR image. The FMIND method can produce a more similar registration result to the
reference image that is shown in Figure 10a than the ESSD and MIND methods. When compared with
the most competitive HLCSO method, the proposed method performs better in that it can correct the
deformation of some tissues more effectively, as indicated by the three red boxes that are shown in
Figure 10e,f.
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(a)                              (b) 

 
(c)                                (d) 

  
(e)                                (f) 

Figure 10. The registration results of all evaluated methods operating on 3D CT–MR images. (a) CT
image (reference image); (b) MR image (float image); (c) ESSD; (d) MIND; (e) HLCSO; and, (f) FMIND.

Table 4 lists the implementation time of all the evaluated methods. The comparison indicates
the advantage of the FMIND method in computational efficiency. Here, it should be noted that the
implementation time for all evaluated registration methods in Table 4 is very similar to that in Table 2,
because the used CT and MR images have the same size (256 × 256 × 32) to T1, T2, and PD images.

Table 4. Computation time for all evaluated methods operating on the 3D CT–MR image pairs.

Methods
Time (Minutes)

Mean Std

ESSD 54.6 7.6
MIND 64.4 11.8

HLCSO 101.2 19.2
FMIND 45.0 7.3

3.2.3. Registration Results of CT and PET Images

The 3D whole body CT-PET images from NA-MIC database are also used to demonstrate the
advantage of the FMIND method. Here, the CT and PET images of size 168 × 168 × 149 are the
reference image and the float image, respectively. It is difficult to realize accurate registration of CT
images and blurry PET images of low resolution.

Figure 11 shows the registration results of the 3D CT-PET images for the ESSD, MIND and
HLCSO, and FMIND methods. It can be observed that the ESSD and MIND methods cannot correct
the deformation in the regions that are marked with the red boxes in Figure 11c,d well. By comparison,
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the registration results of the HLCSO and FMIND methods are more similar to the reference image
shown in Figure 11a than the ESSD and MIND methods.

 
Figure 11. Registration results of all evaluated methods operating on the 3D CT–PET images. (a) CT
(reference image); (b) PET (float image); (c) ESSD; (d) MIND; (e) HLCSO; and, (f) FMIND.

Table 5 lists the mean and standard deviation of TRE for all evaluated methods operating on 3D
CT and PET images. The comparison of TRE values shows that the HLCSO method provides the
minimum mean (2.6 voxel) and standard deviation (0.7 voxel) of TRE among all the compared methods.
However, the mean (2.8 voxel) and standard deviation (0.9 voxel) of TRE for the FMIND method are
lower than those for the ESSD and MIND methods. The reason can be explained in this way. For the
PET image, its contrast and resolution are poor and the edge features are not obvious. Therefore,
the FMIND method is slightly inferior to the HLCSO method in the registration of 3D CT-PET images.
However, the proposed FMIND method can still provide better structural representation results than
the ESSD and MIND methods, thereby leading to its improved registration accuracy than the latter.
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Table 5. TRE for all evaluated methods operating on the 3D CT–PET image pairs.

Methods
TRE (Voxels)

Mean Std

/ 5.7 2.8
ESSD 3.6 1.6
MIND 3.1 1.2

HLCSO 2.6 0.7
FMIND 2.8 0.9

Table 6 lists the calculation time of the various methods operating on CT and PET images. It can
be seen from Table 6 that, as compared with other methods, the calculation time of the FMIND
method is significantly reduced because the spatial constraint based on the FMIND, to a certain extent,
helps to reduce the number of variables that are required by the deformation model. Especially,
when compared with the HLCSO method, although the FMIND method has slightly lower registration
accuracy, its computational efficiency is more than two times higher. Besides, as compared with the
calculation time listed in Table 2, more calculation time will be involved in the registration of CT-PET
images because their size (168 × 168 × 149) is bigger than that of T1, T2, and PD images.

Table 6. Computation time for all evaluated methods operating on the 3D CT–PET image pairs.

Methods
Time (Minutes)

Mean Std

ESSD 106.2 19.4
MIND 124.8 22.2

HLCSO 198.6 30.2
FMIND 88.2 13.2

3.2.4. Registration Results of Real MR Images

The MR images from RIRE database are chosen to verify the superiority of the FMIND method in
registering the real MR images, where the T1 and PD weighted MR images are used as the reference
and float images, respectively. These MR images were acquired while using a Siemens SP Tesla scanner,
among which the T1 and PD image volumes were obtained with an echo time of 15 ms and 20 ms,
respectively [42].

Here, we will only compare the proposed method with the MIND and SSC methods, which are
most similar to our method. Table 7 lists the TRE values of the three methods. Clearly, the SSC
method generally provides slightly smaller TRE values than the MIND methods. The two methods
are outperformed by the FMIND method in terms of registration accuracy. The comparison of TRE
values indeed demonstrates the effectiveness and advantage of the FMIND method in correcting the
deformation of real MR images.

Table 7. The TRE for the MIND, self-similarity context (SSC), and FMIND methods operating on the
real T1-PD image pairs.

Methods
TRE (Voxels)

Mean Std

/ 4.0 1.8
MIND 2.4 0.4

SSC 2.3 0.4
FMIND 2.1 0.3
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3.2.5. Registration Results of Real MR and US Images

We will use the pre-operative T1 weighted MR and intra-operative post-resection US images of
13 patients [43] from BITE database for registration performance appreciation to further demonstrate
the practicality of the FMIND method. In [43], the MR images were obtained a few days before the
surgery while the post-resection 2D US images were acquired while using Philips HDI 5000 ultrasound
machine with a P7-4 MHz phased array transducer and they were reconstructed into ultrasound
volume with a voxel size of 1 mm. The used MR data contain the tumor, which is replaced by the
resection cavity, and thus will not exist in the post-resection US images. Therefore, to register 3D MR
to 3D US images is highly challenging. For each patient, 15 landmarks in average selected in [43] are
used for TRE evaluation.

Table 8 lists the TRE values of the MIND, SSC, and FMIND methods. Clearly, the SSC method
provides smaller TRE values than the MIND method. The FMIND method also performs better
than the MIND method, in that the introduction of foveated nonlocal self-similarity ensures more
effective structural representations of MR and US images. Please note that the proposed method cannot
significantly outperform the SSC method for registration of US-MR images due to the disadvantageous
influence of speckle noise that is inherent in US images.

Table 8. The TRE for the MIND, SSC, and FMIND methods operating on the real US-MR images of
13 patients.

Methods
TRE (mm)

Mean Std

/ 5.9 3.2
MIND 3.6 1.0

SSC 3.3 0.9
FMIND 3.2 0.9

4. Conclusions

In this paper, we have proposed a novel non-rigid multi-modal 3D medical image registration
method that is based on the foveated independent neighborhood descriptor. The advantages of the
proposed method lie in two aspects. Firstly, the proposed FMIND can effectively capture the structural
feature information of 3D medical images, thereby providing better structural representations than
the existing approaches. Secondly, the FMIND based spatial constraint method can help to reduce
the number of non-rigid transformation parameters because the FMIND contains the corresponding
relationship of the local spatial information at the same pixel in the reference and float images, thereby
providing an effective means for solving the high-dimensional optimization problem that is involved
in the medical image registration. Experiments on 3D ultrasound, CT, PET, T1, T2, and PD weighted
MR images demonstrate that our method can provide higher computational efficiency and higher
registration accuracy as compared with the HLCSO, ESSD, MIND and SSC methods, except that its
TRE is slightly bigger than that of the HLCSO for CT-PET image registration. Future work will be
focused on the acceleration of the method without compromising registration accuracy by using sparse
data sampling and parallel data processing strategies to facilitate its clinical applications.
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Abstract: Deformable image registration is still a challenge when the considered images have strong
variations in appearance and large initial misalignment. A huge performance gap currently remains
for fast-moving regions in videos or strong deformations of natural objects. We present a new
semantically guided and two-step deep deformation network that is particularly well suited for
the estimation of large deformations. We combine a U-Net architecture that is weakly supervised
with segmentation information to extract semantically meaningful features with multiple stages of
nonrigid spatial transformer networks parameterized with low-dimensional B-spline deformations.
Combining alignment loss and semantic loss functions together with a regularization penalty to
obtain smooth and plausible deformations, we achieve superior results in terms of alignment quality
compared to previous approaches that have only considered a label-driven alignment loss. Our
network model advances the state of the art for inter-subject face part alignment and motion tracking
in medical cardiac magnetic resonance imaging (MRI) sequences in comparison to the FlowNet and
Label-Reg, two recent deep-learning registration frameworks. The models are compact, very fast in
inference, and demonstrate clear potential for a variety of challenging tracking and/or alignment
tasks in computer vision and medical image analysis.

Keywords: image registration; large deformation; weakly supervised

1. Introduction

Estimation of motion and deformation between images continues to play an important role for
multiple vision tasks. While the computation of optical flow for 3D scene motion of smaller magnitude
can be performed very effectively and accurately using a range of variational (coarse-to-fine) as well
as deep-learning models (e.g., FlowNet [1]), larger deformations still pose a significant challenge.
We hypothesize that the large performance gap is due to two reasons. First, current approaches have
a limited capture range, in particular for low-textured regions and remain prone to local optima
despite extensive multi-scale processing. Second, even supervised approaches that are trained on
huge datasets with ground truth flow fields fail to learn sufficient scene understanding and tend to
rely on low-level visual clues that become ambiguous for large deformations. Furthermore, learning
primarily from synthetically generated ground truth flow fields limits the practical application of
deep-learning optical flow models, because adaptation to a new unseen domain is usually not possible
and supervised dense correspondences hard to define for real world images.

Weakly supervised approaches [2,3], in contrast, only require semantic segmentation labels to
define a loss directly based on the warped segmentation masks for the training of a convolutional
neural network (CNN)-based registration model. Yet, these previous works have not addressed large
deformation problems and the learned features may again be prone to ambiguous matches (even
in combination with smoothness regularization). We therefore propose to use semantic guidance
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information directly into the feature learning of a two-step deep spatial transformer network for face
alignment. Our model comprises a U-Net part that extracts semantic object information for both
considered images. This information is fed into flow predictors that rely on a B-spline parameterization
for smooth deformable transformations. By employing more than one spatial transformer module
within a multi-iteration warping framework [1], we can also avoid the use of memory-intensive cost
volume approaches [4] that are hard to extend to high-resolution images or 3D problems.

1.1. Contributions

Our work is most closely related to the work of Qin et al. [2] that also proposed to learn
segmentation and registration jointly, but was limited to a single (recurrent) transformation network
and uses shared weights for both segmentation and registration networks. In contrast to the
FlowNet [1,5] or the SVF-Net [6] no (pseudo) ground truth deformation fields are required for training
our network, but a loss based on the alignment of labels is used instead. Hu et al. [3] also considered
this weakly supervised learning based on segmentation information, but did not include this guidance
in the feature extraction U-Net, which is crucial for large deformations as our experiments show.
(Example code available at: https://github.com/multimodallearning/semantically-guided).

1.2. Related Works

Dataset with ground truth deformation fields are difficult to find. Most supervised methods
use automatically generated ground truth deformation fields or estimate parameters for deformable
transformations [6–8] to train the network. They optimize the mean residual distance between ground
truth and estimated deformation fields. In the method of Krebs et al. [7], U-Net-like architecture is used
to estimate a dense deformation field from the concatenated fixed and moving images, while Sokooti
et al. [8] gave image patches as inputs to a Siamese network to estimate a patchwise 3D deformation
field. The obvious drawbacks of these methods are that the estimated deformation fields can only be as
good as the automatically generated deformation fields and that the trustworthiness of the generated
ground truth field cannot be guaranteed.

Some methods deal with this problem by training the network indirectly using available
annotation data, such as segmentation or in an unsupervised manner (only based on a predefined
similarity metric) using a spatial transformer network to warp the segmentation of the input
image [3,9–12]. De Vos et al. [9] compare the difference between warped moving image and fixed
image directly as loss, where a spatial transformer was employed for image warping. In addition to
the image intensity difference, the Label-Reg approach of [3] warps the segmentation using spatial
transformer and minimizes the difference between the warped moving and fixed segmentation. Various
segmentations or labels are given as input to the network and the soft probabilistic Dice is computed
as loss at different image scales. In VoxelMorph [12], in addition to unsupervised losses segmentation
can also be used as an auxiliary information to improve the accuracy. The use of segmentation for the
estimation of the deformation field can be beneficial especially to counter ambiguous correspondences
of object parts with locally similar appearance.

Within computer vision, there are several methods which jointly estimate semantic segmentation
and optical flow for videos [13–16]. Recent works integrate learning into optical flow frameworks to
improve the flow estimation using semantic segmentation. Sevilla et al. [13] use localized layers to
deal with the movement of different objects in videos. Cheng et al. [15] combine two existing network
architectures with a small modification into a network with two branches. Feature maps generated
by each branch (one for segmentation, the other for optical flow) are propagated to the other branch
to fuse the information for a final output. Hur et al. [14] employ superpixels to connect optical flow
and semantic segmentation. Tsai et al. [16] use an iterative scheme to jointly optimize optical flow and
segmentation to obtain video segmentation with improved object boundaries. In the medical image
domain, Qin et al. [2] have adopted the joint estimation of segmentation and motion for cardiac MR
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image sequences. For both segmentation and motion estimation, the same network, i.e., with shared
weights, is used for feature extraction.

2. Materials and Methods

A general overview of our proposed method is shown in Figure 1. Our deep network architecture
consists of three parts. The first part aims to extract semantically meaningful information using a U-Net
structured network [17] and is supervised using a soft constraint on pixel-wise class probabilities using
multi-label segmentation. The estimation of the deformation field is carried out in two consecutive
convolutional networks with nonlinear spatial transformer modules. Similar to the method of Hu
et al. [3], the transformation is only weakly supervised based on the alignment of the warped
moving segmentation in comparison with the fixed segmentation. To reduce the number of predicted
parameters and ensure a spatially smooth transformation, we use a coarse cubic B-spline transformation
model [18] with an additional regularization term.

Figure 1. Overview of our framework. From input images I f , Im the semantic features f f , fm are
extracted by U-Net and passed on to the registration networks (RegNet) after the concatenation.
Deformation field V1, V2 are then estimated by the first and the second RegNet, respectively. As input
of the second RegNet, the semantic features of the moving image are transformed using the output of
the first RegNet. Finally, two deformation fields are combined to obtain the final deformation field V.

2.1. Semantic Feature Extraction

To cope with large deformation, we strongly believe that semantic scene information is of great
importance. While previous methods [3,6] have implicitly used segmentation information to derive
a loss with respect to the estimated transform, we make additional explicit use of semantic clues
within the feature extraction for each image individually. Figure 2 shows the U-Net architecture of
the feature extraction part of our method, which contains 11 convolution filters with 3 × 3 kernels,
two skip connections and roughly 200k trainable parameters. Given a greyscale image I ∈ RH×W ,
the network produces a SoftMax prediction f ∈ [0, 1]N for each pixel and each label l ∈ 1, . . . L. The
semantic loss is computed using weighted cross-entropy:

Lsemantic = −
N

∑
j

wf̂(xj) log f(xj), (1)

where f̂ is the ground truth segmentation with N sample points and xj is the j-th sample point. The
label weights vector w ∈ RL is determined by computing the square root of the inverse class frequency
for each label. For our task of registering two input images I f and Im, the network weights are shared.
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Figure 2. U-Net architecture to extract semantic image features for the subsequent spatial transformer
registration network.

2.2. Registration Network

Estimation of the deformation field is performed in two steps, given the network outputs f f and
fm of the feature extraction network. The extracted features contain semantic information of the input
images, which is the class probability of each pixel. These are passed on to the registration network
after concatenation, which is trained to learn a low-parametric deformation field representation Ṽ

in a smaller dimension. Deformation field V ∈ R2×H×W in the original image size can be retrieved
by upsampling using a cubic B-spline function. The evaluation of a dense displacement field using
B-splines (also called free form deformations [18]) can be efficiently calculated using three consecutive
average pooling layers without stride, following the theory of recursive cardinal splines.

In our two-step setting, we obtain two different deformation fields V1 and V2 from the first
and second registration network, respectively. Both networks have the same architecture; however,
the first network is trained with the immediate output of the feature extraction network f f and fm,
while the second network is trained with the warped moving features V1 ◦ fm instead of fm. The final
deformation field V is generated by combining the two fields. In this paper, we combine the fields in
two different ways; addition and transformation.

Finally, with the resulting dense displacement field V, the ground truth segmentation of the
moving image Sm is warped and the deformation loss is computed as follows:

Lde f orm =
1
L

L

∑
l=1

wl | S f (l) − T (V, Sm(l)) |, (2)

where wl denote the label weights and T is the spatial transformer for the B-spline transformation.
An additional loss term Lregular for regularization loss is computed for the estimated deformation field,
which penalizes deviations between the final estimation of deformation field V and a locally smoothed
version of the same displacements field Vsmooth:

Lregular = ||V− Vsmooth||2 . (3)

Finally, overall loss for semantically guided deformation estimation is computed as follows:

L = λs Lsemantic + Lde f orm + λr Lregular , (4)

where λs and λr are the weight parameters.

190



Sensors 2020, 20, 1392

2.3. Experiments

We have performed ablation studies for our framework and potential variants using the Helen
dataset [19]. Our method is also tested on a publicly available medical cardiac dataset (ACDC [20]).
The Helen dataset consists of 2330 face RGB images in different image sizes as well as ten segmentation
labels for face, eyes, eyebrows, nose, mouth and hair provided by Smith et al. [21]. The ACDC dataset
consists of 100 images of 4D MRI for training, for which three segmentation labels of right and left
ventricle and myocardium are given.

2.3.1. Data Preprocessing

For the face dataset, we cropped the images to have the same image size of 320 × 260 using an
enlarged face bounding box and converted them into the greyscale images. For training, 2000 images
were used as in the work of Le et al. [19] and for the test, the remaining 330 images are used. For our
experiment only 7 labels are used, which excludes the hair label, due to their obscure appearance and
the mouth structures (upper lip, lower lip and inner mouth) are combined as one single mouth label,
since the inner mouth is not given in many samples.

The medical cardiac MRI dataset consists of 100 training image pairs (end-diastolic and
end-systolic) with the ground truth segmentation, which we divide into two subsets with 70 and 30
image pairs for training and testing respectively. The original images have a pixel spacing of 1.56 mm
for in-plain slice and 5–10 mm of slice thickness. We resampled and cropped all images to have the
same voxel dimension 128 × 128 × 64 with the slice thickness of ≈1.56 mm.

2.3.2. Implementation Details

The U-Net architecture used to extract semantic features is outlined in Section 2.1 and visualized
in Figure 2. To account for small structures in the images, a weighted cross-entropy loss was used.
Eleven 3 × 3 convolutional layers and two skip connections with a relatively small total number of
200’000 network parameters were used to avoid overfitting. Downsampling of the input is done using
a stride size of 2 in three convolutional layers and two upsampling layers are used to obtain output.
The output has half the input size. The network receives an image as input and returns SoftMax
probabilities for each structure as a channel.

For the registration part, a convolutional network was implemented as shown in Figure 3.
As described in Section 2.2, the same architecture is used twice to build a two-step framework with
substantially more channels to accommodate the challenging matching problem and optimize both
spatial transformations simultaneously during training. The output of registration network has a
smaller parametrization than the image. Therefore, we upsample the control-point displacement and
apply three cardinal B-spline smoothing steps before warping using average pooling layers. The kernel
size of the average pooling layers and thus the scale of the B-spline transformation for the output
is chosen to be 19 for the first network part (to capture large and coarse deformations) and 11 for
output of the second network (for a refinement of small structure alignment). For the medical dataset,
the scales of 5 and 3 are used, because the motion was smaller on average for this dataset. The scale
was chosen to be approximately 5% and 3% respectively (for first and second registration network
output) of the largest image dimension for the B-spline transformation, based on empirical tests. The
smoothing kernel size was also set relative to image size and object size (in particular the following
values were chosen: 5 and 3 for the face and the medical dataset respectively).

Throughout our experiment, we use Adam optimizer with the learning rate of 0.001 and the
momentum of 0.97. The weight of the regularization loss λr was chosen to be 0.001 and the weight of
semantic loss λs 1.0, which were determined empirically. For the regularization, the estimated dense
field is smoothed using two average pooling layers with the kernel size of 3 for the medical dataset
and 5 for the face dataset, also chosen empirically. The training batch size for the face dataset was 20
and for the medical dataset 5. The training was performed for 300 epochs for both datasets.
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Figure 3. Architecture of our registration network, which estimates displacements of a nonlinear
B-spline grid for spatial transformations.

2.3.3. Evaluation Metric

Given a deformation field for a pair of test images, we use the mean of the Dice coefficient
(equivalent to F1 score) across individual face parts as well as the contour distance of each structure to
evaluate the alignment (or registration) quality. Dice score for a label is computed as:

Dice =
2 ∑i |aibi|

∑i |ai|+ ∑i |bi|
(5)

where ai, bi are the labels in pixel i of reference image and target image, respectively. Contour distance
of each structure is computed as:

Dcontour =
∑sa∈S(A) d(sa, S(B)) + ∑sb∈S(B) d(sb, S(A))

|S(A)|+ |S(B)| (6)

where S(A) and S(B) are the total contour pixels of the reference and target images, respectively. The
mean Dice values are computed between the ground truth segmentation of fixed images and warped
ground truth segmentation of moving images. Please note that the segmentation labels for guidance
are only available for training images and new test pairs are registered without any manual labels. The
labels are only used to evaluate the registration accuracy. In addition to the alignment accuracy, we
have evaluated the quality of the estimated transformations, which is crucial for subsequent vision
applications such as style transfer. We calculate the Jacobian determinant (also Jacobian) to provide a
quantitative evaluation on the topology of the deformation field.

For each pixel (x, y), D(x, y) is the estimated displacement vector.

Jacobian = det

⎡⎣I +

⎛⎝ δDx(x,y)
δx

δDx(x,y)
δy

δDy(x,y)
δx

δDy(x,y)
δy

⎞⎠⎤⎦ (7)

where I is the identity matrix, Dx(x, y) and Dy(x, y) are the x and y component of D(x, y) respectively.
A Jacobian in each pixel provides the characteristic of the deformation, i.e., a Jacobian of 1 for no
change, >1 indicate expansion, 0–1 shrinkage and a Jacobian ≤0 indicates singularity. We report
standard deviation of the Jacobian, where smaller values indicate smoother transforms. The number
of negative Jacobian determinants indicates the number of singularity points, i.e., with smaller mean
number of pixels with a negative Jacobian, the deformation is more plausible.

In the following, different settings are compared to analyze the effect and importance of
each setting.
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3. Results and Discussion

3.1. Ablation Study

In this section, different parts of our framework are evaluated and compared to determine the
importance of each part. Our experiments compare minor modifications to the training scheme of our
proposed method: with or without guidance, with or without shared weights in the feature extraction,
and diffeomorphic transformation models.

3.1.1. Single vs. Two-Step Registration

In many cases, the estimation of deformation field is performed in a single step. We believe
that dividing the registration process into smaller steps by using two networks with the same total
number of parameters is more beneficial than estimating deformation in a single step. In the two-step
registration, one of the input features is transformed with the output deformation field from the
first registration network before being forwarded to the second one. We compare the performance
of the two-step network with the performance of the single network, where both networks have a
total of approximately 2.3 million network parameters. As shown in Figure 4, the two-step network
(pre-trained unet, two-step) outperforms the single network (pre-trained unet, single).

Figure 4. Sorted Dice scores (averaged across face structures) for all test images for various network
configurations (lower line is better). Details in Section 3.1.

3.1.2. Regularization

As described in Equation (3), our regularization term penalizes the difference between
non-smoothed and smoothed output fields and is scaled by λr. Without the regularization loss
the networks could not learn to estimate any plausible deformation field. We use average pooling
layers for computation of smoothed deformation fields, where the kernel sizes of the pooling layers are
chosen to reduce the standard deviation of the Jacobian of deformation fields. Using a too large kernel
size might deteriorate the accuracy of the deformation fields with respect to smaller structures. Dice
values for each structure are shown in Figure 5 for the empirically chosen kernel size of 5. Although
we found this size to be usually most appropriate, for small structures such as eyebrows and eyes
approximately 10% are not registered at all. However, this might also have been influenced by the
occlusion due to hair, especially when the forehead is covered.
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Figure 5. Sorted Dice scores for different face structures. The alignment of eyes and eyebrows is
challenging due to occlusions caused by hair in many images.

3.1.3. Semantically Guided Deformation Estimation

Instead of using a pre-trained segmentation network to start the deformation estimation, we
jointly train the semantic feature extraction U-Net with the two-step networks using semantic loss (see
Figure 4: end-to-end, guided and Table 1: ours) and compare with the same configuration without
semantic loss using only the deformation and regularization loss (see Figure 4: end-to-end, not-guided
and Table 1: ours (without guidance)). This has the advantage that only a soft constraint is used for
the semantic guidance loss and the deformation network can use clues based on more generic image
features (e.g., edges). However, this only led to a small quantitative improvement of the alignment in
terms of Dice score (0.5%), the warped images appear to be more realistically transformed. Example
results of our method is shown in Figure 6 and the training curves are shown in Figure 7.

Figure 6. Example results of our approach. (Top) fixed image with the ground truth fixed labels,
(middle) target image with warped ground truth fixed labels, (bottom) warped fixed images.
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Figure 7. Training loss and accuracy curves of the guided network (two-step, end-to-end). The training
loss and accuracy graph of other variations of our experiment show similar curves and therefore
left out.

3.1.4. Diffeomorphic Transformation

The final deformation fields from our method are smooth and the percentage of pixels with
negative Jacobian is relatively small (≈0.1%), albeit the fields are not diffeomorphic. We have compared
two cases where diffeomorphic deformation fields are computed. First, we estimate stationary velocity
fields instead of deformation fields and compute the final field using scaling and squaring to obtain
diffeomorphic transformation (see Table 1: ours (diffeomorphic)). Second, we apply a poly-affine
transformation as post-processing step to reduce the singularities in the resulting field (see Table 1:
ours (poly-affine)). The result shows that with the decreased singularity in the resulting field, the
accuracy of the transformation is also reduced. The singularity present in the final fields could be
necessary, e.g., to compensate for occlusion in the images.

Table 1. Dice scores, contour distances in pixel and the standard deviation of Jacobian determinant of
estimated deformation fields using different methods (for the Helen dataset). The standard deviation
of Jacobian determinants of deformation fields show the smoothness of the deformation fields, where
small values indicate more plausible, regular results. The mean of Jacobian negatives is the number
of singular points in the estimated field divided by the total number of pixels. For B-Spline FlowNet,
ours (without guidance) and ours (shared RegNet weights), we have implemented our own version of
the method from the each reference (details in Section 3.2). Explicit shape regression (ESR) requires in
addition corresponding manual landmarks for training. The experiment using pre-trained FlowNet
was performed without fine-tuning and using downsampled images, which we first affine transformed
based on the face landmarks. Approximated inference time is also given in seconds per image.

Method Dice (%)
Contour Jacobian Jacobian Inference

Distance (px) Std. Negatives Time (s/img)

no registration 23.0 15.55 - - -
ESR ([22]) + CPD ([23]) 65.6 1.96 0.154 - -
B-Spline FlowNet 49.4 5.96 0.579 0.03124 ≈0.007
FlowNet w/ smaller images ([1]) 30.6 12.83 - - -
ours (without guidance, ∼[3]) 55.5 5.41 0.257 0.00062 ≈0.007
ours (shared RegNet weights, ∼[2]) 60.4 5.02 0.269 0.00061 ≈0.007
ours (diffeomorphic) 52.0 5.66 0.240 0.00062 ≈0.007
ours (poly-affine) 65.8 3.95 0.281 0.00093 ≈0.024
ours 66.0 4.01 0.285 0.00106 ≈0.007
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3.2. Comparison with Other Methods

The registration results with different quantitative evaluation measures are shown in Table 1.
As long as it was possible, we have evaluated the methods using Dice score, contour distance, standard
deviation of Jacobian and the mean number of pixels with negative Jacobian.

We compare our method with various methods; however for this experiment we have
implemented our own version of the networks, where we use same loss function as in the original
methods except for FlowNet. We use the original FlowNet version and used the pre-trained model.
Solely for this case, we have downsampled the input images and performed an affine transformation
beforehand (which constitutes an easier registration task). For the reproduction of Qin et al.’s
method [2], we used shared weights for registration networks, which are however, not shared with the
segmentation network. The reason for this was to compare the effect of using a two-step registration
network against recursive training of registration networks.

A new variant that combines the correlation layer of the FlowNet with our proposed B-spline
parameterization was implemented. This B-Spline FlowNet (Table 1: B-Spline FlowNet) yields
significant improvements compared to the original FlowNet (Table 1: FlowNet w/ smaller images)
but less accurate alignment (more than 10% points gap) than our proposed method. This clearly
demonstrates that large deformations are very hard to estimate without meaningful semantic guidance
during the training process.

We also compare our networks that are learned with segmentation information with strongly
supervised landmark models. As an example approach of this category, we used explicit face
regression of Cao et al. [22] to predict landmarks for all test images. Subsequently, we calculated
a dense warp field using the coherent point drift algorithm [23] (Table 1: ESR + CPD). Please note
that corresponding landmarks are much harder to annotate than segmentation labels and in many
applications, in particular 3D medical images, no meaningful points can be selected at all. This means
that landmark-model-based registration is somewhat out of competition and could be seen as an
upper bound to employing supervision with segmentations only. Nevertheless, our approach achieves
comparably high Dice overlap scores to the method of Cao et al. [22] with only slightly more complex
transformations (reflected by higher Jacobi determinants).

3.3. Medical Cardiac Image Registration

We evaluate our semantically guided registration network for the preprocessed MRI images from
the ACDC challenge [20]. The difficulty here lies in the large motion and strong imaging artefacts.
In addition, the substantial differences in appearance and contrast across subjects make learning a
model that generalizes well for a population difficult. Therefore, many previous approaches have
employed unsupervised learning strategies [24,25] or classical optimization-based methods [26], which
can rely on comparable intensity levels within one patient. We compare the results of these three
methods (Dice scores of compared methods are reported by Krebs et al. [25]) with our semantically
guided framework. As shown in Table 2, our method outperforms all these state-of-the-art methods
for the alignment of all structure. The resulting deformations are also plausible with a standard
deviation of Jacobian determinant of 0.3. Example results of intra-patient image registration are shown
in Figure 8.

Table 2. Mean Dice scores (%) of different methods for medical cardiac dataset averaged across 30 test
subjects by labelled structures (R.V.: right ventricle, L.V.: left ventricle).

Unregistered LCC-Demons [26] Voxel-Morph [24] Krebs et al. [25] Ours

R.V. 65.1 70.6 68.1 68.4 77.4
L.V. 66.0 77.6 74.3 75.6 82.5
Myocard 52.5 73.0 69.7 70.4 73.4

Mean 61.2 73.7 70.7 71.5 77.8
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Figure 8. Example results (example slices) of our approach for intra-patient registration. (Top)
end-systolic slices with the corresponding ground truth labels, (middle) end-diastolic slices with
warped ground truth labels of end-systolic slices, (bottom) warped end-systolic slices.

4. Conclusions

We have presented a new semantically guided and two-stage deep deformation network that
can be trained end-to-end and excels at registering image pairs with large initial misalignments. Our
extensive experimental validation shows that employing semantic labels available only during training
for both an alignment loss and a soft constraint on correct segmentation prediction yields superior
results compared to previous approaches that have only considered the former one. Moreover, the
use of two-stage networks improves the accuracy compared to a single network or two networks
with shared weights. This guidance can also be used beneficially in a series of multiple spatial
transformers to improve the alignment of particularly challenging image pairs. Our results on both the
Helen face dataset and the medical cardiac ACDC data improve upon the state of the art including
FlowNet [1] and Label-Reg [3]—two very recent deep-learning registration frameworks—as well
as several unsupervised approaches. Our resulting models are compact and very fast in inference
(≈0.009 s per image pair) and can be employed for a variety of challenging tracking and/or alignment
tasks in computer vision and medical image analysis.
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Abstract: Compressive sensing (CS) spectroscopy is well known for developing a compact
spectrometer which consists of two parts: compressively measuring an input spectrum and recovering
the spectrum using reconstruction techniques. Our goal here is to propose a novel residual
convolutional neural network (ResCNN) for reconstructing the spectrum from the compressed
measurements. The proposed ResCNN comprises learnable layers and a residual connection between
the input and the output of these learnable layers. The ResCNN is trained using both synthetic and
measured spectral datasets. The results demonstrate that ResCNN shows better spectral recovery
performance in terms of average root mean squared errors (RMSEs) and peak signal to noise ratios
(PSNRs) than existing approaches such as the sparse recovery methods and the spectral recovery using
CNN. Unlike sparse recovery methods, ResCNN does not require a priori knowledge of a sparsifying
basis nor prior information on the spectral features of the dataset. Moreover, ResCNN produces
stable reconstructions under noisy conditions. Finally, ResCNN is converged faster than CNN.

Keywords: spectroscopy; compressed sensing; deep learning; inverse problems; sparse recovery;
dictionary learning

1. Introduction

There has been considerable interest in producing compact spectrometers having a high spectral
resolution, wide working range, and short measuring time. Such a spectrometer can be used in a broad
range of fields such as remote sensing [1], forensics [2], and medical applications [3]. Spectrometers
that exploit advanced signal-processing methods are promising candidates. The compressive sensing
(CS) [4,5] framework makes it possible for a spectrometer to improve its spectral resolution while
retaining its compact size. CS spectroscopy comprises two parts: Capturing a spectrum with a
small number of compressed measurements and reconstructing the spectrum from the compressed
measurements using reconstruction techniques.

To date, for effective signal recovery in CS spectroscopy, three requirements should be satisfied.
First, the spectrum should be a sparse signal or capable of sparse representation on a certain
basis. Second, the sensing patterns of optical structures should be designed to have a small mutual
coherence [6]. Third, appropriate reconstruction algorithms are required. Note that several sparsifying
bases have been used in CS spectroscopy such as a family of orthogonal Daubechies wavelets [7],
a Gaussian line shape matrix [8,9], and a learned dictionary [10]. Furthermore, numerous optical
structures have been proposed to attain the necessary small mutual coherence for sensing patterns
such as thin-film filters [11,12], a liquid crystal phase retarder [13], Fabry–Perot filters [7,14], and
photonic crystal slabs [15,16]. As algorithms for reconstructing the original signal, two types of
basic reconstruction techniques have been developed: greedy iterative algorithms [17,18] and convex
relaxation [19,20]. In CS spectroscopy, the reconstruction algorithms have been used with a sparsity
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constraint. Additionally, a non-negativity constraint is used in Reference [16,21]. Combining these
three considerations, CS spectrometers have shown stable performance for light-emitting diodes (LEDs)
and monochromatic lights.

Since not all signals can be represented as sparse on a fixed basis, prior information on structural
features of the spectral dataset is therefore required to generate a best-fit sparsifying basis. Furthermore,
a high computational cost is required for reconstruction techniques. Recently, deep learning [22] has
been emerging as a promising alternative framework for reconstructing the original signal from the
compressed measurements.

Mousavi et al. [23] was the first study on image recovery from structured measurements using
deep learning. Moreover, a deep-learning framework for inverse problems has been applied in
biomedical imaging for imaging through scattering media [24], magnetic resonance imaging [25,26],
and X-ray computed tomography [27]. Kim et al. [28] reported the first attempt to use deep learning in
CS spectroscopy. They trained a convolutional neural network (CNN) to output the reconstructed
signal from the network. From here on the network reported by Kim et al. will be referred to as CNN.

Unlike CNN [28] in which learnable layers were simply stacked and trained to directly reconstruct
the original spectrum, we make a residual connection [29] between the input and output of CNN and
train the network to reconstruct the original spectrum by referring the input of the network. As a
result, the network learns residuals between the input of the network and the original spectrum. It has
been reported that it is easier to train a network when using residual connections than to train a plain
network that was simply stacked with learnable layers [25,29]. Lee et al. [25] analyzed the topological
structure of magnetic resonance (MR) images and the residuals of MR images. They showed that
the residuals possessed a simpler topological structure, thus making learning residuals easier than
learning the original MR images. In addition, He et al. [29] demonstrated with empirical results that
the residual networks are easy to optimize and they achieved improvements in image-recognition tasks.
From these works, we gain insights such that adding residual connections to CNN would improve the
spectral reconstruction performance in CS spectroscopy.

In this paper, we aim to propose a novel residual convolutional neural network (ResCNN) for
recovering an input spectrum from the compressed sensing measurements in CS spectroscopy. The
novelty lies in the proposed ResCNN structure, with a moderate depth of learnable layers and a single
residual connection, which provides the desired spectral reconstruction performance. The desired
performance here means that the proposed ResCNN offers a performance which is better than that of
CNNs as well as that of CS reconstruction with its sparsifying base known. In CS reconstruction, the
prior knowledge of a fixed sparsifying basis is useful and offers good sparse representation results.
However, in general it is a difficult problem to identify a sparsifying basis for various kinds of spectra
and apply the identified basis to have the recovery performance improved. In this regard, it is an
important advance to find a simple ResCNN which offers good enough performance. It is also worth
to note that the proposed ResCNN is tested with the array type CS spectroscopy, discussed in Section 2,
which we have designed with an array of multilayer thin-film filters.

The previous works on CS spectroscopy [7,11,13,14,16] have shown decent reconstruction
performance but on limited simple sources such as LEDs and monochromatic lights. Using ResCNNs,
we are now able to reconstruct more complex spectra, such as spectra with multiplicity of peaks mixed
with a gradual rise-and-fall.

The remainder of this paper is organized as follows. In Section 2, we model the optical structure
which is used for CS spectroscopy. In Section 3, we describe the system of CS spectroscopy and the
proposed ResCNN. In Section 4, simulated experiments are described. Section 5 presents the results of
experiments. In Section 6, we discuss the results. Finally, we conclude this paper in Section 7.

2. Optical Structure

Numerous optical structures have been proposed for CS spectroscopy. It has been reported that
CS spectrometers, which have various spectral features in the transmission spectrum, show high
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spectral-resolving performance [16]. In this work, we used thin-film filters to model CS spectrometers.
Thin-film filters demonstrate a variety of spectral features depending on the materials used, the number
of layers, and the thicknesses of the layers. Once the structure of thin-film is determined, a transmission
value at a given wavelength λ is defined as follows [30]:

T(λ) = 1− 1
2

(∣∣∣ρTE(λ)
∣∣∣2 + ∣∣∣ρTM(λ)

∣∣∣2), (1)

where ρTE(λ) and ρTM(λ) are amplitude reflection coefficients. The coefficients represent the fraction
of the power reflected by a multilayer thin-film in the transverse electric (TE) and transverse magnetic
(TM) modes of an incident light, respectively. We summarized recursive processes for calculating
amplitude reflection coefficients in Algorithm 1 [11,12,31].

Algorithm 1: Recursive processes for amplitude reflection coefficients.

Input: λ

Structure parameters: θ1,n = {n1, n2, · · · , nl},d = {d2, d3, · · · , dl}.
Step 1: Calculate θk,βk, and Nk using structure parameters.

θk = sin−
( nk−1

nk
sinθk−1

)
, for k = 2, 3, ..., l.

βk = 2π cos(θk)nkdk/λ, for k = 2, 3, ..., l.

Nk =

⎧⎪⎪⎨⎪⎪⎩nk/cosθk f or TE

nk cosθk f or TM
, for k = 2, 3, ..., l.

Step 2: Obtain η2 by setting ηl = Nl.
For k = l-1 to 2
ηk = Nk

ηk+1 cos βk+ jNk sin βk
Nk cos βk+ jηk+1 sin βk

.

Step 3: Compute ρ = (N1 − η2)/(N1 + η2).

Output: ρ

Here, θk is the angle of an incident light passing from kth to k+1th layer. The refractive index
of kth layer is denoted as nk. dk denotes the thickness of the kth layer. Given a wavelength vector
λ = (λ1 λ2 . . . λN) ∈ R1×N in the range of interest, i.e., λmax − λmin. Let Δλ = λmax−λmax

N . Then,
evaluating the function at the integer multiple of Δλ, i.e., T(λ = λmin + nΔλ) for n = 0, 1, · · · , N − 1,
we obtain the vector of transmission spectrum Tm ∈ R1×N for the wavelength range. Then, the sensing
pattern matrix of optical structures T ∈ RM×N is obtained by repeating the calculation of Tm for
m = 1, 2, · · · , M.

We have used SiNx and SiO2 for high- and low-refractive index materials, respectively. We
numerically generated thin-film filters by alternately stacking high- and low- refractive index materials,
changing the number of layers, and varying the thickness of each layer. The number of layers in each
filter is in the interval of (19, 24), and the thickness (nm) of each layer is in the interval of (50, 300).
Initially, we randomly generated reference filters and compute the mutual coherence among the filters.
Then, new filters were generated by changing thicknesses of the layers and the mutual coherence of the
filters is compared to the mutual coherence of reference filters. Filters with a smaller mutual coherence
then became the new reference filters. This process is repeated until reasonable reference filters with
the required small mutual coherence are obtained.

Figure 1 shows the heatmap for the transmission spectra of the reference filters and two selected
transmission spectra. In Figure 1a, each of the transmission spectra shows a unique sensing pattern
because of the iterative modeling process of the reference filters based on mutual coherence. Figure 1b
shows two transmission spectra that correspond to the 15th and 30th rows in the heatmap of reference
filters. The transmission spectrum reveals a deep spectral modulation depth and various features such
as broadband backgrounds, multiple peaks with a small full width at half maximums (FWHMs), and
irregular fluctuations.
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Figure 1. (a) Heatmap of the sensing matrix: each row represents the transmission spectrum of the
designed thin-film filter. (b) Two transmission spectra corresponding to the 15th and 30th rows in the
sensing matrix.

3. Compressive Sensing (CS) Spectrometers Using the Proposed Residual Convolutional Neural
Network (ResCNN)

3.1. CS Spectrometers

In CS spectroscopy, the measurement column vector y ∈ RM×1 is represented using the
following relation:

y = Tx, (2)

where x ∈ RN×1 is the spectrum column vector of incident light and T ∈ RM×N is the sensing matrix
of the optical structure. Each row of T represents a transmission spectrum. Because the length of
the measurement vector is smaller than the length of the spectrum vector (M < N), the system is
underdetermined. Conventionally, if x is a sparse signal or can be sparsely represented in a certain
basis, i.e., x = Φs, reconstruction algorithms can determine a unique sparse solution Ŝ from the
following optimization problem:

min
s

∥∥∥TΦs− y
∥∥∥2

2 + τ‖s‖1, (3)

where Φ ∈ RN×N is a sparsifying basis and τ is a regularization parameter. Here, s is a sparse signal
whose components are zero except for a small number of non-zero components. Then, the recovered
spectrum x̂ is Φŝ. In this paper, we refer to the methods of solving the optimization problem using
Equation (3) as sparse recovery.

Typically, except for narrow-band spectra, a spectrum is not a sparse signal, and a fixed sparsifying
basis cannot transform all spectra into sparse signals. Clearly, the use of a fixed basis may lead the
sparse recovery to struggle, as no fixed basis will transform every signal into a sparse signal. In
addition, the sparse recovery is time-consuming and takes a high computational cost.

Our goal is to overcome the limitations of the sparse recovery in CS spectroscopy and recover
various kinds of spectra using ResCNN. Figure 2 shows the schematic of the CS spectroscopy system
using ResCNN. This system consists of two parts: compressive sampling and dimension extension,
and the reconstruction using ResCNN. In the compressive sampling and dimension extension, the
measurement vector y is obtained from Equation (1), which then transforms into x̃ ∈ RN×1 using a
linear transformation. A transform matrix A ∈ RN×M extends the M dimension of y to N dimension of x̃,
where x̃ is a representative spectrum corresponding to x. We used x̃ as the input for the reconstruction.
ResCNN learnt a non-linear mapping between x̃ and x, and afforded a reconstructed spectrum x̂ ∈ RN×1.
The dimension extension by the transform matrix was used to make it easier for ResCNN to extract
features and reconstruct spectra from the non-linear mapping.
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Figure 2. Overview of compressive sensing (CS) spectrosocopy system including the proposed residual
convolutional neural network (ResCNN): An input spectrum is compressively sampled by the sensing
matrix, and the dimension of measurements is extended by the transform matrix. ResCNN is trained to
recover the original spectrum from the extented measurements.

3.2. The Proposed ResCNN

As depicted in Figure 2, ResCNN comprises nine learnable layers, five of which are convolution
layers, four are fully-connected layers, and one is a residual connection. Convolution layers are used
for the feature extraction in the non-linear mapping between x̃ and x. Fully-connected layers are used
for the spectra reconstruction. Each of the convolution layers has a set of one-dimensional learnable
kernels with specific window sizes. The number of kernels and the window sizes are indicated in
Figure 2. After every convolutional layer, the rectified linear unit (ReLU) is used as an activation
function, and the subsampling is then applied. We use non-overlapping max-pooling to down-sample
the output of the activation function. We stack the convolutional layer, the ReLU, and the subsampling
five times. The output of the last subsampling is flattened and then fed into the subsequent four
fully-connected layers. The first three layers are followed by the ReLU and dropout in sequence. The
dropout is introduced to reduce the overfitting of ResCNN. The output of the last fully-connected
layer is fed into a linear activation function. The number of units in each of the fully-connected layers
is noted in Figure 2. Unlike CNN [28] in which learnable layers are simply stacked, we make the
residual connection that the representative spectrum x̃ and the output of the linear activation function
are added up to the reconstructed spectrum x̂. Consequently, x̂ is trained to become x. Given training

data
{
xt

i
}k

i=1
, we train ResCNN to minimize a loss function L. We use the mean squared error between

the original xt and recovered x̂t as the loss function:

L =
1
k

k∑
i=1

∥∥∥xt
i − x̂t

i
∥∥∥2

2. (4)

The non-linear mapping that x̃ becomes x can be defined as H(̃x) = x. Because of the residual
connection in ResCNN, H(̃x) can be rewritten as H(̃x) = F(̃x) + x̃, where F(̃x) is the mapping of
the learnable layers. The representative spectrum x̃ is referenced by the residual connection, and
then,F(̃x) = H(̃x) − x̃. In particular, the mapping of F(̃x) is called a residual mapping; therefore, the
learnable layers learn the residual of x and x̃.

The previous researches [25,29] have used numerous residual connections in very deep neural
networks in order to make networks converge faster by avoiding vanishing gradient problems. We use
one residual connection between input and output of the moderate depth network. Figure 3 depicts the
manner in which a spectrum is recovered in CNN and ResCNN. The learnable layers of CNN directly
reconstruct the spectrum from the representative spectrum x̃. Alternatively, ResCNN reconstructs the
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spectrum by passing the representative spectrum x̃ through the residual connection shown in Figure 3b.
Consequently, the learnable layers of ResCNN learn to reconstruct residuals.

Figure 3. Descriptions of the spectrum recovery process: (a) convolutional neural network (CNN),
(b) ResCNN.

4. Simulated Experiments

We reconstructed 350 spectral bands (N = 350) using 36 thin-film filters (M = 36) whose sensing
patterns have a spacing of 1 nm for wavelengths from 500 to 850 nm. We determined the sensing
matrix T, assuming that the incident light falls onto the filters with normal incidence. As the transform

matrix A, we used the Moore–Penrose inverse of the sensing matrix T, i.e., A = TT
(
TTT

)−1
.

4.1. Spectral Datasets

To evaluate the performance of ResCNN, we used two synthetic spectral datasets and two
measured spectral datasets. The first synthetic dataset is composed of Gaussian distribution functions
while the other is composed of Lorentzian distribution functions. These two synthetic datasets were
selected as generally these types of functions are used to represent spectral line shapes. As shown
in Figure 4, component functions are added to produce the spectra. We generated 12,000 spectra for
each dataset. For each spectrum, the number of component functions was generated using a geometric
distribution with the probability parameter p set to 0.3. We added one to the number of component
functions to prevent the number of component functions from becoming zero. Then, we randomly
set a location, a height, and an FWHM of each peak. To set a peak location (nm), an integer number
was randomly selected from a uniform distribution with the interval (500, 849). A random number
from a uniform distribution in the interval (0, 1) was used for the height. An integer number for an
FWHM (nm) was randomly drawn from a uniform distribution with the interval (2, 50). Finally, all
of the component functions were summed to generate the spectrum. The height of each generated
spectrum was normalized such that it was mapped from zero to one.
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Figure 4. Examples of two synthetic spectra: the solid purple line is composed of two Lorentzian
distribution functions (dash-dotted orange and olive lines), and the solid black line is composed of
three Gaussian distribution functions (dashed red, blue, and green lines).

As measured datasets, we used the US Geological Survey (USGS) spectral library version 7 [32],
and the glossy Munsell colors spectral dataset [33]. The USGS spectral library provides reflectance
spectra for artificial materials, coatings, liquids, minerals, organic compounds, soil mixtures, and
vegetation. We discarded any spectrum that has missing spectral bands. Then, we extracted the
spectrum in the wavelength range of interest (500 to 849 nm) from the wavelength range of the original
spectrum (350 to 2500 nm). The measured wavelength range for the glossy Munsell colors spectral
dataset, which contains the reflectance spectra of the glossy Munsell color chips, was 380 to 780 nm.
The wavelength range of the original spectrum was different from the wavelength range of interest. We
decided to use the wavelength range from 400 to 749 nm to ensure each spectrum was set to 350 spectral
bands. This selection of wavelengths is reasonable because the wavelengths were located in the center
of the wavelength range of the original spectrum, and showed different spectral features with respect
to each spectrum. In addition, our aim was to show the reconstruction performance with respect to
various kinds of spectra. Finally, each spectrum was normalized such that the height varies from 0 to 1.
Overall, 1473 spectra from USGS spectral dataset and 1600 spectra from Munsell color spectral dataset
were used for our simulated experiments. Table 1 lists the details of each of the spectral datasets.

Table 1. Description of the spectral datasets.

Dataset Training/Validation/Test
Avg. Number of
Nonzero Values

Description

Gaussian dataset 8000/2000/2000 336.8/350
FWHM (nm) on the interval

[2, 50], Height on the
interval [0, 1]

Lorentzian dataset 8000/2000/2000 349/350
FWHM (nm) on the interval

[2, 50], Height on the
interval [0, 1]

US Geological Survey [32] 982/246/245 348.9/350
350–2500 nm, 2151 spectral
bands (we use 350 spectral

bands in 500–849 nm)

Munsell colors [33] 1066/267/267 349/350
380–780 nm, 401 spectral

bands (we use 350 spectral
bands in 400–749 nm)
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4.2. Data Preprocessing and Training

Given the sensing matrix, the spectral data are compressively sampled as the measurement vector
y shown in Equation (1), and then transformed into the representative spectrum x̃ by multiplying the
transform matrix A and y.

In each spectral dataset, the number of training, validation, and test spectra are randomly assigned
using a ratio of 4:1:1 for the synthetic and measured data sets, respectively. The validation spectra are
used for estimating the number of epochs and tuning the hyper-parameters. To train ResCNN, we
used the Adam optimizer [34] implemented in Tensorflow with the batch size of 16 and 250 epochs.
The experiments were conducted on an NVIDIA GeForce RTX 2060 graphics processing unit (GPU).
Training the architecture can be done in half an hour for each dataset.

4.3. Sparsifying Bases for Spare Recovery

Using sparse recovery, we evaluated the performance of conventional CS reconstructions to
benchmark the performance of ResCNN. As shown in Table 1, the spectra for both the synthetic and
measured datasets are dense spectra. Therefore, we must transform the spectra into sparse signals to
solve Equation (3). In this section, we considered methods to make a sparsifying basis Φ.

First, we considered a Gaussian line shape matrix as a sparsifying basis. Each column of the matrix
comprises a Gaussian distribution function whose length is N. A collection of N Gaussian functions
works as a sparsifying basis Φ ∈ RN×N. We generate two Gaussian line shape matrices. Figure 5 a
shows the heatmap images for two Gaussian line shape matrices. Seven different FWHMs are used to
generate the Gaussian distributions. Given an FWHM, Gaussian distributions are generated by shifting
the peak location using uniform spacing. To create a small dissimilarity between the two Gaussian
line shape matrices, two of the seven FWHMs in Gaussian 1 were replaced with other FWHMs, thus
producing Gaussian 2, as shown in Figure 5a.

Figure 5. Heatmap images of sparsifying bases that were used in simulated experiments: (a) Gaussian
line shape matrices, (b) the learned dictionaries which are from the Gaussian training dataset.

Second, a learned dictionary [35–38] is used as a sparsifying basis. Given a training dataset{
xt

i
}k

i=1
, we can derive a learned dictionary Φ that sparsely represents the training data xt by solving

the following optimization problem, known as the dictionary learning problem:

min
Φ,st1,...,stk

k∑
i=1

∥∥∥xt
i −Φst

i
∥∥∥2

2 + τ
∥∥∥st

i
∥∥∥

1, (5)

208



Sensors 2020, 20, 594

where τ is a regularization parameter and st
i is ith sparse signal over the training dataset. By fixing an

initial guess for the dictionary Φ in Equation (5), we obtain a solution for the sparse signals
{
st

i
}k

i=1
.

The dictionary is then updated by solving Equation (5) using the sparse signals obtained. This process
is iteratively repeated until convergence is reached and we derive the learned dictionary. We used
three dictionary learning methods: method of optimal directions (MOD) [36], K-SVD [37], and online
dictionary learning (ODL) [38]. The learned dictionaries are generated for each of the training datasets,
and the reconstruction performances are evaluated for each test dataset. Figure 5b shows learned
dictionaries identified using the Gaussian training dataset. The learned dictionaries clearly depend on
the dictionary-learning methods used. Nevertheless, each column of the dictionaries shows a learned
spectral feature from the training dataset.

5. Results

To demonstrate the ability of ResCNN to reconstruct spectra, we evaluated its performance using
three different datasets: Synthetic datasets, noisy synthetic datasets, and measured datasets. We used
the same hyper-parameters of ResCNN for each of these datasets. Moreover, we adopted l1_ls [39]
as the fixed reconstruction algorithm in the sparse recovery. We compared the recovered signal with
the original signal by calculating the root mean squared error (RMSE) and the peak signal to noise
ratio (PSNR). In addition, the performance of five conventional sparse recovery methods, described in
Section 4.3 and CNN was calculated.

5.1. Synthetic Datasets

The two synthetic data sets described in Table 1 were used to perform the signal recovery using
sparse recovery and deep learning. Table 2 shows the average RMSE and PSNR for each of the seven
methods evaluated. ResCNN shows the smallest average RMSE for both the Gaussian and Lorentzian
datasets of 0.0094 and 0.0073, respectively. Moreover, ResCNN shows the largest average PSNR
of 49.0 dB for the Lorentzian dataset. For the Gaussian dataset, the sparse recovery method with
Gaussian 2 shows the largest average PSNR, 49.7 dB, which is slightly higher than the 47.2 dB for
ResCNN. Note that the minor difference between the two Gaussian line shape matrices results in
considerable performance difference. However, reconstruction using the learned dictionaries show
similar performance across all of the synthetic datasets.

Table 2. Average root mean squared errors (RMSEs) and peak signal to noise ratios (PSNRs) over
synthetic datasets.

Sparse Recovery Deep Learning

Dataset Gaussian 1 Gaussian 2 K-SVD MOD ODL CNN ResCNN

Gaussian
dataset

0.0226
(43.1 dB)

0.0112
(49.7 dB)

0.0172
(40.3 dB)

0.0174
(40.3 dB)

0.0161
(41.1 dB)

0.0132
(40.5 dB)

0.0094
(47.2 dB)

Lorentzian
dataset

0.0146
(44.9 dB)

0.0094
(47.5 dB)

0.0136
(42.3 dB)

0.0137
(42.3 dB)

0.0127
(42.9 dB)

0.0101
(42.8 dB)

0.0073
(49.0 dB)

Figure 6 shows the reconstructed test spectra from each of the synthetic datasets. The solid red
line (i) is the input spectra from each dataset. ResCNN is shown in dashed black line (ii), while CNN is
shown in solid orange lines (iii). The reconstructed spectra using sparse recovery with Gaussian 1
(iv), Gaussian 2 (v), and ODL (vi) are shown in solid green, blue, and purple lines in respectively.
Because of the similar performance from each of the learned dictionaries, only the ODL method is
shown. The RMSE and PSNR of ResCNN are 0.0138 (37.2 dB) for the spectrum from the Gaussian
dataset and 0.0096 (40.4 dB) for the spectrum from the Lorentzian dataset. For the selected spectra,
ResCNN achieves superior reconstruction performance compared with the other four reconstructions.
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Figure 6. Spectral reconstructions of test spectra in synthetic datasets, (a) Gaussian dataset,
(b) Lorentzian dataset. An input spectrum (solid red (i)) is compared with ResCNN (dashed black
(ii)), CNN (orange (iii)), sparse recovery: Gaussian 1 (green (iv)), Gaussian 2 (blue (v)), and online
dictionary learning (ODL) (purple (vi)). The baselines are shifted for clarity.

Only sparse recovery with Gaussian 1 fails to recover the fine details of the input spectrum. One
example of the poor ability of sparse recovery with Gaussian 1 to resolve the signal is the recovery of
the peak at ~830 and 590 nm being recovered as two neighboring peaks in Figure 6a,b, respectively.
CNN was unable to capture the smoothness of the spectral features compared to the other methods.

5.2. Noisy Synthetic Datasets

To verify the stability of ResCNN, we evaluated the accuracy of the reconstruction at various
noise levels. Gaussian white noise was added to the measurement vector n ∈ RM×1 to Equation (2),
i.e., y = Tx+n. We considered six different noise levels whose signal-to-noise ratios (SNRs) are 15,
20, 25, 30, 35, and 40 dB. The SNR (dB) is defined as 10 · log10

(
‖x‖22/Nσ2

)
, where σ is the standard

deviation of the noise. Using Gaussian and Lorentzian datasets, we compared the reconstruction
performance of ResCNN with the sparse recovery using Gaussian 2, which shows the best reconstruction
performances among sparse recovery methods in synthetic datasets. ResCNN was evaluated with the
same hyper-parameters that were used for the noise-free datasets. The average RMSE and PSNR for
each of the six noise levels are shown in Table 3. While ResCNN was trained using noise-free data, it
outperformed the sparse recovery with Gaussian 2 at every noise level, which indicates that ResCNN
remains stable even with noisy datasets.

Table 3. Average RMSE and PSNR under various signal-to-noise ratios (SNRs, dB) with
synthetic datasets.

SNR (dB)

Dataset Method 15 dB 20 dB 25 dB 30 dB 35 dB 40 dB

Gaussian
Dataset

Sparse
recovery +
Gaussian 2

0.0796
(22.7 dB)

0.0482
(27.1 dB)

0.0308
(31.2 dB)

0.0215
(34.8 dB)

0.0166
(37.9 dB)

0.0138
(40.7 dB)

ResCNN 0.0671
(24.2 dB)

0.0401
(28.7 dB)

0.0251
(32.9 dB)

0.0171
(36.6 dB)

0.0130
(39.8 dB)

0.0110
(42.4 dB)

Lorentzian
Dataset

Sparse
recovery +
Gaussian 2

0.0817
(22.6 dB)

0.0483
(27.1 dB)

0.0300
(31.2 dB)

0.0201
(35.0 dB)

0.0147
(38.5 dB)

0.0119
(41.4 dB)

ResCNN 0.0689
(24.1 dB)

0.0404
(28.7 dB)

0.0243
(33.1 dB)

0.0157
(37.1 dB)

0.0113
(40.6 dB)

0.0091
(43.4 dB)
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5.3. Measured Datasets

ResCNN was trained using the two measured datasets listed in Table 1, USGS and Munsell
colors, and its reconstruction performance was evaluated. In addition, the signal reconstruction was
performed using CNN and sparse recovery with five different sparsifying bases. Table 4 reports the
average RMSE and PSNR for each of the seven methods. ResCNN achieves the smallest average RMSE
and the largest average PSNR for both datasets. In the USGS dataset, the average RMSE and PSNR of
ResCNN are 0.0048 and 52.4 dB, respectively. In addition, ResCNN achieves 0.0040 for the average
RMSE and 50.0 dB for the average PSNR in the Munsell colors dataset. Similar to synthetic datasets,
all of the learned dictionaries provided similar reconstruction performances. In addition, the small
differences between Gaussian 1 and 2 show large differences in the RMSE and PSNR. The average
RMSE and PSNR of the learned dictionary methods approach the values of ResCNN for Munsell colors
dataset because the Munsell colors dataset has simpler spectral features than the other datasets.

Table 4. Average RMSEs and PSNRs for the measured datasets.

Sparse Recovery Deep Learning

Dataset Gaussian 1 Gaussian 2 K-SVD MOD ODL CNN ResCNN

USGS [32] 0.0081
(45.3 dB)

0.0061
(48.4 dB)

0.0070
(48.5 dB)

0.0081
(47.4 dB)

0.0074
(47.6 dB)

0.0116
(40.8 dB)

0.0048
(52.4 dB)

Munsell
colors [33]

0.0068
(44.6 dB)

0.0050
(47.5 dB)

0.0040
(49.8 dB)

0.0040
(49.9 dB)

0.0042
(49.5 dB)

0.0076
(43.0 dB)

0.0040
(50.0 dB)

Figure 7 shows the reconstruction results of one test spectra from each of the measured datasets.
The spectrum for the organic compound dibenzothiophene in the USGS dataset is reconstructed in
Figure 7a. The spectrum of Munsell color 5 PB 2/2 is shown in Figure 7b. The solid red lines are the
input spectra (i). ResCNN are shown in dashed black lines (ii), and CNN are shown in solid black lines
(iii). The spectra of (iv) to (vi) are reconstructed spectra using the sparse recovery with Gaussian 1,
Gaussian 2, and K-SVD. Because of the best performance of the K-SVD among the learned dictionaries
only the K-SVD method is shown.

Figure 7. Spectral reconstructions of test spectra in measured datasets: (a) spectrum of organic
compound dibenzothiophene in USGS dataset, (b) spectrum of Munsell color 5PB 2/2. The input
spectrum (solid red line (i)) is compared with ResCNN (dashed black (ii)), CNN (orange (iii)), sparse
recovery: Gaussian 1 (green (iv)), Gaussian 2 (blue (v)), and K-SVD (purple (vi)). The baselines are
shifted for clarity.

The RMSE and PSNR for ResCNN are 0.0069 (43.2 dB) for the spectrum from the USGS dataset
and 0.0077 (42.3 dB) for the spectrum from the Munsell colors dataset. ResCNN outperforms other
approaches for the spectrum from USGS dataset. However, for the spectrum from Munsell colors
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dataset, the sparse recovery with K-SVD outperforms ResCNN. ResCNN achieves slightly larger RMSE
and smaller PSNR.

The performances of sparse recovery with Gaussian 2 is degraded for measured datasets compared
with the performance for synthetic datasets. The measured datasets have rough spectral features
unlike the smooth spectral features observed in the synthetic datasets. As a result, the sparse recovery
with Gaussian 2 performs worse, because of its inability to represent rough spectral features using
Gaussian distribution functions. The performance of sparse recovery with dictionary learning methods
are improved for measured datasets compared with the performance of synthetic datasets. Because the
number of spectra in measured datasets are smaller than the number of spectra in synthetic datasets.
Therefore, finding the best-fit sparsifying basis for measured datasets is easier than finding the best-fit
sparsifying basis for synthetic datasets using dictionary-learning methods. Meanwhile, ResCNN
shows superior reconstruction performances regardless of spectral features of datasets and the size
of datasets.

6. Discussion

As shown in the results, we demonstrate empirically that ResCNN outperforms the sparse
recovery methods and the CNN over all datasets. The sparse recovery shows unstable performance
because it is highly dependent on the sparsifying basis and spectral features of dataset. This is a direct
result of being unable to identify a fixed sparsifying basis that can transform any spectra into a sparse
signal, which means the a priori structural information such as line shapes and FWHMs is required
to select a consistent sparsifying basis. Learned dictionaries are used to cope with the problem of
identifying a consistent sparsifying basis. The columns of learned dictionaries are composed of learned
spectral features from the training dataset. While this shows an improvement in measured datasets,
a learned dictionary is still limited to representing all the spectral features in the large dataset (i.e.,
synthetic datasets) using linear combinations of columns of the learned dictionary.

Compression approaches for summarizing information with a small number of sensors were
proposed in [40]. These approaches can be exploited to generate a sparsifying basis by reducing the
loss of spectral information in large datasets.

To improve the reconstruction performance in sparse recovery, pre-defined structure information
and side information of unknown target signals were used in [41,42]. The reconstruction of
three-dimensional electrical impedance tomography was improved by updating three-dimensional
structural correlations using pre-defined structured signals [41]. To recover multi-modal data, a
reconstruction framework is proposed in [42] that uses side information in unrolled optimization.
Unrolled optimization approaches using deep learning were proposed in [43,44]. Deep-learning
architectures were used to train hyper-parameters, such as a gradient regularizer and a step size. Using
learned hyper-parameters, it was shown optimized solutions can be obtained within a fixed number of
iterations. These proposed approaches for image reconstruction have assumed random sensing matrix
and structured or sparse signals. In this work, however, we consider dense spectra and the sensing
matrix from thin-film filters for the real implementation. Moreover, the reconstruction performance
may change to a sparsifying basis as shown in results because a reconstructed spectrum x̂ should be
represented as a linear combination of columns of a fixed sparse basis Φ as Φŝ.

For recovering spectra, ResCNN does not require the a priori knowledge of a sparsifying basis
or prior information of spectral features. During training, ResCNN learns the spectral features using
learnable layers, which enable it to recover the fine details for various kinds of spectra without
identifying a sparsifying basis.

ResCNN is directly compared with CNN for the synthetic Gaussian dataset in Figure 8a where
the mean squared error (Equation (4)) is plotted with respect to the epoch. The mean squared error for
CNN and ResCNN are shown in solid black line and solid red line with square symbols, respectively.
ResCNN shows a lower mean squared error than that of CNN. Moreover, ResCNN converges faster
than CNN, indicating that ResCNN optimizes the learnable layers quicker, as expected based on
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previous research using residuals [25,29]. In contrast to the previous research that numerous residual
connections were used in very deep neural networks to converge networks faster by avoiding vanishing
gradient problem, we achieve spectral reconstruction improvements even with one residual connection
in a moderate depth CNN.

Figure 8. (a) Mean squared error of Gaussian dataset with respect to epochs. Solid black line denotes
validation error of CNN, and solid red line with square symbols denotes validation error of ResCNN.
(b) Reconstructions of a spectrum with respect to epochs where (i) to (iv) are epochs 1, 50, 150, and 250,
respectively. Red line (v) denotes the original spectrum.

The reconstruction of an example spectrum with respect to the number of epochs is shown in
Figure 8b. Black lines ((i) to (iv)) are the reconstructed spectra at 1, 50, 150, and 250 epochs, respectively.
The solid red line (v) is the original spectrum, and the series of reconstructed spectrum for ResCNN
show that the reconstruction converged earlier than CNN. The increased rate of convergence is because
of the residual connection in ResCNN. Overall, the reconstruction performance of ResCNN is an
improvement over CNN.

Note that both ResCNN and dictionary learning for sparse recovery require a training dataset
and an optimization process to learn the spectral features. While this is a time-consuming process,
remember that when using a learned dictionary to recover spectra, an iterative reconstruction algorithm
is required, which needs additional time and incurs a high computational cost. The benefit of ResCNN
is that it gives a reconstructed spectrum immediately once the training is completed.

7. Conclusions

In this paper, we propose a novel ResCNN for recovering the input spectrum from the compressed
measurements in CS spectroscopy. As the optical structure for CS spectroscopy, we numerically
generated multilayer thin-film filters which have a small mutual coherence. Therefore, we could
compressively measure input spectra with unique sensing patterns. To reconstruct the input spectra
from the compressively sampled measurements, we modeled ResCNN, which has a moderate-depth of
learnable layers and a residual connection. We stacked nine learnable layers: five convolutional layers
and four fully-connected layers with a single residual connection between the input and output of the
learnable layers. The measurements were extended by a linear transformation and then fed into ResCNN.
Finally, ResCNN reconstructed the input spectra. We demonstrated the empirical reconstruction results
for ResCNN using synthetic and measured datasets. We compared the reconstruction performance of
ResCNN with sparse recovery using five different sparsifying bases and CNN. Compared with sparse
recovery methods, ResCNN shows better reconstruction performance without the a priori knowledge
of either a sparsifying basis or any spectral features of the spectral datasets. On the other hand, the
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sparse recovery methods show deviation of reconstruction performances to sparsifying bases and
spectral datasets, meaning that a fixed sparsifying basis cannot represent all spectral features of input
spectra. Furthermore, ResCNN shows stable reconstruction performances under noisy environments.
Compared with CNN, ResCNN shows significant improvement in reconstruction performance and
converges faster than CNN. In future work, we will explore compression approaches [40] and unrolled
optimization approaches [43,44] for generating a sparsifying basis Φ from the training dataset to fully
represent spectra without loss of spectral features.
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Abstract: Deep learning (DL) is a powerful technique which has achieved great success in many
applications. However, its usage in communication systems has not been well explored. This paper
investigates algorithms for multi-signals detection and modulation classification, which are significant
in many communication systems. In this work, a DL framework for multi-signals detection and
modulation recognition is proposed. Compared to some existing methods, the signal modulation
format, center frequency, and start-stop time can be obtained from the proposed scheme. Furthermore,
two types of networks are built: (1) Single shot multibox detector (SSD) networks for signal detection
and (2) multi-inputs convolutional neural networks (CNNs) for modulation recognition. Additionally,
the importance of signal representation to different tasks is investigated. Experimental results
demonstrate that the DL framework is capable of detecting and recognizing signals. And compared
to the traditional methods and other deep network techniques, the current built DL framework can
achieve better performance.

Keywords: deep learning; signal detection; modulation classification; the single shot multibox
detector networks; the multi-inputs convolutional neural networks

1. Introduction

Cognitive radio (CR) [1–3] has been used to refer to radio devices that are capable of learning and
adapting to their environment. Due to the increasing requirements for wireless bandwidth of radio
spectrum, automatic signal detection and modulation recognition techniques are indispensable. It can
help users to identify the modulation format and estimate signal parameters within operating bands,
which will benefit communication reconfiguration and electromagnetic environment analysis. Besides,
it is widely used in both military and civilian applications, which have attracted much attention in the
past decades [4–7].

Multi-signals detection is a task to detect the existing signals in a specific wideband, which is one
of the essential components of CR. The most significant difference between signal and non-signal is
energy. Hence, many wideband multi-signals detection algorithms are based on energy detector (ED).
Some threshold-based wideband signal detection methods, such as [8–13], reduce the probability of
false alarm or missed alarm. However, these methods are sensitive to noise changes and challenging
to ensure the detection accuracy of all detection scenarios. Therefore, many non-threshold-based
detection algorithms have been proposed [14–17]. However, these algorithms have high computational
complexity, which results in poor online detection performance.

For automatic modulation recognition, algorithms based on signal phase, frequency, and amplitude
have been widely used [18]. However, these algorithms are significantly affected by noise, and the
performance can be substantially degraded in low SNR condition. High-order statistical-based
algorithms [19–22], such as signal high-order cumulants and cyclic spectrum, have excellent anti-noise
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performance. The computational complexity of these methods is relatively low, but the selection
of features relies too much on expert experience. It is difficult to obtain features that can adapt to
non-ideal conditions. In particular, it is challenging to set the decision threshold when there are plenty
of modulation formats to be classified.

Deep Learning (DL) techniques [23,24] have made outstanding achievements in Computer
Vision [25,26] (CV) and Natural Language Processing [27,28] (NLP) for their strong self-learning ability.
Recently, more and more researchers use DL techniques to solve signal processing problems. For signal
detection, many DL-based methods, such as [29–31], detect signals in narrowband environment. These
methods only detect the existing of signal, but can not estimate the relevant parameters. Therefore,
developing a technique leverages deep learning to detect signal efficiently and effectively is still a
challenging problem. For DL-based modulation classification, there has been some reported work,
including [32–36]. For example, some researchers used the signal IQ waveform as data representation
and learned the sample using CNNs [32–34]. Other researchers focused on developing methods to
represent modulated signals in data formats for CNNs. Among these methods, constellation-based
algorithms [35,36] have been widely utilized, where signal prior knowledge is fully considered.

In this study, DL techniques are fully utilized in multi-signals detection and modulation recognition.
For multi-signals detection, we use the deep learning target detection network to detect the location of
each signal. In our initial research, the used model is SSD networks, which is a relatively advanced
target detection network. Furthermore, we use the time-frequency spectrum as the signal characteristic
expression. Due to the time-frequency characteristic of the M-ary Frequency Shift Keying (MFSK)
format signals, we can identify the modulation format while the signal is detected. Meanwhile,
for M-ary Phase Shift Keying (MPSK), M-ary Amplitude Phase Shift Keying (MAPSK), and M-ary
Quadrature Amplitude Modulation (MQAM) signal, the difference in the time-frequency spectrum
is not sufficient to identify the signal modulation. Therefore, during the signal detection procession,
we identify them in the same format, and only detect the signal presence or absence. Through the signal
detection network, we can roughly get the signal carrier frequency and start-stop time. After that,
we use a series of traditional methods to convert these signals from the wideband into the baseband.
To recognize MPSK, MAPSK, and MQAM signals, a multi-inputs CNNs is designed. Moreover, we
adopt the signal vector diagram and eye diagram as the network inputs, which are more robust than
in-phase and quadrature (IQ) waveform data and constellation diagram.

This paper addresses the topic of DL based multi-signals detection and modulation classification.
The main contributions of this paper are summarized as follows: (1) We propose a relatively complete
DL framework for signal detection and modulation recognition, which is more intelligent than
traditional algorithms. (2) We establish different signal representation schemes for several tasks,
which facilitate the use of the built DL framework for detection and classification. (3) We propose a
multi-inputs CNNs model to extract and map the features from different dimensions.

The rest of this paper is presented as follow. In Section 2, we offer a detail introduction to the
signal model and the dataset generation. Section 3 shows the DL framework for signal detection and
modulation recognition. Section 4 confirms our initial experiment result from different aspects. Finally,
our conclusions and directions for further research are given in Section 5.

2. Communication Signal Description and Dataset Generation

In realistic communication processing, the signal may be distorted by the effect of non-linear
amplifier and channel. In actual situation, the received signal in the communication system can be
expressed as:

r(t) =
∫ τ0

τ=0
s(nclk(t− τ))h(τ)dτ+ nadd(t) (1)

where s(t) is the transmission signal, nClk(t) is timing deviation, h(t) represents the transmitted wireless
channel, nadd(t) is additive white Gaussian noise.
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In this section, we will describe different modulated signals and their sample representation for
our DL framework. We will also explain the reason why we use it and the method we enhance it.

2.1. Modulation Signal Description

For any digital modulation signal, the transmission signal can be presented as

s(t) =
∑

n
anej(wnt+φ)g(t− nTb) (2)

where wn is the signal angular frequency, φ is the carrier initial phase, Tb is the symbol period, an is the
symbol sequence, g(t) is the shaping filter.

For MFSK signal, it can be presented as

an = 1, wn = w0 +
2π
M

i, i = 0, 1, . . . , M− 1 (3)

For MPSK signal, it can be presented as

an = ej2πi/M, i = 0, 1, . . . , M− 1, wn = w0 (4)

For MQAM signal, it can be presented as

an = In + jQn

In, Qn = 2i− M
4 + 1, i = 0, 1, . . . , M

4 − 1, wn = w0

}
(5)

MAPSK constellations are robust against nonlinear channels due to their lower peak-to-average
power ratio (PAPR), compared with QAM constellations. Therefore, APSK was mainly employed
and optimized over nonlinear satellite channels during the last two decades. As recommended in
DVB-S2 [37], it can be presented as:

an = rk exp
[
j
(

2π
nk

ik + θk

)]
(6)

where rk is the radius of the kth circle, nk is the number of constellations in kth circle, ik is the ordinal
number of constellation points in the kth circle, θk is the initial phase of the kth circle.

2.2. Signal Time-Frequency Description

For multi-signals detection task, we use the wideband signal time-frequency spectrum as the
neural network input. To prove the feasibility of this method, we theoretically prove the time-frequency
visual characteristic of each modulation. Here, we use the short-time Fourier transform [38] (STFT) to
analyze the signal time-frequency characteristic.

2.2.1. MFSK Signal Time-frequency Description

The STFT of MFSK signal can be expressed as

STFTsFSK (t, w) =
∫ +∞
−∞ [sFSK(τ)γ

∗(τ− t)]e− jωτdτ =
∫ +∞
−∞

[
+∞∑

k=−∞
Ag(τ− kTb)ej(ωkτ+φk)γ∗(τ− t)

]
e− jωτdτ (7)

where γ(t) is the window function, whose duration is T. When γ(t) is in a symbol duration, Equation (7)
can be simplified as

STFTsFSK (t, w) =
∫ T/2
−T/2 Aej(wk(τ+t)+φk)e− jw(τ+t)dτ = ATe− jwtej(wkt+φk)Sa(w−wk

2 T),
kTb + T/2 < t < (k + 1)Tb − T/2, k = 0, 1, 2, . . .

(8)
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where Sa(w) = sin(w)/w. When γ(t) spans two symbols, Equation (7) can be simplified as

STFTsFSK (t, w) =
∫ d
−T/2 Aej(wk(τ+t)+φk)e− jw(τ+t)dτ+

∫ T/2
d Aej(wk+1(τ+t)+φk+1)e− jw(τ+t)dτ =

= Aej((wk−w)t+φk)
∫ d
−T/2 e− j(w−wk)τdτ+ Aej((wk+1−w)t+φk+1)

∫ T/2
d e− j(w−wk+1)τdτ =

= A T+2d
2 ej((wk−w)t+φk)e

j(w−wk)(T−2d)
4 Sa( (w−wk)(T+2d)

4 )+

+A T−2d
2 ej((wk+1−w)t+φk+1)e

j(w−wk+1)(T+2d)
4 Sa( (w−wk+1)(T−2d)

4 ),
(k + 1)Tb −T/2 < t < (k + 1)Tb + T/2, d = (k + 1)Tb − t, k = 0, 1, 2, . . .

(9)

where wk+1 is the carrier angular frequency of the k+1-th symbol. If wk+1 = wk, it indicates that the
carrier angular frequency does not jump, so Equation (8) is same as Equation (9). We take the modulus
square of Equation (8). The result can be expressed as

SPECsFSK (t, w) =
∣∣∣STFTsFSK (t, w)

∣∣∣2 = A2T2Sa2(
w−wk

2 T),
kTb + T/2 < t < (k + 1)Tb − T/2, k = 0, 1, 2, . . .

(10)

And for Equation (9), it can be expressed as:

SPECsFSK (t, wk) ≈ A2(T+2d)2

4 ≤ A2T2,−T/2 < d < T/2,
(k + 1)Tb − T/2 < t < (k + 1)Tb + T/2, k = 0, 1, 2, . . .

(11)

Obviously, the value of SPECsFSK (t, wk) will increase as the increase of jumping time d. The energy
decreases gradually as γ(t) slips away from the symbol. So when d = T/2, the window is completely
within one symbol, and the maximum value is obtained.

SPECsFSK (t, wk)max = A2T2,
(k + 1)Tb − T/2 < t < (k + 1)Tb + T/2, k = 0, 1, 2, . . .

(12)

When d = −T/2, the window completely spans to next symbol, and the minimum value is obtained

SPECsFSK (t, wk)min = 0,
(k + 1)Tb − T/2 < t < (k + 1)Tb + T/2, k = 0, 1, 2, . . .

(13)

From our analysis, we can easily get the characteristics of FSK modulation: (1) There will be
sharp brightness changes in the time-frequency image at the frequency change moment. (2) The signal
modulation number M and frequency spacing are important parameters for the MFSK time-frequency
characteristics, which determine the value of wk.

2.2.2. Amplitude–Phase Modulation Signal Time-frequency Description

For MPSK, MAPSK, and MQAM signal, since they all belong to amplitude-phase modulation,
the derivation processing of the signal time-frequency characteristics is the same as MPSK. Hence,
we specify the time-frequency characteristics of the MPSK signal, and the STFT can be expressed as:

STFTsPSK (t, w) =
∫ +∞
−∞ [sPSK(τ)γ

∗(τ− t)]e− jwτdτ =

=
∫ +∞
−∞

[
+∞∑

k=−∞
Ag(τ− kTb)ej(wcτ+φc+φk)γ∗(τ− t)

]
e− jwτdτ

(14)

As the derivation of MFSK signal time-frequency characteristics, when γ(t) is in a symbol duration,
the Equation (14) can be simplified as:

STFTsPSK (t, w) =
∫ T/2
−T/2 Aej(wc(τ+t)+φc+φk)e− jw(τ+t)dτ = ATe− jwtej(wct+φc+φk)Sa(w−wc

2 T),
kTb + T/2 < t < (k + 1)Tb − T/2, k = 0, 1, 2, . . .

(15)
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When γ(t) spans two symbols, the Equation (14) can be simplified as:

STFTsPSK (t, w) =
∫ d
−T/2 Aej(wc(τ+t)+φc+φk)e− jw(τ+t)dτ+

∫ T/2
d Aej(wc(τ+t)+φc+φk+1)e− jw(τ+t)dτ =

= Aej((wc−w)t+φc+φk)
∫ d
−T/2 e− j(w−wc)τdτ+ Aej((wc−w)t+φc+φk+1)

∫ T/2
d e− j(w−wc)τdτ =

= A T+2d
2 ej((wc−w)t+φc+φk)e

j(w−wc)(T−2d)
4 Sa( (w−wc)(T+2d)

4 )+

+A T−2d
2 ej((wc−w)t+φc+φk+1)e

j(w−wc)(T+2d)
4 Sa( (w−wc)(T−2d)

4 ),
(k + 1)Tb − T/2 < t < (k + 1)Tb + T/2, d = (k + 1)Tb − t, k = 0, 1, 2, . . .

(16)

where φk+1 is the phase of the k+1-th symbol. And if φk+1 = φk, Equation (15) is equal to Equation (16).
We take the modulus square of (15), and the result can be expressed as:

SPECsPSK (t, w) =
∣∣∣STFTsPSK (t, w)

∣∣∣2 = A2T2Sa2(w−wc
2 T),

kTb + T/2 < t < (k + 1)Tb − T/2, k = 0, 1, 2, . . .
(17)

And for (16), it can be expressed as:

SPECsPSK (t, wc) =
A2T2

2 (1 + cos(φk −φk+1)) + 2A2d2(1− cos(φk −φk+1)) ≤ A2T2,
(k + 1)Tb − T/2 < t < (k + 1)Tb + T/2, d = (k + 1)Tb − t, k = 0, 1, 2, . . .

(18)

We take the partial derivative for Equation (18):

∂SPECsPSK (t,wc)

∂d = 4A2d(1− cos(φk −φk+1)),−T/2 < d < T/2,
(k + 1)Tb − T/2 < t < (k + 1)Tb + T/2, k = 0, 1, 2, . . .

(19)

From Equation (19), we can easily learn that SPECsPSK (t, wc) get the minimum value when
φk+1 = φk or d = 0. But the minimum value is much greater than 0, which is greatly different for the
MFSK signal.

SPECsPSK (t, wc)min = A2T2

2 (1 + cos(φk −φk+1)) � 0,
(k + 1)Tb − T/2 < t < (k + 1)Tb + T/2, k = 0, 1, 2, . . .

(20)

Hence, for MPSK signal, there is only one wide frequency band in the time-frequency diagram,
and the brightness fluctuation appears in a small range, which is different from MFSK. And from
derivation processing, we can know that the MPSK time-frequency characteristics are less affected by
M, so it is hard to distinguish PSK signals with different M. Figure 1 presents different modulation
signals in the wideband.

2FSK

BPSK

QPSK

8PSK

16QAM
BPSK

16QAM

QPSK

4FSK

8FSK

Figure 1. Different modulation signals in the wideband.
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2.3. Signal Eye Diagram and Vector Diagram Description

The function of the eye diagram is to observe the baseband signal waveform by an oscilloscope.
Through the eye-diagram, we can adjust the receiver filter to improve system performance. Besides,
due to the characteristics of the modulated signal itself, different modulation modes have apparent
visual differences in the eye diagram. As shown in Figure 2, because of the different modulation scales,
there are different eye numbers in each eye diagram. For OQPSK, since the two orthogonal signals
stagger for half a symbol period, the eye-opening position is always staggered, while other modulated
signals always appear at the same time.

I-eye 
diagram 

 

Q-eye 
diagram 

Vector 
diagram 

 (a) (b) (c) (d) (e) (f) (g) (h) 

Figure 2. The eye diagram and vector diagram of different modulation signals in 15dB (a) BPSK;
(b) QPSK; (c) OQPSK; (d) 8PSK; (e) 16QAM; (f) 16APSK; (g) 32APSK; (h) 64QAM.

By reconstructing the signal IQ waveforms in the corresponding time, the signal vector diagram
shows the symbol trajectory. From its formation mechanism, it is similar to the signal constellation
diagram. However, unlike the constellation diagram, the vector diagram can reflect the signal phase
information. For example, it can easily distinguish QPSK from OQPSK with the same initial phase,
because there is no 180◦ phase shift in OQPSK, while it exists in QPSK. Meanwhile, compared
with the constellation diagram, the vector diagram is more convenient to obtain and requires less
prior information.

2.4. The Generation Processing of the Dataset

Figure 3 presents the processing of our dataset construction and annotation. To make samples
more diverse, we set sampling phase offset, frequency offset, phase offset, and amplitude attenuation
in sample generation processing.
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modulation 
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number 
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Training 
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 (a) 

 (b) 

Figure 3. The generation processing of the dataset. (a) dataset for signal detection; (b) dataset for
modulation recognition.
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For signal detection, we need to determine the reconnaissance frequency range and set the signal
number in the wideband at first. We set different frequency offset for each signal, and ensure that the
signals do not overlap in the frequency domain. Then we perform the STFT on the wideband. Not only
we record the modulation format of each signal, but also record the start-stop time, carrier frequency,
and bandwidth. Then we convert them into the coordinates on time-frequency image, which are the
label information for the network.

For modulation recognition, traditional eye diagram and vector diagram are binary images, which
do not consider the signal aggregation degree at a particular location. Hence, we consider the signal
aggregation degree and enhance the traditional eye diagram and vector diagram. Figure 4 presents
the enhancement processing of the dataset. In our initial research, since CNNs are insensitive to edge
information, the signal amplitude is quantified between [−1.05, 105] by 128 after normalizing the
amplitude. Furthermore, the parameter settings are obtained by experiments. For example, we choose
800 symbols and 4 symbols as a waveform group to generate the eye diagram and the vector diagram,
and related experiments will also be described in detail in subsequent chapters. Moreover, we perform
the following operations on the images to make the image details more prominent, where Im0 is the
original image, Im1, Im2, Im3 are the channels of the enhanced image and α, β are scaling factors.

Im1 = unit8
(

Im0−min(Im0)
max(Im0)−min(Im0)

× 255
)
,

Im2 = unit8(α× log 2(Im1 + 1)),
Im3 = unit8(exp(Im1/β))

(21)

Original 
gray image

Enchance 
image

0Im
1Im

2Im
3Im

1 0 0 0unit 8( min( ) / (max( ) min( )) 255)= − − ×0Im Im Im Im Im

2 2 1= unit 8( log ( 1))α × +Im Im

3 1unit 8(exp( / ))β=Im Im

 
Figure 4. The enhancement processing of the dataset.

3. Deep Learning Framework for Signal Detection and Modulation Recognition

DL networks aim at learning different hierarchies of features from data. As one of the branches of
DL techniques, the CNNs perform well in the field of image recognition. It performs feature learning
via non-linear transformations implemented as a series of nested layers. Each layer consists of several
kernels that perform a convolution over the input. Generally, the kernels are usually multidimensional
arrays which can be updated by some algorithms [39]. Our DL framework achieves multi-signals
detection and modulation recognition. We use different deep neural networks for different tasks. For
signal detection, we use SSD networks. For modulation recognition, we design a multi-inputs CNNs.

3.1. SSD Networks for Signal Detection

We use SSD networks to achieve multi-signals detection. For DL target detection techniques,
the existing algorithms are mainly divided into two kinds: algorithms based on region recommendation
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(two-stage methods) and algorithms based on regression (one-stage methods). Regression-based
algorithms include YOLO series algorithms [40–43] and SSD series algorithms [43,44], while region
recommendation-based algorithms include RCNN [45], Fast RCNN [46], and Faster RCNN [47].
In our research, since the regression-based algorithms are faster than region recommendation-based
algorithms, we use SSD networks as our signal detection model. SSD networks can generate a series of
fixed-size borders and the possibility of the containing target in each border. Finally, the final detection
and recognition results are calculated by the non-maximum suppression algorithm [48]. The structure
of SSD networks is shown in Figure 5, and it can be divided into four parts.
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Figure 5. The network model for signal modulation recognition.

Part 1: The networks for feature extraction. The initial part of SSD networks is the first layers of
VGG16 network, which is used as the primary network to extract the deep features of the whole input
image. Behind the primary network, the model structure is the pyramid networks, which contains
a series of simple convolution layers to make feature maps smaller and smaller. With the pyramid
network structure, we can get several feature maps with different scales.

Part 2: The design of the default box. In this part, we will design several feature default box for
different scales of feature maps. Each feature map at the top of the VGG16 networks is associated with
a set of feature default box. As shown in Figure 6, there are dotted borders at each position of 4 × 4 and
8 × 8 feature maps. These fixed-size borders are default boxes, and their scale parameters are designed
by the different feature maps scales. For example, assuming that we need M feature maps to predict,
the scale parameters of the default box are as follows:

Sk = Smin +
(Smax − Smin

m− 1

)
•(k− 1), k ∈ [1, m] (22)

where Smin is the bottom scale, and Smax is top scale. The length-width radio of feature default can be
expressed as: ar ∈ {1, 2, 3, 1/2, 1/3}. So the feature default box length is Wa

k = Sk
√

ar and the width is
Ha

k = Sk/
√

ar.

Figure 6. The Design of the default box.

224



Sensors 2019, 19, 4042

Part 3: Detection and Recognition. In this part, we can predict the target category and location.
We add a set of convolution kernels behind several different scales feature maps. Using these
convolution kernels, we can get a fixed set of test results. For an m × n × p feature maps, a small
convolution kernel with 3 × 3 × p size is used as the fundamental prediction element. Finally, the
classification probability of each feature default box and the offsets are obtained.

Part 4: Non-maximum suppression. In the last part, we use non-maximum suppression to select
the best prediction results. For the feature default boxes that are matched by each real target border,
we calculate their intersection-parallel ratios. The expression is shown as follow

IoU = (A∩ B)/(A∪ B) (23)

where A and B are two borders. We will select the feature default box whose IoU are greater than 0.5
as best results, and then obtains the highest confidence degree feature default box by non-maximum
suppression.

In offline train stage, the whole objective optimal function of the SSD networks includes two parts:
confidence loss and location loss. The expression is shown as follow

L(x, c, l, g) =
1
N

(
Lcon f (x, c) + αLloc(x, l, g)

)
(24)

where x is used to indicate whether the feature default box is a target or not. N is the number of
the feature default boxes that are matched to real target borders. Parameter α is used to adjust the
radio between Lcon f and Lloc, default α = 1. Lcon f is softmax loss function. Lloc is used to measure the
performance of the boundary box prediction, and in our initial research, we use the typical smoothL1

function to calculate

Lcon f (x, c) = −
N∑

i∈Pos

xp
ij log

(
ĉp

i

)
−

∑
i∈Neg

log
(
ĉ0

i

)
, ĉp

i =
exp

(
cp

i

)
∑

p cp
i

(25)

Lloc(x, l, g) =
N∑

i∈Pos

∑
m∈{cx,cy,w,h}

xk
ijsmoothL1

(
lmi − ĝm

j

)
(26)

where Pos and Neg represent all positive and negative borders, respectively. cp
i represents the

confidence degree for pth feature default matching ith target. lmi represents the prediction bias of the
i-th feature default box. (cx, cy) is the box center coordinates and (w, h) is the box width and height.
ĝm

j represents the deviation between the real target border gm
j and the default box dm

i . ĝm
j is calculated

as follow:ĝcx
j =

(
gcx

j − dcx
i

)
/dw

i , ĝcy
j =

(
gcy

j − dcy
i

)
/dh

i , ĝw
j = log

(
gw

j /dw
i

)
, ĝh

j = log
(
gh

j /dh
i

)
.

3.2. Multi-Inputs CNNs for Modulation Recognition

For signal modulation recognition task, the modulation set is {BPSK, QPSK, OQPSK, 8PSK,
16QAM, 16APSK, 32APSK, 64QAM}, because they are all belonging to amplitude-phase modulation
and we cannot distinguish each other from time-frequency characteristic in SSD network. Hence,
we use the eye diagram and vector diagram as the model inputs. The multi-inputs CNNs model is
shown in Figure 7. The initial size of the samples is 128 × 128, and we use softmax as the output layer’s
active function and relu as all other network layers’ active function.

The signal features extraction can be divided into three stages. On the first stage, we use 7 × 7
convolution kernels to convolute IQ eye diagram and vector diagram, respectively. To ensure the
dynamic range unification of the feature maps, we apply the batch normalization (BN) [49] on first
layer network outputs. We perform the max pooling operation on the BN feature maps. Then we
connect the feature maps from IQ eye diagram inputs.
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Figure 7. The network model for signal modulation recognition.

On the second signal feature extraction stage, we adopt the residual network structure to avoid
the degradation caused by the network over-depth. The basic structure of ResNet [50] is shown in
Figure 8. After the second feature extraction stage, each input feature maps are connected. After
the batch normalization in the third stage, we directly process the feature maps by global maximum
sampling to reduce the network parameters.

weight layer

weight layer
relu

F(x)

x

x
identity

F(x)+x relu

Figure 8. The basic structure of ResNet.

In the processing of network optimization, we adopt Adam algorithm [51] to solve the network
parameters optimal solution. The categorical cross-entropy error is chosen as the loss function, which is
represented as:

J1(w,b;x1,x2,x3,y) = −
N∑
i

(yi)
T log( f1(x1,i, x2,i, x3,i; w, b)) + λ1

∑
‖w‖2 (27)

3.3. The Description for Deep Learning Framework

According to above introduction of the signal detection network and the modulation recognition
network, we describe the use of our DL framework. Figure 9 presents the system model. The steps of
the model used are as follows:

226



Sensors 2019, 19, 4042

Target 
Wideband STFT Detection 

Network
Signal

Information

DDC
(Amplitude-

phase 
Signal)

Timing
Estimation

Sampling 
Rate 

Transformatio
n

Modulation
Recognition

 Network

Signal
Modulation

1

2

( )
( )
...
( )M

y n
y n

y n1

2

( )
( )
...
( )M

y n
y n

y n

Transmit
Symbols

Modulation
Type

Data 
Transform

Offline Train Online Test

 

Figure 9. System model.

Step 1: We construct the signal detection network and modulation recognition network and train
each network with their appropriate samples.

Step2: In the online testing phase, we perform STFT for the wideband signals, and use the trained
SSD networks to detect the signals in the time-frequency spectrum. In this step, we can obtain the center
frequency and start-stop time of each signal. And for MFSK signal, we can get its modulation format.

Step 3: For the amplitude-phase modulation signal, we can get the central frequency and start-stop
time in step 2. With this knowledge, we filter the target signal and use the envelope spectrum to
estimate the signal symbol rate. Then we down convert the signal and perform the matched filter by
using the estimated symbol rate.

Step 4: If the timing deviation exists in the target signal, it is necessary to extract the sample
value at the optimum sampling position for signal eye diagram and vector diagram. We use the
non-data-aided timing estimation algorithm in [52]. The specific expression is as follows, where L0 is
the length of the signal symbols, T is the sampling period and N is the oversampling number:

∧
τ = arg

⎧⎪⎪⎨⎪⎪⎩
NL0−1∑

k=0

∣∣∣∣∣∣s
(

kT
N

)∣∣∣∣∣∣2e−j2πk/N

⎫⎪⎪⎬⎪⎪⎭ (28)

Step 5: We alter the target signal sampling rate, and obtain the baseband signal with a maximum
delay 32 sampling period. Moreover, we generate the eye-diagram and vector diagram with the
processed signal.

Step 6: We use the trained modulation recognition network to identify the signal by its eye
diagram and vector diagram. Finally, we complete the signal detection and modulation recognition.

4. Results

In Sections 2 and 3, we have discussed the methods which convert complex signal samples into
images without noticeable information loss and introduced the structures of our DL framework. Table 1
shows the time complexity of our DL framework on the different process, in which N is the number of
signals in the wideband range. It can be seen that our framework has low time complexity due to the
evolution of GPUs, which is acceptable for many practical communication systems.

Table 1. The time complexity of the DL framework (ms).

Simple for Signal
Detection

Signal Detection Down Conversion
Simple for Modulation

Recognition
Modulation
Recognition

28.5 50.5 10.3 × N 20.8 10.6

We also have conducted several experiments to demonstrate the performances of the DL
framework for joint signal detection and modulation recognition in wireless communication systems.
Our experiments can be divided into two parts: (1) performances on multi-signals detection and
(2) performances on modulation recognition. The rest of this section is organized as follows
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Multi-signals detection: First, we show some results of our detection network, and explain
the reasons for these results. Then, we evaluate the model performances from three aspects:
the modulation format, carrier frequency, and start-stop time. We also compare our network with
other detection networks.

Signal modulation recognition: We evaluate our model recognition performances on each
modulated signal. We also discuss the network performances when the frequency offset exists.
Meanwhile, we compare our method with traditional methods and other DL based methods. Finally,
we discuss the influence of symbol and eye numbers and compare the performance between signal-input
networks and multi-inputs networks.

4.1. Performance on Signal Detection

For multi-signal detection, we need to know each signal carrier frequency, start-stop time and
modulation format. Figure 10 shows some detection results from our model. From Figure 10a,b,
it is indicated that our model is beneficial for multi-signals detection, and it can accurately estimate
the relevant information about each signal. Moreover, our model has very a promising application
prospect in engineering because it has a good visualization effect.

(a) (b) 

(c) (d) 

Figure 10. Cont.
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(e) 

 
(f) 

Figure 10. The SSD networks detection results. (a) ideal result 1; (b) ideal result 2; (c) not perfect result
1; (d) not perfect result 2; (e) no signal result 1; (f) no signal result 2.

To some extent, our model is not perfect yet, and there are still some aspects that need to be
improved. From Figure 10c,d, we can learn that once the signal length is large, the estimation of the
signal start-stop time is not precise, while the estimation of the carrier frequency is precise. The cause
of this phenomenon may be that the time-frequency spectrum has large deformation and extreme
length-with radio, while the natural image is not. Therefore, we need to further optimize the default
box in the SSD networks. Figure 10e,f show the network performance when there is no signal exists.
It can be observed that the model does not produce a false alarm, which is useful in engineering.

Figure 11 shows our model detection precision versus different SNRs. We choose the mean
Average Precision (mAP) as the performance index of the model. To calculate the mAP, we need to
calculate precision and recall. For calculating precision and recall, we need to identify True Positive (TP),
False Positive (FP), True Negative (TN), and False Negative (FN). Recall is defined as the proportion of
all positive examples ranked above a given rank. Precision is the proportion of all examples above that
rank which are from positive. The Average Precision (AP) summarizes the shape of the precision/recall
curve. Hence, the mAP is the mean of all the AP values across all classes as measured above. They can
be calculated as follows

Precision =
TP

TP + FP
, Recall =

TP
TP + FN

(29)

AP =

∫ 1

0
P(r)dr (30)

mAP =

∑
num_classes

APi

num_classes
(31)

It can be deduced that with the increase of the SNR, the mAP value of the SSD network is
increasing. When the SNR is 5 dB, the mAP value can reach 90% in IoU is 0.5. Different IoU thresholds
can lead to different results. Although the increase of the threshold can obtain more reliable signal
carrier frequency and start-stop time, it sacrifices the precision of signal detection. Besides, we can
adopt some traditional methods to further estimate these signal parameters. Finally, we choose 0.5 as
the threshold of IoU.
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Figure 11. The SSD networks performances.

Once we detected the signals, we need to evaluate the precision of the estimated parameters.
We use the normalized offset of the estimated and the actual parameters as the criterion of measurement.
They can be presented as follows:

Δ f =

∣∣∣ fpre − freal
∣∣∣

R
(32)

Δtstart =

∣∣∣tpre_start − ttrue_start
∣∣∣

T
, Δtstop =

∣∣∣tpre_stop − ttrue_stop
∣∣∣

T
(33)

where fpre is the predicted value of the carrier frequency, freal is the actual value of the carrier frequency,
R is the symbol rate, tpre_start and tpre_stop are the predict values of the start and the stop time, ttrue_start

and ttrue_stop are the actual values of the start and the stop time, and T is the signal duration. Table 2
shows the carrier frequency and the start-stop time precision when the signal is detected. It can be
seen that the precision of the carrier frequency is higher than start and stop time. These phenomena
are consistent with Figure 10c,d. And in future research, we need to combine the prior information of
the signal to design the default boxes and the networks.

Table 2. The offset in the estimation of the various parameters.

Offset Carrier Frequency Start Time Stop Time

0 dB 2.0% 35.2% 38.6%
5 dB 1.3% 22.3% 21.4%
10 dB 0.5% 9.6% 8.7%

We also compare our model performances with the RCNN networks and the Fast RCNN. From
Figure 12a, we can see that the mAP of the Fast RCNN and the RCNN is higher than the SSD networks,
but the improvement is not significant. And from Figure 12b, we can infer that the SSD networks
has considerable advantages in processing speed compared with the RCNN and Fast RCNN. Our
model processing speed can reach 0.05 s for each time-frequency spectrum, and such a computational
complexity is acceptable for many practical communications systems.
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(a) (b) 

Figure 12. Different networks performances. (a) performances for mAP; (b) performances for time.

4.2. Performance on Modulation Recognition

For signal modulation recognition, we set a series of experiments to test the network performances.
Figure 13a shows the recognition performances of each modulated signal under the different SNR.
It can be seen that the algorithm can still achieve better performance when the SNR is very low. Because
its modulation complexity, the performance of 64QAM signal is worse than other signals, but it still can
achieve 94% accuracy at 7 dB. For BPSK and OQPSK signals, they have distinct visual characteristics
from other modulated signals in the eye diagram and the vector diagram, which recognition accuracy
can reach 100% even in 0 dB. And it is also obvious that the recognition performance of circular
modulation signals {8PSK, 16APSK, 32APSK} is better than QAM modulation signal. To understand
the results better, the confusion matrices in different SNR levels are presented in Figure 13b–d. It can
be seen that the network shows excellent performance in discriminating BPSK, QPSK, OQPSK, 8PSK,
and 16APSK. Moreover, in our experiments, it can be seen that 16QAM is more likely confused with
64QAM, while 16APSK is more likely confused with 64QAM.

(a) (b) 

Figure 13. Cont.
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(c) 

 
(d) 

Figure 13. The performance of each modulation (a) classification accuracy for each modulation versus
SNR; (b) normalized confusion matrix in 0 dB; (c) normalized confusion matrix in 3 dB; (d) normalized
confusion matrix in 10 dB

For accuracy comparison, we consider four different modulation classification algorithms.

(1) Cumulant: A traditional signal processing algorithm using the fourth-order cumulant C40 as the
classification statistics [19].

(2) SVM-7: An ML-based algorithm using the SVM with seven features, including three fourth-order
cumulants C40, C41, and C42 and four sixth-order cumulants C60, C61, C62, and C63 [20].

(3) CNNs for IQ waveform: A DL-based algorithm using the CNNs with the signal IQ waveform [4].
(4) CNNs for constellation: An DL-based algorithm using the CNNs with the signal constellation [35].

Figure 14 presents the average classification accuracy of five algorithms versus SNR. The average
accuracy is obtained by averaging the classification performance of eight modulation categories. The
performance results of our algorithm outperform all other algorithms.

Figure 14. Different methods performance versus SNR.
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Considering the error of the carrier frequency estimation by SSD networks and FFT in practice,
we research the network recognition performance in different frequency offsets. We set a series of
frequency offset for signals, and the result is shown in Figure 15. It can be seen that the recognition
accuracy of the signals with a frequency offset is lower than those without frequency offset. When the
signals have a large frequency offset, the network is no longer suitable. We also collect some signals
from a real satellite communication system, and the real-time wireless channel is performed in the
received signals. And then, we use a signal playback device, a DSP card, and PCs to simulate signal
reception process. From Figure 15a, we can obtain that the recognition accuracy on real data is lower
on simulated data at same SNR level. It may be due to the training data, which not consider the actual
channel environment clearly. But the recognition accuracy can still reach 90% when the SNR is 4 dB.
And for further research, we will make full use of the real signal to make our model more robust.

 
(a) (b) 

 
(c) 

 
(d) 

Figure 15. The network performance on different frequency offsets range. (a) classification accuracy for
different frequency offset versus SNR; (b) normalized confusion matrix in 3 dB when the frequency
offset is [−0.01, 0.01]; (c) normalized confusion matrix in 3dB when the frequency offset is [−0.02, 0.02];
(d) normalized confusion matrix in 10 dB when the frequency offset is [−0.1, 0.1].

We also consider the influence of the symbol numbers and the eye number in eye diagram on
the network performance. We obtain the best parameter settings of samples by grid search. The
symbol number is set as 200, 400, 800, and 1000, respectively, while the eye number is set as 2, 3, 4,
and 5. The results are shown in Figure 16. It can be seen that theses parameters do affect network
performance. With the increase of symbol number and eye number, the overall accuracy of the model
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is gradually increasing. But we also can see that when the symbol number is 1000 and the eye number
is 5, the improvement of performance is not obvious. Therefore, we finally choose 800 symbols and
4 eye numbers to generate the eye diagram and the vector diagram.

Figure 16. The network performance on the different sample parameters.

Finally, we compare the performance of the single input network with the multi-inputs network
in this work. The results are shown in Figure 17. The modulation recognition algorithm based on a
single eye diagram has poor performance. The performance of the I-eye diagram is lower than that of
the Q-eye diagram, which may be due to the setting of the initial phase in the same modulation format.
And the performance of the vector diagram based method is also inferior to our method, since it does
not make full use of the signal waveform information.

Figure 17. The network performance on the different input model.

5. Conclusions and Discussions

In our research, we have demonstrated our initial efforts to establish a DL framework for
multi-signals detection and modulation classification problem. In our method, the time-frequency
spectrums are exploited for multi-signals detection task, while the eye-diagrams and vector diagrams
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are exploited for the modulation classification task. The simulation results prove that DL technologies
have the ability to solve the problems in the communication field and have higher performance than
other methods.

However, in the future, we will do more rigorous analysis and more comprehensive experiments.
Besides, for practical use, we will collect the samples generated from the real channels, and then retrain
or fine-tune the model for better performance.
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Abstract: The control effect of various intelligent terminals is affected by the data sensing precision.
The filtering method has been the typical soft computing method used to promote the sensing
level. Due to the difficult recognition of the practical system and the empirical parameter estimation
in the traditional Kalman filter, a neuron-based Kalman filter was proposed in the paper. Firstly,
the framework of the improved Kalman filter was designed, in which the neuro units were introduced.
Secondly, the functions of the neuro units were excavated with the nonlinear autoregressive model.
The neuro units optimized the filtering process to reduce the effect of the unpractical system model
and hypothetical parameters. Thirdly, the adaptive filtering algorithm was proposed based on the new
Kalman filter. Finally, the filter was verified with the simulation signals and practical measurements.
The results proved that the filter was effective in noise elimination within the soft computing solution.

Keywords: kalman filter; nonlinear autoregressive; neural network; noise filtering

1. Introduction

In the typical control systems, the measurement is the primary component that senses the system
status and provides the input information. The measurement accuracy influences the control effect
directly. Especially in intelligent terminals, such as industrial robots, unmanned aerial vehicles and
unmanned vehicles, various sensors are implemented to measure the motion state and working
condition. The sensors are expected to be of high precision. However, the precision is limited by the
manufacturing technique when the intelligent terminals are with small size and low cost relying on the
micro-electromechanical sensors [1,2]. For the complicated noises, it is essential to filter the noises.
Then the motion state and condition can be estimated accurately for the target tracking and control.

In the noise filtering and state estimation field, many methods have been studied, such as the wavelet
filter [3], time-frequency peak filtering [4], empirical mode decomposition [5] and the Kalman filter [6].
These filtering and estimation algorithms are often based on the mathematical models and established
using the iterative schemes [7–9] or recursive schemes [10,11]. Some filtering-based estimation
algorithms use input-output representations [12,13], and others use state-space models [14–16].
Among these methods, Kalman filter is a state estimation algorithm based on the state-space model.
It introduces the state space into the stochastic estimation theory and obtains the optimal estimation
without requiring a vast amount of historical data. However, it is obvious that the Kalman filter
depends highly on some assumptions that the system model is linear, the process and measurement
noises are standard Gaussian, and their covariance matrixes are all known. When these assumptions
are seriously limited in reality, two categories of methods have been explored. On the one hand,
the adaptive Kalman filter (AKF) was proposed focusing on the parameter adjustment to approximate
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the filtering process to the practical system. Then common AKF includes innovation-based adaptive
estimation (IAE) [17], multiple model adaptive estimation (MMAE) [18] and adaptive fading Kalman
filter (AFKF) [19]. On the other hand, some methods focus on nonlinear systems, such as extended
Kalman filter (EKF) [20], unscented Kalman filter (UKF) [21], noise-robust filter [22] and other estimation
methods [23,24]. The two categories of the methods try to describe and represent the system features
with the variable approximation. The filters will be efficient if the alternative expression of the model
and parameter is similar to the system dynamic characteristic.

The methods above mainly extract and represent the system characteristics with the existing
information. While the characteristic extraction is the specialty of machine learning, the artificial neural
network (ANN) has been introduced in noise filtering and state estimation. The leading solution is the
distributed mode in which Kalman filter and ANN are applied separately in sequential order [25–27].
In the mode, the neural network mainly preprocesses or reprocesses the data before or after the filtering
process. However, the inner relation in the Kalman filter has not been explored deeply with ANN.
Then it becomes an issue on how to extract the relationship of parameters in the Kalman filter and
optimize the filtering results with the limited existing information.

Because of the advantages in Kalman filter and the neural network, a new neuron-based Kalman
filter is built in this paper. It mainly enhances the filtering process with the existing information.
The potential numerical relation of the intermediate variables in the Kalman filter is explored with the
feature extraction and nonlinear fitting ability of the neural network. In the paper, neurocomputing
is integrated with the inner components of the Kalman filter. The nonlinear autoregressive model is
introduced and constructed to predict and modify the critical intermediate variables in the Kalman
filter. The simulation and practical experiments have verified the precision and feasibility of the
proposed filter.

This paper is organized as follows: Section 2 introduces the underlying theory and related works
on noise filtering. Section 3 presents the main proposed filter with the framework and network design.
The simulation and experiment are designed and conducted in Section 4. The results and work are
discussed in Sections 5 and 6 finally concludes the paper.

2. Related Work

As the typical filtering method, the Kalman filter is selected as the basic framework in this paper.
The basic theory and developments of the Kalman filter are introduced firstly. Then the related work is
presented on the integration of the filter and neural networks.

2.1. Kalman Filter and Its Improvement

Because of its clearness and convenience in computer calculation, the Kalman filter has been the
classical method in the filtering and estimation of Gaussian stochastic systems [28,29]. It is applied
widely in target tracking [30], integrated navigation [31], communication signal processing [32], etc.
Kalman filter introduces the state space description in the time domain, in which the estimated signal is
set as the output of the stochastic linear system in the action of white noise. Kalman filter is appropriate
for the stationary process and the non-stationary Markov sequence.

For the detailed analysis in the paper, the main algorithm of the Kalman filter is presented here.
The discrete model can be expressed as:

x(k + 1) = A(k)x(k) + w(k) (1)

z(k) = C(k)x(k) + v(k) (2)

where x(k) is the to-be-estimated variable or state variable, z(k) is the measurement value from sensors,
A is the state transition matrix or process matrix, C is the measurement matrix, w(k) is the process
noise, v(k) is the measurement noise. The concrete Kalman filter algorithm is shown as follows:
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(1) State estimation updating:

x̂(k
∣∣∣k) = x̂(k

∣∣∣k− 1) + K(k)[z(k) −C(k)x̂(k
∣∣∣k− 1)] (3)

(2) One step forward prediction:

x̂(k
∣∣∣k− 1) = A(k− 1)x̂(k− 1

∣∣∣k− 1) (4)

(3) Filtering gain calculation:

K(k) = P(k
∣∣∣k− 1)CT(k)[CT(k)P(k

∣∣∣k− 1)C(k) + R(k)] (5)

(4) The variance of the state estimation calculation:

P(k
∣∣∣k− 1) = A(k− 1)P(k− 1

∣∣∣k− 1)AT(k− 1) + Q(k− 1) (6)

P(k
∣∣∣k) = [I −K(k)C(k)]P(k

∣∣∣k− 1) (7)

where x̂(k
∣∣∣k) is the posterior estimation, x̂(k

∣∣∣k− 1) is the prior estimation which is also called the
prediction, K is the filtering gain, P is the variance of the state estimation, Q is the variance of the
process noise, R is the variance of the measurement noise.

There are assumptions in Kalman filter, namely that the process and measurement noises are
standard Gaussian noises, and their covariance matrixes are all known. The assumptions deviate
from the real systems. Then many studies have been carried out to improve Kalman filter from
different solutions.

Some improvements were proposed for the nonlinear system, and the typical methods include
EKF [20] and UKF [21]. In EKF, the Taylor expansion of the nonlinear function is truncated with
the first-order linearization, and other higher-order terms are ignored. Then the nonlinear problem
can be transformed into the linearity, which is suitable for the Kalman filter. In UKF, the prediction
measurement values are represented with the sampling points, and the unscented transformation is
used to deal with the nonlinear transfer of mean and covariance. EKF and UKF have been improved,
as well as the integration with other methods [33–35].

Aside from nonlinear system methods, AKF methods have been studied to solve problems where
mainly the settled and experiential parameters are given. The representative IAE [17], MMAE [18],
and AFKF [19] are proposed based on the thought that the model parameter and noise statistics are
modified with the observation and judgment during the filtering process. From a literature search,
it was seen that some improvements in AKF [36–38] were presented recently. In the latest work [38],
the colored noise is analyzed with the adaptive parameter. The second-order adaptive statistical model
and Yule-Walker algorithm are used to recognize and filter the noises. The work is one of the latest
representative improvements of AKF, and it can be set as a contrast in the experimental research.

The two categories of methods above, nonlinear and adaptive filters, mainly improve the filtering
performance from the approximate system modeling and parameter adjustment. They are conducted
based on inherent mathematics and statistic derivation. They provide an effective solution to promote
the Kalman filter in the system mechanism analysis idea. The filtering and prediction are based on
the mathematical models by assuming that the model parameters are known or estimated using
some parameter identification methods, including the iterative algorithms [39–41], the particle-based
algorithms [42–44] and the recursive algorithms [45–48].

2.2. Filter with Neural Network

The methods in Section 2.1 improve the Kalman filter by modifying the system model and
parameters based on the mathematic mechanism. The idea can be carried out with another data-driven
solution. For the filtering parameter adjustment, the core task is to find and express the relation between
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parameters and process data, which meets the ability of neural networks. ANN has caused great
concerns again with the trends of deep learning and artificial intelligence. ANN can fit the nonlinear
model with excellent performance. It can solve the nonlinear and time-varying problems without a
concrete internal mechanism model. For the problematic modeling of process and noise in the Kalman
filter, ANN can be considered as a helpful tool to reconstitute the unknown elements in the filter.
Scholars have made some efforts to explore the integrations of ANN and Kalman filter. The related
research can be divided into two categories, including the distributed and crossed integration.

2.2.1. Distributed Integration of Kalman filter and ANN

For the distributed integration, Kalman filter and ANN are applied separately in sequential order.
Liu et al. [25] smoothed the measurement value with the Kalman filter, and the filtered results were set
as the input of the backpropagation neural network (BPNN). Hu et al. [49] estimated the target location
with Kalman filter and the estimation was imported into BPNN to classify the targets. Liu et al. [50]
utilized Kalman filter and fuzzy neural network (FNN) in a multi-source data fusion framework of
an adaptive control system, in which data was processed firstly with Kalman filter, and the filtered
results were set as the input of FNN. Others [26,27,51] used a Kalman filter and ANN in reverse order,
in which ANN is constructed before the Kalman filter. Leandro et al. [26,27] built up BPNN to predict a
variable, which is an important state variable in the Kalman filter. Cui et al. [51] proposed a radial basis
function neural network (RBF) to train the GPS signals, and the RBF output is the input of adaptive
Kalman filter, aiming at improving the processing precision.

2.2.2. Crossed Integration of Kalman Filter and ANN

Different from the methods above, Kalman filter and ANN are combined in a tight pattern,
in which ANN is applied during the internal filtering procedure. Shang et al. [52] predicted the model
error in the filter with FNN, and the error level was considered to confirm the measurement noise
covariance, which was set as 0 or infinity. Li et al. [53] thought that the gain of EKF was usually
modified with the erroneous measurement, which reduced the gain precision. They used BPNN to train
the gain with the input of measurement, estimation, and error, and then the precision was increased.
Deep neural networks [54] have been studied recently. Pei et al. [55] combined a deep neural network
with the Kalman filter in the emotion recognition of the image and audio. The features extracted by the
deep neural network were input into the switching Kalman filter to obtain the final estimation results.

In the research reported in the literature, more works are conducted in the first separately
distributed mode, in which Kalman filter and ANN process the data respectively. The mode does not
adjust the inner parameters of the Kalman filter. The works of tightly crossed integration are relatively
few. They can be improved with the relation exploration in filter parameters with ANN. Besides,
the category and structure of the neural network can be studied to meet the demand for filtering
calculation procedures.

3. Neuron-Based Kalman Filter

3.1. Framework of Neuron-Based Kalman Filter

Kalman filter provides a feasible framework to filter the noises and estimate the system state.
The components of the Kalman filter can be divided into two categories, namely the models and
intermediate variables. The models describe the system dynamic and the measurement process,
including the system process equation and measurement equation. The intermediate variables
influence the filtering results seriously, but they are difficult to determine in practice. In this paper,
the effect of the intermediate variables on the filtering is explored with neural networks. The neurons
are integrated into the Kalman filter, and the neurons can help to optimize the filtering process with
the limited existing information.
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The main influence factors of Kalman filter include the process equation, process noise,
and measurement noise, expressed as the matrix A, Q and R. Notably, the noise variances are
the critical intermediate variables that affect the estimation results. The effect of noise variances is
expressed in the filtering gain K, and the filtering gain determines the estimation result as an important
weight. In the optimizing thought with the neurons, the influence relation of the filtering results and
the variables should be explored. Then the framework of the integrated Kalman filter is designed
firstly, shown in Figure 1, and the concrete design ideas will be interpreted later.
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Figure 1. Framework structure of the neuron-based Kalman filter.

Considering the prediction process of the Kalman filter in Equation (4), the estimation result is
affected by the precision of the process equation. The process equation describes the system change
along the time, but the common simplified equation is difficult to model the actual system. In the
view of data-driven, the core of the process equation is the time series relation of the system change.
And the time series can be modeled well with neural computing. Then a neuro unit is introduced to
model the process in a black-box thought. The first neuro unit can be expressed as:

x̂(k) = f1(K(k), K(k− 1), K(k− 2), · · · , x̂(k− 1), x̂(k− 2), · · · ) (8)

The inputs in the first neuro unit are the filtering gain K series and the state estimation value x̂ at
the previous time points, represented with k− 1, k− 2, · · · . The output is the estimation x̂ at the time k.
The key to the model is the fitting function f1 which aims at the excavation of the time series features in
the estimated variables and intermediate filtering variables. As a vital variable, the filtering gain K is
obtained from the variance of process and measurement noise Q and R, and it can represent the noise
features to some extent. Therefore, the filtering gain is set as an input to transmit the noise features to
the system process model. The output estimation value is related to the state at the previous time and
the filtering gain. Then the new estimation can be regarded as a more accurate predictive value of the
system, and it replaces the initial prediction value in Equation (4) to continue the computing process of
the Kalman filter.

For neural computing, it needs training with the existing data. In the training of the first neuro
unit, the filtering process data and the final estimation result are collected as the training set. In detail,
the series data of the filtering gain from time step (k−m) to k and the estimation value from (k−m) to
(k− 1) are set as the training input data, where m is the prediction length set in the neural computing.
The estimation value at k is set as the training output. In fact, the previous one-step prediction value is
optimized with the final estimation value in the network. The fitting function f1 can be obtained with
the training data and the learning algorithm which will be discussed in Section 3.2.

Considering the final estimation process of Kalman filter in Equation (3), the estimation result is
determined by two parts, of which one is the prediction value, and the other one is the measurement
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residual error. The second neuro unit is built to discover the mapping relation between the two parts
and the final estimation result, expressed as:

x̂′(k) = f2(K(k), K(k− 1), · · · , z(k), z(k− 1), · · · , x̂(k), x̂(k− 1), · · · ) (9)

The inputs of the second neuro unit are the measurement value z, the prediction value x̂ and
the filtering gain K at the previous time points, represented with k − 1, k − 2, · · · The output is the
final estimation value x̂′ at the time k. The final estimation synthesizes the measurement and the
filtering intermediate variables such as the noise variance matrix (reflected by the filtering gain) and the
prediction variables. The function f 2 is trained to realize the synthetization. In the training, the values
of K, z, x̂ from (k−m) to k are set as the input, and the final estimation value x̂′ at k is set as the output.

It can considered that the estimation via the neuro units is an effective supplement and amendment
of the estimation in Kalman filter. Then the new final estimation value can be obtained by synthesizing
the two estimation values from the neural computing and Kalman filter:

x̂(k
∣∣∣k) = (1− α)x̂(k

∣∣∣k) + αx̂′(k
∣∣∣k) (10)

where x̂(k
∣∣∣k) is from Kalman filter, x̂′(k

∣∣∣k) is from the neuro unit. (1− α) and α are the weights of the
two estimation values. α is determined by the validation error of the neuro unit, and:

α =
n∑n

i=1

∣∣∣(dv
i − di)/di

∣∣∣ (11)

where d is the validation set during the neuro unit training, dv is the output of the neuro unit for the
validation set, n is the number of data in the validation set.

3.2. Neuro Units Based on Nonlinear Autoregressive Model

In the framework of the neuron-based Kalman filter, the critical components are the neuro units
which analyze the intermediate variables to support the final filtering result. Referring to the demand
analysis of the two units, the two functions in Equations (8) and (9) should be able to fit the nonlinear
relation in multiple variables. Moreover, they should excavate the time-series features in the data.
With the two aspects of the demands, the nonlinear autoregressive model with exogenous input
(NARX) can be the appropriate solution [56,57]. NARX derives from the time series autoregressive
analysis, and it is effective in the reconstitution of the nonlinear systems. The availability of NARX has
been proved by various applications [58–60].

NARX belongs to the recurrent neural network. It has a learning efficiency with the better gradient
descent. The nonlinear relation between the inputs and outputs in NARX can be expressed as follows:

y(t + 1) = φ(y(t), y(t− 1), · · · , y(t− n), u(t + 1), u(t), · · · , u(t−m)) (12)

where y(t + 1) is the output to be predicted, y(t) to y(t − n) are the historical outputs, u(t + 1) to
u(t−m) are the related inputs which last to the current moment. φ represents the nonlinear relation
between inputs and outputs, and it also represents the structure of NARX, shown in Figure 2.
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y(t+1)

u(t+1)
u(t)
u(t-1)

y(t)
y(t-1)

Figure 2. Structure of NARX.

NARX consists of the input layer, hidden layer, and output layer. The transfer function of NARX
is similar to the backpropagation neural network, and a one-hidden-layer network is shown as follows:

f (·) = g(
∑
ωhh(·)) (13)

h(·) = r(
∑
ωiui) (14)

where g and r are the activation functions of the output, ωh is the node weight in the hidden layer,
h(·) is the activation function of the hidden layer, ωi is the weight of all inputs. The vector form of ωh
and ωi are represented with W in Figure 2.

Based on the primary NARX structure, the two neuro units in the neuron-based Kalman filter can
be designed concretely, which are shown in Figure 3.

  
(a) First unit to predict the state variable (b) Second unit to estimate the final state 

K(k-2)

K(k-1)

K(k)
x k

x k −

x k −

x k

x k −x k −

K(k-2) K(k-1)

K(k)

z(k-2) z(k-1)

z(k)

Figure 3. Concrete structures of the two neuro units in the proposed Kalman filter.

For the neuron units in Figure 3, the concrete scale can be determined with the traditional empirical
mode in the shallow neural network. The number of the hidden layer is set as one according to
the number of input and output variables. The number of hidden nodes can be determined with
the equations, such as n = log2 p, n =

√
p + q + a, where n is the number of hidden nodes, p is

the number of input nodes, q is the number of output nodes, and a is a constant between 1 and
10. Besides, the number of hidden nodes can be adjusted in the network training, following the
network performance.

Based on the static construction of the neural network, the appropriate training method should
be selected to obtain favorable dynamic performance. The gradient descent method is the core
solution in neural network training. Some improved algorithms have been proposed. Levenberg-
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Marquardt (L–M) [61,62] is a rapid training method that combines the basic gradient descent method
and Gauss-Newton method. Its error target function is:

E(w) =
1
2

p∑
i=1

‖Yi −Yi
′‖2 =

1
2

p∑
i=1

e2
i (w) (15)

where Yi is the expected output, Yi
′ is the actual output, ei(w) is the error, p is the number of samples,

w is the vector consisting of network weights and threshold values.
The k-th iterative vector of weights and threshold values is wk, and the new vector is:

wk+1 = wk + Δw (16)

and the increment in L–M is calculated as:

Δw =
[
JT(w)J(w) + μI

]−1
JT(w)e(w) (17)

where I is the unit matrix, μ is the learning rate, J(w) is the Jacobian matrix, and:

J(w) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂e1(w)
∂w1

∂e1(w)
∂w1

· · · ∂e1(w)
∂w1

∂e1(w)
∂w1

∂e1(w)
∂w1

· · · ∂e1(w)
∂w1

...
...

. . .
...

∂e1(w)
∂w1

∂e1(w)
∂w1

· · · ∂e1(w)
∂w1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(18)

With the training method, the neuro units can be built with the anticipative functions. Then the
improved Kalman filter can be established with the functional neuro units.

3.3. Adaptive Filtering Algorithm

In the framework of neuron-based Kalman filter, two neuron units are introduced into the basic
consistent of Kalman filter. The input, output, and inner structure of the neuro unit are designed to
improve the filtering. Finally, the adaptive filtering algorithm based on the improved Kalman filter is
proposed here, in which the neuro units are trained firstly and applied to the filter. The flow of the
algorithm is presented in Figure 4.

As shown in Figure 4, the algorithm consists of two parts, namely the training process on the left
and the filtering process on the right. The concreter flow of the algorithm is as follows:

(A) Training process

(1) The system and measurement equations are established according to the object.
The parameters in the Kalman filter can be initialized with empirical values.

(2) The primary calculation of the Kalman filter is conducted iteratively following Equations
(1)–(7). The measurement vectors are imported into the filter along with time.
The intermediate and final values are recorded, including the one-step prediction value,
Kalman gain, measurement, estimation result, etc. The recorded values are all labeled
with a time stamp. Meanwhile, the iterative steps should be no less than about 150 for the
following neuro unit training. The number of sample steps may be adjusted according to
the complexity of signals.

(3) With the filtering values in step 2, they are marked with the step number to form the time
series sets. Then the prediction value and filter gain are imported into the first neuro unit.
The prediction value, filter gain, and measurement are imported into the second neuro
unit. The estimation result is set as the reference output of the two units.
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(4) The neuro units are trained with the learning method L–M in Section 3.2. The trained neuro
units are obtained when the preset iteration conditions are met, including the numbers of
iteration or the convergence error.

(B) Filtering process with trained neuro units

(5) Based on the model equations and the initialized parameters in Kalman filter, the initial
variable and filter gain are imported into the first neuro unit, and the prediction value is
outputted and set as the basis of prediction error.

(6) The filter gain is updated and used to calculate the estimation value with the measurement.
Meanwhile, the prediction value, filter gain, and measurement are imported into the
second neuro unit to obtain another estimation value.

(7) The two estimation values are fused following Equation (10).
(8) The step moves forward to conduct steps (5)–(7) iteratively. In the iteration,

the measurement vectors are calculated along with time.

z(k)k++

K(k)

z(k)

k++

x k k −

P k k −

K k

x k k

P k k

x k k −

P k k −

x k k

x k k
x k k

P k k

Figure 4. Algorithm flow of the adaptive filtering with the neuron-based Kalman filter.

4. Experiment and Result

The simulation and practice experiments are conducted to test the filter proposed. In the
simulation, different noises are generated to simulate the complex noises in the sensors. In the
experiment, the wheeled robot path is measured with low-cost GPS. All the computing runs with
MATLAB 2017a on a PC equipped with an Intel Core i5-6200U CPU@2.30 GHz and 8 GB RAM.
The experiment setting and results are presented in this section.
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4.1. Simulation and Result

The common noises in sensors are the white noise and color noise. The signals with the two kinds
of noises are generated in the simulation. The two sets of the signals are:

x1(k) = σ(k) f (k) (19)

x2(k) = G(z−1) f (k) (20)

where f (k) is the Gaussian white noise. σ(k) is the standard deviation of f (k), and σ(k) = (L + k)/L,
L is the number of signal samples, and k is the sample number. G(z−1) is the transfer function of a
system which can be second order or third order to simulate the noise change process.

The first set is the approximately linear noises, and the second one is the sinusoidal noises,
corresponding to the white noise and color noise, respectively. In the simulation, the sampling
interval is 0.02 s. The numbers of signal samples are all 2000. That is, the sampling time is the 40 s.
The simulation signals are shown in Figure 5, in which the true values of x1 and x2 are 0.

(a) x1 signals 

(b) x2 signals 

Figure 5. Simulation signals with different noises.

In the filtering of the simulation signals, the system model is established with the classical Jerk
model, which also can be replaced with other motion models such as constant velocity, constant
acceleration, Singer, interacting multiple model algorithms, and so on. For the Kalman filter, the initial
state estimate x0 and covariance P0 are assumed to be x0 = [0 0 0]T and P0 = 1000*eye(4).

Because the neuro unit needs the training, the first 70% of the data are set as the training data,
and the rest is used to test the filtering result. In the setting of the two neuro units, the number of
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hidden nodes are set as 3 and 6, respectively. Other settings are also tested to obtain the optimal
performance. The training results of NARX are shown in Figure 6.

 
(a) Fist NARX neuro unit (b) Second NARX neuro unit 

Figure 6. Training results of NARX in integrated filter.

Based on the trained neuro units, the data are imported into the proposed filter to estimate the
variable values. For verifying the estimation performance, the traditional Kalman filter is set as a
contrast, abbreviated as KF. Moreover, the proposed filter can be regarded as a solution to adaptive
filtering. Then one of the latest improvements of AKF in [38] is also set as the contrast, abbreviated as
IAKF. The proposed filter in this paper is abbreviated as NKF. The filtering results are shown in Figure 7.
For the quantitative evaluation of errors, the mean absolute error (MAE) and root-mean-square error
(RMSE) are calculated and listed in Table 1.

(a) Result of signal x1 

(b) Result of signal x2 

Figure 7. Filtering results of simulation signals.
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Table 1. Evaluation of filtering errors.

KF IAKF NKF

Signal x1
MAE 0.3692 0.2550 0.2004
RMSE 0.4577 0.3170 0.2507

Signal x2
MAE 3.3379 1.2678 1.0294
RMSE 4.4763 1.8295 1.4429

For the first set of signals which are of the white noise, the results of the three methods are
relatively similar in the curve graph. NKF performs better slightly than the others. The trend is evident
in the error evaluation criteria. MAE represents the mean level of errors. MAE of NKF declines 45.72%
of KF and 21.41% of IAKF. RMSE shows the fluctuation degree of errors. RMSE of NKF decreases
45.23% of KF and 20.91% of IAKF.

For the second set, the filtering results show the distinguishable trends. The results of KF fluctuate
sharply and become diverging in the latter period. IAKF and NKF can trace the signals more closely,
and NKF is more effective in the intuitionistic graph. MAE of NKF has been reduced by 69.16% of KF,
and 18.80% of IAKF. The decreasing percentage of RMSE reaches 67.77% and 21.13% for NKF to KF
and IAKF. The error reduction of the second set is larger than the first set.

4.2. Practical Experiment and Result

Except for the simulation, a practical experiment is also conducted to verify the proposed method.
A trajectory of the wheeled robot (shown in Figure 8) is measured on the playground, and the
presupposed trajectory is presented in Figure 9. The robot started from the top right corner and ended
at the same point. A low-cost GPS receiver is used to obtain the location information, including the
longitude and latitude. The relative coordinates are transformed from the longitude and latitude:

d = 111.12 · cos
1

sinφt−1 sinφt + cosφt−1 cosφt(λt − λt−1)
(21)

where d is the displacement, φ is the latitude and λ is the longitude. The displacement can be
decomposed into the coordinates on a plane. The measurements and true trajectory in the relative
coordinates are shown in Figure 10.

 
Figure 8. Wheeled robot used to measure the trajectory, and the robot is developed and assembled by
laboratory of system engineering in Beijing Institute of Technology, Beijing, China.
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Figure 9. Presupposed trajectory in the practical experiment.

Figure 10. Relative coordinates transformed from the practical trajectory measurements.

In this part, the data of the whole trajectory is filtered firstly. Then a segment of the trajectory in
another measurement is tested again.

4.2.1. Result of the Whole Trajectory

Similar to the simulation, the traditional Kalman filter and improvement of AKF in [38] are set as
the contrast methods. The filtering results are shown in Figure 11, including the distance in the x-axis,
y-axis, and x-y plane. The absolute errors are shown in Figure 12, and the evaluation indexes are in
Table 2.

(a) Displacement in x-axis 

Figure 11. Cont.
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(b) Displacement in y-axis 

(c) Whole trajectory in the x-y plane 

Figure 11. Filtering results of the whole trajectory.

(a) Absolute error in x-axis 

Figure 12. Cont.
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(b) Absolute error in y-axis 

Figure 12. Absolute errors of displacement in x and y axes.

The results in Figure 11 show intuitively the small differences in the filtering results, and it is
because the difference is in the order of magnitudes less than 1 m. The differences are more evident in
the absolute errors in Figure 12. The general trends of the filtering results with the three methods are
similar to the pattern of the second set signal in the simulation. It is because that the noises in the real
sensors mainly are the color noises instead of the white noises. The basic Kalman filter performs badly
in the practical system. Its results are unsteady and diverging along with the time. NKF perform better
than others in various time periods besides the beginning. The neuro unit based on NARX reaches
stable performance after the drastic fluctuation, which usually occurs at the beginning. Therefore,
NKF is superior to the Kalman filter on the whole without the initial period. The performance can be
analyzed quantitatively with the error criteria in Table 2.

Table 2. Evaluation of filtering errors (whole trajectory).

KF IAKF NKF

x axis
MAE 3.8730 1.3117 1.3048
RMSE 4.6732 1.9079 1.6594

y axis MAE 3.7327 1.3184 1.1651
RMSE 4.5560 1.7578 1.6430

The general trend is consistent in the x-axis and y-axis for the three indexes. There is a conspicuous
promotion in MAE for NKF and the RMSE of NKF declines about 6% with the Kalman filter and 8%
with IAKF.

4.2.2. Result of Segment in the Trajectory

To test the proposed filter with more data, a segment of the whole trajectory is selected from one
of the multiple measurements, which is not in the same measurement with the whole trajectory above.

The data from 180 s to 450 s are selected, including the displacements in x-axis and y-axis.
The contrast methods are the same as the experiment above. The filtering results are shown in Figure 13,
and the evaluation indexes of errors are listed in Table 3.
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(a) Displacement in x-axis 

(b) Displacement in y-axis 
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Figure 13. Filtering results of the selected segment of the trajectory.

Table 3. Evaluation of filtering errors (segment of the trajectory).

KF IAKF NKF

x axis
MAE 4.0157 2.0905 1.7159
RMSE 4.7610 2.5017 2.0879

y axis MAE 3.8769 1.7897 1.5230
RMSE 4.5707 2.1330 1.8024

It can be found from Figure 13 that the general trend is similar to the results of the whole trajectory
in Figure 11. The results of NKF and IAKF are intuitively approximately the same. From careful and
detailed identification in the magnifying subfigure, the proposed NKF can filter the noises closer to the
true value than other methods. In the results of the x-axis and y-axis, the basic KF performs badly with
the obvious deviation.

The filtering performance can be evaluated more accurately with Table 3. For results in the x-axis,
MAE of NKF is 32.73% of KF, 82.01% of IAKF. RMSE of NKF is similar to IAKF, but relatively lower
than KF. The trend of results in the y-axis is consistent with the ones in x-axis. Compared with the
error indicators in Table 2, the errors of the segment are larger than the whole trajectory, which may be
due to the fewer data to train the neural networks.
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5. Discussion

In this paper, a novel Kalman filter is designed by introducing neural computing. Simulations
and experiments are carried out, and the results are presented and described briefly. Following the
results, the methods are discussed in this section.

From the filtering results of simulation signals and practical measurements, it can be proved that
the proposed filter can eliminate the noises to the anticipated degree. It performs distinctly better than
the traditional Kalman filter, especially for complex noises. Besides, the proposed filter can achieve
the latest improvements of AKF. The core thought of the proposed filter is to obtain more knowledge
from the existing limited data during the filtering procedure. The process variables in the filtering are
reutilized with the neural units, while the reutilization in AKF [36–38] is conducted with statistical
methods. Therefore, the proposed filter can be regarded as a new exploration of parameter adjusting,
which is similar to the essential thought of AKF.

In the proposed filter, the neuro unit is built based on the nonlinear autoregressive model.
The neuro unit specializes in the nonlinear time-series feature extraction with a small-scale structure.
Although many more networks have been proposed, it should be conservative in the selection of
networks. The complex network may destroy the efficient and straightforward features of the Kalman
filter. Besides, the complex network may be not suitable for the terminal applications without the
high-performance processor.

Except for the intuitive estimation results, the computational complexity can be analyzed for the
proposed and contrast method. According to the basic evaluation method of computational complexity,
the complexity of KF, IAKF, and NKF is O(n2), O(n2) and O(n3), respectively, where n is the number of
state variables. The complexity of NKF increases because dual matrix multiplication is introduced by
neuro units. The operation time is also recorded in the experiment, shown in Table 4.

Table 4. Operation time of different methods in simulation and experiment (time unit: s).

Simulation Practical Experiment (Whole Trajectory)

Signal x1 Signal x2 x Axis y Axis

KF 1.23 1.45 2.15 2.09
IAKF 1.37 1.73 2.32 2.43
NKF 1.27 1.79 2.41 2.24

For computing time, the methods distinct slightly, although the complexity of NKF is higher.
However, an important fact that cannot be ignored is the training of the neuro units. The time above is
the test procedure, while NKF needs prior training. The training time is between 3 s and 7 s, according
to the preset convergence conditions. In this paper, the training requires historical data in the offline
mode. The filtering is conducted after the training, which reduces the real-time performance. It is
the challenge how to realize online learning along with the filtering process, which can be studied in
the future.

The neurons in the proposed method work well from the experiment results. Although a good
filtering performance has been obtained, the inherent mechanism of the proposed method is actually
not completely clear. Hence the theoretical analysis should be conducted, and the effect of the neural
network on the filter should be deduced in the view of numerical analysis in the future.

In the proposed method, ANN inspired us to optimize the intermediate factors and calculating
process in the Kalman filter with the black-box thought. It mainly solves the problem of modeling and
parameter adjusting of the traditional filter. It can be a useful tool in the target tracking, trajectory
estimation, and pedestrian navigation, especially in the situations of inexperienced modeling of
complex systems and the parameter settings.
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6. Conclusions

For the intelligent terminals and objects in the internet of things, it has been the vital task to
sense the environment and self-status accurately. An improved Kalman filter is proposed with neural
computing for accurate sensing. Kalman filter provides a favorable framework in which the system
model can be replaced according to the concrete applications. The neuro unit based on NARX is a
powerful tool to examine nonlinear and time-series relations. The proposed filter focuses on the data
change features and tries to lower the impact of model analysis. In future work, the stability and
rapidity of neural computing should be studied deeply. The neuron-based Kalman filter can develop
more fully with smarter and faster online neural computing. Moreover, the theoretical derivation
should be carried out to support the neuro-based filter. The proposed method can combine other
identification approaches [63–66] to study the modeling and filtering problems of other dynamic time
series and stochastic systems with colored noises [67–70], and can be applied to other fields [71–74],
such as signal modeling and control systems [75–79] studied in other literature [80].
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Abstract: Internet of things (IoT) systems generate a large volume of data all the time. How to choose
and transfer which data are essential for decision-making is a challenge. This is especially important
for low-cost and low-power designs, for example Long-Range Wide-Area Network (LoRaWan)-based
IoT systems, where data volume and frequency are constrained by the protocols. This paper presents
an unsupervised learning approach using Laplacian scores to discover which types of sensors can
be reduced, without compromising the decision-making. Here, a type of sensor is a feature. An IoT
system is designed and implemented for a plant-monitoring scenario. We have collected data and
carried out the Laplacian scores. The analytical results help choose the most important feature.
A comparative study has shown that using fewer types of sensors, the accuracy of decision-making
remains at a satisfactory level.

Keywords: Laplacian scores; data reduction; sensors; Internet of Things (IoT); LoRaWAN

1. Introduction

The Internet of Things (IoT) interconnects and embeds objects, machines and devices,
forming a highly distributed network of device broadcasting with humans and other devices [1].
Recent application areas progressing within the IoT sector include smart cities, agriculture, building,
healthcare, and shopping [2–4]. This paper proposes an open-source [5] and low-cost Long-Range
Wide-Area Network (LoRaWAN) solution for strawberry-plant monitoring.

Conducting data-mining on raw IoT data will help to reduce the cost of powering sensors,
the amount of packet transmission, latency, and response delay [6]. Moreover, the discovery of
information from raw data improves system performance. Data-mining generates knowledge models
from data received to support decision-making. Common methods include data compression,
data-mining, and data reduction [6].

Recent research introduces a range of methods, including compression [7] and reconstruction [8],
aggregation [9], redundancy removal, and reduction of the number of sensors [6] using time-discounted
histogram encoding. To replace multiple sensors that send appliance energy usage in households,
smart phone data is used as the only data source to estimate user activities [10]. A lightweight
monitoring framework has been developed to cope with limited processing capabilities. It adapts
the amount of data disseminated through the network over time [11]. Another framework transmits
updates when the sensor readings are detected to be unusual, and have triggered dissemination [12],
adapting the monitoring sensing intensity and dynamically adjusting the data volume payload.
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Reducing the amount of data to be analyzed in IoT systems can be done either offline or
online. The offline analysis is to collect data as much as possible during trials, to conduct offline
analysis, and discover patterns. During the real-time operation, data will be checked against such
learned patterns while running lightweight data analysis programs, for example signature-based
network-intrusion-detection systems [13]. The online analysis operates data reduction in real
time, to calculate the difference from normal behaviors, for example anomaly-based detection
network-intrusion-detection systems [11,12,14]. The offline approach might out-perform the online
approach in finding the previously trained events or situations, but the second approach would be
better if unknown situations happens during real-time operation. This paper focuses on the offline
approach. Here, the feature selection will not serve as pre-processing techniques for data-mining only,
but also determine the sources of data to be collected in deployment and operation.

The rest of this paper is structured as follows: Section 2 showcases Related Work, Section 3
shows the motivation and analysis behind the Data reduction in IoT monitoring, Section 4 presents
the Problem and System Architecture, including the design and implementation of the proposed
LoRaWAN-based IoT system for strawberry-plant monitoring, Section 5 shows the experimental results
and analysis including experimental set-up and sensors calibration, traffic analysis, data visualization,
feature selection and evaluation, and example in decision support, and Section 6 provides conclusions
with any future research directions.

2. Related Work

2.1. Usage of Sensors in Agriculture

The usage of sensors and actuators has been replacing the traditional human-intensive ways of
monitoring in agriculture [15]. Sensors can measure environmental parameters and convert them into
meaningful signals [16], for example, water resource monitoring for irrigation [17]. It is reported that
in 2000, there were approximately 525 million farms on record across the globe, but none connected
to the IoT. However, by 2025 for the same base of 525 million farms, it is expected for there to be
around 600 million sensors installed, connected and in use in these farms [18]. The technological
advancement as well as size abatement of devices make employment of sensors feasible for agriculture
applications [16].

2.2. IoT LPWAN Communication Protocols: LoRa and LoRaWAN

Low-power wide-area (LPWAN) communication protocols are designed for low-power
consumption, suitable for applications which demand limited efforts for maintenance. One of the
protocols, LoRaWAN, has been introduced by the LoRa Alliance organization as the protocol for
low-power and wide-area coverage [19]. LoRaWAN, which stands for long-range wide-area network,
defines the communication protocol and the system architecture for the network [20].

By definition, LoRa is the physical layer or the wireless modulation used to create long
communication links. In terms of the LoRa functionality, an end-device communicates to a gateway
which is employing LoRa with LoRaWAN. To be more specific, a LoRa gateway passes raw LoRaWAN
packets from the end-devices to a network server [19]. Major advantages of LoRa are its low-power
consumption, long-range capability, security and relatively easily expandable network. However,
LoRa advantages have their trade-offs: for example, the time delay for the data to be stored in the
cloud after being obtained, and the final data usage or display [21]. Therefore, it might not be the ideal
choice for those applications requiring immediate responses or high-resolution data.

However for low-cost and low-power IoT systems, the data transmission is constrained. Therefore,
how to reduce the volume of data to be sent from a LoRa node to a network server, while still enabling
data-driven decision, is a challenge.
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2.3. Feature Reduction

To reduce the number of features to be used, the main data-mining methods include: feature
selection, which selects a subset of the original feature set; and feature extraction, which creates a set of
new features by combining original features. The choice of selecting features are problem-dependent,
but the resulting subset features should remain a faithful, perhaps simplified representation to
the original data set and preserve the intrinsic knowledge accurately. This paper focuses on
feature selection.

Feature selection methods were used to identify the set of features which brings high accuracy
to detect cyber-attacks [22]. It has been found that features have discriminatory contribution to
classification accuracy in identifying attacks. Some features are redundant, irrelevant, partially relevant
to the learning target and some even reduce accuracy, for example noise.

In addition, feature construction or feature transformation can create new features or transform
existing features into a new set of features, smaller than the original set [23]. This method requires
decent domain related knowledge, for example the understanding of energy usage patterns as shown
in [23]. Principal component analysis (PCA) also summarizes data into fewer dimensions by projecting
it onto an orthogonal basis.

Deep learning has demonstrated high performance in terms of accuracy [24]. However in the
setting of real-time operation in IoT, response time is one of key requirements and edge devices or
even gateways have limited computational resources to use the computationally demanding method
deep learning, especially for large scale of IoT systems. In addition, the results from deep learning is
difficult to be interpreted. This method is especially unpractical when human involves in analysis,
monitoring, decision-making and control.

3. Data Reduction in IoT Monitoring

To illustrate the feature reduction, we provide a sample scenario in a plant-monitoring context.
For example, some sensors can be used: temperature w(t), humidity h(t), lighting b(t) and soil moist
s(t). The decision-making for a specific action can be represented as a function f : �4k → � as follows:

d(t) = f (w(t), h(t), b(t), s(t), θ) (1)

where d(t) ∈ � is the decision variable representing the action to be taken. For example, d(t) = 1
means watering and d(t) = 0 means no watering. And w(t) ∈ �k, h(t) ∈ �k, b(t) ∈ �k and s(t) ∈ �k

are data vectors for temperature, humidity, lighting and soil moist for the last k samples until time
t, For example, w(t) = [w(t − k + 1), w(t − k + 2), · · · , w(t − 1), w(t)]T is the last k samples of the
temperature at time t. k is referred to as the sampling window.

The research question is how to make the correct decision with less data. More specifically,
the data reduction problem can be stated as follows: Are all these four types of data needed to make
the decision? Would it be possible to just use three type of data and which three type of data should be
selected to make the decision?

3.1. Feature Selection Using Laplacian Score

Carrying out data analysis on many features is always computationally expensive. Its computational
complexity increases while the dimensions or the number of features increase. Therefore, to select the most
important features becomes necessary, especially in source-limited situations.

There is a rich range of dimensionality reduction methods. Some are suitable for classification,
for example, to rank features using neighborhood component analysis, to rank features using minimum
redundancy maximum relevance algorithm, to estimate predictor importance for classification tree.
Some are suitable for regression, to select those independent variables which have the best relation to
the predictor, i.e., the dependent variable, for example, to rank features using F-test. This method will
be useful if the dependent variable is known and its data is collected. In our IoT system, it has a set of
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sensors for monitoring, but its predicting variable is unknown. Therefore we will need to consider
feature selection for unsupervised learning. For unsupervised learning, Laplacian scores have been
used to rank features.

Laplacian score was designed to select features in unsupervised learning [25]. Feature selection
in unsupervised learning is more difficult than supervised learning, due to lacking of class labels to
guide search. Laplacian score was introduced as a filter method to evaluate a feature by “its power of
locality preserving”, using local neighborhood relationships between data points [25].

For feature selection in supervised learning, Laplacian score has been used for multi-label
classification, to measure feature relevance [26] to be used together with manifold learning which is
non-linear dimensionality reduction [27]. For feature selection in unsupervised learning, Laplacian
score concept has been used to produce pseudo class labels [28], in clustering [29], and to rank
multi-cluster structure [30].

3.2. Laplacian Scores to Rank Features for Unsupervised Learning

To reduce the volume of data for specific tasks, class labels are normally available for supervised
learning. However in many applications, feature reduction is needed for general usage, not limited to
a specific task. This falls into unsupervised learning. Laplacian scores can rank features and users can
select important features from the resulting rank [25] for the situations where no class label is available.

The similarity Si,j is defined as:

Si,j = exp(−(
Di,j

δ
)) (2)

where δ is a scale factor and Di,j is the distance of two data points i and j in a local neighborhood.
The ith element, Dg, of the Degree matrix D is defined as

Dg(i, i) =
n

∑
j=1

Si,j (3)

The Laplacian matrix is defined as the difference between the degree matrix Dg and the similarity
matrix S:

L = Dg − S (4)

Alternatively, the feature selection results agree with to minimize the value:

∑i,j(xir − xjr)
2 × Si,j

Var(xr)
(5)

where r is the rth feature, xir is the ith observation of the rth feature. This means that features with
large variance is preferred.

In the next section, a simple IoT system is designed to install four sensor measurements (temp,
humidity, lighting, soil moisture) to monitor an environment. Then our planned feature reduction
will be tested IoT systems. We will select more important features from the aforementioned four and
evaluate whether the reduced dataset can achieve comparative performance with the full dataset.

4. Problem Definition and System Architecture

This section starts with the design of the IoT system architecture, followed by five building blocks
and their choices of hardware/software for implementation. The gathered data of the real-world
plant-monitoring IoT system is then used to test the proposed data-mining method.
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4.1. System Architecture

The proposed system will be able to (1) collect data from sensors to monitoring agriculture related
variables; (2) transmit such data to the gateway; (3) facilitate the gateway to send data to the cloud
server; (4) enable data to be displayed at mobile APP or a client service.

The overall system design is illustrated in Figure 1. Starting from the left, sensors/actuators for
monitoring, such as temperature, humidity, light intensity and soil moisture are attached to a low-cost
development platform. This platform consists of both a FRDM-K64F ARM mbed evaluation board
(as the base) and a SX1272MB2xAS LoRa radio shield, to be explained later in this section. The main
function of this platform is to transmit sensor data to a gateway. This cluster of physically connected
devices is named “LoRa Node" in this paper. The LoRa Node sits next to the test site, for example,
a plant.

The LoRa Node is transmitting data to a Gateway, using LoRa wireless communication.
This wireless communication will be explained in Section 4.4. The Gateway is responsible for
establishing an IP communication with, and sending data to an IoT Cloud Server. The Cloud Server
sends data and its visualization to the end-user(s) through web and mobile dashboards. The following
sections will explain the main building blocks in details.

Figure 1. Overview of IoT system for strawberry-plant monitoring using LoRaWAN.

4.2. IoT Platform Development

This platform consists of both a FRDM-K64F ARM mbed evaluation board (as the base) and a
SX1272MB2xAS LoRa radio shield, to be explained later in this section. The main function of this
platform is to transmit sensor data to a gateway. This cluster of physically connected devices is named
“LoRa Node” in this paper. The LoRa Node sits next to the test site, for example, a plant.

The LoRa Node is transmitting data to a Gateway, using LoRa wireless communication.
This wireless communication will be explained in Section 4.4. The Gateway is responsible for
establishing an IP communication with, and sending data to an IoT Cloud Server. The Cloud Server
sends data and its visualization to the end-user(s) through web and mobile dashboards. The following
sections will explain the main building blocks in detail.
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4.2.1. Sensors

There is a rich range of sensors available in the market. The sensors chosen here are examples.

Soil Moisture Sensor

A soil moisture sensor detects the moisture of soil based on soil resistance measurement. In other
words, sensor output value will decrease once soil moisture deficits. The output signal from the sensor
is an analog value [31]. Notice that its measurements can be converted to a specific unit (e.g., voltage
extraction) by employing FRDM–K64F ARM mbed board’s 16-bit ADC converter for meaningful data.
The soil resistance measurement is in a range of 0 to 5 Volts soil moisture excitation. For instance,
the soil resistance measurement can be calculated using the analog value as:

moistureVoltage = moistureAnalog ∗ (5.0/65, 536.0) (6)

Temperature and Humidity Sensor

The chosen temperature and humidity sensor provides both temperature and humidity
measurements as a pre-calibrated digital output using a negative temperature coefficient thermistor
and a capacitive sensor element, accordingly [32]. Its detailed characteristics can be viewed through
Table 1. At the beginning, the temperature and humidity sensor starts running the active mode
from the low-power consumption mode once MCU sends a trigger signal. As a result, 40-bit data
is collected back by the MCU consisting of 16-bit humidity data, 16-bit temperature data and 8-bit
checksum number.

Table 1. Temperature and Humidity Sensor Main Characteristics.

Grove Temperature and Humidity Sensor

VCC 3.3–5 Volts

Measuring Range: Temperature 0–50 ◦C

Measuring Range: Humidity 20–90%

Sensitivity: Humidity 1%

Sensitivity: Temperature 1 ◦C

Light-Intensity Sensor

A light-intensity sensor exposes the intensity of light based on the resistance value of a
photo-resistor (for the device chosen, GL5528 photo-resistor (Seeed, Shenzhen, China) ). In particular,
the resistance of a photo-resistor increases when the intensity of light decreases. The output signal is
an analog value [33]. The measurements can be converted to a specific unit (e.g., voltage extraction)
by deploying FRDM–K64F ARM mbed board’s 16-bit ADC converter for meaningful data gathering.
For example, the following calculation:

lightVoltage = lightAnalog ∗ (5.0/65, 536.0) (7)

can be considered to be a 0 to 5 Volts light-intensity excitation.

4.2.2. Lora Node Platform

As shown in Figure 1, a development platform attaches sensors and a transceiver send such data
to a gateway.
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FRDM–K64F ARM Mbed Board

FRDM–K64F ARM mbed board (ARM mbed, Cambridge, UK) is an ultra-low-cost development
platform designed by NXP in collaboration with ARM mbed [34]. FRDM–K64F ARM mbed board will
be the base device of LoRa Node along with SX1272MB2xAS LoRa shield and temperature, humidity,
light intensity and soil moisture sensors. The sensors are physically attached on it. The specification of
a FRDM–K64F ARM mbed board is in Table 2.

Table 2. FRDM–K64F ARM mbed board Main Hardware Specifications.

FRDM–K64F ARM Mbed Board

MCU Kinetis MK64FN1M0VLL12 (ARM Cortex-M4)

Flash 1024 KB

RAM 256 KB

CPU max. frequency 120 MHz

SX1272MB2xAS Semtech LoRa Shield

A SX1272MB2xAS Semtech LoRa shield (ARM mbed, Cambridge, UK) contains a SX1272
transceiver which features a spread communication using LoRa modulation over either 868 MHz
or 915 MHz frequency [35]. For this particular product, the SX1272MB2xAS Semtech LoRa shield
is attached to the base device FRDM–K64F ARM mbed board, constructing the desired LoRa node.
The SX1272MB2xAS Semtech LoRa shield provides a reliable transmitting sensor measurement directly
to a Gateway. The specification of the SX1272MB2xAS Semtech LoRa shield is in Table 3.

Table 3. SX1272MB2xAS Semtech LoRa shield Main Hardware Specifications.

SX1272MB2xAS Semtech LoRa Shield

Transceiver SX1272

Frequency Ranges 868 MHz and 915 MHz

Link Budget 157dB max.

Sensitivity down to –137 dBm

Bit-Rate 300 kbps

Dynamic Range RSSI 127 dB

4.2.3. Gateway

A Dragino LG01–P LoRa Gateway (Dragino, China) is a single-channel gateway that bridges the
data gathered from the LoRa node (s) to the dedicated cloud service using either Wi-Fi, Ethernet, 3G or
4G cellular [36]. The specification of a Dragino LG01–P LoRa Gateway is in Table 4.
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Table 4. Dragino LG01–P LoRa Gateway Main Hardware Specifications.

Dragino LG01–P LoRa Gateway

Processor 400 MHz

MCU ATMega328P

Flash 32 KB

Link Budget 168dB max.

Dynamic Range RSSI 127 dB

Bit-Rate up to 300 kbps

RJ45 Ports 2 (WAN and LAN)

Wi-Fi IEEE 802.11 b/g/n

Power Input 12V DC

4.2.4. Cloud Server

The “Things Network” Cloud Server is an open-source decentralized network service enabling
devices (such as a LoRa Node) as well as Gateways (such as Dragino LG01-P LoRa Gateway) to be
connected to it [37]. The Things Network is an open community with more than 3000 Gateways up
and running, and 35,000 registered members. The goal of The Things Network is building a distributed
IoT data infrastructure by creating sufficient data connectivity through LoRaWAN technology [37].

Certainly, there are various alternative options of Cloud Servers, such as the Mbed Cloud and the
IBM Watson. Here the Things Network Cloud Server is chosen for its open-source providence and its
concentration to the LoRaWAN technology. This aligns with this research which applies LoRaWAN
into monitoring agriculture.

4.2.5. Data Visualization and Client-Side Application

The “All Things Talk” application platform is chosen as it provides open-source data visualization
through either web or mobile dashboards using an in-house HTTP API [38]. Some core features of
All Things Talk API are real-time data gathering and instant notifications through either Web/Mobile
dashboards or registered e-mail. Finally, All Things Talk API’s end-user(s) has/have the privilege of
viewing, processing and downloading any historical measurements for data analysis purposes.

4.3. Software Development

Lora Node

Software architecture of LoRa Node can be observed in Algorithm 1. Functions, events and
possible errors are illustrated. At first instance, setUp() function represents a local function call
intended to initialize ARM mbed operating system environment as well as SX1272 Radio’s and
IBM’s LMiC libraries configuration aspects. As a result, LMIC_setSession() application callback
can then be implemented for acquiring an activation by personalization session. For a successful
session establishment, static constants such as Network ID, Device Address, Network Session
Key and Application Session Key extracted from The Things Network Cloud Server should be
employed. After LMIC_setSession() callback, LoRa stack should output either EV_JOINED or
EV_JOINED_FAILED event, indicating successful or unsuccessful join to the network service.

Then, getTemperatureHumidity() local function call is core for gathering related
measurement parameters. Beyond that, DHT11 library which is intended to be used for
temperature and humidity sensor’s implementation provides various error enumerations.
Specifically, error enumerations of temperature and humidity sensors are ERROR_NONE,
BUS_BUSY, ERROR_NOT_PRESENT, ERROR_ACK_TOO_LONG, ERROR_SYNC_TIMEOUT,
ERROR_DATA_TIMEOUT, ERROR_CHECKSUM and ERROR_NO_PATIENCE in sequence.

268



Sensors 2020, 20, 5107

Additionally, both light-intensity and soil moisture measurement parameters are collected through
getLightIntensity() and getSoilMoisture() local function calls, respectively.

Moving to data transmission, a time-triggered local function call should be initialized for sending
desired LoRa packet to the Gateway in a context of set time interval. As with LMIC_setSession()
application callback, events such as EV_TXCOMPLETE, EV_LOST_TSYNC or EV_LINK_DEAD
should be outputted from transmit() function call indicating whether LoRa packet had successfully
be transmitted to the connected Gateway. Apart from that, IBM’s LMiC library provides a
_setTimedCallback() application callback which settles the program down until set time interval
is being triggered signaling the next LoRa packet transmission.

Following embedded systems good principles, reset button deployment is giving the opportunity
of completely resetting the LoRa Node, manually, at any time.

Finally, yet importantly, software architecture of LoRa Node has been implemented in a sequential
form, avoiding any unnecessary computational complexity which could result in poor performance
and increased power-consumption.

Algorithm 1: LoRa Node algorithmic software architecture.

TIMEINTERVAL ⇐ 300 � 5 min. transmission rate;
setUp();
LMICsetSession();
if LMICsetSession() is EV JOINED then

EV JOINED;
else

EV JOIN FAILED;
end

while EV JOINED and TIME INTERVAL is 300 do

getTemperatureHumidity();
getLightIntensity();
getSoilMoisture();
transmit();
os setTimedCallback();

end

4.4. Network Architecture

This section provides the implementation of network architecture.

4.4.1. Gateway

The LoRa Gateway’s block architecture is given in Figure 2. This Gateway can handle LoRa
packets coming from the LoRa Node using the SX1276/78 LoRa wireless module which is attached
on ATMega328P micro-controller. Then the Arduino environment communicates and passes LoRa
packets to the Dragino HE AR9331 Linux module by employing a bridge library.

The Linux environment of Dragino’s LG01–P LoRa Gateway provides three different options for
bridging the LoRa wireless network to an IP network for the successful transmission of LoRa packets
to a Cloud Server: namely 802.11 b/g/n Wi-Fi, Ethernet (LAN and WAN RJ45 communications),
and 3G/4G module. Please note that the chosen Dragino LG01–P LoRa Gateway does not include an
internal 3G/4G module. As a result, cellular communications cannot be applied to our IoT system for
agriculture.

The gateway is configured in a way that acts as the “middle station” between the LoRa Node and
the IoT Cloud Server.
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Figure 2. Block diagram of Dragino LG01–P LoRa Gateway architecture [36].

4.4.2. Cloud Server

The block architecture of the “Things Network” Cloud Server is illustrated in Figure 3. Its open-
sourced elements such as packet forwarder, router, broker, handler, network and discovery servers
enable the employment of the LoRaWAN standard for IoT systems [39].

The main functionality of this cloud server includes: first, this cloud server forwards LoRa
messages using a remotely configurable and secure packet forwarder [39]. Then, the router micro-
service is liable for identifying a broker to forward the LoRa message [39]. When it comes to the
handling procedure, a micro-service handler is reliable to encrypt as well as decrypt the play-load
and therefore publishes it to the desired Application Manager API through a suitable integration [39].
Please note that the integration functionality bridges The Things Network Cloud Server with the IoT
applications to support data visualization, analysis and storage [39].

In this infrastructure, both Discovery and Network servers are being employed. The discovery
server keeps track of network’s components such as router, broker and handler. On the other hand,
the network server monitors device states as well as device registries [39].

This cloud server is designed and implemented in a distributed and scalable way by allowing
high-performance, high-availability and end-to-end security [39]. In addition, stack components such
as gateway software, device libraries, cloud routing services and integration are being covered [39].

4.4.3. Client/User Interface API

We have chosen “All Things Talk API” to support clients and User Interface. Its architecture is
illustrated in Figure 4. Entities such as applications, notifications, connectivity and data management,
together build up an application manager API. This offers end users the opportunities to visualize,
store and process gathered sensor data (measurements).

The All Things Talk API offers the choices of joining a device through either WAN, LPWAN or
Gateway connections. In particular, the LoRa Node of our IoT system for agriculture, is integrated
through the Low-Power Wide-Area Network (LPWAN) connection with The Things Network
Cloud Server.

270



Sensors 2020, 20, 5107

In the IoT system for agriculture, the measurement parameters such as temperature, humidity,
light intensity and soil moisture will be displayed on the client side. In addition, a virtual watchdog
has been initialized for monitoring any potential warnings or errors.

Figure 3. Block diagram of The Things Network Cloud Server architecture [39].

Figure 4. Domain diagram of All Things Talk API architecture [40].
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5. Experimental Results, Analysis and Discussion

5.1. Experimental Set-Up and Sensors Calibration

To measure the functionality and performance of the proposed LoRaWAN empowered IoT
architecture and implementation for agriculture, a testbed has been setup. An indoor greenhouse is
used for this purpose, as seen in Figure 5a.

The hardware used are the Dragino LG01-P LoRa Gateway, FRDM–K64F ARM mbed board, LoRa
shield, light-intensity sensor, soil moisture sensor, temperature and humidity sensor. A strawberry
plant in this greenhouse is used for the tests which could be assumed to be representative of a plot in
the greenhouse.

Sensors are attached to FRDM–K64F ARM mbed board and Semtech SX1272MB2xAS LoRa shield
as seen in Figure 5b. The temperature and humidity sensors are connected through the D6 digital
input port of the LoRa shield, while the soil moisture sensors are attached by employing the A3 analog
input port. Similarly, the light-intensity sensor is used through A1 analog input port of the LoRa shield.

(a) Overall view of strawberry greenhouse. (b) LoRa Node, sensors and strawberry plant.

Figure 5. Greenhouse and LoRa node monitoring strawberry-plant growth.

The Gateway is placed approximately 100 m away, due to the size of the greenhouse, from the
above connected devices. The required Internet connection of Dragino LG01-P LoRa Gateway is
established by deploying the WAN port of the device connected to an Ethernet admission. After that,
the soil moisture sensor is placed inside the soil surrounding the strawberry plant, while the
temperature, humidity and light-intensity sensors settle nearby, as seen in Figure 5b.

Data is flashed into the FRDM–K64F ARM mbed evaluation board’s micro-controller through the
Mbed online compiler. The IoT system runs as an autonomous time-triggered program based on set
transmit interval. Once data is collected, it will be sent to the cloud server, i.e., “The Things Network”
and consecutively to the client interface API, i.e., “All Things Talk API”.

Before powering-up the whole IoT system, where compulsory, calibration tests have been
conducted to measure the accuracy and stability of the sensor readings. For example, the temperature
and humidity sensor is pre- calibrated with minimal sensitivity levels of humidity 1% RH and
temperature 1 ◦C (see Table 1). On the other hand, for the soil moisture sensor, calibration has
been conducted for three different levels of moisture; (A) sensor in dry soil, (B) sensor in humid
soil and (C) sensor in water. Similarly, for the light-intensity sensor, calibration has been deployed
for two different levels of light; (A) HIGH when sensor in daylight and (B) LOW when sensor in
dark. The results for soil moisture and light-intensity sensors during calibration test are shown in
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Figure 6. Data gathered from temperature and humidity sensor is also being visualized for a more
comprehensive review.

After the sensor calibration test, the real-environment test has been deployed. Test 1 (Real-condition)
was set to transmit all sensor data at the interval of 300,000 milliseconds, which is 5 min.

Figure 6. Visualization of sensors calibration test data. x axis is time (Number of Measurements). y
axis represents the sensor readings. (a) Temp unit is ◦C, (b) Hum unit is % RH, (c) LightInt unit is Volts
and (d) SoilMoist unit is Volts. Soil moisture calibrated against three different levels; (A) sensor in dry
soil, (B) sensor in humid soil and (C) sensor in water. For the light-intensity sensor, calibration has
been deployed for two different levels of light; (A) HIGH when sensor in daylight and (B) LOW when
sensor in dark.

5.2. Traffic Analysis

As seen in Tables 5 and 6, Sensors Calibration Test is executed 4% data transmission loss,
while Test 1 (Real-condition) is executed with 12% data transmission loss. It is clear that a higher
number of measurements causes a higher data transmission loss.

Table 5. Sensors Calibration Test Traffic Analysis.

Sensors Calibration Test Traffic Analysis (321 Num. of Measurements).

LoRa packets to send 336

LoRa packets to arrive 321

LoRa packets lost 15

LoRa packet loss percentage 4%
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Table 6. Test 1 (Real-condition) Traffic Analysis.

Test 1 (Real-Condition) Traffic Analysis (1776 Num. of Measurements).

LoRa packets to send 2016

LoRa packets to arrive 1776

LoRa packets lost 240

LoRa packet loss percentage 12%

5.3. Data Visualization

Figure 7 visualizes the sensing reading of temperature (legend: Temp), humidity (legend:
Hum), light intensity (legend:LightInt) and soil moisture (legend: SoilMoist), collected in the Test 1
(Real-condition), in total of 1776 observations. For decision-making purposes, three different watering
events have been tested and can be observed; (A) Strawberry plant not watered, (B) Strawberry plant
in humid soil and (C) Strawberry plant watered.

Figure 7. Visualization of Test 1 (Real-condition) data. x axis is time (Number of Measurements). y axis
represents the sensor readings. (a) Temp unit is ◦C, (b) Hum unit is % RH, (c) LightInt unit is Volts and
(d) SoilMoist unit is Volts. For decision-making purposes, three different watering events have been
tested and can be observed; (A) Strawberry plant not watered, (B) Strawberry plant in humid soil and
(C) Strawberry plant watered.

Correlation Coefficients

Correlation coefficients are used to measure the dependence of the readings between two sensors
X and Y. The Pearson correlation coefficient is defined as:

ρ(X, Y) =
cov(X, Y)

σXσY
,

where cov(X, Y) is the covariance of X and Y, and σX and σY are the standard deviation of X and Y,
respectively. The values of the coefficients can range from −1 to 1. Value −1 represents a directly
negative correlation, 0 represents no correlation, and 1 represents a directly positive correlation.
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Table 7 lists the ρ(X, Y) values for each pairwise variable combinations of temperature, humidity,
light intensity and soil moisture, shorted as Temp, Hum, LightInt and SoilMoist respectively. It shows
that Temp and Hum has a strong negative linear relationship, Temp and SoilMoist has a moderate
positive linear relationship, and Hum and SoilMoist has a moderate negative linear relationship.

These findings are consistent with domain knowledge in agriculture: relative humidity relies on
both pressure and temperature. At a lower temperature, less water vapor is needed to reach a high
level of humidity. However, at a higher temperature, a higher water vapor is needed to obtain a high
level of relative humidity.

Table 7. Correlation coefficients ρ values.

ρ Temp Hum LightInt SoilMoist

Temp 1 −0.8381 0.34 0.6573
Hum 1 −0.2273 −0.685
LightInt 1 0.0148
SoilMoist 1

5.4. Feature Selection and Evaluation

Data generating in this IoT system comes from four sensors. They measure temperature, humidity,
light intensity and soil moisture. In the dataset, one feature contains the readings from one sensor.
Data of each feature is being generated by the according sensor node. Laplacian scores are calculated
to measure the important of features.

Laplacian scores here are for unsupervised learning. To further evaluate it, we test the result on
the following example, as an application in future decision support.

Example in Decision Support

The outputs from the unsupervised method Laplacian scores can be used to for decision-making.
For example, an expert labeled the data collected and decided when watering is needed. We compare
the classification outcomes of using the selected features from using Laplacian scores and of using the
all sensor data. Please note that the class label is only for one action here, while Laplacian scores is
generated without class labels for general purpose.

Classifiers’ accuracy and performance measured using data inputs with 5 min transmission rate
and last 2 h average. In both cases, classification conducted using the 4 and 3 most important features
based on their scores.

The accuracy and performance of resulting classifiers using data inputs with 5 min transmission
rate is shown in Table 8 for the 4 and 3 most important features, respectively.

Table 8. The accuracy and performance of resulting classifiers using data inputs with 5 min transmission
rate for the 4 and 3 most important features.

Features Correctly Classified Instances Incorrectly Classified Instances

Hum, Temp, Light, Soil 1776 (100%) 0 (0%)
Hum, Temp, Light 1680 (94.5946%) 96 (5.4054%)

The accuracy and performance of resulting classifiers using data inputs with last 2 h average is
shown in Table 9 for the 4 and 3 most important features, respectively.

Overall, the classification results showed that the decision of watering or not a plant can be made
using a reduced number of sensors. With 5 min transmission rate, the accuracy for decision-making
achieved 95% when the least important feature has been removed. With the last 2 h average data set,
the accuracy for decision-making achieved 97% when reducing the features to 3.
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Table 9. The accuracy and performance of resulting classifiers using data inputs with last 2 h average
for the 4 and 3 most important features.

Features Correctly Classified Instances Incorrectly Classified Instances

Hum, Temp, Light, Soil 1752 (99.943%) 1 (0.057%)
Hum, Temp, Light 1698 (96.8625%) 55 (3.1375%)

Often the acceptable level of accuracy is user defined, depending the nature of the subject or
scenarios [41]. In this case, the accuracy reduces from nearly 100% to 97% and 95%, which means the
error is within 5%. In statistics, when the type of error rate is within 5%, which is acceptable to have a
5% probability of incorrectly rejecting the true null hypothesis [41]. In addition, it is a common practice.

This approach can be promising for a large-scale deployment. The sum of a large amount of data
from the least important sensor(s) might be reduced, if using appropriate data-mining methods to
select sensors which are more important to the chosen decision-making.

6. Conclusions

This paper addresses the open challenge of feature reduction in IoT systems for agricultural
plant-monitoring and decision-making support. Our data reduction approach is unsupervised
learning using Laplacian scores. This approach is especially useful when class labels are unavailable.
Using similarity and difference, features are ranked, so that users can select the most important
features, rather than the whole feature set. Giving high resolutions of some features in real-world IoT
applications, this will help reduce the volume of data to be transmitted. To evaluate our proposal,
a real-world strawberry-plant monitoring IoT system has been implemented, calibrated and tested,
measuring real-condition parameters such as temperature, relative humidity, soil moisture and light
intensity. Our research has demonstrated that the proposed feature reduction can significantly
reduce the volume data required to be transferred from the LoRa Node (edge device) to the network,
while keeping the IoT system functioning at high accuracy levels. Moreover, the proposed IoT system
has been tested on a specific decision-making support task (to water or not to water). The experimental
results clearly show that the accuracy of decision-making on the reduced data decreases at an acceptable
level (only 3–5%). The proposed research can potentially be used and provide insights for a rich range
of decision-making tasks related to agricultural monitoring which can release the burden of data
volume off the IoT systems.

In the future, this work can be expanded to another decision-making task except for watering
a plant. For instance, if a greenhouse includes cooling fans, the event of turning them on/off could
be controlled through an IoT system, similarly to what is proposed above. Strawberry and any other
plants are very sensitive to very high/low level values of temperature or relative humidity so this could
prevent them from being destroyed. Moreover, farmers can take advantage of this decision-making
support to become more efficient on the usage of cooling fans, preventing high amount electricity bills.
This decision-making scenario is planned to be conducted in the future when a greenhouse with such
cooler fans is identified.
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Abstract: The surface quality of aluminum ingot is crucial for subsequent products, so it is necessary
to adaptively detect different types of defects in milled aluminum ingots surfaces. In order to quickly
apply the calculations to a real production line, a novel two-stage detection approach is proposed.
Firstly, we proposed a novel mask gradient response-based threshold segmentation (MGRTS) in which
the mask gradient response is the gradient map after the strong gradient has been eliminated by the
binary mask, so that the various defects can be effectively extracted from the mask gradient response
map by iterative threshold segmentation. In the region of interest (ROI) extraction, we combine the
MGRTS and the Difference of Gaussian (DoG) to effectively improve the detection rate. In the aspect
of the defect classification, we train the inception-v3 network with a data augmentation technology
and the focal loss in order to overcome the class imbalance problem and improve the classification
accuracy. The comparative study shows that the proposed method is efficient and robust for detecting
various defects on an aluminum ingot surface with complex milling grain. In addition, it has been
applied to the actual production line of an aluminum ingot milling machine, which satisfies the
requirement of accuracy and real time very well.

Keywords: surface inspection; aluminum ingot; mask gradient response; Difference of Gaussian;
inception-v3

1. Introduction

Surface defect detection is a critical step of the metal industry. Since the technologies under
development are becoming more and more feasible, and the results are reliable enough for a decision,
the optical non-destructive testing (ONDT) has gained more and more attention in this filed. This is
mainly due to the development of the used tools: laser, cameras, and those faster computers that are
capable of processing large amounts of encrypted data in optical measurements [1]. A review has
been provided in [2], which is about the main ONDT technologies, including fiber optics [3], electronic
speckle [4], infrared thermography [5], endoscopic, and terahertz technology. The focus of this paper
is the digital speckle measurement method because of the use of CCD technology and advanced
computer vision technologies. For the high-quality inspection of various types of materials in all
kinds of environments, the advanced computer vision technologies have evolved into a mainstream
and replaced the conventional manual inspection method, improving on its inefficiency and high
labor intensity.

Texture analysis provides a very powerful tool to detect defects in applications for visual inspection,
since textures provide valuable information about the features of different materials [6]. In computer

Sensors 2020, 20, 4519; doi:10.3390/s20164519 www.mdpi.com/journal/sensors279



Sensors 2020, 20, 4519

vision, texture is broadly divided into two main categories: statistical and structural. As shown in Figure 1,
statistical textures are isotropic and do not have easily identifiable primitives. In contrast, structural
(or patterned) textures are characterized by a set of repetitive primitives and placement rules, as shown in
Figure 2. Both the statistical and structural textures appear as homogeneous (Figure 1a,b and Figure 2a,b)
or inhomogeneous (Figure 1c,d and Figure 2c,d). It should be noted that Figures 1d and 2b are respectively
quoted from Reference [7] and Reference [8]. As can been seen, the milling surface we deal with features
structured homogeneous or inhomogeneous textures (Figure 2a,c,d).

    
(a) (b) (c) (d) 

Figure 1. Statistical textures examples. (a) Hot-rolled steel strips surface, homogeneous; (b) Con-
casting slabs surface, homogeneous; (c) Con-casting slabs surface, inhomogeneous; (d) Bridge
deck inhomogeneous.

    
(a) (b) (c) (d) 

Figure 2. Structural textures examples. (a) Milled surface of aluminum ingot, oriented, homogeneous;
(b) Fabric, isotropic, homogeneous; (c,d) Milled aluminum ingot surface, inhomogeneous.

In order to enable automatic and non-destructive detection, visual inspection systems have found
wide applications in surface detection such as concrete structures [7,9–11] and metal surfaces [12–30].
In the field of concrete structure, there are lots of studies that try to inspect cracks from image
analysis [7,9–11]. In the field of metal surfaces, visual inspection systems have been applied in both
ferrous metal and nonferrous metal surface detection. For the nonferrous metals, methods to detect the
surface defects of various products such as aluminum strips [12–14], aluminum foils [15], and aluminum
profiles [16–18] have been well established. About the ferrous metal, the types of steel surfaces studied
for defect detection based on vision include slab [14,19,20], plate [21–23], hot strip [24–26], and cold
strip [27–29]. The comprehensive survey for typical flat steel products can be found in [30]. In general,
the above defect detection techniques can be roughly divided into three categories: statistical, filtering,
and machine learning.

The statistical method is to establish a mathematical model using probability theory and
mathematical statistics, which can be used to infer, predict, quantitatively analyze, and summarize
the spatial distribution data of pixels [31]. Reference [7] presents a multiple features-based cracks
detection algorithm of bridge decks. A comprehensive analysis of multiple features (intensity-based,
gradient-based, and scale-space) and multiple classifiers (random forests, support vector machines,
and adaboost) show a peak classifier performance of 95%. Reference [24] proposed a simple yet robust
feature descriptor against noise named the adjacent evaluation completed local binary patterns for
hot-rolled steel strip surface defects recognition. Filtering-based methods commonly apply a filter
bank to an image to calculate the energy of the filter response. To provide an efficient multi-scale
directional representation of different defects, the shearlet transform is introduced in [14]. With the
popularity of artificial intelligence in recent years, machine learning has been applied extensively
in surface defect detection. Reference [9] used a supervised machine learning method called light
gradient boosting machine (LightGBM) to detect cracks from the concrete surface imagery. The features
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are derived from pixel values and geometric shapes of cracks. In addition, spectral filtering approaches
are suitable for the defect detection of uniform textured images composed of basic texture primitives
with a high degree of periodicity [32]. Fourier transform (FT) was used in [33] to detect defects in
directionally textured surfaces. Nevertheless, the FT-based approaches are inadequate under the
circumstances that Fourier frequency components related to the background and defect areas are
highly mixed together [34]. Gabor wavelet was used in [30] to extract features of images with periodic
texture. Wavelet transform has been successfully applied in defect detection on statistical surfaces
such as cold-rolled steel strips [27] and hot-rolled steel strips [35], and it has also been well used for
homogeneous patterned surfaces [36]. Navarro et al. [6] present a wavelet reconstruction scheme to
detect defects in a wide variety of structural and statistical textures.

Recently, fine-designed deep convolutional neural networks have emerged as powerful tools
in a variety of computer vision tasks. Reference [10] proposed an improved You Only Look Once
(YOLOv3) with transfer learning, batch renormalization, and focal loss for concrete bridge surface
damage detection. The improved single-stage detector achieved a detection accuracy of 80% on a
dataset containing a total of 2206 inspection images labeled with four types of concrete damages.
Reference [11] proposed a crack detection method based on deep fully convolutional network (FCN)
semantic segmentation with the VGG16 backbone on concrete crack images. The FCN network is
trained end-to-end on a subset of 500 annotated 227 × 227-pixel crack-labeled images and achieves
about 90% in average precision. An end-to-end steel strip defect detection network model was outlined
in [28]; this system is based on the symmetric surround saliency map for surface defects detection
and deep convolutional neural networks (CNNs) for seven classes of steel strip defects classification.
To inspect the defects of a steel surface, Reference [23] presents a new classification priority network
(CPN) and a new classification network, multi-group convolutional neural network (MG-CNN).

However, these defect detection methods are primarily used for only crack defects on concrete
structures or metal surfaces with non-texture backgrounds. As far as we know, there is no literature
on the surface defect detection of aluminum ingots with a milling grain background. The surface of
aluminum ingot after milling always has multi-directional and multi-scale grinding texture patterns;
sometimes, the distribution of the grinding ridge is uneven. After milling, various surface defects
(Figure 3) will appear on the surface of aluminum ingot such as small local defects (Figure 3a),
distributed defects with complex texture and fuzzy boundaries (Figure 3b-d), longitudinal linear
defects throughout the whole picture (Figure 3e), and large-scale distributed defects with irregular
shapes (Figure 3f). In addition, there are many pseudo defects with various patterns on the surface
of aluminum ingot, such as aluminum chips (AC), mosquito (Mo) (Figure 3g), and the milling grain
(Figure 3h). These factors greatly increase the difficulty of defect detection and recognition. To handle
these problems, we propose a detection algorithm of aluminum ingot surface defects combining
traditional detection and deep learning classification, which has been applied to the production line of
an aluminum ingot milling surface.

The main contributions of the paper are summarized below:

1. In terms of ROI extraction in an aluminum ingot image, we design a novel mask gradient
response-based threshold segmentation algorithm to iteratively separate out defects of varying
significance. In addition, the combination of the mask gradient response-based threshold
segmentation (MGRTS) and Difference of Gaussian (DoG) can effectively improve the detection
rate of the above defects.

2. In the classification stage, we use the inception-v3 network structure with focal loss in the training
process and data augmentation technologies to overcome the class imbalance problem and realize
the accurate identification of various defects.

3. Our method can make full use of central processing unit (CPU) and graphics processing unit
(GPU) resources in a workstation or server. Even if the server used in the production line is not
configured with GPU, the algorithm can still ensure the realization of rapid defect detection.
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4. At the beginning of the project, even without a large number of labeled samples, the algorithm
can still deploy and detect the suspicious regions quickly owing to the improved ROI
detection algorithm.

    
(a) (b) (c) (d) 

    
(e) (f) (g) (h) 

Figure 3. Samples of different defects: (a) Slag inclusion (SI); (b) Pitted slag inclusion (PSI); (c) Adhesion
aluminum (AA); (d) Scratches (Sc); (e) Crack (Cr); (f) Oxide film (OF); (g) Mosquito (Mo) and aluminum
chips (AC); (h) Texture background (Tb).

2. Materials and Methods

In this section, the proposed two-stage surface defects detection method will be introduced in
detail. Since there is no similar defect database, at the beginning of the project, we need to preliminarily
detect the area of interest and collect defect samples. Therefore, we cannot use the end-to-end network
which needs a large number of labeled defect images; instead, we design a two-stage target detection
method. As shown in Figure 4, the proposed method has two main components: (1) ROI extraction
based on the combination of MGRTS, DoG, and similar area merge, and (2) defect ROI classification.

 
Figure 4. Overview of the defect detection method applied to a real production line. DOG: Difference
of Gaussian, MGRTS: mask gradient response-based threshold segmentation, ROI: region of interest.

2.1. ROI Extraction

In the region of interest (ROI) extraction stage, in order to ensure the detection rate of defects,
DOG and edge detection with the MGRTS are used to jointly complete the detection of suspicious
areas of defects, and special post-processing is adopted to merge similar areas that may be distributed
defects. In the proposed method, edge detection with MGRTS can iteratively segment most of the
suspicious regions of defects, while the DoG method is mainly used to detect large-scale defects that
cannot be completely segmented by MGRTS, and defects that can be missed by the MGRTS when the
background texture gradient is strong.
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2.1.1. MGRT-Based Iterative Threshold Segmentation

In the MGRTS, the mask gradient response is the gradient map after the strong gradient has been
eliminated by the binary mask, so that various defects can be effectively extracted from the mask
gradient response map by iterative threshold segmentation. The operation process is as follows.

Firstly, we calculate the horizontal gradient of the original image and get the gradient response
map of the Original Gradient (OG). Then, an adaptive threshold segmentation is used to get the binary
image of the OG. Next, the binary image is used as a mask to eliminate the strong gradient region on
the OG, thus obtaining the mask gradient response. As an iteration, we then repeat the first step on the
mask gradient response map. Finally, the binary images obtained by each iteration are combined to
obtain the segmentation results of different significant defects.

As shown in Figure 5, the original image (Figure 5a) contains aluminum chips and scratches,
and Figure 5b is the gradient response map based on the Sobel operator. By using iterative threshold
segmentation guided by mask gradient response maps, the defect areas (Figure 5f) are segmented from
the gradient map. In each iteration, adaptive threshold segmentation is realized by Equation (1) and
Equation (2).

G(x, y) =
1

2πσ2 e−
x2+y2

2σ2 (1)

fbin(x, y) =

⎧⎪⎪⎨⎪⎪⎩ 1, f (x, y) >
[

f (x, y) ∗G(x, y) + λσg
]

0, f (x, y) ≤
[

f (x, y) ∗G(x, y) + λσg
] (2)

Equation (1) generates a Gaussian weight matrix of size m × m, where σ is the standard deviation.
Equation (2) combines local Gaussian weighted sum and global standard deviation σg to adapt to
local texture changes, so that the algorithm can better extract details and improve the detection of
non-obvious defects. The * denotes the convolution operator, and λ is the weight coefficient.

   
(a) (b) (c) 

   
(d) (e) (f) 

Figure 5. Iterative threshold segmentation of gradient map: (a) original image; (b) gradient response
map (Original Gradient, or OG); (c) response map of the first threshold segmentation; (d) mask gradient
(MG1) after the first threshold segmentation; (e) response map of the second threshold segmentation;
(f) the final segmentation result.

As can be seen from Figure 5, when obvious defects (aluminum chips) and slight defects (scratches)
exist at the same time, the slight defects cannot be completely segmented from the gradient map after
the first threshold segmentation (Figure 5c). Therefore, we adapt the iterative method and design the
termination conditions. Before the second threshold segmentation, the response graph of the first
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segmentation is reversed to obtain the mask. The mask is applied to the gradient map to eliminate
the region with strong gradient value that has been segmented in the first time, and the gradient map
(Figure 5d) for the second time is obtained. Figure 5e shows the response map of the second threshold
segmentation. Finally, by combining the response maps (Figure 5c, Figure 5e) of the two segmentations,
the final segmentation result (Figure 5f) is obtained.

The iteration termination conditions are made up of two parts: the maximum number of iterations
and the change degree of Masked Gradient (MG). As long as one condition is satisfied, the iteration
will be terminated. The maximum number of iterations is a super parameter N, and the change degree
of masked gradient is calculated by Equations (3)–(5):

gi= mean(MGi) + λstd(MGi) , i = 1, 2, . . . , N (3)

gi= mean(MGi) + λstd(MGi) , i = 1, 2, . . . , N (4)

Isover =
{

true, gi − gi−1 ≤ δ or i = N
f alse, gi − gi−1 ≤ δ or i < N

(5)

where mean (MG) calculates the mean value of the masked gradient map, and std (MG) calculates the
standard deviation. gi is used to describe the information distribution of the masked gradient map,
and it represents the information change of the gradient map after the i-th iteration. When i is equal to
1, MGi − 1 =MG0 is the original gradient OG. λ is the weight mentioned above, and δ is the threshold
of change degree. Figure 6 shows the histogram and statistical information of the gradient map in
different iterations. Figure 6a shows the histogram distribution and statistical information difference of
the Original Gradient (OG) shown in Figure 6b and the Mask Gradient (MG1) after the first threshold
segmentation shown in Figure 5d, where λ is set to 5 (We first set λ to 3, considering that at the value
of 3 sigma, the confidence probability of a normal distribution is 99.7%. To achieve better recall rate
and precision, we test the value range from 3 to 3.5 with a step of 0.5. According to the test results,
λ can be set within the range of [3.5, 5]. For relatively simple surfaces such as aluminum strip, it can be
set to 3.5).

   
(a) (b) (c) 

  
(d) (e) 

Figure 6. Histogram and statistical information of gradient graph in different iterations: (a) the original
gradient (OG) and the mask gradient (MG1) after the first threshold segmentation; (b) the mask
gradients MG1 and MG2 after the second threshold segmentation; (c) the OG and the MG1 of another
test sample; (d) the OG; (e) the MG1.
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It can be observed that after the first threshold segmentation, the statistical information value g0
(red solid line in Figure 6a) of OG is very different from that (g1) of MG1 (green solid line in Figure 6a),
and g0 − g1 = 28.3, so the second threshold segmentation is needed. Figure 6b shows that after the
second threshold segmentation, the statistical information value g1 of MG1 (red solid line) and the
statistical information value g2 of MG2 (green solid line) have almost no difference, so the iteration
can be ended. Figure 6c shows the distribution of statistical information of another sample after the
first iteration of threshold segmentation. Figure 6d,e are the gradient map OG and MG1, respectively.
For this sample, one segmentation is enough, so the distance (5.78) between g0 and g1 in Figure 6c
provides a reference for the selection of the threshold.

2.1.2. Difference of Gaussians

Difference of Gaussian has been well used in Scale Invariant Feature Transform (SIFT) [37] to
identify potential interest points that are invariant to scale and orientation. First, the scale space of
an image is defined as a function, L(x, y, σ), that is produced from the convolution of a variable-scale
Gaussian, G(x, y, σ) (defined in Equation (2)) with the input image f(x, y),

L(x, y, σ) = G(x, y, σ) ∗ f (x, y). (6)

Then the result image of DoG can be the Difference of Gaussian function convolved with the image,
D(x, y, σ), which can be computed from the difference of two nearby scales separated by a constant
multiplicative factor k,

D(x, y, σ) = (G(x, y, kσ) −G(x, y, σ)) ∗ f (x, y)
= L(x, y, kσ) − L(x, y, σ)

. (7)

Considering the time consumption and defect scale, only two scales σ = 0 (the original image) and
σ = 7.1 (the corresponding window size is 45) are used, and the result of DoG is

D(x, y) = G(x, y, 7.1) ∗ f (x, y) − f (x, y). (8)

The construction of D(x, y) for a surface defect image of aluminum ingot is shown in Figure 7. Figure 7a
is the original image with an oxide film defect. Figure 7b is the fuzzy effect image after convolution
of the Gaussian function with an original image. The Gaussian window is set as 45 according to the
experiment. Figure 7c is the response map of the DoG calculated by Equation (8). In the collected image
of an aluminum ingot surface, the gray value of the defect area is lower than the texture background
in varying degrees, so this paper uses G(x, y, 7.1) ∗ f (x, y) − f (x, y) to reduce the influence of the
background. Figure 7d shows the result of f (x, y) −G(x, y, 7.1) ∗ f (x, y), which introduces a part of the
texture response compared with Figure 7c. Figure 7e is a binary image after segmentation with a fixed
threshold, and it will be combined with the result image of MGRTS by a logical OR operator.

2.1.3. Similar Areas Merge

The segmentation results of MGRTS and DoG are merged, and the enclosing rectangle of each
defect area is obtained by contour extraction after morphological expansion. In this way, we can
locate the bounding box of defects with clear boundaries, but for the distributed defects without
clear boundaries, we need to further integrate the similar region, so as to obtain the bounding box of
distributed defects more completely. For each defect ROI, the mean value and standard deviation of
the original image (src1) (Figure 8a) and the gradient map (OG) (Figure 8b) are calculated respectively,
and an information distribution descriptor v with a length of 4 is obtained. Figure 8 shows the examples
of a similar region (red box) and dissimilar region (green box) in the original image and gradient
image. As shown in Figure 9, for two dissimilar regions, the gray distribution histogram and statistical
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information (mean, standard deviation) of their original image and gradient image are different to
some extent. However, for two similar regions, the difference is very small, as shown in Figure 10.

  
(a) (b) 

   
(c) (d) (e) 

Figure 7. Difference of Gaussian of aluminum ingot image with a large-scale defect: (a) the
original image; (b) the Gaussian blur effect; (c) the DoG response map calculated by Equation
(8); (d) the DoG response map calculated by the opposite of Equation (8); (e) the binary image
after thresholdsegmentation.

  
(a) (b) 

Figure 8. Examples of similar region (red) and dissimilar region (green) in (a) the original image and
(b) the gradient image.

  
(a) (b) 

Figure 9. Gray histogram and statistical information of two dissimilar regions: (a) original images;
(b) gradient images.
As shown in Figure 11, when iterating through the extracted candidate regions, we can decide

whether to merge them into one window by calculating the spatial distance of two windows and the
Euclidean distance of their information distribution descriptors.

If the two windows overlap, or the spatial Euclidean distance ds (refer to Equation (9)) between
their center points (p, q) is very close and less than the threshold δs, the information distribution vectors
v1, v2 will be extracted, and the Euclidean distance dv (refer to Equation (10)) will be calculated.

ds =

√
(px − qx)

2 +
(
py − qy

)2
(9)
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dv(v1, v2) =

√√√ 4∑
i=1

(v1i − v2i)
2 (10)

  
(a) (b) 

Figure 10. Histogram and statistical information of two similar regions: (a) original images;
(b) gradient images.

 
Figure 11. Schematic diagram of similar areas merging.

If the distance is less than the threshold δv, the two windows will be merged. After testing the
effect of different values on the merge results from similar areas, we set δs to 150. As shown in Figure 12,
the similar areas merge results are insensitive to the value of δs. For the pitted slag inclusion defect in
this paper, it is better to set the threshold to 150. It is recommended to set the δs higher, as it ensures that
similar areas will merge together as much as possible. Thus, defect ROIs can be completely detected,
and the reduction of the ROI number will help to improve the speed of subsequent classification.

As for the value of δv, we calculate the Euclidean distance of v1, v2 extracted from 31,304 pairs of
similar areas (Figure 13a) and 13,137 pairs of dissimilar areas (Figure 13b). As shown in Figure 13a,
the profile of the histogram (H) is approximately normal distribution. According to the 3 sigma principle
of normal distribution and the observation of the two histograms, we set δv = 1 (3*std(H) = 0.082).

287



Sensors 2020, 20, 4519

   
(a) (b) (c) 

   
(d) (e) (f) 

Figure 12. Similar areas merge results with different ds: (a) Before similar areas merge; (b) Similar areas
merge result when ds is set to 30 and 40 (ds = 30, 40); (c) ds = 50; (d) ds = 60,70,80,90; (e) ds = 100,150;
(f) ds = 200.

 
(a) (b) 

Figure 13. The Euclidian distance (dv) histogram of similar areas and dissimilar areas: (a) Similar areas
distance histogram; (b) Dissimilar areas distance histogram.

2.2. Defect ROI Classification

In the classification stage, considering the strong feature extraction and representation ability of
the CNN network, we use the inception-v3 [38] network structure to realize the accurate identification
of various defects with large intra-class variations and high inter-class similarity.

Inception [39] is a popular convolutional neural network model proposed by Google. Its unique
and detailed inception block design makes the model increase the depth and width of the network
while maintaining the same amount of calculation. The inception-v3 network is the third version.
The biggest change of v3 version is to decompose the 7 × 7 convolution kernel into two 1 × 7 and
7 × 1 one-dimensional convolution kernels. In this way, the calculation can be accelerated, and one
convolution layer can be divided into two, which can further increase the depth of the network and
strengthen the nonlinearity of the network. Since the data set of aluminum ingot surface defects used
in this paper is quite different from the data set of ImageNet [40], the method of fine tune is adopted to
train the model parameters.

The aluminum ingot defect samples used in this paper are collected from an aluminum ingot
production line in China. The data set has the problem that the number of real defect samples is
very small, and the number of false defect and texture background samples is very large. In order
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to overcome the class imbalance problem and improve the accuracy of defect classification, we use
data augmentation technology to preprocess the sample set and introduce the focal loss into the
loss function.

2.2.1. Data Augmentation

Based on the analysis of the difficult cases in online application, we use basic image transformation
such as flipping, contrast enhancement, sharpening, etc. to create a larger data set. Figure 14 shows
the original defect images and the corresponding transformed images.

Figure 14. Image transformation of slag inclusion defect.

2.2.2. Focal Loss for Multi-Class

The focal loss [41] was designed by Lin et al. to address the one-stage object detection scenario in
which there is an extreme imbalance between foreground and background classes during training.
The focal loss for binary classification has been be given by Equation (11),

FL(pt) = −(1− pt)
γ log(pt), (11)

where pt ∈ [0, 1] is the estimated probability of the model for the class with label y = 1. (1− pt)
γ is

a modulating factor with a tunable focusing parameter γ ≥ 0 to down-weight easy examples and
thus focus training on hard negatives. Similarly, for k-class classification, the formula of focal loss for
multi-class (FLM) is as follows,

FLM(Pk×1) = −Yk×1(1k×1 − Pk×1)
γYk×1 log(Pk×1), (12)

where Yk×1 is a one-hot label vector with k elements and Pk×1 is the model’s estimated probability
vector. The multiplication and logarithm here are all operations at the element level within a vector.

3. Results

The algorithm proposed in this paper is a two-stage target detection algorithm, so corresponding
experiments are carried out to analyze and evaluate the performance of the ROI extraction and ROI
classification algorithms. Finally, the performance of the whole algorithm is evaluated.

3.1. Evaluation Metric

In the actual production, the impact of defect missing detection is much more serious than that
of false detection. Therefore, it is necessary for a surface defect detection system to have a high
recall rate for real defects and ensure a high accuracy rate. In the experiments, the precision, recall,
and F1-score are used to evaluate the system performance, and the accuracy is used to evaluate the
classifier performance. These three metrics are defined as follows,

precision =
TP

TP + FP
, recall =

TP
TP + FN

, F1-score =2 ∗ precision ∗ recall
precision + recall

, (13)

acc =
TP + TN

TP + FN + FP + TN
, (14)

where TP represents the number of true positives, FP represents the number of false positives,
FN represents the number of false negatives, and TN represents the number of true negatives.
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3.2. Experimental Analysis of ROI Extraction Algorithm

In the MGRTS, the maximum number of iterations N and the change degree threshold are set to 5
and 6, and the Gaussian weight matrix size m in adaptive threshold segmentation is set to 25. In the
DOG, we did experiments to choose the most appropriate Gaussian window size, which is related to
the texture scale. We set the window sizes to 25, 35, 45, and 55 respectively to test the effect of DoG.
The experiment result (Figure 15) shows that when the window size is 45, the effect is the best; that is,
the DoG not only highlights the defect structure, but also suppresses most of the texture background.

 
(a) (b) (c) (d) (e) 

Figure 15. Cropped DoG results with different window sizes: (a) Original image; (b) DoG image with
window size (ws) 25; (c) DoG image with ws 35; (d) DoG image with ws 45; (e) DoG image with ws 55.

We also experimented to test the ROI extraction effectiveness of MGRTS and DoG, and the
performance of the algorithm that merges similar areas. Figure 16 shows a few representative results
of different defects including oxide film (Figure 16a,b), oil stain (Figure 16c), pitted slag inclusion
(Figure 16d), and crack (Figure 16e). The first line of Figure 16 is the binary response map of the
MGRTS, the second line is the binary response map of DoG, and the third line is the result of adding
the response map of MGRTS and DoG. As shown in Figure 16b, the MGRTS failed to segment the
large-scale defect completely, and MGRTS also failed to detect the oil stain in Figure 16c, which is
mixed in a dense texture background, but the DoG algorithm makes up for these two disadvantages.
The fourth line of Figure 16 shows the enclosing rectangle of each defect area obtained by contour
extraction after morphological expansion, and the last line is the final ROI bounding box after merging
similar regions. It can be seen that for large-scale defects (Figure 16a,b) and distributed defects without
obvious boundaries (Figure 16d), the similar region merging algorithm can integrate local regions to
obtain a complete bounding box, which also reduces the number of ROI windows and improves the
classification efficiency and accuracy.

Table 1 shows the quantitative evaluation of MGRTS and DoG, and the combination of MGRTS
and DoG in terms of recall and precision. We tested on a defective images data set captured in an
aluminum ingot milling machine production line. The data set consists of 180 images with the size
of 4096 × 1024, including 153 defects such as oxide film, oil stain, crack, slag inclusion, and pitted
slag inclusion. It can be seen that the combination of MGRTS and DoG boosts the ROI extraction
performance, especially the recall rate, which is more important to the production line.

Table 1. Comparison of MGRTS, DoG, and the combination of both.

Method Recall Precision

MGRTS 97.4% 56.2%
DoG 54.9% 93.3%

MGRTS + DoG 99.3% 56.7%

3.3. Experimental Analysis of Defect ROI Classification

In the classification experiment, we used 32,665 defect ROI images of aluminum ingot, among which
10% sample images are selected randomly respectively as validation and training sets; the remaining
80% sample images are used as the training set. The specific number of each type of defect is
shown in Table 2. It can be seen from the table that the sample number of each type of defect is
extremely imbalanced.
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Table 2. Specific of each type of defect used in the classification experiment.

Defects SI PSI Cr AA Sc OF Mo Tb Total

Total 3709 5413 5204 347 1932 6062 902 9096 32,665
Train 2969 4331 4164 249 1546 4850 722 7278 26,139

Validation 370 541 520 34 193 606 90 909 3263
Test 370 541 520 34 193 606 90 909 3263

     
(a) (b) (c) (d) (e) 

Figure 16. ROI extraction results of different defects: (a) OF; (b) OF; (c) Oil; (d) PSI; (e) Sc.

In order to verify the ability of focal loss to deal with sample imbalance, we compared the
classification effect of using cross entropy loss and using focal loss in an inceptions-v3 network.
Figure 17 shows the recall curve of the two methods for each type of defect on the test set. From the
green curve in the figure, it can be seen that inception-v3 with focal loss significantly improved the
recall rate of adhesion aluminum and mosquito defects with a relatively small number of samples.

 
Figure 17. The recall curve of the two methods for each type of defect.

We also compared the improved inceptions-v3 network with the traditional machine learning
method proposed in [42]. As described in [42], we also extracted seven features including anisometry,
circinal rate, ratio between the width and area, compactness, rectangularity, elongation, and ratio
between area and perimeter. Furthermore, the Artificial Neural Networks (ANN) was trained with the
features extracted from the aluminum ingot defect images. The classification accuracy comparison
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is listed in Table 3. The ANN with extracted geometric features failed to recognize the AA and Mo,
because the AA defects are similar with PSI, while the Sc and the Mo defects are similar with the SI in
geometry. These seven features cannot distinguish them well.

Table 3. Classification accuracy of Artificial Neural Networks (ANN), inceptions-v3, and inceptions-v3
with focal loss.

Defects SI PSI Cr AA Sc OF Mo Average

ANN 83.0% 89.0% 84.0% 0.0% 59.0% 42.0% 0.0% 51.0%
inceptions-v3 99.1% 99.9% 100.0% 97.3% 98.1% 99.0% 99.6% 99.0%
inceptions-v3
with focal loss 99.1% 99.7% 99.8% 100.0% 98.5% 98.4% 100.0% 99.4%

3.4. Overall Performance Analysis of the Proposed Algorithm

We test the overall performance of our algorithm using the database of 180 defective images
described above. On the premise that the detection resolution meets the needs of the industrial field,
we down-sample the image as half of the original image to improve the processing speed.

As a contrast, we also test three one-stage target detection algorithms: YOLOv3 [43], RetinaNet [41],
and YOLOv4 [44]. In order to match the network structure, improve the detection accuracy, and reduce
the loss of large-scale sampling, we preprocess the original annotation image. First, the original image
is down-sampled to half of the original image size, and then the aluminum ingot area image after
boundary detection is divided into two parts, and finally, it is normalized to 512 × 512 for network
training. Due to the small sample size of the original image, we augment the defective image to three
times that of the original; 2/3 of it is used as the training set, and the remaining 1/3 is used as the test set.

Figure 18 shows the detection effect of the four methods for different defects. In order to prevent
some small defects from being covered by the bounding boxes, we show the detection results of the
four methods on four images. The detection results of YOLOv3, Retina Net, YOLOv4, and our method
are shown from left to right in each group of comparison images. YOLOv3 uses multi-scale features to
detect objects, and it shows a good ability to identify defects such as large-scale oxide film (Figure 18d),
crack (Figure 18e,f), and small-scale slag inclusion (Figure 18c), even though the sample data set used in
this paper is small. However, for the distributed pitted slag inclusion (Figure 18a,g) and the scratches
(Figure 18b) with low contrast, the effect is poor, especially for the scratch defect, and the recall rate
is very low. In contrast, our algorithm can detect scratches and pitted slag inclusion well because of
using an iterative threshold segmentation of a masked gradient response map and the merging of
similar regions.

Table 4 compares the recall (R), precision (P), and F1-score (F1) of the four methods for each
type of defect. At the same time, the reasoning time of each algorithm is also listed. In experiments,
the top-1 strategy was used in the statistics of detection results, and no threshold was set for the score.
The average recall rate and precision of the algorithm in this paper are over 92.0%, but when influenced
by a scratch defect, the average recall rate of YOLOv3 is only 66.1%. Meanwhile, RetinaNet is worse in
detecting Cr defects. On the whole, the metrics of YOLOv4 are high, but similar to YOLOv3, the recall
rate of scratch defects is low. Our algorithm has a relatively low recall and precision for the defects of
pitted slag inclusion. The reason is that the resolution of some defects in the image is low, which affects
the accuracy of defect classification. It can be seen from Table 4 that our algorithm achieves the highest
F1-score and the shortest inference time.
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Figure 18. Cont.
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(g) 

Figure 18. Detection effect of different methods: (a) PSI; (b) Sc; (c) SI; (d) OF; (e) Cr; (f) Cr; (g) PSI.
The detection results of YOLOv3, RetinaNet, YOLOv4, and our method are shown from left to right in
each group of comparison images.

Table 4. Performance comparison of the four methods for each type of defect.

Method Our Method YOLOv3 Retina Net YOLOv4

Metric
R P F1 R P F1 R P F1 R P F1

(%) (%) (%) (%)

Sc 96.7 93.8 95.2 3.6 66.7 6.8 71.4 93.0 80.8 75.9 100.0 86.3
OF 95.7 98.2 96.9 90.5 93.5 92.0 87.4 86.5 87.0 88.4 97.9 92.9
Cr 98.6 98.6 98.6 88.9 92.3 90.6 15.9 81.3 26.5 100.0 98.8 99.4
SI 94.1 91.9 94.0 76.9 69.0 72.7 57.7 62.5 60.0 84.6 100.0 91.7

PSI 88.6 85.2 86.9 70.3 95.5 81.0 91.9 85.3 88.5 82.8 98.7 90.1
Average 94.7 93.5 94.3 66.1 83.4 68.6 64.8 81.7 68.5 86.3 99.1 92.1

Time
(ms) 512 × 512 103 233 304 167

In order to test the robustness of the algorithm to illumination changes, we enhanced and reduced
the brightness of the original image to simulate the change of light source brightness. As shown in
Figure 19, the brightness changes of the original image are –40%, –20%, 20%, and 40%, respectively.
The detection performance of the algorithm for each defect is basically not affected by illumination.
This is due to the following two points: (1) ROI extraction is based on the gradient difference, which is
not affected by the overall brightness change of the image. (2) As a result of the data augmentation
technology mentioned in Section 2.2.1, ROI classification has a certain robustness to illumination change.
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 19. Detection effect of different brightness: (a) PSI; (b) OF; (c) PSI; (d) Sc. From left to right,
the brightness of the image is reduced by 40%, reduced by 20%, unchanged, increased by 20%, and
increased by 40%.

We also analyzed the reason that led to the failure cases (shown in Figure 20) of our method.
Figure 20a shows that our method produce false negatives of Sc defect, which are mainly caused by the
low contrast and the horizontal distribution similar to the milling grain background. Similarly, some
small PSI defects with low contrast are missed in Figure 20c. There were no corresponding samples
in the classification network training, so the pitted oil areas are incorrectly detected as PSI defects,
as shown in Figure 20b. For the large-scale oxide film shown in Figure 20d, the oxide film coverage
area is too large, so that its interior is treated as regular patterns and neglected by the MGRTS +DoG.
As a result, only the edge is retained.
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(a) (b) 

  
(c) (d) 

Figure 20. Failure cases of our method: (a) False negatives (blue box) of Sc (to facilitate observation, we
increased the contrast by 20%); (b) False positives (yellow box) of PSI; (c) False negatives (blue box) of
PSI (to facilitate observation, we increased the contrast by 20%); (d) Incomplete detection of OF.

4. Application in Actual Production Line

The algorithm proposed in this paper has been applied to the on-line surface defects inspection
system installed at the actual production line of an aluminum ingot milling machine.

4.1. Image Acquisition Devices

Figure 21a shows a concise diagram of the imaging system, and Figure 21b is the corresponding
picture of the material object. The image acquisition device includes cameras and a light source.
Two line-scan charge-coupled device (CCD) cameras are used to capture images of 4096 × 1024 size
of an aluminum ingot surface after milling under the illumination of light source, and the resolution
is 0.315 mm/pixels. When the aluminum ingot passes through the acquisition device, the image
acquisition program will control the acquisition speed of the camera according to the production speed
and store the image. At the same time, the defect detection algorithm starts to process the image, and
it alarms in time when defects are found.

 
 

(a) (b) 

Figure 21. The imaging system: (a) a concise diagram and (b) picture of the material object.
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4.2. Effectiveness of Our Method

For 5 days, we randomly checked the defect detection results of 39 production records and
compared them with the real products. The detection rate of the algorithm is over 98.0%, and the
accuracy of defect recognition rate is 96.0%. The statistical method of detection rate is as follows: the
number of defects detected by the surface inspection system (regardless of defect category) accounts
for the percentage of the number of defects on the surface of aluminum ingot.

4.3. Time Efficiency

The aluminum ingot region detection and the ROI extraction of the proposed approach were
implemented by using C++ and OpenCV 2.4.6 library in Microsoft Visual Studio 2008, and the defect
ROI classification is implemented by using python and Keras. The proposed approach was executed
on a workstation with a 2.8 GHz Intel Xeon i5 processor and 16 GB memory, and the workstation is
configured with a piece of NVIDIA Tesla k40c. The average time consumption of one image in each
step is given in Table 5. Our detection system achieves an average processing speed of approximately
2.43 fps. The production speed of the aluminum ingot milling machine production line is from 3 to
6 m/min, when the actual production speed is 6 m/min, the corresponding camera acquisition speed is
approximately 0.31 fps, so our algorithm can meet the real-time requirements.

Table 5. Average time consumption of one image in each step.

Process Stage Time Consumption (ms)

Aluminum ingot region detection + ROI extraction 272
Defect ROI Classification 140

Total 412

To sum up, by applying our defect detection method to the online surface inspection system,
the production is guided by the timely alarm of defects, which has great significance for ensuring
product quality and improving production efficiency. In addition, the using effect also proves the
promising application of our method in the surface defect detection of aluminum ingot with complex
texture background after milling.

5. Conclusions

We proposed a novel two-stage detection approach to adaptively detect different types of defect
on the surface of aluminum ingot with a complex milling grain background.

Firstly, the combination of MGRTS, DoG, and the similar region merging for the ROI extraction
boosts the detection performance of various defects. Secondly, the data augmentation and the focal
loss used in the inception-v3 network fine tuning handled the class imbalance well and improved the
classification accuracy. Finally, the experimental results and the application in the actual production
line show that when the number of defect ROI samples is large but the number of labeled original
image samples is small, the performance of the two-stage defect detection algorithm proposed in this
paper is significantly better than that of the one-stage deep learning algorithm. At the same time, it can
also meet the real-time requirements.

Our algorithm combines the traditional detection and deep learning classification methods,
which has great advantages in field application, because it can not only make full use of CPU and GPU
to maximize the processing speed, but it also can be put into use quickly at the beginning of the project
in the case of a lack of samples.

In future work, we will continue to collect more samples from the production line, including
difficult cases and false defects. Then, we will focus on exploring a multi-scale analysis method and full
convolution semantic segmentation network to further improve the detection effect of various defects.
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Abstract: The gearbox is one of the most fragile parts of a wind turbine (WT). Fault diagnosis of the
WT gearbox is of great importance to reduce operation and maintenance (O&M) costs and improve
cost-effectiveness. At present, intelligent fault diagnosis methods based on long short-term memory
(LSTM) networks have been widely adopted. As the traditional softmax loss of an LSTM network
usually lacks the power of discrimination, this paper proposes a fault diagnosis method for wind
turbine gearboxes based on optimized LSTM neural networks with cosine loss (Cos-LSTM). The loss
can be converted from Euclid space to angular space by cosine loss, thus eliminating the effect of signal
strength and improve the diagnosis accuracy. The energy sequence features and the wavelet energy
entropy of the vibration signals are used to evaluate the Cos-LSTM networks. The effectiveness of
the proposed method is verified with the fault vibration data collected on a gearbox fault diagnosis
experimental platform. In addition, the Cos-LSTM method is also compared with other classic fault
diagnosis techniques. The results demonstrate that the Cos-LSTM has better performance for gearbox
fault diagnosis.

Keywords: wind turbine; gearbox fault; cosine loss; long short-term memory network

1. Introduction

With the gradual depletion of non-renewable energy and the deteriorating human living
environment, wind energy has developed rapidly as one renewable energy source [1]. However,
wind turbines (WTs) are mostly installed in remote areas as the main equipment for wind power
generation. The harsh operating environment causes frequent failures of key components such as
gearboxes and bearings [2]. Therefore, in order to ensure the safe operation of WTs and reduce the
operation and maintenance (O&M) costs, it is crucial to study effective fault diagnosis methods for
gearboxes [3].

As the vibration and acoustic emission signals are sensitive to the faults of the machine, condition
monitoring systems based on vibration [4,5] and acoustic emission [6–8] have been widely used in the
field of condition monitoring and fault diagnosis. In order to monitor the health conditions of WTs,
the wind energy industry is currently using condition monitoring systems to collect large amounts
of real-time data for diagnosing gearbox faults. Since the amount of data collected from gearboxes
is increasing, the traditional fault diagnosis method cannot effectively analyze massive data and
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automatically give accurate diagnosis results [9]. Therefore, intelligent fault diagnosis methods based
on artificial intelligence techniques are gaining more attention. Generally, there are two main steps for
intelligent fault diagnosis methods: feature extraction and fault classification [10]. Traditional methods
such as artificial neural networks (ANN) and support vector machine (SVM) are used to classify
faults [11–13]. However, the problem of existing intelligent fault diagnosis methods is that the common
machine learning methods rely on well-selected features and have limited ability to learn from complex
time-series signals; meanwhile, with these methods it is more difficult to identify faults under variable
working conditions, and they have a low classification accuracy. Therefore, a more effective fault
identification method is needed. [14–17]. In recent years, deep learning has attracted great attention
from various fields due to the powerful ability of feature learning and the superiority of processing
massive data. Up to now, deep learning networks have been widely applied in fault diagnosis, such
as deep belief networks (DBN) [18], convolutional neural networks (CNN) [19] and recurrent neural
networks (RNN) [20]. However, the gearbox has strong time-dependence of faults due to its relatively
long operating time [21]. Compared with other deep learning methods, the long short-term memory
(LSTM) neural network has great advantages in learning long-term time-dependent characteristics of
sequences [22,23].

For the fault diagnosis methods based on LSTM neural networks, the softmax cross entropy
is usually used as the loss function of fault classification. However, recent studies found that the
traditional softmax loss is insufficient to acquire the discriminating power for classification. To obtain
better discriminating performance, Wang et al. [18] proposed a novel loss function called large margin
cosine loss (LMCL) for learning the high-resolution depth features used in face recognition. The result
shows that the loss function based on cosine distance has a good effect on classification. Therefore,
this paper proposes an optimized fault diagnosis method using an LSTM network with cosine loss
(Cos-LSTM) to improve the ability of classification. Meanwhile, the energy sequence features and the
wavelet energy entropy of the fault vibration data collected on a gearbox fault diagnosis experimental
platform are used to validate Cos-LSTM networks. The Cos-LSTM achieves higher accuracy of
diagnosis, which is demonstrated through the gear transmission experiments and compared to other
fault diagnosis methods.

The rest of the paper is organized as follows. In Section 2, the typical architecture of LSTM and
the process of fault diagnosis are briefly introduced. Section 3 details the Cos-LSTM method and
the process of gearbox fault diagnosis based on the Cos-LSTM method. The gearbox fault diagnosis
experiment and the comparisons of our proposed method and other fault diagnosis methods are
presented in Section 4. Finally, the conclusions are drawn in Section 5.

2. LSTM Neural Network for Fault Diagnosis

As a special type of recurrent neural network (RNN), the LSTM neural network was proposed by
Hochreiter and Schmifhuber [24] to solve the vanishing or exploding gradient problem of RNNs [25],
while retaining the ability of RNNs to process sequential data. In this section, we describe LSTM in
more detail.

2.1. Structure of LSTM

The main component of an LSTM neural network is the LSTM cell, which can decide whether to
update the state information of a memory cell. The structure of the LSTM cell is shown in Figure 1.
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Figure 1. The Schematic diagram of an LSTM cell.

As shown in Figure 1, h(t) and x(t) are the output hidden states and inputs of the current time
step, h(t − 1) represents the hidden state of the previous time step; sigm is the sigmoid function and
tanh is the hyperbolic tangent function. C(t) is a memory cell which is used for the preservation of
information, and the flow of information into or out of C(t) is regulated by three different gates:

1. The input gate i(t), which decides whether the information can get in the memory element;
2. The forget gate f (t), which decides whether the internal information needs to be forgotten;
3. The output gate o(t), which decides what information can pass through the gate and get into the

rest of the neural network.

The internal state node s(t) and input node g(t) are also integral parts of the LSTM cell. Here are
the calculation procedures of the LSTM cell:

g(t) = Φ(Wgxx(t) + Wghh(t− 1) + bg), (1)

i(t) = σ(Wixx(t) + Wihh(t− 1) + bi), (2)

f (t) = σ(W f xx(t) + W f hh(t− 1) + b f ), (3)

o(t) = σ(Woxx(t) + Wohh(t− 1) + bo), (4)

s(t) = g(t) ∗ i(t) + C(t− 1) ∗ f (t), (5)

h(t) = Φ(s(t)) ∗ o(t). (6)

In the above equations, Wjx, Wjh and bj, j = g, j, f , o denote the input weight matrixes, hidden
weight matrixes and bias vectors separately; ∗, σ and Φ are element-wise multiplications of two vectors,
the sigmoid function and tanh function, respectively.

The LSTM neural network can learn when to open or close the gate to control the flow of
information in LSTM cells automatically, so it can choose useful information to train the model.

2.2. Architecture of LSTM for Fault Diagnosis

The LSTM neural network is used for fault classification in fault diagnosis. The architecture for
the LSTM network includes five layers: an input layer, an LSTM hidden layer, a fully connected layer,
a softmax layer and a result output layer at the end. The architecture of the LSTM network is shown
in Figure 2.
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Figure 2. The architecture for LSTM network.

During the training process, the fault features are fed into the input layer first, then the data flow
through LSTM cell and the result of LSTM cell is output to the LSTM hidden layer. The last output of
the LSTM hidden layer is taken as the output of the LSTM network, and it is used to connect a fully
connected layer to map outputs into the result space. The softmax layer follows the fully connected
layer to calculate the probabilities for all the fault pattern. Finally, the fault diagnosis results are output
to the classification output layer. After completing the training, the weights and bias will be adjusted
to the optimal value, and then the test set is input into LSTM for fault diagnosis.

3. Cos-LSTM

The softmax cross entropy is often used as the loss function of the LSTM neural network; however,
the softmax loss is insufficient to enable classification [26,27]. To solve this problem, the cosine
loss function is adopted to optimize the LSTM neural network. This section provides details about
the Cos-LSTM.

3.1. Cosine Loss

Based on the softmax loss, the cosine loss retains its advantage of enlarging the difference between
classes [15], but reduces its sensitivity to different signal strengths and pays more attention to the
difference of vectors in direction. The schematic of cosine loss is shown in Figure 3.

Figure 3. Schematic of Cosine Loss.
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Suppose there are two signals q1 and q2 with the same fault, and the corresponding fault label is
p1. When softmax is taken as the loss function, the softmax loss can be formulated as follows,

Losssoft =
1
B

B∑
i=1

− log(
e‖Wi‖‖x‖cosθi

N∑
j=1

e‖Wj‖‖x‖cosθ j

) (7)

where B is the number of training samples and N is the number of classes, x and W represent the hidden
layer output and the weight matrix respectively, and θ is the angle between W and x. Formula (2)
suggests that softmax loss is related to signal strength, while cosine loss evaluates the size of the
differences between classes according to cosine similarity between the two feature vectors. The cosine
similarity is defined as follows:

similarity(A, B) =
A·B

‖ A ‖ ∗ ‖ B ‖ =

n∑
i=1

Ai ∗ Bi√
n∑

i=1
A2

i ∗
√

n∑
i=1

B2
i

(8)

Taking 1—cosine similarity as the loss function, the cosine loss can be formulated as follows,

Losscos =
1
B

B∑
i=1

1− yi√
N∑

j=1
y2

j

=
1
B

B∑
i=1

√
1− ‖Wi ‖2‖ x ‖2 cosθi

2∑ ‖Wj ‖2‖ x ‖2 cosθ j
2 (9)

By Formula (5), the ‖ x ‖2 in this formula can be eliminated, so the cosine loss is independent of the
signal strength. Therefore, taking cosine loss function as the loss function in gearbox fault diagnosis,
the loss can be converted from Euclid space to angular space, thus eliminating the effect of signal
strength and reduce the burden of network fitting.

3.2. The Process of Cos-LSTM for Fault Diagnosis

In this paper, there are two kinds of fault features extracted for evaluating the proposed method:
the energy sequence feature and the wavelet energy entropy.

The energy sequence feature: The energy sequence features are extracted by wavelet packet
decomposition (WPD). WPD is a signal decomposition tool that decomposes a signal to some nodes
and every node represents a set of coefficients at a specified frequency band [28,29]. The wavelet
packet is defined as follows:

φ(t) =
√

2
∑

k

h(k)φ(2t− 1) (10)

Ψ(t) =
√

2
∑

k

g(k)φ(2t− 1) (11)

where h(k) and g(k) are a low-pass filter and a high-pass filter respectively. ∅(t) and Ψ(t) represent
the scaling function and the wavelet function respectively. Additionally, g(k) can be expressed by h(k)
using the formula g(k) = (−1)kh(1− k).

The signal is decomposed by Equations (12) and (13)

dj+1,2n(t) =
∑
l∈Z

hl−2kdj,n(t) (12)

dj+1,2n+1(t) =
∑
l∈Z

gl−2kdj,n(t) (13)
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where j denotes the decomposition layer, n ∈
{
0, 1, 2, . . . , 2 j − 1

}
is the number of nodes in layer j, l

indicates the number of wavelet coefficients and dj,n represents the coefficient sequence at the jth layer,
nth node.

Due to the large amount of data, we divided the vibration data into four segments and a three-layer
WPD was performed on each segment of vibration data using Daubechies 3 (db 3) to obtain eight
nodes [30–32]. The energy of each node Ej,n could then be calculated through Formula (14)

Ej,n =
∑

k

∣∣∣dj,n(k)
∣∣∣2. (14)

The total energy of the signal E is the sum of the energy of each node in layer three. It can be
computed by (15):

E =
23−1∑
n=0

Ej,n. (15)

and Pj,n is defined by (16):

Pj,n =
Ej,n

E
. (16)

Each of the signals can be decomposed to get eight nodes, and the energy sequences feature can
be expressed as Equation (17) according to Equations (14)–(16).

x(i) = (Pv1
2,i, Pv2

2,i) (17)

where x(i) is the energy sequences feature and i = 0, 1, . . . , 7, Pv1
2,i and Pv2

2,i indicate the P2,i for
sv1(t) and sv2(t), which denote the vibration signals of the gearbox in the horizontal and vertical
directions respectively.

Wavelet energy entropy: The signal is reconstructed according to the eight node coefficients
obtained from the three-layer WPD above, and the reconstructed signal is divided into N segments
on the basis of the time characteristics of the signal. The energy of each segment is calculated by
Formula (14). The calculated energy is normalized by Formulas (15) and (16) to obtain the wavelet
energy entropy. The wavelet energy entropy of the j-th layer n node of the WPD is defined as Hj,n,
and can be formulated as follows:

Hj,n = −
N∑

i=1

Pj,n(i) log Pj,n(i) (18)

where Pj,n(i) is the normalized value of the energy of each segment of the signal; i = 0, 1, . . . , N.
The value of N is 50 in this article.

According to the calculated wavelet energy entropy of each node, the wavelet energy entropy
feature is formed by Equation (19):

T = [H3,1, H3,2, H3,3, H3,4, H3,5, H3,6, H3,7, H3,8] (19)

The fault features obtained above are fed into the Cos-LSTM network to diagnose the gearbox
fault. The flow chart of fault diagnosis based on the Cos-LSTM is shown in Figure 4.
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Figure 4. The flow chart of the Cos-LSTM method for gearbox fault diagnosis.

We used one LSTM hidden layer with eight LSTM cells to extract deeper features. The fault
features are first normalized and then fed into the input layer. In this paper, we used N samples
(N = 2200 samples) to train the model. Therefore, the size of the input layer is N × 8 (time steps) × 2
(2-dimensional features), and the input size of each LSTM cell is N × 2. The last output h (7) of the
LSTM hidden layer connects a fully connected layer with 11 neurons, using cosine loss to calculate the
probabilities for the 11-fault pattern.

The parameters of the LSTM neural network are presented as follows: time steps for LSTM = 8;
the LSTM hidden layer neurons = 4; the fully connected layer neurons = 11; learning rate = 0.01;
number of iterations of training = 10,000. The workflow of the Cos-LSTM is shown in Figure 5.

Figure 5. The workflow of the Cos-LSTM.
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4. Experimental Validation

4.1. Experiment Description

The experimental test rig is illustrated in Figure 6a,b. The motor was controlled by an inverter
and connected to the input shaft of the gearbox to transmit power by a coupling. An electromagnetic
torque load was coupled with the output shaft of the gearbox through a V-belt. The electromagnetic
torque load was controlled by a torque controller (TDK-Lambda, GEN 100-15-IS510; TDK-Lambda,
Wuxi, China), which can adjust the torque of the load manually. Two accelerometers were mounted on
the gearbox to collect signals, and the signals collected were transmitted to a laptop using the data
acquisition card. Detailed information on the data acquisition system is provided in Table 1.

Table 1. Data acquisition settings.

Item Parameter

Sensor PCB ICP 353C03 accelerometer
Data acquisition box

Software
NI cDAQ-9234

LabVIEW
Sampling rate 50 kHz

 

  
(a) (b) 

Figure 6. (a) Experimental test rig and (b) the structure of the gearbox.

The structure of the gearbox is displayed in Figure 6b. It consists of four gears, six bearings and
three shafts. Shaft 1 was the input shaft, and gear Z1, with a module of 2.25 mm, a pressure angle
of 20, a helical angle of 20, and 30 teeth, was installed on it. Shaft 1 transmitted the power to shaft
2 by a pair of gears (Z1 and Z2) in mesh. The output shaft (shaft 3) was driven by another helical
gear Z4, with 80 teeth, which was meshed with the gear Z3. The helical gears Z2 and Z3 installed on
shaft 2 both have 45 teeth and other parameters of them are the same to Z1. We installed one of the
faulty components: bearing 1, bearing house 1, and gears Z1, Z2, Z3, Z4 every time on the gearbox to
experiment. Table 2 shows all the condition patterns of the gearbox.
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Table 2. Condition patterns of the gearbox.

Pattern
Number

Faulty
Component

Faulty Name
Input Speed

(rpm)
Load (V)

View of the
Failure

1 N/A N/A 480, 720, 900 0, 10, 30 N/A

2 Gear Z1 Worn tooth 480, 720, 900 0, 10, 30
 

3 Gear Z2 Chafing tooth 480, 720, 900 0, 10, 30
 

4 Gear Z3 Pitting tooth 480, 720, 900 0, 10, 30
 

5 Gear Z3 Worn tooth 480, 720, 900 0, 10 30
 

6 Gear Z4 Root crack tooth 480, 720, 900 0, 10, 30
 

7 Gear Z4 Chafing tooth 480, 720, 900 0, 10, 30
 

8 Bearing 1 Inner race fault 480, 720, 900 0, 10, 30
 

9 Bearing 1 Outer race fault 480, 720, 900 0, 10, 30
 

10 Bearing 1 Ball fault 480, 720, 900 0, 10, 30
 

11 House 1 Eccentric 480, 720, 900 0, 10, 30
 

4.2. Experimental Results

Firstly, we verified the Cos-LSTM with the energy sequence features. We chose a test sample for
explanation of the fault diagnosis process of our proposed method. The pattern number of this sample
is 3 (chafing tooth), and the input speed and load of this sample are set to 480 rpm and zero respectively.
The raw vibration signals and energy distribution map is shown in Figure 7. Figure 7a,c presents the
raw signals sv1 (t), sv2 (t) of this sample collected on the gearbox and Figure 7b,d presents their energy
distribution maps of the third layer WPD Pv1 and Pv2. Putting the energy sequences feature of this
sample into the Cos-LSTM, we got the probability of each fault pattern for the sample. The probability
of the no. 3 fault pattern is 99.97% and the other 10 faults have a probability of 0.03%. The result shows
that our proposed method considers that there is a fault numbered 3 (chafing tooth) in the gearbox.
The result is correct for this test sample, so the method we proposed is effective.
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(a) (b) 

  
(c) (d) 

Figure 7. The raw vibration signals and energy distribution map.

From Table 2, it can be seen that three different input speeds and loads are set for all 11 fault
patterns. Therefore, we have a total of 99 different tests, and each test is repeated five times. In each
test, the signals are collected with 10 durations, and every duration covers 1 s. Therefore, we can
get 9900 vibration signals. In order to train the model, we randomly choose 2200 samples as the
training dataset. With the trained model, another 550 randomly chosen samples are used to test the
effectiveness of the model. The effectiveness is measured by the accuracy rate. In this experiment, the
accuracy rate is the number of correctly diagnosed samples divided by all the test samples, and the
precision is the ratio of the number of samples correctly diagnosed with a fault pattern to the total
number of samples diagnosed with such a fault pattern. The accuracy rate of the model is 98.55% in
550 samples. The accuracy rates and precision of our proposed model for the 11 fault patterns are
shown in Figures 8 and 9 respectively.

Figure 8. The accuracy rates for the 11 fault patterns.
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Figure 9. The precision for the 11 fault patterns.

4.3. Comparison Analysis

In this paper, the energy sequence features were used to verify the superiority of the Cos-LSTM
by comparing with the traditional LSTM based on softmax loss and classic fault diagnosis methods,
such as SVM, K-nearest neighbor (KNN) and backpropagation (BP) neural networks. In order to
better evaluate the accuracy of the Cos-LSTM, we also used wavelet energy entropy feature for the
fault diagnosis test. Table 3 shows the comparison results. Meanwhile, the different energy sequence
features were extracted by changing the parameters of WPD such as wavelet basis function and data
segment size, for evaluating the accuracy of the Cos-LSTM, and the results are displayed in Table 4.

Table 3. Comparisons with other classic fault diagnosis methods.

Feature Fault Diagnosis Methods Accuracy Rate

The energy sequence

Cos-LSTM 98.55%
LSTM 96.72%
SVM 65.48%
KNN 83.93%

BP neural network 69.64%

Wavelet Energy entropy Cos-LSTM 98.08%

Table 4. Comparisons with different parameter of WPD.

Item Parameter Accuracy Rate

Wavelet basis function

Daubechies 3 98.55%
Daubechies 2 96.36%

Haar 93.82%
Symlet 97.09%

Segment size
2 96.63%
3 97.12%
4 98.55%

According to Tables 3 and 4, the Cos-LSTM has the highest accuracy rate (98.55%) compared to
other methods in the experimental results on the energy sequence features. After comparison and
analysis, it can be found that: (1) comparison with traditional LSTM shows that the classification ability
of cosine loss is better than that of softmax loss; (2) the accuracy rate of the LSTM neural network
is better than KNN, SVM and BP neural networks, which indicates that the LSTM neural network
has better feature-learning ability compared to classic fault diagnosis methods; (3) the evaluation
results of Cos-LSTM using wavelet energy entropy are close to those using energy sequence features;
(4) the accuracy rate of the Cos-LSTM is influenced by the energy sequence features extracted with
different parameters of WPD, and the result shows that the energy sequence features extracted based
on the wavelet basis function of Daubechies 3 (db3) and segment size 4 have better diagnostic accuracy

311



Sensors 2020, 20, 2339

rates; and (5) combined with the experimental results of energy sequence features and wavelet energy
entropy, Cos-LSTM is able to diagnose the faults of the gearbox effectively.

5. Conclusions

This paper presented a fault diagnosis method for WT gearboxes based on the optimized LSTM
network with cosine loss. The energy sequence features and the wavelet energy entropy were used to
evaluate the Cos-LSTM network. The effectiveness of the Cos-LSTM was verified by a fault diagnosis
experiment on a gearbox. The classification results show that the performance of the Cos-LSTM is
better than that of the traditional LSTM and classic fault diagnosis techniques. Thus, the proposed
method has superior performance in fault diagnosis. In the future, new studies will be conducted on
feature learning directly from raw vibration signals using LSTM neural networks.
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Abstract: To suppress noise in signals, a denoising method called AIC–SVD is proposed on the basis of
the singular value decomposition (SVD) and the Akaike information criterion (AIC). First, the Hankel
matrix is chosen as the trajectory matrix of the signals, and its optimal number of rows and columns is
selected according to the maximum energy of the singular values. On the basis of the improved AIC,
the valid order of the optimal matrix is determined for the vibration signals mixed with Gaussian
white noise and colored noise. Subsequently, the denoised signals are reconstructed by inverse
operation of SVD and the averaging method. To verify the effectiveness of AIC–SVD, it is compared
with wavelet threshold denoising (WTD) and empirical mode decomposition with Savitzky–Golay
filter (EMD–SG). Furthermore, a comprehensive indicator of denoising (CID) is introduced to describe
the denoising performance. The results show that the denoising effect of AIC–SVD is significantly
better than those of WTD and EMD–SG. On applying AIC–SVD to the micro-vibration signals of
reaction wheels, the weak harmonic parameters can be successfully extracted during pre-processing.
The proposed method is self-adaptable and robust while avoiding the occurrence of over-denoising.

Keywords: signal denoising; singular value decomposition; Akaike information criterion; reaction
wheel; micro-vibration

1. Introduction

As a most common mechanical device, rotating machinery plays a vital role in modern industry.
Unlike general equipment, rotating machinery is typically operated in harsh, high-speed, and
heavy-load environments. These conditions can easily harm the key components of a mechanical
system, such as gears, bearings, and rotors. With further expansion, the damage can cause equipment
failure and even casualties. To ensure the safe operation of rotating machinery, fault detection techniques
including vibration analysis, acoustic emission, temperature analysis, and wear debris analysis have
been developed [1]. Among them, vibration analysis is widely used, owing to its signal testability and
high correlation with structural dynamics. Simultaneously, in the fault diagnosis of rotating machinery,
the corresponding signal processing technologies have been a part of the most useful approaches [2].

Considering the environmental and structural factors, the source signals are commonly mixed
with random noise, which is problematic for the early fault detection of machinery [3]. For the
purpose of extracting effective information, numerous reasonable methods are applied to reduce the
noise from measured vibration signals. Affected by a series of non-linear factors, such as internal
friction, loads, stiffness, and assembly gap, the vibration signals of rotating machinery have strong
non-linear and non-stationary characteristics [4]. As powerful tools for non-stationary signal processing,
time–frequency analysis methods are commonly used to analyze the characteristics of vibration signals.
In general, time–frequency analysis methods include short-time Fourier transform (STFT), discrete
wavelet transform (DWT), empirical mode decomposition (EMD) [5], local mean decomposition
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(LMD) [6], and variational mode decomposition (VMD) [7]. Concurrently, in practical applications,
the denoising methods based on time–frequency analysis have also made significant contributions.
Currently, the methods based on wavelet analysis are the most well-known processing methods of
signal denoising [8]. As a typical approach, based on the multi-resolution and self-similar characteristics
of wavelet analysis, wavelet threshold denoising (WTD) reduces the noise in non-stationary signals [9].
In engineering applications, there are still a few limitations in WTD, such as the selection of the
wavelet basis functions [10] and phase lag after denoising [11]. Similar to WTD, the quality of EMD
threshold denoising strongly depends on the selection of threshold parameters [12]. To achieve ideal
denoising, comparatively more advanced denoising methods are developed by the improvement
of time–frequency analysis, such as EMD with Savitzky–Golay filter (EMD–SG) [13]. Apart from
time–frequency analysis, significant research efforts have been made for realizing noise reduction, such
as singular value decomposition (SVD) [14], matching tracking [15], and sparse representation [16].

SVD is a non-parametric technique first proposed by Beltrami in 1873 [17]. In engineering
applications, signal processing based on SVD has been an effective approach to analyze non-linear and
non-stationary signals. It has been utilized in various applications, including speech recognition [18],
data compression [19], image processing [20], fault diagnosis [21], and signal denoising [22]. As a
powerful signal processing technique, SVD exhibits excellent performance in mechanical fault diagnosis.
Unlike the traditional decomposition algorithm, SVD ensures the stability of feature extraction based
on the theory of matrix transformation [23]. For monitoring the condition of rotating machinery,
Yang and Tse developed a denoising method of vibration signals by singular entropy; it studied the
distribution characteristics of the noise and clean signals [24]. In addition, Golafshan and Sanliturk
developed a novel SVD-based denoising method, which was successfully applied for ball bearing
localized fault detection in both the time and frequency domains of the vibration signals [25].

However, there are two critical problems in SVD signal denoising: the selection of the construction
matrix and determination of the effective singular values. Initially, a one-dimensional signal must be
constructed in the trajectory matrix based on the matrix transformation principle of SVD. The common
matrix forms include the Toeplitz matrix, cycle matrix, and Hankel matrix [26], of which the most
widely used is the Hankel matrix. In reference [27], it was proven that an original signal could be
decomposed into a linear superposition of a series of component signals by SVD using the Hankel
matrix. Zhao and Ye pointed out that SVD based on the Hankel matrix was quite similar to the
signal processing effect of wavelet transform [11]. In 2015, Jiang et al. used the singular values of
Hankel–SVD as the characteristic parameters to diagnose bearings [28]. For the order determination of
singular values, energy-based methods can appropriately select the active order under the premise of
good prior knowledge, such as entropy increments [24] and cumulative contributions of the singular
values [29]. In 2010, Zhao et al. used a curvature spectrum of singular values to choose the order of the
valid singular values, thus reliably determining the total number of bearing raceway peeling pits [30].
Furthermore, numerous studies have been devoted to the analysis of the difference spectrum relying
on the abrupt change of singular values to reduce noise [31]. Li et al. found a unique relationship
between valid singular values and major frequencies, which assisted in the inverse verification of the
singular value order [32]. In 2016, Zhang et al. completed order determination based on the difference
of singular value variance, and thus extended SVD to the denoising of non-periodic signals [33].
When dealing with complex vibration signals in SVD-based denoising, the accuracy and robustness of
the order determination are still the most significant properties.

To reduce noise effectively, a signal denoising method based on SVD and the Akaike information
criterion (AIC) is proposed. This method can solve the problems of the selection of matrix structure and
order determination of singular values. Based on the energy characteristics of the singular values, the
optimal structure of the Hankel matrix is determined to act as the trajectory matrix of the signals. In the
process of SVD, the effective singular values are accurately selected by adopting the improved AIC.
After eliminating noise components, the remaining singular components are used to reconstruct an
approximate matrix. Finally, the averaging method is utilized to obtain the denoising time series signal.
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The remainder of this paper is organized as follows. Section 2 briefly reviews the principles of
the SVD and AIC. Section 3 describes AIC–SVD to make it applicable for vibration signals containing
colored noise. The effectiveness of the proposed method is verified by simulation analysis, as presented
in Section 4, and the application of a reaction wheel, as described in Section 5. Finally, in Section 6, the
conclusions are drawn.

2. Theoretical Background

2.1. Singular Value Decomposition of Signals

SVD is an orthogonal transformation. For a real matrix, A ∈ Rm×n, there exist two orthogonal
matrices, U ∈ Rm×m and V ∈ Rn×n, that satisfy the equation given below [14]

A = UΣVT =

q∑
i=1

uiσivi
T, (1)

where the diagonal matrix, Σ, is [diag(σ1, σ2, · · · , σq), 0] or its transposition. The elements,
σi(σ1 > σ2 > · · · > σq), are the singular values of the matrix A, and q = min(m, n). U and V are
the unitary matrices of A, and their column vectors ui and vi are the eigenvectors of the covariance
matrices, AAT and ATA, respectively.

The singular values correspond to the feature components of the decomposition matrix. Apart from
their high stability, they also have the characteristics of proportional and rotational invariance. Therefore,
SVD can ensure the robustness of the signal features represented by different singular values, in
compliance with the properties required by the feature vectors in pattern recognition. In the SVD-based
process of signals, the Hankel matrix is typically accepted as the trajectory matrix because of its
characteristic of zero phase shift [11]. A signal containing a noise is indicated as a vector form,
s = [s(1), s(2), · · · , s(N)], and its corresponding m × n dimensional Hankel matrix form is expressed as

A = (aij)m×n =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
s(1) s(2) · · · s(n)
s(2) s(3) · · · s(n + 1)

...
...

...
s(m) s(m + 1) · · · s(N)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (2)

where m = N − n + 1 and 1 < n < N.
The sampling signal can be expressed by Equation (2) as

s= [A(1, : ),A(2 :m, n)]. (3)

Defining Ai = uiσivi
T, the signal component, Pi, can be expressed as [28]

Pi = [Ai(1, :), Ai(2 : m, n)]. (4)

Based on Equations (1), (3), and (4), the original signal can be written as

s =

q∑
i=1

Pi. (5)

Based on Equation (5), by SVD using the Hankel matrix, the polluted signal can be decomposed
into a simple linear superposition of a series of component signals [27]. For an additive noise signal,
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s = x + wnoise, an advantage of this decomposition is that the clean signal can be solved by the order
of the effective singular values.

x =
k∑

i=1

Pi, (6)

where x is the clean signal, and k is the order of the effective singular values.

2.2. Order Determination of Akaike Information Criterion

The AIC is an estimated measure of the fitting goodness of statistical models [34], and is currently
used in the estimation of the source number. The decision functions of the AIC are as follows [35]:

AIC(d) = −2N(n− d) log10(Ld) + 2d(2n− d) (7)

and

Ld =

n∏
i=d+1

λi
1

n−d

1
n−d

n∑
i=d+1

λi

, (8)

whereλi = σi
2 denotes the eigenvalues of the unitary matrices, Ld is the maximum likelihood estimation

of the eigenvalues, and d = 1, 2, · · · , n− 1 denotes the number of sources.
The AIC function consists of two parts. The former term is the maximum likelihood estimation of

the model parameters, which reflects the parameter fitness of the principal components. The second
term is the bias correction term inserted to convert the AIC into an unbiased estimator. The former
term decreases with the increase in the number of sources, whereas the second term is contrary to the
former. When the sum of the two terms is minimum, the best estimate of the effective order is obtained
by balancing both the terms as

k = argmin
d

(AIC(d)). (9)

3. Signal Denoising of Akaike Information Criterion–Singular Value Decomposition

3.1. Selection of Hankel Matrix Rows and Columns

To select the number of rows and columns of the Hankel matrix, the energy characteristics of the
singular values are considered. The energy of the singular values indirectly reflects the information
richness of the trajectory matrix [36], which is defined as

E(n) =
q∑

i=1

σi
2. (10)

The relationship between the energy of the singular values and elements of the Hankle matrix can
be derived from Equation (11).

AAT = [u1u2 · · · uq]·

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
λ1

λ2
. . .

λq

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦·[u1u2 · · · uq]
T, (11)

E(n) = λ1 + λ2 + · · ·+ λq =
n∑

j=1

m∑
i=1

aij
2. (12)
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The difference in the number of rows and columns will modify the singular value energy. To easily
distinguish the singular components and avoid feature coupling, the optimal number of matrix columns
is selected based on the maximum energy of the singular values, i.e.,

n̂ == argmax
n

(E(n)) = argmax
n

⎛⎜⎜⎜⎜⎜⎜⎝ n∑
j=1

N−n+1∑
i=1

aij
2

⎞⎟⎟⎟⎟⎟⎟⎠. (13)

According to Equation (13), the energy of the singular values is equal to the sum of the squares of
all the matrix elements. When the structure of the Hankel matrix is a square or an approximate square,
the corresponding energy of the singular values is maximum. Specifically, if N is even, the energy of
the singular values is maximum at n = N/2 and m = N/2 + 1. If N is odd, the energy of the singular
values is maximum at n = m = (N + 1)/2. As the basis for selecting the optimal structure of Hankel
matrix, the maximum criterion of singular value energy makes it convenient to identify the effective
singular components.

3.2. Verification and Improvement of Order Determination

To verify the validity of the order determination based on the AIC, the different types of signals
are designed. The expressions of the periodic, attenuation and sweep signal are given as⎧⎪⎪⎪⎨⎪⎪⎪⎩

x1 = sin(40πt) + 1.8 sin(100πt) + 0.5 sin(200πt)
x2 = exp−2t[sin(40πt) + 0.5 sin(200πt)]
x3 = chirp(t, 10, 1, 100)

. (14)

Mixed with Gaussian white noise of different signal-to-noise ratios (SNRs), the initial signals turn
into a series of polluted signals s1(SNRs), s2(SNRs) and s3(SNRs), respectively. At a sampling rate of 1 kHz
and sampling time of 1 s, the polluted signals are constructed as 501 × 500 Hankel matrices to calculate
by SVD. For simulation signals of different SNRs, the AIC is used to determine orders in comparison
with cumulative contribution rate (CCR) and singular value curvature spectrum (CSM), as shown
in Figure 1.

 
(a) (b) 

 
(c) 

Figure 1. Comparison of the different methods in order determination: (a) signals s1(SNRs); (b) signals
s2(SNRs); (c) signals s3(SNRs). CCR: cumulative contribution rate; CSM: singular value curvature
spectrum; AIC: Akaike information criterion; SNR: signal-to-noise ratio.
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Based on the main frequency analysis method, the effective orders of s1(SNRs) and s2(SNRs) can be
rapidly determined as 6 and 4. In Figure 1a,b, the results calculated by the AIC are consistent with
those by main frequency analysis method, remaining constant irrespective of the change in the SNR.
Concurrently, violent jumps occur in the curves of both the CCR and CSM. As can be observed in
Figure 1c, the effective orders by the AIC are more stable than the compared methods for sweep signals
s3(SNRs). Therefore, the AIC improves the accuracy and robustness of the order determination, yielding
results better than those obtained with other methods at different SNRs. The AIC can achieve viable
noise separation, which is beneficial for reasonable noise reduction and feature extraction.

Apart from a white noise of uniform power, the actual vibration signals are also mixed with an
uneven colored noise. To smooth the interference components in the background of the colored noise,
the eigenvalues are modified by the diagonal loading technique [37] as follows:

μi = σi
2 +

√√ n∑
i=1

σi2. (15)

Substituting the modified eigenvalues into the maximum likelihood estimation of the signals, the
improved AIC function becomes as expressed in Equation (16). Therefore, the adaptive determination
of the singular components can be achieved by minimizing the AIC objective function for the signals
containing the colored noise.

AIC(d) = −2N(n− d) log10

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
n∏

i=d+1
μi

1
n−d

1
n−d

n∑
i=d+1

μi

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠+ 2d(2n− d). (16)

3.3. Denoising of Akaike Information Criterion–Singular Value Decomposition

Combining the energy characteristics and AIC-based order determination of the singular values,
a signal denoising method called AIC–SVD is proposed, as shown in Figure 2. The detailed steps of
the method can be described as follows:

Step 1. An m × n dimension Hankel matrix is chosen as the trajectory matrix of the sampling signal,
s = [s(1), s(2), · · · , s(N)], and then the optimal number of rows and columns of the matrix
is selected according to the maximum energy criterion of the singular values;

Step 2. SVD is performed on the optimal construction matrix to obtain a sequence of non-zero
singular values, σ = (σ1, σ2, · · · , σq). For signals containing the colored noise, the
eigenvalues are corrected according to Equation (16). Next, the index of the minimum AIC
value is determined by using the AIC, which is the order of effective singular values;

Step 3. The inverse operation of SVD is applied to the singular components of the forward k order
to obtain the approximate matrix, Â;

Step 4. According to the averaging method expressed in Equation (17), the denoised signal is
obtained by the reconstruction of the time series signals from the approximate matrix.

x̂(i) =
1

h− l + 1

h∑
j=l

Â(i− j + 1, j), (17)

where i = 1, 2, . . . , N, l = max(1, i− n + 1), and h = min(n, i).
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Figure 2. Flow chart of the signal denoising method using AIC–SVD. SVD: singular value.decomposition.

4. Simulation of Akaike Information Criterion–Singular Value Decomposition

4.1. Numerical Simulation

To verify the effectiveness of AIC–SVD in signal denoising, simulation experiments are performed
with signal s1, s2 and s3 mixed with a Gaussian white noise of 5 dB. At a sampling rate of 1 kHz and
sampling time of 1 s, the corresponding waveform diagrams of the clean and polluted signals are
shown in Figure 3. After selecting 501 × 500 Hankel matrices to construct the trajectory matrix of the
signals, the singular values and the AIC values are calculated, as shown in Figure 4. Concurrently,
the relevant parameters are extracted and listed in Table 1.

 
(a) (b) 

Figure 3. Waveform diagrams of simulation signals: (a) clean signals; (b) polluted signals with Gaussian
white noise of 5 dB.
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(a) (b) 

Figure 4. Calculation of simulation signals based on AIC–SVD: (a) singular values; (b) AIC values.

Table 1. Simulation parameters of signals based on AIC–SVD.

Signal k SV AIC Energy Ratio 1 Valid Singular Spectrum Error

s1 6 127.8 2.485 × 105 84.49% 89.19% 5.92%
s2 4 53.4 2.727 × 105 59.82% 54.82% 8.36%
s3 46 32.9 3.426 × 105 63.84% 66.75% 4.56%

1 Energy ratio is the energy ratio of clean signals to polluted signals.

As listed in Table 1, the minimum AIC value indices of the above-mentioned three signals are 6, 4,
and 46, respectively. Concurrently, the corresponding effective singular spectral values are 89.19%,
54.82%, and 66.75%. The values of the valid singular spectrum are extremely close to the energy ratio
of the initial pure signals, and the maximum error is 8.36%. This illustrates that the AIC exhibits a high
performance for the order determination of singular values. To determine the reliability of the method,
AIC–SVD is compared to WTD and EMD–SG by reconstructing the signals. The processed signals are
shown in Figures 5–7.

Figure 5. Comparison of denoising effects by different methods for signal s1. WTD: wavelet threshold
denoising; EMD-SG: empirical mode decomposition with Savitzky–Golay filter.
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Figure 6. Comparison of denoising effects by different methods for signal s2.

Figure 7. Comparison of denoising effects by different methods for signal s3.

The comparison reveals that the signals processed by AIC–SVD are well restored by the morphology
of the pure signal without a phase shift. For a periodic signal, the denoising effects of WTD and
EMD–SG are similar overall to that of AIC–SVD. However, the attenuated signal and swept frequency
signal have a notable issue. Specifically, the reconstructed signals exhibit a major waveform distortion,
which is not conducive to the subsequent extraction and analysis of the features. The denoising method
of AIC–SVD can prevent signal distortion while effectively removing noise. With zero phase shift
characteristics, the method of AIC–SVD is suitable in the denoising of different types of signals.

4.2. Denoising Performance Evaluation

To describe the performance of denoising more intuitively and accurately, the simulation signals
are further quantitatively analyzed by combining the SNR, root mean square error (RMSE), and
waveform correlation coefficient (NCC). These evaluation indicators are defined as follows [38]:

SNR = 10 log10

N∑
i=1

x(i)2

N∑
i=1

[x(i) − x̂(i)]2
, (18)
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RMSE =

√√√
1
N

N∑
i=1

[x(i) − x̂(i)]2, (19)

NCC =

N∑
i=1

x(i)·x̂(i)√(
N∑

i=1
x(i)2

)
·
(

N∑
i=1

x̂(i)2
) . (20)

The SNR and RMSE reflect the global characteristics of the denoising performance, whereas the
NCC describes the local characteristics of the signals. To avoid the limitations of a single evaluation
index, a comprehensive evaluation index (CID) of denoising is introduced by integrating the SNR,
RMSE and NCC. It can be defined as

CID =
SNR·NCC

RMSE
. (21)

According to Equation (21), a large value of CID corresponds to a good performance in signal
denoising. For the simulation signals, the denoising performance parameters of different methods are
calculated and listed in Table 2. Subsequently, Gaussian white noise with different SNRs (2 dB, 5 dB,
and 10 dB) is added to the pure signals. The CID values of the denoising at the different SNRs are
shown in Figure 8.

Table 2. Denoising performance parameters at SNR of 5 dB.

Evaluation Parameters
WTD EMD–SG AIC–SVD

s1 s2 s3 s1 s2 s3 s1 s2 s3

SNR 31.548 7.196 19.007 34.548 9.908 18.334 51.407 38.295 23.496
RMSE 0.309 0.273 0.274 0.266 0.239 0.283 0.115 0.058 0.219
NCC 0.979 0.800 0.933 0.985 0.845 0.933 0.997 0.990 0.954
CID 100 21 65 128 35 60 447 657 103

Computing time (s) 0.9 1.2 1.4 3.6 2.5 2.4 3.7 2.7 2.7

RMSE: root mean square error; NCC: waveform correlation coefficient; CID: comprehensive evaluation index.

Figure 8. Comparison of the CID for the different denoising methods.

The data in Table 2 prove that the SNRs of the signals are improved after denoising by both the
methods, of which AIC–SVD leads to the largest increase. The minimum NCC value of AIC–SVD
is 0.954, which can preserve the local waveform characteristics of the initial signal well, avoiding
signal distortion. In Figure 8, the CID values of the different denoising methods increase with the
improvement in the SNR of the initial signal, and the overall denoising performance of AIC–SVD is
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significantly better than those of the compared methods. Specifically, for the attenuated signal, the
corresponding CID value of AIC–SVD at a 5 dB SNR is 657, which is much larger than those of the
other methods. The powerful denoising performance of AIC–SVD for the attenuated signal shows that
it is an effective pre-processing tool for vibration signals with pulse characteristics.

5. Study on Micro-Vibration Signal Denoising of Reaction Wheels

5.1. Micro-Vibration Test

As important attitude control components of a satellite, reaction wheels have the general
characteristics of rotating machinery. The specific structure of a reaction wheel is depicted in Figure 9.
It primarily consists of a rotor supported by ball bearings encased in a housing and driven by a brushless
direct current (DC) motor. Influenced by some factors such as the internal rotor imbalance, bearing
imperfections, and structural modes, a reaction wheel generates disturbance forces and moments
during running. The negative impact of the disturbances is unacceptable for the normal operation of
the payloads in satellites [39]. To ensure the successful implementation of the operations in space, it is
necessary to analyze the micro-vibration characteristics of reaction wheels.

An on-ground micro-vibration test is frequently performed as an approach to study the
micro-vibration characteristics of reaction wheels. It is conducted using the Kistler micro-vibration test
device, as depicted in Figure 10. During the operation of a reaction wheel, the disturbance response is
transmitted to the force measurement platform through the transfer tool. Then, the micro-vibration
signals collected by piezoelectric sensors are transmitted to a data acquisition (DAQ) system via a
charge amplifier, which are displayed and processed on a computer.

Figure 9. Structure of a reaction wheel. DC: direct current.

Figure 10. Micro-vibration test of a reaction wheel. DAQ: data acquisition.

The micro-vibration signals of the reaction wheel are collected at different rotational speeds
(0–2000 rpm). Performing the fast Fourier transform on the time domain signals, three-dimensional
waterfall diagrams of the radial and axial disturbances are obtained, as shown in Figure 11. The vibration
of the reaction wheel mainly concentrates on the radial disturbance forces Fx, axial disturbance forces
Fz, and radial disturbance torque Mx. Relatively, the magnitude of the axial disturbing moment Mz is
small, which can be ignored. Therefore, the analysis of the micro-vibration signals is carried out in Fx,
Fz and Mx.
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 11. Waterfall diagrams of a reaction wheel: (a) Fx; (b) Fz; (c) Mx; (d) Mz.

5.2. Analysis of Micro-Vibration Denoising

Excluding the environmental factors, the noise of micro-vibration signals is also derived from
the internal torque fluctuations and frictional interference. To separate the noise component from
the micro-vibration signals, a general processing method called peak threshold denoising is used in
reaction wheels at present. Based on the amplitude statistical characteristics of the noise, the threshold
value to remove the noise from the original signal is determined. It is described as [40]

DT = μ+ Nδ·δ, (22)

where μ and δ are the mean and standard deviation of the spike amplitude, respectively, and Nδ is a
user-defined tolerance level, which also depends on the SNR of the sampling signals. Generally, the
value of Nδ can be 2 or 3.

In the study of a reaction wheel under the ultimate working conditions, the micro-vibration
signals at 1800 and 2000 rpm are selected for the denoising analysis. The frequency of interest is set
within 500 Hz, which is the main frequency band that causes satellite jitter. The threshold values are
calculated according to different tolerance levels, as shown in Figure 12. Similarly, WTD and EMD–SG
are used to suppress noise in micro-vibration signals, as shown in Figure 13.

 
(a) (b) 

Figure 12. Peak threshold denoising of the micro-vibration signals: (a) 1800 rpm; (b) 2000 rpm.
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(a) 

(b) 
Figure 13. Spectra of micro-vibration signals by WTD and EMD–SG: (a) 1800 rpm; (b) 2000 rpm.

As exhibited in Figure 12, the magnitude of the user tolerance level directly affects the final
effect of the signal denoising. In Figure 12a, a reaction wheel generates a large disturbance force at
131.5 Hz owing to the coupling of the harmonic responses and structural modes, which increases the
threshold value to filter out some critical frequency features. Some obvious feature frequencies are
equally easy to be removed in Figure 12b, such as 20 Hz. As shown in Figure 13, WTD and EMD–SG
mainly act on high-frequency of test signals, which appear under-denoising in the low-frequency
range and lose super-harmonics. The filtered details frequently indicate that the system experiences a
significant motion mechanism, which is not conducive to the subsequent characteristic analysis and
fault diagnosis.

Owing to inappropriate parameter setting and resonance coupling, these denoising methods can
easily cause phenomena of over-denoising and under-denoising. Therefore, AIC–SVD is introduced
into the pre-processing of the micro-vibration signals of the above-mentioned reaction wheel.
By constructing the Hankel matrix of micro-vibration signals, the singular values are solved by
SVD. Owing to the presence of colored noise in the micro-vibration signals, the improved AIC is used
to determine the order of the effective singular value by correcting the eigenvalues. According to the
calculation results as shown in Figure 14, the indices of minimum AIC value is selected to reconstruct
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the approximate matrixes. Once the time series signals are restored by the averaging method, denoised
frequency spectra are obtained, as shown in Figure 15.

 
(a) (b) 

Figure 14. AIC diagrams at different rotational speeds: (a) 1800 rpm; (b) 2000 rpm.

(a) 

(b) 

Figure 15. AIC–SVD denoised frequency spectrum of Fx: (a) 1800 rpm; (b) 2000 rpm.

By comparing Figures 12, 13 and 15, it is observed that AIC–SVD can effectively eliminate the noise
from the micro-vibration signals. The denoised signals are convenient in the extraction of harmonic
features. As shown in Figures 16 and 17, the micro-vibration signals of Fz and Mx are processed by
AIC–SVD. And the related parameters of the reaction wheel are listed in Table 3.
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(a) 

(b) 

Figure 16. AIC–SVD denoised frequency spectra of Fz: (a) 1800 rpm; (b) 2000 rpm.

(a) 

(b) 
Figure 17. AIC–SVD denoised frequency spectra of Mx: (a) 1800 rpm; (b) 2000 rpm.

Table 3. Characteristic parameters of micro-vibration signals by AIC–SVD.

Disturbing
Component

Speed
(rpm)

k
Valid Singular

Spectrum
Computing

Time (s)
Harmonic
Coefficient

Fx
1800 442 94.9% 436 0.6, 1, 4.4, 5, 5.6,

9.4, 14.42000 460 92.4% 448

Fz
1800 422 99.3% 444 5, 7.1, 7.5, 10
2000 498 98.9% 450

Mx
1800 64 86.7% 440 0.6, 1, 4.4, 5, 5.6,

9.4, 14.42000 68 88.1% 442
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The data listed in Table 3 provide all the harmonic coefficients and related frequencies. The average
running time of AIC–SVD is 443 s, which is mainly caused by SVD of matrices at the high sampling
frequency. Combined with the analysis of the disturbance mechanism, it reveals that the denoised
signals include a fundamental harmonic caused by the rotor imbalance, a sub-harmonic of 0.6 times
frequency caused by the bearing cage defects, and super-harmonics. Super-harmonics contain 4.4, 5,
5.6, 9.4, and 14.4 times frequency in both Fx and Mx, 5, 7.1, 7.5, and 10 times frequency in Fz, which are
caused by the coupling of bearing imperfections.

6. Conclusions

This paper presents a powerful denoising method based on SVD and the improved AIC.
Simulation analysis and an engineering application are undertaken to demonstrate the effectiveness of
the proposed AIC–SVD, and the following conclusions can be drawn:

(1) In the signal processing of SVD based on Hankel matrix, the energy of the singular values
is maximum when the matrix structure is a square or an approximate square. Currently,
the feature components provide the largest degree of distinction, which is convenient for
the order determination of the effective singular values.

(2) The method of order determination based on the AIC possesses high accuracy and robustness.
Furthermore, AIC–SVD is significantly better than WTD and EMD–SG in the denoising
performance for the signals containing Gaussian white noise.

(3) In the micro-vibration signal pre-processing of reaction wheels, AIC–SVD achieves a reasonable
denoising effect for the signals containing Gaussian white noise and colored noise. This solves
the problem of over-denoising and under-denoising caused by inappropriate parameter selection
and modal resonance factor. The proposed method has strong adaptability to vibration
signal processing under different working conditions, which is beneficial in the extraction
of harmonic features.

By extracting the harmonic parameters, a reasonable disturbance model of reaction wheels will be
established to describe the characteristics of micro-vibration. This will be of far-reaching significance in
the study of orbital-operation monitoring and vibration-reduction space satellites. In addition, there is
still room for improvement in the running efficiency of AIC–SVD, which would be optimized in the
following study.
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Abstract: A frequency-hopping (FH)-based dual-function multiple-input multiple-output (MIMO)
radar communications system enables implementation of a primary radar operation and a secondary
communication function simultaneously. The set of transmit waveforms employed to perform the
MIMO radar task is generated using FH codes. For each transmit antenna, the communication
operation can be realized by embedding one phase symbol during each FH interval. However, as the
radar channel is time-variant, it is necessary for a successive waveform optimization scheme to
continually obtain target feature information. This research work aims at enhancing the target detection
and feature estimation performance by maximizing the mutual information (MI) between the target
response and the target returns, and then minimizing the MI between successive target-scattering
signals. The two-step cognitive waveform design strategy is based upon continuous learning from
the radar scene. The dynamic information about the target feature is utilized to design FH codes.
Simulation results show an improvement in target response extraction, target detection probability
and delay-Doppler resolution as the number of iterations increases, while still maintaining high data
rate with low bit error rates between the proposed system nodes.

Keywords: multiple-input multiple-output (MIMO); frequency-hopping code; dual-function
radar-communications; information embedding; mutual information (mi); waveform optimization

1. Introduction

The multiple-input multiple-output (MIMO) radar [1–3] is a significant technique owing to the
enhancement in performance it provides over the traditional radar systems with a single transmit
antenna. The transmit waveforms are detected by a matched filter bank in the MIMO radar receiver.
Making use of the knowledge of the propagation channels, a superior spatial resolution can be
achieved. Furthermore, a MIMO radar has several advantages such as prominent interference
rejection capability, enhanced parameter estimation performance, and better flexibility for transmit
waveform optimization [4–6]. Several works in the literature discussed the subject of MIMO waveform
optimization [7–11]. In [7], the authors considered the joint design of both transmit waveforms and
receive filters for a collocated MIMO radar with the existence of signal-dependent interference and white
noise. The design problem is formulated into a maximization of the signal-to-interference-plus-noise
ratio (SINR), including various constraints on the transmit waveforms. Stoica and Li designed the
covariance matrix of the transmit waveforms to control the spatial power [8]. However, the cross
correlation between the transmit waveforms at a specific target range is minimized. Several research
works [12–15] designed the transmit waveform directly instead of just the covariance matrix. The work
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of [13] considered prior knowledge of the target impulse response (TIR) and utilized the information
to select the transmit waveforms which optimize the mutual information (MI) between the target
echoes and the TIR. The work of [15] investigated the problem of the spectrally compatible waveform
design for MIMO radar in the presence of multiple targets and signal-dependent interference. A new
method was proposed to deal with a more general problem, i.e., designing a spectrally compatible
waveform for multiple targets, by minimizing the waveform energy of the overlayed space-frequency
bands. The waveform optimization which employs prior knowledge of TIR is also implemented in the
single-input multiple-output (SIMO) radar system [16].

The work of [17] derived MIMO radar ambiguity functions. San Antonio and Fuhrmann discussed
some properties of the MIMO radar ambiguity function, which provide several ideas for MIMO
waveform optimization [17]. The frequency-hopping (FH) sequences presented in [18] were used
in MIMO radar configuration [19,20]. The FH orthogonal transmit waveforms discussed in [18] are
initially considered for multiuser radar system. Furthermore, [18] employed the FH codes to minimize
the peaks in the cross correlation functions of the transmit waveforms as much as possible. However,
in the multiuser radar scenario, each operator activates its individual system. This is different from the
MIMO radar system where the receiver antennas can cooperate to resolve the target responses. The FH
sequences, which were designed by Chen and Yang, optimized the MIMO ambiguity function.

Based on their characteristics of being easily produced and modulus constant, FH codes are
considered a good choice for the MIMO radar waveforms. A new scheme for optimizing the MIMO
radar waveforms was provided in [19]. The scheme makes the energy of the MIMO ambiguity function
spread in the range and angular dimensions evenly, as well as decreases the sidelobes in the MIMO
radar ambiguity function. The work of [19] also designed optimal FH waveforms, which had separate
FH codes and amplitudes, for a collocated MIMO radar system. The joint design problem can be
solved by using game theory, provided by [20]. The authors considered the two objective functions,
corresponding to FH codes and amplitudes separately, as two interacting players. By this concept, the
joint optimization scheme obtained better integrated code and amplitude matrices that can improve
performance much better than separate designs.

The works of [21–26] indicated a possibility of employing the radar-communications integration
concept to solve the lack of radio frequency (RF) spectrum. Efficient utilization of shared bandwidth
between wireless communications and radar can be achieved by using dynamic frequency allocation.
For example, using dynamic frequency allocation is a way to make shared bandwidth between wireless
communications and radar possess more efficient utilization. The work of [23] proposed a novel
dual-function radar-communications (DFRC) strategy to embed quadrature amplitude modulation
(QAM) based communication information in the radar waveforms by exploiting sidelobe control
and waveform diversity. In [27,28], the authors proposed a novel distributed DFRC MIMO system
capable of simultaneously performing radar and communication tasks. The distributed DFRC MIMO
system performs both objectives by optimizing the power allocation of the different transmitters in
the DFRC system. The proposed strategy can serve multiple communication receivers located in the
vicinity of the distributed DFRC MIMO system. Numerous recent studies [29–31] considered that the
developing concept of DFRC is secondary to the main radar task. Communication source embedding
into the illumination of MIMO radar system is realized using waveform diversity, sidelobe control, or
the time-modulated array technique, which was studied in [30]. Hassanien and Himed presented a
signaling strategy for communication source embedding into the illumination of FH-based MIMO
radar system [32]. The main principle behind the signaling strategy is to embed phase modulation
(PM)-based symbols by using phase rotating the FH pulses. The phase shift is implemented to
each transmit FH waveform of the MIMO radar system. The PM-based symbol embedding does not
influence the function of the MIMO radar system, which uses the FH waveforms.

The investigation on cognitive radar waveform optimization has received a lot of interest [33–35].
To further enhance the performance of the TIR estimation in a time-varying target scene, the transmitted
signal parameters should be constantly adjusted. Then, updated knowledge about the time-varying
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target scene is employed to allocate fundamental resources like transmitted signal parameters in a
cognitive mode [34]. A new strategy for optimizing the waveforms of a cognitive radar was presented
in [34]. The aim is to enhance the performance of target estimation by minimizing the mean-square
error (MSE) of the estimates of target scattering coefficients (TSC) based on Kalman filtering and then
minimizing MI between the radar target echoes at successive time instants. However, there is also
an increase in the computational load due to the Kalman filtering step in the waveform optimization.
Such a cognitive radar system cannot be used in real applications to address the environmental
sensing issues. To improve the performance of the target parameters estimation and classification, the
pioneering study by Bell in [36] developed an information-theoretic method for the radar waveforms
optimization. The authors in [37–39] extended the information-theoretic method by maximizing the
MI between the target response and the target-scattering signals as a waveform design criterion in the
MIMO radar system. The work of [40] proposed an innovative method to designing the transmit signal
of cognitive MIMO radar system, which combines the signal optimization and selection processes.
The works of [41–44] present a signaling scheme for information embedding into the illumination of
the radar using FH pulses. An FH-based joint radar-communication system enables implementing a
primary radar operation and a secondary communication function simultaneously. Then, the authors
consider the problem of radar codes optimization under a peak-to-average-power ratio (PAR) and an
energy constraint. However, a time-variant radar scenario is not considered.

Based on the points discussed above, it is interesting to discuss the performance of an adaptive
dual-function MIMO radar-communications system that combines the adaptive FH waveform
optimization scheme stated in [38] and PM-based information embedding strategy stated in [31].
To further adapt to the dynamic radar environment, we consider the problem of adaptive waveforms
design and propose a two-step waveform optimization scheme, which provides better target detection
performance and high data-rate communication capability between the proposed dual-function systems.
The proposed scheme is summarized as follows:

Step 1. Waveform Design: this part includes the design of the FH waveform for the individual
MIMO transmit antennas. The primary goal is to maximize the MI between the target-scattering signal
and the estimated target response. The method ensures that the target-scattering signal at each time
instant is dependent on the target response.

Step 2. Waveform Selection: after the best waveform ensemble is gained, part two is to choice
the suitable PM-based FH sequences for emission. The principle of this module is to minimize the
MI between consecutive target scattering signals. This part ensures that we constantly obtain target
returns that become independent of each other in time, with the purpose of achieving more information
about the target characteristics at each time instant of reception.

The premise of the FH waveform optimization scheme is channel estimation. The target feature
estimation can be performed by the MIMO radar receiver through observations implemented in the
previous time instant. A feedback loop enables the delivery of the estimates to the dual-function MMO
radar-communications transmitter. At a result, the optimization strategy allows the MIMO radar
transmitter to constantly adjust FH codes to suit the time-varying channel scene.

We choose the FH waveform for the following reasons:

(1) The channel environment is complicated to wireless communications due to densely
populated scatterers. However, FH waveforms are immune to multipath channel fading under
the circumstances.

(2) The FH waveforms are robust to antagonistic environments by offering low interception probability.
Furthermore, FH waveforms are immune to clutter interference.

(3) The constant-modulus waveforms have the property of high transmission power efficiency.
FH waveforms enjoy the constant-modulus feature and are easy to generate.

The primary innovations of our work are summarized as follows:
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(1) We define the PM-based FH waveforms in dual-function MIMO radar-communications
configuration and derive the associated MIMO ambiguity function;

(2) We develop a two-step waveform optimization scheme in the adaptive PM-based dual-function
MIMO radar-communications framework;

(3) We evaluate the performance of the proposed scheme in terms of target response estimation,
delay-Doppler resolution and communication symbol error rate (SER).

(4) We compare the proposed scheme with other radar systems through analysis of the target
detection and receiver operating characteristics (ROC) in an interference noise environment.

The organization of this paper is as follows. In Section 2, we describe the dual-function MIMO
radar-communications system and the PM-based FH signal model. In Section 3, we derive the MIMO
radar ambiguity function of the PM-based FH waveform. In Section 4, we present an adaptive approach
to optimizing the proposed information embedding waveform. The transmit waveforms are designed
at step 1 of the algorithm and selected based on the criterion presented in step 2. The simulation results
demonstrating the proposed scheme are presented in Section 5. Finally, our conclusions and directions
for possible future work are drawn in Section 6.

Throughout this paper, the following notations will be used. We use boldface lowercase letters
and boldface uppercase letters to denote vectors and matrices, respectively; (.)∗ to denote the complex
conjugate operation; (.)T to denote the transpose operation; (.)H to denotes the Hermitian operation;
⊗ to denote the Kronecker product; IMN to denote the identity matrix of size MN×MN; Angle( · ) to
denote the angle of a complex number.

2. System Configuration and Signal Model

2.1. Phase Modulation (PM)-Based Frequency Hopping (FH) Waveforms

A PM-based method for embedding information into the radar emission was recently proposed
in [31]. To deliver a finite number of binary bits per radar pulse, the PM-based method maps the
binary data into a phase symbol that belongs to a phase dictionary of an appropriate size. During each
radar pulse, the PM-based method embeds one phase symbol into the radar emission toward the
intended communication direction. At the communication receiver, a phase detector is used to detect
the embedded symbol and, subsequently, deciphers the corresponding binary sequence. Unlike the
amplitude modulation (AM) and amplitude shift keying (ASK) methods [30], the PM-based method
offers the ability to embed information toward communication receivers, regardless of whether they
are located within the sidelobe or the main lobe.

Since target detection is the main task of the dual-function radar-communications system, the
transmit waveform should be considered primarily based on the requirements of the radar function.
One fundamental requirement of the radar function is the high efficiency of transmitted power.
So constant-modulus waveforms are selected. FH waveform enjoys the constant-modulus feature and
is easy to generate. Furthermore, FH pulse waveform is immune to multipath channel fading and
clutter interference under the circumstances.

The configuration for a joint radar-communications system and the PM-based FH signal model
was developed in [44]. In this section, we follow the methods of [44] and further develop a PM-based
dual-function MIMO radar-communications system. We express the MIMO FH waveforms as

φm(t) =
Q∑

q=1

ej2πcm,qΔ f tu(t− Δt), m = 1, . . . , M (1)
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where cm,q, m = 1, . . . , M; q = 1, . . . , Q describes the FH code, M and Q denote the number of transmit
antennas and the length of FH code, respectively. Δ f and Δt respectively denote the frequency step
and the hopping interval duration, and

u(t) =

⎧⎪⎪⎨⎪⎪⎩1, 0 < t < Δt

0, otherwise
(2)

The duration of a pulse is expressed as T0 = QΔt. We assume that the code is cm,q∈{1, . . . , J}, where
J denotes a predefined value. As a result, the bandwidth of the radar pulse can be approximately
denoted by JΔ f . To realize transmit waveform orthogonality, FH code should be designed to meet the
following requirement cm,q = cm′,q,∀q, m = m

′
. Several papers proposed FH waveform optimization

for MIMO systems (see [19]; and references therein). Then, we propose that a dual-function MIMO
radar-communications system with phase symbols yields the extended virtual data model at the radar
receiver. We also present the information-embedding scheme and the associated transmission rate.
Let {Ωm,q∈[0, 2π]}, m = 1, . . . , M, q = 1, . . . , Q be a set of MQ PM-based symbols. Hence, the set of FH
waveforms is expressed as:

xm(t) =
Q∑

q=1

ejΩm,qej2πcm,qΔ f tu(t− Δt), m = 1, . . . , M (3)

In (3), Δt should be designed to meet the requirement:∫ Δt

0
ej2πcm,qΔ f te− j2πcm′ ,q′Δ f tdt = 0, m = m

′
, q = q

′
(4)

By using (1) and the orthogonality between the FH waveforms stated in (4), it is easy to prove that
PM-based FH waveforms xm(t), m = 1, . . . , M are also orthogonal. The set of transmitted waveforms is
presented in Figure 1.

= =

( ) < <
=

= {∈

′ ′= ∀ =
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Figure 1. Illustrative diagram of a dual-function multiple-input multiple-output (MIMO) transmit platform.

The N×1 vector of the target scattering signals at the output of the radar receive antenna array can
be expressed as:

y(t, i) = HT(i)x(t, i) + n(t, i) (5)

where i describes the index. H(i) =
[
hi

m,n

]
M×N

indicates the target response matrix during the i-th radar
scan. hm,n stands for the channel coefficient between the m-th transmit element and the n-th receive
element. x(t, i) = [x1(t, i), . . . , xM(t, i)]T represents the M×1 vector of PM-based waveforms during the
i-th radar scan. xm(t, i) is the waveform transmitted from the m-th transmit element, and n(t, i) is an
N×1 vector of zero-mean white Gaussian noise.
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The target-scattering signal components associated with the individual PM-based FH waveforms
are achieved by using a matched filter bank. As a result, the target scattering signals observed at the
output of the MIMO radar receiver (5) are matched-filtered to the proposed PM-based sequences (3),
yielding the MN×1 vector of the virtual signal. The extended vector can be expressed as:

r(i) = vec(
∫

T0
y(t, i)xH(t)dt)

=vec(HT) + n̂(i)
(6)

In (6), vec( · ) describes the vectorization operator that stacks the columns of a matrix into one long
column vector, and n̂(i) denotes the MN×1 zero-mean white Gaussian noise with covariance δ2

zIMN.

2.2. Information-Embedding Scheme

It is assumed that a phase symbol denotes B bits of binary sequence. During the i-th
radar pulse, the binary sequence that needs to be embedded is used to select phase symbols
Ωm,q(i), m = 1, . . . , M, q = 1, . . . , Q from a pre-defined constellation of K = 2B symbols. It is considered
that the constellation is uniformly distributed between [0, 2π], which can be expressed as:

CPSK =
{
0,

2π
K

, . . . ,
(K − 1)2π

K

}
(7)

The set of PM-based FH waveforms at time i can be rewritten as:

xm(t, i) =
Q∑

q=1

ejΩm,q(i)ej2πcm,qΔ f tu(t− Δt), m = 1, . . . , M (8)

In (8), Ωm,q(i)∈CPSK. To simplify discussion and implementation, it is assumed that a
communication receiver equipped with a single antenna is located at a known direction θc. Therefore,
the received signal at the output of the communication receiver can be expressed as:

y(t, i) = αca
T(θc)x(t, i) + n(t, i) (9)

where αc denotes the channel attenuation coefficient. It is considered that αc keeps constant during the
whole processing interval. a(θc) indicates the steering vector of the transmit antenna array, and n(t, i)
denotes the zero-mean white Gaussian noise with covariance δ2

w.
It is assumed that the communication receiver has full knowledge of the code cm,q and the

step Δ f . Hence, the communication received signals (5) are matched-filtered to the orthogonal FH
sub-pulses yields:

rm,q(i) =
∫ Δt

0 y(t, i)e− j2πcm,qΔ f tu(t− Δt)dt
= αce− jπdm sinθc eΩm,q(τ)+nm,q(i)

m = 1, . . . , M, q = 1, . . . , Q
(10)

In (10), dm denotes the distance between the first and the m-th antennas of the transmit array.
The communication receiver has the ability to undo e− jπdm sinθc before it estimates the symbol Ωm,q(i).
rm,q(i) is viewed as a phase-rotated and noisy version of the m-th entry of a(θc). Hence, Ωm,q(i) that
need to be embedded is estimated as:

Ω̂m,q(i) = Angle(rm,q(i))−Angle(αc)+2πdm sinθc (11)

Then, the communication receiver compares Ω̂m,q(i) to the predefined CPSK. Ωm,q(i) is restored
from rm,q(i) at the output of the (m,q)-th matched filter. It allows the communication receiver to
determine Ωm,q(i) and convert Ωm,q(i) into the original sequence. The advantages of the communication
information embedding scheme have been presented in [44].
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3. Multiple-Input Multiple-Output (MIMO) Radar Ambiguity Function

In this section, we consider a radar target at χ(τ, v, f ) where τ describes the delay of the target
range, v denotes the Doppler frequency, f = 2π dR

λ sinθ indicates the spatial frequency. Here θ and λ
are the angle of the target and the wavelength, respectively. dR and dT are the distance between the
transmit antennas and between the receiver antennas, respectively. To simplify the discussion, we
assume dT = dR in this paper. xm(t), m = 1, . . . , M denotes the waveform radiated by the m-th transmit
antenna. In [17], the MIMO radar ambiguity function can be defined as:

χ(τ, v, f , f
′
) =

M∑
m=1

M∑
m′=1

χm,m′ (τ, v)ej2π( f m− f ′m′) (12)

where

χm,m′ (τ, v) =

∫ ∞

−∞
xm(t)x∗m′ (t+τ)e

j2πvtdt (13)

In (13), χm,m′ (τ, v) describes the cross ambiguity function, which implicates two radar waveforms
xm(t) and xm′ (t). χm,m′ (τ, v) is analogous to the SIMO ambiguity function presented in [19]. We now
discuss the MIMO radar ambiguity function for the case when xm(t) is composed of the shifted forms
of a rectangular pulse um(t).

xm(t) =
L∑

l=1

um(t− Tl) (14)

where l denotes the number of the rectangular pulse and T describes pulse repetition interval (PRI).
The cross ambiguity function of the waveform xm(t) is defined as:

χm,m′ (τ, v) =
L∑

l′=1

L∑
l=1

χu
m,m′ (τ+Tl − Tl′ , v)ej2πvTl (15)

where χu
m,m′ (τ, v) describes the cross ambiguity function of the rectangular pulses um(t) and um′ (t).

We assume that the pulse duration T0 and the Doppler frequency v are small enough so that T0v≈0.
At a result, the envelope of the Doppler frequency keeps unchanged within an entire pulse period.
The cross ambiguity function χu

m,m′ (τ, v) reduces to the cross correlation function ru
m,m′ (τ), which is not

a function of v any more, we obtain:
χu

m,m′ (τ, v)≈ru
m,m′ (τ) (16)

We further assume that little reflections take place at these second trip ranges. Therefore, the cross
ambiguity function of xm(t) can be rewritten as:

χm,m′ (τ, v) � ru
m,m′ (τ)

L∑
l=1

ej2πvTl (17)

The MIMO ambiguity function of xm(t) can be expressed as:

χ(τ, v, f , f
′
) =

M∑
m=1

M∑
m′=1

ru
m,m′ (τ)e

j2π( f m− f ′m′)
L∑

l=1

ej2πvTl (18)

It is worth noting that the MIMO ambiguity function χ(τ, v, f , f ′) depends on the cross correlation
functions ru

m,m′ (τ). Furthermore, the shifted forms of a rectangular pulse {um(t)} just have an impact on
the range and spatial resolution. The pulses have no effect on the Doppler resolution. Consequently,
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to gain a sharp MIMO ambiguity function, these waveforms should be designed such that the function
Ω(τ, f , f

′
) is denoted as:

Ω(τ, f , f
′
) =

M∑
m=1

M∑
m′=1

ru
m,m′ (τ)e

j2π( f m− f ′m′) (19)

Next, we discuss the MIMO radar ambiguity function of the PM-based information embedding
FH waveforms. The proposed waveforms can be expressed as (3). We intend to obtain the expression
for the function Ω(τ, f , f ′) in terms of {cm,q} and {Ωm,q}. To derive Ω(τ, f , f

′
), we therefore begin with

the cross correlation function of the PM-based FH waveform. Making use of (3) and (16), the cross
correlation function can be expressed as:

rx
m,m′ (τ) =

Q∑
q=1

Q∑
q′=1
χrect(τ− (q′ − q)Δt, (cm,q − cm′,q′ )Δ f )ejΩm,qej2πΔ f (cm,q−cm′ ,q′ )qΔtej2πΔ f cm′ ,q′τ (20)

and the function Ω(τ, f , f
′
) can be expressed as:

Ω(τ, f , f
′
) =

M∑
m,m′=1

Q∑
q,q′=1

χrect(τ− (q′ − q)Δt, (cm,q − cm′,q′ )Δ f )ejΩm,qej2πΔ f (cm,q−cm′ ,q′ )qΔtej2πΔ f cm′ ,q′τej2π( f m− f ′m′) (21)

where χrect(τ, v) describes the ambiguity function of u(t), which can be denoted by:

χrect(τ, v) =

{ Δt−|τ|
Δt sin c(v(Δt− |τ|))ejπv(τ+Δt), if|τ| < Δt

0, otherwise
(22)

For M = 1, the function is the special case of the SIMO radar. For the general case of the
MIMO radar M > 1, not only the auto-correlation functions but also the cross-correlation functions
between the waveforms should be taken into account such that the function (22) is sharp around
{ (τ, f , f

′
)
∣∣∣τ = 0, f = f

′
}.

4. Waveform Optimization

In this section, we aim to enhance the target detection and feature estimation performance by
maximizing the MI between the target response and the target returns in the first step, and then
minimizing the MI between successive target scattering signals in the second step. These two stages
correspond to the design of the ensemble of excitations and the selection of a suitable signal out of the
ensemble, respectively. The two-step cognitive waveform design strategy is based upon continuous
learning from the radar scene. The dynamic information about the target feature is utilized to design
PM-based FH codes. In this way the transmitter adjusts its probing signals to suit the dynamically
changing environment.

Step 1: this step involves the design of PM-based FH waveforms for the dual-function transmit
array. The main idea of waveform design is to maximize the MI between the target scattering signal
and the target response, subject to the transmit power constraint.

Step 2: once an ensemble of optimal transmit waveforms has been designed, then we select the
most reasonable waveform for emission from the ensemble. The key concept of waveform selection is
to minimize the MI between the target scattering signals at present and the next target-scattering signals.
The step ensures that we continually obtain target scattering signals that are independent of each other
in time, in order to achieve more feature information of the target at each time instant of reception.
Figure 2 describes the architecture of an adaptive dual-function MIMO radar communication system.
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Figure 2. The architecture of an adaptive dual-function MIMO radar communication system.

Step 1: during the i-th radar scan, the set of PM-based FH waveforms xm(t, i), m = 1, . . . , M can be
expressed as a matrix Xi ∈ CM×K after discrete sampling, where C describes the number domain and K
indicates the sample number. N ∈ CN×K is zero-mean white noise matrix. Therefore, the N ×K matric
of the target scattering signals is written as:

Yi = HT
i Xi+N (23)

Here Hi ∼ C

(
0,RHi

)
and N ∼ C(0,RN), and RHi = E

{
HiH

H
i

}
and RN = E

{
NHN

}
indicate the

covariance matrices of the channel response Hi and the zero-mean white noise N, respectively.
We intend to maximize the MI between the target-scattering signal and the target response given the
transmit waveforms. This involves that the target-scattering signals would be more dependent upon
the actual target feature information. According to the definition of MI, we have:

I(Yi; Hi|Xi) = H(Yi|Xi) −H(N) (24)

In (24), I(Yi; Hi|Xi) represents the MI between two random variates Yi and Hi given the transmit
matrix Xi, and H(Yi|Xi) indicates the conditional entropy that Xi conveys about Yi. The main objective
of this step is to maximize I(Yi; Hi|Xi) between Yi and Hi given Xi. According to the definition of
entropy, we have:

H(Yi|Xi) =

∫
−p(Yi|Xi)In[p(Yi|Xi)]dYi (25)

Here p(Yi|Xi) indicates the conditional probability density function (PDF) of the received matrix
Yi given transmit matrix Xi. The conditional PDF p(Yi|Xi) can be expressed as follows:

p(Yi|Xi) =
N∏

n=1
p
(
yn,i

∣∣∣Xi
)

=
N∏

n=1

1
πKdet(XH

i RHi Xi+RN)
e−yH

n,i(X
H
i RHi Xi+RN)

−1
yn,i

= 1
πNK[det(XH

i RHi Xi+RN)]
N e−tr[(XH

i RHi Xi+RN)
−1

YH
i Yi]

(26)
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Solving (25) and (26) gives rise to the following result for the conditional entropy [40]:

H(Yi|Xi) = NKIn(π) + NK + NIn
[
det

(
XH

i RHiXi + RN

)]
(27)

Similarly, the result for the entropy of the noise can be derived as follows:

H(N) = NKIn(π) + NK + NIn[det(RN)] (28)

Making use of Equations (24), (27) and (28), the MI between the target-scattering signal and the
channel response given transmit waveforms can be rewritten as follows:

I(Yi; Hi|Xi) = NIn
[
det

(
XH

i RHiXi + RN

)]
−NIn[det(RN)] (29)

Therefore, we can formulate the MI maximization criterion as follows:

max
Xi

{
NIn

[
det

(
XH

i RHi Xi + RN

)]
−NIn[det(RN)]

}
n!

r!(n−r)!

s.t. tr
[
XH

i Xi
]
≤ P0

cm,q � cm′,q, for m = m′,∀q ΔtΔ f = 1

(30)

where P0 indicates the transmit power. The work of [40] has given a rigorous solution of the above
optimization problem (30). Then, we can obtain the ensemble CX̂i

out of the whole set of PM-based
FH sequences, and the corresponding power allocation vector over diverse dual-function transmit
antennas. We start the design procedure with the transmit waveforms from the PM-based FH matrix,
and allocate the power on a pulse level as well as across the transmit antennas based on the MI
maximization criterion.

Step 2: we then proceed to the waveform selection procedure, in which the successive target
scattering signals are different from each other. The step ensures that we achieve more information of
the target feature at each time instant of reception. We denote the MI between the successive target
scattering signals at time i and at time i + 1 as:

I(Yi+1, Yi) = H
(
Yi+1

∣∣∣Xi+1
)
+ H(Yi|Xi) −H

(
Yi+1, Yi

∣∣∣Xi+1, Xi
)

(31)

In (31), the term H(Yi|Xi) (or H
(
Yi+1

∣∣∣Xi+1
)
) denotes the entropy of Yi (or Yi+1) at time i (or i + 1)

given the knowledge of Xi (or Xi+1). The term H
(
Yi+1, Yi

∣∣∣Xi+1, Xi
)

is defined similarly. According to
the literature [6,34], the above Equation (31) can be rewritten as follows:

I(Yi, Yi+1) = −NIn
(
det

(
I(M×M)−D2

i,i+1

))
= −N

M∑
m=1

In
(
1−

(
dm

i,i+1

)2
) (32)

where dm
i,i+1(d

1
i,i+1 ≥ d2

i,i+1 ≥ . . . ≥ dM
i,i+1) is the diagonal element of the diagonal matrix Di,i+1. Di,i+1 is

achieved by singular value decomposition (SVD) of the covariance matrix, which can be denoted as:

RYi,Yi+1 = E
{
YH

i Yi+1
}
= XH

i RHi
Xi+1 (33)

In (33), RYi,Yi+1 is the cross-covariance of the expressions for Yi and Yi+1. Hence, the MI
minimization criterion can be expressed as:
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min
Xi+1∈CX̂i

{
−N

M∑
m=1

In
{
1−

(
dm

i,i+1

)2
}}

s.t. tr
[
XH

i+1Xi+1
]
≤ P0

cm,q � cm′,q, for m = m′,∀q ΔtΔ f = 1

(34)

We can estimate the values for Yi+1 over all possible values of X̂i+1 ∈ CX̂i
using (23). Thus, we can

also form an estimate of all the values of the corresponding Di,i+1 (d
m
i,i+1(d

1
i,i+1 ≥ d2

i,i+1 ≥ . . . ≥ dM
i,i+1))

and choose the value for X̂i+1 that minimizes (34). The above waveform optimization problem (34) is
convex. We can obtain the optimal solution directly by using a MATLAB optimization toolbox, such
as CVX.

Step 1 designs the optimal ensemble CX̂i
based on MI maximization criterion over the spatial

domain, and step 2 selects the optimized PM-based FH waveform for each dual-functional transmit
antenna from the ensemble CX̂i

based on MI minimization criterion over the temporal domain.
The proposed adaptive waveform design and selection procedures can be summarized as Algorithm 1.

Algorithm 1. The adaptive waveform design and selection algorithm

Initialize the transmit matrix X0 and the covariance matrix of the noise R
N

.
1. At the initial time t = 0, measure the target scattering signal Y0 and calculate the covariance of the
target-scattering signal RY0 . The covariance matrix of the channel response R

H0
can be obtained through

successive measurements with uniform power allocation over the transmit antennas by solving (36).
2. The optimized waveform ensemble CX̂0

can be obtained through the waveform design process by
solving (30).
3. At time t = 1, measure Y1 and calculate RY1 and the cross-covariance matrix RY0,Y1 . The actual channel
response H1 is obtained by de-convolving the target-scattering signal with the transmit signal by using (23).
4. Calculate the corresponding singular values dm

0,1, m = 1, . . . , M of RY0,Y1 and X̂1 ∈ CX̂0
can be acquired

through the waveform selection process by solving (38).
5. At time t = 1, emission X̂1 and observe the corresponding received signal Ŷ1 to achieve R

H1
by using (36).

6. If i = Imax, the iterative procedure ends; or else, repeat steps 2–5 iteratively.

It is worth noting that adaptation is included in the waveform design and selection procedures
through the feedback process and numerous interactions with the radar channel. In summary, the
adaptive waveform optimization strategy for target detection is implemented according to the block
diagram in Figure 3.
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     If

Figure 3. The adaptive waveform design and selection scheme for target detection.

5. Simulation

In this section, numerical results based on Monte Carlo simulations have been provided to validate
the effectiveness of the proposed method. Without loss of generality, each entry of the channel matrices
follows the standard complex Gaussian distribution. The simulation parameters are based on radar
application with a high Pulse Repetition Frequency (PRF), such as in X-band radar. A data rate
in the range of dozens of Mbps can be achieved. We provide a comparison between the proposed
scheme and the method of [32]. To implement the method in [32], we consider a dual-function MIMO
system operating in the X-band with carrier frequency fc = 8.2 GHz and bandwidth B = 500 MHz.
The sampling frequency is fs = 109 sample/sec, which is taken as the Nyquist rate. The PRI is T0 = 10μs.
We assume an arbitrary linear transmit array consisting of M = 16 elements. We further assume that
the minimum transmit/receive antenna spacing is sufficiently larger than half wavelength (distributed
MIMO configuration). Hence, the correlation introduced by finite antenna element spacing is low
enough that the fades associated with two different antenna elements can be considered independent.
To implement the radar function, we further assume that the FH step is Δ f = 10 MHz, the length of
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the FH code is Q = 20 and the FH interval duration is Δt = 0.1 μs. We generate a set of 16 FH pulse
waveforms. The parameter J = 50 is used. Therefore, the 320 FH code is generated randomly from the
set {1, 2, . . . , J}, where J = 50.

We employ orthogonal sequences of the FH pulse over the transmit antenna elements.
The backscatter signals are matched filtered at the receivers and the transmitted signals are later
modified by the waveform optimization module as shown in Figure 2. The optimized transmission
sequence at one particular transmit antenna after the two-step optimization process. The target response
extracted from the received target echoes after matched filtering at the end of 20 iterations of the
algorithm, where an excellent performance of the target response estimation can be observed. At each
iteration, the scattering coefficients for the target and non-target scatterers in Hi vary as described by
the Swerling III model [45,46]. This causes the amplitude returns of the backscatter signals to vary
at each instance. However, the amplitudes of the echoes from the target are always assumed to be
stronger than those from the clutter sources.

5.1. Target Detection Performance

Figure 4a illustrates the detection probability offered by the proposed scheme versus the
signal-to-noise ratio (SNR) for different iterations. The iteration process is run 20 times. All optimal
waveforms are generated by the proposed two-step algorithm. The value of requested SNR increases
as the probability increase for a particular number of iterations. The SNR decreases as the number of
iterations increase for a certain detection probability. The detection performance offered by the proposed
scheme improves as the number of iterations increases. Simulation results show that, on average,
20 iterations of the waveform optimization algorithm are required in order to achieve convergence of
the target response estimation for a wide range of radar scenes.

Figure 4b illustrates the ROC for the following four approaches while the value of received
SNR equals to 8 dB. (1) 4 × 4 MIMO system based on conventional maximum a posterior (MAP)
approach; (2) 4× 4 MIMO system using the Kalman filtering [42]; (3) 4× 4 MIMO system based on MI
optimization (step 2) scheme; (4) 4× 4 dual-function MIMO radar-communications system using the
proposed scheme.

The plot is run at the end of 24 iterations. For the probability of false alarm P f a = 0.005, the of
target detection probability generated by the proposed scheme is 0.95 as compared with 0.75 provided
by the Kalman filtering method, 0.7 by MI optimization (step 2) criterion and 0.55 by conventional
MAP approach. As the two-step scheme can use the temporal correlation of target characteristic during
the radar scan interval, the dual-function MIMO system constantly adapts transmit mode to suit the
dynamic radar scene. Furthermore, the successive target returns are considered as independent of
each other. The property guarantees that information about the radar scene is learned at each instant
of reception. In this case, the detection performance offered by the proposed scheme is best.
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(a) (b) 

Figure 4. (a) The detection probability for different iterations provided by the proposed scheme; (b) The
receiver operating characteristics (ROC) for four approaches.

5.2. Target Response Estimation Performance

Figure 5a displays the MSE achieved by the proposed scheme with regard to the estimation of
target response. This plot demonstrates an improved MSE performance for the two-step optimization as
compared with the conventional MAP approach, the Kalman filtering method and the MI optimization
(step 2) modules, particularly for the first few iterations.

It is evident from Figure 5 that the MSE performance offered by the proposed scheme is superior
to the conventional MAP approach and the Kalman filtering method. The MSE performance offered
by the proposed scheme is superior to MI optimization (step 2) criterion. Similarly, Figure 5b shows
the MSE performance offered by the proposed scheme with respect to the estimate of target response.
The MSE of target response estimation provided by the two-step scheme and other several approaches
are compared to reveal the benefit of the proposed scheme.

 
(a) (b) 

Figure 5. (a) The mean-square error (MSE) of target response estimation subject to power constraint;
(b) the MSE of target response estimation subject to power and probability constraint.

5.3. Delay-Doppler Resolution Performance

Figure 6a displays the 2× 2 MIMO radar ambiguity function contours of the original waveform.
The delay-Doppler resolution deteriorates owing to the presence of environment noise as shown
in Figure 6a. This phenomenon will became worse if the interference scatterers are placed in the
vicinity along the line linking the radar target and the antenna. The radar target is considered to be
located at the origin of the plan. Figure 6b displays the MIMO radar ambiguity function contours
of the optimization waveform by the proposed scheme at the end of 20 iterations. As can be seen
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from Figure 6a, the target discrimination capability becomes significantly enhanced by the increasing
iteration number. Specifically, the noise is suppressed by about 2.5 dB.

The delay-Doppler resolution, which is the output of matched filter at the radar receiver,
is connected to the MIMO radar ambiguity function of the transmit waveforms. The near-ideal
thumbtack response would appear if the statistically independent waveforms are employed for
emission. We constantly use the optimization waveforms provided by the proposed scheme to match
the estimated target response. It is worth noting that the estimated target response is continuously
updated at each iteration. At a result, the matching process ensures that the noise interference can
be suppressed over the radar channels and further enhance the SNR of the target-scattering signals.
Figure 6b illustrates the enhancement in SNR with multiple iteration number. The phenomenon shows
the enhanced ability of the proposed dual-function MIMO system to discriminate the target from radar
environment and resolve the target’s range and velocity.

(a) (b) 

=

[ ]

Figure 6. Ambiguity Function (AF) contours showing delay-Doppler resolution at (a) iteration 1 and
(b) iteration 20, which demonstrates smaller focal area in (b) as compared with (a).

5.4. Symbol Error Rate Performance

We study the SER performance of the communication source embedding scheme using Binary
Phase Shift Keying (BPSK), Quadrature Phase Shift Keying (QPSK), 16-Phase Shift Keying (16-PSK)
and 256-Phase Shift Keying (256-PSK) constellations and compare the original waveform with the
encoded waveform. The original waveform corresponds to data rate of R = 32; 64; 128 and 256 Mbps,
respectively. To obtain encoded waveform, a convolutional encoder of rate 2/3 is employed in the
original waveform. We use a Viterbi decoder to decode the received encoded waveform at the
communication receiver. The communication channel coefficient is taken as |αc| = 1, and the phase
of αc is uniformly distributed within the interval [0, 2π]. To test the SER performance, we generate a
number of 10× 1017 random BPSK, QPSK, 16-PSK and 256-PSK symbols. The SERs versus SNR for all
constellation sizes is illustrated in Figure 7.

The results demonstrate that the smaller the constellation size is, the better the SER performance
will be. As the constellation size increases, it is more difficult to detect the symbols. It can be explained
that the defective cross-correlation between the non-orthogonal transmit sequences influences the
detection performance. Obviously, the encoded waveform achieves greater SER performance as
compared to the original waveform. Therefore, intersymbol interference is a significant source of
detection error resulting in performance degradation. It is expected that the SER performance gets
worse if longer FH waveforms are used. It is worth noting that, for all techniques tested, the SER
performance offered by the encoded waveform outperforms the performance provided by the original
waveform. Therefore, the SER superiority comes at the price of lower data rate.
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Figure 7. The symbol error rates (SERs) versus signal-to-noise ratio (SNR) for Binary Phase Shift Keying
(BPSK), Quadrature Phase Shift Keying (QPSK), 16-Phase Shift Keying (16-PSK) and 256-Phase Shift
Keying (256-PSK).

Figure 8 illustrates the throughput result provided by the proposed optimization waveform versus
distance for BPSK, QPSK, 16-PSK, and 256-PSK constellation. 256-PSK waveform provides a data rate
of approximately 8 Mbps at a distance of 10 m, which is better than that generated by BPSK, QPSK,
16-PSK constellations. The highest data rate is acquired by the 256-PSK waveform within a distance of
60 m, as the distance between the system nodes increases the data rate decreases.

Figure 8. Comparative throughput of BPSK, QPSK, 16-PSK, 256-PSK.

5.5. Detection Variation Performance

The detection constraint optimization has recently been studied in works such as [38,39], where
the authors address the problem of radar code design for target recognition in the presence of colored
Gaussian disturbance. The objective function in [38] aims to maximize the weighted average Euclidean
distance between the ideal echoes from different target hypotheses. Furthermore, additional practical
constraints are considered in [38]. For example, the modulus of the waveform is restricted to be a
constant and the detection constraints require that the achievable SNR for each target hypothesis is
larger than a desired threshold.

Figure 9 indicates the detection variation offered by the proposed scheme subject to the detection
constraint. We assume a radar scene, which has three range-separated targets. The target-scattering
signals derived from the radar scene is normalized and the proposed dual-function MIMO system
intends to discriminate the scatterers by using a particular detection threshold.
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With subsequent iterations of the proposed algorithm, the detection performance of the multiple
targets is enhanced. As can be seen from Figure 9, by suppressing noise, the dual-function MIMO
system could discriminate three scatterers effectively at the end of 20 iterations. The result proves the
performance of target detection presented in Figure 6b as well.

The detection performance is enhanced by providing the waveform design (step 1) procedure
in the proposed scheme. The waveform design procedure ensures the maximum of the Euclidean
distance between the target echoes from different scatterers based on the MI maximization criterion in
(30). The proposed design procedure is similar to the optimization method in [43]. By increasing the
number of iterations, we can obtain more accurate estimates of the target responses, which are used to
improve detection of the multiple targets.

(a) (b) 

(c) (d) 

Figure 9. Target-scattering signal profiles at (a) iteration 1, (b) iteration 5, (c) iteration 10, and (d)
iteration 20.

5.6. Comparison with Other Methods

We have assess the performance of the new approach in terms of the Bit Error Rate (BER) and
compare it with the method in [29]. Note that the latter approach uses a single sequence in tandem
with 4 sidelobe levels towards the communication direction to deliver 2 bits of information. On the
other hand, we use a PM-based FH waveform to deliver two bits per pulse. To test the BER, a
sequence of symbols unencoded (two bits each) is used. Furthermore, a convolutional encoder of
rate 2/3 is used in the original waveform leading to encoded waveform. Both the unencoded and the
encoded waveforms are embedded independently using the approach of [29] and the new approach.
The received encoded signal is decoded using a Viterbi decoder. The BERs versus the signal-to-noise
ratio (SNR) for the two approaches is presented in Figure 10 for both the unencoded as well as
the encoded data sequences. Obviously, the proposed approach achieves better BER performance
compared to the method of [29]. Note that the latter approach embeds 25% of the information via each
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of the four beams. Thus, intersymbol interference is a non-negligible source of detection error leading
to capability degradation. The behavior can be expected to be worse if longer pulses are transmitted.
Note that, for two approaches tested, the BER with respect to the encoded waveform outperforms the
BER with respect to the unencoded waveform. However, this BER superiority comes at the price of
slower data transmission rate.

Figure 10. The SERs versus SNR for BPSK.

In Figure 11, we compare the performance for adaptive waveform provided by the proposed
method to the performance for a static waveform [32] over multiple snapshots. As the proposed
method selects specific waveforms, which generate target returns having low correlation over time, the
system adapts its transmit waveform better to the fluctuating target Radar Cross-Section (RCS). On the
other hand, the static waveform [32] is unable to match the time-varying target response. Therefore,
the performance of the static waveform [32] is worse than the proposed adaptive waveform.

Figure 11. Probability of detection for adaptive waveform and static waveform.

6. Conclusions

The problem of dual-functionality system design for joint radar and communications operation
was considered. We further presented a two-step waveform optimization algorithm for the proposed
system, which combines the waveform optimization and selection processes. The proposed algorithm
is based upon constant learning of the radar scene at the receiver and adaptation of the probing codes
to suit the dynamic target feature. The adaptive process ensures maximum information extraction
from the target of interest. The effectiveness of the proposed technique and its superiority over existing
techniques in terms of the BER performance and the target detection performance were demonstrated
through extensive simulations. The proposed system would form a joint platform for future intelligent
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transportation applications for which both environmental perception and establishment of data links
are crucial. Future research will look into the tradeoff between the performance improvement offered
by the proposed approach and the computational complexity involved.
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Abstract: The rational function model (RFM) is widely used in the most advanced Earth observation
satellites, replacing the rigorous imaging model. The RFM method achieves the desired calibration
performance when image distortion is caused by long-period errors. However, the calibration
performance of the RFM method deteriorates when short-period errors—such as attitude jitter
error—are present, and the insufficient and uneven ground control points (GCPs) can also lower the
calibration precision of the RFM method. Hence, this paper proposes a geometric calibration method
using sparse recovery to remove the linear array push-broom sensor bias. The most important issue
regarding this method is that the errors related to the imaging process are approximated to the
equivalent bias angles. By using the sparse recovery method, the number and distribution of GCPs
needed are greatly reduced. Meanwhile, the proposed method effectively removes short-period errors
by recognizing periodic wavy patterns in the first step of the process. The image data from Earth
Observing 1 (EO-1) and the Advanced Land Observing Satellite (ALOS) are used as experimental
data for the verification of the calibration performance of the proposed method. The experimental
results indicate that the proposed method is effective for the sensor calibration of both satellites.

Keywords: geometric calibration; long- and short-period errors; equivalent bias angles; sparse
recovery; linear array push-broom sensor

1. Introduction

With the accelerating development of technical aeronautics and space exploration, many countries
have launched advanced Earth observation satellites in recent years. The linear array push-broom
sensor is the payload which has been carried by the most satellites. This significant quantity of Earth
observation has had a great impact on overall production and human life. However, the imaging
process of sensors is easily influenced by a variety of errors, including thermal deformation error,
optical distortion error, satellite position, attitude measurement errors, and so on [1,2]. Commonly,
the raw images contain many image distortions and cannot be directly applied to the processing of
subsequent applications. Typically, errors which result from image distortion can be divided into
two sources: long-period errors, including assembling error, optical distortion error, and thermal
distortion error, which are constant, non-varying, or slowly varying [3]; and short-period errors,
including satellite position, attitude measurement errors, and attitude jitter error. If these errors are
insufficiently characterized or uncorrected, significant distortion of the raw image can result. Therefore,
it is necessary to complete geometric calibration of the sensor to eliminate image distortion before raw
image application.

The imaging process involves projecting a point on the surface of the Earth toward the sensor’s
focal plane [4]. The imaging models are used to describe this imaging process consist of two types [5].
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The first type is the rigorous imaging model, which involves a set of coordinate transformations.
Many rigorous image models have been proposed by different scholars for a variety of sensors in
previous research [1,2,6,7]. However, most imagery vendors often do not provide details of advanced
Earth observation satellites, such as the precise parameters and work mode of sensor or the satellite
orbit, to the user. Therefore, this type of model has many limitations in practical use. The other
type is the generalized imaging model. There are a lot of generalized imaging models, with the
main ones being the rational function model (RFM), the direct linear transformation model, and the
polynomial model. The RFM is widely applied in sensor calibration due to its simple form and high
precision compared to the other models [5]. However, the RFM has strict requirements regarding the
distribution and number of ground control points (GCPs) in each frame, and it also needs to calculate
the coefficients frame-by-frame. The RFM method effectively calibrates image distortion caused by the
long-period errors—such as thermal distortion error, optical distortion error, and assembling error—but
the calibration performance of the RFM method deteriorates in the presence of short-period errors, such
as attitude jitter [8]. The majority of advanced Earth observation satellites undergo attitude jitter, which
results from attitude control operations, the dynamic structure, and so on [9]. Referring to the previous
studies [8,9], we found three classic ways to handle satellite attitude jitter. The first way is to apply
an advanced hardware device, such as an angular displacement sensor, to achieve high-resolution
measurement data. However, this is infeasible for many satellites due to restrictions regarding the
economy and technology. The second way is to estimate attitude jitter by using multispectral parallax
images. This method is unsuited for the estimation of attitude jitter of satellites which are not equipped
with multispectral sensors. The third way is to use high precision GCPs in scenes; the effectiveness of
this method is decided by the distribution and number of GCPs [8]. However, it is difficult to extract
many GCPs with high precision in each scene, especially if water or cloud coverage exists in the scene.

In order to solve the above-mentioned problems, this paper puts forward a geometric calibration
method by using sparse recovery to remove linear array push-broom sensor bias. The errors relating to
the imaging process are approximated to the equivalent bias angles [10], and the equivalent bias angles
of the image sequence are recovered by compressive sensing in this method. Hence, the traditional
problem regarding error-solving in the sensor calibration process is transformed into a new problem
regarding signal recovery in this paper.

2. Sensor Geometric Calibration Model

2.1. Sensor Geometric Calibration Modeling

Over the past decade, the linear array push-broom sensor has been used as a main payload
assembled by the most advanced Earth observation satellites. The imaging process of the linear array
push-broom sensor projects a point on the surface of Earth, such as a GCP, to the sensor’s focal plane [4].
The basic flow diagram of this process is shown in Figure 1. The rigorous imaging model for the linear
array push-broom sensor is presented as follows [6,7,11].⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

X −XF

Y −YF

Z−ZF

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ = m× RECF
ECI × RECI

orb (θΩ,θi,θω) ×R
body
orb (ϕ, ε,ψ) × Rsen

body(φX,φY,φZ) × Mmir(θ0,θc) ×
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
y
− f

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ (1)

where (X, Y, Z) represents the projective position in the Earth-centered fixed (ECF) coordinate system,
y represents the image column position in the focal plane coordinate system, (XF, YF, ZF) represents
the satellite position in the ECF, m represents a scale factor, f represents the focal length, RECF

ECI denotes
the rotation from the Earth-centered inertial (ECI) to the ECF coordinate system, θΩ,θi,θω represent
the orbital elements of the satellite (right ascension of the ascending node, inclination, and true perigee
angle), RECI

orb denotes the orbital elements that give the rotation from the satellite orbit to the ECI

coordinate system, ϕ, ε,ψ represent the Euler angles of the satellite attitude, R
body
orb denotes the satellite

attitude angles that give the rotation from the satellite body to the satellite orbit coordinate system,
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φX,φY,φZ represent the assembling angles of the sensor, Rsen
body denotes the assembling angles that

give the rotation from the sensor to the satellite body coordinate system, θ0,θc represent the sensor
pointing angles (the mirror assembling angle and the mirror rotation angle), and Mmir denotes the
sensor pointing angles that give the rotation from the pointing to the sensor coordinate systems.

Figure 1. Basic flow diagram of the imaging process for the linear array push-broom sensor.

Compared with the true values, the imaging parameters usually solve some undistinguished
errors in the imaging process. The long-period errors, such as thermal distortion error, optical distortion
error, assembling error, and the short-period errors—such as satellite orbit error and attitude error—of
the imaging process are approximated to the equivalent bias angles. The sensor geometric calibration
model is presented as [1,2,10]⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

X −XF

Y −YF

Z−ZF

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ = m× REq(α, β,θ) × RECF
ECI × RECI

orb × R
body
orb × Rsen

body × Mmir ×
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
y
− f

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ (2)

where α, β,θ represent the equivalent bias angles and REq(α, β,θ) denotes the equivalent rotation matrix

REq(α, β,θ) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
1 0 0
0 cosα sinα
0 − sinα cosα

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

cos β 0 − sin β
0 1 0

sin β 0 cos β

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

cosθ − sinθ 0
sinθ cosθ 0

0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ (3)

2.2. Error Modeling

All on-orbit satellites suffer from an environment that varies cyclically between cooling and
heating due to the circular orbit around Earth. The thermal distortion error resulting from the satellite
in the Earth’s orbit causing a solar eclipse is the biggest error in the imaging process [12]. The period
of this cycle is the same as the orbit period of the satellite. Thermal distortion errors present in three
directions, with the error in the direction toward the sun being the largest. The optical distortion error
and assembling error are constant bias errors or long-period variation errors [4]. Attitude jitter is also a
primary source of decreasing sensor performance. The satellite position and attitude measurement
errors, which are a type of Gaussian error, can be effectively removed by using compressive sensing,
therefore, they are not included in the bias angle model. According to the characteristics of these errors,
the equivalent bias angles can be described by the constant errors and a set of period components
varying in sinusoidal waveform, demonstrated as [4,12]

357



Sensors 2019, 19, 4003

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

α(t) = ςα +
n∑
i

Aαi sin(2π fαit + ζαi)

β(t) = ςβ +
n∑
i

Aβi sin(2π fβit + ζβi)

θ(t) = ςθ +
n∑
i

Aθi sin(2π fθit + ζθi)

(4)

where ςα, ςβ, ςθ represent the constant errors, Aαi, Aβi, Aθi represent the amplitudes of the period
components, fαi, fβi, fθi represent the frequencies of the period components, and ζαi, ζβi, ζθi represent
the phases of the period components.

3. Geometric Calibration by Using Sparse Recovery

3.1. Compressive Sensing
As a new theory in signal processing, compressive sensing was proposed in 2004 and rapidly

developed in the following years. The core idea of this theory mainly involves two aspects. The first is
the sparsity of the signal, which means that the majority of the elements are have a value of zero or
are otherwise very small [13]. The other is sampling irrelevance, in other words, the measurement
matrix required to meet the restricted isometry property (RIP) [14]. The traditional Nyquist–Shannon
sampling theorem indicated that the sampling frequency must exceed the Nyquist sampling frequency
to restore the signal without distortion. However, the sparse signal is exactly recovered by compressive
sensing from its incomplete measurements far below the Nyquist sampling frequency [13]. In practical
problems, the majority of signals are not initially sparse. Fortunately, these signals can be converted
into sparse signals using sparse transformation. Sparse transformation can be done by discrete Fourier
transformation (DFT), discrete cosine transformation, and wavelet transformation. Hence, these signals
are recovered by compressive sensing. Because of its incomparable advantage in handling large-scale
compressible data, compressive sensing is widely used in the fields of radio communication, array
signal processing, medical imaging, and so on.

3.2. Procedure of Proposed Method
The geometric calibration method consists of five primary steps: (a) periodic wavy pattern

recognition; (b) sparse GCP image shift calculation; (c) dense GCP image shift calculation; (d)
equivalent bias angles recovery; and (e) image calibration. The procedure of the proposed method is
shown in Figure 2.

Figure 2. Flowchart of the proposed method.
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3.2.1. Periodic Wavy Pattern Recognition

The first step is to recognize the periodic wavy pattern of the raw image sequence frame-by-frame.
Once the raw image exists with periodic wavy patterns, which are caused by short-period error,
such as attitude jitter error, the subsequent process of Step 3 is necessary for the frame. There are
three processes that need to be completed for periodic wavy pattern recognition. First, a line or edge
detection algorithm is used to extract the road, dike, and coastline from the raw images. Then, the
smoothness of the extracted lines or edges is extracted. Finally, the existence of periodic wavy patterns
in the images is determined. The details of this step can be seen in [15].

3.2.2. Sparse GCP Image Shift Calculation

There are three main processes in this step. First, a handful of images with good imaging conditions
are randomly selected from the raw image sequence, excluding images with periodic wavy patterns, as
the measurement scenes. Then, a small number of GCPs with high precision from each measurement
scene are extracted and matched. The sampling interval of GCPs is set to larger, and these GCPs are
defined as sparse GCPs in this paper. The latitude and longitude ranges of each measurement scene
are calculated to determine whether there are GCPs in each measurement scene; the templates of GCPs
used in this GCPs extraction process are obtained from the Shuttle Radar Topography Mission data.
The details of this process are seen in [16]. Finally, we calculate the ideal position of the GCPs in the
focal plane coordinates using Equation (2), and the equivalent bias angles are set to zero in this process.
The real position of the GCPs are measured from the raw images and the image shift of sparse GCPs is
calculated as {

Δxi = xi − xci
Δyi = yi − yci

(5)

where (Δxi, Δyi) is the image shift between the real position (xi, yi) and the ideal position (xci, yci) of
ith GCP.

3.2.3. Dense GCP Image Shift Calculation

The raw images with periodic wavy patterns are selected as the measurement scenes, and a
number of GCPs with intensive distribution from each measurement scene were extracted and matched
with periodic wavy patterns. The sampling interval of the GCPs is set to smaller; these GCPs are defined
as dense GCPs. The exact number of GCPs is determined by the sparsity and length of the recovered
signal, the recovery algorithm, and so on. Generally speaking, the length of the measurements is far
below the length of the recovered signal [14]. The rest of this step follows the same process as Step 2.

3.2.4. Equivalent Bias Angle Recovery

The most important thing in this crucial step is the signal fusion. It is known that the compressive
sensing method can only recover 1-D column vectors, therefore, 3-D equivalent bias angles signals must
be merged into a 1-D time varying signal according to the time order. The problem regarding solving
3-D signal errors is transformed into the problem relating to 1-D signal recovery. After obtaining
the image shift of GCPs, the remaining tasks of this step are to select a desired sparse basis and an
appropriate recovery algorithm and to construct a suitable measurement matrix to exactly recover the
1-D time varying signal. The 3-D signals are separated from the 1-D recovered signal. The details of
this important work are presented in the following sections.

3.2.5. Image Calibration

There are two processes in this step. One involves calculating the calibrated position, and the
other is to do with resampling the raw image. Once the equivalent bias angles are recovered, the
calibrated image positions are easily calculated using Equation (2) with the imaging parameters. The
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image resampling can be completed using the bilinear interpolation method. The gray values of the
calibrated image are obtained according to the calibrated image positions and the raw image.

3.3. Criticism of the Proposed Method

If the equivalent bias angles are considered to be errors in an ideal situation, the estimation of
equivalent bias angles is a typical adjustment of indirect observations. The function model of the
adjustment of these indirect observations is expressed as

L = BX + d (6)

where L is the observation, B is the measurement matrix, X is the estimated parameter, and d is an
offset constant.

Generally, the estimated parameter is expressed as

X = X0 +
^
x (7)

where X0 is the ideal value of the estimated parameter and
^
x is the correction of the estimated parameter.

Let
L1 = L− L0 = L− (BX0 + d) (8)

where L0 is the ideal observation value.
According to Equations (6) and (7), Equation (8) can be simplified as

L1 = B
^
x (9)

where
^
x is the equivalent bias angle, L1 is the image shift of the GCP, and B is the measurement matrix.

When there is nonlinear relation between L and X(L = F(X)), partial derivative of function F(X) must
be sought to obtain the measurement matrix B.

3.3.1. Measurement Matrix and Measurement Equation

(a) Measurement variables

According to Equation (8), L1 is determined by L and L0 is the real position of the GCP and L0 is
the ideal position of the GCP when M GCPs are extracted and matched from the raw image sequence.
The L and L0 are expressed as

L =
[

x1 y1 x2 y2 · · · xM yM
]T

d =
[

xc1 yc1 xc2 yc2 · · · xcM ycM
]T (10)

According to Equation (5), L1 is expressed as

L1 =
[

Δx1 Δy1 Δx2 Δy2 · · · ΔxM ΔyM
]T

=
[

x1 − xc1 y1 − yc1 x2 − xc2 y2 − yc2 · · · xM − xcM yM − ycM
]T (11)

where L1 is a 2M× 1 vector.

(b) Measurement equation

According to Equation (9), the measurement equation of one GCP is expressed as[
Δxm Δym

]T
= Bmn

[
αn βn θn

]T
(12)
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where
[
αn βn θn

]T
are the equivalent bias angles of the mth GCP and Bmn is the 2× 3 measurement

matrix.
The measurement equation of M GCP is expressed as

L1 = B
^
x⇒

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Δx1

Δy1

Δx2

Δy2
...

ΔxM

ΔyM

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
B11 0 · · · 0
0 B22 · · · 0
...

...
. . .

...
0 0 · · · BMN

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

α1

β1

θ1

α2

β2

θ2
...
αN

βN

θN

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

b1
11 b1

12 b1
13 0 0 0 · · · 0 0 0

b1
21 b1

22 b1
23 0 0 0 · · · 0 0 0

0 0 0 b2
11 b2

12 b2
13 · · · 0 0 0

0 0 0 b2
21 b2

21 b2
21 · · · 0 0 0

...
...

...
...

...
...

. . .
...

...
...

0 0 0 0 0 0 · · · bM
11 bM

12 bM
13

0 0 0 0 0 0 · · · bM
21 bM

22 bM
23

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

α1

β1

θ1

α2

β2

θ2
...
αN

βN

θN

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(13)

where L1 is a 2M × 1 measurement vector, B is a 2M × 3N measurement matrix, and
^
x is a 3N × 1

merged equivalent bias angle vector.

(c) Linearization of measurement equation

The other important issue regards obtaining the element of the measurement matrix B. To reduce
the complexity of the algorithm, the linearization of measurement equations for each GCP must be
completed before recovering the signal. According to Equation (2), the relationship between the
estimated parameters and the measurements is nonlinear, therefore a partial derivative of Equation (2)
should be sought to obtain the measurement matrix B. However, seeking a partial derivative of
Equation (2) is difficult, and the numerical analysis method is used to estimate the elements of the
measurement matrix B. Next, the elements bm

11 and bm
21 of Bmn are taken as examples to introduce the

details of the solution.

1. The upper limit of the equivalent bias angles A, the increment Δγ in each step, and the cycle
index I = A

Δγ are determined;

2. The first parameter αn of nth equivalent bias angles is set to i×Δγi ∈ [0, I] and the other parameters
are set to zero;

3. The image positions of the mth GCP by using the imaging parameters and the equivalent bias

angles
(

i× Δγ 0 0
)
i ∈ [0, I] are calculated’

4. After obtaining the I + 1 image positions
(

x0 y0
)
,
(

x1 y1
)
, and

(
xI yI

)
, the variations of

image positions Δxi and Δyi are calculated using{
Δxi = xi − x0

Δyi = yi − y0
i ∈ [1, I] (14)

5. bm
11 and bm

21 are calculated as follows. The other elements of Bmn can be calculated in the same way⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
bm

11 = 1
I

I∑
i=1

Δxi
i×Δγ

bm
21 = 1

I

I∑
i=1

Δyi
i×Δγ

. (15)

3.3.2. Sparse Basis and Sparse Representation

The equivalent bias angles signals based on Equation (4) are not sparse in the time domain.
According to previous studies [8,17], the DFT converts equivalent bias angles signals into the sparse
representation. The simulated signals based on Equation (4) are displayed in Figure 3a. The three
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curves in Figure 3a represent the simulated three-dimensional equivalent bias angles signals with
different constant errors and period components. The red curve indicates the X direction, the blue
curve indicates the Y direction, and the black curve indicates the Z direction. The results of the 1-D
DFT are displayed in Figure 3b.

Figure 3. (a) Simulated 3-D equivalent bias angles signals. (b) Results of 1-D DFT for the 1-D equivalent
bias angle signal.

To easily recover the equivalent bias angles signals, the 3-D equivalent bias angle signals need to
be merged into a 1-D signal according to time order. The 1-D merged signal and the results of the 1-D
DFT are displayed in Figure 4.

Figure 4. (a) 1-D merged signal. (b) Results of the 1-D DFT.

From Figure 3b, it is seen that the 3-D equivalent bias angle signals are sparse in the frequency
domain and the 1-D merged signal is sparse in the frequency domain, as seen in Figure 4b. Therefore,
we select the 1-D DFT basis as the sparse basis Ψ in the proposed method. The performances of the
other sparse bases are all worse than the 1-D DFT basis. The definition of sparse basis Ψ is

Ψ =
1
N

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
ej2π(0×0)/N ej2π(1×0)/N · · · ej2π((N−1)×0)/N

ej2π(0×1)/N ej2π(1×1)/N · · · ej2π((N−1)×1)/N

...
...

. . .
...

ej2π(0×(N−1))/N ej2π(1×(N−1))/N · · · ej2π((N−1)×(N−1))/N

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (16)
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3.3.3. Signal Recovery

It is obvious from Equation (12) that the 2-D measurement equation used to solve the 3-D
equivalent bias angles of one GCP is a pathological problem. The traditional methods assume that
the equivalent bias angles are unchanged in the frame period and use classical optimal estimation
methods—such as least squares estimation, Bayes estimation, or maximum likelihood estimation—to
combine a number of GCPs to estimate the equivalent bias angles of each frame. However, this
assumption is unreasonable when equivalent bias angles contain short-period errors. Due to M << N,
the solution of Equation (13) is highly undetermined; therefore, the traditional methods do not work in

this situation. Fortunately, it is possible to exactly recover the values of
^
x using compressive sensing if

^
x is represented by the sparse basis.

The measurement equation of M GCP in Equation (13) is rewritten as

L1 = B
^
x = BΨf = B̃f (17)

where Ψ is a 3N × 3N sparse basis, f is a 3N × 1 sparse representation,
^
x = Ψf, and B̃ = BΨ is a 2M× 3N

sensing matrix. In Equation (17), L1 is considered to be the product of f times B̃ [13]. The 1-D DFT
method achieves RIP [17]. The GCP is selected randomly when the measurement matrix B achieves
RIP, therefore, the sensing matrix B̃ also achieves RIP. We use the matching pursuit algorithm to recover
the exact values of f due to its lower computational complexity [18,19]. The merged equivalent bias

angle signal
^
x is obtained as

^
x = Ψf (18)

4. Experiments and Analysis

Two experiments were used to compare the proposed method with the RFM method in this section.
The first method employs the image data from the Hyperion of Earth Observing 1 (EO-1) and shows
the performances of two methods designed to estimate the long-period components of equivalent
bias angles. The second method, which uses the image data from the Panchromatic Remote-sensing
Instrument for Stereo Mapping (PRISM) of the Advanced Land Observing Satellite (ALOS), shows
that the proposed method has a superior performance regarding the estimation of the short-period
components. The details of the experiments are described as follows.

4.1. Hyperion Data Experiment

4.1.1. Data Description

Hyperion, as the main payload of EO-1, is a typical linear array push-broom sensor. A total of
100 Hyperion frame images from 7 June 2002 were selected as the experimental data. In the proposed
method, we selected 40 frames with some evenly distributed GCPs from the experimental data as the
measurement scenes. The measurement scene used in the proposed method is represented in Figure 5a,
with the red crosses denoting the GCPs. The rest of the frames were selected as verification scenes,
which evenly distribute 50 random check points (RCPs) in each scene. One verification scene used in
the proposed method is represented in Figure 5b, with the blue triangles denoting the RCPs. For the
RFM method, we extracted some GCPs in each frame; the verification scenes were the same as in the
proposed method. The measurement and verification scene of the RFM method are represented in
Figure 5c. The GCPs of the measurement scenes were used as the inputs for both methods. The RCPs
in the verification scenes were selected as the valuators to exactly evaluate the calibration performances
of both methods. To adequately compare the methods, we designed 10 testing cases with different
numbers of GCPs (5–50) and counted the calibration results. GCPs appeared to distribute evenly in
this experiment. The original size (3129 × 256) of the Hyperion images was changed in order to be
presented in Figure 5.
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Figure 5. (a) Measurement scene and (b) verification scene of the proposed method. (c) Measurement
and verification scene of the rational functional model (RFM) method (30 GCPs and 50 random check
points (RCPs)).

4.1.2. Experimental Results

The calibration results of both methods for one frame showing 30 GCPs are displayed in Figure 6.
The calibration results of the two methods in this case could be distinguished by the naked eye, even
when details were closely examined (Figure 6).

Figure 6. The calibration results of (a) the proposed method and (b) the RFM method.

To make accurate comparisons between the two methods, the calibrated residuals of the RCPs
were employed in the statistical analysis. The mean value and root mean square error (RMSE) of
the calibrated residuals were used as the measurable indicators. The variation trends of the mean
value and the RMSE for the total GCPs across the two methods are shown in Figure 7. At least
19 GCPs were required to solve the coefficients of RFM; the RFM method did not work with 5, 10,
or 15 GCPs. As the number of GCPs increased, the mean value of the two methods gradually decreased,
as shown in Figure 7a. Similarly, the RMSE of the two methods gradually decreased in Figure 7b as
the number of GCPs increased, i.e., the calibration performance of the two methods improved when
the number of GCPs increased. The RFM method was superior in calibration performance when
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presented with enough GCPs. However, the proposed method did well when insufficient GCPs were
available. Therefore, the proposed method achieved a better calibration performance in situations with
insufficient GCPs compared with the RFM method.

Figure 7. The variation trends of (a) mean value and (b) root mean square error (RMSE) of the number
of GCPs across the two methods.

4.2. Experiment on ALOS Data

4.2.1. Data Description

PRISM, the primary sensor carried by ALOS, was designed to obtain a high-resolution digital
surface model to derive orthoimages on a global scale. PRISM has three panchromatic linear array
push-broom sensors (forward, nadir, and backward) with a 2.5 m spatial resolution and a width of
35 km swaths. The raw image data of PRISM was observed on 20 August 2006 and covered 50 scenes;
these were used as the experimental data. To verify the performances of the two methods regarding the
estimation of short-period components, one scene from the experimental data was used as the typical
scene, as shown in Figure 8. We extracted 100 evenly distributed GCPs as inputs for the two methods
and 50 evenly distributed RCPs to evaluate the calibration performances of the two methods in this
typical scene. Also, we randomly chose 20 scenes with 30 evenly distributed GCPs as the measurement
data from the rest of the experimental data.

Figure 8. Image data of a typical scene.
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4.2.2. Experimental Results

We used the line or edge detection algorithm to extract the road in a typical scene; the detection
results are shown in Figure 9.

Figure 9. The line detection results of a typical scene. (a) Hiroshima West Airfield and (b) enlarged details.

Figure 9a shows the Hiroshima West Airfield. As seen in Figure 9b, the airfield runway had
obvious periodic wavy patterns which were caused by short-period errors. The optical system of
PRISM was affected by the motion of another sensor’s mirror when this image was in the process of
being captured, therefore, Step 3 of the proposed method was performed to deal with this image data.
The partial details of the calibration results of a typical scene using the different methods are shown in
Figure 10. The periodic wavy patterns in the calibration results of the proposed method are hardly
recognizable in Figure 10a, but the periodic wavy patterns are easily recognized in the calibration
results of the RFM method in Figure 10b.

Figure 10. Partial details of the calibration results for a typical scene. (a) Proposed method and
(b) RFM method.
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The calibration results of the two methods for 50 RCPs in typical scene are shown in Table 1,
which shows that the mean value and RMSE of the calibrated results for the proposed method were
less than those of the RFM method. The results of this experiment indicated that the proposed method
did well in estimating the short-period components of equivalent bias angles when compared with the
RFM method.

Table 1. Calibration results of the two methods using 50 RCPs in a typical scene.

Mean Value
(urad)

RMSE
(Pixels)

Proposed Method 0.43 0.68
RFM Method 1.67 2.03

5. Conclusions

Geometric calibration must be carried out before the application of raw images. This paper
proposed a geometric calibration method using sparse recovery to remove linear array push-broom
sensor bias. The errors in the imaging process were approximated to the equivalent bias angles in this
method. By using the sparse recovery method, the proposed method exactly estimated long-period
errors with a small number of GCPs available. Also, the proposed method effectively removed
short-period errors by recognizing periodic wavy patterns in advance. The preliminary experimental
results indicated the practicality and superior calibration performance of the proposed method when
used for image data captured by the EO-1 and ALOS satellites. Compared with the traditional methods,
the proposed method did well in situations with insufficient GCPs and short-period error calibration.

Future research will focus on the effects of GCP distribution on the proposed method. It is also
important to apply the proposed method to other types of sensors.
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Abstract: In this paper, a blind modulation classification method based on compressed sensing
using a high-order cumulant and cyclic spectrum combined with the decision tree–support vector
machine classifier is proposed to solve the problem of low identification accuracy under single-feature
parameters and reduce the performance requirements of the sampling system. Through calculating
the fourth-order, eighth-order cumulant and cyclic spectrum feature parameters by breaking through
the traditional Nyquist sampling law in the compressed sensing framework, six different cognitive
radio signals are effectively classified. Moreover, the influences of symbol length and compression
ratio on the classification accuracy are simulated and the classification performance is improved,
which achieves the purpose of identifying more signals when fewer feature parameters are used.
The results indicate that accurate and effective modulation classification can be achieved, which
provides the theoretical basis and technical accumulation for the field of optical-fiber signal detection.

Keywords: modulation classification; high-order cumulant; cyclic spectrum; compressed sensing;
decision tree–support vector machine

1. Introduction

As one of the booming communication technologies in the information era, modulation
classification (MC) technology [1] has a very important application value in the field of wireless
communication. For example, it can play an important role in communication investigation,
electronic countermeasures, signal authentication, interference identification, spectrum management,
etc. At present, the wireless communication network has maintained a steady and rapid development
trend, the network construction is increasingly integrated, and network applications are everywhere.
At the same time, the inherent contradiction between the centralized static network and the dynamic
change of the environment also causes serious problems like the low utilization of spectrum resources
in the wireless communication network. Therefore, cognitive radio (CR) technology [2–5] is proposed
and considered as a promising technology to solve these problems. MC plays an important role in CR
based on spectrum sensing and feature analysis.

Cognitive radio has been widely accepted as a new technology in the field of wireless
communication in the new era. In the cognitive radio network (CRN), in order to avoid interference
with the transmission of the primary users, it is essential to accurately sense the presence for any
contemporaneous transmission of the primary users in the observed spectrum [6]. The primary user
signal error detection will cause the secondary user to waste the spectrum opportunity. Noise, shadow
and multipath fading lead to a serious degradation of signal characteristics in conventional wireless
communication scenarios. This makes signal detection very difficult in a low signal-to-noise ratio
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(SNR) environment [7,8]. In addition, because the primary user (authorized user) and the cognitive
user (unauthorized user) cannot communicate with each other, accurate MC can not only avoid
mutual interference between them, but also provide the multi-dimensional spectrum information
of the surrounding wireless environment, which helps to improve the inefficient use of spectrum
resources in the CRN. With the different modulation parameters and methods used in the wide-band
communication signal, MC has gradually been studied in depth and has become one of the main
methods of signal recognition and classification.

MC has been playing an important role in the field of wireless communication for a long time,
especially in dynamic spectrum management and interference recognition. A variety of methods and
classifiers have been proposed in the literature, but most of them only identify a few modulation
formats, such as low-order modulation format, or require some knowledge of parameters of the
signal. MCs of a CR system are roughly divided into 4 categories: (a) Multiple quadrature amplitude
modulation (MQAM) and multiple phase shift keying (MPSK) signals are classified based on signal
envelope variance and wavelet transform, but the recognition rate is low at low SNR [9,10]; (b) artificial
neural networks (ANN) based on machine-learning algorithms for automatic signal type recognition,
which requires the most appropriate ANN and will lead to an increase in calculation time and risk of
over-fitting [11,12]; (c) identification from higher-order cumulant (HOC) using fourth-order cumulant,
which cannot identify some signals with the same fourth-order cumulant [13,14]; (d) feature parameters
are extracted from the time domain, frequency domain and power spectrum of signals to classify
and identify a modulation signal, but some feature parameter extraction processes are complex and
easily interfered with by noise [15–17]. The proposed method mainly focuses on the recognition of
single-feature parameters, and most classifiers adopted an increase the complexity of the system.

In this paper, we propose a new modulation classification method that combines high-order
cumulants and cyclic spectrum feature extraction methods with a decision tree–support vector
machine (DT–SVM) classifier. In the feature extraction phase, the compressed sensing (CS) method
is used to obtain the compressed sample size of the feature parameters, and the influence of
key factors on the classification accuracy in the modulation classification process is analyzed.
CS is a signal processing technique called “sampling compression combo”. The CS method can
map signals from high-dimensional space to low-dimensional space through a small number of
observations (non-adaptive linear projection) of sparse signals, and maintain the original structure
of the signal [18]. The sparse signal reconstruction is actually reconstructing the original signal from
the signal observations with high probability by solving the non-linear optimization problem, which
breaks through the limitations of the traditional Shannon–Nyquist sampling theorem and solves
the performance requirements of a sampling system when processing cognitive radio signal. It also
relieves the pressure of storage, transmission and processing for large amounts of the traditional
sampled data. The combination of HOC and the cyclic spectrum can distinguish the same cumulant of
different signals, and achieve the MC through the DT–SVM classifier. Combining the advantages of
HOC and cyclic spectrum features, the algorithm directly obtains the compressed values of feature
parameters through the CS theory, and analyzes the influence of symbol length and compression ratio
on the recognition accuracy. The simulation results show that the algorithm has a better classification
performance in low SNR and the validity of the method is verified.

The rest of this paper is structured as follows. Section 2 introduces the feature extraction method
and its characteristics in detail. Section 3 introduces the compression sampling values of feature
parameters obtained by combining the compression sensing theory. Section 4 describes the structure of
the decision tree–support vector machine classifier. In Section 5, some simulation results are presented.
Finally, Section 6 sums up the conclusions.
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2. Feature Extraction

2.1. Feature Extraction Based on Higher-Order Cumulant (HOC)

For wireless channel model, we studied the property of HOC and the insensitivity of
its second-order terms to Gaussian noise, the kth-order cumulant Ck,n(m1, m2, · · ·, mk−1) of a
complex-valued stationary random process x(t), can be defined as:

Ck,n(m1, m2, · · ·, mk−1) = cum(x(t), x(t + m1), · · ·, x(t + mk−1)) (1)

where x(t + mk) denotes a function of different time delays and regardless of t, cum(•) means taking
the cumulant. Therefore, its fourth-order cumulant is:

C4,n(m1, m2, · · ·, m3) = E[x(n)x(n + m1)x(n + m2)x(n + m3)] −C2,n(m1)C2,n(m2 −m3)

−C2,n(m2)C2,n(m3 −m1) −C2,n(m3)C2,n(m1 −m2)
(2)

Based on the above theory, the fourth-order, sixth-order and eight-order cumulants of the
zero-mean x(t), are shown as:

C4,0 = cum(x, x, x, x) = M4,0 − 3M2,0
2

C4,1 = cum(x, x, x, x∗) = M4,1 − 3M2,1M2,0

C4,2 = cum(x, x, x∗, x∗) = M4,2 −
∣∣∣M2,0

∣∣∣2 − 2M2,1
2

C6,0 = cum(x, x, x, x, x, x) = M6,0 − 15M4,0M2,0 + 30M2,0
3

C6,3 = cum(x, x, x, x∗, x∗, x∗) = M6,3 − 9C4,2C2,1 − 6C2,1
3

C8,0 = cum(x, x, x, x, x, x, x, x) = M8,0 − 28M6,0C2,0 − 35M4,0
2 + 420M4,0M2,0

2 − 630M2,0
4

(3)

where Mpq = E[x(t)p−qx∗(t)q] denotes the pth-order mixing moment [19].
In the practical application of MC, we need to estimate the HOC value of the signal from the

received symbol sequence in the shortest possible time. Sample estimations of the correlations are
given by:

C4,0 = 1
N

N∑
n=1

(x(t))4 − 3C2
2,0

· · · ··
C8,0 = 1

N

N∑
n=1

(x(t))8 − 28C2,0
1
N

N∑
n=1

(x(t))6 − 35M2
4,0 + 420M4,0M2

2,0 − 630M2
2,0

(4)

Substituting the estimated values into Equation (4), we can obtain all of the features for the
considered six wireless signal types. Table 1 shows some of these features for a number of these signals.
These values are computed under the constraint of unit variance in noise free conditions. It can be seen
that by computing of these values, we can classify the wireless signal types.

Table 1. Theoretical values of higher-order cumulant (HOC) for six wireless signal modulations.

|C4,0| |C4,1| |C4,2| |C6,0| |C6,3| |C8,0|

OOK 2 2 2 16 13 272
DPSK 2 2 2 16 13 272
QPSK 1 0 1 0 4 34

OQPSK 1 0 1 0 4 34
16QAM 0.68 0 0.68 0 2.08 13.9808
64QAM 0.619 0 0.619 0 1.7972 11.5022

Table 1 shows that OOK (on-off keying), DPSK (differential phase shift keying), QPSK (quadrature
phase shift keying), OQPSK (offset quadrature phase shift keying) have the same theoretical values
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of HOC. In addition, 16QAM (16 quadrature amplitude modulation) and 64QAM (64 quadrature
amplitude modulation) have similar HOC values. Therefore, we can define a feature parameter
T1 =

∣∣∣C8,0
∣∣∣/∣∣∣C4,0

∣∣∣ that is calculated in Table 2 and divides signals into three categories including (OOK,
DPSK), (QPSK, OQPSK) and (16QAM, 64QAM). It is worth noting that the absolute value and ratio
form are used to eliminate the effect of phase jitter and amplitude [20].

Table 2. Theoretical values of T1 for six wireless signal modulations.

OOK,DPSK QPSK,OQPSK 16QAM 64QAM

T1 136 34 20.56 18.5819

Owing to the difference between the phase jump rules of QPSK and OQPSK, the sampling
sequence of both can be performed with a differential operation, i.e.,

Δx(t) = x(t + 1) − x(t) = (at+1 − at) exp[ j(2π fc + Δθc)] (5)

where x(t) denotes the signals of QPSK and OQPSK, ak is the transmitted symbol sequences, fc denotes
the carrier frequency and θc denotes the phase jitter. For the sake of discussion, we assume that
fc and θc have been completed timing synchronization. The values of HOC under difference

operation are calculated in Table 3. Then we define another feature parameter T2 =
∣∣∣Cd8,0

∣∣∣/∣∣∣Cd4,0

∣∣∣2 is
calculated in Table 4 to classify QPSK and OQPSK, where Cd8,0 and Cd4,0 represent the cumulants after
differential operation.

Table 3. Theoretical values of HOC after difference between QPSK and OQPSK.

|Cd4,0| |Cd4,1| |Cd4,2| |Cd6,3| |Cd8,0|

QPSK 2 0 2 8 68
OQPSK 2 0 0.89 2 131.4

Table 4. Theoretical values of T2 for QPSK and OQPSK.

QPSK OQPSK

T2 17 32.85

2.2. Feature Extraction Based on Cyclic Spectrum

Since the T1 of (OOK, DPSK) and (16QAM, 64QAM) are the same or similar, a cyclic spectral density
function for noise suppression is proposed for identification. Assuming x(t) is the cyclostationary
signal, and its mean value and autocorrelation function are periodic with T0 shown as:

mx(t + T0) = mx(t) (6)

Rx(t + T0 +
τ
2

, t + T0 − τ2 ) = Rx(t +
τ
2

, t− τ
2
) (7)

where τ is the delay variable. Because the autocorrelation function has periodicity, its Fourier series
can be written as:

Rxα(t +
τ
2

, t− τ
2
) =

∑
α

Rxα(τ)ej2πx (8)

where α stands for the frequency corresponding to the instantaneous autocorrelation and is often called
the cyclic frequency. In addition, Rxα is the coefficient of the Fourier series which is given by:

Rxα(τ) =
1

T0

∫ T0
2

− T0
2

Rxα(t +
τ
2

, t− τ
2
)e− j2παtdt (9)
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The Fourier transform of the cyclic autocorrelation function can be written as:

Sxα( f ) �
∫ ∞

−∞
Rxα(τ)e− j2π f tdτ (10)

where Sxα( f ) is called power spectral density and f is the spectral frequency.
The Rxα(τ) can be seen as the cross-correlation of two complex frequency shift components u(t)

and v(t) of x(t), i.e.,

Rxα(τ) = Ruvα(τ) =
1

T0

∫ T0
2

− T0
2

u(t +
τ
2
)v∗(t− τ

2
)dt. (11)

where u(t) = x(t)ej2παt, v(t) = x(t)e− j2παt.
From Equation (10) we can obtain Sxα( f ) = Suvα( f ). Through the cross-spectrum analysis, we can

obtain:

Sxα( f ) � lim
T0→∞

lim
Δt→∞SuvT0( f )Δt = lim

T0→∞
lim

Δt→∞
1

Δt

∫ Δt
2

− Δt
2

SXT0α
(t, f )dt (12)

SXT0α
(t, f ) =

1
T0

XTo(t, f +
α
2
)X∗T(t, f +

α
2
) (13)

XT0(t, f +
α
2
) =

∫ t+
T0
2

t− T0
2

x(u)e− j2π f udu (14)

where Equation (12) is used to estimate the cyclic spectral density, Equation (13) is the cyclic periodic
diagram, Equation (14) is the short-time Fourier transform (STFT) formula, Δt is the length of received
data, T0 is the window length for the STFT, and (•)∗ is the complex conjugate.

According to the insensitivity of the cyclic spectrum to noise and the above theory, the characteristic
parameter T3 = max(Sxα) is defined to distinguish the signal set of (OOK, DPSK) and (16QAM,
64QAM).

3. Compressed Values of Feature Parameters Based on Compressed Sensing

3.1. Compressed Value of HOC

CS techniques perform successfully whenever applied to so-called compressible and/or K-sparse
signals, i.e., signals that can be represented by K � N significant coefficients over an N-dimensional
basis [21,22]. The K-sparse signal s(t) ∈ RN of dimension N is accomplished by computing
a measurement vector y(t) ∈ RM that consists of M � N linear projections of the vector
s(t). The compression sampling rate fcs = (M/N) fs, where fs is traditional sampling rate and
δ = M/N ∈ (0, 1) is called the compression ratio. The linear compression sampling process can be
described as:

y = Φs + n (15)

where Φ represents a M ×N matrix, usually over the field of real numbers. It is noted that the
measurement matrix Φ is a random matrix satisfying the restricted isometry property (RIP) [23], and its
form is various, such as Gaussian matrix [24] and local Hadamard matrix [25].

According to the theory of feature extraction and compression sensing, the linear square
compression sampling process can be defined as:

[[x]]2 = Φ[[s]]2 (16)

where [[•]] represents the product operation of the corresponding elements between the vectors. From
Equation (15), we can through CS to simplify the reconstruction.
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First, we define a relationship between the autocorrelation matrix R
[[x]]2 and R

[[s]]2 :

R
[[x]]2 = [[x]]2([[x]]2)

T
= (Φ[[s]]2)(Φ[[s]]2)

T
= ΦR

[[s]]2 ΦT (17)

Second, we obtain a relationship between [[x]]2 and R
[[x]]2 :

[[x]]2 = P
[[x]]2vec(R

[[x]]2) (18)

where vec(AXB) = (BT ⊗A)vec(X) (⊗ denotes Kronecker product) and P
[[x]]2 ∈ {0, 1}n×n2

that maps the

linearly products to the vectorized counterparts [[x]]2 and R
[[x]]2 [26].

According to Equation (4), the compressed value of fourth-order cumulant can be defined as:

C(4,0)α = F[[s]]4 − 3[[F[[s]]2]]
2

(19)

where F = 1
N [exp(− j2παn/N)](α,n) ∈ RMα×N is the discrete Fourier transform (DFT) matrix.

Therefore, the linear representation process of the vector-form C(4,0)δ is shown as:

C(4,0)δ = FPsvec(R
[[s]]2) − 3PFsvec(RF[[s]]2) = FPsvec(R

[[s]]2) − 3PFsvec(FR
[[s]]2FT)

= [FPs − 3PFs(F⊗ F)]vec(R
[[s]]2) = [FPs − 3PFs(F⊗ F)][P

[[x]]2(Φ ⊗Φ)]†[[x]]2 (20)

where [•]† stands for the pseudo-inverse operation.
Finally, by deriving the linear compressed sampling process of the fourth-order cumulant, we can

obtain the compressed value of the eighth-order as follows:

C(8,0)δ = {FPs[(Ps − 28P1/2
s P1/2

Fs (F⊗ F)1/2 − 35FPs + 420PFs(F⊗ F)]−
630P2

Fs(F⊗ F)2}•[P
[[x]]2(Φ ⊗Φ)]†[[x]]2 (21)

Therefore, the first and second characteristic parameters after CS is T1 =
∣∣∣C(8,0)δ

∣∣∣/∣∣∣C(4,0)δ

∣∣∣ and

T2 =
∣∣∣Cd(8,0)δ

∣∣∣/∣∣∣Cd(4,0)δ

∣∣∣2.

3.2. Compressed Value of Cyclic Spectrum

It can be seen from Equations (10) and (16) that there is no direct linear relationship between
the compressed sampled value x in the time domain and the cyclic spectrum Sxα, so the existing
reconstruction algorithm cannot be used to implement the cyclic spectrum estimation. It is necessary
to use some explicit linear relations between the second-order statistic to derive its transformation,
and indirectly establish the linear relationship between them, so as to use the existing reconstruction
algorithm to complete the estimation of the cyclic spectrum [27].

In order to obtain the compressed values of the cyclic spectrum, we first need to obtain the
relationship between the cyclic spectrum matrix Ssδ and the cyclic autocorrelation matrix Rsδ(u, v).
Let Rsδ(u, v) denote the form of the time-varying covariance matrix R. When x is a real value, R is a
symmetric semi-positive definite matrix. For the convenience of calculation, we convert it into an
auxiliary covariance matrix:

R =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
Rsδ(0, 0) Rsδ(0, 1) Rsδ(0, 2) · · · Rsδ(0, N − 1)
Rsδ(1, 0) Rsδ(1, 1) Rsδ(1, 2) · · · 0
Rsδ(2, 0) Rsδ(2, 1) Rsδ(2, 2) · · · 0
· · · · · · · · · · · · · · ·

Rsδ(N − 1, 0) 0 0 · · · 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(22)
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where N is the sampling point.
The matrix R contains all the elements in the Rsδ vector except for the zero elements.

The relationship between Rsδ and R can be expressed as:

vec{R} = HNRsδ (23)

where HN ∈ {0, 1}N2×(N(N+1)/2), vec{•}means the vectorization operation, and the Rsδ vector is mapped
to vec{R}.

So the relationship between the cyclic spectrum matrix and the cyclic autocorrelation matrix is
shown as:

Rsδ =
N−1∑
v=0

GvRDv

Ssδ = RsδF

(24)

where Gn = [ 1
N exp(− j 2π

N a(n + v
2 ))](a,n) ∈ RN×N, F = [exp(− j2πvb/N)](v,b) is the N-point DFT matrix

and Dv is an N ×N matrix with only its (v, v)th diagonal element being 1 and all other elements being
0. In addition, n and v are time delay, a, b ∈ [0, N − 1] denotes digital cyclic frequency and α = f a/N
stands for the cyclic frequency.

The time-varying covariance matrix Rx = E
{
xmxT

m

}
of the compressed value x is also a symmetric

semi-definite matrix, which can be rearranged into a vector Rxδ of length M(M + 1)/2 to represent as:

Rxδ = [Rxδ(0, 0), Rxδ(1, 0), · · · , Rxδ(M− 1, 0)
Rxδ(0, 1), Rxδ(1, 1), · · · , Rxδ(M− 2, 1)
Rxδ(0, M− 1)]T

(25)

Through the linear formula conversion, we can define two projection matrices Pm ∈
{0, 1}N2×(N(N+1)/2) and Qm ∈ {0, 1/2, 1}(M(M+1)/2)×M2

map the entries of x, s to those in vec(Rx)

and vec(Rs), it can be shown that:
vec{Rx} = Pmx
s = Qmvec{Rs} (26)

where Pm and Qm are special mapping matrices.
Because of x(t) = Φs(t), we can obtain:

x = Qmvec(Rx) = Qm(Φ ⊗Φ)vec(Rs) = Qm(Φ ⊗Φ)Pms = Θs (27)

where Θ = Qm(Φ ⊗Φ)Pm ∈ R
M(M+1)

2 ×N(N+1)
2 .

Following the equation (24), we can obtain vec(Rsδ) is:

vec(Rsδ) =
N−1∑
v=0

(GT
v ⊗Dv)vec(Rs) = Ωs (28)

where Ω =
N−1∑
v=0

(gT
v ⊗Dv)Pm ∈ RN2×(N(N+1)/2).

Through the Equations (24), (27) and (28), we can derive the measurement vector x as a linear
function of the vector-form cyclic spectrum Ssδ as:

Ssδ = ΞΩΘ†x (29)

where Ξ = (F−T ⊗ IN)
−1, IN is the N dimension unit matrix. Therefore, the third characteristic

parameter after CS is T3 = max(Ssδ).
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4. The Structural Process of Decision Tree–Support Vector Machine Classifier

4.1. The Principle of Support Vector Machine

Support vector machine (SVM) is based on the principle of structural risk minimization [28–30].
Its final solution can be transformed into a quadratic convex programming problem with linear
constraints. There is no local minimum problem. By introducing the kernel function, the linear SVM
can be simply extended to the non-linear SVM, and there is almost no additional computation for
high-dimensional samples.

The main idea can be seen from Figure 1 that for a linear separable case, the idea of maximizing
the classification boundary is used to seek the optimal hyperplane H, while H1 and H2 are hyperplanes
passing through the closest sample to the H and parallel to h, respectively, and the distance between
them is called the classification interval. In the case of linear indivisibility, the linear indivisible samples
in the low-dimensional input space are transformed into the high-dimensional feature space by the
non-linear mapping algorithm, so that they can be linearly separable, in order that the high-dimensional
feature space can be solved by the linear analysis method.

 
(a)                                         (b) 

Figure 1. Linear (a) and non-linear (b) classification of support vector machine (SVM).

Suppose that the training set is
{
(xi, xi), i = 1, 2, . . . , L

}
and the expected output is yi ∈ {+1,−1},

where +1 and −1 represent two kinds of class representation respectively. If xi ∈ Rn belongs to
the first category, the corresponding output is yi = +1; if it belongs to the second category, the
corresponding output is yi = −1. The linear separability of the problem shows that there is a
hyper-plane (w ∗ x) + b = 0, which makes the positive and negative inputs of the training points
located on both sides of the hyper-plane, respectively. When the training sets are not completely
linearly separable, we can introduce the relaxation variable ξi ≥ 0 i = 1, 2, . . . , L, then the objective
function is transformed into:

min φ(w) = 1
2‖w‖2 + C

L∑
i=1
ξi

s.t. yi[(w · xi) + b] ≥ 1− ξi
ξi ≥ 0 i = 1, 2, . . . , L

(30)

where C ≥ 0 is the penalty parameter. A larger C indicates a larger penalty for misclassification and
is the only parameter that can be adjusted in the algorithm. By choosing the proper kernel function
K(x, xT) and using the Lagrange multiplier method to solve Equation (30), the corresponding dual
problem can be obtained as follows:
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min
α

1
2

L∑
i=1

L∑
j=1

yiyjαiα jK(xi, xj) −
L∑

j=1
α j

s.t.
L∑

i=1
yiαi = 0

0 ≤ αi ≤ C i = 1, 2, . . . , L

(31)

Equation (31) obtains the optimal solution α∗ = (α∗1,α∗2, . . . ,α∗L) and selects a positive component

0 ≤ α∗j ≤ C of α∗, and calculates b∗ = yj −
L∑

i=1
yiα
∗
i K(xi, xj) accordingly. Finally, the policy function

f (x) = sgn(
L∑

i=1
yiα
∗
i K(xi, xj) + b∗) is obtained.

4.2. The Structure of Decision Tree–Support Vector Machine Classifier

Through the above calculation and analysis of the compressed values of the feature parameters
based on CS, the feature parameters are input into the decision tree–support vector machine (DT–SVM)
structure with efficient calculation to realize signal classification. Adding support vector machine
(SVM) to every node of the decision tree can comprehensively utilize the efficient computing power
of the decision tree structure and the high classification performance of the SVM to achieve the
high-precision classification of MC. In particular, for the K-class classification problem, the method of
DT–SVM only needs to construct K-1 SVM sub classifier. The classification process of decision tree is
shown in Figure 2.

Figure 2. The identification process of decision-tree (DT) classifier.

Using the three features in Figure 1 to complete the MC, the specific steps of the process are as
follows:

(1) Three feature vectors are obtained from six kinds of wireless modulation signal data through
feature extraction module;

(2) The feature vector is input into the compression-sensing module to obtain the respective
compression sampling values, as shown in Figures 3 and 4;

(3) Six kinds of wireless signals are roughly classified by T1. The (OOK, DPSK) signals can be
separated by SVM-1, and the remaining signals are classified into one class;

(4) For (OOK, DPSK) signals, SVM-2 and T3 are used to realize classification;
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(5) By SVM-3 and T1, the residual signals can be divided into two categories: (QPSK, OQPSK) and
(16QAM, 64QAM);

(6) The T2 after differential operation and SVM-4 are used to classify QPSK and OQPSK;
(7) Finally, the classification of 16QAM and 64QAM signals is realized by the T3 and SVM-5.

SNR(dB)

T1

OOK
DPSK
QPSK
OQPSK
16QAM
64QAM

(a) 

SNR(dB)

T2

QPSK
OQPSK

(b) 

Figure 3. The values of feature parameters (a) T1 and (b) T2 under different signal-to-noise ratios
(SNRs).

It can be seen from Figure 3a that the compressed value of the feature parameter T1 tends to
be stable with the increase of SNR and conforms to the theoretical value. In addition, it is obvious
from the figure that T1 can classify the six signals into three categories includes (OOK, DPSK), (QPSK,
OQPSK) and (16QAM, 64QAM). Similarly, it can be seen from Figure 3b that the feature parameter
T2 after difference can distinguish QPSK from OQPSK. The circular spectrum and the cross-sectional
diagrams of cycle frequency of OOK, DPSK, 16QAM and 64QAM are shown in Figure 4. It can be seen
from Figure 4 that the maximum value of the cyclic spectrum of different signals is different, so the
remaining signals can be distinguished by T3.
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T3

 (a) 

     
(b) 

        
(c) 

T3

(d) 

Figure 4. Cyclic spectrum and cross-sectional diagrams of (a) OOK (on-off keying), (b) DPSK (differential
phase shift keying), (c) 16QAM (16 quadrature amplitude modulation) and (d) 64QAM (64 quadrature
amplitude modulation).
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5. Simulation Results and Discussion

For signal modulation classification task, the modulation set is {OOK, DPSK, QPSK, OQPSK,
16QAM, 64QAM}. In this simulation process, all modulation signals adopt the same modulation
parameters, that is, the carrier frequency is 100 kHz, the symbol rate is 40 kbps, and the sampling
frequency is 800kHz. For each kind of modulation signal, the simulation generates 500 characteristic
samples under different SNR (SNR from −5 dB to 15 dB, interval 5 dB). The K-fold cross validation
(K-CV) method is used to evaluate the generalization ability of the model, which can not only improve
the data utilization, but also solve the over fitting problem to a certain extent, so as to select the model.
In this paper, K is chosen as 10. The basic principle of K-CV is to divide the training data set into
K equal subsets. Each time, K-1 data are used as training data, and other data are used as test data.
In this way, we repeat K times, estimate the expected generalization error according to the mean square
error (MSE) average value after K times iteration, and finally select a group of optimal parameters.

To evaluate the influence of different symbol lengths on the classification performance, we select
the symbol length N = 512, 1024, 2048, 4096 for the OOK, QPSK and 16QAM signals (as examples),
respectively, to analyze the classification accuracy in Figure 5. As can be seen from Figure 5, with the
increase of symbol length, the trend of classification accuracy is gradually increasing and finally tends
to 100%. However, the increase of symbol length affects the classification accuracy mainly in the case
of low SNR. Considering the influence of the computation cost in the classification process, 2048 is
chosen as the symbol length in this paper.
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Figure 5. Correct classification rate with different symbol length for (a) OOK, (b) QPSK and (c) 16QAM
under different SNRs.

In order to evaluate the impact of different compression ratios on the classification performance,
we analyzed the classification accuracy in Figure 6 with the compression ratios of 25%, 37.5%, 50% and
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75% for OOK, QPSK and 16QAM signals (as examples) when the symbol length is 2048. As can be
seen from Figure 6, with the increase of compression ratio, the classification accuracy increases slightly
and finally tends to 100%. The increase of symbol rate has little effect on recognition rate. Therefore,
in order to reduce the sampling rate and system complexity as much as possible, 25% is selected as the
compression rate value.
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Figure 6. Correct classification rate with different compression rate for (a) OOK, (b) QPSK and (c)
16QAM under different SNRs.

In order to optimize the parameters of kernel function and improve the classification accuracy,
the grid search method is used. Table 5 shows the optimization results of penalty parameter and kernel
parameter of each node of DT–SVM and the classification accuracy of sub-SVM under the RBF kernel
function. It can be seen from the table that under different SNR conditions, with the improvement
of SNR, the classification accuracy of sub nodes has improved. When the SNR is 0 dB or above,
the average classification accuracy has reached 100%.
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Table 5. The optimization results and identification accuracy of the sub-SVM of each node in DT–SVM.

SNR
SVM-1 SVM-2 SVM-3 SVM-4 SVM-5 AVERAGE

Acc/%
(c,γ)

Acc/%
(c,γ)

Acc/%
(c,γ)

Acc/%
(c,γ)

Acc/%
(c,γ)

Acc/%

−5 dB 88.33
(211.2,213.8)

100
(20,20)

81.25
(20.5,23)

95
(2−2.5,215)

100
(20,20) 92.92

0 dB 100
(2−8,22)

100
(20,20)

100
(2−5,28.5)

100
(2−5,27.5)

100
(20,20) 100

5 dB 100
(2−8,2−2)

100
(20,20)

100
(20,20)

100
(20,20)

100
(20,20) 100

In order to prove the superiority of this method in recognition accuracy, Table 6 shows the
classification accuracy of six different cognitive radio signals using multidimensional HOC, cyclic
spectrum and DT–SVM classifier when the kernel function is RBF. In addition, the sizes of training and
testing subsets are selected as 80% and 20% of the whole set of eigenvectors. The results show that with
the increase of SNR, the classification accuracy of six kinds of signal is improved. When the SNR is 0
dB, the classification accuracy is 100%. It is proved that this method still has high recognition accuracy
under low SNR. In addition, a new modulation signal can be introduced to expand the flexibility of the
method and shows better compatibility, which will certainly increase the complexity of the algorithm
and the classification time of the whole classification system.

Table 6. The classification accuracy of the cognitive radio signals using multidimensional HOC, cyclic
spectrum and DT–SVM classifier.

SNR
Classification Accuracy of Cognitive Radio Signals (%)

OOK DPSK QPSK OQPSK 16QAM 64QAM AVERAGE

−5 dB 72.5 72.5 74.69 74.69 83.25 83.25 76.81
0 dB 100 100 100 100 100 100 100
5 dB 100 100 100 100 100 100 100
10 dB 100 100 100 100 100 100 100
15 dB 100 100 100 100 100 100 100

6. Conclusions

We have proposed a method through simulation to identify the cognitive radio signals based on
compressed sensing combined with HOC and cyclic spectrum, which has been proved to perform
well in noisy situations. It successfully achieves reconstructing the feature parameters of HOC and
cyclic spectrum directly from the sub-Nyquist rate rather than reconstructing the original signal.
The simulation results indicate that this method can effectively achieve modulation classification
for six kinds of cognitive radio signals with three feature parameters. In this paper, the proposed
method is relatively simple and the feature parameters used are few, and they are also less affected
by noise. By analyzing the effect of symbol length and compression rate on the classification rate,
the classification performance is improved and the classification accuracy can reach 100% when the
SNR is 0 dB. This technique utilizes a sampling rate of CS much lower than the Nyquist sampling
rate and noise-insensitive feature extraction algorithm, realizes blind classification without any prior
information from the transmitter, and has low computational complexity.
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