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Pakize Küreç Nehbit, Robert Heinkelmann, Harald Schuh, Susanne Glaser, Susanne Lunz,

Nicat Mammadaliyev, Kyriakos Balidakis, Haluk Konak and Emine Tanır Kayıkçı
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Preface to “Stochastic Models for Geodesy

and Geoinformation Science”

In geodesy and geoinformation science, as well as in many other technical disciplines, it is

often not possible to directly determine the desired target quantities, for example, the 3D Cartesian

coordinates of an object. Therefore, the unknown parameters must be linked with measured values,

for instance, directions, angles, and distances, by a mathematical model. This consists of two

fundamental components—the functional and the stochastic models. The functional model describes

the geometrical–physical relationship between the measured values and the unknown parameters.

This relationship is sufficiently well known for most applications.

With regard to stochastic models in geodesy and geoinformation science, two problem domains

of fundamental importance arise:

1. How can stochastic models be set up as realistically as possible for the various geodetic

observation methods and sensor systems, such as very-long-baseline interferometry (VLBI), global

navigation satellite systems (GNSS), terrestrial laser scanners, and multisensor systems?

2. How can the stochastic information be adequately considered in appropriate least squares

adjustment models?

Further questions include the interpretation of the stochastic properties of the computed target

values for quality assessment of the results in terms of precision and reliability and for the detection

of outliers in the input data (measurements).

In this Special Issue, current research results on these general questions are presented in

ten peer-reviewed articles. The basic findings can be applied to all technical scientific fields

where measurements are used for the determination of parameters to describe geometric or

physical phenomena.

Frank Neitzel

Editor
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Abstract: In regression analysis, oftentimes a linear (or linearized) Gauss-Markov Model (GMM) is
used to describe the relationship between certain unknown parameters and measurements taken
to learn about them. As soon as there are more than enough data collected to determine a unique
solution for the parameters, an estimation technique needs to be applied such as ‘Least-Squares
adjustment’, for instance, which turns out to be optimal under a wide range of criteria. In this context,
the matrix connecting the parameters with the observations is considered fully known, and the
parameter vector is considered fully unknown. This, however, is not always the reality. Therefore,
two modifications of the GMM have been considered, in particular. First, ‘stochastic prior information’
(p. i.) was added on the parameters, thereby creating the – still linear – Random Effects Model
(REM) where the optimal determination of the parameters (random effects) is based on ‘Least Squares
collocation’, showing higher precision as long as the p. i. was adequate (Wallace test). Secondly, the
coefficient matrix was allowed to contain observed elements, thus leading to the – now nonlinear –
Errors-In-Variables (EIV) Model. If not using iterative linearization, the optimal estimates for the
parameters would be obtained by ‘Total Least Squares adjustment’ and with generally lower, but
perhaps more realistic precision. Here the two concepts are combined, thus leading to the (nonlinear)
’EIV-Model with p. i.’, where an optimal estimation (resp. prediction) technique is developed under
the name of ‘Total Least-Squares collocation’. At this stage, however, the covariance matrix of the
data matrix – in vector form – is still being assumed to show a Kronecker product structure.

Keywords: Errors-In-Variables Model; Total Least-Squares; prior information; collocation vs.
adjustment

1. Introduction

Over the last 50 years or so, the (linearized) Gauss-Markov Model (GMM) as standard model for
the estimation of parameters from collected observation [1,2] has been refined in a number of ways.
Two of these will be considered in more detail, namely

• the GMM after strengthening the parameters through the introduction of “stochastic prior
information”. The relevant model will be the “Random Effects Model (REM)”, and the resulting
estimation technique has become known as “least-squares collocation” [3,4].

• the GMM after weakening the coefficient matrix through the replacement of fixed entries by
observed data, resulting in the (nonlinear) Errors-In-Variables (EIV) Model. When nonlinear
normal equations are formed and subsequently solved by iteration, the resulting estimation
technique has been termed “Total Least-Squares (TLS) estimation” [5–7]. The alternative approach,
based on iteratively linearizing the EIV-Model, will lead to identical estimates of the parameters [8].

Mathematics 2020, 8, 971; doi:10.3390/math8060971 www.mdpi.com/journal/mathematics1
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After a compact review and comparison of several key formulas (parameter estimates, residuals,
variance component estimate, etc.) within the above three models, a new model will be introduced that
allows the strengthening of the parameters and the weakening of the coefficient matrix at the same
time. The corresponding estimation technique will be called “TLS collocation” and follows essentially
the outline that had first been presented by this author in June 2009 at the Intl. Workshop on Matrices
and Statistics in Smolenice Castle (Slovakia); cf. Schaffrin [9].

Since then, further computational progress has been made, e.g. Snow and Schaffrin [10]; but
several open questions remain that need to be addressed elsewhere. These include issues related to
a rigorous error propagation of the “TLS collocation” results; progress may be achieved here along
similar lines as in Snow and Schaffrin [11], but is beyond the scope of the present paper.

For a general overview of the participating models, the following diagram (Figure 1) may
be helpful.

Random Effects
Model (REM)

Errors-In-Variables
Model (EIV)

EIV-Model with
Random Effects

(EIV-REM)

Gauss-Markov
Model (GMM)

Adding prior
information on the parameters

Adding prior information
on the parameters

Removing certainty
from the coefficient matrix

Removing certainty from
the coefficient matrixLINEAR

WORLD

NONLINEAR
WORLD

Figure 1. Model Diagram.

The most informative model defines the top position, and the least informative model is at the
bottom. The new model can be formed at the intermediate level (like the GMM), but belongs to the
“nonlinear world” where nonlinear normal equations need to be formed and subsequently solved
by iteration.

2. A Compact Review of the “Linear World”

2.1. The (linearized) Gauss-Markov Model (GMM)

Let the Gauss-Markov Model be defined by

y = A
n×m
ξ+ e , q := rk A ≤ min {m, n} , e ∼ (0, σ2

0In) , (1)

possibly after linearization and homogeneization; cf. Koch [2], or Grafarend and Schaffrin [12] among
many others.

Here, y denotes the n× 1 vector of (incremental) observations,

A the n×m matrix of coefficients (given),
ξ the m× 1 vector of (incremental) parameters (unknown),

2
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e the n × 1 vector of random errors (unknown) with expectation E{e} = 0 while the dispersion
matrix D{e} = σ2

0In is split into the (unknown) factor

σ2
0 as variance component (unit-free) and

In as (homogeneized) n × n symmetric and positive-definite “cofactor matrix” whose inverse is
better known as “weight matrix” P; here P = In for the sake of simplicity.

Now, it is well known that the Least-Squares Solution (LESS) is based on the principle

eTe = min s.t. e = y−A ξ (2)

which leads to the “normal equations”

N ξ̂ = c for [N, c] := AT[A, y]. (3)

Depending on rk N, the rank of the matrix N, the LESS may turn out uniquely as

ξ̂LESS = N−1c iff rk N = rk A = q = m; (4)

or it may belong to a solution (hyper)space that can be characterized by certain generalized inverses of N,
namely

ξ̂LESS ∈ {N−c
∣∣∣N N−N = N

}
=

=
{
N−rsc

∣∣∣∣N N−rsN = N , N−rsN N−rs = N−rs = (N−rs)
T
}

;
(5)

where N−rs denotes an arbitrary reflexive symmetric g-inverse of N (including the “pseudo-inverse” N+),

iff rk N = rk A = q < m. (6)

In the latter case (6), any LESS will be biased with

bias (ξ̂LESS) = E
{
ξ̂LESS − ξ

}
∈ {−(Im −N−N) ξ

}
=
{−(Im −N−rsN) ξ

}
, (7)

its dispersion matrix will be

D
{
ξ̂LESS

}
= σ2

0N−N(N−)T ∈
{
σ2

0N−rs

∣∣∣∣N N−rsN = N, N−rsN N−rs = N−rs = (N−rs)
T}, (8)

and its Mean Squared Error (MSE) matrix, therefore,

MSE
{
ξ̂LESS

}
∈
{
σ2

0[N
−
rs + (Im − N−rsN)(ξ σ−2

0 ξ
T)(Im −N−rsN)

T
]
}
. (9)

In contrast to the choice of LESS in case (6), the residual vector will be unique; for any ξ̂LESS:

ẽLESS = y−A ξ̂LESS ∼ (0, σ2
0(In −A N−rsA

T) = D
{
y
}−D

{
A ξ̂LESS

}
). (10)

Hence, the optimal variance component estimate will also be unique:

σ̂2
0 = (n− q)−1ẽT

LESS · ẽLESS = (n− q)−1(yTy− cTξ̂LESS), (11)

E
{
σ̂2

0

}
= σ2

0 , D
{
σ̂2

0

}
≈ 2(σ2

0)
2
/(n− q) under quasi-normality. (12)

For the corresponding formulas in the full-rank case (4), the reflexive symmetric g-inverse N−rs
simply needs to be replaced by the regular inverse N−1, thereby showing that the LESS turns into an
unbiased estimate of ξ while its MSE-matrix coincides with its dispersion matrix (accuracy precision).

3
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2.2. The Random Effects Model (REM)

Now, additional prior information (p. i.) is introduced to strengthen the parameter vector within
the GMM (1). Based on Harville’s [13] notation of a m× 1 vector 0∼ of so-called “pseudo-observations”,
the new m× 1 vector

x := ξ− 0∼ of “random effects” (unknown) is formed with (13)

E{x} = β0 as given m× 1 vector of p. i. and (14)

D{x} = σ2
0Q0 as n× n positive-(semi)definite dispersion matrix of the p. i. (15)

Consequently, the Random Effects Model (REM) can be stated as

y
∼

:= y−A · 0∼ = A
n×m

x + e , q := rk A ≤ min{m, n} , β0
m×1

:= x + e0, (16)

[
e
e0

]
∼ (

[
0
0

]
, σ2

0

[
In 0
0 Q0

]
) , Q0

m×m
symmetric and nnd (non-negative definite ). (17)

If P0 := Q−1
0 exists, the estimation/prediction of x may now be based on the principle

eTe + eT
0 P0 e0 = min s.t. e = y

∼
−Ax , e0 = β0 − x, (18)

which leads to the “normal equations” for the “Least-Squares Collocation (LSC)” solution

(N + P0) · x̃ = c∼ + P0 · β0 (19)

which is unique even in the rank-deficient case (6).
If Q0 is singular, but e0 ∈ �(Q0) with probability 1, then there must exist an m× 1 vector ν0 with

Q0 ν
0 = −e0 = x− β0 with probability 1 (a.s. almost surely). (20)

Thus, the principle (18) may be equivalently replaced by

eTe + (ν0)
T

Q0 ν
0 = min s.t. e = y

∼
−Ax and (20), (21)

which generates the LSC solution uniquely from the “modified normal equations”

(Im + Q0N) · x̃LSC = β0 + Q0c∼ for c∼ := ATy
∼

(22)

or, alternatively, via the “update formula”

x̃LSC = β0 + Q0 (Im + NQ0)
−1(c∼ −Nβ0) (23)

which exhibits the “weak (local) unbiasedness” of x̃LSC via

E{x̃LSC} = β0 + Q0 (Im + NQ0)
−1(E

{
c∼

}
−Nβ0) = β0 + 0 = E{x}. (24)

Consequently, the MSE-matrix of x̃LSC can be obtained from

MSE {x̃LSC} = D {x̃LSC − x} = σ2
0Q0 (Im + NQ0)

−1 = (25)

4
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= σ2
0 (N + P0)

−1 if P0 := Q−1
0 exists, (26)

whereas the dispersion matrix of x̃LSC itself is of no relevance here. It holds:

D{x̃LSC} = D {x} −D {x− x̃LSC} = σ2
0Q0 − σ2

0Q0(Im + NQ0)
−1. (27)

Again, both residual vectors are uniquely determined from

(ẽ0)LSC = β0 − x̃LSC = −Q0 ν̂
0
LSC for (28)

ν̂0
LSC := (Im + NQ0)

−1(c∼ −Nβ0), and (29)

ẽLSC = y
∼
−A x̃LSC = [Im −A Q0(Im + NQ0)

−1AT] (y
∼
−Aβ0) (30)

with the control formula
ATẽLSC = ν̂0

LSC . (31)

An optimal estimate of the variance component may now be obtained from

(σ̂2
0)LSC = n−1 · (ẽT

LSC · ẽLSC + (ν̂0
LSC)

TQ0 ν̂0
LSC) =

= n−1 · (y
∼

Ty
∼
− c∼

Tx̃LSC − βT
0 ν̂

0
LSC) . (32)

3. An Extension into the “Nonlinear World”

3.1. The Errors-In-Variables (EIV) Model

In this scenario, the Gauss-Markov Model (GMM) is further weakened by allowing some or all
of the entries in the coefficient matrix A to be observed. So, after introducing a corresponding n×m
matrix of unknown random errors EA, the original GMM (1) turns into the EIV-Model

y = (A− EA)︸����︷︷����︸
n×m

· ξ+ e , q := rk A = m < n , e ∼ (0, σ2
0In) , (33)

with the vectorized form of EA being characterized through

eA
nm×1

:= vec EA ∼ (0, σ2
0(Im ⊗ In) = σ

2
0Imn) , C{e, eA} = 0 (assumed). (34)

Here, the vec operation transform a matrix into a vector by stacking all columns underneath each
other while ⊗ denotes the Kronecker-Zehfuss product of matrices, defined by

G
p×q
⊗ H

r×s
= [gij ·H]pr×qs if G = [gij]. (35)

In particular, the following key formula holds true:

vec (A B CT) = (C⊗A) · vec B (36)

for matrices of suitable size. Note that, in (34), the choice QA := Imn is a very special one. In general,
QA may turn out singular whenever some parts of the matrix A remain unobserved (i.e., nonrandom).

In any case, thanks to the term
EA · ξ = (ξT ⊗ In) eA, (37)

the model (33) needs to be treated in the “nonlinear world” even though the vector ξmay contain only
incremental parameters. From now on, A is assumed to have full column rank, rk A =: q = m.

5
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Following Schaffrin and Wieser [7], for instance, the “Total-Least Squares Solution (TLSS)” can be
based on the principle

eTe + eT
AeA = min s.t. (33-34), (38)

and the Lagrange function

Φ (e, eA, ξ,λ) : = eTe + eT
AeA + 2λT(y−A ξ− e + EAξ) =

= eTe + eT
AeA + 2λT[y−A ξ− e + (ξT ⊗ In) eA]

(39)

which needs to be made stationary. The necessary Euler-Lagrange conditions then read:

1
2
∂ Φ
∂ e

= ẽ− λ̂ � 0 ⇒ λ̂ = ẽ (40)

1
2
∂ Φ
∂ eA

= ẽA + (ξ̂TLS ⊗ In) λ̂ � 0 ⇒ ẼA = −λ̂ ξ̂T
TLS (41)

1
2
∂ Φ
∂ ξ

= −(A− ẼA)
T
λ̂ � 0 ⇒ ATλ̂ = ẼT

Aλ̂ = −ξ̂TLS · (λ̂Tλ̂) (42)

1
2
∂ Φ
∂ λ

= y−A ξ̂TLS − ẽ + ẼA ξ̂TLS � 0 ⇒ y−A ξ̂TLS = λ̂ (1 + ξ̂T
TLS ξ̂TLS) (43)

⇒ c−Nξ̂TLS := AT(y−A ξ̂TLS) = ATλ̂ (1 + ξ̂T
TLS ξ̂TLS) = −ξ̂TLS · ν̂TLS (44)

for
ν̂TLS := (λ̂Tλ̂) · (1 + ξ̂T

TLS ξ̂TLS) = λ̂
T(y−A ξ̂TLS) = (45)

= (1 + ξ̂T
TLS ξ̂TLS)

−1 · (y−A ξ̂TLS)
T
(y−A ξ̂TLS) = (46)

= (1 + ξ̂T
TLS ξ̂TLS)

−1
[yT(y−A ξ̂TLS) − ξ̂T

TLS (c−N ξ̂TLS)] ≥ 0 (47)

⇒ (1 + ξ̂T
TLS ξ̂TLS) · ν̂TLS = yTy− cTξ̂TLS + (ξ̂T

TLS ξ̂TLS) · ν̂TLS

⇒ ν̂TLS = yTy− cTξ̂TLS (48)

which needs to be solved in connection with the “modified normal equations” from (44), namely

(N − ν̂TLSIm) ξ̂TLS = c . (49)

Due to the nonlinear nature of ξ̂TLS, it is not so easy to determine if it is an unbiased estimate, or
how its MSE-matrix may exactly look like. First attempts of a rigorous error propagation have recently
been undertaken by Amiri-Simkooei et al. [14] and by Schaffrin and Snow [15], but are beyond the
scope of this paper.

Instead, both the optimal residual vector ẽTLS and the optimal residual matrix (ẼA)TLS are readily
available through (40) and (43) as

ẽTLS = λ̂ = (y−A ξ̂TLS) · (1 + ξ̂T
TLS ξ̂TLS)

−1
, (50)

and through (41) as

(ẼA)TLS = −ẽTLS · ξ̂T
TLS = −(y−A ξ̂TLS) · (1 + ξ̂T

TLS ξ̂TLS)
−1 · ξ̂TLS. (51)

As optimal variance component estimate, it is now proposed to use the formula

(σ̂2
0)TLS = (n−m)−1 · [ ẽT

TLS ẽTLS + (ẽA)
T
TLS (ẽA)TLS] =

6
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= (n−m)−1 · λ̂Tλ̂(1 + ξ̂T
TLS ξ̂TLS) = ν̂TLS/(n−m), (52)

in analogy to the previous estimates (11) and (32).

3.2. A New Model: The EIV-Model with Random Effects (EIV-REM)

In the following, the above EIV-Model (33-34) is strengthened by introducing stochastic prior
information (p. i.) on the parameters which thereby change their character and become “random
effects” as in (13-15). The EIV-REM can, therefore, be stated as

y
∼
= (A− EA)︸����︷︷����︸

n×m

· x + e , q := rk A ≤ min{m, n} , β0 = x + e0 (given), (53)

with ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
e

eA = vec EA
e0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ ∼ (

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
0
0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ , σ2
0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
In 0 0
0 Imn 0
0 0 Q0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ ) , Q0 symmetric and nnd. (54)

The first set of formulas will be derived by assuming that the weight matrix P0 := Q−1
0 exists

uniquely for the p. i. Then, the “TLS collocation (TLSC)” may be based on the principle

eTe + eT
AeA + eT

0 P0 e0 = min s.t. (53-54), (55)

resp. on the Lagrange function

Φ (e, eA, e0,λ) := eTe + eT
AeA + eT

0 P0 e0 + 2λT[(y
∼
−A β0 − e + (βT

0 ⊗ In) eA + A e0 −EA e0︸�︷︷�︸
=−(eT

0⊗ In)·eA

] (56)

which needs to be made stationary. The necessary Euler-Lagrange conditions then read:

1
2
∂ Φ
∂ e

= ẽ− λ̂ � 0 ⇒ λ̂ = ẽ (57)

1
2
∂ Φ
∂ eA

= ẽA + [(β0 − ẽ0) ⊗ In] λ̂ � 0 ⇒ ẼA = −λ̂ · (β0 − ẽ0)
T =: −λ̂ · x̃T

TLSC (58)

1
2
∂ Φ
∂ e0

= P0 ẽ0 + (A− ẼA)
T
λ̂ � 0 ⇒ ATλ̂ = ẼT

Aλ̂− P0 ẽ0 ⇒ (59)

⇒ ATλ̂ = −x̃TLSC · (λ̂Tλ̂) + ν̂0
TLSC for ν̂0

TLSC := −P0 ẽ0 = P0(β0 − x̃TLSC) (60)

1
2
∂ Φ
∂ λ

= y
∼
−A (β0 − ẽ0) − ẽ + ẼA (β0 − ẽ0) � 0 ⇒ y

∼
−A x̃TLSC = λ̂ (1 + x̃T

TLSC x̃TLSC) ⇒ (61)

⇒ λ̂ = (y
∼
−A x̃TLSC) · (1 + x̃T

TLSC x̃TLSC)
−1

. (62)

Combining (60) with (62) results in

(c∼ −N x̃TLSC) · (1 + x̃T
TLSC x̃TLSC)

−1
= ATλ̂ = −x̃TLSC(1 + x̃T

TLSC x̃TLSC)
−2
(y
∼
−A x̃TLSC)

T(y
∼
−A x̃TLSC) + ν̂

0
TLSC, (63)

and finally in

(N + (1 + x̃T
TLSC x̃TLSC)P0 − ν̂TLSCIm) x̃TLSC = c∼ + P0 β0 · (1 + x̃T

TLSC x̃TLSC) (64)

7
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where
ν̂TLSC := (1 + x̃T

TLSC)
x̃TLSC)

−1(y
∼
−Ax̃TLSC)

T(y
∼
−Ax̃TLSC), and

ν̂0
TLSC := −P0(β0 − x̃TLSC) = −P0ẽ0, provided that P0 exists.

(65)

In the more general case of a singular matrix Q0, an approach similar to (20) can be followed,
leading to the equation system

[(1 + x̃T
TLSC x̃TLSC) · Im + Q0N − ν̂TLSC ·Q0] x̃TLSC = β0 · (1 + x̃T

TLSC x̃TLSC) + Q0c∼ (66)

that needs to be solved in connection with (65). Obviously,

x̃TLSC 
−→ β0 if Q0 
−→ 0, and
x̃TLSC 
−→ x̃TLS if P0 
−→ 0.

(67)

Again, it is still unclear if x̃TLSC represents an unbiased prediction of the vector x of random effects.
Also, very little (if anything) is known about the corresponding MSE-matrix of x̃TLSC. The answers to
these open problems will be left for a future contribution. It is, however, possible to find the respective
residual vectors/matrices represented as follows:

ẽTLSC = λ̂ = (y
∼
−A x̃TLSC) · (1 + x̃T

TLSC x̃TLSC)
−1

, (68)

(ẼA)TLSC = −λ̂ · x̃T
TLSC = −(y

∼
−A x̃TLSC) · (1 + x̃T

TLSC x̃TLSC)
−1 · x̃T

TLSC, (69)

(ẽ0)TLSC = −Q0 · ν̂0
TLSC = β0 − x̃TLSC, (70)

while a suitable formula for the variance component is suggested as

(σ̂2
0)TLSC = n−1 · [ ν̂TLSC + (ν̂0

TLSC)
T

Q0 (ν̂
0
TLSC)]. (71)

4. Conclusions and Outlook

Key formulas have been developed successfully to optimally determine the parameters and
residuals within the new ‘EIV-Model with p. i.’ (or EIV-REM) which turns out to be more general than
the other three models considered here (GMM, REM, EIV-Model). In particular, it is quite obvious that

• EIV-REM becomes the REM if D{eA} := 0,
• EIV-REM becomes the EIV-Model if P0 := 0,
• EIV-REM becomes the GMM if both P0 := 0 and D{eA} := 0.

Hence the new EIV-REM can indeed serve as a universal representative of the whole class of
models presented here.

Therefore, in a follow-up paper, it is planned to also cover more general dispersion matrices for e
and eA in (54), similarly to the work by Schaffrin et al. [16] for the EIV-Model with singular dispersion
matrices for eA.
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Abstract: In this contribution the fitting of a straight line to 3D point data is considered, with Cartesian
coordinates xi, yi, zi as observations subject to random errors. A direct solution for the case of equally
weighted and uncorrelated coordinate components was already presented almost forty years ago.
For more general weighting cases, iterative algorithms, e.g., by means of an iteratively linearized
Gauss–Helmert (GH) model, have been proposed in the literature. In this investigation, a new direct
solution for the case of pointwise weights is derived. In the terminology of total least squares (TLS),
this solution is a direct weighted total least squares (WTLS) approach. For the most general weighting
case, considering a full dispersion matrix of the observations that can even be singular to some extent,
a new iterative solution based on the ordinary iteration method is developed. The latter is a new
iterative WTLS algorithm, since no linearization of the problem by Taylor series is performed at any
step. Using a numerical example it is demonstrated how the newly developed WTLS approaches
can be applied for 3D straight line fitting considering different weighting cases. The solutions are
compared with results from the literature and with those obtained from an iteratively linearized
GH model.

Keywords: 3D straight line fitting; total least squares (TLS); weighted total least squares (WTLS);
nonlinear least squares adjustment; direct solution; singular dispersion matrix; laser scanning data

1. Introduction

Modern geodetic instruments, such as terrestrial laser scanners, provide the user directly with
3D coordinates in a Cartesian coordinate system. However, in most cases these 3D point data are not
the final result. For an analysis of the recorded data or for a representation using computer-aided design
(CAD), a line, curve or surface approximation with a continuous mathematical function is required.

In this contribution the fitting of a spatial straight line is discussed considering the coordinate
components xi, yi, zi of each point Pi as observations subject to random errors, which results in
a nonlinear adjustment problem. An elegant direct least squares solution for the case of equally
weighted and uncorrelated observations has already been presented in 1982 by Jovičić et al. [1].
Unfortunately, this article was very rarely cited in subsequent publications, which is probably due
to the fact that it was written in Croatian language. Similar least squares solutions, direct as well,
have been published by Kahn [2] and Drixler ([3], pp. 46–47) some years later. In these contributions,
it was shown that the problem of fitting a straight line to 3D point data can be transformed into an
eigenvalue problem. An iterative least squares solution for fitting a straight line to equally weighted

Mathematics 2020, 8, 1450; doi:10.3390/math8091450 www.mdpi.com/journal/mathematics11
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and uncorrelated 3D points has been presented by Späth [4], by minimizing the sum of squared
orthogonal distances of the observed points to the requested straight line.

For more general weighting schemes iterative least squares solutions have been presented
by Kupferer [5] and Snow and Schaffrin [6]. In both contributions various nonlinear functional
models were introduced and tested and the Gauss-Newton approach has been employed for
an iterative least squares solution, which involves the linearization of the functional model
to solve the adjustment problem within the Gauss–Markov (GM) or the Gauss–Helmert (GH)
models. The linearization of originally nonlinear functional models is a very popular approach
in adjustment calculation, where the solution is then determined by iteratively linearized GM or GH
models, see e.g., the textbooks by Ghilani [7], Niemeier [8] or Perovic [9]. Pitfalls to be avoided in
the iterative adjustment of nonlinear problems have been pointed out by Pope [10] and Lenzmann
and Lenzmann [11].

Fitting a straight line to 3D point data can also be considered as an adjustment problem of
type total least squares (TLS) for an errors-in-variables (EIV) model, as already pointed out by
Snow and Schaffrin [6]. For some weighting cases, problems expressed within the EIV model can
have a direct solution using singular value decomposition (SVD). This solution is known under
the name Total Least Squares (TLS) and has been firstly proposed by Golub and Van Loan [12],
Van Huffel and Vandewalle [13] or Van Huffel and Vandewalle ([14], p. 33 ff.). The TLS solution is
obtained by computing the roots of a polynomial, i.e., by solving the characteristic equation of the
eigenvalues, which is identical in the case of fitting a straight line to 3D point data to the solutions
of Jovičić et al. [1], Kahn [2] and Drixler ([3], pp. 46–47). This is something that has been observed
by Malissiovas et al. [15], where a relationship has been presented between TLS and the direct
least squares solution of the same adjustment problem, while postulating uncorrelated and equally
weighted observations.

To involve more general weight matrices in the adjustment procedure, iterative algorithms have
been presented in the TLS literature without linearizing the underlying problem by Taylor series at any
step of the solution process. These are algorithmic approaches known as weighted total least squares
(WTLS), presented e.g., by Schaffrin and Wieser [16], Shen et al. [17] or Amiri and Jazaeri [18]. A good
overview of such algorithms, as well as alternative solution strategies can be found in the dissertation
theses of Snow [19] and Malissiovas [20]. An attempt to find a WTLS solution for straight line fitting to
3D point data was made by Guo et al. [21].

To avoid confusion, it is to clarify that the terms TLS and WTLS refer to algorithmic approaches
for obtaining a least squares solution, which is either direct or iterative but without linearizing the
problem by Taylor series at any step. This follows the statement of Snow ([19], p. 7), that “the terms
total least-squares (TLS) and TLS solution [. . . ] will mean the least-squares solution within the EIV
model without linearization”. Of course, a solution within the GH model is more general in the sense
that it can be utilized to solve any nonlinear adjustment problem, while TLS and WTLS algorithms can
treat only a certain class of nonlinear adjustment problems. This has been firstly discussed by Neitzel
and Petrovic [22] and Neitzel [23], who showed that the TLS estimate within an EIV model can be
identified as a special case of the method of least squares within an iteratively linearized GH model.

To the extent of our knowledge, a WTLS algorithm for fitting a straight line to 3D point data has
not been presented yet. Therefore, in this study we derive two novel WTLS algorithms for the discussed
adjustment problem considering two different cases of stochastic models:

(i) pointwise weights, i.e., coordinate components with same precision for each point and no
correlations between them,

(ii) general weights, i.e., correlated coordinate components of individual precision including singular
dispersion matrices.

The adjustment problem resulting from case (i) can still be solved directly, i.e., a direct WTLS
solution, presented in Section 2.1 of this paper. For case (ii) an iterative solution without linearizing
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the problem by Taylor series is derived in Section 2.2, i.e., an iterative WTLS solution. Both solutions
are based on the work of Malissiovas [20], where similar algorithms have been presented for the
solution of other typical geodetic tasks, such as straight line fitting to 2D point data, plane fitting to 3D
point data and 2D similarity coordinate transformation. The WTLS solution for straight line fitting
to 3D point data will be derived from a geodetic point of view by means of introducing residuals for
all observations, formulating appropriate condition and constraint equations, setting up and solving
the resulting normal equation systems.

2. Straight Line Fitting to 3D Point Data

A straight line in 3D space can be expressed by

y − y0

a
=

x − x0

b
=

z − z0

c
, (1)

as explained e.g., in the handbook of mathematics by Bronhstein et al. ([24], p. 217). This equation
defines a line that passes through a point with coordinates x0, y0 and z0 and is parallel to a direction
vector with components a, b and c. Since the number of unknown parameters is six, two additional
constraints between the unknown parameters have to be taken into account for a solution, as Snow
and Schaffrin [6] have clearly explained. Proper constraints will be selected at a later point of
the derivations.

Considering an overdetermined configuration for which we want to obtain a least squares solution,
we introduce for all points Pi residuals vxi, vyi, vzi for the observations xi, yi, zi assuming that they are
normally distributed with v ∼ (0, σ2

0 QLL). Here the 1 × 3n vector v contains the residuals vxi, vyi, vzi,
QLL is the 3n × 3n corresponding cofactor matrix and σ2

0 the theoretical variance factor. Based on (1),
the nonlinear conditions equations

a(xi + vxi − x0)− b(yi + vyi − y0) = 0,

b(zi + vzi − z0)− c(xi + vxi − x0) = 0,

c(yi + vyi − y0)− a(zi + vzi − z0) = 0,

(2)

can be formulated for each point Pi, with i = 1, . . . , n and n being the number of observed points.
A functional model for this problem can be expressed by two of these three nonlinear condition
equations per observed point. Using all three condition equations for solving the problem would lead
to a singular normal matrix due to linearly dependent normal equations.

2.1. Direct Total Least Squares Solution for Equally Weighted and Uncorrelated Observations

Considering all coordinate components xi, yi, zi for all points Pi as equally weighted and
uncorrelated observations with

pyi = pxi = pzi = 1 ∀i, (3)

a least squares solution can be derived by minimizing the objective function

Ω =
n

∑
i=1

v2
xi
+ v2

yi
+ v2

zi
→ min. (4)

A direct least squares solution of this problem, respectively a TLS solution, has been presented by
Malissiovas et al. [15] and Malissiovas [20]. According to these investigations, equally weighted
residuals correspond to the normal distances

D2
i = v2

xi
+ v2

yi
+ v2

zi
, (5)

13



Mathematics 2020, 8, 1450

as deviation measures between the observed 3D point cloud and the straight line to be computed.
Thus, the objective function can be written equivalently as

Ω =
n

∑
i=1

v2
xi
+ v2

yi
+ v2

zi
=

n

∑
i=1

D2
i → min. (6)

An expression for the squared normal distances

D2 =
[a(x − x0)− b(y − y0)]

2 + [b(z − z0)− c(x − x0)]
2 + [c(y − y0)− a(z − z0)]

2

a2 + b2 + c2 , (7)

can be found in the handbook of Bronhstein et al. ([24], p. 218).
An appropriate parameterization of the problem involves the substitution of the unknown

parameters y0, x0 and z0 with the coordinates of the center of mass of the observed 3D point data.
A proof for this parameter replacement has been given by Jovičić et al. [1] and concerns only the case of
equally weighted and uncorrelated observations. A solution for the line parameters can be computed
by minimizing the objective function (6), under the constraint

a2 + b2 + c2 = 1, (8)

or by searching for stationary points of the Lagrange function

K =
n

∑
i=1

D2
i − k(a2 + b2 + c2 − 1), (9)

with k denoting the Lagrange multiplier. The line parameters can be computed directly from the normal
equations, either by solving a characteristic cubic equation or an eigenvalue problem. A detailed
explanation of this approach was given by Malissiovas ([20], p. 74 ff.). In the following subsections
we will give up the restriction of equally weighted and uncorrelated coordinate components and derive
least squares solutions considering more general weighting schemes for the observations.

2.2. Direct Weighted Total Least Squares Solution

In this case we consider the coordinate components xi, yi, zi of each point Pi to be uncorrelated
and of equal precision with

σyi = σxi = σzi = σi ∀i, (10)

yielding the corresponding (pointwise) weights

pi =
1
σ2

i
∀i. (11)

A least squares solution of the problem can be found by minimizing the objective function

Ω =
n

∑
i=1

pxiv
2
xi
+ pyiv

2
yi
+ pziv

2
zi
→ min

=
n

∑
i=1

pi

(
v2

xi
+ v2

yi
+ v2

zi

)
→ min.

(12)

Taking into account the relation of the squared residuals with the normal distances of Equation (5), it is
possible to express the objective function as

Ω =
n

∑
i=1

piD2
i → min. (13)
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Using the constraint (8), the expression of the normal distances can be written as

D2
i = [a(xi − x0)− b(yi − y0)]

2 + [b(zi − z0)− c(xi − x0)]
2 + [c(yi − y0)− a(zi − z0)]

2. (14)

A further simplification of the problem is possible, by replacing the unknown parameters y0, x0 and z0

with the coordinates of the weighted center of mass of the 3D point data

y0 =

n

∑
i=1

piyi

n

∑
i=1

pi

, x0 =

n

∑
i=1

pixi

n

∑
i=1

pi

, z0 =

n

∑
i=1

pizi

n

∑
i=1

pi

. (15)

It can be proven that this parameterization is allowed and possible, following the same line of thinking
as in the study of Jovičić et al. [1]. Therefore, for this weighted case we can write the normal distances as

D2
i =

(
ax′i − by′i

)2
+
(
bz′i − cx′i

)2
+
(
cy′i − az′i

)2, (16)

with the coordinates reduced to the weighted center of mass of the observed 3D point data

y′i = yi −

n

∑
i=1

piyi

n

∑
i=1

pi

, x′i = xi −

n

∑
i=1

pixi

n

∑
i=1

pi

, z′i = zi −

n

∑
i=1

pizi

n

∑
i=1

pi

. (17)

Searching for stationary points of the Lagrange function

K =
n

∑
i=1

D2
i − k(a2 + b2 + c2 − 1)

=
n

∑
i=1

(
ax′i − by′i

)2
+
(
bz′i − cx′i

)2
+
(
cy′i − az′i

)2 − k(a2 + b2 + c2 − 1)
(18)

leads to the system of normal equations

∂K
∂a

=2a

(
n

∑
i=1

pix′i
2
+

n

∑
i=1

piz′i
2 − k

)
− 2b

n

∑
i=1

piy′ix
′
i − 2c

n

∑
i=1

piy′iz
′
i = 0, (19)

∂K
∂b

=2b

(
n

∑
i=1

piy′i
2
+

n

∑
i=1

piz′i
2 − k

)
− 2a

n

∑
i=1

piy′ix
′
i − 2c

n

∑
i=1

pix′iz
′
i = 0, (20)

∂K
∂c

=2c

(
n

∑
i=1

piy′i
2
+

n

∑
i=1

pix′i
2 − k

)
− 2a

n

∑
i=1

piy′iz
′
i − 2b

n

∑
i=1

pix′iz
′
i = 0, (21)

and
∂K
∂k

= −
(

a2 + b2 + c2 − 1
)
= 0. (22)

Equations (19) to (21) are a homogeneous system of equations which are linear in the unknown
line parameters a, b and c, and has a nontrivial solution if∣∣∣∣∣∣∣

(d1 − k) d4 d5

d4 (d2 − k) d6

d5 d6 (d3 − k)

∣∣∣∣∣∣∣ = 0, (23)
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with the elements of the determinant

d1 =
n

∑
i=1

pix′i
2
+

n

∑
i=1

piz′i
2 , d2 =

n

∑
i=1

piy′i
2
+

n

∑
i=1

piz′i
2 , d3 =

n

∑
i=1

piy′i
2
+

n

∑
i=1

pix′i
2 ,

d4 = −
n

∑
i=1

piy′ix
′
i , d5 = −

n

∑
i=1

piy′iz
′
i , d6 = −

n

∑
i=1

pix′iz
′
i.

(24)

Equation (23) is a cubic characteristic equation with the unknown parameter k and a solution is
given by Bronhstein et al. ([24], p. 63). The unknown line parameters a, b and c can be computed either
by substituting kmin into Equations (19)–(21) under the constraint (22) or by transforming the equation
system and solving an eigenvalue problem, i.e., the direct WTLS solution.

2.3. Iterative Weighted Total Least Squares Solution

In this case, we consider the fact that the coordinate components xi, yi, zi of each point Pi are not
original observations. They are either

(i) derived from single point determinations, e.g., using polar elementary measurements of slope
distance ρi, direction φi and tilt angle θi, e.g., from measurements with a terrestrial laser scanner,
so that the coordinates result from the functional relationship

xi = ρi cos φi sin θi,
yi = ρi sin φi cos θi,

zi = ρi cos θi.
(25)

Using the standard deviations σρ i, σφ i and σθ i of the elementary measurements, a 3 × 3
variance-covariance matrix can be provided for the coordinate components xi, yi, zi of each
point Pi by variance-covariance propagation based on (25). Covariances among the n different
points do not occur in this case.

or

(ii) derived from a least squares adjustment of an overdetermined geodetic network.
From the solution within the GM or GH model, the 3n × 3n variance-covariance matrix of
the coordinate components xi, yi, zi of all points Pi can be obtained. This matrix is a full matrix,
considering also covariances among the n different points. It may even have a rank deficiency in
case the coordinates were determined by a free network adjustment.

The variances and covariances from (i) or (ii) can then be assembled in a dispersion matrix

QLL =

⎡⎢⎣ Qxx Qxy Qxz

Qyx Qyy Qyz

Qzx Qzy Qzz

⎤⎥⎦ , (26)

for the coordinate components as “derived observations”. In case of a non-singular dispersion matrix,
it is possible to compute the respective weight matrix

P =

⎡⎢⎣ Pxx Pxy Pxz

Pyx Pyy Pyz

Pzx Pzy Pzz

⎤⎥⎦ = Q−1
LL . (27)

Starting with the functional model (2), we choose to work with the nonlinear condition equations

c(yi + vyi − y0)− a(zi + vzi − z0) = 0,

c(xi + vxi − x0)− b(zi + vzi − z0) = 0.
(28)
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Two additional constraints must be taken into account in this case. For example, Snow and Schaffrin [6]
proposed the constraints

a2 + b2 + c2 = 1,

ay0 + bx0 + cz0 = 0.
(29)

A further development of an algorithmic solution using these constraints is possible.
However, we choose to parameterize the functional model so that an additional constraint is
unnecessary and the equations become simpler. Therefore, we choose to fix one coordinate of the point
on the line

z0 =

n

∑
i=1

zi

n
= z, (30)

as well as one of the unknown components of the direction vector

c = 1. (31)

This simplification of the functional model has been used by Borovička et al. [25] for a similar practical
example, this of estimating the trajectory of a meteor. As already mentioned in that work, the resulting
direction vector of the straight line can be transformed to a unit vector afterwards, i.e., a solution using
the constraint a2 + b2 + c2 = 1. The simplified functional model can be written in vector notation as

(yc + vy − ey0)− a(zc + vz − ez) = 0,

(xc + vx − ex0)− b(zc + vz − ez) = 0,
(32)

with the vectors xc, yc and zc containing the coordinates of the observed points and vectors vx, vy

and vz the respective residuals. Vector e is a vector of ones, with length equal to the number of
observed points n.

A weighted least squares solution of this problem can be derived by minimizing the
objective function

Ω = vT
x Pxxvx + vT

yPyyvy + vT
z Pzzvz + 2 vT

x Pxyvy + 2 vT
x Pxzvz + 2 vT

yPyzvz (33)

or by searching for stationary points of the Lagrange function

K = Ω − 2kT
1
[
(yc + vy − ey0)− a(zc + vz − ez)

]
− 2kT

2 [(xc + vx − ex0)− b(zc + vz − ez)]
(34)

with two distinct vectors k1 and k2 of Lagrange multipliers. Taking the partial derivatives with respect
to all unknowns and setting them to zero results in the system of normal equations

1
2

∂K
∂vT

x
= Pxxvx + Pxyvy + Pxzvz − k2 = 0, (35)

1
2

∂K
∂vT

y
= Pyyvy + Pyxvx + Pyzvz − k1 = 0, (36)

1
2

∂K
∂vT

z
= Pyyvy + Pxzvx + Pyzvy + ak1 + bk2 = 0, (37)
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1
2

∂K
∂kT

1
= (yc + vy − ey0)− a(zc + vz − ez) = 0, (38)

1
2

∂K
∂kT

2
= (xc + vx − ex0)− a(zc + vz − ez) = 0, (39)

1
2

∂K
∂a

= kT
1 (zc + vz − ez) = 0, (40)

1
2

∂K
∂b

= kT
2 (zc + vz − ez) = 0, (41)

1
2

∂K
∂y0

= eTk1 = 0, (42)

1
2

∂K
∂x0

= eTk2 = 0. (43)

To derive explicit expressions for the residual vectors, we write Equations (35)–(37) as⎡⎢⎣ Pxx Pxy Pxz

Pyx Pyy Pyz

Pzx Pzy Pzz

⎤⎥⎦
⎡⎢⎣ vx

vy

vz

⎤⎥⎦ =

⎡⎢⎣ k2

k1

−ak1 − bk2

⎤⎥⎦ , (44)

which leads to the solution for the residual vectors⎡⎢⎣ vx

vy

vz

⎤⎥⎦ =

⎡⎢⎣ Pxx Pxy Pxz

Pyx Pyy Pyz

Pzx Pzy Pzz

⎤⎥⎦
−1 ⎡⎢⎣ k2

k1

−ak1 − bk2

⎤⎥⎦
=

⎡⎢⎣ Qxx Qxy Qxz

Qyx Qyy Qyz

Qzx Qzy Qzz

⎤⎥⎦
⎡⎢⎣ k2

k1

−ak1 − bk2

⎤⎥⎦ ,

(45)

or explicitly

vx =
(
Qxy − aQxz

)
k1 + (Qxx − bQxz) k2, (46)

vy =
(
Qyy − aQyz

)
k1 +

(
Qxy − bQyz

)
k2, (47)

vz =
(
Qyz − aQz

)
k1 + (Qxz − bQzz) k2. (48)

Inserting these expressions for the residual vectors into Equations (38) and (39) yields

W1k1 + W2k2 + yc − ey0 − azc = 0, (49)

W2k1 + W3k2 + xc − ex0 − bzc = 0, (50)
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with the auxiliary matrices W1, W2 and W3 as

W1 = Qy − 2aQyz + a2Qz, (51)

W2 = Qxy − aQxz − bQyz + abQz, (52)

W3 = Qx − 2bQxz + b2Qz, (53)

Using Equations (49), (50) and (40)–(43), the nonlinear equation system

W1k1 + W2k2 − ey0 − azc = −yc,

W2k1 + W3k2 − ex0 − bzc = −xc,

− (zc + vz − ez)T k1 = 0,

− (zc + vz − ez)T k2 = 0,

−eTk1 = 0,

−eTk2 = 0

(54)

can be set up. To express this system of equations into a block matrix form and to obtain a symmetrical
matrix of normal equations in the following, it is advantageous to add the terms −a (vz − ez)
and −b (vz − ez) to both sides of the first two equations, leading to the system of equations

W1k1 + W2k2 − ey0 − a (zc + vz − ez) = −yc − a (vz − ez) ,

W2k1 + W3k2 − ex0 − b (zc + vz − ez) = −xc − b (vz − ez) ,

− (zc + vz − ez)T k1 = 0,

− (zc + vz − ez)T k2 = 0,

−eTk1 = 0,

−eTk2 = 0.

(55)

Arranging the unknowns in a vector

X =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

k1

k2

a
b
y0

x0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, (56)

the equation system (55) can be written as

NX = n. (57)
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with the matrix of normal equations

N =

[
W A

AT 0

]
, (58)

constructed using the matrices

W =

[
W1 W2

W2 W3

]
(59)

and

AT =

⎡⎢⎢⎢⎣
− (zc + vz − ez) 0

0 − (zc + vz − ez)
−e 0

0 −e

⎤⎥⎥⎥⎦ . (60)

The right-hand side of the equation system (57) reads

n =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

−yc − a (zc + vz − ez)
−xc − b (zc + vz − ez)

0
0
0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(61)

It is important to point out that matrix N and vector n contain the unknown parameters a, b and vz

in their entries. Therefore, to express and solve these normal equations that live in the “nonlinear
world” with the help of vectors and matrices (that only exist in the “linear world”), appropriate
approximate values a0, b0 and v0

z have to be introduced for all auxiliary matrices required for the setup
of matrix N and vector n. The solution for the vector of unknowns can be computed by

X̂ = N−1n, (62)

without the need of a linearization by Taylor series at any step of the calculation process. The WTLS
solution for the line parameters can be computed following the ordinary iteration method, as it is
explained for example by Bronhstein ([24], p. 896). Therefore, the solutions â, b̂ and ṽz, after stripping
them of their random character, are to be substituted as new approximate values as long as necessary
until a sensibly chosen break-off condition is met. For example, the maximum absolute difference
between two consecutive solutions must be smaller than a predefined threshold ε, which in this
problem can be formulated as

max

∣∣∣∣∣
[

a0

b0

]
−
[

â
b̂

]∣∣∣∣∣ ≤ ε, (63)

with |·| denoting the absolute value. The predicted residual vectors ṽx, ṽy, ṽz can be computed
from Equations (46)–(48). The iterative procedure for the presented WTLS solution can be found in
Algorithm 1.
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Algorithm 1 Iterative WTLS solution

Choose approximate values for a0, b0 and v0
z .

Define parameter c = 1.
Set threshold ε for the break-off condition of the iteration process.
Set parameter da = db = ∞, for entering the iteration process.
while da > ε and db > ε do

Compute matrices W and A.
Build matrix N and vector n.
Estimate the vector of unknowns X̂.
Compute the residual vector ṽz .
Compute parameters da = |â − a0| and db = |b̂ − b0|.
Update the approximate values with the estimated ones, with a0 = â, b0 = b̂ and v0

z = ṽz.
end while

return â and b̂, with c = 1.

After computing the line parameters â and b̂ and putting them into a vector, we can easily scale
it into a unit vector by dividing each component with the length of the vector

⎡⎢⎣ an

bn

cn

⎤⎥⎦ =

⎡⎢⎣ â
b̂
1

⎤⎥⎦
∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
⎡⎢⎣ â

b̂
1

⎤⎥⎦
∣∣∣∣∣∣∣
∣∣∣∣∣∣∣

(64)

with ||·|| denoting the Euclidean norm. The derived parameters an, bn and cn refer to the normalized
components of a unit vector, that is parallel to the requested line, with

a2
n + b2

n + c2
n = 1 (65)

2.4. WTLS Solution with Singular Dispersion Matrices

The algorithmic approach presented in Section 2.3 can also cover cases when dispersion matrices
are singular. Such a solution depends on the inversion of matrix N (58), which depends on the rank
deficiency of matrix W (59). Following the argumentation of Malissiovas ([20], p. 112), a criterion that
ensures a unique solution of the problem can be described in this case by

rank ([W | A]) = 2n, (66)

with

- rank of W ≤ 2n, with 2n = number of condition equations, since for each of the observed n points
two condition equations from Equation (2) are taken into account;

- rank of A = m, with m = number of unknown parameters.

In cases of singular dispersion matrices, the rank of matrix W will be smaller than 2n. A unique
solution will exist if the rank of the augmented matrix [W | A] is equal to the number of condition
equations 2n of the problem. It is important to mention that the developed idea is based on
the Neitzel–Schaffrin criterion, which has been firstly proposed by Neitzel and Schaffrin [26,27],
particularly for a solution of an adjustment problem within the GH model when singular dispersion
matrices must be employed.
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2.5. A Posteriori Error Estimation

In this section we want to determine the variance-covariance matrix of the estimated parameters.
The following derivations can be used for computing the a posteriori stochastic information for
all weighted cases discussed in this investigation, i.e., the direct and the iterative WTLS solutions.
Therefore, we will employ the fundamental idea of variance-covariance propagation. This is a
standard procedure explained by many authors, like for example in the textbooks of Wells and
Krakiwsky ([28], p. 20), Mikhail ([29], p. 76 ff.) or Niemeier ([8], p. 51 ff.) and has been further employed
in the GM and the GH model, so that the a posteriori stochastic results can be computed using directly
the developed matrices from each model. A detailed explanation is given by Malissiovas ([20], p. 31 ff.).

As we have already mentioned in the introduction of this article, a TLS, respectively a WTLS
solution, can be regarded as a special case of a least squares solution within the GH model.
From the presented WTLS algorithm we observe that the derived matrix of normal Equation (58)
is equal to the matrix if it was computed within the GH model. Therefore, it is possible to compute

N−1 =

[
Q11 Q12

Q21 Q22

]
(67)

and extract the dispersion matrix for the unknown parameters from

Qx̂x̂ = −Q22. (68)

The a posteriori variance factor is

σ̂2
0 =

vTPv

r
(69)

with vector v holding all residuals and r denoting the redundancy of the adjustment problem. In case
of a singular dispersion matrix, it is not possible to compute the weight matrix P, as in Equation (27).
Therefore, we can make use of the solution for the residual vectors from Equation (45) and insert them
in Equation (69) to obtain

σ̂2
0 =

vT
x k2 + vT

yk1 − avT
z k1 − bvT

z k2

r
. (70)

The variance-covariance matrix of the unknown parameters can be then derived by

Σx̂x̂ = σ̂2
0 Qx̂x̂ =

⎡⎢⎢⎢⎣
σ2

a σab σay0 σax0

σba σ2
b σby0 σbx0

σy0a σy0b σ2
y0

σy0x0

σx0a σx0b σx0y0 σ2
x0

⎤⎥⎥⎥⎦ . (71)

To derive the variance-covariance matrix of the normalized vector components (64), we can
explicitly write the equations

an =
â√

â2 + b̂2 + c2
,

bn =
b̂√

â2 + b̂2 + c2
,

cn =
c√

â2 + b̂2 + c2
.

(72)
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with c = 1. Following the standard procedure of the variance-covariance propagation in nonlinear
cases, we can write the Jacobian matrix

F =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂an

∂a
∂an

∂b

∂bn

∂a
∂bn

∂b

∂cn

∂a
∂cn

∂b

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (73)

Taking into account the variances and covariances of the line parameters â and b̂ from (71)

Σâb̂ = Σx̂x̂(1 : 2, 1 : 2) =

[
σ2

a σab
σba σ2

b

]
, (74)

we can compute the variance-covariance matrix of the normalized components

Σanbncn = FΣâb̂FT =

⎡⎢⎣ σ2
an σanbn σancn

σbnan σ2
bn

σbncn

σcnan σcnbn σ2
cn

⎤⎥⎦ . (75)

3. Numerical Examples

In this section we present the solutions for fitting a straight line to 3D point data using the TLS
approach from Section 2.1 and the newly developed WTLS approaches from Sections 2.2 and 2.3.
The utilized dataset for this investigaiton consists of n = 50 points and originates from the work of
Petras and Podlubny [30]. It has been utilized also by Snow and Schaffrin, see Table A1 in [6], for a
solution within the GH model, which will be used here for validating the results of the presented
WTLS solutions. Three different stochastic models will be imposed in the following:

1. equal weights, i.e., coordinate components xi, yi, zi as equally weighted and
uncorrelated observations,

2. pointwise weights, i.e., coordinate components with same precision for each point and
without correlations,

3. general weights, i.e., correlated coordinate components of individual precision including singular
dispersion matrices.

3.1. Equal Weights

For the first case under investigation, we consider all coordinate components xi, yi, zi as equally
weighted and uncorrelated observations, yielding the weights as shown in (3). The least squares
solution of this problem within the GH model, presented by Snow and Schaffrin [6], is listed in Table 1.
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Table 1. Least squares solution within the Gauss–Helmert (GH) model of Snow and Schaffrin [6].

Line Orientation Components Standard Deviation

Parameter b̂y = an 0.219309 0.077523
Parameter b̂x = bn 0.677404 0.058450
Parameter b̂z = cn 0.702159 0.056575
Coordinates of a point on the line Standard deviation

Parameter ây = y0 0.047785 0.121017
Parameter âx = x0 −0.067111 0.091456
Parameter âz = z0 0.049820 0.088503

A posteriori variance factor σ̂2
0 0.7642885

A direct TLS solution for this problem can be derived using the approach presented in Section 2.1.
The results are shown in Table 2. Numerically equal results have been derived by using the direct
WTLS approach of Section 2.2 by setting all weights equal to one.

Table 2. Direct TLS solution from Section 2.1.

Line Orientation Components Standard Deviation

Parameter an 0.219308632730 0.07752314583
Parameter bn 0.677404488809 0.05844978733
Parameter cn 0.702158730025 0.05657536189

A posteriori variance factor σ̂2
0 0.76428828602

Comparing the solution with the one presented in Table 1, it can be concluded that the numerical
results for the parameters coincide within the specified decimal places. Regarding the small difference
in the numerical value for the variance factor, it is to be noted that the value in Table 2 was confirmed
by two independent computations.

Furthermore, a point on the line can be easily computed using the equations of the functional
model (2), as long as the direction vector parallel to the requested line is known. Alternatively,
all the adjusted points will lie on the requested straight line, which can be simply computed by adding
the computed residuals to the measured coordinates.

3.2. Pointwise Weights

For the second weighted case under investigation, we consider the coordinate components xi, yi,
zi of each point Pi to be uncorrelated and of equal precision. From the standard deviations listed in
Table 3, the corresponding pointwise weights can be obtained from (11).
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Table 3. Pointwise precision σxi = σyi = σzi = σi for each point Pi.

Point i σi Point i σi

1 0.802 26 0.792
2 0.795 27 0.799
3 0.807 28 0.801
4 0.770 29 0.807
5 0.808 30 0.798
6 0.799 31 0.796
7 0.794 32 0.792
8 0.808 33 0.806
9 0.807 34 0.805
10 0.800 35 0.801
11 0.789 36 0.808
12 0.798 37 0.778
13 0.808 38 0.795
14 0.803 39 0.794
15 0.804 40 0.803
16 0.808 41 0.772
17 0.806 42 0.791
18 0.806 43 0.806
19 0.807 44 0.804
20 0.806 45 0.807
21 0.804 46 0.803
22 0.808 47 0.808
23 0.805 48 0.801
24 0.801 49 0.805
25 0.801 50 0.779

A direct WTLS solution is derived, following the approach presented in Section 2.2.
The determinant (23) ∣∣∣∣∣∣∣

(d1 − k) d4 d5

d4 (d2 − k) d6

d5 d6 (d3 − k)

∣∣∣∣∣∣∣ = 0,

can be built with the components

d1 = 213.505250528675,

d2 = 206.458905097029,

d3 = 198.273122927545,

and

d4 = −20.9837621443375,

d5 = −12.1835697465792,

d6 = −81.6787394185243.

(76)

which leads to the solutions for the Lagrange multiplier

k̂ =

⎧⎪⎨⎪⎩
115.0596477492 (k̂min)

218.3490470615
284.8285837425

(77)

The direct WTLS solution for the line orientation components is shown in Table 4.
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Table 4. Direct WTLS solution from Section 2.2.

Line Orientation Components Standard Deviation

Parameter an 0.230818543507 0.07646636344
Parameter bn 0.677278360907 0.05781967335
Parameter cn 0.698582007942 0.05623243170

A posteriori variance factor σ̂2
0 1.19853799739

The presented results are numerically equal to the iterative WTLS solution using the algorithmic
approach of Section 2.3, as well as the solution within the GH model.

3.3. General Weights

For the last weighted case in this investigation, we impose the most general case, i.e., correlated
coordinate components with individual precision resulting in a singular dispersion matrix. To obtain
such a matrix for our numerical investigations, we firstly solved the adjustment problem within the GH
model with an identity matrix as dispersion matrix. From the resulting 150 × 150 dispersion matrix of
the residuals

Qvv =

⎡⎢⎣ Qvxvx Qvxvy Qvxvz

Qvyvx Qvyvy Qvyvz

Qvzvx Qvzvy Qvzvz

⎤⎥⎦ , (78)

computed as e.g., presented by Malissiovas ([20], p. 46), we take the variances and covariances
between the individual point coordinates, but not among the points, i.e., the diagonal elements of each
sub-matrix in (78) and arrange them in a new 150 × 150 matrix

QLL =

⎡⎢⎢⎢⎣
diag (Qvxvx) diag

(
Qvxvy

)
diag (Qvxvz)

diag
(

Qvyvx

)
diag

(
Qvyvy

)
diag

(
Qvyvz

)
diag (Qvzvx) diag

(
Qvzvy

)
diag (Qvzvz)

⎤⎥⎥⎥⎦ , (79)

with “diag()” denoting that only the diagonal elements are taken into account. This is an example of
pointwise variances and covariances, described as case (i) in Section 2.3, but now yielding a singular
dispersion matrix for the observations with

rank (QLL) = 100.

Before deriving an iterative WTLS solution for this weighted case, we must check if
the criterion (66) for a unique solution of the adjustment problem is fulfilled. Therefore, we computed
the 100 × 100 matrix W with

rank (W) = 100,

and the 100 × 4 matrix A with
rank (A) = 4.

The criterion ensures that a unique solution exists when using the presented singular dispersion
matrix, while

rank ([W | A]) = 100, (80)

since n = 50 observed points are used in this example, cf. (66). As for all iterative procedures,
appropriate starting values for the unknowns must be provided. However, they can be obtained easily
by first generating a direct solution with a simplified stochastic model. The iterative WTLS solution for
the direction vector of the requested straight line is presented in Table 5.
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Table 5. Iterative WTLS solution from Section 2.3.

Line Orientation Components Standard Deviation

Parameter an 0.225471114499 0.076563026291
Parameter bn 0.677670055415 0.057791104518
Parameter cn 0.699947192665 0.056127005073

A posteriori variance factor σ̂2
0 0.798915322513

The presented WTLS solution has been found to be numerically equal to the least squares
solution within the GH model. Detailed numerical investigations of the convergence behaviour,
e.g., in comparison to an adjustment within the GH model, are beyond the scope of this article.
However, in many numerical examples it could be observed that the iterative WTLS approach showed
a faster convergence rate compared to an adjustment within an iteratively linearized GH model.

4. Conclusions

For the problem of straight line fitting to 3D point data, two novel WTLS algorithms for two
individual weighting schemes have been presented in this study:

- Direct WTLS solution for the case of pointwise weights, i.e., coordinate components with same
precision for each point and without correlations,

- Iterative WTLS solution for the case of general weights, i.e., correlated coordinate components
of individual precision including singular dispersion matrices. This algorithm works without
linearizing the problem by Taylor series at any step of the solution process.

Both approaches are based on the work of Malissiovas [20], where similar algorithms have been
presented for adjustment problems that belong to the same class, i.e., nonlinear adjustments that can be
expressed within the EIV model. The approach presented in Section 2.1 provides a direct TLS solution
assuming equally weighted and uncorrelated coordinate components. The fact that this assumption
is inappropriate, e.g. for the evaluation of laser scanning data, has often been accepted in the past to
provide a direct solution for large data sets. With the newly developed approach in Section 2.2 it is
now possible to compute a direct WTLS solution at least for a more realistic stochastic model, namely
pointwise weighting schemes.

If more general weight matrices must be taken into account in the stochastic model, including
correlations or singular dispersion matrices, the presented algorithm of Section 2.3 can be utilized
for an iterative solution without linearizing the problem by Taylor series at any step, following
the algorithmic idea of WTLS. A criterion that ensures a unique solution of the problem when
employing singular dispersion matrices has also been presented, which is based on the original
ideas of Neitzel and Schaffrin [26,27], for a solution within the GH model.

Numerical examples have been presented in Section 3 for testing the presented WTLS algorithms.
The utilized dataset of the observed 3D point data has also been employed by Snow and Schaffrin [6]
for a solution of the problem within the GH model and originates from the study of Petras
and Podlubny [30]. The results of the presented algorithms have been compared in all cases with
existing solutions or the solutions coming from existing algorithms and have been found to be
numerically equal.
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Abstract: In this paper stochastic properties are discussed for the final results of the application
of an innovative approach for uncertainty assessment for network computations, which can be
characterized as two-step approach: As the first step, raw measuring data and all possible influencing
factors were analyzed, applying uncertainty modeling in accordance with GUM (Guide to the
Expression of Uncertainty in Measurement). As the second step, Monte Carlo (MC) simulations
were set up for the complete processing chain, i.e., for simulating all input data and performing
adjustment computations. The input datasets were generated by pseudo random numbers and
pre-set probability distribution functions were considered for all these variables. The main extensions
here are related to an analysis of the stochastic properties of the final results, which are point clouds
for station coordinates. According to Cramer’s central limit theorem and Hagen’s elementary error
theory, there are some justifications for why these coordinate variations follow a normal distribution.
The applied statistical tests on the normal distribution confirmed this assumption. This result allows
us to derive confidence ellipsoids out of these point clouds and to continue with our quality assessment
and more detailed analysis of the results, similar to the procedures well-known in classical network
theory. This approach and the check on normal distribution is applied to the local tie network of
Metsähovi, Finland, where terrestrial geodetic observations are combined with Global Navigation
Satellite System (GNSS) data.

Keywords: GUM analysis; geodetic network adjustment; stochastic properties; random number
generator; Monte Carlo simulation

1. Introduction

For decades, the quality concepts in geodesy have been based on classical statistical theory and
generally accepted assumptions, such as the normal distribution of observations, possible correlation
between observations and law of variance propagation. For the here discussed least squares adjustment,
the variance–covariance matrix for the unknowns is considered to be the best representation for quality
of results.

These considerations are the basis for standard quality measures for precision, such as standard
deviation, mean square error, error or confidence ellipses and prerequisites for the derivation of
reliability measures, as well as for more detailed methods such as congruency analysis.

With the advent of GUM, i.e., the “Guide to the Expression of Uncertainty in Measurement”,
see [1–3], which has found wide acceptance within the community of measuring experts in natural
sciences, physics and mechanical engineering, we may ask whether or not the traditional concepts
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for quality assessment for geodetic adjustment results are still valid or rather should be replaced by
GUM-related new measures.

In this paper, we will participate in this discussion and will study the statistical properties of
adjustment results, presenting a new approach in which the variations of the network adjustment
results are derived by Monte Carlo simulations, where the quality variability of the input observations
is computed in a rigorous procedure based on the rules of GUM.

2. Quality Assessment in Classical Geodetic Adjustment

2.1. Functional Model

Within the established methodology (see e.g., [4,5]), quality assessment in geodetic network
adjustment is based on the analysis of the covariance matrix Σxx of the final adjusted coordinates x.
In most cases, the starting point for the adjustment process is the Gauss–Markov (GM) model, given by
the functional model.

l(n,1) + v(n,1) = A(n,u) .x̂(u,1), (1)

which gives the functional relations between the observations li and the unknowns xj in a linear/often
linearized form. In Equation (1), l is the (n, 1)—vector of observations li, which are in most cases reduced
observations after linearization. A is the (n, u)—coefficient or design matrix, known as the Jacobian
matrix. The vector x(u, 1) contains the parameters xi in the adjustment problem, where here—without
lack of generality—just coordinate unknowns are considered. The (n, 1)—vector of residuals v accounts
for the possible inconsistencies between observations and unknowns.

2.2. Stochastic Model

The stochastic relations for and between the observations li are given by the (n, n)—covariance
matrix Σll of exactly those n. quantities li, that are used as input variables in the adjustment model,
but see critical remarks in Section 2.4. According to mathematical statistics, the covariance matrix for
these input variables is given by:

Σll =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
σ2

1 ρ12σ1σ2 · · · ρ1nσ1σn

ρ21σ2σ1 σ2
2 · · · ρ2nσ2σn

...
...

. . .
...

ρn1σnσ1 ρn2σnσ2 σ2
n

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (2)

where the terms σ2
i represent the variance estimates for the input variable li, and the terms ρi jσiσ j are

the covariances between variables li and l j. The correlation coefficient ρi j between the input variables li
and l j is rarely known and therefore in most applications the stochastic model is reduced to a diagonal
matrix, where correlations are no longer considered.

Σll(n,n) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

σ2
1
σ2

2 0
σ2

3

0
. . .

σ2
n

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (3)

Some literature exists to estimate correlation coefficients, where serial correlation, external influencing
factors or neglected effects are considered to obtain adequate ρi j values. For GNSS observations [5],
the application of correlation coefficients is standard practice, at least for 3D network blockwise
correlations for (3,3) where coordinates or coordinate differences are considered.

A further step to simplify the stochastic model and the computational effort is the usage of
identical values for a priori variances σ2

i for each type of observation (e.g., for directions, distances,
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height differences, coordinate differences). Often these simplifications are justified by the assumed
minor influence of correlations on the coordinate estimates themselves.

2.3. Traditional Quality Assessment

For this common GM approach, the target function for a least squares adjustment is given by the
well-known condition:

ΩΣ = vTQ−1
ll v = vTPv, (4)

where the variance–covariance matrix is split up:

Σll = σ
2
0Qll. (5)

Here Qll is called the cofactor matrix of observations and σ2
0 is the variance of unit weight,

which can be used to carry out an overall test of the adjustment model, see e.g., [4]. For the final results
of least squares adjustment, the coordinates (more precise: corrections to the approximate coordinates)
are computed by the well-known formula:

x̂ =
(
ATQ−1

ll A
)−1

ATQ−1
ll l. (6)

The only stochastic variable in this equation is the vector of observations l; according to the law of
variance propagation, the cofactor matrix Qxx or the covariance matrix Σxx of the estimated parameters
x can be derived easily:

Qxx =
(
ATQ−1

ll A
)−1

, (7)

Σxx = σ2
0Qxx. (8)

This matrix Σxx contains all the information to estimate quality measures for the coordinates
of a network, more precisely estimates for precision of the adjustment parameters. In most cases,
the precision of point coordinates is computed and visualized by confidence ellipses for a certain
confidence level. For the example of a local tie network in Finland, the 95% confidence ellipses for the
final 3D coordinates are depicted in Figure 8 and discussed in Section 5.3.

To estimate quantities for reliability of observations and of coordinates, the cofactor matrix Qvv for
the residuals v has to be computed, which can be done in a straightforward way by applying the law
of variance progagation to Equation (1). Even if aspects of reliability will not be discussed in this paper,
it should be pointed out, additionally, that reliability measures are dependent on adequate covariance
matrices Σxx.

2.4. Critisicm of Traditional Approach

Due to the modern electronic sensors, for the users it is almost impossible to obtain knowledge
on relevant internal measuring processes and the already applied computational steps within the
sensors. Therefore it is not sufficient to follow the classical concept to derive dispersion measures out
of repeated observations only. As is the case nowadays, making a measurement is often identical with
pushing a button, therefore it is obvious that these “observations” do not contain sufficient information
on the real variability of the complete measuring data and processing chain. Besides, in general the
variable environmental conditions and the ability of the measuring team are not taken into account.
For the stochastic properties of observations, one can state that for the standard approach to develop a
stochastic model, the following problems ought to be addressed:

(i) The set-up of appropriate values for variances σ2
i and correlations ρi j are based on:

- Experiences (of persons who carry out the observations and computations);
- Values given by the manufacturer of the instruments;
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- Results of repeated observations during the measuring campaign (e.g., out of three repeated
sets of measurements for direction observations).

(ii) This selection does not consider in detail that the input variables for an adjustment are based on a
multi-step preprocessing, e.g., for classical total station observations these steps consist of:

- Corrections due to atmospheric conditions (temperature, air pressure, air humidity);
- Centering to physical mark (horizontal centering, considering the instrument’s height);
- Geometric reduction to coordinate system used;
- Application of calibration corrections.

(iii) The traditional stochastic model does not consider the real environmental conditions during the
measuring campaign (rain, heavy wind, frost, etc.) and a possible influence due to the quality of
the personal conditions (training status, physical wealth, stress, etc.).

It is almost impossible to consider all these influences in the a priori estimates for the variances and
covariances in a rigorous way; therefore, it is left to the responsible person for data processing, in which
way—if any—he/she includes these factors in the variance–covariance matrix (Equation (2)). With the
application of the concepts of GUM—see following sections—one can overcome these shortages.

3. Uncertainty Modeling According to GUM

3.1. General Idea of GUM

In contrast to classical error analysis and quality assessment, the concept of this new GUM (Guide
to the Expression of Uncertainty in Measurement) can be considered as a radical paradigm change.
Within its realization, several new subtasks have to be solved as pre-analysis steps to get a complete
uncertainty analysis according to this new concept.

As outlined in the last section, the traditional statistical concept, which derives dispersion measures
and correlations out of repeated independent (!) observations, does not cover the complexity of today’s
measuring processes, see Figure 1.

Figure 1. Set-up of a stochastic model within classical approach: external, instrumental and personal
influences are considered “implicitly”, at least in a subjective way.

Considering the deficiencies within the classical error theory, on initiative of the Bureau
International des Poids et Mesures, France, an international group of experts of metrology formed in
1987 to develop a new approach to adequately assess the complete uncertainty budget of different
types of measurements. As a result, the “Guide to the Expression of Uncertainty in Measurement”
(GUM) was published, which nowadays is the international standard in metrology, see the fundamental
publications [1,2]. The GUM allows the computation of uncertainty quantities for all measuring sensors
or systems. The resulting uncertainty value is a non-negative parameter characterizing the complete
dispersion of a measuring quantity and by this, nowadays, uncertainty values are considered to be the
adequate precision parameters.
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As described in the fundamental GUM documents, it is necessary to model the complete measuring
and processing chain to derive a “final” resulting measuring quantity Y from all influencing raw
data. It is important that this numerical model includes all, and really all, input quantities X1, X2, X3

. . . , that influence the final measuring result Y. As this model contains all the computational steps,
including how the resulting quantity Y will be changed whenever one input quantity is modified,
this basic model for GUM analysis is named carrier of information. In a simplified form, this model
can be described as a (often nonlinear) complex function

Y = f (X1, X2, X3, . . . , Xn). (9)

The development of this function is one of the most difficult and complex subtasks for deriving the
uncertainty of measurements. Deep understanding of the physical and computational processes within
the sensor, the performance of the measuring task itself, the data processing and possible external
and environmental influences are necessary. To do this, no standard concept is available, just some
recommendations can be given, see e.g., [6,7].

With respect to the later discussions here, it should be mentioned that the original GUM is going
to derive an uncertainty measure for just one measuring quantity Y.

To restrict the contents of this paper, possible variabilities of the measurand—the physical quantity
of interest, which is measured—is not considered here; as for this task, detailed physical knowledge of
the specific object would be required.

3.2. Type A and Type B Influence Factors

An uncertainty analysis according to GUM has a probabilistic basis, but also aims to include all
available knowledge of the possible factors that may influence the measuring quantity. Consequently,
it is most important to set-up the following two types of influence factors, which are characterized as
Type A and Type B:

Type A: Dispersion values for measurements

- Derived from common statistical approaches, i.e., analyzing repeated observations;
- Values following Gaussian distribution.

Type B: Non-statistical effects

- What are relevant external influences?
- Are there remaining systematic effects?
- Are insufficient formulas used during processing?
- Define possible variability within specified interval [a, b];
- Assign a probability distribution to each influence factor.

The GUM concept allows us to consider classical random effects (Type A) on measuring results,
which correspond to established statistical approaches.

However, additionally, GUM allows us to include all relevant additional influence factors (Type B),
e.g., external effects (e.g., due to environmental conditions and the observing team) and possibly
remaining systematic errors (e.g., uncontrolled residuals from the measuring procedure, undetected
instrumental effects). Even approximations used in computational formulas have to be considered,
and as such, are considered here.

3.3. Assignment of Adequate Probability Distribution Functions to Variables

The GUM concept requires the assignation of statistical distribution functions for all these
influencing quantities of Type A and Type B, i.e., a specific distribution, its expectation and dispersion.
This aspect is depicted in Figure 2.
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Figure 2. Statistical distribution functions, used within the Guide to the Expression of Uncertainty in
Measurement (GUM) approach to model effects of Type A and Type B, from [8]. (a) Normal distribution,
(b) uniform distribution and (c) rectangular distribution.

For Type A quantities, the common probability distribution functions with Gaussian or Normal
distribution (with parameter expectation μ and variance σ2) are applied, which is depicted in Figure 2a.
Here, classical methods for variance estimation can be used, i.e., the statistical analysis of repeated
measurements from our own or external experiences, adopt data sheet information, etc.

For the non-statistical influence factors of Type B, which represent external influences and
remaining systematic effects as well as insufficient approximations, according to, e.g., [9,10], it is
recommended to introduce a probability distribution function in addition. However, the individual
assignment of an adequate statistical distribution is a particularly complex task; in general, the statistical
concepts of normal, uniform and triangle distribution functions are used, see Figure 2 and examples in
Table 1.

Table 1. Type A and Type B influencing factors, possible probability distribution functions and
variability range for typical geodetic observations, taken from [11].

Influence Factors Distribution Examples

Type A

Total station

- horizontal directions
- vertical distances
- slope distances

normal
normal
normal

σh = 0.2 mgon
σv = 0.3 mgon

σd = 0.6 mm + 1 ppm

Levelling

- height differences normal σΔh = 0.6 mm/
√

km

GNSS

- baselines Δx, Δy, Δz normal σΔ = 2 mm

Type B

Pillar und centering

- centering direction
- centering offset
- Target center definition

uniform
triangle
uniform

[0, 360◦]
[0, 0.1 mm]
σt = 0.1 mm

Instrument and target height uniform [0, 0.2 mm]

Calibration parameters

- additional constant
- scale factor normalnormal σA = 0.5 mm

σs = 0.2 ppm

Atmospheric parameters

- temperature
- air pressure
- air humidity

uniform
uniform
uniform

[0, 1 K]
[0, 1 mbar]

[0, 5%]

GNSS, Global Navigation Satellite System.

For each influence factor, a statistical distribution has to be defined with an expected mean and
dispersion, i.e., all these quantities have to be pre-selected to serve as starting values for a complete
GUM analysis. To be more specific, it is the engineers’ task to estimate the variability of the applied
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temperature correction during the measuring period, to estimate a quantity for the centering quality, to
evaluate the correctness of calibration parameters, etc.

3.4. Approach to Perform a GUM Analysis for Geodetic Observations

For Electronic Distance Measurements (EDMs), a common geodetic measuring technique,
the processing steps according to Equation (9) are depicted in Figure 3. Be aware that here, the complete
mathematical formulas are not given, just the specific computational steps are outlined.

Figure 3. Influence factors for electronic distance measurements: processing steps for the derivation of
an input quantity for an adjustment, from [11].

The resulting distance value Y, i.e., the numerical measuring quantity after all necessary
pre-processing steps, will serve as the input quantity for network adjustment, see Section 4.2. Within the
classical approach, it is necessary to assign a dispersion value to this quantity, see Section 2.3, but here,
as an alternative, Monte Carlo simulations are applied.

A simplified numerical example for the set-up of Type A and Type B effects is given in Table 1,
where the used geodetic measurements can be applied in a local 3D geodetic network. However,
each project requires an individual evaluation of these more general reference values; note, for the
numerical example in Section 5, we had to make slight changes of these reference values to account for
specific measuring conditions.

The here listed influencing factors of Type A and Type B, as well as their corresponding probability
distribution functions and domain of variability, do not claim to be complete, as they do not contain
additional computational influences related to the reduction to a reference height (which is always
required), effects to account for the selected surveying methods, the quality of the personal or the
atmospheric and environmental influences, such as bad weather, strong insolation, etc.

The here presented selection of the distribution type and its variability range are solely preliminary
steps. At minimum, a GUM analysis of GNSS observations, a much more detailed study of all
influencing factors, has to be performed, which is a current project at the Finish Geodetic Institute [12].

The algorithmic complexity of the set-up of Equation (9), i.e., the difficulty to find the relevant
carrier of information, makes it necessary to analyze the complete measuring process and all
pre-processing steps. This problem can be visualized in a so-called Ishikawa diagram, as given
in Figure 4. This frequently applied diagram, see [13], has to be filled out for each specific measurement
system, which can be a laborious task, e.g., the actual publication [14].
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Figure 4. Ishikawa diagram to analyze all the influence factors for a GUM analysis.

3.5. Uncertainty Quantities out of GUM

To combine all these effects of Type A and Type B within the classical GUM approach,
the well-known law of variance propagation is applied, despite the fact that these are effects with
different probability distribution functions. In Figure 5, this approach is explained: On the left-hand
side, the different Probability Distribution Functions (PDF) are visualized, i.e., normal, uniform and
triangle distribution. On the right-hand side, the formula for the law of variance propagation is shown,
combining different uncertainties uxi of Type A and Type B. Of course, for each influence factor an
individual element uxi has to be considered.

 

Figure 5. Classical concept to combine Type A and Type B influence parameters within GUM [7].

Numerically therefore, the uncertainty for the final measuring quantity Y, see Equation (9),
is derived by combining the uncertainties of Type A (uAi) and Type B (uBi) for all influence factors
following the formula:

uY =
√

u2
A1 + . . .+ u2

An + u2
B1 + . . .+ u2

Bm. (10)

Within GUM an extended and a complete uncertainty is introduced as well, both derived quantities
out of uY. A discussion of the usefulness of these extensions and their computations is outside the
scope of this paper.

3.6. Criticism

The application of statistical distribution functions to Type B errors and the application of the
law of variance propagation to obtain an uncertainty estimate uY are critical points within the GUM
approach [15]. The assignment of probability distribution functions to the influencing factors is a
sensitive step and of course, the application of the law of variance propagation is a practical method,
but it allows us to stay with the established statistical methods and perform subsequent computations.

This GUM concept is discussed within recent geodetic literature to some extent, see e.g., [13–17].
However, most of these discussions and critical remarks are limited to an uncertainty assessment for
single measurements, not for complex networks or systems.
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Taking into account this criticism, in a later extension of the GUM concept [2,3,18], the use of
Monte Carlo simulations is recommended to find the final distribution for the quantity Y.

We will not follow this concept, but extend the processing model, see Figure 6, to directly study
the stochastic properties of the outcome of the least squares adjustment. Due to our knowledge, such a
network approach has not been considered yet.

 

Figure 6. GUM concept for creation of “N” sets of input data used in Monte Carlo (MC) simulations
for least squares network adjustments.

4. Monte Carlo Simulations

4.1. Basic Idea of MC Simulations

For decades, Monte Carlo (MC) methods have been developed and in use to solve complex
numerical problems in a specific way, i.e., by repeated random experiments, performed on a computer,
see e.g., [19]. All MC computations use repeated random sampling for input quantities, process these
input data according to the existing algorithms and obtain a variability of numerical results. For typical
simulations, the repeat rate of experiments is 1000–100,000 or more, in order to obtain the most probable
distribution of the quantities of interest. This allows MC simulations to model phenomena with
well-defined variability ranges for input variables.

Nowadays, with modern computers and well-established Random Number Generators (RNG),
large samples are easy to generate, see [20,21]. According to the variability of input quantities,
pseudorandom sequences are computed, which allows us to evaluate and re-run simulations.

In this paper, MC simulations are applied to perform uncertainty modelling according to
GUM, the specific case of geodetic data processing, i.e., network adjustment following a traditional
Gauss–Markov (GM) model. The use of MC simulations allows us to include different Type A and
Type B influence factors, which is an extension in relation to the classical approach. The approach
allows us to combine a detailed GUM analysis of the measurement process with MC simulations in a
rigorous way.

The typical pattern of an MC simulation is as follows:

- Define functional relations between all input data and the quantities of interest.
- Define probability distribution functions and variability ranges for starting data.
- Generate corresponding input data with RNG.
- Perform deterministic computations with these input values and obtain a pre-set number of

realizations for the quantities of interest.
- Analyze the achieved quantities of interest.
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4.2. Concept to Combine MC-Simulations with GUM Analysis

The scheme for the here proposed approach for an uncertainty assessment within least squares
adjustments of geodetic networks by a rigorous combination of MC simulations with GUM analysis
is presented in Figure 6. Starting point is an analysis of the complete pre-processing chain for each
observation li according to GUM, i.e., an analysis of all possible influencing factors of Type A and Type
B, according to the important carrier of information formula, see Equation (9). For all these influencing
factors, the most probable numerical measuring value is the starting point, often a mean value or a
real observation.

As the next step, pseudorandom numbers for all influencing factors for each observation are
created, taking into account their most probable value, the selected probability distribution function and
the variability domain. There are numerous options for selecting a Random Number Generator (RNG).
RNG should have high quality, i.e., provides good approximations of the ideal mathematical system,
e.g., has long sequences, shows no gaps in data, fulfils distribution requirements, see [21]. As discussed
in [20], the RANLUX (random number generator at highest luxury level) and its recent variant
RANLUX++, which are used here, can be considered as representative of such high-quality RNGs.

For each original reading, respectively, for each influence factor, by using this RNG, a random
value is created, representing one realization of the real measuring process. By combining these
effects in a consecutive way, see the simplified example in Table 2, for each input quantity for network
adjustment, such a randomly generated value is gained. With each set of input data, one least squares
adjustment is performed, coming up with one set of coordinate estimates as the outcome.

Table 2. Derivation of one input quantity for a distance, using random numbers for some
influencing effects.

Action Stochastic Properties Resulting in Random Distance Value:

“True” coordinates
x1 = 100.0000 m, y1 = 100.0000 m
x2 = 200.0000 m, y2 = 200.0000 m

+ Pillar variations
result in: “real distance” Uniform distribution: σ = 0.1 mm

xi = 100.00005 m, yi = 99.99999 m
x2 = 199.99998 m, y2 = 200.00001 m
Sr = 141.42132 m

+ Calibration effects

additional constant: Normal distribution: σ = 0.5 mm
scale Normal distribution: σ = 1 ppm Src = 141.42165 m

+Weather effects

temperature Uniform distribution: σ = 1 K
air pressure Uniform distribution: σ = 5 mbar Srcw = 141.42163 m

+ Type A uncertainties

Constant effect Normal distribution: σ = 0.6 mm
Distance dependent Normal distribution: σ = 1 ppm Srcwd = 141.42136 m

Repeating this complete approach for a preset number of N (e.g., 1000 or 10,000) simulations,
the final results of a GUM-MC simulation are achieved, i.e., a set of coordinates/unknowns with its
variability, which represent the uncertainty of the coordinates according to the used GUM analysis.

As an example, the specific manner, in which the random numbers for distance observations as
input quantities for the adjustment are derived, are depicted in Table 2. Starting with a most probable
mean value, such as Type B errors, the effects of pillar variations, calibration and weather and the
classical Type A errors are considered. In column 2 their stochastic properties are given, which are the
basis for the generation of a random number, which results in a specific modification of the distance
observation, see column 3.
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5. Application to a Local 3D Geodetic Network

5.1. Test Site “Metsähovi”

The Metsähovi Fundamental Station belongs to the key infrastructure of Finnish Geospatial
Research Institute (FGI). Metsähovi is a basic station for the national reference system and the national
permanent GNSS network. This station is a part of the global network of geodetic core stations, used to
maintain global terrestrial and celestial reference frames as well as to compute satellite orbits and
perform geophysical studies.

Of special interest here is the character of this network to serve as “Local Tie-Vector”, see [22],
which is defined as a 3D-coordinate difference between the instantaneous phase centers of various
space-based geodetic techniques, in this case between VLBI (Very Long Baseline Interferometry),
GNSS (Global Navigation Satellite System) and SLR (Satellite Laser Ranging). All these techniques
have different instruments on the site and the geometric relations between their phase centers have to
be defined with extreme precision.

As depicted in Figure 7, the structure of this network is rather complex, a special difficulty is that
the VLBI antenna is located inside a radome. This requires a two-step network with a connection
between an outside and inside network, which is the most critical part in the network design, but this
will not be discussed here in detail.

  
(a) (b) 

Figure 7. (a) Fundamental station Metsähovi, Finland, WGS84 (60.217301 N, 24.394529 E); with local tie
network. (b) Network configuration with stations 11, 31 and 180, which define local tie vectors.

As already discussed in [11], the local tie network Metsähovi consists of 31 points, where specific
local tie vectors are given by the GNSS stations, 11 and 31, on the one hand side and point 180, which is
located within a radome. This station 180 is not the reference point of the VLBI antenna, it is located in
its neighborhood. Here, a 3D free network adjustment is performed with the following measurement
elements: 149 total station measurements (slope distances, horizontal directions and vertical angles),
48 GNSS baselines and levelled 43 height differences.

5.2. Input Variables for GUM Analysis

To get a realistic idea of uncertainties within this network, a classical adjustment model,
which combines GNSS, total station and levelling measurements, is set up for this Metsähovi network.
Then, all (many) influence factors are considered according to a GUM analysis. The Monte Carlo
simulation process starts with the generation of pseudo random numbers for the influence factors,
resulting in a set of input values for the adjustment. Repeating this MC simulation with 1000 runs
gives the here discussed results.
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The GNSS uncertainty model is just a rough idea, as in general it is difficult to simulate all
influence factors with e.g., orbital errors, remaining atmospheric effects, multipath and near field
effects. Colleagues from FGI are working on the problem to develop a more realistic GUM model for
GNSS, see [12].

In our approach, the local tie network is simulated with 1000 runs of pre-analysis and least squares
adjustment. In each run, a new set of observations is generated and subsequently a new set of station
coordinates is computed. A forced centering is assumed, therefore, in each simulation the coordinates
may differ only according to possible pillar centering variations.

The local tie vector consists of the outside stations 11 and 31 and station 180 in the radome,
see above. The uncertainty estimates for these stations will be considered here in detail.

According to the GUM concept, the following influencing factors were considered. As mentioned
in Section 3.4, some changes of the reference values in Table 1 were necessary to account for specific
measurement conditions.

5.2.1. Type A: Classical Approach, Standard Deviations

Total station observations

As standard deviation for modern total stations (e.g., Leica TS30) often values of 0.15 mgon for
manual angle measurements and of 0.3 mgon for observations with automatic target recognition are
used. With two sets of angle observations, a precision of 0.2 mgon is assumed to be valid:

- Horizontal directions: normal distribution, σ = 0.2 mgon;
- Zenith angles: normal distribution, σ = 0.2 mgon;
- Slope distances: normal distribution, σ = 0.6 mm + 1 ppm.

GNSS Baselines

In these computations just a rough estimate is used, neglecting correlations between
baseline components:

- For each coordinate component: normal distribution, σ = 3.0 mm.

Height differences

- Height differences: normal distribution, σ = 2.0 mm/
√

km.

5.2.2. Type B: Additional Influences, including Systematic Effects, External Conditions, Insufficient
Approximations, etc.

Variation of pillar and centering

- Uniform distribution, range: 0–0.1 mm.

Variation of instrument and target height

- Uniform distribution, range: 0–0.1 mm.

Effects of calibration (total station instrument)

Schwarz [14] gives possible standard deviations of calibration parameters for total stations:

- Additive constant: normal distribution, σ = 0.2 mm (valid for combination of instrument and
specific prism).

- Scale unknown: normal distribution, σ = 0.8 ppm. The value for scale is related to the problem to
determine a representative temperature along the propagation path of the laser beam.

42



Mathematics 2020, 8, 1318

Effect of calibration of GNSS antenna

- Not implemented yet because these effects were not known to us for the test site Metsähovi.

Effects of limited knowledge on atmospheric parameters

- Air temperature: uniform distribution, range 0–0.8 K; (effect: 1 K ≈ 1 ppm);
- Air pressure: uniform distribution, range 0–0.5 mbar; (effect: 1 mbar ≈ 0.3 ppm);
- Air humidity: uniform distribution, range 0–5%.

5.3. Final Results of GUM-Analysis and MC Simulations

We applied to this network the developed approach of detailed GUM analysis and full MC
simulation, i.e., starting with a simulation of the original influence factors and then performing an
adjustment. In Figures 8 and 9, the resulting point clouds are depicted for coordinates for stations
11, 31 and 180, which form the local tie vectors. As the Metsähovi network is a 3D geodetic network,
for simplicity the resulting point clouds are visualized in the X–Y plane and X–Z plane.

  

  

Figure 8. Cont.
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Figure 8. Point clouds of coordinate variations for stations 11, 31 and 180. Left: in X-Y plane. Right:

in X-Z plane. The elliptical contour lines refer to a confidence level of 95%.

  

(a) (b) 

Figure 9. Histograms of the variations of (a) x- and (b) z-coordinates of station 11 after GUM and
MC simulation.

This variation of all coordinate components is of special interest here, as the local tie vectors are
defined between the GPS Reference stations 11 and 31 and station 180 inside the radome. The original
coordinate differences refer to the global cartesian coordinate system.

6. On Stochastic Properties of These Point Clouds

The focus of this paper is the stochastic properties for the results of such a MC simulation where
the input data are randomly variated quantities, following the GUM analysis concept, see the scheme
in Figure 6 and the description given in Section 4.2.

For this analysis, we consider the point clouds for final coordinates as information of primary
interest, as depicted e.g., in Figures 8 and 9, separated into X-Y and X-Z planes to make it easier
to visualize the findings. To study the stochastic properties of these results, two concepts from
mathematical statistics can be considered.

6.1. Cramér’s Central Limit Theorem

Already in 1946, the statistician Cramér [23] developed a probabilistic theory, which is well-known
as the Central Limit Theorem (CLT). Without going into detail, the general idea of the CLT is, that the
properly normalized sum of independent random variables tends towards a normal distribution,
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when they are added. This theorem is valid, even if it cannot be guaranteed that the original variables
are normally distributed. This CLT is a fundamental concept within probability theory because it
allows for the application of probabilistic and statistical methods, which work for normal distributions,
to many additional problems, which involve different types of probability distributions.

Following Section 4.2, during the GUM analysis a number of influence factors with different
distributions are combined, what is of course more than the “properly normalized sums”, which are
asked for in the CLT. However, the question is whether or not the resulting input variables of the
adjustment are sufficiently normal distributed or—considered here—if the resulting point clouds after
MC simulations for adjustment using these input datasets tend to have a normal distribution.

6.2. Hagen’s Elementary Error Theory

Within geodesy and astronomy, a theory of elementary errors was already developed by Hagen in
1837 [24]. This concept means that randomly distributed residuals ε, for which we assume the validity
of a normal distribution, can be considered to be the sum of a number of q very small elementary
errors Δi:

ε = Δ1 + Δ2 + Δ3 + Δ4 + . . .+ Δq. (11)

This equation holds—according to Hagen’s discussion—if all elementary errors have similar
absolute size and positive and negative values have the same probability.

Of course the conditions for this theory are not really fulfilled by the here considered concept of
GUM analysis of influence factors with subsequent MC simulation, but out of this elementary error
theory one could ask whether or not the results of the here proposed approach tends to have a normal
distribution, as well.

6.3. Test of MC Simulation Results on Normal Distribution

To analyze the statistical distribution of a sample of data, numerous test statistics are
developed. For analyzing the normal distribution, here we used the test statistics of Shapiro–Wilks,
Anderson–Darling, Lilliefors (Kolmogorov–Smirnov) and Shapiro–Francia. A detailed description of
these test statistics is given in the review article [25]. The principle of all these tests is to compare the
distribution of empirical data with the theoretical probability distribution function.

Here, we want to perform one-dimensional tests for the variation of the x-, y- and z-components
of the stations 11, 31 and 180 of our reference network Metsähovi. The used coordinates are the results
of 1000 MC simulations, where the input data are pre-processed according to the concept of Section 4.2.

The above-mentioned numerical tests for these simulated values accept for all stations the
hypothesis of normal distribution. For us, this is an indication that should be allowed in order to
consider the results of the here proposed approach of having a normal distribution. This means an
uncertainty for station coordinates, derived via GUM analysis and subsequent MC simulation, can be
treated for ongoing statistical analysis of results, such as general quality assessment and deformation
analysis, in the same way as the results of classical adjustment. Some additional graphical information
for these comparisons can be given, as well. In Figure 9, the distribution of the x- and z-components of
station 11 are depicted, received from least squares adjustments after GUM and MC simulations, i.e.,
corresponding the results of Figure 8. It is obvious that the appearance of the components is close to
the well-known bell curve of normal distribution. For the stations 31 and 180 these distributions were
visualized, as well, with very similar appearances.

The Q–Q (quantile–quantile) plot is a graphical method for comparing two probability distributions
by representing their quantities in a plot against each other. If the two distributions being compared
are similar, the points in the Q–Q plot will approximately appear in a line.

If the most real points are within the dashed line, here representing a normal distribution,
the assumption of a normal distribution is allowed. The confidence level for point-wise confidence
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envelope is 0.95. From Figure 10, it can be seen that for station 180 a normal distribution can be
accepted. For stations 11 and 31, the assumption of a normal distribution is accepted, as well.

  

(a) (b) 

Figure 10. Q–Q plots for comparing probability distributions of (a) x- and (b) y-coordinates of station
180: If real values lie within dashed line, here assumed normal distribution is accepted.

7. Conclusions

Within the classical approach of network adjustment, see e.g. [4,5], more or less rough and
subjective estimates for the dispersion of measurements are introduced. A detailed criticism to this
approach is given in Section 2.4. The here described GUM-based approach starts with an analysis
of the complete measuring process and computational process, i.e., it considers all influence factors,
which are used during the pre-processing steps. By this, the GUM approach can be considered to give
more realistic quantities for the precision of the input data of an adjustment of geodetic networks.

Using random numbers to cover the variability of these input data allows us to perform Monte
Carlo simulations, which makes it possible to compute the corresponding variability or uncertainty
ranges of final coordinate sets.

These variations are analyzed statistically and tend to follow a normal distribution. This allows
us to derive confidence ellipsoids out of these point clouds and to continue with classical quality
assessment and more detailed analysis of results, as is performed in established network theory.

Of course, these results are dependent on the selection of the statistical distributions and their
variability domains during the GUM analysis of the relevant Type A and Type B influence factors.
This concept allows a new way of analyzing the effects of all influence factors on the final result, i.e.,
the form and size of derived ellipsoids. For example, one can analyze the effect of a less precise total
station or a better GNNS system the same way one can study the influence of limited knowledge
of the atmospheric conditions or a more rigorous centering system. These studies are outside the
scope of this paper. Anyway, the here proposed approach allows a straightforward application of
the GUM concept to geodetic observations and to geodetic network adjustment. Being optimistic,
the here presented concept to derive confidence ellipsoids out of GUM–MC simulations could replace
the classical methods for quality assessment in geodetic networks. The GUM approach will lead to
uncertainty estimates, which are more realistic for modern sensors and measuring systems and it is
about time to adapt these new concepts from metrology within the discipline of geodesy.
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Abstract: Outlier detection is one of the most important tasks in the analysis of measured
quantities to ensure reliable results. In recent years, a variety of multi-sensor platforms has become
available, which allow autonomous and continuous acquisition of large quantities of heterogeneous
observations. Because the probability that such data sets contain outliers increases with the quantity of
measured values, powerful methods are required to identify contaminated observations. In geodesy,
the mean shift model (MS) is one of the most commonly used approaches for outlier detection.
In addition to the MS model, there is an alternative approach with the model of variance inflation (VI).
In this investigation the VI approach is derived in detail, truly maximizing the likelihood functions
and examined for outlier detection of one or multiple outliers. In general, the variance inflation
approach is non-linear, even if the null model is linear. Thus, an analytical solution does usually not
exist, except in the case of repeated measurements. The test statistic is derived from the likelihood
ratio (LR) of the models. The VI approach is compared with the MS model in terms of statistical
power, identifiability of actual outliers, and numerical effort. The main purpose of this paper is to
examine the performance of both approaches in order to derive recommendations for the practical
application of outlier detection.

Keywords: mean shift model; variance inflation model; outlierdetection; likelihood ratio test;
Monte Carlo integration; data snooping

1. Introduction

Nowadays, outlier detection in geodetic observations is part of the daily business of modern
geodesists. As Rofatto et al. [1] state, we have well established and practicable methods for outlier
detection for half a century, which are also implemented in current standard geodetic software.
The most important toolbox for outlier detection is the so-called data snooping, which is based on the
pioneering work of Baarda [2]. A complete distribution theory of data snooping, also known as DIA
(detection, identification, and adaptation) method, was developed by Teunissen [3].

In geodesy, methods for outlier detection can be characterised as statistical model selection
problem. A null model is opposed to one or more extended or alternative models. While the null
model describes the expected stochastic properties of the data, the alternative models deviate from such
a situation in one way or another. For outlier detection, the alternative models relate to the situation,
where the data are contaminated by one or more outliers. According to Lehmann [4], an outlier is
defined by “an observation that is so probably caused by a gross error that it is better not used or not
used as it is”.
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From a statistical point of view, outliers can be interpreted as a small amount of data that have
different stochastic properties than the rest of the data, usually a shift in the mean or an inflation of
the variance of their statistical distribution. This situation is described by extra parameters in the
functional or stochastic model, such as shifted means or inflated variances. Such an extended model is
called an alternative model. Due to the additionally introduced parameters, the discrepancies between
the observations and the related results of the model decrease w. r. t. the null model. It has to be
decided whether such an improvement of the goodness of fit is statistically significant, which means
that the alternative model describes the data better than the null model. This decision can be made by
hypothesis testing, information criteria, or many other statistical decision approaches, as shown by
Lehmann and Lösler [5,6].

The standard alternative model in geodesy is the mean shift (MS) model, in which the
contamination of the observations by gross errors is modelled as a shift in the mean, i.e., by a systematic
effect. This approach is described in a large number of articles and textbooks, for example,
the contributions by Baarda [2], Teunissen [7], and Kargoll [8]. However, there are other options
besides this standard procedure. The contamination may also be modelled as an inflation of the
variance of the observations under consideration, i.e., by a random effect. This variance inflation
(VI) model is rarely investigated in mathematical statistics or geodesy. Bhar and Gupta [9] propose a
solution based on Cook’s statistic [10]. Although this statistic was invented for the MS model, it can
also be made applicable when the variance is inflated.

Thompson [11] uses the VI model for a single outlier in the framework of the restricted (or residual)
maximum likelihood estimation, which is known as REML. In contrast to the true maximum likelihood
estimation, REML can produce unbiased estimates of variance and covariance parameters and it
causes less computational workload. Thompson [11] proposes that the observation with the largest
log-likelihood value can be investigated as a possible outlier. Gumedze et al. [12] take up this
development and set up a so-called variance shift outlier model (VSOM). Likelihood ratio (LR)
and score test statistics are used to identify the outliers. The authors conclude that VSOM gives
an objective compromise between including and omitting an observation, where its status as a correct
or erroneous observation cannot be adequately resolved. Gumedze [13] review this approach and
work out a one-step LR test, which is a computational simplification of the full-step LR test.

In geodesy, the VI model was introduced by Koch and Kargoll [14]. The estimation of the unknown
parameters has been established as an iteratively reweighted least squares adjustment. The expectation
maximization (EM) algorithm is used to detect the outliers. It is found that the EM algorithm for the
VI model is very sensitive to outliers, due to its adaptive estimation, whereas the EM algorithm for
the MS model provides the distinction between outliers and good observations. Koch [15] applies
the method to fit a surface in three-dimensional space to the Cartesian coordinates of a point cloud
obtained from measurements with a laser scanner.

The main goal of this contribution is a detailed derivation of the VI approach in the framework
of outlier detection and compare it with the well-established MS model. The performance of both
approaches is to be compared in order to derive recommendations for the practical application of
outlier detection. This comprises the following objectives:

1. Definition of the generally accepted null model and specification of alternative MS and VI models
(Section 2). Multiple outliers are allowed for in both alternative models to keep the models equivalent.

2. True maximization of the likelihood functions of the null and alternative models, not only for
the common MS model, but also for the VI model. This means, we do not resort to the REML
approach of Thompson [11], Gumedze et al. [12], and Gumedze [13]. This is important for the
purpose of an insightful comparison of MS and VI (Section 3).

3. Application of likelihood ratio (LR) test for outlier detection by hypothesis testing and derivation
of the test statistics for both the MS and the VI model. For this purpose, a completely new rigorous
likelihood ratio test in the VI model is developed and an also completely new comparison with
the equivalent test in the MS model is elaborated (Section 3).
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4. Comparison of both approaches using the illustrative example of repeated observations, which is
worked out in full detail (Section 4).

Section 5 briefly summarises the investigations that were carried out and critically reviews the
results. Recommendations for the practical application of outlier detection conclude this paper.

2. Null Model, Mean Shift Model, and Variance Inflation Model

In mathematical statistics, a hypothesis H is a proposed explanation that the probability
distribution of the random n-vector y of observations belongs to a certain parametric family W
of probability distributions with parameter vector θ, e.g., Teunissen [7],

H : y ∼ W(θ), θ ∈ Θ (1)

The parameter vector θ might assume values from a set Θ of admissible parameter vectors.
A model is then simply the formulation of the relationship between observations y and parameters θ

based on H. In geodesy, the standard linear model is based on the hypothesis that the observations
follow a normal distribution N, e.g., Koch [16], Teunissen [7], i.e.,

H0 : y ∼ N(Ax, Σ), (2)

with u-vector of functional parameters x and covariance matrix Σ. The latter matrix might contain
further stochastic parameters, like a variance factor σ2, according to

Σ = σ2Q, (3)

with Q being the known cofactor matrix of y. In this case, θ is the union of x and σ2. The covariance
matrix Σ might eventually contain more stochastic parameters, known as variance components,
cf. Koch ([16], p. 225ff). Matrix A is said to be the n × u-matrix of design. The model that is based on
H0 is called the null model.

In outlier detection, we oppose H0 with one or many alternative hypotheses, most often in the
form of a mean shift (MS) hypothesis, e.g., Koch [16], Teunissen [7]

HMS : y ∼ N(Ax + C∇, Σ), ∇ 	= 0, (4)

where ∇ is a m-vector of additional functional bias parameters and matrix C extends the design.
In this case, θ is extended by ∇. This relationship gives rise to the MS model, where the mean of the
observations is shifted from Ax to Ax + C∇ by the effect of gross errors, see Figure 1. C∇ can be
interpreted as accounting for the systematic effect of gross observation errors superposing the effect of
normal random observation errors already taken into account by Σ in (2). The great advantage of HMS
is that, if the null model is linear or linearized, so is the MS model. The determination of the model
parameters is numerically easy and computationally efficient, cf. Lehmann and Lösler [5].

However, there are different possibilities to set up an alternative hypothesis. The most simple one
is the variance inflation hypothesis

HVI : y ∼ N(Ax, Σ′), (5)

where Σ′ is a different covariance matrix, which consists of inflated variances. Σ′ can be interpreted as
accounting for the joint random effect of normal observation errors in all observations and zero mean
gross errors in few outlying observations, see Figure 2.
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Figure 1. Schematic representation of the MS approach. The null model H0 is depicted by a dashed
grey line and the alternative model HMS is shown as a solid red line.

The VI model might be considered to be more adequate to describe the outlier situation when the
act of falsification of the outlying observations is thought of as being a random event, which might
not be exactly reproduced in a virtual repetition of the observations. However, even if the VI model
might be more adequate to describe the stochastics of the observations, this does not mean that it is
possible to estimate parameters or to detect outliers better than with some less adequate model like
MS. This point will be investigated below.

Figure 2. Schematic representation of the VI approach. The null model H0 is depicted by a dashed grey
line and the alternative model HVI is shown as solid red line.

In the following we will only consider the case that y are uncorrelated observations, where both Σ
and Σ′ are diagonal matrices, such that the hypotheses read

H0 : y ∼N(Ax, σ2
1 , . . . , σ2

n), (6a)

HVI : y ∼N(Ax, τ1σ2
1 , . . . , τmσ2

m, σ2
m+1, . . . , σ2

n), τ1 > 1, . . . , τm > 1. (6b)

Here, HVI accounts for m random zero mean gross errors in the observations y1, . . . , ym modeled by
stochastic parameters τ1, . . . , τm. In this case, θ is extended by τ1, . . . , τm, which will be called variance
inflation factors. Thus, τ1, . . . , τm can be interpreted as a special case of extra variance components.

Note that the term variance inflation factors is used differently in multiple linear regression when
dealing with multicollinearity, cf. James et al. ([17], p. 101f).
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3. Outlier Detection by Hypothesis Tests

Outlier detection can be characterised as a statistical model selection problem. The null model,
which describes the expected stochastic properties of the data, is opposed to one or more alternative
models, which deviate from such properties. Usually, the decision, whether the null model is rejected
in favour of a proper alternative model, is based on hypothesis testing. Multiple testing, consisting of a
sequence of testings with one single alternative hypothesis only, is required if there are many possible
alternative models. In this study, we first focus on such one single testing only. In the following
subsections, the test statistics in the MS model as well as in the VI model are derived.

For the sake of simplicity, the scope of this contribution is restricted to cases, where all of the
estimates to be computed are unique, such that all matrices to be inverted are regular.

3.1. Mean Shift Model

In the case of no stochastic parameters, i.e., Σ is known, the optimal test statistic TMS(y) for the
test problem H0 in (2) versus HMS in (4) is well known and yields, cf. Teunissen ([7], p. 76):

TMS(y) := ∇̂TΣ−1
∇̂ ∇̂ (7)

= êT
0 Σ−1C(CTΣ−1Σ−1

ê0
Σ−1)−1CTΣ−1 ê0,

where ∇̂ and Σ∇̂ are the vector of estimated bias parameters in the MS model and its covariance
matrix, respectively. Furthermore, ê0 and Σê0 are the vector of estimated residuals e := Ax − y in the
null model and its covariance matrix, respectively. This second expression offers the opportunity to
perform the test purely based on the estimation in the null model, cf. Teunissen ([7], p. 75), i.e.,

x̂0 =(ATΣ−1 A)−1 ATΣ−1y, (8a)

ê0 =(I − A(ATΣ−1 A)−1 ATΣ−1)y, (8b)

Σê0 =Σ − A(ATΣ−1 A)−1 AT . (8c)

Each estimation is such that the likelihood function of the model is maximized. The hat will
indicate maximum likelihood estimates below.

The test statistic (7) follows the central or non-central χ2 distributions

TMS|H0 ∼χ2(q, 0), (9a)

TMS|HMS ∼χ2(q, λ), (9b)

where q = rank(Σ∇̂) is the degree of freedom and λ = ∇TΣ−1
∇̂ ∇ is called the non-centrality parameter,

depending on the true but unknown bias parameters ∇, e.g., (Teunissen [7], p. 77).
The test statistic (7) has the remarkable property of being uniformly the most powerful invariant

(UMPI). This means, given a probability of type 1 decision error (rejection of H0 when it is true) α, (7)

• has the least probability of type 2 decision error (failure to reject H0 when it is false) β

(most powerful);
• is independent of ∇ (uniform); and,
• but only for some transformed test problem (invariant).

For the original test problem, no uniformly most powerful (UMP) test exists. For more details see
Arnold [18], Kargoll [8].

Lehmann and Voß-Böhme [19] prove that (7) has the property of being a UMPχ2 test, i.e., a UMP
test in the class of all tests with test statistic following a χ2 distribution. It can be shown that (7) belongs
to the class of likelihood ratio (LR) tests, where the test statistic is equivalent to the ratio

max L0(x)
max LMS(x,∇)

. (10)
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Here, L0 and LMS denote the likelihood functions of the null and alternative model, respectively,
cf. Teunissen ([7], p. 53), Kargoll [8]. (Two test statistics are said to be equivalent, if they always define
the same critical region and, therefore, bring about the same decision. A sufficient condition is that
one test statistic is a monotone function of the other. In this case, either both or none exceed their
critical value referring to the same α.) The LR test is very common in statistics for the definition of
a test statistic, because only a few very simple test problems permit the construction of a UMP test.
A justification for this definition is provided by the famous Neyman-Pearson lemma, cf. Neyman and
Pearson [20].

3.2. Variance Inflation Model

For the test problem (6a) versus (6b), no UMP test exists. Therefore, we also resort to the LR test
here. We start by setting up the likelihood functions of the null and alternative model. For the null
model (6a), the likelihood function reads

L0(x) = (2π)−
n
2

n

∏
i=1

σ−1
i exp

{
−Ω0

2

}
, (11a)

Ω0 :=
n

∑
i=1

(yi − aix)2

σ2
i

, (11b)

and for the alternative model (6b) the likelihood function is given by

LVI(x, τ1, ..., τm) = (2π)−
n
2

n

∏
i=1

σ−1
i

m

∏
i=1

τ
− 1

2
i exp

{
−ΩVI

2

}
, (12a)

ΩVI :=
m

∑
i=1

(yi − aix)2

σ2
i τi

+
n

∑
i=m+1

(yi − aix)2

σ2
i

, (12b)

where ai, i = 1, . . . , n are the row vectors of A. According to (10), the likelihood ratio reads

max L0(x)
max LVI(x, τ1, ..., τm)

=
max exp

{
−Ω0

2

}
max ∏m

i=1 τ
− 1

2
i exp

{
−ΩVI

2

} . (13)

Equivalently, we might use the double negative logarithm of the likelihood ratio as test statistic,
because it brings about the same decision as the likelihood ratio itself, i.e.,

TVI := −2 log
max exp

{
−Ω0

2

}
max ∏m

i=1 τ
− 1

2
i exp

{
−ΩVI

2

}
= min Ω0 − min

{
ΩVI +

m

∑
i=1

log τi

}
. (14)

The first minimization result is the well-known least squares solution (8). The second minimization
must be performed not only with respect to x, but also with respect to the unknown variance inflation
factors τ1, . . . , τm. The latter yield the necessary conditions

τ̂i =
(yi − ai x̂VI)

2

σ2
i

=
ê2

VI,i

σ2
i

, i = 1, . . . , m. (15)
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This means that τ1, . . . , τm are estimated, such that the first m residuals in the VI model êVI,i equal
in magnitude their inflated standard deviations σi

√
τ̂i, and the subtrahend in (14) is obtained by

min

{
ΩVI +

m

∑
i=1

log τi

}
= min

{
m +

m

∑
i=1

log
(yi − aixVI)

2

σ2
i

+
n

∑
i=m+1

(yi − aixVI)
2

σ2
i

}
(16)

= min

{
m +

m

∑
i=1

log
e2

VI,i

σ2
i

+
n

∑
i=m+1

e2
VI,i

σ2
i

}
.

In the latter expression the minimum is to be found only with respect to the free parameter
vector xVI . This expression differs from min Ω0 essentially by the logarithm of the first m normalized
residuals. This means that those summands are down-weighted, whenever the residuals êVI,i are
larger in magnitude than their non-inflated standard deviations σi. The necessary conditions for xVI
are obtained by nullifying the first derivatives of (16) and read

0 =
m

∑
i=1

aij

yi − ai x̂VI
+

n

∑
i=m+1

yi − ai x̂VI

σ2
i

aij, j = 1, . . . , u, (17)

where aij denotes the j-th element of ai.
This system of equations can be rewritten as a system of polynomials of degree m + 1 in the

parameters x̂VI,i. In general, the solution for x̂VI must be executed by a numerical procedure. This extra
effort is certainly a disadvantage of the VI model.

Another disadvantage is that (14) does not follow a well known probability distribution,
which complicates the computation of the critical value, being the quantile of this distribution. Such a
computation is best performed by Monte Carlo integration, according to Lehmann [21].

Note that the likelihood function LVI in (12) has poles at τi = 0, i = 1, . . . , m. These solutions must
be excluded from consideration, because they belong to minima of (12) or equivalently to maxima
of (16). (Note that log τi is dominated by 1/τi at τi → 0).

A special issue in the VI model is what to do if max τ̂i ≤ 1 is found in (15). In this case, the variance
is not inflated, such that H0 must not be rejected in favour of HVI , see (6b). However, it might happen
that, nonetheless, TVI in (14) exceeds its critical value, especially if α is large. In order to prevent this
behaviour, we modify (14) by

TVI(y) :=

{
0 if max τ̂i ≤ 1,

min Ω0 − min {ΩVI + ∑m
i=1 log τi} otherwise.

(18)

If H0 is true, then there is a small probability that max τ̂i > 1 and, consequently, TVI > 0 arises, i.e.,

Pr(TVI > 0|H0) =: αmax. (19)

We see that a type 1 error cannot be required more probable than this αmax, i.e., contrary to the
MS model, there is an upper limit for the choice of α.

Even more a problem is what to do, if min τ̂i < 1 < max τ̂i is found in (15). Our argument is
that, in this case, H0 should be rejected, but possibly not in favour of HVI in (6b). A more suitable
alternative hypothesis should be found in the framework of a multiple test.

4. Repeated Observations

There is one case, which permits an analytical treatment, even of the VI model, i.e., when one scalar
parameter x is observed directly n times, such that we obtain A = (1, . . . , 1)T =: 1. By transformation
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of the observations, also all other models with u = 1 can be mapped to this case. For compact notation,
we define the weighted means of all observations and of only the last n − m inlying observations, i.e.,

w :=
∑n

i=1 yiσ
−2
i

∑n
i=1 σ−2

i
, (20a)

W :=
∑n

i=m+1 yiσ
−2
i

∑n
i=m+1 σ−2

i
. (20b)

By covariance propagation, the related variances of those expressions are obtained, i.e.,

σ2
w =

1

∑n
i=1 σ−2

i
, (21a)

σ2
W =

1

∑n
i=m+1 σ−2

i
. (21b)

Having the following useful identities

w
σ2

w
=

W
σ2

W
+

m

∑
i=1

yi

σ2
i

, (22a)

1
σ2

w
=

1
σ2

W
+

m

∑
i=1

1
σ2

i
, (22b)

w − W =σ2
w

(
W
σ2

W
− W

σ2
w

)
+ σ2

w

m

∑
i=1

yi

σ2
i

=σ2
w

m

∑
i=1

yi − W
σ2

i
, (22c)

the estimates in the null model (8) can be expressed as

x̂0 =w, (23a)

ê0 =y − 1w, (23b)

Σê0 =Σ − 11Tσ2
w, (23c)

and the minimum of the sum of the squared residuals is

min Ω0 =
n

∑
i=1

(yi − w)2

σ2
i

. (23d)

4.1. Mean Shift Model

In the MS model, the first m observations are falsified by bias parameters ∇1, . . . ,∇m. Matrix

C =

(
I
0

)
(24)

in (4) is a block matrix of the m × m identity matrix and a (n − m)× m null matrix. Maximizing the
likelihood function yields the estimated parameters and residuals, i.e.,

x̂MS =W, (25a)

êMS =y − 1W, (25b)
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respectively, as well as the estimated bias parameters and their related covariance matrix, i.e.,

∇̂ =

⎛⎜⎝y1 − W
...

ym − W

⎞⎟⎠ =

⎛⎜⎝ êMS,1
...

êMS,m

⎞⎟⎠ , (25c)

Σ∇̂ =

⎛⎜⎜⎜⎜⎝
σ2

1 + σ2
W σ2

W . . . σ2
W

σ2
W σ2

2 + σ2
W . . . σ2

W
...

...
. . .

...
σ2

W σ2
W . . . σ2

m + σ2
W

⎞⎟⎟⎟⎟⎠ , (25d)

respectively. Note that (25d) is obtained by covariance propagation that was applied to (25c).
By applying the Sherman—Morrison formula, cf. Sherman and Morrison [22], the inverse matrix
of Σ∇̂ is obtained,

Σ−1
∇̂ =

⎡⎢⎢⎢⎢⎣
⎛⎜⎜⎜⎜⎝

σ2
1 0 . . . 0

0 σ2
2 . . . 0

...
...

. . .
...

0 0 . . . σ2
m

⎞⎟⎟⎟⎟⎠+ σ2
W11T

⎤⎥⎥⎥⎥⎦
−1

=

⎛⎜⎜⎜⎜⎝
σ−2

1 0 . . . 0
0 σ−2

2 . . . 0
...

...
. . .

...
0 0 . . . σ−2

m

⎞⎟⎟⎟⎟⎠− σ2
W

1 + σ2
W ∑m

i=1 σ−2
i

⎛⎜⎜⎜⎜⎝
σ−2

1
σ−2

2
...

σ−2
m

⎞⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎝

σ−2
1

σ−2
2
...

σ−2
m

⎞⎟⎟⎟⎟⎠
T

=

⎛⎜⎜⎜⎜⎝
σ−2

1 0 . . . 0
0 σ−2

2 . . . 0
...

...
. . .

...
0 0 . . . σ−2

m

⎞⎟⎟⎟⎟⎠− σ2
w

⎛⎜⎜⎜⎜⎝
σ−4

1 σ−2
1 σ−2

2 . . . σ−2
1 σ−2

m
σ−2

1 σ−2
2 σ−4

2 . . . σ−2
2 σ−2

m
...

...
. . .

...
σ−2

1 σ−2
m σ−2

2 σ−2
m . . . σ−4

m

⎞⎟⎟⎟⎟⎠ , (26)

and the test statistic (7) in the MS model becomes

TMS(y) =
m

∑
i=1

ê2
MS,i

σ2
i

− σ2
w

m

∑
i=1

m

∑
j=1

êMS,i êMS,j

σ2
i σ2

j
. (27)

According to (9), the distributions of the null model and the alternative model are given by

TMS|H0 ∼χ2(m, 0), (28a)

TMS|HMS ∼χ2(m, λ), (28b)

respectively, where the non-centrality parameter reads

λ =
m

∑
i=1

∇2
i

σ2
i
− σ2

w

m

∑
i=1

m

∑
j=1

∇i∇j

σ2
i σ2

j
. (29)

For the special cases of m = 1 and m = 2 extra bias parameters, as well as the case of independent
and identically distributed random observation errors, the related test statistics (27) are given by
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Case m = 1:

TMS(y) =
ê2

MS,1

σ2
1 + σ2

W
, (30)

Case m = 2:

TMS(y) = ê2
MS,1

σ2
1 − σ2

w

σ4
1

+ ê2
MS,2

σ2
2 − σ2

w

σ4
2

− 2σ2
w

êMS,1 êMS,2

σ2
1 σ2

2
, (31)

Case σ1 = σ2 = · · · = σm =: σ:

TMS(y) =
1
σ2

(
m

∑
i=1

ê2
MS,i −

1
n

m

∑
i=1

m

∑
j=1

êMS,i êMS,j

)
. (32)

In the case of σw � min σi, which often arises when m � n, the test statistic tends to

TMS(y) →
m

∑
i=1

ê2
MS,i

σ2
i

. (33)

4.2. Variance Inflation Model—General Considerations

In the VI model, the first m observations are falsified by variance inflation factors τ1, . . . , τm.
The necessary condition (17) reads

0 =
m

∑
i=1

1
yi − x̂VI

+
n

∑
i=m+1

yi − x̂VI

σ2
i

. (34)

Using (20b) and (21b), this can be rewritten to

x̂VI − W =
m

∑
i=1

σ2
W

yi − x̂VI
. (35)

This solution x̂VI is obtained as the real root of a polynomial of degree m + 1, which might have,
at most m + 1, real solutions. In the model, it is easy to exclude the case that yi = yj, i 	= j, because
they are either both outliers or both good observations. They should be merged into one observation.
Let us index the observations, as follows: y1 < y2 < · · · < ym. We see that

• in the interval −∞ . . . y1 of x̂VI the right hand side of (35) goes from 0 to +∞,
• in each interval yi−1 . . . yi it goes from −∞ to +∞, and
• in the interval ym · · ·+ ∞ it goes from −∞ to 0.
• The left hand side of (35) is a straight line.

Therefore, (35) has always at least one real solution x̂VI in each interval yi−1 . . . yi, where one of
them must be a maximum of (16), because (16) goes from −∞ up to some maximum and then down
again to −∞ in this interval. Besides these m − 1 uninteresting solutions, (35) can have no more or
two more real solutions, except in rare cases, where it might have one more real solution. If W < y1,
then there are no solutions above ym. If W > ym, then there are no solutions below y1.

From these considerations it becomes clear that (35) can have, at most, one solution that is
a minimum of (16), see also Figure 3.

The second-order sufficient condition for a strict local minimum of (16) is that the Hessian matrix
H of (16),
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H(xVI , τ1, . . . , τm) = 2

⎛⎜⎜⎜⎜⎜⎜⎝

1
σ2

W
+ ∑m

i=1
1

τiσ
2
i

y1−xVI
τ2

1 σ2
1

. . . ym−xVI
τ2

mσ2
m

y1−xVI
τ2

1 σ2
1

(y1−xVI)
2

τ3
1 σ2

1
− 1

2τ2
1

. . . 0
...

...
. . .

...
ym−xVI

τ2
mσ2

m
0 . . . (ym−xVI)

2

τ3
mσ2

m
− 1

2τ2
m

⎞⎟⎟⎟⎟⎟⎟⎠ , (36)

must be positive-definite at x̂VI , τ̂1, . . . , τ̂m, cf. Nocedal and Wright ([23] p.16), i.e.,

H(x̂VI , τ̂1, . . . , τ̂m) = 2

⎛⎜⎜⎜⎜⎜⎜⎝

1
σ2

W
+ ∑m

i=1
1

τ̂iσ
2
i

y1−x̂VI
τ̂2

1 σ2
1

. . . ym−x̂VI
τ̂2

mσ2
m

y1−x̂VI
τ̂2

1 σ2
1

1
2τ̂2

1
. . . 0

...
...

. . .
...

ym−x̂VI
τ̂2

mσ2
m

0 . . . 1
2τ̂2

m

⎞⎟⎟⎟⎟⎟⎟⎠ . (37)

must be a positive definite matrix. A practical test for positive definiteness that does not require
explicit calculation of the eigenvalues is the principal minor test, also known as Sylvester’s criterion.
The k-th leading principal minor is the determinant that is formed by deleting the last n − k rows and
columns of the matrix. A necessary and sufficient condition that a symmetric n × n matrix is positive
definite is that all n leading principal minors are positive, cf. Prussing [24], Gilbert [25]. Invoking
Schur’s determinant identity, i.e.,

det

(
A B
C D

)
= det(D)det(A − BD−1C) (38)

and in combination with (15), we see that the k-th leading principal minor of H in (37) is

k

∏
i=1

(
1

2τ̂2
k

)(
1

σ2
W

+
m

∑
i=1

1
τ̂iσ

2
i
−

k

∑
i=1

2
τ̂iσ

2
i

)
. (39)

To be positive, the second factor must be ensured to be positive for each k. Obviously, if this is
true for k = m, it is also true for all other k. Therefore, the necessary and sufficient condition for a local
minimum of (16) reads

m

∑
i=1

σ2
W

τ̂iσ
2
i
=

m

∑
i=1

σ2
W

(yi − x̂VI)2 < 1. (40)

In other words, if and only if x̂VI is sufficiently far away from all outlying observations, it belongs
to a strict local minimum of (16).

Using (23d),(16), the test statistic (18) in the VI model for max τ̂i > 1 reads

TVI = min Ω0 − min

{
ΩVI +

m

∑
i=1

log τi

}
(41)

=
n

∑
i=1

(yi − w)2

σ2
i

− m −
m

∑
i=1

log
(yi − x̂VI)

2

σ2
i

−
n

∑
i=m+1

(yi − x̂VI)
2

σ2
i

=
n

∑
i=1

(
(yi − w)2

σ2
i

− (yi − x̂VI)
2

σ2
i

)
− m +

m

∑
i=1

(
(yi − x̂VI)

2

σ2
i

− log
(yi − x̂VI)

2

σ2
i

)

= (x̂VI − w)
n

∑
i=1

2yi − x̂VI − w
σ2

i
− m +

m

∑
i=1

(τ̂i − log τ̂i)

= − (x̂VI − w)2

σ2
w

− m +
m

∑
i=1

(τ̂i − log τ̂i) .
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Tracing back the flow sheet of computations, it becomes clear that TVI depends on the observations
only through y1, . . . , ym and w or equivalently through y1, . . . , ym and W. These m + 1 quantities
represent a so-called "sufficient statistic" for the outlier test.

Figure 3. Illustration of two exemplary cases of the solution of (35). Whereas the dash-dot red styled
lines indicate the right hand side of the function, the black colored dashed line depicts the left hand
side of (35). A dark red circle symbolises the desired solution out of five.

An interesting result is obtained, when we consider the case σW → 0, which occurs if the n − m
good observations contain much more information than the m suspected outliers. In this case, (35) can
be rewritten as

(x̂VI − W)
m

∏
i=1

(yi − x̂VI) = σ2
W P(y1, . . . , yn, x̂VI). (42)

where P is some polynomial. If the right hand side goes to zero, at least one factor of the left hand
side must also go to zero. As σW → 0, we obtain m + 1 solutions for x̂VI , approaching W, y1, . . . .ym.
The first solution can be a valid VI solution, the others are invalid as τ̂i → 0. Note that we have
x̂VI → x̂MS in this case, and also êVI,i → êMS,i for all i = 1, . . . , m. Having in mind (22c), we see
that (41) becomes

TVI →− (W − w)2

σ2
w

− m +
m

∑
i=1

(τ̂i − log τ̂i) (43)

=σ2
w

(
m

∑
i=1

yi − W
σ2

i

)2

− m +
m

∑
i=1

(τ̂i − log τ̂i) (44)
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and also noting that with (22b) we find σw → 0, such that

TVI →− m +
m

∑
i=1

(τ̂i − log τ̂i) (45)

=− m +
m

∑
i=1

ê2
MS,i

σ2
i

− log
ê2

MS,i

σ2
i

. (46)

When comparing this to the equivalent result in the MS model (33), we see that TVI and TMS are
equivalent test statistics under the sufficient condition min τ̂i > 1, because τ − log τ is a monotonic
function for τ > 1. This means that, in this case, the decision on H0 is the same, both in the MS and in
the VI model. However, max τ̂i > 1 might not be sufficient for this property.

4.3. Variance Inflation Model—Test for One Outlier

In the case m = 1 (35) reads

x̂VI =
σ2

W
y1 − x̂VI

+ W (47)

Rewriting this to a quadratic equation yields up to two solutions, i.e.,

x̂VI =
y1 + W

2
±
√

(y1 − W)2

4
− σ2

W . (48)

With (15), we find

τ̂1 =
1
σ2

1

(
y1 − W

2
±
√

(y1 − W)2

4
− σ2

W

)2

=
1
σ2

1

⎛⎝ êMS,1

2
±
√

ê2
MS,1

4
− σ2

W

⎞⎠2

. (49)

For a solution to exist at all, we must have |êMS,1| ≥ 2σW . This means that y1 must be sufficiently
outlying, otherwise H0 is to be accepted.

The condition for a strict local maximum (40) reads here

σ2
W < τ̂1σ2

1 =

⎛⎝ êMS,1

2
±
√

ê2
MS,1

4
− σ2

W

⎞⎠2

. (50)

For the sign of the square root equal to the sign of êMS,1, this inequality is trivially fulfilled. For the
opposite sign, we require

σW <
|êMS,1|

2
−
√

ê2
MS,1

4
− σ2

W . (51)

Rewriting this expression yields√
ê2

MS,1

4
− σ2

W <
|êMS,1|

2
− σW (52)
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and squaring both sides, which can be done because they are both positive, we readily arrive at
|êMS,1| < 2σW , which is the case that no solution exists. Therefore, we have exactly one minimum
of (16), i.e.,

x̂VI =
y1 + W

2
− sign(y1 − W)

√
(y1 − W)2

4
− σ2

W (53a)

=
y1 + W

2
− sign(êMS,1)

√
ê2

MS,1

4
− σ2

W ,

τ̂1 =
1
σ2

1

⎛⎝ êMS,1

2
+ sign(êMS,1)

√
ê2

MS,1

4
− σ2

W

⎞⎠2

, (53b)

and the test statistic (18) becomes

TVI =

⎧⎨⎩0 if τ̂1 ≤ 1,

− (x̂VI−w)2

σ2
w

− 1 + τ̂1 − log τ̂1 otherwise.
(54)

The condition τ̂1 > 1 is equivalent to√
ê2

MS,1

4
− σ2

W > σ1 − |êMS,1|
2

, (55)

which is trivially fulfilled, if the right hand side is negative. If it is non-negative, both sides can be
squared and rearranged to

|êMS,1| >
σ2

1 + σ2
W

σ1
. (56)

Since this condition also covers the case that |êMS,1| > 2σ1, it can be used exclusively as an
equivalent of τ̂1 > 1.

With (22c) we see that both

x̂VI − w =
y1 − W

2
− sign(êMS,1)

√
ê2

MS,1

4
− σ2

W − σ2
w

y1 − W
σ2

1
(57)

= êMS,1

(
1
2
− σ2

w

σ2
1

)
− sign(êMS,1)

√
ê2

MS,1

4
− σ2

W

as well as τ̂1 through (53b) depend on the observations only through êMS,1, and so does TVI in (54).
On closer examination, we see that TVI in (54) depends even only on |êMS,1|. This clearly holds as
well for TMS in (30). Therefore, both test statistics are equivalent if TVI can be shown to be a strictly
monotone function of TMS.

Figure 4 shows that (54) as a function of êMS,1 is monotone. A mathematical proof of monotony is
given in the Appendix A. Thus, it is also monotone as a function of TMS and even strictly monotone
for τ̂1 > 1, which is the case that we are interested in. Therefore, the MS model and the VI model are
fully equivalent for repeated observations to be tested for m = 1 outlier.
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Figure 4. Resulting test statistic TVI of the variance inflation (VI) approach (54) as a function of the
residual êMS,1 for various ratios of σw/σ1.

Finally, we numerically determine the probability distribution of test statistic (54) using Monte
Carlo integration by

• defining the ratio σW/σ1,
• generating normally distributed pseudo random numbers for eMS,1,
• evaluating (53) and (54), and
• taking the histogram of (54),

using 107 pseudo random samples of êMS,1. In Figure 5, the positive branch of the symmetric probability
density function (PDF) is given in logarithmic scale for various ratios of σW/σ1. However, only about
30% of the probability mass is located under this curve, the rest is concentrated at TVI = 0, and is not
displayed. The quantiles of this distribution determine critical values and also αmax in (19). The results
are summarized in Table 1.

Figure 5. Probability density function of TVI (54) as a function of the residual êMS,1 under H0,
approximated by MCM. Vertical axis is in logarithmic scale. The strong peaks at 0 for τ̂1 ≤ 1 are not
displayed. The dashed black and the solid red curve relates to σW/σ1 = 0.05 and σW/σ1 = 0.5, respectively.
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Table 1. Maximum selectable type 1 error probability αmax and critical value cα for TVI in (54) for
various ratios of σW/σ1 and α = 0.05.

σW/σ1 αmax cα

0.05 0.317 1.50
0.10 0.315 1.49
0.20 0.308 1.47
0.30 0.297 1.43
0.50 0.264 1.33

4.4. Variance Inflation Model—Test for Two Outliers

In the case m = 2 outliers, (35) reads

x̂VI − W =
σ2

W
y1 − x̂VI

+
σ2

W
y2 − x̂VI

. (58)

The solution for x̂VI can be expressed in terms of a cubic equation, which permits an analytical
solution. One real solution must be in the interval y1 . . . y2, but there may be two more solutions

• both below y1, if W < y1, or
• both above y2, if W > y2, or
• both between y1 and y2, if y1 > W > y2.

In rare cases, solutions may also coincide. The analytical expressions are very complicated and
they do not permit a treatment analogous to the preceding subsection. Therefore, we have to fully rely
on numerical methods, which, in our case, is the Monte Carlo method (MCM).

First, we compute the critical values of the test statistic (18)

TVI =

⎧⎨⎩0 if max(τ̂1, τ̂2) ≤ 1,

− (x̂VI−w)2

σ2
w

− 2 + τ̂1 + τ̂2 − log τ̂1 − log τ̂2 otherwise.
(59)

The MCM is preformed, using 107 pseudo random samples. We restrict ourselves to the case
σ1 = σ2. The maximum selectable type 1 error probabilities αmax are summarized in Table 2. It is
shown that αmax is mostly larger than for m = 1. The reason is that, more often, we obtain τ̂i > 1,
even if H0 is true, which makes it easier to define critical values in a meaningful way. Moreover, Table 2
indicates the probabilities that under H0

• (16) has no local minimum, and if it has, that
• max(τ̂1, τ̂2) ≤ 1
• τ̂1 ≤ 1, τ̂2 > 1 or vice versa
• min(τ̂1, τ̂2) > 1

i.e., none, one, or both variances are inflated. It is shown that, if the good observations contain
the majority of the information, a minimum exists, but, contrary to our expectation, the case
max(τ̂1, τ̂2) ≤ 1 is not typically the dominating case.

The important result is what happens, if H0 is false, because variances are truly inflated.
The probability that H0 is rejected is known as the power 1 − β of the test, where β is the probability
of a type 2 decision error. It is computed both with TMS in (31) as well as with TVI in (59). Table 3
provides the results. It is shown that the power of TMS is always better than of TVI . This is unexpected,
because TMS is not equivalent to the likelihood ratio of the VI model.

A possible explanation of the low performance of TVI in (59) is that, in many cases, the likelihood
function LVI has no local maximum, such that (16) has no local minimum. Even for an extreme variance
inflation of τ1 = τ2 = 5 this occurs with remarkable probability of 0.14. Moreover, the probability that
max(τ̂1, τ̂2) ≤ 1 is hardly less than that. In both cases, H0 cannot be rejected.
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Table 2. Maximum selectable type 1 error probability αmax and critical value cα for TVI in (59) for
various ratios of σW/σ1 = σW/σ2 and α = 0.05 as well as probabilities that (16) has no local minimum or
that 0 or 1 or 2 variances are inflated.

Probabilities for

no 0 1 2

σW/σ1 = σW/σ2 αmax cα min Inflated Variances

0.01 0.52 4.68 0.03 0.45 0.42 0.10
0.02 0.51 4.36 0.06 0.42 0.41 0.10
0.03 0.50 4.11 0.09 0.40 0.40 0.10
0.05 0.48 3.69 0.15 0.36 0.38 0.10
0.10 0.43 3.00 0.29 0.27 0.33 0.10
0.20 0.33 2.32 0.53 0.14 0.24 0.09
0.30 0.24 1.82 0.69 0.06 0.16 0.09
0.50 0.12 0.97 0.88 0.01 0.05 0.07

Table 3. Test power 1 − βMS for test using TMS in (31) and test power 1 − βVI for test using TVI in (59)
for various true values of the variance inflation factors τ1, τ2 for σW = 0.1 · σ1 = 0.1 · σ2 and α = 0.05,
as well as probabilities that (16) has no local minimum or that 0 or one or two variances are inflated.

Probabilities for

Test Power no 0 1 2

τ1 τ2 1 − βMS 1 − βV I min Inflated Variances

1.0 1.0 0.05 0.05 0.29 0.27 0.33 0.10
1.2 1.2 0.08 0.08 0.27 0.24 0.35 0.13
1.5 1.5 0.13 0.12 0.24 0.21 0.38 0.17
2.0 2.0 0.22 0.20 0.21 0.17 0.39 0.23
3.0 3.0 0.36 0.32 0.18 0.12 0.39 0.31
5.0 5.0 0.55 0.49 0.14 0.08 0.36 0.42
1.0 1.5 0.09 0.09 0.27 0.24 0.36 0.13
1.0 3.0 0.21 0.19 0.24 0.18 0.41 0.18
2.0 3.0 0.30 0.26 0.19 0.14 0.40 0.27
2.0 5.0 0.40 0.36 0.18 0.11 0.40 0.31

4.5. Outlier Identification

If it is not known which observations are outlier-suspected, a multiple test must be set up. If the
critical values are identical in all tests, then we simply have to look for the largest test statistic. This is
the case for TMS when considering the same number m of outlier-suspected observations, see (9). If we
even consider different numbers m in the same multiple test, we have to apply the p-value approach,
cf. Lehmann and Lösler [5].

In the VI model, the requirement of identical critical values is rarely met. It is, in general, not met
for repeated observations, not even for m = 1, as can be seen in Figure 5. However, in this case, it is
no problem, because the test with TVI in (54) is equivalent to TMS in (30), as demonstrated. This also
means that the same outlier is identified with both test statistics.

For repeated observations, we find identical critical values only for identical variances of the
outlier-suspected observations, such that those observations are fully indistinguishable from each
other. For example, for n = 27, m = 2, α = 0.05, and σ1 = · · · = σn, we find σW/σi = 0.20 and cα = 2.32
for all 351 pairs of outlier-suspected observations, see Table 2.

We evaluate the identifiability of two outliers in n = 10 and n = 20 repeated observations
with m = 2 outliers while using the MCM. In each of the 106 repetitions, random observations are
generated having equal variances. Two cases are considered. Whereas, in the first case, two variances
are inflated by τ according to the VI model, in the second case, two observation values are shifted
by ∇ according to the MS model. Using (31) and (59), the test statistics TMS and TVI are computed
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for all n(n − 1)/2 = 45 or 190 pairs of observations. If the maximum of the test statistic is attained
for the actually modified pair of observations, the test statistic correctly identifies the outliers. Here,
we assume that α is large enough for the critical value to be exceeded, but otherwise the results are
independent of the choice of α. The success probabilities are given in Table 4.

Table 4. Success probabilities for outlier identification in repeated observations of equal variance σ2

with two outliers.

Success Probabilities for n = 10 Success Probabilities for n = 20

τ1 = τ2 of TMS in (31) of TV I in (59) of TMS in (31) of TV I in (59)

1.0 0.022 0.021 0.005 0.005
2.0 0.065 0.061 0.028 0.026
3.0 0.108 0.104 0.061 0.057
4.0 0.150 0.144 0.095 0.089
5.0 0.185 0.180 0.128 0.121
6.0 0.218 0.212 0.156 0.151

∇1 = ∇2 of TMS in (31) of TV I in (59) of TMS in (31) of TV I in (59)

0.0 0.022 0.021 0.005 0.005
1σ 0.081 0.065 0.035 0.028
2σ 0.325 0.286 0.226 0.202
3σ 0.683 0.652 0.606 0.586
4σ 0.912 0.902 0.892 0.886
5σ 0.985 0.984 0.984 0.984

As expected, the success probabilities increase as τ or ∇ gets large. However, for both cases,
TMS outperforms TVI . In Figure 6, the ratio rT of the success probabilities between the VI and the MS
approach is depicted, having n = 10 repeated observations. If rT > 1, the success rate of TVI is higher
than for TMS and vice versa. The ratio is always rT < 1 and tends to 1, as shown in Figure 6. Therefore,
the success probability of the MS is higher than for the VI approach, even if the outliers are caused by
an inflation of the variances.

Figure 6. Ratio rT of the success probabilities between the VI and the MS approach using n = 10
repeated observations. The top figure depicts rT for the case of inflated variances. The bottom figure
depicts rT for the case of shifted mean values.
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5. Conclusions

We have studied the detection of outliers in the framework of statistical hypothesis testing.
We have investigated two types of alternative hypotheses: the mean shift (MS) hypothesis, where the
probability distributions of the outliers are thought of as having a shifted mean, and the variance
inflation (VI) model, where they are thought of as having an inflated variance. This corresponds to
an outlier-generating process thought of as being deterministic or random, respectively. While the
first type of alternative hypothesis is routinely applied in geodesy and in many other disciplines,
the second is not. However, even if the VI model might be more adequate to describe the stochastics of
the observations, this does not mean that it is possible to estimate parameters or detect outliers better
than with some less adequate model, like MS.

The test statistic has been derived by the likelihood ratio of null and alternative hypothesis.
This was motivated by the famous Neyman–Pearson lemma, cf. Neyman and Pearson [20], even though
that this lemma does not directly apply to this test. Therefore, the performance of the test must be
numerically evaluated.

When compared to existing VI approaches, we

• strived for a true (non-restricted) maximization of the likelihood function;
• allowed for multiple outliers;
• fully worked out the case of repeated observations; and,
• computated the corresponding test power by MC method for the first time.

We newly found out that the VI stochastic model has some critical disadvantages:

• the maximization of the likelihood function requires the solution of a system of u polynomial
equations of degree m + 1, where u is the number of model parameters and m is the number of
suspected outliers;

• it is neither guaranteed that the likelihood function actually has such a local maximum, nor that it
is unique;

• the maximum might be at a point where some variance is deflated rather than inflated. It is
debatable, what the result of the test should be in such a case;

• the critical value of this test must be computed numerically by Monte Carlo integration. This must
even be done for each model separately; and,

• there is an upper limit (19) for the choice of the critical value, which may become small in
some cases.

For the first time, the application of the VI model has been investigated for the most simple
model of repeated observations. It is shown that here the likelihood function admits at most one local
maximum, and it does so, if the outliers are strong enough. Moreover, in the limiting case that the
suspected outliers represent an almost negligible amount of information, the VI test statistic and the
MS test statistic have been demonstrated to be almost equivalent.

For m = 1 outlier in the repeated observations, there is even a closed formula (54) for the test
statistic, and the existence and uniqueness of a local maximum is equivalent to a simple checkable
inequality condition. Additionally, here the VI test statistic and the MS test statistic are equivalent.

In our numerical investigations, we newly found out that for m > 1 outliers in the repeated
observations the power of the VI test is worse than using the classical MS test statistic. The reason is the
lack of a maximum of the likelihood function, even for sizable outliers. Our numerical investigations
also show that the identifiability of the outliers is worse for the VI test statistic. This is clearly seen in
the case that the outliers are truly caused by shifted means, but also in the other case the identifiability
is slightly worse. This means that the correct outliers are more often identified with the MS test statistic.

In the considered cases, we did not find real advantages of the VI model, but this does not prove
that they do not exist. As long as such cases are not found, we therefore recommend practically
performing outlier detection by the MS model.
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Appendix A

To prove the monotony of the tails of the function TVI (eMS,1) in (54), the extreme values of TVI
have to be determined. Since TVI is symmetric, it is sufficient to restrict the proof for positive values of
eMS,1. The first derivation of TVI is given by

T
′
VI (eMS,1) = −

4σ2
W
(
σ2

1 + 1
)− e2

MS,1
(
σ2

1 + σ2
W
)
+ eMS,1

(
σ2

1 − σ2
W
)√

e2
MS,1 − 4σ2

W

σ2
W
(
σ2

1 + σ2
W
)√

e2
MS,1 − 4σ2

W

. (A1)

Setting T
′
VI (eMS,1) = 0 yields two roots

e± = ± (σ2
1 + σ2

W)

σ1
. (A2)

Inserting the positive extreme value e+ into the second derivation of TVI , i.e.,

T
′′
VI (eMS,1) =

eMS,1
(
σ2

1 + σ2
W
)
+
√

e2
MS,1 − 4σ2

W
(
σ2

W − σ2
1
)

σ2
W
(
σ2

1 + σ2
W
)√

e2
MS,1 − 4σ2

W

, (A3)

identifies e+ as a minimum value, because T
′′
VI (e+) is always positive for τ1 > 1, cf. (55). For that

reason, TVI is a monotonically increasing function on the interval (e+,+∞). Figure A1 depicts the
positive tail of TVI and T

′
VI , respectively, as well as the minimum e+.

Figure A1. Tail of the function TVI and its first derivation T
′
VI for positive values of eMS,1 as well as

the minimum e+.
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Abstract: Covariance function modeling is an essential part of stochastic methodology. Many
processes in geodetic applications have rather complex, often oscillating covariance functions, where
it is difficult to find corresponding analytical functions for modeling. This paper aims to give the
methodological foundations for an advanced covariance modeling and elaborates a set of generic
base functions which can be used for flexible covariance modeling. In particular, we provide a
straightforward procedure and guidelines for a generic approach to the fitting of oscillating covariance
functions to an empirical sequence of covariances. The underlying methodology is developed based
on the well known properties of autoregressive processes in time series. The surprising simplicity
of the proposed covariance model is that it corresponds to a finite sum of covariance functions of
second-order Gauss–Markov (SOGM) processes. Furthermore, the great benefit is that the method
is automated to a great extent and directly results in the appropriate model. A manual decision
for a set of components is not required. Notably, the numerical method can be easily extended to
ARMA-processes, which results in the same linear system of equations. Although the underlying
mathematical methodology is extensively complex, the results can be obtained from a simple and
straightforward numerical method.

Keywords: autoregressive processes; ARMA-process; colored noise; continuous process; covariance
function; stochastic modeling; time series

1. Introduction and Motivation

Covariance functions are an important tool to many stochastic methods in various scientific fields.
For instance, in the geodetic community, stochastic prediction or filtering is typically based on the
collocation or least squares collocation theory. It is closely related to Wiener–Kolmogorov principle [1,2]
as well as to the Best Linear Unbiased Predictor (BLUP) and kriging methods (e.g., [3–5]). Collocation
is a general theory, which even allows for a change of functional within the prediction or filtering step,
simply propagating the covariance to the changed functional (e.g., [6] (p. 66); [4] (pp. 171–173); [7]).
In this context, signal covariance modeling is the crucial part that directly controls the quality of the
stochastic prediction or filtering (e.g., [8] (Ch. 5)).

Various references on covariance functions are found in geostatistics [9,10] or atmospheric
studies [11–14]. The authors in [4,5,8,15–18] cover the topic of covariance functions in the context of
various geodetic applications. The discussion of types of covariance functions and investigations on
positive definiteness is covered in the literature in e.g., [13,19–21].

In common practice, covariance modelers tend to use simple analytical models (e.g., exponential
and Gauss-type) that can be easily adjusted to the first, i.e., to the short range, empirically derived
covariances. Even then, as these functions are nonlinear, appropriate fitting methods are not
straightforward. On the other hand, for more complex covariance models, visual diagnostics such as
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half-value width, correlation length, or curvature are difficult to obtain or even undefined for certain
(e.g., oscillatory) covariance models. In addition, fitting procedures to any of these are sparse and lack
an automated procedure (cf. [17,22]).

Autoregressive processes (AR-processes) define a causal recursive mechanism on equispaced data.
Stochastic processes and autoregressive processes are covered in many textbooks in a quite unified
parametrization (e.g., [23–30]). In contrast to this, various parametrizations of Autoregressive Moving
Average (ARMA) processes exist in stochastic theory [31–35]. A general connection of these topics,
i.e., stochastic processes, covariance functions, and the collocation theory in the context of geodetic
usage is given by [5].

In geodesy, autoregressive processes are commonly used in the filter approach as a stochastic
model within a least squares adjustment. Decorrelation procedures by digital filters derived from
the parametrization of stochastic processes are widely used as they are very flexible and efficient for
equidistant data (cf. e.g., [36–42]). Especially for highly correlated data, e.g., observations along a
satellite’s orbit, advanced stochastic models can be described by stochastic processes. This is shown in
the context of gravity field determination from observations of the GOCE mission with the time-wise
approach, where flexible stochastic models are iteratively estimated from residuals [43–45].

The fact that an AR-process defines an analytical covariance sequence as well (e.g., [23]) is not
well established in geostatistics and geodetic covariance modeling. To counteract this, we relate the
covariance function associated with this stochastic processes to the frequently used family of covariance
functions of second-order Gauss–Markov (SOGM) processes. Expressions for the covariance functions
and fitting methods are aligned to mathematical equations of these stochastic process. Especially in
collocation theory, a continuous covariance function is necessary to obtain covariances for arbitrary
lags and functionals required for the prediction of multivariate data. However, crucially, the covariance
function associated with an AR-process is in fact defined as a discrete sequence (e.g., [26]).

Whereas standard procedures which manually assess decaying exponential functions or oscillating
behavior by visual inspection can miss relevant components, for instance high-frequent oscillations
in the signal, the proposed method is automated and easily expandable to higher order models in
order to fit components which are not obvious at first glance. A thorough modeling of a more complex
covariance model does not only result in a better fit of the empirical covariances but results in a
beneficial knowledge of the signal process itself.

Within this contribution, we propose an alternative method for the modeling of covariance
functions based on autoregressive stochastic processes. It is shown that the derived covariance can
be evaluated continuously and corresponds to a sum of well known SOGM-models. To derive the
proposed modeling procedure and guidelines, the paper is organized as follows. After a general
overview of the related work and the required context of stochastic modeling and collocation theory in
Section 2, Section 3 summarizes the widely used SOGM-process for covariance function modeling.
Basic characteristics are discussed to create the analogy to the stochastic processes, which is the
key of the proposed method. Section 4 introduces the stochastic processes with a special focus
on the AR-process and presents the important characteristics, especially the underlying covariance
sequence in different representations. The discrete sequence of covariances is continuously interpolated
by re-interpretation of the covariance sequence as a difference/differential equation, which has a
continuous solution. Based on these findings, the proposed representation can be easily extended to
more general ARMA-processes as it is discussed in Section 5. Whereas the previous chapters are based
on the consistent definition of the covariance sequences of the processes, Section 6 shows how the
derived equations and relations can be used to model covariance functions from empirically estimated
covariances in a flexible and numerically simple way. In Section 7, the proposed method is applied to
a one-dimensional time series which often serves as an example application for covariance modeling.
The numerical example highlights the flexibility and the advantage of the generic procedure. This is
followed by concluding remarks in Section 8.
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2. Least Squares Collocation

In stochastic theory, a measurement model L is commonly seen as a stochastic process which
consists of a deterministic trend Aξ, a random signal S , and a white noise component N (cf. e.g., [3]
(Ch. 2); [5] (Ch. 3.2))

L = Aξ + S +N . (1)

Whereas the signal part S is characterized by a covariance stationary stochastic process, the noise N
is usually assumed as a simple white noise process with uncorrelated components. Autocovariance
functions γ(|τ|) or discrete sequences {γ|j|}Δt are models to describe the stochastic behavior of the

random variables, i.e., generally γS(|τ|) and γN(|τ|), and are required to be positive semi-definite ([28]
(Proposition 1.5.1, p. 26)). In case covariances are given as a discrete sequence {γ|j|}Δt, they are defined
at discrete lags h = j Δt with sampling interval Δt and j ∈ N0. In general, autocovariance functions or
sequences are functions of a non-negative distance, here τ or h for the continuous and discrete case,
respectively. Thus, covariance functions are often denoted by the absolute distance |τ| and |h|. Here,
we introduce the conditions τ ≥ 0 and h ≥ 0 in order to omit the vertical bars.

The term Least Squares Collocation, introduced in geodesy by [3,6,46], represents the separability
problem within the remove–restore technique, where a deterministic estimated trend component Ax̃
is subtracted from the measurements � and the remainder Δ̃� = �− Ax̃ is interpreted as a special
realization of the stochastic process Δ̃L. In the trend estimation step

x̃ =
(

AT(ΣSS+ΣNN
)−1 A

)−1
AT(ΣSS+ΣNN

)−1
� , (2)

the optimal parameter vector x̃ is computed from the measurements � as the best linear unbiased
estimator (BLUE) for the true trend Aξ. The collocation step follows as the best linear unbiased
predictor (BLUP) of the stochastic signal s̃ ′ at arbitrary points

s̃ ′ = ΣS′S (ΣSS+ΣNN )−1Δ̃� (3)

or as a filter process at the measured points

s̃ = ΣSS (ΣSS+ΣNN )−1Δ̃� (4)

([3] (Ch. 2); [5] (Ch. 3)). The variance/covariance matrices ΣSS reflect the stochastic behavior of the
random signal S . The coefficients are derived by the evaluation of the covariance function γS(τ),
where τ represents the lags or distances between the corresponding measurement points. ΣNN denotes
the variances/covariances of the random noise which is often modeled as independent and identically
distributed random process, γN(τ) = δ0,τ σ 2

N with δi,j being the Kronecker delta. σ 2
N denotes the

variance of the noise such that the covariance matrix reads ΣNN = �σ 2
N . ΣS′S is filled row-wise with

the covariances of the signal between the prediction points and the measured points.
The true covariance functions γS(τ) and γN(τ) are unknown and often have to be estimated,

i.e., gS(τ) and gN(τ), directly from the trend reduced measurements Δ� by an estimation procedure
using the empirical covariance sequences {g̃ΔL

j }Δt. The estimated noise variance s̃ 2
N can be derived

from the empirical covariances at lag zero

g̃ΔL
0 = g̃S

0 + s̃ 2
N . (5)

Thus, it is allowed to split up g̃ΔL
0 into the signal variance g̃S

0 given by the covariance function
gS(0) = g̃S

0 and a white noise component s̃ 2
N , known as the nugget effect (e.g., [9] (p. 59)). In theory, s̃ 2

N
can be manually chosen such that the function plausibly decreases from g̃S

0 towards g̃S
1 and the higher
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lags. A more elegant way is to estimate the analytical function gS(τ) from empirical covariances g̃S
j

with j>0 only. Naturally, all estimated functions gS(τ) must result in g̃ΔL
0 − gS(0) ≥ 0.

Covariance function modeling is a task in various fields of application. They are used
for example to represent a stochastic model of the observations within parameter estimation in
e.g., laserscanning [18], GPS [47,48], or gravity field modeling [49–54]. The collocation approach is
closely related to Gaussian Process Regression from the machine learning domain [55]. The family of
covariance functions presented here can be naturally used as kernel functions in such approaches.

Within these kinds of applications, the covariance functions are typically fitted to empirically
derived covariances which follow from post-fit residuals. Within an iterative procedure, the stochastic
model can be refined. Furthermore, they are used to characterize the signal characteristics, again
e.g., in gravity field estimation or geoid determination in the context of least squares collocation [7] or
in atmospheric sciences [11,14].

Reference [8] (Ch. 3) proposed to have a special look to only the three parameters, variance,
correlation length, and curvature at the origin to fit a covariance function to the empirical covariance
sequence. Reference [17] also suggested taking the sequence of zero crossings into account to find an
appropriate set of base functions. In addition, most approaches proceed with the fixing of appropriate
base functions for the covariance model as a first step. This step corresponds to the determination of
the type or family of the covariance function. The fitting then is restricted to this model and does not
generalize well to other and more complex cases. Furthermore, it is common to manually fix certain
parameters and optimize only a subset parameters in an adjustment procedure; see e.g., [18].

Once the covariance model is fixed, various optimization procedures exist to derive the model
parameters which result in a best fit of the model to a set of empirical covariances. Thus, another
aspect of covariance function estimation is the numerical implementation of the estimation procedure.
Visual strategies versus least squares versus Maximum Likelihood, point cloud versus representative
empirical covariance sequences and non robust versus robust estimators are various implementation
possibilities discussed in the literature (see e.g., [11,14,18,47,51,56]). To summarize, the general
challenges of covariance function fitting are to find an appropriate set of linear independent base
functions, i.e., the type of covariance function, and the nonlinear nature of the set of chosen base
functions together with the common problem of outlier detection and finding good initial values for
the estimation process.

In particular, geodetic data often exhibit negative correlations or even oscillatory behavior in the
covariance functions which leaves a rather limited field of types of covariance functions, e.g., cosine and
cardinal sine functions in the one-dimensional or Bessel functions in two-dimensional case (e.g., [27]).
One general class of covariance functions with oscillatory behavior is discussed in the next section.

3. The Second-Order Gauss–Markov Process

3.1. The Covariance Function of the SOGM-Process

A widely used covariance function is based on the second-order Gauss–Markov processes as
given in [23] (Equation (5.2.36)) and [25] (Ch. 4.11, p. 185). The process defines a covariance function of
the form

γ(τ) =
σ2

cos(η)
e−ζω0τ cos

(√
1 − ζ2 ω0 τ − η

)
= σ2 e−ζω0τ

(
cos
(√

1 − ζ2 ω0 τ

)
+ tan(η) sin

(√
1 − ζ2 ω0 τ

))
with 0 < ζ < 1 and ω0 > 0 .

(6)

Its shape is defined by three parameters. ω0 represents a frequency and ζ is related to the attenuation.
The phase η can be restricted to the domain |η| < π/2 for logical reasons.
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A reparametrization with c := ζω0 and a :=
√

1 − ζ2 ω0 gives

γ(τ) =
σ2

cos(η)
e−c τ cos(a τ − η)

= σ2 e−c τ (cos(a τ) + tan(η) sin(a τ)) with a, c > 0
(7)

which highlights the shape of a sinusoid. We distinguish between the nominal frequency a and
the natural frequency ω0 = a/

√
1 − ζ2. The relative weight of the sine with respect to the cosine

term amounts to w := tan(η). It is noted here that the SOGM-process is uniquely defined by three
parameters. Here, we will use ω0, ζ and η as the defining parameters. Of course, the variance σ2 is a
parameter as well. However, as it is just a scale and remains independent of the other three, it is not
relevant for the theoretical characteristics of the covariance function.

The described covariance function is referenced by various names, e.g., the second-order shaping
filter [57], the general damped oscillation curve [27] (Equation (2.116)), and the underdamped
second-order continuous-time bandpass filter [58] (p. 270). In fact, the SOGM represents the most
general damped oscillating autocorrelation function built from exponential and trigonometric terms.
For example, the function finds application in VLBI analysis [59,60].

3.2. Positive Definiteness of the SOGM-Process

At first glance, it is surprising that a damped sine term is allowed in the definition of the covariance
function of the SOGM-process (cf. Equation (6)), as the sine is not positive semi-definite. However,
it is shown here that it is in fact a valid covariance function, provided that some conditions on the
parameters are fulfilled.

The evaluation concerning the positive semi-definiteness of the second-order Gauss–Markov
process can be derived by analyzing the process’s Fourier transform as given in [25] (Ch. 4.11, p. 185)
and the evaluation of it being non-negative (cf. the Bochner theorem, [61]). The topic is discussed and
summarized in [60]. With some natural requirements already enforced by 0 ≤ ζ ≤ 1 and ω0 > 0, the
condition for positive semi-definiteness (cf. e.g., [57] (Equation (A2))) is

|sin(η)| ≤ ζ (8)

which can be expressed by the auxiliary variable α := arcsin(ζ) as |η| ≤ α.
In terms of the alternative parameters a and c, this condition translates to w ≤ c/a (cf. e.g., [27]

(Equation (2.117))). As a result, non-positive definite functions as the sine term are allowed in the
covariance function only if the relative contribution compared to the corresponding cosine term is
small enough.

4. Discrete AR-Processes

4.1. Definition of the Process

A more general and more flexible stochastic process is defined by the autoregressive (AR) process.
An AR-process is a time series model which relates signal time series values, or more specifically the
signal sequence, Si with autoregressive coefficients αk as (e.g., [26] (Ch. 3.5.4))

Si =
p

∑
k=1

αk Si−k + Ei . (9)

With the transition to α0 := 1, α1 := −α1, α2 := −α2, etc., the decorrelation relation to white noise Ei is
given by
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p

∑
k=0

αk Si−k = Ei . (10)

The characteristic polynomial in the factorized form (cf. [26] (Ch. 3.5.4))

α0 xp + α1 xp−1 + . . . + αp =
p

∏
k=1

(x − pk) (11)

has the roots pk ∈ C, i.e., the poles of the autoregressive process, which can be complex numbers.
This defines a unique transition between coefficients and poles. In common practice, the poles of an
AR(p)-process only appear as a single real pole or as complex conjugate pairs. Following this, an
exemplary process of order p = 4 can be composed by either two complex conjugate pairs, or one
complex pair and two real poles, or four individual single real poles. An odd order gives at least on
real pole. For general use, AR-processes are required to be stationary. This requires that its poles are
inside the unit circle, i.e., |pk| < 1 (cf. [26] (Ch. 3.5.4)).

AR-processes define an underlying covariance function as well. We will provide it analytically
for the AR(2)-process and will summarize a computation strategy for the higher order processes in
the following.

4.2. The Covariance Function of the AR(2)-Process

Although AR-processes are defined by discrete covariance sequences, the covariance function
can be written as a closed analytic expression, which, evaluated at the discrete lags, gives exactly the
discrete covariances. For instance, the AR(2)-process has a covariance function which can be written
in analytical form. The variance of AR-processes is mostly parameterized using the variance σ2

E of
the innovation sequence Ei. In this paper, however, we use a representation with the autocorrelation
function and a variance σ2 as in [26] (Equation (3.5.36), p. 130) and [62] (Section 3.5, p. 504). In
addition, the autoregressive parameters α1 and α2 can be converted to the parameters a and c via
a = arccos(α1/(2

√−α2)) and c = −ln(
√−α2). Hence, the covariance function of the AR(2)-process

can be written in a somewhat complicated expression in the variables a and c as

γ(τ) = σ2
√
(cot(a) tanh(c))2 + 1 e−c τ cos(a τ − arctan(cot(a) tanh(c))) (12)

using the phase η = arctan(cot(a) tanh(c)) or likewise

γ(τ) = σ2 e−c τ (cos(a τ) + tanh(c) cot(a) sin(a τ)) (13)

with the weight of the sine term w = tanh(c) cot(a).
Please note that in contrast to the SOGM-process the weight or phase in Equations (12) and (13)

cannot be set independently, but depends on a and c. Thus, this model is defined by two parameters
only. Therefore, the SOGM-process is the more general model. Caution must be used with respect to
the so-called second-order autoregressive covariance model of [11], which is closely related but does
not correspond to the standard discrete AR-process.

4.3. AR(p)-Process

The covariance function of an AR(p)-process is given as a discrete series of covariances {γj}Δt
defined at discrete lags h = j Δt with distance Δt. The Yule–Walker equations (e.g., [24] (Section 3.2);
[30] (Equation (11.8)))
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(14a)

(14b)

(14c)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

γ1 γ2 γ3 . . . γp

γ0 γ1 γ2 . . . γp−1

γ1 γ0 γ1 . . . γp−2

γ2 γ1 γ0 . . .
...

...
...

...
. . . γ1

γp−1 γp−2 . . . γ1 γ0

γp γp−1 . . . γ2 γ1

γp+1 γp . . . γ3 γ2

...
...

. . .
...

γn−1 γn−2 . . . γn−p+1 γn−p

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

α1

α2

α3

...

αp

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

γ0 − σ2
E

γ1

γ2

γ3

...

γp

γp+1

γp+2

...

γn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(14)

directly relate the covariance sequence to the AR(p) coefficients. With (14a) being the 0th equation, the
next p Yule–Walker equations (first to pth, i.e., (14b)) are the linear system mostly used for estimation
of the autoregressive coefficients. Note that this system qualifies for the use of Levinson–Durbin
algorithm because it is Toeplitz structured, cf. [30] (Ch. 11.3) and [63].

The linear system containing only the higher equations (14c) is called the modified Yule–Walker
(MYW) equations, cf. [64]. This defines an overdetermined system which can be used for estimating
the AR-process parameters where n lags are included.

The recursive relation

γi − α1γi−1 − α2γi−2 − . . . − αpγi−p = 0, for i = p + 1, p + 2, . . . (15)

represents a pth order linear homogeneous difference equation whose general solution is given by the
following equation with respect to a discrete and equidistant time lag h= |t−t′| = j Δt

γj = A1 ph
1 + A2 ph

2 + . . . + Ap ph
p with j ∈ N0, h ∈ R

+, Ak ∈ C , (16)

cf. [23] (Equation (5.2.44)) and [26] (Equation (3.5.44)). pk are the poles of the process (cf. Equation (11))
and Ak some unknown coefficients.

It has to be noted here that covariances of AR(p)-processes are generally only defined at discrete
lags. However, it can be mathematically shown that the analytic function of Equation (13) exactly
corresponds to the covariance function Equation (6) of the SOGM. In other words, the interpolation of
the discrete covariances is done using the same sinusoidal functions as in Equation (6) such that the
covariance function of the AR(p)-process can equally be written with respect to a continuous time lag
τ= |t−t′| by

γ(τ) = Re
(

A1 pτ
1 + A2 pτ

2 + . . . + Ap pτ
p

)
= Re

(
p

∑
k=1

Ak pτ
k

)
with τ ∈ R

+, Ak ∈ C . (17)

This is also a valid solution of Equation (15) in the sense that γ(h) = γj holds. For one special case
of poles, which are negative real poles, the function can be complex valued due to the continuous
argument τ. Thus, the real part has to be taken for general use.

Now, assuming Ak and pk to be known, Equation (17) can be used to interpolate the covariance
defined by an AR-process for any lag τ. Consequently, the covariance definition of an AR-process leads
to an analytic covariance function which can be used to interpolate or approximate discrete covariances.
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4.3.1. AR(2)-Model

We can investigate the computation for the processes of second order in detail. Exponentiating a
complex number mathematically corresponds to

pτ
k = |pk|τ ( cos(arg(pk) τ) + i sin(arg(pk) τ)) . (18)

As complex poles always appear in conjugate pairs, it is plausible that for complex conjugate pairs
pk = p

∗
l the coefficients Ak and Al are complex and also conjugate to each other Ak = A

∗
l . Thus,

Ak pτ
k +Al pτ

l becomes Ak pτ
k +A

∗
k(p

∗
k)

τ and the result will be real.

From Equation (13), we can derive that the constants amount to Ak,l =
σ2

2 (1 ± i tanh(c) cot(a)) =
σ2

2 (1 ± i w) for the AR(2)-process and from Equation (18) we can see that c = −ln(|pk|) and a =

|arg(pk)| such that the covariance function can be written as

γ(τ) = σ2
√
(tanh(ln(|pk|)) cot(|arg(pk)|))2 + 1

|pk|τ cos(|arg(pk)|τ + arctan(tanh(ln(|pk|)) cot(|arg(pk)|)))
(19)

= σ2 |pk|τ (cos(|arg(pk)|τ)− tanh(ln(|pk|)) cot(|arg(pk)|) sin(|arg(pk)|τ)) . (20)

It is evident now that the AR(2) covariance model can be expressed as an SOGM covariance
function. Whilst the SOGM-process has three independent parameters, here, both damping, frequency,
and phase of Equation (19) are determined by only two parameters |pk| and |arg(pk)| based on
e−c = |pk|, c = −ln(|pk|), a = |arg(pk)| and η = arctan(tanh(ln(|pk|)) cot(|arg(pk)|)). Thus, the
SOGM-process is the more general model, whereas the AR(2)-process has a phase η or weight w that is
not independent. From Equation (19), phase η can be recovered from the Ak by

|ηk| = |arg(Ak)| (21)

and the weight by |w| = |Im(Ak)/Re(Ak)|.

4.3.2. AR(1)-Model

Here, the AR(1)-model appears as a limit case. Exponentiating a positive real pole results
in exponentially decaying behavior. Thus, for a single real positive pole, one directly gets the
exponential Markov-type AR(1) covariance function, also known in the literature as first-order
Gauss–Markov (FOGM), cf. [65] (p. 81). A negative real pole causes discrete covariances of alternating
sign. In summary, the AR(1)-process gives the exponentially decaying covariance function for
0 < pk < 1

γ(τ) = σ2 exp(−c τ) with c = −ln(|pk|)
= σ2 |pk|τ

(22)

or the exponentially decaying oscillation with Nyquist frequency for −1 < pk < 0, cf. [23] (p. 163), i.e.,

γ(τ) = σ2 exp(−c τ) cos(π τ)

= σ2 |pk|τ cos(π τ) .
(23)

4.4. Summary

From Equation (17), one can set up a linear system
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⎡⎢⎢⎢⎣
γ0

γ1

γ2

γ3

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
p0

1 p0
2 p0

3 p0
4

p1
1 p1

2 p1
3 p1

4
p2

1 p2
2 p2

3 p2
4

p3
1 p3

2 p3
3 p3

4

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

A1

A2

A3

A4

⎤⎥⎥⎥⎦ or

⎡⎢⎢⎢⎣
γ1

γ2

γ3

γ4

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
p1

1 p1
2 p1

3 p1
4

p2
1 p2

2 p2
3 p2

4
p3

1 p3
2 p3

3 p3
4

p4
1 p4

2 p4
3 p4

4

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

A1

A2

A3

A4

⎤⎥⎥⎥⎦ , (24)

here shown exemplarily for an AR(4)-process. The solution of Equation (24) uniquely determines the
constants Ak applying standard numerical solvers, assuming the poles to be known from the process
coefficients, see Equation (11).

Since Equation (17) is a finite sum over exponentiated poles, the covariance function of a general
AR(p)-process is a sum of, in case of complex conjugate pairs, AR(2)-processes in the shape of
Equation (19) or, in case of real poles, damping terms as given in Equations (22) and (23). The
great advantage is that the choice of poles is automatically done by the estimation of the autoregressive
process by the YW-Equations (14). Here, we also see that the AR(2)-process as well as both cases of
the AR(1)-process can be modeled with Equation (17) such that the proposed approach automatically
handles both cases.

Furthermore, we see that Equation (17) adds up the covariance functions of the forms of
Equation (19), Equation (22), or Equation (23) for each pole or pair of poles. Any recursive filter
can be uniquely dissected into a cascade of second-order recursive filters, described as second-order
sections (SOS) or biquadratic filter, cf. [58] (Ch. 11). Correspondingly, the poles of amount p can be
grouped into complex-conjugate pairs or single real poles. Thus, the higher order model is achieved
by concatenation of the single or paired poles into the set of p poles (vector p) and correspondingly by
adding up one SOGM covariance function for each section. Nonetheless, this is automatically done by
Equation (17).

5. Generalization to ARMA-Models

5.1. Covariance Representation of ARMA-Processes

Thus far, we introduced fitting procedures for the estimation of autoregressive coefficients as well
as a linear system of equations to simply parameterize the covariance function of AR(p)-processes.
In this section, we demonstrate that ARMA-models can be handled with the same linear system and
the fitting procedure thus generalizes to ARMA-processes.

For the upcoming part, it is crucial to understand that the exponentiation pτ
k of Equation (17)

exactly corresponds to the exponentiation defined in the following way:

esk τ = eRe(sk) τ ( cos(Im(sk) τ) + i sin(Im(sk) τ)) (25)

i.e., pτ
k = esk τ , if the transition between the poles pk to sk is done by sk = ln(pk) = (ln(|pk|) + i arg(pk))

and pk = esk . To be exact, this denotes the transition of the poles from the z-domain to the
Laplace-domain. This parametrization of the autoregressive poles can, for example, be found in [23]
(Equation (5.2.46)), [66] (Equation (A.2)), and [26] (Equation (3.7.58)). In these references, the covariance
function of the AR-process is given as a continuous function with respect to the poles sk such that the
use of Equation (17) as a continuous function is also justified.

In the literature, several parametrizations of the moving average part exist. Here, we analyze
the implementation of [33] (Equation (2.15)), where the covariance function of an ARMA-process is
given by

γ(τ) =
p

∑
k=1

b(sk) b(−sk)

a′(sk) a(−sk)
esk τ . (26)
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Inserting pτ
k = esk τ and denoting Ak := b(sk) b(−sk)

a′(sk) a(−sk)
which is independent of τ, we obtain

γ(τ) =
p

∑
k=1

b(sk) b(−sk)

a′(sk) a(−sk)
pτ

k =
p

∑
k=1

Ak pτ
k , (27)

which is suitable for the purpose of understanding the parametrization chosen in this paper. Now,
the covariance corresponds to the representation of Equation (17). The equation is constructed by a
finite sum of complex exponential functions weighted by a term consisting of some polynomials a( · ),
a′( · ) for the AR-part and b( · ) for the MA-part evaluated at the positions of the positive and negative
autoregressive roots sk.

It is evident in Equation (26) that τ is only linked with the poles. This exponentiation of
the poles builds the term which is responsible for the damped oscillating or solely damping
behavior. The fraction builds the weighting of these oscillations exactly the same way as the
Ak in Equation (17). In fact, Equation (17) can undergo a partial fraction decomposition and
be represented as in Equation (26). The main conclusion is that ARMA-models can also be
realized with Equation (17). The same implication is also gained from the parametrizations by [67]
(Equation (3.2)), [31] (Equation (48)), [68] (Equation (9)), and [34] (Equation (4)). It is noted here that
the moving average parametrization varies to a great extent in the literature in the sense that very
different characteristic equations and zero and pole representations are chosen.

As a result, although the MA-part is extensively more complex than the AR-part and very
differently modeled throughout the literature, the MA-parameters solely influence the coefficients
Ak weighting the exponential terms, which themselves are solely determined by the autoregressive
part. This is congruent with the findings of the Equation (19) where frequency and damping of the
SOGM-process are encoded into the autoregressive poles pk.

5.2. The Numerical Solution for ARMA-Models

Autoregressive processes of order p have the property that p + 1 covariances are uniquely given
by the process, i.e., by the coefficients and the variance. All higher model-covariances can be recursively
computed from the previous ones, cf. Equation (15). This property generally does not hold for empirical
covariances, where each covariance typically is an independent estimate. Now, suppose Equation (24)
is solved as an overdetermined system by including higher empirical covariances, i.e., covariances
that are not recursively defined. The resulting weights Ak will automatically correspond to general
ARMA-models because the poles pk are fixed.

Precisely, the contradiction within the overdetermined system will, to some extent, forcedly end
up in the weights Ak and thus in some, for the moment unknown, MA-coefficients. The model still is an
SOGM process because the number of poles is still two and the SOGM covariance function is the most
general damped oscillating function. The two AR-poles uniquely define the two SOGM-parameters
frequency ω0 and attenuation ζ. The only free parameter to fit an ARMA-model into the shape of
the general damped oscillating function (SOGM-process) is the phase η. Hence, the MA-part of
arbitrary order will only result in a single weight or phase as in Equation (19) and the whole covariance
function can be represented by an SOGM-process. Consequently, the Ak will be different from that of
Equation (20), cf. [29] (p. 60), but the phase can still be recovered from Equation (21).

In summary, the general ARMA(2,q)-model (Equation (26)) is also realizable with Equation (17)
and thus with the linear system of Equation (24). Here, we repeat the concept of second-order
sections. Any ARMA(p,q)-process can be uniquely dissected into ARMA(2,2)-processes. Thus,
our parametrization of linear weights to complex exponentials can realize pure AR(2) and general
SOGM-processes, which can be denoted as ARMA(2,q)-models. These ARMA(2,q)-processes form
single SOGM-processes with corresponding parameters ω0, ζ and η. The combination of the
ARMA(2,q) to the original ARMA(p,q) process is the operation of addition for the covariance (function),
concatenation for the poles, and convolution for the coefficients. Thus, the expansion to higher orders
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is similar to the pure AR(p) case. The finite sum adds up the covariance function for each second-order
section which is an SOGM-process.

The weights would have to undergo a partial-fraction decomposition to give the MA-coefficients.
Several references exist for decomposing Equation (26) into the MA-coefficients, known as spectral
factorization, e.g., by partial fraction decomposition. In this paper, we stay with the simplicity and
elegance of Equation (17).

6. Estimation and Interpolation of the Covariance Series

Within this section, the theory summarized above is used for covariance modeling, i.e., estimating
covariance functions gS(τ), which can be evaluated for any lag τ, from a sequence of given empirical
covariances {g̃ΔL

j }Δt. Here, the choice of estimator for the empirical covariances is not discussed and
it is left to the user whether to use the biased or the unbiased estimator of the empirical covariances,
cf. [23] (p. 174) and [69] (p. 252).

The first step is the estimation of the process coefficients from the g̃ΔL
j with the process order

p defined by the user. Furthermore, different linear systems have been discussed for this step,
cf. Equation (14), also depending on the choice of n, which is the index of the highest lag included in
Equation (14). These choices already have a significant impact on the goodness of fit of the covariance
function to the empirical covariances, as will be discussed later. The resulting AR-coefficients αk
can be directly converted to the poles pk using the factorization of the characteristic polynomial
(Equation (11)).

For the second step, based on Equation (16), a linear system of m equations with m ≥ p, can be
set up, but now for the empirical covariances. Using the first m covariances, but ignoring the lag 0
value contaminated by the nugget effect, this results in a system like Equation (24), but now in the
empirical covariances g̃ΔL

j = g̃S
j , j > 0

⎡⎢⎢⎢⎢⎢⎢⎣
g̃S

1
g̃S

2
...
g̃S

m−1
g̃S

m

⎤⎥⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

p1
1 p1

2 . . . p1
p−1 p1

p

p2
1 p2

2 . . . p2
p−1 p2

p
...

...
...

...
pm−1

1 pm−1
2 . . . pm−1

p−1 pm−1
p

pm
1 pm

2 . . . pm
p−1 pm

p

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣
A1

A2
...
Ap−1

Ap

⎤⎥⎥⎥⎥⎥⎥⎦ . (28)

For m = p, the system can be uniquely solved, resulting in coefficients Ak which model the
covariance function as an AR(p)-process. The case m > p results in a fitting problem of the covariance
model to the m empirical covariances g̃j with p unknowns. This overdetermined system can be solved
for instance in the least squares sense to derive estimates Ak from the g̃j. As was discussed, these
Ak signify a process modeling as an ARMA-model. Here, one could use the notation Ãk in order
to indicate adjusted parameters in contrast to the uniquely determined Ak for the pure AR-process.
For the sake of a unified notation of Equation (17), it is omitted.

Due to the possible nugget effect, it is advised to exclude g̃ΔL
0 and solve Equation (28); however,

it can also be included, cf. Equation (24). Moreover, a possible procedure can be to generate a plausible
g̃S

0 from a manually determined s̃ 2
N by g̃S

0 = g̃ΔL
0 − s̃ 2

N . Equally, the MYW-Equations are a possibility
to circumvent using g̃ΔL

0 .

Modeling Guidelines

The idea of solving the system for the weights Ak is outlined in [23] (p. 167). In the following,
we summarize some guidelines to estimate the covariance function starting at the level of some residual
observation data.
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Initial steps:

• Determine the empirical autocorrelation function g̃ΔL
0 to g̃ΔL

n as estimates for the covariances γΔL
0

to γΔL
n . The biased or unbiased estimate can be used.

• Optional step: Reduce g̃ΔL
0 by an arbitrary additive white noise component s̃ 2

N (nugget) such that
g̃S

0 = g̃ΔL
0 − s̃ 2

N is a plausible y-intercept to g̃S
1 and the higher lags.

Estimation of the autoregressive process:

• Define a target order p and compute the autoregressive coefficients αk by

– solving the Yule–Walker equations, i.e., Equation (14b), or
– solving the modified Yule–Walker equations, i.e., Equation (14c), in the least squares sense

using g̃S
1 to g̃S

n .

• Compute the poles of the process, which follow from the coefficients, see Equation (11). Check
if the process is stationary, which requires all |pk| < 1. If this is not given, it can be helpful to
make the estimation more overdetermined by increasing n. Otherwise, the target order of the
estimation needs to be reduced. A third possibility is to choose only selected process roots and
continue the next steps with this subset of poles. An analysis of the process properties such as
system frequencies a or ω0 can be useful, for instance in the pole-zero plot.

Estimation of the weights Ak:

• Define the number of empirical covariances m to be used for the estimation. Set up the linear
system cf. Equation (28) either with or without g̃S

0 . Solve the system of equations either

– uniquely using m = p to determine the Ak. This results in a pure AR(p)-process.
– or as an overdetermined manner in the least squares sense, i.e., up to m > p. This results in

an underlying ARMA-process.

• gS(0) is given by gS(0) = ∑
p
k=1 Ak from which s̃ 2

N can be determined by s̃ 2
N = g̃ΔL

0 − gS(0). If gS(0)
exceeds g̃ΔL

0 , it is possible to constrain the solution to pass exactly through or below g̃ΔL
0 . This can

be done using a constrained least squares adjustment with the linear condition ∑
p
k=1 Ak = g̃ΔL

0
(cf. e.g., [69] (Ch. 3.2.7)) or by demanding the linear inequality ∑

p
k=1 Ak ≤ g̃ΔL

0 [70] (Ch. 3.3–3.5).
• Check for positive definiteness (Equation (8)) of each second-order section (SOGM component).

In addition, the phases need to be in the range |η| < π/2. If the solution does not fulfill these
requirements, process diagnostics are necessary to determine whether the affected component
might be ill-shaped. If the component is entirely negative definite, i.e., with negative gS(0), it
needs to be eliminated.

Here, it also needs to be examined whether the empirical covariances decrease sufficiently towards
the high lags. If not, the stationarity of the residuals can be questioned and an enhanced trend
reduction might be necessary.

Using the YW-Equations can be advantageous in order to get a unique (well determined) system
to be solved for the αk. By this, one realizes that the analytic covariance function exactly interpolates
the first p + 1 covariances, which supports the fact that they are uniquely given by the process,
cf. Equation (14b). On the other hand, including higher lags into the process estimation enables
long-range dependencies with lower degree models. The same holds for solving the system of
Equation (28) for the Ak using only m = p or m > p covariances. It is left to the user which procedure
gives the best fit to the covariances and strongly depends on the characteristics of the data and the
application. In summary, there are several possible choices, cf. Table 1.
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Table 1. Fitting procedures.

Equation (28), m = p Equation (28) with g̃S0 , m = p − 1 Equation (28), m > p

YW-Equations
AR-model,

interpolation of the
first p + 1 covariances

AR-model,
approximation

ARMA-model,
approximation

MYW-Equations,
n > p

AR-model,
approximation

AR-model,
approximation

ARMA-model,
approximation

Finally, the evaluation of the analytic covariance function (Equation (17)) can be done by
multiplying the same linear system using arbitrary, e.g., dense, τ:

⎡⎢⎢⎢⎢⎣
gS(τ1)

gS(τ2)
...
gS(τn)

⎤⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎣
pτ1

1 pτ1
2 . . . pτ1

p−1 pτ1
p

pτ2
1 pτ2

2 . . . pτ2
p−1 pτ2

p
...

...
...

...
pτn

1 pτn
2 . . . pτn

p−1 pτn
p

⎤⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣
A1

A2
...
Ap−1

Ap

⎤⎥⎥⎥⎥⎥⎥⎦ . (29)

Though including complex pk and Ak, the resulting covariance function values are theoretically
real. However, due to limited numeric precision, the complex part might only be numerically zero.
Thus, it is advised to eliminate the imaginary part in any case.

7. An Example: Milan Cathedral Deformation Time Series

This example is the well known deformation time series of Milan Cathedral [62]. The time series
measurements are levelling heights of a pillar in the period of 1965 to 1977. It is an equidistant time
series having 48 values with sampling interval Δt = 0.25 years. In [62], the time series is deseasonalized
and then used for further analysis with autoregressive processes. In this paper, a consistent modeling
of the whole signal component without deseasonalization is seen to be advantageous. The time series is
detrended using a linear function and the remaining residuals define the stochastic signal, cf. Figure 1.

(a) Original time series. (b) Detrended signal.

Figure 1. Milan Cathedral time series.

Based on the detrended time series, the biased estimator is used to determine the empirical
covariances in all examples. The order for the AR(p)-process is chosen as p = 4. Four different
covariance functions were determined based on the method proposed here. All second-order
components of the estimated covariance functions are converted to the SOGM parametrization and
individually tested for positive semi-definiteness using Equation (8).

As a kind of reference, a manual approach (cf. Figure 2a) was chosen. A single SOGM is adjusted
by manually tuning the parameters to achieve a good fit for all empirical covariances, ignoring g̃ΔL

0 .
This function follows the long-wavelength oscillation contained in the signal.

In a second approach, the process coefficients are estimated using the YW-Equations (14b) with
the covariances g̃ΔL

0 to g̃ΔL
p . Furthermore, the system in Equation (28) is solved uniquely using the lags

from g̃ΔL
1 up to g̃ΔL

m with m = p. In Figure 2b, the covariance function exactly interpolates the first
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five values. This covariance model with relatively low order already contains a second high-frequent
oscillation of a 1-year period, caused by annual temperature variations, which is not obvious at first.
However, the function misses the long wavelength oscillation and does not fit well to the higher
covariances. Here, the model order can of course be increased in order to interpolate more covariances.
However, it will be demonstrated now that the covariance structure at hand can in fact also be modeled
with the low-order AR(4)-model.

For the remaining examples, the process coefficients are estimated using the MYW-Equations (14c)
with n = 24 covariances. As a first case, the function was estimated with a manually chosen nugget
effect, i.e., g̃S

0 = g̃ΔL
0 − 0.0019, and by solving Equation (28) with m = p − 1, which results in a pure

AR(4)-process. The covariance function represented by Figure 2c approximates the correlations better
compared to first two cases. The shape models all oscillations, but does not exactly pass through all
values at the lags τ = 1.5 to 4 years.

Finally, the system of Equation (28) was solved using the higher lags g̃S
m up to m = 14 in order to

enforce an ARMA-model. However, the best fit exceeds g̃ΔL
0 , such that the best valid fit is achieved

with a no nugget effect in the signal covariance model and a covariance function exactly interpolating
g̃ΔL

0 . Thus, we fix gS(0) to g̃ΔL
0 using a constrained least squares adjustment, which is the result shown

here. In comparison, Figure 2d shows the most flexible covariance function. The function passes very
close to nearly all covariances up to τ = 6 years and the fit is still good beyond that. The approximated
ARMA-process with order p = 4 allows more variation of the covariance function and the function fits
better to higher lags.

(a) (b)

(c) (d)

Figure 2. Covariance functions for the Milan Cathedral data sets determined with four different
approaches: (a) Intuitive ("naive") approach using a single SOGM-process with manually adjusted
parameters. (b) Covariance function resulting from the interpolation of the first p + 1 covariances with
a pure AR(4)-processes. (c) Covariance function resulting from an approximation procedure of g̃S0 to
g̃S24 using a pure AR-process with p = 4. (d) Covariance function based on approximation with the
most flexible ARMA-process (p = 4). Empirical covariances are shown by the black dots. The variances
g̃S0 of the covariance functions are indicated by circles. The parameters of the processes (c) and (d) are
provided in Tables 2 and 3.

The corresponding process parameters for the last two examples are listed in Tables 2 and 3.
All parameters are given with numbers in rational approximation. The positive definiteness is directly
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visible by the condition |η| ≤ α. The approximated pure AR(4)-process in Table 2 is relatively close
to being invalid for the second component but still within the limits. For the ARMA-model, notably,
poles, frequency, and attenuation parameters are the same, cf. Table 3. Just the phases η of the two
components are different and also inside the bounds of positive definiteness. The resulting covariance
function using the ARMA-model (Figure 2d) is given by

gS(τ) =0.01680 · e−0.0723 τ
Δt

(
cos
(

0.1950
τ

Δt

)
− 0.3167 sin

(
0.1950

τ

Δt

))
+

0.00555 · e−0.0653 τ
Δt

(
cos
(

1.5662
τ

Δt

)
+ 0.02614 sin

(
1.5662

τ

Δt

))
with τ in years.

(30)

It needs to be noted here that the connection of unitless poles and parameters with distance τ

cannot be done in the way indicated by Sections 2–6. In fact, for the correct covariance function,
the argument τ requires a scaling with sampling interval Δt which was omitted for reasons of
brevity and comprehensibility. As a consequence, the scaling 1/Δt to the argument τ is included in
Equation (30). We also assess the same factor to the transition from ω0 to ordinary frequency ν0 given
in Tables 2 and 3.

Table 2. Approximation with pure AR(2)-components. The frequency is also given as ordinary
frequency ν0. The variance of the combined covariance function amounts to σ2 = 0.02046 mm2 which
leads to σN = 0.04359 mm. ω0 and η are given in units of radians.

Roots Frequency ω0 Frequency ν0 Damping ζ Phase η α = arcsin(ζ)

A 0.91262 + 0.18022i 0.20794 0.13238 [1/year] 0.34774 −0.15819 0.355160.91262 − 0.18022i

B 0.0042636 + 0.93678i 1.5676 0.99797 [1/year] 0.041655 0.040221 0.0416670.0042636 − 0.93678i

Table 3. Approximation with SOGM-components, i.e., ARMA(2,q)-models. The variance of the
combined covariance function amounts to σ2 = 0.02235 mm2.

Roots Frequency ω0 Frequency ν0 Damping ζ Phase η α = arcsin(ζ)

A 0.91262 + 0.18022i 0.20794 0.13238 [1/year] 0.34774 −0.30670 0.355160.91262 − 0.18022i

B 0.0042636 + 0.93678i 1.5676 0.99797 [1/year] 0.041655 0.026133 0.0416670.0042636 − 0.93678i

Using the process characteristics in Tables 2 and 3, it is obvious now that the long wavelength
oscillation has a period of about 7.6 years. Diagnostics of the estimated process can be done in the
same way in order to possibly discard certain components if they are irrelevant. In summary, the
proposed approach can realize a much better combined modeling of long and short-wavelength
signal components without manual choices of frequencies, amplitudes, and phases. The modified
Yule–Walker equations prove valuable for a good fit of the covariance function due to the stabilization
by higher lags. ARMA-models provide a further enhanced flexibility of the covariance function.

8. Summary and Conclusions

In this paper, we presented an estimation procedure for covariance functions based on
methodology of stochastic processes and a simple and straightforward numerical method.
The approach is based on the analogy of the covariance functions defined by the SOGM-process
and autoregressive processes. Thus, we provide the most general damped oscillating autocorrelation
function built from exponential and trigonometric terms, which includes several simple analytical
covariance models as limit cases.
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The covariance models of autoregressive process as well as of ARMA-processes correspond
to a linear combination of covariance functions of second-order Gauss–Markov (SOGM) processes.
We provide fitting procedures of these covariance functions to empirical covariance estimates based on
simple systems of linear equations. Notably, the numerical method easily extends to ARMA-processes
with the same linear system of equations. In the future, research will be done towards possibilities of
constraining the bounds of stationarity and positive definiteness in the estimation steps.

The great advantage is that the method is automated and gives the complete model instead
of needing to manually model each component. Our method is very flexible because the process
estimation automatically chooses complex or real poles, depending on whether more oscillating or only
decaying covariance components are necessary to model the process. Naturally, our approach restricts
to stationary time series. In non-stationary cases, the empirically estimated covariance sequence would
not decrease with increasing lag and by this contradict the specifications of covariance functions,
e.g., g̃ΔL

0 being the largest covariance, see Section 2 and [28]. Such an ill-shaped covariance sequence
will definitely result in non-stationary autoregressive poles and the method will fail.

The real world example has shown that covariance function estimation can in fact give good
fitting results even for complex covariance structures. The guidelines presented here provide multiple
possibilities for fitting procedures and process diagnostics. As a result, covariance function estimation
is greatly automatized with a generic method and a more consistent approach to a complete signal
modeling is provided.
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Abbreviations

The following abbreviations are used in this manuscript:

AR autoregressive
ARMA autoregressive moving average
LSC least squares collocation
MA moving average
MYW modified Yule–Walker
SOGM second-order Gauss–Markov
SOS second-order sections
YW Yule–Walker
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Abstract: Very Long Baseline Interferometry (VLBI) plays an indispensable role in the realization
of global terrestrial and celestial reference frames and in the determination of the full set of the
Earth Orientation Parameters (EOP). The main goal of this research is to assess the quality of the
VLBI observations based on the sensitivity and robustness criteria. Sensitivity is defined as the
minimum displacement value that can be detected in coordinate unknowns. Robustness describes
the deformation strength induced by the maximum undetectable errors with the internal reliability
analysis. The location of a VLBI station and the total weights of the observations at the station are
most important for the sensitivity analysis. Furthermore, the total observation number of a radio
source and the quality of the observations are important for the sensitivity levels of the radio sources.
According to the robustness analysis of station coordinates, the worst robustness values are caused by
atmospheric delay effects with high temporal and spatial variability. During CONT14, it is determined
that FORTLEZA, WESTFORD, and TSUKUB32 have robustness values changing between 0.8 and
1.3 mm, which are significantly worse in comparison to the other stations. The radio sources 0506-612,
NRAO150, and 3C345 have worse sensitivity levels compared to other radio sources. It can be
concluded that the sensitivity and robustness analysis are reliable measures to obtain high accuracy
VLBI solutions.

Keywords: very long baseline interferometry; sensitivity; internal reliability; robustness; CONT14

1. Introduction

Very Long Baseline Interferometry (VLBI) is used to measure the arrival time differences of
the signals that come from extragalactic radio sources to antennas separated by up to one Earth
diameter. The main principle of the VLBI technique is to observe the same extragalactic radio source
synchronously with at least two radio telescopes. Global distances can be measured with millimeter
accuracy using the VLBI technique [1,2].

In 1967, for the first time, VLBI was used for the detection of light deflection [3,4]. Nowadays,
VLBI is a primary technique to determine global terrestrial reference frames and in particular their
scale, celestial reference frame, and the Earth Orientation Parameters (EOP), which consist of universal
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time, and terrestrial and celestial pole coordinates [2]. Since VLBI is the only technique that connects
the celestial with the terrestrial reference frames, the technique is fundamentally different from the
other space geodetic techniques. The radio sources are objects in the International Celestial Reference
Frame (ICRF); however, the antenna coordinates are obtained in the International Terrestrial Reference
Frame (ITRF).

As a result of its important role in either the Celestial Reference Frame or the Terrestrial Reference
Frame, it is essential to investigate the quality of VLBI observations and its effect on the unknown
parameters. For this reason, the quality of the VLBI observations was investigated according to
sensitivity and robustness criteria. Although robustness and sensitivity criteria are not new methods in
geodesy, they have been applied to the VLBI observations for the first time in this study. The location
of the weak stations and radio sources were easily detected using sensitivity and robustness criteria.
Using reliability criteria allows detecting observations that have undetectable gross errors on the
unknown parameters. Besides, investigation of the sensitivity of the network against the outliers plays
a crucial role in the improvement of accuracy. In this way, the scheduling can be improved using this
method in the future.

Sensitivity criteria have been an inspiration for many scientific investigations. The criteria can be
explained as the network capability for the monitoring of crustal movements and deformations [5].
So far, mostly geodetic networks based on GPS measurements have been analyzed: sensitivity levels
were determined in [6], the datum definition was investigated using sensitivity in [7], a priori sensitivity
levels were computed in [8], and the determination of the experimental sensitivity capacities was
examined in [9].

Robustness criteria were developed as a geodetic network analysis alternative to standard
statistical analysis in [10]. Robustness analysis is the combination of the reliability analysis introduced
in [11] and the geometrical strength analysis. Robustness has been the main topic of many studies until
today. Different strain models were defined with homogeneous and heterogeneous deformation models
in [12]. The displacement vectors defined the effect of the undetectable gross error on the coordinate
unknowns, which was determined independently from the translation in [13]. In addition, to obtain
the corrected displacement vector, global initial conditions represented by the whole station network
were used. Local initial conditions aiming at minimizing the total displacement were developed for
the polyhedron represented by each network point as defined in [14].

The paper is organized as follows. Section 2 presents the theoretical background of the sensitivity
analysis in the VLBI network. Section 3 introduces the theoretical background of robustness. Section 4
investigates the sensitivity and robustness levels of the VLBI network observed during the continuous
campaign CONT14, a continuous VLBI session, which will be further described in Section 4. There,
15 VLBI sessions were evaluated, and the outliers were detected using the software VieVS@GFZ
(G2018.7, GFZ, Potsdam, Germany) [15], a fork from the Vienna VLBI Software [16]. The least-squares
adjustment module of the VieVS@GFZ software was modified to determine the sensitivity levels of the
stations and the radio sources and to obtain the robustness level of the observing stations. The sensitivity
levels of the stations and the radio sources were obtained using the developed module for the 15 24-h
sessions. The computed sensitivity levels of the stations and radio sources were compared session by
session. In addition, the deformation resistance induced by the maximum undetectable errors with
the internal reliability analysis was computed for each session. The obtained displacement vectors
were compared with threshold values. Conclusions and recommendations for further research will be
provided in Section 5.

2. The Sensitivity in the VLBI Network

Sensitivity is the minimum value of undetectable gross errors in the adjusted coordinate differences.
The sensitivity levels give information about the weakness of a network. The sensitivity level is
computed using the cofactor matrix of the displacement vector estimated from two different sessions.
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Using the adjusted coordinates x̂1, x̂2 and their cofactor matrices Q1
xx, Q2

xx based on different
sessions 1 and 2, the displacement vector (d) and the corresponding cofactor matrix (Qdd) for one point
(reference point of a station or radio source) are obtained using the following equations:

d = x̂1 − x̂2 (1)

Qdd = Q1
xx + Q2

xx. (2)

Alternatively, when it is aimed to obtain the sensitivity level of each session as a priori sensitivity
level, the cofactor matrix of the displacement vector is obtained as Qdd = Qxx [9,14] and the weight
matrix of the displacement vector for each station Pdi is computed by the following equations
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Pdi =
(
Qdidi

)−1
(6)

where i = 1, . . . , n is the number of stations, A is the design matrix, P is the weight matrix, N is
the normal equation system, ATPdl is the right-hand side vector, Qll is the cofactor matrix of the
observations, di is the displacement vector at the ith station, Pdi is the weight matrix of the displacement

vector at the ith station, and
..
Ni is the sub-matrix of the normal equation system for the ith station.

The obtained weight matrix Pdi is decomposed into its eigenvalue and eigenvector. The minimum
detectable displacement value—namely, the best sensitivity level (dmin)—depends on the inverse of
the maximum eigenvalue of the weight matrix (λmax) for each station

‖ d ‖min=
W0σ√
λmax

(7)

where σ is derived from the theoretical variance of the unit weight [6] and the threshold value of the
non-centrality parameter (W0) is determined through W0 = W(α0,γ0, h,∞) based on the power of the
test γ0 = 80%, the significance level α0 = 5%, and the degree of freedom h = 1 [17,18].

With single-session VLBI analysis, station and radio source coordinates, clock parameters,
pole coordinates, and Universal Time 1 (UT1) minus Universal Time Coordinated (UTC), celestial pole
coordinates, and atmosphere parameters can be determined [2,19]. To evaluate the VLBI observations,
the mathematical model of the least-squares adjustment is expanded by the matrix of constraints
H. The functional model for the actual observations l and constraint parameters lh can be written
as follows:

v = Ax− l (8)

vc = Hx− lh (9)
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where v is the residual vector, vc is the residual vector of constraints, and x denotes the vector of the
unknown parameters [20]. Accordingly, the functional model of the adjustment can be summarized
with the following symbolic equations: [

v
vc

]
=

[
A
H

]
x−

[
l
lh

]
(10)

and the corresponding stochastic model of the adjustment is written as:

P =

[
Pll

Pc

]
(11)

where Pll is the weight matrix of the actual observations, Pc is the weight matrix of the constraint
parameters, and the remaining elements of this block-diagonal matrix are equal to zero. According to
the adjustment model, the cofactor matrix of the unknown parameters is determined as:

Qxx =
(
ATPA + HTPcH

)−1
(12)

where Qxx covers all unknown parameters of the respective VLBI session.
Using the functional and the stochastic models, the unknown parameters are computed with a

free network adjustment. The cofactor matrix of the displacement vector of each station is as follows
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where u is the number of unknown parameters. For the first station, the matrix
..
Ni is determined as
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and the cofactor matrix of the displacement vector of the first station is obtained as
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In analogy, for each radio source, the cofactor matrix of the displacement vector is obtained using
the following equations
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. . . . . .

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
u,u

. (16)
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α and δ are the source equatorial coordinates defined as right ascension and declination, respectively,
and u is defined as above. For the first radio source, the matrix

..
Ni is determined as

..
N1 =

[
. . qα1α1 qα1α2 qα1δ1 qα1δ2 . .
. . qδ1α1 qδ1α2 qδ1δ1 qδ1δ2 . .

]
2,u

(17)

and the cofactor matrix of the displacement vector of the first radio source is

(
Qd1d1

)
2,2

=
..
N1N

..
N

T
1 =

[
qα1α1 qα1δ1

qδ1α1 qδ1δ1

]
2,2

. (18)

Subsequently, the corresponding weight matrix belonging to each station or radio source is
computed as shown in Equation (6), and the minimum value of the undetectable gross errors is found
by Equation (7).

3. The Robustness of VLBI Stations

Robustness is defined as a function of the reliability criteria [10]. On the other hand, the robustness
of a geodetic network is defined as the strength of deformation caused by undetectable gross errors with
the internal reliability analysis. The robustness analysis consists of enhancing the internal reliability
analysis with the strain technique [10,21].

Internal reliability can be interpreted as the controlling of an observation via the other observations
in a network. It can be quantified as the magnitude of the undetectable gross errors by using hypothesis
testing. For correlated observations, the internal reliability of the jth observation is obtained with the
following equations:

Δ0 j = m0

√
W0

eT
j PQv̂v̂Pe j

(19)

eT
j =

[
.. 0 0 1 0 . . .

]
(20)

where m0 is derived from the a posteriori value of the experimental variance, Qv̂v̂ is the cofactor matrix
of the residuals, eT

j is a selection vector, which consists of 1 for the jth observation and 0 for the other
observations; its dimension equals the total number of observations.

The robustness of each VLBI station is quantified as the effect of the maximal undetectable gross
error on the coordinate unknowns (Δx) [10,13,22] as

Δx = QATPΔ0 j (21)

Δ0 j
T =

[
.. 0 0 δ0 j 0 . . .

]
(22)

where Δ0 j
T is a vector, which consists of the internal reliability value of the jth observation and 0 for the

other observations, with the dimensions of the total number of observations. The displacement vector
can be written as

Δxi =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
Δxi
Δyi
Δzi

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
ui
vi
wi

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ (23)

where ui, vi, and wi are the displacement vector components in the x-, y-, and z-directions.

ΔxT
i =

[
Δx1; Δx2; . . . . . . . . . . . . . . . ; Δxj

]
(24)

The effect of the undetected gross error on the unknown coordinate is calculated for any coordinate
unknown. The effect can be obtained many times using each observation for any coordinate unknown.
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Each observation causes strain with different magnitude and direction. For this reason, the observation
having maximum effect on the coordinate unknowns must be identified

Δx0 j = max
{∣∣∣Δxj

∣∣∣}. (25)

It is supposed that the observation having a maximum vector norm causes maximum strain.
To compute the vector norm of each observation, the L1 norm is used as

‖Δxj‖ = |Δx1|+ |Δx2|+ . . .+ |Δxu| (26)

where u is the number of unknowns.
For the strain computation, the surface formed by the station and its neighboring stations,

which are connected through baselines, is used. The strain resulting from the effect of the undetectable
gross errors on the coordinate unknowns can be obtained for the polyhedron represented by each
network point, with affine or extended Helmert transformation models [14,22].

The displacement vector related to the strain parameters can be determined with the equations:⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
Δxi
Δyi
Δzi

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ = Ei

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
Xi −X0

Yi −Y0

Zi −Z0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ (27)

Ei =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
∂u
∂x

∂u
∂y

∂u
∂z

∂v
∂x

∂v
∂y

∂v
∂z

∂w
∂x

∂w
∂y

∂w
∂z

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
exx exy exz

eyx eyy eyz

ezx ezy ezz

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ (28)

where Ei is the strain tensor, X0, Y0, and Z0 are the initial conditions, Xi, Yi, and Zi are the coordinate
unknowns of the ith station located on the surface, exx is the rate of change in the x-direction with
respect to the position component in the x-direction [12].

The strain parameters are independent of the location of surfaces in the coordinate system.
For this reason, at each surface, the strain tensor is computed with a reference point P0 selected on the
surface. Using the obtained strain tensor, the objective function is linearized according to the initial
conditions via

n∑
i=1

(Δx)TET
i Ei(Δx)→ min (29)

n∑
i=1

ET
i Ei(Xi −X0) = 0 (30)

−
n∑

i=1

ET
i EiX0 +

n∑
i=1

ET
i EiXi = 0 (31)

where the initial conditions XT
0 = [X0 Y0 Z0] are computed as follows

X0 =

⎡⎢⎢⎢⎢⎢⎣ n∑
i=1

ET
i Ei

⎤⎥⎥⎥⎥⎥⎦
−1 n∑

i=1

ET
i EiXi . (32)

When inserting these initial conditions into Equation (27), the corrected displacement vector is
obtained [13]. In other words, the displacement vector is translated to the gravity center of the surface
computed as:

di =
√

u2
i + v2

i + w2
i . (33)
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If the corrected displacement vector is estimated from the surface represented by the whole
network of stations, the corrected global displacement vector is obtained. However, if the corrected
displacement vector is estimated from the surface represented by each station, local initial conditions
(XL0) are obtained as

XL0 =
(
ET

i Ei
)−1

ET
i Ei

m∑
i=1

Xi (34)

where m is the number of stations that have a baseline to the ith station. Using the local initial conditions,
the corrected local displacement vector is computed via Equation (27). The computed magnitudes of the
displacement vectors are compared with the threshold value estimated from confidence ellipsoids [23]:

Wi = m0

√
3Fh, f ,1−α0 trace(Qxx) (35)

where f is the degree of freedom, and α0 is the significance level.
In case of di > Wi, we conclude that the network station is not robust [13]. In other words,

the network is not sensitive enough to possible outliers and their disturbing effects on the
coordinate unknowns.

Due to the fact that the displacement vectors obtained for any station represent the effect of
undetectable errors on the coordinate unknowns [14,22], the displacement vectors can be compared to
the sensitivity levels dmin as well.

4. Results

In order to compare VLBI stations and radio sources approximately under the same conditions,
such as scheduling and station geographical distribution, we selected the continuous VLBI Campaign
2014 (CONT14) (https://ivscc.gsfc.nasa.gov/program/cont14) for the numerical test. CONT14 consists
of 15 continuous VLBI sessions observed from 2014-May-6, 00:00 UT to 2014-May-20, 23:59 UT.
The observations of CONT14 were evaluated session by session with the software VieVS@GFZ written
in MatLab©.

To obtain the sensitivity levels of the radio sources and stations, Equations (6), (7), and (13)–(18)
mentioned in Section 2 and, to obtain the robustness values of the network stations, Equations (19)–(26)
mentioned in Section 3 were added to the least-squares adjustment module in VieVS@GFZ.

In order to obtain the strain parameters on the surfaces, displacement vector components and
observed baselines were computed with a small C++ program for each session. According to the strain
parameters, magnitudes of the corrected local and global displacement vectors were determined for
each station and compared with the threshold values.

4.1. Results of the Sensitivity Analysis

The sensitivity level of a station reflects the total observation weights of the station and the
remoteness of the station in the network. A small sensitivity value indicates that a station is strongly
controlled by the other stations and hence, its sensitivity level is better.

According to the sensitivity analysis of the CONT14 campaign, the subset of European stations,
ONSALA60, WETTZELL, ZELENCHK, MATERA, YEBES40M, and partly NYALES20 have the best
sensitivity levels based on all sessions, whereas BADARY provides the worst sensitivity level based on
all sessions (Figure 1). Across the sessions, there are small but significant differences as well.

The sensitivity levels of the radio sources show that some radio sources in individual sessions have
orders of magnitude larger sensitivity levels, e.g., NRAO150, 3C345, 3C454.3, and 0506-612 (Figure 2).
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Figure 1. The sensitivity level distributions of the antennas in continuous VLBI Campaign 2014
(CONT14). On the horizontal axis, the antennas are displayed in their respective order of appearance,
i.e., unsorted.

Figure 2. The sensitivity distributions of the radio sources in CONT14. Sources appear randomly on
the horizontal axis.

4.2. Result of the Robustness Analysis

The robustness of the network is computed based on the internal reliability and reflects the
maximum effect of the undetectable gross error on the coordinate unknowns. In well-designed geodetic
networks, the internal reliability value of the observations can be expected below 8mi, which is defined
as the average error of the observations [8,24–27].

In each session, all observations were tested regarding whether they have gross errors. After the
outliers were detected and removed from the observation list, the internal reliability of the observations
was investigated.

In Figure 3, some internal reliability values with very large magnitudes can be easily identified.
To investigate the large internal reliability magnitudes, the radio sources (and baselines) involved
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in the observations were identified (Table 1). Comparing the findings to the sensitivity of the radio
sources, it could be seen that these radio sources also had the worst sensitivity magnitudes.

If an acceptable mathematical model is used for the adjustment, the statistical analyses can be
obtained confidently. For this reason, internal reliability and sensitivity analysis should be performed
for all observations.

After all observations of the radio sources mentioned in Table 1 were excluded, it was found
that the remaining internal reliabilities fell into a significantly smaller range in Figure 4 compared
to Figure 3. Using the outlier-free radio source list, the sensitivity level of the radio sources was
obtained. It is seen that radio source 3C454.3 has the maximum sensitivity level (Figure 5). In order
to investigate the robustness of the stations with best quality observations, the radio sources having
the worst sensitivity levels were excluded. When the observations are reduced according to both
internal reliability and the sensitivity levels, the internal reliability criteria can be obtained for the
well-designed network.

Figure 3. Internal reliability values of the observations in session 14MAY08XA (CONT14) (observations
exceeding the red line were identified as outliers and excluded).

Figure 4. Internal reliability values of the outlier-free observations in session 14MAY08XA.
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Table 1. Observations with largest internal reliability values in session 14MAY08XA.

Session Observation Number Internal Reliability Baseline Radio Source

14MAY08XA

3735 1.83 × 103 MATERA-YEBES40M NRAO150
(0355+508)

14,144 1.71 × 103 MATERA-ZELENCHK 3C345
(1641+399)

7903 6.35 × 101 ONSALA60-ZELENCHK 2134+00
(2134+004)

1702 1.75 × 101 FORTLEZA-HART15M 1057−797
8661 2.83 × 101 WESTFORD-FORTLEZA 2128−123

14,855 1.18 × 101 KATH12M-YARRA12M 0506−612

After this step, the robustness values of the stations were computed. For this purpose, the observation
having maximum effect on the coordinate unknowns in each session was selected for the robustness
analysis. According to Table 2, it is clearly seen in all sessions that the FORTLEZA station is affected.
Table 2 also displays the radio sources that were involved in the observations affecting FORTLEZA.
However, the radio sources are identified as rather compact sources because of their small CARMS
(closure amplitude rms) values based on natural weighting [28], which are below 0.4.

As mentioned above, the maximum effect of undetected gross error on the station coordinates is
called a displacement vector, and it was computed using Equation (21) for CONT14. According to the
obtained displacement vector components for CONT14, the magnitudes of the displacement vector
components in both x and y directions are about the same but with a different sign, whereas the
magnitude in the z direction is about one order of magnitude smaller. In all sessions, FORTLEZA is
the most affected one due to undetected gross errors. If we focus on the motion of FORTLEZA during
CONT14, the x component of the displacement vector was found to be about between 2 and 4 mm
(Figure 6).

Figure 5. The sensitivity distribution of the radio sources after outlier elimination in session 14MAY08XA.

In each session, the robustness of the stations was obtained with the displacement vector
components. To obtain the strain parameters, the surface that was used consists of the station and
its neighboring stations connected through baselines. The strain parameters were computed using
Equation (27) for the surface that contains each antenna. Using the strain parameters computed for all
surfaces represented by the stations, the local displacement vectors were translated according to the
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gravity center of the surfaces with Equations (27) and (34). The distributions of the local displacement
vector magnitudes are illustrated in Figure 7 for one session only: 14MAY08XA.

Table 2. List of observations with a maximum effect of the undetectable gross error on the station
coordinates distribution during CONT14.

Session Observation
Number

Baseline
Baseline

Length (km)
Affected
Station

Radio
Source

CARMS Nat.
Weight. [28]

14MAY06XA 8973 FORTLEZA-ZELENCHK 8649 FORTLEZA 0454−234 0.17
14MAY07XA 2370 FORTLEZA-HART15M 7025 FORTLEZA 1057−797 0.20
14MAY08XA 13,887 FORTLEZA-WESTFORD 5897 FORTLEZA 0119+115 0.24
14MAY09XA 2207 FORTLEZA-HART15M 7025 FORTLEZA 1057−797 0.20
14MAY10XA 14,313 FORTLEZA-HART15M 7025 FORTLEZA 1424−418 0.18
14MAY11XA 12,560 FORTLEZA-HART15M 7025 FORTLEZA 1424−418 0.18
14MAY12XA 9264 FORTLEZA-HART15M 7025 FORTLEZA 0727−115 0.14
14MAY13XA 15,509 FORTLEZA-WESTFORD 5897 FORTLEZA 0420−014 0.21
14MAY14XA 6772 FORTLEZA-TSUKUB32 12252 FORTLEZA 1611+343 0.36
14MAY15XA 16,477 FORTLEZA-HART15M 7025 FORTLEZA 1751+288 0.18
14MAY16XA 8241 FORTLEZA-HART15M 7025 FORTLEZA 0454−234 0.17
14MAY17XA 5831 FORTLEZA-HART15M 7025 FORTLEZA 0308−611 0.40
14MAY18XA 14,080 FORTLEZA-KATH12M 12553 FORTLEZA 1424−418 0.18
14MAY19XA 1746 FORTLEZA-HART15M 7025 FORTLEZA 1057−797 0.20
14MAY20XA 35 FORTLEZA-WETSFORD 5897 FORTLEZA 0727−115 0.14

Figure 6. The effect of the undetectable gross errors on station coordinates of FORTLEZA.

Figure 7. Distribution of local displacement vector magnitudes for Very Long Baseline Interferometry
(VLBI) antennas in session 14MAY08XA.
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According to Figure 7, FORTLEZA, WESTFORD, and TSUKUB32 have the largest displacement
vector magnitudes ranging between 0.8 and 1.3 mm. It can be easily seen that these antennas are
affected by the observation having the maximum effect of the undetectable gross errors on the
station coordinates.

To address the robustness of the antennas, the computed local displacement vector values were
compared to the threshold values obtained applying Equation (35) and the sensitivity levels of the
stations as obtained with Equation (7). It was found that all the stations are robust against undetectable
gross errors, since the magnitudes of the local displacement vectors are smaller than the threshold
values (Figure 8).

Figure 8. Robustness analysis for VLBI stations in session 14MAY08XA.

5. Discussion

In an astronomical aspect, the structure of the radio sources can cause errors [29], and the
astrometric quality of the radio sources is defined by the structure index. Sources with an X-band
index of 1 or 2 and S-band index of 1 can be considered as sources of the best astrometric quality.
Furthermore, it is recommended that sources with an X-band index of 3 or 4 should not be used [30].
Besides that, previous studies indicate that source structure is a major error source in geodetic VLBI [31].
Sources such as 3C345, 2128−123, and 2134+004 having observations with larger internal reliability
values compared to the other sources have a structure index (http://bvid.astrophy.u-bordeaux.fr/) of
4.13, 4.56, and 3.73, respectively, in the X-band. In addition, radio source NRAO150 with a structure
index of 2.06 in the S-band has also observations with larger internal reliability. If the radio sources are
compared in the view of their sensitivity levels and structure indices, it can be easily understood that
the radio source 3C454.3 having a larger sensitivity level has a structure index of 2.9 in the S-band and
of 3.84 in the X-band. The radio source 3C454.3 is defined as a quasi-stellar object (QSO) with a core-jet
structure that elongates toward the west and bends toward the north-west.

In the robustness analysis, an observation having a maximum effect on the coordinate unknowns
more seriously affects those stations used for observing it and their neighboring stations connected with
baselines than the other stations in the network. For this reason, network geometry and observation
plans are substantial for the robustness analysis. According to the result of the robustness analysis,
the observation on the FORTLEZA–WESTFORD baseline has a maximum effect on the coordinate
unknowns. In other words, larger magnitudes of the displacement vectors at these stations are obtained.
As a result, both FORTLEZA and WESTFORD stations have larger robustness values. In addition,
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because of the network geometry and the observation plan, TSUKUB32 has larger robustness value
than the other stations.

Although the selection of CONT14 is convenient for an initial analysis, the measurements may
have systematic errors that cannot be detected in the error analysis because of the short duration of the
campaign. Therefore, sensitivity levels of the antennas and the radio sources and robustness values of
VLBI antennas may be determined too optimistically.

According to our results, the internal reliability values of the observations and the sensitivity
levels of the sources can be used to investigate the source quality together with the structure index.
The sources can be excluded based on their sensitivity levels and structure indices. For this reason,
it can be considered that robustness and sensitivity criteria can play a substantial role in scheduling in
the future.

The software VieVS@GFZ was modified to determine the sensitivity levels and to detect the
observations that are having a maximum effect on the coordinate unknowns. It can be used easily
for routine analysis of VLBI sessions. However, to obtain the strain parameters and the robustness
analysis, VieVS@GFZ should be further modified in the future.

6. Conclusions

In this research, we performed a quality assessment of VLBI observations during CONT14.
The radio sources and the VLBI stations that took part in the CONT14 sessions were analyzed according
to their sensitivity levels. Furthermore, a robustness analysis was applied for the antennas.

The controllability of one station through the other stations can be investigated by the sensitivity
analysis. The location of the station in the network and the total weights of its observations are the
most important contributors for the sensitivity. On the other hand, the total observation number of a
radio source, and the quality of the observations are also important for the sensitivity levels of the
radio sources. It was also found that the investigation of the relationship between the structure of radio
source and their sensitivity level is of interest.

According to the robustness analysis of the station coordinates, all of the stations are robust against
undetectable gross errors. Some of the stations such as FORTLEZA, WESTFORD, and TSUKUB32
have significantly worse robustness in comparison to the other stations. It is possible that the worst
robustness values can be due to the effects of the atmosphere that changes very much with time
and with the location of the stations. Another explanation could be the remoteness of the station in
the network.
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Abstract: Global navigation satellite systems (GNSS) are an important tool for positioning, navigation,
and timing (PNT) services. The fast and high-precision GNSS data processing relies on reliable integer
ambiguity fixing, whose performance depends on phase bias estimation. However, the mathematic
model of GNSS phase bias estimation encounters the rank-deficiency problem, making bias estimation
a difficult task. Combining the Monte-Carlo-based methods and GNSS data processing procedure
can overcome the problem and provide fast-converging bias estimates. The variance reduction of the
estimation algorithm has the potential to improve the accuracy of the estimates and is meaningful
for precise and efficient PNT services. In this paper, firstly, we present the difficulty in phase
bias estimation and introduce the sequential quasi-Monte Carlo (SQMC) method, then develop the
SQMC-based GNSS phase bias estimation algorithm, and investigate the effects of the low-discrepancy
sequence on variance reduction. Experiments with practical data show that the low-discrepancy
sequence in the algorithm can significantly reduce the standard deviation of the estimates and shorten
the convergence time of the filtering.

Keywords: GNSS phase bias; sequential quasi-Monte Carlo; variance reduction

1. Introduction

Global navigation satellite systems (GNSS) are widely used in positioning, navigation, and timing
(PNT) services. The accuracy of the precise positioning can reach the level of centimeters and satisfy
a pervasive use in civil and military applications. GNSS is being developed at a fast pace, and the
systems in full operation at present include the United States of America (USA)’s Global Positioning
System (GPS) and Russia’s Global Navigation Satellite System (GLONASS). The European Union plans
to complete the construction of the Galileo system, while China is going to fully operate the BeiDou
Navigation Satellite System (BDS) by 2020 [1,2]. The basic principle of GNSS data processing is to
mathematically solve the interesting PNT parameters in the observation models with measurements of
the distances between GNSS satellites and receivers. However, the biases in the signal measurements
lead to errors in the models and degrade the accuracy of the solutions. Consequently, the bias estimation
plays an important role in the quality of the final PNT services [3–5]. Reducing the variance of the bias
estimates can more precisely recover the measurements and improve the service quality.

Fast and precise GNSS data processing uses the carrier-wave phase measurement by the receivers.
The phase measurement only records the fractional part of the carrier phase plus the cumulated numbers.
Therefore, the phase measurements from GNSS receivers are not directly the satellite–receiver distance,
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and an additional unknown integer ambiguity needs to be solved so that the distance can be recovered.
Methods for solving the integer ambiguities were investigated in the past few decades, and some
effective approaches such as the ambiguity function method (AFM) and the Least-squares ambiguity
Decorrelation Adjustment (LAMBDA) method were proposed, which are widely used in practice [6,7].
The LAMBDA method-based GNSS data processing is usually composed of four steps [6,8]. Firstly,
the interesting parameters for PNT services are estimated together with the unknown ambiguities by
the least-squares method or Kalman filtering. Secondly, the integer ambiguities are resolved according
to the float estimates and variance–covariance (VC) matrix by decorrelation and searching methods.
Thirdly, the searched integer ambiguities are validated to assure that they are the correct integers.
Fourthly, the interesting unknown parameters of PNT services in the measurement models are derived
with the validated integer ambiguities. The reliable ambiguity resolution is critical for fast and precise
PNT services. The above steps work well when the errors of the measurements are small, but the
performance degrades quickly when the errors grow. The errors of the phase measurements affect the
solutions of the float ambiguities in the first step and destroy the integer nature of the ambiguities that
are searched in the second step. As a result, the fixed integer vector cannot pass the validation in the
third step and, thus, the fast and precise GNSS PNT services will be unreachable.

GNSS signals propagate through the device hardware when they are emitted from the satellite or
received by the receivers, leading to time delays, i.e., biases. The biases play the role of errors in the
measurements when they cannot be successfully estimated and, thus, block the success of ambiguity
fixing. The difficulty in the phase bias estimation lies in the correlation between the unknown bias
and the ambiguity parameters. This correlation leads to rank-deficiency of the equation set and, thus,
the parameters cannot be solved by the least-squares method or Kalman filtering method in the first
step of ambiguity fixing [9,10]. It should be noted that estimation of some parameters leading to
rank-deficiency in GNSS data processing can be avoid by the techniques such as S-system theory [11].
However, those techniques focus on solving the estimable parameters and cannot solve the problems
when the inestimable parameters are critical. In this case, if we want to estimate the bias parameter
or the ambiguity parameter accurately, the conventionally inestimable parameter must be accurately
known, which is a dilemma for GNSS researchers. Fortunately, the Monte Carlo-based approaches have
the potential to solve this dilemma [12,13]. Furthermore, it can be found in references that the Monte
Carlo method is also used for the ambiguity resolution without phase error estimation in attitude
determination [14] and code multipath mitigation with only code observations [15]. Those researches
use different ideas in data processing and are not related to the topic of phase bias estimation.

The sequential Monte Carlo (SMC) method or particle filtering is used in the state-space approach
for time series modeling since the basic procedure proposed by Goden [16] (see the descriptions
in References [16–18]). The SMC is mainly to solve problems with non-Gaussian and non-linear
models, while it is rarely used in GNSS data processing. SMC can be regarded as Bayesian filtering
implemented by the Monte Carlo method [19]. A state-space model, i.e., hidden Markov model,
can be described by two stochastic processes {xt}Tt=1 and

{
y
}T
t=1. The latent Markov process of initial

density satisfies x0 ∼ μ(x0), and the Markov transition density is f (xk|xk−1), with
{
y
}T
t=1 satisfy g(yk|xk),

which is a conditional marginal density. Bayesian filtering gives the estimation of the posterior
density P(xk|y1:k) = g(yk|xk)g(xk|xk−1)/P(yk|y1:k−1), where P(yk|y1:k−1) is a normalizing constant.
The analytical solution P(xk|y1:k) can be derived for some special cases such as the solution of a Kalman
filter for linear models with Gaussian noise. Otherwise, the analytical solution is not available, and
the Monte Carlo-based solutions can be used to approximate the solution via random samples as
SMC. The probability density of the variable is represented by weighted samples, and the estimates
can be expressed by xk = 1/N

∑N
i=1 xi

k. The SMC is mainly composed of three steps according to
References [20,21], the update step which updates the weighs of the particles according to g(yk|xk),
the resampling step to avoid degeneracy indicating most particles with weights close to zero, and the
prediction step which transits the particles to the next epoch.
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However, the random sequence used in the Monte Carlo method has possible gaps and clusters.
Quasi-Monte Carlo (QMC) replaces the random sequence with a low-discrepancy sequence which can
reduce the variance and has better performance [22–25]. Until now, the QMC-based variance reduction
method in GNSS data processing was not addressed. This study aims to combine the GNSS data
processing procedure and the sequential QMC (SQMC) methods to obtain precise GNSS phase bias
estimates. The paper firstly gives an overview of the mathematical problem in GNSS bias estimation
and then provides a renewed algorithm introducing the variance reduction method based on QMC to
precisely estimate GNSS phase bias.

The remainder of this article is structured as follows: Section 2 presents the procedure and
mathematical models of the GNSS data processing and introduce the difficulties in phase bias
estimation. Section 3 gives an overview of the QMC theory. Section 4 describes the proposed GNSS
phase bias estimation algorithm based on the SQMC method. Section 5 gives the results of phase bias
estimation with practical data, and Section 6 draws the key research conclusions.

2. Mathematic Models of GNSS Precise Data Processing and the Dilemma

The code and phase measurements are usually used to derive the interesting parameters for GNSS
services. The code measurement is the range obtained by multiplying the traveling time of the signal
when it propagates from the satellite to the receiver at the speed of light. The phase measurement is
much more precise than the code measurement but is ambiguous by an unknown integer number of
wavelengths when used as range, and the ambiguities are different every time the receiver relocks the
satellite signals [7].

In the measurement models, the unknowns include not only the coordinate parameters, but also
the time delays caused by the atmosphere and device hardware, as well as the ambiguities for phase
measurement. In relative positioning, the hardware delays can be nonzero values and should be
considered in multi-GNSS and GLONASS data processing, i.e., inter-system bias (ISB) [9,10,26] and
inter-frequency bias (IFB) [27], respectively. The ISB and IFB of the measurements are correlated with
the ambiguities and are the key problems to be solved.

The double difference (DD) measurement models are usually constructed to mitigate the common
errors of two non-difference measurements. For short baselines, the DD measurement mathematical
models including the interesting parameters for GNSS PNT services, such as coordinates for positioning,
the unknown ambiguities, and the ISB or IFB parameters, can be written in the form of matrices as

v = Ax + Db + Cy + l, (1)

where v denotes the vector of observation residuals; b is composed of unknown single difference
(SD) ambiguities

(
Ni1

ab, Ni2
ab, . . . , Nin

ab

)
, where i is the reference satellite and n is the number of the

DD-equations, and a and b are the stations; y includes the ISB and IFB rate; vector x contains the
unknown station coordinate and the other interesting parameters; l is the measurements from the
receiver; A is the design matrix of the elements in x; D is the design matrix with elements of zero and
the corresponding carrier wavelength. Matrix D transforms SD ambiguities to DD ambiguities; C is
the design matrix of y with elements of zero and the SD of the channel numbers for phase IFB rate
parameter, with elements of zero and one for the phase ISB parameter.

GNSS data processing such as for precise positioning is used to precisely determine the elements
in x. Denoting the weight matrix of the DD measurements [7] by P, the normal equation of the
least-squares method is ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

ATPA ATPD ATPC
DTPD DTPC

sym CTPC

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

x
b
y

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

ATPl
DTPl
CTPl

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦. (2)
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For simplification, the notation in Equation (3) is used.⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
Nxx Nxb Nxy

Nbb Nby
sym Nyy

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

x
b
y

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

Wx

Wb
Wy

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦. (3)

If the bias vector y is precisely known, the estimation of x can be realized by following four steps.
Step 1: Derive the solution of x and b with float SD-ambiguities by least-squares method.[

x̂
b̂

]
=

[
Nxx Nxb
Nbx Nbb

]−1[
Wx −Nxyy
Wb −Nbyy

]
=

[
Qxx Qxb
Qbx Qbb

][
Wx −Nxyy
Wb −Nbyy

]
. (4)

After the float SD ambiguities in b are estimated, the SD ambiguities and their VC matrix are transformed
into DD ambiguities bD̂D̂ and the corresponding VC matrix Qb̂b̂ by differencing.

Step 2: Fix the integer ambiguities. The elements of b̂DD are intrinsically integer values but
the values calculated are floats. Resolving the float values to integers can improve the accuracy to
sub-centimeter level with fewer observations [28]. The ambiguity resolution can be expressed by

b̌ = F
(
b̂
)
, (5)

where function F() maps the ambiguities from float values to integers. This process can be
implemented by the LAMBDA method [6,8] which can efficiently mechanize the integer least square
(ILS) procedure [29]. This method is to solve the ILS problem described by

min
(
b̂− b

)T
Qb̂b̂

−1
(
b̂− b

)
, with b ∈ Zn, (6)

where b denotes the vector of integer ambiguity candidates. The LAMBDA procedure contains mainly
two steps, the reduction step and the search step. The reduction step decorrelates the elements in b̂
and orders the diagonal entries by Z-transformations to shrink the search space. The search step is a
searching process finding the optimal ambiguity candidates in a hyper-ellipsoidal space.

Step 3: Validate the integer ambiguities. The obtained ambiguity combination b̌ is not guaranteed
to be the correct integer ambiguity vector and it requires to be validated. The R-ratio test [29,30] can be
employed. This test tries to ensure that the best ambiguity combination, which is the optimal solution
of Equation (6), is statistically better than the second best one. The ratio value is calculated by

RATIO = ‖b̂− b̌
′ ‖2Qb̂b̂/

(
‖b̂− b̌

2‖Qb̂b̂

)
, (7)

where b̌
′

is the second best ambiguity vector according to Equation (6). The integer ambiguity vector b̌
will be accepted if the ratio value is equal to or larger than a threshold, and it will be refused if the ratio
value is smaller than the threshold.

Step 4: Derive the fixed baseline solution. After the integer ambiguity vector passes the validation
test, b̌ is used to adjust the float solution of other parameters, leading to the corresponding fixed
solution. This process can be expressed by

x̌ = x̂−Qx̂b̂Qb̂b̂
−1
(
b̂− b̌

)
, (8)

Qx̌x̌ = Qx̂x̂ −Qx̂b̂Qb̂b̂
−1Qb̂x̂, (9)

where x̌ denotes the fixed solution of x; Qx̌x̌ is the VC matrix of the fixed solution x̌; Qb̂x̂ is the VC
matrix of b̂ and x̂; b̂ refers to the float ambiguity solution; x̂ is the float solution of x.
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The fixed solution x̌ can reach sub-centimeter level. If errors in the observation models are removed,
the successful ambiguity fixing requires observations of only a few epochs, even a single epoch.

From Equations (5) and (6), the successful ambiguity resolution requires accurate float ambiguity
estimates and the corresponding VC matrix. If the bias in y is unknown, the bias cannot be separated by
Equation (4) but stays with the ambiguity parameter. As a result, the obtained ambiguity parameters
include bias and the ambiguity resolution will fail. When both the bias and the ambiguity are
parameterized simultaneously, the bias parameter is correlated with the ambiguity parameter and, thus,
it is impossible to separate the bias values and get precise float ambiguities estimates. Mathematically,
the normal equation set (Equation (2)) will be rank-deficient and cannot be solved.

3. Monte Carlo-Based Algorithms

3.1. Bayes Filtering

In a state-space model, the transition function and the measurement model can be expressed by

xk = fk(xk−1, εk), (10)

yk = hk(xk, ek), (11)

where yk is the measurement vector at epoch k; fk() is the transition function; hk() is the measurement
function; εk and ek are the state noise and the measurement noise, respectively. This model indicates
a first-order Markov process because the estimated state vector is only related to the states of the
previous epoch k− 1, but not to other states before.

Considering the Chapman–Kolmogorov equation [31],

p
(
xk|y1:k−1

)
=

∫
p(xk|xk−1) p

(
xk−1|y1:k−1

)
dxk−1, (12)

the posterior density p
(
xk|y1:k

)
can be estimated according to the Bayes’s theorem by

p
(
xk|y1:k

)
= p

(
yk|xk

)
p
(
xk|y1:k−1

)
/p
(
yk|y1:k−1

)
. (13)

The expectation of x can, hence, be expressed by

x̂ =

∫
xp
(
xk|y1:k

)
dx. (14)

Combining Equations (12) and (13), the estimates of x on each epoch can be calculated theoretically.
The optimal analytical expression for p

(
xk|y1:k

)
can be derived for a linear Gauss–Markov model as

a Kalman filter but cannot be obtained for most cases. Fortunately, the suboptimal solutions by the
Monte Carlo method are usually available.

3.2. Importance Sampling

In Monte Carlo methods, the probability density function (PDF) p
(
xk|y1:k

)
is represented by N

samples
{
xi
}N
i=1

; therefore,

p
(
xk|y1:k

)
≈ 1

N

∑N

i=1
δ
(
x− xi

)
⇒ x̂ ≈ E

({
xi
}N
i=1

)
, (15)

where δ() is the Dirac delta function.
The posterior density is not precisely known at the beginning of epoch k. Assuming a prior

PDF q(x) is known from which the samples can be generated and p(x) is the posterior density to be
estimated, after the samples are generated, they can be used to load the information provided by the
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measurements at epoch k and obtain more precisely posterior density. The expectation of the unknown
state vector can be calculated by

xˆ=
∫

xp(x)dx =

∫
xp(x)/q(x)q(x)dx =

∫
x(p(x)/q(x))q(x)dx=

∫
x w(x) q(x)dx, (16)

where w(x) = p(x)/q(x); q(x) is the importance density function.
As the PDFs are represented via the Monte Carlo method and according to the Bayes’s theorem,

the expectation can be written as

x̂ ≈ 1
N

∑N

i=1
wixi, (17)

where wi of xk is derived by w̃(xk) =
∑N

i=1 wi
k−1p

(
yk|xk

)(
p
(
xk|xi

k−1

)
/q
(
xk|xi

k−1, yk

))
.

3.3. Sequential Monte Carlo Algorithm

A sequential importance sampling (SIS) procedure can be implemented to get estimates of x.

Firstly, sample set
{
xi

0

}N
i=1

is generated with equal weights according to the initial distribution q(x0).
Then, the samples are reweighted according to the likelihood of the measurements and the estimates x̂
are calculated. Afterward, the samples are transited to the next epoch. In practice, the SIS quickly
degenerates during the filtering as more and more particles get negligible weights. Fortunately,
the degeneracy problem can be solved by resampling which duplicates the samples with large weights
and deletes the samples with small weights.

The resampling step is implemented as follows: (a) the numerical CDF
{
Wi

k

}N
i=1

of x is constructed

with Wi
k =

∑i
j=1 wj

k; (b)CDF {ui}Ni=1 is generated by ui = ((i− 1) + ũ)/N, where ũ is a random value
over interval [0, 1); (c) m = 1; for each i = 1, . . . , N, if w̃m

k <ui, xm
k is deleted by setting m = m + 1;

otherwise, xm
k is duplicated by setting xi

k = xm
k ; (d) the new sample set

{
xi

k

}N
i=1

is assigned equal weights.
It is not necessary to resample the samples each epoch, and a condition can be set by comparing

the effective number with a threshold. This resampling procedure adequately solves the degeneracy
problem in SIS in practice. Considering the resampling step, the SMC procedure can be implemented
as Algorithm 1.

Algorithm 1: Sequential Monte Carlo (SMC)

(a) Initialization Generate samples
{
xi

0

}N
i=1

, with xi
0 ∼ q(x0).

(2) Update Update the weights according to likelihood function p
(
yk|xi

k

)
of measurements with

wi
k = wi

k−1p
(
yk|xi

k

)
.

Normalize the weights by wi
k = wi

k/
∑N

j=1 wj
k

Calculate the estimated value and variance by x̂k ≈
∑N

i=1 xi
kwi

k and

var(x̂k) ≈
∑N

i=1

(
xi

k − x̂k
)(

xi
k − x̂k

)T
wi

k, respectively.
(c) Resampling Implement resampling if Ne f f < Nth,

where Ne f f is the effective number of samples which is calculated by Ne f f =

1/
∑N

i=0

(
wi

k

)2
and Nth is a threshold which can be set to the value of 2/3N.

(d) Prediction Draw new samples
{
xi

k

}N
i=1

, by xi
k = f

(
xi

k−1

)
+ vk.

Repeat steps (b) to (d) for the next epoch k + 1.

3.4. Sequential Quasi-Monte Carlo Algorithm

The pseudo random numbers usually used in the Monte Carlo method encounter possible gaps
and clusters in the sampling fields. This can be avoided by a QMC method which replaces the random
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sequences with low-discrepancy sequences such as the Sobol sequence, Halten sequence, and so
on [32,33].

The QMC sequence is a deterministic sequence and is uniformly distributed over [0, 1]d. Let
{
ui
}N
i=1

be a sequence of vectors in [0, 1]d and = [0, x] be a subinterval of [0, 1]d. is the sub sequence of
{
ui
}N
i=1

first belonging to . The discrepancy of the sequence is defined by

D∗
({

ui
}N
i=1

)
= sup

x∈[0,1]d

∣∣∣∣∣# o f
N

−
∏d

j=1
xi
∣∣∣∣∣, (18)

where sup refers to the supremum. A sequence with small discrepancy defined by the above formula
is named a low-discrepancy sequence. Koksma–Hlawka theorem indicates that the approximation
error of a real function represented by discrete numbers, i.e., the left side of Equation (19), is bounded
by the product of two independent factors, the variation of the real function, and the discrepancy of
the discrete numbers. Therefore, we have the following inequality:

| 1
N

∑N

i=1
f
(
ui
)
−
∫
[0,1]d

f (u)du| ≤ V( f )D∗
({

ui
}N
i=1

)
, (19)

where V( f ) is the variation of f in the sense of Hardy and Krause [34]. A low-discrepancy sequence

has D∗
({

ui
}N
i=1

)
= O

(
N−1

(
lnd N

))
. This indicates that the QMC estimate for numerical integration has

a probabilistic error bound of O
(
N−1

(
lnd N

))
, which is better than the error bound of MC estimate

O
(
N−1/2

)
. This can improve the convergence and enables efficient computing.

It is difficult to analyze the accuracy of the approximation by QMC in practice as the points are
regular. Therefore, randomized QMC (RQMC) can be used so that every element of the sequence
is uniformly distributed over the unit cub but still has a low-discrepancy property [35–37]. Figure 1
shows the first 200 samples of the sequences for RQMC sampling, pseudo-random sampling, and
the corresponding Gaussian sampling with a Sobol sequence. The SQMC algorithm is presented in
Algorithm 2.

Figure 1. The 200 points investigated for the randomized quasi-Monte Carlo (RQMC) sampling,
pseudo-random sampling, and the corresponding Gaussian sampling with a Sobol sequence.
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Algorithm 2: SQMC

(a) Initialization Generate a QMC or RQMC points
{
ui
}N
i=1

where ui ∈ [0, 1]d; generate
{
xi

0

}N
i=1

according

to xi
0 = q−1

(
ui
)
, where q(x) is the prior density of x.

(b) Update Update the weights according to likelihood function p
(
yk|xi

k

)
of measurements with

wi
k = wi

k−1p
(
yk|xi

k

)
.

Normalize the weights by wi
k = wi

k/
∑N

j=1 wj
k, Calculate the estimated value and

variance by x̂k ≈
∑N

i=1 xi
kwi

k and var(x̂k) ≈
∑N

i=1

(
xi

k − x̂k
)(

xi
k − x̂k

)T
wi

k, respectively.
(c) Resample Resample if Ne f f < Nth,

where Ne f f is the effective number of samples which is calculated by

Ne f f = 1/
∑N

i=0

(
wi

k

)2
and Nth is a threshold which can be set to the value of 2/3N.

(d) prediction Generate a QMC or RQMC points
{
ui
}N
i=1

where ui ∈ [0, 1]d ‘ draw new samples
{
xi

k

}N
i=1

according to p
(
xk|y1:k−1

)
with

{
ui
}N
i=1

.
Repeat steps (b) and (c) for the following epochs.

4. SQMC-Based Algorithm for Phase Bias Estimation

The ratio for integer ambiguity validation in step 3 of Section 2 reflects the closeness of the float
ambiguity vector to the integer ambiguity vector and, thus, shows the quality of the ambiguity fixing
performance. If the ambiguity is successfully fixed to the integer ambiguities with high probability,
the phase bias can be precisely derived. Although the searching and validation step cannot be
linearized to satisfy the conditions for using the linear least-squares methods, we can count on the
Monte Carlo-based method to develop algorithms for precise phase bias estimation.

The ratio value used in the ambiguity validation reflects the quality of the integer ambiguity fixing
performance as used in the ambiguity validation. If bk is the correct ambiguity vector and xk represents
the phase bias parameters at epoch k, we can have the assumption that the conditional probability
density p(bk|xk) has the proportional relationship p(bk|xk) ∝ ratio(xk), and simply let

p
(
bk|xi

k

)
= ratio

(
xi

k

)
/
∑N

i=1
ratio

(
xi

k

)
. (20)

The PDF p(bk|xk) is then used as the likelihood function in the Monte Carlo-based estimation method
to update the weights. This is expressed as

wi
k = wi

k−1p
(
bk|xi

k

)
= wi

k−1ratio
(
xi

k

)
/
∑N

i=1
ratio

(
xi

k

)
. (21)

This designed likelihood function works for the estimation of the phase biases which affect the ratio
values in ambiguity fixing.

The following procedure is implemented to calculate ratio
(
xi

k

)
at epoch k for each element in sample

set
{
xi

k

}N
i=1

: (a) xi
k is used as known bias values to calibrate the measurement model by Equation (4)

and solve the equation set to get float SD ambiguities and the corresponding VC matrix; (b) the DD
ambiguities and the VC matrix are calculated, and the integer ambiguities are fixed using the LAMBDA
method; (c) ratio

(
xi

k

)
is calculated using Equation (7).

Moreover, the phase bias can be regarded as constant between epochs, and the transition function
which transports samples from epoch k− 1 to epoch k is

xi
k = xi

k−1 + vi, (22)

where v is the normal distributed noise with each element v ∼ N(0, σ).
The flowchart of the SQMC procedure for phase bias estimation is plotted in Figure 2, and the

corresponding algorithm is presented as Algorithm 3.
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Figure 2. Flowchart of the global navigation satellite system (GNSS) phase bias estimation. The blue
boxes refer to the GNSS data processing steps and the yellow boxes are related to SQMC.

Algorithm 3: GNSS phase bias estimation (SQMC)

Initialization Generate a QMC or RQMC points
{
ui
}N
i=1

where ui ∈ [0, 1]d; generate
{
xi

0

}N
i=1

according

to xi
0 = q−1

(
ui
)
, where q(x) is the prior density of x.

Update Update the weights according to likelihood function p
(
yk|xi

k

)
of measurements with

wi
k = wi

k−1p
(
bk|xi

k

)
.

Normalize the weights by wi
k = wi

k/
∑N

j=1 wj
k, Calculate the estimated value and

variance by x̂k ≈
∑N

i=1 xi
kwi

k and var(x̂k) ≈
∑N

i=1

(
xi

k − x̂k
)(

xi
k − x̂k

)T
wi

k, respectively.
Resample Resample if Ne f f < Nth,

where Ne f f is the effective number of samples which is calculated by

Ne f f = 1/
∑N

i=0

(
wi

k

)2
and Nth is a threshold which can be set to the value of 2

3 N.

prediction Generate a QMC or RQMC points
{
ui
}N
i=1

where ui ∈ [0, 1]d; draw new samples
{
xi

k

}N
i=1

with noise of N−1
({

ui
}N
i=1

)
.

Repeat steps 2 and 3 for the following epochs.

Algorithm 3 combines the QMC method and the GNSS ambiguity fixing procedures together
to estimate the GNSS phase bias. The low-discrepancy sequences of QMC are included for variance
reduction. Section 5 shows the applications of the approach with practical GNSS data.

5. Experiments with Practical GNSS Data

The GLONASS phase IFB estimation of baseline GOP6_GOP7 in networks of international GNSS
service (IGS) (ftp://ftp.cddis.eosdis.nasa.gov/pub/gnss) was taken as an example to demonstrate the
variance reduction by QMC. The baseline was in Europe with the location in Figure 3, and the two
GNSS stations were equipped with LEICA GRX1200+GNSS 9.20 and TRIMBLE NETR9 5.01 receivers,
respectively. The measurement data were collected at GPS time (GPST) 9:00–10:00 a.m. on day of year
(DOY) 180 of 2018 with an epoch interval of 30 seconds. Six GLONASS satellites were observed during
the time span, and the satellite slot numbers are shown at the beginning of the satellite trajectories
in Figure 4. The baseline had a post-processed GLONASS phase IFB around −29.5 mm/frequency
number (FN) which can be regarded as the true values of both L1 and L2 frequencies.
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Figure 3. Location of the GNSS baseline GOP6_GOP7 in Europe.

Figure 4. Observed Russia’s Global Navigation Satellite System (GLONASS) satellites shared by the
two stations of baseline GOP6_GOP7 at GPST 9:00–10:00 a.m. on day of year (DOY) 180 of 2018.
The satellite slot numbers in blue color are marked at the beginning of the satellite trajectories.

Both the code and carrier phase measurements of frequency L1 and L2 were used to form
Equation (1) in the experiment. Only one IFB parameter was included because the IFB values for both
frequency L1 and L2 were regarded as the same. Algorithm 3 for SQMC-based phase-bias estimation
was implemented, and the IFB estimate was derived at each epoch. Furthermore, the IFB estimates
were also calculated using the SMC-based approach for comparison. When the bias was estimated
many times, the estimates of each time were different because the RQMC sequence was used in the
SQMC-based procedure, and the pseudo-random sequence was used in the SMC-based procedure.
The standard deviation (SD) of the estimates was calculated to evaluate the performance.

Firstly, the IFB was estimated 1000 times with the SMC-based approach. The sigma of the
transition noise in Equation (22) was set to 1 mm/FN, and the sample number was fixed to a value of
100. The 1000 estimates of IFB for the first 60 epochs are drawn in Figure 5 as yellow lines. Afterward,
the SQMC-based approach with a Sobol sequence for IFB estimation was implemented. The SQMC
strategy also had a sigma of the transition noise as 1 mm/FN and the number of samples as 100. The IFB
was also estimated 1000 times, and the results for the first 60 epochs are plotted in Figure 5 as blue
lines. The SDs of the 1000 estimates of SMC and SQMC approaches are calculated and presented in
Figure 5 as a yellow line and blue line, respectively.
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Figure 5. Inter-frequency bias (IFB) estimates with 1000 iterations and their SDs based on SQMC-based
and SMC-based algorithms with data of baseline GOP6_GOP7 collected at GPST 9:00–9:30 a.m. on
DOY 180 of 2018.

Obviously, both approaches could successfully estimate the IFB values. After convergence,
the estimates of the two algorithms were very similar, such as the results after epoch 40th. However,
the estimates of the SQMC-based algorithm converged faster than those of the SMC approach, and the
corresponding SD was much lower at the beginning. In the worst case of the 1000 estimates, the results
converged, i.e., became close to the true value with a difference smaller than 1.5 mm/FN at the seventh
epoch for SQMC and at the 40th epoch for SMC.

The variance of the estimates for the SQMC-based algorithm with variation in the sample numbers
and the transition noise was also analyzed.

Firstly, the phase IFB was estimated 100 times using the SMC-based and SQMC-based algorithms,
separately, with the number of particles varied from 30 to 200. The sigma of transition noise was fixed
to 1 mm/FN for each estimation. The SDs of the 100 estimates at epochs 1, 2, 5, and 10 are presented in
Figure 6, where we can see that the SD decreased for both SMC and SQMC as the number of particles
increased. The SD for SQMC had much smaller values compared with SQMC. This indicates that the
SQMC-based algorithm could achieve estimates with smaller SD than the SMC-based algorithm using
even smaller sample numbers. This is very meaningful in GNSS data processing, because the main
time-consuming step is the ambiguity fixing procedure in step 2 in Section 2 for each sample. Fewer
samples result in a lighter computation load.
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Figure 6. SDs of the 100 estimates based on SQMC-based and SMC-based algorithms, separately,
for different number of particles from 30 to 200 at epochs 1, 2, 5, and 10. The data are for baseline
GOP6_GOP7 collected at GPST 9:00–9:30 a.m. on DOY 180 of 2018.

Then, the effects of the transition noise were evaluated. The phase IFB was estimated another
100 times with the sigma of the transition noise from 10−6 to 10−2 m/FN, and the number of the samples
was fixed to 100. The SDs of the 100 estimates were calculated at each epoch and the values at epochs
1, 2, 5, and 10 are plotted in Figure 7. Obviously, the SDs of the SQMC-based algorithm were much
smaller than those of the SMC-based algorithm at all the four epochs. The SDs at epoch 10 showed a
curve near 10−3 m/FN and were larger than the STDs corresponding to other nearby sigma values.
This indicates that the transition noise level in the transition model needs to be set carefully. Too high a
transition noise will increase the SDs; however, if the sigma is too small, the samples cannot evolve to
the proper field and the prior density cannot be well represented by the samples, also leading to large
STD values.

Figure 7. SD of the 100 estimates based on SQMC-based and SMC-based algorithms, separately,
for different transition noise with sigma from 10−6 to 10−2 m/FN at epochs 1, 2, 5, and 10. The data are
for baseline GOP6_GOP7 collected at GPST 9:00–9:30 a.m. on DOY 180 of 2018.
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6. Conclusions

This article presented the problem of solving the mathematical models in GNSS phase bias
estimation, which is essential for fast and precise GNSS data processing; it then developed a fast and
efficient algorithm by combining the GNSS data processing procedure and the SQMC method.

The proposed SQMC-based GNSS phase bias estimation algorithm introduces the QMC technique
to the SMC-based algorithm for variance reduction. The random sequences in SMC approach are
replaced by low-discrepancy sequences in the sampling of the steps of initialization and prediction.
We performed the experiments of phase IFB estimation for GLONASS data processing with practical
data. The results show that the GNSS phase bias estimates have much smaller variance based on the
low-discrepancy sequence. The estimation converges faster, and the results are more precise even with
a much smaller number of samples. This can largely save the convergence time and the computation
load of GNSS PNT services.

In addition, this study introduces the difficulty in GNSS data processing to the mathematic
community, and it has the potential to boost new numerical algorithms for GNSS research
and applications.
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Abbreviations

The following abbreviations are used in this manuscript:

BDS BeiDou Navigation Satellite System
DOY Day of year
GLONASS GLObal NAvigation Satellite System
GNSS Global navigation satellite system
GPS Global positioning system
IFB Inter-frequency bias
IGS International GNSS Service
ISB Inter-system bias
LAMBDA Least-squares ambiguity decorrelation adjustment
MC Monte Carlo method
PDF Probability density function
PNT Positioning, navigation, and timing
QMC Quasi-Monte Carlo method
SIS Sequential importance sampling
SMC Sequential Monte Carlo method
SQMC Sequential quasi-Monte Carlo method
STD Standard deviation
VC Variance–covariance
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Abstract: The Expectation-Maximization algorithm is adapted to the extended Kalman filter to multiple
GNSS Precise Point Positioning (PPP), named EM-PPP. EM-PPP considers better the compatibility of
multiple GNSS data processing and characteristics of receiver motion, targeting to calibrate the process
noise matrix Qt and observation matrix Rt, having influence on PPP convergence time and precision,
with other parameters. It is possibly a feasible way to estimate a large number of parameters to
a certain extent for its simplicity and easy implementation. We also compare EM-algorithm with
other methods like least-squares (co)variance component estimation (LS-VCE), maximum likelihood
estimation (MLE), showing that EM-algorithm from restricted maximum likelihood (REML) will be
identical to LS-VCE if certain weight matrix is chosen for LS-VCE. To assess the performance of the
approach, daily observations from a network of 14 globally distributed International GNSS Service
(IGS) multi-GNSS stations were processed using ionosphere-free combinations. The stations were
assumed to be in kinematic motion with initial random walk noise of 1 mm every 30 s. The initial
standard deviations for ionosphere-free code and carrier phase measurements are set to 3 m and
0.03 m, respectively, independent of the satellite elevation angle. It is shown that the calibrated Rt

agrees well with observation residuals, reflecting effects of the accuracy of different satellite precise
product and receiver-satellite geometry variations, and effectively resisting outliers. The calibrated Qt

converges to its true value after about 50 iterations in our case. A kinematic test was also performed
to derive 1 Hz GPS displacements, showing the RMSs and STDs w.r.t. real-time kinematic (RTK) are
improved and the proper Qt is found out at the same time. According to our analysis despite the
criticism that EM-PPP is very time-consuming because a large number of parameters are calculated
and the first-order convergence of EM-algorithm, it is a numerically stable and simple approach to
consider the temporal nature of state-space model of PPP, in particular when Qt and Rt are not known
well, its performance without fixing ambiguities can even parallel to traditional PPP-RTK.

Keywords: EM-algorithm; multi-GNSS; PPP; process noise; observation covariance matrix; extended
Kalman filter; machine learning

1. Introduction

Since Precise Point Positioning (PPP) emerged [1,2], people are primarily focusing on improving
precise orbit and clock products, developing new algorithms to solve for ambiguities, to accelerate its
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Mathematics 2020, 8, 502

convergence and expand its applications such as PPP-real-time-kinematic (PPP-RTK), triple frequency
PPP [3], ionosphere-constraint PPP and low-cost receiver PPP [4–10].

Generally, PPP can be realized by the least-squares method (including sequential least-squares) or
extended Kalman filter. The least-squares method is for static state estimation and thus does not reflect
varying user dynamics. To work the same as Kalman filter, the process noise matrix is added to the
gain matrix of the sequential least-squares method to adjust receiver clock behavior and atmospheric
activity and so on, which is named as a sequential filter [2]. Hence, in the following paper, the authors
will only consider the Kalman filter for PPP data processing.

Although both the process noise Qt and observation covariance matrix Rt are the key to Kalman
filter, limited attention is paid to the fundamental problem for multi-GNSS PPP. Qt and Rt must be
consistent with state dynamics and measurement accuracy, respectively. For example, if the value
of Qt is too small, the estimated state will lose its minimum mean squared error property, and if the
value of Qt is too large with respect to the correct one, the estimated state will oscillate around the true
value. Moreover, because of ground deformation and specific surroundings, Qt should not be kept
fixed to calculate the optimal estimates. In other words, Qt should evolve with time and a proper Qt

will shorten the PPP convergence time. If Qt is improper, it may damage PPP convergence sometimes.
As for GNSS, Rt not only depends on the measurement accuracy, elevation of the satellite, orbit

and clock error, atmospheric delay error, multipath, missing data, etc. but possibly deteriorate after a
lapse of a period. What is more, the assumption, frequently used in geodesy, that different types of
measurements have a fixed error ratio is not always true, because the ratio is closely linked to receivers
and antenna types, and to the performance of satellite system itself. For example, while fusing multiple
GNSS, the weight of measurements of GPS is intended to be higher, other GNSS systems to be lower.
It is not easy to give a prior accurate ratio.

Generally, four methods are often applicable to calibrate Qt and Rt. The first one is based on the
innovation property of the Kalman filter, in which a moving-window recursive way is used to identify
Qt and Rt [11–14]. However, none of them can maintain the positive semi-definiteness of the estimated
covariances. To solve this problem, Odelson developed the autocovariance least-squares method for
estimating covariances using a lagged autocovariance function [15]. This kind of least-squares method
depends on the user-defined autocovariance function.

The second scheme to recognize Qt and Rt is the multiple model adaptive estimation (MMAE) [13,16].
MMAE runs a bank of Kalman filter in parallel, every one of them is driven by its pair of Qt and Rt.
The final Qt and Rt are thought of as the weighted sum of the estimates of individual Kalman filter.

In the third scheme, M-estimator is introduced into an adaptive Kalman filter to increase its
resistance to outliers, where an adaptive factor α to state error covariance matrix is constructed [17,18].
Yet, choosing a value for α is still very challenging. An improper αwill result in biased results.

Another attractive scheme is the least-squares variance component estimation (LS-VCE) [19],
which is based on least-squares principles. Similar to restricted maximum likelihood (REML), LS-VCE
does not use observations directly but combine observations to exclude any fixed effects. However,
LS-VCE needs to define the weight matrix on the user‘s own and increase its complexity.

In this contribution, a machine learning algorithm, the Expectation-Maximization (EM) algorithm,
is developed to the extended Kalman filter to estimate PPP states,

→
x t, together with a large number of Qt

and Rt. The EM-algorithm, which can be classified as the first scheme, works in an iterative procedure
to locate maximum likelihood estimates of parameters. Its iteration consists of two steps: Expectation
and Maximization. In the Expectation step, a function for the expectation of the log-likelihood is
computed using the estimates of the current parameters. In the Maximization step, estimates of
parameters are updated by maximizing the expected log likelihood function.

On the one hand, the main drawback of the EM-algorithm is that it converges slowly and
needs heavy computation. Here the convergence refers to finding maximum likelihood estimator of
parameters, not the PPP convergence time. However, for example, its convergence can be accelerated
using the Aitken method or conjugate method [20].
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On the other hand, it is fairly simple, and has robust convergence and deals conveniently with
problems having a lot of parameters. For such problems, it is often the only algorithm to a large
extent [19]. It is also capable of finding Kalman parameters even if we have missing data. In addition,
it can detect outliers by introducing small weights for large outliers and can even estimate the
outliers [21]. In contrast, the outliers are not removed but automatically downweighed in our article,
since outliers sometimes take some useful information.

The paper is organized as follows, after clarifying the importance to calibrate Qt and Rt, the EM
algorithm is introduced in the first section. Next, the state space model of PPP is reviewed from a point
of machine learning and the methodology to adapt the EM-algorithm for extended Kalman filter for
PPP is explained theoretically in detail. Thirdly, we compare the EM-algorithm with other methods,
the static and kinematic instances are also given to demonstrate EM-PPP performance to improve the
accuracy and reliability of PPP. Finally, the results are analyzed and the conclusion is drawn.

2. State Space Model for PPP

The state-space model allows to process GNSS data in a uniformed form. It is characterized as
two equations: the state equation, which comprises a series of vector

→
x t, (1 ≤ t ≤ N, N is the number of

epochs), and the observation equation. The state
→
x t cannot be observed directly, usually called hidden

states, which is driven by hidden process noise. In this article the state-space model is described as the
Kalman filter.

2.1. State Equation

The hidden state
→
x t of multi-GNSS PPP Kalman filter involves five types of parameters: three

components of receiver coordinates, receiver clock error, system time difference w.r.t. GPS, troposphere
zenith wet delay and ambiguities. Using subscript t to denote a specific time epoch, the state at time t
evolves from the state at (t− 1) according to:

→
x t = Φt

→
x t−1 +

→
ωt (1)

where Φt is the transition matrix and
→
ωt the state process noise, which is assumed to be drawn from a

zero-mean multivariate normal distribution, with covariance:
→
ωt ∼ N(0, Qt). Initial condition

→
x 0 is

assumed to be a Gaussian vector with the a priori information E{→x 0} = →
μ0, Cov(

→
x 0) = P0.

The state transition matrix and the process noise matrix in static mode is defined for the
position block:

Φt =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
1 0 0
0 1 0
0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
t

, Qt =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
Qx 0 0
0 Qy 0
0 0 Qz

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
t

(2)

where Qx, Qy and Qz are the random process noise in X, Y and Z direction, respectively.
In addition to position parameters, the velocity parameters are also included in the state vector

for our kinematic processing, whose system model for position and velocity block in the extended
Kalman filter is given as:

Φt =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 Δt 0 0 0 0
0 1 0 0 0 0
0 0 1 Δt 0 0
0 0 0 1 0 0
0 0 0 0 1 Δt
0 0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, Qt =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

qxΔt3

3
qxΔt2

2 0 0 0 0
qxΔt2

2 qxΔt 0 0 0 0

0 0
qyΔt3

3
qyΔt2

2 0 0

0 0
qyΔt2

2 qyΔt 0 0

0 0 0 0 qzΔt3

3
qzΔt2

2

0 0 0 0 qzΔt2

2 qzΔt

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(3)
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The corresponding state vector is
→
x t =

[
x vx y vy z vz

]
for position and velocity

block. The process noise matrix Qt is uniquely determined by qx, qy and qz, which are named as
acceleration variance.

2.2. Observation Equation

The observation equation, that we used, is the double frequency ionosphere-free combination for
multi-GNSS [22]:

PCi,S
r = ρi

r + cdtG
r + TS

r + mi
r·ztdr + ε

i,S
r,PC (4)

LCi,S
r = ρi

r + cdtG
r + TS

r + mi
r·ztdr + λ

S
LC·NS

r,LC + εi,S
r,LC (5)

where subscript r indicates the receiver, superscript i represents the satellites, superscript S indicates
GNSS constellation, following the convention of Rinex3.x (G: GPS, E: GALILEO, R: GLONASS and
C: BEIDOU). PCi,S

r and LCi,S
r are the ionosphere-free combinations of code pseudo-range and phase

observations (unit: m) respectively, which have already corrected satellite clock, the relativity effect,
solid Earth tides, polar tides, ocean tides, phase wind up and a priori troposphere delay using
troposphere model [23,24]. ρi

r is the geometry distance between receiver and satellite, cdtG
r is receiver

clock (unit: m), the superscript G of cdtG
r implies that GPS time is selected as the reference time, TS

r is
the system time difference in meters of system S to GPS time. Specifically, for S = G, TG

r is zero. mi
r is

troposphere mapping function and ztdr is troposphere zenith wet delay, λS
LC is the wavelength of LC

combination corresponding to system S and NS
r,LC is the LC ambiguity. εi,S

r,PC and εi,S
r,LC indicate other

unmodeled errors or noise.
Equations (4) and (5) are nonlinear, the extended Kalman filter (EKF) can be used for nonlinear

state estimation. For easy description, they are rewritten in a general form:

→
y t = h

(→
x t
)
+
→
v t (6)

where
→
y t =

[
y1 · · · yj . . . ykt

]
is the observation vector, kt is the number of observations at

epoch t, yj ∈ {PCi,S
r , LCi,S

r }, →v t is the observation noise satisfying
→
v t ∼ N(0, Rt), Rt is the observation

noise covariance matrix at epoch t.

2.3. Kalman Filter

Let Ym =
{→

y 1, . . . ,
→
y m

}
denote all observations from epoch 1 to epoch m, and

→
x t|m represent

the estimate of
→
x t given observations Ym, we have predicted state estimate and predicted

covariance estimate: →
x t|t−1 = Φt

→
x t−1|t−1 (7)

Pt|t−1 = ΦtPt−1|t−1Φ′t + Qt (8)

After linearization of Equation (6) at predicted state
→
x t|t−1,

→
e t|t−1 ≈ Ht

(→
x t −→x t|t−1

)
+
→
v t (9)

where Ht =
∂
→
y

∂
→
x

∣∣∣∣∣→
x t|t−1

,
→
e t|t−1 =

→
y t − h

(→
x t|t−1

)
.
→
e t|t−1 is called innovations or measurement residuals,

then the Kalman filter is obtained:

Kt = Pt|t−1H′t
(
HtPt|t−1H′t + Rt

)−1
(10)

→
x t|t =

→
x t|t−1 + Kt

→
e t|t−1 (11)

Pt|t = (I −KtHt)Pt|t−1 (12)
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where
→
x t|t and Pt|t are the updated Kalman estimate and the updated covariance estimate.

2.4. Kalman Smoothing

The Kalman smoother estimator could be obtained [25]:

→
x t−1|N =

→
x t−1|t−1 + Jt−1

{→
x t|N −→x t|t−1

}
(13)

Pt−1|N = Pt−1|t−1 + Jt−1
(
Pt|N − Pt|t−1

)
J′t−1 (14)

where Jt−1 = Pt−1|t−1φt
′[Pt|t−1]

−1 , 1 ≤ t ≤ N, N is the number of epochs.
Kalman lag-one covariance holds with the starting condition

PN,N−1|N = (I −KNHN)ΦNPN−1|N−1 (15)

for t = N, N − 1, . . . , 2

Pt−1,t−2|N = Pt−1|t−1 J′t−2 + Jt−1
(
Pt,t−1|N −ΦtPt−1|t−1

)
J′t−2 (16)

3. EM-PPP

The EM-algorithm is based on the innovation of the likelihood function to compute maximum
likelihood estimation [25,26]. The likelihood function describes the probability of the observations,
given a set of parameters. The parameters are found such that they maximize the likelihood function.
The derivative of the likelihood function or log-likelihood is not always tractable. Therefore, iterative
methods like Expectation-Maximization algorithms are very effective to find numerical solutions for
the parameter estimates.

Denoting Θ = {→μ0, P0, Qt, Rt

∣∣∣∣t = 1, . . . , N}, X = {→x 0,
→
x 1, . . . ,

→
x N} , Y = {→y 1, . . . ,

→
y N}. Y is thought

of as incomplete data, and {X, Y} as complete data. Specifically for PPP, the log likelihood of the
parameters of the state space model is approximately derived (ignoring constant):

2 log LX,Y(Θ) = − log
∣∣∣∣Σ0

∣∣∣∣−(→x 0 −→μ0)
′
Σ−1

0 (
→
x 0 −→μ0)

− N∑
t=1

log|Qt| −
N∑

t=1
(
→
x t −Φt

→
x t)
′
Q−1

t (
→
x t −Φt

→
x t)

− N∑
t=1

log|Rt| −
N∑

t=1
(
→
y t − h(

→
x t|N))

′
R−1

t (
→
y t − h(

→
x t|N)

(17)

Since the hidden states
→
x t are unknown, only the expected value of the log likelihood conditioned

on Y is accessible, as a result, the observation equation is expanded at smoother point
→
x t|N.

The Expectation (E-step) of EM algorithm for PPP requires computing the expected log-likelihood
at the jth iteration:

Ω(Θ
∣∣∣Θ( j−1) ) = E{2 log LX,Y(Θ)

∣∣∣Y, Θ( j−1) } (18)

then the parameters are recalculated at the Maximization step (M-step):

Θ( j) = argmax
Θ

Ω
(
Θ
∣∣∣Θ( j−1)

)
(19)

The two steps are repeated until the Θ( j) converges.
The EM-PPP is terminated when the following convergence criterion is reached:

R-log =

∣∣∣∣∣∣�( j) − �( j−1)

�( j)

∣∣∣∣∣∣ < ε or j ≥ maximum number o f iterations (20)
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where ε is a small predefined amount and �( j) is equal to

�( j) =
N∑

t=1

log
∣∣∣HtPt|t−1H′t + Rt

∣∣∣+ N∑
t=1

(→
e t|t−1

)′(
HtPt|t−1H′t + Rt

)−1(→
e t|t−1

)
(21)

A flowchart of our EM-PPP procedure is shown in Figure 1. In the initialization step, GNSS data
preprocessing is performed including data integrity checking, cycle slips and outliers detection, phase
center offset (PCO) and phase center variations (PCV) correction, synchronization of receiver clock
using only code range measurements and initialization of parameters Θ. It also initializes the hidden
state

→
x 0, sharing of the same processing noise Qt across the time step t = 1, . . . , N.

 

Figure 1. Flowchart of the Expectation-Maximization (EM)-Precise Point Positioning (PPP) loop.

In the next step, the extended Kalman filter Equations (10)–(12) are implemented to compute a
series of hidden states and their covariance. If the convergence condition Equation (20) is not satisfied,
then Kalman smoothing is used to calculate smoothed state estimates and involved covariance matrix
Equations (13)–(16), which is prepared for the E-step: calculation of the expected log likelihood function
Equation (22). All parameters of Θ are updated during the M-step and prepared for the next iteration
Equation (27).

3.1. E-Step

Taking the expectation upon Equation (17) over conditional distribution of the latent given
observed data, we find immediately:

Ω
(
Θ
∣∣∣Θ( j−1)

)
= E

{
−2lnLX,Y(Θ)

∣∣∣Y}
= ln|Σ0|+ tr[Σ−1

0 E{ (→x 0 −→μ0)(
→
x 0 −→μ0)

′∣∣∣∣Y }] + N∑
t=1

ln|Qt|

+
N∑

t=1
tr[Q−1

t E{(→x t −Φt
→
x t−1)(

→
x t −Φt

→
x t−1)

′∣∣∣∣Y} ] + N∑
t=1

ln|Rt|

+
N∑

t=1
tr
[
R−1

t E
{(→

y t − h
(→

x t
))(→

y t − h
(→

x t
))′∣∣∣∣Y}]

(22)

where
E{(→x 0 −→μ0)(

→
x 0 −→μ0)

′|Y} = P0|N + (
→
x 0|N −→μ0)(

→
x 0|N −→μ0)

′
(23)
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E{(→x t −Φt
→
x t−1) (

→
x t −Φt

→
x t−1)

′|Y}
= Pt|N +

→
x t|N

→
x
′
t|N + Φt(Pt−1|N +

→
x t−1|N

→
x
′
t−1|N)Φt

′

−Φt(Pt,t−1|N +
→
x t|N

→
x
′
t−1|N)

′ − (Pt,t−1|N +
→
x t|N

→
x t−1|N

′
)Φt

′
(24)

Using Taylor series expression

→
y t ≈ h

(→
x t|N

)
+ Ht|N

(→
x t −→x t|N

)
+
→
v t, (25)

where Ht|N =
∂
→
y

∂
→
x

∣∣∣∣∣→
x t|N

, and let
→
e t|N =

→
y t − h

(→
x t|N

)
, Δ
→
x t|N =

→
x t −→x t|N, we get

E
{(→

y t − h
(→

x t
))(→

y t − h
(→

x t
))′∣∣∣∣Y} ≈ →e t|N

→
e
′
t|N + Ht|NPt|NH′t|N (26)

3.2. M-Step

Similar to complete-data weighted maximum likelihood estimation, from the first differential of
Ω
(
Θ
∣∣∣Θ( j−1)

)
, the maximum likelihood estimators are updated as follows:

→
μ0 =

→
x 0|N

Σ0 = P0|N
Qt = E{(→x t −Φt

→
x t−1)(

→
x t −Φt

→
x t−1)

′|Y}
Qt = E{(→x t −Φt

→
x t−1)(

→
x t −Φt

→
x t−1)

′|Y}
(27)

For simplicity, the initial covariance P0, and the measurement covariance Rt are assumed to be a
diagonal matrix:

P0 = diag
(
q01, q02, . . . , q0k0

)
Rt = diag(rt1, rt2, . . . , ttmt)

where k0 indicates the dimension of the hidden state vector at initial epoch and mt is the dimension of
the observation vector at epoch t.

4. EM Compared to MLE and LS-VCE

In literature [19], a comprehensive comparison is demonstrated between different estimation
principles such as LS-VCE, best linear unbiased estimator (BLUE), best invariant quadratic unbiased
estimator (BIQUE), minimum norm quadratic unbiased estimator (MINQUE) and restricted maximum
likelihood estimator (REML). As shown previously in Section 3.1, the EM algorithm may be thought
of as maximum likelihood estimation (MLE), but which finds the ML estimator in an iterative way.
EM can be realized based on REML as well. Therefore, an additional comparison between EM variance
estimation and LS-VCE and MLE is adequate.

To make theoretical analysis easy and consistent, in the following we first introduce how to covert
Kalman filter to least-squares. Then we directly give different (co)variance estimators according to
their distribution assumptions and the reason why the EM-algorithm is preferable in our solution.

4.1. From Kalman Filter to Least Squares

The linear (extended) Kalman equation can be transformed into the least-squares function model,
which allows the following EM algorithm to be compared with LS-VCE on the same function model
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and makes the theoretical analysis easy and convenient. To do so, the state Equation (1) and the
observation Equation (6) are expanded at a priori value and organized as the function model:

→
y = A

→
x +

→
w

E{→w} = 0, D{→w} = E{→w→w′} = Q = Q0 +
p∑

k=1
σkQk

(28)

with →
y = [ 0 d

→
y 1
′

0 · · · 0 d
→
y N
′

]
′

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Φ1 −1 0 · · · 0 0
0 H1 0 · · · 0 0
0 Φ2 −1 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · ΦN −1
0 0 0 · · · 0 HN

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
→
x = [ d

→
x 0
′

d
→
x 1
′

d
→
x 2
′ · · · d

→
x N−1

′
d
→
x N
′

]
′

where the a priori
→
x

0
i , (i = 0, . . . , N) value is subtracted from the original state vector

→
x i, leading to

d
→
x i =

→
x i −→x

0
i and d

→
y i =

→
y i −

→
y

0
i , N is the number of epochs. The m× n matrix A is full column rank.

The cofactor matrices Qk, are assumed to be known and their weighted sum Q0 +
p∑

k=1
σkQk is assumed

to be positive definite and Qk, (k = 1, . . . p) are linearly independent, and the (co)variance components
σk are unknown parameters. Matrix Q0 is the known part of the variance matrix [19].

4.2. Least-Squares EM

Similar to Section 3, we can calculate the non-constant part of the full log-likelihood function
and then conditional expectation on the observation

→
y and Q( j), given the data

→
y and the jth iteration

estimates of (co)variance components σ( j)
k or Q( j):

Ω(Q|→y , Q( j)) = E{L|→y , Q( j)} = log Q + E{tr((→y −A
→
x )
′
Q−1(

→
y −A

→
x ))|→y }

= log Q + tr(Q−1E{(→y −A
→
x )(
→
y −A

→
x )
′|→y }) (29)

where
E{(→y −A

→
x )(
→
y −A

→
x )
′|→y } = (

→
y −Ax̂)(

→
y −Ax̂)

′
+ AQ( j)

x̂ A′Z( j)
ML

x̂ = (A′(Q( j))
−1

A)
−1

A′(Q( j))
−1→

y
(30)

M-step:

Maximizing the likelihood of the completed data based on Equation (29), the new estimates σ( j+1)
k

are calculated as ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
σ
( j+1)
1

...

σ
( j+1)
p

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ = (A′vEMWvEMAvEM)−1A′vEMWvEM vec
(
Z( j)

EM −Q0

)
(31)

where AvEM =
[

vec
(
Q( j)

1

)
· · · vec

(
Q( j)

p

) ]
, WvEM = (Q( j))

−1 ⊗ (Q( j))
−1

, ⊗ is the Kronecker product

and vec is vec-operator.
Equations (29) and (31) are the EM algorithm for ML estimation. If convergence is reached, set

σk = σ
( j)
k , otherwise increase j by one and return to E-step.
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4.3. MLE

Once the general structure of probability density function is known, MLE can be simply realized
and therefore used widely. If a multivariate normal distribution is given, the (co)variance components
takes form: ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

σ1
...
σp

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ = (A′vMLEWvMLEAvMLE)
−1A′vMLEWvMLE vec(ZMLE −Q0) (32)

where AvMLE =
[

vecQ1 · · · vecQp
]
, WvMLE = Q−1 ⊗Q−1.

From Equations (31) and (32), we know that least-squares EM and MLE estimators share the
same design matrix and weight matrix. Their difference is mainly caused by the pseudo observation

vec
(
Z( j)

EM −Q0

)
and vec(ZMLE −Q0). Z( j)

EM for EM-algorithm includes the effects of both observation

post-residuals and the accuracy of the estimates x̂. In contrast, ZMLE for MLE consider only the
observation post-residuals. Therefore, MLE estimator is probably over-optimistic to EM.

However, if the REML principle is used to derive the EM-algorithm, the effect of x̂ is implicitly
removed. Then, the EM-algorithm based on REML will be equivalent to the REML estimator.

4.4. LS-VCE

Another important problem is that the EM-algorithm and MLE do not take the loss of degrees of
freedom from the estimation of

→
x into account. Borrowing the idea of REML, LS-VCE overcomes this

problem based on (n− p) independently error contrasts. Specifically, let

t̂ = B′→y , Qt̂ = B′QB (33)

where
→
t is misclosure vector, B is m× (m− n) matrix satisfying B′A = 0, rank(B) = m− n = b. Then

LS-VCE estimator is obtained:⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
σ1
...
σp

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ = (A′vLS−VCEWvLS−VCEAvLS−VCE)
−1A′vLS−VCEWvLS−VCE vec(ZLS−VCE −Q0) (34)

with AvLS−VCE =
[

vec(B′Q1B) · · · vec
(
B′QpB

) ]
, ZLS−VCE = t̂t̂′, WvLS−VCE is a user-defined weight

matrix. If WvLS−VCE is set to Qt̂ ⊗Qt̂, LS-VCE is the same as EM-algorithm based on REML.
LS-VCE is derived purely based on the least-squares method and we do not make any assumption

on a probability density function (PDF). In contrast, EM-algorithm, MLE and REML are built upon a
certain distribution, which explains why when applying LS-VCE, it is necessary for users to set weight
matrix on their own.

4.5. Preference for Recursive EM

As discussed previously, the EM-algorithm can be implemented as either recursive form or batch
form like MLE and LS-VCE. In our solution, we prefer the EM-algorithm based Kalman filter to
other methods.

Recursive EM discriminates between the process noise and the observation noise. For GNSS,
the process noise is usually different from observation noise. The process noise is directly connected to
the geophysical phenomenon, which has not only linear but also non-linear variations, and suffers both
time and spatial correlations [27–29]. As a result, it is relatively more difficult to estimate the process
noise than the observation covariance matrix. Other batch methods mix the two types of stochastic
processes with different behavior, which will bring us extra trouble.
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Recursive EM can process data in not only post mode, but also in real-time mode. In both modes,
data is processed epoch by epoch, allowing us to dynamically adjust the weight matrix, monitoring
time-varying behavior and detecting abrupt motion.

5. Validation

5.1. Static PPP Scheme

A total of 14 IGS multi-GNSS stations are selected to assess the performance of EM-PPP (Figure 2).
Those stations are evenly distributed on the Earth and track as many GNSS constellations as possible,
covering not only the continent but also coastal and polar regions.

Figure 2. Distribution of selected IGS multi-GNSS stations.

Daily GNSS measurements from those IGS stations observed during DOY 119 in 2017 are used
in this study. The true coordinate benchmarks are from IGS weekly solutions. The final GFZ Beidou
multi-GNSS (GBM) products of the satellite orbits and clocks are applied (ftp://cddis.gsfc.nasa.gov/
pub/gps/products/mgex/). The used precise orbit correction has a sampling interval of 15 min while
the precise clock has a sampling interval of 30 s, both generated at GFZ. For GPS, we aligned C1 to P1
using CODE differential code bias (DCB) product (ftp://ftp.aiub.unibe.ch/CODE/2017/). The frequency
bands we used are L1 and L2 for GPS, G1 and G2 for Glonass, E1 and E5a for Galileo, B1 and B2
for BeiDou [9]. Receiver and satellite PCO and PCV were corrected using igs14.atx. solid Earth
tides, pole tide and ocean tides are removed according to IERS Conventions 2010. For troposphere
delay estimation, the zenith dry component of tropospheric delays was corrected with the a priori
Niell model [24]. The zenith wet delay (ZWD) is estimated as an unknown parameter. Then, 24-h
observation data sets with a sampling interval of 30 s were processed for all stations. The elevation
cut-offwas set to 6 degrees.

The initial guess of receiver coordinates is intentionally deviated by 100 m from IGS station
solution. A priori standard deviation (std) of PC is set to 3 m, a priori std of LC to 0.03 m for pseudo-range
combination (PC) and carrier phase combination (LC) combination, respectively.

The starting values for Qt are shown in Table 1. Random walk noise process with a spectral
density equal to 1.0 mm/

√
30 s is imposed on coordinates, which means a 1.0 mm disturbance very

30 s for IGS station in North, East and Up. It is not true in reality of course, but useful for test purposes.
The receiver clock offset is supposed to be white noise. Zenith wet delay (ZWD) and inter-system bias
(ISB) are modeled as random walk noise. Ambiguities can be considered as constant or random walk
noise with very small spectral density.
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Table 1. Initial guess Qt for static PPP: ZWD is the zenith wet delay of the troposphere, ISB is the
system time difference with respect to GPS time.

X Y Z cdtr ZWD ISB Ambiguities

Qt
1.0 mm

30 s
1.0 mm

30 s
1.0 mm

30 s 9.0× 1010 m 1.0 cm√
h

3.0×10−6m√
s 0.0

If the maximum number of iteration is reached and EM-PPP does not converge, smaller spectral
density should be assigned for X, Y and Z for the next cycle.

5.2. Kinematic PPP Scheme

Another kinematic dataset was used to further validate the performance of the EM-PPP. The data
was collected at Wuhan, China, in November 14, 2013. The sampling interval is 1 Hz and the observed
time span is about one hour. The final CODE precise satellite orbit and 5 s clock products are used to
estimate the 1 Hz GPS displacements. The ambiguity-fixed double differenced real-time kinematic
(RTK) solutions are adopted as the reference to assess the performance of kinematic EM-PPP solution.

The initial acceleration variance is assumed to be 10 m2

s3 for position and velocity states (Table 2),
which can be used to calculate the process noise matrix for position and velocity. The initial Qt for
receiver clock is modeled as white noise and estimated epoch-wisely. ZWD and ambiguities are also
modeled as random walk processes with initial spectral density 0.01 cm/

√
s and 0.0 m/

√
s, respectively.

Table 2. Initial guess Qt for kinematic PPP: ZWD is zenith wet delay of troposphere.

qx qy qz cdtr ZWD Ambiguities

Qt 10 m2

s3
10 m2

s3
10 m2

s3 (100 m)2 0.01 cm/
√

s 0.0

6. Results and Discussion

6.1. Static EM-PPP Solution

It is found that EM-PPP usually converges after the iteration counter reaches 50. The positioning
errors are shown in Table 3, including PPP results at 1st iteration with the biased stochastic model,
and the results after 50 iterations of calibration to assess EM-PPP performance. EM-PPP convergence
in our research means that the square root of 3D positioning errors of the last 20 consecutive epochs is
less than 10 cm.

Table 3 indicates that when the biased Qt and Rt are fed in the beginning, PPP 3D errors are up
to decimeters for a few stations. Horizontal errors are often greater than vertical errors, which is not
consistent with the property of GNSS, because of inappropriate process noise matrix and measurement
noise covariance matrix. After 50 iterations, the position errors are reduced to within 1 cm in North,
East and Up direction on average using our EM-PPP algorithm. The mean 3D error is reduced to
1.77 cm without fixing ambiguities. The overall decrease percentage on average is 66.91%, 66.16%,
71.60% in North, East and Up direction, respectively, 69.95% for 3D errors.
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Table 3. Statistics of EM-PPP absolute positioning errors (cm) with respect to IGS stations solution. All
sites except YEL2 are processed using multiple GNSS observations. YEL2 is processed using only GPS
data to verify the algorithm for single GNSS constellation. The ambiguities are not fixed.

No. Site 1st Iteration 50th Iteration

North East Up 3D North East Up 3D

1 ALIC 4.32 12.17 4.38 13.64 0.89 1.47 0.24 1.74
2 CAS1 2.49 2.23 2.97 4.48 1.58 0.80 0.91 2.00
3 GMSD 0.29 0.13 2.38 2.41 0.22 0.59 1.22 1.38
4 ISTA 2.11 1.44 1.02 2.75 2.11 0.07 0.95 2.33
5 JFNG 3.32 3.65 5.48 7.39 0.75 0.52 0.64 1.12
6 KOKV 0.88 4.97 3.43 6.11 0.54 2.13 3.20 3.89
7 KOUR 0.15 2.38 2.27 3.30 1.06 0.76 0.39 1.37
8 MAL2 1.21 2.99 5.67 6.53 1.23 1.50 0.98 2.18
9 MAS1 3.38 1.15 1.67 3.94 1.36 1.22 1.00 2.09

10 OHI3 16.47 2.94 4.83 17.42 1.13 0.44 0.55 1.34
11 REDU 0.76 0.39 5.19 5.25 0.56 0.59 0.40 0.91
12 ULAB 1.47 0.04 0.19 1.48 0.71 0.60 0.30 0.98
13 YEL2 0.61 2.17 2.72 3.54 0.34 0.93 0.12 1.00
14 ZIM2 0.15 0.49 4.15 4.19 0.03 1.02 2.25 2.47

average 2.69 2.66 3.31 5.89 0.89 0.90 0.94 1.77

To see what happened to the process noise Qt and the observation covariance matrix Rt before
and after calibration, an example of JFNG station located in China is illustrated.

The residuals for PC and the corresponding formal errors are shown in Figure 3. The residuals for
LC and the corresponding formal errors against satellite elevation angles after calibration are shown
in Figure 4. To be clear, PC and LC residuals for BeiDou are plotted separately from those for GPS,
Glonass and Galileo.

  

Figure 3. EM-PPP absolute pseudo-range combination (PC) residuals and formal errors of JFNG
station at 50th iteration: Left two pictures are the PC residuals and their formal errors (square root of
observation matrix Rt) of GPS, Glonass and Galileo, respectively. Similarly, the right two pictures show
the PC residuals and formal errors of BeiDou.
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Figure 4. EM-PPP carrier phase combination (LC) residuals and formal errors of JFNG station at 50th
iteration: Left two pictures are the LC residuals and formal errors (square root of the observation
covariance matrix) for GPS, Glonass and Galileo, respectively. Similarly, the right two pictures show
the LC residuals and formal errors for BeiDou.

The results allow us to examine the relationship between Rt and the residuals. It is clearly shown
that formal errors of Rt are changed from 3 m to vary about between 0 and 10 m for PC, and from
0.03 m to vary about between 0 and 0.6 m for LC. The big outliers of LC are due to the non-convergence
at the initial epoch and EM-PPP does not fully converge at some epochs. Although Rt variations,
similar to the residuals-varying pattern, are dependent on the satellite elevation angle, LC formal error
of BeiDou Rt at the elevation of about 20 degrees is greater than the lower degree formal error (refer to
the bottom right picture in Figure 4). Clearly, it is not advisable to choose observation weight only
according to the satellite elevation angle. Another example is station ISTA, where Glonass Rt for PC at
satellite elevation higher than 50 degrees is almost as great as lower degree errors (not plotted here).
In addition, random or systematic outliers are downweighed accordingly for both PC and LC.

It can also be observed that BeiDou PC residuals peak are almost 6 m, worse than GPS, Glonass
and Galileo at JFNG. In fact, the biggest error source comes from GEO C05 and IGSO C06, C07 and
C08, probably due to their poor orbit accuracy and clock offset, because the residuals of those satellites
show less independence of satellite elevation angle. Rt is different among GPS, Glonass and Galileo.

Thus Rt not only reflects the accuracy of measurement type itself, elevation-dependent, characteristics
of GNSS constellation, but also the quality of GNSS satellite orbit and clock products, and should
be adjusted dynamically. Consequently, EM-PPP is effective to calibrate Rt automatically and
suppress outliers.

In general, Qt can be adjusted to its correct value, which is zero in our case, after less than ten
iterations, as shown in Figure 5. The initial square root of Qt in North, East and Up directions are
0.001 m/

√
30 s. Qt becomes zero at the sixth iteration in all three components and position solution at

the last epoch varies little.
It has to be pointed out that EM-PPP suffers local extrema problems like other alternative methods.

It is not an algorithm to locate the global maxima, therefore EM-PPP is sensitive to initial guesses.
To escape from this local extrema trap, several sets of initialization schemes can be used, and select the
best one selected as the final result.
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Figure 5. Effects of EM-PPP iteration number on the position errors (top) and variations of the square
root of Qt at last epoch on station JFNG.

6.2. Kinematic EM-PPP Solution

Figure 6 is the tracking route recovered by the EM-PPP at the 500th iteration. The relative
log-likelihood versus iterations is plotted in Figure 7, where the results at the first iteration correspond
to the solution to the traditional PPP (TPPP). The relative log likelihood decreases gradually from 1.0 to
8.665 × 10−7 and forms a concave curve. The less the relative log-likelihood, the less perturbative the
EM-PPP solution becomes with respect to the RTK solution. As the iterative number grows to about
150, the EM-PPP solution converges nearly completely.

 
Figure 6. Driving route of moving vehicle in Wuhan, China on 14 November 2013.
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Figure 7. Relative log-likelihood of two consecutive iterations.

Illustrated in Figure 8 are the positioning errors of the traditional PPP solution and EM-PPP
solution at the 500th iteration with respect to the reference coordinates in the Up, East and North
directions. It is observed that EM-PPP solutions are much more stable in all directions when compared
to TPPP solutions. The TPPP solution in the East changes wobbly in comparison to the North and Up
due to greater acceleration in the East (Figure 9), which leads to a larger bias in the East.

Figure 8. GPS-only kinematic positioning errors with respect to real-time kinematic (RTK): (a) traditional
PPP errors, (b) EM-PPP positioning errors at the 500th iteration. Traditional PPP and EM-PPP share the
same initial conditions.
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Figure 9. Acceleration time series derived from second-order differencing RTK position time series in
Up, East and North: (a) acceleration in Up. (b) Accelerations in the East and North.

In fact, the position and velocity (PV) model of our kinematic state equation is assumed to be a
constant velocity model, which means the acceleration is zero. However, the realistic acceleration of
the vehicle is no zero, which results in systematic bias and unstable solution.

Figures 10 and 11 describe the EM-PPP RMSs and STDs with respect to RTK against the number
of iterations, respectively. Obviously, after about 40 iterations, RMSs in Up and North are decreasing
and the solutions are improved in those two directions. In contrast to Up and North direction, in the
East direction it presents a decrease from 9.7 cm falling to 7.6 cm and then increases up to 8.5 cm for
the RMS. However, the combined effects of all three directions get decreasingly 3D RMS, proving that
EM-PPP does improve the positioning accuracy in the kinematic mode in our case, and apparently
converges with increasing iterations, consistent with the EM theory, though there is a little disturbance
because of the existing system bias and outliers of pseudo-range. It can be imagined that a better result
can be expected if acceleration observations are also observed.

 

Figure 10. EM-PPP RMSs w.r.t. RTK solution in Up, East and North (unit: m).
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Figure 11. EM-PPP STDs w.r.t. RTK solution in Up, East and North (unit: m).

As for STDs with respect to RTK, they are consistently increasing in all three directions when
EM-PPP continues its iteration. The STDs decrease from 4.0 cm, 8.4 cm and 2.5 cm to 3.5 cm, 1.6 cm
and 1.6 cm in Up, East and North components, respectively. In other words, the STDs are improved by
12.5%, 80.9% and 36.0% in Up, East and North, accordingly.

Given Figure 12 is the estimates of geodetic coordinates B, L and H, and their estimates of the
square root of Qt after the 500th iteration. It is noted that the coordinates simultaneously stay stable
or alternatively change sharply in all three directions, telling that the moving patterns of the vehicle
switch between static and kinematic status from time to time. Theoretically, the process Qt should
change between zero and positive values. Obviously, the estimates of the square root Qt, displayed in
Figure 12b–f agree well with variations of coordinates. Time-varying Qt is identified, which takes the
concrete dynamic mode into consideration.

 

Figure 12. EM-PPP estimates of the Geodetic coordinates B, L, H and their correspondingly calibrated
Qt after the 500th iteration: (a) Latitude estimates B (degree). (b) The square root of Qt of B (m).
(c) Longitude estimates L (degree). (d) The square root of Qt of L (m). (e) Height estimates H (m).
(f) The square root of Qt of H (m).
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If much smaller initial acceleration variances are given, for example 0.01 m2

s3 rather than 10 m2

s3 for
position and velocity states, it can be shown that our algorithm can still recover the process noise
matrix as well and makes no difference. As a result, the user can choose values for Qt randomly to a
large extent.

7. Conclusions

A machine learning algorithm, EM algorithm, is adapted particularly to the extended Kalman
filter to calibrate the process noise matrix and observation covariance noise matrix for PPP. The main
advantage of EM-PPP is in fact that it is straightforward, simple, (locally) optimal and able to estimate
large amounts of parameters and thus competent in calibrating the time-varying process noise and
observation covariance for PPP state-space model, though its execution is time-consuming. The basic
framework of EM-PPP is not limited to multi-PPP and can be applied to other fields of geodesy.

The whole procedure of EM-PPP is comprised of three parts: initialization, feedforward and
backpropagation. In the beginning, the GNSS preprocess is performed to check the availability of the
required data and mainly recognize cycle slips. Next, the whole process iterates between the estimation
of hidden state and expectation and maximization.

The EM-algorithm is then compared with MLE and LS-VCE methods. We choose the recursive
algorithm because it is superior to separate the process noise and observation variance, and to monitor
time-varying behavior.

The approach was verified by selecting a global distribution of 14 IGS multi-GNSS station
without fixing ambiguities. Based on the presented results, it concluded that EM-PPP is well suited
for dynamically determining the time-varying process noise and observation noise. The calibrated
observation variance matches the observation residuals from low satellite elevation angle to high
satellite elevation angle. It resists orbit and clock errors and outliers through downweighing abnormal
observations at different epochs, which is an alternative reasonable solution in contrast to the popular
way that assigns weight according to the satellite elevation angle. People do not need to worry about
separating observations into different categories carefully based on different GNSS constellations to
estimate variance components like variance component estimation (VCE).

The spectral density of the assumed kinematic IGS station with 1 mm disturbance every 30 s
in North, East and Up direction was estimated to be zero, implying that stations are static, which is
consistent with reality.

An additional kinematic test was also implemented and reasonable values of Qt are found when
biased initial Qt guess was given. The position errors are reduced in Up, East and North direction,
respectively, w.r.t. RTK. In particular the STDs with respect to RTK are improved by 12.5%, 80.9% and
36.0% in Up, East and North, further showing that EM-PPP is also beneficial to kinematic PPP.

It has been confirmed that the EM-PPP is competitive for the calibration of the PPP stochastic
model dynamically. The main drawback of this approach is that it converges slowly due to its first-order
convergence. In the future, online EM-PPP may be derived to process GNSS data in real-time to
overcome this problem if a large number of observations are available.
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Abstract: All measurements are affected by systematic and random deviations. A huge challenge is
to correctly consider these effects on the results. Terrestrial laser scanners deliver point clouds that
usually precede surface modeling. Therefore, stochastic information of the measured points directly
influences the modeled surface quality. The elementary error model (EEM) is one method used to
determine error sources impact on variances-covariance matrices (VCM). This approach assumes
linear models and normal distributed deviations, despite the non-linear nature of the observations.
It has been proven that in 90% of the cases, linearity can be assumed. In previous publications on the
topic, EEM results were shown on simulated data sets while focusing on panorama laser scanners.
Within this paper an application of the EEM is presented on a real object and a functional model
is introduced for hybrid laser scanners. The focus is set on instrumental and atmospheric error
sources. A different approach is used to classify the atmospheric parameters as stochastic correlating
elementary errors, thus expanding the currently available EEM. Former approaches considered
atmospheric parameters functional correlating elementary errors. Results highlight existing spatial
correlations for varying scanner positions and different atmospheric conditions at the arch dam Kops
in Austria.

Keywords: elementary error model; terrestrial laser scanning; variance-covariance matrix

1. Introduction

One of the main tasks in engineering geodesy is deformation and displacement monitoring of
structures such as buildings, bridges, towers, dams, tunnels or other infrastructure works (cf. [1,2]).
Independent of the measurement method, geodetic sensors are used to gather data either in a
continuously manner or within different epochs. In both cases, these prerequisites are essential:
a common geodetic reference system for all the epochs, knowledge about the deformation process
and a stochastic model that describes the uncertainty of the measurements. Classical geodetic
measurement methods like Global Navigation Satellite System (GNSS), total station, leveling, etc. have
been used for decades in terrestrial point-wise monitoring and have well established and broadly
accepted stochastic models [3]. Although highly reliable, point-wise acquisition methods have their
limitations if objects with complex shapes like curved facades, high-rise buildings or arch dams, require
deformation monitoring. Here is where area-wise deformation analysis covers the gap by implying
measurement methods capable of remotely measuring a large area of the observed object [4]. To gain an
impression of recent applications, the reader is referred to [5–7]. One recent method is Terrestrial Laser
Scanning (TLS). Terrestrial Laser Scanners (TLSs) are active multi-sensor systems used to measure the
three-dimensional geometry of a given surrounding within a certain range (cf. [8,9]). Laser scanners got
more precise, compact and affordable in the past 20 years [10], but neither instrument manufacturers
nor the scientific communities have reached common ground in what concerns all TLS influencing
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error sources. This is commonly known as the TLS error budget or TLS stochastic model; which is
currently still unsatisfactory [11]. Neuner et al. [12] give an overview of the available point cloud
modeling methods used in engineering geodesy together with their stochastic models and state that
none of them is established. Generally, a stochastic model is a mathematical model that describes
real-life phenomena that are characterized by the presence of uncertainty [13]. In any case of direct
and indirect measurements [14], the stochastic model can be expressed by a variance-covariance
matrix (VCM) [15]. If knowledge about the existing correlations between all observations is missing,
the VCM is reduced to a diagonal matrix poorly resembling the complex nature of all the error sources
(cf. [11]). This consequently leads to possibly wrong decisions in the TLS deformation analysis [16] or
inappropriate estimations of a specific surface. (cf. [7]).

To overcome this issue, the Elementary Error Model (EEM) can be used to define the stochastic
model of TLS observations in form of a VCM that considers correlations. Previous work of Kauker and
Schwieger [17] sets the foundation of applying the EEM on TLS measurements. To that point, the EEM
model was applied on a TLS of panoramic type [9] and the atmospheric elementary errors were
considered functional correlating. Continuing this line of work, the current contribution introduces a
model for long-range hybrid type TLSs and classifies the atmospheric elementary errors as stochastic
correlating for the first time. The latter is possible due to derived correlations between atmospheric
parameters in the research area. Results are shown on airside point clouds of the Kops arch dam in
Vorarlberg, Austria.

In the second section of this paper, the EEM theory is reviewed for comprehension. Section 3
describes the application of EEM on a Riegl VZ-2000 hybrid TLS (RIEGL Laser Measurement Systems
GmbH, Horn, Austria) together with meteorological elementary errors and their influences on the
distance measurements and vertical angles. The study case and outcomes are presented in Sections 4
and 5 concludes this contribution.

2. Elementary Error Model Theory

2.1. General Remarks about Stochastic Models

The purpose of a stochastic model is to describe the statistical properties of variables [18].
There are many possibilities of describing the propagation of uncertainty of these variables.
Out of these, some are most commonly used in measurements; these are: Guide to the Expression of
Uncertainty in Measurement (GUM) [19], Monte Carlo Method (MCM) [20] and the variance covariance
propagation law (cf. [21]). Only the last two will be briefly discussed with regard to the assumed models.
On one side, in the MCM n random variables are numerically processed without having any knowledge
about neither the linear/non-linear nature of the random variables nor their statistical distribution.
Based on the outcomes, the statistical distribution is derived with corresponding parameters such
as expected value, standard deviation, skewness and kurtosis. One disadvantage is that the model
is computed n times, which increases computation time drastically. For more details the reader is
referred to [20,22]. On the other side, variance covariance propagation law assumes normal distributed
random values and linear or linearized models. Outcomes are likewise normally distributed and
the statistical parameters are completely described by the expected value and standard deviation.
This is an advantageous method, since the linear or linearized functional model is only computed
once [18], therefore reducing computation time. It is also the main reason of adopting it for the EEM
of TLS measurements, where the observations number easily reaches a few hundred thousand or a
few million. To support this hypothesis, Aichinger and Schwieger [23] proved after using MCM for
TLS observations for different scanning configurations that in 90% of the cases, linear models can be
assumed with a significance level of α = 0.003. Therefore, assuming a linear model for TLS observations
is acceptable for most cases, even if observations have a non-linear nature. Regarding the numerical
estimates introduced later, it is mentioned that no method of estimating the outcome’s precision is
currently used. This may be achieved in the future with the help of Variance Component Estimation
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(VCE) based on [24,25], or a review of [26]. Our intention is to use sensitivity analysis (cf. [27,28]) and
inspect how the input estimates influence the outcomes. All of these aspects will be prospectively
presented in a different publication.

2.2. Elementary Error Theory

The general theory of the elementary error model was simultaneously defined by Hagen [29] and
Bessel [30]. Later on, the model was elegantly presented by Pelzer [21] and extended by Schwieger [31].
Some of its applications can be found in exemplifying the error impact on several geodetic measurement
methods like electronic distance measurement (EDM) instruments [32], GNSS observations [33] or
recently TLS measurements [17].

According to the EEM theory, each realization of a measured random quantity differs from its
expected value by a random deviation ε [31]. It is assumed that ε is comprised by the sum of countless,
small elementary errors. Their absolute value is supposed to be equal and the probability of a positive
and negative sign is likewise presumably equal [29]. The presumption of standard normal distribution
of these errors is supported by an infinite number of elementary errors with infinitely small absolute
values. Their impact on the observations can be modeled by using error vectors and influencing
matrices. These matrices resemble the effect on the covariance matrix of observations. Three types
of impacts are considered: non-correlating error vectors δk, functional correlating error vector ξ and
stochastic correlating error vectors γh [31]. For each error type, corresponding influencing matrices are
defined as follows: p matrices Dk for non-correlating errors, one matrix F for functional correlating
errors and q matrices Gh for stochastic correlating errors. Therefore, the random deviation vector ε
results as a sum of all elementary errors accordingly:

ε =
p∑

k=1

Dk·δk + F·ξ+
q∑

h=1

Gh·γh. (1)

These influencing matrices have different structures depending on the elementary errors effects
on the observations. Hereby, matrices Dk and Gh are symmetrical diagonal matrices because each
elementary error of the non-correlating and stochastic correlating group influences exactly one
measurement quantity functionally. The matrix F is fully populated because one functional correlating
error may impact several measurement quantities [31]. Defining the functional relationships between
observations l1 . . . ln and the elementary errors δ, ξ andγ allows the calculation of the partial derivatives
that populate the influencing matrixes as follows:

Dk =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂l1
∂δ1k

0 · · · 0

0 ∂l2
∂δ2k

0
...

... 0
. . .

...
0 · · · · · · ∂ln

∂δnk

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, F =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂l1
∂ξ1

∂l1
∂ξ2

· · · ∂l1
∂ξm

∂l2
∂ξ1

∂l2
∂ξ2

· · · ∂l2
∂ξm

...
...

. . .
...

∂ln
∂ξ1

∂ln
∂ξ2

· · · ∂ln
∂ξm

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, Gh =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂l1
∂γ1h

0 · · · 0

0 ∂l2
∂γ2h

0
...

... 0
. . .

...
0 · · · · · · ∂ln

∂γnh

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (2)

Applying the law of propagation of variance on Equation (1) yields the so called “synthetic
covariance matrix” Σll which by definition has the following form [33]:

Σll =

p∑
k=1

Dk·Σδδ,k·DT
k + F·Σξξ·FT +

q∑
h=1

Gh·Σγγ,h·GT
h , (3)

where each covariance matrix of the elementary errors is defined and structured as shown below.
The covariance matrices for non-correlating errors Σδδ,k and functional correlating errors Σξξ are
diagonal matrices having the elementary error’s variances on the main diagonal. As a result of
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the possible covariances of the stochastic correlating errors, the corresponding matrix Σγγ,h may be
fully populated.

Σδδ,k =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
σ2

1k 0 · · · 0

0 σ2
2k 0

...
... 0

. . .
...

0 · · · · · · σ2
nk

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,Σξξ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
σ2

1 0 · · · 0

0 σ2
2 0

...
... 0

. . .
...

0 · · · · · · σ2
m

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,Σγγ,h =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
σ2

1h σ12h · · · σ1nh
σ12h σ2

2h · · · σ2nh
...

...
. . .

...
σ1nh · · · · · · σ2

nh

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (4)

The challenging part is finding variances for all groups of errors and covariances for stochastic
correlating errors. Correlations between the elementary errors are assumed to be zero. The variances
may however be extracted from instrument manufacturers reports (cf. Section 3.2), empirical values
(cf. Section 3.3) or an estimation based on the maximum error impact. In the last case, Pelzer [21]
states that if the probability distribution is known, the standard deviation of an elementary error
can be estimated with regard to its maximum error. Therefore, if a variable follows a rectangular
distribution, the standard deviation is retrieved by multiplying the maximum error with 0.6. In case of
a triangular distribution, multiplication is done by 0.4 and for normal distributions by 0.3. In what
concerns the stochastic correlating group, values for the correlations must be supported by empirical
values or literature. They represent stochastic relations for multi-dimensional normal distributed
observations [17]. If the terms of Equation (3) are to be summed up, it can be seen that according to the
matrices structures (see Equations (2) and (4)) the individual results are as follows: for non-correlating
errors—a diagonal matrix, for functional and stochastic correlating errors—fully populated matrices.
Thus, the synthetic variance-covariance matrix Σll is also fully populated and illustrates the existing
observation variances and covariances and indirectly their correlations.

3. Elementary Error Theory for Terrestrial Laser Scanners

3.1. Error Soruces in Terrestrial Laser Scanning

In order to apply the EEM on laser scanners, the error sources need to be identified and classified.
As any measurement instrument, TLSs are realizations of an idealistic measurement system, therefore
affected by physical manufacturing limitations. Even if the instrument itself would be hypothetically
flawless, all measurements would be affected by the environment through which the electromagnetic
waves are traveling (cf. [34]). Other error sources are related to the measured object properties such as
surface material, roughness and color. These play an important role on the distance measurements and
strongly depend on the used wavelength [35]. According to other authors (cf. [36]), scanning geometry
is also considered an error source. Only instrumental and environmental error sources are treated in
this contribution.

For a better understanding of how the TLS observations affect the coordinates (Figure 1),
the mathematical relations between range (R), horizontal angle (λ), vertical angle (θ) and Cartesian
coordinates (X, Y, Z) are described generically as follows:

X = R· sin(λ)· cos(θ), R =
√

X2 + Y2 + Z2,
Y = R· sin(λ)· sin(θ), λ = atan

(
X
Y

)
,

Z = R· cos(θ), θ = acos
(

Z
R

)
.

(5)

3.2. Instrumental Elementary Errors

In comparison to the panorama TLSs architecture, the hybrid scanner architecture is less present
in commercially available TLSs. This may be a reason for the reduced amount of scientific publications
on calibration models for hybrid scanners. Even though it measures basically the same type of polar
coordinates, calibration parameters (CPs) are of a more complex nature (cf. [37]). The most common
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example is the rotating polygon mirror used for deflecting the laser beam. On one side, the distance
varies at each mirror position and on the other side, the EDM source is usually mounted with an offset
from the rotation axis, not to mention that it may be intentionally tilted. Further on, a classification of
the instrumental errors is necessary. Firstly, an explanation is given about how the errors are considered
and afterwards numerical values are given.

 

Figure 1. Example of Riegl Terrestrial Laser Scanner (TLS) and main axes.

To begin with, the non-correlating elementary errors are considered. These are measurement
noise for angle and range measurements, which are not directly specified by the manufacturer.
For range measurement, there is an entry for accuracy and one for precision. As defined by Riegl
Laser Measurement Systems GmbH (Horn, Austria) [38], precision is the degree to which further
measurements show the same result. If the definition of standard deviation is considered, it expresses
how widely the random variable is spread out relative to the mean value of the sample [39]. Therefore,
the given value for precision will be used as an indicator for instrument internal range noise at all
measured ranges (see Table 1). For angle measurements, the data sheet of the instrument offers only
“angle resolution” without further details. According to Wunderlich et al. [40], angular resolution
can be interpreted as measurement precision (one sigma), therefore the same convention is used (see
Table 1). The terms are generally presented in Equation (6) and their values are found in Table 1.
Having this, the first term of Equation (2) and the first term of Equation (4) are now defined as follows:

Σδδ,k =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
σ2
λ 0 0

0 σ2
θ 0

0 0 σ2
R

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦, D = I. (6)

Table 1. Classification of instrumental errors and their dimensions.

Type of Error Parameter Standard Deviation

Non-correlating errors
Range noise σR = 5 mm

Angle noise (λ, θ) σλ = 0.55 mgon
σθ = 1.66 mgon

Functional correlating errors

a0 σ = 0.34 mm
a1 σ = 40 ppm
b4 σ = 3.18 mgon
b6 σ = 1.91 mgon
c0 σ = 1.08 mgon
c1 σ = 1.85 mgon
c4 σ = 0.64 mgon
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The influencing matrix D is the identity matrix, because no transformation from the coordinate
space into observation space is needed at this moment. Only after the complete synthetic VCM is
computed, a transformation based on Equation (5) is made from observation space to coordinate space.

Regarding the functional model of observations, a model defined by Lichti [41] and Lichti [42],
later simplified by Schneider [43] is adopted. The latter applied it on a Riegl LMS-420i and could
successfully improve the results after calibration. The simplification is mostly justified by the fact that
not all of the CPs can be classified as significant after a calibration. Furthermore, if they are highly
correlated they only reduce the validity of the model. Some of them are negligible, some are not
determinable or separable, and therefore the used model is restricted to the minimum number of
CPs identified as significant [37]. For more details about these parameters, the reader is advised to
consult [37,43]. Following [43], the CPs for each observation can be defined as stated:

ΔR = a0 + a1R + a2R2,
Δλ = b1 sec(θ) + b2 tan(θ) + b3 sin(λ) + b4 cos(λ) + arcsin

(
b5
R

)
+ b6 sin(2λ) + b7 cos(2λ) + b8 cos(3λ),

Δθ = c0 + c1 sin(θ) + c2 cos(θ) + arcsin(c3/R) + c4 cos(3λ),
(7)

where a0 is the zero point error, a1 scale error, a2 quadric scale error, b1 collimation axis error, b2 horizontal
axis error, b3 and b4 first and second horizontal circle eccentricity, b5 eccentricity of the collimation axis
with respect to the vertical axis, b6 and b7 non-orthogonality of the plane containing the horizontal
angle encoder and the vertical axis, b8 empirical parameter for compensation of remaining systematic
effects, c0 vertical circle index error, c1 and c2 first and second vertical circle eccentricity, c3 eccentricity
of the collimation axis with respect to the trunnion axis, c4 empirical parameter to model a sinusoidal
errors function of the horizontal direction with period of 120◦ (cosine term).

Out of all CPs, only some of them have numerical values and were determined as significant after
calibration by Schneider [43]. For the EEM, variances of the CPs are introduced in the middle term
of Equation (4) and the F matrix contains the partial derivatives of Equation (7). The values for the
variances are presented in Table 1 with adopted dimensions for the Riegl VZ-2000 scanner. Further
investigations on the hybrid scanner architecture are in progress based on the foundations set in [44].

3.3. Meteorological Elementary Errors

3.3.1. Influences on the Distance Measurement

Similar to EDM of total stations, distance measurements in TLS, are influenced by air temperature
and air pressure; in any case for long distances. Partial water vapor pressure is intentionally neglected
due to its small influence. Most TLSs use near-infrared light for measuring distances. As known,
the speed of light traveling through the atmosphere’s different layers is diminished in comparison to
the speed of light in vacuum. The atmospheric correction increases proportionally with the measured
distance [34]. In case of ranges up to 200 m, these corrections may be neglected, but it cannot be
neglected for long range scanners (e.g., Riegl VZ-2000) that measures up to 2050 m. According to
manufacturer’s specifications, the Riegl scanner has an atmospheric correction model implemented
in the instrument, meaning that distances are corrected based on the introduced parameters for
temperature, pressure and relative humidity. Information of how this happens can be taken from
the RiSCAN Pro software documentation [45] and further inspected in the IAG 1999 resolutions [46].
The authors retain from explaining the whole process of retrieving the influencing coefficients for
distance measurement and directly give the formula implemented in the EEM:

Δn·10−6 = −0.93·Δt + 0.27·Δp,ΔR = −R·Δn, (8)

where Δn is the the change of the group refractive index of light, Δt is change in temperature (◦C) and
Δp is change in pressure (hPa). Finally, the change in range ΔR is given. Note that these parameters
are calculated for a mean atmosphere of 17 ◦C, 1000 hPa pressure and a wavelength of λ = 1550 nm.
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Interpreting this in terms of parts per million (ppm) depending on the two atmospheric parameters
in standard conditions, a change in t of 1 ◦C affects the distance and refractive index by 0.93 ppm,
a change in air pressure of 10 hPa yields a −2.7 ppm correction on the distance. For more details about
this topic, the reader can consult [47] or [34].

3.3.2. Influences on the Vertical Angle Measurement

In addition to the effects on distance measurements of any electro-optical measurement,
atmospheric refraction also influences the vertical angle measurements. This effect causes image
scintillation, often obvious in its extreme case when temperature gradients near the ground are high
(e.g., in the desert or on a highway in hot summer days). This mostly affects angle measurements and
is likewise important in geodesy, receiving much attention in transferring heights by trigonometric
leveling. Nevertheless, this effect also occurs in TLS measurements and has been empirically studied
by Friedli et al. [48]. The reader is advised to consult this work for understanding how refraction
angles can be determined with the aid of reference values from total station measurements.

Figure 2 denotes the effects of atmospheric refraction out of which the refraction angle correction
δ/2 is of further interest. This angle is given between the expected wave path and apparent line of
sight also called tangent to refracted wave path. For more details about how δ/2 is deduced, refer
to [49]. There are different ways of expressing the refraction angle correction, but only one has been
chosen based on its simplicity and implemented in the EEM. The choice is not relevant in case of
stochastic modeling. The corrected vertical angle can be therefore computed [49]:

θ = θ′ + δ
2

,
δ
2
=

R
2·ER

·k·ρ, (9)

where θ is the corrected vertical angle, θ′ the measured vertical angle, R measured range, ER Earth’s
middle radius (6381 km), k refraction coefficient and ρ conversion constant between angle measurement
units (degrees or grads) and radians. The coefficient of refraction k is usually needed to account for
the curved light path from one point to another. It is defined as a ratio between the Earth radius
and the radius of the line of sight which is mostly convex [50]. Very often, the Gaussian value of
k = +0.13 is used by default as a setting for total station measurements, hoping that it holds true for
most applications [51]. Nevertheless, k strongly varies throughout the day and is directly dependent
on the temperature gradient ∂T/∂Z (K/m) (cf. [52]). If the refraction coefficient of a particular point
is of interest, the local refraction coefficient kloc is given as a function dependent on temperature,
pressure and the local temperature gradient (cf. [49,52]):

kloc = 503· p
T2 ·

(
0.0343 +

∂T
∂Z

)
, (10)

where p is pressure (hPa), T is temperature in (K) and ∂T/∂Z (K/m) is the temperature gradient at
a certain point. The term kloc is used instead of an average k in Equation (9) for further purposes.
As noticed in Equation (10), temperature gradient strongly determines the size of the local refraction
coefficient; hence, its variation from ground level up to 100 m above the ground, as relevant for the
later given examples, will be discussed. This is defined in meteorology or climate research under the
name of micro- and local climate [53]. Hirt et al. [54] use the terms higher, intermediate and lower
atmosphere to define the variation of the vertical temperature gradient (VTG) within a given range.
By higher atmosphere, the layers from 100 m and above the ground surface are addressed. The VTG in
this part of the troposphere has values around −0.006 K/m and is fairly independent of the Earth’s
surface temperature [54]. The next layer, the intermediate atmosphere between 20–30 m and 100 m is
weakly influenced by the ground temperature and has an average value for the VTG of −0.01 K/m.
This is where the refraction coefficient has an average value of +0.15 and it is also the layer to which
the Gaussian value is most appropriate. Going a level lower, the first layer, considered the lower
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atmosphere is where ground temperature reaches its maximum influence on the VTG. Several studies,
summarized in [54], showed variations of the refraction coefficient between −3.5 and 3.5. Noteworthy
are the empirical findings of Hennes [55] in which the local refraction coefficient reaches values of −2.9
(from a VTG of −0.5 K/m) leading to a concave curvature of the light path, contrasting the common
belief about the chord being convex in almost all cases. Nevertheless, a less drastic value of −0.2 K/m
is used in the current study, resembling an average value for this layer.

 

Figure 2. The effects of atmospheric refraction (after [3]).

Similar as in Section 3.3.1, the influencing coefficients are determined after computing the partial
derivatives of Equations (9) and (10). Therefore, numeric values have been exemplary computed with
the same conditions as stated before (t = 17 ◦C, p = 1000 hPa, VTG = −0.01 K/m) at a distance of 1000 m.
The change in the measured vertical angle (in radians) is given by:

Δθ·10−6 = −0.08·Δt + 0.01·Δp + 468.17·ΔVGT, (11)

where Δθ is the the change in the measured vertical angle, Δt is change in temperature (◦C), Δp is
change in pressure (hPa) and ΔVGT is the change in vertical temperature gradient. In other
words, a change in temperature of 10 ◦C affects the vertical angle by −0.8 μrad (−0.05 mgon),
a change in air pressure of 10 hPa affects the vertical angle by 0.1 μrad (+0.006 mgon) and the most
significant factor, a change in the VGT of 1 K/m results in a change of the angle with 468.17 μrad
(29.8 mgon). This is not to be confused with the systematic effect of the refraction angle correction δ/2.
For comprehension, for the above stated conditions and at 1000 m, δ/2 has a value of 0.7 mgon, which
leads to a value of the linear error e = 11.4 mm. The intention is not to correct these systematic effects,
but to show how varying temperature and pressure influence the error of position.

Although often not considered, air pressure also follows a gradient. This is less variable than the
VGT and according to the Deutscher Wetterdienst Lexikon [56], the pressure gradient throughout the
mentioned atmospheric layers is δp/δz = −0.125 hPa. This information will also be further used.

All these layer definitions and given values are adopted further in Section 3.4 to derive the
necessary variances and covariances needed in the EEM.

3.4. Atmospheric Errors as Stochastic Correlating Errors

In most terrestrial precision measurements, if the atmospheric parameters temperature, pressure
and relative humidity are needed, they are measured at the station point and in some cases near
the observed object or second station point. For corrections, an averaged value of these parameters
is used in most cases. This may hold true for airborne laser scanning, where the average between
aircraft and ground temperature is sufficient [57], but in TLS, the situation changes. In addition to
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this, it was shown (cf. [48,54]) that even within a short time span, these may present strong variations
and there is no straightforward method of correcting the measurement values dependent on these
temporal variations. For this reason, modeling the impacts on the observations needs to be done
stochastically. To do so, a VCM of the varying terms air temperature (t), air pressure (p) and VGT
(g) is needed. The challenge is to fully populate the VCM Σγγ,h from Equation (4) so that existing
correlations between all elementary errors are known. This will have the general form in case of t,
p and g (only upper diagonal presented) as follows:

Σγγ,atm =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

s2
t1 st1p1 st1g1 st1t2 st1p2 st1p2 · · · st1tm st1pm st1gm

s2
p1 sp1g1 sp1t2 sp1p2 sp1g2 · · · sp1tm sp1pm sp1gm

s2
g1 sg1t2 sg1p2 sg1g2 · · · sg1tm sg1pm sg1gm

s2
t2 st2p2 st2p2 · · · st2tm st2pm st2gm

s2
p2 sp2g2 · · · ...

...
...

s2
g2 · · ·

. . .
...

...
...

s2
tm stmpm stmgm

s2
tm spmgm

s2
gm

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(12)

The main diagonal is not difficult to fill in, according to what will be explained next, but the
rest of the elements on all the upper and implicitly lower part of the same matrix are actually the
challenge. To overcome this, correlation coefficients between t, p and g are computed for the given
spatial distribution of all observations. This will be further on explained.

As in any terrestrial electro-optical measurement, in TLS observations light travels from the
instrument to the measured object and back. Due to varying atmospheric conditions, it will be
perturbed throughout the whole path and in order to evaluate how air temperature, air pressure
and VTG vary along the path, pre-knowledge about these parameters (cf. Section 3.3.2) is used in a
combined way with spatial information. Suppose a laser scanner is stationed at a certain distance near
a tall object and observations are possible from the base to the tip of that object. If a rough digital
terrain model (DTM) of the area is available, then the local topography is known, which further allows
a classification of the VGT depending on how the topography varies. Simply explained, the limits
of the gradient layers can be defined as surfaces with an offset from ground level according to how
meteorologists have defined these limits (Figure 3 left). The yellow surface defines the separating
layer at about 25 m between the lower and intermediate atmosphere; the red layer is the separation
between intermediate and higher atmosphere at about 100 m above the ground. In order to have a
better overview of the further steps, a vertical section is selected and exemplified in Figure 3 right.

  

Figure 3. (Left) Spatial separation of vertical temperature gradient (VGT) layers; (right) one section of
the spatial VGT model.
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It is necessary to roughly know the position of the scanner on the DTM. This is often referred to
as georeferencing, but in this case the accuracy of the scanner’s position is not of high importance,
therefore an approximation suffices. In most cases, the air temperature and air pressure is measured
near the laser scanner, usually at the instrument height. According to the situation depicted above,
this is true for temperature and pressure only near the laser scanner, but the interest is in gaining
information about the atmospheric parameters along the whole measurement path. Therefore, in the
next step the observation lines are reconstructed in relation to the scanner position on the DTM.
This directly shows which observation line passes through which atmospheric layer. Only two of them
are depicted by the blue lines in Figure 3 right, but the same principle applies for all the rest. Further on,
a series of points along these lines are selected; denoted by the yellow and pink circles. Point spacing
along the observation line may be done subjectively; but a uniform distribution between scanner
and object is suggested for representative results. Each of these points receive values for t, p and g,
determined according to their position in space and in relation to the measured atmospheric parameters
at the station point denoted by “TLS” in Figure 3 right. For example, along the lowest observation line,
each yellow point will receive a value starting from t11, p11, g11 to t1n, p1n, g1n. The individual values are
extrapolated according to the individual position. If more measurements of the atmospheric parameters
at other positions within the DTM are available, they can be considered within the extrapolation
processes. This applies for all the other observation lines, until the highest one is reached. In this
case, the pink points (Figure 3 right) receive tm1, pm1, gm1 to tmn, pmn, gmn. Notice that the points are
chosen on the same vertical line, fact that will be explained later. Having series of values for all three
parameters along all observation lines allows the computation of variances and covariances along and
between each observation line according to:

s2
a = 1

n−1 ·
n∑

i=1
(ai − ai)

2,

sai,aj =
1

n−1 ·
n∑

i, j=1
(ai − ai)·

(
aj − aj

)
,

(13)

where s2
a is the empirical standard deviation computed for each of the three atmospheric parameters.

The value ai and aj are replaced consecutively by ti, pi, gi and n is the number of points along each
observation line, sai,aj is the empirical covariance between pairs of the three parameters. To exemplify
this, the general VCM Σγγ,atm for one observation line has the following form:

Σγγ,atm =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
s2

t stp stg

stp s2
p spg

stg spg s2
g

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦. (14)

Out of this VCM, a correlation matrix is computed, out of which correlation coefficients are
extracted. For example, along each line, the correlation matrix Ratm is obtained and contains the
following correlation coefficients rtp, rtg, rpg. This is valid for all lines up to the n-th observation.

Ratm =
1√

diag
(
Σγγ,atm

) ·Σγγ,atm· 1√
diag

(
Σγγ,atm

) =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 rtp rtg

rtp 1 rpg

rtg rpg 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦. (15)

This is valid along observation lines and helps at filling in the block matrices on the main diagonal
of VCM from Equation (12) with submatrices like in Equation (14). For all other elements of Σγγ,atm

the covariances are computed with the help of the correlation coefficients according to:

sij = rij·si·sj. (16)

152



Mathematics 2020, 8, 593

The values for si and sj are computed along each observation line with the help of Equation (13).
Following Equation (15), a set of values for rtp, rtg, rpg is obtained. In addition to these, the correlation
coefficients of the same parameters (t–t, p–p and g–g) between the observation lines have to be
determined rtt, rpp, rgg and to accomplish this, VCMs and correlation matrices are computed between
each parameter of the observation lines (e.g., t11 and tm1). This is also the reason why it is relevant
to have the yellow and pink points on the same vertical line. In this way values for each of the
atmospheric parameters are treated as series of values for the same dimension, in this case vertical
direction. A drawback of this proposal is that a number of n TLS observations leads to a number of
n!/(n− 3)! permutations of correlation coefficients. This means that for e.g., 200 values taken three
times (t, p, g) one would obtain a number of 7,880,400 correlation coefficients that need to be properly
arranged in Σγγ,atm. This is currently not achievable due to technical reasons for TLS observations
where the number of observations easily reaches a few million. Therefore, one generic value is taken
for each of the coefficients rtp, rtg, rpg and rtt, rpp, rgg. Numeric values are computed between the lowest
and highest observation line taken from the vertical section as denoted in Figure 3 right. Finally,
the individual values for the covariances are computed based on Equation (16) and then introduced
in Σγγ,atm like in Equation (12). Returning to the EEM, now that the matrix Σγγ,atm is available,
the influencing matrix Gh from Equation (2) must be properly filled. The complete matrix is a block
matrix that has the partial derivatives of the observations with respect to t, p and g, as presented in
Equation (17).

Gatm =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
G1 0 · · · 0

0 G2 0
...

... 0
. . .

...
0 · · · · · · Gn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, Gi =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
∂λ
∂t

∂λ
∂p

∂λ
∂g

∂θ
∂t

∂θ
∂p

∂θ
∂g

∂R
∂t

∂R
∂p

∂R
∂g

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (17)

where i = 1 . . . n and G1 to Gn are block matrices that have the partial derivatives as shown above.
Effects on the horizontal angles have not been discussed and are not considered in this model. Therefore,
the first line of each block g will be filled with 0. The second line includes the coefficients presented
in Section 3.3.2 in Equation (11) and this is the only line that has influencing values for all variations
in the fully populated VCM (Equation (12)); the last line of g has the influencing values presented
in Section 3.3.1, Equation (8) with the last element 0. The numerical values must be computed with
regard to given atmospheric conditions and at a given range for each situation. Finally, the last term of
the synthetic VCM can be computed and therefore the influences of instrumental and atmospheric
parameters can be combined. In the upcoming section, the whole methodology presented until now
will be applied for TLS point clouds of an arch dam.

4. Study Case: Arch Dam Kops

The Kops water dam is a storage concrete dam built between 1962 and 1969 in Vorarlberg, Austria.
It is considered a hybrid dam made out of a gravity dam and an arch dam with artificial counterfort or
abutment. It retains a volume of almost 43 million m3 of water, thus creating the 1 km2 “Kopssee”
lake [58]. Only measurements of the downstream (airside) arch dam are considered. For this reason,
its dimensions are mentioned to give a general impression. The crown spans over 400 m, its height is
122 m from foundation to crest and has a crest width of 6 m. Between 29 July and 2 August 2019, a first
measurement campaign of the Kops dam took place and part of the results from another type of laser
scanner are presented by Kerekes and Schwieger [59]. Further on, the EEM is applied on point clouds
acquired with the Riegl VZ-2000 from varying positions.

In order to apply the EEM for meteorological elementary errors as described in Section 3.4,
a DTM for the area of interest was cordially made available by the “Landesamt für Vermessung und
Geoinformation” Land Vorarlberg, Austria. TLS Point clouds were acquired from four different station
points. Figure 4 shows the distribution of these on the DTM together with an example of a vertical
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section plane out of which temperature and pressure are extracted. Results will be presented for all
four station points (S1–S4).

Figure 4. TLS station points and vertical section on digital terrain model (DTM) (Source for DTM:
LiDAR Data obtained from Land Vorarlberg, Austria—data.vorarlberg.gv.at).

In order to have an overview about the varying scanning configurations and atmospheric
conditions, Table 2 summarizes all the relevant parameters.

Table 2. Overview of scanning configurations and atmospheric conditions.

Station Point
Shortest Horizontal Distance

from Scanner to Dam
Mean Distance to Dam Weather Conditions

S1 180 [m] 194 [m] t = 16 ◦C, p = 941 mbar
S2 88 [m] 119 [m] t = 15 ◦C, p = 942 mbar
S3 196 [m] 203 [m] t = 23 ◦C, p = 832 mbar
S4 456 [m] 466 [m] t = 24 ◦C, p = 840 mbar

Considering the harsh local topography with steep slopes and vegetation, only the four station
points depicted in Figure 4 were measurable within reasonable time, effort and coverages of the
dam airside. With exception of S4, all other point clouds cover more than 80% of the airside surface.
Weather recordings were made at each station point at the instrument height approx. 2 m above ground
height with the Greisinger precision Thermo-, Barometer GTD1100 (Greisinger GmbH, Regenstauf,
Germany). According to the technical specifications, air temperature is measured with an accuracy of
+/−1% of the reading in the interval −10 ◦C to +50 ◦C and air pressure with +/−1.5 hPa in the interval
of 750 hPa to 1100 hPa [60]. These accuracies are considered in the process of determining t and p.
As regards the VGT, an empirical value for the uncertainty can be found in [55] for an Alpine region:

σVGT =

√
1

12
·(VGTmax −VGTmin)

2, (18)

where a value for σVGT = 0.25 K/m in case of the Alpine region in the lower atmosphere is given and
VGTmax and VGTmin are the upper and lower numerical recorded values for the VGT [55].

In case of the other two layers, no empirical values for variances have been found to the best of the
author’s knowledge. Due to this, values are obtained by multiplying the VGT value with 0.3 following
the explanation in Section 2.1; these variations are likewise considered in determining the values for t.

For all station points the same methodology is applied, but the vertical section is only visualized
in the case of S4 (Figure 5). The authors consider this case the most interesting since the distance to the
dam is the longest and observations pass through different atmospheric layers more than once.
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Figure 5. Vertical section through the terrain and temperature gradient fictive separation.

Almost half of the observation lines in this profile pass through the lower layer twice, meaning
that variances of temperature and VGT affect the lowest points in the point cloud more than the ones
obtained from observations that travel through a more stable atmospheric layer. This is confirmed
further when analyzing the error of position in the point cloud. To have an overview of all variances
and spatial correlation coefficients, Table 3 presents them for all station points.

Table 3. Overview of variances and spatial correlation coefficients for atmospheric elementary errors.

Station
Point

Temperature Variance
from Lowest to Highest

Line ( σt1. . . σtn)

Temperature Variance
from Lowest to Highest

Line ( σp1. . . σpn)

Temperature Variance
from Lowest to Highest

Line ( σg1. . . σgn)

Correlation Coefficients

rtt rpp rgg rtp rtg rpg

S1 0.28 . . . 2.36 ◦C 1.55 . . . 3.36 hPa 0.25 . . . 0.17 K/m 0.27 0.08 0.44 0.19 0.27 0.10
S2 0.17 . . . 1.13 ◦C 1.53 . . . 3.44 hPa 0.24 . . . 0.16 K/m 0.28 0.23 0.33 0.49 0.18 0.36
S3 1.94 . . . 1.78 ◦C 1.54 . . . 3.14 hPa 0.25 . . . 0.17 K/m 0.27 0.24 0.20 0.59 0.43 0.35
S4 1.88 . . . 1.61 ◦C 4.01 . . . 4.78 hPa 0.11 . . . 0.03 K/m 0.48 0.80 0.31 0.31 0.63 0.47

The last pairs of correlation coefficients rpt, rgt, rgp are not in the table because they have the same
value with rtp, rtg, rpg. Note that these values resemble the spatial correlations only. The subject of
temporal correlations will be addressed in a future publication after a second measurement epoch is
available. The variances and correlation coefficients from Table 3 are used to finally create a VCM
Σγγ,atm for the atmospheric elementary errors for each station point. In case of the instrumental errors,
all the values are the same as stated in Table 1 since the same instrument was used in all station points.

The EEM is implemented in Matlab—MathWorks and currently limited to handling VCMs having
sizes of up to 21,000 × 21,000 cells. More details about this can be found in [59]. Before applying the
EEM on the point clouds, only points on the dam are selected and a subsampling is done. Consequently,
the complete point cloud contains points on the dam airside with a distance of 1.5 m between them.
Additional to this, vertical sections on the dam are analyzed since much attention was accorded to how
atmospheric parameters vary along vertical profiles. The point spacing in the section is denser with an
average distance of 15 cm between the points. This is done due to technical restriction mentioned above.

Coordinates (X, Y, Z) are considered instead of observations (R, λ, θ), because the VCM will
be used for estimating the geometric primitives of a B-Spline surface in the future [59]. Therefore,
the synthetic VCM is computed in observation space and then transformed with the help of equations
5 to coordinate space. Results are presented with regard to the error of position, spatial correlations
along a vertical line chosen to be as long as possible along the scan (Figure 6) and contribution of all
variances to the error budget in case of a single point.
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 6. Example of error of position distribution on point clouds, selected vertical sections (red lines)
and selected points (red circles). Scanning station points are (a) S1, (b) S2, (c) S3, (d) S4.
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4.1. Error of Position

The main diagonal of the synthetic VCM in coordinate space contains the variances for each point
in the point cloud. The error of position is computed according to [21]:

σxyz_i =
√
σ2

xi + σ
2
yi + σ

2
zi. (19)

Points are visualized with respect to their position in space (local coordinate system) relative to
the laser scanner position (0, 0, 0) and the dimension of the error of position is given on a color scale.
Figure 6 exemplary shows the results obtained from all four station points, the selected vertical section
and a point for which the percentage contribution of the variances is given later on.

Here the coverage of the air side can be seen for the first time. As expected from Figure 4,
S1 to S3 cover most of the dam’s airside, whilst S4 (Figure 6d) has the smallest coverage due to height
difference and vegetation. Outcomes led to average errors of position, as follows: S1 − σxyz = 15.2 mm,
S2 − σxyz = 9.6 mm, S3 − σxyz = 16.4 mm and S4 − σxyz = 36.5 mm. A common color scale was chosen
to maintain comparability; this is why the reader is asked to consult the digital version of the paper.
At a first glance, it can be seen in which way the errors of position are distance dependent, with the
smallest values for S2 (Figure 6b) which is the nearest point and the biggest value for S4 (Figure 6d) at a
distance of 466 m. Both S1 and S3 (Figure 6a,c) present similar results due to the similar measurement
configuration. At a closer inspection of the scan from S4, it can be seen how the error of position
decreases with height, reaching a minimum at the crest (dark yellow). The lowest part has the highest
values for the error of position (bright yellow). This resembles the smaller variation of the VGT (see
Table 3) for TLS observations that pass through more stable atmospheric layers.

4.2. Spatial Correlations Along Vertical Sections

Existing correlations can be analyzed after computing a correlation matrix based on the VCM
(Equation (15)). Generally, high correlations are an indication for high variances. Previous publications
of the EEM for TLS topic (cf. [17]) treated atmospheric elementary errors as functional correlating.
In this contribution, atmospheric elementary errors were treated stochastic correlating (cf. Section 3.4)
for the first time. This leads to different spatial correlations than have not been discussed before. For this
reason, special attention is offered to the stochastic correlating errors and presented in parallel with the
ones obtained from the complete VCM where instrumental errors also influence the results. For each
station point, one vertical section has been selected and spatial correlations are presented between
the lowest point of the section and all other. The analysis is made only for the height coordinates Z.
Results do not change if observations would be analyzed instead. The reason for choosing only one
vertical section is that emphasis is put on how the stochastic correlating errors influence the correlations
and height error of position in comparison with the complete VCM of the same station point. These
cases are shown in parallel. In the first case, the EEM considers instrumental and atmospheric errors
(Figure 6 left side) and in the second only atmospheric errors are considered in the EEM (Figure 6
right side).

Analyzing all correlations when instrumental and atmospheric elementary errors are considered,
values are in almost all cases higher than 0.5 (Figure 7a,c,d) and present a linear decrease with
increasing height. The same effect is noticed with the standard deviations of the heights that remain at
approximately the same level. The exception to this is S2 (Figure 7b) where the correlations decrease
with height and standard deviation increases. This is the station point with the smallest distance to
the dam; therefore, an explanation for this effect is analyzed in the next section. Correlations in case
of the atmospheric errors all show a linear behavior (Figure 7e–h), but at different levels. As maybe
presumed, the standard deviations are very small at these distances and given level of variation for the
atmospheric parameters, but the most interesting finding is at S4 (Figure 7h) where the decrease in
standard deviation of height is obvious, explaining the presumption made in Section 4.1 that the upper
observations travel through more stable layers of the atmosphere and are less affected by variations.
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This may lead to the thought that scans for e.g., objects over a valley are more reliable than those
acquired from parallel to the ground level. This is partly true, since VGT may also be stable for a
short period of time at ground level; therefore, this issue strongly depends on the topography and
local conditions. If the conditions in Table 2 are reviewed, it can be seen that similar atmospheric
conditions do not necessarily lead to a similar level of correlation, for example point clouds from
S2 and S4 where acquired under differing conditions, but led to a similar level of correlation for the
atmospheric elementary errors.

 

Figure 7. Left: spatial correlations, standard deviations (height)—complete synthetic VCM (a) S1,
(b) S2, (c) S3, (d) S4; right: spatial correlations, standard deviations (height)—synthetic VCM with
atmospheric elementary errors only (e) S1, (f) S2, (g) S3, (h) S4.

4.3. Contribution of the Elementary Errors Variances to the Overall Error Budget

The points depicted in Figure 6 (red circles) are chosen to analyze the contribution of variances to
the whole error budget. Note that here, all dimensions (X, Y, Z) are considered and not only Z as in the
section before. For the first three station points, they are approximately at the same level. In case of S4,
this is not possible since that part of the dam cannot be scanned.

In all situations, instrumental errors make up the majority of the error budget (Figure 8).
The parameters b4—horizontal circle eccentricity, a1—scale error and c1—horizontal circle eccentricity
comprise in all cases more than 50% of the error budget. It can also be seen that some instrumental errors
are negligible (e.g., a0) since they remain under the 1% quote. In the previous section, the standard
deviations for Z are affected by instrumental errors of the vertical angle encoder (c0, c1, c4) and vertical
angle noise σθ. It is also seen how this phenomenon is almost independent of distance and scanning
configuration. Just to outline some of the instrumental errors, σθ is always between 9% and 11%,
c1 between 9% and 13% and c0 4% with exception to S4.
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Figure 8. The contribution of variances for instrumental and atmospheric elementary errors in percent
for (a) S1, (b) S2, (c) S3, (d) S4. For parameter names, see Sections 3.2 and 3.4.

The elementary errors for air temperature and air pressure at this level of variance (see Table 3)
fall into the same category remaining under the quote of 1%, fact related to the small influencing
coefficients in Equation (11). The contribution of the VGT reaches 3% of the error budget for S1
(Figure 8a) and S3 (Figure 8c). This is explainable by the fact that a large part of the observations are in
the lower atmosphere layer, where the VGT instability is known to be higher (cf. [53]). A higher level
of variance would generally lead to higher contributions to the error budget, but this is planned to be
studied further for longer ranges and within different timespans.

5. Conclusions

Throughout this contribution, a method of defining a stochastic model for TLS observations was
presented. At the time being, this model considers instrumental errors of long-range laser scanners
and meteorological error sources.

The EEM is improved by directly introducing the existing spatial correlations into the synthetic
VCM, without the need to compute them each time. This will confirm the EEM advantages when
a second measurement epoch is available. It was also shown that some of the instrumental and
atmospheric elementary errors can be neglected at the given level of variance, having a contribution
of less than 1% to the complete error budget. Within this contribution, the line of previous EEM
publications was continued with the introduction of atmospheric elementary errors treated as stochastic
correlating and the introduction of a functional model for hybrid laser scanners. The newly achieved
VCM plays an important role in surface estimations as already shown in [7]. Other possible applications
that may benefit from this model can be encountered in landslide, glacier or rock cliffmonitoring.

Resuming the newly discussed topics, it can be mentioned that:

• the functional model was adapted for the instrumental errors of the Riegl VZ-2000 scanner;
• a deterministic approach was used to consider the spatial distribution of the atmospheric errors;
• the atmospheric elementary errors were included in the EEM as stochastic correlating errors;
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• the error of position was presented in relation to the scanner position (geometric configuration)
and yielded average values between 9 mm and 37 mm for ranges of 88 m to 456 m;

• spatial correlations have been analyzed with respect to a vertical section in each case;
• the contribution of individual error sources outlined the fact that instrumental errors have the

biggest impact on the error of position.

As regards the topics under research, the EEM for TLS measurements is still lacking object
related elementary errors. This implies using existing studies for different materials scanned from
different positions at different ranges and include these errors into the stochastic correlating group.
The authors intend to use intensity values of the reflected laser beam, as introduced by Wujanz et al. [61].
Having done this would make the EEM a powerful tool for generating a TLS stochastic model that
considers all important error sources. Another topic under research is the sensitivity analysis of the
input parameters. After completing the stochastic model, attention will be accorded to the impact
of each individual input parameter on the outcomes. This allows an estimation of the optimal
scanning configuration.
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Abstract: Many signals appear fractal and have self-similarity over a large range of their power
spectral densities. They can be described by so-called Hermite processes, among which the first order
one is called fractional Brownian motion (fBm), and has a wide range of applications. The fractional
Gaussian noise (fGn) series is the successive differences between elements of a fBm series; they are
stationary and completely characterized by two parameters: the variance, and the Hurst coefficient (H).
From physical considerations, the fGn could be used to model the noise of observations coming from
sensors working with, e.g., phase differences: due to the high recording rate, temporal correlations are
expected to have long range dependency (LRD), decaying hyperbolically rather than exponentially.
For the rigorous testing of deformations detected with terrestrial laser scanners (TLS), the correct
determination of the correlation structure of the observations is mandatory. In this study, we show that
the residuals from surface approximations with regression B-splines from simulated TLS data allow
the estimation of the Hurst parameter of a known correlated input noise. We derive a simple procedure
to filter the residuals in the presence of additional white noise or low frequencies. Our methodology
can be applied to any kind of residuals, where the presence of additional noise and/or biases due to
short samples or inaccurate functional modeling make the estimation of the Hurst coefficient with
usual methods, such as maximum likelihood estimators, imprecise. We demonstrate the feasibility of
our proposal with real observations from a white plate scanned by a TLS.

Keywords: terrestrial laser scanner; stochastic model; B-spline approximation; Hurst exponent;
fractional Gaussian noise; generalized Hurst estimator

1. Introduction

Terrestrial laser scanners (TLS) capture a large amount of 3D points rapidly, with high precision and
spatial resolution [1]. These scanners are used for applications as diverse as modeling architectural and
engineering structures, and high-resolution mapping of terrain, vegetation, and other landscape features.
The recorded point clouds can be processed and analyzed with dedicated software. In engineering
geodesy, this processing allows for the computation of deformation magnitudes. Unfortunately,
these latter are negatively affected when noisy and scattered point clouds (PC) are used. Additionally,
no rigorous statistical test for deformation can be performed with the raw PC [2].

These drawbacks can be circumvented by approximating the PC with mathematical surfaces [3].
Besides norms such as L1 or L∞ [4], a widely used criterion is the sum of squares of the orthogonal
distances from the data points to the parametric surface. Exemplarily, regression B-spline enjoys
special attention to approximate point clouds from TLS: B-splines basis functions have a closed form
expression, are polynomial, and, thus, particularly easy to compute (see [5] for one of the first articles
related to that topic in geodesy). The setup of specific statistical tests with confidence intervals is based
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on the estimated parameters, or on the approximated surface points. Exemplarily, the congruence test
can be used to test for deformation ([2]) and is known to be the most powerful test in Gauss–Markov
models with normally distributed random deviations and a correctly specified stochastic model.
The setting of a realistic variance covariance matrix (VCM) of the raw observations of the TLS is done
prior to this test [6].

As for every sensor recording millions of points in a few minutes, the measurements of TLS
are expected to be temporally correlated. Physically, the range or distance measurements are phase
differences, so that a power law spectral density of the correlated range noise is hardly plausible ([7], [8]).
This correlation structure was empirically proven in a few recent real case analyses, see, e.g., [9] or [10].
The authors approximated simple scanned objects with a Gauss–Helmert model [11], assuming
pre-defined geometric primitives such as circle, ellipsoid, and plane. The correlation parameters were
estimated by fitting the residuals of the approximation with an autoregressive function of the first
order (AR(1)). This methodology has, however, drawbacks:

(i) the exponential covariance function restricts the description of the correlation structure to short
range dependency and may not be a physically adequate modelization,

(ii) empirically the covariance can be problematic. Two autocovariance functions sharing a common
principal irregular term won’t yield asymptotically the same best linear predictor (see [12],
chapter 3) for some examples. Using the popular Gaussian function can lead to overoptimistic
predictions. Additionally, antipersistent data are difficult to distinguish from uncorrelated data
and the correlations can be mistaken for noise fluctuations around zero,

(iii) the methodology could be made more general: it is based on a calibrated object scanned in
a controlled environment.

In this contribution, we propose to address these drawbacks and to derive a general methodology
to assess the correlation structure of the TLS range measurements. We will base ourselves on the
physical expectation that the TLS range noise should have a long-range dependency (LRD) and heavy
tailed distribution. Our proposal to extract the correlation structure is applicable to every kind of
object, without being restricted to predefined objects or calibration scenarios. It is extendable to other
kinds of observations, such as residuals from a geodetic coordinate time series [13].

We choose to model the noise of TLS range with a stationary LRD noise: the fractional Gaussian
noise (fGn), which is entirely defined by the Hurst parameter (abbreviated by H) and the variance. It has
the main advantage that the autocorrelation function can be easily estimated without computation
burden [14]. Fractal time series or signals such as the fGn have been found in many domains,
including biology [15], medicine (EEG [16,17]), finance (stock market analysis [18]), geology, and traffic
analysis [19]. Various statistical techniques have been proposed to estimate H and each has shortcomings
and advantages: they may perform better in the presence of noise, for short samples, or for H close to a
given value, may have slow convergence, etc. (see, e.g., [20–24]). There exist three families of estimation
methods: the time domain (e.g., Rescaled Range R/S estimator [25], the detrended fluctuation analysis
method [26]), the frequency domain (periodogram [27], the Whittle estimator [28]), and the wavelet
space [29], which was shown to provide an unbiased, efficient, and robust estimator.

We will use the residuals of the B-splines approximation of the TLS point clouds to assess the
correlation structure of TLS range. We conjecture that although (i) additional white noise and (ii)
possible model misspecification could introduce additional frequencies in the residuals, these latter
still contain enough information to estimate H, provided that an adequate filtering is performed.
Besides the simulated observations from a TLS, we will evaluate our methodology and compare the
performance of three different estimators for H using real observations from a white plane.

We firstly disregard the correlations of the polar angles; a similar methodology as presented in
this present study could be used to that aim.

The remainder of this paper is structured as follows: the first section provides a brief summary of
the mathematical concepts of least-squares and stochastic modeling. The second section introduces the
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concepts of fGn, Hurst exponent, and filtering. The third section describes the results of simulations
for two specific cases: a plane and a Gaussian curve. We conclude with a real case study and
some recommendations.

2. Mathematical Background of Surface Fitting

2.1. Functional Model

Free-form curves and surface fittings are flexible tools to approximate PC without being restricted
by the use of geometric primitives, such as circle, planes, or cylinders. Possible applications of surface
approximation include the testing of deformation [30] or the reduction of a huge amount of points to
a simpler form.

In this contribution, we make use of B-spline surfaces. Their properties and advantages over
other functions, such as control and flexibility, are exemplarily described in [31]. Readers interested in
more details on how spline fitting works should refer, e.g., to [32,33], and more specifically for geodetic
applications to [5] or [31]. Such surfaces satisfy the strong convex hull property and have a fine and
local shape control so that they were shown to be adequate for approximating noisy and scattered
PC (see, e.g., [34]). For the sake of shortness, we shortly introduce the main concept, focusing on
least-squares (LS) approach to determine the model parameters, called control points (CP).

We start with nobs polar observations from a TLS expressed in vector form lPOLAR of size (3nobs).
The observations are made of two angles, HA and VA, and one range ρ to which a VCM Σll_POLAR is
associated. This matrix describes the variance and possible correlation between the observations [11]
and is focus of our contribution.

2.1.1. First Step: From Polar to Cartesian

The first step of the approximation is the transformation of the PC coordinates vector from polar
lPOLAR into Cartesian lCART.

The VCM has to be transformed by the error propagation law. The VCM Σll_CART reads:

Σll_CART = FΣll_POLARFT (1)

The matrix F contains the derivatives of the point coordinates with respect to the range and angles
and is given for one point i by:

2.1.2. Second Step: The Approximation

The Cartesian PC can be approximated mathematically by means of a linear combination of basis
functions, such as B-splines. In its parametric formulation, the B-spline surface s(t, f ) is a tensor
product surface and can be expressed as

s(t, f ) =
n∑

i=0

m∑
j=0

Ni,pb(t)Nj,qb( f )pi, j, (2)

where (t, f ) ∈ [0, 1] × [0, 1] are the parameters in the two directions so that a B-spline surface maps
the unit square to a rectangular surface patch. The basis function Ni,p and Nj,q are composite curves
of degree p and q polynomials, respectively, with joining points at knots in the interval

[
ui, ui+p+1

)
and

[
vj, vj+q+1

)
. They can be evaluated by means of a recurrence relationship [32]. To summarize,

the surface is defined by:

• a set of n + 1 CP in the direction t and m + 1 CP in the direction f ,
• a knot vector of h + 1 knots in the t-direction, U = [u0, . . . , uh],
• a knot vector of k + 1 knots in the f -direction V = [v0, . . . , vk],
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• the degree pb of the basis functions in the t-direction, and the degree qb in the f -direction.

In this contribution, we will take a degree of pb = qb = 3 for the B-splines functions (cubic
B-splines). We solve the determination of an optimal knot vector using the knot placement technique
as described in [33]. The Cartesian point cloud is parametrized in advance with the equidistant
parametrization, justified by the simple structure of the objects under consideration in this contribution.

2.1.3. Third Step: LS Solution

Approximating a PC with a B-spline surface is finding the coordinates of the CP so that the
distance of the data points to the approximated surface is minimized. This step can be performed
by solving the LS problem, for which the minimum in the LS sense of the zero-mean error term v is

searched: min
p∈R3

∥∥∥v = Ap− lCART
∥∥∥2

Σll_CART
.

p is the matrix of CP to be estimated and is of size (3(n + 1)(m + 1)), A−(3nobs, 3(n + 1)(m + 1))—
is called the design or mass matrix. It contains the evaluation of the B-spline functions at the parameters.
Interested readers should refer to [35] for the description of the design matrix.

The estimated coordinates of the control points are expressed by the unbiased generalized LS
estimator (GLSE [11]):

^
pGLSE =

(
ATΣ−1

ll_CARTA
)−1

ATΣ−1
ll_CARTlCART (3)

If the VCM Σll_CART is the identity matrix (equal variance for all coordinates), the ordinary LS

estimator (OLSE) is obtained:
^
pOLSE =

(
ATA

)−1
ATlCART.

We further note that the LS estimator is unbiased E
(

^
pGLSE

)
= E

(
^
pOLSE

)
= p so that

^
p can be

computed either with the OLSE and GLSE solution; thanks to the unbiasedness of the LS estimator,
the expectation E of the estimated coordinates of the CP are not affected by the choice of Σll_CART.
However, the OLSE is not the most efficient within the class of linear unbiased estimators anymore
when Σll_CART deviates from the true (and unknown) VCM. Consecutively, hypothesis tests such as the
global test, outlier tests, or congruence tests become invalid [36]. It is one of the main reasons why
assessing the correlation structure of the raw measurements is an actual research topic.

The number of control points has an impact on the LS solution on the fitted surface. It can be
either fixed a priori or iteratively adjusted in the context of model selection [37]. As the impact of
model misspecifications is interesting for our purpose, we will make use of the first strategy.

2.2. The Residuals of the LS Surface Approximation

2.2.1. The Cartesian Residuals

We call
^
vCART = A

^
p − lCART the residuals of the LS adjustment.

^
lCART = H

^
p are the adjusted

observations with H being the Hat matrix, H = A
(
ATΣ−1

ll_CARTA
)−1

ATΣ−1
ll_CART. The VCM of the

adjusted residuals reads:
Σ^

vCART
^
vCART

=(I−H)T
Σ−1

ll_CART(I−H) (4)

with I being the identity matrix.
We further defined the a posteriori variance factor as

σ̂2
0 =

^
vCART

TΣ−1
ll_CART

^
vCART

nobs − 3(n + 1)(m + 1)
, (5)

This factor can be used to judge the goodness of fit of the LS adjustment by means of a global

test [36]. The a priori VCM of the estimates is given by Σ^
p

^
p
=
(
ATΣ−1

ll_CARTA
)−1

.
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2.2.2. The Polar Residuals

In this contribution, we propose to extract the correlation structure of the TLS range from the LS
residuals of the B-spline approximation. We answer the drawback raised in the introduction by being
independent of calibrated objects, i.e., our methodology should be applicable in every environment.

As mentioned in Section 2.2.1, the LS adjustment gives access to the Cartesian residuals. To assess
the noise of the raw TLS observations (range), we transform the Cartesian residuals into polar
^
vPOLAR =

[
^
vHA,

^
vVA,

^
vr

]
. These latter have a VCM Σ^

vPOLAR
^
vPOLAR

obtained similarly to Equation (1),

using the error propagation law “backwards”. This matrix depends on the original matrix Σll_POLAR.

Our assumption is that we can derive the correlation structure of the original observations from
^
vPOLAR.

We will further focus on
^
vr and conjecture that this final vector still contains enough information to give

us access to the approximate correlation structure of Σll_r, defined as the VCM of the range observations.

3. Noise Description of TLS Range Observations: Variance and Correlation

3.1. Variance

Raw observations from TLS are the three polar coordinates of the recorded points. They are made
of a range and two angles in the vertical and horizontal direction. These observations are known to
have different noise properties ([38–40]): the noise of angles is widely assumed to be Gaussian with
a variance taken from manufacturer datasheets. The noise of the range measurements has a slightly
different structure. Its variance can be considered as a constant; the manufacturer datasheets provide
different values depending on, e.g., the approximated distance to the scanned object and/or to the
properties of the surface (roughness, color). Alternatively, the variance can be modeled as following
a point-wise power law intensity model [41,42].

In this contribution, we simulate different point clouds with a noise variance close to what is

expected in a real case experiment:

{
σHA = σVA = 0.0001
σρ = 0.005m , where σHA = σVA are the standard

deviations for the HA and VA and σρ for the range, respectively. We intentionally chose a case where
range and angle have different variances to simulate a more general scenario.

3.2. Correlation Structure for Range Measurements

In a first approximation, the range measurements are considered to be uncorrelated, i.e.,
one observation recorded at time t is not dependent on the observation recorded at t + τ, τ being
the interval between two measurements. τ is also called time lag; it is related to the scanning rate of
the observations and depends on the setting. Exemplarily, the resolution for a TLS Z+F 5016 can be
varied from preview to ultrahigh up to extremely high, and low to high quality: these choices impact
the scanning rate, and thus the scanning time of an object. The assumption of uncorrelatedness is
overoptimistic: range measurements are based on phase differences, which are inherently influenced
by, e.g., the propagation of the signal through a random media, but also by the point spacing on
the surface.

In this contribution, the correlation structure of the range will be modeled as a fractional Gaussian
noise (fGn). This assumption is justified by the physically based expectation of the author that the
range noise is stationary and that its power spectrum will follow a power law [7]. The validation of this
model with real data is shortly shown in Section 4.5. More extensive works using TLS observations
will be performed in a next step based on the proposed methodology.

fGn has the beneficial properties that it is characterized by its variance and a single parameter
called the Hurst exponent H. We will here shortly introduce the concept of fGn; interested readers can
refer to [14] for more information.
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3.2.1. What is a fGn?

To define a fGn, the understanding of the LRD concept is mandatory. This property of a process is
linked with the slow decay of the autocorrelation ρ to zero so it is a non-summable function, i.e., if the
average value of its partial sums does not converge, see [43]. More precisely,

ρ(τ) ≈ cτ−δ, (6)

with τ the time lag, c a positive constant, and 0 < δ < 1. As τ increases, the dependence between
the observations stays strong, which implies a fat tailed autocorrelation function. Exemplarily,
for a stationary process δ = 0.3, the autocorrelation for lag 100 will stay at 0.15, whereas for a
Markovian process, the autocorrelation would be practically zero for lags 10 times less. This important
property is the reason why such processes are said to have a “long-term memory” and it is one of
the major reasons why we wish to model the correlation structure of TLS range observations with
such a process. Intuitively, the high rate of measurements induces a long dependency between the
observations: the autocorrelation may decay quickly at the origin—e.g., between the first and the
second observation—but stays for a long dependency much higher than 0. The autocorrelation will be
similar between the first observation and the 100th or the 200th.

For a stationary process, the LRD can be related to a parameter called the Hurst exponent H,
defined as a measure self-similarity. A stochastic process XH(t) is self-similar if XH(t) has the same
distribution as λ−HXH(λt), where λ is a scale parameter. Concretely, the process will appear statistically
identical under rescaling of the time axis by a given factor and XH(t)∞λH; it lacks any characteristic
time scale. This characteristic allows interpretation of H as a measure of the strength of dependence
between the time points, or more loosely, how much space the signal “fills in”.

A self-similar process with stationary increment XH(t + 1) −XH(t) has an autocorrelation CH(τ)

given by

CH(τ) =
1
2

(
|τ+ 1|2H − 2|τ|2H + |τ− 1|2H

)
, (7)

so that for τ→∞ ,C(τ)→ H(2H − 1)τ2H−2 , meaning that the process has a long-range dependency,
see Equation (6) and [44].

From these definitions, one can define the Hermite process of first order called the fractional
Brownian Motion (fBm, [14]) as a generalization of a Brownian motion for which H = 1

2 . It is
a non-stationary process with stationary increments and possesses the long-term memory, also called
persistency or positive correlations when H > 1

2 . When H < 1
2 , the process has short term memory,

or similarly anti-persistency or negative correlations; the autocorrelation decays fast enough so that
their sums converge to a finite value. Both processes are described by a fractal dimension D, which is
related to the Hurst exponent by D = 2−H for a fBm [44].

Successive increments ςH of a fBm are called fGn:

ςH(t) = XH(t + 1) −XH(t), (8)

A fGn is, thus, a zero mean stationary process, defined as the stationary increment of fBm.
The fGn is fully characterized by the Hurst exponent and the variance σ2

ςH
. The corresponding

distribution is completely specified by its autocovariance function given by Equation (7).
H can be related to the power-law spectrum P( f )∞ 1

f β
, with f , β being the frequency and the power

law of the process, respectively. Exemplarily β = 0 corresponds to a white noise, β = 1 is a pink noise
and β = 2 is the Brownian noise. For a fBm, H is related to β by H =

β−1
2 , with 1 < β < 3 and for a fGn,

H =
β+1

2 with −1 < β < 1 [45]. Using real observations, it is important to check if the noise is fGn or
fBm: using the Matlab built-in function to estimate the Hurst exponent can lead to a misinterpretation
of the results when not accounted for.
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The difference between a fBm and a fGn can be visualized in Figure 1, where fBm (Figure 1,
right top) and fGn (Figure 1, left top) versus time with different H are simulated. They are given
with their corresponding power spectral densities (PSD), which decay linearly in a logplot (Figure 1,
right bottom). We visualize the aforementioned “fills in” property of the process, i.e., small H“fills in”
significantly more space than H = 0.9, which is related with a higher fractal dimension D.

Figure 1. (right,top): Two realizations of a fGn with H = 0.6 (top) and H = 0.2 (bottom). (left,top): Two
realizations of a fBm with H = 0.6 (top) and H = 0.9 (bottom). (right,bottom): The four corresponding
PSD are plotted. Time series of 1000 observations were generated.

3.2.2. Generation of fGn

In this study, we are focusing on fractal stationary noise, i.e., fGn. From the previous section,
and per the definition of the fGn, it can be generated by differentiating a fBm. Matlab (2018) provides
a function called wfbm, which returns a fBm for a given Hurst parameter. This function uses the wavelet
method from [46], which may bias the estimation of the Hurst parameter towards the wavelet method
(described in the following section).

Alternatively, we propose to use the function called ffGn, a freely available function in the Matlab
file exchange section. The ffGn function has the main advantage of being based on the circulant
embedding method for persistent noise, resulting in a reproduction of its exact autocovariance [47].
To test the function, we assessed the standard deviation with which the Hurst parameter can be
reproduced. We generated 10,000 realizations of short time series of lengths (1) 400 and (2) 1000.
Focusing in this contribution on persistent fGn, the Hurst parameter was varied in the range of
[1/2-1] by steps of 0.05. H was estimated using the three methods presented in the following sections.
The standard deviation was found for all three methods to be between 0.01 for case (1) and 0.005 for
case (2), highlighting the good performance and stability of the chosen function for noise generation.

3.2.3. How to Estimate the Hurst Parameter

Many methods have been proposed to estimate the Hurst exponent. They can be classified in
three families: estimation in the time domain, frequency domain and wavelet domain. Intuitively,
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whereas the first family investigates the power-law relationship between a specific statistical property
of the time-series and a time aggregation of it, the two latter examine if the spectrum or energy of the
time-series follows power-law behavior. Inside these three families, different estimators have been
proposed and constantly improved (see [48] and the references inside). We do not aim to review them
all, which is exemplarily done in [49].

In this contribution, we focus on three estimators, which belong to each class: the generalized
Hurst estimator, the Whittle estimator, and the wavelet estimator. The Whittle estimator was chosen
for its capability to perform well when the number of observations is reduced; this case can occur
when the TLS scanned lines are short, due to, e.g., the measurement configuration and the scanned
object. The selection of the generalized Hurst estimator is justified by the fact that the noise of the
angle or functional misspecifications may affect the power spectral density of the B-spline residuals
at low frequency; this estimator focuses on the middle-high frequency part of the PSD and can be
adapted with additional parameters. The wavelet estimator is said to be the less biased Hurst exponent
estimator provided that a huge amount of observations is available (asymptotic behavior).

These challenges of estimating the correlation structure accurately are similar to the ones of the
geodetic coordinate time series analysis (see [13] for further references on that topic). The chosen
estimators have to account for these specificities. In the following, we will shortly review the three
methods under consideration. A good understanding of their properties is mandatory to derive
a meaningful methodology to extract an unknown H from B-spline residuals.

Generalized Hurst Exponent (GHE)

The generalized Hurst exponent was introduced in [50] and used for finance market analysis
in [51] and [52]. It is a generalization of the approach proposed by [25].

The generalized Hurst exponent measures the LRD in the time domain. It is evaluated by using

the qth-order moments of the distribution of increments: Kq(t) =
〈|XH(t+τ)−XH(t)|q〉〈|XH(t)|q〉 .

τ is varied between 1 and τmax (usually taken to 20). Acting on τmax allows accounting for the
specificity of the observations—for example, to force the estimator to focus on high frequencies—as
described in [24]. 〈·〉 stays for the average operator. Hq is related to Kq(t): Kq(τ)∞τqHq , which allows
the computation of

Hq ∼
log
(
Kq(τ)

)
q log(τ)

, (9)

as an average over a set of values corresponding to different τ. If Hq is not constant by varying q,
the process is called multifractal, whereas Hq = H characterizes an monofractal process [53]. In this
contribution, and because we are not interested in the behavior of financial time series to predict the
evolution of specific markets, we only estimate H1, which describes the scaling behavior of the absolute
values of the increments. H1 reaches the value 1

2 for a Gaussian noise. H2 would correspond to an
estimation in the frequency domain.

Whittle Likelihood Estimator (WhiE) Method

The Maximum Likelihood Estimator (MLE) is not a graphical method but is a purely numerical
one. Thus, more than just the asymptotic self-similarity is assumed [53]; the MLE requires at least an
assumption about the form of the LRD (such as a noise coming from fBm or Autoregressive integrated
moving average ARIMA). If this assumption holds, it is often considered to be the best obtainable
estimator; the estimates are asymptotically unbiased, and the estimator is asymptotically efficient
and fast to compute. Unfortunately, MLE performs poorly if the assumption is incorrect or for short
samples [54]. Exact maximum likelihood inference can be performed for Gaussian data ([55]) by
evaluation the log-likelihood

l(H) = − log(|CH|) −XT
HC−1

H XH, (10)
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where XH denotes the column vector of length n of observations and CH is a fully populated VCM, which
components are given using Equation (7). |CH| is here the determinant of the matrix. By maximizing
the likelihood function, one obtains an optimal choice for H: Ĥ = argmax(l(H)), with 0 < H < 1. To
approximate Equation (10), matrix inversions are necessary. They can be avoided using the Whittle
estimator [28], which aims to provide faster estimation with only a slight inaccuracy. In that case, the
Whittle likelihood in its discretized form is given by

lW(H) = −
∑
ω∈Ω

⎡⎢⎢⎢⎢⎣log
(

f̃ (ω, H)
)
+

I(ω)

f̃ (ω, H)

⎤⎥⎥⎥⎥⎦, (11)

with Ω the set of discrete Fourier frequencies, f̃ (ω, H) the continuous-time process spectral density

and I(ω) the periodogram I(ω)∞ N∑
j=1

∣∣∣XH, je−i jω
∣∣∣2. The same notation as in [54] was adopted.

Whittle estimator assumes a priori that the power spectrum of the underlying process of the
dataset is known. Moreover, to be applicable to fGn, the mean of the time series has to be subtracted
beforehand [56]. As aforementioned, the Whittle estimator should only be used if a time-series has
already been shown by other methods to be consistent with a specific process, e.g., a fGn. Thus, it is
not an adequate method to detect LRD.

Wavelet Estimator (WE)

Since H describes the level of statistical self-similarity of a time series or spatial process, the exponent
can be found by averaging squared values of the wavelet coefficients

Ej =
1
nj

nj∑
k=1

∣∣∣∣dX( j, k)2
∣∣∣∣, (12)

where dX( j, k) are the detailing coefficients defined as dX( j, k) =
∞∫
−∞
ψ j,k(t)XH(t)dt, with ψ j,k =

2−
j
2ψ
(
2− jt− k

)
, ψ the mother wavelet. XH(t) =

∑
k

J∑
j=1

dX( j, k)ψ j,k(t) + approx, with J, the number of

decomposition level and approx the approximating component—not of interest for our purpose. Ej at
scale j can be shown to obey the scaling law:

Ej ∼ 2α j. (13)

The Hurst exponent is obtained by fitting a line to the linear part of log2

(
Ej
)

versus j in order to
obtain the slope α. Differently to the power spectrum method, Ej contains here the information about
the power carried at each time scale j. It was found to be robust even if the LRD is not equivocal [57]
but performs poorly for short sample. Similarly to the power law β, α is linked to H differently for
a fBm and fGn, with H = α−1

2 , H = α+1
2 , respectively. Wavelet based estimator are implemented in

Matlab under wfbmesti. The values are based on the estimation of the Hurst exponent for a fBm and
have, thus, to be applied to the cumulative sum of a fGn.

Additional Remarks

Periodicity and noise in the time series biased strongly the identification of LRD; the estimators are
misleading and can detect LRD erroneously, or on the contrary find a Gaussian noise with H = 0.5 [20].
Frequency or wavelet-based estimators depend strongly on short-memory and necessitates strategies
to alleviate these effects. The estimators have to be enabled to focus on the long-range correlation in
case of additional Gaussian noise of unknown variance. One possible way to face this challenging
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situation will be proposed in this contribution; the filtering of the noise with a low pass Butterworth
filter. Detailed simulations in Section 4 will explain the reasons of this choice.

3.3. Butterworth Filter

Butterworth filters can be designed as bandpass, lowpass, or high pass filters. They are called
maximally flat filters as for a given order they have the sharpest roll-off possible without inducing
peaking in the Bode plot. The Bode plot is a log–log graph where the gain in decibels is plotted against
the logarithm of the angular frequency. An example is shown exemplarily in Figure 2 for different
order of the Butterworth filter. We note that the Butterworth filter changes from pass band to stop-band
by achieving pass band flatness. This is done at the expense of wide transition bands. This property,
sometimes considered as the main disadvantage of Butterworth filter, turned out to be the main reason
for using such a filter for our application. A great flexibility is given in locating the cutoff frequency,
i.e., the values of the elements of the Butterworth filter are more practical and less critical than many
other filter types. Interested readers should refer to [58] or [59].

Figure 2. Bode plot for a lowpass Butterworth filter with a cutoff frequency of 300 Hz (0.6π rad/sample
for data sampled at 1000 Hz). Different orders were simulated. (bottom): the phase response; (top):
the magnitude.

4. Simulations and Results

In this section, we will combine all the mathematical developments presented in the previous
sections: surface fitting and Hurst exponent estimation. We recall that our aim is to estimate the
Hurst exponent of the range measurements from the residuals of a B-spline approximation. In order
to work in a controlled framework, we use in a first step simulated TLS observations. A short real
data analysis highlights the potential of the proposed methodology, which will be pursued in further
dedicated contributions.

4.1. Simulation of TLS Observations

The first step towards analyzing the correlation structure of the range residuals as described in
Section 2 is to simulate TLS observations. In this contribution, we choose two different surfaces with
increasing complexity: a plane and a Gaussian surface.

The plane has the equation z = −3x + 15y + 7. The distance between the origin of the coordinates
and the centre of the plane is 7 m. The coefficients of the plane were chosen without any search for
optimal scanning condition in order to test our methodology in complex cases. The representation of the
plane is shown in Figure 3 (left bottom). The TLS is placed at the origin of the axes, see Figure 3 (right).
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Figure 3. (left,top): Simulated plane. (left,bottom): Simulated Gaussian surface. (right): Origin of the
laser scanner in Cartesian and polar coordinates. We call θ = VA,ϕ = HA.

The Gaussian surface has the equation z = 1
2π52 e−

1
2 (

x2

52 +
y2

52 ) and is shown in Figure 3 (left top).

For each surface, the PC were generated by varying x ∈
[
−1 1

]
, y ∈

[
−1 1

]
. Two samplings

were chosen: case (i) 400 observations and case (ii) 1000 observations per scanning line, resulting in PC
of size 400*400 and 1000*1000, respectively. These cases are chosen to study the impact of the density
of the PC on the estimation of the Hurst parameter.

4.2. Noise Simulation

The simulated Cartesian coordinates were backwards transformed into polar coordinates
[VA, HA, r] and noise component wise:

• to the vertical and horizontal angles is added a Gaussian noise with a standard deviation of
0.0001◦ generated with the Matlab function randn,

• to the range r is added a fGn noise with a standard deviation of 0.005 m. We generated noise
vectors with three different Hurst exponents: 0.6 (nearly Gaussian), 0.7, and 0.9 (strong LRD).

Line Wise Noise

We did not generate one noise vector for the whole observations. Instead, we added to each
scanning line an independent noise vector; see Figure 4 for an illustration of the chosen strategy.
We generated as many noise vectors as scanning lines, which size depend on the chosen sampling
(case (i) or (ii)).

Figure 4. Explanation of the concept of line wise noise. One noise vector is added to each line for
a constant x independently. In this example, from ti = 1 to ti = 10 is added one noise vector. A new
one is added starting from ti = 11. The same procedure is repeated for as many lines as the point
clouds contain.
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Thus, the noise is not added as a whole to the observations. We justify this line wise strategy
by the fact that TLS observations are recorded in such a way that the elapsed time between the last
observation of one line and the first of the following line is much longer than the time between two
observations inside one line. Using this modelization, we are able to place ourselves in the context
of a more general and potentially time varying correlation structure during the scanning process,
answering the challenge (iii) mentioned in the introduction. This effect can be caused, e.g., by changing
object properties or atmospheric conditions.

4.3. Estimation of the Hurst Exponent from the Residuals

In the following, we will compare the estimates of H with the three previously described estimators.
An application to a real case scenario is presented in Section 4.5, as well as a generalization of the
results in Section 4.6.

We start with the approximation of the plane (Section 4.1, Figure 3, left bottom). We approximate
the PC with a cubic B-spline surface and fix the numbers of CP to estimate to 4, which is justified by
the simple geometry of the simulated object [60]. Intentionally, we are not searching from an optimal
functional model, which could be based on an iterative method using information criteria [37]. We take
a reference value of Hre f = 0.6 for the simulated noise. This reference value is close to H = 0.5 (white
noise) and is challenging to estimate accurately.

Interestingly, this scenario is difficult to fit with B-splines due to the unfavorable orientation of
the plane in space; it leads to a so-called strong “border effect” in the B-spline surface approximation,
which is not solved entirely by a higher knot multiplicity. This effect can be visually seen in the
plot of the residuals by a strong increase of the variance at the beginning of each line (Figure 5
left). The correlation structure of the residuals is not dependent on the stationarity (or not) of the
residual’s variance. Consequently, we allowed ourselves to disregard the corresponding inaccurately
approximated first epochs of each lines; exactly the same results as those presented in the next section
were found. We interpret this effect as being due to the self-similarity property of the noise and, thus,
we did not intend to suppress it.

Figure 5. (left): Residuals of the plane adjustment versus time (top: case 1, the whole residuals, middle:
case 2, the first 10,000 values, bottom: case 3 the first 1000 values corresponding to one scanning line).
The x-axis corresponds to the time, exemplarily in (s), whereas the y-axis is the residuals, exemplarily
in (m). (right): The corresponding PSD as a log–log plot. F is given in Hz and the PSD in dB/Hz.
No additional angle noise.

4.3.1. Impact of Model Misspecification: No Noise Angle

In order to highlight the impact of both the model misspecification and the angle noise on
the estimation, we firstly noised the simulated range only. On the contrary to real data analysis,
the simulation framework allows for this flexibility.

The obtained range residuals of the adjustment are shown in Figure 5. They are plotted
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• case 1: as a whole in Figure 5 (left top), i.e., each 1000 observations correspond to one line;
• case 2: the first 10 lines (Figure 5 left middle) and;
• case 3: only the first line in Figure 5 (left bottom).

Although the whole residuals may visually appear as white noise with a slight variance increase
in the between t = 4e5 and t = 7e5 (unit of time) due to the scanning configuration (Figure 3, left top),
we identify repetitive pattern for each approximated scanned line (Figure 3, left middle); they are likely
to influence negatively the estimators of the Hurst parameter that are acting in the frequency domain
such as the WhiE.

The PSD for the three cases (1–3) corresponding to Figure 5 (left) are plotted in Figure 5 (right).
We note that it has strong similarities with the one of the simulated noise for the whole range
residuals. The expected power law decay is kept nearly intact, which is beneficial to the wavelet and
WhiE estimator. Additional frequencies for −2.5 < log10( f ) < 1 are visible, which we link with the
aforementioned repetitive pattern due to model misspecifications. For decreasing sample size (Figure 5,
right bottom), the low frequency domain of the analyzed residuals from the first scanning line does
not follow exactly the one of the original noise. It is possible to compensate for that effect using the
GHE by decreasing τmax; this corresponds to down-weighting the impact of the low frequencies in the
estimation of H.

For the sake of convenience and without lack of generality, we will carry our explanation with the
residuals of the first line.

We computed the Hurst exponent for case 1 and 3 with the chosen three methods. Case 2 is of
minor interest and was only presented to show the pattern of the residuals. For case 1, the whole
residuals are considered in the estimation of H, leading in a longer time series, whereas for case 3 we
take the mean of the H estimated over smaller samples. For case 3, the standard deviation as well as
the min/max values of H can be given (one Hurst exponent is estimated for each line). The results are
presented in Table 1. We added the estimation of the Hurst exponent from the original generated noise
for comparison purpose.

Table 1. Estimation of the Hurst parameters from the residuals for case 1 and case 3, for the three
estimators under consideration. We give additionally the standard deviation of the estimation,
when available. Case without additional angle noise, Hre f = 0.6.

GHE WhiE WE

Case 1
H

0.60
(std 8×10−4)

0.54
(std 0.14) 0.61

Noise
0.60

(std 4×10 −4) 0.54
(std 0.12) 0.60

Case 3
mean(H)
min/max

std(H)

0.61
0.51/0.72

0.03

0.7
0.5/0.9

0.14

0.60
0.35/0.72

0.07

Noise
mean(H)
min/max

std(H)

0.59
0.55/0.65

0.02

0.7
0.5/0.9

0.14

0.60
0.37/0.70

0.06

Table 1 shows that from the three estimators, the WhiE performs worst. This holds true particularly
for case 3, for which the Hurst exponent for both the simulated noise and the residuals are overestimated;
this effect was expected due to the small samples under consideration (1000 observations) and is related
in the literature as the main drawback of this estimator—under the assumption that the noise is fGn.
For case 1 (whole residuals), the WhiE has a better performance regarding case 3 due to the frequency
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averaging but remains a poorer estimate compared with the values given by the GHE and the WE;
both estimators provide the true H. The GHE is less affected by the sample size than the wavelet
estimator, i.e., in case 3 the standard deviation of H for the WE is higher than for GHE for both the
noise and the residuals.

From this simulation and without additional noise on the angles, the preference goes towards
the GHE when the H exponent has to be evaluated for each line, i.e., for small samples. This is a nice
result when temporal variations of the parameter are expected ([61]), since they will be detected with
a higher trustworthiness than with other estimators.

Similar results are obtained for Hre f = 0.7 and Hre f = 0.9, and are not presented for the sake of
shortness and readability of this article.

4.3.2. Impact of Model Misspecification and Noise Angle

In a second step, we added a noise with a standard deviation of 1×10−4◦ to the angle components.
In order to be able to visually identify the difference between the slope of the PSD for the noise to the
one of the residuals—affected by additional white noise—we consider the case Hre f = 0.9 (see Figure 6).
This is a challenging exponent to estimate, since the corresponding process is close to a flicker noise.
Results for other H are similar when the same methodology is applied.

Figure 6. The PSD of the residuals for case 1 (top), case 2 (middle), and case 3 (bottom). The Hurst
exponent for the simulated noise is Hre f = 0.9. A plane was approximated with 1000 observations per
line. Log–log plot. Case with additional angle noise.

From Figure 6, the impact of the additional noise coming from the angles and propagating in the
range residuals can be clearly identified in the high frequency domain, i.e., from log10( f ) >−0.6 for
case 1, and log10( f ) >−0.4 for case 3. This corresponds to a noise at −40 dB/Hz for case 1, −45 dB/Hz
for case 2, and −57 dB/Hz for case 3, approximately.

The corresponding Hurst exponents were estimated and the results are presented in Table 2.
As previously, we also give the results obtained for the simulated noise.
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Table 2. Estimation of the Hurst parameters from the residuals for case 1 and case 3, with the
three estimators under consideration. We additionally give the standard deviation of the estimation,
when available. Additional angle noise, Hre f = 0.9.

Before Filtering
After Filtering Case 1: cutoff log10

(
fc

)
= −0.6

Case 3: cutoff log10

(
fc

)
= −0.4

GHE WhiE WE GHE WhiE WE

Case 1
H

0.71
(std 0.01)

0.53
(std 0.3) 0.71 0.87

(std 0.01)
0.63

(std 0.3) 0.98

Noise 0.89
(std 3×10−4)

0.7
(std 0.2) 0.90

Case 3
mean(H)
min/max

std(H)

0.71
0.56/0.86

0.05

0.67
0.50/0.96

0.15

0.71
0.51/0.92

0.08

0.89
0.76/0.96

0.03

3
1.52/4.58

1.51
0.96

Noise
mean(H)
min/max

std(H)

0.86
0.75/0.95

0.03

0.64
0.51/0.75

0.20

0.83
0.74/0.98

0.08

The first remark to draw from Table 2 is the stronger difficulty to estimate the Hurst parameter
from the true fGn for small samples (case 3) than for longer sample (case 1). The mean values are slightly
below the true one of Hre f = 0.9 for the GHE and WE estimators, with a higher standard deviation
than in the previous case with Hre f = 0.6. Clearly, the WhiE performs poorly and systematically
underestimates the true parameter.

The second remark is the impossibility to extract the correct, or a value close to the correct Hurst
exponent, independently of the case under consideration. The noise of the angles, as well as the noise
induced by the fitting, leads to a strong underestimation of H close to 0.7. The decrease towards
H = 1

2 (a white noise) is due to the increase of white noise in the signal. As previously, the WhiE
estimates poorly H (0.53 for case 1). It is shown to be thus strongly affected by additional white noise
on the residuals.

The analysis of the PSD (Figure 7) for case 1 and 3 highlights the impact of additional white
noise. From Equation (9) and Equation (13), we notice that the GHE and WE need both low and
high frequencies to perform the approximation of the Hurst exponent with trustworthiness; it seems
advantageous to filter the high frequency noise of the residuals. In this contribution, we propose to
apply a lowpass Butterworth filter of first order on the residuals from the cutoff frequency at which the
PSD kicks towards white noise. This choice is not justified by empirical findings and we propose in the
following to detail the reasons why we opted for the Butterworth filter.

Figure 7. The PSD of the residuals for case 1 (top) and case 3 (bottom). The Hurst exponent for the
simulated noise is Hre f = 0.9. A plane is approximated with 1000 observations per line. Case with
additional angle noise. The red curve corresponds to the PSD of the simulated noise, the blue curve to
the PSD of the residuals and the green to the filtered residuals.
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Why a Butterworth Filter

A sharp low pass filtering would lead to an abrupt decrease of the PSD from the cutoff frequency of
the filter; this effect is here unwanted as the estimation of H necessitates the whole range of frequencies,
which would not be given any more. We prefer, thus, the “smooth and gentle” Butterworth filter of
first order; it allows a continuous decrease of the high frequencies from the cutoff frequency. This leads
to a filtering shown Figure 7 (green line), where the PSD of the filtered signal has the same decrease
as the reference noise from log10( f ) = −2 for case 1 and log10( f ) = 0 for case 3. The filtering leads
to an estimate of the Hurst exponent of 0.87 (std 0.01) and 0.89 (std 0.03) with the GHE for case 1
and 3, respectively (see Table 2). τmax was fixed to 20, as proposed in the literature [51]. Increasing
τmax leads to a slight decrease of H of 0.2 for τmax = 40 with an increase of the std to 0.03, whereas
τmax =5 is linked with an increase of H of 0.3 by a decrease of the std to 0.008. Thus, a balance has to be
found to fix τmax optimally. A deep analysis of the PSD, i.e., the amount of power at low frequencies is
necessary; whereas τmax can be used to filter unwanted low frequencies due to model misspecification,
the cutoff frequency acts on the high frequency domain of the PSD.

With the chosen cutoff frequency, the WE overestimates H. Using a cutoff frequency of
log10( fc) =−0.35, instead of log10( fc) =0.4, for case 3 yields H = 0.88. Similar results are obtained
for case 1 with the WE by increasing log10( fc) to −0.55. Unfortunately, the GHE decreases to 0.83 in
both cases. However, considering that (1) no prior knowledge of the Hurst exponent was available,
(2) additional white noise affects the residuals, and (3) model misspecification are present, this remains
a good approximation of the true H of 0.9. Indeed, this value of the Hurst parameter is known to be
challenging to estimate since it is close to the limit between fGn and fBm.

Why First Order?

The answer is strongly related to the previous one: as shown in Figure 2 from the Bode plot,
the flatness of the filter is of main importance to ensure smooth transition in the PSD of the filtered signal.

4.3.3. Sensitivity Analysis: Impact of the Cutoff Frequency

In this section, we propose to analyze the sensitivity of the estimated H exponent regarding the
chosen cutoff frequency. Figure 8 summarizes the results for case 1 (top) and 3 (bottom) by varying
log10( f ) from to −0.7 to −0.25.

Figure 8. Sensitivity analysis of the estimated H from the residuals of the B-spline surface fitting by
varying the cutoff frequency. A plane is estimated with 1000 observations per line and the simulated
noise is fGn with Hre f =0.9. Case 1 corresponds to the whole residuals, case 3 to the first line. Case with
additional angle noise. The red curve corresponds to the GHE, the blue curve to the WE.

With great evidence, the GHE is much less sensitive to the cutoff frequency than the WE. A linear
dependency can be found, with a variation of H from 0.88 to 0.78 for the chosen range of cutoff
frequencies and from 0.87 to 0.80 for case 1 and 3, respectively. H, estimated with WE, has a much
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higher range of values—from 1 to 0.68 and to 1.15 to 0.8 for case 1 and 3, respectively. From these
results, and considering that we placed ourselves intentionally in a challenging estimating scenario
with a strong Hurst exponent, we recommend using the GHE instead of the WE when the residuals are
filtered and small samples are considered.

4.3.4. Small Samples

In this section, we place ourselves in case (i) as described in Section 4.1. and generate smaller
samples of 400 observations per line. We chose three values for H: 0.6, 0.7, and 0.9, and apply
our methodology to filter the residuals from additional white noise and/or results from model
misspecifications. We identify the cutoff frequency fc visually by plotting (1) the PSD of the whole
residuals for case 1 and (2) the PSD of 10 randomly chosen lines for case 3 and averaging the identified
cutoff frequencies. The Hurst exponent is estimated with the GHE; due to their asymptotic properties,
the WE and the WhiE are known to perform poorly for small samples [62].

For Hre f = 0.6, the PSD is nearly similar to a white noise (see Figure 1). This leads to a stronger
difficulty to identify the PSD kick. Nevertheless, we were able to identify with a high confidence
the correct cutoff frequency and a value of H =0.60 could be estimated for case 1 for log10( fc) =−0.5.
We link this result with the use of a Butterworth filter of the first order and the low sensitivity of the
GHE to a misspecification of the cutoff frequency. The same cutoffwas used for the two other simulated
Hre f . This result strongly confirms the feasibility of extracting the Hurst exponent from residuals of
regression B-splines, in the presence of both functional misspecifications and additional unknown
noise. The cutoff frequency depends on the noise angle variance, as illustrated in Table 3. Increasing
the σHA = σVA to 0.001◦ instead of 0.0001◦ yields a different cutoff frequency. We intentionally
do not present this result in order not to overload the readers with simulation results that lead to
similar conclusions.

Table 3. Estimation of the Hurst parameters from the residuals for case 1 and case 3, with the GHE and
with additional angle noise for two standard deviations (1×10−4◦ and 1×10−3◦). Hre f = 0.6, 0.7, and 0.9.
The cutoff frequencies ( fc) are visually determined.

Std Noise Angle 1 × 10−4◦ Std Noise Angle 1 × 10−3◦

Case 1
Cutoff

log10(f) = −0.5

Case 3
Cutoff

log10(f) = −0.25

Case 1 Case 3

Hre f = 0.6 0.60 (std 0.05) 0.63 (std 0.03)

Hre f = 0.7 0.68 (std 0.02) 0.70 (std 0.03)

log10( fc) = −0.5
0.66 (std 0.08)

log10( fc) = −0.4
0.71 (std 0.07)

log10( fc) = −0.25
0.66 (std 0.03)

log10( fc) = −0.55
0.72 (std 0.07)

Hre f = 0.9 0.88 (std 0.02) 0.87 (std 0.04)

4.4. Result for Gaussian Surface

The second example corresponds to a simulated Gaussian surface (case (ii), Section 4.1.). Ten CP
in the two directions were estimated with B-splines of order three. The stationary reference noise
was simulated with Hre f = 0.7 and 1000 observations per line. Similarly to the previous simulations,
we do not aim to optimally fit the surfaces so that the impact of potential misspecification can be
considered. In Figure 9 (left), the PSD of the residuals together with the PSD of the simulated noise are
shown; Figure 9 (right) represents the residuals for case 1 and 3 respectively, following the previous
section. This latter figure highlights the lack of repetitive patterns in the residuals plotted per line (case
3). Only a steady increase of the variance towards the middle of the surface can be seen, which is
coherent with the Gaussian form of the surface (Figure 2 left bottom). This behavior does not affect
the estimation of the Hurst parameter, which was 0.72 (std 1×10−3) for case 1 and 0.71 (std 0.01) for
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case 3 with or without filtering. From the PSD, a low additional white noise from log10( fc)= 0 could
be identified, which did not affect the determination of H. We interpret this lack of additional white
noise in the residuals as coming from the goodness of the surface approximation, i.e., the B-splines
themselves are acting as a low pass filter so that no additional noise coming from the angles could drift
into the residuals in that case. However, we were able to decrease the estimated Hurst parameter for
case 1 to 0.69 (std 5×10−4) by decreasing τmax to 10, i.e., decreasing the impact of the low frequencies. In
this case, the B-spline LS system filters the low frequencies domain strongly, which could be accounted
for by acting on τmax.

Figure 9. (left): Residuals of the B-spline approximation for a Gaussian surface. Case 1 (top);
the whole residuals and case 3: the 1000 first observations corresponding to one scanning line. (right):
The corresponding PSD (red the original noise, blue the residuals).

This correction highlights the potential of our methodology to identify and filter model
misspecification from the LS residuals. It is and remains based on a visual analysis of the PSD
and an understanding of the residuals as prior to the estimation of the Hurst parameter. It is not
recommended to use a bandpass Butterworth (or any other filter such as a notch filter) to filter specific
frequencies. This was shown to strongly affect the determination of the Hurst exponent by creating
an artificial decrease of frequencies amplitude in the middle of the frequency range, where a regular
decrease is of main importance for the determination of H.

4.5. Application to Real Data

We propose to apply the proposed methodology to a real case scenario. Unfortunately, the true
correlation structure is unknown; the development of a model based on a physical explanation of the
TLS correlation is beyond the scope of this paper and led to further studies.

A white plane of size 1 m*1 m was scanned at a distance of 10 m with a Z+F 2016F using
the scanning modus “extremely high”, with which 1 Mio. per s can be recorded. The scanning
configuration is presented in Figure 10 (left); it is optimal and corresponds to the simulated data with
no tilt and the TLS pointing in the direction of the z-axis. The obtained point cloud was pre-processed
to avoid edge effects and outliers, and cut using a free software. We finally approximated the data with
a cubic B-spline, following the methodology presented in Section 2. The residuals for one scanning line
are plotted in Figure 10 (right, top), together with the corresponding PSD (Figure 10, right, bottom,
blue line). We visually identified a cutoff frequency of log10( fc) =0, which we used to filter the residuals
with a Butterworth filter (Figure 10, bottom, yellow line). As for the simulations, the results obtained
with the three Hurst estimators proposed in this contribution differ. Without filtering, we found values
of 0.85 for the GHE with τmax =20 (which was chosen due to the lack of additional low frequencies
from inaccurate functional model), 1.01 (i.e., flicker noise) for the WhiE, and 0.61 for the WE. This last
result highlights that the WE is affected by white noise—the value found was close to 0.5—and by
the small number of observations used (900 per line). The tendency for the WhiE to overestimate the
Hurst parameter with respect to the GHE (Table 1) is additionally shown. Using the visually identified
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cutoff frequency, the Hurst estimator was increased to 0.88 for the GHE, but stayed constant for the
WE; this estimator is definitively not a relevant choice for the case study under consideration. A high
value of 1.61 was found for the WhiE, which seems not usable with the filtered residuals, i.e., the WhiE
being a spectral estimator is affected by the strong decrease of the PSD at high frequencies.

Figure 10. (left): The schematic scanning configuration: no tilt and a distance of 10 m to the center
of the coordinate system. Right, top: residuals of the B-spline approximation for the plane under
consideration. (right,bottom): The corresponding PSD. The blue line is a reference fGn with Hre f = 0.9,
the red line corresponds to the residuals and the yellow one to the filtered residuals with log10( fc) = 0.

From Figure 10 (right bottom) the plausibility of considering the noise of the TLS range as being
fGn is confirmed; the blue line corresponds to a reference fGn of 0.9 and is nearly parallel to the yellow
one from the filtered residuals.

This short case study validates the proposed methodology for a real case scenario: it is feasible
to estimate the Hurst parameter from the range residuals of a plane scanned with a TLS. Further
studies will be carried out in a next future to investigate more deeply the correlation structure.
This latter is expected to depend on, e.g., the scanning rate, distance from the plane to the TLS,
or atmospheric conditions.

4.6. Summary: A Methodology to Extract the Hurst Parameter from the B-Spline Residuals

In this section, we summarize our methodology to extract the Hurst parameter of the underlying
noise from TLS range measurements from LS residuals (Figure 11). We recall that the noise is simulated
line wise as a fGn with a given Hurst parameter varying from 0.5–1 (persistent correlations). Working
with real observations this assumption has to be tested by analyzing the stationarity of the time series
as well as the power law of its PSD.

We start with the raw polar observations, which are to be transformed into Cartesian coordinates.
After having parametrized the point cloud, a B-spline surface approximation is performed. The choice
of the order of the B-splines is left to the user (e.g., cubic B-splines), as well as the method to fix the
knot vector optimally or/and the number of CP to estimate. The residuals of the approximation are
transformed backwards into polar coordinates; only the range residuals are further analyzed. They are
plotted as a whole and line wise to visually identify the potential impact of model misspecification (low
frequencies, repetitive pattern). These patterns could act—as a snow ball effect—on the determination
of the Hurst parameter. As an important tool to understand the structure of the residuals, the PSD is
plotted against the frequencies (a log–log plot should be used for a better visualization). Additional
white noise or model misspecification can slide into the frequency domain; they are identified and
filtered with a low pass Butterworth filter of first order. We recommend the use of the generalized
Hurst estimator. This latter was shown to be robust to slight uncertainties in the determination of the
cutoff frequency, as well as less sensitive to small samples effect, compared with the wavelet estimator.
Thus, temporal variations of the Hurst exponent can be analyzed by making a line wise analysis of the
Hurst parameters.
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Figure 11. Summary of the methodology to extract the Hurst parameter from the range residuals of
a B-spline approximation from a TLS point cloud.

5. Conclusions

In this contribution, we have developed and validated an innovative yet simple strategy to
extract the correlation structure of the underlying observation noise from the residuals of a B-spline
surface approximation. This determination is neither based on least-squares estimation or collocation,
nor parametric, and has the main advantages of being easy to use and computationally efficient.

Our case study dealt with TLS raw observations, having in mind to analyze the correlations of
the range observations to perform more rigorous and trustworthy statistical tests for deformation of
scanned objects. This is a highly relevant application for avoiding and/or quantifying the potential
risk related to the deformation of structures such as dams or bridges. Moreover, knowledge of the
correlation structure could serve to predict future deformations.

The range measurements of TLS observations are known to be temporally correlated. We guess
from physical consideration that the power spectral density of the noise could be represented by
a power law. The framework of LRD allows description of such kinds of noise accurately. In this study,
we chose to model the correlation structure of the TLS range measurements by a stationary persistent
fGn. The fGn is widely used to describe all kinds of noise in various domains and can be fully described
by means of its Hurst exponent (related to the fractal dimension) and its variance. There exist various
estimators for the Hurst exponent. In this contribution, we compared the performance of one of each
family: the generalized Hurst estimator, the Whittle likelihood estimator and the wavelet estimator.
We simulated small and longer samples, as well as observations noise with different Hurst exponents.
Our goal was to determine as accurately as possible, from the B-splines range residuals, the reference
parameter. Regression B-spline surface fitting can be applied to nearly every noisy and scattered point
cloud, without limitation to specific surfaces such as circle or plane. Even if they are structurally
correlated, the residuals of the approximation still contain information about the correlation and noise
structure of the raw observations.

Unfortunately, as in every approximation model, misspecifications are likely to arise.
They introduce additional frequencies in the residuals, which affect the determination of the Hurst
parameter. Simulating a plane, we identified unwanted white noise as strongly affecting the estimation.
A low pass Butterworth filter of the first order applied to the residuals was able to correct the bias
induced by an unwanted additional white noise. The generalized Hurst estimator was shown to be
robust against slight over or underestimation of the cutoff frequency of the filter. The Whittle likelihood
performs badly in estimating H, which was linked to the potential non-stationarity of the residuals, i.e.,
the assumption that the residuals should be fGn is mandatory for this estimator. The wavelet estimator
performs ideally in absence of white noise and could be shown to be sensitive to the choice of the cutoff
frequency. We interpreted this behavior as being linked with non-averaging, compared with the GHE.
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Simulating a Gaussian surface, the impact of model misspecification in the low frequency domain was
highlighted and filtered adequately with a high pass Butterworth filter to improve the determination
of the Hurst exponent.

For both simulated cases, similar conclusions were drawn; the Hurst exponent can be well
determined with the GHE, provided that a prefiltering of the residuals with the smooth Butterworth
filter of first order is performed. The cutoff frequency could be visually identified from the PSD of the
residuals (line wise or as a whole). The feasibility of the proposed methodology was confirmed using
real data from a plane scanned with a TLS with the “extremely high” resolution.

This powerful way to identify the noise structure from the residuals paves the way for a deeper
study of the correlation dependency of TLS range measurements, independent of specific calibration
procedures. Due to the high accuracy and precision of the determination of the fractal parameter,
potential atmospheric parameters could be deduced from the B-spline residuals, as well as sensor
characteristics. This analysis will be the topic of a later study with real data. The estimation of the
range variance remains to be solved. A proposal could be based on the calibration of the LS system
with white noise.
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