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Preface to ”Challenges and Directions Forward

for Dealing with the Complexity of Future Smart

Cyber-Physical Systems”

This book represents a collection of papers stemming from the Special Issue on “Challenges and 
Directions Forward for Dealing with the Complexity of Future Smart Cyber-Physical Systems” of 
Designs, closed in 2018.

We would like to dedicate this book to our colleague Harold “Bud” Lawson, one of the 
co-editors of the Special Issue. He sadly passed away in 2019. Bud Lawson spent a large portion 
of his life in combatting complexity, all the way from computer engineering and real-time systems to 
systems engineering (see https://en.wikipedia.org/wiki/Harold Lawson).

A key aspect of cyber-physical systems (CPS) is their potential for integrating information 
technologies with embedded control systems and physical systems to form new or improved 
functionalities. CPS thus draws upon advances in many areas. This positioning provides 
unprecedented opportunities for innovation, both within and across existing domains. However, 
at the same time, it is commonly understood that we are already stretching the limits of existing 
methodologies. In embarking towards CPS with such unprecedented capabilities it becomes essential 
to improve our understanding of CPS complexity and how we can deal with it. Complexity has many 
facets, including complexity of the CPS itself, of the environments in which the CPS acts, and in terms 
of the organizations and supporting tools that develop, operate, and maintain CPS.

This book is a result of the abovementioned journal Special Issue, with the objective of providing 
a forum for researchers and practitioners to exchange their latest achievements and to identify critical 
issues, challenges, opportunities, and future directions for how to deal with the complexity of future 
CPS. The contributions include 10 papers on the following topics: (I) Systems and Societal Aspects 
Related to CPS and Their Complexity; (II) Model-Based Development Methods for CPS; (III) CPS 
Resource Management and Evolving Computing Platforms; and (IV) Architectures for CPS.

Of course, many of these topics are not independent, but the above structure provides a 
high-level overview of the included topics and may act as a guide to readers in finding topics of 
their interest. A brief introduction to the 10 papers is now provided.

(I) Systems and Societal Aspects Related to CPS and Their Complexity

The first three papers in the book serve as a useful introduction by setting the scene with

helicopter perspectives to complexity and “smartness” aspects of CPS.

The paper “How to Deal with the Complexity of Future Cyber-Physical Systems?” introduces

a number of perspectives to complexity, including general notions as well as those specific to CPS.

The paper further provides an analysis of limitations of existing methodologies for dealing with the

complexity of CPS and discusses what is needed in order to address those limitations.

The second paper “Sharpening the Scythe of Technological Change: Socio-Technical Challenges

of Autonomous and Adaptive Cyber-Physical Systems” relates to the first paper, and specifically

treats safety challenges of future CPS considering the increasing use of artificial intelligence (AI) and

machine learning (ML) as part of CPS. In addition, the paper also emphasizes the need to incorporate

socio-technical aspects, including trustworthiness, responsibility, liability, as well as the ability to

learn from past events.

The third paper, “A Computational Framework for Procedural Abduction Done by Smart
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Cyber-Physical Systems”, treats “smartness” of CPS in terms of reasoning and decision-making

mechanisms within a CPS. In particular, procedural abduction as a knowledge-based computation

and learning mechanism is investigated, and a computational framework is proposed as an extension

and more detailed elaboration of patterns such as “monitor, analyze, plan, execute”.

(II) Model-Based Development Methods for CPS

Papers 4 and 5 treat model-based development CPS as one approach to managing complexity.

Paper 4, “Testing of Complex Embedded Systems Using EAST-ADL and Energy-Aware

Mutations” addresses testing in the context of embedded systems architecting with considerations of

low-energy computing. The paper highlights the limits of traditional testing methods for future CPS,

and advocates using early testing with architectural models, shifting some testing efforts to system

models. The paper proposes a method based on fault-based testing to derive tests and executes

automated tests leveraging mutation testing, statistical model-checking, and architectural models.

Paper 5, “A Full Model-Based Design Environment for the Development of Cyber-Physical

Systems”, addresses model-based development of CPS with emphasis on development of the

application of the CPS targeting synthesis of logic controllers, i.e., the “cyber” side of a CPS.

The paper describes a modeling language and a tool, and describes experiences in its design,

including trade-offs, drawing upon developments of production grade systems.

(III) CPS Resource Management and Evolving Computing Platforms

Papers 6 through 9 address resource management and evolving computing platforms in the

context of CPS. Paper 6, “A Lazy Bailout Approach for Dual-Criticality Systems on Uniprocessor

Platforms”, treats resource management and, in particular, scheduling of activities of different

criticalities as part of a CPS. A mixed-criticality scheduling method is proposed along with a quality

criterion for comparing mixed-criticality scheduling approaches.

Paper 7, “Fighting CPS Complexity by Component-Based Software Development of Multi-Mode

Systems”, addresses resource management and modeling abstractions to deal with the growing

software complexity of CPS. The proposed approach combines two “partitioning approaches”,

dividing a system into operational modes specified at design time (switching between modes at

run-time) with component-based software engineering (integration of independently developed

software components). The approach addresses the reconciliation between these two partitioning

strategies by introducing a hierarchical mode concept, mode mapping, and mode transformation

approaches to link the bottom-up component-based approach and system-level modes.

Paper 8, on “Adaptive Time-Triggered Multi-Core Architecture”, addresses time-triggered

resource management for multi-core platforms, with the goal of reconciling the benefits of static

resource allocation for safety critical CPS with adaptation as a key factor to deal with energy

efficiency and fault recovery. Adaptive time-triggered multi-core architecture is introduced, featuring

adaptation using multi-schedule graphs while preserving the key properties of time-triggered

systems. The architecture is based on a network-on-a-chip with building blocks for context agreement

and adaptation. An evaluation is presented using scenarios employing adaptation for improved

energy efficiency.

Paper 9, “A Two-Layer Component-Based Allocation for Embedded Systems with GPUs”,

investigates software component design for embedded systems composed of CPU and GPUs,

addressing the increasing heterogeneity—and thereby complexity—of CPS platforms. The paper

proposes and evaluates and approach using a two-layer component-based architecture in order to

reduce the complexity of component allocation.
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(V) Architectures for CPS

Many of the above described papers address, in various ways, architectures or the architecting

of CPS. Paper 10, “Developing Self-Similar Hybrid Control Architecture Based on SGAM-Based

Methodology for Distributed Microgrids”, explicitly addresses architectures for future CPS in the

context of microgrids as a CPS domain with specific relevance to sustainable energy. As a basis for the

design of the specific distributed software architecture, the characteristics of microgrids are analyzed

and the requirements derived, including interoperability (for heterogenous devices and multiple

communication protocols), modularity, and scalability to support various functionalities such as

island mode operations, energy efficient operations, energy trading, and predictive maintenance.

The architecture, which features distributed decision-making, plug-and-play capabilities, and

self-similarity of software components, has been applied to a real system of residential buildings,

and implementation and deployment details are discussed.

Martin Törngren, Didem G ̈urd ̈ur Broo, Elena Fersman, Harold (Bud) Lawson,

Vincent Aravantinos
Editors
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Abstract: Cyber-Physical Systems (CPS) integrate computation, networking and physical processes
to produce products that are autonomous, intelligent, connected and collaborative. Resulting
Cyber-Physical Systems of Systems (CPSoS) have unprecedented capabilities but also unprecedented
corresponding technological complexity. This paper aims to improve understanding, awareness and
methods to deal with the increasing complexity by calling for the establishment of new foundations,
knowledge and methodologies. We describe causes and effects of complexity, both in general and
specific to CPS, consider the evolution of complexity, and identify limitations of current methodologies
and organizations for dealing with future CPS. The lack of a systematic treatment of uncertain complex
environments and “composability”, i.e., to integrate components of a CPS without negative side
effects, represent overarching limitations of existing methodologies. Dealing with future CPSoS
requires: (i) increased awareness of complexity, its impact and best practices for how to deal
with it, (ii) research to establish new knowledge, methods and tools for CPS engineering, and
(iii) research into organizational approaches and processes to adopt new methodologies and permit
efficient collaboration within and across large teams of humans supported by increasingly automated
computer aided engineering systems.

Keywords: complexity; cyber-physical systems; systems engineering; uncertainty

1. Introduction

Modern technological development is fueled by simultaneous advances in software, data science
and artificial intelligence (AI), communications, computation, sensors, actuators, materials, and their
combinations such as 3D printing, batteries and augmented reality. Different perspectives on these
advances have led to the creation of many terms—Cyber-Physical Systems (CPS), the Internet of Things
(IoT), Industry 4.0, and the Swarm—to represent new classes of technologically enabled systems.

We focus on CPS as a more general notion (e.g., see [1,2]). CPS was introduced in 2006 in the
U.S. to characterize “the integration of physical systems and processes with networked computing”
for systems that “use computations and communication deeply embedded in and interacting with
physical processes to add new capabilities to physical systems” [3]. In this context, the word cyber
alternatively refers to the dictionary definition of “relating to, or involving computers or computer
networks” [4] or more general feedback systems as in the field of cybernetics pioneered by Wiener [5].
We consider both interpretations of CPS to be valid and, unless otherwise noted, use the term cyber to
refer to computing or software parts of a CPS. For further definitions and viewpoints of CPS, see [6]
for an overview of existing agendas and roadmaps.

A CPS is thus characterized by an integration of computing and physical elements, typically
including feedback loops, into various networks with both physical and cyber interfaces. We consider

Designs 2018, 2, 40; doi:10.3390/designs2040040 www.mdpi.com/journal/designs1
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human-CPS to be a special (but common) category of CPS where humans are integral elements
of the system together with technical parts. Figure 1 illustrates interactions between cyber (C),
physical (P) and human (H) elements as well as information and physical interactions between the
corresponding components. CPS are developed, produced, used and maintained by teams of people (H)
and supporting tools, including computer aided engineering software (C) and hardware-in-the-loop
simulation ((C) and (P))). We refer to these (people and tools) as Collaborative Information Processing
Systems (CIPS). Finally, both CPS and CIPS act in specific environments. For example, the CPS
environment may be a factory in which an automated vehicle operates and the CIPS environment
includes related stakeholders such as component suppliers as well as applicable legislation and
engineering guidelines/standards.

Figure 1. Conceptual view of a CPS with cyber (C), physical (P), and human (H) components arranged
in multiple systems (Si) and a CIPS responsible for design, production, and maintenance.

Cyber-physical systems play a key role in a large number of application domains including
in transportation, energy, health and well-being, manufacturing, and indeed as part of smart
infrastructures and cities—thus not only relating to industrial domains, see e.g., [7,8].

The combined advances of multiple technologies indicate an ongoing technological shift where
new types of systems and systems-of-systems are emerging within and across domains such as those
just mentioned. CPS are becoming autonomous, intelligent, connected, and collaborative, resulting
in the creation of Cyber-Physical Systems of Systems (CPSoS) with unprecedented capabilities and
opportunities. CPSoS are characterized by independent system evolution and the lack of single
responsible system integrator (compare for instance with an intelligent transportation system),
see e.g., [9].

The implications are that CPS will be widespread and a multitude of key societal functions
(such as water, energy, transportation, and health-care) will rely on the proper operation of such CPSoS
(henceforth we will use the term CPS to refer to both CPS and CPSoS, unless a detailed distinction
is necessary).

This paper focuses on the complexity of future CPS, intuitively interpreted as a system
characteristic making it difficult, and sometimes even impossible, to accurately predict behavior
over time, especially in terms of understanding all relevant interactions among CPS elements and
with the environment. We believe unprecedented capabilities and opportunities will be achieved by a
corresponding unprecedented technological complexity, where unknown or poorly understood such
interactions may lead to unexpected and undesired effects including effort overruns, poor operational
performance, or even system failures.

Our work aims to improve understanding and awareness of complexity in technical artifacts and
contribute to establishing new foundations, knowledge and methodologies for engineering design.
Evolving approaches to manage complexity attempt to keep up the pace with technology and systems
development and avoid unreasonable monetary, personal and societal risks. The full potential can only
be obtained when new engineering methodologies are in place to ensure future CPS are sufficiently
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safe, secure, available and cost-efficient. In addressing these questions, our paper draws upon recent
investigations of CPS complexity [6,10,11].

The structure of the paper follows the graphical outline in Figure 2. Section 2 establishes general
perspectives on complexity to describe what general notions constitute complexity (Section 2.1),
its effects (Section 2.2), and how to manage its evolution (Section 2.3). Section 3 focuses on CPS
to elaborate on their specific facets of complexity (Section 3.1), the implications of future CPS on
complexity (Section 3.2), and limitations of existing design or management methodologies (Section 3.3).
Section 4 discusses how to improve our ability to deal with complex CPS including avenues to address
the previously identified facets and limitations. Finally, Section 5 concludes with a summary including
our call for action.

Figure 2. Graphical outline of this paper.

2. Perspectives on Complexity

2.1. Sources of Complexity

It is natural to first elaborate on what we mean by complexity because there are many
interpretations and definitions. This discussion views systems design and management as a series of
decisions [12] where complexity is a barrier to effective decision-making. Features such as emergence,
non-linearity, temporal dynamics, memory, and interaction effects contribute challenges commonly
attributed to complexity. Several frameworks argue how complex systems require a distinct set of
decision-making and design methodologies.

Snowden’s Cynefin framework differentiates sense-making strategies for simple, complicated,
complex, and chaotic systems [13]. While simple systems present obvious fact-based solutions,
complicated systems demand additional effort but still benefit from best practices available to cover
known issues and phenomena including side effects. Complex systems embody unpredictability and a
lack of well established practices and thus more knowledge needs to be developed. Chaotic systems
omit the very existence of patterns to support decision-making. This model presents complexity as a
barrier to decision-making which requires discovery of new knowledge or information to overcome.

From another perspective, Jackson and Keys classify system methodologies along two
dimensions [14]. A technical dimension varies between mechanical (reducible or decomposable) and
systemic (irreducible) problem types. A social dimension varies between between unitary or pluralistic
decision-makers. The most complex or ‘wicked’ problems span systemic-pluralistic contexts where
technical and social sources complicate decision-making due to an inability to separate decisions and
link cause-and-effect combined with a general lack of local control over the decision-making process.
This model presents complexity as a structural challenge to make decisions in alternative contexts.

Drawing from these frameworks, general sources of complexity in decision-making include large
scale or scope from irreducibility of decisions, plurality of opinions or objectives, unpredictability
of outcomes, and lack of causal theory or knowledge. More specific to design as a decision-making
process, alternative views frame complexity as a source of increased design effort [15] or uncertainty in
meeting desired goals of the designed artifact [16]. While at first these two perspectives appear similar,
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they highlight a fundamental difference between objective (descriptive) and subjective (perceived)
sources of complexity [17].

Objective sources of complexity represent an inherent amount of work or information in a system
independent of the people involved. They represent sources of effort that remain for a hypothetical
omniscient designer to achieve desired system functions with perfect knowledge. For example,
the number of components, types of interactions, number of paths through a logical program, and
responses to external stimuli are sources of objective complexity which require explicit design effort to
define, integrate, and operate. Objective complexity contributes to Cynefin’s concept of complicated
systems or Jackson and Key’s systemic/pluralistic contexts.

Subjective sources of complexity consider the challenges to interpreting, understanding, and
anticipating design as a human activity rather than an omniscient one and can be viewed as accidental
or additional effort [18]. For example, limits to accumulated knowledge, working memory, and
language or communication are sources of subjective complexity which contribute to uncertainty in
achieving desired outcomes. Subjective sources of complexity are, by definition, always relative as
advances in technology and knowledge influence human activity and relate to Cynefin’s concept of
complex systems which exhibit unknown unknowns (knowable but unknown to the human observers).

2.2. Effects of Complexity

Complexity contributes two competing effects on system design illustrated in Figure 3. Most
first think of distinctly negative effects: uncertainty in achieving functional goals [16], difficulty
in separating, analyzing, or solving sets of components [19] or more numerous tasks to achieve
a function [15] resulting in increased cost, schedule, or effort [20,21]. These effects are caused by
both objective (e.g., number of tasks, total information content, responding to high environmental
variability) and subjective sources related to limitations of individual designers. Prior development of
complexity metrics attempts to establish scaling laws to predict cost or effort as a function of observable
quantities such as lines of code [22], number of logical paths through a program (similar to behavioral
state–space) [23], number of components and degree of coupling [19], and architectural topology [24].

However, complexity also contributes positive effects as a key enabler for improved system
performance. Well-designed objectively complex systems can afford larger capacity through
parallelism, greater response to external stimuli through feedback loops, higher efficiency by closely
coupling components, and increased intelligence from adaptability and learning. Under optimal
control, complexity allows a system to reach greater levels of performance by more closely matching
behavior to needs [25]. All of these benefits, however, critically rely on the design activity being
executed well, subject to the limited abilities of participating designers.

Figure 3. The balance between unexpected, undesired effects and expected, desired effects is influenced
both by complexity and by knowledge and tools.

To summarize, objective complexity contributes to both expected, desired effects through essential
components and to undesired effects (namely: extra effort) through accidental sources. Subjective
complexity contributes only to unexpected, undesired effects due to limited human knowledge,
perception, and cognitive abilities but can be directly influenced by mitigating or overcoming human
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limits. Thus, humans present both the source of and means to tip the balance of complexity positive by
mitigating the negative downsides with improved new knowledge and tools. Knowledge establishes
explanatory causal links between phenomena and helps improve anticipation and perception of
negative downsides. Tools help humans to focus efforts at higher levels of abstraction, relying on
automation to optimally solve well-characterized problems.

2.3. Evolution of Complexity

Technological progress is measured by the performance of an engineered system to achieve desired
goals efficiently (minimize costs) and effectively (maximize value). Firms expend significant research
and development effort to accumulate knowledge and refine designs for increasingly sophisticated
systems. This dynamic is perceptible: artifacts transition from complex to complicated domains
as a knowledge base is established and matured. Meanwhile, novel compositions may still exhibit
complex features due to unknown emergent behavior. This section argues there are two paths to
improve performance: knowledge-driven activities to reduce subjective sources of complexity and
architecture-based activities to reduce objective sources of complexity.

Although technological revolutions are unpredictable [26], there remain consistent patterns of
performance growth over long time frames. For example, Koh and Magee illustrate technological
progress as long-term exponential growth of key performance measures in diverse fields such as
information and energy technology [27,28]. While patterns such as Moore’s law emphasize component
features such as the number of transistors per square inch, Christensen argues innovation at the
architectural level, not the component level, drives strategic advantage [29,30]. Figure 4 illustrates the
effects of technological progress as a series of S-curves which model the initial growth and saturation
of alternative product architectures.

Figure 4. Notional representation of linked technology S-curves highlighting performance gains from
knowledge-driven and architecture-enabling activities.

Incremental performance improvement within product architectures benefits from knowledge-
driven advances, akin to mitigating the effects of subjective complexity and reducing complex systems to
complicated systems. Sustained improvement over longer time frames requires architectural innovation,
which resembles a paradigm change where new technologies or the integration of new technologies
provide capabilities exceeding the state-of-the-art. Elegant architectures, once matured, limit negative
effects of complexity such as unintended side effects without constraining desired performance (see e.g.,
Section 2.2.1 of [31] for a definition of composability and Section 7.4.1 of [31] for examples of such side
effects for distributed real-time computer systems). This pathway deals with objective complexity and
leverages design strategies such as modularity [32], layered architectures [33], and abstractions through
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the use of models [34]. However, some requisite level of knowledge is required to conceive of new product
architectures, preventing the two modes of evolution from being separate.

3. Complexity in CPS

In Section 3.1 we elaborate complexity facets of current CPS, and then turn to discuss the evolution
of such facets for future CPS (Section 3.2) and how this complexity relates to methodological limitations
(Section 3.3).

3.1. Facets of Complexity

Complexity for CPS is highly multifaceted, arising from the CPS itself, its environment, its design
process, and its design organization as a CIPS, recall Figure 1. These aspects or viewpoints are
interrelated [35] as we will discuss further in this section.

Fundamentally, CPS complexity facets stem from:

• The environment in which a CPS acts and undertakes tasks corresponding to its functional and
extra-functional requirements. Environments and tasks are intimately related to the capabilities of
CPS [36].

• The cyber components, where software-defined behaviors and sophisticated electronics platforms
lead to very large state-spaces with implications for understanding, maintaining and predicting
system behaviors. Unintended effects may arise from behaviors and assumptions referring to
other software components, resource sharing and the CPS environment. Interactions between
software and the electronics platforms and reuse of legacy components (sometimes black-box
or poorly documented/understood), further contribute to complexity. Interactions between
components in computer systems include both local and global interactions and exhibit much
faster characteristic timescales compared to physical interactions [10].

• The physical components, where a key source of complexity arises from side effects which can
be the same order of magnitude as the intended behavior (e.g., friction-induced thermal effects
between surfaces in contact) [37]. Component interactions and side effects are further multifold
(e.g., motion, heat, electromagnetism) and are characterized by strong local effects.

• Interactions between the cyber and physical components. Combining cyber and physical
components enables feedback and adaptive systems, providing cost-efficient capabilities otherwise
impossible but also characterized by more complex behaviors (e.g., hybrid real-time systems)
including a multitude of possible faults and failure modes. As a particular characteristic, a CPS will
be characterized by a multiplicity of interfaces and interrelations that encompass both explicit and
implicit dependencies among CPS components, and between the CPS and its environment [10].
Correspondingly, a change in one part of a system may affect many others, producing unexpected
or undesired side effects from the close coupling and tight integration. The integration of cyber
and physical components moreover requires reconciling different worldviews and traditions
(see e.g., [38]). Lacking timing (real-time) abstractions for software systems poses a key limitation
for predictability [39].

The CPS design process reflects these complexity facets. Establishing a number of desired
properties such as performance, cost-efficiency, sustainability, upgradability and safety becomes
challenging because of the strong interdependencies expressed in shared design variables. Many of
these properties are of a systems nature and depend on the successful development and integration of
cyber- and physical components as part of end-to-end feedback interactions, subject to the various
side-effects and dependencies mentioned. This results in a situation where the properties are
generally difficult to trade-off explicitly and predict during design. It is striking that several of
the U.S. definitions of CPS emphasize co-design of cyber and physical parts and the importance of
multi-disciplinarity because CPS requires “integration” and composition across a number of aspects
and layers (see e.g., [3,10,40]).
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Interestingly, integration of cyber and physical components also has a partially limiting effect
on complexity. Integration requires each side (cyber and physical) to deal with the limitations and
constraints of the other and, specifically, physical constraints limit cyber actions. For example, inertia
and energy constraints or cost and safety considerations limit potential actions of cyber components,
often forcing designs to reduce various facets of complexity in comparison to general purpose software
systems with fewer such constraints.

The over time evolving complexity of CPS is manifested by the introduction of computer control
systems and networked control systems that are integrated with, and control, physical systems to
provide novel capabilities. This trend has led to needs for a corresponding evolution of organizational
responsibilities and processes. For example, introducing local control systems in cars required new
responsibilities. Connecting these control systems over Controller Area Networks (CAN) networks
(adding the networking dimension to cyber) introduced distributed functions for coordinating
subsystems (various physical actuators and sensory subsystems). An example category of such
functions are those that provide active safety, for example vehicle stability control, further illustrating
the growing scope of responsibilities (e.g., for the network, for the coordination among local controllers
and sensors), see e.g., [41].

Facets of complexity for a CPS are intricately tied to its CIPS and vice-versa, linking the CPS, CIPS,
and their respective environments in Figure 1. Theories alternately known as the mirroring hypothesis
or Conway’s law posit a product architecture parallels its parent organization structure [35,42]. Facets
of organizational complexity include overcoming communication barriers across organizational units
to resolve technical dependencies and aligning multiple viewpoints with the overall system objectives.

Today, thousands of engineers develop what we consider to be advanced machines such as
vehicles and aircraft. No single person is able to grasp the complete design and there is no complete
model capturing all dependencies in the system. As a remedy to deal with complexity, CPS designers
have since long introduced computer support tools (Computer Aided Engineering, CAE) to help to
manage complexity in terms of extending memory and reasoning capabilities of individual designers
and to support collaboration among large teams of engineers. It only natural that a minimum amount of
(objective) CIPS complexity will be required to deal with complex CPS acting in complex environments.
Research has confirmed the important role of integration mechanisms, such as organizational structure,
work procedures and methods, training, social systems, and computer-aided engineering, to promote
multidisciplinary collaboration. In addition, strategic management in relation to the organization is
essential because the organizational power base is likely to evolve (e.g., from physical/electronics
to software and data) and since future CPS will require new (complementary) competences, roles
and responsibilities [43]. Related to the mirroring hypothesis, the CIPS has to evolve along with the
changing content of the CPS product/services.

In summary, CPS are characterized by strong coupling and interdependency between cyber and
physical components as illustrated in Figure 1. They exhibit facets of complexity such as heterogeneity,
size, computability, uncertainty, dynamic behavior and structural dependencies [10,11,44]. We believe CPS
represents a fundamental shift from other existing engineering products similar to architecture-enabled
innovation in Figure 4 and, thus, carries potential benefits of higher objective complexity with related
challenges of overcoming associated subjective complexity.

3.2. Evolution of Future CPS

Overall, CPS are increasingly being fitted with new functions, deployed in new domains, and as
larger systems. The implications are that future CPS are facing an increasing envelope of functional
and extra-functional requirements. Examples of functional requirements include for instance typical
use-cases such as predictive maintenance and increasing levels of CPS automation. Examples of
more stricter (and newer) extra-functional requirements include cyber-security (due to increasing
connectivity and collaboration), safety (due to extended types of tasks in more complex environments)
and environmental sustainability (e.g., due to stricter legislation). The cross-domain nature of many
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new CPS applications, where for example robotics technologies are adopted by automated cars,
and where telecom networks may find their use for smart machines, poses both large opportunities
and challenges.

In the following we elaborate the following aspect for evolving CPS: (1) systems integration and
scope, (2) intelligence and level of automation, and (3) advanced tasks and complex environments—and
then provide conclusions based on the trends in these areas.

As introduced in Section 1, technological advances enable entirely new types of integration and
connectivity in CPS across:

• Technological areas such as physical, embedded, networked and information (e.g., cloud and
edge computing) systems,

• Standalone systems, for example integrating vehicles and infrastructure to form intelligent
transportation systems, and

• Life-cycle stages, in particular making data available throughout the life-cycle and enabling
software upgrades. These concepts are closely related to so-called DevOps (Development-
Operations integration) associated with continuous software development, integration, and
deployment with feedback from operational systems.

At the same time, increasing levels of automation and intelligence including data analytics are
being introduced at a rapid pace in CPS. These capabilities rely on a number of Artificial Intelligence
(AI) techniques including machine learning. The prospects of AI and data analytics are seen as
game-changers, highlighted by a report by the National Science and Technology Council in the US [45]
and Section 0.2 of the European strategic research agenda on electronic components and systems [8].
Context awareness is essential for new types of AI-based CPS, including among other things the
ability to understand what entities are currently part of the near environment and to infer what their
intentions are. Further maturation of AI technologies is likely to drive increasing levels of automation
in a number of application domains.

Because of their potential to solve societal challenges and generate revenue, future CPS will
also be tasked with increasingly difficult tasks in open environments. Automated driving on public
roads provides a useful example where highly advanced technologies will be deployed and spread
across society as opposed to traditional manufacturing applications where advanced technologies are
enclosed and used by few. Similar trends are seen in manufacturing with robot-human collaboration
systems and in many other application domains, see e.g., [8].

Such smart CPS must deal with tasks in dynamic and changing environments (e.g., highly varying
traffic environments which also evolve over time with changing infrastructures and behaviors of
humans and CPS). In general, this implies that all operational conditions will not be known a priori
(at the time of system development) and, correspondingly, system adaptation and evolution after
deployment, including learning from field data, will be essential, see e.g., [10]. The broader implications
indicate open CPS will face a variety of existing and new types of uncertainties from partially unknown
environments, security vulnerabilities and attacks (e.g., with the difficulty of anticipating attacks by
providing appropriate “attacker models”), and changing properties of the CPS itself (e.g., due to partial
failures, upgrades or learning). Uncertainty may relate to aspects for all life-cycle stages and parts of a
CPS (e.g., in terms of environment perception, embedded knowledge and actual physical capabilities),
as well as to the CPS environment. A systematic treatment of uncertainty thus becomes important,
taking various sources of uncertainty into account, see e.g., [46].

With this evolution, new types of CPS and CPSoS will be characterized by intelligence, automation,
flexibility, connectivity, and data- and service-related business models, see e.g., [1,9,47,48]. Integration
with information technologies, most notably cloud and edge computing, will provide platforms to
enable new functionalities, on top of which new services can be built , see e.g., [49]. These developments
will further stimulate technological development and inventions, continuing the drive towards more
sophisticated, large-scale, intelligent and adaptive CPS likely to continue on a path of complexity
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growth. Using the Cynefin terminology, it is in our understanding relevant to characterize current
advanced CPS as representing a mixture of complicated and complex systems while future CPS will
fall into the class of complex systems until requisite knowledge can be obtained.

In summary, the continued evolution of CPS will have a drastic impact on complexity, clearly
increasing the objective complexity by orders of magnitude, and also introducing new phenomena
in terms of smart evolving automated CPS, raising the subjective complexity. The new types of CPS
will face more of unknowns, dependencies, hidden assumptions and accidental complexity (due to
systems integration, legacy, etc.). This in turn leads to concerns whether we are really prepared to
embrace such new levels of complexity.

3.3. Limitations of Existing Methodologies

This section reviews and discusses the key limitations of existing methodologies to address
complexity of future CPS.

As discussed by [10], current methodologies use a number of techniques to deal with CPS
complexity, including, (1) process-based approaches (e.g., as checklists for all aspects that needs to be
considered, and for aligning the different life-cycles of software and hardware), (2) model-based and
computer aided engineering—which support complexity management through multiple abstractions
and views where the challenge then becomes the integration/reconciliation among these views),
(3) design and architecting measures including layered architectures and principles to promote
composability, and finally, (4) through people/organizational approaches that enhance skills,
motivation and collaboration.

While these measures work for current systems, it is generally considered that they do not scale
to the next generation CPS. Consequently, there are also multiple calls for new methodologies, see
e.g., [8,10,50–52]. As an example, the Electronic Components and Systems for European Leadership
(ECSEL) roadmap, which was developed in collaboration between three industrial-academic
associations representing hundreds of organizations active in electronics, embedded systems and
CPS [8], highlights five essential areas to manage future CPS across application domains:

• Systems and components: architecture, design and integration,
• Connectivity and interoperability,
• Safety, security and reliability,
• Computing and storage,
• Electronics process technology, equipment, materials and manufacturing.

Many of these topics relate to CPS complexity facets and also consider increased levels of
automation, intelligence, and evolvability, (see e.g., Chapters 6 and 8 in [8]). Roadmaps call for
technical measures and improvements on a broad scale including engineering education, processes
and organizations for CPS, and legislation see e.g., [7,10,51].

Dealing with the increasingly complex environments, uncertainty, and the inherent dependencies
and side effects in CPS, represents core aspects that must be addressed to improve the state of
methodologies. As described in Section 3.2, future CPS are likely to be tasked with increasingly
challenging tasks in open, dynamic and changing environments. Describing these varying
environments and systematically dealing with uncertainty represents a key challenge.

Dependencies related to a CPS, as described in Section 3, are closely related to the concept of
composability, to be discussed in the following.

The success of Very Large Scale Integration (VLSI) for integrated circuits and design methods for
software can be traced to high-level design abstractions and synthesis methods, and, in particular for
VLSI, synthesis methods yielding correctness by design. Similar goals have been targeted for CPS;
however, while we agree that correctness by design is a highly worthwhile goal and that unnecessary
complexity should be eliminated where ever possible (see e.g., [31]), correctness by construction
represents a challenge for CPS. Abstraction and decomposition, as traditional means to deal with
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complexity, assume side effects can be eliminated or managed. As investigated by [37], the success for
digital systems design in VLSI arises because their characteristics enable abstractions and eliminate
or robustly deal with side effects. Similar success has not been achieved for mechanical engineering
because the same characteristics are not valid; for example, platform-based design is much more
complicated with multi-fold side effects [10]. It follows that the endeavor of correct-by-design is even
further challenging for CPS.

The essence of CPS design aims to combine and integrate elements (e.g., C, P and H) and
components (e.g., C-P components) to achieve the desired functionality and extra-functional properties
(e.g., performance, reliability and flexibility), within - and in interaction with - varying partly unknown
dynamic environments. This integration may take place during design (off-line) or run-time for adaptive
systems. We see the lack of a systematic treatment of “composability” (integration) as one overarching
limitation of existing methodologies. Composability has been defined in Section 2.2.1 of [31] as “An
architecture is said to be composable with respect to a specified property if the system integration will not
invalidate this property, once the property has been established at the subsystem level. ... Examples of
such properties are timeliness or testability. In a composable architecture, the system properties follow
from the subsystem properties”.

The likely characteristics of future CPS (recall Section 3.2) will clearly require novel ways
for reasoning about system level properties and in achieving composability. In the following we
elaborate the multidimensional topic of CPS composability and identify what we see as as specialized
composability issues including dealing with human-CPS, CPS incorporating AI, trustworthiness
and CPSoS.

• Composability across components, disciplines and aspects. When composing CPS components,
multiple technologies needs to be integrated (electrical, mechanical, hydraulic, software, etc.)
and multiple aspects needs to be reconciled — referring to for example properties such as cost,
safety and availability. When reasoning about such compositions, multiple theories will apply,
each focusing on one or more aspects of integration (e.g., logic-interface automata, composing
transfer functions, scheduling, overall reliability, etc.). Real and successful composition must
consider all these aspects, including characteristic side effects and dependencies of CPS. For this
there is no existing comprehensive theory or methodology. Current best practices can manage
systems of today’s complexity, albeit using heuristics and with questionable cost-efficiency.
Beyond composition at design or production time, CPS will be increasingly adaptive and able to
reconfigure during run-time. There are thus needs to improve interoperability and reason about
composability over multiple aspects also at run-time. In a similar vein, with the use of DevOps
and learning systems with CPS, the software behaviors of parts of the CPS will change during
operation, requiring the ability to monitor and ensure proper operations, see e.g., [1,8].

• Human-CPS integration. Regardless of the system type and level of automation, humans acting
as developers, operators, users, and maintainers will increasingly have to deal with and interact
with CPS. Increasing levels of automation poses challenges for human-machine interaction,
e.g., for cases where humans (e.g., pilots in an aircraft) may still be responsible to act in emergency
situations. We are currently transitioning to increasing levels of automation and smarter systems
and the lessons learned in the automation history remain highly relevant to improve support
for humans interacting with highly capable CPS [53]. As an example of a related challenge in
automated driving, leading companies have abandoned the so-called “level 3” of automated
driving, moving directly to “level 4” where the automation system is also responsible for fall-back
maneuvers, see e.g., [54]. A key notion for human CPS is that of intent, i.e., the understanding of
what drives the action or inaction of an agent. There is also a need to identify deviations from
normal behaviour of such (human) agents, in particular behaviour that leads to decisions/actions
of significance for the functioning of CPS [8] (e.g., Chapter 5.3.3).

• AI within CPS. While AI and machine learning technologies enable entirely new types of
applications, the use of in particular machine learning in terms of neural networks raises
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concerns about how to deal with transparency (black-box behavior), robustness and predictability
(e.g., when data is outside of a training set), and how to cost-efficiently verify, validate and assure
such systems, see for example [55,56].

• Trustworthiness. Trust involves properties such as privacy, cybersecurity, safety and availability,
which affect each other, requiring new holistic methodologies. Security risks already exist for
current CPS and will increase as CPS become even more widely adopted, connected and with
an increasing use of open source software. Absolute safety and security will not be possible
so on-line measures are necessary to deal with security breaches and safety related anomalies.
Moreover, the increasing deployment and use of CPS increases the importance of their availability,
implying traditional fail-safe solutions are not an option. Future systems must be fault-tolerant
while balancing the complexity increase due to the introduction of redundancy, adaptability and
fall-back measures. Finally, issues related to liability, ethics and assurance are recognized as
essential. Who if any will/should take responsibility when a complex CPS fails, what are the
ethical considerations of decisions made by highly automated systems, and what is required by
an assurance case for a future complex CPS? [8]

• CPSoS. Future CPS are likely to form part of CPSoS. Such systems, may also because of their
novelty and scale, relate to multiple domains, and require consideration a larger set of stakeholders,
jurisdictions, regulations and standards [9].

Existing development methodologies are usually centered in either physical systems, software, or
data management. Methodologies are also not integrated when it comes to providing a holistic view
of complex CPS, CIPS and environments. Each entity itself is complex but also strongly interrelated.
For example, the corresponding CIPS encompasses an increasing quantity of tools, data, information
and knowledge. Structuring, managing and ensuring interoperability among such assets provides a
great challenge on its own. Information capture and formalization requires extra work efforts including
the maintenance of relations and validity of this information. Methodologies are also not aligned across
the life-cycle stages. This is, for example, visible with the increasing difficulty of CPS maintenance,
requiring people and tools with additional skills/capabilities. Future methodologies will need to
embrace and integrate all these perspectives.

4. Addressing Limitations to Complexity

Given our analysis and review of CPS complexity and state of the art, we conclude that progress
is required to deal with future CPS. This section addresses how we should act to overcome the
identified limitations and the required means and strategies required. Research agendas discussed in
previous sections propose a variety of measures to deal with future CPS including strategic research
areas identified by ECSEL [8] and a mix of socio-technical priorities. We contrast these perspectives
by relating to our discussion on the evolution of complexity in general (Section 2.3) and for CPS
(Section 3.2).

With the human creativity and ingenuity, we envision a future better prepared to deal with
unprecedented complexity, corresponding to our ability to make a paradigm-changing architectural
transition as indicated in Figure 4. This future development scenario implies that organizations
will have access to existing and new knowledge and methods that explicitly address and manage
uncertainty, dependencies and composability. Future tools and automation will assist humans in
CPS design to: (i) improve efficiency and effectiveness of inter-human communication, (ii) better
accommodate (design) tasks for which our memories and processing capabilities are insufficient,
i.e., automating complex tasks such as design space exploration, change management and verification,
and (iii) provide adequate collaboration between humans and supporting AI systems. Organizations
and management will be strategically prepared by establishing greater awareness of complexity and
adopting life-long learning. Awareness relates to creating an understanding of both the benefits and
risks associated with complexity.
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To reach such a setting/scenario, and to be able to deal with the transition towards such a mature
state, there is a need to promote and drive efforts that address:

• Complexity awareness by people and organizations, as well as improving training, leveraging
existing knowledge and best practices,

• Research towards establishing CPS foundations that addresses the identified limitations of current
CPS methodologies,

• Multi-disciplinary collaboration for the above mentioned educational and research efforts, and
also in terms of exchange of best practices across industrial domains and between academia
and industry.

In order to address complexity there is a need to create and raise awareness for various CPS
stakeholders. This represents an important first step, implying that organizations would be better
prepared to assess costs and risks for both projects and products/services. Training and spreading
knowledge and best practices play important roles and go beyond engineers. There is a need to
consider and include a broader set of stakeholders including policy-makers and the general public to
raise awareness of CPS implications (opportunities, risks and challenges) [7].

Complexity metrics have potential to bring awareness to developing organizations and
decision-makers. Relevant metrics developed with respect to objective and subjective complexity
could give insights and guide decisions. Developing representative metrics has, however, shown to
be very difficult. While many have been proposed, they tend to emphasize objective complexity and
focus on a few aspects [57]. Few have been adopted in practice, and those that have (e.g., lines of
code) are very coarse grain. Thus, while it would be valuable to have operational complexity metrics,
other measures will be needed for raising awareness, including through training and guidelines with
attention to the multiple aspects of CPS complexity. In addition, it is necessary to develop new ways of
organizing life-long learning as a way to systematically increase organizational capabilities through
use of new knowledge and tools.

There are several challenges for education and training in relation to future CPS, see e.g., [51,58].
Fundamentally these refer to the trade-off between breadth and depth and identifying appropriate
knowledge profiles, preparing students for continued learning (self-learning), the fact that teachers as
well as universities have disciplinary backgrounds/profiles with corresponding difficulties in teaching
topics cutting across the aspects of a CPS, and finally, the fact that teaching, in many cases, has a low
status compared to research. In the short term, curricula need renewal to consider the needs for the
“cross-cutting” aspects of CPS, such as developing new courses that address safety and security, safety
and AI for CPS, etc. There is clearly room for new schemes for continued education and strong needs
to raise the importance and status of teaching and training in this area.

As emphasized by several research agendas, see e.g. [1,7], there is a need for new foundations
of CPS engineering to address the issues elaborated in Section 3.3. We envision that such new
foundations would encompass new abstractions,(uncertainty) modeling frameworks, composable
multi-view models and composable architectures. Based on new knowledge in these areas, novel
methods and tools can be developed, eventually yielding new methodologies.

In parallel, there is a need to drive research into organizational approaches and processes that
can adopt such methodologies while catering for efficient collaboration within and across large teams
of humans supported by increasingly automated computer aided engineering systems. There is a
need for alignment and tailorability among the product, organization and process architectures as
discussed earlier. This structuring should align with the corresponding structure of teams and their
interactions and processes with specific consideration for synchronization and alignment and software
and hardware processes. Automation and assistance by CAE systems will be needed to support the
above and in particular effective communication between people and teams (currently requiring huge
efforts as part of development). Strategic management efforts will be essential for all these endeavours.
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Many of the above efforts will require multidisciplinary collaboration because of the nature of CPS.
Collaboration between industry and academia will also be essential. While we hope to make much
progress in dealing with future CPS, they will continue to evolve, demanding longer-term efforts that
continuously work towards spreading existing knowledge and for gaining new knowledge. There will
correspondingly be a need to advance formal methods and techniques (for dealing with complicated
CPS) as well as engineering heuristics (for dealing with truly complex CPS). Correspondingly, it will be
important to leverage cross-domain collaboration encompassing the exchange of best practices across
industrial domains and between academia and industry.

5. Discussion and Conclusions

This paper argues CPS, as close integrations of physical, cyber, and human elements, represent
an architectural innovation over existing engineered systems carrying both unprecedented potential
to improve performance but also unprecedented challenges. From an objective perspective, CPS
complexity arises from technical sources such as number and heterogeneity of components, degree
of interdependency and response to stimuli in an open environment. While some some aspects of
complexity are desired for performance, from a subjective perspective the existing knowledge base on
CPS is limited, generating difficulty for engineers to anticipate and predict their behavior. We argue
new design methods, tools and, ultimately, knowledge will mature CPS.

Limitations to dealing with future CPS arise from the CIPS responsible for designing and
operating CPS. Design of future CPS must overcome current limitations for describing highly
varying environments, and in dealing with uncertainty and composability. Composability covers
both the integration of cyber and physical components and the integration of technical systems
with human counterparts. Issues such as effective collaboration between humans and intelligent
systems, establishing trustworthiness, and considering a broader system of systems perspective must
be addressed.

Our call to action can be summarized in three points. First, for people and organizations involved
with CPS, efforts are needed to increase the awareness of the sources of complexity and approaches
to mitigate the unexpected and undesired side effects arising from an insufficient or immature
knowledge base. Second, new research should specifically address the limitations to current CPS
methodologies including identifying approaches to better understand uncertainty and composability.
Finally, improved collaboration across disciplines and between industry and academia is necessary to
implement the educational and research efforts described above.

Responding to this call will be important to reach the projected societal-scale advantages of CPS
while managing the new risks introduced by such CPS.
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Abstract: Autonomous and Adaptative Cyber-Physical Systems (ACPS) represent a new knowledge
frontier of converging “nano-bio-info-cogno” technologies and applications. ACPS have the ability
to integrate new ‘mutagenic’ technologies, i.e., technologies able to cause mutations in the society.
Emerging approaches, such as artificial intelligence techniques and deep learning, enable exponential
speedups for supporting increasingly higher levels of autonomy and self-adaptation. In spite of this
disruptive landscape, however, deployment and broader adoption of ACPS in safety-critical scenarios
remains challenging. In this paper, we address some challenges that are stretching the limits of ACPS
safety engineering, including tightly related aspects such as ethics and resilience. We argue that a
paradigm change is needed that includes the entire socio-technical aspects, including trustworthiness,
responsibility, liability, as well as the ACPS ability to learn from past events, anticipate long-term
threads and recover from unexpected behaviors.

Keywords: autonomous cyber-physical systems; resilience; ethics; nano-bio-info-cogno technologies

1. Introduction

In 2014, the Cyber-Physical European Roadmap and Strategy (CyPhERS) [1,2] pointed out artificial
intelligence (AI) as a distinctive characteristic of cyber-physical systems (CPS). In 2018, after two
years of research, the Platform4CPS European project [3] introduced a list of recommendations
together with the main scientific topics and business opportunity for markets [4]. Among the main
topics, the project highlights the importance of autonomous Cyber-Physical Systems (especially those
including AI) and their impact on the incoming period with respect to several aspects and disciplines.
For example, the introduction of AI into autonomous Cyber-Physical Systems demands new design
and development technologies able to consider the learning phase, adaptability and requirement’s
trace. Among the main concerns, the project highlights safety, resilience, security and confidence
on these systems before their production and exploitation. Finally, the impact on social, legal and
ethics issues is inherently involved by these systems. To clearly address the features of autonomy and
environment adaptability of CPS [5], the European Commission refers to Autonomous Cyber-Physical
Systems with the acronym ACPS. In this paper, we adopt then the term ACPS.

The design and development of ACPS requires the convergence of the cyber-side (computing
and networking) with the physical side [6] and AI. More generally, tremendous progress becomes
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possible through converging technologies stimulated by advances in four core fields: Nanotechnology,
Biotechnology, Cognitive and Information technologies [7,8]. Such convergence focuses on both the
brain and the ambient socio-cultural environment. ACPS represent an example of that convergence
which embraces not only engineering and technological products, but also legal (regulations) and
ethical perspectives.

More specifically, the ACPS technologies are expected to bring large-scale improvements through
new products and services across a myriad of applications ranging from healthcare to logistics through
manufacturing, transport and more. The convergence of the “nano-bio-cogno-info” fields in ACPS
could significantly improve the quality of our lives. However, the empowerment of sensitive intelligent
components together with their increasing interaction with humans in shared spaces, e.g., personal
care and collaborative industrial robots, raises pressing concerns about safety.

The technical foundations and assumptions on which traditional safety engineering principles are
based worked well for human-in-the-loop systems where the human was in control, but are inadequate
for ACPS, where autonomy and AI are progressively more active in this control loop. Incremental
improvements in traditional safety engineering approaches over time have not converged to a suitable
solution to engineer ACPS, having increased levels of autonomy and adaptation. In addition to
physical integrity, safety in ACPS is tightly related to ethical and legal issues such as trustworthiness,
responsibility, liability and privacy. A paradigm change is needed in the way we engineer and operate
this kind of systems.

The main contribution of this paper is twofold: an analysis of the “nano-bio-cogno-info”
convergence and a discussion on the aspects that are currently stretching the limits of ACPS safety
engineering, including:

(i) reduced ability to assess safety risks issues due to their analytical nature that relies on accident
causality models,

(ii) inherent inscrutability of Machine Learning algorithms due to our inability to collect an
etymologically sufficient quantity of empirical data to ensure correctness,

(iii) impact on certification issues, and
(iv) complex and changing nature of the interaction with humans and the environment.

The results of both analysis highlight the importance of the notion of resilience. This notion emerges
in the “nano-bio-cogno-info” convergence analysis as a means to the survival of the ‘competitors’ after
an irreversible damage. Moreover, our analysis shows that traditional safety engineering cannot be
applied to ACPS as it is. The European commission is aware of this topic and introduced it as high
rpiority R&D&I aerea in the Strategic Research Agenda for Electronic Components and Systems [9].
Like the “nano-bio-cogno-info” convergence study, the emerging notion of resilience in the literature
seems more appropriate than safety when we deal with ACPS. In [10,11], for example, the author
highlights two ways to ensure safety: “avoiding that things go wrong” (called Safety I) and “ensuring
that things go right” (named Safety II), i.e., the ability for a system to accomplish its mission under
acceptable outcomes. In this regards -the author continues- “resilience does not argue for a replacement
of Safety-I by Safety-II, but rather proposes a combination of the two ways of thinking”. But, more work
should be done in this direction to establish safety engineering techniques and tools tailored to safety
for ACPS.

The paper is organized as follows. Section 2 presents an overview of the nano-bio-cogno-info
convergence. The section introduces the resilience issue and concludes with two open questions
related to scientific and socio-ethics issues (Section 2.3) which are discussed in Section 3 and Section 4,
respectively. More in particular, Section 3 discusses some scientific challenges to assess ACPS safety
and Section 4 focuses on social and ethics issues, including privacy in ACPS. Finally, Section 5 shares
our conclusions.
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2. An Historical View of the Convergence Paradigm

The accelerating convergence of scientific and technological developments for the spheres of
nano-systems industry, information and communication systems, as well as spheres of biology and
medical applications, is an emerging phenomenon, based on our recently acquired capacity to measure,
manipulate and organize the matter at the nanometer scale. A capital example of that convergence
is the introduction of nano-material technologies tailored to medical applications. This is the case
of intelligent microchip implants for humans (included in the brain) to control (lost) functionality.
The design and development of that system demands microchips compatible with the human body,
safety embedded software, prevention of potential attacks to the systems, and medical science.
Quantum computing is another example: it combines neuromorphic architectures with computer
science and physics. Finally, AlphaGo is able to automatically learn go, integrating artificial intelligence
and automatic learning into embedded software and hardware [12].

Life sciences present the characteristics to become the keystone of that convergence. Nevertheless,
as a consequence of maturing of artificial intelligence, more and more areas of convergence will be
born ‘in silico’ before any ‘material’ development (e.g., scientists are building databases of thousands
of compounds so that algorithms predict which ones combine to create new materials and design).

Historical Remarks: earlier digital technologies convergence and the development of
interdisciplinary synergies are the precursors of a global (almost really ‘big’) convergence, known in
the literature as Natotechnologies (N), Biotechnologies (B), Information Technologies (I) and Cognitive
sciences (C) (NBIC) convergence [7] or as Bio Nano & Converging Technologies (BNCT) [8]. In 1998, E.
O. Wilson (sociobiologist) writes a book on the emerging harmony among the sciences [13] meaning
the age of the concern of the knowledge unity (‘universe’ comes from ‘unus vs. multa’ (lat.)). However,
the first consistent ‘Nano-Bio-Info-Cogno convergence’ paradigm was worldwide diffused only in 2005
by the very influential book of Mihail Roco and William Sims Bainbridge [7]. The authors prophesied
a future overlapping of disciplines with extensive transdisciplinary fecundity. The figure represents
the OCDE’s mapping, first introduced in [14], and reveals how distinct academic and technological
domains can create an area of overlapping and increasing convergence (see Figure 1).

Figure 1. OCDE’s mapping on the convergence. The Figure is extracted from [14] with permission.
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2.1. Several Underlying Realities in the Convergence

Several factors, scientific research, technological development, market adoption of diversified
products and regulation, are contributing, differently, to convergence as a whole. A bird view may
mask the distinction between the different aspects of the convergence having different motivations and
distinct ethical concerns. The knowledge construction starts from non-resolved questions or theoretical
dissonances. As achievement of our natural and permanent search for meaning and for efficiency,
a theoretical convergence is first, regarding the theoretical sciences, the result of our natural need to
know—when we synthesize powerful concepts unifying (anytime with genius) partial or multiple
empirical knowledge in a global vision. As examples, when Einstein wrote, in 1905, his paper “Zur
Elektrodynamik bewegter Körper” (On the Electrodynamics of Moving Bodies) known as ‘Einstein’s
special theory of relativity’, he succeeded in the unification between Maxwell’s equations for electricity
and magnetism with the laws of mechanics, which were formerly mutually inconsistent. In a second
time, a technological background convergence results of our need for efficiency—when we build more
complex patterns and combine means in order to fulfill new needs. The technological construction
background starts from the lack of common functionality that has to be satisfied. We should not forget
the recursive growth of sciences and technology: a progressive integration of previously independent
disciplinary sciences leads to a larger disciplinary perimeter, increasing de facto the resource reservoir
in use by engineers and inventors. Simultaneously, a cumulative growth of available technological
solutions leads increasingly to a wider number of technological inventions potentially combinable. As a
result, we obtain a combinatorial law of growth for the creative activity (obviously limited by a logistic
function regarding the exchange fluxes or the management of stocks, on a longer period). Researchers
propose diverse models to predict technological convergence and singularities [15]. Moreover, progress
regarding the logistic limitations on the fluxes are also contributing to reinforce the acceleration and
enhance the maximum level (e.g., digitalization, big data, human–machine interfacing, artificial
intelligence) and the offer of capital determined by the level of trust. Truth is largely determined by
governance and transparency issues. The judgment of rightness or wrongness upon the intellectual
activity, regarding the knowledge construction, is the epistemology. The judgment on the goodness or
the badness regarding an action, of individuals or of groups, having an impact on persons or on the
whole society (equivalent to the Greek word ethos), is in the field of morals. As a whole, disruption,
growth and convergence are largely driven by human appetite of knowledge and by trust. Trust is the
fuel of business when science is the reliable rock where the imagination becomes rational. The concept
of the technological convergence is becoming of greater importance because convergence is natural
and its “road-map” highlights the decision making for more massive amount of funding needed by the
industrial technology development. Then, enlarging the coherence on the scientific and technological
basis ensures the investments and enlarges the opportunity of development. First benefit: to drive
the convergence of micro-nano-bio technologies towards integrated biomedical systems. Imagination,
initiative and boldness to launch new business are energies for good, but they always come with
some indetermination and even with risks. Technological discoveries and innovations have always
triggered fears and rejection, inspiring imagination for catastrophic and even apocalyptic scenarios.
Recently, nanomaterials and nanotechnology incarnated the latest darkest fears related to technological
development. Today, artificial intelligence with its increasing speed of development (relayed to the
public for instance by the AlphaGo performance) is challenging the first place. The increasing speed of
technological evolution, the enlarging perimeter of knowledge, the decreasing confidence in the expert,
lead to a kind of cognitive dissonance due to the time required for constructing a coherent mental
representation and a stable vision of our social ecosystem, thus, we both like and fear the technology,
and the society is in tension: are we able to secure our trajectory of development? How could we
proceed? This speed of change is often compared to a ‘shock’, a technological shock. Shock implies
irreversibility, memory losses, change faster than the (social) speed of assimilation. The response to a
change, to the indetermination, to a shock or to a probability of shock has to be discussed.
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2.2. Resilience in the Convergence Paradigm

Innovation ability characterizes human societies and, anytime, fast developing social innovation
or disruptive technological innovation feels as a shock for more vulnerable people. Physical sciences
characterize a shock by a propagation speed larger than the speed of information (e.g., the speed
of sound). Similarly, we can define a societal shock as a social transformation propagating faster
than the ‘speed of acceptance’ along the social network (according to individual acceptance time and
communication efficiency). A shock is also characterized by irreversibility, i.e., a partial ‘memory
loss’ (explicitly coded -symbolic- information/or inherent -implicit- structural information (Structural
information relative to a system, similarly to the philosophical notion of ‘essentia’, is from a bird
view the ‘information needed to build it’, according to one of these two modalities of ‘being’: in
knowledge (symbolic information) or with matter (inherent information) [16]) in the case of complex
systems, and by a disruption of the physical state variables (temperature, pressure, speed of sound . . . ).
Resilience is the capability of a strained body to recover its size and shape after deformation caused
especially by compressive stress [17]. In the field of societal issues, resilience is defined as “the ability
to prepare and plan for, absorb, recover from, and more successfully adapt to adverse events” [18].
In the case of a learning autonomous-cyber-physical-system based on artificial intelligence, widely
diffusing in the civil society [19], the capacity of resilience [from resilire (lat.), to back jump] seems to
be a solution to restore this big ‘information system’, similar to—but more complex than—a software
backup capacity. Nevertheless, it is not so simple when there are expensive infrastructures or humans
in the loop and humans impacted. Hereafter, the ‘resilient’ subject, of interest, is holistically the
whole interrelated system and some of its essential elements, including ACPS, humans (society),
critical things and critical links. When is the resiliency most useful? According to Grime’s theory [20],
ecological succession theory teaches us that plants adopt one survival strategy amongst three: (C)
‘Competitors’ maximize growth if resource is abundant and stable; (S) ‘Stress-tolerators’ maximize
(individual) survival; (R) Ruderals maximize the survival of the species by means of a large fecundity.
Two strategies are adapted to bad or very bad conditions of life, (S) to constantly unfavorable and (R)
to largely fluctuating environment. Inversely, competitors (C) are optimized for growth in a context of
resource abundance and are the least prepared for a (rare) shock (see Figure 2).

Figure 2. Illustration of the Philip Grime’s CSR theory.

As a conclusion, resilience is essential for the survival of the competitors after an irreversible
damage leading from harmony to chaos (because of partial erasing of work and structural memory).
Thus, what does resilience need? To be able to rebuild, resilience capacity needs, to be operational,
an access to a preserved or a reconstructed memory (e.g., memory distributed in the social network)
and an access to sources of efficiency (energy, tools, materials, money, willingness, etc.). Then the
ability Resilience needs an efficient distribution of resources and of information about the system
which can be stored outside of the system (strong importance of the weak links). In case of incomplete
information, it may be difficult to rebuild the initial situation and the degraded resilience operation
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may drive the system towards emerging new solutions of survival (evolution) worse or better adapted
to the new conditions.

The case of France: with other countries, France participates in a conferences about “social impact”
and Awareness-Readiness-Response [21]. The Joint Research Centre (JRC), as European Commission’s
science and knowledge service, supports EU policies with independent scientific evidence throughout
the whole policy cycle and develops innovative tools for policy makers challenges (including ethics,
privacy, liability, etc.). In this context, JRC works on the social resilience too, defining a program of
work (see Table 1). Basically, resilience or resiliency is the recovering of the initial state (resilire (lat.) =
back jump) and ‘resistance’ is ‘remaining at the same place’.

Table 1. Information extracted from the table in [22].

What Could Be Tested? How Should Be Tested?

Resilient Design e.g., tests of the resiliency of a component or a
system based on real failure data

(Inter)Dependency Computer-based modeling and simulation
(inter)dependency

Redundancy (including interoperability, adaptive capacity) e.g., passive and active redundancy testing

Restoring capacity e.g., measuring the ration of the lost performance

2.3. Open Questions

The technological convergence involves the notion of resilience, as described in the above section,
and leaves two wide open questions:

• A scientific issue The restoration of a system at a previous state implies the use of memorized
information. Thus, the resilience capacity is closely related to the accessibility to information
on the oldest state to be restored, explicit and structural information, and to the accessibility
to an energy source (physical energy, financial energy, social energy), leading to the obligation
to preserve a good financial ratio between the costs of these functionalities (it may not be an
economically sustainable option).

• Socio-ethical questions According to the point of view of the observer, the edge of a system is
relative; it is simultaneously an ecosystem for smaller parts, a subsystem for a larger point of
view, or the system itself for the designer. What part of the system must be protected: e.g.,
the ‘autonomous car’, its passengers, the dog in the street?

Life does not use invariably the resilience but often use the adaptability or the evolution,
recovering a new equilibrium, different, even better than the oldest. Is it justifiable, on the
economic or political view, to favor a back jump towards a past reference compared with other
solutions more opened on an adaptive evolution?

In the next sections, we study these questions further.

3. Scientific Challenges of Safety-Critical ACPS

Autonomy in ACPS intrinsically involves an automatic decision-making and, then, more
extensively, embraces Artificial Intelligence, as clearly stated in [1,2]. The introduction of AI in ACPS is
revolutionizing safety techniques as traditionally used. Still a few year ago, some distinguished
scientists wrote Transcending Complacency on Superintelligent Machines, acting as a gadfly to the
community: “So, facing possible futures of incalculable [AI] benefits and [AI] risks, the experts
are surely doing everything possible to ensure the best outcome, right? Wrong. [. . .] some of us—not
only scientists, industrialists and generals—should ask ourselves what can we do now to improve the
chances of reaping the [AI] benefits and avoiding the risks.” [23].
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After that, in 2015, S. Russell et al. [24], in a letter signed by many scientists, point out three
challenges related to AI safety:

• verification (how to prove that a system satisfies safety-related properties);
• validation (how to ensure that a system meets its formal requirements and does not have unwanted

behaviors); and
• control (how to enable meaningful human control over an AI system after it begins to operate).

In 2016, the problems raised by safety and AI have been further analyzed in [25], where the
authors focus on accidents in the machine learning systems. At the same time, the Future of Life
Institute is becoming a leading actor for AI Safety Research [26].

ACPS are expected to bring a technological revolution that will influence the lives of a large part
of the world population and will have a deep impact on nearly all market sectors. Increasing levels of
AI will allow ACPS to drive on our roads, fly over our heads, move alongside us in our daily lives
and work in our factories, offices and shops, soon. In spite of this disruptive landscape, deployment
and broader adoption of ACPS in safety-critical scenarios remains challenging. Broadly speaking,
the technical foundations and assumptions on which traditional safety engineering principles are
based worked well for human-in-the-loop systems but are inadequate for autonomous systems where
human beings are progressively ruled out from this control loop. The following sections discuss
aspects that are currently stretching the limits of ACPS safety engineering. In other terms, they cannot
be applied to ACPS as they are.

3.1. Ability to Appraise Safety Issues and to Learn from Experience

If we consider ACPS applications as a whole (e.g., drones, robots, autonomous vehicles),
we discover that safety-related analysis, as applied in the traditional application domains such as
railway or nuclear energy, suffers from given limits when we focus on ACPS. Of the extensive
topic, we only discuss few examples that are, however, sufficiently expressive to show some
safety-related limits.

Some of the most important assumptions in traditional safety engineering lie in models of how
the world works. In this regards, current approaches include probabilistic risk assessment such as
Preliminary Hazard Analysis, Fault Tree Analysis (FTA) and Failure Modes and Effects Analysis
(FMEA), working on the assumption that, once the system is deployed, it does not learn and evolve
anymore. Another strong hypothesis of the traditional safety approach is based on the constructor’s
responsibility. In traditional domains, specialized teams use the final product and are responsible of
their maintenance. In the railway, for example, we have specialized train-drivers, teams specialized in
the train maintenance, teams specialized in the physical infrastructure, team specialized in the electrical
infrastructures, etc. The responsibility of an accident is totally in charge of the (train) constructors
and/or the (railway) company. Rarely, a passenger is fully responsible to mitigate a possible accident.
This situation does not happen in some applications of ACPS. Compare the railway organization
with the case of a drone. The drone driver is not a safety engineer and/or a specialized drone pilot.
Often, s/he has another work and uses the product, for example, to control agriculture or to film
video. In case of an accident, the pilot’s responsibility is analyzed. For example, in 2015, at the Pride
Parade in Seattle, a drone’s pilot has been judged guilty of a drone’s accident and he was sentenced to
30 days in jail [27]. The role of a user of a (semi-autonomous) drone could be similar to the driver of
a vehicle. Among the main differences, however, is the use of redundancy as a means to reduce the
risk of an accident. In a vehicle, to ensure the precision of a measure, (a given set of) redundant and
heterogeneous software and hardware mechanisms and architectures can be considered to be deployed.
Of course, a vehicle is strongly limited in space and cost with respect to a train or a nuclear plant,
but we can introduce some redundant mechanisms and architectures (e.g., more sensors to detect an
obstacle). This technique, however, is strongly limited in the case of a drone due to space constraints.
Preventing accidents in ACPS requires using models that include the entire socio-technical aspects and
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treat safety as a dynamic control problem. Future intelligent autonomous systems need to be able to
appraise safety issues in their environment, self-learn from experience and interactions with humans,
and adapt and regulate their behavior appropriately. Furthermore, a higher level of autonomy in
uncertain, unstructured, and dynamic environments involves many open systems science and systems
engineering challenges. Autonomous systems interact in open-ended environments, making decisions
and taking actions based on information from other systems and facing contingencies and events
not known at design time. In recent years, new advances in technology have provided systems with
the ability to anticipate, resist, recover from, and reconfigure after failures and disturbances. Safety
assurance approaches have not kept up with the rapid pace of this kind of technological innovation.

Towards Ubiquitous Approaches for Resilience in ACPS

Recently, some scientists promoted methods and tools for robust control as a possible solution [28]
to achieve the control of ACPS functionality even in the presence of uncertainty. Its cornerstone
combines safety and performance over multi-sensor and multi-actuator heterogeneous networking
architecture and—continue the authors in [28]—Model-Based Design represents a means to achieve a
robust control design. Albeit robust control does not fix the AI-safety issues yet, it could be interesting
to investigate in this direction further. First of all, robust control is closely associated with the concept
of resilience [28]. We define two different types of resilience. Exogenous and Endogenous Resilience (see
the side bar An Illustrative use case). Both types of resilience could represent a possible answer to
ensure safety in ACPS. Hence, the paradigm changes: from safety, as traditionally studied in embedded
systems, to resilience. Exogenous and Endogenous Resilience are pretty new in ACPS and, in our
knowledge, established methodologies and tools for ACPS, including AI, do not exist yet.

An illustrative use case: drones are an illustrative example of ACPS and, extensively, of the
technological convergence. Figure 3 shows the interaction between a fully-autonomous drone and a
ground control station in the case of an accident. Endogenous resilience is related to the drone ability to
accomplish its mission under physical constraints (e.g., battery level), error-detection (raising from
embedded software, software and hardware integration, sensor failures, as well as malicious attack
on the net), and safety-related measures to decrease the risk of an accident [29]. Exogenous resilience is
related to the drone ability to accomplish its mission in presence of dynamic obstacles (e.g., birds) [29].
The Joint Authorities for Rulemaking of Unmanned Systems (JARUS) suggests some guidelines on
Specific Operations Risk Assessment (SORA) for the category of specific drones [30], which do not
require certification [31,32]. By the European regulation [31,32], only the category of fully automated
drones ought to be certified. The blank hypothesis of the safety and certification process is that a drone
does not change its internal behavior, for example, with respect to the number of flights (see Sections 3.1
and 3.3). This hypothesis is broken if AI is embedded in the software of the drone, for example by
allowing a learning phase. Although specific drones do not require certification, the assessment of
safety critical properties could be problematic by the introduction of AI and, in particular, of the
machine learning algorithms, as discussed in [33].
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Figure 3. Interaction between a fully-autonomous drone and a ground control station in the case of an
accident. The figure is extracted from Emine Laarouchi. An approach of safety analysis of CPS-IoT. PhD
on-going work. Supervisors: Daniela Cancila and Hakima Chaouchi.

3.2. Inherent Inscrutability of Autonomy Algorithms

Adaptation to the environment in autonomous systems is being achieved by AI techniques such
as Machine Learning (ML) methods rather than more traditional engineering approaches. Recently,
certain ML methods are proving themselves especially promising, such as deep learning, reinforcement
learning and their combination. However, the inscrutability or opaqueness of the statistical models
underlying ML algorithms (e.g., accidental correlations in training data or sensitivity to noise in
perception and decision-making) pose yet another challenge. In traditional control systems, deductive
inference logically links basic safety principles to implementation. Early cyber-physical systems tried to
use deductive reasoning to construct sophisticated rule systems that fully defined behavior. However,
cognitive systems have made spectacular gains using inductive inference based on ML, which may
not produce semantically understandable rules, but rather find correlations and classification rules
within training data. Inductive inference can yield excellent performance, in nominal conditions,
but validating inductive learning is tough, due to our inability to collect an epistemologically sufficient
quantity of empirical data to ensure correctness. The combination of autonomy and inscrutability in
these inductive-based autonomous systems is particularly challenging for traditional safety techniques
as their assurance is becoming intellectually unmanageable.

Towards Robustness Validation Approach for Autonomy

In the literature, one potential approach to deal with the inscrutability of AI-based systems is
to identify the key elements of safety-related requirements on perception, see e.g., [34]. In that work,
the authors specify the sources of perceptual uncertainty and suggest a reasoning on the system
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(for example, Conceptual uncertainty, Development situation and scenario coverage, Situation or
scenario uncertainty, etc.). Their idea is to control these factors to ensure that the system meets a
threshold of acceptability.

Another potential approach to deal with the inscrutability of AI-based systems is robustness
testing, which is a relatively mature technology for assessing the performance of a system under
exceptional conditions. Fault Injection (FI) is a robustness testing technique that has been recognized as
a potentially powerful technique for the safety assessment and corner-case validation of fault-tolerance
mechanisms in autonomous systems [35]. The major aim of performing FI is not to validate
functionality, but rather to probe how robust the vehicle is—or their components are—to arbitrary faults
under unforeseen circumstances. The potential benefits of using FI into design phases of autonomous
systems range from providing early opportunities for integration of inductive technologies—e.g.,
machine learning algorithms that use training sets to derive models of camera lens—to reducing costs
and risks associated to autonomy functions. Such techniques have already been used successfully to
find and characterize defects on autonomous vehicles [36].

3.3. Certification

The certification of a system happens after the design and development and the integration of
the subsystems. A certified system can include subsystems having different level of criticality, i.e.,
different levels of certification [37].

Warning. Because of the description of the certification process in all details is extremely complex,
we here provide only a simplistic overview of the process and we refer the interested reader to the
related norms and literature.

Broadly speaking, a system is first specified by requirements, then designed, developed and,
finally, (the components are) integrated. Safety analyses follow the design and development phases
by ensuring compliance of the system under development to the referred safety-related standards
(CENELEC for railway, ISO26262 for automotive, IEC 60880 for the nuclear, and so on). For example, in
the railway application domain, safety teams assess the safety level (SIL) of the components during the
initial phases of the design of the system, by proving the risk assessment analysis. During the system
development, safety analyses exploit specific techniques to ensure that a component implements the
SIL level, via, for example, the computation of the MTBF (mean time between failures) parameter
and the implementation/justification of the underlying redundant system architecture (e.g., 2oo4).
Once the system is integrated and analyzed, safety teams provide the arguments for the certification.
A third certification entity first analyzes them and, then, discusses them via audit. We highlight that a
system is always certified with respect to a particular use and related norms. For example, a system
having a Technical Standard Order (TSO) authorization cannot be installed and used in an aircraft
without passing the avionics certification [38].

Although the benefits of certified systems are marked and outstanding, the cost of the certification
remains expensive and, in many case, prohibitive. In avionics, the cost to ensure the most critical level
(level A) is estimated to be more than 55% with respect to the minimum level (level E) [37]. In the
drone application domain, only one category requires certification (‘Certified’ Category for operations
with an associated higher risk) [31,32].

Towards Certification Approaches for ACPS

The European commission has financially supported research projects in the last decade with the
aim to reduce the cost of the certification. In this regard, the OPENCOSS European project integrates
the certification’s arguments already in the preliminary phases of the design [39]; Goal Structuring
Notation (GSN) is a graphical formalism to safety arguments [40].

Today, certification studies mechanisms to ensure modularity and mixed-criticality on many and
multi-core. Mixed-criticality is the ability of a system to execute functionality, having different levels
of criticality, in the same hardware by guaranteeing the safety level associated to each function.
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The PROXIMA European project [41] is part of the mixed-criticality European cluster, together
with CONTREX [42] and DREAMS [43] European projects, financially supported by the European
commission. The PROXIMA project analyzes “software timing using probabilistic analysis for many
and multi-core critical real-time embedded systems and will enable cost-effective verification of
software timing analysis including worst case execution time” [41]. The result is compliant with
DO-178B (Software Considerations in Airborne Systems and Equipment Certification). A modular
certification aims to study mechanisms to restrain certification from the certified system as a
unique whole to the certified component, which is modified or substituted. These mechanisms
primarily address contract-based system interfaces [44], and impact analysis of the component
modification/substitution in the reaming system. One main difficulty of the certification process
does not concern correctness of the automatically generated code with respect to a given model, but the
assurance that the system, which is executed, meets the system requirements and only implements
the specified functionality. In other terms, engineers have to avoid to automatically generate correct
code with respect to a wrong model specification. As in the case of safety, certification is based on
the hypothesis that the system to be certified will have the same behavior (it always implements
only the specified functionality). In other words, no learning phase is allowed. For example, in the
avionic application domain, a program does not change its behavior with the increasing number of
performed flights. Similarly, in the railway application domain, the control command to automatically
open/close the doors of an automatic metro will have the same behavior forever. However, the AI
introduction and, in particular, the (on-line or off-line) learning phase overstretch the fundamental
hypothesis on which the traditional certification process is based (i.e., the learning phases overstretch
reproducibility of proofs that ensure the same system behavior under the same inputs). This situation
is also problematic for the category of specific drones (which do not require certification [31,32]) to
assess safety-related requirements [30] as discussed in [33]).

In addition, if AI is coupled with a full or a high level of system autonomy (i.e., human does not
have control of the system), then they unwind civilian responsibility: who is responsible of an accident
of ACPS having AI? How can we protect the ACPS and humans? Is it possible to certify an ACPS
having AI? And how?

In this regards, an interesting study is Certification Considerations for Adaptive Systems by NASA [45].
In the document, the authors address the impact on adaptive and AI system in the avionics certification.
The authors conclude with a number of recommendations and a road-map to improve certification
approaches. One issue is to relax some strict assumptions and requirements to allow a more streamlined
certification process.

3.4. New Forms of Interaction between Humans and Autonomous Systems

There are unique challenges in moving from human-machine interaction in automation,
where machines are essentially used as tools, to the complex interactions between humans and
autonomous systems or agents. As autonomous systems progressively substitute cognitive human
tasks, some kind of issues become more critical, such as the loss of situation awareness, or the
overconfidence in highly-automated machines. The Tesla accident occurred in 2016 is a clear illustration
of the loss of situation awareness in semi-autonomous vehicles, as stated by the National Transportation
Safety Board (NTSB): “the cause of the crash was overreliance on automation, lack of engagement by
the driver, and inattention to the roadway” [46]. One of the main causes of this problem is a reduced
level of cognitive engagement when the human becomes a passive processor rather than an active
processor of information [47].

In [48], the author addresses the “Ironies of Automation”, especially for the control process in
industries. The main paradox is that any automated process needs (human) supervisors. In the case
of an accident or a problem in industry, the human supervisor may not be sufficiently prepared
or reactive to solve it, because automation hides and directly manages ex-manual operations.
Therefore, the supervisor could be less prepared in autonomous industrial control systems. Of course,
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this situation could appear in industry and not in traditional critical systems. In a nuclear plant,
for example, engineers in the control rooms receive an expensive and strong (theoretical and
experimental via simulation) training, required after the TMI-2 accident [49,50].

While the potential loss of situation awareness is particularly relevant in autonomous systems
needing successful intervention of humans, there is a number of more general situations where risks
in human-machine interaction must be better understood and mitigated:

• Collaborative missions that need unambiguous communication (including timescale for action)
to manage self-initiative to start or transfer tasks.

• Safety-critical situations in which earning and maintaining trust is essential at operational phases
(situations that cannot be validated in advance). If humans determine the system might be
incapable of performing a dangerous job, they would take control of the system.

• Cooperative human-machine decision tasks where understanding machine decisions are crucial
to validate autonomous actions. This kind of scenario implies providing autonomous agents with
transparent and explainable cognitive capabilities.

Towards Trusted and Safe Human-Machine Relationships

Several authors [51–54] argue that interactions with autonomous agents must be considered as
“human relationships”, as we are delegating cognitive tasks to these entities. This perspective opens
the door to the application of existing fundamental knowledge from the social sciences (psychology,
cognitive modelling, neuropsychology, among others), to develop trustable and safe interactions with
autonomous systems. For instance, the authors of [51] propose to encode the human ability of building
and repairing trust into the algorithms of autonomous systems. They consider trust repair a form of
social resilience where an intelligent agent recognises its own faults and establishes a regulation act
or corrective action to avoid dangerous situations. Unlike other approaches where machine errors
remain unacknowledged, this approach builds on creating stronger collaboration relationships between
humans and machines to rapidly adjust any potential unintended situation.

In 2017, some influential leaders in AI established the Asilomar AI Principles aimed at ensuring
that AI remains beneficial to humans [55]. One of these principles is value alignment, which demands
that autonomous systems “should be designed so that their goals and behaviours can be assured
to align with human values throughout their operation”. In this context, some researchers such as
Sarma et al. [53] argue that autonomous agents should infer human values by emulating our social
behaviour, instead of embedding these values into their algorithms. This approach would also apply
to the way human interact and it would be the basis to create learning mechanisms emphasizing trust
and safe behaviours, including abilities such as intentionality, joint attention, and behaviour regulation.
While these ideas look more appealing with the rise of AI and machine learning, the concept of learning
“safe” behaviours in intelligent agents was already explored in 2002 by Bryson et al. [54]. Nevertheless,
the problem of finding meaningful safety mechanisms for human-machine interaction inspired from
human social skills remains largely open, because of the complex and intricate nature of human
behaviour and the need of a provably-safe framework to understand and deploy artificial relationships.

4. Socio-Ethical Challenges of Safety-Critical ACPS

Social trust is a major challenge for the future of ACPS. The recent catastrophic accidents involving
autonomous systems (e.g., Tesla fatal car accident), show that sole engineering progress in the
technology is not enough to guarantee a safe and productive partnership between a human and
an autonomous system. The immediate technical research questions that come to mind are how to
quantify social trust and how to model its evolution? Another direction that is key to understanding
and formalizing of social trust is how to design a logic that allows the expression of specifications
involving social trust? It is immediately followed by the questions of how to verify (reason about) such
specifications in the context of a given human–machine collaborative context or, even more prominent,
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how to synthesize (design) an autonomous system such that, in a collaborative context with a human,
these specifications are guaranteed?

4.1. Ethics and Liability in ACPS

Ethics in safety-critical autonomous systems is closely related to the question of risk transfer.
If any safety risk is transferred from some people to others then the risk transfer must be explicitly
justified, even where the overall risk is reduced. Indeed, while it may be possible to argue that the
introduction of ACPS in certain situations (e.g., automated cars) reduces the overall harm, from an
ethical point of view this may not be sufficient. Ethical issues can be regarded in terms of the trade-off
associated with reducing one risk posed by an ACPS at the potential cost of increasing another risk.
This is essential to understand ethics principles in terms of safety [56]. In the literature, Andreas
Matthias introduced the notion of responsibility gaps to identify the situation in which “nobody has
enough control over the machine’s actions to assume the responsibility for them” [57]. This notion has
been developed further to cover two dimensions: the control on the “what” and on the “how” of the
system behaviors [58].

One fundamental problem when dealing with ACPS is the liability for accidents involving
autonomous systems. As a general rule, the more a machine can learn, the less control the manufacturer
has, which is important for product liability. On the 16 of February 2017, following the suggestion
made by the Legal Affairs Committee (LAC), the European Parliament (EP) made a resolution in
favor of a robust European legal framework to ensure that autonomous systems are and will remain
in the service of humans. Regarding liability, the EP suggests to explore, analyze, and consider the
implications of all possible legal solutions, such as “establishing a compulsory insurance scheme”,
“compensation funds” or even “creating a specific legal status for autonomous systems in the long
run”. Other studies suggest addressing ACPS-specific risks in comparison with the risks of traditional
technologies (without learning or adaptive abilities) used for the same purpose. This may facilitate the
analysis of liability cases under existing law or be used as elements in new legal rules.

An important issue is related to the implementation of ethical and other legal rules in the inherent
behavior of autonomous systems. In this area we need:

• Support the modeling, verification and transformation of safety and ethical rules into
machine-usable representations (safety/ethics constraint set) and reasoning capabilities for
run-time monitoring and adaptation. This includes the integration of ethics and safety in the
whole system engineering life-cycle.

• Embody building blocks (regulators, adviser, adaptors) to ensure that the design of intelligent
behaviors only provide responses within rigorously defined safety and ethical boundaries
(safety/ethics constraint set). This includes the definition of architectural patterns to
systematically reduce the development complexity -including integration- and modular assurance
of AI-based systems.

• Support mechanisms to permit the monitoring and adaptation of a safety constraint set and
underlying behavioral control parameters. Human–machine interaction abilities to warn human
operators and users about safety issues preventing the autonomous system from acting, to manage
the override of a constraint, and to inform about any change in the behavioral (safety/ethical)
constraint set.

4.2. Privacy

Privacy is a live issue in the society and crosses several levels. In [4] privacy is identified as a
societal and legal grand challenge. It is especially emphasized whenever AI functionality will be
widely developed in the ACPS systems. In [24], for example, the authors reveal how “the ability
of AI systems to interpret the data obtained from surveillance cameras, phone lines, emails, and so
on, can interact with the right to privacy”. In this section we investigate the issue via two examples:
one related to drones and one to autonomous vehicles. These examples show how the privacy right has

29



Designs 2018, 2, 52

acquired importance in our society and could be weakened by technical solutions on ACPS. We share
the Platform4CPS vision and recommendation [4] which states that privacy will be a major topic in the
future, reinforced by the AI introduction and AI expected exploitation on ACPS products.

4.2.1. Privacy in the Use of Drones

In 2015, just after an extremely violent earthquake, Nepal decided to use drone technology.
These later have proved to be extremely useful in catastrophic scenarios. Drones are expected
to increase the chance of survival to 80% because they are more reactive and, then, more
efficient than the traditional surgery means [59]. For example, drones have been used after the
Irma Hurricane in Florida (2017) to understand the situation and target the first-aide, and in
Paris (Spring 2018) to control the dangerous increasing level of Senna and prevent catastrophic
consequences for humans and the city (Several videos and resources are available on the net. For
example, Paris https://www.francetvinfo.fr/meteo/inondations/video-la-crue-de-la-seine-filmee-
par-un-drone-a-paris_2580526.html and Florida https://unmanned-aerial.com/drones-artificial-
intelligence-impacted-hurricane-irma-claims-response). However, in Nepal drones have been banned
after their use in the earthquake, because of a privacy conflict due to having captured images on
heritage sites [60]. Privacy issue for drone applications is an extremely sensitive issue, as analyzed by
the works of Silvana Pedrozo and Francisco Klauser (sociologists). The authors are (also) known to
having made a sondage on the Swiss population on the acceptability or not to drones in 2015. The results
have been diffused and discussed via several means (radio, scientific journals, etc.) [61,62]. In [61], the
authors state that: “whilst the majority of respondents are supportive of the use of unarmed military
and police drones (65 and 72% respectively), relative numbers of approval decrease to 23 and 32%
when it comes to commercial and hobby drones”. The underlying reason of such acceptability is not
based on the guarantee of safety level of that systems. For example, in 2015, a drone injured a woman
at the Pride Parade in Seattle [27] and the news has had a very broad resonance [63]. Instead, it is
based on privacy concern and individual freedom [62]. This challenge is so relevant that the European
regulation for drones addresses privacy issue with the support of a lawyer European team [64] (see, for
instance, Article 29 Data Protection Working Party). Similarly, the Platform4CPS project [3] suggests
to “enforce General Data Protection Regulation (GDPR), mandate in-built security mechanisms for
key applications and clarify liability law for new products and services”. The project identifies the
following potential implementation: “Put in place enforcement measures for GDPR, enforce built in
security for European products and put in place appropriate legislation for products and services” [4].

4.2.2. Privacy in Autonomous Vehicles Communications

Privacy covers more aspects in autonomous vehicles: from embedded software (e.g., how we deal
with the personal data of the driver) to vehicle to vehicle (V2V) communication. Of the extensive issue,
we only focus here on the latter.

The main problem concerning privacy in the V2V communications regards the full traceability of
a vehicle. Vehicles should communicate with each other, for example to signal an accident or know
if another vehicle is incoming to the same crossroad. The simplest technical solution to manage this
scenario is to provide a unique identification to each vehicle. Problem solved. However, this technical
solution collides with privacy: everyone can trace the trajectory of sensible targets. Examples of
sensible targets are people having a protection, transfer of jailed people, bank transfer. All these targets
can be easily traced ad then, potentially, attacked. Moreover, this social phenomenon could have a
wider impact: a wife/husband can trace the partner, an employer traces the employees, etc. To avoid a
scenario, as described in the book 1984 by George Orwell [65], the technical solution is a pseudonym for
each vehicle. However, the social impact is similar to the previous one: it is technically a simple game
to understand the association pseudonym/target, trace it and attack it. Another technical solution
consists in periodically changing the pseudonym. However, if this change is too slow, Bob can easily
trace Alice. On the contrary, if it is too fast, an autonomous vehicle receives the information that
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ten vehicles are incoming in the same crossroad whilst, in fact, only one is engaging the crossroad
(the vehicle has automatically changed the pseudonym nine times in a short elapsed time).

This example clearly shows how technical solutions impact our society and could limit some
rights, as privacy. This technical and society challenge is extremely sensible in the community: a special
working group in ETSI TC ITS is addressing the question [66,67], the European commission is devoting
its financial effort to support several projects on that direction (e.g., see [68]). Finally, in the literature
we can find interesting surveys regarding privacy and V2V communications (see for example [69]),
technical investigations and promoted solutions (see e.g., [70]).

5. Conclusions

We are witnessing a convergence in Nanotechnologies, Biotechnologies, Information technologies
and Cognitive sciences [7]. In this regard, our analysis showed the importance of the notion of
resilience (Section 2.2) and opens the door to two open questions on scientific and socio-ethical issues
(Section 2.3). The rest of the paper developed both questions further. To do this, we focus on ACPS
which are a key example of the convergence in Nanotechnologies, Biotechnologies, Information
technologies and Cognitive sciences convergence and we mainly addressed four topics: (i) reduced
ability to assess safety risks, (ii) inherent inscrutability of Machine Learning algorithms, (iii) impact
on certification issues and (iv) complex and changing nature of the interaction with humans and
the environment.

(i) and (iii) ACPS having AI and a high level of autonomy are showing the limits of safety
and certification processes when applied to these systems. Traditional safety techniques and related
methods cannot be applied as they are. (ii) The core concern is the unpredictability due to machine
learning, which is, on one hand, a means to reduce and manage complexity inherently involved by
ACPS, but, on the other hand, there still are no widely accepted techniques and processes to manage the
impact of machine learning in the assessment of safety-related properties and certification. Hereafter,
the main response to this kind of issue are collected, where “responsibility sharing” is the key concept
in addition to other levels of response (resilience, autopoiesis, insurance, legal solution, etc.). As a
generic example, AI inside ACPS leads to new issues due to unpredictability of the comportment
emerging from unpredicted competences and behavior that machine learning will develop in different
contexts of use. This unpredictability may be caused by the impossibility for the designers and safety
teams to specify the multiplicity of situations and contexts, or by the practical impossibility to study a
behavior that will be learned during the life of the system, or by the practical impossibility to compute
them, or by the practical impossibility to collect all return experience data of interest. Hence, there
are too many cases or these cases are difficult to be defined precisely, so that it is difficult to build an
exhaustive base of examples dedicated to constructing exhaustive incidental cases virtual simulations
as a base of reliability. (iv) In addition, an inadequate communication between humans and machines
is becoming an increasingly important factor in accidents, which can create significant new challenges
in the areas of human–machine interaction and mixed initiative control.

One interesting solution, proposed by NASA [45], is to limit the range of possibilities and relax
some hypotheses by adopting a more streamlined (safety and certification) process. A similar problem
appears in the education of a young human: some of them may become incompetent or immoral.
Nevertheless, despite this individual human unpredictability, a human society is globally stable on
the long term because people have individually and collectively the ability to learn a safer behavior
(cautiousness) and to become ‘responsible’. What can we do in the case of a hybrid society including
learning machines? It is possible to transpose, adapt or divide the notion of ‘responsibility’ (technical
and legal point of view), alone or with the complement of other dispositions as insurance and resilience?
These are the way of progress to be explored.
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Abbreviations

The following abbreviations are used in this manuscript:

AI Artificial Intelligence
ACPS Autonoumous and Adaptative Cyber-Physical Systems
BNCT Bio Nano & Converging Technologies
EP European Parliament
ETSI TC ITS ETSI Technical Committee (TC) for Intelligent Transport Systems (ITS)
FI Fault Injection
ML Machine Learning
NBIC Nano-Bio-Info-Cogno (technologies)
V&V vehicle to vehicle
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Abstract: To be able to provide appropriate services in social and human application contexts,
smart cyber-physical systems (S-CPSs) need ampliative reasoning and decision-making (ARDM)
mechanisms. As one option, procedural abduction (PA) is suggested for self-managing S-CPSs. PA is
a knowledge-based computation and learning mechanism. The objective of this article is to provide a
comprehensive description of the computational framework proposed for PA. Towards this end, first
the essence of smart cyber-physical systems is discussed. Then, the main recent research results related
to computational abduction and ampliative reasoning are discussed. PA facilitates beliefs-driven
contemplation of the momentary performance of S-CPSs, including a ‘best option’-based setting of
the servicing objective and realization of any demanded adaptation. The computational framework
of PA includes eight clusters of computational activities: (i) run-time extraction of signals and data by
sensing, (ii) recognition of events, (iii) inferring about existing situations, (iv) building awareness of
the state and circumstances of operation, (v) devising alternative performance enhancement strategies,
(vi) deciding on the best system adaptation, (vii) devising and scheduling the implied interventions,
and (viii) actuating effectors and controls. Several cognitive algorithms and computational actions are
used to implement PA in a compositional manner. PA necessitates not only a synergic interoperation
of the algorithms, but also an objective-dependent fusion of the pre-programmed and the run time
acquired chunks of knowledge. A fully fledged implementation of PA is underway, which will make
verification and validation possible in the context of various smart CPSs.

Keywords: smart cyber-physical systems; self-generated intelligence; ampliative reasoning
mechanism; procedural abduction; data-driven system control; run-time acquired data;
computational functions; self-adaptation capability; human/socially-centered applications

1. Introduction

1.1. An Evolutionary View on Cyber-Physical Systems

The aspiration for having cyber-physical systems (CPSs) emerged more than 60 years ago [1].
However, the principles of their practical manifestation were formulated just a decade ago [2] and
the enabling technologies are becoming available nowadays [3]. At the time of inception, CPSs
were seen as large-scale, distributed, self-controlling, software integrated application systems, which
combine the functionalities and technological enablers of embedded control systems, advanced robotic
systems, networked distributed systems, real-time control systems, and collaborative software agents
systems [4]. Their operations were supposed to be coordinated, controlled, and monitored by a digital
computing, communication and control core [5]. Interestingly, this novel system paradigm has been
going through changes from both theoretical and practical points of view in the last years [6]. And
this process will go on [7]. Some envisage even a kind of metamorphosis of the paradigm due to new

Designs 2019, 3, 1; doi:10.3390/designs3010001 www.mdpi.com/journal/designs37



Designs 2019, 3, 1

technological affordances provided by, for instance, massive data networking technologies, cloud
computing, artificial system intelligence, and cognitive system engineering technologies [8–10].

The almost infinite number of networked sources of sensor data, the databases residing on servers
in the cloud, the growing availability of massive data flows, the development of smart data analytics
approaches, the emergence of run time adapting system controls, and the other technologies shown in
Figure 1, are the main enablers of the radical paradigm shift that is already observable in the academic
research [11,12]. This shift encourages us to look at smart CPSs as the transformative systems of the
near future. Nevertheless, it is worth pointing out that the traditional definitions and interpretations
of CPSs are not able to capture the essence of the above circumscribed changes [13]. The main reason
is that they place the emphasis on having a predefined and deterministic tight coupling between the
physical world and the cyber-world, rather than on achieving synergism between run-time acquired
data and dynamic operational objectives [14]. By doing so, they actually restrict the paradigmatic
evolution of this family of engineered systems. This is a vital issue since S-CPSs can offer novel
functional affordances and services that cannot be provided by other systems [15].

 
Figure 1. Four clusters of enablers for smart cyber-physical systems.

The understanding of the fundamentals and affordances of CPSs is more nuanced today than it
was a decade ago. Therefore, new interpretations and definitions have been proposed. For instance,
smartness has been put into a historical dimension and interpreted as a given stage of progression
with regards to having cognitive competences and operationalization of a body of knowledge (without
considering possible socialized collective intelligence of a system of systems yet). It has been identified
as a distinguishing paradigmatic feature of next generation CPSs [8]. Equipping systems with cognitive
capabilities, i.e., the process of intellectualization, is the major concern of cognitive engineering of
CPSs. However, this domain of interest is still in a premature stage. The guiding assumption is
that smart systems should be able to: (i) operate according to dynamically varying, even undefined,
circumstances and control regimes, (ii) build awareness of the operational state of their entirety,
components, and embedding environment, and (iii) adapt themselves in order to achieve the best
possible operational objectives and performance. In other words, smart operation and servicing of
CPSs require the capabilities of self-awareness, contextualized reasoning and learning, and functional
and architectural morphing [16].

Owing to context-dependent reasoning and system-level adaptation, smart CPSs can be applied
in many non-traditional human- and socially-centered applications. However it has also been
comprehended that smartness may be utilized in rather different forms in different systems, such as
smart cities, homes, transportation, clouds, manufacturing, production, and smart service systems [17],
and even smart everything [18]. These systems will eventually show largely diverse levels of
intellectualization. Evidently, implementation of smartness is inseparable from the realization
of cyber-physical computing (CPC) that intends to go beyond the classical (predefined explicit
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algorithms-based) computation that is underpinned by the von Neumann theory of computing [19].
CPC complements or replaces predefined flows of computation with run-time devised flows,
and appends run-time constructed or acquired (hidden, but learnable) implicit algorithms to the
(preprogrammed) explicit algorithms. The implicit algorithms may manifest as patterned data
structures, situated computing strategies, and context-driven reasoning mechanisms.

Obviously, an intense foundational research and a lot of system prototypes-based engineering
studies are needed to fully explore and exploit smart system behaviors and affordances [20].
In particular, for the reason that even higher level of intellectualization as smartness is supposed to be
present in third- and fourth-generation CPSs. Namely, second-generation CPSs self-generate awareness
and perform some-level of functional/architectural self-adaptation under varying conditions [21],
whereas third generation CPSs are supposed to have self-cognizance (i.e., awareness with semantic
understanding) and non-biological self-evolution capability. As ultimate realizations, fourth-generation
CPSs are assumed to have human-resembling system intelligence, which may involve computational
consciousness, dependable reasoning, decisional autonomy, and non-genetic self-reproduction [8].
Current systems science and artificial general intelligence (AGI) research are still unable to describe
and explain the above-mentioned ‘beyond-smartness’ types of system behaviors and to inform
system engineering about feasible and efficient implementations. At the same time, many recent
results validate the concept of second-generation CPSs. The feasibility and utility of specific
implementations powered by context management, machine learning and other reasoning mechanisms
have been demonstrated.

1.2. On the Background Research and the Research Issue Addressed in This Article

Apprehension of the above-mentioned novel system features calls for a progressive definition,
which puts CPSs into the position of self-managing engineered systems. Our definition claims that
smart CPSs: (i) employ the principles of cyber-physical computing, (ii) closely interact with the hosting
environment(s), (iii) deeply penetrate into physical, biological, social, cognitive, etc. processes, (iv) act
as a purposefully arranged set of adaptable actors in these contexts, and (v) possess the capability of
non-organic complexification and self-organization. According to this definition, not only the software
(middleware) establishes a tight relationship between the physical realm and the cyber realm, but also
the mentalware, which is jointly possessed by the concerned system and its stakeholders. This was the
starting point and motivation for our background research.

The reported work was conducted in the framework of the portfolio research of the Cyber-Physical
Systems Design Section of the Faculty of Industrial Design Engineering at the Delft University of
Technology. The shared theme of all related research projects is cognitive engineering of smart
cyber-physical systems. The more than ten interrelated projects of staff members and PhD students
addressed issues such as: (i) capturing and inferring from dynamic contexts representations,
(ii) building system awareness real-time, (iii) computational mechanisms for reasoning, (iv) strategies
for functional/architectural adaptation, (v) dynamic system messaging, and (vi) specific applications
of smart CPSs. The main research questions for the portfolio research were:

• Based on what theoretical and methodological foundations can system-level smartness be
implemented in next generation cyber-physical systems?

• What way can dynamic context information processing be extended to provide semantically
enriched awareness representation?

• In what forms can procedural abstraction be implemented as a system-level reasoning mechanism
of smart CPSs?

• Based on what knowledge can an active engineering framework support transdisciplinary
development of compositional CPSs?

• What do human/system-in-the-loop and supervisory/operative control mean in the context of
smart CPSs?
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On the one hand, the completed research involved a comprehensive analysis of the state of the
art as well as investigation of the pioneering research initiatives. On the other hand, it included a
purposeful synthesis of underpinning theories and computational methodologies, and development
of testable prototypes.

1.3. Content and Structure of the Article

The most important scientific concerns of the background research were: (i) development of a new
reasoning model (a conceptual advancement model) concerning the generations of CPSs based on their
level of self-intelligence and self-organization, (ii) implementation of multiple demonstrative prototype
(sub)systems in various applications, and (iii) conceptualization of a robust computational framework
for procedural abduction (PA) as an ampliative system-level reasoning and adaptation mechanism for
S-CPSs. The content of this article contributes to the last concern. PA comprises a contemplation part
(that helps realize some level of system self-awareness) and an alteration part (that supports functional
and architectural self-adaptation under varying conditions). From an implementation point of view,
PA consists of a large set of computational algorithms, which are run-time activated and integrated for
reasoning and strategizing.

Though the presented results blend many research aspects of cognitive engineering of
cyber-physical systems, only the functional and architectural specification of the PA framework
is discussed in the rest of the article. The Section 2 analyses the current state of the art, considering five
perspectives: (i) theoretical understanding of mind-like behavior of artefactual systems, (ii) potential
enabling technologies for smart CPSs, (iii) achieving system-level holism in reasoning and decision
making, (iv) the logical basis of system level reasoning, and (v) recent efforts to exploit abduction
as an ampliative computational mechanism. The Section 3 provides a brief overview of the four
prototype systems that hinted at the necessary constituents of procedural abduction as a system level
reasoning mechanism. It discusses the experimental implementation of the systems for: (i) system-level
features composition and compositional system modeling, (ii) identification and forecasting failures
in a resilient cyber-physical greenhouse, (iii) representation and reasoning with dynamic context
knowledge in a fire evacuation aiding system, and (iv) reasoning and adaptation in an engagement
monitoring and enhancing system for stroke rehabilitation. The issues of synthesizing the constituents
of the PA mechanism are also considered. The Section 4 presents the computational framework of
procedural abduction. It provides a formal specification of the general workflow and the constituents,
the underpinning knowledge, and the required functionality of the enabling algorithms of PA. The
Section 5: (i) reflects on the completed work, (ii) states some vital propositions, and (iii) makes an
inventory of the immediate and future research opportunities.

2. Current State of the Art

2.1. Theoretical Understanding of Mind-Like Behavior of Artefactual Systems

Thinking about transferring human-like intelligence to artificial structures has a long tradition.
As known, this process commenced with computerization and, through informatization and
cyberization, reached the stage of intellectualization of engineered systems. The development of
software science/engineering and information/knowledge engineering proved to be the major driver
of the progress. Using the terms and the argumentation of D.M. MacKay, the essence is in the move
from ‘slave-machines’ to ‘actor-machines’ [1]. As actor-machines, intellectualized artefactual systems
are not alternatives of current digital computing systems, but something else and more. Mentioned by
the above author, the most fundamental question is “Can an artefact be made to show the behavioral
characteristics of an organism?” MacKay argued that this kind of systems should be able to perform
important functions such as (i) receiving, selecting, storing, and sending information, (ii) reacting
to changes in their 'universe', including data on their own state, (iii) reasoning deductively from
premises which are results of previous deductions and data on the different courses, (iv) observing and
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controlling their own activities, or otherwise, so as to further some goal, and (v) changing their own
pattern of behavior so as to develop quite complex and superficial characteristics capable of rational
description in purposive terms.

If we systematically replace the above phrases with our modern terms such as (i) networked
sensing, (ii) awareness building, (iii) situated reasoning, (iv) self-organization, and (v) adaptation
in context, then we can conclude that D.M. MacKay eventually described the most important
paradigmatic features of smart cyber-physical systems. It is a surprising fact since the description
happened at the very beginning of 1950s. In addition to stating that future engineered systems are
subjects of a reasonably high level of intellectualization and socialization, feature self-planned and
goal-directed activities, and potent to be self-sustaining, MacKay also called the attention to the need of
sophisticated system-level reasoning mechanisms. He proposed a probabilistic reasoning-mechanism
as a possible implementation of it. In addition, like many others, he also emphasized the importance
and necessity of the capability of abstraction (by an intellectualized system) [22].

Fifty years later, Russell, S. and Norvig, P. proposed the following taxonomy of systems
with non-natural intelligence: (i) systems that think like humans (e.g., cognitive architectures and
neural networks), (ii) systems that act like humans (e.g., natural language processing, knowledge
representation, learning, and automated reasoning systems), (iii) systems that think rationally (e.g.,
logic solvers, inference, and optimization systems), and (iv) systems that act rationally (e.g., software
agents and embodied robots with perception, planning, reasoning, learning, communicating, and
decision-making capabilities) [23]. The above taxonomy indicates the versatility of current systems
with non-natural intelligence. They typically require a correct and complete model of the problem as
well as of the application domain. However, in the case of a large problem or domain, construction of
such models is either rather difficult or not possible at all. Furthermore, if the intellectualized system
or its environment, or the set of tasks and the contexts of problem solving frequently and dynamically
change, then a steady problem model and application domain model may become inadequate or
even inappropriate [24]. In this case, run-time adaptation or complementation of the system model
is needed.

2.2. Potential Enabling Technologies for Smart CPSs

In the last sixty years, many efforts were made to develop formal reasoning and learning
mechanisms and to implement AI-based systems. Concerning the set objectives, we differentiated:
(i) ambitious (striving for ultimate intelligence and autonomy), (ii) realist (constructively exploiting
technologies), and (iii) modest (underestimating the affordances and potentials) visions of AI research.
Domingos, P. identified five approaches to creating AI-based systems, namely: (i) “symbolist”,
implementing logical reasoning based on abstract symbols, (ii) “connectionist”, building structures
inspired by the human brain, (iii) “evolutionist”, using methods inspired by Darwinian evolution,
(iv) “Bayesians”, using probabilistic inference, and (v) “analogizer”, extrapolating from similar
cases seen previously [25]. Within each approach, a large number of different realizations can
be found. For instance, symbolist/analyst approaches include (i) standard learning algorithm for
monomials, (ii) rule-based inductive algorithms, (iii) instance/pattern/evidence-based algorithms,
(iv) search space/decision tree-based algorithms, and (v) probabilistic/fuzzy/non-monotonic
algorithms. The group of sub-symbolic approaches includes, among other, (i) genetic algorithms,
(ii) neural network algorithms, (iii) support vector machines, (iv) naive Bayesian-classifier algorithms,
(v) Bayesian-learning algorithms, and (iv) extreme learning machines. As complements of purely
symbolic and sub-symbolic approaches, composite approaches are also often considered. One of the
main issues is reasoning with incomplete knowledge [26]. In addition, as discussed by Reed, S.K.
and Pease, A.; practically all systems confront obstacles when reasoning needs to be done based
on imperfect knowledge (consisting of ambiguous, conditional, contradictory, fragmented, inert,
misclassified, or uncertain parts) [27].
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Several papers have recently been published on the implementation of various levels of human
intellectual/cognitive behavior in consumer durable-type of products, as well as in cyber-physical
systems [28,29]. Though some ‘wicked-problems’ have been considered, mainstream AI research
focuses on problem solving means for reasonably well-defined problems. Based on this, it became
known that two-valued logical reasoning techniques are not sufficient in the case of systems
working with uncertainty or multiple choices [30]. However, the major issue is that integration
of problem solving means is complicated since they usually rely on different information/knowledge
representation schemata and are implemented by non-compatible algorithms. Among the limited
number of related integrative works, the effort of Lees, B. to combine a rule-based reasoning mechanism
with a case-based reasoning mechanism is worth paying attention, since it casts light on the challenge
of co-evolution of the different bodies of knowledge and the mechanisms themselves [31]. Lumer, C.
and Dove, I.J. pointed at the fact that some schemes of reasoning proposed in the literature, including
abduction, has been found defective due to the lack of an epistemological backing and, in most cases,
the inability to differentiate various degrees of uncertain justification [32].

Though the latest developments of computational learning (CL), machine learning (ML) and deep
learning (DL) gave an impetus for smart systems development, the need for explanatory learning has
also been identified [33]. This is still hardly supported by robust algorithms of near-zero learning time.
ML is mainly concerned with deriving rules, patterns or procedures that explain a body of data or
predict future data typically based on statistical processes [34]. The approaches are typically sorted into
three categories: (i) supervised learning (based on decision trees, support vector machines, production
rules inference, artificial neural network, genetic algorithms, game theory driven approaches, neural
network, etc.), (ii) unsupervised learning (generalized additive statistical methods, tree-based methods
Bayesian non-parametric approaches, semi-supervised clustering, etc.), and (iii) reinforcement learning
(model-free reinforcement learning algorithms, genetic algorithms/programming, feudal Q-learning,
adaptive heuristic critic, transfer learning methods, multi-agent reinforcement learning, real-time
dynamic programming, etc.). DL typically uses structures of large number of processing layers loosely
inspired by the human brain to explore practically the same [35]. Many of these learning technologies
have reached a high level of sophistication and increased the potentials of context-independent
problem solving [36]. For instance, extreme learning machines combine conventional artificial
learning techniques and biological learning mechanism into a suite of machine learning techniques
for feedforward neural networks with single and multiple hidden layers, in which hidden neurons
need not be tuned [37]. These and other emergent learning techniques aim at computational learning
approaches for advanced industrial systems, such as cyber-physical production systems.

2.3. Achieving System-Level Holism in Reasoning and Decision Making

System scientists claim that smartness, like safety, reliability, awareness, adaptability, security,
etc., is an overall paradigmatic feature of the systems as a whole, and is not a behavioral characteristic
of their specific components, though their functionalities are needed for the realization. This means,
smartness is not a reductionist property and cannot be realized by a simple composition of the
operations of some smartness-enabling, interface-able components. Furthermore, system smartness
cannot be regarded just as a momentary operation of the intellectual mechanisms of a given system,
but it should be considered as an always present (ubiquitous and lasting) set of capabilities (with
which the system has been equipped with by its developers, or what the system itself develops based
on the preprogrammed or the learnt/aggregated knowledge). Owing to learning, system smartness
may evolve over the life of a system. Thus, system learning is to be seen as a sustained and combined
cognitive process of knowledge acquisition and behavior adaptation.

According to Finocchiaro, M.A., reasoning is the activity of the human mind that consists
of reaching conclusions on the basis of reasons, giving reasons for conclusions, and/or drawing
consequences from premises [38]. The arguments created for reasoning by human mind are
linguistically expressed and arranged based on others. A quasi-automated generation and
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representation of arguments or decision points are seen as the major challenge for computational
reasoning. In addition, recognizing the sufficiency of argumentation and maintenance of the validity
of the arguments are additional challenges [39]. In particular generating informal proofs that are not
directly driven by logical rules or physical causalities is problematic [40]. Informal arguments typically
depend on their logical form as well as on their content and contexts. Informal proves cannot be
expressed in a general logical language (i.e., by explicitly defined well-formed formulae), and cannot
be applied successively on explicitly specified logical inference rules or axioms [41].

In the context of system-level reasoning, holism can be addressed properly only if the reasoning
strategies, reasoning mechanisms, and reasoning algorithms are simultaneously considered. Reasoning
strategies establish the logical and/semantic framework of reasoning. Reasoning mechanisms are
implementations of the strategies as computational processes. Reasoning algorithms are active
elements used in the holistic reasoning process. Håkansson, A. et al. identified eight strategies of
reasoning as dominant ones for smart CPSs, namely: (i) deductive, (ii) inductive, (iii) abductive,
(iv) analogical, (v) common sense, (vi) non-monotonic, (vii) case-based, and (viii) probabilistic
reasoning strategies [42]. The three enablers (strategies, mechanisms, and algorithms) may be:
(i) provided for, (ii) modified by, and/or (iii) developed by a smart CPS. If one strategy is not sufficient
enough, then a purposeful mix of different strategies can be considered. This raises the issue of process,
algorithm and data integration. The majority of the algorithms known from AI research is typically not
interchangeable and cannot be integrated directly into comprehensive reasoning mechanisms. Towards
this end, the standard reasoning algorithms included in a complex reasoning mechanism must be
adapted to the other related algorithms in the design time. Like customization of the mechanisms to
applications, adaptation of algorithms run time by the system itself is a complicated task.

2.4. Possible Logical Bases of System-Level Ampliative Reasoning Mechanisms

A starting point of our mechanism synthesis was the differentiation between formal and informal
reasoning. Formal reasoning (often also called deductive reasoning or logic) manipulates the statements
of evidence by evaluating them in virtue of their sentential structure and content. Deductive inference
supports only explicative inference, where the conclusion is explicitly or implicitly included in the
premises. Thus, deductive inference is enumerative since it spells out information that is already
contained in the given premises [43]. Deductive arguments provide grounds for making their
conclusions inescapable. If the premises are true, then the argument is valid for the reason of syllogism.
If all premises are true and the argument is valid, then it is sound. Informal reasoning arrives at a
conclusion by means of informed guess-work, relying on amplified evidences. Also called inductive
reasoning or logic, informal reasoning interprets the evidences in their correlations or context to arrive
at a conclusion. As the principle of reasoning, inductive arguments attempt making a conclusion
likely or probable by delivering evidences for it. Provided the premises are true and an inductive
argument succeeds in this attempt, the argument is strong. If the argument is both strong and has all
true premises, then it is regarded as cogent.

In the context of computational reasoning, the term ‘ampliative’ is used in the meaning of
‘extending’ or ‘adding to what is already known’. It refers to the fact that the conclusion of such
argument goes beyond, or amplifies upon, the premises. Actually, this type of inferences is called
ampliative and the reasoning mechanisms providing these are referred to as ampliative reasoning
engines [44]. Ampliative reasoning may produce conclusions that contain genuinely new information.
While deductive inference is enumerative, inductive inference is ampliative in the sense that it goes
beyond merely spelling out the information already contained in its supporting evidential premises.
While merely explicative (analytic) logical reasoning typically does not add anything to the content of
cognition, ampliative (synthetic) logical reasoning increases the given cognition. A characteristic of
ampliative reasoning is that the conclusions it yields may be mistaken. Thus, an ampliative argument
is not deductively valid or invalid.
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Though the idea of ampliative reasoning is well known in mathematical logics and artificial
intelligence research, the idea of ampliative system-level reasoning mechanisms is new. Both deductive
and inductive reasoning strive after rendering the best judgement in a holistic way, i.e., considering all
influencing matters. If this is not the case, then the reasoning is restricted to the available evidences
and inferring can target only the best explanation. This process of hypothesis formation and inferring
has been described as abduction. As the third kind of logical inferential reasoning, abduction proceeds
from observational data or events to a set of hypotheses, which best explains or accounts for the
data. Abduction resembles induction in that it involves a reasoning process for providing hypotheses
that explain the given facts, while induction is used to derive general rules from specific facts [45].
Peirce, C.S. argued that in spite of some resemblance, abduction may not be regarded merely as a
variant of induction, because the mental processes involved are sufficiently distinctive [46]. Abduction
involves coming up with plausible explanations for existing data, with the possibility of predicting
the existence of additional data which, if subsequently discovered in accordance with its predictions,
would tend to confirm the validity of the original hypothesis [47]. Some researchers argued that the
psychology of abduction is somewhat mysterious, since it requires creative thought and imagination.
In other words, it supposes the ability to imagine possible factual scenarios and to concentrate on just
those having the greatest salience for the task in hand. On the other hand, abduction has a strongly
ampliative character, which comes from hypothesizing. It has to be mentioned that reproduction
of human creative thought and innate imagination by a computational reasoning process is a huge
challenge that is not coped successfully by current artificial intelligence research.

In the context of smart CPSs, synthetic judgments are supposed to be system-derived elements
of reasoning. A synthetic judgment can be ampliative, if its predicate adds something new to its
subject. Ampliative reasoning is heuristic in the sense that it involves obtaining new pieces of beliefs,
which are not entailed in the given premises (not already implied by what is known by the system and
captured in the system operation/servicing model). It depends on the number and relationships of
the finite set of evidences available in the process of reasoning, and is limited by the sophistication
of the inferring capabilities of the computational reasoning mechanism concerned. Meheus, J. et al.
refer to abduction as ampliative adaptive logics [48]. In their view, abduction is non-monotonic (i.e.,
conclusions derived at some stage of the reasoning process may be modified or even rejected at a later
stage). Their research effort concentrated on a proof theory that warrants that the conclusions derived
at a given stage are justified in view of the insight in the premises at that stage. This logic-based theory
is supposed to support justified propositions even when the premises imply some sort of undecidable
conclusions. Treating abduction as a form of forward reasoning was the logical solution for ending up
with ampliative adaptive logics [49].

The above analysis suggests that ampliative reasoning cannot be else but a risk-taking strategy
when implemented by smart CPSs. Thus, an objective of the development of system-level reasoning
and adaptation mechanism is to reduce the risk of educated guess, which always accompanies decision
making by systems. Usually, there are no exact criteria, conditions or measures of when the outcome of
reasoning is approximately correct or good enough. It may well be that further evidence, which does
not affect the truth of the premises, renders the outcome of reasoning false. This is the reason of why
some traditional computational reasoning mechanisms of computer science and artificial intelligence,
such as non-monotonic logics, probabilistic logics, reasoning by circumscription, and default reasoning,
are not considered as fully-fledged implementations of system-level reasoning and adaptation.

2.5. Recent Efforts to Exploit Abduction as an Ampliative Computational Mechanism

Abduction has multiple interpretations and views [45]. Peirce, S.C. described it as a mode of
reasoning that justifies beliefs about the probable truth of theories [46]. It is also seen as a recipe for
generating new theoretical discoveries as well as a mode of reasoning that justifies beliefs about the
probable truth of theories [47]. Other authors understood it as the process of forming an explanatory
supposition [48] or a speculative reasoning strategy [49]. It is the only logical operation which
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introduces any new idea and a type of hypothesis formation and logical inference akin to guessing [50].
Abduction may have its suppositions in logic or in knowledge [51] [52]. Hermann, M. and Pichler, R.
formally described logic-based abduction as follows: Given a logical theory T formalizing an
application, a set M of manifestations, and a set H of hypotheses, find an explanation S for M,
i.e., a suitable set S ⊆ H such that T ∪ S is consistent and logically entails M [53]. In addition to
reasoning in science, abduction has also been considered as a reasoning strategy in engineering and
design contexts. As early as 1993, Kean, A.C. described a comprehensive framework for a domain
independent abductive reasoning system and proposed to separate inference from domain dependent
problem solvers in a computational reasoning framework [54]. This leads to domain independent
inference engines, which are portable and applicable to many application domains, and reduce the
repetitive efforts to build inference engines.

Computational implementation of abduction has been part of artificial intelligence research.
Eiter, T. et al. defined a general abduction model for logic programming to allow the user to define
the inference operator (i.e., the programming semantics to be applied on programs) [55]. Gottlob et al.
showed that identifying explanations for a given set of observations algorithmically is intractable in
the case of logically-based abduction [56]. Therefore, they suggested achieving tractability by reducing
the underlying clausal theory so as to have a bounded width for the search tree. However, they
also found that turning the theoretical principles of tractability into practically efficient algorithms
is very problematic. Though several criteria for selection of explanations have been proposed in the
literature, as Poole and Rowen discussed in the context of medical reasoning, several of these criteria
are conflicting [57]. Though the efforts to consider uncertainty in computational abductive reasoning
proved to be useful, the various approaches were restricted in handling complex, multi-component
reasoning problems and in terms of the efficiency of knowledge representation [58]. For example, when
used in a smart CPS, one limitation of the Bayesian belief network is that it requires the generation of a
network and instantiation of the nodes to be able to explore the posterior probability by some methods.

With regards to computability of abduction, Psillos, S. derived two conjectures: (i) the reasoning
process underlying abduction has a certain logical, though not algorithmic, structure, and (ii) the more
conceptually adequate a model of abduction becomes, the less tractable it is computationally [59]. The
latter finding puts conceptual richness and computational tractability into juxtapositions. He also
argued that a rich conceptual model of abduction cannot be adequately programmed. Some major
attempts to provide computational models of abductive reasoning are as follows: Pagnucco, M. and
Foo, N. proposed an approach to computational abduction based on clausal conceptual graphs, and
pointed at some limitations originating, e.g., in the influences of the syntactic restrictions of the graphs
and the lack of criteria for selecting the best abduction from among those derived [60]. The abduction
model presented by Boutilier, C. and Becher, V. non-monotonically generates explanations that predict
an observation, but require some deductive relationship between explanation and observation [61].
Kakas, A.C. et al. used abductive logic programming to develop an abductive reasoning system,
called A-System, for declarative problem solving. This involves a hybrid computational model that
implements the abductive search in (i) the process of reducing the high level logical representation to a
lower-level constraint store, and (ii) a lower-level constraint solving process [62]. Verdoolaege, S. et al.
proposed a framework for consideration of temporal information in abductive reasoning in natural
language processing, which cannot however be applied directly in the context of CPSs [63].

2.6. Synthesis of the Major Findings

Several theories and technologies such as logic, probability, complexity, physical, biological,
cognitive, social theories and technologies, and their various combinations have been developed to
realize smart system operations. Direct integration of a bunch of technologies and algorithms does
not seem to offer a solution [64]. Since smart systems are supposed to make decisions about their
operations and services under varying conditions, they should be able to make conditional inference.
Though probability calculus offers formulas for binomial conditional deduction, they are restricted
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to dealing with the measure of logical probability. They do not capture the meaning of conditioning
and the interplay of multiple conditions [65]. However, conditional reasoning offers a principle for
it [66]. Technically, conditional reasoning expresses conditional relationships between parent and child
propositions, and then combines those conditionals with evidence about the parent propositions in
order to conclude about the child propositions.

Abduction was claimed as a powerful ampliative computational mechanism by many
researchers [67]. Abduction was also considered as a logical model of designing. What is to be
explained in design is the properness of the overall design objective or goal, and the assumptions are
the building blocks of the designs (artefacts) to be synthesized. The explanation is the design (artefact),
which is based on the background professional knowledge as well as on the dynamic knowledge
associated with design analysis and synthesis. Consistency of reasoning means that designing
was possible and that the design (artefact) provably achieved the design goal [68]. Computational
complexity was discussed as a challenging issue of abduction [69].

3. Pilot Systems Hinting at Necessary Constituents of Procedural Abduction

3.1. Forerunning Projects and their Outcomes

The idea of procedural abduction was stimulated by the results of forerunning PhD research
projects, which investigated various issues of using smart functionalities in second-generation CPSs.
They developed different testable pilot implementations for real life scenarios. Figure 2 shows
the relationship and contribution of these promotion projects. Their foci were: (i) system-level
feature-based conceptualization and integrated operational and architectural modeling of first
generation cyber-physical systems [70], (ii) exploring the role of system-initiated changes of operation
modes in failure analysis in the context of the above family of CPSs [71], (iii) developing computational
mechanisms for dynamic context information representation and inferring, context-based strategy and
action planning, and situated messaging in a second generation CPS [72], and (iv) development of a
smart reasoning mechanism, and adaptation and intervention planning for a second generation stroke
rehabilitation monitoring and enhancing cyber-physical system [73].

Figure 2. The interplay of the completed PhD research projects in the inception of the concept of
procedural abduction.

A common assumption of the above studies is that S-CPSs partially self-determine their
operational objectives and system-level adaptation based on run-time collected data, using built-in
or acquired smart learning and reasoning algorithms. Relying on multiple streams of input data,
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the prototype systems build dynamic operational models, which in turn allow them to alter their
operational objectives and to adapt their functionality and (software) architecture accordingly. In the
order of mention, these studies cast light on the elements (computational activities) of a complex
system-level reasoning process, which reflects the logic and characteristics of abductive reasoning.
Consequently, this reasoning process has been called ‘procedural abduction’ (PA) [74]. The proposed
theoretical foundations of PA are being challenged currently through analytic investigations (critical
systems thinking) and computational implementation in other running PhD [75] and staff research
projects [76]. The relevant work will be concisely summarized below.

3.2. System-Level Feature-Based Conceptualization and Modeling of First Generation Cyber-Physical Systems

The objective of this research project was to develop a software toolbox (SMF-TB) for
pre-embodiment design of first-generation CPSs. The novelty of this toolbox is that it (i) tries
to cope with the inherent heterogeneity of CPSs (caused by interrelated hardware, software and
cyberware constituents) on system-level, (ii) combines operational and architectural modeling through
(transdisciplinary) system-level features (SLFs), and (iii) provides effective methodological support
for creating SLFs by using genotypes, phenotypes and instances [77]. The two main parts and the
respective components of the SMF-TB are shown in Figure 3. Likewise the workflow of modeling
using SMFs, the chunks of information needed for defining genotypes and phenotypes of SMFs have
been clarified and organized into information schema constructs (ISCs). The proposed ICSs connect
the chunks of operation and architecture information in the relational data tables of the warehouse
databases. The computational algorithms and the overall system modeling mechanisms, including the
feature instantiation-based composition mechanism, have been worked out.

Figure 3. The parts and components of the SMF-TB. (I/O: input/output; CPS: cyber-physical system)

The proposed SMF-TB imposes a strictly physical view, i.e., it models system constituents in the
3D Euclidian space and captures their relationships as mereotopological relations (rather than just
representing them by abstract modeling surrogates). The ISCs for: (i) representation of operation
and architecture relations, (ii) assigning values to parameter variables, (iii) managing the meta-level
knowledge-base of the model warehouse, (iv) recording the composition and parametrization history,
and (v) recording the state, event and stream unification history of the instantiation and composition
of system constituents are discussed in [78]. The overall process of instantiation involves three cycles,
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on genotype, phenotype and instance-type level. Though the proposed information schema constructs,
tool-box functionality, system-level modeling methodology, and procedural and computational
schemata provide effective support for SMFs-based modeling of first generation CPSs, the completed
investigations cast light on various limitations and/or deficiencies with a view to context capturing and
self-awareness building, self-reasoning and self-learning, and self-adaptation and self-organization
capabilities of smart systems.

The proposed resources proved to be suitable for designing composable systems with
definitive interfaces that fulfill input assumption and output guarantee specifications. These
conventions however cannot be applied to run-time organized smart systems, which construct
their reasoning capabilities during operation and acquire knowledge from run-time processed data
streams. Consequently, this project revealed that reasoning mechanisms cannot be synthesized in a
components-based manner, that is, by directly combining existing AI/cognitive algorithms. Only
compositional synthesis, relying on a holistic knowledge processing framework, can guarantee that
the constituents of an ampliative reasoning mechanism provide a synergistic body of knowledge for
achieving the objectives of system operation under dynamically varying circumstances. On the other
hand, using highly adaptable or self-adaptive system-level (or mechanism-level) features is a reusable
idea to address composability challenges of reasoning mechanisms.

3.3. Identification and Forecasting Failures in a Resilient Cyber-Physical Greenhouse Testbed System

This research started out of the assumption that future CPSs will be characterized by growing
self-intelligence and self-organization, and considered that these abilities enable them to maintain
their operations according to the set objectives under the effects of various influential factors, such as
internal failures or external environmental disturbances. Their control regime will set their operation
modes, as well as the values of the operational parameters, to achieve the relative best output even
under irregular conditions. However, due to the run-time adjustments, they hinder an early recognition
of emergent failures. In other words, the transitions self-enabled by a resilient CPS cause uncertainty
and hamper the use of the conventional failure analysis methods.

It was hypothesized that the intensity and the trend of the changes of system operation modes
(SOMs) can be used as the basis of the diagnosis, recognition and forecasting of failures in resilient
CPSs To test this hypothesis empirically, and to contribute to the theoretical understanding of the
failure recognition and forecasting problem, a self-regulatory and self-tuning testbed greenhouse
system was developed [79]. The roles of system initiated compensatory actions and operational mode
changes were systematically investigated from the aspects of emergence and proliferation of technical
failures in this first generation CPS. However, the influence of functional and structural self-adaptation
on failure recognition and forecasting was not studied, since it would assume the implementation of
an even more sophisticatedly controlled (i.e., smartly behaving) testbed system.

The novelty of this study was that it focused on system-level behavior, rather than on the behavior
of the individual components. The input and output signals/data were interpreted on system level
(Figure 4), which made it possible to generate a set of indicators that could inform about the SOMs
that were triggered by emerging failures. For instance, certain failures pushed the testbed system
into an ‘abnormal’ operation mode, which involved a combination of component operation modes
not typical under regular circumstances. On the other hand, certain SOMs did not occur due to
the effect of failures, or specific SOMs emerged that did not occur during regular system operation.
Consequently, the main contribution of this work was providing novel means, such as the concept
of failure induced operation modes, for monitoring changes of states, events and situations of a
quasi-dynamic system [80]. The changes were captured through the observed variations in the
frequency and the duration of SOMs—that is, in the system dynamics rather than only by signal
deviations. This lent itself to a shift from timed system model-based reasoning about the system
operation to a data-driven, run-time conditions-based reasoning. Our investigations disclosed that the
above concepts could be reused for event and situation diagnoses in other first-generation CPSs and in
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feeding reasoning mechanisms with information higher than component input/output data. We also
understood that it still needs further elaboration in the case of self-adaptive second-generation systems.

Figure 4. Example of processing sensor information in the testbed greenhouse system. (PAR:
photosynthetic active radiation; IR: infrared; PH: scale of acidity).

3.4. Representation and Reasoning with Dynamic Context Knowledge in a Fire Evacuation Aiding System

Smart CPSs often works under highly dynamic circumstances and need to make decisions in
dynamic contexts. Typical application examples are such as home care servicing, traffic management
on roads, and aiding fire evacuation of buildings. Therefore, it is necessary to provide fast mechanisms
for dynamic context computation (DCC) and building awareness by the system that enables it to
interpret context changes and to infer about their implications on physical processes. This PhD
research project developed a conceptual/logical framework for DCC and implemented computational
algorithms for building system awareness. The DCC mechanism was developed based on a layered
(context) knowledge model, which included (i) the layer of states (of entities and their spatial,
attributive, temporal and semantic (SATC) relationships), (ii) the layer of events (changes in the
SATC relationships), (iii) the layer of situations (logical/semantic relations of events and states), and
(iv) the layer of scenes (logical/semantic relations of interplaying situations).

The knowledge model assumes information integration on each layer, and information abstraction
to support semantic transitions between the subsequent layers. The semantic abstraction over
the integrated information constructs provides opportunity to computationally infer not-explicitly
described states, events, situations and arrangements in various forms. The data describing dynamic
contexts were arranged in a specific computational scheme called context information reference cube
(CIR-cube), which proved to be a dexterous computational means for handling spatial, attributive
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and temporal data in a cohesive manner (Figure 5) [81]. An inference mechanism was developed
that updates and (re)computes the contents of the matrices included in the CIR-cube and eventually
builds an awareness model of the time-varying process at hand. The CIR-cube is able to capture both
physical time and computational time. The procedure of awareness building includes the following
main computation steps: (i) determining the state of the concerned entities, (ii) recognition of events,
(iii) identification possible situations, (iv) judging the relevance of situations to the concerned entities,
(v) revealing the interplays of the relevant situations, and (vi) interpreting the implications of the
interplaying situations [82]. The functional scheme of the inferring mechanism for building awareness
is shown in Figure 6.

Figure 5. The context information reference cube (CIR-cube).

Figure 6. The functional scheme of the inferring mechanism for building awareness. (LW: local world;
S: situation).

The developed dynamic context computation mechanism is complemented with a reasoning
mechanism for operational strategy synthesis. Ultimately, this mechanism generates personalized
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action plans that make it possible to achieve the specific operational/servicing objective of a smart
CPS. Together with the implemented additional computational mechanisms for message generation
and distribution, the dynamic context computation and action plan generation mechanisms were
tested in an indoor fire evacuation guiding application. The application case was investigated based
on a high-fidelity simulation of presumed real-life fire propagation and of the behaviors of the
human, artefactual, and natural stakeholders. The experimental results proved the efficiency of the
interoperating computational mechanisms and algorithms. They also confirmed our hypothesis that
the proposed dynamic context computation mechanism was able to provide descriptive knowledge
about emergent situations as well as about the implications of the interplaying situations on the
concerned entities.

The contribution of this research to the conceptualization of the main constituents of procedural
abduction is as follows: The proposed solution uses sensor-provided and/or preprogrammed spatial,
attributive and temporal data to describe all involved entities and to characterize their varying states
in their local worlds, as a system of reference. A state was defined as a static representation of the
momentarily characteristics of an entity, whereas an event as the change of the states of an entity
at two subsequent points in time (in the computational realm). A situation is generated by the
aggregation of a series of operationally non-independent events and/or states appearing at a given
point in time. In addition to computationally combining/integrating logically related events and states,
the mechanisms were also able to extract specific meaning of combined and/or integrated events
and states by abstraction towards a higher level comprehension. The descriptive data-based context
representation is supplemented with various derived elements of semantic intelligence, which are
generated by the inferring algorithms of the proposed dynamic context management mechanism.

3.5. Reasoning and Adaptation in an Engagement Monitoring and Enhancing System for Stroke Rehabilitation

Task-oriented training exercises need to be practiced in upper limb rehabilitation after stroke.
The hypothesis of this work was that a smart cyber-physical stroke rehabilitation system (CP-SRS),
which is able to increase the motor, perceptive, cognitive, and emotional involvement of patients
during rehabilitation exercises can be a promising solution. Thus, the objective of this PhD
research project was to augment a robot-assisted upper limb rehabilitation subsystem with a
cyber-physical computation-based engagement management subsystem. Since there is no opportunity
for preprogramming in this specific application case, realization of engagement management raised
the need for run time reasoning capabilities. At the beginning of the project it was not completely
understood which factors (e.g., game difficulty, personal interest, game design, and immersiveness of
environment) are the most influential on the engagement of patients [83]. Furthermore, no quantitative
method was found to evaluate momentarily engagement. Based on the outcome of the explorative
research, the main functions and architectural elements of the CP-SRS have been defined as: (i) a
multi-modal sensor network, which monitors the states of patients, (ii) real time information processing,
which interprets the actual signals and generates engagement models, (iii) reasoning and decision
making, which provides personalized stimulation plans for different patients, and (iv) situated learning
that facilitates run time generation of a reasoning model concerning the system state/objectives and
the necessary/possible adaptation. These functionalities and system components were conceptualized
and implemented in the CP-SRS at a testable prototype level [84].

Architecturally, the CP-SRS included five subsystems: (i) an assistive robotic subsystem, (ii) a
gamification subsystem, (iii) an engagement monitoring subsystem, (iv) a smart learning mechanism
(SLM), and (v) an engagement enhancement subsystem (EES) The indicators for: (i) motor engagement
(ME), (ii) perceptive engagement (PE), (iii) cognitive engagement (CE), and (iv) emotional engagement
(EE) were monitored using: (i) MYO(TM) Armband with electromyography sensors, (ii) Eyetribe
eye tracking device, (iii) Emotiv(TM) Epoc headset (14 channel wireless electroencephalography
(EEG) device), and (iv) a web camera, and Insight device, respectively. The data from these sensors
were streamed to MATLAB via TCP/IP computer network transmission control protocol, where the
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engagement levels in the four aspects were interpreted. The workflow of information processing related
to the smart learning mechanism is shown in Figure 7. Basically, when the patient’s engagement level
decreased, the system introduced interventions. Through the interventions it was able to re-engage the
patients and to maintain their high level engagement. The interventions meant stimulations in motor,
perceptive, cognitive, and emotional aspects, depending on the actual state of the patients. Stimulation
strategies were created as a combination of stimulations in multiple aspects.

Figure 7. The overall information processing workflow including the smart learning mechanism.

The main findings of this research project can be summarized as follows: It has been found that
the ratio of the root mean square of the measured electromyography (EMG) signal and the velocity
of motion of the human limb was a reliable indicator of motor (function) engagement. However, the
indicators introduced for measuring the motor, perceptive, cognitive and emotional engagements
had to be taken into consideration simultaneously in order to achieve an optimal stimulation strategy.
They had also to be interrelated in order to form a distinct measure. In the process of computing the
applicable stimulation strategies, there was a need to consider the personal profiles of the patients
in addition to their motor, perceptive, cognitive, and emotional engagement indicators. A neural
network-based smart learning mechanism could be used to learn the effects of the different stimulations
strategies on different persons and to propose personalized enhancement. Continuous monitoring
of the state of the patient and learning the enhancement options lead to efficient, personalized and
self-adaptive stroke rehabilitation training.

The identified engagement indicators were useful not only for enhancing engagement, but also to
understand the limitations of the current engagement enhancing methods. Although the methodology
developed for monitoring and enhancing engagement was dedicated to rehabilitation, this approach
can be used in other fields as well, such as sports, driving, and education. The contribution of this
project to revealing constituents necessary for procedural abstraction were: (i) building situation
awareness based on input sensor data, (ii) devising a reasoning model run-time based on relative
changes of state indicators, (iii) development of possible adaptation (stimulation) strategies by machine
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learning using the state indicator-based reasoning model, and (iv) operationalization of the adaptation
plan based on changing the setting of the physical and computational effectors.

4. The Framework of Computational Implementation of Procedural Abduction

4.1. The General Workflow and the Underpinning Knowledge of Procedural Abduction

From a computational point of view, procedural abduction is seen as a recurrent sequence
of eight processing stages: (i) run-time extraction of data/signals by sensing, (ii) recognition of
change events, (iii) inferring about exiting operational situations, (iv) building awareness of the
system’s performance, (v) devising alternative performance enhancement strategies, (vi) designing
adaptation of the system as a whole, (vii) planning the implied interventions, and (viii) actuating
effectors and controls. The operational workflow (computational implementation) of procedural
abduction (PA) is graphically shown in Figure 8. The activities (i)–(iv) enable the system to capture
data about its momentary performance (outcome of system operation), to compare the data with
those representing the assumable best objective of servicing, and to define the necessary and possible
changes of the system. The activities (v)–(viii) enable the system to determine the necessary functional
and/or architectural changes, to define the adaptations to be introduced, and to set the values of
the actuator control variables accordingly. Each activity involves at least one, but typically multiple
interacting computational algorithms, which are integrated into the overall reasoning mechanism of
procedural abduction.

Figure 8. Graphical representation of the generic workflow of procedural abduction.

The basis of implementation of the computational workflow of PA is the predefined operation
and servicing model (OSM) of the concerned CPS system, which specifies: (i) the default objectives,
(ii) the values of the operational parameters, and (iii) the initial state of the system, as a reference.
Symbolically, the OSM can be specified on a given level of resolutions as a septuplet (Equation (1)):

OSM = (IV, AC, PS, OD, AD, OV, TV) (1)

where: IV is a finite non-empty set of input variables belonging to the total of interoperating system
actors on a given level of resolution; AC is a finite non-empty set of architectural constituents realizing
the system actors on a given level of aggregation; PS is a finite non-empty set of services generated by
the system actors, OD is a finite non-empty set of operational dependences among system actors and
the provided services; AD is a finite non-empty set of architectural dependences among system actors
and the provided services; OV is a finite non-empty set of output variables describing the provided
services, and TV is a finite non-empty set of the required/possible target (interval) values of operation

53



Designs 2019, 3, 1

and services of the system as a whole. An explicit incorporation of the operational and architectural
dependences of the system actors is needed in view of the compositional synthesis of the system.
(Compositional synthesis means that the operational and architectural manifestation of the system
actors as constituents is simultaneously defined by the overall operational/servicing objectives of the
system as a whole and by the manifestation of the closely interoperating other constituents.)

PA is not purely a logical propositions-based reasoning, but data-, information- and
knowledge-based. The knowledge required for the implementation of the generic workflow of
procedural abduction (shown in Figure 8) has two parts: (i) static knowledge and (ii) dynamic
knowledge. The static knowledge is conveyed by the predefined OSM of the system (referred to
as OSMinitial in the rest of the article). The dynamic knowledge is derived based on the run-time
acquired data and the modified OSM (OSMactual), and thus by the change of the operational context
and objectives. The concerned algorithms of the computational mechanism blend the parts of these two
bodies of knowledge in each stages of processing. The overall scheme of using the knowledge sources
is shown in Figure 9. From the point of view of realization logical/semantic reasoning by PA, there are
four sources of knowledge considered: (i) the content of OSMinitial, (ii) the content of OSMactual,
(iii) the descriptive spatial, attributive and temporal data, semantic relations, and prescriptive
constraints included in the permanent context (PĈ) and dynamic context (DĈ) representations, and
(iv) specifications of conceptualizations in the associated system-used ontologies and data residing on
the Web. The necessity of these sources of knowledge has been proven in our research, as well as why
their sufficiency for a wide range of applications should still be tested experimentally.

Figure 9. The knowledge assets used in procedural abduction.

4.2. From Enabling Operators to Transforming Algorithms

The computational mechanism of procedural abduction (MPA) has been interpreted as an
arrangement of operators completing the computational activities in each stage of PA. MPA can
symbolically be represented by the following formula (Equation (2)):

MPA =
DD−→� RE−→�

FI−→� AP−→
IS−→� AA−→� DS−→� DA−→

� PI−→� AE−→ (2)

where:→ (rightward arrow) indicates an operator of the workflow; (horizontal line) is used to separate
alternative sequences of operators (i.e., operation with or without adaptation). The symbol ‘�’
indicates the orientation of the flow of information processing. The group of operators above the
horizontal line allows self-adjustment of a system, while the group of operators below the horizontal
line enables self-adaptation of a system. DD is the operator of detecting signals and elicitation
of data, RE is the operator of recognizing and monitoring events, FI is the operator of providing
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feedback information for operational control; AP is the operator of adjusting the values of operational
parameters; IS is the operator of interpretation of situations; AA is the operator of acquisition of
operational awareness; DS is the operator of devising adjustment and/or adaptation strategy; DA
is the operator of designing adaptation; PI is the operator of planning interventions; and AE is the
operator of selective actuating of effectors.

Each element of the computational process, including those belonging to its decision making
sub-process, can be implemented by two kinds of computational operators: (i) (physically-grounded)
operators handling state changes in the physical realm, and (ii) operators for processing data,
information and knowledge in the cyber realm. While the first kind of operators process changes in the
continuous space and time, the second kind of operators work with digital representation and feature
event-oriented execution. Ultimately, both capture state changes and are handled in similar manner as
computational transformations, Tx,i, where: x is any operator of PA, and i is the identifier of a particular
computational action belonging to x. The operators may include three sets of transforming algorithms,
namely basic, auxiliary and interaction algorithms. These types are identified based on the purpose of
the algorithms. Basic algorithms generate new information by reasoning/inferring, while auxiliary
algorithms maintain information, for instance, by recording digital data in files. Interfacing algorithms
avail information, e.g., receive manual data input, display data to enable human interaction, or convert
data between cooperating system modules. Due to space limitation, only the basic transformations
(sets of transforming algorithms) will be discussed.

4.3. Transforming Algorithms Needed for the Operators

The operator for detecting signals and elicitation of data (DD) includes the following
transformations (Equation (3)):

DD = (TDD,1, TDD,2, TDD,3, TDD,4, TDD,5, TDD,6, TDD,7, TDD,8) (3)

where: TDD,1 is identification of active physical and action sensors in the environment; TDD,2 is local
sensing of the attributes of material flows; TDD,3 is local sensing of the attributes of energy flows;
TDD,4 is local sensing of the attributes of information flows; TDD,4 is collecting data from linked
software sensors; TDD,6 is transferring signals on the wired/wireless network; TDD,6 is multiplexing
analogue signals; TDD,7 is converting analogue signals into digital data; and TDD,8 is cleaning/filtering
digital data.

Used for recognizing and monitoring events, the next operator (RE) includes transformation
algorithms for the analysis of the sensed and input signals/data in order to detect something that
happens or might happen at a given physical or logical place and time. The analysis considers
the operational state of the system as a whole, of the constituents, and the set operation/servicing
objectives. The recognizing and monitoring events operator is defined as (Equation (4)):

RE = (TRE,1, TRE,2, TRE,3, TRE,4, TRE,5, TRE,6, TRE,7) (4)

where: TRE,1 is detection of change trends in digital data, TRE,2 is obtaining information over operation
modes of the system, TRE,3 is detection of remarkable signal changes that may be associated with
discrete change events, TRE,4 is features-based investigation of the signal changes, TRE,5 identification
and classification of a recognized events according to their nature (space-related, attribute-related, or
time-related), TRE,6 is time stamping and recording of recognized events, and TRE,7 is monitoring the
life cycle of the recorded events. These transformations make it possible to recognize state changes in
terms of deviation from the set objective and the preferred system states, respectively.

A situation has been defined as interactions of the recognized events, not matter if they concern
the change in the objectives or in the system-internal states. The main goal of this activity is to identify
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the interacting events and to determine their relationships in space, time and logic. Thus, the operator
for interpretation of situations (IS) includes the following transformations (Equation (5)):

IS = (TIS,1, TIS,2, TIS,3, TIS,4, TIS,5, TIS,6 TIS,7) (5)

where: TIS,1 is recalling all recognized events; TIS,2 is investigation of the space of the individual
events in a considered local world based on the location of the signal provider; TIS,3 is investigation
of the time stamps and durations of the individual events in the considered operation window; TIS,4

is computation of spatial relationships of the events occurring in the considered local world; TIS,5 is
computation of temporal relationships of the events occurring in the considered time window; TIS,6

is determining the set of correlated events and recording it as a situation; and TIS,7 is monitoring the
trend of change of an identified situation.

Having a grasp on the states of system operation and objective achievement, the reasoning
mechanism intends to ‘understand’ the meaning and implication of the actual situation. This is based
on learning, which allows the knowledge-enabled mechanism to acquire additional information and to
build awareness. As discussed above, there are four sources of information: (i) the initial system model,
(ii) the run-time acquired data, (iii) the dynamic context model, and (iv) additional data repositories.
Building operational awareness allows making logical judgments and inferring conclusions. Thus, the
operator for acquisition of operational awareness (AA) is composed of the following transformations
(Equation (6)):

AA = (TAA,1, TAA,2, TAA,3, TAA,4, TAA,5, TAA,6, TAA,7, TAA,8 ,TAA,9) (6)

where: TAA,1 is operationalizing the OSMinitial; TAA,2 is determining the deviations from OSMinitial in
the given situation; TAA,3 is computation of the operation/servicing indicators; TAA,4 is generating
implicit context information; TAA,5 is generating spatial context information; TAA,6 is generating
temporal context information; TAA,7 is generating attributive context information, TAA,8 is computation
of the dynamic context model; and TAA,9 is unsupervised learning of the necessary control regime (that
is, if maintaining Oinitial is needed or if there is a possibility for a more favoring Opossible). Together
with the results of the transformations included in the operators AA and DA, the DS operator informs
the reasoning mechanism about how and why a particular set of conclusions were made. That is, the
sequence » AA » DS » DA » represents a local proposition-based abduction in the whole process of
procedural abduction.

Depending on the control regime, a proper strategy is needed to achieve the set
operational/servicing objective of the concerned CPS. This is the task of the devising adjustment
and/or adaptation strategy (DS) operator, which includes the following computational transformations
(Equation (7)):

DS = (TDS,1, TDS,2, TDS,3, TDS,4, TDS,5, TDS,6, TDS,7) (7)

where: TDS,1 is initiation of computational actions according to the control regime (‘observation’);
TDS,2 is investigation of operation/servicing indicators with regards to possible enhancement; TDS,3 is
devising. alternative operational strategies; TDS,4 is devising feasible associated adaptation strategies
(‘hypotheses’); TDS,6 is assessing the operational and adaptation strategies (‘stratagems’) considering
the resources and the context of actions; and TDS,7 is ranking the stratagems and selecting the best one.

While strategizing focusses on both the functional and logical aspects (i.e., what to change and
why to change), architecture and operation adaptation concentrates on the technical and practical
aspects of altering the system (i.e., on how to change and when to change). In this sense in produces
a technical blueprint of the system alteration together with a course adaptation plan. This plan is
the basis of intervention specification. The operator for designing adaptation (DA) is realized by the
following computational transformations (Equation (8)):

DA = (TDA,1, TDA,2, TDA,3, TDA,4, TDA,5, TDA,6, TDA,7, TDA,8, TDA,9) (8)
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where: TDA,1 is investigation of the degrees of freedom in which the system can be adapted according
to the best adaptation strategy; TDA,2 is determining the necessary/possible operation/servicing
adaptation; TDA,3 is determining the necessary/possible architecture adaptations; TDA,4 is computation
of the OSMactual based on the skeleton of OSMinitial; TDA,5 is computational simulation (pre-playing) of
the system’s operation/servicing after introducing the adaptations; TDA,6 is investigation of the impact
of adaptation on the system’s properties; TDA,7 is adjustment of OSMactual according to the findings
and enhancement of the adaptation plan; TDA,8 is identification of the outgoing and/or incoming
system resources; and TDA,9 is determining the sequence of the hardware, software and cyberware
adaptation actions. As it can be seen, this operator is one of those that require the largest number of
interoperating algorithms.

The DA operator can provide only a ‘delayed’ adaptation plan due to the necessary preliminary
computational testing of the impacts of adaptation. The possibility of adaptation is influenced by
then completion of certain operations of the CPS. This creates the need for the planning interventions
operator. The objective of this operator is to operationalize a refined adaptation plan operation- and
time-wise. Actually, it converts the adaptation blueprint into a transition blueprint, which considers
the operation/servicing of the CPS and the conditions for this. The operator for planning interventions
(PI) comprises the following transformations (Equation (9)):

PI = (TPI,1, TPI,2, TPI,3, TPI,4, TPI,5, TPI,6) (9)

where: TPI,1 is generation of a scenario for modification of the effectors; TPI,2 is computation of
control information for all motors; TPI,3 is computation of the control information for all regulators;
TPI,4 is computation of the control information for all sensors; and TPI,5 is computation of the
control information for all information handling components, and TPI,6 is computation of the control
information for all computational effectors.

Finally, the operator for selective actuation of effectors (AE) is defined as (Equation (10)):

AE = (TAE,1, TAE,2, TAE,3, TAE,4, TAE,5) (10)

where: TAE,1 is activating and setting rotary motors, stepper motors, servos and specialty motors;
TAE,2 is activating and setting linear actuators, effect transformers, regulators and transceivers; TAE,3 is
activating and setting environmental sensors, physical sensors and action sensors; TAE,4 is activating
and setting communicators, transceivers, modems, converters, cameras, and displays setting of system
parameters; TAE,5 is activating and setting computational effectors.

5. Some Conclusions and Future Research Opportunities

5.1. Reflection on the Approach

Humans typically apply the divide-and-conquer strategy combined with some informal reasoning
to solve complex practical application problems. In cyber-physical systems, the complex application
problem (e.g., providing multi-activity assistance in home care context) is to be decomposed to
tasks that can be allocated to the active nodes of the system. Decomposition of complex problem
typically needs informal (intuitive and semantics-based) reasoning. It also assumes certain level
of autonomy and collaboration of the active nodes [85]. However, as Pease, A. and Aberdein, A.
argued, a comprehensive theory of informal reasoning is not available and perhaps even not
expectable [86]. Therefore, problem solving by cognitively enabled systems needs to be based on
formal, computationally processable reasoning theories.

The objective of the presented research effort was to contribute to the progress in this field of
interest. As a computational implementation of a formal theory that provides a flexible system-level
reasoning capability for various smart CPSs, procedural abduction was proposed. Its idea emerged
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based on a conceptual synthesis of solutions for reasoning in various application contexts. The
reasoning pattern of procedural abduction is straightforward:

Some phenomenon concerning the operation of the system is observed;
If a particular explanation would be true, then the phenomenon could be a matter of course;
Hence, there is a reason to suspect that the particular explanation is proper (true).

Contrary to the above fact, implementation of the computational algorithms and data processing
for PA is a complex and challenging undertaking. One of the challenges of implementation is that the
computational reasoning should be knowledge-based, rather than just purely logics-based. On the
other hand, PA offers affordances and benefits that cannot be expected from other approaches.

In the case of a smart CPS, the observed phenomenon is the relation of the state of the system
to the set operational objective, or to a possible optimal operational objective. To generate proper
explanations about this relation, the process of reasoning should include a part that collects information
and builds awareness about the actual operational state of a system (contemplation), and another
part that reasons about the necessary/possible adaptations towards a better operational objective
(alteration). These are the functional backbones of the proposed procedural abduction mechanisms.
PA exemplifies a form of reasoning that is ampliative in the sense that it aims at extending the domain
of the actually existing system knowledge in every given state of its operation.

In principle, PA is application independent, but it should most probably be tailored according to
the specificities of the considered application domains in order to achieve the best possible performance.
By enabling deep penetration into real life processes and complementing model-based system control
regimes with non-preprogrammed, run-time data acquisition-enabled, learning and reasoning, PA may
be the reasoning mechanism for many physical, biological, medical, social, cognitive, etc. applications
which includes processes of highly dynamically changing nature. Computational realization of
PA necessitates a combination of a large number of conventional and specific artificial intelligence
algorithms, which should be interconnected in a compositional manner [87]. Achieving compositional
synergy in terms of the large number of interdependent algorithms, as well as in terms of the knowledge
flow needed for system level problem solving, is found as a challenge for implementation. This problem
is already a recognized one in the literature [88].

One of the aims of this article was to emphasize the significance of abduction as a computationally
feasible problem solving process and to propose computational framework for procedural abduction.
PA operationalizes the principle that systems and agents of cognitive problem solving should
incorporate knowledge about the world (ontological commitment) and an abstract procedure
(inferential commitment) for interpreting this knowledge towards constructing operation plans and
taking informed actions. Clearly, implementation, application and validation of procedural abduction
as an ampliative reasoning mechanism for varied cyber-physical systems are a work in progress.
However, the development of its underlying theoretical framework and computational methodology
has reached an advanced stage. At this time, it can be forecasted that its realization may come to
fruition, though a fully-fledged implementation in a form of a platform, which is applicable in multiple
CPSs in various contexts, still requires substantial work.

5.2. Future Research Opportunities

The results summarized in this article are related to the first phase of our research, which
concentrated on exploring the elements of a feasible conceptual framework for procedural abduction.
The on-going research efforts are made towards a fully-fledged computational implementation and
integration. The development activities should extend to the refinement of all algorithms chosen
or developed for system level reasoning. The ultimate objective is to use the abductive reasoning
mechanism as pluggable module of smart CPSs, which can provide application independent reasoning
and reduce the software and knowledge engineering work. Since high-fidelity computational replicas
of complex mental representations are inherently compositional, conceptual frameworks and design
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methodologies fostering compositionality of smart CPSs are highly necessary. Towards this end, the
issues associated with compositional design of reasoning mechanisms need to be addressed too. The
importance of compositionality is well recognized in the literature, but further research is needed in the
case of run time self-organizing systems. The issue of maintaining synergy between the initial system
model and the (dynamically changing) actual system model should also be addressed. Even a partial
modification of a well-tested system reasoning model by a run time developed reasoning model may
create problems with a dependability and resilient operation of CPSs. The uncertainty created by each
step of procedural abduction, such as inferring and interpreting the changing context of application,
developing adaptation strategies, and performing adaptation of system models, should be treated with
outmost care. Further explorative research is needed in this field too. Furthermore, specific methods
that are able to verify adjusted system operation models at run-time are also needed. They should be
able to investigate and forecast the effects of various operation strategies and system adaptations on the
performance and behavior of CPSs in changing contexts. Real time formal verification of operational
strategies is an essential feature of procedural abduction. While addressing formal verification at
run time is in the focus of CPS research, methods have to be developed that would help address the
concomitant challenges.
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Abstract: Nowadays, embedded systems are increasingly complex, meaning that traditional testing
methods are costly to use and infeasible to directly apply due to the complex interactions between
hardware and software. Modern embedded systems are also demanded to function based on
low-energy computing. Hence, testing the energy usage is increasingly important. Artifacts produced
during the development of embedded systems, such as architectural descriptions, are beneficial
abstractions of the system’s complex structure and behavior. Electronic Architecture and Software
Tools Architecture Description Language (EAST-ADL) is one such example of a domain-specific
architectural language targeting the automotive industry. In this paper, we propose a method for
testing design models using EAST-ADL architecture mutations. We show how fault-based testing
can be used to generate, execute and select tests using energy-aware mutants—syntactic changes
in the architectural description, used to mimic naturally occurring energy faults. Our goal is to
improve testing of complex embedded systems by moving the testing bulk from the actual systems to
models of their behaviors and non-functional requirements. We combine statistical model-checking,
increasingly used in quality assurance of embedded systems, with EAST-ADL architectural models
and mutation testing to drive the search for faults. We show the results of applying this method
on an industrial-sized system developed by Volvo GTT. The results indicate that model testing of
EAST-ADL architectural models can reduce testing complexity by bringing early and cost-effective
automation.

Keywords: model testing; mutation testing; energy consumption; EAST-ADL

1. Introduction

Embedded products are widely used in many industries. For example, embedded systems
are used in automotive companies in the implementation of vehicle functions (e.g., ABS, electronic
stability) [1]. Such functions contribute to the complexity of developing the entire vehicle system [2],
making the verification and validation of new functions more problematic due to the interconnections
between both functional and non-functional requirements posed on the whole system. For instance,
a structural or behavioral update in the software or the replacement of a software or hardware
part can influence the consumption of resources [1]. In this case, just showing the overall system’s
functional correctness is not enough. One would need to verify that the system meets its non-functional
(also known as extra-functional) requirements, such as energy consumption, memory allocation
and real-time perfomance. In addition, although testing is arguably the most used verification and
validation technique, for these complex systems testing is highly expensive when performed on the
actual system. Given the increasing demand in embedded systems for low-energy computing [3],
early testing the energy consumption becomes an increasingly important issue. To ensure the quality
of service of embedded systems and to estimate its performance early in the development process,
testing the behavior of the system with respect to its supplied energy budget as well as testing for the
worst-case energy consumption is very important.
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In this paper we outline a method that targets these challenges by bringing extra-functional
testing of these complex embedded systems by moving the creation, execution of test cases earlier in
the development process at an abstract architectural modelling level. Architectural models are used to
represent relevant aspects of system behavior, environment, structure, and properties and are used as
a basis for test generation, performance, and analysis. Briand et al. [4,5] refers to such techniques as
model testing, since this kind of approaches aim to identify faults by executing test cases on models
and sampling the input space. This in contrast to other verification and validation techniques such as
model checking that attempt to exhaustively explore the model state space and check the correctness of
the models against some given properties. Our goal is to tackle the challenges of testing such complex
systems by developing an approach that provides, early-on in the development process, confidence
about the system resource consumption by identifying and executing a selected set of test cases, from
the whole test execution space, where faults are more likely to lie. In the automotive domain, modelling
the architectural aspects including the resource consumption of complex embedded systems at high
levels of abstraction is necessary. Architectural description languages such as EAST-ADL (EAST-ADL
stands for Electronic Architecture and Software Tools-Architecture Description Language.) [6] are
used to represent both hardware and software functions and extra-functional information (e.g., timing
properties and resource consumption). If we assume energy as the resource of interest, the annotations
of energy consumption in EAST-ADL models can be used to create test cases for feasibility and
worst-case energy consumption that can be useful in the detection of faults.

This article is an extended version of a conference paper [7] in which we have demonstrated
how architectures described in the EAST-ADL language can integrated into a testing approach in
order to evaluate energy properties. Based on this previous work, in this study we present a novel
mutation-based approach for model testing and evaluate its efficiency and effectiveness on an industrial
use case. In particular, by selecting test cases using mutation testing [8], we propose a method for
automatically generating and selecting test cases based on the concept of energy-aware mutants–small
architectural model syntactic modifications designed to mimic real energy faults. Test cases where a
certain behavior can be distinguished from its mutations are sensitive to changes in the architectural
model and are therefore considered good at detecting faults.

We apply this method on an embedded system modeled in EAST-ADL after transforming it into
a network of priced timed automata [9]. In particular, we select test suites based on random model
executions that show the energy cost using UPPAAL SMC [10], the statistical extension of the UPPAAL
model checker. We show how to seed faults in the EAST-ADL model and evaluate each generated test
suite’s energy-related fault detection capability. To illustrate the efficiency and effectiveness of our test
generation method, we carry out an evaluation, using an industrial system modeled in EAST-ADL
architectural language. The results of this study suggest that model testing is efficient in terms of test
generation time and number of generated and selected test cases.

To summarize, the main contributions of this paper are:

• The identification of energy-aware mutation operators for mutation testing of EAST-ADL models.
• An approach for mutation test generation of EAST-ADL models using a statistical model checker.
• An evaluation of the method on a Brake-by-Wire industrial system.

The rest of the paper is organized in the following sections. In Section 2 we overview the
preliminaries needed to comprehend our contribution, including architecture-based testing and
mutation testing, the EAST-ADL architectural language, UPPAAL SMC and priced timed automata.
The main contribution of the paper is our method for automatically generating energy-aware test cases
using EAST-ADL models described in Section 3, and its application on the Brake-by-Wire system as
well as the experimental results presented in Section 4. We conclude the paper and present the future
work in Section 7.
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2. Background

Major aspects of architecture-based and mutation testing, the language of EAST-ADL and
UPPAAL SMC will be discussed in this section. These aspects are put in the scope of the contributions
of this study.

2.1. Architecture and System-Level Testing

Architectural models are created during system development using components and connectors
representing the whole system and its high-level structure [11]. The aim of testing using architectural
designs as input is to verify whether the system meets its design specifications. This type of testing
is also known as system-level testing [12] and its main purpose is to discover early-on architectural
design problems, but also the overall system behaviour. Testing, at this level, aims to address such
test goals as overall functionality, real-time properties, robustness and performance [11]. Testing
extra-functional properties (e.g., bandwidth, energy and memory) [13] are crucial aspects during
development and need to be addressed continuously when testing. Specifically, we focus on testing for
energy consumption based on architectural models. Due to the intertwining of software and hardware
and the complex interactions with the external environment, it is challenging to apply conventional
testing methods directly to the real embedded systems. When testing for extra-functional properties at
the software architecture level, models are annotated with energy consumption properties.

The aim of testing at architectural level based on the energy consumption is to find faults in the
performance of an actually developed system in terms of its subsystems and interactions before the
actual code implementation. The use of such architectural models for testing enables the execution of
a large number of test cases and increases the chances of uncovering faults.

2.2. Mutation Testing

Mutation testing is the technique used for creating a faulty implementations (usually in an
automated way) to examine a test-suite’s ability to detect faults [8]. A mutant is a new version of a
program created by making in the original program a small change. For instance, a mutant is created
in a program by replacing an operator with another, negating a variable, or changing a constant’s
value. The execution of a test suite on the resulting mutant will produce a different output than the
original program, in which case the test suite kills the mutant. In order to measure the mutant detection
capability of the written test suite, a mutation score is calculated using the automatically seeding all
mutants and executing the test cases on each mutant. One can compute a mutation score based on an
output-only oracle (i.e., expected outputs) against all the generated mutants by calculating the ratio of
mutants killed to the total number of mutants. Just et al. [14] showed that if a test suite can detect or
kill most mutants, it can also detect real software faults, thus providing evidence that the mutation
score is a fairly good proxy for real fault detection ability. Mutation testing has been widely used at
lower levels of testing and mostly on implementation models. Even if there are some studies that have
applied this technique on specification models [15–18] for designing behavioral faults, there is a lack
of methods that target architectural models and extra-functional aspects for model mutation testing.
No attempt has been made to propose and evaluate mutation testing for EAST-ADL models. This
motivated us to develop an automated approach to test generation and model testing using mutations
aimed at this kind of architectural model.

2.3. EAST-ADL Architectural Language

EAST-ADL [6] is an AUTOSAR-compatible (AUTOSAR is a standard for AUTomotive Open
System ARchitecture and was developed by several manufacturing companies.) architectural
description language intended to be used in the development of automotive embedded systems.
A system can be described at four levels of abstraction, as follows: (i) the Vehicle Level describes
the external features at the highest level of abstraction, (ii) the Analysis Level describes the abstract
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functionality of the system, (iii) the Design Level describes more details in the functional representation
of the architecture and the hardware allocation of these onto the platform, and (iv) the Implementation
Level provides the AUTOSAR-compliant code.

At each level of abstraction, the model is composed using components (i.e., FunctionType) which
describe the functionality of the system. Each FunctionType contains: (i) Ports that receive and provide
data, (ii) a trigger (i.e., time-based or event-based), and (iii) an internal behavior. Each of these
components is instantiated as a FunctionPrototype. The execution of each FunctionPrototype uses
the “read-execute-write” semantics, and the internal behavior is defined using different languages
(e.g., Simulink, UML, UPPAAL PORT timed automata [19,20]). In this study we use the models
at the design level, containing the Functional Design Architecture (FDA) and Hardware Design
Architecture (HDA) annotated with non-functional properties. The design model can be annotated
with a GenericConstraint property representing the energy utilization.

2.4. UPPAAL SMC and Priced Timed Automata

UPPAAL SMC [10] is an extension of UPPAAL, that supports the analysis of non-functional
properties for networks of priced timed automata with stochastic semantics. Statistical model-checking
is used to generate stochastic simulations and estimate probabilities and probability distributions over
time with a certain level of confidence, so the analysis scales better than symbolic model-checking in
verification of realistic industrial models. Specifically, statistical model checking samples executions
using statistical inference methods to decide whether the model executions satisfy a property given a
certain confidence. In this paper we use statistical model checking and UPPAAL SMC in a black-box
manner for execution of models as well as producing probabilistic estimates about the correctness of
the generated models.

Priced timed automata (PTA) are used in UPPAAL SMC and are extensions of timed automata
with cost variables that can evolve at integer rates (also �= 1). These are used for representing the
energy consumption. The energy usage is modeled using a function P : (L ∪ E) → N, where L is
a finite set of locations, and E is the set of edges, which assigns costs to both locations and edges.
A network of PTA (NPTA) is described as a composition of n PTA over clocks and actions; the PTA
use send–receive actions (i.e., send b! is complementary to receive b?) and shared variables are used
in guards.

Let X be a finite set of clocks and B(X) the set of guards, which are finite conjunctions of atomic
guards of the form x �� n, where x ∈ X, n ∈ N, and �� ∈ {<,≤,=,≥,>}. A (Linear) PTA over clocks
X and actions Act is a tuple (L, l0, X, V, I, Act, E, P) where L is a finite set of locations, l0 is the initial
location, X is set of clocks, V is a set of data variables, I : L → B(X) assigns invariants to locations,
Act is a set of actions, E ⊆ L × B(X, V)× Act × R × L is the set of edges (where R denotes the reset
set, i.e., assignments to manipulate clock- and data variables), and P : (L ∪ E) → N assigns costs to

both locations and edges. In the case of (l, g, a, r, l′) ∈ E, we write l
g,a,r−−→ l′.

The semantics of PTA is defined as a transition system over states (l, u), with the initial state
(l0, u0), where u0 assigns all clocks in X to zero. There are two kinds of transitions:

(i) Delay transitions: (l, u)
d,p−→ (l, u ⊕ d), where u ⊕ d is the result obtained by incrementing

all clocks of the automata with the delay amount d, and p = P(l) ∗ d is the cost of performing the
delay, and

(ii) discrete transitions: (l, u)
d,p−→ (l′, u′), corresponding to taking an edge l

g,a,r−−→ l′ for which the
guard g is satisfied by u. The clock valuation u′ of the target state is obtained by modifying u according
to updated r. The cost p = P(l, g, a, r, l′) is the priced associated with the edge.

A network of PTA A1 ‖ ... ‖ An is expressed as a composition of n PTA over X and Act, using
synchronization actions and shared variables that can be used in guards and transitions. UPPAAL
SMC uses an extended Weighted Metric Temporal Logic (WMTL) [21] for performing hypothesis
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testing, which checks if the probability to reach a state φ within cost x ≤ C is greater or equal to a
certain threshold p : Pr(♦x≤Cφ) ≥ p.

A trace σ of a PTA is a sequence of delays, actions, and transitions:

σ = (l0, u0)
a1,p1−−→ (l1, u1)

a2,p2−−→ ...
an ,pn−−−→ (ln, un), where the cost of performing σ is Σn

i=1 pi.

3. A Model Testing Method for Energy-Aware Testing Using EAST-ADL

In this section we introduce our model testing method which uses energy consumption objectives
to select test suites using a statistical model checker based on the created simulations. The framework
is based on the transformation of the EAST-ADL model into a network of priced timed automata
(PTA) [22]. It is composed of several steps, mirrored in Figure 1:
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Model
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Figure 1. An overview of the test suite generation and evaluation method for energy consumption
based on Electronic Architecture and Software Tools Architecture Description Language (EAST-ADL)
architectural models and mutation testing.

1. Mutant Generation. This first step (described in detail in Section 3.1) is used for generating small
syntactic changes (mutants) to the architectural description based on a set of mutation operators
(e.g., mimicking architectural energy errors). The output of this step is a set of new versions of
the original EAST-ADL model, each one containing an inserted change. When implementing this
step, a set of operators needs to be available based on the desired types of mutants. Different set of
operators were proposed in the scientific literature for both models and code [18,23] for mutation
testing using the UPPAAL model checker. We show how mutant generation is implemented for
the EAST-ADL language as an input for MATS and UPPAAL SMC.

2. EAST-ADL to PTA Transformation. The second step (described in detail in Section 3.2) is used for
transforming the EAST-ADL model to PTA. The output of this step are PTA models containing
the original structure and behavior of the EAST-ADL together with all inserted mutants and
annotated with energy consumption information to be used by UPPAAL SMC for test-case
generation and selection.

3. Test Suite Generation. The third step (described in Section 3.3) uses the MATS tool to generate a
set of test cases by using the UPPAAL SMC ability to generate simulations. We show how a test
simulation is obtained using a property expressed as a UPPAAL SMC simulation property.

4. Mutant Detection. The fourth step (described in Section 3.4) involves the instrumentation of the
model with detection instructions for each mutant. This means that the monitor for mutation
detection is used to record the execution and detection of each mutant.
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We discuss these steps in further detail in the following sections by applying this approach to
running examples.

Overall, we use an EAST-ADL system architectural model and mutation testing to automatically
generate test suites for model testing the energy consumption. Our test generation method aims to
use mutations in energy consumption in EAST-ADL to select test suites automatically using various
random simulations.

3.1. Energy-Aware Mutant Generation

In this paper we assume a resource r for an EAST-ADL component represents the accumulated
resource usage up to some point in time. By using this assumption, resources of this kind are
categorized as discrete or continuous [24] . Energy in EAST-ADL is a continuous resource that can
evolve linearly in time (energy(t) = n × t, where n ∈ N and t is the time elapsed during system
execution). In EAST-ADL components the resource usage is defined as the total energy consumption
of the system as energytotal(t) = ∑m

i=1 energyi(t), where m is the number of components. Based
on a predefined set of mutation operators, faults are injected. These mutants should represent
naturally-occurring faults influencing the energy consumption. The general principle underlying
mutation analysis is that the faults generated using the operators described in Table 1 represent the
mistakes that architects often make while modelling in EAST-ADL that directly influence the energy
consumption.

We propose a set of mutation operators and they are applied on all the EAST-ADL model elements
that could influence the energy consumption in the following three categories:

• EAST-ADL resource annotation (i.e., Energy Replacement Operator (ero)). In this case, we insert a
fault in the generic constraint of a function prototype by changing the original annotation. These
types of mutations intend to model the errors in the energy consumed by each component.

• Timing Behavior of an EAST-ADL component (i.e., Period Replacement Operator (pro), Execution
Time Replacement Operator (etro)) can be modified by changing the period and execution time
constraints. The period and execution time value stand as integer values in the constraint.

• Functional Architecture Structure (i.e., Component Removal Operator (cro), Component Insertion
Operator (cio), and Triggering Pattern Replacement Operator (tro)). We change the architectural
elements in EAST-ADL by removing or inserting components that influence the energy
consumption as well as modifying the triggering of each component.

In the case of the CRO mutation operator, a component is directly removed when we encounter
an entry, computation and exit function prototype. An entry function prototype in an EAST-ADL
model is a component that has at least one port receiving inputs externally. The computation function
prototype has all input and output ports connected with other function prototypes in the same level of
system abstraction. An exit function prototype has at least one output port sending data flows out
of the actual system. When a component is removed, the connections must also be removed so the
system remains well formed (compilable).
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Table 1. Description of each mutation operator and the elements in EAST-ADL that are modified.

Mutation Operator Description EAST-ADL
Element

Energy Replacement Operator
(ero)

The operator is applied where an energy value
occurs occurs, i.e., as an annotation of each
component. The operator is applied by replacing
a value of an energy constraint connected to a
component (e.g., replacing a value (value = 3)
with its boundary values (e.g., value = 2)).

GenericConstraint

Period Replacement Operator
(pro)

The operator applies the mutations in each period
constraint value. The operator is only applied in
the components triggered periodically. The
operator is applied by replacing a value of the
period constraint connected to a component (e.g.,
replacing a value (value = 20) with its boundary
values (e.g., value = 19)).

PeriodConstraint

Execution-Time Replacement
Operator (etro)

The operator applies the mutations in each
execution time constraint value. The operator is
applied by replacing a value of the execution time
constraint connected to a component (e.g.,
replacing a value (value = 3) with its boundary
values (e.g., value = 4)).

ExecTimeConstraint

Component Removal Operator
(cro)

This operator models errors related with missing
components. This operator removes each
component together with its constraints and
connects the inputs of this component to the next
component in the system.

FunctionPrototype

Component Insertion Operator
(cio)

This operator models errors related with
duplicated components. This operator adds a
duplicated component together with its
constraints and connects this component in the
same configuration as the original one.

FunctionPrototype

Triggering Replacement Operator
(tro)

The operator applies the mutations in each
component triggering pattern. The operator is
applied by replacing the periodic pattern with a
event pattern connected to a component and
vice versa.

FunctionPrototype,
PeriodConstraint

In Figure 2 we show examples of mutations for each mutation operator in Table 1. For each
category of mutations, a mutant operator was chosen to provide a small-scale example of the
application to a EAST-ADL model. For example, in Figure 2d for the CRO operator changing the
structure of the model within a system is a likely operation within an EAST-ADL project. Depending
on how the mutation operator is used, the other inports and connections have to be updated. In this
case, CRO removes FP2 and the connection between FP1.Port2 and FP3.Port1. To avoid compilation
problems a component is removed together with its control and connection structures.

These mutation operators are systematically applied to the entire EAST-ADL model (i.e.,
components, ports, connections) each simulating one syntactic change resulting in a set of energy-aware
mutants. During the execution of a test, energy consumption can be measured by the use of a
statistical model checker, and represented as a consumption of a continuous resources where the rate
of consumption over time is constant. A temporal sequence of energy values can have different shapes,
depending on the sampling rate of the measurement and the energy consumption behavior.
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FunctionPrototype1: FunctionType1

Port1 Port2

value=20

Period Constraint

FunctionPrototype1: FunctionType1

Port1 Port2

value=21

Period Constraint

b) PRO

FunctionPrototype1: FunctionType1

Port1 Port2

energy: value=3

Generic Constraint

FunctionPrototype1: FunctionType1

Port1 Port2

energy: value=4

Generic Constraint

a) ERO

FunctionPrototype1: FunctionType1

Port1 Port2

value=3

ExecTime Constraint

FunctionPrototype1: FunctionType1

Port1 Port2

value=2.9

ExecTime Constraint

c) ETRO
d) CRO

FP1: FT1

Port1 Port2

FP2: FT1

Port1 Port2

FP3: FT2

Port1 Port2

FP1: FT1

Port1 Port2

FP2: FT1

Port1 Port2

e) CIO

FP1: FT1

Port1 Port2

FP1:FT2

Port1 Port2

FP2: FT2

Port1 Port2

FP1: FT1

Port1 Port2

FP1:FT2

Port1 Port2

FP2: FT2

Port1 Port2

FP2: FT1

Port1 Port2

FunctionPrototype1: FunctionType1

Port1 Port2

value=20

Period Constraint

FunctionPrototype1: FunctionType1

Port1 Port2

minvalue=1
maxvalue=5

Event Constraint

f) TRO

Figure 2. Examples of mutations for each mutation operator for EAST-ADL architectural models.

3.2. EAST-ADL to Priced-Timed Automata Transformation

We transform an EAST-ADL model (with annotations of energy consumption) into a PTA
model. We use a small-case example in Figure 3 to show the transformation for a generic EAST-ADL
FunctionPrototype. Every component in EAST-ADL is automatically converted into a network of
two PTAs: An interface automaton representing the component interface, and a behavior automaton
representing the internal behavior. The PTA interface contains the triggering of each component,
timing information and energy annotations.

(a) A generic FunctionPrototype. (b) The interface timed automaton. (c) Behavior template.

Figure 3. An example of a generic interface timed automaton and a behavior template for an
EAST-ADL component.

In practice, each FunctionPrototype is translated into a network of two syncronized automata (as
shown in Figure 3): An interface automaton containing the ports of each EAST-ADL component and a
behavior automaton representing the internal discrete and continuous behavior. Each FunctionPrototype
is defined as an automaton with four locations: (i) Idle, (ii) a Read location used for updating the internal
variables according to the values on the input ports, (iii) a Exec location used for triggering the internal
Behavior, and (iv) a Write location allowing the update of output ports based on the internal variables
values. Each interface is triggered based on the triggering annotation Trigg associated with each
EAST-ADL FunctionPrototype. The energy starts to be consumed when information from the input
ports is read until the component writes the information to the output ports. The energy consumed
by each component increases with time during execution and is modeled as a cost “c” in the PTA
(c(t) = nc × t, where nc ∈ N is the rate of consumption over time t). When the component is
idle (c′(t) = 0) energy is not consumed. In order to calculate the overall consumed energy we
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use an automaton to compute the energy used by the system based on the energy consumed by
each component.

The GenericConstraint is used in the EAST-ADL model for annotating the energy consumption.
By using energy in the GenericConstraint annotation for the behavior of the PTA model, we can
measure the energy consumption inside each component. Specifically, we use a monitor automaton
that includes all of the EAST-ADL model’s energy annotations. This monitor is a PTA that supervises
the system execution by using two synchronization channels: FunctionPrototype_beh_start and
FunctionPrototype_beh_stop.

3.3. Test Suite Generation

To create executable test cases, we use traces obtained during simulation. At each predefined time
unit, test values are obtained by extracting the input parameters and energy values from the these
simulations. The generation of test suites is essentially the creation of signals using the generated
simulations. Since the input signal search space is very large, we randomly select input signals that
change over a certain predefined period of time using ordered signal sequences.

Extra-functional aspects in EAST-ADL, such as the energy consumption, are often more difficult
to generate test than for functional properties. Embedded systems often require large amounts of
energy to be consumed. Irregular and heavy use of energy could result in inadequate functionality of
the system that keeps essential components running. The estimation of the allocated energy budget
can be calculated using the energy consumption annotated in EAST-ADL. The system will complete its
execution if the actual energy consumption of the system does not exceed its energy budget. Otherwise,
the budget has been exhausted during the execution of the system. As a result, we concentrate on test
queries that simulate the nominal but also the worst-case energy consumption for a EAST-ADL model.

While UPPAAL SMC’s is used to provide statistical guarantees based on a series of system
simulations, it is also suitable to use the input parameters and the consumed energy as values in
test cases during individual system simulations. The simulation depends on the number of runs (n)
and the upper time limit for the number of runs (bound). By extracting the input parameters and the
energy values from these simulation traces, we create executable test cases using the MATS tool [25].
In practice, we use UPPAAL SMC’s ability to generate simulation traces, which we transform into
executable test cases using the MATS tool [25], by extracting the parameters and the energy values
at predefined time points. Each test input is a vector of signals where the model’s time-dependent
behavior is executed using an ordered signal sequence. UPPAAL SMC is used by MATS to obtain
traces of simulations over a predefined number of system model runs. A simulation can be formulated
in UPPAAL SMC as the property:

simulate n[bound]{E1, .., Ek},

where n is the number of simulations to be performed, bound is the time bound on the simulations,
and E1, .., Ek are the monitored expressions.

We execute the generated test cases on each mutant and collect the simulation traces containing
the energy values. On both the original model and its mutated versions, each test case is executed.
We exclude test cases that do not contribute to the mutation score in order to minimize the final set of
test cases [25]. The generated simulation traces are transformed into executable test cases sampling
the simulation trace (as shown in the small-scale example in Figure 4a). Based on the generated data
points we use intermediate values at predefined sample points and split the simulation trace in two:
A set of sampled inputs used to trigger the system under test and a set of sampled expected energy
consumption output.

In addition, during this phase we can generate test case with the worst-case energy consumption.
Using UPPAAL SMC for statistical analysis we can obtain the peak energy value which eventually
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reaches a certain behavior in time. This problem is reduced to trying to maximize the energy cost
function to satisfy the following property:

E[bound; n](max : energy)

where bound is the time bound of these simulation traces, n is the number of runs, and energy
represents energy cost. The worst-case energy consumption analysis calculates the simulation cost for
reaching a predefined system behavior. At this stage, feasibility analysis is used to verify whether the
energy consumption is still within the maximum energy value provided by the worst-case analysis.
The verification is accomplished by evaluating the energy distribution as a probability evaluation,
as follows:

Pr[bound](ψ)

where bound is the time bound in all the simulation runs, and ψ is a property in the form “Eventually
p”, where p is a state predicate. We can select the required test suites based on this analysis. Since
the tester may have limited time in practice to test all scenarios, one can choose from the randomly
generated test cases the significant and potentially problematic simulations.

(a)

Mutated Model Energy OutputOriginal Model Energy Output

(b)

Figure 4. Test Generation and mutant detection for energy consumption. (a) An example of a sampled
simulation trace obtained from UPPAAL SMC. (b) An example of applying mutation detection on two
traces based on a predefined threshold.

3.4. Energy-Aware Mutant Detection

A fault is considered to be detected by a test suite if at certain time points the energy values differ
drastically. In this way we increase the likelihood of evaluating a certain energy-related behavior
(e.g., if the energy differs significantly from the expected result). We assume in this study that small
deviations from the specified energy values can be acceptable, test engineers are likely to identify a
fault if the energy deviations are substantial.

From the generated test cases, inputs and output values are extracted and used for mutation
detection. The sequence of inputs in each test case is automatically inserted in a set of generated
mutated models. The mutated models are simulated with the extracted inputs to obtain sets of outputs.
The actual outputs extracted from these mutated models for each test case are compared to the expected
outputs in order to determine the test case ability to kill (detect) any difference between the mutated
models and the original one.

To exemplify this step, we show an example of a test suite that detects a mutant if the energy signal
varies significantly from the expected energy values at certain time points (as shown in Figure 4b).
In practice, we use a quantitative measure of mutant detection to measure the mutant-revealing
capability of a test suite. Let a test case TC be created for a mutated system model M, and let
EM = EM1, ..., EMN be the set of energy signals generated by simulating M for the inputs in TC and
sampled at N time points. Let EO = EO1, ..., EON be the corresponding expected energy signals. We use
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a threshold to verify if the distance is greater than this threshold between each value of EO and EM
at each time point. If there is at least one energy value in EM for which the distance is greater than
the expected threshold, we say that we can detect the mutant M. Otherwise, the injected fault is not
detected by TC.

4. An Experimental Evaluation on the Brake-By-Wire System

We experimentally evaluate this model testing method by applying on an industrial system
provided by Volvo Group Trucks Technology in Sweden. We perform experiments on a Brake-by-Wire
(BBW) industrial system and evaluate the applicability of model testing in creating test cases based on
energy-aware mutation testing. Additionally, by using automatically seeded faults, we examine the
energy-related detection capability of the generated test suites. We start by injecting a set of faults into
the original model to facilitate the assessment of fault detection. For the creation of faults, we rely on
energy consumption mutation operators shown in Table 1.

Specifically, we use a PTA model, run the created test suites and collect the traces from simulations
containing the energy values for each faulty model. Each test suite is executed on both the original
model and its faulty counterpart to calculate the fault detection score. A fault is considered to be
detected when energy results differ between executions. As an additional step, we can use the analysis
result by removing the test cases that do not contribute to the mutation score of the entire test suite.

4.1. Case Description

The work proposed in this evaluation targets the Design Level in EAST-ADL (i.e., Functional
Design Architecture (FDA) and Hardware Design Architecture (HDA) system aspects). The model
can be extended with a GenericConstraint annotation, which allows the architect to model the energy
consumption. Figure 5 presents a part of the BBW system at Design Level which is allocated to a
pedal ECU. This model is extended with annotations for energy consumption as a GenericConstraint.
The BBW system is a braking system that contains an anti-lock braking (ABS) feature and no mechanical
connections between the brake pedal and the brake actuators. A brake pedal-mounted sensor reads
its position, which is used to calculate the desired global brake torque. At each wheel, sensor values
are used to calculate the wheel speed used by the ABS algorithm along with the brake torque and the
approximate speed of the vehicle to determine the real brake torque to be sent to the actuators.

Figure 5. An overview of the Brake-by-Wire (BBW) system and its resource allocation.
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The ABS algorithm calculates the slip rate s using the following equation:

S = (V − W × R)/V,

where V is the vehicle speed, W is wheel speed, and R is the wheel radius. This coefficient has a
nonlinear relationship with the slip rate: When s is increasing, the friction coefficient is also increasing,
and its peak value is reached when s is 0.2. Further increase in s reduces the wheel friction coefficient.
In this case, if s is greater than 0.2 the brake is released.

To exemplify the transformation of the BBW system modeled in EAST-ADL, we show a small-case
example in Figure 6 that depicts the translation of the brake pedal sensor FunctionPrototype into a
network of two synchronized PTA. For each component, the energy is calculated according to the rate
of consumption monitored in the interface PTA (pBrakePedalSensor_e′ == 2), and a constant value
is used in the behavior automaton (pBrakePedalSensor_e = pBrakePedalSensor_e + 0.1). The energy
consumed by the entire system is computed using the sum of the energy consumed by each component.

(a) (b)

Figure 6. The network of Priced Timed Automata (PTA) for the brake pedal sensor component
FunctionPrototype showing the transformed EAST-ADL architectural interface and behavior. (a) The
interface timed automaton for the brake pedal sensor component. (b) The behavior timed automaton
for the brake pedal sensor component.

4.2. Experimental Evaluation

We performed an experimental evaluation considering the creation of energy-aware mutations
and model testing for the BBW system. We collected data for the following metrics: Generation time as
a proxy for test efficiency, mutation score as a proxy for fault detection and the number of selected test
cases as a measure of model testing cost reduction. In order to calculate the fault detection score, each
test suite is executed on the faulty versions of the original EAST-ADL model to evaluate whether it
detects the injected energy faults or not.

4.2.1. Test Suite Generation Results

As input for test generation, the method requires a standard EAST-ADL model. The generation
stops searching for test inputs when it achieves the number of simulation runs. The MATS tool
automatically runs the test cases on the BBW model and compares the expected outputs with the
actual ones. We used different number of simulations (i.e., 25, 50, 100, 200, 400, 1000) to assess the
test generation efficiency and effectiveness. As simulation time we used 64, value based on the BBW
model and its full system execution and the calculated end-to-end deadline. In addition, we use 0.05
as the sample size for detecting the differences in the energy signal and 5 as the threshold delta. These
values are selected based on our experience with verifying and analyzing the BBW system, as this is a
realistic scenario and the values show significant differences in the energy consumption upon manual
inspection of traces.

In Table 2, we present the results of applying model testing to the BBW case. As mentioned
previously, in this experiment, we assume that the time is bounded to 64 time units. Table 2 lists—for
each test suite and query to be checked—the time for test generation, as well as the mutation score
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achieved by each test suite. Regarding the generation of simulations for energy consumption, UPPAAL

SMC is able to generate test cases between 17.2 s for 50 simulations and 563.4 s for 1000 simulations of
the model.

In addition, to create a test suite demonstrating the worst-case energy consumption, we can use
UPPAAL SMC’s capacity to generate the maximum energy value. In this case, we generate simulations
of the system over 200 runs, trying to maximize the energy during these simulations, with the query
E[t<=64, 200](max : energy). The mean value generated by UPPAAL SMC is 447.2 energy units. Using
this estimation, we use can use feasibility analysis for obtaining the probability for the energy value
to remain within the threshold. For example, on the BBW system we are able to demonstrate, after
86 runs, that the energy consumption is lower than 447.2 with a 0.9 probability, and a confidence of
0.9. Given these results, an engineer can select test cases from the generated test suites showing the
worst-case energy consumption and which can be executed on the actual system.

These results show the applicability of statistical model checking, for model testing the energy
consumption using real architectural descriptions from an industrial system. We conclude that
we have obtained experimental evidence that this is an efficient method for model testing applied
on a real-world embedded system using its energy consumption information at the EAST-ADL
architectural level. These results suggest that model testing is computationally inexpensive when used
for mutation testing.

Table 2. Overall results showing the efficiency of the energy consumption test generation and mutant
detection score for all generated test suites. In addition, we show the results of the test case (TC)
selection based on mutation analysis.

Test Suite SMC Query Generation
Time (s)

Mutation
Score (%)

Selected TCs
| Total TCs

TS1 simulate 25[<=64]{inputs[], energy} 17.2 30% 8|25

TS2 simulate 50[<=64]{inputs[], energy} 36.4 57% 15|50

TS3 simulate 100[<=64]{inputs[], energy} 72.1 75% 42|100

TS4 simulate 200[<=64]{inputs[], energy} 137.8 87% 59|200

TS5 simulate 400[<=64]{inputs[], energy} 277.5 100% 123|400

TS6 simulate 1000[<=64]{inputs[], energy} 563.4 100% 130|1000

4.2.2. Fault Seeding and Mutation Detection Results

The fault seeding procedure, results in 223 mutations (i.e., 50 ERO-based mutants, 48 PRO-based
mutants, 50 ETRO-based mutants and 25 mutants for each CRO, CIO and TRO-based mutant operators).
All mutants are versions of the original EAST-ADL model containing a single fault (i.e., each fault
assumes one change in the system). All 223 faults are the result of applying all mutation operators.
On each of the faulty versions and their original counterparts, the generated test suites are executed
so that a fault detection score can be calculated. A mutant is deemed to be detected by a test suite
if at some time points the energy values vary significantly. This is performed in order to increase
the likelihood of detecting if the energy varies considerably from the expected result. Based on our
experience in verifying and analyzing the BBW system, we set the threshold to 5 energy units.

The results in Table 2 show that for all test suites (i.e., TS1 to TS6) the achieved mutation score
ranges from 30% for a test suite with 25 test cases to 100% for TS5 and TS6. Our results suggest that for
test suites containing over 400 test cases all mutants are detected. Test suites TS5 and TS6 are assumed
to be good at detecting faults in comparison to the other generated test suites. Even so, executing
all 400 test cases is costly when performing testing on the actual BBW system and not all test cases
contribute directly to the overall mutation score. This is extremely expensive from a computational
point of view when considering using model testing on a complex embedded system. Therefore, we
use the results of mutation analysis when executing test cases on the actual model to find the minimum

77



Designs 2020, 4, 5

number of test cases achieving the overall mutation score. In Table 2 we show the number of selected
test cases out of the total number of test cases generated for each test suite (e.g., a subset of eight test
cases can achieve a 30% mutation score). For all test suites, regardless of the number of generated
test cases, one can reduce the number of test cases achieving the desired mutation score by over 40%.
For TS5, 123 test cases are needed for achieving 100% mutation coverage with the rest of the test cases
in TS5 not improving the overall score. This shows, that some test cases overlap in their exercised
behavior of the BBW system and an improved generation strategy is needed to select the necessary
test cases during model testing.

5. Validity Evaluation

Here we present a validity evaluation using the guidelines proposed by Runeson and Höst [26].

5.1. Construct Validity

Proper construct validity investigates the phenomenon that the researchers intended to study.
The development of the method and the design of our experimental evaluation was based on certain
assumptions. We have seeded energy-aware mutants automatically to calculate the ability of the
selected test cases to detect energy errors. This process is carried out before test cases are generated
in order to avoid a potential bias. It is possible that a larger number of naturally-occurring faults
would yield different results. Adding real faults from previous projects should be employed in order
to control the results more objectively early in the development process.

5.2. Internal Validity

For an experimental study as ours, internal validity relates to how credible the testing results and
the mutation detection are. Detection of faults is based on a threshold of the energy budget and the
time points selected to check the difference in the signal. This requirement is specific to the system
and will not be enough to draw any strong conclusions. The effectiveness of this criterion depends
on the energy difference interpretation and would clearly differ from one system to another. Because
differences are characterized by the features of the signal shapes, we have checked at certain points
in time whether the energy values differ substantially. This is a realistic situation with test engineers
likely to find faults based on the measured energy consumption and the manual visual inspection.

5.3. External Validity

External validity relates to the study generalizability. Our method aims at designing and selecting
a proper test suite based on a generic evaluation of the architectural model and the mutant detection
score to reveal energy-related problems. However, unlike functional testing, which can use various
metrics (e.g., code coverage, input space partitioning) for test generation, mutation testing for energy
consumption is not as well studied. There is a need to develop and evaluate metrics capturing aspects
of test effectiveness of energy consumption (such as those suggested in this paper) that can be used for
test generation and selection.

6. Related Work

Recently, there has been a growing interest [27] in developing testing techniques focusing
on architectural designs in software engineering. Testing based on software architectures has
been explored in a considerable amount of work [28–32], leading to contributions in system and
integration testing [28–30], criteria for architectural-based testing [31], and regression test selection [32].
Jiang et al. [33] compared several techniques that are used in performance and load testing of software
intensive systems. For example, Zhang et al. [34,35] proposed the use of load testing of timing
and resource requirements using system-level models. Compared to this work, we focus on energy
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consumption and we provide an efficient and effective model testing method; this aspect has received
little attention in the literature.

Testing software based on extra-functional properties at the architectural level has received less
attention [7,36–40] than the functional testing of such models. In our previous work [7], we explored
the use of statistical model checking for analysis and performance testing of EAST-ADL models and
used manually injected faults to measure test effectiveness. In this work, we build upon these results
and consider how to automatically select and generate test suites for testing the energy performance of
a system based on its architectural model and mutation testing.

One of the initial papers on non-functional testing [36] used a software architecture for
selecting the parameters that directly influence the system performance. Among the approaches
for non-functional test generation, only a few [41–44] consider robustness and performance aspects.
Nebut et al. [41] and Shaukat et al. [42] proposed methods for automatic test generation that support
robustness goals expressed in UML models. In contrast to these studies, our approach is tailored to an
architectural language, which is an emerging notation in the automotive domain. We automatically
select test cases that cover energy-aware injected faults on the model level early-on in the development
process. In addition, in this paper we focus on selecting test cases for testing the performance of
an existing Brake-By-Wire system by using the energy consumption information encoded in the
architectural model.

7. Conclusions

In this paper we outline a method for testing EAST-ADL architectural models using energy-aware
mutations. Furthermore this method uses UPPAAL SMC and MATS approaches to select test suites that
contribute to the overall mutation score. The method makes use of energy requirements as expressed in
EAST-ADL architectural models, transforms these requirements into priced timed automata together
with the component interfaces, and uses statistical model checking to identify relevant test cases.
We use simulations to create test suites containing input parameters and energy signals. We select
test cases that maximize the mutation score. An experimental evaluation of this method, using a
Brake-by-Wire system provided by Volvo Group Trucks Technology in Sweden, indicates that model
testing of energy consumption is applicable for the automatic generation and execution of test suites
at architectural level. The evaluation indicates that this method of creating test suites is efficient in
terms of generation time. In this study, we proposed to evaluate the fault detection capability of
these test suites by seeding modeling errors for energy consumption and altering the level of energy
consumption over time. Our results suggest that an approach that selects test cases showing diverse
energy consumption patterns can increase the fault detection ability.

Future work aims to extend our approach to generate tests for other types of resources and to
apply it more thoroughly to real industrial cases to demonstrate its strengths and limitations by using
naturally occurring faults.

Author Contributions: The first two authors contributed equally to the research, approach, study design, analysis
and reporting of the research work. In addition, the first author contributed with tool development and data
collection. All authors have read and agreed to the published version of the manuscript.

Funding: This research was supported by the Swedish Research Council (VR) through the “Adequacy—based
testing of extra-functional properties of embedded systems” project. This work is partially funded from the
Electronic Component Systems for European Leadership Joint Undertaking under grant agreement No. 737494,
The Swedish Innovation Agency, Vinnova (MegaM@Rt2 and XIVT), as well as by the Swedish Knowledge
Foundation (KKS), within the DPAC (Dependable Platforms for Autonomous Systems and Control) research
profile.

Acknowledgments: We would like to thank Jonatan Larsson for his support in using the MATS tool and Raluca
Marinescu for her valuable comments on this work.

Conflicts of Interest: The authors declare no conflict of interest.

79



Designs 2020, 4, 5

References

1. Pretschner, A.; Broy, M.; Kruger, I.H.; Stauner, T. Software engineering for automotive systems: A roadmap.
In Proceedings of the IEEE Computer Society on 2007 Future of Software Engineering, Minneapolis, MN,
USA, 23–25 May 2007; pp. 55–71.

2. Hammond, J.; Rawlings, R.; Hall, A. Will it work?[requirements engineering]. In Proceedings of the
IEEE International Symposium on Requirements Engineering, Toronto, ON, Canada, 27–31 August 2001,
pp. 102–109.

3. Barroso, L.A.; Hölzle, U. The case for energy-proportional computing. Computer 2007, 40. [CrossRef]
4. Briand, L.; Nejati, S.; Sabetzadeh, M.; Bianculli, D. Testing the untestable: model testing of complex

software-intensive systems. In Proceedings of the 38th International Conference on Software Engineering
Companion, Austin, TX, USA, 14–22 May 2016; pp. 789–792.

5. González, C.A.; Varmazyar, M.; Nejati, S.; Briand, L.C.; Isasi, Y. Enabling model testing of cyber-physical
systems. In Proceedings of the 21th ACM/IEEE International Conference on Model Driven Engineering
Languages and Systems, Copenhagen, Denmark, 14–19 October 2018; pp. 176–186.

6. Blom, H.; Lönn, H.; Hagl, F.; Papadopoulos, Y.; Reiser, M.O.; Sjöstedt, C.J.; Chen, D.J.; Tagliabò, F.; Torchiaro,
S.; Tucci, S. EAST-ADL: An Architecture Description Language for Automotive Software-Intensive Systems.
EAST-ADL White Paper 2013, 1.

7. Marinescu, R.; Enoiu, E.; Seceleanu, C.; Sundmark, D. Automatic Test Generation for Energy Consumption
of Embedded Systems Modeled in EAST-ADL. In Proceedings of the 2017 IEEE International Conference
on Software Testing, Verification and Validation Workshops (ICSTW), Toyko, Japan, 13–17 March 2017;
pp. 69–76.

8. DeMillo, R.A.; Lipton, R.J.; Sayward, F.G. Hints on test data selection: Help for the practicing programmer.
Computer 1978, 11, 34–41. [CrossRef]

9. Behrmann, G.; Fehnker, A.; Hune, T.; Larsen, K.; Pettersson, P.; Romijn, J.; Vaandrager, F. Minimum-Cost
Reachability for Priced Time Automata. In Hybrid Systems: Computation and Control; Lecture Notes in
Computer Science; Springer: Berlin/Heidelberg, Germany, 2001.
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Abstract: This paper discusses a full model-based design approach in the applicative development of
Cyber Physical Systems targeting the fast development of Logic controllers (i.e., the “Cyber” side of a
CPS). The proposed modeling language provides a synthesis between various somehow conflicting
constraints, such as being graphical, easily usable by designers, self-contained with no need for extra
information, and to leads to efficient implementation, even in low-end embedded systems. Its main
features include easiness to describe parallelism of actions, precise time handling, communication
with other systems according to various interfaces and protocols. Taking advantage the modeling
easiness deriving from the above features, the language encourages to model whole CPSs, that is
their Logical and their Physical side, working together; such whole models are simulated in order
to achieve insight about their interaction and spot possible flaws in the controller; once validated,
the very same model, without the Physical side, is compiled and into the logic controller, ready to
be flashed on the controller board and to interact with the physical side. The discussed language
has been implemented into a real model-based development environment, TaskScript, in use since a
few years in the development of production grade systems. Results about its effectiveness in terms
of model expressivity and design effort are presented; such results show the effectiveness of the
approach: real case production grade systems have been developed and tested in a few days.

Keywords: Cyber Physical Systems; Reactive Systems; Model-Based Design; Embedded Systems;
Automatic Code Generation; IDE; Internet of Things

1. Introduction

CPS defines the class of systems where some Physical reality is observed and controlled
by a software controller, with the purpose of obtaining the requested behavior(s) towards the
accomplishment of the given task(s) [1].

This paper focuses on one of the major issues in the design of CPSs, that is, the development
of the controller software, a job intrinsically complex because of its multidisciplinary nature, where
deep competences ranging from Physics to Electronics to Computer Science are needed, and proposes
a specific language and a complete toolchain to support the development of such software in an
effective way.

To this goal, the model-based approach is proposed, a technique aimed at easing the design task by
hiding most of the details; the envisioned result is to enable experts of the domain (i.e., the Physical side)
to actively participate in all the phases of the controller design bringing in their domain competence,
rather than leaving potentially impacting design decisions to the experts of the implementation.

“CPSs are integrations of computation with physical processes. Embedded computers and
networks monitor and control the physical processes, usually with feedback loops where physical
processes affect computations and vice versa”. This definition, excerpted from [2], updates and
generalizes the definition of Reactive Systems [3] introduced in the 1980s with a similar purpose, that
is, providing a framework for the design of controllers for physical devices; while Reactive Systems
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focused exclusively on the Control Function leaving the Physical side outside their boundary, CPS
consider both controller and controlled subsystems, and this allows for deeper understanding of the
whole system.

Apart from this different way of drawing the boundary of the system under study, most
assumptions within Reactive Systems are the same for CPS, the most important one being the
“reactiveness” of the Control function. This function—the Cyber side in CPS jargon—must be able to
receive and react to stimuli from the Physical side at any point in time; this constraint derives from the
fact that the Physical side is generally made by several devices, each working at the same time, hence
to be dealt with “simultaneously”.

Notice that RS/CPS are quite different from Transformational Systems (i.e., a server, desktop
computer, or a tablet), typically designed to process streams of data stored in files, or obtained from the
network or from users, and there are no hard constraints upon the delay in the availability of their results;
in a nutshell RS/CPS and TS have different requirements and capabilities: while a Transformation
System is able to perform potentially highly sophisticated processing upon data available when the
processor is ready to work on them, RS/CPS are able to perform the processing needed to maintain an
ongoing interaction with their environment, exchanging asynchronous signals with it.

Model-based design is a methodology allowing designers to develop their projects through the
use of primitives (i.e., elementary “components”) chosen from a predefined set; the use of predefined
components helps because it allows to overlook details and consequently to save effort and time.

Most MB design environments offer primitives sets chosen according to some analogy with the
real world, so that designers are already familiar with such primitives. Designers can think they are
using the real components that the primitives remind and expect similar results as if they built real
systems with the real blocks which the primitives derive from.

The model-based technique presented in this paper is based upon a Domain Specific Language
(DSL), with its execution semantics able to handle natively the relevant situations arising in CPS
controller models, such as for example concurrency, timing, state transitioning, data handling.

The proposed language belongs to the class of Synchronous languages, pioneered by Esterel [4],
Lustre [5], and Argos [6] (see [7] and [8] for a detailed discussion on synchronous languages) whose
name derives from their analogy with the synchronous digital circuits. Models are executed cyclically,
in a “read inputs–evaluate model–write outputs” loop that repeats forever; the execution of one cycle
is considered instantaneous and time is advanced outside the cycle. Time is modeled according to the
Timed Automata theory [9]: resettable clocks are available inside states and transitions to model time
dependent behaviors.

One of the initial requirements of the presented project is to be implementable both in
software/firmware, on off-the-shelf CPUs, and in microcode, on specialized hardware; to this end,
the language has been defined following a bottom-up path. A dedicated virtual machine has been
defined first, with its own instruction set natively supporting all the above features, with the additional
requirement of being efficiently executable in all the possible implementations. For the time being
the Machine has been implemented in its virtual version, i.e., in software and in firmware, on a
number of off-the-shelf CPUs, with 32, 16, 8 bits; however, the very same instruction set is ready
to be implemented as a real machine on special purpose microcoded hardware, to maximize the
execution speed.

From the definition of the virtual machine, the DSL has been defined in such a way to maximally
exploit the features of the virtual machine, and to be easily compiled into its primitives. As the Virtual
Machine has primitives that explicitly handle the scheduling of concurrent activities, these aspects are
exposed in the DSL so designers can take advantage of them within their models.

The resulting DSL has a clear execution semantics that allows to easily express the system to
be implemented, without need of adding side information; the synthesized code is complete and
optimized by construction, hence can be released in production without any manual intervention.
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While the implementation of the microcoded version has not been tackled, an intermediate
product has already been implemented along this path: the “controller-on-a-chip”, which is actually
an off-the-shelf CPU pre-flashed with the virtual machine. Once loaded with the code coming from
the model compilation, such chip behaves as described in the model. This product can be used as a
hardware building block to quickly build specialized CPS controller boards ready for Model-Based
design; hardware designers can easily integrate the chip into their designs, using and interfacing only
the needed I/Os.

The availability of a variety of virtual machines with different positioning in the (speed, consumed
energy, arithmetics precision, type and number of I/Os, cost) hyperspace, combined with the fact
that the system to be implemented is fully described by its model, so that a working implementation
can be automatically generated, allows designers to explore trade-offs with little effort. A flavor of
this is shown in the results discussion section, where a design has been implemented on two VMs for
comparison purposes; for that simple case the two solutions trade off 4× less consumed power with
7× slower response time.

The paper is organized as follows: Section 2 briefly reviews the model-based bibliography and
introduces the novelty of the proposed approach, Section 3 presents a reference architecture for CPS
showing how the proposed approach can help in dealing with the complexity, Section 4 discusses
the main aspects involved in MB design of CPSs analyzing the requirements for a DSL; Section 5
introduces and discusses the TaskScript Model-Based DSL; Section 6 addresses CPS modeling with the
TaskScript toolchain; finally Section 7 reports and discusses results in terms of both modeling effort
and performance of the generated code and Section 8 concludes the paper.

2. Previous Work and Novelties of the Presented Approach

In this section previous work is reviewed, mainly with respect to the ability to fulfill the
requirements arising in implementing the reference architecture analyzed in Section 3.

Model-based strategies can conveniently be classified into lightweight and heavyweight (see [10]),
according to the specificity of the adopted modeling language. Lightweight MBs extend or specialize
existing general-purpose modeling languages (for example, the UML [11]) in order to inherit their
theoretical foundations or execution semantics, and exploit the available tools.

On the other hand, heavyweight MBs define their ad hoc execution semantics and languages
(DSL). At the cost of implementing a new toolchain, the expected advantages are: (a) specificity to the
domain of interest; (b) modeling accuracy and easiness, with consequent reduced modeling effort;
and (c) optimization of the produced results, that is the efficiency of the synthesized system.

The lightweight approach has been adopted by a number of design environments based upon
the UML and its derivatives, like the SysML (System Modeling Language) [12] (see Rhapsody [13]),
or MARTE [14]; the same approach has been adopted by Papyrus [15], based on the fUML [16],
and others.

From the concurrency point of view, the execution semantics of UML is based upon concurrent
capsules interacting via channels connected to capsule ports; capsules are scheduled and interfaced
by the host O.S., where the application is deployed, which provides concurrence support. This was
chosen by UML design team in order to preserve the genericity of the execution model across a variety
of O.S.

However, due to the above genericity choice, the ability of such design environments to meet
hard real-time constraints (i.e., the capability to deliver controllers able to react within a predictable,
bounded amount of time, possibly in contexts of limited resources in terms of CPU power, memory,
energy, etc . . . .) can only be as good as the one of the host O.S.

The PSCS (Precise Semantics of UML Composite Structures) specification [17], which integrates
fUML, allows finer control on the dispatching of events inside objects, allowing to introduce priorities
and other mechanisms. However, this control is limited to intra-capsule activities; events flowing to
and from different capsules are under the control of the O.S.
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As a consequence, models must cope with the fact that there is no control upon the order of arrival
of events coming from concurrent capsules; in applications where the result is sensitive to the order
of arrival of data coming from concurrent capsules, this must be ensured at model level; as will be
discussed later in this section, this technique could be named “constraints-abiding”.

Another example of lightweight system is Yakindu [18], based upon StateCharts, that generates a
C/C++ source code implementing the modeled state machine leaving the user with the task of filling
in the code which performs the data handling. The choice about the execution semantics of concurrent
activities is left to the users, who can allocate them (if any) to parallel threads/processes resorting to
the OS for their scheduling, or implement an ad hoc scheduler, to have more control on it; in any case
manual coding and debugging is needed.

Likewise, for the Matlab-Simulink-Stateflow [19] design suite, which produces code at source level;
some intervention upon the generated code may generally be needed in order to achieve hard real-time
capability, but this manual phase, in turn, needs further effort and can invalidate the correctness of the
design as checked in the earlier stages.

On the other hand, heavyweight design systems take a different approach to be hard real-time
capable and achieve the fine grain control over concurrent activities needed to control fast physical
devices, as needed by the reference architecture. They implement their ad-hoc algorithms for the
scheduling of concurrent activities in order to bypass the general purpose scheduling and Interprocess
Communications mechanisms provided by the O.S.

In the following, a few examples are reported which follow this approach, to different extents.
The SCADE design suite [20], based on a synchronous language, such as Esterel, compiles the input
model into one large automaton to deliver the concurrent behavior of the model while executed on a
sequential program; such sequential automaton is built with the Cartesian product of the state spaces
of all the sequential threads that can occur in parallel.

AutoFOCUS-3 (Af3) [21] supports modeling of distributed systems through the definition of
the timed message streams exchanged among the various components; the resulting network of
interacting nodes is then allocated on the distributed platform according to a mapping expressed at
the model level. This allows model designers to express constraints on allocation and to reach hard
real-time capability.

LabView [22] is another example of a synchronous language; it is typically used to model networks
of virtual instruments and have them operate upon real data coming from the physical world. However,
dedicated hardware can be needed to execute the model with real-time data.

The proposed design suite follows the same approach and addresses the design of CPS control
functions, mainly targeting embedded systems with limited resources in terms of CPU power, memory,
etc. To this purpose, the target hardware is not equipped with a general purpose O.S., rather a special
purpose lightweight multitasking kernel is provided. To maximize its effectiveness, the generated
code is produced at executable level, optimized for the desired CPU/platform, and chosen among the
supported ones.

The synthesized controllers provide deterministic durations for activities, bounded by estimates
computed at compile time: hence they are hard real-time capable.

Unlike the Esterel approach, here the model is compiled into a set of small sequential automata,
one for each sequential thread defined in the model: the concurrent behavior is delivered by the
kernel executing concurrently all the sequential automata. This has the advantage of avoiding the
generation of a large automaton, which would exceed the available memory of small and medium
sized controllers.

Moreover, while Esterel is an imperative language, where states are implicit, in the proposed
DSL states are defined explicitly; this makes the language declarative, and is thus more adaptable to a
visual representation and easier to understand. This, however, was also the idea behind Argos.

One distinctive feature of the DSL is its fine-grain control upon the order of execution of the
concurrent activities defined in the model; model designers can set the precedence in which actions
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belonging to the different concurrent threads are executed through DSL directives (see Section 5.6.1
for details).

The benefit of this feature is that a simpler execution semantics can adopted to handle data
coming from concurrent threads. Where, in other MB languages, channels must be used in order to
buffer data exchanged among concurrent threads in order to cope with the uncertainty in the order
of their arrival, in the proposed DSL plain variables can safely be used, written and read by all the
interested concurrent actors in the desired order. This opens a new, light-weight modeling approach
for handling conflicts where the same variable is assigned by different concurrent activities. While the
traditional way is “constraints-abiding”, where conflicts are handled at model level, here an alternative
is provided: “constraints-enforcing”, where conflicts simply cannot occur; models exploiting this
approach are generally simpler and more efficiently implemented (see Section 6.4 for a comparison
among the two techniques on a simple example).

Finally, one unique feature of the DSL is the availability of “stateful primitives” (see Sections 5.4
and 5.5 for a detailed discussion). This mechanism, consistent with the synchronicity paradigm, allows
the encapsulation of stateful resources through a simple “enable-done” interface; the enable input is
used by the model to activate the resource and the done output is used by the resource to notify the
model of the successful completion of its task.

Stateful primitives have their own internal state, which evolves concurrently and independently,
and communicate with the model only through their enable-done interface. A number of resources
have been integrated to the DSL as stateful primitives, to allow modeling controllers compliant with
the reference architecture; this is, for example, the case of communications resources, such as ports
and protocols.

3. Reference Architecture for CPS

The term CPS has been proposed to convey the concept of “smart” systems. Taking advantage of
the communications infrastructure available in today’s world, the implementation of systems exhibiting
such a behavior is feasible leveraging the cooperation of multiple systems interacting remotely; within
this picture, where a system is implemented as a network of geographically distributed subsystems,
CPSs play the role of those remote subsystems interacting with some physical periphery with the
purpose of observing it, or controlling it, or both, keeping periodic contact with the rest of the network.

A CPS must then be able to both observe and/or control its own physical periphery and at the
same time communicate with one or more other systems using standard (i.e., http) protocols. Such two
classes of tasks are very different with each another, as the former needs hard real-time capabilities,
and the latter needs the ability to handle the many anomalous conditions that can arise in remotely
distributed systems, such as communication errors, timeouts, temporary outages, and more.

Figure 1 proposes a reference architecture for the implementation of CPS, well suited to
implement both stand-alone and connected devices; both internal (i.e., computation) and external
(i.e., communication) aspects are addressed, with their respective peculiarities.

The atomic element of the architecture is the parallel “thread”, interacting with the others through
a system of private and shared variables. Each thread typically takes care of a single element of the
Physical periphery, with the advantage that every thread deals with that element alone as if it was
the only one in the system; this makes each thread easy to write and debug. Likewise, other threads
handle the communication with the rest of the network, using the available communication resources.

The two main categories of threads can be summarized:

1. Local control: fast and independent from the network(s), robust against delays or temporary
network outages, hard real-time capable;

2. Remote communication: here data are exchanged through the network(s) to update the remote
nodes about the controlled process(es) and, possibly, to receive updated control constants.
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The Concurrent Execution Environment has the responsibility of executing all the model-level
threads concurrently, updating the I/O variables and the other internal resources, etc.

The aim of the DSL and associated IDE discussed in this paper is to effectively support the design
of CPS according to the above reference architecture, through a model-based approach.

Figure 1. Reference architecture for Model-Based designed CPS.

4. Model-Based Design of CPS Controllers

CPSs integrate physical devices with processing and communicating devices; both Physical
and Logical sides have their own internal state, <P1, . . . ,Pm> and <L1, . . . ,Ln> respectively;
their internal state is continuously changed by two transformations operating the two sides, TP

(i.e., the transformation occurring in the Physical side) and TL (i.e., the transformation occurring
in the Logical side), the former involving exchange of energy and the latter involving exchange
of information.

A CPS Controller is typically an embedded system hosting the Logical side of the CPS; in other
words it is the place where <L1, . . . , Ln> lays, along with the functions implementing TL.

The Controller design is aimed at defining <L1, . . . , Ln> and TL in such a way that the CPS as
a whole exhibits the requested behavior; in such an activity <P1, . . . , Pm> and TP are mainly used
as part of the input requirements; the design of the Controller must ensure that the Physical side is
correctly and timely observed and Controlled so that the whole system has the expected behavior.

However, in case controller designers realized that there is no way to implement the Logical side
to keep up with the given Physical side, changes could be done to it; the following discussion implicitly
assumes that such changes, if any, have already been made when tackling the controller design.

At the interface between the two sides, Physical and Logical (i.e., Cyber), two sets of signals are
“continuously” exchanged, travelling in opposite directions: one set, <I1(t), . . . , Ip(t)>, contains signals
produced within the Physical side, sensed and sampled into sequences for the Logical side; on the
other hand, the other set, <O1(t), . . . , Oq(t)>, contains actuation signals for the Physical side, generated
by converting sequences produced inside the Logical side.

The CPS Physical side operates, by its very nature, time-continuously, in full parallelism and
total asynchronicity: all its components operate all the time, consuming the signals <O1, . . . , Oq>,
transforming the internal state <P1, . . . , Pm> according to the physical stimuli and <O1, . . . , Oq> and
TP, i.e., the physical laws involved by the specific case, and producing the signals <I1, . . . , Ip>.

On the other hand, the Logical side consumes <I1, . . . , Ip>, changes its internal state <L1, . . . , Ln>
according to them and to TL, i.e., the implemented control algorithm, and produces new <O1, . . . , Oq>.

The Controller implementing the Logical side must be designed to be able to read <I1, . . . , Ip>,
and produce <O1, . . . , Oq>, in a correct and timely way; this statement is an alternative way to
express the requirement that the sought solution is a hard real-time controller, able to cope with
time-critical systems (a controller is defined hard real-time if it can guarantee to carry out given
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activities within a given amount of time); the following introduces how the above requirement is
tackled in the proposed language. From the hardware point of view, the Controller operates cyclically:
the various physical components are served by dedicated logics running on the processing node one
after the other, according to the provided order, and this cycle is repeated forever: each iteration
consumes one sample from all the input variables <I1(t), . . . , Ip(t)> and produces one sample for all
the output variables <O1(t), . . . , Oq(t)>.

This strategy is typical with Synchronous languages and ensures that the processing is
deterministic, i.e., the same output sequence is always generated, out of the same input sequence.

The underlying hypothesis, necessary for the correctness of the results, is that the controller
embedded CPU is fast enough to allow the controller perform all the computations contained in the
model at the speed requested by the Physical side.

These conditions must be verified after the automatic program generation; a rule of thumb is that
the cycle period is at least one order of magnitude shorter than the shorter significant time constant of
the devices in the Physical side.

As will be shown in the results discussion, controllers generated with the presented approach
have cycle times in the range of 20 to 50 microseconds for implementations with 16 bits CPUs and in
the range of 100 to 250 microseconds for implementations with 8 bits CPUs.

According to the above figures, the feasibility of a controller can be decided before embarking on
the modeling process: as an example, a project is feasible if the shorter significant time constant in the
Physical side is slower than 0.5 milliseconds, if a 16 bit CPU is planned.

The proposed language is conceived in such a way that an accurate estimate of the execution time,
that is the range (best case–worst case) can be automatically produced at model compile time.

The effectiveness of the MB approach in supporting designers heavily relies upon the fitness of
the Modelling Language to the actual design domain; the chosen set of language primitives should
consider, at least, the following (partly conflicting) constraints:

1. Effectively support system designers in modeling their actual systems;
2. Be easy to understand and remember by designers;
3. Lead to efficient implementations: while this requirement is of limited importance for the analysis

and simulation use case, it becomes crucial in the code generation use case, where code efficiency,
size, consumed energy and cost of the produced result play a significant role.

Here we concentrate upon modeling CPS Controllers; for this scenario a fundamental requirement
has already been introduced, that is the ability to natively model execution parallelism: designers
should be allowed to express their models in terms of individually designed blocks that operate
“concurrently”; along with parallelism comes timing: typically, physical devices need to be interacted
with in precise and accurate windows of time.

A further requirement is that models must be expressed visually, i.e., through schematic drawings,
rather than in text, as the former is easier to understand and to remember and allows for more effective
visualization techniques of simulated and run-time state.

4.1. Modeling the State Nature of Control Algorithms

States are a convenient abstraction helpful in modeling CPSs and, generally, parallel systems;
modeling a system as a set of sequences of states, evaluated in parallel, is a way of applying the
divide-and-conquer principle to this class of systems.

Key to CPS controller modeling is then the ability to capture the state nature of the needed control
algorithm (if any), that is, the fact that a CPS exhibits different behaviors according to its actual state.

A number of formalisms have been defined over time to model the state nature of systems:

5. Finite State Machines (FSM): very basic formalism, where one and only one state is active at the
same time; a transition from state I to state J triggers if state I is active the guard from I to J is true;
no parallelism is allowed; easy to understand but too limited in expressivity.

89



Designs 2019, 3, 15

6. Petri Nets: very powerful formalism, where every place can have arbitrary marking, and this
allows modeling parallelism and synchronization; however, it’s difficult to map the real state of
the system on the actual marking of the net.

7. State Charts [3] and UML [11]: very general state machines formalisms, allowing hierarchy
and parallel threads: they lay at the needed level of abstraction, but the fact that they allow
hierarchical states and, specially, transitions among states belonging to different hierarchical
boundaries, leads to heavy implementations, potentially unsuitable for low-end CPUs.

8. GRAFCET: [23] a simplified Petri Net formalism, with boolean marking; with this restriction a
GRAFCET is a kind of an augmented FSM, whose states map to places one-to-one; parallelism
and synchronization are supported and it is efficiently implementable.

The most suitable choices are 3 and 4; in both cases the states defined at model level can be
mapped onto lower level tasks, so that the multitasker executing on the target CPU will be able
to process each and every active state. In the proposed language states are defined following the
GRAFCET definition; states are named Steps, to remind that more that one of them can be active at the
same time.

4.2. Modeling Data within Control Algorithms

Data Modeling, complementary to state modeling in the design of CPS controllers, defines the
data used in controllers and their transformations along with its states.

Basic scalar types like Binary and Integer are obviously needed, possibly with options in their
precision (i.e., number of bytes), to allow optimizing the implementation on CPUs with limited
resources. Arrays of such data types are really needed, as they can store sequences of samples, in turn
derived from sampling physical signals, and support iterations; strings are needed in order to support
operations upon protocols and in particular the Internet ones; structured data are nice-to-have but not
mandatory, as Controllers are not expected to perform very diversified processing.

Data variables should be differentiated according to their usage within the controller; the main
needed classes are:

1. Input and Output: data refreshed with signals sampled from the Physical side, that is <I1, . . . , Ip>
and data updating signals sent to the Physical side, that is <O1, . . . , Oq>; there are several options
about when updating such variables, such as when-input-is-used, or when-output-changes, or
synchronous; such choices have different impact upon the controller hardware and software
complexity; the lighter weight choice is synchronous sampling and conversion, where all inputs
are sampled at the same point in time and all outputs are converted at another same point in
time. This is the actual choice.

2. Internal: scratch variables, used for intermediate calculations
3. Persistent: stored on long term memory in order to survive possible controller restarts, such as

configurations or data related to the Control algorithm
4. Communications: data exchanged with remote nodes

Input and Output variables data should have a global scope, to reflect the fact that they are
available everywhere in the model; other types of variables could be differently scoped (i.e., global or
Step-wide, etc . . . ) to protect them from unwanted use. Variables contained in the same scope should
be accessible by all model sections contained in the same scope.

4.3. Modeling Data Transformations within Control Algorithms

Modeling data transformations is about how designers express the assignment of variables within
the Controller; before discussing how transformations are expressed, it is important to decide when
they must occur within the control algorithm.

As the Control function is expressed in terms of states, data transformations can be associated to
each and every controller state. A natural way to achieve this is to place data transformations inside
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each and every state in the Controller, so that at any point in time the Controller will execute the data
transformations associated to all the states which are active at that point.

In case more than one state is active at the same time, this can lead to conflicts, in case the same
variable is assigned to different values in the different states; the sequence in which active states are
executed must be known in advance (the default choice could be the order in which states are defined),
so this can be exploited when defining the control algorithm (see below).

In the choice of the modeling language for data transformations, two main alternatives
are possible:

1. Imperative: this is the technique used in procedural programming languages (i.e., C, C++,
Javascript, etc.) where assignment sequences like temp = a; a = b; b = temp; can be written. The
adjective imperative denotes that the sequence of statements is strictly observed; the result of
the above three statements would be different should them be executed in a different order. This
choice would lead to sequences of statements, easy to write in text but not easily shown in a
graphical way; however, the most important drawback of this choice in a state-based language is
that the possibility to assign the same variable multiple times along with an assignment sequence
allows to embed some “state related” behavior inside the data transformation section.

2. Declarative: data transformations are modeled through data-flow graphs; one graph can be
defined for each assigned variable, defining in a functional way how the assigned result is
obtained from its input variables; the graph for the expression f = (a + b)*(−e)*d is shown in
Figure 2.

 
Figure 2. Data-flow graph representing the expression f = (a + b)*(−e)*d.

By definition, data flow graphs do not allow multiple assignments for the same variable and do not
impose any order of assignments; for this reason they do not embed any state related information; they
represent pure combinatorial behavior, hence this model is orthogonal to the state model; moreover
they can be easily represented graphically; from a model-based point of view they can be interpreted
as the (physical) network of arithmetic/boolean function blocks combined to produce the desired
value for the assigned variable.

In the proposed language data transformation is modeled according to the data flow approach;
besides the already mentioned advantage, data flows guarantee the time boundedness of their
evaluation, as they are free of loops, and this property has been exploited in the implementation
of the language (see below).

Another desirable property of data flows, although not yet exploited in the current version of
the toolchain, is the easiness of application of Model Checking techniques to formally derive given
properties for the model, such as liveness, reachability, etc, whose verification is mandatory for
safety-critical systems.

5. The TaskScript Model-Based DSL

In the following, the proposed language is discussed; this is not, however, the complete reference
of the language, which can be found on the web site (see [24]).
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5.1. Data Modeling: The Context Diagram

The Context Diagram is the model “starting point”; it carries its general information, mainly
made of:

1. Constants
2. Variables at the global scope; the TaskScript variable system is built upon the Boolean and

Arithmetic types; variables of both types belong to a specific class, which designates how they
are handled by the run-time executive; the classes are: (1) Input and Output, which be explicitly
allocated, to map them on the physical connector on the controller board and are converted to
and from digital or analog signals respectively; (2) Keep and Temp, the former keeping their
values until they are changed by an assignment while the latter are reset at the beginning of every
cycle (see below); finally, (3) Memory variables are persisted on long term memory (e.g., flash)
(4) Remote allow to communicate with other nodes and (5) System allow to deal at the model
level with some variables of the below run-time executive. Variables of any type and class can be
scalar or arrays.

3. Model Tasks: Tasks are a structural abstraction level introduced for modularity purposes on top
of state machines; each Task defines one sub-state machines, with one initial state and zero or
more exit states (the term Task used here, at model level should not be confused with the atomic
entity of the multitasking scheduler, which rather is the Step; to help against this confusion,
model Tasks will be written with capital T).

Figure 3 shows a Context Diagram example; the shown model has four Boolean Input variables,
goCW, goUp, NzeroR, NzeroH and one Analog Input Variable, energy; it has three Boolean Output
variables, coil0R, coil1R, coil0H, coil1H and four Tasks; main, comm, StepMot, TM_env, each of which
are defined by their Control Flow and set of Data Flows.

Task StepMot, for example, controls one stepper motor has six formal arguments, which will be
bound to variables where it is instantiated, within a Control Flow (see below); task TM_env is tagged
as “environment”, hence used for simulation only. The other boxes of the diagram refer to internal
variables (i.e., CWise, CCWise, Up, Down, . . . ), and constants (i.e., NightEn, maxR, maxH) globally
accessible to all the Tasks of the model.

Figure 3. An example of a Context Diagram.
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5.2. State Modeling: The Control Flow

The Control Flow language allows modeling the global behavior of the system, expressed as a
generalized state flow diagram. CFs allow to visually define sophisticated flows of control with any
degree of parallelism through a modular graphic formalism derived from the GRAFCET language.
A CF is a graph made of Steps (i.e., places with Boolean marking) connected by guarded transitions:
a transition triggers if and only if its upstream Step is active and its guard is true. After a transition has
triggered its upstream Step is deactivated, and its downstream Step is activated; forks and joins are
supported, which allow one transition to activate and deactivate more Steps at the same time, hence to
open and close parallel flows.

Guards can contain timed conditions, of the type “clock Ci has expired”: this allows to accurately
model time-dependent behaviors inside the CF.

Tasks are activated by special Steps, depicted as rectangles with two horizontal lines inside; Task
activation Steps contain nothing else than the Task activation and become notActive when the activated
Task is running; When a Task terminates, its starting thread resumes from the Step after the Task
Activation; notice that the guard that decides the termination of one Task lays within the Task itself.

Tasks can have private variables of Keep and Temp class; such variables are only available to the
Steps belonging to the Task. Finally, Tasks can have arguments, allowing the activation of multiple
instances of the same Task, each of them working upon a different set of variables.

Figure 4 shows the Control Flow whose Context Diagram is reported in Figure 3. Task StepMot,
controlling a stepper motor, is instantiated 2 times (instance names: Rotation and Lift) with its
arguments bound to different variables. In such a model Tasks never exit.

Figure 4. An example of Control Flow.
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Double thick bars define forks, i.e., points where one execution thread splits into more
simultaneous execution threads, and joins, i.e., points where multiple simultaneous execution threads
synchronize into one single thread. The example in Figure 4 has three forks and two joins; for example,
the first join, synchronizing initR and initH2 Steps through the guards ~CCWise and ~Down, waits for
the two motors to reach their 0 position before going ahead.

Guards like the ones coming out from Step IS_0 (i.e., :5 True) or initH1 (i.e., :10 (~Up)) express
time-dependent behavior; they mean “5 ms after the Step is Active” and “10 ms after variable Up has
become false” respectively.

Figure 5 shows the Control Flow of the StepMot Task. Notice that ForWard, BakWard, StepDelay,
coil0, coil1, endMov are arguments, bound to constants and global variables at instance time (i.e., the CF
diagram of Figure 4). Readers with some knowledge about stepper motors would easily recognize
a two-phase generator able to spin a motor in two directions, according to the parameters ForWard
and BakWard.

Figure 5. The Control Flow model of the StepMot Task.

Notice that global variables (such as the I/O variables) are shown for all diagrams in a model;
conversely, Task-private variables are shown only in diagrams of the owning Task and its Steps.

In TaskScript CF Tasks private data belong to the specific Task instance as it occurs in Object
Oriented languages such as ECMAScript/JavaScript, where function private data are stored in multiple
copies, one per each function invocation; this is different from what occurs in traditional languages
(i.e., C/C++), where function private data are placed on the stack and all the invocations of the function
works on the same variables.

As already anticipated, Steps are the atomic entity for the multitasking scheduler; all the model
Steps are placed in the execution sequence; the sequence is scanned from the first to the last Step,
and the body of the each active Step is executed once.

The scheduler loops forever over the Step sequence; at the beginning and at the end of each scan,
some housekeeping tasks are executed (see below).

To enhance the language expressivity, Step marking is “Colored Boolean”, i.e., evolves through 4
phases: “notActive”, “Active”, “onEntry”, “onLeave”: at the system startup all states but the initial
one of the “main” Task are in the “notActive” phase; when activated by an incoming firing transition
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Steps go to the “onEntry” phase for exactly one scan and then they go to the “Active” phase; they
stay in their “Active” phase until they are deactivated by an outgoing firing transition; in the scan
immediately after the deactivation they go to the “onLeave” phase for one scan only, then they go to
the “notActive” phase until they are activated again.

5.3. Data Transformation: The Data Flow

The Data Flow language allows to express the local behavior of each and every Step in the
system, expressed in terms of Data Flow Graphs, visualized by intuitive Function Block diagrams;
the graphic formalism is straightforward and uses logical operators (i.e., &, |, ˆ) for Boolean variables
and arithmetic operators (i.e., +, −, *, /, %) for Arithmetic ones.

Values held in variables “flow” through the network of primitives and combine with each other
until they reach the assigned variable, which stores the current result; every data flow is evaluated
once and only once for every cycle. For sake of clarity wires conveying Boolean and Arithmetic flows
are drawn with thin and thick strokes, respectively; both Boolean and Arithmetic flows can be coexist
in the same Data Flow sheet.

Each Data Flow is associated with one Step in the CF; it is executed if and only if the owning
Step is active; more specifically, up to 3 different Data Flows can be provided for each and every Step,
one to be evaluated when the Step is in its “onEntry” phase, one to be evaluated when the Step is in
its “onLeave” phase, and one to be evaluated when the Step is in its Active phase. In the following,
a specific DF associated with one Step will be referred to as the Step Transfer Function.

Table 1 reports the available operators listed with the variable type; the first part of the table
contains stateless primitives (i.e., operators), while the second part contains stateful primitives
(see below).

Table 1. Primitive Operator groups.

Group Result Type Source Type Other Source Type Notes

Logic Bit/Word Bit/Word
Arithmetic Word Word

Shift/Rotate Word Word
Compare Word Bit

Choice Bit/Word Bit/Word Bit (selector)
Composition Word Bit

Extraction Bit Word Word (selector)
Array Subscripting Bit/Word Bit/Word Word (subscript)

Extrn. Function Bit/Word Bit/Word
Edge Bit Bit
Delay Bit Bit Stateful

Counter Bit Bit Bit (count) Stateful
Communicators Bit Bit Word (buf length) Stateful

Figures 6–8 report a few examples of non-trivial usage of the above primitives within Data Flows
(notice the thick wires, when Word variables are connected).

    

Figure 6. (bit) a = c&(c|d), (Word) A = B&(C|D), A = B*(C + D).

          
Figure 7. Function invocation: (bit) a = fc_1 (b,false,c,d) (Word) A = FC_1(B,0,C,D).
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Figure 8. Examples of use of array subscripting: B = A [3]; c = d [E]; F [G] = H; K [2] = t0 [1].

Function invocation allows using, stateless, non-blocking functions, which map the set of input
variables to its output.

As already pointed out, the DF graphic formalism is completely free from the order in which the
primitives are placed on the sheet; the behavior is only influenced by the type of primitive and their
interconnections flowing from the “source” to destination variables.

This aspect confirms the Model-Based nature of the TaskScript language: designers describe their
systems as if they were designing physical pieces of hardware, following the very same rules, without
need to add any further information; this is the reason why the declarative formalism was preferred
over of the more “common” imperative one.

With this choice the DF only describes pure combinatorial behaviors; this is different in imperative
languages where the possibility to (a) assign variables (b) use them, (3) change their value (d)use
them again, or the presence of control statements such as conditionals and iterators allows modeling a
stateful behavior.

The TaskScript Language makes a net separation: Control Flows abstract the sequential and
parallel nature of the modeled system while each Data Flow abstracts a fragment of the combinatorial
nature of the system.

This distinction adds clarity to models while leaving complete freedom to designers. While
systems more sequential in nature could/should be modeled giving emphasis to the CF, the very same
system could be modeled with less Steps in the CF, with Steps possibly having larger associated Data
Flows; the tradeoff among the above cases is left to designers.

External Functions allow to encapsulate fragments of imperative behavior without breaking
the DF rules for cases where a declarative implementation would be inefficient or difficult to read;
for example: finding the maximum value in an array, calculate the current value for a PID regulation
or co/decode a protocol. Functions can be either Boolean or Arithmetic, according to the type of the
returned value. At present functions are implemented outside the language and provided as built-ins
by the TaskScript run-time; future extensions of the TaskScript language could support user-defined
in-model Functions; functions must have a time-bound execution duration.

5.4. Stateful Primitives

To enhance the language expressivity, some Data Flow primitives have been defined with a
private internal state, controlled by a simple micro-state machine; they are Counters, Delays, Edges
and Communicators. This is consistent with the MB hypothesis and designers can use them as the
“regular” (i.e., stateless) primitives inside Data Flows.

Each Stateful primitive SP has (at least) one Boolean input, named ‘enable’, and one Boolean
output, named ‘done’; all Stateful primitives share the following basic behavior:

The primitive remains in its reset micro-state while its ‘enable’ input is false; when ‘enable’ goes
to true, the primitive starts its operation (i.e., a "delay timer" starts to wait for its preset delay time);
when the primitive reaches its final state (i.e., the preset delay has elapsed), it sets its ‘done’ output to
true; should the ‘enable’ input become false before the primitive reached its final state, the operation
aborts and the primitive goes back to its reset state. (in this case the ‘done’ output never goes to true).
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The internal micro-states of these primitives evolve independently but are coordinated with
the Step evolution: in particular they stay in their reset micro-state while the owning Step Transfer
Function is not active, and start considering their inputs when the owning Step becomes active.

Figure 9 reports the micro state machine used by all the Stateful Primitives.

 
Figure 9. The micro state machine used by all Stateful primitives.

Figure 10 shows two variants of the delay primitive, the simplest case of Stateful Primitive:
Ton and Toff; Tenab is the “enable” input of both the delays, while TOnDon and TOffDon are their
respective “done” output. Ton output goes true after the preset delay has elapsed since its enable has
been constantly true; Toff goes high as soon as its enable goes true and stay true until its preset delay
has elapsed or its enable goes false, whichever comes first.

      

Figure 10. Example of Stateful primitives: delay timers, Ton, and Toff, with their behavior.

The Delay Ton primitive is the main way to model time-dependent behavior in TaskScript;
for example, a Step S that has to be active for T units exactly is easily modeled with an output transition
from S guarded by a Delay with T preset: as this delay belongs to the Transfer Function of S, it starts
operating when S becomes active and makes the transition trigger as soon as the T delay has elapsed.

The Ton Delay behavior implements exactly the concept of clock as defined for Timed
Automata [9].

5.5. Comunication Primitives in TaskScript

Communication primitives abstract to the model level communication resources available in
Controller boards, so they can be used as black boxes inside models; they are implemented as Data Flow
primitives, and build upon the above said concept of Stateful primitive, exposing an “enable”-“done”
interface to synchronize their behavior with the rest of the model; in addition a Word array (of Remote
type) is used to hold the exchanged payload. The first word of the payload has special meaning:
it holds the number of bytes/words in the payload and other special information.

The communications related job is carried out by the kernel, which takes care of all the details that
have been hidden at model level; this is particularly true for high level communication protocols, such
as the http/tcp/ip, where the whole stack runs in a parallel thread with respect to the modeled system;
the only points of contact with the model are the ‘enable’-‘done’ interface and the payload buffer.
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When the ‘enable’ input transits to true the communication port initializes according to the
provided configuration parameters and gets ready to interact with its counterpart over the requested
channel; interactions can evolve in the following two ways:

1. The communication operation terminates with success, with the buffer sent or received without
errors; in this a case the ‘done’ output is set to true.

2. The communication reaches an error state (i.e., due to channel errors); in this case the ‘done’
output never goes to true; the rest of the model can detect this error condition testing the flags
(i.e., System variables), timeouts and other conditions; in such a case it can reset the primitive,
putting its ‘enable’ input to false and make a new attempt.

The above definition of Communication primitives makes their use simple and seamlessly
integrated with the rest of the model; a few general patterns can be defined, usable in a wide range of
communication situations; some of them are introduced below.

5.5.1. The Packet Communicator

The Packet Communicator is a model-level abstraction for communication over UART ports,
such as RS-232 and RS-485, or SPI ports. Such ports allow one communication at a time; a channel
parameter is used to designate which physical port is used, ranging from 0 to the N-1, where N is the
number of physical ports contained in the specific board. This primitive operates at the OSI level is 2.

The use of Packet Communicator is exemplified in Figure 11, which shows a simple usage of the
Packet communication over an RS-232 serial port, in Slave role it iteratively waits for a master to send
packets, and store the received data locally.

 

 

Figure 11. Example of use of the Packet Communication primitive.

The left hand side of the picture shows the CF (sequence of two Steps); the right hand side
shows the DF associated with the wait_reqs Step (normal), where the Packet Communication-receive
primitive is instantiated and started.

Notice the two Bit variables, serErr and tmoCom and the Word array, serbuf [20] used to store the
received payload: this communication Task starts with the wait_rqs state, indefinitely waiting for the
master to send its packet; the Step is left in two cases only: either one valid packet is received, in which
case the endCom guard becomes true and the thread advances to store, where the received payload is
saved, or an error condition is reached, in which casethe serErr guard becomes true, and the wait_reqs
Step is re-entered, reinitializing the Communication primitive, and waiting for another packet from
the master.

A similar pattern can be easily extended for two way communication, where a response is sent
back to the Master, and also to implement the Master role.
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5.5.2. The Network Communicator

The Network Communicator is a more sophisticated primitive, which abstracts communications
at OSI level 7 occurring on Network ports (i.e., Ethernet), where more than one communication can
take place at the same; in such a case there is one port only and the Channel parameter is used to
correlate a message with its respective response.

The implemented Network Communicator abstracts the http GET verb; four functions are
provided: WsGet, WsResp, WcGet, WcResp; they work in pairs, each one handling one direction
of the interaction on the same Channel (i.e., the socket, which is kept open until completion of the
interaction).

Server role

1. Web Server Get, WsGet (chan, url): waits until a socket is opened and an http GET query is
received; if the path in the query string matches the provided ‘url’ argument, the primitive
activates and fetches the expected number of arguments from the query string (if any). The
primitive then parses the arguments and stores them in the payload buffer, then it raises its ‘done’
output. Notice that the socket is kept open for the reply (transparently from the model designer);

2. Web Server Response, WsResp (chan): can be invoked at a later time, passing the response data
in the payload buffer. When activated (setting its ‘enable’ input to true) it formats the payload in
a http response and sends it back to the client on the open socket; then it closes the socket and
sets its ‘done’ output to true.

Client role

1. Web Client Get, WcGet (chan,url): opens a socket to the provided ‘url’ and sends its http GET
query, formatting the data passed in the payload buffer (if any) to the query string; as soon as
the packet is sent the primitive sets its ‘done’ output to true to notify of successful termination,
keeping the socket open;

2. Web Client Response, WcResp (chan): waits on the socket left open by WcGet for the server
response, then parses the received data into the payload buffer, closes the socket and sets is ‘done’
output to true.

The Network Communicator exchanges arrays of Arithmetic variables to/from remote Servers or
Clients in the http query string. Likewise, variables sent back from the web server are copied back in
the arrays, to be used by the rest of the model; variables are returned a fragment of XML, or JSON
or JSON-P.

The above set of functions abstracts the definition of Web Service and Web Service Client functions
at model level; more than one primitive can be used at the same time; each parallel thread using such
primitives can support one interaction at a time, and the number of parallel threads is limited by the
number of sockets simultaneously open set by the specific physical board (typically four or eight);
possible conflicts on such resources (i.e., one client trying to access a Web Service when it is busy
serving another client) are resolved by the tcp/ip own retry policies.

Figure 12 shows an example of a web client accessing the network to upload come data; this flow
implements some tolerance over network outages accessing two different servers: Steps WC_Get and
WC_Res try the “primary server”; in case no answer comes within the timeout, NetwErr becomes true
and the “backup server” is attempted (WC_Gt1 and WC_Rs1); at the end of the communication (either
successful or unsuccessful) the active Step is updStore; when variable netGo becomes true (actually
after a delay of 0.1s), a new send is started; this variable is set to true in a parallel Step; this is a way to
start network uploads at constant times (i.e., 30 seconds) regardless of the real time spent in the upload.

For sake of brevity, the discussion of the Communication primitives is only sketched here;
a detailed discussion on the Communication primitives in the TaskScript language can be found
in [25].
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Figure 12. Example of use of the Network Communicator primitives.

5.6. The Model Execution Semantics

At its highest level, a TaskScript model is expressed as a generalized State Machine (modeled
through CFs); data transformations take place within Step Transfer Functions, in turn active when the
owning Step is active. Steps are evaluated cyclically and of each active Step its respective Transfer
Function is executed atomically, once without interruptions.

The execution semantics of TaskScript models can be so summarized: Steps are evaluated
cyclically; the state of each and every Step evolves according to the firing of its guards: when a
Step becomes active, it stays active until one of its guards becomes true, in which case the current Step
becomes inactive and the Step targeted by the guard becomes active; while a Step is active, variables
are set according to the Transfer Function of that Step, as it would happen in a piece of hardware built
according to that very same schematic.

Users can write their models relying upon the above definition.
From the execution point of view, TaskScript models are efficiently implementable into real

controllers: Step Transfer Functions are evaluated according to a round-robin scheme; each Transfer
Function is a list of Data Flows whose execution is time-bounded, is executed once per cycle; this can
be implemented by a simple but efficient “cooperative multitasking” scheduler.

The variable system is updated by the TaskScript run-time through a number of “housekeeping”
activities, coordinated with the model-derived activities.

One cycle, where each and every active Step is evaluated once, is shown in Figure 13; its most
important operations are:

1. Evaluation of the current state of each Step
2. Copy of the actual Variables onto the “Last-scan” Variables
3. Refresh of Input Variables <I1, . . . , Ip> with new samples of the input signals
4. Reset of Variables belonging to the Temp and Output classes;
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5. Evaluation of the Transfer Functions of the Steps not in NotActive State.
6. Refresh of the Stateful (i.e., Timer, Counter and Communicator) micro-state machines
7. Update output signals from the <O1, . . . , Oq> Output Variables

Figure 13. The sequence of scheduler operations within one cycle.

5.6.1. The Step Execution Order in Concurrent Threads

Having more than one Step active at same point in time, as it occurs when multiple threads are
active at the same time, can lead to conflicts in the use of shared variables: a conflict arises when
one variable is shared, that is it is assigned in one or more Steps and used in others at the same time:
in such a case the order in which Steps are evaluated in the scan matters, as it changes the value that is
found in that variable at the read time by the various Steps.

Shared variables, on the other hand, are used by threads to exchange data with each other. When
one variable is written in one Step and read by another one, the impact is different for the various
classes of variables:

1. Input: there is no impact, as they are assigned at the very beginning of each scan and cannot be
changed by Transfer Functions within the scan

2. Keep: variables of this class keep their value until reassigned: if Step Sa assigns a variable and
Step Sr reads it, the Step evaluation order is only marginally important, as the variable will
always be read by Sr before the next assignment by Sa, which can occur either later in the same
cycle if Sa is executed before Sr, or earlier in the subsequent cycle if Sa in executed after Sr.

3. Output, Temp: variables of these classes are reset at the beginning of each scan; if Step Sa assigns
a variable and Step Sr reads it, the Step evaluation order is important: if Sa comes before in the
cycle, then Sr will get the correct value but if Sr comes before Sa in the cycle, then it will always
get 0.

Steps inside TaskScript Models have a constant and deterministic order of execution within the
cycle; this order is known at model level and can be changed by designers, who can move Steps before
or after in the execution sequence; this must be kept in mind when designing models, as it can simplify
model designs.

This order is shown in the model tree view of the IDE, on the left side of the screen (see Figures 21
and 22 below); the Step evaluation order is the same order in which Steps appear in the tree; the model
tree window in the IDE allows designers to move Steps up and down the tree.

Figure 14 shows the Steps Evaluation order; in the same chart, Steps are shown along with the
indication whether they read, or write a given variable; in particular: an inner blue square indicates
that variable is Read (or used within a transition guard), a thick blue border indicates that the variable
is Written and a complete blue fill indicates that variable is both Read and Written.

This indication is important when using variables shared among concurrent threads, as it allows
to manage conflicts. Section 6.4 below shows through an example how the Step ordering view can be
used in managing a variable conflict among concurrent threads.
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Figure 14. Model tree view, showing the order of evaluation of Steps and variable tracing.

6. CPS Modeling with the TaskScript Design Environment

A graphic IDE, TaskScript Studio, has been implemented, with a toolchain able to support the
above presented language along the whole application development process, i.e., drawing, simulation,
visualization, compilation into executable code and upload of the executable on the target system.
One of its main benefits in the model drawing phase it the continuous consistence check between the
Context Diagram, Control Flow(s) and the various Data Flows.

The IDE is in use in production contexts and is constantly evolved to support new CPUs, interface
protocols and more. A variety of boards is available, pre-flashed with the TaskScript run-time, in turn
implementing the Virtual Machine, ready to interact with the IDE via Ethernet or USB to upload the
compiled models. At present TaskScript is available with a range of microcontrollers and PC boards;
the most cost-effective and energy-efficient boards are equipped with 8 and 16 bit microcontrollers
(i.e., Microchip PIC18 and PIC24 microcontroller families).

6.1. Getting Started

A TaskScript model of a CPS starts with the Context Diagram; such a diagram is built from the
perspective of the CPS Logical side: the declared Input and Output variables are the ones exchanged
among the Logical an Physical sides, that is <I1, . . . , Ip> <O1, . . . , Oq> respectively; more variables
will be used in case the controller needs to perform other tasks; for example, Remote variables will be
declared if the Controller is to exchange data with other nodes.

The Context Diagram will contain at least one Task model, i.e., the “main” Task, the only one
started by default at the beginning of the execution; should more Tasks be executed when in the main
Task, they will be declared in the CD as well.

After the definition of the Context Diagram, the Data Flow Diagram of the “main” Task is
drawn, starting from its Initial Step; Steps are then completed with the respective Transfer Functions
(where needed).

TaskScript models can be simulated for validation. Once they are validated they are compiled
into executable code ready to be flashed on the chosen target board; if the board has its Input/Output
terminals connected to the Physical side, the whole CPS is expected to operate as envisaged in
the model.

Although the TaskScript model is defined from the perspective of the CPS Logical side,
the Physical side can be included in the model for simulation purposes; in such a case some model
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Tasks tagged as “environment” in the model are dedicated to model the Physical side; such Tasks
are considered during simulation but will be automatically excluded when the Controller code will
be generated.

Adding the model of the Physical side and simulating the whole CPS operation provides more
insight than just simulating the Logical side against a predefined set of stimuli and can help finding
possible flaws where they are not expected; on the other hand, the level of detail in the modeling
of the “environment” Tasks can be chosen according the needed simulation results; in order to save
design time, such detail should be kept low, provided that it enables to stimulate the situations where
Controller model needs to be verified.

6.2. A Simple Case Study

To provide a first example, putting most of the above discussed concepts together, a simple
CPS will be modeled and simulated, ready to be flashed on a controller board: the “Lights” system;
it has just one input, actually a pushbutton, and 2 outputs, lamp L1 and lamp L2, with power P1 and
P2 = 2*P1.

One push of the button turns L2 on; next push of the button turns L2 off, and so on; along
with this basic behavior the controller has a more sophisticated one, when the button is
pushed twice in a short period of time (say 0.3 s): the first double push turns both lights
on, then switches only L2 on, then switches only L1 on, and so forth, providing 3 different
levels of lighting. At any time when there is some lamp on, pushing the button once turns
the lights off.

Figure 15 shows the Context diagram of the Lights system; notice the button and lamps I/O
variables, plus a few internal variables (of temp class) and 2 Tasks; the Tuser Task (environment)
models the relevant subset of the Physical side of the CPS, that is, the user pushing the button at certain
points in time.

Figure 15. Context Diagram of the Lights example.

Figure 16 shows the Control Flow diagram of the main Task, made of three parallel threads:
the leftmost one is dedicated to capture the button pulse sequence; the rightmost one implements the
sub-state machine governing the Lamps; finally, the middle one starts the Tuser Task.

The Lamps sub-state machine has four states: all_OFF, all_ON, high_ON, low_ON and two events:
CLIK_1 and CLIK_2; notice that from any of its states, CLIK_1 sends to all_OFF, hence switching all
lamps off, and CLIK_2 sends to the next state, hence changing the lighting level, in a circular fashion.

The Transfer Functions of the four states of this machine simply turn on the respective light,
as shown in Figure 17 for Step all_ON, where both lights are turned ON; the Step high_ON turns
on only L2, the Step low_ON turns on only L1 and the Step all_OFF does not turn on any light.This
Button-pulse sub-state machine captures the fact that the button has been pressed once or twice within
350 ms; this machine delivers its response setting one of the two variables CLIK_1 or CLIK_2; such
variables are of temp class, hence they “last” only one scan.
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Figure 16. Control Flow of the Main Task.

Figure 17. Data Flow of Step all_ON (normal case).

The Button-pulse sub-state machine condition the evolution of the Lights sub-state machine,
setting the two variables CLIK_1 and CLIK_2,: when one of them is set, the Lights sub-state machine
makes one transition to the respective next state, then, before the next scan, the variable is reset and no
further transition occurs until the next pulse comes.

This behavior is simply obtained by the two Transfer Functions shown if Figure 18; when, in Step
waitClk, the button is pressed, after a 30 ms debounce delay, the proceed temp variable is set, producing
a transition to the wait2Clk Step; here the decision whether the button is pushed one or times is taken:
if nothing happens after 350 ms, CLIK_1 is set and proceed is set to leave the Step; in case the button is
pressed again within the 350 ms, CLIK_2 is set instead, and the Step is left as well; the Edge operator,
placed next to the button input returns true if its input made a low-to-high transition: this is used to
wait for the end of the first push before checking for the second push.

     
(a)                               (b) 

Figure 18. Data Flow of Steps waitClk (a) and wait2Clk (b).
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Finally, the Tuser Task is shown in Figure 19; it is tagged as “environment”, hence used for
simulation purposes and automatically excluded from the real controller; it contains a single Step
(i.e., its initial one) which is never quit, after its start.

Figure 19. Transfer Function of the user Step, the only Step of the TUser Task.

The Step contains an array of delays, with the purpose of building pulses of 100 ms width at
different delays, to stimulate the Controller, as if a user really pushed the button; notice that the
“button” input is driven here; this is forbidden in regular Tasks, since the Input variables can only be
set by the run-time as per the actual input signals; likewise, “environment” Tasks can read Output
variables, which is forbidden as well for regular tasks; this last feature is not used here, as no feedback
is needed from the Controller to the environment.

Figure 20 reports the temporal visualization of a simulation trace lasting about 10.5 seconds,
including all the user simulated inputs: the bottom trace shows the simulated “button” input, and its
pulses can easily be correlated with the pulses generated by the Tuser Task; the two traces above
show the lamps; L2 is first switched on and off by the two first single pulses, at t = 0 and t = 1000ms;
afterwards, from t = 4s on, all the pulses are provided in pairs, spaced of 200ms each other, hence
advancing the lamps sub-state machine.

 
Figure 20. Temporal visualization of simulation results.
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The two traces above report CLIK_1 and CLIK_2 internal variables, which “last” 1 only scan.
Finally, the upper 3 traces report the state of the Steps waitClk, wait2Clk and waitRels, showing when
they are active.

6.3. Structural Visualization

Figures 21 and 22 show another perspective of the same Lights system, derived from the same
simulation trace as before: one specific point in time is selected and the state of variables and Steps is
shown “in place”, i.e., using the very model diagrams, for that point.

 

Figure 21. Structural visualization of simulation results.

 
Figure 22. Structural visualization of simulation results–next frame.
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Steps colored in Green are in their Active State, Steps colored in Red are in “notActive” state;
steps colored in Cyan and Yellow are in their “onEntry” and “onLeave” state, respectively. The figures
report two adjacent scans, around t = 4402 ms, just after the second pulse in a sequence has been
recognized (see the CLIK_2 and proceed variables, colored in Green); the second frame shows the
transitions occurring due to those variables: Step wait2Clk goes from “Active” to “onLeave”, Step
waitRels goes from “notActive” to” onEntry”, Step all_Off goes “onLeave” and Step all_ON goes
“onEntry”, hence turning L2 on.

Structural visualization is of great help in deeply understanding how the model works; this kind
of visualization is meaningful only for full Model-Based languages, where the executable code is
generated automatically from the model and no changes are done.

Structural visualization can also be performed on real Controllers, executing on physical boards;
in such a case, specific “snapshots” can be taken upon specific model-level conditions, i.e., when
specific events occurs (i.e., one Step or variable changes its state to a given value); this feature can
be useful to diagnose faults on the Physical side when the Controller is deployed in the field, in the
maintenance phase, without any physical intervention: the Controller plays the role of a possibly
remote first diagnosis tool.

6.4. The Added Value of Knowing and Changing the Step Evaluation Order

The previously discussed model has been built robustly against any possible execution order of
Steps, in particular of the ones belonging to the Button-pulse sub-state machine with respect to the
Lights sub-state machine (see Figure 15 and the following explanation); in other words is follows the
constraints-abiding approach.

Variables CLICK_1 and CLICK_2 are shared among the two concurrent threads, so a conflict arises;
in particular, the Button-pulse sub-state machine writes the two variables according to the detected
button behavior and the Lights sub-state machine uses them as transition guards and immediately
resets them, to prevent other transitions.

The two sides of Figure 23 show two possible orderings among Steps for the very same project;
in the two charts, Steps are shown along with the indication whether they read, or write a given
variable (in this case, CLICK_1 is considered, but the chart would be identical for CLICK_2).

                               
a) conflict avoidance         b) conflict management 

Figure 23. Different orderings for Step evaluation (with variable tracing shown).

The two versions follow the two different approaches in the management of the variable conflict:
the version on the left follows the constraints-abiding approach, and works with any Step ordering:
CLICK_1 and CLICK_2 variables are of the Keep type (their values are retained until reassigned)
and each and every Step of the Light state machine resets both variables when entered, to prevent
further transitions.
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On the other hand, the version on the right follows the constraints-enforcing approach: Step
wait2Clk is executed first, so the variable is set to the correct value before it is considered by the other
Steps; CLICK_1 and CLICK_2 variables are of the Temp type, so their values are automatically reset at
the end of every cycle and there is no need for the Steps of the Light machine to reset them.

This shows that the precise knowledge of the Step evaluation order and the possibility to change
it where needed allows to adopt the constraints-enforcing approach instead of the constraints-abiding
one, which is the only available choice when there is no notion of Step evaluation ordering.

Choosing the constraints-enforcing approach, in the general case, leads to simpler models.

7. Results and Discussion

Three real life, production grade CPSs will be used in the evaluation of the TaskScript Language,
the associated IDE and the set of physical Controller boards; they are summarized below, just to provide
enough context to understand the reported results; they are: “TransfertMon”, “EnergyGateway” and
“LithiumBMS”.

TransfertMon

This is an observer which monitors a number of boolean signals gathered from a transfer plant
and sends the gathered values over the internet to a webservice every 15 seconds, using an Ethernet
port available on the Controller, attempting send to two servers for network unavailability tolerance;
the difficulty here is that some signals are pulses; for two of them their frequency must be evaluated
with an accuracy of 1 ms (the controller CPU returns the time the signal was low or high in the last
period); for others it must be evaluated whether they have been constantly 0, 1, or they have changed
their value in the observation period.

EnergyGateway

This is a gateway able to sample up to eight boolean variables generated by S0 pulse energy
meters, which send one pulse per every measured wh (watt*hour); for each channel the gateway must:
store the actual input value, count the number of received pulses and store it permanently, evaluate
the moving averages of pulse frequency (which provides the instantaneous measure of the power
consumption on that channel) and of the pulse duty cycle; periodically, i.e., every 30 seconds, it must
send the current values over the internet to a webservice, using an Ethernet port available on the
Controller, attempting send to 2 servers, for network unavailability tolerance.

LithyumBMS

This device controls its physical periphery besides than observing it; its periphery is a series
of 16 lithium batteries powered by solar cells, and an inverter; its job is to keep the voltage of each
and every cell in the array within safety limits, activating individual resistive shunts to discharge the
elements whose voltage exceeds a safety value; aside tasks are switch the inverter on and off according
to the state of charge of the battery array, measure the battery in/out current and update a remote
web service about the current readings. In order to interface the battery array, an analog front end
IC is interfaced via an SPI port available on the Controller board and abstracted to the model level
through a Packet Communicator; the inverter is interfaced through a RS-485 serial port available on
the Controller abstracted through another Packet Communicator; the serial payloads are co-decoded
as MODBUS RTU by means of a protocol library (functions) available within the TaskScript IDE.

The four CPSs: Lights, described in detail along the paper, TransfertMon, EnergyGateway and
LithiumBMS are compared in the below Tables 2–4; the last three systems have been implemented all
the way from model design to the physical, production grade level using the most appropriate among
the available TaskScript physical boards and integrating the real Physical side to the implemented
controller. The level of knowledge of the developers on the TaskScript Modeling Language and Studio
IDE was fair to good; the level of domain knowledge of the developers was good.
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Table 2. Model-level characteristics of the different CPSs.

Model features Lights TransfertMon EnergyGateway LithyumBMS

# Tasks 2 4 5 6
# Steps 8 23 44 42

# parallel threads 2 5 11 5
# discrete I/O 3 23 8 12 dig + 2 anlg
# serial ports 0 0 0 1 SPI + 1 UART

# of network ports 0 1 1 1
# of protocols 0 1 1 2

# internal variables 3 22 40 25

Table 3. Controller Performance for the different CPSs.

Controller
Performance

Lights-8bit Lights-16bit TransfertMon EnergyGateway LithyumBMS

Controller board P18L_14_8_3_2 P24_S_8_4_3_3 P18_E_SP_FTC_485
16_5_2_2

P18_E_SP_FTC_485
12_13_9_2

P18_E_SP_FT_485
8_8_10_3

Board size ~15cm2 ~15cm2 ~76cm2 ~55cm2 ~76cm2

Controller CPU PIC18F25K22 TS-P24EP-GP202 PIC18F87J60 PIC18F87J60 PIC18F87J60
CPU Clock 64MHz 140MHz ~42MHz ~42MHz ~42MHz
CPU bits 8 16 8 8 8

Controller Power <50mW <0.2W <2W <1W <2W
Avg. scan time (ms) <0.1ms <15us <0.2ms <0.2ms <0.25ms

Table 4. Development effort in person-hours for the different CPSs.

Development Effort (pers-hrs) Lights TransfertMon EnergyGateway LithyumBMS

modeling of logic 1 4 8 16
modeling of communication - 4 4 8

domain knowledge - 4 4 16
simulation-debug 1 4 8 16

physical setup 1 8 4 16

Discussion of Results

Apart from the “Lights” tutorial, the three reported cases are real world examples, two of them
deployed in the field, one in testing.

They have been compiled through the TaskScript Studio IDE v1.10 and uploaded to TaskScript
controller boards equipped with an 8 bit microcontroller, the Microchip®PIC18F87J60, delivering
10.66 MIPS, pre-flashed with the TaskScript v1.10 run-time (integrated with the Microchip tcp/ip
protocol stack), with Ethernet and RS-485 interfaces. Figure 24 shows one of such boards.

Once deployed on the target board via TFTP (integrated in the Studio IDE) the model starts its
execution interacting with both the Physical side and the remote web Server. The sampling rate of the
signals from the field was in the order of 10 to 50 milliseconds; the web server refresh time ranged
from 3 to 60 seconds, independently from the actual network delay time.

The “Lights” example was tested on two physical boards, one equipped with 8 bits CPU and
another one equipped with a 16 bits CPU to show that the cycle time scales down by almost a decade;
this is due to the higher clock frequency but also to the most powerful the instruction set which allowed
to perform multibyte arithmetics in one instruction, that led to a simplified implementation of the
Virtual Machine on the more powerful CPU.

The TaskScript run-time provides very stable timings; while the evaluation of the Steps has
variable duration, according to the size of the respective Transfer Function, the Delay primitives allow
to accurately model the time related behaviors, used within the model to provide signal sampling
rates, refresh delays on the Network, and so on.
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Figure 24. The P18_E_SP_FTC_485 12_13_9_2 board.

The development effort turned out to be low and consequently the turnaround time was short;
the main reasons seem to be:

1- The ability to use parallelism in a very natural way: every parallel task was modeled as if it was
the only task in the system, regardless of the other ones; however, some Steps needed to have a
global view of the system;

2- the ability to simulate the whole CPS system, that is Logical and Physical sides, interacting
together as a whole, to gain insight upon critical parts in the model during the design phase,
hence saving debugging with the real Physical part, which would cost more effort; notice that the
Physical side is not modeled/simulated accurately: this is out of scope of the TaskScript language;
rather, an abstraction of the input-output causality relationships the Phisical side can be modeled
inside Environment tasks at the purpose of “closing the loop” with the Logical side, in a way that
they can interact together and provide evidence that the Logical side is working properly. This is
the purpose of the TUser task in the example.

3- the ability to visualize the simulation results “in place” on the designed model, through the
Structural visualization, and to navigate it over time (i.e., the frames) and space (i.e., the various
sheets defined in the model);

4- the ability to browse the state of the real Controller while it is connected to its real Physical side
(this action interrupts the real operation of the Controller for a few milliseconds, spent packing
the state and sending it to the IDE via TFTP); this feature can also be used to test the Physical
side of systems already deployed in the field.

5- The ability to change the model and have the new version compiled and loaded again on the
controller in a few seconds; this allows designers to experiment with model variants in order to
find the most suitable.

Overall, the choice of a heavyweight Model-Based approach turned out very effective to reach
the initial goals: the defined DSL proved to be simple enough to be understood by domain experts,
not only by computer scientists, and this was key to have them involved in the model design, not only
in the requirements phase, and this in turn led to better quality designs.

The toolchain implemented in the IDE produces highly efficient implementations; as shown in
the evaluation examples, relatively short cycle times are achieved for medium sized models running
on low-end 8 bit CPUs, and almost a tenfold gain is achieved for 16 bits CPUs.
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8. Conclusions

A model-based environment and its DSL language, specifically conceived to easily model CPS
control functions has been presented. It belongs to the class of synchronous languages and is hard
real-time capable.

Its typical use case is the implementation of network-interconnected CPS, acting as “smart”
terminals of cloud-based applications, able to observe and control some physical periphery, with
complexities ranging from simple smart sensors to controllers of large physical subsystems with
remote interactions.

Such applications are typically constrained in terms of space, CPU power, memory, energy and
more. The discussed technology is available in a number of “sizes” to suit design needs: a number
of virtual machines are available starting with 8 bits CPUs; this variety allows to instantiate the very
same model on different virtual machines without effort, in order to find the best point in the {speed,
consumed energy, (arithmetic) precision, type and number of I/Os, cost} hyperspace among the
available ones.

Besides boards, the virtual machine can be provided to custom designs thanks to the
“controller-on-a-chip” approach, which allows the technology to be used in the context of ad-hoc
hardware, designed according to specific design needs.

Regarding the DSL, the choice to bring the Step evaluation sequence at model level allows
designers to accurately model the causality relationships among the various concurrent activities
avoiding the need of higher level, less efficient synchronization mechanisms, such as channels, queues
or semaphores.

The concept of stateful primitive, introduced at the Data Flow level, allows a variety of
communications interfaces and protocols to be made available at the model level and this help
developing network-aware models with little effort.

The easiness of the DSL also easily allows the modeling of an abstraction of the CPS’s physical
side within which the controller will interact, and simulates the whole controller and periphery in
order to get a deeper insight of the model. This environmental simulation is more effective than the
usual simulation, where external stimuli are provided, in finding out potential design flaws.

The reported results show that the proposed IDE allows designers to implement production-grade
controllers within a few man hours of effort.
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Abstract: A challenge in the design of cyber-physical systems is to integrate the scheduling of tasks
of different criticality, while still providing service guarantees for the higher critical tasks in the
case of resource-shortages caused by faults. While standard real-time scheduling is agnostic to
the criticality of tasks, the scheduling of tasks with different criticalities is called mixed-criticality
scheduling. In this paper, we present the Lazy Bailout Protocol (LBP), a mixed-criticality scheduling
method where low-criticality jobs overrunning their time budget cannot threaten the timeliness of
high-criticality jobs while at the same time the method tries to complete as many low-criticality
jobs as possible. The key principle of LBP is instead of immediately abandoning low-criticality jobs
when a high-criticality job overruns its optimistic WCET estimate, to put them in a low-priority
queue for later execution. To compare mixed-criticality scheduling methods, we introduce a formal
quality criterion for mixed-criticality scheduling, which, above all else, compares schedulability
of high-criticality jobs and only afterwards the schedulability of low-criticality jobs. Based on this
criterion, we prove that LBP behaves better than the original Bailout Protocol (BP). We show that
LBP can be further improved by slack time exploitation and by gain time collection at runtime,
resulting in LBPSG. We also show that these improvements of LBP perform better than the analogous
improvements based on BP.

Keywords: real-time systems; Fixed-Priority Preemptive Scheduling (FPPS); mixed-criticality systems;
cyber-physical systems

1. Introduction

Cyber-physical systems (CPS) typically require the integration of services of different criticality.
At the same time, it is important that tasks of lower criticality have limited leverage to influence
the schedulability of tasks with higher criticality in the case of resource shortages. Traditional
real-time scheduling protocols, such as rate-monotonic scheduling (RMS) or earliest deadline first (EDF) [1],
give priority to jobs with the most strict timing requirements. This approach works well as long as
it can be assured that enough resources are available to schedule all tasks. However, in cases where
availability of enough resources cannot be guaranteed, traditional real-time scheduling methods miss
the flexibility to prioritise the resources to tasks of higher criticality.

Research on mixed-criticality scheduling protocols [2,3] has been started to overcome this
limitation. The basic idea of mixed-criticality scheduling protocols is that, as long as enough resources
are available, the scheduling priorities are defined by a real-time scheduling protocol. In the case
of a resource shortage, e.g., a job overrunning its estimated worst-case execution time (WCET) [4],
the tasks’ criticalities are used as the primary criterion to allocate resources. A task’s criticality can be
derived from different aspects. One possibility is to express the relative importance or relative utility
of different services in a system as their criticality [5]. Another possibility is to express the relative

Designs 2019, 3, 10; doi:10.3390/designs3010010 www.mdpi.com/journal/designs113



Designs 2019, 3, 10

level of assurance, for example, dictated by different development standards for safety critical or
relevant systems, such as DO-178C [6] in the avionics domain, ISO26262 [7] in the automotive domain,
or IEC 61508 [8] in the automation domain as different levels of criticality. However, the meaning
of criticality is still sometimes subject of discussion, with Esper et al. assuming different execution
modes [9] not originally described by Vestal [2]. In this paper, we do not mandate a specific procedure
for defining criticality levels, as this is an orthogonal issue to the mixed-criticality scheduling discussed
in this paper.

To apply mixed-criticality scheduling, at least two levels of criticality have to be defined, typically
labelled as LO (low-criticality) and HI (high-criticality). A common approach is to assume for LO
tasks only the knowledge of easy to derive optimistic WCET estimates while for HI jobs also a higher
level of assurance based on safe upper WCET bounds is assumed. The active research challenge is to
find ways to effectively combine the resource prioritisation based on criticalities with the scheduling
priorities based on real-time constraints.

Recent mixed-criticality scheduling approaches are the Bailout Protocol (BP) by Bate et al. [10]
and its extension that exploits the system slack time, named Bailout Protocol-Slack (BPS). The authors
afterwards presented further extended versions of the BP, aiming at a higher utilisation of LO jobs.
Such extensions use a dynamic approach to deploy gain times in order to reduce the duration and
number of times the system switches to high-criticality execution mode and are denoted as Bailout
Protocol with Gain Time (BPG) and Bailout Protocol-Slack and Gain Time (BPSG) [11].

This article contains the following contributions:

1. Lazy Bailout Protocol (LBP), which is a mixed-criticality scheduling protocol inspired by the Bailout
Protocol (BP) from Bate et al. [10,11], is introduced. Compared with BP and its derivatives, LBP
does not abandon jobs immediately but rather keeps them for potential later execution during
idle periods of the processor.

2. A formal criterion to compare different mixed-criticality scheduling protocols with priority given
to high-criticality jobs is defined.

3. LBP is combined with the complimentary techniques used in BPG, BPS and BPSG, resulting in
LBPG, LBPS and LBPSG, respectively, proving that LBP and its derivatives perform better than
their corresponding BP-based protocols according to such a formal criterion.

4. The comparison and evaluation of BP, LBP and their derivatives protocols in a hard real-time
setting is presented.

Section 2 presents an overview of the state of the art in mixed-criticality scheduling. A precise
presentation of the scheduling problem is presented in Section 3. We present a new mixed-critcality
approach named LBP in Section 4 that does not suddenly abandon LO task instances during resource
shortages. In Section 5, we derive formal properties of LBP and its derivatives. Section 6 provides
an experimental evaluation of the performance of the LBP-based approaches compared with other
methods. Section 7 concludes the article.

2. Related Work

Most of the works about mixed-criticality systems that have been published by the real-time
scheduling research community is based on a model proposed by Vestal [2]. The system model consists
of a set of periodic tasks that perform functions having different criticalities and requiring different
levels of assurance. Each task may have a set of alternative worst-case execution times, with each
assured to a different level of confidence. The more confidence one needs in a task execution time
bound, the larger and more conservative that bound tends to become in practice. The final aim was to
guarantee that safety-critical task instances do not miss their deadlines.

Crespo et al. reviewed the challenges of applying mixed-criticality in control systems and
studied the possibility of using virtualisation as basis for building mixed-criticality partitioned
software architectures [12]. Their work reviews the challenges connected to systems with virtual
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partitions having different criticality that are executed in an independent way. Such systems are based
on a hypervisor that provides temporal, spatial and fault isolation among partitions that contain
components that have to be guaranteed at different assurance levels and on hierarchical scheduling as
strategy to process jobs.

Ernst and Natale provided an explanation about the meaning of criticality and a review about
the mixed-criticality model in current real-time research [13]. They highlighted how functional safety
standards usually provide the basis to design industrial mixed-criticality systems. In fact, all industrial
safety standards classify different levels of concern, called Safety Integrity Levels (SIL) in IEC 61508,
Automotive Safety Integrity Levels (ASIL) in ISO 26262 or Design Assurance Level (DAL) in DO-178C.
Each level involves a certain likelihood to perform successfully the required functions under certain
conditions and within a stated period. In such standards, the definition of criticality levels is usually
obtained as a result of a Failure Modes, Effect and Criticality Analysis (FMECA) process. However,
these standards focus on the safety targets while engineers normally focus on metrics such as cost,
performance and power consumption that are often in conflict with safety requirements. Such contrast
grows with the autonomous driving and with the integration challenges derived from cyber-physical
systems and Internet of Things.

Burns and Davis published a survey of research on mixed-criticality systems [14].The review
contains an historical introduction of the topic and the challenges faced in developing better
mixed-criticality on both single- and multi-processor systems. The key question emerging from
their work is how to reconcile the conflicting requirements of partitioning for safety and sharing
for efficient resource usage. Lastly, the review contains criticisms and limits of the current
mixed-criticality approaches.

In 2011, Baruah et al. extended Vestal’s model by proposing a refinement named Adaptive
Mixed-Criticality (AMC) protocol together with related mixed-criticality response-time analysis
techniques [15]. Such mixed-criticality schedulability tests have been recently extended for task sets
containing tasks with arbitrary deadlines [16]. In 2013, Fleming et al. extended the response time
bound techniques and the AMC protocol to work with multiple criticality levels [17]. The AMC
protocol assumes two execution modes, a low-criticality mode (indicated as LO) and a high-criticality
mode (indicated as HI). Once the system goes into the high-criticality mode, all LO task instances are
abandoned and the system remains in that mode. However, to move mixed-criticality research into
industrial practice, it is important to implement protocols whose runtime behaviour is acceptable for
system engineers. Abandoning all LO tasks in high-criticality mode is not an acceptable behaviour and
the system should return to the low-criticality mode, where all functionalities are provided, as soon as
conditions are appropriate. Therefore, a simple but necessary extension to AMC is to allow a switch
back to the starting mode when the system experiences an idle instant.

However, going back to the low-criticality starting mode only in case of idle instants leads to a high
amount of LO tasks interrupted or abandoned and this is still not satisfactory. Different complementary
ways of guaranteeing a higher level of service for LO tasks have been proposed, e.g., extending their
periods and/or deadlines such as in the elastic task model [18] or reducing their execution times by
switching to a simpler version of the software [19].

The Priority May Change (PMC) strategy has been proposed to better manage the overload
situations in which higher priority LO tasks could preempt lower priority HI tasks [20]. The AMC
algorithm assigns a single priority to each task by considering together both low- and high-criticality
modes, whereas PMC computes priorities in two steps. Firstly, priorities are assigned to tasks according
to some predefined policy such as deadline monotonic [21] and such priorities are used while the
system is in low-criticality execution mode. Once the system switches to high-criticality mode, HI task
priorities are re-assigned according to a priority ordering policy that is optimal for tasks with release
jitter [22]. However, PMC does not dominate the standard AMC but it has performances similar to it.

In 2014, Fleming and Baruah proposed a scheme in which system designers can assign to
lower critical functionalities a utility that is used to decide in which order their instances have
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to be suspended during an overload occurrence [23]. Such method allows the system designer to
control how non-critical functionalities degrade after the most critical ones overrun their optimistic
time threshold. The utility value is assigned as an ordinal scale [24] to provide a predefined order in
which LO task instances are abandoned, with least important task instances being abandoned first.
The authors adapted the Audsley priority assignment technique [25] to assign lower priority to lower
utility LO tasks. Such protocol allows increasing performances for LO tasks and processing them for
a significantly increased amount of time.

Somehow, the former methods considered thus far allow for LO task invocations to execute after
a criticality mode change but they are mainly best effort and do not have a predefined minimum
threshold guaranteed for lower critical tasks. Since most hard real-time systems could miss some
deadlines provided that it happens in a known and predictable way, the Adaptive Mixed Criticality
with Weakly-Hard constraints (AMC-WH) was introduced in 2015 [26] and represents an extension
of AMC [15] that integrates the notion of weakly-hard constraints. The definition of weakly-hard
real-time system was given in 2001 [27] to indicate systems in which hard real-time tasks are permitted
to miss some deadlines as long as the number of missed deadlines is strictly bounded. The AMC-WH is
a scheduling policy that allows a number of consecutive instances per LO task to be skipped during the
high-criticality execution mode. This reduces the overall system load, frees more resources for highly
critical tasks and provides a degraded but guaranteed minimum quality of service for LO tasks upon
a criticality mode change. The number of skips permitted and the number of subsequent deadlines
that must be met could be a requirement deduced either from the design of a control algorithm [28] or
from physical properties of the system. Even if AMC-WH allows scheduling more LO task instances if
compared with previous policies, it does not provide a fast recovery from the high-criticality execution
mode since it is still necessary to wait for idle instants to go back to the starting mode. This leads to
unnecessary abandonments of LO instances.

Such problem was considered with the Bailout Protocol (BP) [10]. The BP still represents an AMC
refinement and hence exhibits both low- and high-criticality execution modes. The low-criticality
mode is named Normal mode while the high-criticality execution mode is represented by both the
Bailout and Recovery modes. Similar to AMC, the system starts its execution in the LO criticality mode,
Normal mode, and whenever a HI job exceeds its optimistic WCET, then it switches to the Bailout mode.
The protocol aims to restore the normal execution mode as soon as possible to minimize the number of
LO instances that miss their deadlines or are not executed at all. LO tasks are still abandoned during the
high-criticality execution but they contribute to make the switch back to the starting execution mode
faster by means of a Bailout Fund (BF). In fact, if BF becomes not strictly positive during the Bailout
mode, the system enters the Recovery mode to allow the lowest priority pending HI job to complete its
execution before going back to the Normal mode without waiting for an idle instant. Once the system
is back to the starting mode, all lower critical functionalities start again to be processed with their full
timely behaviour. The strength of this protocol is that to provide an effective control mechanism to
go back to the low-criticality mode, where all jobs can start and being processed. However, the main
weakness of BP is that to immediately drop low-critical instances during the high-criticality modes.
Because of this, the percentage of LO jobs that miss their deadlines is still high.

An orthogonal approach to improve the overall service for LO tasks is based on a method
introduced by Santy et al. [29]. This approach was subsequently refined by Burns and Baruah [19].
They scaled up the optimistic WCETs of HI tasks using sensitivity analysis until the system is
schedulable. If used together with the BP the resulting protocol is named Bailout Protocol-Slack (BPS).
More recently, Bate et al. further refined BP with a second complementary technique [11].
Such approach consists of an update of the optimistic time budget made at runtime by collecting the
so-called gain time, i.e., the spare CPU time not required at runtime by task instances. These techniques
allow reducing both the number of times and the duration the system executes in high-criticality
modes. By combining the online gain time collection with BP, the authors introduced two new
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scheduling protocols that are named Bailout Protocol-Gain Time (BPG) and Bailout Protocol-Slack and
Gain Time (BPSG).

3. System Model

In the following, the system model used for task sets is described. A dual-criticality system,
which consists of multiple tasks, where each task has a criticality l ∈ {LO, HI} with HI being of higher
criticality than LO, is assumed. As discussed in Section 1, the criticality of a task can be derived by
different means but no specific interpretation of criticality is assumed, as this is orthogonal to the
scheduling method presented in this paper. Furthermore, it is assumed that the processor is the only
resource that is shared among tasks, and that the overheads due to the scheduling operations and
context switches can be bounded by a constant included within each task worst-case execution times.

We consider a set of independent and sporadic tasks τ that has to be processed on uniprocessor
systems and that consists of two sub sets:

τ = τLO ∪ τHI (1)

with
τLO = {τi ∈ τ | li = LO} (2)

τHI = {τi ∈ τ | li = HI} (3)

where τHI is the subset of tasks that are highly critical and τLO is the subset of tasks that are not highly
critical within the system.

The tasks represent scheduling units that the system has to perform. An individual task τi ∈ τ is
represented by the following tuple:

τ = 〈T, D, CLO, CHI, L〉

where T is the period, D is the relative deadline, CLO and CHI are, respectively, the optimistic and
the pessimistic worst case execution times and L ∈ {LO, HI} refers to the criticality. In this paper,
for simplicity, we assume implicit deadlines, i.e., tasks with deadlines equal to their periods: D = T.

A job is an instance of a task at runtime, i.e., a job represents the actual object processed by
the scheduler and inherits almost all properties from the task that generates it plus the arrival time
A as below:

ji = 〈A, D, CLO, CHI, L〉

The LO tasks and, as a consequence, their relative jobs do not have a known safe WCET bounds
CHI, since safe worst-case execution times are rather costly to obtain and thus provided only for HI
tasks. Once it finishes its execution, each job ji has got a computation time et(ji) that can vary for each
specific job of the same task. The job set produced by an individual task τi is indicated by J(τi) while
J(τ) is the job set produced by all tasks belonging to the task set τ. Therefore, τ represents the set
of activities that have to be performed by the system while J represents the set of concrete process
instances that have to be considered by the scheduler.

The jobs produced via the task set are scheduled according to the standard fixed-priority fully
pre-emptive real-time scheduling. However, the traditional fixed-priority scheduling is unaware of
criticality of task instances and scheduling decisions are only made according to priority that indicates
the job timing requirements. Therefore, it is also used a protocol that considers the task’s criticality to
meet the mixed-criticality requirements. The following assumptions are made about the task set and
the underlying real-time scheduler, i.e., fixed priority fully pre-emptive scheduling:

Assumption 1. All HI and LO jobs together are schedulable with the underlying real-time scheduling method
with respect to their CLO.
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Assumption 2. All HI jobs alone are schedulable with the underlying real-time scheduling method with respect
to their CHI. Since CHI is a safe WCET bound, i.e., et ≤ CHI, this assumption also implies that the HI jobs alone
are schedulable with respect to their actual execution time.

Assumption 3. All HI jobs are schedulable with respect to their CHI, while also assuming the execution of all
LO jobs arrived in Normal mode with respect to their CLO.

Note that Assumption 3 is required so that, while LO tasks are allowed to run within their CLO,
it is still ensured that all HI tasks are still schedulable within their CHI. Assumption 3 is based on
jobs rather than tasks as it covers the moment in time when a HI task overruns its CLO. In addition,
note that Assumption 2 is just a weaker case of Assumption 3, without the LO tasks considered.

4. The Lazy Bailout Protocol

The standard BP is an adaptive protocol to schedule mixed-criticality job sets. The strength of BP
is providing an effective and fast control mechanism to go back to the low-criticality mode, where all
jobs can start and being processed. However, the main weakness of BP is immediately abandoning LO
jobs in case of resource shortage, which leads to a high percentage of jobs that miss their deadline.

The Lazy Bailout Protocol (LBP) is built upon BP and inherits from it the following three execution
modes that work as specified below:

1. Normal: It is the starting system execution mode. It corresponds to a low-criticality mode where
all jobs within the system are supposed to be processed correctly according to the CLO threshold.

2. Bailout: It is the emergency mode that is entered whenever a HI job overruns its CLO.
3. Recovery: It is the emergency mode that is entered to allow the last pending lowest priority HI job

to complete before going back to Normal mode.

Figure 1 shows the components of LBP. The LBP filter is responsible for changing the execution
modes. The system has two ready queues for jobs: the high-priority queue represents the BP ready
jobs queue while the low-priority queue keeps the LO jobs that have been released during Bailout or
Recovery modes or that have exceeded their CLO. Note that LO jobs inserted into the low-priority
queue run until their deadline and only when the high-priority queue is idle. Thus, such jobs cannot
lead to any deadlines being missed. There are two job monitors to check, respectively, LO and HI
jobs that overrun their CLO. ET-MonLO signals to the real-time scheduler the LO jobs that have to be
inserted within the low-priority queue while ET-MonHI communicates to the LBP filter when a HI job
exceeds its optimistic WCET to switch the execution mode to Bailout.

Figure 1. LBP architecture.

Similar to BP, LBP inherits from AMC the system execution behaviour, i.e., the system starts in
a low-criticality execution mode and whenever a HI job exceeds its optimistic WCET, the system
switches to a high-criticality execution mode where any LO job execution is prevented. Finally,
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the system goes back the starting execution mode in case of idle instant. Furthermore, LBP inherits
from BP the control mechanism that is in charge of the execution mode changes that permits a fast
recovery from the Bailout/Recovery modes back to the Normal mode. Such mechanism is based
not only on the detection of a idle instant but also on the value of a decision variable named Bailout
Fund (BF). It is worth noting that LBP, as well as AMC and BP, implement dispatching policies that
are independent and separated from the priority assignment used. Moreover, since a fixed-priority
scheduler is used, no priority change is allowed. Figure 2 shows how the execution mode changes in
the scheduling protocol. It contains the events that trigger the switch to a different execution mode
together with the related update of the BF value. The system starts in Normal mode and then, if any
HI job overruns its CLO, the BF variable is initialised and there is a change to Bailout mode. Once the
system is in this mode, the BF variable is updated with the earlier completion of jobs, the release of
new LO jobs or the HI jobs overrunning their CLO. If an idle instant occurs, then Normal mode is
entered, whereas, if the BF becomes zero, then Recovery mode is entered. After the pending lowest
priority HI job completes its execution in Recovery mode, the system goes back to Normal mode.

Figure 2. Execution mode changes in LBP.

The difference between LBP and BP is that LO jobs released in Bailout and Recovery modes or
exceeding their CLO are inserted into the low-priority queue instead of being abandoned. This allows
increasing the amount of LO jobs scheduled without interfering with the execution of jobs in the
high-priority queue. In fact, LO jobs in the low-priority queue run until their deadline when the
high-priority queue is idle. The essential difference in scheduling behaviour is that, in those cases
where BP would be idle, LBP might have some tasks preserved in the low-priority queue that can now
successfully be executed.

Whenever a job in the low-priority queue misses its deadline, it is removed. LO jobs released
in Normal mode can continue to execute in both Bailout and Recovery modes and they could even
overrun their deadlines as long as they do not exceed their CLO. Below, is a detailed description of LBP
in each of its execution modes:

Normal mode:

• While all HI jobs execute for no more than their CLO values, the system remains in this mode.
• If any HI job overruns its CLO without signalling completion, then the system switches into the

Bailout mode and the BF is initialised to BF = CHI − CLO.
• LO jobs that overrun their CLO are interrupted and inserted into the low-priority queue.
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• LO jobs that have been inserted into the low-priority queue are executed during idle instants.
If they do not complete within their deadlines, then they are removed from the low-priority queue.

Bailout mode:

• If any HI job executes for its CLO without signalling completion, then the bailout fund is updated
by its maximum extra time budget: BF = BF + (CHI − CLO).

• If any HI job completes with an execution time e, with e ≤ CLO, then its time left is donated to the
bailout fund: BF = BF − (CLO − e).

• LO jobs released in Normal mode that complete with an execution time of e, with e ≤ CLO, donate
their time left to the bailout fund: BF = BF − (CLO − e).

• If any HI job that already exceeded its CLO completes with an execution time of e, with CLO < e ≤ CHI,
then it donates its extra time left, reducing the bailout fund: BF = BF − (CHI − e).

• LO jobs released in Bailout mode are not started but inserted in the low-priority queue to be
executed during idle instants in Normal mode. Furthermore, when the scheduler would otherwise
have dispatched such a job, the job’s budget of CLO is donated to the bailout fund: BF = BF− CLO.

• If the BF becomes zero, then the lowest priority HI job that did not complete its execution (let this
job be jk) is recorded and the Recovery mode is entered.

• If an idle instant occurs, then a transition is made to Normal mode, and BF is reset to zero.

Recovery mode:

• LO jobs released in this mode are not started but inserted within the low-priority queue to be
executed during idle instants in Normal mode.

• If any HI job executes for its CLO value without signalling completion, then the system switches
back to Bailout mode and BF is initialised: BF = CHI − CLO.

• When the job jk noted at the point when Recovery mode was last entered completes, then the
system switches to Normal mode.

Figure 3 shows how the same task set is scheduled according to the On the one hand, the standard
BP abandons all the LO jobs released during the HI criticality execution modes while the lazy approach
allows to recover and schedule more LO jobs. In particular, in Figure 3b, jobs B1 and B4 are released,
respectively, at times t = 6 and t = 24 and they have the highest priority. Such jobs are inserted in
the low-priority queue to be removed, respectively, at times t = 12 and t = 30 when they miss their
deadlines and the next instance of the same task arrives. Furthermore, the LO jobs B2 and B5 released
respectively at times t = 12 and t = 30 are executed afterwards in Normal mode since there are idle
instants to exploit before their deadlines. Such example highlights how LO jobs that are delayed,
instead of being abandoned, are executed during idle instants in Normal mode to not influence the
real-time behaviour of jobs in the high-priority queue. Overall, compared with LBP, the standard BP
results in a decrease of the system utilisation because, whenever there is interference among HI and LO
jobs released in Bailout or Recovery modes, LO jobs are simply abandoned. On the other hand, LBP
increases the processor utilisation by exploiting the system idle time and, by doing this, it improves
the overall service provided to LO tasks, which is achieved by increasing the number of LO jobs that
are processed.
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(a)

(b)

Figure 3. Comparison between BP and LBP: LBP schedules more LO jobs than BP: (a) BP abandons
all LO jobs released in Bailout mode; and (b) LBP rescues the LO jobs B2 and B5, while B1 and B4 are
abandoned after they miss their deadlines.

5. Proofs

In this section, we formalise a criterion to compare different mixed-criticality systems. Below are
definitions and predicates used to prove the theorems afterwards.

STS, τ, JS:

STS is a set of task sets τ. τ is an individual scheduling problem consisting of tasks. JS is a set of
jobs created at runtime by scheduling a task set.

METHOD:

This is the scheduling method applied, which can be BP, LBP or some of their derivatives resulting
from the integration with the offline sensitivity analysis or with the online gain time collection.

HI(τ), LO(τ): τ → τ:
HI(τ) is a subset of τ containing only tasks of high-criticality. LO(τ) is a subset of τ containing
only tasks of low-criticality.

Scheduled(mtd, τ): METHOD × τ → JS:

The list of jobs generated from a task set τ, which are successfully scheduled by method mtd,
i.e., jobs which completed within their deadline.

ScheduledHI(mtd, τ): METHOD × τ → JS:

This includes only those jobs from Scheduled(mtd, τ) which are derived from tasks with
high-criticality.

ScheduledLO(mtd, τ): METHOD × τ → JS:

This includes only those jobs from Scheduled(mtd, τ) which are derived from tasks with
low-criticality.

Failed(mtd, τ): METHOD × τ → JS:

The list of jobs generated from a task set τ, which are not successfully scheduled by method mtd,
i.e., jobs which were not completed within their deadline.

Abandoned(mtd, τ): METHOD × τ → JS:

This predicate returns the list of jobs generated from a task set τ that were never forwarded
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by the mixed-criticality scheduling method mtd to its underlying real-time scheduler. This is
a special case of failed jobs:

Abandoned(mtd, τ) ⊆ Failed(mtd, τ)

Abandoned jobs are also different from dropped jobs, which are jobs that failed after having started
execution with the underlying real-time scheduler.

LORated(mtd, τ): METHOD × τ → JS:

This predicate returns the list of LO jobs, which were re-queued from the default high-priority
queue to the low-priority queue (LBP-based methods only).

IsBetterMCS(mtd1, mtd2, τ): METHOD2 × τ → BOOL:
This predicate tests whether a scheduling method mtd1 is better than method mtd2 for a task set
τ with respect to mixed-criticality scheduling, which is formally defined as:

IsBetterMCS(mtd1, mtd2, τ) ⇒

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

TRUE if (ScheduledHI(mtd1, τ) ⊃ ScheduledHI(mtd2, τ)) ∨
((ScheduledHI(mtd1, τ) == ScheduledHI(mtd2, τ)) ∧
(ScheduledLO(mtd1, τ) ⊃ ScheduledLO(mtd2, τ)))

FALSE otherwise

This tests whether mtd1 has a better performance than mtd2 for HI jobs, or equal performance for
HI jobs but better performance for LO jobs.

IsBetterMCS(mtd1, mtd2): METHOD2 → BOOL:
This predicate tests whether a scheduling method mtd1 is better than method mtd2 for all task
sets with respect to mixed-criticality scheduling, which is formally defined as:

IsBetterMCS(mtd1, mtd2) ⇒
∃ts ∈ STS. IsBetterMCS(mtd1, mtd2, τ) ∧
� ∃τ ∈ STS. IsBetterMCS(mtd2, mtd1, τ)

It is worth noting that IsBetterMCS(mtd1, mtd2, τ) and IsBetterMCS(mtd1, mtd2) are transitive:

IsBetterMCS(mA, mB) ∧ IsBetterMCS(mB, mC) ⇒ IsBetterMCS(mA, mC)

5.1. Comparison between BP and LBP

Theorem 1. LBP has the same success rate of HI tasks than BP, which can be formally written as:

∀τ ∈ STS. ScheduledHI(BP, τ) == ScheduledHI(LBP, τ)

Proof. (Theorem 1) BP and LBP behave the same way regarding the handling of HI jobs:

1. If a HI job is overrunning its CLO, it is granted an execution budget until CHI.
2. If a HI job does not finish within CHI or within its deadline, then it is dropped.

The only difference between BP and LBP lies in the handling of LO jobs, where LBP puts them
in a lower priority scheduling queue instead of abandoning them immediately when released in
Bailout/Recovery modes or dropping them after the overrun of their CLO as BP does. The content of
the low-priority scheduling queue of LBP cannot influence the scheduling of the default scheduling
queue. Thus, for any task set τ, it follows that ScheduledHI(BP, τ) == ScheduledHI(LBP, τ).
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Theorem 2. LBP can have a better success rate of LO tasks than BP, but never worse, which can be formally
written as:

∀ τ ∈ STS. ScheduledLO(BP, τ) ⊆ ScheduledLO(LBP, τ)

∃ τ ∈ STS. ScheduledLO(BP, τ) ⊂ ScheduledLO(LBP, τ)

Proof. (Theorem 2) The only difference between BP and LBP lies in the handling of LO jobs, where LBP
puts them in a low-priority scheduling queue instead of abandoning them immediately or dropping
them after the overrun of their CLO. Hence, we have:

∀ τ ∈ STS. Abandoned(BP, τ) ⊆ LORated(LBP, τ)

Thus, to prove Theorem 2, we only have to show that, among the tasks that BP abandons,
there is at least one task that with LBP instead gets put into the low-priority queue and finally
successfully scheduled:

∃ τ ∈ STS. Abandoned(BP, τ) ∩ LORated(LBP, τ) ∩ Scheduled(LBP, τ) �= ∅

which means it is sufficient for the proof to show by example that it is possible to have task sets where
LO-rated jobs can be scheduled within an idle time of the default scheduling queue. To do so, we use
the following task set consisting of one HI task A and one LO task B:

Task P D et CLO CHI L
A 15 15 5 3 10 HI
B 4 4 2 2 - LO

Task A is assumed to have an execution time et = 5, which always causes an overrun of the
optimistic WCET estimate. The first time, job A0 exceeds its CLO at t = 7 and the system switches
into Bailout mode. The LO job B2 is released at time t = 8.0 during Bailout mode. Hence, the bailout
fund BF is decreased by a quantity equal to the CLO of B2. However, BF remains positive. After A0 is
completed, the system experiences an idle instant and this causes a switch back to Normal mode.

As shown in Figure 4a, BP immediately abandons job B2 at its arrival time during the
high-criticality execution mode. In contrast, as shown in Figure 4b, LBP moves such job into
the low-priority queue at its arrival and executes it when the default queue becomes idle. Thus,
this example demonstrates the existence of a task set τ such that

∃ τ ∈ STS. Abandoned(BP, τ) ∩ LORated(LBP, τ) ∩ Scheduled(LBP, τ) �= ∅

which demonstrates that there are cases where LBP can successfully schedule more jobs than BP.
Here, we have to remind the fact that those jobs which are successfully scheduled by BP are processed
exactly the same way by BP and LBP, meaning that, whenever BP successfully schedules a job, so does
LBP. This property together with the existence of above example completes the proof of:

∀ τ ∈ STS. ScheduledLO(BP, τ) ⊆ ScheduledLO(LBP, τ)

∃ τ ∈ STS. ScheduledLO(BP, τ) ⊂ ScheduledLO(LBP, τ)

123



Designs 2019, 3, 10

(a)

(b)

Figure 4. (Proof of Theorem 2) Example in which LBP successfully executes LO jobs that are abandoned
by BP: (a) BP abandons LO jobs that are not released in Normal mode; and (b) LBP provides a delayed
execution for job B2.

From Theorems 1 and 2, it follows that:

Corollary 1. LBP has a better mixed-criticality performance than BP, which can be formally written as:

IsBetterMCS(LBP, BP)

5.2. Comparison between BPG and LBPG

Theorem 3. LBPG has the same success rate of HI tasks than BPG, which can be formally written as:

∀τ ∈ STS. ScheduledHI(BPG, τ) == ScheduledHI(LBPG, τ)

Proof. (Theorem 3) BPG and LBPG behave the same way regarding the handling of HI jobs:

1. If a HI job is overrunning its CLO, it is granted an execution budget until CHI.
2. If a HI job does not finish within CHI or within its deadline, then it is dropped.

Moreover, any job that completes before its optimistic WCET during Normal mode gives its gain
time to the next highest priority job in the ready queue. The only difference between BPG and LBPG
lies in the handling of LO jobs that exceed their optimistic WCETs or that are released during Bailout
and Recovery modes. BPG abandons such jobs while LBPG inserts them in the low-priority queue for
later execution. Furthermore, the gain time collection only happens among jobs in the high-priority
queue and no gain time is passed or happens among jobs in the low-priority queue. This guarantees
that BPG and LBPG process and schedule jobs in the high-priority queue the same way. Thus, for any
task set τ, it follows that

ScheduledHI(BPG, τ) == ScheduledHI(LBPG, τ).
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Theorem 4. LBPG can have a better success rate of LO tasks than BPG, but never worse, which can be formally
written as:

∀ τ ∈ STS. ScheduledLO(BPG, τ) ⊆ ScheduledLO(LBPG, τ)

∃ τ ∈ STS. ScheduledLO(BPG, τ) ⊂ ScheduledLO(LBPG, τ)

Proof. (Theorem 4) The only difference between BPG and LBPG lies in the handling of LO jobs, where
LBPG puts them in a low-priority scheduling queue instead of abandoning them immediately or
dropping them after the overrun of their CLO. Hence, we have:

∀ τ ∈ STS. Abandoned(BPG, τ) ⊆ LORated(LBPG, τ)

to prove Theorem 4 we only have to show that among the tasks that BPG abandons, there is at least one
task that with LBPG instead gets put into the low-priority queue and finally successfully scheduled:

∃ τ ∈ STS. Abandoned(BPG, τ) ∩ LORated(LBPG, τ) ∩ Scheduled(LBPG, τ) �= ∅

which means it is sufficient for the proof to show by example that it is possible to have task sets where
LO-rated jobs can be scheduled within an idle time of the default scheduling queue.

We use the task set in Figure 5 to show that LBPG outperforms the standard BPG. The HI task
A is assumed to have an execution time et = 9, which always causes an overrun of the optimistic
WCET estimate. On the other hand, the LO task B always has an execution time of et = 3 apart
from its first instance that runs for only two time units which allows to have a gain time of 1. Job B0

completes earlier at time t = 2 and gives its gain time to job A0 for which the optimistic time budget
is now updated to A5. A0 enters the Bailout mode at time t = 7 and then runs until its completion.
No other gain time is collected during the schedule showed in the figure. Figure 5a,b show, respectively,
that BPG abandons job B1 and B3, while LBPG runs them in Normal mode during idle time. Thus,
this example demonstrates the existence of a task set τ such that

∃ τ ∈ STS. Abandoned(BPG, τ) ∩ LORated(LBPG, τ) ∩ Scheduled(LBPG, τ) �= ∅

which completes the proof.
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(a)

(b)

Figure 5. (Proof of Theorem 4) Example in which LBPG successfully executes LO jobs that are
abandoned by BPG: (a) BPG abandons LO jobs in Bailout mode; and (b) LBPG provides a delayed
execution for job B1 and B3

From Theorems 3 and 4 it follows that:

Corollary 2. LBPG has a better mixed-criticality performance than BPG, which can be formally written as:

IsBetterMCS(LBPG, BPG)

5.3. Comparison between BPS and LBPS

Theorem 5. LBPS has better mixed-criticality performance than BPS, which can be formally written as:

IsBetterMCS(LBPS, BPS)

Proof. (Theorem 5) The proof has two parts:

1. Proving that there is no task set τ such that

IsBetterMCS(BPS, LBPS, τ)

2. Showing by concrete example that there exists a task set τ such that

IsBetterMCS(LBPS, BPS, τ)

Part 1:

The strength of BPS over BP consists of the scaling up of the optimistic WCETs of HI tasks to
increase the duration of Normal mode and to decrease the amount of time the system runs in Bailout
mode. On the one hand, this leads to abandon a smaller amount of LO jobs due to the decrease in
high-criticality mode duration. On the other hand, the increase of the Normal mode duration allows
releasing and processing more LO jobs. The only difference between BPS and LBPS is in the handling of
LO jobs released exceeding their CLO or released in high-criticality modes, i.e., BPS suddenly abandons
them while LBPS inserts them in a low-priority queue for later execution during system idle instants.
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Therefore, LBPS keeps the BPS advantage, but it adds also the Lazy Bailout approach, which allows
recovering LO jobs during high-criticality modes execution. This increases the amount of LO jobs
processed and eventually scheduled during the Normal mode execution. This means that LBPS can
never have worse performances than BPS.

Part 2:

To prove the second part, it is necessary to show that there exists one task set in which LBPS
schedules more LO jobs than BPS. As an example, we use the task set given in Figure 6, for which
the optimistic WCET CLO of the HI task A has been already scaled up by sensitivity analysis. BPS
increases the duration in which the system runs in Normal mode. However, it still abandons LO jobs
released during high-criticality execution modes. Conversely, LBPS runs them afterwards during idle
instants. Figure 6 displays how the LO job B1 released at time t = 9 is abandoned with BPS while
LBPS manages to execute it later at time t = 10.

This concludes the proof of Theorem 5.

(a)

(b)

Figure 6. (Proof of Theorem 5, Part 2) LBPS always schedules more LO jobs than BPS: (a) BPS abandons
job B1; and (b) LBPS schedules all LO jobs.

5.4. Comparison between BPSG and LBPSG

With Corollary 2 and Theorem 5, we proved, respectively that the LBPG always outperforms
LBP and LBPS always outperforms BPS. This is because the gain time collection made at runtime and
the offline scaling up of the CLO have the same benefits in the lazy Bailout method as in the standard
Bailout protocol. On the other hand, from Corollary 1, we know that LBP always outperforms BP.
It follows that:

Corollary 3. LBPSG has a better mixed-criticality performance than BPSG, which can be formally written as:

IsBetterMCS(LBPSG, BPSG)

In this section, we introduce the criterion IsBetterMCS(mtd1, mtd2) to compare the performance
of mixed-criticality scheduling methods with priority given to HI jobs scheduled. Using this criterion,
we show that LBP always performs better than BP. Moreover, we also show that the offline sensitivity
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analysis and online gain time collection always contribute to increase the amount of LO jobs scheduled
and that they achieve better performances if used with LBP rather than BP. To conclude, the proposed
LBPSG is consistently better than the existing BPSG [11].

Note that this result is strictly bound to our definition of IsBetterMCS(mtd1, mtd2), which is
motivated by systems where a sacrifice of HI jobs to increase performance of LO jobs is not acceptable.

6. Experimental Evaluation

In this section, we describe how we conducted our experiments and what were the final outcomes.
We start by explaining how the experiments were structured. Section 6.2 explains how task sets
were created, what were our application scenarios and what scheduling methods we compared.
Next, Section 6.3 describes what type of performance metrics we considered to evaluate and compare
different mixed-criticality scheduling methods. Finally, Section 6.4 contains the description and
discussion of results according to what is shown within tables and charts.

6.1. Task Set Generation

The aim of the task set generation was to simulate situations in which the system easily switches
to the Bailout execution mode in order to show the effectiveness of the LBP methods over BP and
its derivatives in systems with high load (using a utilisation factor of 0.6 or more). The system load
computed according to the pessimistic WCET of all HI tasks within each task set was always greater
than that computed according to the optimistic WCET of all its tasks. Furthermore, the execution times
of HI tasks almost always exceeded their CLO in order to trigger the mode change.

As a result, task sets were generated to have an overall utilisation factor that varied randomly
between 0.60% and 0.75% with respect to the optimistic WCET CLO of all tasks while the utilisation
factor computed according to the HI tasks was always 0.75%. The number of tasks per task set varied
randomly between 4 and 20. Within each task set, the amount of HI tasks varied randomly between
20% and 70% of the task set. Moreover, the execution times of HI tasks varied between the 90% of their
CLO and their CHI, while the execution times of LO tasks was between 40% of their CLO and 10% more
than the CLO. Priorities were assigned to tasks according to the Deadline Monotonic (DM) strategy: task
instances with shorter deadlines had higher priorities.

6.2. Description of Experiments

We conducted different experiments, each consisting of a group of 3000 task sets randomly
generated. Tasks within every task set have implicit deadlines and their periods varied randomly
between 3 and 22. Every task set group belonged to one of the three scenarios specified below:

HC-LP contains job sets where all HI jobs have larger deadlines than all LO jobs. More precisely,
LO tasks’ periods varied randomly between 3 and 10, while HI tasks’ periods varied between 14
and 22. Therefore, all HI jobs had lower priority than all LO jobs:

∀j∈JHI. ∀j′∈JLO. pr(j) < pr(j′)

HC-MP contains job sets where HI jobs have deadlines that are smaller or larger than those of LO
ones. In fact, periods of tasks, either HI or LO, varied randomly between 3 and 22. Therefore,
HI and LO jobs had mixed priorities:

∀j∈JHI. ∀j′∈JLO. pr(j) ≤ pr(j′) ∨ pr(j) > pr(j′)

HC-HP contains job sets where all HI jobs have smaller deadlines than all LO ones. More precisely,
HI tasks’ periods varied randomly between 3 and 10 while LO tasks’ periods varied between 14
and 22. This implies that all HI jobs have higher priority than LO jobs:

∀j∈JHI. ∀j′∈JLO. pr(j) > pr(j′)
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We compared the following scheduling protocols:

• The standard Fixed-Priority Preemptive Scheduling with DM as priority assignment (FPPS-DM).
• The standard Bailout Protocol (BP).
• The Bailout Protocol with Gain Time (BPG), where each job that finishes before its optimistic time

threshold in Normal mode gives its gain time to increase the time budget of next job ready to
be scheduled.

• The Bailout Protocol-Slack (BPS) and the Bailout Protocol-Slack and Gain Time (BPSG) that represent
the execution of BP and BPG on task sets in which the CLO of HI tasks is appropriately increased
via sensitivity analysis [30,31] while the schedulability is guaranteed according to AMC-rtb [15].

• The Lazy Bailout Protocol (LBP).
• The Lazy Bailout Protocol with Gain Time (LBPG), the Lazy Bailout Protocol-Slack (LBPS) and the Lazy

Bailout Protocol-Slack and Gain Time (LBPSG) that represent extensions of LBP made by using the
offline scaling of CLO of HI tasks with sensitivity analysis and the gain time collection at runtime.

We finally show the benefit of the lazy bailout approaches with respect to the former methods.
It is important to note that, if HI tasks all have higher priority than LO ones, then the scheduling

problem so created becomes equivalent to the standard real-time scheduling problem since there
is no criticality inversion. The same applies to those cases in which higher priority is assigned
to the highest criticality tasks regardless of their periods or deadline as in Criticality As Priority
Assignment (CAPA) [32].

Results of experiments are collected in Tables 1 and 2, which refer to the different scenarios
described above. For each scenario, we show the results with different scheduling protocols.

Table 1. BP and LBP variants: comparison of task set schedulability (%).

HC-LP HC-MP HC-HP

Method TSSched TSSchedHI TSSchedLO TSSched TSSchedHI TSSchedLO TSSched TSSchedHI TSSchedLO

FPPS-DM 83.03 83.03 100.0 76.87 98.33 77.27 78.67 100.0 78.67
BP 2.20 100.0 2.20 0.97 100.0 0.97 0.87 100.0 0.87
BPG 4.87 100.0 4.87 1.17 100.0 1.17 0.93 100.0 0.93
BPS 7.23 100.0 7.23 11.17 100.0 11.17 12.30 100.0 12.30
BPSG 11.87 100.0 11.87 17.23 100.0 17.23 20.00 100.0 20.00
LBP 13.93 100.0 13.93 22.53 100.0 22.53 46.43 100.0 46.43
LBPG 21.17 100.0 21.17 23.57 100.0 23.57 46.63 100.0 46.63
LBPS 20.73 100.0 20.73 30.77 100.0 30.77 52.97 100.0 52.97
LBPSG 29.57 100.0 29.57 37.60 100.0 37.60 58.57 100.0 58.57

Table 2. BP and LBP variants: comparison of jobs scheduled within their deadline (%).

HC-LP HC-MP HC-HP

Method GJSched GJSchedHI GJSchedLO GJSched GJSchedHI GJSchedLO GJSched GJSchedHI GJSchedLO

FPPS-DM 99.19 88.64 100.0 98.51 99.55 97.91 99.11 100.0 98.18
BP 62.81 100.0 55.99 73.63 100.0 54.78 85.41 100.0 60.20
BPG 67.22 100.0 61.12 74.38 100.0 55.89 85.63 100.0 60.73
BPS 66.21 100.0 60.38 79.06 100.0 64.68 88.44 100.0 69.96
BPSG 71.03 100.0 66.07 81.64 100.0 69.41 90.05 100.0 75.13
LBP 83.64 100.0 80.94 92.71 100.0 88.71 97.87 100.0 95.16
LBPG 85.87 100.0 83.54 92.91 100.0 88.99 97.88 100.0 95.18
LBPS 85.23 100.0 82.92 93.24 100.0 89.54 97.99 100.0 95.51
LBPSG 87.57 100.0 85.66 93.77 100.0 90.48 98.08 100.0 95.78

6.3. Description of Performance Metrics

This subsection introduces the criteria we used to assess performances of scheduling protocols
that process dual-criticality task sets. To evaluate the results, we defined two types of performance
parameters, i.e., task set schedulability that is relative to the whole amount of task sets and the global job
set schedulability that is relative to jobs within each individual task set.
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We conducted our experiments on three sets of 3000 task sets STS, one per scenario (HC-LP,
HC-MP and HC-HP). The task set schedulability formula tsched is defined as follows:

tsched(S, cat) =
|STSsucc(S, cat)|

|S| (4)

where S could be either a simple task set τ or set of task sets STS and the category
cat ∈ {HI + LO, HI, LO} represents the type of tasks within a set that is HI to indicate HI tasks, LO to
indicate LO tasks and either when we use HI+LO. The function STSsucc depends on the scheduling
protocol that is actually used and returns as output the set of task sets STS in which there are no jobs
missed of category cat. The absolute values within the formula give the set cardinality. Equation (4)
allows deriving the percentages of tasks set in STS that are successfully processed according to the
category cat as follows:

TSSched is the amount of task sets scheduled with no jobs missing their deadlines.

TSSched = tsched(STS, HI + LO)

TSSchedHI is the amount of task sets scheduled with no HI jobs missing their deadlines.

TSSchedHI = tsched(STS, HI)

TSSchedLO is the amount of task sets scheduled with no LO jobs missing their deadlines.

TSSchedLO = tsched(STS, LO)

The task set schedulability permits showing the percentage of task sets in which no job of category
cat misses its deadline. However, whenever a task set contains some jobs, either HI or LO, that miss
their deadline, it is also useful to assess the level of service provided in terms of jobs completed within
their deadlines and jobs abandoned or aborted. The job set completion rate method jsched returns the
percentage of jobs of category cat generated by a specific task set that complete within their deadlines.

The job set schedulability jsched is formally written as below:

jsched(τcat) =
|Jsucc(J(τcat))|

|J(τcat)|
| cat ∈ {LO, HI} (5)

The formula of the global job set schedulability gjsched(STS, cat) returns the average amount of
jobs of category cat processed within their deadline that has been generated by a set of task sets STS:

gjsched(STS, cat) = ∑τ∈STS jsched(τcat)

|STS| | cat ∈ {LO, HI} (6)

As in the previous case, it is possible to filter the jobs meeting their deadline according to the
category cat as below:

GJSched is the average number of jobs (either HI or LO) that is scheduled within a task set.

GJSsched = gjsched(STS, HI + LO)

GJSchedHI is the average number of HI jobs that is scheduled within a tasks set.

GJSchedHI = gjsched(STS, HI)

GJSchedLO is the average number of LO jobs that is scheduled within a task set.

GJSschedLO = gjsched(STS, LO)
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Tables 1 and 2 contain, respectively, the results about task set and global job set schedulabilities.
It is possible to comment on the data according to scenario or scheduling protocol. However, we use
figures to describe graphically what is contained within the tables and to allow an easier and quicker
comparison among the results.

Task set and global job set schedulabilities are averages and do not give information about how
data are distributed and about outliers. Therefore, we use also boxplots charts to show the distribution
of LO jobs scheduled per task set. The information shown in Table 1 is contained in Figures 7a, 8a
and 9a. On the other hand, Figures 7b, 8b and 9b displays the average percentages of LO jobs completed
within their deadlines.

(a)

(b)

Figure 7. BP and LBP variants: schedulability in HC-LP scenario: (a) task sets with no jobs missed;
and (b) average of jobs scheduled per task set.

131



Designs 2019, 3, 10

(a)

(b)

Figure 8. BP and LBP variants: schedulability in HC-MP scenario: (a) task sets with no jobs missed;
and (b) average of jobs scheduled per task set.
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(a)

(b)

Figure 9. BP and LBP variants: schedulability in HC-HP scenario (as priority and criticality values
have the same order, this is essentially a standard real-time scheduling problem): (a) task sets with no
jobs missed; and (b) average of jobs scheduled per task set.

133



Designs 2019, 3, 10

6.4. Discussion of Results

This subsection is dedicated to study the outcome of the experiments. It contains figures that
summarise the results of our experiments with dual-criticality job sets. Figures 7 and 8 summarise the
results in cases where there is criticality inversion. In these situations, if no HI job completes within its
optimistic threshold estimate CLO, then very likely there will be some new incoming higher priority
LO jobs that will interfere with it. Then, Figure 9 contains information about cases in which all HI jobs
have higher priority than LO jobs since all the critical jobs have smaller deadlines. This basically leads
to having no interference between HI and LO jobs and thus no criticality inversion occurrence during
the scheduling process.

Looking both at task set and job set schedulabilities results in Figures 7–9, it is possible to notice
that, compared with mixed-criticality methods, the standard deadline monotonic approach always
schedules jobs only according to priorities. In this case, the percentages of HI and LO jobs successfully
scheduled mainly depend only on their priority, with all LO jobs always meeting their deadlines
in HC-LP scenario and all HI jobs always meeting their deadlines in HC-HP scenario. Conversely,
the mixed-criticality protocols always assure that there are no HI job missed regardless of job priorities.
The experiments confirm what is stated in Section 5 with LBP in which the percentage of task set
scheduled with no jobs missed is between 13% and 46% while BP schedules no more than 2.20% of
task sets with no jobs missed.

Then, where the offline and online complementary techniques are used, there is an increase in LO
jobs successfully processed. Furthermore, the usage of sensitivity analysis and the gain time mechanism
have the same effects when applied both to the standard or to the lazy bailout method. A noticeable
result is that each LBP-based approach always increases the amount of LO jobs completed within
their deadlines compared with the corresponding standard BP-based protocol. Overall, according to
the criteria defined in Section 5, LBPSG is the protocol that outperforms all other mixed-criticality
scheduling methods with an amount of task set scheduled with no jobs missed that is between 29.57%
and 58.57%.

Figures 10–12 display the distribution of the LO jobs percentages per task set that are completed
within their deadlines. Each scheduling protocol is represented by a box-and-whisker diagram with
the box itself representing the range in which at least 50% of results tend to be concentrated. The box
also contains the indication of the median and the mathematical average of all the LO jobs scheduled
by the related protocol. The results highlight how the LBP-based methods always increase the LO jobs
success rate, as defined in Section 5, compared with the former BP ones.

In conclusion, the experiments confirm what is stated in Section 5 with lazy approaches increasing
the amount of LO jobs successfully scheduled while guaranteeing the correct completion of all HI jobs.
In other words, LBP has better mixed-criticality performances than BP, while LBPS, LBPG and LBPSG
have, respectively, better mixed-criticality performances than BPS, BPG and BPSG. Finally, the usage of
mixed-criticality protocols is recommended in HP-LP and HC-MP scenarios, i.e., when HI jobs could
have lower priorities than LO jobs.
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Figure 10. BP and LBP variants: LO jobs scheduled per task set in HC-LP scenario.

Figure 11. BP and LBP variants: LO jobs scheduled per task set in HC-MP scenario.

Figure 12. BP and LBP variants: LO jobs scheduled per task set in HC-HP scenario.
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7. Summary and Conclusions

Mixed-criticality scheduling is important for cyber-physical systems to provide robustness against
resource shortage. In this paper, we have introduced the mixed-criticality scheduling protocol Lazy
Bailout Protocol (LBP). LBP is a scheduling protocol for uni-processor platforms and is a refinement of
Bailout Protocol (BP). We have also introduced a formal criterion to compare performances among
mixed-criticality scheduling protocols. This criterion prioritises HI jobs against LO jobs, where HI
indicates high-criticality and LO stands for low-criticality. Based on that criterion, we have proven
that the complementary techniques used in [11] always contribute to increase the performances of the
scheduling protocol. Similar to BP, LBP and its derivatives always guarantee the correct completion of
HI jobs. Moreover, we have shown that LBP always schedules more LO jobs than BP and that each
LBP derivative always outperforms the corresponding BP-based approach.

Besides these formal results, we have also presented experiments that give quantitative values of
the comparisons between the different mixed-criticality scheduling protocols. LBP schedules between
13.93% and 46.63% of task sets with no jobs missed while BP at maximum schedules no more than
2.20% of task sets with no jobs missed. Finally, the experiments confirm that LBP is equivalent to BP
in guaranteeing HI jobs and that the derivatives of LBP (LBPS, LBPG and LBPSG) outperform all the
equivalent BP-based protocols by increasing the amount of LO jobs successfully scheduled. Overall,
LBPSG has shown the best mixed-criticality performance with an amount of task sets processed with
no jobs missed that is between 29.57% and 58.57%.

Future work will be on extending LBP towards support for many-core platforms.
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Abstract: Growing software complexity is an increasing challenge for the software development
of modern cyber-physical systems. A classical strategy for taming this complexity is to partition
system behaviors into different operational modes specified at design time. Such a multi-mode
system can change behavior by switching between modes at run-time. A complementary approach
for reducing software complexity is provided by component-based software engineering (CBSE),
which reduces complexity by building systems from composable, reusable and independently
developed software components. CBSE and the multi-mode approach are fundamentally conflicting
in that component-based development conceptually is a bottom-up approach, whereas partitioning
systems into operational modes is a top-down approach with its starting point from a system-wide
perspective. In this article, we show that it is possible to combine and integrate these two
fundamentally conflicting approaches. The key to simultaneously benefiting from the advantages of
both approaches lies in the introduction of a hierarchical mode concept that provides a conceptual
linkage between the bottom-up component-based approach and system level modes. As a result,
systems including modes can be developed from reusable mode-aware components. The conceptual
drawback of the approach—the need for extensive message exchange between components to
coordinate mode-switches—is eliminated by an algorithm that collapses the component hierarchy
and thereby eliminates the need for inter-component coordination. As this algorithm is used from
the design to implementation level (“compilation”), the CBSE design flexibility can be combined
with efficiently implemented mode handling, thereby providing the complexity reduction of both
approaches, without inducing any additional design or run-time costs. At the more specific level, this
article presents (1) a mode mapping mechanism that formally specifies the mode relation between
composable multi-mode components and (2) a mode transformation technique that transforms
component modes to system-wide modes to achieve efficient implementation.

Keywords: component-based software engineering; mode; mode-switch

1. Introduction

Growing software complexity is posing a challenge for the design of cyber-physical systems
(CPS) [1]. Complexity related to CPS software is multifaceted, including specific requirements related
to extra functional properties such as functional safety, resilience and timeliness. There is additionally a
trade-off between the different aspects of complexity, e.g., added complexity at design-time can reduce
complexity at run-time and vice versa. A key issue in making such trade-offs is the risk implied by
different choices; and risks have to be balanced against benefits. For companies, this is a reality even
for safety-critical systems regulated by safety standards. As a result, to maximize business benefits,
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it is standard practice for many companies to make a minimal, but sufficient, effort to comply with
applicable regulation.

At the technological level, there are approaches developed to reduce complexity throughout the
system life-cycle. Combining such approaches can potentially reduce the overall life-cycle complexity,
but approaches are not always compatible, and each of them introduces both benefits and costs.
This article presents the integration of two such approaches: multi-mode systems and component-based
software engineering, which both provide composability, but are targeting different life-cycle phases.
A specific challenge in combining the two is that they are conceptually incompatible, in the sense
that component-based development is a bottom-up approach, whereas partitioning systems into
operational modes is a top-down approach with its starting point from a system-wide perspective.
Still, we are able to successfully integrate them in a single framework of multi-mode components,
thereby providing the combined benefits of both, while being able to reduce costs to acceptable levels.
These approaches, introduced below, are primarily focusing on the design, configuration and run-time
phases of the system life-cycle, although they do have important implications also for the maintenance
phase. Furthermore, other dimensions of complexity are affected by the considered technologies,
including organizational complexity, as both component-based software engineering (CBSE) and the
multi-mode approach provide a basis not only for system partitioning, but also for partitioning of
the design activities, implying that the distribution of the design tasks to different departments or
even different organizations are facilitated. A further implication of the enabled partitioning and
inherent clearly-defined interfaces is that the approaches could scale also to systems-of-systems (SoS),
e.g., different components or modes can correspond to different systems in an SoS.

1.1. Multi-Mode Systems

A common practice to manage software complexity is to partition system behaviors into different
mutually-exclusive operational modes so that each mode corresponds to a specific system behavior.
A multi-mode system [2] changes behavior by switching modes. A typical example is the control
software of an airplane, which runs in different modes such as taking off, flight and landing.
Multi-mode systems have also been motivated by many other reasons:

1. Faster development: system behavior for different modes can be designed and tested in parallel.
2. Diversified functionalities due to multiple modes.
3. Enable adaptivity by mode-switch.
4. Efficient resource usage: optimized resource reservation for each mode instead of fixed

resource reservation.
5. Fault tolerance: safety-critical systems can switch to a safe mode in case of a fault.
6. Extensibility and scalability: it is flexible to add new modes and integrate them with an

existing system.

1.2. Component-Based Software Engineering

As a complementary approach to multi-mode systems, CBSE [3] advocates the reuse of
independently developed software components as a promising technique for the development of
complex software systems. The success of CBSE has been evidenced by a variety of component models
proposed both in industry and academia [4,5]. CBSE suggests software modularity and reusability
to facilitate the development of high-quality software. For instance, different functional modules or
even subsystems of the control software of an airplane can be encapsulated into reusable software
components that can be reused multiple times for the same system or for other systems in the same
software product line.

Applying CBSE in multi-mode systems or the other way around has been a largely unexplored
research area, possibly because multi-mode systems and CBSE are fundamentally conflicting in
the sense that the former traditionally is a top-down approach, whereas the latter is a bottom-up
approach. Despite this apparent conflict, our research goal in this article is to combine these
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approaches and benefit from the advantages of both multi-mode systems and CBSE. Hence, we propose
component-based software development of multi-mode systems, characterized by the independent
development and reuse of multi-mode components (i.e., components that can run in multiple modes).

1.3. A Guiding Example

As a guiding example, consider a proof-of-concept healthcare monitoring system. The system
consists of two subsystems: a data acquisition subsystem and a monitoring subsystem. The data
acquisition subsystem uses cameras and microphones to collect video and audio data from a ward
or a private home. Video and audio data are separately encoded and encrypted before transmission.
The monitoring subsystem decrypts and decodes data that it receives and reports them to the health
center. The monitoring subsystem also includes an alarm that is triggered when the person being
monitored encounters a dangerous situation, such as falling or suffering from a heart attack.

Our focus is on the software architecture of the monitoring subsystem (MoS), which is composed
of multi-mode components. Figure 1 illustrates the component hierarchy of the system on the left and
component connections on the right. The system can be considered as a top-level component MoS
with three subcomponents: DaD for data decryption, the multimedia decoder MuD and EvA for event
analysis. Due to the tree structure of the component hierarchy, DaD, MuD and EvA are also called
the children of MoS, which consequently is their parent. The system can run in two different modes:
regular monitoring mode (denoted as Rm) and attention mode (denoted as Att).

Figure 1. The architectural model of a multi-mode system built from multi-mode components.

The default mode of MoS is Rm when nothing special happens. To save resource in this mode,
a fast video encoding/decoding algorithm can be selected and only low resolution video is transmitted
to keep low CPU and bandwidth usage. Shown in Figure 1, small squares denote the input and output
ports of a component, while each arrow that connects two ports denotes the data flow. Basically,
each component has input data coming from its input ports, processes the data and provides output
data at its output ports. Such a pipes and filters architectural style is fairly common for multimedia
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applications. The video data are first decrypted by DaD and subsequently decoded by MuD, which
sends the decoded video data to the display in the health center. Represented by the dimmed color,
EvA is deactivated when MoS runs in Rm. Meanwhile, DaD runs in a regular mode R1 and MuD
runs in a regular decoding mode Rd. MuD has three subcomponents: VAE for video/audio extraction,
a video decoder, ViD, and an audio decoder, AuD. ViD is the only activated subcomponent running in
a regular video decoding mode Rvd as MuD runs in Rd. VAE and AuD are deactivated as shown in
Figure 1 because no audio data are transmitted.

When the data acquisition subsystem detects an accident, both subsystems will switch to an
attention mode Att to raise the attention of the health center. The network load is increased due to
transmission of video data with higher quality and audio data. Component EvA becomes activated
running in a regular mode R2, to analyze the detected event and trigger an alarm when necessary.
MuD starts to run in enhanced decoding mode Ed, where all its subcomponents (VAE, ViD, AuD) are
activated and a different video encoding/decoding algorithm is used to support higher resolution
video. VAE runs in a regular mode R3 to separate decrypted video and audio data and send them to
ViD and AuD, respectively. Represented by grey color in Figure 1, ViD runs in an enhanced video
decoding mode Evd with a different video decoding algorithm for high quality video. AuD runs in a
regular audio decoding mode Rad. In the case of poor network condition, MuD switches to a degraded
QoS mode Dq, where the transmission of audio data is terminated to keep video quality, which is
considered to be more important. Therefore, AuD becomes deactivated.

We distinguish two types of components in the monitoring subsystem: primitive components
and composite components. DaD, EvA, VAE, ViD and AuD are primitive components, which are
directly implemented by code, while MoS and MuD are composite components composed by other
components. What makes this system distinctive compared with traditional component-based systems
is its constitution of multi-mode components, i.e., components that can run in different modes at
run-time. The system in Figure 1 indicates a clear mapping between the modes of different components.
Such a mapping is summarized in Table 1, where modes in the same column are mapped to each
other for the composite components MoS and MuD. For instance, when MoS runs in mode Att, DaD
must run in R1, MuD can run in either Ed or Dq and EvA must run in R2. Even already, this simple
example signifies the power of building multi-mode systems with multi-mode components, which has
the potential to enrich system architectural variability at all levels. Since multi-mode components still
comply with component-based development, the overall software design complexity is decoupled
into building multi-mode components at different levels, thereby making the growing software
complexity manageable.

Table 1. Mode mappings.

(a) Mode Mapping of MoS (b) Mode Mapping of MuD

Component Modes Component Modes

MoS Rm Att MuD Rd Ed Dq
DaD R1 VAE Deactivated R3
MuD Rd Ed Dq ViD Rvd Evd
EvA Deactivated R2 AuD Deactivated Rad Deactivated

1.4. Contributions

In achieving component-based software development of multi-mode systems, this article includes
two key contributions. First, we propose a formal mode mapping description in the form of mode
mapping automata (MMA) that specifies how the modes of a composite component are mapped to the
modes of its subcomponents. The MMA presented in this article partially builds on the MMA initially
proposed in [6], which is here substantially refined and extended. Mode mapping elegantly links
modes and software component reuse. The hierarchical composition of multi-mode components easily
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allows one to build multi-mode systems with multi-mode behaviors at various levels. A potential
drawback of this approach is the run-time overhead due to inter-component communication for
coordination of the mode-switches of different components. To eliminate this run-time drawback,
while still being able to design systems from reusable multi-mode components, we introduce a mode
transformation technique as our second contribution. This technique transforms component modes to
system-wide modes to optimize the implementation. This is obtained by flattening the hierarchical
structure of component modes mapped at different levels. Mode transformation can be included in the
mapping from the design to implementation level (“compilation”), after the mode mappings of all
composite components in a system have been specified. An initial version of the mode transformation
technique is presented in [7].

The rest of this article is structured as follows: Section 2 elaborates on the composition of multi-mode
components and the mode mapping mechanism. Section 3 presents the mode transformation technique.
Related work is reviewed in Section 4. Finally, Section 5 concludes the article and discusses some
future work.

2. The Composition of Multi-Mode Components

As an essential step in the composition of multi-mode components, mode mapping unambiguously
specifies the mode relation between different multi-mode components at design time. This section
highlights the essential properties of multi-mode components and the motivation of mode mapping,
followed by a thorough explanation of MMA, i.e., a formal description of mode mapping.

2.1. Multi-Mode Components and Mode Mapping

A multi-mode component supports multiple modes and has a unique configuration defined
for each mode. Figure 2 illustrates the key properties of a reusable multi-mode component.
The configuration for each mode relies on various factors. For instance, a multi-mode primitive
component may have different mode-specific behaviors for different modes; while a multi-mode
composite component may have a different set of subcomponents activated depending on its mode.

Figure 2. The illustration of a multi-mode component.

A multi-mode component can switch between certain modes at run-time, either on its own
initiative or as the result of a request by another component. A mode-switch leads to the reconfiguration
of the component by changing its configuration in the current mode to a new configuration in the target
mode. A local mode-switch manager is used to handle the mode-switch of a multi-mode component.
By having such a mode-switch manager in each component, a multi-mode component is able to
exchange mode information with its parent and subcomponents via dedicated mode-switch ports
(the blue ports in Figure 2) during a mode-switch, even without knowing the global mode information.
These mode-switch ports do not deal with input or output data going through the component.
Instead, they are only used for mode-switch coordination between a composite component and its
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subcomponents. Therefore, each mode-switch port is bidirectional, which allows mode-switch signals
to be transmitted in both directions. For instance, in the guiding example presented in Section 1.3,
when an accident is detected, MoS will switch from Rm to Att. Meanwhile, the mode-switch manager
of MoS will send a signal to its subcomponents DaD, MuD and EvA, requesting them to switch
mode based on the mode mapping defined in Table 1 (a). The mode-switch managers of different
components are jointly responsible for propagating a mode-switch event to the affected components,
keeping mode consistency between components and coordinating the mode-switches of different
components. Designing the mode-switch manager is out of the scope of this article. We have previously
developed distributed mode-switch algorithms [8,9] running in the mode-switch manager for the
cooperative mode-switch of different components. Here, our focus is on mode mapping, also shown
in Figure 2.

Since we assume that multi-mode components are independently developed, they typically
support different numbers of modes and name them differently. It is necessary to specify the relation
between the modes of different components at design-time without ambiguity. Such a specification
is called mode mapping. To ensure reusability, the mode mapping must never violate the
following principles:

• A primitive component only knows own mode’s information such as supported modes, initial
mode and the current mode of itself.

• A composite component knows the mode information of itself and its immediate subcomponents.

The principles imply that mode mapping should be managed by each composite component,
not by its subcomponents. A primitive component requires no mode mapping. The mode mapping
defined in Table 1 is simple and intuitive; however, it is incapable of showing the initial mode of each
component, which component initiates a mode-switch and the exact mode-switch of each individual
component due to a mode-switch event. For example, when MoS switches from Rm to Att, according to
Table 1 (a), MuD may switch to either Ed or Dq. Such non-determinism can be eliminated by specifying
either Ed or Dq as the default new mode of MuD for this particular mode-switch scenario. To be able
to formally specify all types of mode mapping rules, we propose a more powerful representation:
the mode mapping automata.

2.2. Mode Mapping Automata

Let c be a composite component with SCc being the set of subcomponents of c and Pc being the
parent of c. When c is running in one of its supported modes, it should always know its current mode
and the current modes of all ci ∈ SCc by its mode mapping. Moreover, whenever the mode-switch
manager of c notices the mode-switch of ci ∈ SCc ∪ {c}, it will refer to the mode mapping, which
should tell which other components among SCc ∪ {c} \ {ci} should also switch mode as a consequence,
as well as the new modes of these components.

The complete mode mapping of c can be formally presented by a set of MMA, which consists of
one mode mapping automaton of c (denoted as MMAs

c) and one MMA of each subcomponent ci ∈ SCc

(denoted as MMAc
ci

). Here, we call MMAs
c a self-MMA and MMAc

ci
a child MMA.

As an example, Figure 3 presents the set of MMA of the component MuD in Figure 1, including
a self-MMA (MMAs

MuD) and three child MMA (MMAc
VAE, MMAc

ViD and MMAc
AuD). These MMA are

hierarchically organized in the same way as the corresponding components. Each MMA can receive
and emit internal or external signals. Internal signals are used to synchronize the pair of the self-MMA
and its child MMA while external signals interact with its local mode-switch manager for requesting
and returning mode mapping results.
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Figure 3. The role of the mode mapping of MuD at run-time. MMA, mode mapping automata.

An external signal indicates that a component is requested to switch to a particular mode. We use
x.E(y) to denote an external signal asking MMAx, which is either a self-MMA or a child MMA,
to switch to mode y. An internal signal is sent either from a self-MMA to a child MMA or from a
child MMA to the self-MMA. A self-MMA only sends an internal signal to a child MMA if the current
mode-switch event requires the mode-switch of the corresponding subcomponent. The self-MMA
decides the new mode of this subcomponent. We use x.I(y) to denote an internal signal emitted by
a self-MMA to the child MMA MMAc

x, asking the subcomponent x to switch to mode y. A child MMA
can also send an internal signal to the self-MMA. This implies that the corresponding subcomponent is
requesting a mode-switch. Since mode mapping is always determined by the self-MMA, the internal
signal from a child MMA only needs to contain the current mode and new mode of the corresponding
subcomponent. We use x.I(z → y) to denote an internal signal emitted by a child MMA MMAc

x that
requests to switch mode from z to y. Note that z must be present in this internal signal, as x.I(z → y)
and x.I(z′ → y) are two different mode-switch scenarios, which may lead to different mode mappings.

A self- or child MMA can be formally defined as follows:

Definition 1. MMA: An MMA is defined as a tuple:

〈S , s0,SI , T 〉

where S is a set of states; s0 ∈ S is the initial state; SI = I ∪ E (I ∩ E = ∅) is a set of signals received
or emitted during a state transition, with I as the set of internal signals and E as the set of external signals;
T ⊆ S × SI × 2SI × S is a set of transitions of the MMA.

We use a state machine for the graphical representation of an MMA, where each state is one mode
and each transition is a result of mode-switch. Ordinary states are marked by a circle, while the initial
state is marked by a double circle. If the MMA is a self-MMA of c, then each state corresponds to a
mode of c. If the MMA is a child MMA of c associated with ci ∈ SCc, then each state corresponds to a
mode of ci or the deactivated status of ci, if ci can be deactivated, denoted as D. When a composite

145



Designs 2018, 2, 39

component is deactivated, then all its enclosed components must also be deactivated. A transition

t ∈ T is represented by an arrow from a state s to a state s′, denoted as s In/Out−−−−→ s′, where In/Out is
the label of the transition. “In” is an external/internal signal as the input that triggers the transition.
“Out” is a set of external/internal signals as the output of the transition.

Figure 4 depicts MMAs
MuD, i.e., the self-MMA of MuD of the guiding example. Three states are

included in this MMA, implying that MuD can run in three modes. The state transitions of MMAs
MuD

and the corresponding child MMA MMAc
VAE, MMAc

ViD and MMAc
AuD (Figure 5) are manually specified

to determine the mode mapping of MuD. As an example for demonstrating MMA synchronization,

the top left transition of MMAs
MuD, Rd

MuD.E(Ed)/{VAE.I(R3),ViD.I(Evd),AuD.I(Rad)}−−−−−−−−−−−−−−−−−−−−−−−−−−−→ Ed, implies that MuD
requests a mode-switch to Ed, consequently requiring its subcomponents VAE, ViD and AuD to switch
to modes R3, Evd and Rad, respectively. Figure 5 shows that this transition of MMAs

MuD is synchronized

with three transitions of the child MMA: D
VAE.I(R3)/{VAE.E(R3)}−−−−−−−−−−−−−→ R3, Rvd

ViD.I(Evd)/{ViD.E(Evd)}−−−−−−−−−−−−−−→ Evd,

D
AuD.I(Rad)/{AuD.E(Rad)}−−−−−−−−−−−−−−−→ Rad.

Figure 4. The self-mode mapping automaton of MuD.

Figure 5. The child mode mapping automata of MuD.

2.3. MMA Composition

The internal synchronization between a set of MMA of a composite component is actually invisible
to the mode-switch manager of the composite component. What the mode-switch manager sees is the
composition of these MMA. MMA composition is achieved by merging a set of MMA into a single MMA
without internal signals. For instance, based on the set of MMA of MuD depicted in Figures 4 and 5,
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the composed MMA is illustrated in Figure 6. After MMA composition, the mode mapping of
MuD is defined by a single MMA, where each state represents a mode combination between MuD
and its subcomponents, i.e., s1 = (Rd, D, Rvd, D), s2 = (Ed, R3, Evd, Rad) and s3 = (Dq, R3, Evd, D).
All internal signals are eliminated. This composed MMA is the actual MMA referenced by the
mode-switch manager of MuD, since the mode-switch manager does not care about the internal
synchronization of a set of MMA. However, the composed MMA can be much more complex than any
single MMA before the composition. Instead of specifying mode-switch directly with the composed
MMA, it is much easier to design mode mapping with a self-MMA and the child MMA first and then
compose them. The synchronization semantics of a set of MMA and the formal definition of MMA
composition can be found in the extended technical report [10].

Figure 6. MMA composition for MuD.

2.4. Mode Mapping Verification

A crucial issue in designing mode mapping with MMA is ensuring the correctness of the
mode mapping, i.e., for each input external signal from the mode-switch manager, the set of MMA
should produce the expected set of external signals as the output back to the mode-switch manager.
For instance, failing to synchronize an internal signal will never yield a mode mapping result.

The mode mapping of a composite component specified by MMA can be easily verified by
model checking. We use the model checker UPPAAL [11] for mode mapping verification. Since
UPPAAL is a convenient tool for modeling and verifying concurrent state transition systems, it is fairly
straightforward to graphically model a set of MMA in UPPAAL. Using UPPAAL, we have modeled (the
UPPAAL model is available at http://mdh.diva-portal.org/smash/record.jsf?pid=diva2%3A1244506&
dswid=1426) the mode mapping of MuD specified by the set of MMA in Figures 4 and 5.

The behaviors of the local mode-switch manager of MuD, the self-MMA of MuD and the child
MMA of its subcomponents are modeled as separate automata in UPPAAL. For instance, Figure 7
showcases three typical UPPAAL models for the mode-switch manager of MuD, MMAc

VAE and
MMAs

MuD. Each mode of a component is represented by a state in these UPPAAL models (e.g., mode_R3
represents mode R3 in Figure 7b). These models also contain committed states marked with “C” in
a circle, which are intermediate states during a mode-switch. External and internal signals are
simulated as channels synchronized between multiple UPPAAL models. For example, VAE_I[R3]!
denotes the internal signal VAE.I(R3) emitted by MMAs

MuD, while VAE_I[R3]? denotes the same signal
VAE.I(R3)received by MMAc

VAE. The UPPAAL model of MMAs
MuD in Figure 7c is consistent with

MMAs
MuD in Figure 4. The reason why the UPPAAL model contains one or more intermediate states

for each mode-switch is that receiving and sending each signal needs to be modeled sequentially
in UPPAAL. This essentially does not change the execution semantics, as all intermediate states
are committed states, whose incoming and outgoing transitions are performed as a single atomic
transaction. In addition, shown in Figure 7a, the mode-switch manager of MuD consists of two
states. InitialS is the initial state, where the mode-switch manager can send an external signal to
MMAs

MuD and switch to the state ModeSwitching. Meanwhile, a Boolean variable switching is set to
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true, indicating an ongoing mode-switch. Depending on the current mode of MuD and the new mode
indicated by the external signal from the mode-switch manager, there are four possible events, leading
to different transitions among these components: (1) k1: MuD requests to switch from Rd to Ed; (2)
k2: MuD requests to switch from Ed to Rd; (3) k3: MuD requests to switch from Ed to Dq; (4) k4: MuD
requests to switch from Dq to Ed. Each event ID is assigned to a variable eventID as shown in Figure 7c.

(a) (b)

(c)

Figure 7. UPPAALmodels of the mode mapping of MuD. (a) UPPAAL model for the mode-switch
manager of MuD. (b) UPPAAL model for the child MMA of VAE. (c) UPPAAL model for the self-MMA
of MuD.

Based on the UPPAAL models, we can verify that the set of MMA of MuD satisfies the
expected constraints by checking properties formulated in the UPPAAL query language, which
is a subset of timed computation tree logic [12]. The following are four types of properties addressing
different constraints:

P1. A[] not deadlock: The complete set of UPPAAL models is deadlock-free. This is not directly
related to mode mapping, but it is a fundamental property that we expect the model to satisfy.

P2. E<> sMMA_MuD.mode_Ed: It is possible for MuD to run in mode Ed. This property should be
verified for all the modes of MuD and its subcomponents.

P3. A[] (sMMA_MuD.mode_Rd and !ModeSwitchManager.switching) imply (cMMA_VAE.mode_D and
cMMA_ViD.mode_Rvd and cMMA_AuD.mode_D): When MuD runs in Rd, its subcomponents
VAE and AuD must be deactivated, while the other subcomponent ViD must run in Rvd.
This property should be verified for all possible mode combinations between MuD and its
subcomponents according to the mode mapping table in Table 1.

P4. (ModeSwitchManager.switching and eventID==k1)–>(sMMA_MuD.mode_Ed and cMMA_VAE.mode_R3
and cMMA_ViD.mode_Evd and cMMA_AuD.mode_Rad): An external signal requesting MuD to
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switch from Rd to Ed will make VAE, ViD and AuD switch to R3, Evd and Rad, respectively.
This property should be verified for all possible events from k1–k4.

All these properties are satisfied with verification time less than 4 ms. Furthermore, our UPPAAL
models can be used as a common template for modeling any other mode mapping specified
by MMA. Due to the graphical resemblance between an MMA and the corresponding UPPAAL
model, it is possible to generate UPPAAL models from MMA described by a graphical or textual
domain-specific language.

3. Mode Transformation

Our previous research results [9] show that the mode-switch of a multi-mode component
may lead to mode-switches of other multi-mode components in the same system, and it is not
trivial to coordinate the mode-switches of different components at run-time. The local mode-switch
manager of each component needs to run delicate algorithms to communicate with the parent and
subcomponents of the component via dedicated mode-switch ports to switch mode cooperatively.
Such inter-component communication incurs run-time computation overhead and mode-switch latency.
For instance, when MoS in the healthcare monitoring system triggers a mode-switch from Rm to Att,
the mode-switch event is first propagated from MoS to MuD and EvA, and MuD subsequently
propagates the mode-switch event to VAE, ViD and AuD. Further, more handshake messages are
exchanged between these components to keep mode consistency. The communication overhead grows
as the component hierarchy becomes more complex.

The purpose of mode transformation is to eliminate the need for the mode-switch coordination
among different multi-mode components by a centralized mode management, and thereby achieve
better run-time performance, provided that (1) all components are deployed on the same hardware
platform and (2) the mode information of each component is globally accessible. Illustrated in
Figure 8, mode transformation transfers the responsibility of mode-switch handling from the local
mode-switch manager of each component to a single global mode-switch manager. As a result of
mode transformation, each multi-mode component becomes unaware of modes. Instead, a global
mode transition graph is generated for the global mode-switch manager to handle mode-switch at the
system level.

Figure 8. The overview of mode transformation.

Our mode transformation process includes two sequential steps. First, given the mode mappings
of all composite components, we construct an intermediate representation, a mode combination tree
(MCT), where all the possible system modes are identified. In the second step, based on a list of
possible mode-switch events defined in the system, we add transitions between the identified system
modes to construct the mode transition graph. The two steps are further explained in the following
subsections separately.
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3.1. Construction of the Mode Combination Tree

The aim of constructing the MCT is to identify all the system modes. Let Mc denote the set of
supported modes of a component c and D denote the current mode of a deactivated component. Then,
we define system modes as follows:

Definition 2. System modes based on component modes: For a system composed by a set of components
C = {c1, c2, · · · , cn} (n ∈ N), the set of system modes is defined as Ms ⊆ ×

i∈[1,n]
{Mci ∪ {D}}. Each system

mode m ∈ Ms is a mode combination of all components.

By Definition 2, each system mode m = (mc1 , mc2 , · · · , mcn), where mci ∈ Mci ∪ {D} for i ∈ [1, n].
In order to indicate more explicitly the relationship between ci and mci , we shall hereafter use an
alternative expression to represent a system mode: m = {(ci, mci )|i ∈ [1, n]}, where mci ∈ Mci ∪ {D}.
Using the same formalism, an MCT is defined as follows:

Definition 3. Mode combination tree: An MCT is a tree with a set of nodes N = {N0,N1, · · · ,Nn} (n ∈ N),
where N0 = ∅ is the root node, and each other node Ni = {(cj, mcj)|j ∈ [1, k], k ∈ N} (i ∈ [1, n]), where for
all j, mcj ∈ Mcj ∪ {D} and all cj have the same depth level in the system component hierarchy.

By Definition 3, each non-root node of an MCT provides a mode combination of components with
the same depth level. A typical outlook of MCT is displayed in Figure 9, while the construction of the
MCT will be further explained later.

A few more notations and concepts need to be introduced before the formal description of the
MCT construction process. First, we introduce the valid local mode combination (LMC) of a composite
component c, which is a feasible combination of a mode of c and the modes of all its subcomponents
as per the local mode mapping of c. To define the valid LMC of a composite component formally,
let PC and CC be the set of primitive components and composite components in a system, respectively.
Let Top be the component at the top of the component hierarchy in a system. For each c ∈ CC, a valid
LMC of c is formally defined as follows:

Definition 4. Valid local mode combination: For c ∈ CC with SCc = {c1
i , · · · , cn

i } (n ∈ N), we call the
set Vc = {(c, mc), (c1

i , mc1
i
), · · · , (cn

i , mcn
i
)} a valid LMC of c, where mc ∈ Mc ∪ {D} and ∀k ∈ [1, n],

mk
ci
∈ Mck

i
∪ {D}, if (mc, mc1

i
, · · · , mcn

i
) is a state of the composed MMA of c.

Note that each element in Vc is a pair (x, y), where x ∈ SCc ∪ {c} and y ∈ Mx ∪
{D}. For instance, the mode mapping of MoS in Table 1 (a) implies three valid LMCs of MoS:
(1) {(MoS, Rm), (DaD, R1), (MuD, Rd), (EvA, D)}; (2) {(MoS, Att), (DaD, R1), (MuD, Ed), (EvA, R2)};
(3) {(MoS, Att), (DaD, R1), (MuD, Dq), (EvA, R2)}.

Based on Definition 4, we further introduce the valid LMC concerning a specific mode of a
composite component c, which is a feasible combination of the modes of all subcomponents of c as
per the local mode mapping of c when c is running in a particular mode. A formal definition is given
as follows:

Definition 5. Valid LMC concerning a specific mode: For c ∈ CC with SCc = {c1
i , · · · , cn

i } (n ∈ N), if when
c is running in mc, and ∀ck

i ∈ SCc (k ∈ [1, n]), ∃mck
i

such that {(c, mc), (c1
i , mc1

i
), · · · , (cn

i , mcn
i
)} is a valid

LMC of c, then the set Vc,mc = {(c1
i , mc1

i
), · · · , (cn

i , mcn
i
)} is a valid LMC of c for mc.

Depending on the mode mapping of c, multiple valid LMCs of c may exist for mc. Let Wc,mc

be the set of all valid LMCs of c ∈ CC for mc. Each element in Wc,mc is a set Vc,mc . The total
number of all valid LMCs of c for mc is |Wc,mc |. For instance, according to Table 1 (a),
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WMoS,Att = {V1
MoS,Att,V2

MoS,Att}, where V1
MoS,Att = {(DaD, R1), (MuD, Ed), (EvA, R2)} and V2

MoS,Att =

{(DaD, R1), (MuD, Dq), (EvA, R2)}. By traversing the states of the composed MMA of c containing
mc, it is easy to automatically generate Wc,mc .

Next, we introduce an important operator for combining different valid LMCs:

Definition 6. Valid LMC operation: Consider two sets of valid LMCs W1 = {V1,V2, · · · ,Vm}
and W2 = {Vk+1,Vk+2, · · · ,Vk+n}, where m, n, k ∈ N and k ≥ m. Let ⊕ be an operator such that
W1 ⊕W2 = {Vi ∪ Vk+j|i ∈ [1, m], j ∈ [1, n]}. In addition, for each l ∈ N, W1 ⊕W2 ⊕ · · · ⊕ Wl can
be represented as

⊕
o∈[1,l]

Wo.

For the sake of clarity, let us clarify the ⊕ operator using a small example. Suppose W1 = {V1,V2}
where V1 = {(a, m1

a), (b, m1
b)} and V2 = {(a, m2

a), (b, m2
b)}; and W2 = {V3,V4} where V3 =

{(c, m1
c ), (d, m1

d)} and V4 = {(c, m2
c ), (d, m2

d)}. Then,

W1 ⊕W2 ={V1 ∪ V3,V1 ∪ V4,V2 ∪ V3,V2 ∪ V4}
={{(a, m1

a), (b, m1
b), (c, m1

c ), (d, m1
d)},

{(a, m1
a), (b, m1

b), (c, m2
c ), (d, m2

d)},

{(a, m2
a), (b, m2

b), (c, m1
c ), (d, m1

d)},

{(a, m2
a), (b, m2

b), (c, m2
c ), (d, m2

d)}}
Given the mode mappings of all composite components, the MCT of the system can be constructed

by creating nodes top-down from the root node. For each node N of an MCT, let dN be its depth level
and λN be the number of new nodes created from this node. We use Ni � Nj to denote that a new

node Ni is created from on old node Nj. Moreover, let MTop = {m1
T , m2

T , · · · , m
|MTop|
T } be the set of

supported modes of Top. The MCT is constructed by the following steps:

1. From N0, create λN0 = |MTop| new nodes, such that for each new node Ni � N0, Ni =

{(Top, mi
T)} (i ∈ [1, |MTop|]).

2. From each Ni = {(Top, mi
T)} (i ∈ [1, |MTop|]), create λNi = |WTop,mi

T
| new nodes, such that

for each N ′ � Ni, N ′ ∈ WTop,mi
T
. Moreover, if λNi > 1, then for each N ′,N ′′ � Ni, we have

N ′ �= N ′′.
3. For each node N = {(c1, mc1), (c2, mc2), · · · , (cn, mcn)} (n ∈ N) with dN ≥ 2, if ∀i ∈ [1, n],

ci ∈ PC, then N is marked as a leaf node, and no new node is created from N . Otherwise, if
∃i ∈ [1, n] such that ci ∈ CC, then create λN = ∏

i∈[1,n],
ci∈CC

|Wci ,mci
| new nodes, such that for each

N ′ � N , N ′ ∈ ⊕
i∈[1,n],
ci∈CC

Wci ,mci
. Moreover, if λN > 1, then for each N ′,N ′′ � N , we have

N ′ �= N ′′.
4. Repeat Step 3 until all branches of the MCT have reached the leaf node.

The MCT construction process is implemented as Algorithm 1, which is a recursive function
constructMCT(N , dN ) that has two input parameters: N is the node currently being explored and dN
is the depth level of N . Initially, N = ∅ and dN = 0. We assume that Top must have subcomponents.
Otherwise, Top itself will be the entire system, and mode transformation will be meaningless. Moreover,
for each component c running in mode m, we assume that Wc,m is an indexed set such that Wc,m[i]
represents the i-th element of Wc,m.
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Algorithm 1 constructMCT(N , dN ).

1: if dN = 0 then

2: λN := |MTop|;
3: for i from 1 to λN do

4: Ni := {(Top, mi
T)};

5: constructMCT(Ni, 1);
6: end for
7: end if
8: if dN = 1 then

9: {(Top, m)} := N ;
10: Derive WTop,m;
11: λN := |WTop,m|;
12: for i from 1 to λN do

13: constructMCT(WTop,m[i], 2);
14: end for
15: end if
16: if dN ≥ 2 then

17: {(c1, mc1 ), (c2, mc2 ), · · · , (cn, mcn )} := N ;
18: if ∀i ∈ [1, n] : ci ∈ PC then

19: return ;
20: else

21: Derive W :=
⊕

i∈[1,n],
ci∈CC

Wci ,mci
;

22: λN := ∏
i∈[1,n],
ci∈CC

|Wci ,mci
|;

23: for i from 1 to λN do

24: constructMCT(W [i], dN + 1);
25: end for
26: end if
27: end if

Once the MCT is constructed, the system modes can be derived as the set of paths from the root
node to the leaf nodes of the MCT. The total number of system modes is equal to the total number of
leaf nodes of the MCT. Among the system modes, the initial system mode can be recognized based on
the specification of the initial modes of all components.

As an example, Figure 9 illustrates the MCT of the monitoring subsystem introduced in Section 1.
The MCT consists of nine nodes N0–N8 with four depth levels. Represented by the respective paths of
the MCT, one of the three identified system modes is:

m1 =N0 ∪N1 ∪N3 ∪N6

={(MoS, Rm), (DaD, R1), (MuD, Rd), (EvA, D), (VAE, D), (ViD, Rvd), (AuD, D)}
m2 =N0 ∪N2 ∪N4 ∪N7

={(MoS, Att), (DaD, R1), (MuD, Ed), (EvA, R2), (VAE, R3), (ViD, Evd), (AuD, Rad)}
m3 =N0 ∪N2 ∪N5 ∪N8

={(MoS, Att), (DaD, R1), (MuD, Dq), (EvA, R2), (VAE, R3), (ViD, Evd), (AuD, D)}

Assuming that the monitoring subsystem starts with mode Rm, m1 is the initial system mode
after mode transformation. Figure 10 shows the configurations of the three system modes based on the
component connections in Figure 1.

152



Designs 2018, 2, 39

Figure 9. The mode combination tree of the monitoring subsystem.

Figure 10. The configurations of different system modes after mode transformation.

The complexity of an MCT depends on the structure of the component hierarchy, the number
of modes of each component and the mode mappings in the involved components. The worst-case
combination of factors, such as the number of components and the number of component modes, may
lead to a huge number of system modes, increasing the overhead exponentially. However, in practice,
the expected number of system modes should be limited. If mode transformation becomes intractable
due to extreme computation overhead, this would imply that the system is too complex to adopt
centralized mode management. Then, it may be more suitable to go for distributed mode management
without mode transformation, although the run-time overhead for the required message exchange
may be substantial if the component hierarchy is deep. Alternatively, a better solution could be partial
mode transformation, i.e., performing mode transformation within one or more composite components
instead of the entire system. Our mode transformation technique is flexible enough to support partial
mode transformation at any component level. Furthermore, we expect noticeably different behaviors
in different modes. Depending on the application, it could be more efficient to merge several modes
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with similar global configurations into a single mode. The criteria for merging system modes are
application-dependent and out of the scope of this article. Nevertheless, we believe that it is possible
to partially automate the merging of system modes in a later optimization phase by certain application
independent merging rules.

3.2. Deriving the Mode Transition Graph

The constructed MCT identifies system mode, which is subsequently used to derive the mode
transition graph on top of these system modes based on the definition of mode-switch events.
We assume that a mode-switch event is triggered by a component c requesting to switch mode
from m1

c to m2
c , denoted as c : m1

c → m2
c . The triggering of each mode-switch event may lead to the

mode-switches of some other components in the same system. For a system with a set of identified
system modes M = {m1, m2, · · · , mn} (n ∈ N), a mode-switch is a transition from mold to mnew,
where mold, mnew ∈ M and mold �= mnew. A mode transition graph contains all the possible transitions
between these system modes and associates each transition with the corresponding mode-switch event.
Similar to an MMA, each state of a mode transition graph can be graphically represented by a circle,
with the initial state being marked by a double circle. A graphical illustration of the mode transition
graph can be found in Figure 11.

Figure 11. Deriving the mode transition graph of the monitoring subsystem. CTM, component
target mode.

The key issue of deriving the mode transition graph is to identify the system modes mold and mnew

for each mode-switch event for which a system mode-switch is possible. Consider a mode-switch event
k identified as c : m1

c → m2
c . The only condition satisfying the triggering of k is that the triggering source

c is currently running in mode m1
c . For each k, mold can be easily identified as long as (c, m1

c ) ∈ mold.
Note that more than one system mode could be identified as mold. Depending on the current system
mode, a mode-switch event may enable different transitions.

In contrast to mold, only one system mode can be the mnew for each mode-switch event k.
The identification of mnew for k is more difficult because it depends not only on m2

c , but also on
the target modes of the other components. We identify the mnew for each mode-switch event with
the assistance of a component target mode (CTM) table. A CTM table is a table with n1 rows and n2
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columns, where n1 is the number of components of a system and n2 is the number of mode-switch
events. An example of a CTM table is shown above the mode transition graph in Figure 11. In the CTM
table, each row is associated with a component, each column is associated with a mode-switch event
and each cell contains the target mode mc of the corresponding component c for the corresponding
mode-switch event k. The cell with X indicates that mc is independent of k, i.e., k does not lead to the
mode-switch of c.

A CTM table can be automatically constructed offline based on the list of mode-switch events and
the mode mapping of each composite component. Let mk

c be the target mode of c for k in a CTM table.
Taking advantage of the CTM table, the new system mode mnew for each mode-switch event k can be
identified as follows: For each system mode m = {(ci, mci )|i ∈ [1, n], n ∈ N}, if ∀i where mk

ci
�= X in

the CTM table (i.e., k leads to the mode-switch of ci to a new mode mk
ci

), we have mci = mk
ci

, then m is
the mnew for k. Algorithm 2 describes the process of building the mode transition graph, with a search
space of O(|M| · |K|).

Algorithm 2 constructMTG(C,M,K).

1: C = {c1, · · · , co} (o ∈ N); {The set of all components}
2: M = {m1, · · · , mn} (n ∈ N); {The set of identified system modes}
3: K = {k1, · · · , kl} (l ∈ N); {The set of all mode-switch events}
4: for all ki ∈ K where k ∈ [1, l] and ki = c : m1

c → m2
c do

5: if ∃mj ∈ M s.t. (∀cp ∈ C and mki
ci �= X, (cp, mki

cp ) ∈ mj) then

6: mnew = mj;
7: for all mj ∈ M do

8: if (c, m1
c ) ∈ mj then

9: addTransition(mj, mnew, ki); {Add a transition from mj to mnew labeled with ki}
10: end if
11: end for
12: end if
13: end for

Figure 11 presents the workflow for deriving the mode transition graph of the monitoring
subsystem. The CTM table is derived based on two inputs: (1) the mode mapping of composite
components MoS and MuD specified by MMA and (2) the possible mode-switch events. For this
example, four mode-switch events, from k1–k4, are specified at design time. k1 and k2 are triggered by
MoS for switching between modes Rm and Att, while k3 and k4 are triggered by MuD for switching
between modes Ed and Dq. The target modes of all components in the monitoring subsystem for all
mode-switch events are listed in the CTM table. Previously, the MCT in Figure 9 has identified three
system modes m1 (the initial mode), m2 and m3. The CTM table additionally adds transitions between
the system modes based on each possible mode-switch event, thereby yielding the mode transition
graph. The mode transition graph helps the global mode-switch manager to keep track of the current
system mode and makes the system switch to the right target mode when a mode-switch is triggered.

After mode transformation, local mode-switch managers are replaced with a single global
mode-switch manager, whose complexity is much lower than each local mode-switch manager.
A local mode-switch manager needs complex algorithms [9] to coordinate mode-switches between a
composite component and its subcomponents, such as checking component states before mode-switch
is performed, handling multiple concurrent mode-switch events triggered by different components
and handling emergency mode-switch events, which are more critical than regular mode-switch
events. By contrast, the global mode-switch manager only takes care of system mode based on a single
CTM table.

Mode transformation assumes no dynamic change of modes or mode mappings at any level.
If there is a need to change the mode of a component or its mode mapping (e.g., adding new
modes, removing modes, changing mode names), then mode transformation must be applied again
from scratch. The chain effect of such a change must be considered when it is propagated to other
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components. The change of mode mapping of one component may entail the change of mode mapping
of its parent component and subcomponents. The architecture designer should decide how to update
the MMA of components impacted by a change. Mode transformation can always be automated in the
same way once all MMA are in place.

A potential drawback of mode transformation is the loss of potential concurrency between
local mode managers. If multiple mode-switch events are triggered concurrently and affect disjoint
sets of components, distributed mode management before mode transformation allows that these
mode-switch events can be handled concurrently, whereas different mode-switch events have to
be sequentially handled by the global mode-switch manager. Nonetheless, the centralized mode
management after mode transformation eliminates inter-component communication, which is a
complex process [9]. Hence, mode transformation is still more likely to yield a faster mode-switch.

The correctness of the two steps of mode transformation has been verified by manual theorem
proving. All the detailed theorems and proofs can be found in the extended technical report [10].

3.3. Concrete Implementation of Mode Transformation

A prototype tool MCORE [13], the Multi-mode COmponent Reuse Environment, has been
developed to support the modeling of multi-mode systems with multi-mode components by
integrating mode mapping and mode transformation. Compared with other component-based
development tools, a distinguishing feature of MCORE is the reuse of multi-mode software components.
As far as we know, MCORE is the first (and possibly only) tool for building multi-mode systems
with multi-mode components. MCORE can be potentially used as a preprocessor for Rubus
ICE [14], which is an IDEfor the Rubus component model [15] developed by Arcticus Systems
(http://www.arcticus-systems.com/). As an industrial component model, Rubus is targeting the
component-based development of vehicular systems. Rubus supports multi-mode systems; however,
modes can only be specified at the system level, and the reuse of multi-mode components is not
supported. This limitation can be alleviated by MCORE. The system model built by multi-mode
components in MCORE is in compliance with the Rubus component model after mode transformation.
Hence, the system model designed in MCORE can be imported to Rubus ICE for further analysis,
test and code generation.

4. Related Work

The extended MECHATRONICUML [16,17] (EUML) allows the hierarchical composition of
reconfigurable components, which are comparable to our multi-mode components. EUML introduces
an additional reconfiguration port for each component, which resembles the dedicated mode-switch
ports of a multi-mode component. In EUML, the reconfiguration of a composite component is
handled by two dedicated subcomponents, which play similar roles as the local mode-switch
manager of a multi-mode component. Unlike our approach, EUML does not pre-define component
configurations at design-time, thus allowing more flexible reconfiguration at run-time. Compared
with such reconfigurable systems, multi-mode systems built by multi-mode components are more
predictable due to static configurations specified at design-time.

Pop et al. proposed an Oracle-based approach [18] that also supports the reuse of multi-mode
components. Component behaviors are abstracted into a global property network. Component
mode is treated as a property dependent on other property values. The change of one property is
propagated throughout the property network, potentially leading to the change of other properties. At
the end of propagation, component modes are updated top-down. Similar to our mode transformation,
a finite-state machine called Oracle is offline constructed to guarantee a predictable update time of the
property network. The mapping between component modes is however not systematically specified
in the Oracle-based approach.

Weimer et al. proposed a set of input-output blocks for building multi-mode systems [19].
Each multi-mode component contains a set of mode blocks (MBs), while each MB includes all
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the components used for the corresponding mode. The mode-switch of a component is achieved
by switching the currently selected MB controlled by a supervisor block (SB). These blocks were
implemented in Simulink [20]. Another work similar to this is the mode-oriented design [21] in
Gaspard2 [22]. A multi-mode component is represented by a macro component, which consists of a
state graph component and one or more mode-switch components. A mode-switch component plays
the same role as the MB in [19]. Both approaches in [19,21] use completely different components for
different modes, whereas in our approach, it is possible to share some components and connections in
different modes. Hence, our approach is more suitable for the reuse of multi-mode components.

Mode-switch has been addressed in a number of component models, e.g., SaveCCM [23],
COMDES-II [24] and MyCCM-HI [25], to name a few. There are also some other component models that
have been commercialized, e.g., Koala [26] (targeting consumer electronics) and Rubus [15] (targeting
ground vehicles). These component models have different notions of mode-switch handling. Koala and
SaveCCM both use a special connector switch to achieve the structural diversity of a component. switch
selects outgoing connections based on input data. In COMDES-II, a state-machine component switches
component configurations in different modes. Rubus only considers system-level mode, which is in
line with our system mode after mode transformation. MyCCM-HI supports mode-aware components
whose mode-switch is controlled by a mode automaton associated with each component. Another
component model supporting component reconfiguration is Fractal [27]. Each Fractal component has a
membrane (a container for local controllers) that is able to control the reconfiguration of the component.

Mode-switch has also been covered by some programming and specification languages, such as
AADL [28], Giotto [29], TDL [30], the extended Darwin [31] and mode-automata [32]. In AADL,
component mode-switch is represented by a state machine, including states, transitions and
input/output event ports used for mode-switch triggering. Both Giotto and TDL are time-triggered
languages for embedded programming, which require periodic checking of conditions to decide
whether to trigger a mode-switch or not. The extended Darwin [31] extends the existing Architecture
Description Language Darwin [33] by incorporating the notion of mode. The mode of a composite
component is directly related to the modes of its subcomponents. Yet, the mapping between modes is
unclear in [31]. Mode-automata is a programming model supporting the description of running modes
of reactive systems. The behavior of a system is a sequence of modes, each of which corresponds to a
collection of execution states. Our MMA differs from mode-automata in the sense that mode-automata
specifies the hierarchical structure of system-wide modes, whereas MMA specifies the local mode
mapping within composite components.

Dynamic software product lines (DSPL) [34], which originates from the conventional software
product lines (SPL) [35] for producing a family of software systems, is an emerging technique for
developing adaptive systems. Different systems configured from the same SPL share certain common
features, whereas the SPL uses variation points to distinguish the unique features of each system.
DSPL allows the binding of variation points at run-time so that a system can dynamically change
configurations on the fly to accommodate the changing environment. DSPL is becoming more
adaptive [36]; however, to the best of our knowledge, DSPL only considers global system configurations
without considering reuse of adaptive software components.

Different types of automata have been proposed for component-based systems and multi-mode
systems. For instance, constraint automata [37] is used to model the functional coordination of
components, thereby enabling the formal verification of coordination mechanisms. Besides, multi-mode
automata [38] is intended for compositional analysis of multi-mode real-time systems. The MMA
presented in this article serves as a formalism for a unique and dedicated purpose: mode mapping,
which to our knowledge has not been addressed by other existing automata.

Criado et al. [39] proposed a method for an adaptive component-based architecture using model
transformation. Software architecture can be dynamically constructed based on transformation rules
defined in a repository. Their proposal was applied to component-based GUIs for web applications.
Compared to our approach, their adaptation runs at the system level only.
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5. Conclusions and Future Work

Partitioning system behaviors into modes and component-based software engineering are both
successful software development methods to tame the growing software complexity of modern
cyber-physical systems (CPS). It is still an under-researched area to combine both methods, due to
their conflicting natures: multi-mode systems are built top-down, while component-based systems
are built bottom-up. In this article, we combine the advantages of both methods and propose
the component-based software development of multi-mode systems, characterized by the reuse
of multi-mode components, i.e., components that can run in different modes and switch mode guided
by a local mode-switch manager. We specify the local mode mapping of each composite component by
mode mapping automata. Mode mapping is then complemented by a mode transformation technique
that transforms component modes to system modes for centralized mode management to improve
the mode-switch performance, since the transformation eliminates the need for inter-component
communication to coordinate a mode-switch at run-time, thereby reducing mode-switch overhead
and shortening mode-switch time. Mode transformation is an optional and flexible process that can
be taken for the entire system if the mode information of all components is globally accessible and
all software components are deployed on the same hardware platform, or within certain composite
components instead of the entire system. It can even be performed iteratively. For instance, in scenarios
where systems are built from composite components provided by different vendors that do not want
to reveal the internal structure of their components to the integrator, each vendor could apply mode
transformation on the level of their respective composite component, and the integrator could then
compose the resulting mode-mappings to a system-wide centralized mode management.

The healthcare monitoring system introduced in this article is only a proof-of-concept guiding
example. In future work, our software development approach should be further evaluated, and before
being deployed, its applicability and concrete implementation should be explored in more substantial
real-world systems. Moreover, some remaining efforts need to be invested to complete the development
of our prototype tool MCORE fully and its integration in the commercial tool Rubus ICE developed by
Arcticus Systems. This will allow us to develop reusable multi-mode software components in MCORE
as a preprocessor of Rubus ICE, perform mode transformation therein and then export the system
model with global system modes to Rubus ICE for further analysis, test and code generation. Still, the
actual effects in terms of resulting improvements, additional and/or reduced efforts, improved quality,
etc., throughout the life-cycle of a CPS require empirical evidence much beyond what is presented in
this article.

At a more general level, this article presents essential bricks and related glue for a small part of
the wall needed to tame the complexity of CPS-related development and life-cycle challenges to a level
that allows future deployment of the many technical solutions required to address several of the key
challenges of modern society successfully. Many more bricks are however needed, as well as the glue
that enables their successful composition.
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Abstract: The static resource allocation in time-triggered systems offers significant benefits for the
safety arguments of dependable systems. However, adaptation is a key factor for energy efficiency and
fault recovery in Cyber-Physical System (CPS). This paper introduces the Adaptive Time-Triggered
Multi-Core Architecture (ATMA), which supports adaptation using multi-schedule graphs while
preserving the key properties of time-triggered systems including implicit synchronization, temporal
predictability and avoidance of resource conflicts. ATMA is an overall architecture for safety-critical
CPS based on a network-on-a-chip with building blocks for context agreement and adaptation.
Context information is established in a globally consistent manner, providing the foundation for the
temporally aligned switching of schedules in the network interfaces. A meta-scheduling algorithm
computes schedule graphs and avoids state explosion with reconvergence horizons for events. For
each tile, the relevant part of the schedule graph is efficiently stored using difference encodings
and interpreted by the adaptation logic. The architecture was evaluated using an FPGA-based
implementation and example scenarios employing adaptation for improved energy efficiency. The
evaluation demonstrated the benefits of adaptation while showing the overhead and the trade-off
between the degree of adaptation and the memory consumption for multi-schedule graphs.

Keywords: time-triggered system; real-time; cyber-physical systems; adaptation; scheduling;
multi-core

1. Introduction

Safety-critical CPS demand assures services under all considered load and fault assumptions in
order to minimize the risk for people, property and the environment. Therefore, electronic systems are
subject to domain-specific certification processes (e.g., ISO26262, IEC61508, and DO178/254), which
provide documented evidence and safety arguments.

Time-triggered systems facilitate the establishment of safety arguments and have thus become
prevalent in many safety-critical applications. Schedule tables are defined at development time and
determine global points in time for the initiation of activities, such as sending a message or starting a
computation. Major benefits are temporal predictability, temporal composability and support for fault
containment [1]. Time-triggered systems simplify the system design and reduce the probability of
design faults by offering implicit synchronization, implicit flow control and transparent fault tolerance.
By deriving all control signals from the global time base, there is no control flow between application
components, which can be independently developed and seamlessly integrated. Furthermore, a
priori knowledge about the permitted temporal behavior can be used by network guardians or
operating systems for isolating faulty messages or tasks, thereby preventing fault propagation via
shared resources. This fault containment is a prerequisite for active redundancy as well as modular
and incremental certification [2,3].
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Time-triggered operation has been realized at different levels. Many safety-critical distributed
systems are deployed with time-triggered communication networks such as Time-Triggered Ethernet
(TTE), Time-Triggered Protocol (TTP), FlexRay and IEEE 802.1Qbv/TSN [1,4]. Time-triggered operating
systems and hypervisors (e.g., ARINC653 [5]) adopt scheduling tables for cyclic time-based executions
of partitions to virtualize the processor. Time-triggered multi-core architectures (e.g., TTMPSoC [6]
and COMPSoC [7]) use time-triggered Network-on-Chips (NoCs) in analogy to the time-triggered
networks in distributed systems.

At the same time, adaptive system behaviors upon relevant events are desirable to improve
energy efficiency, reliability and context awareness. For example, execution slack enables energy
management, such as voltage/frequency scaling and clock gating. Information about faults can serve
for fault recovery by redistributing application services on the system’s remaining resources. Changing
environmental conditions or operational modes may demand for different application services (e.g.,
take-off vs. in-flight of an airplane).

Time-triggered systems can support this adaptation through the deployment of precomputed
schedules for the relevant events [8]. However, the major challenge is preserving the properties of
time-triggered systems, such as temporal predictability, fault containment and implicit synchronization.
Therefore, all building blocks must consistently switch between schedules. This requires system-wide
consistent information about the context events determining the adaptation. In addition, the adaptation
must work correctly in the presence of faults to prevent the introduction of vulnerabilities. Further
requirements are bounded times of adaptation for fault recovery and the efficient storage of large
numbers of schedules.

This paper introduces the Adaptive Time-triggered Multi-core Architecture (ATMA) that fulfills these
requirements. The architecture establishes a system-wide consistent agreement on context events as
well as robust and efficient switching between schedules.

Prior work has addressed computing schedule graphs for time-triggered systems (e.g., [9,10]).
However, the combination of agreement, adaptation and meta-scheduling as part of a time-triggered
multi-core architecture supporting implicit synchronization, fault containment and timeliness is an
open research problem. Furthermore, the presented techniques for minimizing the overhead of
adaptation (e.g., difference encoding of multi-schedule graphs, and adjustable reconvergence horizons
for events) enable scalability and the deployment in resource-constrained applications.

The paper builds on previous work of the authors where a non-adaptive time-triggered
multi-core architecture [6] was introduced as well as individual components for agreement [11]
and adaptation [12]. This paper introduces the overall architecture of an adaptive time-triggered
multi-core architecture along with the interplay of agreement, adaptation and meta scheduling. The
paper provides experimental results for the overall architecture and shows the suitability for improved
energy efficiency and fault tolerance. In addition, the paper introduces adaptation concepts for
time-triggered systems and describes the services and system properties, which are essential to
preserve implicit synchronization, temporal predictability and avoidance of resource conflicts.

The remainder of the paper is structured as follows. Section 2 analyzes the challenges and
requirements for adaptation in time-triggered systems. The ATMA is the focus of Section 3. Section 4
describes the computation of multiple schedules, each serving for certain context events. Section 5
introduces agreement services, which establish chip-wide consistent context information. The context
information is used for adaptive communication in Section 6. Section 7 presents example scenarios
and the experimental evaluation.

2. Adaptation in Time-Triggered Systems

Adaptation in time-triggered systems is motivated by higher energy efficiency, fault recovery
and the adjustment to changing environmental conditions. However, the fundamental properties and
strengths of time-triggered systems must be preserved in order to obtain suitability for safety-critical
systems.
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2.1. Properties of Time-Triggered Systems

Time-triggered systems exhibit specific properties, which result from the dispatching of cyclic
activities driven by the global time base and precomputed schedule tables:

• Avoidance of resource contention without dynamic resource arbitration: The precomputed
schedules ensure that each resource is used by at most one user at any particular point in time.
Thus, dynamic resource arbitration is not necessary.

• Implicit synchronization: The precomputed schedules satisfy synchronization requirements
based on the global time including precedence constraints and avoidance of race conditions.

• Guaranteeing of timing constraints: The computation of schedules at development time ensures
that deadlines are met without further runtime efforts beyond time-triggered dispatching.

• Implicit flow control: The computation of schedules considers the receivers’ ability for handling
received messages. Therefore, an overload of receivers is prevented without acknowledgments or
flow control protocols.

• Fault containment: A priori knowledge about the permitted behavior of components allows to
block faulty messages, thereby preventing fault propagation via shared resources.

These properties are essential characteristics of a time-triggered system and must be preserved
despite adaptation. Henceforth, we call these properties the ATMA properties. In the ATMA, these
properties are determined by the schedules computed offline, as well as the correct dispatching and
schedule switching at runtime.

In order to realize these properties, a schedule encompasses three dimensions as depicted in
Figure 1. The schedule defines in the temporal dimension when activities need to be dispatched
with respect to the global time base. In the spatial dimension, the schedule defines the triggers for
the different resources of the multi-core architecture such as Network Interfaces (NIs), routers and
communication links. The third dimension corresponds to the contextual dimension, where different
plans for the context events are distinguished. Overall, the time-triggered schedule thus defines what
activities shall be dispatched for each resource and each relevant context event at which global points
in time.
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Figure 1. Deployment of time-triggered schedules (left) on the building blocks of the ATMA, such as
NIs and routers (right).

In general, the schedules must be deployed in multiple building blocks of the architecture
as depicted on the right hand side of Figure 1. Each schedule is fragmented along the spatial
dimension and the resulting parts are assigned to the resources. NIs are the target in case of NoCs
with source-based routing and routers in case of distributed routing. Furthermore, in order to acquire
the ATMA properties, consistency of the schedules in temporal and spatial dimension is essential. For
instance, messages must be passed without resource conflicts along the communication links in the
spatial and temporal dimensions, while satisfying the deadlines and precedence constraints.
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2.2. Need for Adaptation

In the following, the motivation for adaptation in time-triggered systems is detailed.

2.2.1. Energy Efficiency

Energy efficiency is relevant for many safety-critical systems. Examples are battery-operated
devices (e.g., medical equipment, wireless sensors for railway systems [13]) and systems with
thermal constraints (e.g., avionics [14]). While techniques for energy management such as Dynamic
Voltage and Frequency Scaling (DVFS) and clock gating are common in many application areas (e.g.,
consumer electronics), the applicability for safety-critical systems is often limited. Certification and
the computation of Worst Case Execution Times (WCETs) for multi-core processors is challenging by
itself [15] and further complicated by energy management. If dynamic slack of one task is exploited
for dynamic modifications of frequencies or clock gating, then unpredictable timing effects and fault
propagation can occur for other tasks due to shared resources such as caches and I/O.

In safety-critical systems, we can distinguish between two types of energy sensitivity with respect
to safety certification:

1. Energy efficiency without detrimental effects on safety. Energy management is desirable for
availability or economic reasons (e.g., energy cost) but not required for safety. For example, a safe
state is reached when energy resources are depleted. Therefore, energy management must not
affect the system’s safety functions.

2. Energy efficiency as part of the safety argument. Energy efficiency is part of the safety argument,
e.g., because battery capacity must suffice for the mission time or thermal constraints must be
satisfied under all load and fault conditions.

Both types can be effectively supported by adaptable time-triggered systems. Adaptable
time-triggered systems promise to improve energy efficiency without detrimental effects on temporal
predictability and fault containment. Different schedules serve for potential system conditions
like various dynamic-slack values. Each schedule can be analyzed in isolation as in a fully static
time-triggered system.

2.2.2. Lower Cost for Fault-Tolerance by Fault Recovery and Reduced Redundancy Degrees

In safety-critical applications, an embedded computer system has to provide its services with a
dependability that is better than the dependability of any of its constituent components. Considering
the failure-rate data of available electronic components, the required level of dependability can only be
achieved if the system supports fault tolerance.

N-modular redundancy is a widely deployed technique, where the assumptions concerning
failure modes and failure rates determine the necessary replication degrees. For example, a triple-triple
redundant primary fight computer is deployed in the Boeing 777 aircraft [16]. However, emerging
application areas with safety-critical embedded systems and stringent cost-pressure for electronic
equipment cannot afford the high cost associated with excessive replication. For example, fully
autonomous vehicles depend on ASIL-D [17] functions for environmental sensing and vehicle control.
At the same time, the extreme cost pressure of the automotive industry precludes the massive
deployment of redundant components.

Fault recovery is a viable alternative by switching to configurations that do not use failed resources.
The following fault-recovery approaches can be deployed to achieve fault-tolerance:

1. Modifying allocation of services to resources. The system design involves scheduling and
allocations decisions in order to perform a spatial and temporal mapping of the application
(e.g., computational service, message-based communication) to the resources (e.g., routers,
communication links, processing cores). Fault recovery by reconfiguration activates a
configuration with a changed mapping, thereby avoiding the use of failed resources.
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2. Substitution of failed services. In many cases applications can be reconfigured in order to
provide services using alternative computational paths or different sensory inputs. For example,
a failure of the sensor measuring the steering angle in a car can be compensated by determining
the curve radius of the vehicle via rotational sensors of the wheels [18].

3. Degraded service modes. If remaining resources are insufficient for providing all services, then
a degraded service mode should ensure a minimal level of service to guarantee safety.

ATMA supports this goal by precomputing configurations for different types of faults. However,
in order to comply with the requirements of safety-critical systems and to have a consistent
fault-recovery, a number of challenges need to be addressed. The key challenges are the completeness
of considering all potential faults, while also analyzing each configuration individually to ensure
correct system states (e.g., no resource collisions, satisfaction of precedence constraints, timeliness).
Another major challenge is the fault-tolerance of the fault recovery mechanism itself. A fault affecting
the reconfiguration must not lead to an incorrect system state such as the partitioning of the system
into subsystems with the old and the new configuration.

2.3. Challenges for Adaptation

The main challenges for adopting an adaptive system behavior in a time-triggered system are as
follows:

2.3.1. System-Wide Consistent State After Adaptation

A fundamental requirement for a time-triggered multi-core architecture is a consistent state of all
building blocks at any point in time (e.g., tiles, NIs, routers). System-wide consistency of the active
schedules with respect to the temporal and contextual dimensions is a prerequisite to maintain the
ATMA properties. The consistency upon adaptation depends on:

• Consistent context information: At runtime, each tile must be provided with consistent
information about the context events triggering the adaptation.

• Computation of aligned schedules: Schedules must be precomputed at development time for
each context event and each building block of the ATMA. The schedules must be temporally and
spatially aligned according to the required ATMA properties.

• Consistent and robust switching: At runtime, the execution of consistent distributed switching
actions is a prerequisite for a consistent new state.

2.3.2. Bounded Time for Adaptation

The delay of reacting to context events often determines the utility of adaptation (e.g., exploitation
of slack for energy efficiency). In particular, adaptation within bounded time is essential for fault
recovery where the dynamics of the controlled object determine the permitted time intervals without
service provision (e.g., maximum actuator freezing time).

2.3.3. Fault-Tolerant Adaptation

The adaptation must be fault tolerant to ensure that a hardware or software fault does not bring
the system into an erroneous state through faulty schedule switching.

2.3.4. Avoidance of State Explosion

The scheduling algorithm for computing the schedules needs to avoid state explosion. For
example, enforcing reconvergence horizons for context events prevents an exponential growth of the
number of schedules with increasing numbers of context events [19].

Furthermore, a memory-efficient representation and storage of the schedules is required.
Since schedules for different context events will typically differ only in small parts, differential
representations are most suitable.
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3. Adaptive Time-Triggered Multi-Core Architecture

3.1. Architectural Building Blocks

Figure 2 gives an overview of the Adaptive Time-triggered Multi-core Architecture (ATMA).
The architecture encompasses tiles, which are interconnected by a NoC. The NoC consists of routers,
each of which is connected to other routers and to tiles using communication links. A tile includes
three parts: cores for the application services (cf. green area in Figure 2), adaptation logic (cf. orange
area in Figure 2) and the NI for accessing the NoC (cf. blue area in Figure 2).
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Figure 2. Adaptive time-triggered multi-core architecture.

The cores of a tile can be heterogeneous encompassing processors that are managed by an
operating system, processors with bare-metal application software or state machines implemented in
hardware. Regardless of the implementation, message-based ports provide the interface of the cores
towards the adaptation logic and the NI.

The adaptation logic is the key element for the consistent and timely processing of context events.
It includes the following building blocks:

• The context monitor is responsible for observing the behavior of the cores and generating local
context information. An example is a slack event when a task finishes before its WCET. Another
example of a context event is a relevant change of state observed via input/output channels (e.g.,
low battery state and environmental conditions).

• The context agreement unit establishes unanimous context information, which is globally consistent
at a chip-wide level. Despite multiple clock domains and the occurrence of faults, the context
agreement unit ensures that all operational tiles possess identical context information.

• The NoC adaptation unit contains multiple schedules and the next schedule is chosen based
on the context information provided by the context agreement unit. The potential switching
between schedules is triggered in a time-triggered manner and has its own schedule. Since
the context information is chip-wide consistent, it is guaranteed that all tiles perform aligned
schedule changes.

• In analogy to the adaptation at the network level, adaptation for the execution resources is
supported by the execution adaptation. The consistent context information serves for switching
between cyclic schedules of time-triggered operating systems or hypervisors.

The NI serves as an interface to the NoC for the processing cores by injecting the messages into
the NoC as well as delivering the received messages from the NoC to the cores. The NI generates the
message segments (known as packets and flits), in the case a message needs to be injected into the
interconnect. At the opposite direction, i.e., for the incoming messages, the NI assembles each message
from the received segments and stores it to be read by the connected core.
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3.2. Local and Global Adaptation

We distinguish between local and global adaptations. Local adaptations are those changes in a
subsystem, which do not introduce any changes in the use of shared resources. For example, dynamic
slack in a processor core would result in the early completion of a task and the generation of a
message before its transmission is due according to the time-triggered schedule. DVFS can be used
locally within the processor to complete the task and produce the message just before the scheduled
transmission time. In this case, energy is saved locally without any implications on the rest of the
system and the time-triggered schedule.

Global adaptations, in contrast, are those changes in a subsystem, which result in a temporal or
spatial change in the usage of the shared resources. For example, dynamic slack of a sender can be
used to transmit a message earlier. The receivers can then start their computations earlier with more
time until their deadlines. The longer time budget can be used for DVFS in the receivers, thereby
saving more energy because several receivers are clocked down instead of a single sender. However, a
new schedule is required for global adaptation in order to preserve the ATMA properties. Such global
adaptations and schedule changes must not introduce an inconsistency in the system and thus need to
be harmonized over the entire chip.

To establish a chip-wide aligned adaptation of subsystems, the operation of the dispatchers of
different tiles shall be harmonized by a global time base to have a common understanding of the time,
despite different clock domains. The global time base is a low-frequency digital clock, which is based
on the concept of a sparse time base [20]. The global time base provides a system-wide notion of the
time between different components.

3.3. Fault Tolerance

ATMA offers inherent temporal predictability and fault containment for processing cores. The
adaptation unit is deployed with a schedule that provides a priori knowledge about the permitted
temporal behavior of messages. Using this knowledge, the adaptation unit blocks untimely messages
from the processing cores, thereby preventing resource contention in the NoC. Likewise, the adaptation
units and the network interfaces autonomously insert the source-based routing information into
messages, thus a faulty processing core cannot influence the correct routing of messages in the NoC.

While faults of the processing cores are rigorously contained, faults affecting the adaptation units,
context-agreement units, network interfaces and routers have the potential to cause the failure of
the entire multi-core chip. In previous work on time-triggered multi-core architectures, the network
interfaces and routers have thus been denoted as a trusted subsystem [6]. The risk of a failure due to
design faults can be minimized through a rigorous design of these building blocks.

Two strategies can be distinguished for dealing with random faults of the trusted subsystem:

• Fault-tolerant trusted system: Fault-tolerance techniques can be deployed for the adaptation
units, context-agreement units, network interfaces and routers. For example, these building
blocks can be synthesized as design units with triple modular redundancy [21].

• Consideration in reliability models and off-chip fault-tolerance: Alternatively, the designer
can accept the risk from random faults and consider the fault propagation probabilities from
adaptation units, context-agreement units, network interfaces and routers, which potentially
represent single points of failures. Evidently, this strategy is only reasonable if the chip
area consumed by the processor cores is dominant. In many safety-critical systems (e.g.,
ultra-reliable fail-operational systems such as ADAS systems with highest SAE levels [22]),
on-chip fault-tolerance mechanisms are complemented by off-chip fault-tolerance techniques
because of non-negligible probabilities of chip failures (e.g., due to shared power supply, common
clock source, spatial proximity [23] (p. 155)). In these systems, the fault-tolerance mechanisms of
ATMA serve for increasing the reliability, but do not replace off-chip redundancy.
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Another prerequisite for correct adaptation is the correctness of the schedules. The state of the art
offers algorithms and tools supporting the verification of time-triggered schedules (e.g., TTPVerify [1]
(p. 489)), which can be applied on each node of the multi-schedule graph.

4. Meta Scheduling

The meta scheduler [24] is an offline tool for computing time-triggered schedules considering
the system’s contextual, spatial and temporal dimensions. Different schedules are computed for all
relevant context events and are deployed in the NoC adaptation units and the execution adaptation.
For a given context, the corresponding schedules determine the dispatching of each resource at any
point in time within the system’s period.

Two types of schedules are taken into consideration: The computational schedules are
computed for the tasks and define their allocation to cores and their start times. The communication
schedules define the paths and injection times of the messages on the NoC. The computational and
communication schedules must be synchronized as the messages to be sent are computed by the tasks.

4.1. Input Models

The meta scheduler requires the following three types of models as input (cf. Figure 3):

• Application Model: The application model describes the computational tasks with their
deadlines, WCETs and resource requirements (e.g., memory, I/O). The assumed WCET of a task
is based on its criticality [25]. High-criticality tasks must be considered with a more pessimistic
WCET in order for the schedule to assure that applications have enough time to finish the task
within the assigned time frame. In addition, the application model describes each message with
its sender task and receiver tasks, thereby reflecting the precedence constraints between the tasks
and the messages.

• Platform Model: The platform model informs the meta scheduler about the available hardware
resources, such as cores, memories, I/Os, routers and the interconnection pattern of routers.

• Context Model: The context model covers all context events that are relevant for the adaptation
including faults, dynamic slack, resource alerts and environmental changes. Examples of faults are
permanent failures of cores and routers, which require a recovery action such as the reallocation
of tasks and messages. Dynamic slack of a task occurs if the execution time of the task is shorter
than its WCET. It can be exploited by DVFS or by clock/power-gating of resources to save energy.
Alternatively, dynamic slack can be passed to subsequent tasks or messages. An example of a
resource alert is a high thermal level of passively-cooled electronics that demands for a reduction
of the computational load to avoid thermal damage. Likewise, certain battery levels motivate
degradation concepts such as disabling comfort functions in an electric vehicle. Environmental
changes are context events that originate from outside the computer system, e.g., entering of the
takeoff phase in an airplane.
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Figure 3. Meta scheduler overview.
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4.2. Meta Scheduling

The meta scheduler computes a Multi-schedule Graph (MG) using the application, platform
and context models. The MG is a directed acyclic graph of time-triggered schedules, which are
precomputed at development time. At any instant during runtime, the time-triggered system is in one
of the nodes of the multi-schedule graph. This node defines the temporal and spatial allocation of all
computational and communication resources. Upon a relevant event from the context model, the node
is left and the system traverses to another node of the multi-schedule graph.

To compute the MG, the meta scheduler repeatedly invokes a scheduler (cf. Figure 3). The
scheduler takes an application model and a platform model as inputs and computes a time-triggered
schedule fulfilling the scheduling constraints (e.g., collision avoidance, precedence constraints, and
deadlines). The decision variables are the allocations of tasks to cores, start times of tasks, messages
paths along routers, message injection times and fetch times for the adaptation manager to read the
latest instance of the context vector.

Decision variables also include parameters for improving energy efficiency such as the time
intervals for clock gating and DVFS. The time-triggered schedule specifies the frequencies of cores and
routers in different time intervals of the time-triggered schedule [24,26]. The resulting overhead
such as the time needed to adjust the voltage needs to be considered in the constraints of the
optimization problem.

The state of the art encompasses a broad spectrum of algorithms (e.g., genetic algorithms,
SAT/SMT, and MILP) to solve this static scheduling problem.

The algorithm of the meta scheduler is depicted in Figure 4. The meta scheduler starts in an initial
state S0 assuming the absence of faults, slack events and resource alerts. It invokes the scheduler to
obtain a schedule for S0. The meta scheduler then performs a time step until one of the events from
the context model can occur.

Some events such as the occurrence of a particular dynamic-slack value occur at specific points
in time (e.g., termination of a task after 50% of its WCET). For events that can occur at any time
such as faults and resource alerts, predefined sampling points for fault detection or resource levels
are assumed.

The meta scheduler applies the earliest context event, which results in a changed application or
platform model. For example, a fault event results in the removal of a resource from the platform
model. A dynamic slack event results in a shorter execution time of a task. Thereafter, the meta
scheduler invokes the scheduler again to compute a new schedule S1 for the updated application and
platform models. Some decision variables are fixed in the new scheduling problem, namely those that
correspond to actions before the time of the processed context event.

Subsequently, the meta scheduler continues to perform time steps, each time applying the context
event, invoking the scheduler and adding the new schedule to the MG. In this process, the meta
scheduler considers the different potential state traces. For example, the second potential context event
will be applied in both schedule S0 as well as in schedule S1. Therefore, each context event results in a
branching point of the MG, since the context event may occur or it can remain inactive.

The meta scheduler considers mutually exclusive events. For example, a certain dynamic slack
value for a task precludes another dynamic slack event for the same task.

A major challenge in meta scheduling is the avoidance of state explosion in the MG. The meta
scheduling addresses this challenge using the following techniques:

• Reconvergence of paths in MG. Whenever the meta scheduler computes a new node for the MG,
it is checked whether this node was generated before. In this case, the meta scheduler connects
the predecessor node to the existing node and terminates the further exploration of the current
path (see Line 11 in Figure 4).

• Reconvergence horizon. For a given context event, the new schedule may only differ from the
previous schedule within a limited time interval after the occurrence of the context event. All
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decision variables after this horizon are fixed in analogy to the decision variables corresponding
to actions before the time of the context event (see Line 21 in Figure 4). Thereby, reconvergence of
paths in the MG is ensured.

01  initial application model AM 
02  initial platform model PM 
03  initial context model CM 
04  initial multi-schedule graph SG=   
05  initially fixed decision variables FIX=  
06  proc meta-scheduler(AM,PM,CM,FIX,prev) 
07    invoke scheduler(AM,PM,FIX) to obtain schedule S  
08    S={<d,t(d)>}// decision variable d with action time t(d)  
09    n = <S,CM>  // new node for schedule graph       
10    if n  SG   // dejavu  
11      connect previous node prev to existing node n in SG 
12    else  
13      add n to SG  
14      if (prev NULL) connect node prev to new node n in SG  
15      while CM    
16        e=earliest context event from CM with event time t(e)
17        EX=context events that are mutually exclusive with e 
18        CM’=CM \ (EX  e )  
19        AM’=result of applying e to AM 
20        PM’=result of applying e to PM 
21        FIX={<d,t(d)> S | t(d)  t(e)  t(d)  t(e)+HORIZON) 
22        recursively invoke meta-scheduler(AM’,PM’,CM’,FIX,n) 
23      end 
24    endif 
25  end 
26  meta-scheduling: invoke meta-scheduler(AM,PM,FIX,NULL) 

Figure 4. Meta-scheduling algorithm.

The size of the MG depends on the application, platform and context models. There is a linear
relationship between the size of the MG and the number of tasks and messages in the application
model, since the schedule must provide a resource allocation for each of these elements from the
application model. In addition, the size of the MG depends linearly on the number of resources,
which are deployed with dedicated schedules such as cores in case of source-based routing. For those
resources, which are only referred to with indices by the schedules, there is a logarithmic relationship
between the schedule size and the number of resources (e.g., routers in case of source-based routing).
Without reconvergence, there would be an exponential relationship between the number of events in
the context model and the schedule size. With a constant reconvergence horizon, there is a polynomial
dependency between the number of events and the size of the MG [19].

4.3. Tile-Specific Schedule Extraction and Difference Encoding

Even with reconvergence, the meta scheduler can still generate MGs with hundreds or sometimes
thousands of nodes. Storing those schedules in the memory space of the tiles would consume significant
chip resources. Therefore, we extract an individual MG for each tile and we introduce difference
encoding. This transformation of MGs is performed by the MG compressor in Figure 5.

The meta scheduler computes a MG where each node provides a schedule for the entire system
with all tiles. However, an event will typically lead to changes in message injections at only a small
subset of the tiles. Therefore, the graph compressor extracts graphs for the individual tiles from the
MG. Each of the resulting tile-specific graphs contains a subset of the original nodes and the nodes
contain a subset of the decision variables. Consequently, the resulting graphs are significantly smaller
than the original MG.
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Figure 5. Multi-schedule graph compressor.

Each tile is deployed with its complete base schedule, but it stores only the differences of the
other schedules in the graph-based structure. As shown in Figure 5, the MG generator extracts for
each tile the schedule information and their changes and stores them in a format that is suitable for the
NoC adaptation unit. The NoC adaptation unit, in turn, uses the schedule information to control the
source-based NoC and to change the NI behavior at runtime based on the global context information
that is provided by the context agreement unit.

The effectiveness of the difference encoding depends on the number of tasks and messages with
changed temporal/spatial resource allocations after an event. The ratio between the reconvergence
horizon and the makespan provides a lower bound for the compression ratio, if the number of messages
and tasks per unit of time is uniform throughout the makespan.

The effectiveness of the schedule extraction is determined by the number of resources (e.g., tiles
in case of source-based routing) with changed scheduling information after an event. In the worst-case,
all resources are effected by an event, thus yielding no benefit from the schedule extraction. However,
typically only a small fraction of the resources requires updated schedules after an event. For example,
the extraction results in an average reduction of the schedule size by 71% in the three experimental
scenarios described in Section 7.

The compression also has an impact on the fault-tolerance of the multi-core architecture. On the
one hand, the reduced size of the schedule information decreases the susceptibility to Single Event
Upsets (SEUs). On the other hand, an SEUs affecting the schedule information for a task or a message
can have a more severe effect, potentially corrupting also the parameters of subsequent tasks and
messages.

5. Context Monitor and Agreement Unit

All decisions taken by the adaptation unit are taken in a distributed manner at each tile. This
helps to avoid having a central tile with the role of a managing device that collects the information of
all tiles and pushes the new schedule to the entire system. Otherwise, such a tile would represent a
single point of failure and could degrade scalability as well as performance. However, in the proposed
distributed manner for decision making, we must ensure that all tiles are aware of the same global
context to achieve a coherent distributed decision process. Inconsistencies in the global view can lead
to inconsistent schedule changes, which in turn can cause collisions on the NoC and deadline misses.

As shown in Figure 6, the context monitors and the context-agreement units in ATMA establish a
global view on the context using the following three steps: (1) context reporting, (2) context distribution;
and (3) context convergence. At the beginning of the process each tile has only a local view on the
context and is not aware of the status of the other tiles. The three steps are explained in the following.
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Figure 6. Timeline of agreement for an example context event.

5.1. Context Reporting

The context monitor focuses on the collection of the local context events within the associated
context-agreement units.

We differentiate events based on their temporal properties and the safety implications:

• Synchrony. Synchronous context events are predictable in terms of their occurrence time and thus
can be checked at particular points in time. Such events either happen at a particular time within
the period or they will never happen. This kind of events allows for predictable changes. For
instance, if slack happens, it can be used for clock gating or for applying DVFS. Asynchronous
context events, on the other hand, happen at random and unconstrained points in time throughout
the system lifetime. They indicate a degradation of the system health or resource availability
which needs to be reacted to (e.g., fault or low battery level). These events are detected at runtime
through periodic sampling performed by the respective context monitors.

• Urgency. The urgency of a context event indicates how long the information about its occurrence
can be used before it loses its worth for the adaptation. Slack for example is highly urgent,
as it expires at the latest by the corresponding task’s WCET. The synchronous events have a
predictable offset between the potential occurrence and the resulting schedule change, therefore
we can schedule the agreement to fit to the event’s urgency. Asynchronous events, on the other
hand, are unpredictable in terms of their occurrence. These events can only be sampled and
agreed on regularly, which can lead to protocol overhead, as the events may not occur at all
during runtime. The more often the asynchronous events are monitored and agreed on, the faster
the system can adapt to them. Depending on the safety requirements and the dynamics of the
environment, a frequent observation of the context can be necessary for fault tolerance, as the
adaptation of the network must be performed quickly after the fault event is detected. Hence, the
frequency for the sampling of asynchronous events is a trade-off between the overhead caused by
the agreement and the gain that a short delay for reconfiguration can provide for the system.

• Safety. Safety-critical events and non-safety-critical events can be distinguished depending on
the impact with respect to functional safety. For example, fault recovery through adaptation can
be necessary to avoid critical failure modes of the system after fault events. In contrast, slack
events are often relevant for energy-efficiency and availability without direct safety implications.

The context reporting is performed by context monitors in ATMA. These monitors observe the
system state with respect to relevant indicators serving as context. The context typically comprises both
state information from within the computer system and from the environment. Therefore, monitors
and sensors are realized in hardware and software. Software monitors are driver functions that can
be used by the application to give direct feedback to the agreement unit. Hardware monitors contain
sensors to evaluate the system or the environment. The output of the monitors consists of a bit for
every potential event, indicating whether the event actually occurred. For example, an event can
represent the exceeding of a threshold value at a sensor (e.g., battery level and temperature).

This information is encoded in a bit string where each event is mapped to a single bit within the
string. The event bit thus indicates if the event occurred. This context string is prepared by each tile

172



Designs 2019, 3, 7

locally and thus encodes only the locally observed events, therefore we refer to this bit string as the
local context. This local context bitstring is the information that is distributed in the following phase.

The monitors write the context information into dedicated ports. Each context event has a
dedicated bit in one of the ports.

5.2. Context Distribution

The agreement on the context is realized by a broadcast protocol, which sends the messages
with the context using a ring relay between all tiles, meaning that a message is sent by each tile to its
neighbor and gets incrementally relayed until reaching the original sender [11].

The protocol is triggered periodically and executed by each context-agreement unit at the same
time. Figure 7 shows which events are agreed upon in an example scenario. The start instant of
the agreement process serves as a deadline d1 for the event reporting of period 1 and all events that
happen before d1 are taken into consideration. Events happening after d1 are considered for the next
period, even if they occur during the context distribution phase of the protocol. Upon the trigger, the
context-agreement unit reads the context ports and assembles a local context vector by concatenating
the context information for different events. Once the information is gathered, the local context vector
is sent to the other tiles within an agreement message that identifies the context string using the source
tile id [11].

This can be done via the NoC or via a dedicated network [11]. The use of the NoC involves no
hardware overhead for the implementation, but the agreement messages need to be added to the
scheduling problem. This extension can render the communication more difficult to be scheduled. In
such cases, a dedicated second network can be used. For the evaluation in Section 7, we implemented a
FIFO ring structure where the agreement messages can be sent at arbitrary times without consideration
of the application communication at the NoC. This implementation has shown to be able to save more
energy than a NoC implementation in a benchmark setup [11].

Each tile in the FIFO ring sends its local context vector to its direct neighbors. This way no
collisions can occur as the links that are used are predefined. Once the local context is sent, the tile
also receives local context from its neighbors. The tile extracts the new information and saves it
locally. Afterwards, it relays the received context to the next neighbors. This way, the local context is
transmitted within a ring-like structure between all neighbors until it returns back to its original sender.
There the sender knows that it has received all context information in the tile and it can proceed to
build the global context vector. This exchange takes n transmission hops, with n being the number
of tiles in the network, as the ring needs to be passed completely by all messages. Therefore, the
execution time increases with the number of tiles.

Context agreement 
period 1 
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Globally consistent 
context C1
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Figure 7. Events before the context reporting deadline dn of the respective period n are considered for
the agreed context Cn. Events happening between the agreement start and the agreed global context
are considered for the next period.

5.3. Context Convergence

Once all messages with context information are received, the global context vector is produced.
In this phase, the global context can also be converged from redundant information using majority
voting. This is important if the same context event is observed redundantly by multiple tiles.
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If the context events are observed only by one dedicated tile, the local context information is
simply concatenated according to the predefined global context-vector layout in which each tile has a
predefined interval where its local information is to be placed.

6. NoC Adaptation Unit

Robust and chip-wide aligned switching of schedules at all tiles are major requirements to ensure
consistency and to preserve the properties of time-triggered systems. The NoC adaptation unit
supports this requirement based on the assumption of a consistent context vector and correctness of
the MG.

The NoC adaptation unit performs time-triggered dispatching of messages by deploying
precomputed schedules, each of which is mapped to a particular set of context events. This unit receives
the global context vector from the context agreement unit and triggers the ports for transmission of
messages to support adaptive time-triggered communication. The global context vector is saved in a
dedicated register within the NoC adaptation unit.

The operation of the adaptation unit occurs using the following four steps:

1. Fetching step: Fetch the global context vector from the dedicated register at the scheduled time.
2. Compare mask step: Compare the global context vector with a context bit mask to determine

the occurrence of specific combinations of context events.
3. Selection step: Select the new schedule based on the masked signal.
4. Triggering step: Trigger the message injection for the respective ports based on the new schedule.

Figure 8 represents the internal structure of the NoC adaptation unit, which is composed of the
following three internal building blocks: (1) the context register; (2) the Linked-List Multi-schedule
Graph (LLMG) that stores the MG as a linked list; and (3) the adaptation manager.

NoC Adaptation Unit

LLMG Adaptation
Logic

Network
InterfaceTrigger 

Message 
Transmission 

Events

Global Context
 Vector

Type

Instant

Next 

Port ID

BitMask

Adaptation
State 

Machine

Compare
Mask

Context Register

Figure 8. Internal structure of the NoC adaptation unit.

The global context vector is stored in the context register to be read by the compare-mask building
block. The global context vector is fetched at a scheduled time, which is defined by the LLMG.

Figure 9 shows an example of a LLMG, which is stored as a circular linked list of instant entries.
Each entry in the linked list is associated with an instant of time and address in the schedule file.

Two types of instant entries are provided: message entries and branching entries. Table 1 presents
the content of the two types of entries. The message entries contain Type, Instant, PortID and Next
values. The branching entries contain Type, Instant, BitMask, NextTaken and NextNotTaken values:

• Type defines the entry type (i.e., message or branching).
• Instant represents the injection time of the message or the branching time.
• PortID shows the ID of the port, from which the message is injected.
• BitMask is a mask to detect the simultaneous occurrence of several events from the global

context vector.
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• Next is a pointer to the next entry of the schedule.
• NextTaken is a pointer to the next entry when a specified event has occurred.
• NextNotTaken is a pointer to the next entry when the specified event has not occurred.

Table 1. Structure of the schedule entries.

Type

Message Type Instant PortID Next
Branching Type Instant BitMask NextTaken NextNotTaken

Figure 9 presents an example LLMG, in which two different events E1 and E2 occur. The type of
the entry is distinguished by the color, where message entries are shown in white and the branching
entries are shown in gray. The number in each entry represents the address of the entry in the schedule
file and the context events are shown on the links between the entries.

1 6

3E1

2

4

7

99

5

~E1

E2

~E2

8

10

Figure 9. Linked-List Multi-schedule Graph (LLMG).

The process of selecting the correct schedule is started by tracing the entries of the LLMG, based
on the address and next pointers. The adaptation manager is triggered at the instant, which is given by
the entries. In the example in Figure 9, entry 1 is a message entry so the message of the corresponding
Port ID is transmitted at the Instant specified by the entry. In this entry type, the Next value points to
the address of the next entry. Entry 2 is a branching entry, which points to two different entries. The
selection of the next schedule depends on the occurrence of the specified context event. The event
occurrence is determined by the global context vector and MaskedBit. In the case of E1 occurrence,
entry 3 is selected as the next entry by NextTaken. If E1 does not occur, then entry 6 is selected by
NextNotTaken. The same operation is applied for the other entries of the LLMG. After applying the
operations for all entries, the next pointer of the last entry is followed, which points back to the first
entry of the period.

The adaptation manager serves the ports by triggering the message transmissions. The selection
of the schedules is fully dependent on the received global context vector and is implicitly consistent
with the other tiles, because the context vector is globally consistent and the actions of the different
tiles within each schedule are temporally aligned by the meta scheduler.

The adaptation manager consists of a state machine and a compare mask. The state machine reads
the input from the context vector register and the LLMG for switching schedules. Figure 10 presents
the states and transitions of the state machine.

The state machine wakes up at an instant of time, which is defined by the LLMG. At this instant
of time, the type of the LLMG entry is checked. In the message-type entries, the state machine reads
the portID and injects the message of the specified port at the instant of time. After the injection, the
new entry is fetched by the Next value.

In the case of a branching entry, the global context vector is fetched from the context register at
the specified instant of time. In parallel, the BitMask is read from the LLMG. The global context vector
and the BitMask values are received by the compare mask to extract the specified event. The event
occurrence value can be 0 or 1, indicating whether the event has occurred. Therefore, the NextTaken
entry is selected. An event bit 1 means the event has not occurred, so the NextNotTaken entry is
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selected. After the selection of the next address, the state machine waits again for the dispatching time
of the next entry.

Wait for 
dispatch 

time

Read port 
ID & fetch 

datamessage
Check 
type

branchingg
Fetch 

event bit

Inject 
message

Fetch next 
schedule  

(not taken) 

Fetch next 
schedule 

entry

Fetch next 
schedule 
(taken)

0 1

Figure 10. Adaptation state machine.

7. Results and Discussion

The introduced architecture was instantiated for example scenarios in order to validate the
adaptation services. In addition, the scenarios served as an evaluation of the improvements with
respect to energy efficiency and investigate the overhead with respect to memory and logic.

7.1. Zynq Prototype

The architecture was instantiated on a Xilinx Zynq-7000 SoC ZC706 FPGA board. The
System-on-Chip (SoC) of this board consisted of an ARM-based processing system and a
programmable-logic unit on a single die.

The hardware platform comprised four tiles interconnected by a time-triggered NoC [27]. Each
tile was deployed with a network interface, a NoC adaptation unit and a context agreement unit. The
Nostrum NoC [28] served as the basis for the implementation of the adaptable NoC. One tile was
located in the processing system and contained two ARM Cortex-A9 processor cores. The other tiles
were implemented in the programmable logic, where each tile contained a single core realized as a
soft-core MicroBlaze-processor. The resource consumption is shown in Table 2.

Table 2. FPGA resource utilization.

Hardware LUTs

Soft-core processors (3 Microblazes) 5673
Nostrum NoC with 4 routers 6225

NoC Adaptation Units (at 4 tiles) 8179
Agreement Units (at 4 tiles) 254

The meta scheduler and the MG compressor served for the generation of the schedules of the
tiles, which were loaded to the dedicated memory of each corresponding tile. The meta scheduler is an
implementation of the pseudo code in Figure 4. An existing optimal scheduler [29] for time-triggered
networks was extended to use energy efficiency as the objective function. This optimal scheduler was
implemented with IBM CPLEX and repeatedly invoked by the meta scheduler.

7.2. Slack-Based Adaptation Scenarios

Figures 11–13 show the three scenarios for the evaluation. In each scenario, different tasks with
different WCETs and precedence relationships were hosted by the four tiles. The tasks had a period of 2
ms and it was assumed that each task could be subjected to dynamic slack of 50%. Table 3 summarizes
the input models (i.e., AM, PM and CM) for the meta scheduling in the three scenarios.
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Figure 11. Scenario 1.

Figure 12. Scenario 2.

Figure 13. Scenario 3.

Table 3. Inputs models for scenarios.

Input Model

Scenarios
Application Platform Context

Jobs WCETs Deadlines Msgs. Tiles # of Schedules Dynamic Slack

1 4 300–500 μs 500–1850 μs 3 4 16 50% of WCET
2 7 300–700 μs 500–1850 μs 5 4 128 50% of WCET
3 9 200–600 μs 200–1850 μs 7 4 512 50% of WCET

Dynamic slack is the time difference between the WCET of the task and the actual point of time,
at which the task ends. Slack can be used to save energy, as, in each execution, some or all tasks can
be finished either as planned or earlier. In the case no slack happens, only one schedule can be used,
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as shown for example in Figure 11. In the case of a slack of 50% (e.g., T1 finishes 250us earlier), we
changed the communication schedule to make use of the remaining time of the execution of T1 to start
T2 (and consequently T3 and T4) earlier and achieve a shorter makespan for the system, as shown in
Figure 14.

Figure 14. Example for slack in Task T1 of Scenario 1.

Energy reduction was achieved by clock-gating all tiles, their dedicated IPs and the interconnect.
Clock gating aws performed between the completion of the makespan and the start of the subsequent
period. In other words, all tiles as well as the NoC were in sleep mode after the termination of the last
task, until the next period starts. This procedure was repeated every period.

7.3. Evaluation and Results

The evaluation was performed on the introduced prototype using the UCD90120A device, which
is a 12-rail addressable power-supply sequencer and monitor. This chip was mounted on the evaluation
board and it aws accessible by the processing system via the PMBus/I2C communication bus.

The experimental results encompass the power consumption for all combinations of slack events,
thus showing the power savings depending on the completion times of tasks. Table 4 summarizes the
numerical measurement results for the three scenarios. In each scenario, all possible slack combinations
of different tasks were taken into consideration for the computation of the multi-schedule graph [30].
Each row of the table corresponds to an observed makespan value and it contains the number of
schedules in the MG with this makespan, the corresponding power consumption in milliwatt and
the power reduction percentage achieved by the proposed adaptation mechanisms. In addition, the
table provides the average power reduction percentage under the assumption of a uniform probability
distribution of the slack event combinations. This value is pessimistic, because in reality high slack
values of tasks are common (e.g., as described by the literature on WCET analysis).
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Table 4. Evaluation Results for the three scenarios.

Scenario 1 Scenario 3

Duplicat-
ions

Makespan
(μs)

Consumpt-
ion (mW)

Power
Saving

Duplicat-
ions

Makespan
(μs)

Consumpt-
ion (mW)

Power
Saving

1 950 451.2 32% 1 930 447.0 33%
1 1100 482.2 28% 1 961 453.4 32 %
3 1200 502.8 25% 1 1001 461.7 31%
3 1350 533.8 20% 2 1051–1061 472.0–474.0 29%
3 1450–1460 554.4–556.5 17% 5 1080–1090 478.0–480.1 28%
3 1600–1610 585.4–587.5 12% 3 1111–1141 484.4–490.0 27%
1 1710 608.1 9% 3 1151–1160 492.6–494.5 26%
Average 1372 538.3 19% 19 1180–1201 498.6–503.0 25%

Scenario 2 9 1210–1211 504.8–505.1 24%
1 1040 469.8 30% 12 1240–1261 511.0–515.4 23%
2 1131 488.6 27% 8 1290–1302 521.3–523.9 22%
12 1190–1200 500.7–502.8 25% 12 1310–1330 525.5–529.6 21%
1 1210 504.9 24% 54 1340–1361 531.71–536.0 20%
8 1281–1300 521.4–523.9 22% 12 1371–1401 538.1–544.3 19%
15 1340–1350 531.7–533.8 20% 10 1411–1431 546.4–55.5 18%
8 1381–1391 540.2–542.2 19% 70 1440–1461 552.4–446.7 17%
27 1440–1460 552.4–556.5 17% 6 1470–1491 558.6–562.9 16%
11 1531–1541 571.2–573.2 14% 30 1500–1521 564.7–569.1 15%
10 1590–1595 583.3–584.4 13% 22 1540–1561 573.0–577.3 14%
17 1600–1610 585.4–575.5 12% 27 1570–1591 579.2–583.5 13%
8 1700–1710 606.1–608.1 9% 75 1600–1621 585.4–589.7 12%
5 1850 637.0 5% 18 1640–1660 593.7–597.8 11%
2 1860 639.1 4% 11 1671–1691 600.1–604.2 10%
Average 1467.2 558.0 16% 41 1700–1711 606.1–608.3 9%

10 1750–1752 616.4–616.8 8%
7 1761–1771 618.6–620.7 7%
2 1790–1800 624.6–626.7 6%
16 1840–1850 635.0–637.0 5%
6 1860 639.1 4%
7 1890–1900 645.3–647.4 3%
10 1940–1950 655.6–657.7 2%
Average 1517.4 568.3 15%

In addition, the memory size for the storage of the generated schedules is indicated in Table 5. In
general, the number of schedules would increase exponentially with the number of tasks. However,
the mechanisms for reconvergence, tile-specific schedule partitioning and difference encoding result
in a significant reduction of the state space and the memory consumption. The baseline memory
consumption and the memory consumption with difference encoding and tile-specific schedule
partitioning are shown in Table 5 as well.

Table 5. Memory usage in different scenarios.

Results

Scenario
Energy

Reduction

Initial Memory

Consumption

Mem. with Diff-

erence Encoding

Mem. after Tile-

Based Extraction

1 19% (9%–32%) 768 B 44 B 11 B
2 16% (4%–30%) 10 kB 200 B 50 B
3 15% (2%–33%) 56 kB 896 B 224 B
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The architectural building blocks for adaptation imposed delays, which added up to 20 clock
cycles for a schedule change after a context event in the prototype implementation. The context monitor
imposed an implementation-specific latency for the detection of context events. In addition, there was
an additional delay of up to one sampling period for asynchronous context events. The prototype
contained a hardware implementation of the context monitor in conjunction with synchronous context
events involving a delay of two cycles.

The context agreement unit imposed a delay for distributing the context information among all
tiles and establishing the globally consistent context vector. In the implementation, four clock cycles
were needed for forwarding the context information between tiles using the FIFOs. Hence, 16 clock
cycles were needed for the prototype system with four tiles.

The state machine of the adaptation unit in the prototype required two additional clock cycles
for each message compared to the non-adaptive NoC in order to process the compressed schedule
information and to traverse the linked lists.

8. Conclusions

The presented time-triggered multi-core architecture supports adaptation with multi-schedule
graphs, while preserving significant properties of time-triggered systems including freedom from
interference at shared resources, implicit synchronization, timeliness, implicit flow control and
fault containment.

Architectural building blocks for agreement establish a consistent chip-wide view on context
events, which is used by the adaptation unit in each tile for temporally aligned changes of schedules.

The meta-scheduler of the architecture introduces techniques for avoiding state explosion such
as reconvergence of adaptation paths with bounded horizons for context events. In addition,
memory consumption is minimized using difference-encoding and the tile-specific extraction of
schedule information.

The meta-scheduler of the architecture computes Multi-schedule Graphs (MGs), which
incorporate for each combination of context events the corresponding fixed scheduling decisions.
These decisions include the start times of jobs, message injection times, messages paths and parameters
for energy management such as time intervals with different frequency values for cores and routers.

For each schedule of the MG, deadlines, precedence constraints, resource contention and the
adaptation overheads (e.g., delays for DVFS and delays for establishment of globally consistent context
vectors) are considered. Consequently, correctness can be verified at design time and the presented
time-triggered multi-core architecture enables adaptation for safety-critical embedded systems, where
significant improvements with respect to energy efficiency and fault recovery can be obtained.

Plans for future work include the experimental evaluation of the fault tolerance using
fault-injection experiments and the extension of ATMA towards a hierarchical architecture for the
interconnection of adaptable multi-core chips via reconfigurable off-chip communication networks.
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Abbreviations

The following abbreviations are used in this manuscript:

CPS Cyber-Physical System
ATMA Adaptive Time-triggered Multi-core Architecture
DAG Directed Acyclic Graph
SoC System-on-Chip
NoC Network-on-Chip
NI Network Interface
TTNoC Time-Triggered Network-on-Chip
MPSoC Multiprocessor System-on-Chip
MCNoC Mixed-Criticality Network-on-Chip
MCS Mixed-Criticality System
WPMC Wormhole NoC Protocol for Mixed Criticality Systems
RT Real-Time
WCAT Worst-Case Arrival Time
SEU Single Event Upset
VL Virtual Link
TTEthernet Time-Triggered Ethernet
VC Virtual Channel
VN Virtual Network
DVFS Dynamic Voltage and Frequency Scaling
WCET Worst Case Execution Time
PE Periodic
SP Sporadic
AP Aperiodic
TT Time-Triggered
ET Event-Triggered
RC Rate-Constrained
MINT Minimum Inter-Arrival Times
BE Best-Effort
GS Guaranteed Services
ASM Adaptation State Machine
MT Message Transmission
BP Branching Point
TTEL Time-Triggered Extension Layer
PQ Priority Queue
MG Multi-schedule Graph
LLMG Linked-List Multi-schedule Graph
TDM Time Division Multiplexing
TDMA Time Division Multiple Access
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Abstract: Component-based development is a software engineering paradigm that can facilitate
the construction of embedded systems and tackle its complexities. The modern embedded systems
have more and more demanding requirements. One way to cope with such a versatile and growing
set of requirements is to employ heterogeneous processing power, i.e., CPU–GPU architectures.
The new CPU–GPU embedded boards deliver an increased performance but also introduce additional
complexity and challenges. In this work, we address the component-to-hardware allocation for
CPU–GPU embedded systems. The allocation for such systems is much complex due to the
increased amount of GPU-related information. For example, while in traditional embedded systems
the allocation mechanism may consider only the CPU memory usage of components to find an
appropriate allocation scheme, in heterogeneous systems, the GPU memory usage needs also to be
taken into account in the allocation process. This paper aims at decreasing the component-to-hardware
allocation complexity by introducing a two-layer component-based architecture for heterogeneous
embedded systems. The detailed CPU–GPU information of the system is abstracted at a high-layer by
compacting connected components into single units that behave as regular components. The allocator,
based on the compacted information received from the high-level layer, computes, with a decreased
complexity, feasible allocation schemes. In the last part of the paper, the two-layer allocation method
is evaluated using an existing embedded system demonstrator; namely, an underwater robot.

Keywords: embedded systems; software component; component-based development; CBD;
GPU; GPU component; allocation; component allocation; architecture layer

1. Introduction

Nowadays, embedded systems become more and more common in the daily life. Modern
embedded systems, characterized by new and demanding functionalities, deal with huge amount of
information resulted from the interaction with the environment. For instance, the Google autonomous
car ( i.e., the Waymo project) handles 750 MB of data per second that is produced by its sensors
(e.g., LIDAR). The huge amount of information needs to be processed with a particular performance,
in order to satisfy the system requirements. For example, the autonomous Google car needs to process
its captured data in real-time in order to detect various objects and pedestrians, to avoid accidents.
One solution to enhance the processing capacity of embedded systems comes from the usage of
embedded boards with Graphics Processing Units (GPUs). A GPU is a processing unit that is equipped
with hundreds of computation threads, excelling in parallel data-processing.

Although, on one side, the use of GPU increases the system (parallel-processing) performance,
on the other side it increases the complexity of the system design. In particular, the software-to-
hardware allocation is already not an easy task: when having several processing units of different
kinds and with different capabilities, a major design challenge will then be in finding an optimal
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allocation of software artifacts (e.g., components) onto the processing units in a way that system
constraints are also met and not violated. For allocating a set of n software artifacts onto m processing
units, a total number of mn combinations are to be considered [1]. The challenge, as mentioned, is then
to find, from all combinations, a single permutation as an optimal allocation scheme with respect to the
constraints and characteristics of the system. With the GPU in the landscape, the allocation becomes
even more complicated and challenging. The software is characterized now, besides the properties
regarding the CPU resources, with properties that refer to GPU such as the GPU memory usage or the
execution performance on the GPU. Similarly, the platform also has characteristics regarding the CPU
but also the GPU hardware. Hence, the allocation challenge is increased due to the extra application
properties and hardware characteristics that must be considered. In short, the challenge of finding
optimal allocations of software artifacts to hardware has increasingly attracted attention, especially
with the advent and growing prevalence of heterogeneous hardware platforms and increasing use of
software in mission-critical applications. In [2], for instance, Baruah has discussed the challenge of
allocating a set of recurring tasks in real-time systems onto processing units of different kinds while
respecting all timing constraints, and has identified this to be an NP-hard problem. One way to relieve
the allocation challenge and cope with its complexity is by managing the amount of information that is
fed to the allocator to make allocation decisions. This is the main topic and solution that we introduce
and investigate in this paper. In other words, in this current work we do not focus mainly on how to
derive and what will be an optimal allocation scheme for a system (which is the main focus in [1,3]),
but rather how the burden on the allocator can be relieved to relax the complexity of the allocation
process in general.

In this work, we use the component-based development (CBD) to construct embedded systems
with GPUs. In general, this software engineering methodology promotes the construction of
applications by composing existing software units called software components. CBD is used and
promoted in industry to construct embedded systems; such as in AUTOSAR [4] which is now the
de-facto standard in automotive industry, and IEC 61131 [5] used to develop programmable logic
controllers (PLCs). In the context of component-based embedded systems with GPUs, we focus on
the component-to-hardware allocation, proposing a semi-automatic allocation method. When using
platforms with GPUs, the allocation challenge increases even more due to the (higher) complexity
of the software and hardware. The software in such systems is composed of: (i) (traditional)
components that have requirements on common resources (e.g., CPU load, RAM memory usage),
and (ii) (GPU-specialized) components that have GPU requirements (e.g., number of GPU threads
usage). These GPU-specialized components, although they contain small CPU functionality
(e.g., activities to trigger execution on GPU), are seen as components with only GPU computation.
Having a pool of (CPU and GPU-based) components, many alternatives with the same functionality
may result. For example, a vision system may have two alternatives, where one alternative contains
only components with CPU functionally, while the other alternative contains only components with
GPU computations. Regarding the hardware, the platform encloses, besides the traditional CPU,
the GPU that has different characteristics such as the available GPU memory.

The aim of our work is to alleviate the allocation challenge by mitigating the increased amount
of (software and hardware) information. In the context of applications with multiple alternatives,
and CPU–GPU hardware, the allocator does not need to take in consideration all the system information.
For instance, the information that describes the component communication from inside the alternatives
may be neglected. An implicit constraint considered in this work is, due to the closely connected
nature of the GPU to the CPU, the allocator needs to deploy a (entire) variant that has GPU
computations, onto a CPU–GPU processing node. Enforcing this requirement improves the overall
system performance.
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As a solution, we propose a two-layer architecture to decrease the allocation effort. Both layers
describe a same system that has GPU computation; the difference resides in the level of information
that characterize each layer. The first layer, seen as regular description of the architecture, encloses
all information (e.g., component communication links) of all alternatives. The second layer compacts
different alternatives with the same functionality into single components with multiple variants.
Each of the variants of the resulted components, is characterized by a set of properties that reflect the
requirements of all components contained by its corresponding alternative.

To abstract certain information, the allocator uses the first layer description and selects a suitable
component alternative. Once the allocation scheme is computed, the selected alternative is unfolded
with the corresponding structure from the second layer. The core idea of a two-layer allocation method
is to decrease the information load and constraints that may increase the overhead of the allocator.
Another benefit of our solution is the increased scalability characteristic, where our allocator may
handle more complex systems (e.g., characterized by a high number of components) due to the decrease
of the information and constraints load.

In this work, we use in the evaluation section an already existing (constraint-based) allocator that
we constructed in a previous work [3]. Our approach is independent of what allocator is used or how
it is implemented. By proposing the two-layer allocation design, we improve the scalability of the
allocator used for heterogeneous CPU–GPU systems, and decrease its burden.

The remaining of the paper is organized as follows. Section 2 introduces the context details of
this work. Furthermore, the section presents a running example, and, based on it, a way to develop
component-based systems for heterogeneous embedded systems. The overview of our method is
described in Section 3 while Section 4 evaluates our method using the introduced running example.
Related work is covered by Section 5 followed by conclusions and future work in Section 6.

2. Component-Based Design for Heterogeneous CPU–GPU Architectures

The growing complexity and size of embedded systems emphasizes the use of appropriate
development methods that can cope with these issues and scale well. Component-Based Development
(CBD) is a promising approach in this regard which promotes building a system out of already
existing components, as opposed to building it from scratch. In other words, CBD enables reusability
in software development by building a system as an assembly of components [6,7] selected from
a repository of verified existing components. Considering the constraints of embedded systems in
terms of available resources, how software components are allocated onto the hardware platform can
play an important role in the performance of the system and optimal use of the resources. This is,
however, not a trivial task and as the number of software components as well as processing units
and computing nodes on the hardware platform increases, different combinatorial allocation schemes
need to be evaluated in order to determine an appropriate one. For this reason, having an automated
solution for evaluation of allocation schemes is necessary. One aspect that adds to the challenge of
allocating software components onto hardware platforms is the move towards the use of heterogeneous
hardware architectures such as multi-core CPU and GPU. Use of GPUs along with CPUs is particularly
interesting as it can provide increased computation power and diversity due to the parallel processing
capability of GPUs. This brings along additional constraints that need to be taken into account for
allocation of software components to hardware. For instance, a GPU cannot be used independently of
a CPU, and it is the CPU that triggers all GPU specific operations such as data transfer between the
main memory unit (i.e., RAM) and the GPU memory system. Therefore, there is constant and high
communication between these two processing units.

From the perspective of the processing unit, software components can be categorized as: (i) those
that require only CPU for their functionality (ii) components that use GPU (in addition to CPU) to
fulfill their functionality. For the rest of the paper, these types of components will be referred to as
GPU components. A specific functionality may be implemented as any of these component types.
Therefore, in the component repository both types of components may exist as different implementation
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versions of a specific function. For instance, for an image processing component we may have three
different implementation versions in the repository; one that uses CPU only (type i), and two others
as GPU-based implementations that require GPU as well (type ii). Each of these three versions can
have different properties and characteristics in terms of resource usage and utilization. For example,
the two GPU-based component implementations can have different resource usage properties with
respect to GPU memory and GPU computation threads.

In the next paragraphs, we introduce a case study that will be used to present our solution.
The case study is an underwater robot [8] that autonomously navigates under water and executes
various missions such as finding buoys. The robot is a typical embedded system that contains
sensors (e.g., cameras), an embedded board with an incorporated GPU, and actuators (e.g., thrusters).
An interesting part of the robot is the vision part which is described in Figure 1. The vision
(sub-)system is developed with a state-of-practice component model i.e., the Rubus component
model [9]. This particular component model follows a pipe-and-filter interaction style, where each
component computes its received data and sends it to the next connected component(s). The vision
system consists of six components as follows. The first two components (i.e., Camera1 and Camera2)
receive raw data from two camera sensors, convert it into readable color (i.e., RGB) frames and forward
it to the MergeAndEnhance component. After the two frames are merged into a single RGB frame and
its noise is reduced, the ConvertGrayscale component converts it into a grayscale format and sends it
to the EdgeDetection component. This component converts the frame into a black-and-white frame,
where the white lines delimit the objects from the frame. Finally, the ObjectDetection component detects
a particular object, such a buoys.

 Camera1
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Detection

Object
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Sensor

Camera1

Sensor
Camera2

…

Figure 1. The vision system of an underwater robot.

Due to the fact that several components (i.e., MergeAndEnhance, ConvertGrayscale, EdgeDetection
and ObjectDetection) have functionalities (i.e., image processing) that can be executed on the GPU,
the vision system may have different alternatives. Figure 2 presents possible alternatives of the vision
system. Assuming that we have a repository with ten components where there are components with
the same behavior but constructed to be executed on different processing units (i.e., either on CPU or
GPU). For instance, there is the EdgeDetection(GPU) component that is constructed to be executed on
the GPU and there is EdgeDetection(CPU) that has the same behaviour but it requires to be executed on
the CPU. The total amount of alternatives that can be constructed by using the repository components
is six, as illustrated in the figure. The first alternative, where all components are executed on the
CPU, has a low performance but also zero-demand on the GPU. This alternative can be selected to
be used in a system that is not equipped with a GPU or in a system that possesses a GPU but it is
used by a different part of the system. The last alternative, containing four components that need to
be executed on the GPU, has the highest performance compared to the rest of the alternatives but
it also has high GPU requirements (e.g., GPU memory and computation threads usage). The other
four possible alternatives contain variations of components with different requirements on the CPU
and GPU.

In this context where there are several alternatives and each one contains different components
versions characterized by distinct characteristics, the information load on the allocator is much,
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influencing, in a negative way, the allocation efficiency. Furthermore, because of the tight connection
between CPU and GPU, the components executed on a GPU are desired to be placed, alongside
with their connected CPU-based components, on the same CPU–GPU chip. In the opposite case,
placing a GPU-component on a different CPU–GPU chip than its connected CPU-component brings
additional communication overhead which negativly influences the system performance. In general,
the allocation complexity is directly influenced by the number of considered alternatives and by the
number of the components and their versions included in the alternatives.

Alternative 6

Merge
And

Enhance
(GPU)

Merge
And

Enhance
(CPU)

Convert
Grayscale

(GPU)

Convert
Grayscale

(CPU)
Edge

Detection
(GPU)

Edge
Detection

(CPU)

Object
Detection

(GPU)
Object

Detection
(CPU)

 Camera1  Camera2

Vision repository
 Camera1

Camera2

Merge
And

Enhance
(CPU)

Convert
Grayscale

(CPU)

Edge
Detection

(CPU)

Object
Detection

(CPU)

Sync
Sensor

Camera1

Sensor
Camera2

 Camera1

Camera2

Merge
And

Enhance
(GPU)

Convert
Grayscale

(GPU)

Edge
Detection

(GPU)

Object
Detection

(GPU)

Sync
Sensor

Camera1

Sensor
Camera2

Alternative 1

…

Figure 2. The vision system alternatives. GPU, graphics processing units; CPU, central processing unit.

3. Solution Overview

To diminish the burden of the allocation process, we introduce a two-layer allocation method.
The layers correspond to a two-layer architecture view of the system, where the bottom layer
describes a detailed system (i.e., composition of different component versions), while the top
layer abstracts the complexity of the detailed system, by compacting the resulting alternatives into
units (i.e., multi-variant units) that behave as regular components. The resulted components are
characterized by different alternatives, where an alternative contains the properties that correspond to
all its enclosed components.

Figure 3 depicts the vision system alternatives compacted into a multi-variant component where
each alternative is characterized by set of properties. These properties are derived from the properties of
the enclosed components. For instance, the alternative 6 where there are four GPU-based components,
is characterized by a GPU memory property that describes the GPU memory usage of the enclosed
components. This property is derived by e.g., summing the GPU memory usage of all four GPU-based
components. As the GPU threads are highly reusable between GPU-based components, the alternative
property that describes the number of GPU threads usage is the highest value of threads usage among
the four GPU-based components. Furthermore, some attributes may be abstracted away. For example,
due to the fact that connected (CPU- and GPU-based) components are enclosed together into single
units and implicitly they will be allocated on the same CPU–GPU chip, the bandwidth property
required for data transfer between two connected components, is abstracted away.

Figure 4 illustrates the overview description of our solution, that contains six stages as follows:

1. The first stage refers to the component pool from which the system developer constructs the
application. The components from the repository may be provided by a 3rd-party or developed
in-house. The repository contains regular (CPU-based) components but also components with
GPU capability. For instance, there are two component versions (i.e., C2 GPU and C2 CPU) with
the same behaviour but different (hardware) requirements.
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2. Using the available components from the repository, the system architect composes them in
different alternative systems, as described in the second stage. For example, while the first
alternative uses C1 GPU, the second system alternative contains C1 CPU. All the system
alternatives have the same behavior and different requirements. For example, while the first
alternative requires GPU memory for two components, the second alternative has only one
component with GPU requirement.

3. The third stage compacts all the component variants into multi-variant components. For example,
the several alternatives that contain three components are grouped into a unit with different
alternatives. These alternatives have the same functionality but with different (CPU and
GPU) requirements. This is a simplified system architecture in which we abstracted away
some information.

4. The information from the previous stage is forwarded to an allocator which we assume it already
exists. Our approach is independent of how the allocator itself is implemented and based on
which solver. Other information is fed to the allocator such as the description of the platform
or different system constraints. In this stage, the allocator computes component-to-hardware
allocation schemes where each component is mapped to a single processing unit.

5. The fifth stage describes the system architecture based on the result computed by the allocator.
The architecture contains only (single-variant) components, that is each component has a single
set of requirements and is allocated to a particular processing unit.

6. The last stage contains a fully detailed system architecture where the (single-variant) components
from the previous stage are unfolded (when it is possible). The figure illustrates the detailed
system architecture where the alternative selected by the allocator is unfolded into three connected
components, i.e., C1 GPU, C2 GPU and C3 CPU.
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Figure 3. A multi-variant vision component.

In general, using a simplified version of the system architecture decreases the amount of
information forwarded to the allocator, and hence, the allocation complexity. The simplified version is
obtained by applying a high-level layer on top of the detailed architecture layer. Instead of describing
each component by a set of requirements as it is done in the detailed layer, connected components are
grouped into units with the same functionality, that behave as regular components, and are described by
a condensed number of properties as it is achieved in the high-lever layer. Furthermore, some desired
allocation constraints may be automatically taken care of and provided as a by-product of our method.
For example, instead of specifically requesting that connected CPU–GPU components to be allocated
together onto the same CPU–GPU chip units (e.g., to improve the system performance), our method
implicitly introduces this request by compressing the components into single (component-like) units.
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We construct our solution around an existing allocator. The (mathematically defined) model of the
allocator is based on constraints and optimization goals. The constraints assure that the allocator does
not use more than existing hardware resources such as the memory required by all the components
placed on a platform does not exceed the available physical memory. The optimization goals allow the
user to determine essential features of the system such as performance. The actual allocation is done
by using a constraint solver, the details of which we have described in a previous paper [3].
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Figure 4. The overview description of our solution.

4. Evaluation

In this section, we analyze our solution in two parts. In the first part, we look into the feasibility
aspect where the proposed solution is implemented using an existing system. The second part analyzes
the scalability aspect of the solution.

4.1. Feasibility

To analyze the feasibility of our solution, we apply our allocation method on the underwater
robot, partially introduced in Section 2. The robot contains two connected embedded controller boards:
(i) a System-on-Chip board that contains a CPU–GPU chipset, and (ii) a regular board with a one-core
ARM CPU. The boards communicate via a Controller Area Network (CAN) bus, and are connected to
various sensors (e.g., cameras, pressure sensor) and actuators (e.g., thrusters). We characterize each
board by a set of properties as follows:

• availMem represents the available memory of the board, and is measured in megabyte (MB).
• availCpu represents the available load of the CPU and its value is compared to a reference unit

(e.g., 1 Cpu load unit is a particular amount of work over a period of time).
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• availGpu represents capacity of a GPU. As a metric we use the amount of threads a GPU
has. Although it is not an accurate description, we use this measurement unit to characterize,
at a high-level, the GPU power.

A high-level model of the underwater robot is presented in the right-hand side of Figure 5.
We notice that for the board that has only a (one-core) CPU, the GPU-related property (i.e., availGpu) is
set to zero.

The robot is equipped with two vision systems, the front system using two from cameras
and the bottom system using a single bottom camera. For both vision systems we constructed
different CPU- and GPU-based components as follows. The front vision functionality merges two
RGB frames, converts the merged frame into the grayscale format, applies an edge-detection filter
and detects the objects from the frame (for more details see Section 2). To construct the functionality,
we developed: (i) six CPU-based components (i.e., Camera1, Camera2, MergeAndEnhance CPU,
ConvertGrayscale CPU, EdgeDetection CPU and ObjectDetection GPU), and (ii) four GPU-based
components (i.e., MergeAndEnhance GPU, ConvertGrayscale GPU, EdgeDetection GPU and
ObjectDetection GPU).

The bottom vision has a similar functionality. Due to the fact that there is only one camera, there
is no need to merge frames. Therefore, to construct the bottom vision functionality, we reused four of
the components developed for the front vision. In this case, there are: (i) four CPU-based components
(i.e., Camera1, ConvertGrayscale CPU, EdgeDetection CPU and ObjectDetection GPU), and (ii) three
GPU-based components (i.e., ConvertGrayscale GPU, EdgeDetection GPU and ObjectDetection GPU).

Besides the vision systems, five more CPU-based components are also needed. The VisionManager
component takes vision decisions based on the data received from the front and bottom vision systems.
DecisionCenter is the brain of the system which controls, based on the information received from
VisionManager, the system settings (e.g., water pressure) and selects between the robot missions
(e.g., find red buoys). The robot thrusters are managed by the MovementNavigation component that
maneuvers the underwater robot using the data received from the DecisionCenter component.

Each component is characterized by the following properties:

• reqMem characterizes the memory usage requirement of a component and is measured in MB.
• reqCpu presents the CPU usage requirement of a component.
• reqGpu describes the component GPU usage requirement and is measured in number of threads.
• Exec is related to the performance of the component and describes the execution time expressed

in milliseconds.

These components, constructed by the component developer, are placed into a Component
repository which is illustrated in the upper part of Figure 5. The system developer uses the available
components and constructs the system architecture. The (front and bottom) vision systems have
multiple alternatives as illustrated in Figure 5. Each alternative has a distinct set of properties and
when all alternatives are combined into a single multi-variant component, the properties are described
as a sequence of values. Each value of the sequence represents the resource usage of the corresponding
variant. For example, the FrontVision multi-variant component requires, for its first alternative
(i.e., all CPU-based components), 6 MB of memory, 0.6 CPU load, 0 GPU threads and has an execution
time of 22 ms.

Our solution is constructed around an existing allocator. In the following paragraphs,
we introduce the formal model of the allocator. It contains three parts, i.e., the input, the constraints
and the optimization function, as follows.
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1. The input part describes the software components and the platform. Let be C a set of n software
components, and four functions reqMem : C → Q+, reqCpu : C → Q+, reqGpu : C → Q+ and
Exec : C → Q+, where:

reqMem(c) = the required memory of component c

reqCpu(c) = the CPU workload required by component c

reqGpu(c) = the GPU threads required by component c

Exec(c) = the execution time of c

The platform is characterized by a set H of k computation nodes (i.e., either CPU or CPU–GPU
based), and three functions useMem : H → Q+, useCpu : H → Q+ and useGpu : H → Q+, where:

useMem(h) = the usable memory on node h

useCpu(h) = the CPU capacity on node h

useGpu(h) = the available number of GPU threads on node h

2. The constraints are defined in order to ensure a feasible allocation. Given the allocation function
allocation : C → H, we define the following constraints:

• The usable memory of a node h should not be exceeded by the summed required memory of
components placed on h.

∀h ∈ H
(

∑c∈{c|c∈C∧allocation(c)=h} reqMem(c) ≤ useMem(h)
)

• The usable CPU workload of a node h should not be exceeded by the summed required
workload of components placed on h.

∀h ∈ H
(

∑c∈{c|c∈C∧allocation(c)=h} reqCpu(c) ≤ useCpu(h)
)

• The total amount of GPU threads of a node h should not be exceeded by the summed number
of threads required by the components placed on h.

∀h ∈ H
(

∑c∈{c|c∈C∧allocation(c)=h} reqGpu(c) ≤ useGpu(h)
)

3. The optimization function:

P(allocation) = ∑c∈{c|c∈C∧allocation(c)=h} Exec(c)

provides the best performance of the allocation:

minimize (P)

The system properties and the constraints and optimization goal are fed to the allocator that
computes allocation schemes. The allocation model alongside with all its required information
(i.e., system properties, constraints and optimization goals) are translated into the IBM-CPLEX
solver. The advantage of employing a mathematical solver is that the computed solution is optimal.

The front vision is considered the main vision of the robot, while the bottom vision is seen as
a secondary system being activated when e.g., the main vision does not detect any objects. Therefore,
the front vision priority is higher in accessing the GPU resources. The allocator computes allocation
schemes as presented in Figure 5, where both of the vision systems are allocated onto the H1, and the
rest of the system is allocated onto H2. With a higher priority, the front vision accesses more GPU
resources (i.e., threads) than the bottom system.
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Figure 5. The allocation process of the underwater robot.

The optimal result computed by the CPLEX solver is (partially) described in Figure 6 where
the selected front vision alternative contains four GPU-based components and the bottom vision
alternative contains only one GPU-based component. The system description corresponds to the
detailed architecture view, where the selected single-variant components are unfolded.
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Figure 6. The allocation scheme result with unfolded variants.

The computed solution is a feasible system considering the available hardware resources and the
configured optimization goals.
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4.2. Scalability

For the scalability analysis we designed a test system composed of n + 1 chained components.
Each of the first n components has two versions with the same functionality, i.e., one version with
CPU-based functionality and the other with GPU-based functionality. For this part of the evaluation,
we compare two versions of the system, where one version (referred as the naïve system) contains
a chain of n + 1 components, and the other version contains a multi-variant component.

The multi-variant component is constructed from the different alternatives that result from
composing different component versions. For simplicity, we consider only a two-variant component,
where one alternative contains all n components with CPU-based functionality, while the other
alternative contains all n components with GPU-based functionality, as illustrated by Figure 7.
Each individual component is characterized by memory usage, CPU usage, GPU thread usage and
execution time. The multi-variant component is characterized by a set of properties derived from
the enclosed individual component properties, where each property is described as a sequence of the
values (i.e., one for the CPU- and the other for the GPU-based components). For example, one value of
the memory sequence property that characterizes the CPU-based component variant, is computed by
summing the memory usage requirements of all its n CPU-based components.

C1
(CPU)

C2
(CPU)

Cn
(CPU)…

C

Figure 7. A system composed of chained components.

To calculate the allocation computation time, we have constructed three systems; the first system
contains 31 components (i.e., n = 30), the second system contains 41 components (i.e., n = 40) and the
last system has 51 components (i.e., n = 50). We randomly provided values for component properties
(i.e., for each CPU- and GPU-based version). For instance, the component memory usage is randomly
assigned a value between 1 and 100. Regarding the hardware, we assume that we have six connected
boards, where only three of them have GPUs. Similarly, we characterized the boards resources in
a random manner. For example, the available memory of a board is randomly assign a value between
100 and 2500.

Using the implemented CPLEX allocator from the previous part, we compute allocation schemes
for our test systems. As optimization goal, we set the allocator to provide the best performance
(i.e., execution time).

The scalability results are presented by Table 1. Using a machine with a 2.6 GHz i7 CPU and
16 GB of memory, we ran the allocation 1000 times for three systems, i.e., a naïve system that
contains CPU-based/GPU-based components, and a system that contains the two-variant component.
The results show that the allocator uses less time to compute results for the system with the two-variant
component. In other words, for the CPU- and GPU-based systems, where there are n + 1 components
and each has its own set of properties, the allocator analyzes a higher number of properties than for
the two-variant system where the two-variant component has one set of properties. Furthermore,
the computation time for the CPU-based system is relatively the same as for the GPU-based system due
to the fact that the analyzed number of properties are the same for the two systems. By proposing the
two-layer allocation design, we show in this part of the evaluation, how the scalability of an allocator
for heterogenous CPU–GPU systems is improved.
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Table 1. The time used to compute allocation schemes.

Average Allocation Time (ms)

n Naïve *
Two-Variant **

CPU-Based GPU-Based

30 18.2 18.3 15.4
40 29.1 29.0 24.6
50 49.5 49.7 39.8

* A system with (CPU-based/GPU-based) n + 1 components; ** A system with a two-variant component;
GPU, graphics processing units; CPU, central processing unit.

5. Related work

We introduce in [3] the initial idea of the two-layer allocation method. We extended the initial
work by describing the solution using an existing component model and presenting the overview
using existing components. Furthermore, in the current paper we introduced an existing system and
applied the solution on it to analyze the feasibility aspects. Moreover, the evaluation section analyzes
the scalability aspects, which were not covered by the previous work.

Software-to-hardware allocation and optimization of the allocation mechanism have been the
topic of many research works in the literature. A systematic literature review on the software
architecture optimization methods is provided in [10]. The authors in this work analyzed 188 papers
and identified 30 papers related to the optimization of component-based systems. Of this set of
papers, only 13% (i.e., 4 papers) use exact optimization algorithms (vs. approximate algorithms).
While exact optimization algorithms can provide optimal solutions, their applications poses several
challenges when it comes to adopting them, such as difficulty of formally defining the allocation model,
search-space, and the usually non-linearity of the object functions (and thus being computationally
expensive). The approach we presented in this paper, enabled us to formally define our optimization
model which in turn allows to use exact optimization algorithms and methods. Moreover, one of the
important characteristics of our approach is that, as we demonstrated, it simplifies the search-space
and therefore complexity for allocation optimization.

Consideration of quality attributes and satisfaction of non-functional requirements play
an important role in designing embedded systems due to resource constraints of these systems.
While our proposed approach can address different quality attributes (such as memory, processing
capacity and number of threads, etc.) and is generic in this regard, there are some research in the
literature that target specific quality attributes. For instance, in [11], a detailed optimization model
and framework for energy consumption in component-based distributed systems in Java is provided.
The main goal in this work has been to help system architects make informed decisions such that
the energy consumption is reduced in a designed system. An interesting aspect discussed in this
work is the energy consumption of the communication of components that reside in different Java
Virtual Machines, on the same host. From this perspective, the communication aspect is implicitly
address in our optimization model where connected CPU- and GPU-based components are tried to
be allocated on the same node. Furthermore, in our optimization model, the energy is treated as any
other property in a generic fashion. [12] is another example of works that address energy usage in
heterogeneous multiprocessor embedded systems. In this work, an optimization model using integer
linear programming is introduced that minimizes the system energy usage when the end-to-end time
constraints are given. Moreover, the CPLEX solver is used to compute allocation solutions. It is shown
that, for a system with more than 30 components, the solver computes solutions in up to couple of
minutes. The solution introduced in our work aims at decreasing the allocator burden and we show
that, for a system with 31 components, the allocation computation time is reduced.

Wang et al. in [13] introduce a method to allocate the software components in a design model to a
given platform while meeting multiple platform resource constraints. In the method, different types of
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resources are considered and weights are used to define the importance of each in the allocation process.
The components that require more resources get higher priority getting allocated first. In contract,
in our approach all components have same and equal allocation priority with respect to their resource
requirements. Also using the flexible component concept, we increase the flexibility of the allocation
regarding the component resource requirements. Weight parameters are used in our approach to
define the importance of properties in the allocation process.

For the systems in the automotive domain [14] proposes optimization of software allocation
and deployment to hardware nodes (i.e., ECUs) as a as a bi-objective problem using an evolutionary
algorithm. It considers the reliability of data communications between components as one and the
communications overhead as a second objective.

6. Conclusions

In this paper, we proposed a method to reduce the burden of the allocator and ease the
software-to-hardware allocation in the design of component-based embedded systems. Our solution
works by introducing a two-layer architecture design for heterogeneous CPU–GPU embedded systems,
where detailed component information is abstracted using the two layers to ease allocation decisions.
The work is independent of the employed allocator, i.e., how the allocator itself is implemented and
based on which solver.

To show the feasibility of the approach, we applied it on a underwater robot which we participated
in its development. Additionally, to also demonstrate and evaluate the scalability of the approach,
we analyzed it on three test systems consisting of 31, 41, and 51 components respectively. We compared
the average allocation time for two versions of each of these test systems: (i) containing all components,
(ii) a two-variant component model of the system, based on the two-layer allocation concept. The results
show that the allocator does its computations faster and requires less time for the two-variant
component version. Although CPLEX solver was used in this work, the proposed solution can
be implemented in any mixed-integer non-linear solver. However, the usage of a different solver may
influence the allocation computation time.

In terms of quality attributes and non-functional properties, the proposed two-layer allocation
solution is generic and be be applied in allocation optimization based on any set of properties. From this
perspective, it is property-agnostic. Deriving variant properties (i.e., aggregated from its constituting
components), however, can be less trivial for certain non-functional properties such as energy. In our
case study in this paper, we characterized the system through simple properties such as static memory
or GPU thread usage. Then to derive the multi-variant properties, we simply used addition operation
for these properties. As a future direction, we plan to investigate how energy usage can be derived
for variants, and thus, enable its inclusion and evaluation as part of our proposed solution. Another
extension of this work is to extend the scope of heterogeneity of the approach to include other
processing units such as DSPs and FPGAs as well.
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Abstract: Cyber-Physical Systems (CPS) are the complex systems that control and coordinate physical
infrastructures, which may be geographically apart, via the use of Information and Communication
Technology (ICT). One such application of CPS is smart microgrids. Microgrids comprise both power
consuming and power producing infrastructure and are capable of operating in grid connected and
disconnected modes. Due to the presence of heterogeneous smart devices communicating over multiple
communication protocols in a distributed environment, a system architecture is required. The objective of
this paper is to approach the microgrid architecture from the software and systems’ design perspective.
The architecture should be flexible to support various multiple communication protocols and is able
to integrate various hardware technologies. It should also be modular and scalable to support various
functionalities such as island mode operations, energy efficient operations, energy trading, predictive
maintenance, etc. These requirements are the basis for designing the software architecture for the smart
microgrids that should be able to manage not only electrical but all energy related systems. In this work,
we propose a distributed, hybrid control architecture suited for microgrid environments, where entities
are geographically distant and need to operate in a cohesive manner. The proposed system architecture
supports various design philosophies such as component-based design, hierarchical composition of
components, peer-to-peer design, distributed decision-making and controlling as well as plug-and-play
during runtime. A unique capability of the proposed system architecture is the self-similarity of the
components for the distributed microgrids. The benefit of the approach is that it supports these design
philosophies at all the levels in the hierarchy in contrast to a typical centralized architectures where
decisions are taken only at the global level. The proposed architecture is applied to a real system of 13
residential buildings in a low-voltage distribution network. The required implementation and deployment
details for monitoring and controlling 13 residential buildings are also discussed in this work.

Keywords: microgrid; distributed design; self-similar architecture; plug-n-play; distributed control;
distribution network; field test

1. Introduction

Smart energy systems have been viewed as a typical example of Cyber-Physical Systems (CPS) [1],
where the physical and organization processes are carried out, both at local and global scales.
Across the world, the electrical grid is going through numerous changes in the transmission and
distribution systems. Towards the realization of smart grids, the changes in the transmission grid
(high-voltage energy network) are less drastic in comparison to the enhancements in the distribution
networks below 10 kV. Some major breakthroughs in the distribution network are the decentralized

Designs 2018, 2, 41; doi:10.3390/designs2040041 www.mdpi.com/journal/designs199



Designs 2018, 2, 41

power generation, increased use of renewable energy generation and integration of storage units [2,3].
These changes mostly affect network districts and ring and mesh networks. Despite the challenges
involved in using renewable energy sources in the distribution system, the motivation to use clean
energy sources to reduce greenhouse gases is pushing the technological development and regulatory
(legal) boundaries. As a result, this has led to the development of advanced technologies [4,5] and novel
business techniques. Improvements in the hardware infrastructure include better energy storage systems,
smart sensors and advanced materials that can withstand the operational wear and tear. These smart devices
are capable of monitoring the real-time information of the environment (e.g., weather data) and can transfer
such information over the communication network. The advancements in the communication networks
include the advanced communication protocols, the communication channels (Power Line Communication,
Ethernet, mobile networks, etc.) and the communication quality features (such as latencies, signal strength,
etc.). These advancements in the communication technology facilitate a reliable and robust interaction
between the distributed entities.

According to the IEEE Standard for the Specification of Microgrid Controllers (MC) [6], a microgrid
is a group of interconnected loads and distributed energy resources with clearly defined electrical
boundaries that acts as a single controllable entity with respect to the grid and can connect and
disconnect from the grid to enable it to operate in both grid-connected or island modes. A typical
microgrid has several consumption devices (also known as loads), as well as the Distributed Energy
Generation (DER) units such as solar panels, wind turbines, biogas plants, and combined heat and
power plants. DERs are often connected with battery backup systems to make up for the intermittent
behaviour of renewable energy generation. During the grid-disconnected mode, also known as island
mode, the microgrid uses locally available energy sources [7]. Since the mode of operation depends on
several factors such as the energy demand, supply from the renewables, operational constraints of the
hardware, etc., a robust MC is required to monitor and control the microgrid.

For harnessing the full potential of renewable energy resources and for supporting stable power in
a microgrid, the use of the latest hardware and advanced communication technologies is not sufficient.
A Distribution Management System (DMS) [6], which is a collection of applications designed to
monitor and control a distribution network efficiently and reliably, is required to the handle advanced
hardware and the communication technologies. The design of the DMS involves several innovation
areas, such as data processing and data analysis techniques, decision-making using mathematical
or statistical models, real-time execution of the control signals, etc. Moreover, several microgrids
operating in the distribution network may have smart and non-smart infrastructure and may also vary
in size and scale. Therefore, the design of the DMS must be based on flexible, scalable, modular and
secure software architecture to support and meet the objectives of the microgrid.

Several approaches for designing the DMS architecture are present in the literature [8–10].
They mostly focus on interoperability, flexibility, distributed controlling and on the scalability aspects
in microgrids. Chandy et al. [11] proposed a System-of-Systems (SoS) architecture for smart grids.
Their architecture focus on the modularity, flexibility and scalability aspects. Most of the literature
in the area of the design of DMS architectures either include all the aforementioned aspects but
restrict themselves only to the simulation environments or are developed in the real environment
while focusing only on a few of the aspects of the microgrid. Practical problems like dealing with
weak communication infrastructure and ability to integrate heterogeneous and inexpensive hardware
become critical in a rural setting.

Florea et al. [12] proposed a fractal architecture for power grids, using the concept of holons.
Holons are the autonomous entities with fixed functionalities and have the ability to interact with
other holons. The functionality of each layer in the fractal architecture is the primary, intermediary and
tertiary controlling. Holons at the lowest layer interacts with hardware. Holons at the intermediary
level act as supplementary generator controllers and holons at the highest level perform smart grid core
optimization controls. They focused on two characteristics of fractal systems, namely, self-similarity
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and self-organization. A centralized control hub holon is simulated and tested to emulate the dialogue
with other control holons.

In the direction of fractal design research, there are also ongoing research projects such as
Retière et.al. [13], who presented the methodology and initial results of the ongoing project Fractal
Grid in the urban areas of Jura and Haute-Saone in France. Their work focused only on the
criteria and constraints to be considered for creating the fractals for high and low voltage electrical
networks. Initial survey results on the grid management and planning approaches have been discussed.
The spatial organization of the electrical grid was considered so the needs of the users located in the
urban areas were better addressed and voltage drop was taken as a measure of power quality.

In this work, we address the design challenges for the DMS or Microgrid Controller (MC) [6]
for distributed microgrids in rural and remote locations. Based on our prior experience of designing
the architecture of an MC for single nodes or smart homes [14], this paper proposes a hierarchical
architecture for a distributed microgrid. The proposed architecture is flexible, scalable, modular,
capable of handling heterogeneous hardware infrastructure and supports numerous microgrid
objectives such as grid balancing, fault management, etc. Although the security and data privacy
features are essential for microgrids, these aspects are not directly focused in this work. Architecture
is capable of supporting advanced features such as security and data privacy, data analytics, energy
efficiency, etc. A basic level of security (role-based authorization and password-based authentication)
is supported by the architecture. In addition, data encryption techniques are also used to allow
secure data transfer over the communication channel between distributed entities. While focusing on
decision-making and intelligent controlling, we propose a self-similar and hybrid control architecture
that is embedded throughout the layers of the hierarchy. As proposed by Schaetz [1], the architecture
supports the three different dimensions of CPS i.e., self, cross and live dimensions. Self-dimension
relates to the local operations required for autonomous operations of a microgrid, such as data
handling at different layers and island mode operation in a smart home. Cross-dimension refers to the
coordination required among microgrids when connected with the main grid, such as the area level
islands, which have multiple smart homes and other loads along with the low-medium generation
units. Live-dimension deals with the changes during runtime e.g., switching from grid connected
to island mode operations. The proposed architecture is implemented and deployed on a 13-node
low-voltage radial distribution system at Amrita University in Kerala, India. The cost of setting up
microgrids is usually high and therefore in this work a major consideration was setting up low-cost
microgrid in rural areas of India to digitize the electrical infrastructure. This work is carried out as
part of the Indo-European research initiative.

This paper is organized in five major sections: Section 2 discusses the existing approaches for
MC architecture in both centralized and distributed microgrids. In Section 3, detailed requirements
and main design challenges for distributed microgrids are enumerated. Requirements are linked
to standards and existing design principles to highlight the applicability and shortcomings of
any one single design philosophy. This results in the need for combining different design styles
leading to a hybrid control architecture. The proposed self-similar, hybrid control architecture is
described in detail in Section 4 where every constituent and fulfillment of requirements are explained.
Section 5 provides the implementation details of the proposed architecture and deployment details in
real environment. The paper is concluded in Section 7 highlighting contributions and advantages of
the proposed architecture. Finally, in Section 6, the lessons learnt, further challenges and future work
of the proposed architecture are described.

2. Review on the Architectural Concepts for Microgrid Environments

A massive transformation in the electrical grid is rapidly increasing the possibility of new
technologies and concepts. The larger vision and the purpose of the smart grids are relevant to
understand the business objectives of the smart grids. In this section, we highlight the need of the
architecture concepts that fulfill the business objectives of the microgrid, without depending heavily on
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the standards and methodology. Farhangi [2] highlights that the system architecture is a key ingredient
for smart grids. He emphasizes that the fundamental attribute of future grids is the highly distributed
Software Controller (SC), which is capable of monitoring and controlling distributed entities. The SC
that is responsible for distributed control should be scalable to handle large amounts of data and
offer a wide variety of functionalities. It should be flexible enough to accommodate the latest and
future technologies. Amin [15] asserts that overall smartness in the distribution grid can be introduced
by adding smartness in each independent entity in the grid. For example, intelligent algorithms
implemented independently at device level, energy efficiency included in smart homes and solutions
for demand-response at grid operator level, etc. improves the smartness of the overall power grid.
He further suggests that this approach not only ensures application of wide variety of solutions but
also makes it possible to apply solutions tailored for specific energy needs. Erlinghagen et al. [16]
observe that Information and Communication Technology are transforming the electricity sector in
Europe. As a result, there is a rise in ICT firms that are coming up with innovative solutions for
smart grids. This study highlights that the MC must also support business requirements suitable
for microgrids.

In order to fulfill the objectives, the design requirements are essential. Towards creating
architecture of MCs, the survey by Martin et al. [17] is helpful, as they provide a clear understanding of
microgrids, their requirements, compositions and attributes. These requirements are considered in the
proposed design approach as well. Rohjans et al. [18] have systematically worked on the requirements
for the SC architectures. They have listed out the essential non-functional requirements (NFR) for SC.
The selection of NFRs is according to Sommerville [19].

Chandy et al. [11] highlight the System of System (SOS) architecture approach, which includes
architectural styles such as silo, enterprise service bus, adapter principle and Open standard
service mechanism, also known as Service-Oriented Architecture (SOA). Although SOA is helpful
for distributed applications, the orchestration of services for distributed microgrids is crucial
and a real challenge for architecture of MC, which is considered in the proposed architecture.
Various software architecture design principles [19] such as Service-Oriented, Client-Server,
peer-to-peer, Model-View-Controller and pipes-filters are frequently used in the existing design
approaches of MCs, but the usage of one or more design principles depends on the specific microgrid
setting. Zhabelova et al. [20] propose multi-agent smart grid architecture based on the communication
protocol for intelligent electronic devices (IEC 61850/61499), with a special objective of Fault Location
Isolation and Supply Restoration (FLISR), supported by design. The lack of support to other
business requirements is missing in their work, such as data visualization, data analytics, predictive
maintenance, etc. Towards the system architecture, the most known architecture style for smart
grids is Supervisory Control And Data Acquisition (SCADA) [21]. Since SCADA supports only
centralized decision-making and controlling, recent efforts have been made to include the distributed
decision-making. These efforts include retrieve information from several SCADA systems as servers
by a single OPC-UA client using web services. Open Platform Communication-Unified Architecture
(OPC-UA) is widely known protocol in the industrial automation community, it is gaining relevance in
smart grid research as well. There are also approaches that use the SCADA system with additional
control systems. As mentioned before, another system architecture relevant for the SC is holonic
architecture style [22,23], originally used for the manufacturing domain. Holons are the autonomous,
cooperative and recursive entities that interact with other holons in a holarchic manner. Fractal
approach is also proposed for designing smart grid system architecture. Towards the fractal design
approaches, emphasis is given on both self-similarity and self-orgnization as described by [12,13]. Taking
the fractal concept further, Bytschkow et al. [24] focused on the compositionality of self-similar
components. Goal-oriented designing is also another popular approach used by many researchers.
Marzband et al. [25] propose Transactive Energy (TE) framework, which comprises many home
microgrids. These home microgrids are the individual smart homes or home energy management
systems that interact with each other to create coalitions. The basis of creating coalition is the optimal
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use of installed resources by considering demand fluctuations, energy production, etc. From the design
perspective, their work focuses more on the self-organizational aspect.

Not all architectural approaches lend themselves as suitable when applied to microgrids.
Various European research projects focusing on the design and architecture of microgrid show the
relevance and the insufficiency of the existing solutions. Girbau-Llistuella et al. [26] present the
experience and approach used in setting up smart grid pilot network in the rural distribution network
in Spain. Towards the distributed controlling, they have created two new agents, communicating with
the SCADA system at the Distribution System Operator (DSO) side. In addition, there are many other
research projects in Europe, especially focusing on the design of architecture for smart grids [27–30].

3. General Requirements on the Software Architecture for Distributed Microgrids

In this section, we describe the requirements taken into consideration for the architecture of MCs
for the distributed microgrid. As per the functions described in the Standard for the Specification of
Microgrid Controllers [6], a microgrid controller must fulfill the following:

• Operation in grid-connected and islanded modes.
• Automatic transition from grid-connected to islanded mode by providing a managed transition to

islanded mode for microgrid loads during abnormal bulk power system conditions and planned
interruptions of the system.

• Resynchronization and reconnection from islanded mode to grid-connected mode.
• Energy management to optimize, both real and reactive power generation and consumption.
• Ancillary services provision, support of the grid, and participation in the energy market and/or

utility system operation, as applicable.

Based on the above requirements, it can be inferred that, in a distributed microgrid, an MC
should be capable of monitoring and controlling the distributed entities, which could be real or
virtual. Real entities correspond to the physical devices, whereas virtual entities mimic the behavior of
physical entities.

From these functional features and, as per the survey conducted by Fang et al. [31] on the future
of smart grids, we extract the functional and non-functional requirements for a Microgrid Control
System (MCS) [6]. These are listed in Table 1 and described below.

Table 1. Functional and non-functional requirements for microgrids according to the surveys and
standards for microgrid controllers. [6,31]

Functional Requirements Non-Functional Requirements

Distributed control for island mode operations Modularity
Centralized control for grid-connected operations Flexibility

Hierarchical structure for coordination and synchronization Scalability
Plug-n-play to support both features and devices

1. Distributed control for island mode operations: Several microgrids should be able to operate in an
independent manner, when operating in an island mode. These microgrids could communicate
with each other without creating any adverse impact on the infrastructure. During the island
mode operation, any individual microgrid should be able to balance itself to meet the required
power demand at all times. Therefore, microgrids must be monitored and be allowed to
run independently.

2. Centralized control for grid-connected operations: In case several microgrids are connected with
each other in a grid connected mode, these individual microgrids should be able to communicate
and share their resources in a collaborative way. Any microgrid can offer to publish certain
services, while others requiring these services can subscribe to them in a collaborative manner.
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In order to access the services, it is essential to know whether the services are internally available
(within a microgrid) or external to the microgrid. The internal services within a microgrid perform
local actions. For example, intelligent decisions within a smart home. In contrast, several smart
homes within a microgrid may offer external services of energy sharing, which can be executed
by the node of common coupling.

3. Hierarchical structure for coordination and synchronization: When several microgrids combine
to form a larger microgrid, synchronization and coordination is required. They can again disjoin
to make several distributed microgrids operating in islanded mode. To make this possible,
functionalities of microgrids should be organized into a structure. Control functionalities
and global controlling should be organized as a hierarchy allowing physical devices to be
controlled for both local and global objectives. This can enable a command to be propagated
through the hierarchy to all the connected microgrids, e.g., to change to island mode.
Additionally, information from individual microgrids can be aggregated and analyzed on higher
levels to make a larger grid, supporting a more global decision.

4. Plug-n-play: Also known as hot-plugging, this is another crucial requirement for a microgrid.
It provides the flexibility to add, remove and modify microgrids or even hardware infrastructure
at any time. The microgrid should be able to alter functionalities during island and grid-connected
modes. Such plug-n-play features make the microgrid more intelligent and real-time responsive.

In order to highlight the need for the architecture of MC that can incorporate all the above
explained requirements of microgrids, we present an association of each microgrid requirement
with existing software architecture styles. This association helps in understanding the compatible
and incompatible requirements between software design and the microgrid. Thus, the resulting
enumeration, shown in table 2, forms the foundation to identify appropriate architecture design
patterns suited for the application in distributed microgrids.

Table 2. Compatibility of functional requirement with the architecture style.

Requirements Architectural Style

Distributed control for island mode operations Peer-to-peer
Centralized control for grid-connected operations Client-server

Hierarchical structure for coordination and synchronization Layered
Plug-n-play to support both features and devices Component-based or Service Oriented

The detailed description of the suitable architectural style corresponding to the functional
requirement is as follows:

1. For the distributed operation of various entities, a peer-to-peer architecture style [19] is better
suited, where all peers are able to communicate directly without interfering in the operation of
other peers. All the individual microgrids have equal privileges and have direct communication
with each other. MCs of individual microgrids are capable of sharing information and are able to
switch modes form grid-connected to islands and vice versa.

2. A client–server architecture style [19] is suited where a server hosts certain services and multiple
clients are able to use these services. The server publishes a service and waits for clients to make
requests. When several microgrids switch back to the grid connected mode, the MC for the newly
formed larger grid must be able to control the imbalances. Therefore, MC acts as master and the
MCs of all the individual microgrids act as slaves.

3. The requirement for hierarchical structure of the functionalities is supported by the Layered
architecture style [19], where multi-layered design provides abstraction to both data and services.
Analysis and planning are done on the higher abstraction layers, as it requires larger response
time. Data requirements also depend on the functionalities. Higher layers often have more
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planning and analytical functionalities resulting in large response times. Lower layers closer to
the physical devices are often responsible for the local actions and have shorter reaction times.
Most common multi-layer designs have a presentation layer for visualization, a business layer
for post processing of data and a device layer for interacting with the hardware in the field.

4. To support the plug-and-play requirement, the component-based architecture design suits well,
as the functionalities are developed as loosely coupled components. Complex functionalities can
be created as composite components. For instance, the smart switching between grid-connected
and island mode operations can be applied only when there is a backup energy generation or
storage resource available.

There are more requirements which could be addressed in the design of microgrids, but they
are either too specific or only slightly influence the architecture design. Component-based architecture
and layered design are taken into consideration to fulfill the modularity, flexibility and scalability
requirements of the target microgrid. We propose a self-similar, layered and hybrid-control architecture for
MC by combining different design styles to support distributed microgrids. This is described in Section 4.

4. Design of a Hybrid, Self-Similar but Distributed Architecture

MCs controlling microgrids both in island and grid-connected mode are required to perform
certain functions, as described in the previous section. Consider a scenario, where multiple grids
connect with each other to create a larger microgrid. In such a situation, all the MCs of individual
microgrids must perform some common core functions such as avoidance of harmonic and voltage
fluctuation, etc. Along with these core functionalities, there are local functionalities only relevant
within the microgrid. The MC for the resulting larger microgrid now has a new function. Towards
such scenarios, we propose a self-similar-, distributed-, hybrid control- software architecture for MCs.

Self-similarity coupled with the hierarchical design helps better cooperation and coordination of
microgrids. All three perspectives of self-similarity are embedded in the design of the building blocks
namely, structural, functional and behavioral. Structural similarity refers to the replication of the
static structure or core functionalities for each individual MC. This also leads to a more robust design
consisting of many low cost devices which can replace/take over each other’s functionality on demand.
The reuse of core functions in each MC enforces structural self-similarity. Functional similarity refers
to the similarity in the dynamic processes. Due to the replication of core functions in each microgrid,
certain dynamic processes also remain the same. For example, health check mechanisms, notifications,
access control and data storage are the dynamic processes that can be reused. Behavioral similarity refers
to the commonalities in the system dynamics. Behavioral similarity is introduced by the hierarchical
structure, where each building block has either at least a parent or a child. For instance, behavior of
operating in island mode as a single child in hierarchy with a single parent or having several children
microgrids, in a grid connected mode.

4.1. Proposed Architecture

For each MC, the proposed architecture can be extended with components to support the
objectives of the zone dimension as given by the Smart Grid Architecture Model (SGAM) reference
architecture [32]. The interoperability dimension is reflected in the layered design of our architecture,
which will be detailed in Section 5.2. In addition, the functionality can be adapted to different SGAM
domains like Prosumer, DER, Distribution and Transmission System. In this work, the focus is mainly
on the distribution system. This concept has been applied on the different layers in the distributed
microgrid.

Considering the non-functional and architectural requirements of the MC, a schematic of the
proposed distributed MCs is shown in Figure 1. The distributed microgrid is organized in a hierarchical
structure. The structure is composed of layers where each layer denotes the extent of the control
i.e., local, regional, global, etc. The global MC provides overall management of the microgrid.
It is responsible for the overall network management and imposes global functionalities on the
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complete microgrid system. A global MC is composed of several intermediary MCs. The intermediary
MC is composed of several smaller MCs. MCs operate independently, have their own decision-making
capabilities and can communicate with other MCs in the higher or other layers.

Local 

la
ye

rs
Global

Number of entities

Figure 1. Generic layered architecture for a distributed smart microgrid.

The local layer is shown in the bottom of Figure 1. At the local layer are MCs, which are
directly communicating with independent DERs and consumption units of a microgrid. Apart from
these, sensors and actuators are also connected to the MCs at the local layer. The local MC
controls all the devices connected locally within the microgrid. The physical devices provide data
to the MC. The data from the physical devices is of two types: either measure of power quality
(voltage, current, active-reactive power, etc.) or measure of the environmental factors (such as
temperature, brightness, occupancy, etc.). Based on the data, the MC can make decisions to control
the actuators. Apart from the capability to control physical devices, the MCs can also perform data
analytics based optimization of the connected resources. For example, the decision to operate in an
island mode with the help of Photo Voltaic (PV) coupled with battery backup system or to operate
in a grid connected mode is a decision that can be taken by the local MC. The local MC operates in
a distributed manner and satisfies the idea of edge computing [33] where data processing is closer to
the data source, thereby resulting in faster decision-making of resource utilization.

Several local microgrids combine to form intermediary microgrids. These are shown in the middle
layers of Figure 1. For example, at the intermediate layer could be streets or districts, which comprise
individual buildings. Management of intermediary microgrids is done by the intermediary MCs.
The intermediary MC is a collection of the local MCs. It provides a communication channel between
individual MCs. For example, the intermediate street MC could balance the power supply between
smart buildings and normal buildings. The intermediary MC can also take decisions for all the
connected local MCs. Therefore, intermediary MCs play an important role in organizing and clustering
towards grid balancing.

The functionalities of an intermediary MCs could include device and data aggregation, which is
similar to the aggregation functionalities of a Head-End System (HES) [34]. Device aggregation is the
mechanism of combining multiple devices to create a single virtual device. Data aggregation implies
combining multiple independent devices to create a single virtual entity, which provides an aggregated
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single value computed on the data from multiple independent devices. Data aggregation helps in
the extraction of knowledge from the raw data provided by devices. In addition to data processing,
intermediary MCs provide the capability to generate control actions from automated decisions for
predefined objectives. For instance, power theft can be detected by the intermediary MC either by
comparing the metered value at the supply point with the aggregated data from the consumers or by
aggregating the consumption data coming from the meters installed outside the building. Another kind
of information that can be generated by intermediary MC are the Key Performance Indicators (KPI),
regarding the performance of a cluster. The intermediary MCs can also be formed by aggregating
several other intermediary MCs. For instance, a city is made of blocks, which are made of streets and
finally individual buildings. Both blocks and streets could form intermediary MCs.

A single global MC provides overall management of the grid. The is shown in the top layer
of Figure 1. The global MC is the final aggregation of the entire available intermediary MC.
It is responsible for the overall microgrid management. It monitors and controls all the nodes in
the lower layers. For example, at the global level, data processing techniques can be used to determine
the performance and health status of the complete microgrid. Statistical data from the intermediary
MC such as KPIs can be used to make decisions that affect the entire microgrid. The global MC
generates control signals for the microgrid and sends them to intermediary MCs. Intermediary MCs
receive control signals and forward these signals to the local MCs. Local MCs convert control signals
to appropriate device specific format and send them to the physical devices for final execution of the
control command.

In the proposed architecture, self-similarity of the MC enables it to be used for various objectives.
For example, any MC at the lower layer can take the role of an intermediary MC (at the higher layer)
in case of MC failure at the higher layer. The flexibility of the design allows addition or removal of
functionalities. Diverse hardware can be integrated and the architecture is not bound to any particular
hardware. The support to scalability ensures the inclusion of both layers and MCs. In other words, the same
architecture can be applied to smart buildings, districts, regions or state levels. Modularity is incorporated
in the MC by design. Each MC is an independent entity and can be added or removed from the microgrid
without affecting the operation of the microgrid. In the case of an island mode, the MC is capable of
managing its energy generation and consumption devices.

5. Implementation of Architecture in the Real Environment

In this section, we present the implementation details of the proposed architecture. Following the
concepts described so far, a distributed management system was developed and deployed in a real
world environment, which consists of a 13 node distribution grid. Each node is connected to
a residential district, representing its own microgrid environment. Some districts where equipped
with their own energy storage and generators. The architecture is designed for this distribution system
and is done in an Indo-European research effort [35] towards integrating solutions from individual
technologies starting with an electrical network over a robust communication network and finally
a distributed software controller enabling management and control capabilities. This section is divided
into three parts: first, the physical and the environmental conditions of the field demonstrator are
described. Second, the implementation details of a single MC for a microgrid in the demonstrator are
described. In the third part, we describe a hierarchical architecture of the complete demonstration site
consisting of self-replicating MCs. Additionally, we explain in detail the similarities and differences of
each MC, when placed at various hierarchical levels of the proposed architecture.

5.1. Field Demonstrator

The real world demonstrator site is located amidst the residential buildings in the campus of
Amrita University, Kerala, India. The demonstrator on which the ICT architecture is applied is
grid-connected with 3-phase power supply of 240 V at 50 Hz.
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Figure 2 illustrates the systematic view of the distribution system, with the 13-nodes labeled as
buildings. Each floor of the building is considered as a single load point or a power consumption
entity and therefore represented as independent box in Figure 2. These buildings are connected
with over-head and underground electrical lines. The over-head electrical lines supply power to the
buildings, whereas underground lines (depicted as dashed lines) are tie-lines, which are activated
only when one or more over-head line(s) are broken resulting in a change of the network topology
to restore power supply. Overhead and tie-lines are connected to the electrical poles. At each pole,
a smart measuring and a control box is mounted to monitor and control the power consumption of
each building. Node 1 is connected to the general power grid (S) on one end and on the other end with
the substations in the field demonstrator.

Building-1
Gr. Floor

Building-1
1st Floor

Building-8 
Gr.  Floor

Building-8
1st Floor

Building-2
Gr. Floor

Building-3
Gr. Floor

Building-4
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Gr. Floor

PUMPS 
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1
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2 3 4 5
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10

11 12
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Residential Buildings 

Smart measurement & control unit

Overhead electric lines

Tie-lines

Distributed Energy Resource

Power Source
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Figure 2. 13-node distribution system at Amrita University Campus in India.

Out of thirteen nodes, eleven consumption entities are residential buildings. A water pump
represented as node 12 is connected with node 7. These consumption entities are called as
consumer nodes. Building-5 is equipped with rooftop solar panels, labeled as DER in Figure 2. This node
is powered by both solar power and power from the grid. It is called a prosumer node as it can both
produce and consume power. Other nodes do not have alternative power generation units and rely
only on the conventional power supply from the grid.

5.2. Architecture of the Microgrid Controller (MC)

The design of the MC is based on the requirements and architecture principles discussed in
Sections 3 and 4.1. Figure 3 shows the architecture of a single MC. The architecture of MC is based on
our previous work [14] for setting up an intelligent node in the office environment.

Components are organized as low-level, core, high-level and external components.
Hierarchical structure is established by implementing device interfaces in the low-level layer also known
as a device layer, in which physical devices are integrated. The low-level functional components
(or device interfaces) interact with hardware including virtual peripherals. For instance, in the 13-node
distribution system, smart meters are installed at each building. Voltage, current, active power,
reactive power, etc. are measured by smart meters, which are integrated as actuatorclients software
components in the MC. The smart meters are also connected with the switches, which can be controlled
by the actuator client component. The feedback of the change in the switch status is read using I2C
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serial protocol to ensure that the control command generated translates into a real hardware control
signal.
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Figure 3. Component-based architecture of the Microgrid Controller (MC).

The core-component layer has components that carry out data handling, data organizing and data
persistency functionalities. These core-components must be implemented for each MC to carry out
specific core objectives. By the use of core-components, replication is introduced towards self-similarity.
Specific objectives of each individual MC are implemented in the high-level components. Examples
of each individual specific objective could be forecasting consumption or generation using data
analytics, optimization of energy, etc. These high-level components are optional and do not affect
the operation of core components and hence can be added, removed or modified anytime, providing
plug-n-play capability to the MC. For coordination among MCs, each MC can communicate with
other using external components. The external interfaces provide communication to the entities
which use the data generated by the individual MC. Few examples are interaction with other MCs,
offering information conforming to standards like IEC 61850 or Device Language Message Specification
(DLMS), information sharing with energy markets or enabling services for network operators like
demand side management.

We provide a quick overview of each core component shown in Figure 3. Core components are
mandatory for the operation of single instance of the basic unit:

• InformationBroker provides the data logging/persistency functionality. This component provides
several interfaces to common backend storage technologies such as MySQL, PostgreSQL,
MongoDB, etc.

• ContainerManager models the real world entities/physical infrastructure by defining the unit’s
relationship in the existing physical setup. In the previous work [14], we described the smart office
building structure (floor, rooms, devices), where a building is the root container, which has several
floor child containers. Each floor has several rooms and rooms contain several devices as children.

• UserManager provides the access control functionality for the operation of the unit by defining
roles and authorization mechanisms for the authorized/restricted access.

• Ambulance acts like a watchdog for monitoring health of each component and making the user
aware by sending notifications using the postman component. This component initiates the fault
detection and handling techniques internal to the software application.

• Postman provides interface to various notification technologies such as alarms, emails, tweets and
SMS, etc.

• Remoteframework Library connects with the message bus, acting as a communication channel
between the components to interact with each other.
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• SMGConf acts as a configuration library containing information of the addresses and ports for
databases and device specifications.

The proposed architecture enables the replication of MC for a single microgrid and provides the
ability of distributed decision-making among the participating microgrids. Therefore, self-similarity is
embedded in the architecture of each MC.

5.3. Implementation of a Microgrid Controller (MC) Following the Proposed Hybrid Architecture

The proposed hybrid architecture (Figure 1) adopted to the 13-node system (in Section 5.1) is
shown in Figure 4. The 13-nodes are organized as a set of so called Intelligent nodes at the local
control layer, three aggregators at the area control layer and a single control station at the global
control layer. All the intelligent nodes have physical devices (smart meters) connected with them,
which are installed, inside the smart measuring box. Each area is monitored and controlled by
a unique aggregator. Note that the number of independent areas is proportional to the number of
aggregators. This information is processed and forwarded to the control station. As highlighted
before, the aggregators are also capable of executing commands or accessing information depending
on their configuration.

1 8 9 2 3 4 5 6 7 10 11 12 13 

Aggregator-3 Aggregator-2 Aggregator-1 

Control 
Station  

Figure 4. Proposed self-similar hybrid architecture implemented in the 13-node radial distribution system.

Aggregator-2 receives consumption (Voltage, Current) from the Intelligent nodes 3, 4, 5, 6 and 7
to generate KPIs. These KPIs are the indicators of the power quality supplied at the intelligent nodes
summarized as average, maximum or minimum daily consumption of each intelligent node.

Figure 5 shows the 13-node distribution system from the ICT perspective. In the cyber
infrastructure, the 13 nodes are shown, using the Raspberry Pi deployment platform. A Java-based
application based on the MC design as shown in Figure 3 is deployed on each Raspberry Pi. There is
a wired connection between every Raspberry Pi and smart meter. The communication between nodes
and aggregators (represented as AGG-1, AGG-2, AGG-3) is currently using REpresentational State
Transfer (REST)-based web interfaces [36]. These interfaces are flexible and, in the future, these can be
replaced by appropriate Standards like DLMS, IEC 61850, etc. depending on the site requirements.
The three aggregators communicate with a single control station.
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Figure 5. The implementation overview with respect to physical 13-node distribution system and
cyber system.

Figure 6 provides a combined view of the internal architecture of a distributed microgrid, MCs placed
in different layers and the communication channel across layers. Tracing the communication across the
three layers between intelligent node-6, aggregator-2 and the control station, Figure 6 emphasizes the
self-similarity of the proposed hybrid architecture. For the sake of simplicity, the detailed view of core
components have not been shown as they are the same as in Figure 3.

High Level Functional Components

Message Bus

Core Components

Message Bus

D
ev

ic
e 

In
te

rf
ac

e 

A
gg

re
ga

to
r 

In
te

rf
ac

e

Intelligent node Communication Components

High Level Functional Components

Message Bus

Core Components

Message Bus

In
te

lli
ge

nt
 n

od
e 

In
te

rf
ac

e 
C

on
tr

ol
 s

ta
tio

n
In

te
rf

ac
e

Aggregator Communication Components

High Level Functional Components

Message Bus

Core Components

Message Bus

A
gg

re
ga

to
r 

In
te

rf
ac

e 

E
xt

er
na

l 
In

te
rf

ac
e Control Station Communication Components

Rule System

Power Theft detector

Area mode operation 

Rule System

KPI generator 

Island mode operation

Rule System

Network Reconfiguration

REST API

REST API

REST API

ActuatorClient Intelligent node-6

ActuatorClient Aggregator-2

ActuatorClient smart meter photovoltaic

KPI Storage

Visualization

battery

Intelligent node-6 
A

ggregator-2
C

ontrol station  

Global control  layer

Local control layer 

Area control layer 

Figure 6. Detailed view of the Microgrid Controller (MC) implementation at each layer of the
proposed architecture.

At the bottom of Figure 6, local control layer shows components of node-6. The physical devices
connected with Intelligent node-6 are: photovoltaic, battery and smart meter(s). Devices are connected
as actuatorclients, which implement appropriate communication protocols and logic to convert the
device-specific information into a homogeneous format. The high level functional components
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for node-6 are a rulesystem and an island mode operation component. As the name indicates,
the rulesystem provides the capability to make smart decisions based on the available information.
Constraints are developed as set of rules in the rule system. Island mode operation means the actions
carried out to use either solar power or the stored energy from the battery. For communication
with aggregator-2, REST calls are made to send the device data and to receive the control signals
either from aggregator-2 or from the control station. A REST interface at each layer provides the
flexibility of external communication such as visualization of raw data at node level and KPI data at
the aggregator level.

The raw data from node-6 is sent to the aggregator. The high level components of the aggregator
are a rulesystem, a power theft detector, area mode operation and a KPI generator. The functionality
of the rule system is the same as at node-6, i.e., smart decision-making. Power theft detection is
based on the consumption values from all the connected Intelligent nodes (3, 4, 5, 6 and 7) and then
checking the power consumption values with pre-defined threshold values. KPI shows the quality
of power supplied provided to Intelligent nodes. These quality indicators are Voltage fluctuations,
harmonic distortions, daily peak consumption, etc. The Area node operation enables power sharing
from photovoltaic at node-6 with the adjacent nodes. For communicating with the control station,
REST calls are made to send the generated KPIs and to receive control signals from the control station.

The global control layer is shown as the top layer in Figure 6. The KPI data and the regular
backup data from the aggregator are received by the control station and saved in the local database.
The high level functional components include global decisions concerning the complete network such
as network reconfiguration, KPI storage, visualization and rule system. Similarly, post processing is
done on the stored KPI.

Finally, Figure 7 shows the complete implementation of MCs in the 13-node system. This 13-node
system is in operation since March 2018 and data is being generated and stored at regular intervals
on the control station server, where post processing can be done for statistical analysis or to support
energy related services.

Figure 7. Complete view of the Microgrid Controller (MC) implementation at each layer in the 13-node
distribution system.

6. Discussion

As mentioned above, in this work, the architecture concept to support low cost equipment to
fulfill the complex tasks in a distributed microgrid is established. A robust underlining architecture
enables the infrastructure which supports relevant services of microgrid. The architecture of intelligent
nodes, aggregators and control station is related to the general trend of edge computing. Shifting more
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processing and decision processes closer to the embedded devices results in increased scalability.
Another benefit of the decision-making at the intelligent nodes level results in lower upstream
bandwidth requirement for the communication network. In situations where the communication
networks are unstable, like at the implemented site, decision-making at the intelligent node is clearly
advantageous. Unlike a classical hierarchical network, where the control signals are generated only at
the highest layer, the proposed architecture offers decision-making and controlling at all the layers.
Self-similarity enables on-the-fly change of roles. In case of a failure at a higher-level component,
e.g., failure of an aggregator, one of the intelligent nodes can take over the functionality until the
aggregator is restored or replaced. Moreover, the proposed self-similar building blocks support
additional energy services for data preprocessing and decision-making. The proposed architecture has
been implemented in a rural setting in India, where communication network and weather conditions
were major constraints. The stability and signal strength of the communication network was a challenge.
Appropriate communication networks were selected based on the detailed investigation of impact
of weather conditions and other infrastructure constraints. This is out of the scope of the paper and
not described here. Therefore, use of only a single communication protocol was not feasible in our
work. A wired connection exists between the smart sensors and the local MCs, while a wireless
communication channel is present between intelligent nodes at the local layer and the aggregator MCs.

Further investigation is required for the seamless operation of microgrids. An apparent
limitation is the communication network connection issue; if the aggregators are not very well
interconnected, then intermittent communication network failures may cause partial or total
information loss of dependent building blocks. Therefore, interdependency among the self-similar
blocks must be taken into account at the design time to cope up with the communication network
glitches. Another consideration is maintenance of such systems. Each residential owner should
have the capability to maintain and modify the local MC, but with the increase in the system
complexity and higher modularity, maintenance and ownership of application and information
becomes an additional challenge. It becomes increasingly difficult for multiple owners of the
same application to maintain the complete system. These aspects are worth investigating from
the maintainability perspective. In this work, the ownership and maintenance of the application is
done by a single entity i.e., Distribution Station Operator. Lastly, the integration of self-similar blocks
using heterogeneous services requires highly skilled developers and might require considerable time
and effort. These limitations were out of scope of this research work and require experts from different
areas of research.

The architecture concept for the demonstrator allows flexibility for future extensions such as
the integration of additional buildings or floors. To scale the system, the existing intelligent nodes
can be replicated and connected to the existing or new aggregators. The integration of an additional
hierarchical layer of sub-control stations managing a subset of the whole network is feasible. Aside from
the extension by additional adding nodes, the functionalities of the respective subsystems can be
extended too. The fine-grained monitoring and control capabilities of the deployed system allows
implementation of additional analytical and visualization services to increase energy awareness,
replacement of components and dynamically changing the role of any MC.

As the next step in this work, data analysis and optimization techniques will be carried out to
assess the performance of the system. Based on the data availability, various intelligent algorithms
like network reconfiguration, frequent switching from island mode to grid-connected mode and
vice versa will be tested. Graceful degradation strategies will be implemented in order to maintain
a grid-disconnected condition for as long as possible. The system is also planned to equip smaller
subnetworks with PV and battery backup systems to operate in an island mode. Here, each island could
be responsible for the operation of a subnetwork and for interacting with the neighboring subnetworks.
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7. Conclusions

In this paper, one of the application domains of Cyber Physical System is discussed. A distributed,
hybrid control architecture is proposed for smart micro grids. In the proposed architecture,
various functional and non-functional requirements are satisfied and a direct relationship is established
between the distributed microgrids and design concepts of software architecture. The distinct
contribution of this work is the use of fundamental software architecture concepts for a complex
microgrid application domain. This work demonstrates the need of software engineering concepts
towards realization of CPS. Peer-to-peer architecture is observed to be relevant for distributed
control for island mode operations. Similarly, client–server architecture for centralized control,
layered architecture for hierarchical structure and component or service-oriented architecture for plug
and play of features and devices are chosen. The distributed microgrid is organized in a hierarchical
structure, composed of layers. The layers could be local, regional, global, etc. Architecture of each
individual MC is also presented. MC architecture is replicated for every node, at every layer of the
hierarchy. The MCs in local layers communicate and interact directly with the DERs and consumption
devices of the microgrid via smart sensors and actuators. Multiple local MCs can be aggregated to
form an intermediate MC, which can take decisions for all connected local MCs. The intermediate
MC further acts as a communication channel between local MCs and the global MC. The global MC is
the final aggregation of all individual MCs and provides overall management to the entire microgrid.
It also can take decisions that affect the entire microgrid. The proposed architecture has self-similarity
embedded at every layer of the hierarchy. Components in the self-similar building blocks could be
classified as low-level, core, high-level and external components. Low-level components interact with
the physical hardware. The core components are the same in every MC irrespective of the layer in
which it is present. The core components carry out data handling, data organizing, and data persistency
functionalities. Layer specific objectives are included in the high-level components. The high-level
components are optional and do not affect the working of the core components. Interfacing with other
MCs is done using external components. By using a common structure for every MC, replication is
introduced towards self-similarity. This enables flexibility, modularity and scalability required for
the local and global scale operations. Towards the evaluation of the architecture, it is implemented in
an actual 13-node radial distribution system at Amrita University Campus, India. The details of the
implementation and the challenges faced are discussed in this work. Data from the implementation
site is being collected since March 2018. The implemented architecture satisfies both the functional and
non-functional requirements and thereby demonstrates the relevance of the proposed architecture for
distributed microgrids.
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