
Photoacoustic 
Tomography (PAT)

Printed Edition of the Special Issue Published in Applied Sciences 

www.mdpi.com/journal/applsci

Xueding Wang, Xinmai Yang and Xose Luis Dean-Ben
Edited by

 Photoacoustic Tom
ography (PAT)   •   Xueding W

ang, Xinm
ai Yang and Xose Luis Dean-Ben



Photoacoustic Tomography (PAT)





Photoacoustic Tomography (PAT)

Editors

Xueding Wang

Xinmai Yang

Xose Luis Dean-Ben

MDPI • Basel • Beijing • Wuhan • Barcelona • Belgrade • Manchester • Tokyo • Cluj • Tianjin



Editors

Xueding Wang

University Michigan Ann Arbor,

Department of Biomedical

Engineering, Ann Arbor

USA

Xinmai Yang

Department of

Mechanical Engineering,

University of Kansas

USA

Xose Luis Dean-Ben

Institute for Biological and

Medical Imaging,

Helmholtz Zentrum Munich &

Technical University of Munich

Germany

Editorial Office

MDPI

St. Alban-Anlage 66

4052 Basel, Switzerland

This is a reprint of articles from the Special Issue published online in the open access journal

Applied Sciences (ISSN 2076-3417) (available at: https://www.mdpi.com/journal/applsci/special

issues/Photoacoustic Tomography PAT).

For citation purposes, cite each article independently as indicated on the article page online and as

indicated below:

LastName, A.A.; LastName, B.B.; LastName, C.C. Article Title. Journal Name Year, Article Number,

Page Range.

ISBN 978-3-03943-643-9 (Hbk)

ISBN 978-3-03943-644-6 (PDF)

c© 2020 by the authors. Articles in this book are Open Access and distributed under the Creative

Commons Attribution (CC BY) license, which allows users to download, copy and build upon

published articles, as long as the author and publisher are properly credited, which ensures maximum

dissemination and a wider impact of our publications.

The book as a whole is distributed by MDPI under the terms and conditions of the Creative Commons

license CC BY-NC-ND.



Contents

About the Editors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

Xueding Wang, Xinmai Yang and Xose Luis Dean-Ben

Special Issue on Photoacoustic Tomography
Reprinted from: Appl. Sci. 2019, 9, 4186, doi:10.3390/app9194186 . . . . . . . . . . . . . . . . . . . 1

Naser Alijabbari, Suhail S. Alshahrani, Alexander Pattyn and Mohammad Mehrmohammadi

Photoacoustic Tomography with a Ring Ultrasound Transducer: A Comparison of Different
Illumination Strategies
Reprinted from: Appl. Sci. 2019, 9, 3094, doi:10.3390/app9153094 . . . . . . . . . . . . . . . . . . . 3
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Biomedical photoacoustic (or optoacoustic) tomography (PAT), or more generally, photoacoustic
imaging (PAI), has been an active area of study and development in the last two decades [1,2]. As an
emerging hybrid imaging modality that combines the high-contrast of optical imaging with the high
spatial resolution of ultrasound imaging, PAI has been demonstrated to have broad applications
in areas including basic research, pre-clinical investigation and clinical studies [3]. It offers great
specificity with the ability to detect light-absorbing chomophores, such as hemoglobin, melanin, lipids,
etc. This ability enables PAI to provide rich soft-tissue information regarding anatomy and function.
The application of contrast agents further enables PAI to provide molecular information [4]. Because of
these advantages, PAI has great potential in the clinical diagnosis of various diseases, such as cancer,
stroke, atherosclerosis, arthritis, etc.

The goal of the current Special Issue is to showcase some of the most recent research and
development into this fascinating imaging technology. Indeed, there are so many aspects that an
engineer can work on to improve PAI and facilitate its translation into the clinic, from ultrasonic detector
design, light delivery and illumination, to reconstruction algorithms. The 11 articles in the current
Special Issue represent some of these efforts from research groups all over the world. Alijabbari et al. [5]
were able to demonstrate that a full-ring system, not only for the ultrasound transducer, but also for light
illumination, can provide superior imaging quality because of the improved illumination configuration.
A similar idea was also adopted by Avanaki’s research group [6], as well as by Sun et al. [7]. However,
these research groups presented a low-cost system made of multi single-element transducers, rather
than an expensive array system that could be cost-prohibited for many users. Improvement on the
reconstruction algorithm is another major theme for the current Special Issue. Various methods
were presented to improve the quality of PAT images by overcoming artifacts due to respiration [8],
reflection [9] and scattering [10]. Novel approaches were proposed to reconstruct PAT images based on
full-field detection [11] as well as detections with limited view angles [12]. Based on deconvolution
and empirical mode decomposition, Guo et al. was able to improve final image quality by alleviating
signal aliasing introduced by N-shape waves [13]. Ma et al. introduced a machine-learning method to
PAT image analysis in order to measure the size of adipocytes [14]. Finally, Kothapalli and his research
group developed a single simulation platform for both photoacoustic and thermoacoustic imaging [15].
These are truly some of the exciting developments.

PAI is a fast-evolving research and development field. Researchers all over the world are working
diligently on continuously improving the technology and translating it to the clinic environment.
The current Special Issue, with 11 articles from research groups across different parts of the world, is a
very small sample to demonstrate the potential impact of this technology. We hope you will enjoy
reading these selected articles and look forward to your future contribution to a future Special Issue.

Appl. Sci. 2019, 9, 4186; doi:10.3390/app9194186 www.mdpi.com/journal/applsci1
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Featured Application: Biological diagnostic applications based on endogenous or exogenous

chromophores and early breast cancer detection in dense tissue.

Abstract: Photoacoustic (PA) imaging is a methodology that uses the absorption of short laser pulses
by endogenous or exogenous chromophores within human tissue, and the subsequent generation
of acoustic waves acquired by an ultrasound (US) transducer, to form an image that can provide
functional and molecular information. Amongst the various types of PA imaging, PA tomography
(PAT) has been proposed for imaging pathologies such as breast cancer. However, the main challenge
for PAT imaging is the deliverance of sufficient light energy horizontally through an imaging
cross-section as well as vertically. In this study, three different illumination methods are compared
for a full-ring ultrasound (US) PAT system. The three distinct illumination setups are full-ring,
diffused-beam, and point source illumination. The full-ring system utilizes a cone mirror and
parabolic reflector to create the ringed-shaped beam for PAT, while the diffuse scheme uses a light
diffuser to expand the beam, which illuminates tissue-mimicking phantoms. The results indicate that
the full-ring illumination is capable of providing a more uniform fluence irrespective of the vertical
depth of the imaged cross-section, while the point source and diffused illumination methods provide
a higher fluence at regions closer to the point of entry, which diminishes with depth. In addition,
a set of experiments was conducted to determine the optimum position of ring-illumination with
respect to the position of the acoustic detectors to achieve the highest signal-to-noise ratio.

Keywords: full-ring illumination; diffused-beam illumination; point source illumination; ultrasound
tomography (UST); photoacoustic tomography (PAT)

1. Introduction

Breast cancer is a significant health problem not only in the United States but globally and was
the second leading cause of cancer-related death in the United States in 2018 [1]. Mammography,
MRI (Magnetic Resonance Imaging), and B-mode ultrasound are the three most common imaging
modalities used for breast cancer screening [2,3]. However, each of these modalities has its own unique
shortcomings. The sensitivity of mammography in detecting breast lesions decreases in women with
high-density breast tissue, and high-density breasts are considered to be more at risk for developing
breast cancer [3,4]. In dense breasts, MRI can be used in conjunction with breast mammography to
detect breast tumors [5,6]. Nevertheless, the operational cost and availability of MRI imaging limit the

Appl. Sci. 2019, 9, 3094; doi:10.3390/app9153094 www.mdpi.com/journal/applsci3
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accessibility of this modality. Conventional B-mode ultrasound (US) is a high-sensitivity, non-ionizing,
and low-cost tool that is widely used for screening various types of human tissues [7,8]. However, false
positives due to ultrasound screening result in many unnecessary biopsies [9,10]. Therefore, a more
effective breast cancer screening tool is sought.

Photoacoustic tomography (PAT) is an imaging methodology that uses light absorption by
endogenous or exogenous chromophores, and subsequent US pressure wave generation for imaging.
Photoacoustic (PA) imaging has been demonstrated to be useful for a variety of medical and biological
diagnostic applications, including early cancer detection [11–14]. Biomarkers such as vascularity and
hypoxia have been shown to have diagnostic value in the differential diagnosis of various types of
cancers including breast cancer [15–17]. In addition, when PA is augmented with nano-sized contrast
agents, it can provide a reliable platform for the molecular imaging of cancer and its sub-types [18–21].
In clinical applications, PA imaging has been shown to produce real-time molecular and functional
information with high resolution at relevant depths [19,22].

Several PAT imaging systems with different illumination and acquisition modes have been
developed for breast cancer imaging. However, the observed limitations of these systems are
in part due to the non-optimum acoustic signal acquisition or illumination methodologies used.
Our presented system is meant to be non-invasive (i.e., both illumination and acquisition are external),
with the illumination and measurement system external to the imaged tissue. Our method images a
cross-section inside the cylindrical US transducer array by illuminating the targeted area using a ring
beam. Therefore, the light has to only diffuse half the tissue diameter that is encountered when using
side illumination. Point or diffuse illuminations are suitable for imaging cross-sections close to the
point of light entry [11,23–27], and the given fluence drops with light propagating through the tissue
towards higher vertical depths as shown in Figure 1. This could make it difficult to access areas close
to the chest well.

 
Figure 1. The three methods of illumination for photoacoustic tomography (PAT) imaging that are
compared in this study, with the definitions of vertical and cross-sectional imaging depths.

Other PAT imaging methods, such as the PA mammoscopy system [28], compress the tissue for
better light penetration but can cause discomfort, or a loss of important PA biomarkers arises from the
presence of blood by pushing the blood out of the tissue. One type of full-ring illumination system
uses an acoustically penetrable optical reflector (APOR). However, APORs can only support low
laser energies and US transmission through the reflector is highly angle-dependent [29–31]. Other
illumination methods for deep tissue illumination include internal illuminations [32,33]. However,
internal illumination is difficult to develop for breast imaging applications. Therefore, it is vital to
develop an alternative solution for improving the uniformity of energy distribution within the breast
tissue for more accurate PAT imaging.

Ultrasound tomography (UST) using a ring-shaped US transducer has shown promising results
in breast cancer screening [34–38]. In this work, PAT imaging is combined with this novel full ring
UST system. The PA imaging modality can be easily combined with UST since both modalities share
the same acquisition hardware. For this reason, the addition of the PAT to the UST is straightforward
and will provide valuable functional information about a given tissue and is expected to improve the
diagnostic capability of breast US for physicians.
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The design of our combined UST/PAT imaging system has been previously presented [39–42].
This setup uses a ring illumination in conjunction with a ring US transducer for combined UST/PAT
imaging. The ring-shaped beam in this system is generated by using a cone mirror and a parabolic
reflector. This work specifically compares three different illumination methodologies for PAT imaging:
full-ring, diffuse, and point illuminations. Using new findings from the three methods, it aims to show
that full-ring illumination is the most effective method for creating PAT images due to its inherent
cross-sectional fluence uniformity across vertical imaging depths (Figure 1). This is especially important
for breast cancer screening when imaging close to the chest wall proves difficult.

The three illumination methods are compared by imaging a three-layer polyvinyl chloride (PVC)
tissue-mimicking phantom to gauge the advantages and disadvantages of common PAT imaging
techniques. The experiments presented in this paper also all use the same data acquisition system
and settings. Comparisons are made between PAT amplitudes for each cross-section and illumination
methodology. Furthermore, the optimum position of the ring beam with respect to the targeted
cross-section is examined.

2. Material and Methods

2.1. UST/PAT Acquisition System

A 200 mm diameter, 256-element ring US transducer (Analogic Corporation, Canada) with a
center frequency of 2 MHz and bandwidth of 60% was used for all data acquisition. The presented
system has a measured lateral resolution of 1 mm as determined by measuring a 200 micrometer
light-absorbing string. This transducer has an element pitch of 2.45 mm and a height of 9 mm. The
scattered US waves from a PA imaging event are recorded by all 256 elements using a sampling
frequency of 8.33 MHz. As shown in Figure 2a, the US ring transducer is housed in an acrylic tank
and is supplied with degassed, distilled water. During PAT imaging, the ring US transducer uses a 10
dB linear, time gain compensation (TGC) for acquiring the data, which is designed to optimize the
signal-to-noise ratio (SNR) for the given phantom.

2.2. Laser Source and Light Illumination Schemes

A tunable, 10 nanoseconds pulsed laser (Phocus Core, Optotek, Carlsbad, CA, USA) was used for
all PAT imaging experiments. This laser generates around 100 mJ per pulse at 532 nm. In the full-ring
illumination mode, a large parabolic reflector (P19-0300, Optiforms Inc., Temecula, CA, USA) was
used with a 10 mm diameter cone mirror (68-791, Edmund Optics, Barrington, NJ, USA) to create the
4 mm ring-shaped beam on the phantom surface (Figure 2a). Since the beam position is stationary,
neither the cone mirror nor the parabolic reflector is mobile. The ring location was adjusted across each
cross-section by translating the phantom in the vertical direction (Figure 2b). For the diffused-beam
experiments, a 120 grit ground glass diffuser (DG10-120, Thorlabs Inc., Newton, NJ, USA) was placed
in the laser light path inside the water tank after removing the cone mirror (Figure 2c). Finally, point
illumination only uses the 45-degree mirror for directing the laser beam onto the phantom (Figure 2d).

5
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Figure 2. (a) PAT experimental setup showing the water tank, ring ultrasound (US) transducer, and the
translational stages. The experimental setups for the (b) full ring, (c) diffuse-beam, and (d) point
illumination of the phantom.

2.3. Tissue-Mimicking Phantoms

The performance of the three different illumination methods was evaluated with regards to the
PA imaging depth using a phantom made of polyvinyl chloride (PVC) (M-F Manufacturing Super Soft,
Fort Worth, TX, USA), with 0.2% fine ground silica (US Silica MIN-U-SIL5, Stow, OH, USA) used as an
optical diffuser. To create a PVC phantom [43], the plastisol was first mixed with the ground silica
and then heated in a microwave to 170 ◦C. In a mold, three graphite rods with a 2 mm diameter were
placed horizontally, and the PVC was poured to create the three layers as shown in Figure 3. After
cooling, the phantom was removed from the mold and used for the described experiments. Graphite
was chosen as an absorber due to its broadband absorption characteristics and ease of placement inside
the phantom.

6
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Figure 3. (a) Graph illustrates the polyvinyl chloride (PVC) phantom and graphite inclusions and
their dimensions. (b) A photograph of the experimental setup including the ring US transducer.
A motorized translational stage was used to adjust the position of the phantom to acquired images at
multiple cross-sections.

2.4. UST and PAT Image Reconstruction

In all instance, the waveform method was used to reconstruct the UST images [44], while filtered
back-projection was utilized to reconstruct the PAT images [45]. For PAT back-projection reconstruction,
the RF (radio frequency) values for each cross-section were averaged 10 times to increase the overall
SNR. In UST mode, a 20 dB linear gain TGC was used for acquiring the US images, while in PAT mode,
as previously described, a linear 10 dB TGC was used for data acquisition. For US imaging, the used
TGC was optimized to minimize the transducer saturation, which resulted in cleaner images. This was
done empirically. For PAT imaging, the value chosen was designed to reduce the signal emanating
from other cross-sections from appearing in the cross-section of interest.

3. Results and Discussion

3.1. A Comparison of the Three Different Illumination Methods

The results discussed in this section focus on analyzing the PAT images and PA signal amplitudes
from progressively deeper phantom cross-sections using the discussed illumination methodologies.
Figure 4 shows the UST and PAT images for the first and third cross-sections, which are separated
by 60 mm. The PAT images are masked based on the region of interest (ROI) as determined by the
UST image. For each illumination method, the PA amplitude is normalized to the highest value for
the method across all cross-sections. For example, for the full-ring illumination method, images were
normalized to the highest amplitude of PA detected within the three slices, which are separated by
30 mm each. This allows for visualization of the effect of depth on the PA signal amplitudes for each
illumination method. As can be seen in the PAT images, the graphite absorber is visible in the first and
third layers (i.e., larger vertical depth) of the full-ring illumination method, which is not the case for
the diffuse and point-source methods.
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Figure 4. Ultrasound tomography (UST) and normalized PAT images of the PVC phantom with the
graphite absorber using the three different illumination techniques for cross-sections 1 and 3.

To further quantify the results shown in Figure 4, the PA signal amplitude across the graphite
absorber for each illumination method, and for each cross-section, is plotted in Figure 5. For the full-ring
illumination method, the PA values are nearly constant across the three cross-sections (Figure 5a).
However, the peak amplitude value of the PA signal decreases by 25 times for point-source illumination

8



Appl. Sci. 2019, 9, 3094

and 15 times for the diffused-beam illumination between the first and third cross-sections. As seen by
the uniformity in the amplitudes between three cross-sections for the full-ring illumination method,
this imaging technique can provide a consistent image regardless of vertical depth. On the other
hand, the diffused and point illumination methodologies show variance in PA amplitude signals. This
finding demonstrates that the full-ring illumination is capable of providing sufficient fluences at lower
vertical depths, which results in detectable and reliable PAT images across cross-sections.

 
Figure 5. PA amplitude across the graphite absorber for three different cross-sections for: (a) full-ring,
(b) diffused-beam, and (c) point illumination.

To further compare the performance of the three illumination strategies, the SNR and contrast-
to-noise ratio (CNR) of the PAT images were measured. In the SNR, the value is calculated by:

SNR = 20× log10
(MS

MB

)

where MS refers to the mean of the PA signal, as marked by the US image region of interest, while MB
refers to the mean of the phantom background. The CNR is determined by:

CNR = 20× log10
(MS −MB

σB

)

where MS refers to the mean of the PA signal, MB refers to the mean of the phantom background, and σB
is the standard deviation of the phantom background. For the full-ring illumination method, the used
PA amplitude values are from irradiating the target cross-section 15 mm below the cross-section
of interest. As can be seen in Figure 6a,b, the SNR and CNR are nearly constant for the full-ring
illumination across the three cross-sections, which is not the case for the diffuse and point illuminations.
Figure 6c also plots the amplitudes across the graphite object at the third cross-section for all illumination
methods. Based on the laser beam diameter of 8 mm; optical losses in the system; and 100 mJ input
energy, the diffuse illumination method has a fluence of 9.3 mJ/cm2, compared to 175 mJ/cm2 for point
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illumination, and 7 mJ/cm2 for the full ring illumination. Full-ring calculations use a beam height
of 4 mm circumferentially on a 9 cm diameter phantom, and diffused beam calculations use a beam
diameter of 30 mm at the phantom. Even though point illumination has about 25 times the fluence of
the full-ring illumination method, its amplitude is much smaller at this cross-sectional depth.

Figure 6. The signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) of the PA amplitudes at
three different cross-sections are plotted in (a,b), respectively. For the full-ring illumination, the values
were determined based on the illumination at 15 mm below the cross-section of interest. (c) Plots the
PA amplitude for the top cross-section (cross-section 3) for full-ring, diffuse, and point illumination.

When compared to the diffused-beam and point illuminations, full-ring illumination has a higher
PA amplitude at Cross-section 3. It has a near constant SNR, CNR, and PA signal amplitude across
all cross-sections, making it an effective illumination method for breast imaging. Given that imaging
breast regions close to the chest wall (i.e., large vertical depth) are clinically important, the full-ring
illumination shows promise in accessing these regions and thus provides a means for reliable whole
breast PAT imaging with a ring US transducer.

3.2. The PA Amplitude of the Targeted Cross-Section as a Function of Illumination Position

The optimum position for the full-ring beam was investigated by evaluating the effect of the
distance between the ring-shaped beam and the targeted cross-section. The distance between the
targeted cross-section and the full-ring beam was changed within a range of 0–20 mm. Zero millimeters
represents the case where the ring beam is illuminating the targeted cross-section at the graphite rod,
while the 20 mm case is when the ring beam is 20 mm below the graphite rod (Figure 7a). In this
study, a selected cross-section was imaged while changing the illumination location from 0 to 20 mm.
The five different positions chosen to illuminate the targeted cross-section of the graphite rod were
0, 5, 10, 15, and 20 mm. A 532 nm laser with 100 mJ per pulse energy was used for this experiment.
The location of the full-ring illumination was adjusted by translating the phantom in steps of 5 mm in
the vertical direction.
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Figure 7. (a) The image shows the different positions of the ring beam based on the targeted cross-section
(Cross-section 1). The targeted cross-section is located in the central field of view of the US elements.
(b) PA amplitude at Cross-section 1 plotted as a function of illumination depth below the cross-section.

In Figure 7b, the PA amplitude was measured by drawing a line across the targeted graphite for
all five positions. The overall shape of the PA amplitude is constant while the maximum increases as
one moves further below the desired imaging cross-section. This increased visibility could be due to
the fact that the incidence angle of the beam illuminates the central part of the object more directly
as it moves below the cross-section. A possible reason for the stronger PA signal, when illuminating
20 mm below the targeted cross-section, could the incident angle of the light diffusion within the
tissue. In the current prototype, the ring mirror is illuminating the object cross-section at an angle of 39
degrees with respect to the object surface. The optimum illumination will occur if the ring beam falls
normal to the surface. The 0 and 5 mm cross-sections use the US image as a mask to crop out the large
PA peaks generated at the surface of the phantom. The graphite absorber was embedded within the
PVC background with a margin from the surface. Here, we only evaluated the signal arising from the
absorber. In cases where the illumination was coincident with the center of the transducer, a strong PA
signal from the surface was observed (not shown in these masked images). Hence, imaging below the
transducer can help to better visualize more central parts of the object due to elimination of a large PA
signal arising from the light-entering surface.

The large PA signal at the surface is primarily due to the large fluence at the surface, which can
affect the visualization of deeper regions due to a limited dynamic range in PA acquisition. This is
not the case where the illumination was adjusted to 10 to 20 mm with respect to the center of the
US detectors (i.e., illuminating below the imaged plane). The averaged PA amplitude from all five
illumination methods (shown in red in Figure 7b) is similar to the 10 mm illumination results. It is
worth mentioning that these results are not necessarily general for all ring illumination systems and
are dependent on the incident angle of the beam with respect to the object (39 degrees in our case).
The results might vary in other ring illumination systems if the incident angle is changed.

These findings are important because they help to define the illumination scenario based on the
characteristics and size of the given object. For example, for a large diameter phantom one might need
to acquire PAT images using more than one position of full-ring illumination to cover the regions closer
to the outer surface and deeper regions (with illumination offset from the imaging plane). In addition,
illuminating below the targeted cross-section (below the central line of the US elements) could help to
limit the high PA signals that are generated from the outer surface of the scanned object. The used
illumination method has a significant effect on the imaging’s vertical depth, which is significant when
visualizing anatomy such as the breast.

4. Conclusions

Phantoms with horizontal graphite absorbers were used to examine the efficacy of full-ring,
diffuse, and point illumination PAT imaging using a ring US transducer. The full-ring illumination was
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able to provide a more uniform fluence irrespective of the vertical depth of the imaged cross-section,
while the point source and diffused-beam resulted in a high fluence at the point of entry, which
diminished with vertical depth. In addition, the preliminary results indicate that illuminating an object
10–15 mm below the imaged cross-section of interest might be optimal for this system since it avoids
large surface reflections and provides better coverage to the cross-section.
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Abstract: Respiratory motion in living organisms is known to result in image blurring and loss of
resolution, chiefly due to the lengthy acquisition times of the corresponding image acquisition methods.
Optoacoustic tomography can effectively eliminate in vivo motion artifacts due to its inherent capacity
for collecting image data from the entire imaged region following a single nanoseconds-duration laser
pulse. However, multi-frame image analysis is often essential in applications relying on spectroscopic
data acquisition or for scanning-based systems. Thereby, efficient methods to correct for image
distortions due to motion are imperative. Herein, we demonstrate that efficient motion rejection in
optoacoustic tomography can readily be accomplished by frame clustering during image acquisition,
thus averting excessive data acquisition and post-processing. The algorithm’s efficiency for two- and
three-dimensional imaging was validated with experimental whole-body mouse data acquired by
spiral volumetric optoacoustic tomography (SVOT) and full-ring cross-sectional imaging scanners.

Keywords: optoacoustic imaging; photoacoustic tomography; respiratory gating; motion artifacts

1. Introduction

Motion during signal acquisition is known to result in image blurring and can further hinder
proper registration of images acquired by different modalities [1–4]. Respiratory motion compensation
in tomographic imaging methods is often based on a gated acquisition assisted by physiological
triggers, e.g., an electrocardiogram (ECG) signal. In prospective gating, the data is acquired during a
limited time window when minimal, or no motion occurs. Alternately, retrospective gating correlates
between the acquired images and physiological triggers during post-processing [5]. More advanced
retrospective approaches are based on self-gated methods where the physiological trigger is extracted
from the image data itself [6–8]. An alternative solution consists in motion tracking of specific points
and subsequent correction with rigid-body transformations [9]. In some parts of the body, such as the
thoracic region, non-rigid motion is further produced. Thus, more sophisticated models are generally
required to estimate and correct for the effects of respiratory motion [10].

High-frame-rate imaging modalities can avoid motion if sub-pixel displacements are produced
during the effective image integration time. Particularly, optoacoustic tomography (OAT) can render
2D and 3D images via excitation of an entire volume with a single laser pulse [11]. This corresponds to
an effective integration time in the order of the pulse duration, typically a few nanoseconds. This way,

Appl. Sci. 2019, 9, 2737; doi:10.3390/app9132737 www.mdpi.com/journal/applsci15



Appl. Sci. 2019, 9, 2737

the tissue motion can be “frozen” much more efficiently than most other imaging modalities. OAT has
found applicability in biological studies demanding high-frame-rate imaging, such as characterization
of cardiac dynamics [12], mapping of neuronal activity [13], monitoring hemodynamic patterns
in tumors [14] or visualization of freely-behaving animals [15]. Moreover, real-time imaging has
been paramount in the successful translation of OAT to render motion-free images acquired in a
handheld mode [16]. While motion correction in OAT might not be relevant for images rendered
with a single laser pulse, acquisition of multiple frames is still required in many applications, e.g.,
for rendering volumetric data from multiple cross-sections or for extending the effective field of view
(FOV) of a given imaging system [17]. Multiple frames are also required for multi-spectral optoacoustic
tomography (MSOT) applications, where mapping of intrinsic tissue chromophores or extrinsically
administered agents is achieved via spectral or temporal unmixing [18–21]. Cardiac and breathing
motion could readily be captured by OAT systems running at frame rates of tens of hertz [22,23],
and several approaches have been suggested to mitigate motion artefacts in applications involving
multi-frame data analysis. For instance, respiratory motion gating was suggested by simultaneously
capturing the animal’s respiratory waveforms [24]. Motion correction was alternatively performed
with 3D rigid-body transformations [25] and with free-form deformation models [26]. Models of body
motion have also been suggested for other types of scanning-based systems [27,28]. Additionally,
motion suppression could be achieved by reducing the delay between consecutive pulsed light
excitations [29,30], which requires dedicated laser systems.

In this work, we demonstrate that motion rejection in OAT can effectively be performed on-the-fly,
before image reconstruction. The suggested approach consists in clustering a sequence of OAT frames
that employs the raw time-resolved signals without involving computationally and memory extensive
post-processing. This represents an important advantage over other known approaches operating in
the image domain [31].

2. Materials and Methods

2.1. Pre-Reconstruction Motion Rejection Approach

The algorithm suggested in this work aims at motion rejection in OAT systems based on
a multi-frame acquisition of time-resolved pressure signals with transducer arrays. Figure 1a
schematically depicts two examples of transducer array configurations for 2D and 3D imaging,
which are described in more detail in the following sections. The acquired signals are generally
arranged into so-called sinograms, where every sinogram represents a single frame (Figure 1b). At a
fixed transducer position, k frames (sinograms) are acquired. These frames consist of matrices with
rows representing the m time-samples of each signal and columns corresponding to the n transducer
elements (channels) of the array. Step 1 of the algorithm consists in rearranging the k frames of the
sequence into columns of a 2D matrix containing m x n rows and k columns, which represent the entire
sequence of frames at a fixed transducer position (Figure 1c). In the experiments performed, the number
of frames acquired at each array position were chosen to adequately capture a complete breathing
cycle. Step 2 of the algorithm consists in calculating the autocorrelation matrix of all pairs of frames
(MATLAB (Mathworks Inc, Natick, USA) function ‘corrcoef’). An example of the calculated correlation
coefficients is displayed in Figure 1d. At a fixed transducer position, time decorrelation is expected to be
chiefly affected by respiratory motion. Clustering of frames is subsequently done in Step 3 by applying
the second order k-means method to the correlation coefficients matrix (Figure 1e, MATLAB function
‘kmeans’). In Step 4, the k frames are then divided into two sets based on predetermined knowledge of
the characteristic physiology of the animal under specific anesthesia. As a rule, motion frames are
typically fewer than static frames. Notably, when scanning at multiple transducer positions, Steps 1–4
are to be repeated for each transducer position. As an example, Figure 1f displays a comparison of the
3D views of a reconstructed image from a single position of the spherical array, as obtained from the
averaged selected-frames and from the averaged rejected-frames.

16



Appl. Sci. 2019, 9, 2737

 

Figure 1. A schematic diagram of the steps involved in the motion rejection algorithm. (A) Two- and
three-dimensional scanning systems, (top) spiral volumetric optoacoustic tomography (SVOT) based
on a spherical array of transducers and (bottom) cross-sectional optoacoustic tomography based on a
full-ring array of cylindrically focused transducers. (B) Sequence of frames (sinograms) acquired at a
single position of the scanner. (C) Rearrangement of the data corresponding to the entire sequence
into a single matrix. (D) Correlation coefficients of the autocorrelation matrix of the columns in (C).
(E) K-means clustering of the correlation coefficients matrix into two groups, namely, selected (static)
frames and rejected (motion) frames. (F) Volumetric image of a blood vessel reconstructed with data
from the selected versus the rejected-frames.

2.2. Spiral Volumetric Optoacoustic Tomography

The spiral volumetric optoacoustic tomography (SVOT) scanner is schematically depicted in
Figure 1a (top). A detailed description of the system is available elsewhere [32]. Briefly, a spherical
ultrasound array of piezocomposite elements (Imasonics SaS, Voray, France) is mounted on motorized
rotating and translating stages and scanned around the animal following a spiral trajectory. The array
consists of 256 elements with a central frequency of 4 MHz and −6 dB bandwidth of ~100%, arranged
in a hemispherical surface with angular coverage of 90◦. The excitation light beam is guided via a
fiber bundle (CeramOptec GmbH, Bonn, Germany) through a cylindrical aperture in the center of the
sphere. SVOT enables imaging of the entire mouse with a nearly isotropic 3D spatial resolution in the
200 μm range [31]. In the experiments, light excitation was provided with a short-pulsed laser (<10 ns
duration pulses with 25 mJ per-pulse energy and up to 100 Hz pulse repetition frequency) based on an
optical parametric oscillator (OPO) crystal (Innolas GmbH, Krailling, Germany). The pulse repetition
frequency of the laser was set to 25 Hz and the wavelength was maintained at 800 nm, corresponding
to the isosbestic point of hemoglobin. The array was scanned for 17 angular positions separated by 15◦
(total angular coverage in the azimuthal direction of 240◦) and for 30 vertical positions separated by
2 mm (total scanning length of 58 mm, a full-body scan requires approximately 10 min). 50 frames
were captured for each position of the array, for which all signals were simultaneously digitized
at 40 megasamples per second with a custom-made data acquisition system (DAQ, Falkenstein
Mikrosysteme GmbH, Taufkirchen, Germany) triggered with the Q-switch output of the laser.
The acquired data was eventually transmitted to a PC via Ethernet.
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2.3. Cross-Sectional Optoacoustic Tomography with a Ring Array

The system layout is depicted in Figure 1a (bottom) while its detailed description is available
in [33]. Briefly, the ultrasound array (Imasonics SaS, Voray, France) consists of an 80 mm diameter
ring having 512 ultrasound individual detection elements with 5 MHz central frequency and −6 dB
bandwidth of ~80%. Each element is cylindrically focused at a distance of 38 mm to selectively
capture signals from the imaged cross-section. In the experiments, light excitation was provided by a
short-pulsed (<10 ns duration pulses at a wavelength of 1064 nm with ~100 mJ per-pulse energy and
15 Hz pulse repetition frequency) Nd:YAG laser (Spectra Physics, Santa Clara, California). The laser
beam was guided with a fiber bundle (CeramOptec GmbH, Bonn, Germany) having 12 output arms
placed around the circumference of the ring transducer with an angular separation of 60◦ between the
arms. Much like the SVOT system, signals detected by all the array elements were simultaneously
digitized at 40 megasamples per second using custom-made DAQ (Falkenstein Mikrosysteme GmbH,
Taufkirchen, Germany), triggered with the Q-switch output of the laser. The data was transmitted to a
PC via Ethernet. In total, 100 frames were recorded with the array positioned at two distinct regions of
the mouse.

2.4. Image Reconstruction and Processing

In both scanning systems, the acquired signals were band-pass filtered (cut-off frequencies
0.25–6 MHz for SVOT and 0.5–8 MHz for cross-sectional OAT) and deconvolved with the impulse
response of the array elements before reconstruction. For SVOT, tomographic reconstructions of
single volumes (15 × 15 × 15 mm3) for each scanning position of the spherical array transducer were
done using a 3D back-projection-based algorithm [34,35]. Volumetric images reconstructed at every
transducer position were stitched together to render images from a larger field of view (whole-body
scale). For cross-sectional OAT, the same back-projection algorithm was modified to account for the
heterogeneous distribution of the speed of sound in the mouse versus the coupling medium (water) [36].
For this, an initial image was first reconstructed by considering a uniform speed of sound corresponding
to the speed of sound in water (determined from the measured water temperature). The animal’s
surface was then manually segmented, and the reconstruction was fine-tuned by assigning a different
speed of sound to the segmented tissue volume in order to optimize image quality. The processing
was executed with a self-developed MATLAB code. Universal image quality index (QI) was calculated
for the resulting images. QI is an objective image quality index that combines three models: loss of
correlation, luminance distortion and contrast distortion—a detailed description and efficient MATLAB
implementation was reported in [37].

2.5. Mouse Experiments

All in-vivo animal experiments were performed in full compliance with the institutional guidelines
of the Helmholtz Center Munich and with approval by the Government District of Upper Bavaria.
Hairless NOD.SCID mice (Envigo, Rossdorf, Germany) were anesthetized with isoflurane. For both
imaging systems, a custom-made holder was used to vertically fix the mice in a stationary position
with fore and hind paws attached to the holder during the experiments. The mice were immersed
inside the water tank with the animal head being kept above water. The temperature of the water
tank was maintained at 34 ◦C with a feedback controlled heating stick. A breathing mask with a
mouth clamp was used to fix the head in an upright position and to supply anesthesia and oxygen.
During measurement, the anesthesia level was kept at ~2% isoflurane.

3. Results

3.1. Spiral Volumetric Optoacoustic Tomography

A whole-body (neck to hind paws) SVOT image, reconstructed using the frames selected with
the proposed motion rejection approach, is displayed in Figure 2a. In these experiments, an average
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of 32% of frames were rejected per transducer position. The effectiveness of the motion rejection
approach is demonstrated by analyzing three specific regions (dashed squares in Figure 2a). Specifically,
we compare the image combining all the frames, with the one obtained by averaging the selected
(static) frames as well as the image obtained by averaging the rejected (motion) frames. Note that
the red square partially captures the thoracic region. It can be observed that a small vessel, clearly
visible in the image rendered from the selected frames (Figure 2b, red arrow), cannot be resolved in
the image reconstructed using all the frames. Furthermore, the former image features a clear motion
artifact in the form of a ‘double vessel’ (red arrow), thus concealing the small vessel. The green
square captures the region around the liver. A vertical vessel appears regular and complete in the
selected-frames image (red arrow), whereas the same vessel appears disrupted in the all-frames image.
Also here, the rejected-frames image discloses an artifact responsible for distorting the all-frames image.
Finally, the blue square captures part of the abdomen. Clearly, small vessels are better resolved in the
selected-frames image (red arrows). Notably, different structures appear to be blurred (yellow arrows)
in the rejected-frames images with respect to the selected-frames images. A comparison between
amplitude profiles of structures labeled by dashed yellow lines in Figure 2b further emphasizes the
effectiveness of the motion rejection algorithm (Figure 2c) with the signal amplitude typically improved
by 10% to 30% in the selected-frames images. Likewise, fine details appear more prominent in the
selected-frames images, which is evinced by additional, fine peaks in the amplitudes profiles.

Figure 2. Motion rejection results for spiral volumetric optoacoustic tomography (SVOT). (A) Sagittal
maximal intensity projection (MIP) of a volumetric image of the mouse reconstructed with the
selected-frames (scale bar—1 cm). (B) Zoom-in of three regions marked in red, green, blue, respectively,
in (A). Each image is reconstructed with (left) all-frames, (center) the selected (static) frames (right) the
rejected (motion) frames (scale bar—1 mm). Structural differences are marked (yellow and red arrows).
(C) Amplitude profiles marked in b (yellow dashed lines) for images reconstructed from all the frames
(dashed lines) versus selected frames (solid lines).

3.2. Cross-Sectional Optoacoustic Tomography

Effectiveness of the algorithm in cross-sectional OAT was tested by comparing the selected- and
rejected-frames images taken from two distinct regions of the animal (Figure 3a). Between 20% and
31% of the frames were rejected in the top and bottom cross-sections, respectively. The rejected-frames
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images reveal smearing artifacts caused by a breathing motion that are evident across the entire
mouse cross-section. Fine structures (red arrows) within the abdominal space appear blurred in
the rejected-frames image. Moreover, some superficial structures seem to be artificially ‘doubled’
(yellow arrows) in the rejected-frames images. Minor differences were observed in the all-frames
images (data not shown) with respect to the selected-frames images. Likewise, amplitude profiles from
selected structures (dashed yellow line in Figure 3a) are increased by ~10% in the selected-frames
images (Figure 3b). The calculated QI clearly reveals distortions at the boundaries of major structures,
located mostly superficially (Figure 3c).

Figure 3. Motion rejection results for cross-sectional imaging with the ring array system.
(A) Reconstructed transverse slices of a mouse for two different locations rendered by considering the
selected (left) versus rejected (right) frames (scale bar—1 cm). Distorted structures are marked (red and
yellow arrows). (B) Amplitude profiles (of yellow dashed lines in (A)) for the images rendered with all
(dashed line) versus selected (solid line) frames. (C) Distortion-based QI of the difference between the
selected- and all-frames images (1 = high similarity; −1 = low similarity).

4. Discussion

The presented results demonstrate that motion rejection in OAT can effectively be accomplished
prior to image reconstruction. This represents a significant advantage with respect to previously reported
motion rejection approaches based on auto-correlation of a sequence of reconstructed images [31], which
are afflicted with excessive memory and post-processing requirements. The suggested method was
successfully validated with data acquired by two- and three-dimensional imaging systems. However,
motion rejection was more effective in the case of volumetric SVOT scans. In particular, it benefited
from both amplitude increase of 10% to 30% and improvement in the visibility of fine details, whereas
images from the cross-sectional imaging system yielded a lower amplitude increase (~10%) and minor
improvement in the visibility of structures. The reason behind the reduced performance of motion
rejection in cross-sectional imaging may be ascribed to the fact that breathing-associated movements
are not limited to a single plane, while in-plane motion is mainly detected in the signals. Yet, although
the differences between selected- and all-frames cross-sectional images were minor, it was possible to
quantify them by utilizing a QI based distortion measures. Notably, such distortion artifacts affect
almost exclusively the edges of large structures. In spite of the fact that standard frame averaging in
cross-sectional imaging may yield qualitatively comparable results, reliable rejection of 20% to 31%
motion-affected frames by the algorithm may turn crucial for quantitative analyses of high resolution
data, e.g., involving spectral unmixing of fine structures.

It is also important to take into account that breathing characteristics may differ from one animal
to another due to age, health, size, sex or strain. All these factors affect the resilience of the animal to
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the experimental setup, the feasible depth of anesthesia and the overall duration of the experiment [38].
It was previously reported that mice under 2% isoflurane anesthesia have an average respiratory rate
of 44 ± 9 breaths/min [39], where the breathing rhythm is characterized by pauses between breaths
longer than the breaths themselves. As a result, the majority of the frames are static, i.e., not affected by
motion. Herein, we relied on such prior knowledge of the characteristic respiratory rate and breathing
rhythm to establish a rejection criterion for the clustered motion (rejected) frames. Likewise, other
criteria independent of these factors may alternatively be implemented.

In conclusion, the developed motion rejection methodology can benefit numerous optoacoustic
imaging methods relying on multi-frame image analysis, such as scanning-based tomography or
spectroscopic imaging systems like the MSOT. It may also find applicability in handheld clinical
imaging [40,41], where motion can hinder accurate signal quantification and interpretation of
longitudinal and spectroscopic data.
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Abstract: Photo-Acoustic Tomography (PAT) is an emerging non-invasive hybrid modality driven
by a constant yearning for superior imaging performance. The image quality, however, hinges on the
acoustic reflection, which may compromise the diagnostic performance. To address this challenge,
we propose to incorporate a deep neural network into conventional iterative algorithms to accelerate
and improve the correction of reflection artifacts. Based on the simulated PAT dataset from computed
tomography (CT) scans, this network-accelerated reconstruction approach is shown to outperform
two state-of-the-art iterative algorithms in terms of the peak signal-to-noise ratio (PSNR) and the
structural similarity (SSIM) in the presence of noise. The proposed network also demonstrates
considerably higher computational efficiency than conventional iterative algorithms, which are
time-consuming and cumbersome.

Keywords: photo-acoustic tomography; reflection artifacts; deep learning; convolutional neural
network; time reversal; Landweber algorithm; U-net

1. Introduction

Photo-Acoustic Tomography (PAT) is an emerging non-invasive modality that has manifested
an enormous prospect for some clinical practices [1]. In PAT, the tissue is illuminated with near-infrared
light of wavelength 650–900 nm. The absorbed optical energy is transformed into acoustic energy
through the photo-acoustic effect, and the generated ultrasound is measured by transducer arrays
outside the tissue to retrieve the optical properties of the tissue. The coupling mechanism of optical and
ultrasound waves gives multiple advantages over conventional individual imaging modalities. As the
acoustic waves experience much less scattering in tissue compared to optical waves, PAT can generate
high-resolution images in the presence of strong optical scattering to break the optical diffusion limit [2].
The image can reach submillimeter spatial resolution while preserving intrinsic optical contrast [3].

Typical photo-acoustic signal generation comprises three steps: (1) the tissue absorbs light;
(2) the absorbed optical energy causes a temperature rise; (3) thermo-elastic expansion occurs and
generates ultrasound. The image formation in PAT is to recover the distribution of the deposited
energy, known as the local optical fluence, from the ultrasound signals that are recorded by the sensors
deployed around the tissue. As the initial ultrasound pressure is approximately proportional to the
optical fluence, it is sufficient to reconstruct the initial pressure from the recorded ultrasound signals.

The quality of PAT images relies on multiple factors, and one of them is the acoustic
reflection. The reflection can be caused by either hyperechoic structures or special setting for making
a measurement such as in reverberant-field PAT [4]. Conventional PAT reconstruction algorithms,
such as the universal back-projection formula [5] and time-reversal-based reconstruction [6–10],
are based on the spherical mean radon transform on canonical geometries and not designed to
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take the acoustic reflections into account. As a result, the reflected signals are projected along with
the real signal back into the image domain, resulting in artifacts that are indistinguishable from the
real biological structures. Clinical practitioners who rely on the misleading artifacts to make judgment
could come to erroneous conclusions. It is, therefore, essential and of practical significance to design
new methods to eliminate the impact of such acoustic reflection in PAT image reconstruction.

Some iterative algorithms were developed to correct the effect of the acoustic reflection.
Examples include Fourier analysis [11], averaged time reversal [12], dissipative time reversal [13],
and adjoint method [14]. Nonetheless, each of them has its limitation: the Fourier approach applies
only to regular domains; averaged/dissipative time reversals, and Landweber iterations can generate
high-quality images but time-consuming.

The purpose of this paper is to accelerate and improve the iterative algorithms by incorporating
a deep neural network (DNN) structure to reduce the reflection artifacts efficiently and effectively.
The entire network contains three parts—feature extraction, artifacts reduction, and reconstruction.
A modified version of the U-net with large convolutional filter sizes is used as the backbone of the
artifact reduction part to capture the global features by increasing the size of the receptive field.
The network is applied to take the place of iterations to accelerate the correction of reflection artifacts.
The learning process can simultaneously reduce the image noise as well.

With the rapid increment of computational power, DNNs and deep learning techniques
have received considerable attention in recent years for tomographic image reconstruction [15–17].
In particular, they have achieved the state-of-the-art performance in PAT image reconstruction in
the scenarios of sparse data [18–20], limited view [21–23], artifacts removal [24–26], as well as other
applications [27,28]. It is worth pointing out that the reference [25] considers another type of reflection
artifact with different focuses and approaches. The reflection in [25] is caused by point-like targets
inside the tissue, while ours by planar reflectors outside the tissue. The network in [25] is mostly
based on convolutional neural networks (CNNs) while ours on the U-net structure. The two networks
target different problems with associated unique networks and therefore are of independent values.
We remark that besides in PAT, DNNs have been successfully applied to other imaging modalities as
well, see [29–35] for its applications in CT.

2. Data Generation

This section presents the forward model of PAT and the reflection artifacts induced by the acoustic
reflection of signals.

2.1. The Forward Model

We describe the forward model, which is used to generate ultrasound signals for training purpose.
Sound hard reflectors, which can bounce the incident ultrasound back with the opposite speed without
absorbing any energy, are placed around the tissue to simulate the acoustic reflections. As such
reflectors do not dissipate energy, the resultant reflection artifacts are the strongest, hence can be used
as a benchmark to test the artifact-correction capability of different algorithms.

Denote by Ω the biological tissue, which is illuminated by rapid pulses of laser, and afterwards,
emits the ultrasound. The boundary of the tissue is represented using the conventional notation ∂Ω.
The forward ultrasound propagation model, in the presence of sound hard reflectors, reads in 2D as follows:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(
∂2

t − c2(r)Δ
)

p = 0 in (0, T)× Ω,

p|t=0 = p0(r),
∂t p|t=0 = 0,

∂ν p|[0,T]×∂Ω = 0,

(1)

where Δ = ∂2

∂x2 + ∂2

∂y2 is the Laplace operator, T is the stoppage time, p0(r) is the initial ultrasound
pressure, p(t, r) is the ultrasound pressure of the spatial location r at time t, c(r) is the wave speed,
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and ∂ν is the normal boundary derivative. The main difference of this model with the conventional
photo-acoustic models (see, for instance [2,36]) is the boundary condition ∂ν p|[0,T]×∂Ω = 0, which is
the standard mathematical model to describe sound hard reflectors. Please note that the Neumann
boundary condition corresponds to the sample/water interface, and the Dirichlet boundary condition,
which corresponds to the sample/air interface, can be handled similarly. We remark that modeling
PAT using the Neumann and Dirichlet boundary conditions was reported in the literature [37,38].
The ultrasound is recorded at the boundary of Ω using 508 sensors deployed evenly around the tissue.
This measurement amounts to the temporal boundary value of p, i.e., p|[0,T]×∂Ω. The image formation
in PAT aims to recover the distribution of the deposited energy that is the local optical fluence. As the
initial ultrasound pressure p0(r) is proportional to the optical fluence, it remains to reconstruct the
initial ultrasound pressure p0(r) from the recorded ultrasound signals.

We simulate numerous ultrasound signals to train the neural network. This is accomplished by
solving the forward model (1) using the second order finite difference time domain (FDTD) method
with the central difference formula. The simulation is implemented using the MATLAB code written
by the authors. The computational domain is a 128 × 128 grid with uniform spacing. The time
step is chosen according to the spatial step to fulfill the Courant–Friedrichs–Lewy (CFL) condition.
The sound speed c(r) is either a constant or a spatially varying function, with the former modeling
the propagation in homogeneous media and the latter in heterogeneous media. The stoppage time is
T = 4, which is chosen in such a way that the ultrasound generated from any interior source can reach
the boundary.

2.2. Reflection Artifacts

Applying the conventional PAT reconstruction directly to the ultrasound signals generated by the
forward model (1) could result in artifacts. This is because the conventional reconstruction methods do
not take into consideration of the acoustic reflections. We provide a numerical example in this section
to illustrate the effect of the acoustic reflections.

We choose the Shepp–Logan phantom (see Figure 1a) as the initial pressure p0(r) to produce
ultrasound signals based on the forward model (1) with c(r) = 1. The recorded acoustic signal is
shown in Figure 1b. To demonstrate the reflection artifacts by conventional algorithms, we adopt
one of the conventional time reversal (TR) methods proposed in [8]. The sound speed in the TR is
again c(r) = 1. Then the TR method is mathematically equivalent to the 2D universal back-projection
formula. The stoppage time is again T = 4. The reconstructed image is illustrated in Figure 1c. It is
clear that direct application of the TR method leads to numerous artifacts in the reconstructed image,
especially near the boundary of the ellipses in the Shepp–Logan phantom. The generation of these
artifacts can actually be well understood from the mathematical point of view; see the analysis in [12]
for details.

The failure of the conventional TR method indicates that some procedures must be introduced to
correct the reflection artifacts in the presence of reflections. There have been some iterative correction
algorithms, for instance [10–14,39] as well as methods based on deep learning [25]. In the next section,
we propose a novel neural network to remove the reflection artifacts. Its efficacy is compared with two
of the popular iterative correction algorithms as well.
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(a) (b) (c)
Figure 1. Numerical example to illustrate the effect of the acoustic reflections. (a): a 128 × 128
Shepp–Logan phantom as the initial pressure. (b): the recorded acoustic signal in the presence of sound
hard reflectors. (c): reconstruction by conventional TR.

3. Artifacts Correction by Deep Learning

This section presents the proposed neural network for correction of reflection artifacts in PAT
imaging. We will make use of the networks to accelerate some conventional iterative algorithms in the
following way. Instead of running the iterations, we train the network to learn the map between the
reconstructed image by the first iteration and the ground truth. The reconstruction procedure then
consists of two steps, given the measured ultrasound signals. The first step is to apply an iterative
algorithm to the signals to get the output after the first iteration. The second step is to feed the output
into the neural network to obtain the reconstructed image. These two steps preserve the predictability
of the model-based iterative algorithm, while at the same time replace the number of iterations by the
neural network to achieve improved computational efficiency. The proposed method can be referred
to as the deep learning (DL) algorithm or DL reconstruction for short.

3.1. Reflection Artifacts Correction Model

Assume that IIS is the simulated initial source without any artifacts and IRA is a PAT image
including reflection artifacts, the relationship between them can be expressed as follows:

IRA = F (IIS), (2)

where function F denotes the acoustic-reflection-induced process due to the hyperechoic structures or
the special setting of making measurement such as in reverberant-field PAT. The reflection artifacts
correction model is to seek an approximate inverse, G ≈ F−1, to reduce the reflection artifacts from
IRA, i.e.,

Iest = G(IRA) ≈ IIS. (3)

Next, we introduce the proposed network to learn the approximate inverse function G.

3.2. The Proposed Network

The proposed network architecture for reflection artifacts correction is shown in Figure 2,
which has following three parts:

1. Feature extraction is to extract the feature representation from the input image IRA. This part
contains 4 convolutional layers, each of them has 32 convolutional filters of size 3 × 3 with a stride
of 1. Zero padding is not used for these four layers.

2. Artifacts reduction is to correct the artifacts and remove the noise from the feature-maps
obtained above. We use a modified version of U-net coupling with a residual skip connection for
this purpose. This part has 6 convolutional layers and 6 deconvolutional layers. Instead of
down-sampling or up-sampling operation in original U-net [40], we use the convolution
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with a stride of 2 to decrease the size of feature-maps at the 2nd, 4th and 5th convolutional
layers, and the deconvolution with a stride of 2 to increase the size of feature-maps at
the 1st, 3rd, and 5th deconvolutional layers. The stride of 1 is used at remaining layers.
All layers have 32 (de)convolutional filters of size 5 × 5 to capture the global structures.
In addition to this, three conveying links [29,40] copy the former feature-maps and reuse
them as the input to a later layer that has the same size of feature-maps via a concatenation
operation along channel dimension, which preserve high-resolution features. At last, a residual
skip connection [41] enables the above U-net to infer the artifacts and noise from the input
feature-maps. The summation between the input feature-maps and the outputs of the U-net are
the corrected feature-maps, which is followed by an activation function and then serves as the
input to the reconstruction part. Note that zero padding is used throughout this part.

3. Reconstruction is to recover the final output from the corrected feature-maps. This part has
4 deconvolutional layers, each of them has 32 filters of size 3 × 3 with a stride of 1 except for the
last layer that has only 1 filter. Zero padding is not used for these four layers.

The rectified linear unit (ReLU) is used throughout this network [42], which is defined as f (x) =
x+ = max(0, x). The input to the network IRA is the output of the first iteration of averaged time
reversal (ATR), which is denoted as ATR�.
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Figure 2. The proposed network structure for reflection artifacts correction. It comprises three
parts—feature extraction, artifacts reduction, and reconstruction. In particular, we use a modified
version of U-net as the backbone of artifacts reduction part.

3.3. Loss Function

The parameters of the network need to be optimized by minimizing an appropriate loss function.
The loss function we choose is the combination of the mean-squared error (MSE) and structural
similarity (SSIM) [43].

The MSE between the output of the network, Iest, and the initial reference source, IIS, is formally
defined as

MSE(Iest, IIS) =
1

w × h

∥∥∥Iest − IIS

∥∥∥2

F
, (4)

where w and h are the width and height of the image, respectively, and ‖ · ‖ refers to Frobenius norm.
Although MSE is the most straightforward loss function to optimize the network, the resultant images
are usually over-smoothing and lose some details.

In contrast to MSE, the SSIM can measure the similarity between two images in terms of their
structures and textures. SSIM index is calculated on various windows of an image. The measure between
the window x over Iest and the window y over IIS, based on a common size k × k, is defined as

SSIM(x, y) =
2μxμy + c1

μ2
x + μ2

y + c1

2σxy + c2

σ2
x + σ2

y + c2
, (5)
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where μx and μy are the averages of x and y respectively, σ2
x and σ2

y are the variances of x and
y respectively, and σxy is the covariance of x and y. Also, c1 = 0.012 and c2 = 0.032 are two
constants, which are used to stabilize the division with a weak denominator. The windows size
k is 11, as suggested. The SSIM between two images Iest and IIS, SSIM(Iest, IIS), refers to the average
of the SSIM index over all windows.

The loss function is defined as

min
θG

E(Iest,IIS)

√
1 + MSE(Iest, IIS)×

[
1 − SSIM(Iest, IIS)

]
, (6)

where θG denotes the parameters of the network G. This loss function not only reduces the noise in terms
of MSE but also preserve the image structures as measured by SSIM [44]. Various algorithms can solve
this minimization problem. In this work, we adopt the Adam algorithm to update the parameters [45].
The gradients of the parameters are computed using a back-propagation algorithm [46].

4. Results

4.1. Experimental Setup

4.1.1. Simulated Dataset

We used 5 cadaver CT scans from Massachusetts General Hospital [47] for simulating PAT dataset.
These 5 cadavers were scanned on a GE Discovery 750 HD scanner under 120 kVp x-ray spectra.
Noise index (NI) was used by GE to define the image quality, which is approximately equal to the
standard deviation of the CT number in the central region of the image of a uniform phantom [48].
In this study, we used a noise index of 10, which represents a normal-dose scanning. Then, the images
were reconstructed by the GE commercial iterative reconstruction algorithm, called adaptive statistical
iterative reconstruction (ASIR-50%). To reduce the computational cost for simulating the data and
training the network, we extracted image patches of size 128 × 128 from CT scans. More specifically,
64,000 image patches were randomly selected from 3 scans for training purpose. Then, 6400 image
patches were randomly selected from 1 scan for validation. Finally, 200 image patches were randomly
selected from 1 scan for testing the trained model. Please note that the patients for training, validation,
and testing sets were randomly selected from 5 patients CT scans without replacement. Since the
Hounsfield unit (HU) used in CT imaging ranges from −1000 to ∼ +2000, we are interested in the
complex tissue structure within [−160, 240] HU window for our PAT simulation. Thus, with this
selected HU window, image patches were first normalized into [0, 1] serving as the initial source for
PAT imaging, and the output of the first iteration of ATR serves as the input to the network.

4.1.2. Baseline Method

We compare the proposed network-based reconstruction with two state-of-the-art iterative
algorithms in correcting reflection artifacts. These iterative algorithms, known as the ATR and adjoint
method respectively, are designed to remove the reflection artifacts from the mathematical point of
view. The reasons for choosing these two methods are three-fold. Firstly, in contrast to the universal
back-projection formula [5] which is mathematically valid only in homogeneous media, these methods
can be applied to general heterogeneous media. The universal back-project formula is a special case of
the TR method if one sets the sound speed to be constant and applies the Kirchhoff solution formula
for the 3D acoustic wave equation. Secondly, the TR and adjoint methods are applicable with arbitrary
closed surfaces of sensor arrays. In a typical TR or adjoint process, the measured ultrasound signals
are re-transmitted in a temporally reversed order back to the tissue. This can be numerically simulated
by solving the wave propagation model backwards to the initial moment while using the measured
ultrasound signal as the boundary condition, regardless of the geometry of sensor arrays. Thirdly,
TR and adjoint methods are popular in both research and application, for instance [8,9,49,50] for
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various TR methods and [51–53] for various adjoint methods. Their implementation has also been
included in open source packages such as the k-wave MATLAB package [54]. A sketchy introduction
to these iterative algorithms is included in the Appendix A for the convenience of the readers.

4.1.3. Parameter Setting

For our proposed network, the initial learning rate λ was set as 1.0 × 10−3 and was adjusted by
every epoch, namely λt = λ√

t
at the t-th epoch. For the Adam optimization, the coefficients used

for computing running averages of gradients and its square were set as 0.9 and 0.999, respectively.
The network was implemented with PyTorch DL library [55] and trained within 60 epochs using four
NVIDIA GeForce GTX 1080 Ti GPUs. The batch size was set as 512 during the training.

For these two iterative algorithms, the number of iterations for ATR and Landweber is empirically
set to be 10. The regularization parameter in Landweber is empirically chosen as 0.03.

4.1.4. Evaluation Metrics

For the evaluation of image quality, we used the peak signal-to-noise ratio (PSNR) and SSIM in
our experiments. The SSIM has been defined in (5) and PSNR is defined as follows:

PSNR(Iest, IIS) = 10 log10

( R2

MSE(Iest, IIS)

)
, (7)

where R is the maximum possible pixel value of the images, which is 1 in this study as the images are
normalized into [0, 1].

4.2. Results

In this part, we demonstrate the performance of the proposed method in correcting reflection artifacts.

4.2.1. Homogeneous Media

Soft biological tissue is made up mostly of water and therefore can be viewed approximately as
a homogeneous medium. The sound speed in water is 1480 m/s, which can be taken as the speed
in tissue. The specific value of the constant is irrelevant to the performance of the algorithms, as the
value can always be adjusted by choosing different units. What matters is that the speed must be
uniform everywhere. Therefore, we simply take the speed as 1 in our numerical test, i.e., we set
c(r) = 1. Ultrasound signals are generated using the forward model (1). The signals are then exploited
in TR, ATR, Landweber iteration, and DL algorithms, respectively, to reconstruct the original image.
The input of the neural network is the output of the first iteration of ATR, which is denoted as ATR�.

Based on an independent testing set of 200 CT image patches, we investigated these reconstruction
algorithms with 0%, 10%, 20%, 30%, 40% noise added to the ultrasound signals respectively,
and reported the box plots of the image quality that was evaluated by PSNR and SSIM in reference to
the ground-truth simulated initial source in Figure 3. The experimental results show the DL algorithm
has at least two advantages over the others. On the one hand, it is relatively more stable as the noise
level increases. Its PSNR outperforms the others at all noise levels, with the only exception of the ideal
zero-noise case where ATR provides the best reconstruction. On the other hand, the DL algorithm is
time-saving. Although training the neural network takes large amount of time, its output is almost
immediate once the training process is accomplished. In contrast, the ATR and Landweber iteration
takes several minutes to achieve an image of satisfactory quality.

A few reconstructed images randomly selected from the testing set are displayed in Figure 4.
Each column corresponds to the reconstruction using the algorithm labeled at the bottom. The ATR�

column consists of images from the first iteration of ATR, which are the inputs to the neural network.
The IS column consists of the ground-truth initial source images used to generate the ultrasound
signals by the forward model. Among all the algorithms, TR gives the worst result, which can be
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expected as it does not resolve reflected artifacts. ATR tends to lose detailed information at a high noise
level (see the last row). Landweber performs better in resolving noise as it has regularization effect,
which helps remove the high-frequency content of the image. The DL algorithm exhibits superior
reconstruction in general.
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Figure 3. The box plots of the image quality evaluated by PSNR and SSIM on the testing set in
a homogeneous medium. From top row to bottom row: noise increases from 0 to 0.4. Diamonds (�)
indicate outliers.

32



Appl. Sci. 2019, 9, 2615

TR ATR* ATR Landweber DL IS

Figure 4. Reconstruction in a homogeneous medium.

4.2.2. Heterogeneous Media

Heterogeneity occurs when the object to be imaged has a complex composition. An example is
the transcranial PAT where the sound speed in the skull is 3200 m/s in contrast to 1480 m/s in the
water. The speed has jump singularities at the interface of the two constituents. Such singularities can
be mingled with those from the initial pressure and appear in the reconstructed image as additional
artifacts, casting more challenges for the reconstruction of the initial pressure. We implemented the
algorithms in the domain [−1, 1]× [−1, 1] and chose the distribution of the sound speed as

c = 1 − 0.2 sin(2πx) + 0.15 cos(πy) + χ(x−0.5)2+(y−0.5)2<0.01, (8)

where χ(x−0.5)2+(y−0.5)2<0.01 is a function that equals 1 on the disk {(x, y) : (x − 0.5)2 + (y − 0.5)2 <

0.01} and 0 otherwise. The reason for such choice of c is as follows. The constant 1 models the speed
in soft tissue. The smooth term −0.2 sin(2πx) + 0.15 cos(πy) is added to mimic the slight variation of
the sound speed in distinct types of tissue. The non-smooth term χ(x−0.5)2+(y−0.5)2<0.01 captures the
jumps between different materials such as soft tissue and bones; see Figure 5 for the distribution of the
sound speed c.
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Figure 5. Distribution of the sound speed.

With the variable sound speed, we computed the PSNR and SSIM of the reconstructed images
with 0%, 10%, 20%, 30%, 40% noise added to the ultrasound signals respectively, as is shown in
Figure 6. The DL algorithm still demonstrates the optimal overall performance. Besides being more
stable and time-saving, the DL algorithm also yields the least outliers. Here an outlier is a number in
the dataset that is less than Q1 − 1.5 × (Q3 − Q1) or greater than Q3 + 1.5 × (Q3 − Q1), where Q1 is
the lower quartile, and Q3 is the upper quartile.

Some reconstructed images are randomly selected from the testing set again to illustrate the
difference of the algorithms; see Figure 7. ATR still suffers from the high noise level, but can resolve
the jumps in the speed. Landweber iteration, however, introduces additional artifacts on the top right
of the reconstructed image where the sound speed jumps as shown in Figure 5. This is partly due
to the limited number of iterations, and it is observed that artifact becomes weaker if the number of
iterations is increased. The DL reconstruction resolves simultaneously the high noise and jumps in the
speed. It remains visually the closest to the true initial source.

5. Discussions

Our experimental results empirically demonstrated that DL reconstruction in certain situations
is superior to the conventional iterative reconstructions, especially when it deals with signals
compromised by strong noise. The test on the sound reflectors suggests a great potential of DL-based
methods for removing reflection artifacts in the PAT image formation.

However, there are some limitations in this study. First, some of the parameters in these iterative
algorithms, such as the number of iterations and the value of the regularization parameter, are not
specifically optimized. Varying these parameters may result in somewhat improved performance of
the iterative algorithms. However, finding the optimal values of such parameters are highly empirical,
and there is no universal approach in general. Second, we empirically used the combination of MSE
and SSIM as the loss function to optimize the network, and evaluated the image quality by PSNR and
SSIM. The choice of the loss function and image metrics may not be the optimal to capture the visual
quality for PAT imaging. Third, we only studied the reflection artifacts under different noise levels and
a simple variable sound model, other more complicated conditions such as limited views and more
complicated variable sounds can be surely addressed by extending the proposed network.

34



Appl. Sci. 2019, 9, 2615

TR ATR� ATR Landweber DL

0

10

20

30

40
P
S
N
R

TR ATR� ATR Landweber DL

0 2

0 4

0 6

0 8

1 0

S
S
IM

TR ATR� ATR Landweber DL

0

10

20

30

40

P
S
N
R

TR ATR� ATR Landweber DL

0 2

0 4

0 6

0 8

1 0

S
S
IM

TR ATR� ATR Landweber DL

0

10

20

30

40

P
S
N
R

TR ATR� ATR Landweber DL

0 2

0 4

0 6

0 8

1 0

S
S
IM

TR ATR� ATR Landweber DL

0

10

20

30

P
S
N
R

TR ATR� ATR Landweber DL

0 2

0 4

0 6

0 8

1 0

S
S
IM

TR ATR� ATR Landweber DL

0

10

20

30

P
S
N
R

TR ATR� ATR Landweber DL

0 2

0 4

0 6

0 8

1 0

S
S
IM

Figure 6. The box plots of the image quality evaluated by PSNR and SSIM on the testing set in
a heterogeneous medium. From top row to bottom row: noise increases from 0 to 0.4. Diamonds (�)
indicate outliers.
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TR ATR* ATR Landweber DL IS
Figure 7. Reconstruction in a heterogeneous Medium.

6. Conclusions

In this article, we have proposed a novel DNN to remove the reflection artifacts in reconstructed
PAT images under different noise levels and different media. By directly comparing the proposed
network to popular iterative reconstruction algorithms with simulated PAT data from CT scans,
the results have showed that the proposed network is able to reconstruct superior images over the
conventional iterative reconstructions in typical scenarios in terms of computational efficiency and
noise reduction.

The results can be further strengthened in several aspects. One practical and significant question
is how to make the network robust to potential malignant attacks. It is well known that DL models are
vulnerable to adversarial examples. A more stable training procedure is thus critical to the clinical
application of DL methods. Next, the effectiveness and efficiency of the network can be further
improved for constrained resources and cloud-end processing. Some other factors, such as limited
view, acoustic attenuation, and fluctuation of sound speed, can greatly impact the quality of PAT
images. It would be interesting to extend the DL approach to these situations as well.
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Abbreviations

The following abbreviations are used in this manuscript:

PAT Photo-Acoustic Tomography
TR Time Reversal
ATR Averaged Time Reversal
DL Deep Learning
CT Computed Tomography
CNN Convolutional Neural Network
PSNR Peak Signal-to-Noise Ratio
SSIM Structural Similarity
FDTD Finite Difference Time Domain
CFL Courant–Friedrichs–Lewy
MSE Mean-Squared Error
ASIR Adaptive Statistical Iterative Reconstruction
HU Hounsfield unit

Appendix A. Artifacts Correction by Iterative Algorithms

In this appendix, we describe the principles of the averaged time reversal and the adjoint method
in more details. Interested readers are referred to [8,14] for the accurate and complete exhibition.

Appendix A.1. Averaged Time Reversal

The averaged time reversal method is proposed in [12] as a remedy to the conventional TR to
remove the reflection artifacts in the latter. The essential improvement comes from the introduction of
an averaging process to the measured data before reversing the time. The rational, roughly speaking,
is that artifacts generated by acoustic reflections have either positive amplitude or negative amplitude,
depending on the number of times they touch the boundary. A suitable averaging process along the
time direction is thus able to annihilate reflected artifacts with opposite signs. The process can be
viewed as a pre-conditioning to the TR. To be a bit more precise, let Λ be the linear operator

Λ : p0 �→ u|[0,T]×∂Ω (A1)

where u is the solution of the forward model (1). In other words, Λ sends the initial pressure to
the measured data. This is a linear operator that is completed determined by the form of the
partial differential equation in (1). If the forward model is discretized, Λ would just be a matrix.
Reconstructing the initial pressure from the ultrasound signals amounts to inverting the matrix Λ.
Direct inversion is normally impossible due to the large dimensionality of this matrix. Instead, it is
shown in [12] that one can introduce an averaged time reversal process A such that the initial pressure
p0 can be reconstructed iteratively from the measured data u|[0,T]×∂Ω by the relation
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p0 =
∞

∑
k=0

(AΛ − Id)kA(u|[0,T]×∂Ω) (A2)

where Id is the identity operator (or identity matrix if the forward model is discretized). This algorithm
is known as the averaged time reversal (ATR). It is mathematically proved in [12] that ATR can correct
the reflection artifacts caused by conventional time reversal methods. It is one of the baseline methods
we used in the paper to compare with the DL reconstruction.

Appendix A.2. Landweber Iteration

The Landweber iteration, also known as the Landweber algorithm, is an algorithm proposed
in the 1950s by Landweber [56] to solve ill-posed linear systems of the form Λx = b where Λ is
a (not necessarily square) matrix. It is a regularization method that can be viewed as iteratively solving
the unconstrained optimization problem

min
x

1
2
‖Λx − b‖2

2, (A3)

which leads to the update scheme

xk+1 = xk − γΛ∗(Λxk − b), k = 0, 1, 2, . . . (A4)

where Λ∗ is the adjoint operator of Λ and γ is a regularization parameter. It is well known the
Landweber iteration is convergent if 0 < γ < 2

σ2
1

where σ1 is the largest singular value of Λ, and it

converges to the projection of the true solution on the orthogonal complement of the null space of Λ,
see the analysis in [14] for instance. In our case, the vector x is the discretized version of p0, and the
vector b is the discretized version of the measured data u|[0,T]×∂Ω. The iteration exhibits the effect of
semi-convergence: it converges before reaching a certain number of iterations but then diverges once
beyond. The optimal value of γ and the stopping rule are largely empirical. Some guiding principles
exist, but we do not intend to discuss them in this article.
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Abstract: Photoacoustic (PA) tomography (PAT) has potential for use in brain imaging due to its rich
optical contrast, high acoustic resolution in deep tissue, and good biosafety. However, the skull often
poses challenges for transcranial brain imaging. The skull can cause severe distortion and attenuation
of the phase and amplitude of PA waves, which leads to poor resolution, low contrast, and strong
noise in the images. In this study, we propose an image reconstruction method to recover the PA
image insider a skull-like scattering layer. This method reduces the scattering artifacts by combining
a correlation matrix filter and a time reversal operator. Both numerical simulations and PA imaging
experiments demonstrate that the proposed approach effectively improves the image quality with
less speckle noise and better signal-to-noise ratio. The proposed method may improve the quality of
PAT in a complex acoustic scattering environment, such as transcranial brain imaging.

Keywords: photoacoustic imaging; correlation matrix filter; time reversal operator

1. Introduction

Photoacoustic (PA) tomography (PAT) is a noninvasive and nonionizing imaging technique that
combines rich optical contrast and high ultrasonic resolution in deep tissue [1–4]. During the PAT
imaging process, the biological tissue is irradiated by a laser pulse, and then optical absorbers in the
tissue absorb electromagnetic energy and generate ultrasound due to rapid thermoelastic expansion.
The ultrasound signal is then detected by the ultrasound transducer array arranged outside the tissue.
Finally, images with optical absorption contrasts are extracted from the detected PA signal using
a reconstruction algorithm. PAT breaks through the optical diffraction limit and obtains images of
tissue at depths of 5–6 cm with good acoustic spatial resolution. Therefore, PAT has application
potential for high-quality in vivo vascular structure imaging [5], investigations of breast tumor
tissue [6–9], vasculature visualization [10,11], small animal whole-body imaging [12,13], osteoarthritis
assessment [14,15], drug delivery monitoring [16], and hemodynamic functional imaging [17].

One promising application of PAT is high-resolution in vivo brain imaging, which is important
in neurophysiology, neuropathology, and neurotherapy. In comparison with the often-used brain
imaging modalities, including X-ray computerized tomography (CT) and magnetic resonance imaging
(MRI), PAT is inexpensive and has good spatial resolution and temporal resolution [1,2]. X-ray CT
involves exposure to ionizing radiation, but PAT is nonionizing and safer. PAT can provide structural
images as well as functional images of the brain.

The classical image reconstruction algorithms used in PAT are usually based on the principle of
coherent beamforming, which relies on an assumption of homogeneous media. In a scene with strong
scattering, the coherence in signals is destroyed by the randomness of scattering, leading to a markedly
decreased penetration depth and significant degradation in image quality [18]. This limitation hinders
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the application of PAT in a wider range of scenarios, such as transcranial PA brain imaging within the
skull bone. The skull bone has much higher acoustic impedance than soft tissue. A severe acoustic
impedance mismatch could cause amplitude and phase distortion, and decrease the resolution and
contrast of the transcranial imaging, significantly reducing the brain image quality [19–22]. Traditional
approaches to overcome the limitation of acoustic scattering have mostly relied on a priori knowledge
of the properties of tissue inhomogeneity or need to involve additional acoustic measurements,
evidenced in the statistical reconstruction method [23], coherence factor optimization [24], and the
interferometry method [25]. For a more general situation, a universal reconstruction algorithm with
better performance is still required for acquiring high-quality images in scattering media.

In this study, we created an image reconstruction method that combines a correlation matrix filter
and a time reversal operator using an annular transducer array. After dividing the circular array into
multiple sections, each sector array can be approximated as a linear array via phase and amplitude
compensation. Then, using the correlation characteristics of the direct waves, a correlation full-matrix
filter can be applied to separate the direct waves from the scattering waves [26–29]. Finally, the imaging
results of each section based on the time reversal method are superimposed to further improve the
image quality. Both numerical simulation and phantom experiments were employed to validate the
proposed method and examine its potential for extracting PA images inside a skull-like scattering layer.

2. Methods

As shown in Figure 1, an imaging target is placed in the region of interest (ROI), which is
surrounded by a skull-like scattering layer. Under the illumination of the pulse laser, the optical
absorber will radiate ultrasound waves to the surrounding medium as a result of the PA effect. After
the acoustic waves propagate through the random scattering layer, a passive ultrasound annular array
with 576 elements detects the ultrasound signal. The annular array is then divided into NS sectors for
data processing and imaging. Each sector has N = 45 elements and can be approximated as a linear
array so that the filtered imaging method proposed in our previous studies can be applied for the
image reconstruction [26,27]. For each sector array, the recorded N-channel signals are arranged in a
vector H(t) = [H1(t),H2(t), . . . ,Hn(t), . . . ,HN(t)] where n = 1,2, . . . ,N.

Figure 1. The schematic of the scenario considered in this study. For any target placed in the region of
interest (ROI) within a scattering layer, its propagation distances to the nth transducers of a sector array,
and the equivalent linear array are l1 and l2, respectively. The corresponding delay is then given by dn

= (l1 − l2)Fs/c, where c is the sound speed and Fs is the sampling frequency.
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The sector array can be approximated to a linear array by calculating the corresponding delay.
For any imaging target, its propagation distances to the nth transducers of the two arrays are l1 and l2,
respectively. The corresponding delay is dn = (l1 − l2)Fs/c, where c is the sound speed and Fs is the
sampling frequency. The time domain signals for the linear array are then J(t) = [H1(t − d1),H2(t − d2),
. . . ,Hn(t − dn), . . . ,HN(t − dN)]. The signals can be written in their frequency domain by applying a
Fourier transform to P(T,f ) = [P1(T,f ),P2(T,f ), . . . ,Pn(T,f ), . . . ,PN(T,f )], where Pn(T,f ) is the short-time
Fourier transform of the nth channel signal in the time window [T − Δt/2, T + Δt/2], T is the time
of flight, and Δt is the width of the window. P(T,f ) contains both the direct wave PD(T,f ) and the
scattering wave PS(T,f ). When the concentration of the scatterers is sufficiently high, the scattering
wave occupies a dominant position and the imaging quality is greatly degraded due to the randomness
of the scattering process.

To reduce the influence of the randomly scattering, a matrix filtering method can be applied to
extract the direct wave from the received signals of a linear array [26]. Firstly, a response matrix can be
constructed as:

K = PPT = PD(PD)
T

︸����︷︷����︸
Coherence,KC

+ [PD(PS)
T
+ PS(PD)

T
+ PS(PS)

T
]︸�������������������������������������︷︷�������������������������������������︸

Random,KR

(1)

Depending on whether or not contain the term PS, the matrix K can be divided into two parts: KR

and KC, where KR is a random term due to the random nature of the scatterer distribution and the
scattering paths and KC is independent of the scattering paths and shows a deterministic relation of
the phase between its elements along the antidiagonal:

βq =
kC

m−q,m+q

kC
m,m

= exp[ jk(qw)2/Z] (2)

where k is the wave number, w is the pitch size, and Z is the depth of the time window. The phase
relation along the antidiagonal only depends on the channel position qw, indicating that the direct
waves from the optical absorbers manifest themselves as a particular coherence on the antidiagonals of
the matrix.

Using the coherent property, we can extract the direct wave by the following steps. Firstly, the
original matrix K is rotated 45◦ counterclockwise so that the coherent property occurs on the columns.
The elements are divided into two parts based on their symmetry characteristic and are expanded
to two new matrices: A1 and A2 [26]. The matrices A1 and A2 are called indifferently A as they are
filtered in the same way. A filtering matrix F = CC† is then applied to extract the coherent part from
matrix A as: AF = FA = FAC + FAR, where C = [exp(jky2

1/2Z), . . . , exp(jky2
u/2Z), . . . , exp(jky2

NA
/2Z)]

with u = 1, 2, . . . , NA, and yu = [xm + xn+(NA − 1)w] is the characteristic spacing of direct waves.
The coherent part remains unchanged during the filtering process, as FAC = AC and the random part
decreases by a factor

√
(N + 1)/2. Finally, a filtered matrix KF with the original coordinate can be

obtained by applying the inverse process of the first step to matrices A1
F and A2

F.
Using a time reversal operator, we can recover the image of the optical absorbers from the matrix

KF corresponding to the single sector area [28,29]. The singular value decomposition is applied to the
matrix KF = UFΛFVF†, and each optical absorber is mainly associated with one non-zero singular λi

F

contained in diagonal matrix Λ [30]. Therefore, by numerically back-propagating the singular vector,
the image of the ith singular valued at a depth of Z = cT can be achieved by the time reversal operator Ii
= λi

F|G × V|, where G with the component gm= exp( jkrm)/
√

rm is the propagating operator between
the array and the focal plane in a homogeneous media, and rm is the distance between the mth element
in the array and the point in the focal plane. By superimposing the imaging results of multiple sectors,
we can further improve the imaging quality and reduce the influence of the inhomogeneous aberrating
effect of the scattering layer. For the wanted imaging point A, we calculated the image value Im

A for
all the linear arrays with m = 1, 2, . . . , Ns. Taking the first sector area as an example, the image value
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for points corresponding to the array can be obtained by applying the time reversal operator. If point
A is within the imaging area, we can find two imaging points, B and C, closest to point A in the focal
plane and then perform a weighted evaluation based on the distance from point A to points B and C:

IA
1 =

IB
1 dAC + IC

1 dAB

dAC + dAB
(3)

where dAC and dAB represent the distances between A, B and A, C, respectively. If point A is outside the
imaging area, the imaging value is then recorded as 0. When we calculate the imaging value of point A
for all sector areas, its final value is the result of taking the summation and average to all the non-zero
values: IA =

∑Ns
m=1 IA

m/(N s − Nz), where NZ is the number of zero values. As such, we can fully use
the valid information received by all the transducers of the annular array for image reconstruction of
each point in the ROI.

3. Results

3.1. Numerical Simulation

Numerical simulations were used to validate the proposed method. The simulation is depicted in
Figure 2. The radius of the annular array was set to Ra = 40 mm, and there were N = 576 elements in the
array. The acoustic scattering layer consisted of 120 acoustic scatterers with a diameter of d = 0.8 mm.
The inner and outside radius of the scattering layer were R1 = 10 mm and R2 = 15 mm, respectively.
The sound velocity and the density of these scatterers were 5200 m/s and 7,870 kg/m3, respectively. The
sound velocity of the surrounding medium was 1500 m/s, the density of which was 1,000 kg/m3, which
is close to that of soft tissues or water. Therefore, the scatterers had a severe impedance mismatch
with the background media, which resulted in strong scattering. The imaging targets were five optical
absorbers with a diameter of d = 0.8 mm in the ROI within the scattering layer. The coordinates of
these targets were (−2,−2), (−2,2), (2,−2), (2,2), and (0,0). Under the illumination of the laser pulse,
these optical absorbers in the scattering layer emitted ultrasonic pulses with a central frequency of 2.0
MHz and a −3 dB bandwidth of 1.26–2.68 MHz to the surrounding medium. The PA signals were
subsequently detected by the annular array enclosing the region of interest. The PA signals awee
sampled with a frequency of 40 Mhz. The imaging targets had the same sound velocity and the same
density as the scatterers.

Figure 2. The schematic of the scenario of the simulation. Five identical optical absorbers with a
diameter of d = 0.8 mm are placed in the ROI within a scattering layer. The inner and outside radius of
the scattering layer are R1 = 10 mm and R2 = 15 mm, respectively. The ultrasound signal is detected by
an annular array with a radius of Ra = 40 mm.
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Figure 3 depicts the results of the simulation with the scattering layer. Figure 3a illustrates
the typical PA signals detected by one transducer. The measured broadband signal was partly
overwhelmed by the noise and the amplitude was unstable. The PA signals detected by all transducers
are shown in Figure 3b to visualize the effect of the scattering layer on the received signals, where the
gray dotted line corresponds to the results in Figure 3a. The coherence of the signals was broken by
the randomness of the scattering. The presence of a scattering layer inevitably causes a drop in the
image quality.For the sake of comparison, Figure 3c illustrates the imaging results reconstructed by the
classic delay-and-sum (DAS) beamforming method. As shown, for the DAS beamforming method, the
image reconstructed in the case with a scattering layer (Figure 3c) suffered from low resolution, and
the background showed strong noise. As a result, the contrast between the targets and the background
decreased distinctly. Figure 3d depicts the image recovered by the time reversal method combined
with a correlation matrix filter. The image shows good contrast, as the background noise has been
significantly reduced after filtering.

Figure 3. Simulative results. (a) The detected photoacoustic (PA) signals by a single transducer. (b)
The detected PA signals by all transducers. (c) The image reconstructed by the delay and sum (DAS)
beamforming method. (d) The image reconstructed by the proposed matrix filtering method.

We used the signal-to-noise ratio (SNR) and the full width at half maximum (FWHM) of the
targets’ image to quantify the image quality. The SNR is defined as the ratio of the mean signal intensity
in the signal area and the mean noise intensity in the background area. We defined the area inside the
circles with a diameter of 0.8 mm (equal to the actual size of the targets) at the locations of the five
targets as the signal area and the area outside as the background area. The averaged FWHM along
the X and Z axes of all targets was calculated to quantify the degree of the distortion. For the results
in Figure 3c, the SNR of the image was 17.2 dB, and the averaged FWHM along the X and Z axes
were 1.42 mm and 2.6 mm, respectively. The difference between the FWHM along the X and Z axes
were caused by the non-uniform distribution of the scatterers in the scattering layer. The SNR of the
image in Figure 3d increased to 21.0 dB due to the matrix filter. In addition, the FWHM along the X
and Z axes were 0.87 mm and 1.63 mm, respectively, which are both closer to the actual size of the
targets. The results demonstrate that the matrix filtering method can more accurate depict the shape
and position of the targets in the ROI.

3.2. Experimental Study

We also performed an experiment on a vessel shape source to validate the performance of the
proposed method. A schematic diagram of the experimental system is provided in Figure 4a. A
vessel-shaped source placed in the ROI was irradiated by a Q-switched Nd: YAG pulse laser with a
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wavelength of 532 nm. The pulse width was about 8 ns. The ultrasonic waves were detected by a 5 MHz
central frequency line focused ultrasonic transducer (V310-SM, PANAMETRICS-NDT) with a −6 dB
bandwidth of 4.4 MHz, then amplified (SA-230F5, NF) and sampled (PCI-5105, NI) at a sampling rate
of 60 Mhz. Under the control of a rotary stepper motor, the transducer scanned clockwise around the
sample with a radius of 4.3 cm and a step of 2◦. It is equivalent to an annular array with 180 elements.

Figure 4. PA imaging of a vessel-shaped source experiment. (a) Schematic diagram of the PA imaging
experimental setup. (b) Photo of the sample.

Figure 4b is a picture of the imaging sample. A vessel-shaped source made of hair was embedded
in agar for fixing, with an agar to water ratio of about 1.2%, and the sound velocity was measured as
1,460 m/s at 25 °C. To mimic the effect of the skull on brain imaging, we placed the sample in a glass
beaker. The glass has a thickness of about 1.0 mm, and the corresponding speed of sound and density
were 2,730 m/s and 2,500 kg/m3, respectively. The acoustic impedance of the glass beaker was much
higher than that of the agar and the surrounding water. It caused strong acoustic scattering of the PA
waves, as would the skull. Serious acoustic impedance mismatch between the glass beaker and the
surrounding media could result in a significant drop in image quality.

For comparison, the images recovered by the DAS method and the proposed method in the cases
with and without the beaker are shown in Figure 5. Figure 5a,b show the imaging results of the DAS
method and the proposed method without the beaker. In both cases, the pattern is clear enough that
the shape of the source is distinguishable.

Figure 5. Reconstructed images of the vessel shape source in the ROI. Reconstructed image of the
sample without the beaker (a) by the DAS beamforming method and (b) by the proposed matrix
filtering method. Reconstructed image of the sample with the beaker (c) by the DAS beamforming
method and (d) by the proposed matrix filtering method.

However, for the sample in a beaker, the image recovered by the DAS method (Figure 5c) shows
low contrast and strong background noise. The shape of the source is hard to distinguish. In the
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imaging result produced by our proposed method, we obtained a clear pattern of the vessel shape
source with high contrast, which is similar to the result in Figure 5b. We conclude that the proposed
method can effectively reduce the degradation of imaging quality caused by the beaker, and the
experiments validated the performance of the proposed method.

4. Discussion and Conclusions

In summary, we developed an image reconstruction method for PAT. This method combines a
correlation matrix filter and a time reversal operator. We applied this method to reconstruct PA images
inside a scattering layer. Both numerical simulation and phantom experiments were used to examine
the performance of the proposed method. The simulation quantitively validated that the proposed
imaging method provides higher imaging quality in complex scattering media compared with the
classic beamforming method. The advantages are reflected in better a SNR and FWHM.

Though demonstrating potential in preclinical and clinical applications, PAT is still in its early
age of development. Among the several limitations preventing PAT’s application, the main one is the
amplitude and phase distortion of the received signals caused by the randomly distributed scatterers.
In this research, we proposed an image reconstruction method to reduce the negative effect of the
scattering waves by separating the direct waves from the received signals. With the filtered signals,
PA images can be optimized, especially the resolution and the contrast between the targets and the
background. This work might be valuable for understanding the physics of the interaction of sound in
the complex media. The proposed method may potentially be used for acquiring high-quality images
of the brain through the skull.

In this study, the experiments were performed by a point-by-point scanning with a single
ultrasound transducer. Point-by-point scanning is not fast enough to meet the imaging requirements
in pre-clinical or clinical scenarios. This problem can be solved by using a circular ultrasound array,
which is what we are preparing to study in our next work. Additionally, as future work, we will
evaluate the proposed method in an in vivo study on a small animal.

Author Contributions: R.W. designed the simulations, employed the experiments, analyzed the results, and
wrote the paper. Z.L. assisted in both the experiments employment and writing of the paper.

Funding: This research was funded by the National Key R&D Program of China (2016YFC0102300), National
Natural Science Foundation of China (NSFC) (11834008, 11874217), Fundamental Research Funds for the Central
Universities and Natural Science Foundation of Jiangsu Province (No. BK 20181077).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Wang, L.V. Multiscale photoacoustic microscopy and computed tomography. Nat. Photonics 2009, 3, 503.
[CrossRef] [PubMed]

2. Zhang, C.; Zhou, Y.; Li, C.; Wang, L.V. Slow-sound photoacoustic microscopy. Appl. Phys. Lett. 2013,
102, 163702. [CrossRef] [PubMed]

3. Wang, L.V.; Hu, S. Photoacoustic Tomography: In Vivo Imaging from Organelles to Organs. Science 2012,
335, 1458–1462. [CrossRef] [PubMed]

4. Wang, L.V.; Yao, J.J. A practical guide to photoacoustic tomography in the life sciences. Nat. Methods 2016,
13, 627–638. [CrossRef]

5. Wang, X.D.; Pang, Y.J.; Ku, G.; Xie, X.Y.; Stoica, G.; Wang, L.V. Noninvasive laser-induced photoacoustic
tomography for structural and functional in vivo imaging of the brain. Nat. Biotechnol 2003, 21, 803–806.
[CrossRef] [PubMed]

6. Kang, J.; Kim, E.-K.; Kwak, J.Y.; Yoo, Y.; Song, T.-K.; Chang, J.H. Optimal laser wavelength for photoacoustic
imaging of breast microcalcifications. Appl. Phys. Lett. 2011, 99, 153702. [CrossRef]

7. Olafsson, R.; Bauer, D.R.; Montilla, L.G.; Witte, R.S. Real-time, contrast enhanced photoacoustic imaging of
cancer in a mouse window chamber. Opt. Express 2010, 18, 18625–18632. [CrossRef]

49



Appl. Sci. 2019, 9, 2071

8. Staley, J.; Grogan, P.; Samadi, A.K.; Cui, H.Z.; Cohen, M.S.; Yang, X.M. Growth of melanoma brain tumors
monitored by photoacoustic microscopy. J. Biomed. Opt. 2010, 15, 3. [CrossRef]

9. Galanzha, E.I.; Shashkov, E.V.; Kelly, T.; Kim, J.W.; Yang, L.L.; Zharov, V.P. In vivo magnetic enrichment and
multiplex photoacoustic detection of circulating tumour cells. Nat. Nanotechnol. 2009, 4, 855–860. [CrossRef]
[PubMed]

10. Dima, A.; Ntziachristos, V. Non-invasive carotid imaging using optoacoustic tomography. Opt. Express 2012,
20, 25044–25057. [CrossRef]

11. Hu, S.; Wang, L.V. Photoacoustic imaging and characterization of the microvasculature. J. Biomed. Opt. 2010,
15, 011101. [CrossRef]

12. Brecht, H.P.; Su, R.; Fronheiser, M.; Ermilov, S.A.; Conjusteau, A.; Oraevsky, A.A. Whole-body three-dimensional
optoacoustic tomography system for small animals. J. Biomed. Opt. 2009, 14, 8. [CrossRef] [PubMed]

13. Xia, J.; Wang, L.V. Small-Animal Whole-Body Photoacoustic Tomography: A Review. IEEE Trans. Biomed. Eng.
2014, 61, 1380–1389.

14. Sun, Y.; Sobel, E.S.; Jiang, H.B. First assessment of three-dimensional quantitative photoacoustic tomography
for in vivo detection of osteoarthritis in the finger joints. Med. Phys. 2011, 38, 4009–4017. [CrossRef]

15. Xiao, J.Y.; Yao, L.; Sun, Y.; Sobel, E.S.; He, J.S.; Jiang, H.B. Quantitative two-dimensional photoacoustic
tomography of osteoarthritis in the finger joints. Opt. Express 2010, 18, 14359–14365. [CrossRef]

16. Rajian, J.R.; Fabiilli, M.L.; Fowlkes, J.B.; Carson, P.L.; Wang, X. Drug delivery monitoring by photoacoustic
tomography with an ICG encapsulated double emulsion. Opt. Express 2011, 19, 14335–14347. [CrossRef]

17. Yang, S.; Xing, D.; Zhou, Q.; Xiang, L.; Lao, Y. Functional imaging of cerebrovascular activities in small
animals using high-resolution photoacoustic tomography. Med. Phys. 2007, 34, 3294–3301. [CrossRef]

18. Robert, J.L.; Fink, M. Green’s function estimation in speckle using the decomposition of the time reversal
operator: Application to aberration correction in medical imaging. J. Acoust. Soc. Am. 2008, 123, 866–877.
[CrossRef] [PubMed]

19. Kneipp, M.; Turner, J.; Estrada, H.; Rebling, J.; Shoham, S.; Razansky, D. Effects of the murine skull in
optoacoustic brain microscopy. J. Biophotonics 2016, 9, 117–123. [CrossRef]

20. Chen, W.T.; Tao, C.; Liu, X.J. Artifact-free imaging through a bone-like layer by using an ultrasonic-guided
photoacoustic microscopy. Opt. Lett. 2019, 44, 1273–1276. [CrossRef]

21. Jin, X.; Li, C.H.; Wang, L.V. Effects of acoustic heterogeneities on transcranial brain imaging with
microwave-induced thermoacoustic tomography. Med. Phys. 2008, 35, 3205–3214. [CrossRef]

22. Xu, M.H.; Wang, L.V. Photoacoustic imaging in biomedicine. Rev. Sci. Instrum. 2006, 77, 22.
23. Dean-Ben, X.L.; Ntziachristos, V.; Razansky, D. Statistical optoacoustic image reconstruction using a-priori

knowledge on the location of acoustic distortions. Appl. Phys. Lett. 2011, 98, 171110. [CrossRef]
24. Yoon, C.; Kang, J.; Yoo, Y.; Song, T.K.; Chang, J.H. Enhancement of photoacoustic image quality by sound

speed correction: Ex vivo evaluation. Opt. Express 2012, 20, 3082–3090. [CrossRef]
25. Yin, J.; Tao, C.; Liu, X. Photoacoustic tomography based on the Green’s function retrieval with ultrasound

interferometry for sample partially behind an acoustically scattering layer. Appl. Phys. Lett. 2015, 106, 234101.
[CrossRef]

26. Rui, W.; Tao, C.; Liu, X.J. Imaging acoustic sources through scattering media by using a correlation full-matrix
filter. Sci. Rep. 2018, 8, 15611. [CrossRef]

27. Rui, W.; Tao, C.; Liu, X.J. Photoacoustic imaging in scattering media by combining a correlation matrix filter
with a time reversal operator. Opt. Express 2017, 25, 22840–22850. [CrossRef]

28. Aubry, A.; Derode, A. Random Matrix Theory Applied to Acoustic Backscattering and Imaging In Complex
Media. Phys. Rev. Lett. 2009, 102, 4. [CrossRef]

29. Aubry, A.; Derode, A. Detection and imaging in a random medium: A matrix method to overcome multiple
scattering and aberration. J. Appl. Phys. 2009, 106, 19. [CrossRef]

30. Aubry, A.; Derode, A. Singular value distribution of the propagation matrix in random scattering media.
Wave Random Complex 2010, 20, 333–363. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

50



applied  
sciences

Article

3D Photoacoustic Tomography System Based on
Full-View Illumination and Ultrasound Detection

Mingjian Sun 1,2,*, Depeng Hu 1, Wenxue Zhou 1, Yang Liu 2, Yawei Qu 2 and Liyong Ma 1

1 Department of Control Science and Engineering, Harbin Institute of Technology, Weihai 264209, China;
wshdphit@163.com (D.H.); zwxhiter@163.com (W.Z.); maly@hitwh.edu.cn (L.M.)

2 Department of Control Science and Engineering, Harbin Institute of Technology, Harbin 150000, China;
liuyang_6Y6@163.com (Y.L.); qyw198553@163.com (Y.Q.)

* Correspondence: sunmingjian@hit.edu.cn; Tel.: +86-183-6318-0812

Received: 25 March 2019; Accepted: 6 May 2019; Published: 9 May 2019

Abstract: A 3D photoacoustic computed tomography (3D-PACT) system based on full-view
illumination and ultrasound detection was developed and applied to 3D photoacoustic imaging
of several phantoms. The system utilized an optics cage design to achieve full-view uniform laser
illumination and completed 3D scanning with the rotation of a dual-element transducer (5 MHz)
and the vertical motion of imaging target, which obtains the best solution in the mutual restriction
relation between cost and performance. The 3D-PACT system exhibits a spatial resolution on the
order of 300 μm, and the imaging area can be up to 52 mm in diameter. The transducers used
in the system provides tomography imaging with large fields of view. In addition, the coplanar
uniform illumination and acoustic detection configuration based on a quartz bowl greatly enhances
the efficiency of laser illumination and signal detection, making it available for use on samples with
irregular surfaces. Performance testing and 3D photoacoustic experiments on various phantoms
verify that the system can perform 3D photoacoustic imaging on targets with complex surfaces or
large sizes. In future, efforts will be made to achieve full-body 3D tomography of small animals and a
multimodal 3D imaging system.

Keywords: 3D photoacoustic tomography; full-view illumination and ultrasound detection;
photoacoustic coplanar; quartz bowl

1. Introduction

Photoacoustic imaging (PAI) is a non-invasive and non-ionized multimodal biomedical imaging
method based on transient thermoelastic effects of the biological tissue. The principle is that the energy
of pulsed laser light deposited in biological tissue during the process of laser absorption is converted
into an ultrasonic signal which is called the photoacoustic signal through instantaneous thermoelastic
expansion, and the ultrasonic transducer can receive the signal that carries information about the
properties of laser absorption in biological tissue [1–7]. Through the corresponding signal processing
and image reconstruction algorithms, a photoacoustic image reflecting the internal structure and
function of the tissue can be obtained. Photoacoustic imaging effectively overcomes the limitations of
existing pure optical imaging and pure ultrasound imaging, the contrast is based on the absorption
of laser light during the photoacoustic excitation period, while the resolution is derived from the
ultrasonic detection during the photoacoustic emission period. Photoacoustic imaging breaks through
the limit depth of diffusion of high-resolution optical imaging (about 1 mm), and uses laser-generated
ultrasonic waves as a carrier to obtain optical absorption information of tissue [8,9]. It is mainly
suitable for the tissues whose acoustic properties are uniform but optical properties are not. Therefore,
photoacoustic imaging combines the advantages of high contrast characteristics of optical imaging
and high penetration characteristics of ultrasonic imaging, and can provide photoacoustic images
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with high optical contrast and high acoustic resolution at a deeper imaging depth [10]. As a new
generation of biomedical imaging technology, photoacoustic imaging can effectively realize the structure
and functional imaging of biological tissue, which provides an important method for studying the
morphological structure, physiological characteristics, pathological characteristics, and metabolic
functions of biological tissues [11–13].

Scientific research on 3D photoacoustic imaging of small animals has become increasingly
popular in recent years. There have been many 3D photoacoustic tomography (PACT) systems
using different photoacoustic coupling methods, optical transmission models [14], and ultrasonic
detection designs [15–20]. However, due to the limited detection angle of ultrasonic transducers,
linear array PACT [16–19], spherical array PACT [20,21], arc-shaped array PACT [22], and the half-ring
multispectral optoacoustic tomography (MSOT) [23] generally need to obtain complete photoacoustic
signal via spatial multiplexing. In photoacoustic tomography, uniform illumination helps to obtain
more comprehensive light absorption information of the imaging cross section [24]. The traditional
circular scanning mainly irradiates the laser beam from the top to the bottom of the object [25–28],
which results in the loss of deeper tissue structure information, while at the same time, the scattering
effect of the light cannot effectively illuminate the irregular section and affects the imaging effect. From
the perspective of the cost, the array ultrasonic transducer with high performance makes it not only
expensive, but also a huge challenge for transducer manufacturing and data acquisition. Once formed,
its scanning radius cannot be adjusted according to the size of the imaging targets, which limits the
scope and flexibility of its application. There are also some photoacoustic tomography systems that
acquire photoacoustic signals point by point through a single-element transducer carried by a rotary
motor, whose advantages are their low cost and easy operability. The ultrasonic transducer performs a
rotary motion at a predefined speed and completes the acquisition of the photoacoustic signal of the
imaging section during the continuous motion process, the continuous scan of data acquisition is faster
than a stop-and-go scan [29–31]. In addition, in order to improve the resolution of the photoacoustic
imaging system, a negative lens can be mounted on the surface of the ultrasonic transducer to
increase the receiving angle [32,33]. Due to the large field-of-view of the virtual point ultrasound
transducer, some research has applied virtual point ultrasonic transducers to a photoacoustic imaging
system [34–36]. Nie LM et al. developed a virtual point ultrasonic transducer with a large receiving
angle and applied it to the photoacoustic tomography system. The signal-to-noise ratio of the system
is greatly improved compared with the negative-lens transducers [35]. Hao F. Zhang et al. use a
synthetic-aperture focusing technique based on the virtual point detector to obtain a high-resolution
photoacoustic image of hemoglobin oxygen saturation in living mice [36].

In this paper, a 3D photoacoustic imaging system based on “dual-element” ultrasonic transducer is
proposed under the premise of full-view imaging and uniform illumination. The system contains 1-to-8
fan-out fiber bundles and an optical cage design, which delivers approximately uniform laser radiation
toward the imaging phantom and provides an exciting source for completing the photoacoustic
tomography of each B-scan (B-scan refers to a cross section of photoacoustic tomography in this
paper). The rotary motor carries two customized dual-foci virtual point ultrasonic transducers for
photoacoustic data acquisition in the process of rotary motion, while the precise vertical stepper
motor drives the imaging target to do vertical movement to complete the 3D scanning of it. The
dual-foci virtual point ultrasonic transducer can expand the signal acceptance angle in the short
focusing direction because of its large field of view, such that a relatively complete photoacoustic
signal can be acquired with fewer detection units, which reduces the cost of the photoacoustic imaging
system and accelerates the photoacoustic imaging speed. In the long focusing direction, the narrow
sound beam and the annular illumination beam are coupled to form a photoacoustic coplanar mode,
which improves the signal to noise ratio of the photoacoustic signal. The pattern of 360◦ circular
laser radiation provides uniform illumination at all angles around the imaging cross section, which
facilitates photoacoustic tomography of imaging phantom with irregular surfaces. Furthermore, the
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feasibility and operability of the 3D-PACT system is validated through systematic testing and 3D
photoacoustic experiments on a variety of phantoms.

2. Methods

2.1. Introduction to the 3D-PACT System

Figure 1 shows a schematic of the 3D-PACT system. The system consists of four parts, which
are optical illumination, photoacoustic signal acquisition, data processing, and human computer
interaction. A pulsed Nd:YAG laser source (Vigour-A-100S, Ziyu, Anshan Liaoning Province, China)
with the wavelength of 532 nm was used for the optical illumination. The nanosecond pulsed laser
with pulse repetition rate of 20 Hz could provide a laser beam with the pulse width of 5 ns. The laser
beam was coupled into the multimode fiber (Ceram Optec, Bonn, Germany, damage threshold was
9.1 mJ/mm2) located in the fiber coupler after collimating and correcting the optical path. Furthermore,
the multimode fiber was divided into eight branches at the output end that were evenly distributed
around the water tank. After testing, the coupling ratios of the eight sub-fibers were 9.35%, 9.25%,
9.33%, 9.34%, 9.40%, 9.43%, 9.44%, and 9.41%, respectively, and the total coupling ratio of the fiber
was 74.95%. The laser beam out of each branch passed through a convex lens and a plano-convex
cylinder lens to form a rectangular strip with a thickness of about 2 mm, as shown in Figure 2a,b, which
shows the top view and the front view of the optical path, respectively. The convex lens collimates
and corrects the laser beam, while the plano-convex cylinder lens focused the beam in the direction of
thickness. Eight laser beams separately passed through the water tank and the transparent quartz
bowl, which were placed as shown in Figure 2b, eventually converging in the middle of the tank to
form a bright circular area that irradiated the surface of the sample. According to the experimental
verification, the light transmittance of the water tank used in this system was about 98%, which was
due to the acrylic material that had excellent light transmittance.

 
Figure 1. Schematic of the 3D-PACT system.
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Figure 2. (a) Top view of the core optical path, (b) front view of the core optical path,
(c) ultrasonic transducer and its size parameters, and (d) installation method and position diagram of
ultrasonic transducer.

It is worth mentioning that this system was the first photoacoustic tomography system for
innovatively using the structure of quartz bowl with the characteristics of light transmission and
ultrasonic reflection for maintaining the photoacoustic coplanarity of the system while collecting
photoacoustic signals. This means that the circular spot was in the same layer as the detection plane of
ultrasonic transducer. The slim photoacoustic coplanar configuration eliminated noise from nearby
planes, and enables optimal photoacoustic signal excitation and detection. The light transmittance and
ultrasonic reflection efficiency are two critical parameters for a quartz bowl, which were 88.25% and
202.465%. The signal generated by the sample was reflected by the quartz bowl and detected by the
dual-foci virtual point ultrasonic transducer (Olympus, Tokyo, Japan) placed vertically above the bowl
with a 5 MHz central frequency and an 18 mm diameter of the detection plane, as shown in Figure 2c.
The surface of the dual-foci transducer adopted the method of dual concave crafting in order to achieve
foci in two perpendicular directions, respectively indicated by the letters A and B in Figure 2c. The
focal length was 11.25 mm and the directional angle was 100◦ in direction A, while in direction B, the
focal length was about 90.0 mm and the directional angle was 11.4◦. It can be concluded from the above
parameters that the large receiving angle based on its virtual point in direction A contributed to sparse
sampling, while the long focal length in direction B formed a long focal zone (≈52 mm) that determined
its applicability for large imaging targets. The installation position of the ultrasonic transducer is
shown in Figure 2d. In the 3D-PACT system, two custom-built virtual-point ultrasonic transducers
were evenly distributed on the motor rotary table. The rotating motor performed a circular motion
according to the preset speed, and the high-speed data acquisition device could complete the collection
of the photoacoustic signal in the process of the motor rotation according to the timing trigger signal.

During the whole working process, the photoacoustic signals were obtained through rotating
the swivel table 180◦ driven by a rotary stepping motor and moving the sample 0.1 mm vertically
at a time driven by a vertical stepper motor. After amplification (Ultrasonic Transceiver, 5073PR,
Olympus, Tokyo, Japan) and digitization (Data Acquisition card, ATS330, AlazarTech, Canada),
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the raw photoacoustic data was be sent and stored in a personal computer (PC) to reconstruct the
3D photoacoustic image. The detection signal under the large receiving angle held by the virtual
point-based ultrasonic transducer used in this system could provide more sample information, which
contributed to recovering images with less data. In the reconstruction algorithm, the shape of the sample
could be reconstructed by the improved back-projection reconstruction algorithm. The photoacoustic
system adopted LabVIEW_2014 to implement the overall control system design, which realized the
fully automatic man-machine interaction.

2.2. The Reconstruction Algorithm of the 3D-PACT System

According to the principle of photoacoustic imaging, the homogeneous wave equation can be
formulized as:

(∇2 − 1
c2
∂2

∂t2 )p(r′, t) = −p0(r)
dδ(t)

dt
(1)

where c is the velocity of sound and p is the initial sound pressure generated by the energy deposition
of the pulsed laser. By solving the above wave equation, the photoacoustic signal detected by the
ultrasonic transducer at any time t and any position r′ is obtained, which can be expressed as:

p(r′, t) =
∂
∂t
[

1
4πc3t

∫
dr · p0(r) · δ(t− |r′ − r|

c
)] (2)

The distribution of the original photoacoustic signal can be recovered by using the back-projection
reconstruction algorithm [37–39]. Furthermore, the traditional back-projection reconstruction algorithm
is shown in Equation (3):

p0(r) =
1

4πc3

∫
dS

1
t
[
p(r′, t)

t
− ∂p(r′, t)

∂t
]|t=|r′−r|/c (3)

With the development of the traditional back-projection reconstruction algorithm, a reconstruction
algorithm of a ring-shaped array photoacoustic image based on a sensitivity factor is proposed in
this study. The photoacoustic signals collected by the transducer were back-projected to each pixel
on the arc established by time in the imaging area, which is illustrated in Figure 3a as a schematic
diagram. The aforementioned virtual point ultrasonic transducer has a large signal receiving angle
(100◦, corresponding to the angle Φ in the figure), and the transducer is relatively sensitive to the
central region of its receiving scope. Therefore, a variable sensitivity factor S(ψ) was introduced in the
algorithm of image reconstruction, and it decreased with the increase of ψ, which is the angle between
the connecting line of the pixel and probe and the center line of the detection area. In the process of
algorithm implementation, the basic Equation (4) needed to be discretized first:

p0(r) =
n∑

i=1

[p(r′′, t) − t
∂p(r′, t)
∂t

]|t=|r′′−r|/c (4)

where r′′ is a distance parameter introduced in the process of discretization. Taking the angle of the
receiving signal of the ultrasound probe into account, the back-projection reconstruction algorithm
based on sensitivity factor is proposed and can be expressed as:

p0(r) =
n∑

i=1

S(ψ)(r,i)[p(r
′′, t) − t

∂p(r′, t)
∂t

]|t=|r′′−r|/c (5)
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Figure 3. (a) A 2D schematic of the improved back-projection reconstruction algorithm, and (b) 3D
photoacoustic image reconstruction.

In order to perform the 3D image rendering, a large number of B-scans were loaded into Amira
5.4.3 to be superimposed and processed, as shown in Figure 3b.

3. Results

3.1. Performance Test of the 3D-PACT

3.1.1. Feasibility Verification of Quartz Bowl in the System

First of all, the photoacoustic experiments were carried out in the ultrasonic transmission mode
and ultrasonic reflection mode to verify the feasibility of the quartz bowl. The schematic diagrams of
the two experimental devices are shown in Figure 4a,b, respectively. Black tape was selected as the
target due to the strong laser absorption. The energy at the fiber exit was around 100 μJ. The energy E
in Table 1 refers to the laser energy of the imaging target surface.

Figure 4. (a) Schematic diagram of photoacoustic imaging device in ultrasonic transmission mode.
(b) Schematic diagram of photoacoustic imaging device in ultrasonic reflection mode.

The ultrasonic reflection efficiency H of the quartz bowl is defined as the ratio of the photoacoustic
signal amplitude in the above two signal acceptance modes in the research. The specific expression is:

H = Gre f /Gtrm (6)
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where Gref is the signal amplitude per microjoule laser energy in the ultrasonic reflection mode and Gtrm

is the signal amplitude per microjoule laser energy in the ultrasonic transmission mode. Furthermore,
Gtrm was about 0.01232 V/μJ, found by analyzing the photoacoustic signal obtained from photoacoustic
experiment in ultrasonic transmission mode. The quartz bowl was divided into eight areas (Q1–Q8),
and the quartz bowl’s ultrasonic reflection efficiency was tested after subtracting the light attenuation
of each area.

Table 1. The ultrasonic reflection efficiency of the quartz bowl.

Areas E (μJ)
Mean of Signal

Amplitude P (V)
Gref = P/E (V/μJ) H = Gref/Gtrm

Q1 88.7614 2.236 0.02519 204.46%
Q2 88.3206 2.214 0.02507 203.49%
Q3 88.0611 2.183 0.02480 201.30%
Q4 88.1574 2.195 0.02490 202.11%
Q5 88.2163 2.222 0.02520 204.54%
Q6 88.0742 2.156 0.02448 198.70%
Q7 88.0688 2.174 0.02469 200.41%
Q8 88.3672 2.229 0.02522 204.71%

The ultrasonic reflection efficiency of quartz bowl was between 198.70% and 204.71%, which could
be seen by noting that the amplitude of the photoacoustic signal was nearly doubled in ultrasonic
reflection mode. Experiments showed that the quartz bowl used in the system had a higher efficiency
of ultrasonic signal reflection, which was helpful for the collection of photoacoustic signals in PACT.

3.1.2. Resolution Test of the System

In the resolution test experiment, a black sphere with a diameter of 0.3 mm in 2% agar was used
as an imaging target and photoacoustic signal source, and was placed in the center of the circular
illumination zone, as shown in Figure 5a. Because of its all-black color, the sphere was a good
absorber at the laser wavelength of 532 nm used in the system. In the process of data acquisition, the
sampling rate was 50 MHz, the number of sampling points in a B-scan was 180 and the total laser
energy reaching the surface of the phantom was about 3.2 mJ (the optical fluence of each bundle was
0.7 mJ/mm2). During the experiment, the imaging target, quartz bowl, and the ultrasonic transducer
were all immersed in distilled water to achieve acoustic coupling. The reconstructed photoacoustic
image is shown in Figure 5b. It should be noted that the imaging resolution in this research was
defined as the full width at half maximum of the normalized absorption intensity at the centerline
of photoacoustic image Figure 5b. As shown in Figure 5c, the imaging resolution of the system was
0.31 ± 0.02 mm based on quantitative calculations. In addition, according to the raw data analysis of
the photoacoustic signal shown in Figure 5d, it can be seen that the intensity of the photoacoustic
signal of the imaging target was relatively uniform at the cross section, and there was no phenomenon
showing that the photoacoustic signal was submerged. These also reflected the ability of the system to
maintain the photoacoustic coplanar property.

 
Figure 5. (a) Phantom of resolution test, (b) reconstructed PA image of target, (c) the profile along the
dotted line in (b), and (d) raw data of a B-scan.
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3.1.3. The Superiority of Photoacoustic Coplanar Configuration and Virtual Point Detection

In the photoacoustic tomography system proposed herein, the narrow sound beam of dual-foci
virtual point ultrasonic transducer and the annular illumination beam were coupled to form a
photoacoustic coplanar mode based on the quartz bowl with the characteristics of laser transmission and
ultrasonic reflection. To prove the advantages of the virtual-point ultrasonic detection and photoacoustic
coplanar mode, a comparative experiment was performed using a conventional unfocused ultrasonic
transducer (V310, Olympus, Tokyo, Japan). The results of the comparative experiment are shown in
Figure 6. In the experiment, the black tape was evenly wrapped around a steel column with a diameter
of 25 mm as an imaging phantom, as shown in Figure 6a. The number of sampling points per imaging
section was 90, and it took about 9 s to complete a photoacoustic data acquisition of a cross section.
Figure 6c,d showed the reconstruction images from the dual-foci virtual point ultrasonic transducer
and unfocused ultrasonic transducer, respectively. From a qualitative point of view, it is obvious that
the quality of the reconstructed image with the dual-foci transducer was better than its counterpart in
terms of qualities such as shape-similarity and image-purity.

Figure 6. (a) Phantom of the comparative experiment. (b) Reference standard image by K-Wave
simulation. Reconstructed PA images obtained with (c) the dual-foci transducer and (d) the traditional
unfocused transducer. (e) A-Line plots from dual-foci transducer and traditional unfocused transducer.
(f) Absorption intensity distribution at the centerline of (a–c).

In order to quantitatively analyze the reconstruction quality of Figure 6c,d, the simulation result
of the imaging target (shown in Figure 6b) was used as a reference standard. The photoacoustic raw
data of Figure 6b was obtained using a K-wave simulation, and then reconstructed using the improved
back projection algorithm mentioned above. The performance indicators, such as MSE (mean squared
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error), PSNR (peak signal to noise ratio), and SSIM (structural similarity) [40–42] were calculated
separately according to the following formulae. The MSE index is given as:

MSE =
1

mn

m∑
i=1

n∑
j=1

∣∣∣∣∣∣I(i, j) −K(i, j)
∣∣∣∣∣∣2 (7)

The I(i, j) and K(i, j) in the formula represent the reconstructed image and the reference standard
image, which refer to the reconstructed photoacoustic image and the K-Wave simulation image in this
paper, and the parameters m and n represent the length and width of the image.

PSNR is defined as:
PSNR = 20 ∗ log10(

MAX1√
MSE

) (8)

where MAX1 is the gray level of the image. Lastly, the SSIM is given as:

SSIM(x, y) =
(2μxμy + c1)(2σxy + c2)

(μ2
x + μ

2
y + c1)(σ2

x + σ
2
y + c2)

(9)

where x and y represent the two images for comparison, μx and μy are the mean of the image, σx and
σy represent the variance of image, σxy is the covariance of x and y, c1 = (k1L)2 and c2 = (k2L)2 are
two constants used to avoid division by zero in the formula, L = 2B–1 is the range of pixel values,
and k1 = 0.01, k2 = 0.03 are default values.

The results of the above three performance indexes are shown in the following Table 2.

Table 2. Quality evaluation of reconstructed images.

Index PSNR (dB) MSE SSIM

PA image (c) (Dual-foci transducer) 35.9379 0.0051 0.9995
PA image (d) (Unfocused transducer) 15.2504 0.0350 0.9174

It can be seen form Table 2 that the performance indicators SSIM and PSNR of the reconstructed
images were greatly improved in the case of virtual-point ultrasound detection, while the value of MSE
was obviously reduced. The three performance indicators of the reconstructed photoacoustic image
under the dual-foci virtual point transducer were better than those under the unfocused transducer
that verified the reliability of the proposed system.

The PSNR of the photoacoustic signal from the dual-foci virtual point ultrasound transducer was
35.9379 dB, which was much larger than that of the conventional unfocused transducer (15.2504 dB),
indicating that the dual-foci virtual point transducer had a higher detection sensitivity. Moreover, the
high detection sensitivity of the photoacoustic tomography system is further illustrated in Figure 6e, in
which the blue and red A-line plots corresponding to the raw photoacoustic signal with the dual-foci
virtual-point ultrasonic transducer and the traditional unfocused ultrasonic transducer are depicted,
respectively. The two A-line plots were randomly obtained under the premise of the same scanning
position and sampling points. It can be seen that the photoacoustic signal from the dual-foci ultrasonic
transducer had an amplitude increase of nearly 2.5-fold, which greatly improved the signal to noise
ratio of the photoacoustic image. Figure 6f shows the absorption intensity at the position of the
centerline of the reconstructed image, and it can be found that the absorption intensity of the center
line position of the photoacoustic image obtained by the unfocused ultrasonic transducer was weak
(corresponding to the black dotted line in the Figure 6f), and there are signs that the signal was flooded
by noise.

In addition, the virtual-point ultrasonic transducer has a large receiving angle, which makes
the photoacoustic tomography under sparse sampling possible. In the experiment mentioned above,
although the number of sampling points per cross section was 90, the system with virtual-point
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detection could still perform high quality photoacoustic tomography. However, there were some
artifacts in the photoacoustic image under the traditional unfocused transducer. The experiment proved
that the system proposed in this paper can improve the imaging speed and reduce the burden of data
acquisition device using sparse sampling. The comparative experiments analyzed the photoacoustic
signal acquisition mode based on photoacoustic coplanar structure and virtual-point ultrasound
detection from a quantitative point of view.

3.1.4. Verification Experiment on Large-Scale Imaging

In order to verify the large-scale imaging characteristics of the system, a photoacoustic tomography
experiment was performed using a phantom (a hollow cylinder wrapped with black tape, the diameter
is 52 mm), as shown in Figure 7a. Figure 7b shows a photoacoustic image of a cross section. It can be
seen that the imaging range of the system could be up to 52 mm in diameter.

Figure 7. (a) Phantom of imaging range test, (b) Reconstructed PA image.

To show the 3D photoacoustic imaging in a wide area, four black polyethylene tubes with large
spatial distances were designed as imaging targets, as shown in Figure 8a. Figure 8b is a reconstructed
photoacoustic image of the scanning section indicated by the dotted line in the real figure. Figure 8c is
one of an A-line signal of the B-scan, in which the four signal peaks correspond to the four polyethylene
tubes respectively, and the distance between the signal peaks matches the distance between actual
tubes. Figure 8d is a 3D photoacoustic image of the imaging target, and the quantized spatial distance
is consistent with those shown in Figure 8a,b. It can be seen that the 3D photoacoustic image could
more accurately reflect the information of the phantom, such as shape, size, deformation, and so on.
According to the photoacoustic images of this test experiment, it can be concluded that even if there
was a large space distance, the target shown in Figure 8a could still be clearly imaged.

Figure 8. (a) Phantom of confirmatory experiment on scope, (b) reconstructed PA image of target,
(c) one of an A-line of (b), and (d) 3D photoacoustic image.

3.2. Photoacoustic Experiments of Different Kinds of Phantoms

After completing the test experiment of resolution and the verification experiment of a large
imaging range, a 3D photoacoustic imaging experiment of the vascular phantom was performed
to further verify the feasibility of the imaging system. Two black wires with a diameter of 1 mm
were used to make a phantom that simulates blood vessels in tissue, as shown in Figure 9a. In this
experiment, photoacoustic signals from 180 positions were acquired on each imaging section, that is, a
photoacoustic signal was collected for every 2◦ of rotation of the ultrasonic probe; it took about 18 s
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to acquire the information of a B-scan. The step size of the vertical movement of the phantom was
0.2 mm, and 120 B-scans were scanned during the experiment. Figure 9b shows the photoacoustic
images of three B-scans and the corresponding raw data. It can be seen that the system can accurately
reflect the shape and size of the phantom. Figure 9c shows the three-dimensional photoacoustic image
of the phantom, which not only clearly identifies the different parts of the phantom, but also reflects
the change of it in the vertical direction, that is, the reconstructed result is highly consistent with the
blood vessel phantom. This result indicates that the 3D-PACT is capable of 3D imaging small objects of
different spatial distribution and orientation in high quality.

 

Figure 9. (a) Photograph of a blood vessel phantom, (b) PA images and A-lines of several B-scans, and
(c) 3D photoacoustic image.

Subsequently, a 3D photoacoustic experiment was performed on a tumor phantom obtained by
soaking the plasticine, whose dimensions are shown in Figure 10a, in black ink. In this experiment,
a total of 90 images were obtained by scanning the phantom with a vertical interval of 0.1 mm, and
the energy of the pulsed laser reaching the phantom surface was approximately 3.6 mJ. It can be seen
that the laser could penetrate the imaging phantom and the laser absorption characteristics of each
B-scan, and each point on it could be well-reflected from both two-dimensional and three-dimensional
photoacoustic images demonstrated in Figure 10b,c separately. By comparing Figure 10a,c, it can
be seen that the size of the absorption region on the photoacoustic image was substantially the
same as the actual size of the corresponding section, which verified the feasibility and reliability of
this system by showing that the shape and size of tumor analogs can be well-reflected through 3D
photoacoustic imaging.

 

Figure 10. (a) Photograph of a tumor phantom, (b) PA image of a B-scan, and (c) three-dimensional
photoacoustic image.

Finally, in order to verify the photoacoustic imaging of some irregularly shaped tissues, 3D
photoacoustic experiments were carried out on complex-shaped phantoms. For example, a phantom
made of knotted black wire with a diameter of about 0.6 mm is shown in Figure 11a. The sampling
frequency, sampling position, laser energy, and z-axis spacing of this experiment were the same as
those above. Figure 11b is a 3D photoacoustic image reconstructed by using the detected photoacoustic
signals detected from 90 B-scans spaced 0.1 mm apart, indicating that the reconstructed photoacoustic
image could present the actual shape and dimensions of the target clearly and with high quality.
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Figure 11. (a) Photograph of a knot phantom and (b) 3D photoacoustic image.

4. Discussion and Conclusions

A 3D-PACT imaging system based on full-view illumination and detection was proposed and
developed in this study. In the design of optical path, the system adopted a mode of circular illumination
with the even arrangement of eight laser beams around the water tank to ensure that the imaging target
received more uniform laser radiation, which improved the low-efficiency of photoacoustic imaging
whose illumination was from the top to the bottom. Second, drawing on the design of photoacoustic
coaxial confocal in photoacoustic microscopy imaging technology, a photoacoustic coplanar structure
was proposed by means of a quartz bowl with light-transmitting and ultrasound-reflecting properties.
The system extended the photoacoustic coupling from a single dimension to a two-dimensional space,
increasing the photoacoustic detection range of the imaging section and improving the signal to
noise ratio of the photoacoustic signal. In addition, the dual-foci virtual point ultrasonic transducer
with a large receiving angle improved the imaging speed of the system via sparse sampling. In the
reconstruction method of the photoacoustic image, taking the receiving angle of ultrasound transducer
into account, the improved back-projection reconstruction algorithm based on sensitivity factor was
achieved, and the photoacoustic image reconstruction using the algorithm took 1.4287 s.

The practicality of the illumination method and the designed structure enable the system to
perform clear and high-quality 3D photoacoustic imaging on targets with complex surfaces or requiring
a large imaging range. The feasibility of the system was verified through systematic testing of resolution,
imaging range, and photoacoustic coplanar property and 3D photoacoustic experiments on various
phantoms. The best compromise was reached between imaging performance and system cost.

The imaging speed of the system was about 9 s in one cross section (90 sampling points per
B-scan, it took about 15 min to scan 100 B-scans), and had not reached the requirements of fast imaging;
however, the phantom experiments conducted in this study have demonstrated the characteristics of
the system. The next step will be focused on the research of sparse circular array ultrasonic transducer
based on virtual point and resolution improvement. In practical applications, the system is expected
to be used for corresponding work in the pathological study of an in vitro tumor and the research
of targeted photoacoustic probes for breast cancer cells. Moreover, the 3D reconstruction will be
further investigated.
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Abstract: To accelerate photoacoustic data acquisition, in [R. Nuster, G. Zangerl, M. Haltmeier, G.
Paltauf (2010). Full field detection in photoacoustic tomography. Optics express, 18(6), 6288–6299]
a novel measurement and reconstruction approach has been proposed, where the measured data
consist of projections of the full 3D acoustic pressure distribution at a certain time instant T. Existing
reconstruction algorithms for this kind of setup assume a constant speed of sound. This assumption
is not always met in practice and thus can lead to erroneous reconstructions. In this paper, we
present a two-step reconstruction method for full field detection photoacoustic tomography that
takes variable speed of sound into account. In the first step, by applying the inverse Radon transform,
the pressure distribution at the measurement time is reconstructed point-wise from the projection
data. In the second step, a final time wave inversion problem is solved where the initial pressure
distribution is recovered from the known pressure distribution at time T. We derive an iterative
solution approach for the final time wave inversion problem and compute the required adjoint
operator. Moreover, as the main result of this paper, we derive its uniqueness and stability. Our
numerical results demonstrate that the proposed reconstruction scheme is fast and stable, and that
ignoring sound speed variations significantly degrades the reconstruction.

Keywords: photoacoustic tomography; full-field detection; wave equation; final time inversion;
uniqueness; stability; iterative reconstruction

1. Introduction

Photoacoustic tomography (PAT) is a hybrid imaging modality that combines high spatial
resolution of ultrasound and high contrast of optical tomography [1–5]. In PAT, a semitransparent
sample is illuminated by a short laser pulse. As a result, parts of the optical energy are absorbed inside
the sample. This causes an initial pressure distribution and a subsequent acoustic pressure wave.
The pressure wave is detected outside the investigated object and used to recover an image of the
interior. In standard PAT, the induced pressure is measured on a detection surface as a function of time.
In the case of constant sound speed and when the observation surface exhibits a special geometry
(planar, cylindrical, spherical), the initial pressure distribution can be recovered by closed-form
inversion formulas; see [6–20] and references therein. While some algorithms take the size and other
properties of the detectors into account [21–24], most algorithms assume that the acoustic pressure is
known point-wise on a detection surface for all times in the measurement interval. Due to the finite
width of the commonly used piezoelectric elements this assumption is only approximately satisfied.
One approach to address this issue uses the concept of integrating detectors [25]. Integrating detectors
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measure integrals of the acoustic pressure over planes, lines or circles and several inversion methods
have been derived in the literature [26–29].

Inspired by the concept of integrating line detectors, a full field detection and reconstruction
method that uses projections of the full acoustic field surrounding the sample has been developed
in [30,31]. The pressure field within the depth of field is imaged by the use of an optical phase contrast
imaging system with a CCD camera. In this way, one obtains 2D projections of the pressure field at a
time instant T. Reconstructing 2D projections of the initial pressure has been investigated in [32,33].
In [30,31] we go one step further and show that projection data from different directions allow for a
full 3D reconstruction of the initial pressure by Radon or Fourier transform techniques. We refer to this
approach as full field detection photoacoustic tomography (FFD-PAT). A photograph of the FFD-PAT
setup developed in Graz is shown in Figure 1. For practical aspects and a detailed description of the
working principle of the FFD-PAT detection system we refer to the original works [30,31]. Existing
image reconstruction methods for FFD-PAT data assume a constant speed of sound. However, there
are relevant cases when the assumption of constant speed of sound is inaccurate [34,35]. For example,
it is known that acoustic properties vary within female human breasts. Consequently, for accurate
image reconstruction, variable speed of sound has to be incorporated in the wave propagation model.
Iterative methods are capable to deal with this assumption. In the case of standard PAT, such methods
have been studied in [36–41] for spatially variable speed of sound, that is smooth and bounded from
below. Moreover, it is assumed to satisfy the so-called non-trapping condition, which means that the
supremum of the lengths of all geodesics connecting any two points inside the volume enclosed by the
measurement surface S is finite. Under these assumptions, it is known that the initial pressure can be
stably reconstructed from pressure data given on S × [0, T].

Figure 1. FFD-PAT SETUP DEVELOPED IN GRAZ. The sample to be imaged is mounted and rotated on
stage A. Full field projections of p( · , T) are recorded with the CCD camera B using an optical phase
contrast technique. For a detailed description of the working principle, see the original works [30,31].

In this paper, for the first time, we study image reconstruction in FFD-PAT with a spatially variable
speed of sound. We will give a precise mathematical formulation of FFD-PAT and describe the inverse
problem we are dealing with (see Section 2). For its solution, we propose a two-step process. In the
first step, the acoustic pressure at time T is reconstructed pointwise from the FFD data. In the second
step, we recover the desired initial pressure distribution from the known valued of the pressure at
time T. The first step can be approximated by inverting the well-known Radon transform. The second
step consists in a final time wave inversion problem with spatially varying speed of sound. To the
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best of our knowledge, the latter has not been addressed in the literature so far. We develop iterative
reconstruction methods based on an explicit computation of an adjoint problem. As main theoretical
results of this paper, we establish uniqueness and stability of the final time wave inversion problem
(see Section 3). In particular, this implies linear convergence for the proposed iterative reconstruction
methods. In Section 4, we present numerical results demonstrating that the proposed algorithm is
efficient and stable. Moreover, the presented numerical results clearly highlight the importance of
taking sound speed variations into account in FFD-PAT image reconstruction.

2. Full Field Detection Photoacoustic Tomography

In this section, we describe a mathematical model for FFD-PAT including the variable sound
speed case, and state the inverse problem under consideration. Additionally, we outline the proposed
two-step reconstruction procedure and formulate the final time inverse problem.

2.1. Mathematical Model

In the case of variable sound speed, acoustic wave propagation in PAT is commonly described by
the initial value problem [34,38,39,41]

ptt(x, t)− c2(x)Δp(x, t) = 0, (x, t) ∈ R
3 ×R>0 (1)

p(x, 0) = f (x), x ∈ R
3 (2)

pt(x, 0) = 0, x ∈ R
3. (3)

here c(x) > 0 is the sound speed at location x ∈ R3 and f ∈ C∞
0 (R3) is the initial pressure distribution

that encodes the inner structure of the object. It is assumed that the object is contained inside the ball
B(0, R) =

{
x ∈ R3 | ‖x‖ < R

}
, of radius R centered at the origin, and that the sound speed is smooth,

positive and has the constant value c0 outside B(0, R). We denote by C∞
0 (B(0, R)) the set of all smooth

functions f : R3 → R that vanish outside B(0, R).
In FFD-PAT, linear projections (integrals along straight lines) of the 3D pressure field p( · , T) for

a fixed time T > 0 are recorded. As illustrated in Figure 1, this can be implemented using a special
phase contrast method and a CCD-camera that records full field projections of the pressure field [30,31].
The linear projections are collected for rotation angles θ ∈ [0, π] around the e3 = (0, 0, 1) axis and are
given by

gR(θ, s, z) =
∫
R

p(s cos(θ)− t sin(θ), s sin(θ) + t cos(θ), z, T) dt , (4)

for (θ, s, z) ∈ MR :=
{
(θ, s, z) ∈ [0, π]×R2 | s2 + z2 ≥ R2}. Here MR determines the set of admissible

projections and the defining condition s2 + z2 ≥ R2 means that in practice only pressure integrals
over those lines are recorded, which do not intersect the possible support B(0, R) of the imaged object;
compare Figure 2.
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Dz(0, R)

Figure 2. HORIZONTAL CROSS-SECTION OF THE FFD-PAT SETUP.. Full field projections are measured
over lines that do not intersect the ball B(0, R). Consequently, for any plane R2 × {z}, integrals of
p( · , T) over those lines are given that do not intersect the disc Dz(0, R) := B(0, R) ∩ (R2 × {z}). For
planes with |z| ≤ R, this yields the exterior problem for the Radon transform.

2.2. Description of the Inverse Problem

In order to describe the inverse problem of FFD-PAT in a compact way, we introduce some further
notation. First, we define the operator

WT : C∞
0 (B(0, R)) → C∞

0 (R3) : f �→ p( · , T) , (5)

where p denotes the solution of (1)–(3). The operator WT maps the initial data f to the solution (full
field) of the wave Equations (1)–(3) at the given measurement time T > 0. Second, we define the X-ray
transform

X : C∞
0

(
R

3
)
→ C∞

0

(
[0, π]×R

2
)

(Xh)(θ, s, z) :=
∫
R

h(s cos(θ)− t sin(θ), s sin(θ) + t cos(θ), z) dt
(6)

Note that for any fixed z ∈ R, the function (Xh)( · , z) is the Radon transform of h( · , z) in the horizontal
plane R2 × {

z
}

. Finally, we define the restricted X-ray transform

XR : C∞
0

(
R

3
)
→ C∞ (MR) : h �→ (Xh)|MR . (7)

For |z| ≤ R, (XRh)( · , z) is the exterior Radon transform of h( · , z) and consist of integrals over lines
not intersecting the disc

{
(x, y) ∈ R2 | x2 + y2 < R2 − z2}; compare Figure 2. Otherwise, (XRh)( · , z)

coincides with the standard Radon transform of h( · , z).
Using the operator notation introduced above we can write the inverse problem of FFD-PAT in

the form

Recover f from data gR = XRWT f + noise . (8)

Evaluation of XRWT f is referred to as the forward problem in FFD-PAT. In this paper, we study the
solution of the inverse problem (8).
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2.3. Two-Step Reconstruction

One possible approach to solve the inverse problem of FFD-PAT is to directly recover f from
data in (8) via iterative methods. Typically, each iteration step requires the evaluation of the forward
operator XRWT and its adjoint (XRWT)

∗ = W∗
TX∗

R. In this paper, we consider a two-step approach
where we first invert XR via a direct method and then use an iterative method to invert WT . This
avoids repeated and time consuming evaluation of XR and its adjoint. The proposed reconstruction
method consists of the following two steps.

� INVERSE RADON TRANSFORM: Assume that projection data gR = XRWT f are given and consider
the zero extension g : [0, π]×R2 → R by g(θ, x, z) = gR(θ, x, z) for (θ, x, z) ∈ MR and g(θ, x, z) =
0 otherwise. We then define an approximation to WT f by applying an inversion formula of the
Radon transform in planes R2 × {z}. Using the well-known filtered backprojection inversion
formula for the Radon transform [42] yields

WT f (x, y, z) � X�g(x, y, z) :=
1

2π2

∫ π

0
P.V.

∫
R

(∂sg) (θ, s, z)ds
(x cos(θ) + y sin(θ))− s

dθ ,

where P.V. denotes the principal value integral.
� FINAL TIME WAVE INVERSION: For the second step, assume that an approximation h � WT f to

the 3D acoustic field at time T is given. Recovering the initial pressure then yields the final time
wave inversion problem

Recover f from data h = WT f + noise . (9)

To the best of our knowledge, the final time wave inversion problem (9) has not been considered
so far and its investigation will be the main theoretical focus of this work.

For solving the wave inversion problem (9), we propose iterative solution methods that are
described in Section 3. As main theoretical results, we derive its uniqueness and stability.

Another possible approach for solving the first step would be to work with the exterior Radon
transform [43–45]. Instead, we invert the standard Radon transform after setting the missing values
of XWT f to zero. We observe numerically that the missing values are indeed close to zero for large
enough measurement time T. Although we do not have a rigorous mathematical proof for this claim,
it is supported by at least two facts. First, in the case of a non-trapping sound speed, the known decay
estimate [46] for the solution p of (1)–(3) with initial data f supported in B(0, R) states

∣∣∣∣∣∂k+|m|p(x, t)

∂k
t ∂

|m|
x

∣∣∣∣∣ ≤ γ e−βt ‖ f ‖2 for (x, t) ∈ B(0, R)× (T, ∞) (10)

for all (k, m) ∈ N2. Here β > 0 is a constant only depending on c(x) and T, and γ is a constant
depending on B(0, R). Second, in the case of constant sound speed, the X-ray transform reduces (1)–(3)
to a 2D wave equation with initial data X f supported in a disc of radius R. Thus, in the constant sound
speed case, X(p( · , t)) describes 2D propagation which rapidly decays inside the disc. Formulating
and proving precise statements in such a direction, however, is an interesting unsolved problem.

3. Final Time Wave Inversion Problem for Variable Sound Speed

In this section we study the final time wave inversion problem (9), where the forward operator
WT : f �→ p( · , T) is defined by (5). According to standard results for the wave equation [47],
the forward operator extends to a bounded linear operator WT : L2(B(0, R)) → L2(R3). Below we
establish uniqueness and stability results and derive an iterative reconstruction algorithm. Note that
for constant sound speed, recovering the function f from the solution at time T of (1) with initial
data (0, f ) instead of ( f , 0), is equivalent to the inversion from spherical means with fixed radius.
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Uniqueness and an inversion method for this problem has been obtained in the classical book of Fritz
John [48]. However, neither for the case of initial data ( f , 0) nor in the variable sound speed case we
are aware of any similar results.

3.1. Uniqueness and Stability Theorem

The following theorem is the main theoretical result of this paper and states that the final time
wave inversion problem (9) has a unique solution that stably depends on the right-hand side.

Theorem 1 (Uniqueness and stability of inverting WT). For a non-trapping speed of sound, the operator
WT : L2(B(0, R)) → L2(R3) is injective and bounded from below.

The proof of Theorem 1 is presented in the following Section 3.2. See [19,41,49] for related results
and methods in the case of standard PAT data. Theorem 1 states that

b := inf

{‖WT f ‖L2(R3)

‖ f ‖L2(B(0,R))

∣∣∣∣ f ∈ L2(B(0, R))

}
> 0 . (11)

In particular, WT : L2(B(0, R)) → Ran(WT) has a bounded inverse, where Ran(WT) denotes the range
of WT . The latter implies that gradient based iterative methods for (9) converge linearly, similar to the
case of standard PAT data; see [38].

3.2. Proof of Theorem 1

Let c be a non-trapping sound speed. We first prove two crucial Lemmas, from which Theorem 1
follows rather quickly.

Lemma 1. Assume that WT f = 0, then f = 0. That is, WT is injective.

Proof. Let p denote the solution of (1)–(3). We will construct a solution p̄ of the wave equation which
is periodic in time with period 4T such that p̄ = p on R3 × [0, T]. Once this is done, we obtain
f = p̄( · , 0) = p̄( · , 4nT) for any n. Using (10), we arrive at

∀x ∈ R
3 : f (x) = lim

n→∞
p̄(x, 4nT) = 0 .

It remains to construct the above-mentioned solution p̄ of the wave equation. The idea is to properly
reflect the solution p in the time variable t through the time moments t = T, 2T, . . . , as follows. We
first construct p̄ on [0, 2T] by the odd reflection of p through the moment t = T: p̄( · , T) = p( · , T)
for t ∈ [0, T] and p̄( · , T) = −p(·, 2T − t) for all t ∈ [T, 2T]. Since p( · , T) = 0 on R3, we obtain that p̄
and p̄t are continuous at t = T. Therefore, p is continuous on [0, 2T] and solves the wave equation on
that interval. Next note that p̄t(·, 2T) = − p̄t(·, 0) = 0 on R3. By the even reflection through t = 2T:
p̄( · , T) = p̄( · , 4T − t) for all t ∈ [2T, 4T], we obtain that p̄ is a solution of the wave equation in [0, 4T].
Finally, we extend the solution by periodicity with period 4T. Noting that p̄( · , 0) = p̄( · , 4T) and
p̄t( · , 0) = p̄t( · , 4T) = 0, we obtain that p̄ and p̄t are continuous for all time and p̄ satisfies the wave
equation in R3 ×R+. This finishes our proof.

Lemma 2. There is a constant C and a pseudo-differential operator KT of order at most −1 such that

∀ f ∈ L2(B(0, R)) : ‖ f ‖L2(Ω) ≤ 2
(
‖WT f ‖L2(R3) + ‖KT f ‖L2(B(0,R))

)
.

Proof. Let p denote the solution of wave Equations (1)–(3) and recall the parametrix formula
p(y, t) = 1

(2π)3 ∑σ=±
∫
R3 aσ(y, t, ξ)eiφ±(y,T,ξ) f̂ (ξ) dξ = ∑σ=± pσ(y, t); see [47]. Here, the phase function

φ± solves the eikonal equation ∂tφ±(y, t, ξ) ± c(y) |∇yφ±(y, t, ξ)| = 0 for (y, t) ∈ R3 × R+ with
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the initial condition φ±(x, 0, ξ) = x · ξ. The amplitude function is a classical symbol a±(y, t, ξ) =

∑∞
k=0 a−k,±(y, t, ξ), where a−k is homogeneous of order −k in ξ. Its leading term a0,± satisfies the

transport equation

(
∂tφ±(y, t, ξ)∂t − c2(y)∇yφ±(y, t, ξ) · ∇y + C±(y, t, ξ)

)
a0,±(y, t, ξ) = 0 , (12)

with the initial condition a±,0(x, 0, ξ) = 1/2, see [41]. Here, C(y, ξ, t) only depends on the sound speed
c and the phase function φ±. Let us denote by γx,ξ the unit speed geodesics originating at x along the
direction ξ. Then, γx,ξ is a characteristics curve of the above transport equation; that is, (12) reduces to
a homogeneous ODE on each geodesic curve.

We then write

WT( f )(y) =
1

(2π)3 ∑
σ=±

∫
R3

aσ(y, T, ξ)eiφ±(y,T,ξ) f̂ (ξ) dξ = ∑
σ=±

Wσ( f )(y).

Each operator W± is a Fourier integral operator (FIO) with the canonical relation given by the pairs
(y±, λη±; x, λξ) for any λ ∈ R, ξ, η unit vectors, y± = γx,ξ(±T), and η± = γ̇x,ξ(±T). Let R3 be
equipped with the metrics c−2(x) dx2. Then, (y±, η±) is obtained by translating (x, ξ) on the geodesic
γx,±ξ by the distance T. From the initial condition of φ± and a0,± we see that, up to lower order terms,

p−(x, 0) = p+(x, 0) =
1
2

f (x) . (13)

Heuristically, under Equations (1)–(3), each singularity of f at (x, ξ) is broken into two equal parts.
They propagate along the geodesic γx,ξ in the opposite directions ±ξ to generate a singularity of WT( f )
at (y±, η±).

From the standard theory of FIOs (see [50]), the adjoint W∗± translates (y±, η±) back to (x, ξ) and
W∗±W± is a pseudo differential operator. On the other hand, W∗∓W± is a FIO whose canonical relation
consists of the pairs (y, η; x, ξ) given by y = γx,ξ(±2T), and η = γ̇x,ξ(±2T). That is, W∗±W∓ is an
infinitely smoothing operator on B. Therefore, microlocally, we can write W∗

TWT f = W∗
+W+( f ) +

W∗−W−( f ). We will show that the principal symbol θ±(x, ξ) of W∗±W± satisfies θ±(x, ξ) = 1/4. This
result can be intuitively understood as follows. Let us consider W∗

+W+ and a singularity of f at (x, ξ).
Under Equations (1)–(3), half of this singularity propagates into the direction ξ (corresponding to the
function p+). At the moment t = T, it is transformed to a singularity of W+( f ) = p+(T) at (y+, η+).
Under the adjoint Equation (15), half of this singularity propagates back to (x, ξ) at t = 0 to generate a
singularity of W∗

+W+( f ). It is natural to believe that this recovered singularity is 1/4 of the original
singularity of f (due to twice splitting, as described). The proof below verifies this intuition.

Indeed, denote by q+ the solution of the time-reversed wave equation, e.g., Equation (15), with the
initial condition given by g+ = W+( f ). Then, by definition (see Theorem 2) W∗

T g+ = q+( · , 0)|B.
The solution q+ can be decomposed into the sum q+ = q0 + q1. Here, q0, q1, up to smooth terms, are
solutions of the wave equations in R3 × (0, T) and satisfy q0( · , 0) = W∗

+(g+), q1( · , 0) = W∗−(g+). We
are only concerned with q0 since it defines W∗

+W+ f = q0( · , 0). We can write

q0(y, t) =
1

(2π)3

∫
R3

b(y, t, ξ)eiφ+(y,t,ξ) f̂ (ξ) dξ. (14)

Let b0 be the principal part of b. Then, the principal symbol θ+ of W∗
+W+ is given

by θ+(x, ξ) = b0(x, 0, ξ). We note that b0 satisfies the same equation as a0,+ (see (12)).
Therefore, on each bicharacteristic curve the ratio b0/a0,+ is constant which implies b0(x, 0, ξ) =
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a+,0(x, 0, ξ)b0(y+, T, η+)/a+,0(y+, T, η+). Similar to the argument below Equation (13), up to lower
order terms, we have

q0(y+, T) =
1
2

g+(y+, T) =
1

(2π)3

∫
R3

1
2

a+(y+, T, ξ)eiφ+(y+ ,T,ξ) f̂ (ξ) dξ .

This and Equation (14) implies that b0(y+, T, ξ) = a+,0(y+, T, ξ)/2. Therefore, we obtain b0(x, 0, ξ) =

a+,0(x, 0, ξ)/2 = 1/4. Combining with a similar argument for W∗−W−, we obtain that the principal
symbol of W∗

TWT is θ(x, ξ) = 1/2. That is, W∗
TWT = I/2 + KT , where KT is a pseudodifferential

operator of order at most −1 and I is the identity. We have (WT f , WT f ) = (W∗
TWT f , f ) = ( f , f )/2 +

(KT f , f ) and therefore conclude ‖ f ‖2
L2 ≤ 2(‖WT f ‖2

L2 + ‖KT f ‖2
L2).

We are now ready to prove Theorem 1.

Proof of Theorem 1. Recall from Lemma 2 that ‖ f ‖L2(B(0,R)) ≤ 2(‖WT f ‖L2(R3) + ‖KT f ‖L2(B(0,R)))

where KT is a pseudo-differential operator of order at most −1. Since KT is compact and WT is
injective, applying ([51] Theorem V.3.1), we obtain ‖ f ‖L2(B(0,R)) ≤ C‖WT f ‖L2(R3) for some constant
C ∈ (0, ∞). This finishes our proof.

3.3. Continuous Adjoint Operator

Iterative methods for solving (9) require knowledge of the adjoint operator of WT . In this
subsection, we compute the continuous adjoint operator W∗

T : L2(R3) → L2(B(0, R)) and prove that it
is again given by the solution of a wave equation. More precisely, we have the following result.

Theorem 2. Let g ∈ C∞
0 (R3), consider the time reversed final state problem for the wave equation,

qtt(x, t)− c2(x)Δq(x, t) = 0, (x, t) ∈ R
3 × (−∞, T)

q(x, T) = g(x), x ∈ R
3 (15)

qt(x, T) = 0 x ∈ R
3 ,

and let χB(0,R) denote the indicator function of B(0, R). Then, W∗
T g = χB(0,R) q( · , 0).

Proof. It is clearly sufficient to show W∗
T g = χB(0,R)ut( · , 0), where u solves the wave equation

utt − c2Δc = 0 on R3 × (−∞, T), with the final state conditions (u( · , T), ut( · , T)) = (0, f ). Using the
weak formulation (similar to [38]) for the wave equation, shows that

∫ T
0

∫
R3 c−2(x)utt(x, t)v(x, t) dxdt+∫ T

0

∫
R3 ∇u(x, t) · ∇v (x, t) dxdt = 0 for v ∈ C∞

0 (R3). Two times integration by parts, rearranging
terms and using the final state conditions for u yields

∫
R3 c−2(x)[ f (x)v(x, T) − ut(x, 0)v(x, 0) +

u(x, 0)vt(x, 0)] dx =
∫ T

0

∫
R3 u(x, t)

[
c−2(x)vtt(x, t)− Δv(x, t)

]
dxdt. By taking v as the solution of

(1)–(3) this yields
∫
R3 c−2(x)g(x)WT( f )(x) dx =

∫
R3 c−2(x)ut(x, 0) f (x) dx, which implies W∗

T g =

χB(0,R)ut( · , 0) = χB(0,R)q( · , 0) and completes the proof.

We can reformulate the adjoint operator as follows.

Corollary 1. For g ∈ C∞
0 (R3), let q be the solution of

qtt(x, t)− c2(x)Δq(x, t) = 0 for (x, t) ∈ R
3 × (0, ∞) (16)

with initial conditions (q( · , 0), qt( · , 0) = (g, 0). Then, W∗
T g = χB(0,R) q( · , T).

Proof. Clearly q solves (16) with initial data (q( · , 0), qt( · , 0) = (g, 0) if and only if (x, t) �→ q(x, T − t)
solves (15). Therefore, the claim follows from Theorem 2.
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3.4. Application of the Steepest 6hhod

We propose solving the finite time wave inversion problem (9) via gradient type methods applied
to residual functional Φ( f ) := 1

2 ‖WT f − h‖2. Using standard PAT data, various iterative methods for
PAT accounting for variable sound speed have been investigated in [36–40]. In particular, in [40] the
steepest descent method has been demonstrated to be numerically efficient and robust. For the results
shown in this paper we will therefore use the steepest-descent method. Our numerical experiments
confirm that the steepest-descent method is also efficient for FFD-PAT and the final time wave inversion
problem, where it reads as follows.

Because of the injectivity and boundedness of WT , the sequence of iterates generated by
Algorithm 1 converges to the unique solution of (9). The stability result (11) even implies that
the steepest descent method converges linearly for FFD-PAT. More precisely, the sequence ( fk)k∈N
generated by Algorithm 1 satisfies the estimate ‖ fk+1 − f ‖2 ≤ ck ‖ f0 − f ‖2

2 for some constant c ∈ (0, 1).

Algorithm 1: Steepest descent method for solving WT f = g.

(S1) Choose a� ∈ (0, 1] and initialize f0 = 0, k ← 0
(S2) While stopping criteria not satisfied, do
� sk = W∗

T(WT fk − g)
� ak = a�‖sk‖2/ ‖WTsk‖2

� fk+1 = fk − aksk
� k ← k + 1

4. Numerical Simulations

In this section, we numerical present results using Algorithm 1 for FFD-PAT with variable sound
speed. Recall that for constant speed of sound, reconstructions from experimental FFD-PAT data are
shown in [30,31]. In the present study, we give numerical results for spatially varying speed of sound.
Performing experimental measurements for samples with variable speed of sound and applying our
algorithms to such data is subject of future research.

4.1. Discretization

To implement the steepest descent method (or other gradient type schemes), one has to discretize
the final time wave operator WT and its adjoint W∗

T . For that purpose we solve the forward and
adjoint wave Equations (9) and (16) on a cubical grid with side length 2L and nodes x[i] := −(L, L, L) +
i 2L/Nx for i = (i1, i2, i3) ∈

{
0, . . . , Nx − 1

}
with the k-space method [52,53], which we briefly recall

in Appendix A. Note that the implementation of the k-space method yields a 2L-periodic solution.
The parameter L is chosen such that a + T < L which implies that inside B(0, R), for t ∈ [0, T],
the solution of (16) coincides with its 2L-periodic extension.

We denote by F ⊆ RNx×Nx×Nx the set of all f ∈ RNx×Nx×Nx with f[i] = 0 for x[i] �∈ B(0, R).
The discretized versions of WT and its adjoint W∗

T are defined by W : F → RNx×Nx×Nx : f �→
(Kf)( · , Nt) and WT : RNx×Nx×Nx → F : h �→ χR(Kh)( · , Nt), respectively, where K : RN×N×N →
RNx×Nx×Nx×(Nt+1) denotes the discretized wave propagation defined by the k-space method using
the discrete time steps jT/Nt for 0 ≤ j ≤ Nt, and χR is the discretized indicator function of the ball
B(0, R). The linear projection X and its left inverse X� are implemented using the MATLAB build in
functions for the Radon and inverse Radon transforms, respectively, with Nθ equally spaced projection
angles covering [0, π]. The resulting discretized transforms are denoted by X and X �, respectively.

4.2. Data Simulation

For the presented numerical results, we use R = 0.4, T = 1, L = 1.5, N = 300, M = 300 and
collect FFD-data for Nθ = 300 projection directions. As initial pressure f� we take the sum of three
solid spheres, as show in the left picture in Figure 3. The used sound speed c� is shown in the right
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picture in Figure 3, and consist of two Gaussian peaks with opposite signs, added to the constant sound
speed c0[i] = 1. The top row in Figure 4 shows the simulated FFD-PAT data g� = XWf� (left) and the
noisy FFD-PAT data g := g� + noise (right) at projection angle θ = 0 for both cases. To generate the
noisy FFD data we have added Gaussian white noise with a standard deviation of 10% of the maximal
value of g�, resulting in a relative L2-data error ‖noise‖/‖g�‖ � 85.3%. For the first reconstruction
step we apply the inverse Radon transform to the FFD-PAT data, resulting in the approximate 3D final
time pressure X �g � Wf�. The reconstruction of final time pressure from noisy data is shown in the
bottom right image in Figure 4. For comparison purpose, the simulated final time pressure h� := Wf�
is shown in the bottom left image in Figure 4.

Figure 3. PHANTOM AND SOUND SPEED USED FOR THE NUMERICAL SIMULATIONS. (Left): Initial
pressure f� (the phantom to be recovered). (Right): Spatially varying sound speed c�.
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Figure 4. FFD-PAT MEASUREMENT DATA AND FINAL TIME PRESSURE. (Top left): Simulated FFD-PAT
data g� for projection direction θ = 0. (Top right): Noisy FFD-PAT data g for projection direction θ = 0.
(Bottom left): Simulated final time pressure h� = Wf�. (Bottom right): Recovered final time pressure
X �g � h� from noisy FFD-PAT data.
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4.3. Reconstruction Results

To recover the initial pressure f�, we apply the steepest descent method (Algorithm 1) with
a� = 0.8 to the point-wise approximation h � Wf� that is recovered in step one. Reconstruction results
after 5 iterations are shown in Figure 5. The top row shows reconstruction results from simulated
data and the middle row shows reconstruction results from noisy data, both using the correct sound
speed c� for the reconstruction process. One observes, that the reconstruction results from simulated as
well as from noisy data are quite accurate. This demonstrates that the proposed algorithm is efficient,
accurate and stable with respect to noise. In both cases, the whole reconstruction procedure takes
about 90 min on a standard desktop PC.

Figure 5. RECONSTRUCTIONS frec USING FIVE ITERATIONS OF THE STEEPEST DESCENT ALGORITHM

(LEFT) AND THE DIFFERENCES |frec − f�| TO THE TRUE PHANTOM (RIGHT). (Top): Using simulated
data g� and correct sound speed c�. (Middle): Using noisy data g and correct sound speed c�. (Bottom):
Using simulated data g� data and wrong sound speed c0.
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The bottom row in Figure 5 shows reconstruction results using the wrong constant sound speed
c0 in Algorithm 1 (while data generation still uses the inhomogeneous sound speed c�). In this case,
the reconstruction error is much larger, showing the relevance of integrating sound speed variations in
image reconstruction. Finally, in Figure 6 we show reconstruction results with the previous Fourier
method that has been derived in [31] under a constant sound speed assumption. The results with the
Fourier method show a large reconstruction error and are very similar to the reconstruction result
using the steepest descent method assuming constant sound speed. This demonstrates that the artifacts
in both cases are due to the wrong wave propagation model, which further supports the importance of
taking sound speed variations into account in FFD-PAT image reconstruction.

Figure 6. RECONSTRUCTION frec (LEFT) AND THE DIFFERENCE |frec − f�| (RIGHT) USING THE FOURIER

ALGORITHM. Note that the Fourier algorithm assumes constant sound speed c0 in the image
reconstruction, similar to the results shown in the bottom row of Figure 5.

4.4. Quantitative Error Analysis

For all results shown in Figure 5, we stopped the steepest decent method after five iterations,
since the reconstructions did not significantly improve by using more iterations. In fact, even after a
single iteration, the �2-reconstruction error and the �2-residual error are quite close to their minimal
values. This phenomenon is investigated in a more quantitative manner in Figure 7. The images on the
left-hand side show the evaluation of the relative L2-reconstruction error ‖fk − f�‖/‖f�‖ in dependence
of the iteration index k. The images on the right show the relative residual errors ‖Wfk − h�‖/‖h�‖.
The rapid convergence of both error metrics indicates that the finite time inversion problem is well
conditioned, which is also suggested by our theoretical analysis presented in Section 3. The relative
data errors, residuals and reconstruction errors for all reconstructions shown above are summarized in
Table 1.

Table 1. RELATIVE ERROR METRICS FOR THE FFD DATA AND RECONSTRUCTIONS. The first column
shows the relative �2-norm of the noise added to the data. The second column shows the relative
�2-reconstruction error after step one (not applicable to Fourier reconstruction). The third column
shows the relative residual error which are minimized in step 2 of the iterative algorithms. The last
column shows the relative �2-error of final reconstruction.

‖g−g�‖
‖g�‖

‖X �g−h�‖
‖h�‖

‖Wfrec−h�‖
‖h�‖

‖frec−f�‖
‖f�‖

Noise Error (after Step 1) Residual (for Step 2) Error (after Step 2)

Correct SS (simulated data) 0 0.208 0.052 0.170
Correct SS (noisy data) 0.853 1.760 0.874 0.227
Wrong SS (simulated data) 0 0.208 0.510 0.560
Fourier method [31] 0 - - 0.564
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Figure 7. RELATIVE RECONSTRUCTION ERROR (LEFT) AND RELATIVE RESIDUALS (RIGHT). (Top):
Simulated data and correct sound speed. (Middle): Noisy data and correct sound speed. (Bottom):
Simulated data and wrong sound speed (constant and equal to one).

5. Conclusions

In this paper, we investigated FFD-PAT, where projection data of acoustic pressure are measured.
For the first time, the variable speed of sound has been taken into account for this kind of setup. We
developed a two-step reconstruction procedure that recovers the 3D pressure p( · , T) in a first step,
which is then used as input for a finite time wave inversion problem in a second step. As the main
theoretical contribution of this paper we prove uniqueness and stability results for the finite time wave
inversion problem. For the actual solution, we propose the steepest descent iteration which we found
to be numerically efficient and stable for FFD-PAT. Moreover, our numerical results demonstrate that
ignoring sound speed variations significantly degrades the reconstruction quality. We point out that the
novelties of the paper are the development of a reconstruction method together with a mathematical
uniqueness and stability analysis of the arising final time wave inversion problem for FFD-PAT with
variable sound speed. The experimental feasibility of FFD-PAT has been demonstrated previously
in [30,31]. In future work we will perform experiments using FFD-PAT with spatially variable sound
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speed and experimentally verify our two-step algorithm. Moreover, in upcoming work we will study
limited view problems for FFD-PAT which naturally arise in applications, for instance in the case of
breast imaging.
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Appendix A. k-Space Method

We briefly describe the k-space method for the 3D wave Equations (1)–(3) as we use it for the
numerical computation of WT and W∗

T . The k-space method is an attractive alternative to standard
methods using finite differences, finite elements or pseudospectral methods, since it does not suffer
from numerical dispersion [52,53]. It utilizes the decomposition p (x, t) = w(x, t)− v(x, t), where v, w
are defined by w(x, t) := (c2

0/c2(x)) p(x, t) and v(x, t) = (c2
0/c2(x)− 1)p(x, t) where c0 := max{c(x) |

x ∈ R3} denotes maximal speed of sound. It can be checked that with this definition of v and w the
wave equation with variable speed of sound splits into the system wtt(x, t)− c2

0Δw(x, t) = −c2
0Δv(x, t)

and v(x, t) = c2
0−c2(x)

c2
0

w(x, t). In the k-space method we use the time stepping formula

w(x, t + ht) = 2w(x, t)− w(x, t − ht)− 4F−1
ξ

{
sin

(
c0|ξ|ht

2

)2

Fx {w(x, t)− v(x, t)}
}

, (A1)

where Fx and F−1
ξ denote the Fourier transform and its inverse with respect to space and frequency

variables x and ξ and ht is the time step size. This equivalent formulation motivates the following
algorithm for numerically solving the wave equation.

Algorithm A1: k-space method for numerically solving (1)–(3).
(S1) Define initial conditions:

w(x,−ht) =w(x, 0) = c2
0/c2(x) f (x),

v(x, 0) = (c2
0/c2(x)− 1) f (x)

(S2) Set t = 0
(S3) Compute w(x, t + ht) according to Equation (A1)
(S4) Compute v(x, t + ht) := (c2(x)/c2

0 − 1)w(x, ht)
(S5) Compute p(x, t + ht) := w(x, t + ht)− w(x, t + ht)
(S6) Substitute t by t + ht and go back to step (3).
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Abstract: A low-cost Photoacoustic Computed Tomography (PACT) system consisting of
16 single-element transducers has been developed. Our design proposes a fast rotating mechanism
of 360◦ rotation around the imaging target, generating comparable images to those produced by
large-number-element (e.g., 512, 1024, etc.) ring-array PACT systems. The 2D images with a temporal
resolution of 1.5 s and a spatial resolution of 240 μm were achieved. The performance of the proposed
system was evaluated by imaging complex phantom. The purpose of the proposed development is
to provide researchers a low-cost alternative 2D photoacoustic computed tomography system with
comparable resolution to the current high performance expensive ring-array PACT systems.

Keywords: Photoacoustic Computed Tomography (PACT); ring array; fast imaging; low cost

1. Introduction

Photoacoustic imaging (PAI) is a promising imaging technique that combines higher imaging
contrast of optical imaging with deeper penetration of ultrasonic imaging [1–3]. A nanosecond
pulsed laser deposits energy onto a light absorbing sample, causing a local temperature increase
and subsequent thermal expansion through the thermoacoustic effect [2,4–8]. This expansion causes
a localized pressure increase, which propagates from the sample to be imaged, by an ultrasound
transducer, similar to a traditional ultrasound detection system. PAI has gained popularity compared
to other optical imaging techniques mainly due to its simultaneous great penetration depth and
adequate resolution. PAI utilizes the deposition of diffusive photons and therefore can image at much
greater depths [9,10] as compared to other high-resolution optical imaging modalities such as optical
coherence tomography (OCT) [11,12]; OCT’s portability and high resolution however stand out in
relevant applications [13,14]. As opposed to positron emission tomography (PET) and computed
tomography (CT) that require the use of ionizing radiation, PAI uses safe, non-ionizing, visible and
near-infrared light. Compared to magnetic resonance imaging (MRI) that requires sophisticated,
large, and expensive designs, PAI is portable and cost-effective. PAI is capable of both functional
and molecular imaging. PAI has proved to have a superior specificity in clinical diagnosis over
conventional ultrasound imaging [15–18]. The wavelength dependence nature of PAI allows imaging
of various molecules in biological tissues using endogenous and exogenous contrast agents [19]; e.g.,
tissue oxygen saturation can be measured using multispectral PAI [20–22]. The molecular imaging
capability of PAI enables anatomical, and functional imaging of organelles, organs or even whole body
of small animals, as well as many applications in human tissue analysis [19,23,24]. These advanced
features have allowed PAI to play an important role in small animal imaging though different human
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diseases can be comprehensively studied. Furthermore, PAI can be integrated with other imaging
modalities to generate multi-modality images that provide complementary information of the tissue.

There are two major implementations for PA imaging, i.e., photoacoustic computed tomography
(PACT) and photoacoustic microscopy (PAM). PACT is used for deep tissue imaging applications where
coarse resolution is acceptable. In PACT, high energy pulsed laser light is diffused to illuminate the
entire tissue, which then generates photoacoustic waves. The waves around the tissue are collected by
wideband ultrasound transducers, placed in the same plane, at radially symmetric angles, and ideally
equidistant from the imaging target [25]. The detection scheme can be realized either by a single
ultrasound transducer rotating around the sample, or a stationary ring array of 128, 256, or greater
number of transducer elements [7,26,27]. Such configuration offers a fast image acquisition, but requires
an expensive hardware and data acquisition unit. Moreover, PACT systems typically utilize bulky
nanosecond pulsed laser sources, sometimes with an optical parametric oscillator (OPO). In addition
to the light source, a major cost in these systems comes from the transducer arrays.

Some of the PACT systems developed are as follows. A 128-channel curved array PACT system
was reported in [28] with 15–30 s rotation time to acquire a 2D image of the sample with a resolution
of about 200 μm; rotating the animal for small animal in-vivo imaging is not recommended, also the
long acquisition time does not allow imaging the hemodynamic changes (such changes occur with the
frame rate of 2.5 Hz in small animals [29]). Gamelin et al. developed a fast, expensive, sophisticated
512-elements full ring PACT system that acquired images in less than one second [30]. The complexity
and high cost of such a system prevents most researchers from developing PACT systems of their own.
Therefore, strategies of decreasing the cost of PACT are needed. Some researchers have attempted to
reduce the cost of ultrasound detection units by using partial view detection with reflectors [31] or
using sparse arrays along with a compressed sensing reconstruction algorithm [32].

In [33], a multispectral PACT system was implemented where 8 single element transducers were
utilized in an arc fashion. The system took around 30 s to acquire an image. In [25], a PACT system
was developed using only two unfocused transducers, and a complete rotation was performed in
3s. In [34], a single element focused transducer-based PACT system was developed for in-vivo rat
brain imaging. The total acquisition time was 16 minutes with a scanning step size of 1.5◦. In [35],
a spherical PACT system was developed to image zebra fish. The scanning step size was 0.75◦ with
480 scanning positions and 24 s acquisition time for each frame.

In this article, we present the development and characterization of a low-cost, fast PACT system
that has been optimized to achieve 1.5 s temporal resolution with a 240 μm spatial resolution. The low
number of elements (16) reduces the cost of the ultrasound unit as well as the need for an expensive
DAQ. To reduce the cost of illumination, a Q-switched Nd:YAG laser was used. This comparatively
lower-cost system provides fast, high-resolution images to potentially be used for small animal imaging.
The performance of the system has been evaluated by imaging complex phantoms.

2. Materials and Methods

Figure 1 illustrates an experimental set up and architecture of our low-cost photoacoustic
tomography system. A Q-switched Nd:YAG laser (NL231-50-SH, EKSPLA, Vilnius, Lithuania) with
a pulse width of ~5 ns and pulse repetition rate of 50 Hz was used. The laser produces 532 nm and
1064 nm wavelengths.
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Figure 1. (a) A photograph of our low-cost photoacoustic computed tomography system comprised of
EKSPLA laser head, a power supply for the laser, a chiller, a DC power supply for the motor driver, NI
DAQ, NI trigger board, servo motor (expanded in (c)), motor gear, 3-axis translation stage for phantom,
and 16 transducers and amplifiers, (b) top view of the circular ring showing an imaging area of 3 cm
diameter, and (c) servo motor with mechanical gears. DC: Direct Current, NI: National Instrument,
DAQ: Data Acquisition Unit.

The laser is coupled with 10mm diameter plastic PMMA optical fiber (epef-10, Ever Heng Optical
Co., Shenzhen, China), for illumination of the imaging target. Output laser energy is ~32 mJ/cm2;
recorded using an energy meter (QE12SP-H-MT-D0, Gentec-EO, Quebec, QC, Canada). Considering the
distance between the optical fiber and the sample, as well as divergence of light, we calculated the
light energy onto the sample, ~19.1 mJ/cm2, below the ANSI limit. The optical fiber is held in place
by optical rods and positioned at the center of the scanner (circular ring) to illuminate the target with
maximum uniformity. The energy loss in the optical fiber was ~30%.

The ultrasound detection unit consists of 16 single element 5 MHz ultrasound transducers
(ISL-0504-GP, Technisonic Research Inc., Fairfield, CT, USA), inserted and fitted along the circumference
of the circular ring made up of Polyactic Acid (PLA) plastic (15 cm diameter). These transducers are
radially separated at 22.5◦ from one another as depicted in Figure 1. The object is separated from the
water tank using a transparent saran wrap and the tank is filled with distilled water for ultrasound
coupling as shown in Figure 2.
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PA signals acquired from each transducer are amplified using a low-noise 24 dB amplifiers
(ZFL-500LN, Mini-Circuits, Brooklyn, NY, USA). The amplified signals are then fed into a 16 channel
DAQ (NI PXIe -1078, National Instruments, Austin, TX, USA). The NI system is equipped with two
14-bit, 8 channel data acquisition cards (NI PXIe-5170R, National Instruments, Austin, TX, USA).
The data acquisition is synchronized by an internally generated trigger from the laser. The sampling
rate is set to 50 MS/s. The number of samples in each PA signal acquired is 6000. Based on the pulse
repetition rate of the laser and the number of channels, 1200 view angles are scanned in only 1.5 s; this
data is then used for image reconstruction.

 

Figure 2. (a) Flowchart of the correction technique and (b) calibration setup with black tape
targets located above each transducer to acquire calibration PA signal for the alignment of the
transducers’ signals.

The ring is coupled to a servo motor (J0400-301-4-000, Applied Motion Products Inc., Watsonville,
CA, USA) through mechanical gears (KHK SS1-200, KHK USA Inc., Mineola, NY, USA) for rotation of
the system as shown in Figure 1c. Two meshed gears are used to rotate the circular ring. The small
gear is mounted on a shaft that is directly connected to the servo motor and the large gear is mounted
on a ball bearing with the same diameter of the circular ring to reduce friction and hence, increase the
rotational speed. The small gear was chosen with higher pitch as compared to the large gear, further
increasing rotational speed. With the objective of developing a fast scanning method, the gear system
parameters were determined based on the weight of the system, moment of inertia, and holding torque
of the motor as explained below.

For speed optimization, gear ratio was determined based on the ratio of the required torque to
motor torque. The required torque was calculated based on the moment of inertia and angular motion
that has an input criterion of 22.5◦ rotation per second. The moment of inertia, I, was calculated to be
0.0197 kg·m2 using total mass and internal radius of the ring. If the motor rotates 22.5◦ in 1.5 s, then
the angular rotation per minute, α, would be 24 and hence, the required torque, Treqd, is 0.4728 N-m.
According to the motor specification, motor torque, Tmotor, is 0.056 N·m. Therefore, the gear ratio, ηg

is rounded up to 9. Mass of water inside the ring is calculated considering a density of 1000 kg/m3.
Other structural parameters of the circular ring are provided in Table 1.

Table 1. Structural parameters of the circular ring.

Parameter Value

Height, h 31 cm
External radius, rext 8 cm
Internal radius, rint 7.5 cm
Motor weight, mr 5 kg
Total weight, mt 7.01 kg
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The motor rotates 22.5◦ in 1.5 s. The data acquisition and motor rotation are synchronized using a
LabView code. Based on the laser repetition rate, 75 view angles are defined within the 22.5◦. The size
of the acquired data is 1200 × 16 bits.

For reconstruction, we used filtered back projection algorithm [36–38]. The algorithm requires the
scanning radius as an input. Unlike a commercial ring array, where the transducers have been perfectly
manufactured to be equidistant from the center of the ring, in the proposed system, the transducers
are not equidistant from the center due to the manual insertion of the transducers into the holes on
the ring; i.e., if 7.5 cm is used as the radius of the ring for all the channels, the reconstruction will be
imperfect and lead to a distorted image. In fact, there is a shift in the expected location of the PA signals
coming from the imaging target. Therefore, the calibration method is required. The original values
of radius are within 7.58–7.68 mm (please see Table 2). An easy fix will be to change the scanning
radius until an image with adequate quality is obtained. This method, is however, time consuming
and somewhat inefficient.

Table 2. The values of scanning radius for transducers.

Transducer no. Distance to the Center (cm)

1 7.61
2 7.65
3 7.67
4 7.69
5 7.58
6 7.62
7 7.64
8 7.62
9 7.65
10 7.67
11 7.63
12 7.62
13 7.64
14 7.63
15 7.68
16 7.68

To address this issue and ensure all the transducers are equidistant from the center of the circular
ring, a data correction algorithm is used. The flowchart of the correction methodology is provided
in Figure 2a. In this method, we image high optical energy absorbent (trimmed homogenous black
tape strips made of vinyl). A small piece of black tape is attached on the inner wall of the ring above
each of the 16 transducers as shown in Figure 2. While imaging, the output laser from the optical
fiber had sufficient energy to produce a distinguishable PA signal from the black tape for calibration.
The PA signals generated from the black tape and imaging target do not overlap because they are
spatially apart. Each transducer detects a PA signal from the tape that is located 180 degrees away
from the transducer. The diameter of the ring, the distance between tape and the opposite transducer,
is 15 cm. As a result, the PA signal generated from the tape is supposed to occur at the sample number
corresponding to such distance, for all 16 channels.

Since the signal shift is the same for both PA signals coming from the tape and the imaging target,
the number of samples between the peak of the PA signal from the tape and the imaging target remains
the same. To align the data of each channel, the arrays are truncated to the same length (5000 samples)
with the last sample being the PA signal of their respective calibration tape. Based on this methodology,
a calibration algorithm is developed and applied on each channel data as shown in Figure 3.

In order to determine the system resolution, a 0.2 mm single lead phantom is made as shown
in Figure 4a. This phantom is pivoted onto a white plastic platform using a separate 1.5 cm long
lead. Alignment of the phantom with the plane of transducer field of view is performed by a 3-axis
translation stage (Thorlabs, MT3 148-811ST). A complex 8-legged 0.5 mm diameter lead phantom is
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also developed to evaluate the system performance as shown in Figure 5a. The 8 legs of the phantom
were held together using transparent non-conductive adhesive glue.

3. Results

Using the calibration algorithm, the PA channel data was corrected before image reconstruction.
Four randomly selected channel data are shown in Figure 3. Before calibration, each channel data
consists of three reference signals: (i) the signal representing the transducer response, (ii) the PA signal
coming from the imaging target and (iii) the PA signal coming from the tape. After calibration (blue
solid), the PA signal from the imaging target is aligned. The reason that the PA signals are not located
at the same sample number, is due to the non-uniform structure of the phantom. The improvement in
the reconstructed image is evident in Figure 3e,j.

 
Figure 3. PA signal correction based on the calibration algorithm. (a–d) PA signals of (i) transducer
response, (ii) PA from imaging object, (iii) PA from calibration tape, (e) distorted image before data
correction. (f–i) PA signals from the imaging object, (j) image after data correction.

We initially performed a resolution analysis on a 2-legged phantom with 0.2 mm diameter lead as
shown in Figure 4a. As the diameter of the lead is expected to be below the spatial resolution of the
system, the width of the reconstructed image will spread to the resolution of the system. The length of
each of the two branches was 6 mm. A 2D reconstructed image of the phantom is shown in Figure 4b.
Taking a 1D intensity profile across the diameter of the object followed by a Gaussian fitting to the pixel
values and calculating the full width at half maximum (FWHM) approximates the spatial resolution of
the system. In Figure 4c, the FWHM is estimated to be 240 μm.
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Figure 4. Resolution analysis results. (a) Image of the resolution phantom, (b) reconstructed image,
(c) intensity profile across the diameter of the resolution phantom with a Gaussian fit (FWHM = 240 μm).

 

Figure 5. Imaging of an 8-leg phantom. (a) Experimental setup. (b) a photograph of the 8-leg phantom,
and (c) a 2D reconstructed image of the phantom using 16- element PACT system (image acquired in 1.5 s).

Next, the system was used to image a complex phantom comprised of 0.5 mm diameter lead with
8 branches (~7 mm in length). Figure 5a shows an image of the phantom positioned and aligned at the
center of the ring. The phantom dimensions are shown in Figure 5b. The reconstructed image of the
phantom is shown in Figure 5c.

Among different configurations of PAI, photoacoustic computed tomography is favored for
small animal studies, e.g., hemodynamic brain imaging, whole body imaging, mainly due to its
fast image acquisition. However the high-cost of the system has prevented the full establishment
and wide utility of the device. Here we introduced a fast, low cost PACT system by replacing
the sophisticated expensive ring array with a moving ultrasound sparse array. We demonstrated,
by imaging sophisticated phantoms, that the system can produce images with a temporal resolution of
1.5 s and spatial resolution of 240 μm. This system promises a higher sensitivity in comparison to a
commercial ring array due to the much larger number of view angles it uses and larger element size of
the transducers. The cost of the proposed system compared to a full-ring array PACT is given in the
table below (Table 3).
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Table 3. Cost comparison between proposed and full-ring array based PACT system.

Components Proposed/Full-Ring Array Cost ($)

Transducer 16 single elements/512 elements ~5K/~65K
Amplifiers Low noise 24dB/customized ~5K/~25K

Servo Motor Servo/NA ~250/NA
DAQ 16 channel/512 channel (or 64 channel with MUX) ~5K/~50 K

4. Conclusions and Future Work

Although PAI has demonstrated great potential in preclinical and clinical applications, it is still in
its early stage of development compared to already established medical imaging modalities such as
MRI, CT, PET, and ultrasound imaging. Among several limitations preventing the wide application of
PACT, manufacturing cost is the major one. Here, we explained the development of a fast, low-cost
PACT system with only 16 single element transducers and a novel mechanical scanning design.
Such configuration reduces the cost of the ring array PACT system drastically. A correction algorithm
has been developed and applied to the acquired signals to make the transducers’ data equidistant
from the imaging target. We have demonstrated that the system can produce images with a temporal
resolution of 1.5 s and spatial resolution of 240 μm.

The system developed in this study will eventually be used for functional small animal brain
imaging. We are currently developing a new system, using the same concept but smaller in size
with 32 transducers, and an amplifier unit, to make a faster, compact PACT system with improved
isotropic resolution.
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Abstract: Adipocyte size, i.e., the cell area of adipose tissue, is correlated directly with metabolic
disease risk in obese humans. This study proposes an approach of processing the photoacoustic
(PA) signal power spectrum using a deep learning method to evaluate adipocyte size in human
adipose tissue. This approach has the potential to provide noninvasive assessment of adipose tissue
dysfunction, replacing traditional invasive methods of evaluating adipose tissue via biopsy and
histopathology. A deep neural network with fully connected layers was used to fit the relationship
between PA spectrum and average adipocyte size. Experiments on human adipose tissue specimens
were performed, and the optimal parameters of the deep learning method were applied to establish
the relationship between the PA spectrum and average adipocyte size. By studying different spectral
bands in the entire spectral range using the deep network, a spectral band mostly sensitive to the
adipocyte size was identified. A method of combining all frequency components of PA spectrum was
tested to achieve a more accurate evaluation.

Keywords: photoacoustics; tissue characterization; absorption

1. Introduction

Obesity is a public health crisis which afflicts one third of the U.S. population [1] and is associated
with a significant risk of metabolic diseases. Metabolic diseases come with abnormal chemical reactions
in the body; diabetes mellitus (DM) is one of the most common metabolic diseases. The National
Health and Nutrition Examination Survey (NHANES) reveals that diabetes is becoming increasingly
prevalent and the corresponding weight classes are continually increasing, with nearly half of adult
diabetics considered to be obese [2]. Prediction of obese patients at risk for developing metabolic
disease is of central importance. Prior research demonstrates that adipose tissue phenotypic features,
also known as tissue observable characteristics, such as adipocyte size, correlate with human metabolic

Appl. Sci. 2018, 8, 2178; doi:10.3390/app8112178 www.mdpi.com/journal/applsci91



Appl. Sci. 2018, 8, 2178

disease [3–5]. That suggests the adipose size may serve as predictors of metabolic disease risk and
a diagnostic and therapeutic target. Histology is the current gold standard for assessments of adipose
size [3–5]. While accurate, histology requires adipose tissue biopsy, which involves surgery and
microscope observation, which is invasive and labor- and cost-intensive.

Emerging biomedical photoacoustic (PA) imaging technology is based upon the detection of
laser-induced thermoacoustic signals from a biological sample which can then be used to produce
images reflecting the optical absorption contrast in the sample [6–8]. Due to PA signal’s broad-band
feature, it can reflect sample microstructures of different scopes. Recently, various methods for analyzing
the PA signals in the frequency domain have been developed by several research groups [9–12],
aiming to achieve quantitative evaluation of tissue microstructures. One of the methods termed as
photoacoustic spectral analysis (PASA) [13–16], borrowed the basic concept from ultrasound spectral
analysis [17–19]. In PASA, by quantifying the key parameters, including slope, intercept, and mid-band
fit, of the linear fit to the truncated signal power spectrum within the predetermined frequency range,
histological microfeatures of the optically absorbing materials in target tissues were characterized.
Later, by using ultrabroad-band ultrasonic detectors, the scope of PASA was further extended from the
tissue level to the cellular level [16]. Using the three parameters of the linear fit (i.e., slope, intercept,
and mid-band fit) to describe the main features of the power spectrum provides a practical way of
addressing the stochastic nature of the tissue microstructure, and can lead to measurements that are
not only quantitative but also robust. However, despite these advantages, PASA, relying on a simple
linear fit to the power spectrum within the entire predetermined frequency range, utilizes only limited
information of the signal power spectrum.

Spectral analysis based on deep learning provides a potential solution to this problem. A network is
established in deep learning which describes the relationships between input and output by parameters
and functions. The process of training uses the data sets whose input and output are known to modify
all the parameters in the network to achieve an optimal model under control of a learning rule [20].
Upon achieving optimal parameters, the network can be used to predict the corresponding output of
data sets whose input is known. Varying layer numbers (numbers of processing steps) and layer sizes
(numbers of parameters involved in each processing step) can provide different performance of data
representation which results in varying accuracy of prediction [21]. Due to its excellent performance
characteristics, such as high accuracy, deep learning methods in medical diagnosis and evaluation have
been rapidly developed [22–24].

We studied the feasibility of measuring adipocyte size in human adipose tissue by analyzing PA
spectrum with the help of deep learning in this research. A deep neural network was used to fit the
relationship between the PA spectrum and an average adipocyte. We hypothesized that PA measurement
powered by deep learning can provide accurate assessment of adipocyte size as determined by the gold
standard histology. To examine the validity of this hypothesis, experiments on ex vivo adipose tissue
specimens from diabetic and nondiabetic obese human subjects were conducted and the network was
trained in different spectral sections to obtain the results.

In this paper, we first present the principle of using deep network to evaluate the average
adipocyte size. And then we show the procedure of ex vivo experiment and details of building our
data set. Next, results of using networks with different layer numbers are compared and experiments
of analyzing different spectral bands and the entire spectrum are presented. Finally, we make some
comparisons between our deep learning method and traditional PASA method.

2. Deep Neural Network with Fully Connected Layers

The traditional PASA method only depends on a simple linear fit with the power spectrum.
Therefore, it cannot accurately represent the relationship between PA spectrum and average adipocyte
size which may be complex and difficult to be fit with an intelligible mathematical expression.
Compared to PASA, deep learning methods can provide a much more complicated nonlinear model to
fit the relationship and achieve higher accuracy for our study. More specifically, with each A-line PA
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signal from a tissue, the power spectrum was computed and normalized, and then analyzed using
deep learning method to fully utilize the spectral information. With the method of deep learning,
the relationship between the power spectrum and adipocyte size was learned by a deep network.
The power spectrum and the corresponding adipocyte size worked as the input and output of the deep
network, respectively, when training and testing.

For an N-layer network, the element number of input and output of the network are I0 and ON+1.
In our study, each element of the input was a power spectrum value of the PA signal while the output,
with only one element, was the average adipocyte size. With the power spectrum of a PA signal fed
into the first layer, all output elements of each layer functioned as the input of the next layer and the
output of the last layer was the predicted average adipocyte size.

In our study, N-1 hidden layers and one output layer (the last layer) were used to fit the nonlinear
relationship between power spectrum and average adipocyte size. Each layer is a fully connected layer,
which means all of the input elements are connected to each output element, as shown in Figure 1.
All hidden layers and output layer did a linear transformation at first and then used different functions
to map linear transformation result to output. The n-th layer can be defined as

yj = f

(
In

∑
i=0

wi,jxi + bj

)
, j = 1, 2, . . . , On, (1)

where x is the input of the layer (In elements) and y is the output (On elements). The transfer function
f (x), as shown in Figure 1b, in hidden layers was selected as tan-sigmoid function in our network,
which is defined as

f (x) =
2

1 + e−2x − 1, x ∈ (−∞,+∞), (2)

The tan-sigmoid function is continuous, smooth, and monotone, and increases quickly in the
vicinity of x = 0 with a codomain of (−1, 1). Here, we chose a tan-sigmoid function as the transfer
function because its features match with the human adipocyte size distribution, as their values should
be continuous and bounded. For output layer, transfer function f (x) was selected as a linear function
so that the output can match the adipocyte size appropriately.

Figure 1. One layer of deep network. (a) Fully connected layer. All of the input elements are connected
to each output element. (b) Obtaining j-th element of output from input elements.

Through setting layer number N and the input and output element number for each layer,
we establish a network and use all parameters (w and b in Equation (1)) to fit the relationship between
input and output. When training, data set was divided into training set and test set. The training
set was randomly picked out from the whole data set while the remains were defined as test set.
All parameters (w and b in Equation (1)) in the network were optimized gradually through iteration
to minimize the difference between the predicted average adipocyte size and the ground truth value
from histology for all samples in the training set. When testing, the power spectrum of test set was
fed into the network with the parameters obtained through training to predict the average adipocyte
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sizes. When calculating the error, we first calculated the relative error δx of every sample from test set,
which can be defined as

δx =
Δx
x

=
|x0 − x|

x
, (3)

where Δx is absolute error. It is equal to the absolute difference between the output of the deep learning
network x0 and the ground truth value x from histologic analysis. Next, the average of absolute errors
and the average of relative errors of all samples from the test set were calculated to get the MAE
(mean absolute error) and MRE (mean relative error).

3. Results and Discussions

3.1. Data Set Building

An experiment on ex vivo human adipose tissue specimens was conducted to test our method.
To build our data set for deep learning method, we studied the histological photographs of visceral
adipose tissue samples collected from 28 human subjects (12 diabetic subjects and 16 nondiabetic
subjects) and calculated the accurate average size for each sample. Human subjects undergoing
bariatric surgery were enrolled with Institutional Review Board approval from the University of
Michigan and Ann Arbor Veterans Administration Hospital. Visceral adipose tissue (VAT) from the
greater omentum was collected at the beginning of operation and processed immediately. By cutting
collected tissues into small specimens we obtained 110 specimens of adipose. Then each specimen
was divided into two parts which were used to for microscope analysis and to acquire PA signal,
respectively. Adipose tissue explants were fixed in 10% formalin, embedded in paraffin, and sectioned
onto charged glass slides. Fixed hematoxylin/eosin-stained slides were imaged on an microscope
and analyzed with ImageJ software by a blinded observer, as previously described [1]. An example
of histological photograph is shown in Figure 2c. For each histological photograph, pixel areas of all
individual cells were averaged to evaluate the adipocyte size and the size distribution of the sample
in Figure 2c and its Gamma fitting, which proved to be the best fit of adipocyte size distribution in
previous research [17], are shown in Figure 2d.

 
Figure 2. Experiment on ex vivo human adipose tissue specimens. (a) Schematic diagram of
experimental setup for PA signal acquisition. (b) Photograph of human adipose tissue specimens.
(c) Representative microphotograph of a human adipose tissue sample demonstrating adipocyte
microarchitecture. (d) Adipocyte size distribution corresponding to (c).

PA signal acquisition was conducted by using the setup shown in Figure 2a. Laser light was from
a tunable Optical Parametric Oscillator pumped by the second harmonic output of an Nd:YAG pulsed
laser. The laser illuminated the samples at the wavelength of 1210 nm where lipid has strong optical
absorption [25]. During signal acquisition, the laser illuminated the whole adipose tissue specimen,
achieving an averaged light fluence of 5.6 mJ/cm2 on the sample surface. Each specimen was cut into
an ellipsoid-like shape; sizes shown in Table 1. A needle hydrophone was set against the samples to
acquire PA signals. Through a preamplifier and a low-noise amplifier, the PA signal received by the
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hydrophone was recorded with a digital oscilloscope. When recording PA signal, averaging was done
by oscilloscope for 50 times for one PA signal. We listed the experiment parameters in Table 1.

Table 1. Experiment parameter setting.

Parameter Value

Sample number 110 in total, 48 from diabetic subjects, 62 from nondiabetic subjects

Sample size for PA signal acquisition Approximately 15 mm diameter
5–6 mm thickness

Microscope image Olympus IX-81 fluorescent microscope, captured as multiple
TIFF-gray-scale images

ImageJ Version 1.42, National Institutes of Health and University of
Wisconsin, Madison, WI, USA

Optical Parametric Oscillator OPO, Vibrant 532 I, Opotek, Carlsbad, CA, USA

Nd:YAG pulsed laser Brilliant B, Quantel, Bozeman, MT, USA

Laser beam 1210-nm wavelength, 1.5-cm diameter, 10-mJ pulse energy,
5-ns pulse duration

Needle hydrophone
5 cm, 0.5 mm2, NIH Resource Center for Medical Ultrasonic

Transducer Technology, University of Southern California, United
States, detection bandwidth of 52.5 MHz was centered at 35 MHz

Preamplifier 18 dB ZFL-1000+, Mini-Circuits, Brooklyn, NY, USA

Amplifier 40 dB, 5072PR, Parametrics, Waltham, MA, USA

Oscilloscope TDS 540, Tektronix, Beaverton, OR, USA

Sampling rate 250 MS/s

Considering the limitation of our sample size, we also performed data augmentation [26] to
enlarge data set size. Before each training, we first randomly picked out 90% of the 110 samples
(i.e., 99 samples) as a training set and the left (i.e., 11 samples) as a test set. Next, as shown in Figure 3a,
the signal of each sample was divided into three parts that shared the same length and cover effective
signal so that 297 samples and 33 samples were obtained for training set and test set respectively [27].
We also added white Gaussian noise to signals of training set and another two signals were obtained for
each signal so that totally 891 samples were used for training. We assumed that the average adipocyte
size for each signal was equal to the average adipocyte size of the signal which generated it. In our
study, we performed this data augmentation each time before training.

Figure 3. Data augmentation. (a) Raw signal was divided into three parts based on time. (b) Signal
from (a) with noise and its power spectrum in log scale before and after normalization.

The power spectrum of each signal obtained through data augmentation was calculated. To reduce
the effects of laser energy fluctuation on the signal, normalization was performed in the frequency
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domain by making magnitudes of all frequency components divided by their sum, which can be
defined as

Pnorm(k) =
P(k)

N−1
∑

i=0
P(i)

, k = 0, 1, . . . , N − 1, (4)

where P(k) is the power spectrum of the PA signal and Pnorm(k) is the power spectrum after
normalization. One example of power spectrum in log scale are shown in Figure 3b.

In this study on human adipose tissue specimens, we focused on the spectral band of 0.5 to
24.5 MHz. The minimum value of 0.5 MHz was chosen to remove the low frequency noise below
0.5 MHz which was mainly caused by the laser illumination on the surface of the hydrophone.
The maximum value of 24.5 MHz was chosen because the power spectrum before normalization
reached the noise level (−40 dB) at this frequency. We aimed to test the validity and potential of deep
learning method for adipocyte size evaluation based on the dataset.

3.2. Most Sensitive Spectral Band

We first tried to find out the most sensitive spectral band which can lead to accurate evaluation
of average adipocyte size. Based on features of our data set, we predicted the spectral band of
12.5 to 16.5 MHz as the most sensitive. PA signals are wide-band signals and can reflect histological
microfeatures of adipocyte tissues. The average adipocyte size of our data set was mainly within the
range of 3600 to 6400 μm2. As depicted in Figure 2c, an adipocyte is shaped like a polygon. If we
consider the adipocyte as a square, the relationship between its diagonal length l and area (i.e., size) S
can be expressed as the equation S = l2/2. Thus, the average diagonal length of our data set mainly
ranged from 84.85 μm to 113.14 μm. The corresponding time t it takes for sound to pass through
adipocyte along diagonal can be computed, using the equation t = l/c0, where c0 is the speed of sound
considered as 1450 m/s (a typical value in human adipose tissue [28]). Here, we used diagonal to
estimate t because it is the longest path for sound to pass through, which varies when size changes.
Therefore, the most sensitive frequency of our data set is considered to be

f =
1
t
=

c0

d
(5)

which ranged from 12.82 MHz to 17.09 MHz. Therefore, we first tested our deep learning method on
the spectral band of 12.5 to 16.5 MHz.

We picked out the normalized magnitude of spectral band of 12.5 to 16.5 MHz as the input of the deep
network; the corresponding average adipocyte size acquired from standard histology of the tissue worked
as the output. The input had 80 elements, each correspondent to the magnitude over a 0.05-MHz step in the
4-MHz spectral band. To initialize and train the deep network, a MATLAB (2017, MathWorks, Natick, MA,
USA) toolbox called Neural Network Toolbox was employed. When training, the Levenberg–Marquardt
method [29] was selected as the optimization algorithm. As described in Section 2, the deep network
had several layers and each layer was a full connected layer shown in Figure 1. The output of each layer
works as the input of the next layer. Different numbers of layers can make up different networks which
may show various performance. We tried on networks with different layer numbers to find the optimal
layer number. For each layer number, the element number of the output of the first hidden layer was set
to about half of the input element number to reduce the number of parameters in the network and for rest
layers, the element number of the output decreased gradually. The network was retrained for a total of
10 times for each layer number. For each time, data augment, described in Section 3.2, was performed and
the minimum, maximum, and average values of the 10 MREs of the test set were computed, the result of
which is shown in Figure 4.

The depth (number of layers) of the deep network largely influences the performance of the
network, as illustrated in Figure 4. Initially when the layer number increases, the network becomes
deeper and a more complicated model is established to process the sample data, as a result of which,
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the MRE of the test set becomes smaller and the deep network is more stable as demonstrated
by the smaller deviation range. However, additional layers mean more parameters of the deep
network and the longer training time. In addition, problems such as vanishing gradient problem of
tan-sigmoid function, overfitting, and the stronger influence of the noise on the network may appear
when the network becomes too deep [30]. Therefore, when the layer number is larger than seven,
further increasing the layer number leads to larger MRE and larger deviation range reflecting unstable
performance. As a result, a 7-layer network turned out to be the best choice.

Figure 4. Training and testing using the spectral band of approximately 12.5 to 16.5 MHz with different
layer numbers. The minimum, maximum, and average of MREs of test set for 10 retrainings are drawn
for each layer number.

With the optimal network of seven layers which is shown in Figure 5, we also performed deep
learning method on other bands of the spectral range with the same data set to test whether spectral
band of 12.5 to 16.5 MHz really leads to the most accurate evaluation of average adipocyte size among
the different spectral bands. The spectral range of 0.5 to 24.5 MHz was divided into twenty-one spectral
bands. Each spectral band had a length of 4 MHz as well as a 3 MHz (75%) overlap with the adjacent
spectral band. For each of the twenty-one spectral bands, the normalized magnitude of the 4-MHz
spectral band worked as the input of the deep network, while the corresponding average adipocyte
size worked as the output. Using data augmentation illustrated in Section 3.2, the deep network was
trained for each band. Then, the relationship found out from the training was tested using the test set.
For each of the 4-MHz spectral bands, the network was retrained for 10 times, and the average error of
each time was computed. The average MRE from the 10 retrainings over different spectral bands are
listed in Table 2.

Figure 5. The structure of deep network. The numbers of the elements of the input and the output
are marked on the left of each layer in the form of “Im/Om” for the m-th layer. All the layers are
connected in the same as shown in Figure 1. The details of layer 1 and layer 2 are presented in the right
as an example.
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Table 2. Errors from the test set over different spectral bands.

Spectral Band/MHz Average of MRE Spectral Band/MHz Average of MRE

0.5~4.5 19.04% 11.5~15.5 13.27%
1.5~5.5 18.59% 12.5~16.5 12.78%
2.5~6.5 18.53% 13.5~17.5 13.93%
3.5~7.5 16.48% 14.5~18.5 14.50%
4.5~8.5 16.73% 15.5~19.5 14.16%
5.5~9.5 14.82% 16.5~20.5 15.15%
6.5~10.5 14.10% 17.5~21.5 16.41%
7.5~11.5 14.41% 18.5~22.5 16.78%
8.5~12.5 13.85% 19.5~23.5 16.02%
9.5~13.5 13.79% 20.5~24.5 16.10%
10.5~14.5 13.92%

By studying each 4-MHz spectral band in the entire spectral band using the deep network,
the spectral band of 12.5 to 16.5 MHz turned out to be mostly sensitive to the adipocyte size. As is
shown in Figure 6, in the range of 0.5 to 16.5 MHz, spectral bands covering higher frequencies lead to
smaller errors; while in the range of 16.5 to 24.5 MHz, the error becomes larger when the frequency
is higher. In addition to changes in MREs, the range of errors also changes with the spectral bands
as well. In the spectral band of 0.5 to 4.5 MHz, the error varies in a large range. The range of errors
decreases when the spectral band moves from 0.5 to 4.5 MHz to 12.5 to 16.5 MHz. However, when the
spectral bands changes from 12.5 to 16.5 MHz to 20.5 to 24.5 MHz, the range of errors also increases.
As a result, the spectral range of 12.5 to 16.5 MHz leads to the minimum error, and also a much
smaller range of errors. The variation of error in different spectral bands results from the adipocyte
size distribution. As illustrated in Figure 2d, we used Gamma distribution to fit the adipocyte size
distribution. Number of adipocytes with sizes close to average size is larger than that of adipocytes
whose size is away from the average. Therefore, the spectral band which is closer to the most sensitive
spectral band corresponds to adipocytes accounting for a larger proportion and makes the performance
of deep learning network more accurate and stable.

Figure 6. Plot showing mean relative error (MRE) of test set and the corresponding spectral bands.
For each spectral band, the minimum, maximum and average of MREs of test set for 10 retrainings are
drawn at the center frequency.
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3.3. Training on the Entire Spectral Band

In addition to the most sensitive spectral band, we also tested our network on the entire spectral
band with the same data set as we used on the most sensitive spectral band and we assumed that using
all frequency components could contribute to a smaller error since PA signal is broad-band signal.
The lower spectral range of 0.5 to 10.5 MHz contains information of outlines of adipocytes in tissue
samples. It shows the size of adipocyte group which consists of several adjacent adipocytes. Sizes of
these adipocyte groups are relative to numbers and sizes of each individual adipocyte. Indicated by
Equation (5), a lower frequency is correspondent to a larger size of adipocyte group which consists of
more or larger adjacent adipocytes. Thus, the spectral bands in this range contribute to evaluation of
average adipocyte size but with a larger MRE (more than 14%) as listed in Table 2. Higher frequency
in spectral range of 10.5 to 24.5 MHz is correspondent to different adipocyte sizes estimated by
Equation (5). A higher frequency is relative to a smaller adipocyte size. Therefore, different frequency
components indicate adipocyte size distribution and combining spectral information of all frequency
components may lead to a smaller error.

To examine our hypothesis, our network was trained on the entire spectral band to obtain the error
of combining all spectral components. Based on the normalized magnitude over a 0.05-MHz step in the
range of 0.5 to 24.5 MHz, calculated when testing the network on different spectral bands, we calculated
the sum of every six consecutive magnitude values and obtained the normalized magnitude over
a 0.3-MHz step so that 80 input elements covered the entire spectral range of 0.5 to 24.5 MHz. Then,
with normalized magnitude of the entire spectral band of 0.5 to 24.5 MHz with a 0.3-MHz step as
the input and the correspondent average adipocyte size as the output, a network with the structure
shown in Figure 5 was retrained 10 times. We performed the data augmentation for each retraining.
The error distribution of all tested samples (330 samples) from the 10 retrainings is shown in Figure 7.
As listed in Table 3, an average MAE of 394.19 μm2 and MRE of 9.30% was achieved, which is smaller
than errors of using different spectral bands listed in Table 2. The result indicated that combining all
frequency components could lead to more accurate evaluations.

Figure 7. Error distribution of all tested samples of 10 retrainings using the most sensitive spectral
band (12.5–16.5 MHz) and the entire spectral band (0.5–24.5 MHz). (a) Absolute error distribution for
all tested samples. Absolute errors are mainly within the range of 0 to 500 μm2 when training on the
entire spectral band. The distribution of the relative errors is shown in (b).

Table 3. Mean absolute errors (MAEs) and MREs of the test set in 10 retrainings using the most sensitive
spectral band and entire band.

Spectral Section Error Minimum Maximum Average

Entire spectral band (0.5~24.5 MHz) MAE/μm2 326.76 455.84 394.19
MRE 7.28% 10.94 % 9.30 %

Most sensitive spectral band (12.5~16.5 MHz) MAE/μm2 463.61 609.06 548.37
MRE 10.62% 14.90% 12.78%
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3.4. Training on the Entire Spectral Band

We also compared the performance of the deep learning method with the conventional PASA
method relying on linear fitting over the entire spectral band. This conventional method was used in
a previous study to process the same data set from the human adipose tissue specimens [17]. With the
power spectrum obtained from each tissue specimen over a spectral range of 0.5 to 24.5 MHz, a linear
fit was produced which led to a quantified spectral parameter of slope. We assume that the relationship
between the slope and the average adipocyte size follows a polynomial regression model of y = ax−3

+ bx−2 + cx−1 + d, where y is slope and x is the predicted average adipocyte size. To examine this
conventional model, we performed data augment described in Section 3.2 so that 891 samples were
used to calculate the parameter slope and obtain the best fitting using the polynomial regression model.
The parameters a, b, and c from the best fitting of the polynomial regression model was tested on
the rest 33 samples (Section 3.2). By comparing the predicted adipocyte size with the result from the
gold standard histology, the error for each sample in the test set was computed. With the results from
all the samples in the test set, the MAE and MRE were quantified for the conventional method of
PASA, and compared to the outcomes from deep learning. The errors of using the PASA method and
deep learning method combining all frequency components were listed in Table 4. As we can see,
deep learning method provided better accuracy compared to conventional PASA method.

Table 4. Comparison between deep learning method and photoacoustic spectral analysis (PASA) method.

Method Deep Learning PASA

MAE/μm2 394.19 891.20
MRE 9.30% 22.14%

4. Conclusions

In this research, we explored the feasibility of characterizing adipocyte size in human adipose
tissue using PA measurement combined with a deep learning method. In the experiments on ex vivo
human adipose tissues, we first studied different networks with various numbers of layers and the
results indicated that the network depth has a great influence on performance of network. As shown
in Figure 4, the 7-layer network yielded the best performance and resulted in a nearly 10% decrease
of MRE compared with the 2-layer network when training on the 12.5 to 16.5 MHz spectral band.
When trained on different spectral bands and the entire spectral band, our network found out the
optimally fitted relationship between the PA signal spectrum and the adipocyte size measured by
histology. The most sensitive spectral band turned out to be relative to adipocyte size which can be
evaluated by Equation (5). PA signals are characterized with a broad-band property; combining all
spectral components resulted in an MRE decrease of 3.48% compared with training on the most
sensitive spectral band in our study. Compared to conventional PASA method, using a deep learning
method to fit the nonlinear relationship can better utilize the rich information in the power spectrum
and an improvement of 12.84 % on MRE was achieved. The results of our research show the validity
of analyzing PA signals in the frequency domain using deep learning which can be a novel method for
quantitative and noninvasive evaluation of biological tissues, e.g., characterizing human adipose tissue
cellular phenotype in the context of the clinical management of obese patients. In our further study,
a larger data set will be built and a method of combining multiple wavelengths, instead of just using
1210 nm laser illumination, will be tested to improve accuracy of evaluation for clinical application.
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Abstract: A photoacoustic (PA) signal of an ideal optical absorbing particle is a single N-shape wave.
PA signals are a combination of several individual N-shape waves. However, the N-shape wave
basis leads to aliasing between adjacent micro-structures, which deteriorates the quality of final PA
images. In this paper, we propose an image optimization method by processing raw PA signals with
deconvolution and empirical mode decomposition (EMD). During the deconvolution procedure,
the raw PA signals are de-convolved with a system dependent deconvolution kernel, which is
measured in advance. EMD is subsequently adopted to further process the PA signals adaptively
with two restrictive conditions: positive polarity and spectrum consistency. With this method,
signal aliasing is alleviated, and the micro-structures and detail information, previously buried in the
reconstructing images, can now be revealed. To validate our proposed method, numerical simulations
and phantom studies are implemented, and reconstructed images are used for illustration.

Keywords: photoacoustic imaging; signal processing; deconvolution; empirical mode decomposition;
signal deconvolution

1. Introduction

Photoacoustic (PA) imaging, an emerging biomedical imaging modality based on PA effect, has
been developed extensively in recent years. During PA imaging, laser pulses energy are delivered
into biological tissues, leading to transient thermoelastic expansion and thus wideband ultrasound
emission [1]. The generated ultrasound waves propagate to the surface where detected by ultrasound
transducers [2], and are reconstructed into an image. As PA images can reveal pathology features
and physiological structures according to the specific optical absorption distribution of biological
tissues, the diagnoses on the tissue differs in physiological properties a lot, such as breast cancer
diagnosis [3], and hemodynamics monitoring [4,5], making PA imaging a promising and high potential
imaging modality.

Since typical detected PA signals of ideal optical absorbing particle is a single bipolar N-shape
pulse [6,7], PA signals of a complicated biological tissue can be considered to be the combination
of individual N-shape pulses. However, the N-shape wave basis results in two problems: the first
problem is aliasing between adjacent micro-structures. The signal of a tiny target can be affected and
even buried by the bipolar signal of a large target at a short distance, leading to unexpected aliasing
and distortion in the final image. The second problem is that the existence of the N-shape wave
complicates subsequent imaging work. When reconstructing images, the envelope of signal must
transform the negative part into positive, as the negative part possesses significant information as well.
Both drawbacks could deteriorate the quality of PA images.
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Therefore, the processing on an N-shape wave can be significant in alleviating the drawbacks and
has been investigated a number of studies. Li [7], identified some properties about the N-shape wave and
introduced processing methods, including wavelet and deconvolution. Ermilov [8,9], transformed the
bipolar N-shape pressure pulse to the monopolar pulse using wavelet transform in order to get the signal
suitable for tomographic reconstruction. The deconvolution method can convert the bipolar N-shape
wave to the monopolar wave and is rarely applied to processing signals, and thereby raising our interest.
Traditionally, the deconvolution method is often applied to image reconstruction and image processing.
For instance, Kruger [10] and Gamelin [11] used deconvolution methods in PA image reconstruction.
Cai [12] improved the image resolution of PA microscopy by using deconvolution method on images.
Recently, Nagaoka [13] proposed a reconstruction method to improve axial resolution through the
suppression of the time side lobes in PA tomography by Wiener filtering.

In this paper, we propose using the image optimization method to process raw PA signals using
signal deconvolution and empirical mode decomposition (EMD). This method mainly relies on signal
deconvolution. However, as unexpected artifacts appeared around the imaging target only with signal
deconvolution, EMD was instead adopted into our method as a subsequent step to further improve
the reconstructed image quality. Moreover, we averaged multi-sampling raw PA signals with time
shift correction by cross-correlation method as a preprocessing step in order to raise the signal-to-noise
ratio (SNR) and enhance the performance of signal deconvolution.

2. Methods

Given that the detected PA signals have low SNR that deteriorate the quality of PA images,
de-noising operation is quite common as a pre-processing step. Theoretically, averaging signals of
multiple frames can eliminate random background noise and raise the SNR. However, non-negligible
time shifts among signals of different frames always exist for a variety of reasons, including the slight
fluctuation of the water around the imaging target, the small movement from a living biological
imaging target, and system defect (possibly random delay generated by inner circuit). To solve this
issue, we adopted an effective averaging method to adjust time shifts based on cross-correlation
method [14,15].

First, we calculated the time shifts (Δm1, Δm2, · · ·) between the reference frame and other frames
by cross-correlation. For discrete PA signals p1(n) and p2(n), an estimate of the cross-correlation
function is defined as [16]:

R̂p1 p2(m) =

{
1

L−|m| ∑L−m−1
n=0 p1(n + m)p∗2(n), m ≥ 0

R̂p1 p2(−m), m < 0
, (1)

where p∗2(n) is the complex conjugate of p2(n), L is the maximum length of p1(n) and p2(n),
the normalization coefficient 1/(L − |m|) can avoid the zero bias inherent in the standard
cross-correlation function. According to this equation, the value of time shift Δm should equal
to the value of m when the cross-correlation function R̂p1 p2(m) is of maximum value.

Assuming p1(n) is the uniform reference, p2(n), the signals of all the rest frames need to be shifted
to the length of their corresponding |Δm| forwards or backwards based on the sign of Δm. After that,
shifted signals of multiple frames that all align is acquired, so we can obtain the final de-noised signal
p̂(n) by simply averaging them all.

Mathematically, the convolution result of a single wave and positive pulses with different
delay is the superposition of many same-shaped waves with different delay, and the specific size
of each wave depends on the size of the corresponding positive pulse. Hence, we assumed that PA
signal is the convolution result of a series of specific monopolar pulses and a single N-shape wave.
With that assumption, the monopolar signal, which contains the amplitude information and time
information, can theoretically be acquired through deconvolution. As we mentioned in the former
section, the N-shape wave basis has defects that will reduce the quality of PA images, while the
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de-convolved monopolar signals possess equally important information for imaging as raw PA signals
and perform better than raw N-shape PA signals when reconstructed into images. We intended to
acquire de-convolved signals to replace raw PA signals.

Generally, the discrete detected PA signal s(n) can be represented in convolution form as:

s(n) = o(n) ∗ h(n) + n(n), (2)

where ∗ denotes convolution, h(n) is the kernel of this signal convolution system, s(n) is the detected
raw signal, o(n) refers to the signal which we aim to acquire and n(n) represents the additive noise.
In our method, we took h(n) as a normalized single N-shape pulse which is acquired by detecting
an approximately ideal optical absorbing particle, specifically, the smallest source which the PA data
acquisition system can measure. For example, assuming that velocity is 1540 m/s, an L7-4 ultrasound
probe whose center frequency is 5.208 MHz can detect the minimum source is approximately a diameter
of 0.296 mm, so in this case, the kernel h(n) ought to be acquired by detecting the source whose size is
closest to and bigger than 0.296 mm.

The deconvolution algorithm we used was the Wiener deconvolution [17]. A typical simulated
signal was used for demonstration. As shown in Figure 1b, the signal was converted from a bipolar
signal to monopolar signal after deconvolution. However, directly using de-convolved signal to
reconstruct images creates defects. As shown in Figure 1c, when reconstructing images by conventional
delay-and-sum algorithm, assuming the velocity is uniform, the value corresponding with the position
of the imaging target was also added to the other positions of the same distance to the transducer
element as imaging target. Normally, artifacts can be restrained as the signal has both positive part and
negative part to cancel each other out. Since the de-convolved signal is monopolar, unexpected artifacts
will appear around the imaging object because amplitude cannot be cancelled out when summing
up as they are all positive. To alleviate this phenomenon and further optimize the images, EMD was
adopted subsequent to signal deconvolution.

 

(a) 

(b) 

Figure 1. (a) Diagram of the normalized deconvolution kernel h(n) in simulation; (b) comparison of
simulated signal before and after deconvolution; (c) illustration of the widespread artifacts forming
process in delay-and-sum algorithm.

The principle of EMD [18], is to decompose a signal into several intrinsic mode functions
(IMFs) without setting any basis function in advance, and each of them reserves the local features
of the original signal with different time scales. Given that different IMFs possess different features,
we were able to rebuild new signals to meet our requirements by depressing some of the IMFs and
enhancing other IMFs. Specifically, we applied weight coefficients to each IMF and refactor new signal
automatically under the constraints which is set in advance. In our proposed method, we apply the
de-convolved signal to EMD and refactor it with two constraints, positive polarity and spectrum
consistence. Given that EMD can only process one-dimensional signals at a time, a one-dimensional
signal o1(n) (detected by a single transducer element of the probe) of de-convolved signal o(n) should
be considered as an example, the procedure [19] is described in detail as follows:
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Step 1: Use EMD method to decompose signal o1(n) into k IMFs (k is a changeable number) and
the residue:

o1(n) = ∑k
i=1 IMFi + res(n), (3)

Step 2: Set weight coefficient value of each IMF to refactor a set of new signals:

newo1(n) = [a1 a2 · · · ak]×

⎡
⎢⎢⎢⎢⎣

IMF1

IMF2
...

IMFk

⎤
⎥⎥⎥⎥⎦, (4)

where a = [a1 a2 · · · ak] refers to the weight coefficients of IMFs. As the number of IMFs is k,
the number of weight coefficient is also k and each weight coefficient corresponds with an IMF.
The value of each weight coefficient ranges from [0, 1] with step 0.1, so that the number of iteration is
11k. The coefficient of residue remains 1.

Step 3: Calculate two constraints in each iteration:
The first constraint is positive polarity. As the original de-convolved signal is monopolar,

positive polarity is set to avoid distortion between the refactor signal and the original signal.
Positive polarity is defined as:

p =
min(new_o1(n))
max(new_o1(n))

> threshold, (5)

where the threshold here should equal the minimum amplitude of o1(n) divided by maximum
amplitude of o1(n). Within each iteration, the second constraint can be calculated if the refactored
signal satisfies the positive polarity. Otherwise, this iteration should be skipped and to begin the
next iteration.

The second constraint is spectrum consistence. As the high frequency components usually retain
detailed information, we applied the spectrum consistence to refactoring a new signal, with more
detail and less aliasing. Spectrum consistence is defined as:

c = ∑ f2
ω= f1

f (ω)

/
∑ f1

ω= f0
f (ω), ω <

fs

2
, (6)

where f (ω) is the FFT result of refactored signal, fs refers to the sampling frequency. As band-limited
ultrasound transducers can only receive the signal with a limited frequency band, f0 refers to the low
cut-off frequency, f2 refers to the high cut-off frequency and f1 is the middle frequency point of the
frequency band. We assume that the high frequency component and the low frequency component is
divided by f1. Set the initial c = 0, and if the c of this iteration is bigger than the former one, the weight
coefficient of this iteration should be adopted and the former c should be substituted by the new c.

Step 4: repeat the iterations in Step 2 and Step 3 until it traverses all the weight coefficients,
and we can then assume that the new_o1(n), which satisfies the positive polarity and obtains the
biggest spectrum consistence c is the best refactored signal.

3. Results

3.1. Numerical Simulations

We implemented numerical simulations based on the MATLAB (The MathWorks, Natick, MA,
USA) k-Wave toolbox [20] using a HP server (Hewlett-Packard, Palo Alto, CA, USA), which has 2 Intel
(Intel Corporation, Santa Clara, CA, USA) Xeon (R) X5670 CPU working at 2.93 GHz and 72.0 GB RAM.
PA data were detected by 128 linear ultrasound element transducers, which distributed on the upper
side of the numeric phantom. The speed of sound was set to 1540 m/s. In the simulation, two numeric
phantoms were used to validate the effectiveness of our proposed method. To prevent the interference

106



Appl. Sci. 2018, 8, 2113

of the reconstruction method in k-Wave toolbox, we used the basic delay-and-sum reconstruction
algorithm to reconstruct each image in our study.

First, the deconvolution kernel h(n) was acquired from a single transducer element on the upper
side, which detects the numeric phantom that only consists of a point source of radius 1 in the middle
position. The normalized h(n), shown in Figure 1a performs as the uniform deconvolution kernel in
our simulations.

To illustrate the deformation of signal and the direct results in reconstructed image clearly, we used
a simple numeric phantom as seen in Figure 2a, which consists of a large point source in the middle
and four small point sources around. Meanwhile, to make the simulation more realistic, we used a
vessel-like image as seen in Figure 3a to simulate the complex numeric phantom.

(b) 

(d) 

(a) 

(c) 
(e) 

Figure 2. Results of the signal processing and reconstruction in simple numeric phantom. (a) the set
position of source and sensors; (b) reconstructed image of original signal; (c) reconstructed image of
de-convolved signal; (d) reconstructed image of final processed signal; (e) signal processing result.

(a) (b) 

(c) (d) 
(e) 

Figure 3. Results of the signal processing and reconstruction in complex numeric phantom. (a) the set
position of source and sensors; (b) reconstructed image of original signal; (c) reconstructed image of
de-convolved signal; (d) reconstructed image of final processed signal; (e) signal processing result.
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As observed in Figures 2e and 3e, bipolar N-shape signals are converted to monopolar signals
after processing and more detailed information appears, especially in Figure 3e. The small N-shape
waves affected by the negative part of the big N-shape waves became apparent. From the reconstructed
images in Figures 2 and 3, we can observe that the original signals result in aliasing and blurring in
reconstruction (as Figures 2b and 3b), the five dots and the two main branches are hard to distinguish.
Moreover, the existence of N-shape wave leads to distortion in the image. Using Figure 2b as an
example, the two points in the lower side are obviously weaker than the two points in the upper side,
and on the other hand, the position of the two points in the lower side slightly moves downward
compared with the set position (Figure 2a). This is because the wave after big waves is affected and
even buried by the negative part of the big waves. But by performing deconvolution on signals
(Figures 2c and 3c), aliasing is alleviated, and distortion is corrected. After processing by EMD
(Figures 2d and 3d), the edge sharpness and resolution of the images were further improved. With the
gap widening between main imaging targets, the five dots in Figure 2 and the branches in Figure 3,
are distinguishable and separated now.

Since the original PA signal is bipolar, using an envelope is necessary when reconstructing images
by means of delay-and-sum algorithm. However, this step could be left out due to the positive polarity
of the refactored signal, which further improves image quality and increases efficiency.

3.2. Experiments

The schematic of our experimental setup is shown in Figure 4a. A tunable optical parametric
oscillator (OPO) system (Phocus Mobile, Opotek, CA, USA) is pumped by a Nd; YAG laser (Brilliant
B, Bigsky, MT, USA) is employed as the laser source. The laser works at the wavelength of 720 nm
with pulse repetition rate of 10 Hz and pulse duration of 5.5 ns. A Verasonics system (Verasonics
Inc., Kirkland, WA, USA) is controlled by a computer to receive raw PA data. An ultrasound linear
array (L7-4, Philips, Amsterdam, The Netherlands) with 128 elements, 5.208 MHz center frequency
and 0.298 mm element pitch was used. Ultrasonic coupling agent is used as the acoustic transmission
medium between phantom and ultrasound probe.

 
(b) (c) (d) 

Figure 4. (a) Schematic of the experimental setup; (b) the phantom used as imaging target (two rubber
threads); (c) the phantom to acquire the deconvolution kernel (one tungsten wire); (d) a photo of the
experiment setup.

The phantoms used in this experiment were made of porcine gelatin with 8% concentration as
shown in Figure 4b,c. Figure 4b is the phantom used as the imaging target in our experiment which
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embedded with two rubber threads of diameter 1 mm and Figure 4d shows the placement of phantom,
probe and laser in this experiment. The arrows in Figure 4b,c both point to the position where a probe
acquired a signal of each phantom while carrying out the experiment. During the process of signal
acquisition, each set of signals contained approximately 200 frames for a continuous period to average.

The deconvolution kernel is acquired from the middle transducer element of the probe,
which detected a single tungsten wire of diameter 0.3 mm (as Figure 4c); approximately the smallest size
L7-4 probe can measure. The normalized deconvolution kernel (as shown in Figure 5), averaged from
200 frame signals, was used as the deconvolution kernel in this experiment.

Figure 5. Diagram of the normalized deconvolution kernel in the experiment.

The comparison of the reconstructed result is shown in Figure 6. We can observe that the two
oblique rubber wires are too close to look separated in the image reconstructed with original PA signal,
as shown in Figure 6a. Without knowing the imaging targets in advance, it is difficult to distinguish
the structure visually. After applying our proposed method, as shown in Figure 6b, the two lines are
completely separated, and the realistic inner structures of this phantom can be more clearly identified.
Meanwhile, image resolution is enhanced, and the artifact is slightly reduced.

To quantify the width of gaps in Figure 6 and compared to the realistic width of gap in Figure 4b,
we measured the width of gaps in Figure 6. In Figure 4b, the diameter of the two rubber wires in the
phantom are both 1 mm, we can observe that the realistic gap, where the arrow mark is pointing to,
is approximately 0.4 mm. In respect of the reconstructed image of the original signal as shown in
Figure 6a, the width of the gap is about 0.08 mm. For the reconstructed image of the processed signal
as shown in Figure 6b, the width of the gap is about 0.3 mm. From the quantification, we can find that
the image of processed signal more aptly indicates the accurate width and position of realistic targets.

(a) (b) 

Figure 6. Reconstruction results of the experiment. (a) the reconstructed image of original signal;
(b) the reconstructed image of processed signal.

4. Discussion and Conclusions

From the contrast of signals in the simulation before and after processing, the bipolar signals are
converted into non-negative signals, whereas the processed signals in the experiment are relatively
monopolar, but not strictly monopolar. The deconvolution result is sensitive to noise, which is
inevitable in the signal acquisition procedure. Meanwhile, the relatively monopolar signals have
some benefit in reducing artifacts in the final reconstructed image. Widespread artifacts as shown in
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Figure 2d appear around imaging targets when using the strictly monopolar signal, whereas artifacts
can be slightly alleviated if the relatively monopolar signal are used.

In this work, we demonstrate an image optimization method by processing the raw PA signals
using signal deconvolution and EMD. Using this method, raw bipolar signals are converted into
quasi-monopolar signals and more detailed information can be obtained to alleviate the signal aliasing
phenomenon. With the processed signals, PA image can be optimized, especially in resolution and
edge sharpness. Moreover, the micro-structures, which were previously hidden and buried by large
imaging targets, can now be revealed and separated. Both numeric simulations and phantom study
illustrate the effectiveness of this method. As this method can help to distinguish between close
objects and reveal detail information, it can potentially help with diagnoses, especially on tissues
with micro-structures.
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Abstract: One of the major concerns in photoacoustic computed tomography (PACT) is obtaining
a high-quality image using the minimum number of ultrasound transducers/view angles. This issue
is of importance when a cost-effective PACT system is needed. On the other hand, analytical
reconstruction algorithms such as back projection (BP) and time reversal, when a limited number of
view angles is used, cause artifacts in the reconstructed image. Iterative algorithms provide a higher
image quality, compared to BP, due to a model used for image reconstruction. The performance of the
model can be further improved using the sparsity concept. In this paper, we propose using a novel
sparse dictionary to capture important features of the photoacoustic signal and eliminate the artifacts
while few transducers is used. Our dictionary is an optimum combination of Wavelet Transform (WT),
Discrete Cosine Transform (DCT), and Total Variation (TV). We utilize two quality assessment metrics
including peak signal-to-noise ratio and edge preservation index to quantitatively evaluate the
reconstructed images. The results show that the proposed method can generate high-quality images
having fewer artifacts and preserved edges, when fewer view angles are used for reconstruction
in PACT.

Keywords: photoacoustic imaging; image quality assessment; image formation theory; image
reconstruction techniques; sparsity

1. Introduction

In a photoacoustic computed tomography (PACT) configuration, the ultrasonic waves are collected
using ultrasonic transducers placed all around the tissue. The waves are then processed through
a reconstruction algorithm, and an image is generated [1–4]. The number of transducers/view angles
in PACT is directly proportional to the quality of the reconstructed image. In the past several years,
researchers in the field of PACT have focused on two main topics: the design of the imaging system
and image reconstruction algorithms [5–9]. In the case of system design, most of the attention has been
on the arrangement of the transducers. The simplest proposed configuration has been using a single
transducer swiping around the targeted object, and a more complicated one is to use a transducer array
that covers either 360 degrees around the object (ring shape) or some parts of it. The type of transducers
used in the configuration of PACT can be spherical, cylindrical, or flat [10–13]. The expansion of this
concept is beyond the scope of this study. The literature cited here is a limited amount of PACT work.
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For a more complete list, please read [14]. Readers are referred to Figure 1 of [15] and Figure 11 of [16]
for further explanation of PACT imaging systems.

Several reconstruction algorithms have been designed for PACT, where a circular or linear array
has been used for data acquisition [17–19]. Back-Projection (BP) and its derivations e.g., filtered back
projection (FBP), could be considered as the most eminent PACT reconstruction algorithm due to their
simple implementation [20]. They use the fact that pressures propagating from an acoustic source
reach the detectors at different time delays, which depends on the speed of sound, as well as the
distance between the source and the detectors [6,8,21].

The requirement in the BP algorithm is to input a large number of signals collected from different
view angles. As mentioned, for a circular detection, the signals can be collected either using a single
transducer rotating around the object or a ring shape transducer array. Such systems are either
too expensive (due to the transducer ring array) or have a poor temporal resolution (due to using
single transducer). To address theses problems, iterative image reconstruction algorithms (known as
model-based algorithms too) can be used where there is a model used for the reconstruction [22].
In other words, iterative algorithms build up a model to describe the relationship between the
detected photoacoustic (PA) signals and the optical absorption distribution and iteratively reduce
the artifacts [23–25].

One of the concepts which can be combined with the model-based algorithms is compressed
sensing (CS) and sparsity [26]. Over the past few years, it has been shown that using sparsity
with model-based image reconstruction algorithms can mitigate the artifacts caused by the limited
view angles and improve the quality of the reconstructed PA images [24,27–29]. Donoho et al.
proposed the CS theory in 2006, for the first time, which is based on a prior knowledge of
unknowns [30]. This method can be used in data acquisition procedure of PACT [31], which leads
to information reconstruction based on the convex optimization from some observations that seem
highly incomplete [28]. This concept has been used in the reconstruction of magnetic resonance
imaging (MRI) and Computed Tomography (CT)-MRI in order to reduce the scan time and have
an inherent registration in space and time [32]. In addition, CS has been used for thermoacoustic
imaging (TAI) [33].

Provost and Lesage [28] have used CS for PACT image reconstruction, where due to the
advantages of sparse characteristic of a sample, fewer projections were used to reconstruct the optical
absorption distribution map of the tissue [34]. Signal sparsification can be done in two different
ways: (i) applying a dictionary learning and (ii) using standard transform functions. Even though
dictionary learning-based methods outperform the standard transform functions, in order to make
the signal sparser, they impose a higher complexity for reconstruction [35,36]. On the other hand,
standard transform functions can simply translate the signal to a sparse shape. The Wavelet Transform
(WT), Discrete Cosine Transform (DCT), and Total Variation (TV) are some of the popular sparsifying
transforms. Such transformations result different sparse representations of the original signal. Similar
to compression algorithms, the combination of the original signal in different transformation domains,
can provide an image with an improved quality.

In this paper, we introduce a novel dictionary for sparse representation of PA signals in order
to improve the quality of the reconstructed PA image. The proposed method consists of three
sparsifying transformation functions: WT, DCT, and TV. Using the proposed method, users are
able to highlight information provided by each of the functions. We compared the performance of
the proposed algorithm with the performance of BP and sparse reconstruction based on different
methods when the same number of view angles is used. We use two established quality assessment
metrics—peak signal-to-noise ratio (PSNR) and edge preservation index (EPI)—for quantitative
evaluation of the results. Quantitative and qualitative results indicate that the proposed method
can be a proper option when we face a limited number of angle views.
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2. Methods

2.1. Analytical Reconstruction

In a PACT system, after laser excitation, acoustic waves are generated. The waves are collected
by ultrasonic transducers all around the imaging target, stored in a computer by a data acquisition
(DAQ) card, and processed in a reconstruction algorithm. The acoustic wave generation is based on
thermoelastic expansion effect. Based on the principle of acoustic theories, in a homogeneous medium,
the pressure at position r and time t, p(r, t), follows the thermoacoustic equation shown in Equation (1).
In this equation, the initial pressure, p0(r), is generated by a short pulse, which can be mathematically
considered as a delta function (δ(t)) [20].

�2 p(r, t)− 1
c2

∂2

∂t2 p(r, t) = −p0(r)
dδ(t)

dt
(1)

where c indicates the speed of sound. The pressure at (r, t), generated from the initial pressure at r′,
is given in Equation (2), known as the Forward Problem.

p(r, t) =
∂

∂t

[
1

4πc3t

∫
dr′p0(r′)δ(t − |r − r′|

c
)

]
. (2)

In PACT, we look for initial pressure (p0(r′)) calculation using the pressure measured at different view
angles/times (p(r, t)). To this end, Equation (3), known as the Backward Problem, would be used [27].

p0(r) =
∫ [

2p(r0, t̄)− 2t̄
∂

∂t̄
p(r0, t̄)

]
dΩ0

Ω0
(3)

where t̄ = |r − r0|, and dΩ0
Ω0

denotes the weight that must be allocated to the detected pressures by
transducers [27]. A favorite reconstruction algorithm for the PACT system could be the one that
generates a high-quality image with fewer number of view angles. Analytical algorithms such as
BP and TV-based have an inherent limitation (necessity of a large number of view angles around
the target object) for accurate estimation of the optical absorption. In other words, such algorithms
cause artifacts in the reconstructed images when a limited number of view angles is available in the
PACT system. One solution to address this problem is a model-based algorithm in which artifacts
and noise are iteratively degraded using a model. It should be noted that reconstruction algorithms
are mostly simplified, and the effects of transducer size, imaging noise, and directivity of sensors are
not considered in the reconstruction procedure. All these assumptions lead to negative effects called
artifacts in this paper.

2.2. The Proposed Method

We model the procedure of PACT using b = Ax, where A is the measurement matrix, and x is
the assumed phantom in the forward problem and the reconstructed image in the backward problem.
b is the detected signals by the ultrasound transducers. When the number of unknowns (number of
pixels of the PA image) is greater than the number of equations (number of recorded samples),
which usually happens in PACT, especially when a low number of view angles is used for decreasing
the data acquisition time, we have an underdetermined system. In this case, there is no exact solution.

One commonly used method to solve an underdetermined problem is the least square technique,
giving xest = (AT A)(−1)ATb. The least square method uses the error minimization to obtain a solution,
but the answer is not the best and the most accurate one that can be obtained. The sparse component
analysis and sparse representation of signals can be used to solve the underdetermined problem of
the PA image reconstruction. Having a prior knowledge, we can promote sparsity using l0, l1, and lp

(0 < p < 1) norms to obtain a more accurate solution [30]. In other words, we can improve the image
quality by assuming that the imaging target is sparse.
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Targets in PA imaging are composed of many singularities. A singularity is the point of
an exceptional set where it fails to be well-behaved in differentiability. These singularities can
be considered as non-zero values of x. Such an assumption in the procedure of the backward
problem leads to a more accurate solution in comparison with algorithms that use error minimization.
The representation of the backward problem is given in Equation (4).

min
x

J(x) s.t. b = Ax (4)

where J(x) is the prior knowledge function that is used to promote sparsity. The basis pursuit
method uses the l1-norm to sparsify the problem and transfers it into a linear or quadratic equation
(see Equation (5)).

min
x

1
2
‖b − Ax‖2

2+λ‖x‖1 (5)

where λ is the scalar regularization parameter, and ‖.‖1 and ‖.‖2 indicate the l1-norm and l2-norm,
respectively. The first and second terms of Equation (5) represent the error of estimation and level of
sparsity of estimated x, respectively. An effective sparsity method should represent all of the most
important features of the PA images. Considering the diagnostically relevant features in a PA image,
significant features can be edges, singular points, and homogenous texture.

A standard transform function can be used for signal sparsification. A single transformation,
however, can well represent only one of the major features. In order to obtain an image having all these
features, we propose combining some of the well-known standard transform functions. Although WT’s
magnitude will not oscillate around singularities, and it uses continuous transform to characterize
the oscillations and discontinuities, the images generated by WT are blurred. DCT helps separate
the image into spectral sub-bands of differing importance. In addition, it preserves homogeneous
textures better than WT. However, it provides some blocking artifacts in the image. The blocking
artifact is a distortion that appears as abnormally large pixel blocks. Therefore, WT and DCT cannot
capture two-dimensional singularities, i.e., curves and edges in an image. On the other hand, the TV
is an operator that works based on the local variations in a signal. It well preserves the edges in the
image. However, the artifacts in the initial image introduced by limited view angles significantly affect
the performance of TV [37]. As illustrated, all the three mentioned transformation functions have some
benefits and disadvantages. We therefore propose to optimally use the combination of basis functions
of WT, DCT, and TV, where WT captures point-like features, DCT captures homogeneous texture
components, and TV sharpens the edges and reduces other artifacts without eliminating essential
information of the image. In this way, due to the properties of the imaging target, which directly affect
the PA reconstructed image generated in the first attempt, the reconstruction procedure is updated,
moving toward a high image quality. The procedure of the proposed method can be seen in Figure 1.

The signal (b) can be decomposed to three sub-signals (b1, b2, and b3), each emphasizing a feature
in the image, utilizing the morphological component analyses (MCA). Having three sub-signal and
three sparse representation methods, MCA assumes that, for each sub-signal, there is a corresponding
sparse representation which makes the sub-signal sparser than others. The proposed method is
described in Equations (6) and (7), which are the expansion of Equation (5) for the MCA concept.

min
x

1
2
‖b − (b1 + b2 + b3)‖2

2+α‖ψwx‖1+β‖ψDCTx‖1+γTV(x) (6)

TV(x) =
∫

|Dx| (7)

where x is an initial image, obtained from BP algorithm, and ψw and ψDCT are WT and DCT transform
operators, respectively. D is the gradient operator. α, β, and γ are the weight factors for WT, DCT,
and TV transform operators, respectively. It should be noted that, in each basis, the emphasis is on one
major feature and other features are less signified. These features are preserved as shown in Equation (6).
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Figure 1. Block diagram of the proposed method. All the italic letters have been described in the text.

Paradigm of the Proposed Method

The proposed reconstruction method, demonstrated in Figure 1, is an iterative algorithm with
the raw data acquired by transducer/s as the input and the reconstructed image as the output.
The principle of the algorithm is as follows. First, we reconstruct an image (x) using the traditional
BP method (considered as the initial image). The image reconstructed by the BP algorithm and the
signal used within the BP algorithm (for reconstruction) are considered as the input of the proposed
method. Here, b indicates the raw data, detected by the US transducer/s. Using the forward problem,
shown in Equation (2), and the initial image (x), we calculate the raw data that could be used to
obtain the initial image x. It should be noted that the initial image is obtained by the recorded signals
using US transducer/s, but using the forward equation presented in Figure 1, we calculate the signal
which could be as the initial signal, ignoring the recorded data. As the next step, we differentiate
the recorded signals by the calculated signals. The result of differentiation is called d1. By applying
l1-norm to d1, f1 is generated. The f1 indicates the power of the error signal. In addition, we calculate
an error image, G1, from the error signal by applying the backward problem illustrated in Equation (3).
Simultaneously, the system applies the proposed combinational sparsifying method on x to obtain
an image. This image is called G2, as shown in Figure 1. At this step, the signals that could be used
for generation of G2 is calculated using the forward problem, called f2. By applying l1-norm to f2,
f3 is generated as the power of f2. Therefore, summation of f1 and f3 (i.e., f ) is a parameter that shows
the difference between the real image and what we have estimated. If f does not meet the desired
margin error, x should be updated. The updating process can be done by subtracting a portion of G
from x, i.e., δt, iteration step.

Big step accelerates the speed of the program and reduces the execution time, but it may increase
the error and lead to an unstable loop. If f meets the desired margin error, the last updated x would be
the final image at this first step. The number of the steps is selected based on the trade-off between
the execution time and the performance of the final reconstructed image. In our algorithm, we set
the number of steps to 50. By allocating appropriate weights to each basis function, coefficients
corresponding to dominant features will receive higher gain and those corresponding to less critical
features will receive a lower gain.

It should be noted that the weighting factors are determined based on what diagnostically relevant
features need to be emphasized in the image, i.e., edges, singular points, and homogeneous textures.
A statistical texture analysis method, the Gray-Level Co-Occurrence Matrix (GLCM) technique,
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has been used to measure the homogeneous texture components [38]. GLCM is used in 0, 45, 90, and 135
degree directions. Singular points are small local areas that the signal values in these areas are changed
in two dimensions. The Harris operator, by providing an analytical autocorrelation, considering the
local intensity changes in different directions, has been used to detect singular points [39]. We used the
canny filter, a first-order image edge detector, to determine the weighting factor TV (which signifies
the edges). It should be noted that the main justification for the proposed method is to utilize the
advantages of the overlapping methods to improve the image quality in limited view PACT systems.
As mentioned, using only one sparsifying function leads to information loss. By combining the three
basis, all the information loss in one of them can be mitigated using another one, leading to a higher
image quality, compared to using any one of them.

3. Results

To evaluate the performance of the reconstruction algorithms, we made a gel phantom with
imaging target inside. The phantom was made by 3% Agar powder in water. Eight straight graphite
pencil leads with a 0.5 mm diameter were placed co-centered in the same plane embedded in
the gel. The size of the phantom was 30 × 30 mm (Figure 2b). The phantom was imaged
using a single-transducer PACT system (Figure 2a). A Quanta-Ray PRO-Series Nd:YAG laser
(Spectra-Physics Inc., Santa Clara, CA, USA) pumped a VersaScan V1.7 optical parametric oscillator
(OPO) (Spectra-Physics Inc., USA), generating wavelengths in the range of 398–708 nm, with a pulse
width of 7 ns and a repetition rate of 30 Hz. In this experiment, the illumination wavelength was
532 nm. A large graded index plastic optical fiber with a diameter of 10 mm and a numerical aperture
of 0.55 was used on the top of the ring, 5 cm away from the sample, forming an uniform illumination.
A cylindrically focused ultrasound transducer, V326-SU (Olympus Inc., Center Valley, PA, USA) with
the element size of 0.375 inch, central frequency of 5 MHz and the focal length of 0.625 inch was
positioned on a cylindrical construct. The position of the transducer was in the same plane as the
pencil leads were. The diameter of the construct was 75 mm. The cylinder was rotated using a stepper
motor (Applied Motion Products Inc., Watsonville, CA, USA) with a driver controlled by LabVIEW.
The transducer was smoothly rotated around the phantom with the speed of 0.0125 round/s to collect
the PA signal in 360 degrees. The data acquisition is performed using our FPGA based National
Instrument (NI) system. Specification of the experiment is presented in Table 1. A photograph of the
PAI system is shown in Figure 3. The system was placed on a 12 ft × 4 ft optical table (New Port, Inc.,
Irvine, CA, USA).

Figure 2. (a) Schematic of our PACT system; (b) gel phantom with eight 0.5 mm pencil leads.
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Figure 3. Low-cost photoacoustic computed tomography (LC-PACT) system diagram comprised
of an Nd:YAG 30Hz Spectra Physics laser, an optical parametric oscillator (OPO), a circular ring,
a DC supply for the motor driver, an NI DAQ, an NI trigger, a servo motor, a motor gear, a three-axis
translation stage for phantom, and a transducer-amplifier unit.

Table 1. Specification of the experimental setup presented in Figure 2.

Transducer 5 MHz
Laser energy 20 mJ/cm2

Laser pulse width 7 ns
Laser rep-rate 30 Hz
Wavelength 532 nm
Amplifier ZFL500LN

DAQ National instrument

For image reconstruction, we used a laptop with i7 core, 2.3 GHz CPU, and 8 GB Memory.
Figure 4 demonstrates a set of results of different reconstruction algorithms on the phantom data
acquired by our PACT system. They are C-scan images with their dimensions annotated in the right
image. The reconstructed images with BP and CS with different sparsifying methods for different
numbers of views (30, 60, 90, and 120) have been presented. As seen in the first column, BP generates
images with a high level of artifacts and imaging noise. Even though increasing the number of angles
improves the image quality with lower imaging noise and reconstruction artifacts, the images are still
affected. The CS-based WT removes a considerable amount of artifacts presented in the BP image
(initial image). However, it blurs the edges of the reconstructed image. Even for a low number of
angles, the real structure of the imaging target is compromised. It can be seen that adding the TV
sparsifying method to the WT sharpens the edges, especially for 90 and 120 angles. While improvement
is obtained, it removes the artifacts in the image along with useful information, lowering the accuracy
of the reconstructed image. Finally, the proposed method removes the artifacts effectively and more
accurately by sharpening the edges while retaining the significant information in the image. It should be
noted that, in all the reconstruction implementations, investigated in this study, the media is assumed
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to be acoustically homogeneous. It should be noted that some algorithms produce more artifacts and
decrease the visibility of the details in reconstructed images. The contrast of the image concerned with
the proposed method is not changed, but the amount of artifact is, leading to a better visibility.

Max

Min

Am
plitude 

30

60

90

120

BP CS 
(WT)

CS 
(WT+TV)

Proposed 
Method

Gold Image: WT with 
600 elements

Figure 4. Results of reconstruction algorithms on the phantom data acquired from our PACT system.
Different rows show different number of views, 30, 60, 90, and 120, and columns show different
reconstruction methods, BP, sparse with basis WT, sparse with basis WT+TV, and sparse with the
proposed sparsifying method.

The simulation results performed on Shepp–Logan synthetic phantom with 60 view angles
confirm the superiority of the proposed method to other reconstruction algorithms (see Figure 5).

For evaluation of the edge preservation capability of the proposed algorithm, we used the edge
preservation index (EPI) [40]. This metric indicates the edge preservation capability in horizontal and
perpendicular directions, after applying filters such as the Laplacian operator on the image. The EPI
values for different methods/angle views are reported in Figure 6a. Each experiment was repeated
10 times. The values of deviation are shown by error bars in this figure. The value of EPI changes
from 0 to 1. A higher value suggests a better ability to preserve the edges. Statistical analysis shows
that, for a number of view angles lower than 45, the proposed algorithm outperforms other methods.
This indicates that, with lower data acquisition time (a lower number of angles), the proposed method
provides a higher image quality, compared to other methods. In addition, Figure 6a shows that the
proposed method provides better preserved edges for numbers of angles between 80 and 92. The PSNR
is calculated for different methods/angle views, and the results are presented in Figure 6b. PSNR is
calculated using the formula presented in [23]. To calculate the minimum square error (MSE), the result
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of sparse reconstruction with WT basis at the maximum possible number of views, i.e., 600, has been
considered as the Gold standard image.

Max
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plitude 

60

BP Proposed 
Method

CS 
(WT)

CS 
(WT+TV)

Figure 5. Results of reconstruction algorithms on the Shepp–Logan synthetic phantom for 60 view
angles and different reconstruction algorithms.

Figure 6. Quantitative evaluation, (a) EPI and (b) PSNR, of the performance of four reconstruction
algorithms with different number of view angles.

From the quantitative assessment of the results presented in Figure 6b, it can be seen that,
for all numbers of angles, the proposed method results in a higher PSNR. For instance, for 60 angles,
BP, WT, WT+TV, and the proposed method lead to PSNR values of about 42.5 dB, 49.5 dB, 50.5 dB,
and 54.2 dB, respectively. In other words, PSNR is improved by about 27%, 9%, and 7%, in comparison
to BP, WT, and WT+TV, respectively. Considering all the quantitative evaluation, it can be concluded
that our proposed algorithm works effectively with a limited number of view angles, outperforming
other algorithms. We performed statistical analysis on the PSNR values using SPSS R©. At every view
angle, the improvement obtained by the proposed method compared to other aforementioned methods
was statistically significant (p-value < 0.001).

Table 2 shows the execution time for BP, sparse reconstruction with basis WT, sparse reconstruction
with bases WT+TV, and the proposed reconstruction algorithms. The proposed method provides
a higher image quality at the expense of a higher processing time, compared to other algorithms.
The higher processing time of the proposed algorithm is due to the fact that it should use all the
information of the three used sparsifying functions in order to reconstruct a photoacoustic image with
a higher image quality. In addition, the feature measurement of the proposed algorithm increases the
processing time as well.
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Table 2. Execution time for different reconstruction algorithms with 120 view angles.

Algorithm BP Sparse (WT) Sparse (WT+TV) Proposed

Execution Time (sec) 18.99 387.28 369.79 547.30

4. Conclusions

In this paper, we propose a novel dictionary-based image reconstruction algorithm in which the
desired information of the images is shown more accurately. The proposed method uses a combination
of WT, DCT, and TV in order to preserve the necessary information within the reconstruction procedure.
The algorithm was evaluated experimentally (using a single-element PACT system). EPI and PSNR
were used as the quantitative metrics of evaluation. The qualitative and quantitative results presented
here show that the proposed algorithm can generate images with specific emphasis on a desired feature,
defined by the user. Quantitative analysis of EPI showed that, for a number of angles lower than 45,
the proposed algorithm preserves the edges better than other methods. In addition, the calculated
PSNR at 60 angles indicated that the proposed method improves PSNR by about 27%, 9%, and 7%,
compared with BP, WT, and WT+TV, respectively. At every view angle, the improvement obtained
by the proposed method compared to the above-mentioned methods was statistically significant
(p-value < 0.001). The proposed technique is particularly useful when a low-cost PACT system
(limited number of view angles) with a fine temporal resolution is required. However, all the
improvements are obtained at the expense of a higher computational burden. As a feature work,
we will evaluate the proposed method in an in vivo study. Accelerating the algorithm as well as
reducing its computational complexity is the next major step.

Author Contributions: Conceptualization, P.O. and M.M.; Methodology, P.O., M.M. and A.H.; Software, P.O.,
A.H., M.Z., M.M. and X.H.; Validation, P.O., M.M., A.H., M.Z. and X.H.; Formal Analysis, P.O., A.H., M.M., X.H.;
Investigation, P.O., M.M.; Resources, P.O., M.M., A.H., M.Z. and X.H.; Data Curation, P.O., A.H. M.Z. and X.H.;
Writing—Original Draft Preparation, P.O., M.M., A.H., M.Z. and X.H.; Writing—Review & Editing, P.O., M.M.,
M.N., M.O.; Visualization, M.N. and M.O.; Supervision, M.N. and M.O.; Project Administration, M.N.; Funding
Acquisition, M.N.

Funding: This project has been partially supported by a WSU startup fund and the Andersen Institute fund.

Acknowledgments: We thank Jun Xia from Buffalo University for his constructive discussion and help in
image reconstruction.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:

PACT Photoacoustic Computed Tomography
BP Back Projection
WT Wavelet Transform
DCT Discrete Cosine Transform
TV Total Variation
EPI Edge Preservation Index
PSNR Peak Signal-to-Noise Ratio
FBP Filtered Back Projection
PA Photoacoustic
CS Compressed Sensing
MRI Magnetic Resonance Imaging
TAI Theracoustic Imaging
DAQ Data Acquisition
MCA Morphological Component Analysis
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GLCM Gray-Level Co-occurrence Matrix
OPO Optical Parametric Oscillator
NI National Instrument
MSE Minimum Square Error
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Abstract: In recent years, multimodal thermoacoustic imaging has demonstrated superior imaging
quality compared to other emerging modalities. It provides functional and molecular information,
arising due to electromagnetic absorption contrast, at ultrasonic resolution using inexpensive and
non-ionizing imaging methods. The development of optical- as well as radio frequency (RF)-induced
thermoacoustic imaging systems would benefit from reliable numerical simulations. To date,
most numerical models use a combination of different software in order to model the hybrid
thermoacoustic phenomenon. Here, we demonstrate the use of a single open source finite element
software platform (ONELAB) for photo- and RF-acoustic computed tomography. The solutions of the
optical diffusion equation, frequency domain Maxwell’s equations, and time-domain wave equation
are used to solve the optical, electromagnetic, and acoustic propagation problems, respectively,
in ONELAB. The results on a test homogeneous phantom and an approximate breast phantom
confirm that ONELAB is a very effective software for both photo- and RF-acoustic simulations,
and invaluable for developing new reconstruction algorithms and hardware systems.

Keywords: photoacoustic imaging; tomography; thermoacoustic; radio frequency

1. Introduction

One of the goals of modern medical imaging is to simultaneously provide molecular,
functional, and structural/anatomical information corresponding to various tissues. To achieve
such comprehensive information, a combination of conventional imaging technologies such as
X-ray computed tomography (CT) [1], positron emission tomography (PET) [2] and magnetic
resonance imaging (MRI) [3] are used. CT provides anatomical contrast, PET provides molecular and
metabolic information, and MRI provides both functional and anatomical contrasts. A PET–CT or
PET–MRI combination is therefore widely used for simultaneously mapping molecular and anatomical
contrasts [4–6].

All of these methods have significant downsides: one of which is the financial burden,
which means that these methods are not ideal for routine imaging, and a second is the ionizing
radiation used in CT and PET. As an alternative, ultrasound imaging that uses non-ionizing radiation
is routinely used in several clinical applications for anatomical imaging [7]. However, it lacks the
molecular or functional information necessary for detecting the early symptoms of disease.

Alternative medical imaging modalities that provide anatomical, functional, and molecular
information about the tissue, while being lower cost and not being as restrictive to patient movement,
are needed. Photoacoustic computed tomography (PACT) and radio frequency (RF)-induced
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acoustic computed tomography (RACT), together known under the general term thermoacoustic
computed tomography (TACT), match these objectives of lower cost functional/molecular imaging,
using non-ionizing electromagnetic radiation [8–16]. While PACT maps optical absorption contrast
using optical radiation induced acoustic wave detection, RACT maps tissue conductivity using RF
induced acoustic wave detection. More importantly, since these hybrid (combining electromagnetic
radiation and acoustic detection) imaging modalities share the same ultrasound detection platform,
combined trimodality PACT–RACT–UCT (ultrasound computed tomography) systems have been
realized for mapping functional, molecular, and anatomical contrasts [17]. The molecular absorption
of electromagnetic energy causes thermal expansion in the tissue, which then leads to generation
of acoustic waves. The acoustic waves propagate out of the tissue and are received by ultrasound
transducers located at the boundary of the body. This data is then used to reconstruct thermoacoustic
images displaying electromagnetic absorption contrast at ultrasonic spatial resolution. The imaging
depth and spatial resolution in TACT is scalable with the frequency of excitation radiation and
ultrasound transducer. The fact that the detected acoustic signal arises directly from specific
molecules inside the tissue makes TACT a molecular/functional imaging technology. In PACT,
the tissue chromophores—such as oxy-hemoglobin, deoxy-hemoglobin, melanin, and lipids—absorb
light photons in the wavelength range from 400 nm to 1200 nm. By using different wavelengths,
which takes advantage of the resonance peaks in the absorption spectrum of the imaged molecules,
the distribution of different molecules inside the tissue can be mapped. In RACT, a radio frequency
source in the frequency range from 434 MHz to 9 GHz is used for mapping the water distribution.
The thermoacoustic effect in this frequency range is dependent on the conductivity distribution of
the medium. The conductivity difference between water, tissue, and tumors can then give useful
functional images.

Accurate numerical modeling of TACT is paramount for the development of robust reconstruction
algorithms to quantify the electromagnetic absorption properties of the tissue. In PACT, the forward
optical simulation of total light fluence (Φ), calculated inside the tissue medium, is usually achieved
using either Monte Carlo simulations or the software package NIRFast, which solves the light diffusion
equation. The fluence distribution is then converted to an initial pressure rise, which is further
propagated through the tissue medium and detected by the ultrasound transducers located on the
boundary using acoustic simulation tools such as the K-wave toolbox. NIRFast [18] uses the finite
element method (FEM), while K-wave uses a spectral-based finite difference method (FDM) to model
the propagation of acoustic waves [19]. The goal of the reconstruction problem is then to recover the
tissue properties (optical absorption in PACT and conductivity in RACT) given only the sensor data.

Groups that use a single simulation platform for both the optical and acoustic propagation
needed for the hybrid PACT/RACT technique are less common. Recently, there are studies that
use the commercial software COMSOL to solve both propagation problems with a single software
package [20,21]. As an alternative to the commercial software, the simulation system described in
this paper uses the open source softwares Gmsh [22] and GetDP [23], often combined under the
name ONELAB [24]. ONELAB is an FEM solver, which uses Gmsh for creating the FEM mesh,
and GetDP for solving generic partial differential equations (PDEs) with the FEM method. Advantages
of using Gmsh include its ability to create user defined meshes, but also having standard interfaces
with other commonly used mesh and computer-aided design (CAD) software such as STEP, IGES,
and STL. Segmented DICOM images commonly used in MRI can then be converted to a mesh that
Gmsh understands, creating realistic phantoms on which to test algorithms. The ability of GetDP
to solve generic PDEs allows the user to implement algorithms to solve for optical and acoustic
propagation, similar to the combination of NIRFast and K-wave. Both propagation methods, as well as
any reconstruction methods, are implemented in the same mesh, with no loss of precision. Since there
is less chance of numerical error, a single software platform represents a more accurate approximation
of a real-world scenario. Besides PACT with optical sources, we demonstrate that the generality
of GetDP allows for sources in the RF regime of the electromagnetic spectrum to also be simulated
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for RACT. The use of the ONELAB software package allows accurate TACT modeling, in order to
develop algorithms for functional imaging of the human body. Although there are experimental
studies combining PACT and RACT techniques into one setup, perhaps our study is the first to report
a single TACT simulation platform for simulating both PACT and RACT.

The rest of the paper is organized as follows: In Section 2, we describe methods and materials.
Sections 3.1 and 3.2 show PACT and RACT results on a homogeneous phantom. Sections 3.3 and 3.4
show PACT and RACT results on an approximate breast phantom. Section 4 is a discussion of the
results in Section 3, comparing errors in reconstruction between PACT and RACT, and between the
two phantoms. Section 5 concludes the paper.

2. Materials and Methods

There are three main phenomena that need to be modeled in thermoacoustics. The first is
the propagation of the initial energy source, in this study near infrared optical or radio frequency
electromagnetic waves, and calculation of the total fluence/intensity distribution inside the tissue medium.
The second phenomenon is the acoustic propagation, after calculating an initial pressure from the intensity
distribution. The third phenomenon is the reconstruction of the tissue parameters, which depend on the
type of energy source used for tissue excitation. A flowchart showing the similar steps between RACT
and PACT is shown in Figure 1. This study is focused on using a time reversal [25,26] reconstruction
method to recover the initial pressure, followed by a simple division to find the tissue parameters.
There are several alternative approaches for reconstructing the tissue parameters that can be integrated
with our study in the future. Back-projection methods may be used when using specific geometries
[27] and parametrix methods for more general geometries [28]. The back-projection methods are
analytically exact, but only for geometries with a special symmetry, and with a constant speed of sound.
Parametrix methods do not provide analytically exact methods, but instead give approximations with
error bounds for general geometries, and can even be developed for regions with varying speeds of
sound. A survey of several reconstruction methods is given in Reference [29].
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Figure 1. The similarities between key steps of the photoacoustic computed tomography (PACT,
blue) and radio frequency (RF)-induced acoustic computed tomography (RACT, red) workflows,
with methods that are shared represented in yellow. Step A represents the finite element mesh
in Section 2.5, used for both types of simulation. Step B1 is represented in Figure 9a, while step
B2 is represented in Figure 7a. Step C2 uses the optical diffusion Equation (1). Step C1 uses the
electromagnetic wave Equation (5). The resulting pressure rise for the optical (D2) and RF (D1)
radiations are represented by Figures 7b and 9b, respectively. The initial pressure propagates out to the
boundary (E) via the scalar wave Equation (7). The data received by acoustic sensors at the boundary
(F) can then be used in reconstruction algorithms (G) to recover the initial pressure. In this paper,
a time-reversal algorithm is applied for reconstruction (Section 2.4). The reconstructed pressure is then
divided by the intensity (I2, I1) to recover the recover the absorption or conductivity for the optical and
RF cases, shown in Figures 7c and 9c, respectively.
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2.1. Optical Propagation for Photoacoustic Computed Tomography (PACT)

A full description of optical propagation would use the radiative transport equation in its full
generality. This equation can be modeled by the use of Monte Carlo methods, with significant
computational cost [30,31]. Since the the photoacoustic effect depends on the optical fluence rate,
and the wavelengths used correspond to the near infrared (NIR) regime, a diffusion approximation to
the radiative transport equation is often used [32]. The diffusion equation for the fluence rate is:

−∇ · κ(x)∇Φ(x, λ) + μa(x)Φ(x) = q(x) x ∈ Ω (1)

Φ(x) = 0 x ∈ ∂Ω. (2)

In this equation, Φ is the optical fluence rate, or intensity of the light. μa is the absorption coefficient
at each point in space, while κ = 1

3(μa+μ′
s)

is the diffusion coefficient, calculated using the absorption
coefficient and the reduced scattering coefficient μ′

s. q is the source function, the initial laser pulse
that irradiates the tissue medium. Ω is the tissue domain of interest, usually a subset of Rn, with n
corresponding to the dimension of the problem (2 or 3). Equation (2) corresponds to the Dirichlet
boundary condition used in this study. The amount of pressure generated by the optical energy is given

by a constant of proportionality, the Gruneisen parameter Γ = αv2
s

Cp
, where α is the volume thermal

expansion coefficient, vs is the speed of sound, and Cp is the heat capacity at constant pressure [33].
Therefore, for a given fluence rate Φ, the initial pressure is given by:

p0(x) = Γ(x)Φ(x)μa(x). (3)

While Γ will physically vary over space, this small deviation is ignored in this study, and the parameter
is assumed constant, with a value of 0.1, which approximates standard tissue.

2.2. Radio Frequency Propagation for RF Acoustic Computed Tomography (RACT)

Radio frequency radiation is modeled by Maxwell’s equations, which when modeled at a single
frequency can be reduced to the following wave equation:

∇×∇× E(x)− ω2μ(x)ε(x)E(x) = q(x) x ∈ Ω. (4)

In this equation, E is the complex electric field, ω = 2π f is the frequency, and μ and ε are
the permeability and permittivity of the medium, respectively. In a material with electric loss,
the permittivity is complex valued, with ε = εreal − j σ

ω , and σ = 0 for a medium with no loss.
When the simulation is restricted to two dimensions (assuming a TMz polarization), Equation (4) can
be reduced to a scalar Helmholtz equation:

∇2E3(x) + k(x)2E3(x) = q(x) x ∈ Ω, (5)

where k = ω
c is the wavenumber, and can be complex in a tissue with energy loss. For boundary

conditions, a Dirichlet boundary condition similar to Equation (2) is implemented. However,
this would not prevent the electromagnetic waves from reflecting off the boundaries of the domain,
causing numerical artifacts. Therefore, while there is a Dirichlet boundary condition, there is also
a non-physical space occupied by a perfectly matched layer (PML) to absorb the outgoing waves
and prevent reflection [34]. Once the electric field is calculated, the initial pressure is given by three
contributions [35]. The first contribution is due to the conductivity of the medium, pcond =

∫
V

σ
2 |E|2dV.

The second due to the permittivity
∫

V
ε0εr

2 |E|2dV, and the third the permeability
∫

V
μ0μr

2 |H|2dV. In
practice, for the tissue media of interest in thermoacoustic tomography, the contribution to the pressure
due to the conductivity dominates over the permittivity and permeability, and so these terms are
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generally ignored. Therefore, similar to the optical absorption in Equation (3), the initial pressure due
to the electric field is given as:

p0(x) = Γ(x)
σ(x)

2
|E(x)|2. (6)

2.3. Thermoacoustic Equation

Once an initial pressure is found, via either optical or radio frequency electromagnetic radiation,
the pressure must then propagate to ultrasound transducers located outside the tissue boundary.
Extremely short (nanosecond) pulses of energy are assumed to be irradiating the medium. Therefore the
initial pressures are assumed to be delta functions, and only present for the initial conditions when
formulating the equations. The pressure wave in photoacoustics is usually modelled using a standard
scalar wave equation, with initial conditions:

∂2

∂t2 p(x, t) = c2(x)∇2 p(x, t) x ∈ Ω

p(x, 0) = f (x)
∂

∂t
p(x, 0) = 0,

(7)

where, f (x) corresponds to the initial pressure found from the initial pulsed excitation, and p(x, t) is
the pressure wave that propagates to the transducers. Similar to the electromagnetic wave equation,
the pressure propagation also requires a perfectly matched layer (PML) to prevent reflections from the
boundary of the numerical domain [36,37]. Therefore, the pressure is received at transducers along a
curve (surface in 3D) γ, which is not the boundary of the domain ∂Ω.

2.4. Time Reversal Reconstruction Algorithm

The pressure received at the transducers can be represented as g(y, t), with y∈γ. The goal of
the reconstruction problem is to reconstruct the tissue parameters, μa in the optical excitation or σ in
the RF excitation case, given g(y, t). One way of recovering the parameters is to try and find the initial
pressure f (x) from the pressure measurements g(y, t), and then divide the pressure by the assumed
known energy distribution to recover the parameters. One of the more common methods to recover
the initial pressure is using the time-reversal technique. For the time-reversal to rigorously reconstruct
f (x), requires Huygen’s principle to be valid. Unfortunately, Huygen’s principle does not hold when
the speed of sound is not constant, and more problematically, it does not hold in two dimensions [38].
Therefore, in most domains of interest the time-reversal method recovers an approximation of the
initial pressure f (x).

As the name suggests, time reversal entails taking the received pressure g(y, t), and using it
as a source on γ, with time moving in reverse. If the forward simulation was run until a stoppage
time T, then when simulated using the time reversal method p(x, T) ≈ f (x). There are several
other methods that can be used to recover f (x) besides time-reversal, but there is no universally
accepted reconstruction algorithm that works in all cases of interest. Most of these methods require
pressure information at the sensors as functions of time. For this reason, the computationally expensive
time-domain wave equation was used for solving the pressure wave equation instead of a Helmholtz
equation similar to Equation (5). Since the initial pressure acts as a delta function, the received signal is
inherently broadband. A time domain simulation is more efficient for measuring broadband response,
and provides a better representation of what would be measured during a physical experiment.

2.5. Phantom Geometry

Two phantoms are used to demonstrate the effectiveness of the single simulation tool used in this
study. The first homogeneous phantom consists of a circular region of interest with radius 20 mm.
Within this region, two objects are placed, a circle of radius 1 mm placed approximately 4 mm to the
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left of center, and an ellipse with major axis 2 mm and minor axis 1 mm placed 4 mm to the right of
center. The second phantom consists of an approximation to a human breast. The breast region of
interest is represented by a circle of radius 50 mm. Glandular tissue rendered as a circle of radius
10 mm surrounds an elliptical tumor with major axis 7 mm and minor axis 3.5 mm. The tumor is
located 32.5 mm deep from the right side of the phantom. The optical sources and acoustic detectors
are placed around the region of interest in a continuous fashion.

For creating the finite element meshes, a characteristic length of 2 mm was used for efficiency
reasons, though near the absorbing objects, the size of the elements smoothly decreased in order to
properly model the objects with sufficient resolution. For the homogeneous phantom mesh, the total
number of nodes in the mesh was 3635 with 7268 elements. The mesh for the breast phantom had
12,166 nodes and 24,330 elements. For the time domain simulation of the acoustic propagation, a time
step of 30 nanoseconds was used in a Newmark numerical integration method. The homogeneous
phantom ran for 700 time steps, while the breast phantom ran for 1700 time steps. A constant speed of
sound of 1.5 mm/μs was used for both the forward and time-reversed simulations.

The time estimates for the breast phantom are: 0.6 s for the optical simulation, and 1.1 s for the RF
simulation. The acoustic simulation took 18.1 s in the optical source case, and 17.3 s in the RF source
case. The reconstruction using time reversal took 385.8 s and 408.0 s for the optical and RF source
cases, respectively. The homogeneous phantom timings are: 0.16 s and 0.315 s for the optical and RF
simulations; 2.1 s and 2.0 s for the forward acoustic simulation; and the time reversal took 38.4 s and
39.4 s for the optical and RF cases, respectively. The timings were done on a Dell Precision 5820 desktop
PC, on a single thread. ONELAB has the functionality to run on multiple threads, as well as a graphical
processing unit (GPU), but these options were not used in measuring these time estimates.

2.6. Phantom Parameters

The absorption coefficient μa of the homogeneous phantom for the background was set to
0.001 mm−1. The circle and ellipse, which represent absorbers, have an absorption coefficient of
0.425 mm−1; the average absorption coefficient of blood at 800 nm. As is common in human tissue,
the background is assumed to have a higher reduced scattering coefficient μ′

s than the absorbers.
The reduced scattering coefficient for the background is set to 1 mm−1, while the absorbers μ′

s is set to
zero for this phantom. In terms of electrical properties, the human body in general does not have a
significant magnetic response at radio frequencies, and so the relative permeability μr is set to 1 for all
objects. A background relative permittivity of εr = 5 is similar to human tissue at 434 MHz. Unlike in
the PACT case, objects such as tumors have a higher scattering coefficient as well as absorption in
the radio frequency regime. Therefore, the relative permittivity of the circle and ellipse were set
to εr = 25. The conductivity, which governs the amount of absorption, was set to 0.1 S/m for the
background, approximating general tissue. The circle and ellipse are given values similar to that of a
tumor, 10 S/m [39].

General breast tissue has an absorption coefficient μa = 0.005 mm−1, with a reduced scattering
coefficient of 1.52 mm−1 when an 800 nm source is used. The optical properties of the glandular
tissue and tumor depend on the assumed material composition of the tissues. The assumed amount
of hemoglobin and percentage of water can have a dramatic effect on the properties at any given
wavelength. In this study, the same composition as Reference [18] is used for the glandular and
tumor tissue. The spectral characteristics of hemoglobin, deoxyhemoglobin, and water at 800 nm are
taken from References [40,41]. The specific optical properties used for this breast phantom are given
in Table 1.
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Table 1. Optical properties (μa the absorption coefficient, and μ′
s the reduced scattering coefficient) of

different breast tissue at 800 nm.

Tissue μa (mm−1) μ′
s (mm−1)

Background 0.0005 1.5742
Glandular 0.0059 1.12

Tumor 0.0021 0.625

Human tissue is dispersive at radio frequencies, and so the electrical properties vary over
frequency, though not as dramatically as the optical parameters. The properties for the generic
and glandular tissue at 434 MHz were taken from the ITIS database provided by ETH-Zurich [42],
which references a technical report compiled by the United States Air Force [43,44]. The tumor
properties were extrapolated from data provided at 100 MHz in Reference [39] using a Cole–Cole
dispersion model. The specific electromagnetic parameters are given in Table 2. The relative magnetic
permeability is again set to unity, since the body does not exhibit strong magnetic response at 434 MHz.

Table 2. Electrical properties (εr the relative permittivity, and σ the conductivity) of different breast
tissue at 434 MHz.

Tissue εr σ (S/m)

Background 5.51 0.0353
Glandular 61.3 8.86

Tumor 25.25 13.03

3. Results

The ability of the ONELAB software platform to simulate both PACT (optical source) and RACT
(radio frequency source) with the same tool and on the same mesh, is demonstrated using the phantoms
described in the methods section. Below we first present PACT and RACT results for the homogeneous
phantom embedded with two absorbers and then the results for the breast phantom with tumor.

3.1. Photoacoustic Computed Tomography (PACT) of the Homogeneous Phantom

The optical excitation for the first phantom uses a wavelength of 800 nm. This specific wavelength
was chosen as it is often used in photoacoustics, due to the absorption spectrum of the absorbers of
interest, such as hemoglobin. With the homogeneous phantom parameters, the simulated optical
fluence is given in Figure 2.

The position of the absorbers is easily approximated by the nulls in the fluence distribution.
The approximate shapes can be identified, which can be used for more stable reconstruction of the
material parameters. The 8 mm spacing is large enough to identify two distinct absorbers, with the
ultimate resolution governed by the reconstruction of the fluence that would be done in practice.
The initial pressure induced by this fluence distribution, as well as the original and reconstructed
absorption coefficient images are provided in Figure 3.

The fluence is not constant across the domain, and so the two absorbers induce slightly different
initial pressures. The larger object is reconstructed with less error, since it is approximately constant
over a larger area. Non-idealities in the reconstructed background pressure are suppressed by using
the fluence, and so the reconstructed objects are clearly separated from the background.

3.2. RF-Acoustic Computed Tomography (RACT) of the Homogeneous Phantom

The RACT simulation used the same finite element mesh that was used for the photoacoustic
simulation, utilizing a typically used radio frequency source of 434 MHz. For the parameters given in
the methods section, the electric field magnitude is provided in Figure 4.
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Figure 2. Total optical fluence distribution inside the homogeneous phantom with two absorbers using
an 800 nm source. The circular and elliptical absorbers, simulating hemoglobin with absorption
coefficient μa = 0.425 mm−1 at 800 nm, are located 4 mm to the left and right of the center.
The background has a μa = 0.001 mm−1, and a reduced scattering coefficient μ′
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for the absorbers.
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Figure 3. Photoacoustic computed tomography (PACT) simulations using an 800 nm source on the
homogeneous phantom with two light absorbing inclusions; (a) the true optical absorption distribution;
(b) the initial pressure rise induced by the photoacoustic effect; (d) the reconstructed pressure, calculated
using the time-reversal algorithm; and (c) the reconstructed absorption, obtained by dividing the
reconstructed pressure with the fluence.

Unlike the PACT case, the electric field alone does not provide any information on the location
of the absorbers. Since the wavelength is much larger than the simulation domain, and there is
small difference in conductivity between the absorbers and background, the electric field intensity is
approximately constant. The results of the RF acoustic simulation of this homogeneous phantom are
shown in Figure 5.
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Figure 4. Total electric field intensity distribution inside the homogeneous phantom containing
two absorbers, using a 434 MHz radio frequency (RF) source. The circular and elliptical absorbers,
with conductivity σ = 10 S/m, are located 4 mm to the left and right of the center, and have a dielectric
constant εr = 25. The background has σ = 0.1 S/m, and εr = 5.
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Figure 5. Radio frequency (RF)-induced acoustic computed tomography (RACT) simulations using a
434 MHz RF source on the homogeneous phantom with two absorbers. (a) The true RF conductivity
distribution; (b) the initial pressure rise induced by the thermoacoustic effect; (d) the reconstructed
pressure, calculated using the time-reversal algorithm; and (c) the reconstructed conductivity,
obtained by dividing the reconstructed pressure by the electric field intensity.

3.3. Photoacoustic Computed Tomography (PACT) of the Breast Phantom

Figure 6 shows the fluence distribution generated by ONELAB for the breast phantom described
in the methods section. A rough estimate of the tumor location can be predicted from the fluence
map, but no shape information can be obtained from the fluence distribution alone. The photoacoustic
simulation is able to identify the shape of the tumor, as well as the difference between cancerous and
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glandular tissue. Results in Figure 7 show the initial pressure rise and the resulting reconstructed
absorption distribution.
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Figure 6. Total optical fluence distribution using an 800 nm wavelength source on the breast phantom.
The background absorption coefficient is μa = 0.0005 mm−1, with a reduced scattering coefficient
μ′

s = 1.5742. Glandular tissue (μa = 0.0059 mm−1, μ′
s = 1.12 mm−1) surrounds a tumor (μa = 0.0021,

μ′
s = 0.625 mm−1) located 32.5 mm deep from the right side of the phantom.
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Figure 7. Photoacoustic computed tomography (PACT) simulations of the breast phantom at 800 nm
wavelength; (a) the true optical absorption; (b) the initial pressure rise induced by the photoacoustic effect;
(d) the reconstructed pressure, calculated using the time reversal algorithm; and (c) the reconstructed
absorption, obtained by dividing the reconstructed pressure with the fluence. The elliptical region
similar to the background is the tumor, surrounded by the glandular tissue.

3.4. RF-Induced Acoustic Computed Tomography (RACT) of the Breast Phantom

The radio frequency source for the breast phantom, similar to the homogeneous phantom,
operates at 434 MHz. The field distribution is provided in Figure 8.

The forward simulation of the electric field is able to directly detect the tumor and an estimation
of its location. The conductivity has a much more significant effect on the wave, since the wavelength
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is larger than the region of interest. In the large wavelength regime, scattering due to dielectric
contrast does not distort the electromagnetic wave as much as the substantial conductivity. While the
approximate location of the tumor can be inferred from the electric field intensity, the specific shape
and glandular tissue identification requires further processing, such as the RF acoustic simulation.
Figure 9 shows the initial pressure and the resulting reconstructed pressure and conductivity maps of
the breast phantom.
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Figure 8. Total electric field intensity distribution of a 434 MHz radio frequency source inside the
breast phantom. The background has a conductivity σ = 0.0353 S/m and dielectric constant εr = 5.51.
Glandular tissue (σ = 8.86 S/m, εr = 61.3) surrounds a tumor (σ = 13.03 S/m, εr = 25.25) located
32.5 mm deep from the right side of the phantom.
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Figure 9. RF-induced acoustic computed tomography (RACT) simulations of the breast phantom
using a 434 MHz RF source; (a) the true RF conductivity; (b) the initial pressure rise induced by the
thermoacoustic effect; (d) the reconstructed pressure, calculated using the time-reversal algorithm;
and (c) the reconstructed absorption, found by dividing the reconstructed pressure by the electric field
intensity. The elliptical region with significantly larger conductivity is the tumor, surrounded by the
glandular tissue.
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4. Discussion

4.1. Merits of ONELAB for Thermoacoustic Imaging

Using an open source platform, ONELAB, allowed a single interface to simulate hybrid
thermoacoustic imaging, with the choice of optical, radio-frequency, or other sources to induce
a pressure wave response. The components of ONELAB Gmsh (mesh) and GetDP (FEM solver)
were applied for this purpose. Since GetDP only solves the user defined finite element equations,
fine control over every aspect of the thermoacoustic simulation was possible. This is especially
important when performing reconstruction, since, for instance, time-reversal can have drastically
different performance depending on the amount of time steps and the duration per time step.
The benefits of Gmsh include its standard mesh creation, with the ability to automatically interface with
other standard mesh formats. This allows the user to write a wrapper around any given finite element
mesh. Besides simulating expected results, this platform is also ideal for post-processing the results.
All of the data from the simulated PACT and RACT experiments was in the same format, used the same
finite element mesh, without the need for interpolation or data transformation. Using the data in such
a complementary fashion demonstrated the benefits of ONELAB over more established simulation
tools used for a single imaging modality.

4.2. Simulation Workflow for both PACT and RACT

We first tested our algorithms on a simple phantom that consisted of two absorbing regions of
different shapes inside a homogeneous background. The second phantom simulated a human breast
with a tumor. The same phantom mesh was used to define both optical and RF-acoustic properties
of the tissue. The optical diffusion equation was solved to obtain the optical fluence maps of the
phantoms (Figures 2 and 6), while the solution to Maxwell’s equations mapped the electric field
distribution for these phantoms (Figures 4 and 8). Subsequently, maps of the initial pressure rises,
due to electromagnetic absorption and the thermoacoustic effect, were generated using the optical
fluence maps in PACT and electric field intensity in RACT. The initial pressure distributions of both
PACT and RACT were then propagated using the same time-domain equations. Respective maps of
the reconstructed pressure were generated using a time-reversal algorithm. Optical absorption and
conductivity of the tissue phantoms were recovered by dividing the related reconstruction pressures
by the optical fluence and electric field intensity distributions, respectively (Figures 3, 5, 7 and 9).

4.3. Analysis of PACT and RACT Results

Overall, our simulation results on two different tissue phantoms have shown that ONELAB can
effectively simulate photoacoustic computed tomography (PACT) as well as RF-induced acoustic
computed tomography (RACT). The optical fluence distribution (Figure 2) and electric field intensity
(Figure 4) for the homogeneous phantom were significantly different, though the PACT/RACT
reconstruction (Figures 3 and 5) is of similar accuracy. The relative error of the maximum absorption
coefficient was 1.25% for the PACT case, and 8.70% in the RACT case. PACT for this phantom had
a much lower relative error, since the contrast between absorber was much larger than the same
difference in the RACT case. Imperfect reconstruction of the absorbers is due to error in reconstructing
the initial pressure, instead of differences in the field intensity distribution. The relative shape of
the absorbers, using either PACT or RACT, is easily identified from the reconstruction, with further
processing only necessary for very precise characterizations. The successfully simulated results on
a generic phantom gave us confidence to further validate our algorithms on a real tissue phantom
mimicking the optical and RF properties of a human breast.

When the approximate optical and RF parameters corresponding to breast tissue are used
(Figures 6 and 8), the optical and electric field intensities resemble each other, and have similar accuracy
to the homogeneous phantom. The relative error of the maximum absorption coefficient was 23.2% for
PACT and 6.92% for RACT. In the realistic tissue, RACT had more contrast, leading to less error in
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the reconstruction. The difference in field intensity between the homogeneous and breast phantom
did not have a significant effect on the reconstruction accuracy. Both PACT and RACT are able to
approximately reconstruct the tumor and the surrounding glandular tissue with no further processing.
Even though the tumor had properties similar to the background, the PACT reconstruction was still
able to identify the tumor surrounded by the glandular tissue. In RACT, the tumor is readily identified
as being significantly different from the background.

In summary, our work demonstrated that ONELAB is a viable simulation platform for use in
PACT and RACT, and is well suited for experiments that exploit both modalities. Reconstructed images
of the phantoms provided both qualitative and quantitative information about the tissue optical and
conductivity properties, including the size, shape, and location of the target regions. This work laid
a foundation for future studies to develop and validate more robust multimodality reconstruction
algorithms that will help improve quantitative accuracy.

5. Conclusions

This study has demonstrated the use of the tools Gmsh and GetDP, known together as ONELAB,
as a single simulation platform for modeling both optical, as well as RF-induced, thermoacoustic
computed tomography, i.e. PACT and RACT, respectively. To achieve PACT and RACT results,
the propagation of optical, radio frequency, and acoustic waves were effectively modeled using
solutions of the optical diffusion equation, Maxwell’s equations, and time-domain wave equations.
We validated our PACT and RACT algorithms using two types of tissue mimicking phantoms:
a homogeneous phantom consisting of two absorbing targets and a breast phantom consisting of a
tumor, with pre-defined optical and RF properties. Our results demonstrated that the optical and
RF absorption properties of the respective tissue phantoms were accurately reconstructed using the
proposed dual-modality computed tomography simulations in ONELAB. The use of the ONELAB
software package allows for accurate multimodal thermoacoustic modeling, in order to develop and
validate more robust algorithms for functional imaging of the human body.
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Abbreviations

The following abbreviations are used in this manuscript:

ONELAB Open Numerical Engineering Laboratory
GetDP General Environment for the Treatment of Discrete Problems
RF radio frequency
CT computed tomography
PET positron emission tomography
MRI magnetic resonance imaging
UCT ultrasound computed tomography
PACT photoacoustic computed tomography
RACT radio frequency acoustic computed tomography
TACT thermoacoustic computed tomography
FEM finite element method
FDM finite difference method
PDE partial differential equation
CAD computer-aided design
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IGES initial graphics exchange specification
STL stereolithography
DICOM Digital Imaging and Communications in Medicine
NIR near infrared
TM transverse magnetic
PML perfectly matched layer
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