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Preface to ”Metabolism and Metabolomics of Liver in

Health and Disease”

The liver is a key organ, which has a multitude of functions. In fact, it is thought to be in charge

of more than 500 processes ranging from protein synthesis, carbohydrate and lipid metabolism,

detoxification of various natural and synthetic compounds, to the production of molecules promoting

whole-body homeostasis, to name but a few. Most of these functions are carried out by hepatocytes.

In line with its multitasking physiology, the liver consumes plenty of oxygen, up to about 20% of

resting total body consumption, half of which is provided by the hepatic portal vein, while the other

half is met by the hepatic arteries. The liver plays an essential role in the breaking down of nutrients,

such as carbohydrates, lipids, and proteins derived from feeding on plants and animals to convert

them to substances that are essential to the body. Furthermore, it is key in catabolizing or modifying

toxic substances such as nicotine, alcohol, toxins, and drugs and environmental xenobiotics in a

process called detoxication. The liver also plays an important role in the immune system. Finally,

the regeneration capacity of the liver is astonishing. More than half of the liver can be removed and

it will rapidly go back to normal size.

Such a complex organ can be affected by many types of dysregulations causing diseases. Liver

diseases represent a major global health problem in developed and developing countries. Most

deaths are due to two conditions: hepatitis B infection and non-alcoholic fatty liver disease (NAFLD).

Following an acute infection, hepatitis B becomes chronic in 5–20% of adults and causes severe health

problems. NAFLD, which is quite common all over the globe is characterized by too much fat in

the liver, which is often caused by lifestyle mainly overnutrition and insufficient physical activity.

In adults, NAFLD is often associated with diabetes and obesity. Importantly, due to the progression

of childhood obesity and children presenting increased vulnerability to genetic and environmental

factors, NAFLD currently affects up to 20% of the pediatric population. The pathogenesis of NAFLD

is very complex and plenty of hepatic mechanisms are implicated, such as alterations in glucose and

lipid metabolism as well as insulin signaling. Furthermore, dysfunctional cross-talks between the

liver and other organs, such as the adipose tissues and the gut and its microbiota also participate in

NAFLD development. There is currently a strong interest in a better understanding of NAFLD, not

least to assist in the development of treatments as there is no approved pharmacological therapy

for NAFLD. In addition to hepatitis B infection and NAFLD, there is a huge range of rare liver

diseases often difficult to accurately diagnose, which include glycogenosis, porphyria, congenital

hepatic fibrosis, polycystic liver diseases, genetic cholestatic diseases, and several others. In brief, the

complexity of liver diseases represents an immense challenge for research and clinical work.

The above description of liver diseases makes it easy to understand the need and importance

of exploring the hepatic metabolome to investigate hepatic physiology both in health and the

mentioned illnesses. Metabolomics is the most recently developed omics technology after genomics,

transcriptomics, and proteomics. It has huge potential to identify specific and sensitive biomarker

candidates in isolated liver cells, whole-liver tissues, and biofluids for future evaluation. It is a

global approach that can identify and measure the levels of a very large number of metabolites,

thereby, providing a precise metabolic readout of healthy physiological or disease states. The most

used approaches in the characterization of metabolomes comprise targeted analysis and profiling

of metabolites and metabolic fingerprinting. Mass spectrometry (MS)-based and nuclear magnetic

resonance (NMR)-based approaches have become routine. To fully benefit from the contributions of
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metabolomics, it has to be associated with sophisticated bioinformatics analyses allowing metabolic 
snapshots in the course of physiological changes, disease progression, and treatment effects. 
Certainly, much work remains to be done to clarify the multifaceted functions of the liver in health 
and disease than has been described in this book and elsewhere.

This book would not have been possible without the efforts of so many authors who have 
generously shared their findings and knowledge in liver metabolomics for the benefit of all. We 
express our deepest gratitude for supporting our Special Issue with their excellent contributions. Our 
gratitude also goes to the reviewers for their constructive and valuable suggestions to improve the 
papers submitted for publication. We also deeply appreciate the collaboration from the Metabolites 
editorial team, with a very special mention going to Ms. Yi Zhang for assisting in liaising with 
authors and keeping us updated about the progression of this Special Issue on ”Metabolism and 
Metabolomics of Liver in Health and Disease ”.

Walter Wahli , Hervé Guillou

Editors
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Abstract: Metabolomics has found numerous applications in the study of liver metabolism in health
and disease. Metabolomics studies can be conducted in a variety of biological matrices ranging
from easily accessible biofluids such as urine, blood or feces, to organs, tissues or even cells. Sample
collection and storage are critical steps for which standard operating procedures must be followed.
Inappropriate sample collection or storage can indeed result in high variability, interferences with
instrumentation or degradation of metabolites. In this review, we will first highlight important
general factors that should be considered when planning sample collection in the study design of
metabolomic studies, such as nutritional status and circadian rhythm. Then, we will discuss in more
detail the specific procedures that have been described for optimal pre-analytical handling of the
most commonly used matrices (urine, blood, feces, tissues and cells).

Keywords: metabolomics; standard operating procedures; urine; blood; feces; tissue; cells;
liver function

1. Introduction

Metabolomics refers to the high-throughput quantification and characterization of small molecules
(metabolites) in tissues or biofluids. Such biochemical profiles contain latent information relating to
inherent parameters, such as the genotype, and environmental factors, including the diet, exposure
to xenobiotics and gut microbiota. The liver is the heaviest organ in the human body, with a wide
array of functions that can be divided into intermediary metabolism (including a central role in
carbohydrate, lipid and nitrogen metabolism), immunological activity, secretion of bile, synthesis of
various serum proteins, degradation of hormones, and detoxification of xenobiotics. Hepatic lipid
catabolism plays a crucial role during fasting and/or prolonged exercise. Upon lowering of blood
glucose, the liver increases glucose production by augmenting gluconeogenesis and glycogenolysis to
maintain blood glucose levels; increases fatty acid oxidation and ketogenesis to provide extra-hepatic
tissues with ketone bodies; and decreases lipogenesis to attenuate triglyceride storage. In the fed state,
the opposite occurs and the liver increases glucose uptake to feed glycogenesis; limits lipid oxidation
to favor lipogenesis and promotes saving of fatty acids in the form of triglycerides that are packaged in
lipoproteins for remote storage in the white adipose tissue. Hence, the liver plays an essential role in
the regulation of energy metabolism. Dysregulation of these metabolic pathways leads to metabolic
diseases among which non-alcoholic fatty liver disease (NAFLD), which is diagnosed when more than
5% of hepatocytes are steatotic in patients who do not consume excessive alcohol. The disease severity

Metabolites 2020, 10, 104; doi:10.3390/metabo10030104 www.mdpi.com/journal/metabolites1
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ranges from simple steatosis to steatohepatitis, advanced fibrosis and cirrhosis. NAFLD epidemic
represents a major public health burden [1] and remains an unmet medical need [2].

Metabolomics has found numerous applications in the study of liver functions in health and
disease. Among others, these include: Non-invasive biomarker investigations to discriminate between
the different stages of progression of NAFLD using non-invasive biofluids (urine and plasma) [3,4];
investigation of mechanisms underlying hepatic disease progression such as acute-on-chronic liver
failure using serum metabolic profiling [5] or fibrosis [6]; characterization of the gut microbiota
metabotypes in urine of NAFLD patients [4,7]; nutrimetabolomics studies to unravel hepatic pathways
dysregulated directly in liver samples upon various nutritional challenges [8,9]; discovery of new
metabolic functions for nuclear receptors, that are important regulators of liver physiology using
direct hepatic metabolomics or other informative fluids such as urine and bile [10–13]; identification of
patients at risk for idiosyncratic drug-induced liver injury (IDILI) before drug administration, a concept
named “pharmaco-metabolomics”, that was first demonstrated in urine of animal models [14] and
is now extended to human biofluids (urine and serum) [15,16]; study of mechanisms of action for
pharmaceutical drugs in urine and fecal samples [17] and environmental contaminants in HepG2 cells
and animal biofluids and tissues [18,19].

There are many sources of variation in metabolomic studies, some of which are directly related to
the pre-analytical handling steps. Pre-analytical questions are indeed a crucial part of metabolomics
study designs since inadequate sample collection, pre-treatment or storage can significantly affect
sample quality and result interpretation. The reliability of the metabolomics approach requires
inactivation of ongoing metabolism, metabolite stabilization and maintenance of sample integrity.
In consideration of this, it is useful to have standard operating procedures (SOP) for pre-analytical
handling of samples before starting a metabolomic study. In this review, we discuss the influence
of sample collection pre-analytical handling procedures and storage conditions on the metabolomic
profiles of the biological matrices that are most commonly used to investigate liver functions, namely
urine, blood, feces, tissues and cells. Of note, metabolic profiling of several other matrices such as bile
and ascitic fluids can provide interesting information about liver functions [10,20,21] but will not be
further discussed in this review given the paucity of data regarding sample collection and stability.

2. Overview of the Pre-Analytical Handling Procedures of the Most Commonly Used Biological
Matrices in Metabolomics

2.1. Time of Collection

2.1.1. Considering Nutritional Status

The choice of time of collection is a crucial step for a successful metabolomics study and will
depend on the research question under examination. Nutritional status of the experimental subjects
greatly influences the circulating, urinary, fecal and tissue metabolomes and has to be carefully chosen.
If one aims to identify a biomarker specifically associated with a food item, then acute postprandial
urine will certainly be collected. Criteria for good biomarkers of habitual nutritional intake are
metabolites that are metabolically inert and rapidly absorbed within 1.0–1.5 h of consumption in the
upper gastrointestinal tract. Such markers are subsequently excreted 1.5–2.5 h later [22]. Plasma is
more reflective of modulations in endogenous metabolism as a result of the food metabolome and it
should be noted that perturbations of the plasma metabolic profile arise when homeostatic function is
impaired. Therefore, fasting plasma samples are usually used to explore how systemic metabolism
differs between populations with different dietary habits [23]. Of note, in rodents, 16-h fasting has been
shown to affect 1/3 to 1/2 of monitored serum metabolites, with an increase in fatty and bile acids and a
significant decrease in diet- and gut microbiota-derived metabolites [24]. Nutritional status also has a
significant effect on the tissue metabolome. Especially in the liver, 77% of the hepatic metabolome
has been shown to be sensitive to a nutritional high-fat-diet challenge at all times of day. Amino
acids, xenobiotics and nucleotides were especially affected and decreased in HFD-fed mice at all time
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points [25]. Finally, the fecal (or cecal) metabolome is increasingly considered as a functional readout
of the gut microbiome and can be used as an intermediate phenotype mediating host–microbiome
interactions [4,26]. Although the microbial metabolome still represents an analytical challenge and
many microbial metabolites still remains unknown, it is known that the fecal metabolome is highly
sensitive to nutritional challenges [27,28] and influences the host hepatic metabolism [4,29,30].

2.1.2. Considering Circadian Rhythm

Circadian rhythms govern a large variety of behavioral, physiological and metabolic processes [31].
Recent advances reveal that a very large fraction of mammalian metabolism undergoes circadian
oscillations. Many metabolic pathways are under circadian control and, in turn, may feedback to
the clock system to assist in circadian timekeeping [32]. Transcriptomics studies have extensively
illustrated a substantial fraction of the genome controlled by the molecular clock [33]. Metabolomics
studies have also highlighted the circadian oscillations of metabolites in humans independently
of sleep or feeding [34]. In mice, more than 40% of the serum metabolome and 45% of the liver
metabolome have been shown to be sensitive to time, with both matrices providing different and
complementary information. For example, more than 30% of the serum lipids were not found in the
liver and more than half of them oscillated across the circadian cycle, while only 30% of the hepatic
lipids oscillated [25]. Moreover, a high-fat challenge induced a loss of serum metabolite rythmicity,
compared with the liver [25]. Therefore, when collecting samples for a metabolomics study, one
should be aware that a tissue-specific and time-dependent disruption of metabolic homeostasis exists
independently of feeding, but also in response to altered nutrition. Time of collection therefore needs to
be carefully chosen, and if sample collection is spread between several days, time of collection should
be homogenous between the collection days [35].

2.2. Common Sources of Variation in Pre-Analytical Handling of Main Biological Matrices

Specific SOPs have been described for collection, preparation and storage of metabolomics
samples and will be described along the specificity of each biological matrix in the following sections.
Several features of the pre-analytical steps are however shared between the different matrices. First,
the numbers, weights or volumes of the samples are important points to anticipate before collection.
Second, during collection, samples have to be kept at the lowest temperature possible, and immediate
snap freezing is recommended in order to quench any rapid degradation activity such as oxidation of
labile metabolites as well as enzymatic reactions.

Third, aliquoting the samples should also be considered whenever possible. This important step
will avoid repeated freeze–thaw cycles that lead to progressive loss in sample quality. Finally, long
term storage at −80 ◦C or less is recommended before analysis. These general recommendations,
as well as matrix-specific pre-analytical factors that influence the results of metabolomics studies are
summarized in Figure 1.

2.3. Urine

Urine is a biofluid commonly used for both human and animal metabolomics studies because
sample collection is non-invasive. The simplicity of the collection allows multiple collections for
kinetic studies and ensures reliability of the analysis. Urinary profiles contain signals derived from
both endogenous and environmental sources, including diet and gut microbiota metabolic activity,
and can therefore provide an overall measure of the metabolic phenotype. It is a collection of waste and
biological by-products that reflects a large panel of metabolic processes that may have occurred over
time and provides the researcher with a historical overview of the global metabolic events. In addition,
it may contain cells (erythrocytes, leucocytes, urothelial cells, and epithelial cells), bacteria, fungi and
non-cellular components including urates and mucus filaments [36]. Thus, it is a non-inert fluid and
residual cellular or enzymatic activities could significantly change the metabolic composition of the
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samples. It is, therefore, necessary to remove cells and bacteria and/or to quench the ongoing enzymatic
or metabolic activities in urine samples.

Figure 1. Summary of pre-analytical factors that can affect metabolite profiles in various matrices.

2.3.1. Timed vs. 24-Hour Collection

The first main consideration in urine collection is to choose the appropriate sampling time: 24-h
collection or timed collection. It has been shown that there is a large variability depending of the
collecting time (day vs. night, morning vs. afternoon) caused by the circadian rhythm regulating
the energy metabolism and the gut microbiota metabolism and also due to a difference in physical
activity and feeding state [37]. Therefore, 24-h sampling will be preferred if one aims at eliminating
the day-time variability in metabolic profiles. Another advantage of 24-h sampling might be that
it minimizes variation in urine concentrations compared to timed samples. Indeed, unlike blood
where metabolite concentration is tightly maintained, urine concentration can vary drastically from
sample to sample, thereby influencing the urine metabolome. In a recent review, Stevens et al. propose
that pre-analytical normalization of urine (for e.g., to osmolarity) may improve the reliability of
metabolomics analyses [38]. However, 24-h sampling is not always feasible, especially in humans.
In rodents, specific individual metabolic cages or use of hydrophobic sand are required, in which mice
are isolated and therefore mildly stressed [39,40]. 24-h sampling might also not be appropriate. For
example, a timed sampling is needed to study a time-related trend and a kinetic sampling can be done
to monitor the evolution of a targeted compound or the overall effect on the metabolism after drug
or nutrient intake. In timed sampling, the time of collection is a very important point to ensure the
reproducibility and quality of the study.

2.3.2. Sample Collection

The most commonly used preservation methods are filtration, centrifugation or addition of
bacteriostatics. Saude et al. showed that spinning urine samples at 112 g for 10 min was less effective
in conserving the metabolome composition than filtration through a 0.22 μm filter [41]. Bernini et al.
have shown that a mild pre-centrifugation (between 1000 and 3000 g) combined with filtration is the

4



Metabolites 2020, 10, 104

safest way to avoid contamination of the metabolic profiles attributed to bacterial removal without
leading to an additional contamination due to cell damages or breaking (higher centrifugation speed
induced partial breaking of cells and lower centrifugation was not effective to eliminate bacteria) [36].
Boric acid and sodium azide (NaN3) are the two most commonly used antimicrobial preservatives.
It has been shown that the addition of 200 mM of boric acid or 10 mM of NaN3 for 24-h samples or
2–20 mM of boric acid or 0.1–1 mM of NaN3 for a timed sample are equally efficient to prevent bacterial
overgrowth [42]. Nevertheless, boric acid is rarely used, as it induces formation of chemical complexes
with endogenous metabolites [43]. Bernini et al. compared the use of NaN3 to a 0.2 μm filtration,
and showed the latter to be superior for sample stability over time due to bacterial removal [36].

To summarize, filtration showed superior ability to preserve the urinary metabolites during
storage in comparison with unfiltered samples. Moreover, the metabolic profiles of centrifuged
samples are more stable than non-centrifuged samples after one week storage at −80 ◦C, with this
effect being less severe in samples that are rapidly frozen in liquid nitrogen to avoid cell breaking.
A mild pre-centrifugation plus a filtration seems to be the best method to avoid sample degradation.

2.3.3. Sample Storage

For short-term storage, Gika et al. have shown that the storage of urine samples at 4 ◦C for up
to 48 h maintained the metabolic integrity of the samples [44]. However, it is important to minimize
sample storage at 4 ◦C as it has been shown that samples stored for more than 9 months will present an
altered metabolome when compared to samples stored at −20 ◦C [45]. For long-term storage, metabolic
profiles of urine samples stored at either −20 or −80 ◦C for 6 months did not show any significant
differences [44]. This study, however, did not confirm whether or not the stored samples were identical
to the original samples.

Freeze–thaw cycles have been shown to significantly modify the urine sample composition. Urine
samples stored at −80 ◦C and thawed twice a week for 4 weeks (8 freeze–thaw cycles) indeed displayed
a reduced metabolic stability in comparison to non-thawed ones stored at the same temperature.
Metabolites deriving from bacterial metabolism (acetate, benzoate, succinate) increased [41]. Trivedi et
al. showed that urinary metabolic profiles could be maintained only up to 3 freeze–thaw cycles using
HILIC (Hydrophilic interaction liquid chromatography) mass-spectrometry [45].

2.4. Blood

Collecting blood is slightly more invasive than collecting urine, and the metabolic profiles of
blood fractions provide a different, but complementary, metabolic information compared to the ones
obtained with urine. Blood metabolic profiles are dynamic and vary continuously in response to
changes in gene expression or changes induced by exogenous metabolites such as those provided by
nutrients or drugs. Blood metabolic profiling is therefore widely used to study the dynamic variations
of the endogenous metabolism in response to drug or food intake. Disruption in plasma metabolic
profiles arises when homeostatic function is impaired. Serum and plasma are the most commonly used
matrices, but other matrices do exist, such as platelet-free plasma (PFP), platelet-rich plasma (PRP) and
whole blood, this latter receiving a growing interest.

Blood consists of two main components: plasma, which is a clear extracellular fluid containing
clotting factors, proteins, glucose, minerals, and gases; and cellular elements, which are made up of
blood cells (white blood cells, red blood cells) and platelets. Serum is the liquid fraction of whole blood,
obtained by allowing the sample to clot naturally followed by a centrifugation step. The resulting
supernatant is serum free of cells and of clotting factors such as the fibrinogen proteins. Plasma is
prepared by collecting the whole blood into anticoagulant-treated tubes followed by a centrifugation
step at 4 ◦C to separate blood cells. The supernatant designated as plasma is then immediately
transferred into a clean tube. Plasma is a mixture of platelets, proteins, nutrients, hormones and gases.
In some studies, further identification was given by naming it platelet-poor plasma (PPP) in opposition
to platelet-free plasma or platelet-rich plasma by adding one or more additional centrifugation steps.
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Depending on the aim of the experiment, for example, if one wants to take into consideration the
influence of growth factors or cytokines released by the platelets, the platelet content of the sample
has to be carefully accounted for. Various manual, semi-automatic, and fully automated commercial
systems have become available to prepare PFP, PPP and PRP [46].

2.4.1. Sample Collection

Several studies have addressed a direct comparison of plasma vs. serum and have been recently
reviewed [38]. The conclusions of this review highlight that both matrices are appropriate for blood
metabolomics with minor differences between them.

The metabolomics analysis of serum is known to present a higher sensitivity of metabolites
compared to plasma due to the lack of big particles. However, its processing time has the disadvantage
of introducing variations due to enzymatic conversion and degradation processes, and to influence the
metabolite composition [47]. Moreover, the reproducibility of serum is not as good as that of the whole
blood because hemolysis can occur during collection or processing, leading to the presence of free
hemoglobulin in the samples that influences the metabolic profiles [48].

In comparison, there is a better reproducibility in plasma due to the absence of the blood-clotting
step. Moreover, it has been suggested that the absence of platelets and the lower protein content
could be beneficial to small molecule analysis, because of a reduced competition [49]. For plasma
preparation, the choice of anti-coagulant addition is critical and needs to be carefully accounted for
before sample collection. Several anticoagulant collection tubes are available. The three most common
additives are: heparin, ethylene diamine tetra acetic acid (EDTA) and citrate. They have often been
compared with opposing conclusions depending on the analytical platform used. Actually, additives
found in collection tubes can affect the ionization process during the MS run, thereby suppressing
metabolite ionization and/or introducing interfering peaks. Bari et al. have compared heparin, EDTA
and citrate anticoagulants using an untargeted UPLC-MS analysis. They noticed subtle metabolite
differences between the different plasma preparations mainly due to ion suppression or enhancement
caused by citrate and EDTA. Heparin did not cause interferences and was therefore recommended
by the authors [50]. On the contrary, Yin et al. analyzed heparin, citrate, and EDTA collection tubes
using a non-targeted LC-MS approach and they noticed that heparin led to chemical noise in the mass
spectra. Citrate and heparin showed few additional signals. They recommended avoiding heparin,
preferring EDTA [48]. As for NMR analysis, heparin is usually recommended, as EDTA, citrate and
other stabilizers give additional signals in the NMR spectra [51]. The choice of collection tube for
plasma preparation is therefore critical, should be consistent throughout the experiment and should be
adapted according to the analytical platform used for subsequent analysis.

2.4.2. Sample Preparation

After collection, samples should be quickly stored on ice. The time between collection and
cell separation should be long enough to allow complete clot formation but short enough to avoid
compositional changes. In general, it is recommended that the time before separation of blood cells
should not exceed 30 min to minimize further metabolism or active and passive transport of analytes
between the intra- and extracellular compartments. As for urine, whenever possible, samples should be
stored as aliquots, allowing the use of fresh samples for each experiment and avoiding the introduction
of bias due to repeated freeze–thaw cycles.

2.4.3. Sample Storage

It is well established that serum and plasma contain high levels of enzymes, that are efficiently
active at 37 ◦C. A reduced temperature decreases enzymatic activity, but it should be noted that this
activity is not completely inhibited until temperatures below −56 ◦C are reached [52]. Lipids and
lipoproteins are especially sensitive due to lipase activity [35]. Small changes have been observed in
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the plasma metabolic profiles after one-month storage at −20 ◦C [35,53], while storage at −80 ◦C for
4 years had minimal effects [54,55].

Data regarding the number of freeze–thaw cycles acceptable are variable [42,44,46]. Unfractionated
serum samples can be stored frozen for later quantitative lipid analysis as minor effects occur on
quantitative lipid composition for most of the biologically relevant lipid species in humans, even with
one to three freeze–thaw cycles. At the opposite freezing prior to lipoprotein fractionation significantly
introduce a large variability in high-density lipoprotein and low-density lipoprotein cholesterol as
well as in very low-density lipoprotein free fatty acids compared with fresh samples: density-based
fractionation should preferably be undertaken in fresh serum [39].

2.5. Feces

Feces represents a growing interest in metabolomics studies, as fecal metabolic profiles reflect
the metabolic interplay between the host and its gut microbiota [56]. The fecal metabolome has been
shown to largely reflect gut microbiota composition in humans (explaining on average 67.7% of its
variance), and is considered to be a functional readout of the microbiome [26]. Despite the rising
popularity of fecal metabolomics, the methods for collecting, preparing and analyzing fecal samples
are still far from being standardized. In a recent review, Karu et al. provided the state of knowledge
with regards to the protocols and technologies in human fecal metabolite analysis [57]. They also
present a comprehensive database that contains over 6000 identified human fecal metabolites, thereby
highlighting the potential richness of the information contained in the metabolomics analysis of fecal
samples. While the first metabolomics study of human feces used headspace GC-MS to study volatile
organic compounds (VOCs) [58,59], it is now recognized that the majority of fecal metabolites are
non-volatile [57].

The largest part of stool is made up of water (60–80%, depending on fiber intake), while the
dry matter contains bacteria (both alive and dead, representing 25–54% of biomass) derived from
the gastro-intestinal microbiota, colonic epithelial cells, macromolecules, undigested food residues,
and thousands of metabolites including sugars, organic acids and amino acids, that constitute the fecal
metabolome [60]. The latter includes both compounds derived from the metabolic activity of the gut
microbiota and various host endogenous metabolites such as signaling peptides or bile acids [61].

2.5.1. Sample Selection

Timed vs. multiple-timed sampling: Much information contained within the fecal metabolome
derives from dietary inputs and biochemical events that have occurred during their digestion. Thus,
there is inherent variability in fecal samples depending upon feeding state and bowel activity. Both the
gut microbiota composition and metabolic activity have been shown to be highly circadian [62,63].
Therefore, as for urine, it can be expected that timed collection vs. 24-h collection will provide different
information. In animal studies, both timed [64] and 24-h [65] fecal sampling are commonly used
for specific biochemical assays such as sterol and bile acid profiling; however, to our knowledge,
no direct and systemic comparison of timed vs. 24-h fecal metabolome has been performed yet.
In humans, it might not be feasible or relevant to collect 24-h samples. However, it was shown that the
1H-NMR-based fecal metabolic profiles from single time samples greatly varied within one individual
(day to day variation), and multiple day sampling and pooling has been proposed to minimize errors
arising from day to day variation [66].

Presence of blood in stools: Gut bleeding is a clinically prevalent phenomenon associated with
many gastro-intestinal diseases. The impact of blood in stool on the fecal metabolome has been shown
to be minimal if the level of contamination is low (occult blood). However, gross (visible) blood in the
fecal sample significantly contaminates the fecal metabolome [67]. Therefore, Karu et al. recommend
visually inspecting samples and considering excluding the fecal samples or portions of fecal samples
with gross blood [57].
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2.5.2. Sample Collection

Feces collection presents the advantage of being non-invasive. In animals, fecal samples can
be directly obtained from the intestine after euthanasia or collected from alive subject and pooled if
necessary. Twenty-four hour feces can easily be obtained using metabolic cages; however, a mild but
significant increase in fecal output was observed when housing rats in metabolic cages [39]. In humans,
fecal samples can be directly collected in a falcon tube, in a plastic container, in a sterile bag [68,69], or in
special anaerobic pouch systems [70]. Stabilizing solutions such as nucleotide stabilizers present in some
stool collection kits should be avoided because they interfere with subsequent metabolomic analysis.
Similarly, if stool samples are to be collected prior to colonoscopy, Bezabeh et al. recommend collection
before patients start taking the solutions used for colonoscopy [71]. Indeed, most of these solutions
contain polyethylene glycol, which produces strong interfering signals in the 1H-NMR spectrum.

Sample type and amount have to be decided beforehand and standardized. Samples for
metabolomics study can be intact (crude) feces (usually for analysis of VOC), fecal water (the water
fraction of an intact feces, obtained by ultracentrifugation of the stool), or a fecal aqueous extract
(obtained after the addition of an aqueous buffer or of water to the stool, followed by homogenization
and centrifugation). Fecal water generates a different metabolic coverage from feces and GC-MS
analysis from crude feces samples yielded detection of more peaks than analysis of fecal water
samples [67]. Stool samples are highly heterogeneous, and the topological position from the fecal
sample has been shown to influence the fecal metabolome [72]. Therefore, it is sometimes recommended
to collect as much sample as possible and to homogenize it before preparing aliquots, enabling a
non-selective and more reproducible method [57,71]. The metabolic stability of aqueous extracts was
shown to be higher than that of crude feces samples and it was recommended that fresh samples
should be refrigerated and aqueous extraction conducted ideally within 1 h (and not longer than 24 h)
after collection before aliquoting and freezing [57,72].

Exposure to aerobic conditions and room temperature might quickly change the fecal metabolome
due to microbial fermentation. Some researchers therefore place their fecal samples in an anaerobic
chamber within 10 min of collection [73]. Couch et al. investigated the differences between home-based
self-collection (ex vivo) samples and lab-based endoscopic collection (in vivo) samples in healthy
subjects [74]. Using GC-MS, they found modest differences in the overall chemical distribution with
a slight bias toward oxidized metabolites in the ex vivo samples. Further investigation revealed
significant differences in the VOC metabolomes between the two groups. The effect of post-collection
storage is much more drastic in fecal samples than in any other biological matrix, and most researchers
store their fecal samples at 4 ◦C or lower immediately after collection. Fecal metabolites have indeed
been shown to be highly unstable upon several storage conditions. For example, using GC-MS analysis,
Phua et al. showed that, over 268 analytes, only 28% remained stable when crude feces were stored
for one day at 4 ◦C, and this declined to 10% at room temperature (29 ◦C) [67]. Immediate cooling of
fecal samples is not always feasible, especially when human feces are collected at home or in clinics.
Using LC-MS, Loftfield et al. compared several methods allowing preserving sample quality and
demonstrated that crude fecal samples collected in 95% ethanol were stable for up to 96 h at room
temperature [75]. Interestingly, these ethanol-preserved samples exhibited a metabolic profile more
akin to fresh samples compared to immediately frozen-feces. This protocol represents an interesting
alternative when immediate freezing of samples is not possible.

Water content in feces is variable (60–85% in human) and this can sometimes create a bias to
compare experimental groups. Immediately after collection, or before metabolites extraction, it is
possible to lyophilize or freeze dry the samples to remove the water present in the feces. This improves
sample weight precision, reduces bias due to the volume of solvent and/or derivation reagents added
to samples during the metabolite extraction steps and allows quantitative metabolite data to be
given in units per dry matter weight. This latter point is especially important for meta-analysis of
metabolomics results and to establish reference levels for clinical use. While working with dried
samples is less laborious, more reproducible and prevents bacterial growth, it also results in a loss of
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detected metabolites, especially VOCs. Indeed, the effect of lyophilization has been compared with the
use of fresh sample and results in a decrease in short chain fatty acids [76,77]. Therefore, Karu et al.
suggest that, unless volatile compounds are specifically targeted for quantification, fecal samples
should be dried and weighed prior to storage or analysis. However, some researchers recommend not
using it to minimize the number of preparation steps and guarantee quantifiable levels of short-chain
fatty acids among others.

2.5.3. Sample Storage

While the analysis of fresh fecal samples is therefore recommended, the use of frozen samples
could be more convenient. Two NMR studies investigated the effects of freezing on crude feces and/or
aqueous fecal extracts and showed higher levels of several amino acids (namely branched-chain and
aromatic amino acids) and glucose upon a single freeze–thaw cycle [72,76]. This observation has been
confirmed using GC-MS analysis. Phua et al. indeed observed that only 33% of the initial metabolites
remained after one cycle, and 18% after two and three cycles [67]. In the same study, the metabolites
also exhibited a poor stability at −80 ◦C, with only 24% of stable metabolites after 1 and 6 weeks of
storage. The identity of the impacted metabolites was not given.

To summarize, although the immediate processing of fresh fecal samples is recommended, the use
of frozen samples is often much more convenient. According to the last recommendations [57] and
our present review, it seems that good practices would require fecal samples to be homogenized and
aliquoted prior to freezing, while minimizing handling time at the lowest temperature possible. Very
importantly, freeze–thaw cycle and storage duration should be minimized.

2.6. Tissue

Most metabolomics studies are based on non-invasive or minimally invasive sample types, such
as blood, urine and feces. However, tissue analyses are also important, as the tissue represents
the first place where the metabolic changes owing to a disease take place. Metabolomic studies
have been conducted on almost every tissue (liver, intestine, muscle, adipose tissues from various
locations, whole brain or selected brain areas, etc.). Most tissues are not homogenous. For example
the liver has five different lobes, and within them the portal and periportal vascular regions are
known to display different levels of some enzymatic systems such as those involved in glycolysis and
gluconeogenesis [78–80]. Even when the tissue is composed of the same cell types, regional differences
in composition may still exist. Such factors may result in increased biological variability, which should
be taken into account during sampling [81].

2.6.1. Sample Collection

There are several critical points to be aware of during the handling step of tissues to avoid bias
due to the collection procedure. The first important consideration is to ensure sample collection
homogeneity throughout the experiment by always collecting samples from the same region to
avoid bias due to biological variability. Whenever possible, it is also advisable that the same person
collects the tissue samples throughout the experiment to minimize variability. Furthermore, to avoid
contamination with blood metabolites, it is possible to wash the samples with cold deionized water
or PBS after collection [82]. In some cases, saline in D2O or PBS is injected into the organ-associated
artery before the collection to remove residual blood in organs [83]. One should also be aware that
contaminant signals can result from the anesthetic used during the experiment, or even from surgical
instrument cleaning solutions, especially ethanol that produces additional signals in the 1H-NMR
spectra, thereby masking signals from endogenous metabolites.

2.6.2. Sample Storage

To obtain useful global metabolic profiles, sampling must be performed as rapidly as possible and
samples should be either processed immediately or snap-frozen in liquid nitrogen to minimize further
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metabolism [84]. A good practice is to cut each sample into small pieces and to freeze the organs as
rapidly as possible. For large prospective biobanking studies, this might not always be feasible and
tissue samples might undergo several cycles of “storage-near-retrieval” due to storage constraints of
adjacent samples for example. Testing different scenarios of storage–retrieval cycles in human liver
tissues demonstrated that storage temperature affected metabolite concentrations only little, while
there was a linear dependence on the number of temperature change cycles [85]. Metabolic changes
induced by thawing were shown to be almost identical for all organs, with a marked increase in overall
metabolite levels caused by increased protein and cell degradation [86].

2.7. Cells

Metabolomics analysis of cultured cells has emerged as an important technology for studying
cellular biochemistry that provides an instantaneous snapshot of ongoing cellular metabolism.
The major bottlenecks associated with metabolomics cell samples preparation workflow are efficient
sampling, quenching and metabolites extraction in order to preserve the internal metabolite
signatures [87].

2.7.1. Sample Preparation

Metabolomics analyses have been performed on a broad range of adherent cell numbers, ranging
from 1 × 104 up to 4 × 107 cells [88]. Depending of the cells and the technology used to process the
cell extractions, the seeding number must be optimized in order to get enough signal in NMR and/or
MS, to be able to detect small metabolites that are present at low concentration but that still may be
important for biological purposes, especially when global metabolomics is performed. Regarding the
hepatic HepG2 cells for instance, tests have been performed to optimize the number of cells needed to
obtain NMR metabolic fingerprints allowing to detect and identify the metabolite content in the cells.
The number of 106 cells was selected, as this seeding allowed the detection of the subtle modulations
occurring after exposing the cells to xenobiotics such as estradiol or bisphenol A [18]. For cell extracts,
it is usually recommended to work in very low volumes and concentrate the extract in a maximum of
50 uL. Microvolumes are easily handled using MS-based metabolomics or can be transferred to NMR
microtubes or capillary tubes for analysis.

Culture media composition is also important to consider as some media contain interfering anions
such as Cl−, SO4

−, and PO4
−, and depending on cultivated cells, amino acids, Good’s buffers, organic

acids, and complex biological mixtures such as fetal bovine serum. These components can cause
substantial electrospray ionization suppression, additional signals in 1H-NMR spectra or contaminate
the intracellular metabolite pool [88]. With regard to NMR-based metabolomics, culture media that
contain HEPES should be avoided or carefully removed, since HEPES gives many broad additional
signals. For these reasons, cells have to be separated from the medium before analysis. The washing
step is therefore very important and should be performed with caution to effectively remove all the
extracellular media components. Kapoore et al. (2017) performed five different washing protocols on
the breast cancer cell line MDA-MB-231, using either PBS or distilled water. Based on a few metabolites
detected by GC-MS, these authors suggested that in their conditions, a single washing step with PBS
followed by quenching using 60% methanol supplemented with 70 mM HEPES (−50 ◦C) was the
best condition for minimizing intracellular metabolites leakage. More recently, three-dimensional
multicellular tumor spheroids have been used to perform metabolomics analysis. The washing steps
consisted of a rapid washing of the spheroids directly on the cultivation plate only once using PBS [89].

Another crucial point for reducing the variability and improving the quality of sample preparation
is to quench the cells before the extraction. This procedure aims at stopping cellular metabolism to
prevent the turnover of metabolites, maintaining the metabolite concentrations at their physiological
levels. Thus, the quenching method should immediately stop all cellular enzymatic activities or
cellular changes in metabolite concentrations, without changing the cell environment, since metabolites
are very sensitive to any variation of their environment. As for the other points mentioned above,
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several protocols have been tested and used by scientists and were improved over time. Previously,
metabolic quenching and extraction were performed using drastic culture conditions changes (acidic
condition, high temperature) to inactivate all enzymatic activities, but taking into account the loss of
heat-sensitive and pH-sensitive compounds [90]. Some papers reported quenching protocol using
liquid nitrogen, for metabolomics studies, after detaching cells by trypsination [91]. In this case, cells
are quenched and extracted at the same time [92]. This method substantially modifies the intra-cellular
metabolic profiles because trypsin can induce cell stress, structural and protein disruption during
cell detachment and consequently metabolite leakage [93]. Another method has been proposed to
isolate the cells using filtration [88]. However, both filtration and centrifugation expose cells to a
mechanical stress that can also modify the metabolic profiles. Recently, another method has been
proposed to better preserve cell metabolism: after carefully removing the medium, cells are washed
with PBS or deionized water at room temperature or at 37 ◦C. Finally, the cellular metabolism is
quenched by adding liquid nitrogen or ice-cold methanol into the dishes. Cells can be stored at −80 ◦C
or scraped with a cell lifter to be directly extracted. The solvents used for the quenching and metabolite
extraction step is one critical step to anticipate, depending of which type of metabolites are targeted.
It is admitted that up to now the choice of solvent was adapted to specific metabolite extractions.
Usually, a mix of different proportions of solvents is used to quench, extract the cells and collect the
metabolites. Mainly, methanol or acetonitrile are used as organic solvents, supplemented by water
or acidified water [94]. Different ratios of organic solvents and water have been documented, such
as methanol:water 50:50 (v/v) to perform global metabolomics [93] or acetonitrile:water 70:30 (v/v) to
perform targeted amine profiling [95]. Some protocols include only a cold mix freshly prepared of
acetonile and deionized water to seek polar metabolites [96]. The choice of methanol, acetonitrile
and water, even at different ratios, is efficient to recover a large panel of metabolite families such as
amino acids, organic acids, nucleotides precursors, sugars ad sugar alcohols [97]. Potassium hydroxide
or perchloric acid have also been used, but the results were less reproducible and less efficient for
extracting nucleotides, sugars, sugar phosphates and organic acids. These authors concluded that
acidic and alkaline extractions did not suit the requirements for a global metabolome analysis [97].
Research is ongoing to optimize conditions in order to get as many metabolites as possible from the
same sample extracts using appropriate mix of solvents.

2.7.2. Sample Storage

After quenching and metabolite extraction, cell extracts are usually snap frozen in liquid nitrogen
and quickly stored at −80 ◦C until further analysis to prevent metabolite degradation. Similarly to
animal tissues, freeze–thaw cycles must be avoided and the thawing step should be performed on ice
to increase gradually the temperature of the samples.

3. Conclusions

Metabolomics offers detailed insights into the metabolic phenotype of the liver and each of the
associated organs and biofluids (including the gut microbiota). It is, therefore, nowadays one of
the most promising tools in systems biology in hepatology, and is expected to help especially in
non-invasive biomarker discovery and identification of biological pathways operating in the liver
in physiology and pathology. Metabolomics studies have therefore been performed in a variety of
biological matrices to study liver functions. Depending on the research question, several points have
to be carefully considered before analytical handling of the samples, including: type and time of
sampling, sampling conditions, quenching of ongoing metabolism, use of preservatives, aliquoting and
storage conditions. SOPs vary according to the biological matrices used but aim to enhance metabolite
recovery and stability to optimize metabolic pathways investigations in liver functions. This raises the
question of international consensus protocols and international committees working on continuous
improvement of standardized pre-analytical issues.
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Abstract: Hepatic metabolites provide valuable information on the physiological state of an organism,
and thus, they are monitored in many clinical situations. Typically, monitoring requires several
analyses for each class of targeted metabolite, which is time consuming. The present study aimed
to evaluate a proton nuclear magnetic resonance (1H-NMR) method for obtaining quantitative
measurements of aqueous and lipidic metabolites. We optimized the extraction protocol, the standard
samples, and the organic solvents for the absolute quantification of lipid species. To validate the
method, we analyzed metabolic profiles in livers of mice fed three different diets. We compared our
results with values obtained with conventional methods and found strong correlations. The 1H-NMR
protocol enabled the absolute quantification of 29 aqueous metabolites and eight lipid classes. Results
showed that mice fed a diet enriched in saturated fatty acids had higher levels of triglycerides,
cholesterol ester, monounsaturated fatty acids, lactate, 3-hydroxy-butyrate, and alanine and lower
levels of glucose, compared to mice fed a control diet. In conclusion, proton NMR provided a rapid
overview of the main lipid classes (triglycerides, cholesterol, phospholipids, fatty acids) and the most
abundant aqueous metabolites in liver.

Keywords: metabolomics quantitative profiling; lipidomics; 1H-NMR spectroscopy; liver; steatosis

1. Introduction

The liver is among the most metabolically diverse organs of the body, and it is involved in many
metabolic processes. The liver plays a central physiological role in lipid metabolism; e.g., it hosts
cholesterol synthesis, cholesterol degradation to bile acids, triglyceride production, and lipoprotein
synthesis. The liver may be affected by many pathological aggressions. Associated with the obesity
epidemic, Non Alcoholic Fatty Liver Diseases (NAFLD) is currently a major public health concern [1].
NAFLD ranges from benign fat accumulation to inflammatory steatohepatitis that may promote
irreversible damage [1]. The current methods of diagnostic mostly rely on liver biopsies [2]. However,
metabolomic approaches are extensively used for biomarker identification as well as for identification
of metabolic pathways involved in the progression of lipid accumulation [3,4]. Therefore, there is
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a lot of interest in methods allowing the integration of both soluble metabolites and lipids from a
single sample.

Metabolomics is currently established as a powerful investigation tool that provides rich
information on metabolic disturbances in human disease. Mass spectrometry (MS) and nuclear
magnetic resonance (NMR) are the two most widely used techniques in metabolomics. NMR
spectroscopy has several advantages over MS, including high reproducibility, non-destructive analysis,
a simple quantification approach, and minimal sample preparation [5]. 1H-NMR-based metabolomics
is currently widely used to gain insights into liver disease mechanisms [6,7] or to evaluate drug
hepatotoxicity [8,9] and environmental contaminants [10]. In most studies that used proton NMR-based
metabolomics for liver samples, analyses have been performed on either aqueous extracts or lipidic
extracts. Those analyses employed spectral binning, followed by multivariate statistical analyses to
highlight changes in metabolite composition due to disease [11–14], alcohol consumption [15–17], or
contaminant exposure [18].

Lipids are a diverse, ubiquitous group of compounds, which have many key biological functions.
Many diseases alter lipid metabolism; thus, a better understanding of these pathologies can be gained
by analyzing lipid composition. Due to the structural diversity among lipid molecules, lipidomic
profiling is complex. For the least abundant lipids (i.e., free fatty acids, cholesterol, oxylipids), we
typically choose powerful, targeted, but time-consuming approaches, like liquid chromatography
(LC) or gas chromatography (GC) coupled to mass spectrometry (MS) techniques (i.e., LC-MS or
GC-MS), which can provide absolute quantitative results, under certain conditions [19]. However,
to evaluate the most abundant lipids (i.e., phospholipids, sphingolipids, and triacylglycerides), we
typically use LC-MS approaches that are not targeted, even though they do not provide quantitative
results [20]. NMR is an alternative method that provides rapid, and in particular, quantitative analyses
of hepatic lipids. Some studies have analyzed intact liver samples (biopsies) with high-resolution
magic angle spinning (HR-MAS) NMR spectroscopy to study metabolic disruptions in human chronic
hepatitis and cirrhosis [21] or to study non-alcoholic fatty liver disease (NAFLD) in murine models [22].
Those studies were carried out directly in the solid tissues, without any extraction. With HR-MAS,
both lipid and aqueous metabolites can be simultaneous observed in the same spectrum, but the
resolution is low, and absolute quantification is complex, due to overlapping signals. Other studies
have performed metabolic analyses on tissue extracts to study human hepatocellular carcinoma
(HCC) associated with NAFLD or cirrhosis [23] or to study the progression from hepatic steatosis to
nonalcoholic steatohepatitis (NASH) in mouse models [24]. NMR analyses of tissue extracts require
sample processing and separate analyses for lipidic and aqueous extracts. However, liquid state NMR
provides spectra with a better resolution than those recorded with the HRMAS technique, and absolute
quantification can be performed when a standard is used at a known concentration. Only a few studies
have reported the absolute quantification of lipidic metabolites in liver samples, based on 1H-NMR
spectroscopy [24]. Indeed, lipid species contain many long-chain fatty acids, and therefore, many
overlapping proton signals (e.g., (CH2)n in fatty acids), which makes a detailed characterization of
lipid species unfeasible. However, with 1H NMR spectroscopy, it is possible to identify and quantify
different classes of lipids, such as cholesterol, triglycerides, phospholipids, mono-unsaturated fatty
acids (MUFAs), and poly-unsaturated fatty acids (PUFAs).

The present study aimed to evaluate 1H-NMR spectroscopy for the identification and absolute
quantification of polar and non-polar metabolites in the same liver sample. First, we compared two
extraction methods to optimize aqueous and lipidic metabolite extractions. Then, we optimized
the absolute quantification of lipid species on mixtures of lipid standards, by comparing internal
vs. external standards and various organic solvents. Finally, the optimized method was applied to
investigate the effects of a diet deficient in essential fatty acids on liver mouse metabolism. Hepatic
lipids were quantified with both 1H-NMR spectroscopy and conventional methods to compare the
results and validate the methodology.
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2. Results

2.1. Comparison of Extraction Methods

Sample preparation represents a crucial step in metabolomic studies. In this study, we aimed
to obtain the best preparation for both polar and lipid molecules. Several classical solvent systems
have been developed for liver extractions [25]. Among the various possibilities, we chose Bligh and
Dyer [26] and Folch [27] extractions, because these two methods resulted in a biphasic solvent system.
Moreover, these were the main extraction methods used in our lab for targeted lipidomics, performed
with conventional methods, and for NMR-based metabolomics [28]. With these extraction methods,
the upper phase contained the polar (aqueous) fraction, and the bottom phase contained the lipids.
When we tested the Bligh and Dyer extraction method with 50 mg of liver, we noticed the presence
of an emulsion, which made it difficult to separate the aqueous and organic phases. With the Folch
extraction method, the organic phase was washed with a saturated NaCl solution, and the phases were
well separated.

A visual assessment of the 1H-NMR spectra revealed that the two extraction procedures produced
similar peak coverages and intensities for the extracted lipids (Figure 1). For the aqueous extracts,
the intensities were higher in the aromatic region (δ 9.0–6.0 ppm) with the Folch extraction method
than with the Bligh and Dyer method (Figure 2).

Figure 1. 600 MHz 1H-NMR spectra of lipophilic extracts from mouse liver samples. The Folch extraction
method (top) and the Bligh and Dyer extraction method (bottom) show the same peaks. The peaks are
labeled in only one panel for clarity, as follows: FC, free cholesterol; CE, cholesterol ester; TC, total
cholesterol; FA, fatty acids; SFA, saturated fatty acids; ARA, arachidonic acid; EPA, eicosapentaenoic
acid; MUFA, monounsaturated fatty acids; DHA, docosahexaenoic acid; PUFA, polyunsaturated fatty
acid; PE, phosphatidylethanolamine; LPC, lysophosphatidylcholine; PC, phosphatidylcholine; PL,
phospholipids; TG, triglycerides; UFA, unsaturated fatty acids.
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Figure 2. 600 MHz 1H-NMR spectra of aqueous extracts from mouse liver samples. The Folch extraction
method (top) revealed more peaks than the Bligh and Dyer extraction method (bottom). The peaks are
labeled in only one panel for clarity, as follows: Ile, isoleucine; Val, valine; 3OH-But, 3-hydroxybutyrate;
Ace, acetate; GSSG, glutathione oxidized; Succ, succinate; Gly, glycine; Leu, leucine; Eth, ethanol; Lact,
lactate; Ala, alanine; Gln, glutamine; Met, methionine; Cre, creatine; Cho, choline; Glc, glucose; Uri,
uridine; Ino, inosine; Tyr, tyrosine; Phe, phenylalanine; Nia, niacinamide; For, formate.

For each method, the buckets representing metabolites with signal-to-noise ratios above 10
(SNR > 10) were annotated by comparing the chemical shifts in the 1D 1H-NMR spectra with those of
reference spectra recorded under the same conditions and reference spectra deposited in the Biological
Magnetic Resonance Databank [29] and the Human Metabolome Database [30]. We could identify
29 metabolites present in the polar fraction and eight lipid classes present in the non-polar fraction.
1H-NMR resonance assignments of aqueous and lipidic metabolites are shown in Tables S1 and S2,
respectively, with the chemical shifts, multiplicity, and coupling constants of the signals elucidated in
the 1H-NMR spectra for both the water- and lipid-soluble extracts from mouse liver. For the lipidic
extracts, among the selected 52 buckets, 50 were detected with an SNR > 10 with both extraction
methods, which suggested that there was no significant difference between the two extraction methods,
based on this criterion. For the aqueous extracts, among the selected 80 buckets, 40 and 58 were
detected with an SNR > 10 with the Bligh and Dyer and the Folch extraction methods, respectively.
This finding confirmed that the Folch method provided better extraction of the aqueous metabolites.

We performed a multivariate analysis combined with a principal component analysis (PCA)
of the NMR buckets that described components of the extracts from both methods. We found that,
for lipidic extracts, the two extraction methods were separated along the second principal component,
which explained 11% of the variability. For aqueous extracts, the samples were separated along the
first principal component, which explained 72.1% of the variability. These results suggested that the
aqueous metabolites extracted were significantly different between these two extraction methods
(Figure 3). The loading plot for aqueous liver extracts showed signals that contributed to the separation
between extraction methods (Figure 4). Taurine, lactate, glucose, choline, alanine, glutathione and
others amino acids are elevated in Folch extraction, and glycogen and adenosinemonophosphate
(AMP) are elevated in Blye and Dyer extraction.
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Figure 3. Principal component analysis score plot of the two extraction methods. (a) Liver lipidic
extracts (n = 3); (b) liver aqueous extracts (n = 3). BD = Bligh and Dyer extraction method (red);
Folch = Folch extraction method (green). Ellipses indicate the 95% confidence region.

 
Figure 4. Principal component analysis loading plot of the two extraction methods for aqueous liver
extracts. NMR buckets with the highest absolute loadings contributed the most to the separation
between the two extraction methods and were annotated. Metabolites in red were elevated in Blye and
Dyer extraction and metabolites in green were elevated in Folch extraction.

Generally, when the two classical Bligh and Dyer and Folch lipid extraction methods were used,
most studies focused either on the analysis of lipid extracts using MS techniques [31] or on the analysis
of aqueous extracts by NMR spectroscopy [32,33], but few studied reported the analysis of both extracts.
Our results showed that, in this case, the Folch extraction method was more efficient in extracting
aqueous metabolites than the Bligh and Dyer method, but the two extraction methods showed no
differences in extracting lipidic metabolites. The variability was similar with both extraction methods.
Therefore, we selected the Folch extraction method for all subsequent analyses in this study.

2.2. Absolute Quantification of Lipidic and Aqueous Metabolites

In NMR, absolute quantification requires the use of an internal or external standard at a known
concentration. A number of reference compounds are available for quantitative NMR analysis.
The most widely used reference compounds for chemical shift referencing and quantitative analysis are
tetramethylsilane (TMS, organic solubility), 3-(trimethylsilyl)-1-propane sulfonic acid sodium salt (DSS,
aqueous solubility), and 3-(trimethylsilyl)propionic acid sodium salt (TSP, aqueous solubility) [34].
In this study, for aqueous extracts, we used TSP as an internal standard, TSP was directly dissolved
in the sample. Signals used for absolute quantification of aqueous metabolites were indicated in
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bold in Table S1. For lipid quantifications, TMS was directly dissolved in the sample as an internal
standard; as an external standard, TSP was dissolved in deuterated water (D2O) in a coaxial capillary
tube for mixtures of lipid standards. The final solvent in an NMR experiment is another key point:
in the literature, deuterated chloroform (CDCl3) and a mixture of CDCl3 and deuterated methanol
(CD3OD) are mostly used for lipidomic analyses. In the present study, we tested both pure deuterated
chloroform (CDCl3) and a 4:1 (v/v) mixture of CDCl3 and CD3OD for the final solvent. The lipid
extracts and standards were dissolved in these solvents.

The metabolites were quantified according to the following expression:

Cx =
Ix×Cs

Nx
Is
Ns

× V
M

(1)

where Cx is the metabolite concentration, Ix is the integral of the metabolite proton peak, Nx is the
number of protons in the metabolite proton peak, Cs is the standard concentration, Is is the integral of
the standard proton peak, Ns is the number of protons in the standard proton peak, V is the volume of
the analyzed extract, and M is the weight of liver tissue analyzed.

The quantification of lipid species was simple for isolated peaks without any signal overlapping,
such as the total cholesterol (TC, singlet, 3H, 0.68 ppm), ω-3 fatty acids (ω-3 FAs, triplet, 3H,
0.97 ppm), arachidonic and eicosapentaenoic acids (ARA+EPA, multiplet, 2H, 1.68 ppm), MUFAs
(multiplet, 4H, 2.01 ppm), docosahexaenoic acid (DHA, multiplet, 4H, 2.38 ppm), linoleic acid (triplet,
2H, 2.27 ppm), phosphatidylethanolamine (PE, multiplet, 2H, 3.12 ppm), phosphatidylcholine and
lysophosphatidylcholine (PC+LPC, singlet, 9H, 3.20 ppm), triglycerides (doublet of doublets, 2H,
4.29 ppm), and sphingomyelin (SM, multiplet, 1H, 5.70 ppm). Free cholesterol (FC) and cholesterol
ester (CE) could be quantified based on the signals at 1.01 and 1.02 ppm, respectively, with the
deconvolution algorithm available in Topspin software (Bruker, Rheinstetten, Germany). PUFAs could
not be quantified directly, because the number of protons that corresponded to the signals at 2.82 ppm
could not be determined precisely. As previously mentioned by Vidal et al. [35], it was possible to
determine the molar percentage of unsaturated fatty acids (UFA) with the following equation:

UFA (%) =
100× ((2×A7) + A9))
((2×A9) + (4×A8))

(2)

where A7 is the signal integration between 1.92 and 2.15 ppm corresponding to the functional group
–CH2-CH=CH- acyl group except for –CH2- of DHA acyl group; A8 is the signal integration between
2.25 and 2.36 ppm corresponding to the functional group –OCO-CH2- acyl group except for DHA;
and A9 is the signal integration between 2.36 and 2.42 ppm corresponding to the functional group
–OCO-CH2-CH2- of DHA acyl group.

The total fatty acid concentration could be determined as the sum of the signals at 0.97 ppm (ω-3
FAs) and 0.88 ppm. From this value, we could calculate the concentrations of UFAs, saturated fatty
acids (SFAs), and PUFAs.

To validate our quantification method, we analyzed five mixtures of five lipid standards
(triglycerides C17:0; FC; oleate cholesterol; DHA; and linoleic acid) and five mixtures of three
phospholipid standards (PC, PE, and SM) at different concentrations (Table S3). These 10 mixtures
represented most of the common signals in 1H NMR spectra of lipophilic extracts from liver
samples. Annotated NMR spectra of mixture of lipid standards (mix3) and mixture of phospholipid
standards (mix6) are presented in Figures S1 and S2 respectively. The concentrations of lipid species
were determined by calibrating to the internal and external standards in the two organic solvents.
Tables 1 and 2 list the correlations between the concentrations obtained with NMR signal integration
and their respective real concentrations, obtained by internal or external standard calibrations.
The corresponding scatter plots and linear regressions are available in Figures S3 and S4 (TSP and
CDCl3), Figures S5 and S6 (TMS and CDCl3), Figures S7 and S8 (TSP and CDCl3-CD3OD mixture), and
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Figures S9 and S10 (TMS and CDCl3-CD3OD mixture). All hypotheses underlying the linear regression
(linearity, independence, homogeneity) were validated by the residue analysis. The results showed
that the external standard and the solvent mixture CDCl3/CD3OD (4:1) provided the best correlations
(r > 0.9) and linearity in the regression analyses (i.e., slopes that approximated 1).

Table 1. Pearson’s r correlations and regression slopes indicate the similarity between NMR
quantifications and real lipid concentrations for lipid mixtures dissolved in the solvent, CDCl3.

Lipid Species
External Standard (TSP) Internal Standard (TMS)

Pearson’s r p-value a Slope Pearson’s r p-value a Slope

Total FA 0.98 0.002 1.3 0.82 0.089 0.8
Saturated FA 0.98 0.002 1.2 0.97 0.006 1.0

ω-3 FA 0.98 0.002 1.0 0.94 0.019 1.8
MUFA 0.98 0.001 1.2 0.93 0.019 2.0
PUFA 0.92 0.03 0.8 0.95 0.015 1.7
UFA 0.94 0.017 0.8 0.95 0.014 1.7
DHA 0.99 0.0001 1.1 0.93 0.024 1.9

Linoleic acid 0.98 0.002 0.9 0.93 0.025 1.7
TC 0.99 0.0003 1.2 0.89 0.04 2.5
FC 0.95 0.011 1.0 0.89 0.04 1.7
CE 0.99 0.00007 0.8 0.98 0.004 1.4

Triglycerides 0.99 0.001 1.2 0.98 0.004 1.0
PC 0.95 0.012 1.2 0.96 0.009 1.2
PE 0.55 0.33 0.1 0.99 0.0001 0.2
SM 0.94 0.018 0.8 0.98 0.002 0.9

Total PL 0.91 0.03 0.9 0.95 0.015 1.0
a p value of the Pearson test (H0: r = 0); Abbreviations: TSP, 3-(trimethylsilyl)propionic acid sodium salt; TMS,
tetramethylsilane; FA, fatty acids; MUFA, monounsaturated fatty acids; PUFA, monounsaturated fatty acids; UFA,
unsaturated fatty acids; DHA, docosahexaenoic acid; TC, total cholesterol; FC, free cholesterol; CE, cholesterol ester;
PC, phosphatidylcholine; PE, phosphatidylethanolamine; SM, sphingomyelin; PL, phospholipids.

Table 2. Pearson’s r correlations and regression slopes indicate the similarity between NMR
quantifications and real lipid concentrations for lipid mixtures dissolved in the mixture of solvents,
CDCl3/CD3OD (4:1).

Lipid Species
External Standard (TSP) Internal Standard (TMS)

Pearson’s r p-value a Slope Pearson’s r p-value a Slope

Total FA 0.99 5 × 10−5 1.0 0.98 2 × 10−3 1.2
Saturated FA 0.99 2 × 10−5 1.0 0.98 2 × 10−3 1.2

ω-3 FA 0.99 5 × 10−5 1.0 0.98 2 × 10−3 1.0
MUFA 0.99 3 × 10−5 1.1 0.99 4 × 10−4 1.0
PUFA 0.99 5 × 10−4 1.0 0.97 6 × 10−3 1.5
UFA 0.99 3 × 10−4 1.0 0.97 5 × 10−3 1.4
DHA 0.99 1 × 10−5 1.1 0.99 4 × 10−5 0.7

Linoleic acid 0.99 8 × 10−6 0.9 0.99 2 × 10−4 1.0
TC 0.98 2 × 10−3 1.1 0.96 9 × 10−3 1.6
FC 0.99 6 × 10−4 1.0 0.93 2 × 10−2 1.5
CE 0.99 8 × 10−4 0.9 0.98 2 × 10−3 0.9

Triglycerides 0.99 3 × 10−6 1.0 0.99 7 × 10−4 1.0
PC 0.99 5 × 10−5 1.2 0.99 2 × 10−4 1.1
PE 0.98 3 × 10−3 0.6 0.91 3 × 10−2 0.5
SM 0.99 8 × 10−4 0.9 0.96 8 × 10−3 0.8

Total PL 0.99 3 × 10−5 1.0 0.99 2 × 10−5 1.2
a pvalue of the Pearson test (H0: r = 0); Abbreviations: TSP, 3-(trimethylsilyl)propionic acid sodium salt; TMS,
tetramethylsilane; FA, fatty acids; MUFA, monounsaturated fatty acids; PUFA, monounsaturated fatty acids; UFA,
unsaturated fatty acids; DHA, docosahexaenoic acid; TC, total cholesterol; FC, free cholesterol; CE, cholesterol ester;
PC, phosphatidylcholine; PE, phosphatidylethanolamine; SM, sphingomyelin; PL, phospholipids.
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These results also suggested that TMS was unsuitable for quantitative analyses and that the
nature of the solvent was important. Phospholipids contain polar headgroups and nonpolar fatty acyl
residues, which lead to line broadening in 1H-NMR spectroscopy; thus, the quantification was not
accurate. Accordingly, we used an external standard and the solvent mixture, CDCl3/CD3OD (4:1 v/v),
for the biological study.

2.3. Analytical Validation with Liver Samples in a Dietary Intervention Study

We evaluated the use of 1H-NMR spectroscopy for quantifying aqueous and lipidic metabolites
in liver samples from mice fed the following diets: COCO (deficient in essential fatty acids, with 5%
saturated FA-rich oil), REF (balanced diet with 5% REF oil), and FISH (n-3 PUFA-enriched diet, with 5%
PUFA-rich oil). Lipids were quantified with 1H-NMR spectroscopy and an external standard dissolved
in the mixture of solvents, CDCl3/CD3OD (4:1 v/v).

2.3.1. Comparison with GC-FID Data

We compared 1H-NMR spectroscopy results to those obtained with GC with a flame ionization
detector (GC-FID). We took the GC-FID data as the reference method for quantifying fatty acids and
neutral lipids. Table 3 shows the correlation between NMR quantifications (expressed in nmol/mg of
liver) and GC-FID quantifications. The correlations were good for all tested lipids (r > 0.8, p < 0.01),
except for ARA+EPA.

Table 3. Pearson’s r correlations indicate the similarity between NMR and GC-FID quantifications of
lipid concentrations in livers of mice in the dietary study.

Lipid Species Pearson’s r p-value a

Total FA 0.93 8.8 × 10−8

Saturated FA 0.85 1.43 × 10−5

ω-3 FA 0.80 1.1 × 10−4

MUFA 0.96 4.5 × 10−10

PUFA 0.80 9.6 × 10−5

ARA+EPA 0.69 2 × 10−3

DHA 0.95 3.4 × 10−9

Linoleic acid 0.96 6.7 × 10−10

MUFA/PUFA 0.89 1.3 × 10−6

Total cholesterol 0.99 1.2 × 10−14

Free cholesterol 0.91 1.3 × 10−6

Cholesterol ester 0.98 6.6 × 10−12

Triglycerides 0.98 7.7 × 10−12

a p value of the Pearson test (H0: r = 0); Abbreviations: FA, fatty acids; MUFA, monounsaturated fatty acids; PUFA,
polyunsaturated fatty acids; DHA, docosahexaenoic acid.

2.3.2. Comparison with LC-MS Data

The quantification of phospholipids with LC-MS provided relative values, due to the unavailability
of standards for calibrating LC-MS quantifications. Thus, for phospholipids, we could only compare
relative differences between diets. Table 4 shows the ratios of phospholipid concentrations between
the test and reference diets. These ratios were calculated with results from the 1H-NMR and LC-MS
analyses to compare the two methods. The relative error between LC-MS and NMR values were smaller
than 6% for PE, PC+LPC and total PC except for SM (10%). We can assume that the quantification
ratios provided by the 1H-NMR analyses were similar to the quantification ratios provided by the
LC-MS analyses. For SM ratio, the relative error was larger because the NMR signal was weak.
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Table 4. Comparison between 1H-NMR and LC-MS methods for determining ratios of phospholipid
concentrations in livers from mice fed different diets in the dietary study.

Concentration Ratio
PE PC + LPC SM Total PL, Except LPC

LC-MS NMR LC-MS NMR LC-MS NMR LC-MS NMR

COCO/REF 0.94 0.95 1.07 1.01 0.90 0.81 1.05 1.03
FISH/REF 1.24 1.17 1.13 1.06 1.00 1.10 1.12 1.08

Abbreviations: COCO, a diet with 5% saturated FA-rich oil; REF: a diet with 5% reference oil (control); FISH:
a diet with 5% n-3 long-chain PUFA-rich oil; PE, phosphatidylethanolamine; PC, phosphatidylcholine; LPC,
lysophosphatidylcholine; PL, phospholipids;.

2.3.3. Comparison with LipSpin Results

LipSpin is a bioinformatic tool for the automatic quantification of lipid species, which uses 1H-
NMR spectra of biological matrices [36]. Lipid quantifications rely on line-shape fitting analyses
of spectral regions, from which individual signal areas are obtained. The user can select a signal
pattern optimized for blood serum, which is provided by the algorithm; however, we designed our
own signal pattern and imported our standard spectra, because our experimental conditions were
different (i.e., solvents and acquisition parameters). This tool is user-friendly, fast, and requires only the
import of NMR spectra. LipSpin provided the integration values for SFA, ω-3 FA, MUFA, ARA+EPA,
linoleic acid, FC, EC, triglyceride, PL, PE, SM, PC, and LPC signals. The concentration was calculated
for each lipid species based on the total cholesterol concentration determined with GC-FID. Table 5
shows the correlations between LipSpin quantifications (expressed in nmol/mg liver) and our NMR
quantifications. We found good correlations for ω-3 FA, MUFA, linoleic acid, EC, and triglycerides
(r > 0.8, p < 0.01), but low correlation values were obtained for other lipid species.

Table 5. Pearson’s r correlations between LipSpin and NMR quantifications of lipid concentrations in
livers from mice fed different diets in the dietary study.

Lipid Species Pearson’s r p-value a

Saturated FA 0.66 5.7 × 10−3

ω-3 FA 0.98 7.4 × 10−12

MUFA 0.97 3.0 × 10−10

ARA+EPA 0.001 0.99
DHA 0.31 0.24

Linoleic acid 0.95 2.8 × 10−8

Free cholesterol 0.54 0.031
Esterified cholesterol 0.80 1.8 × 10−4

Triglycerides 0.97 9.2 × 10−10

Total phospholipids 0.27 0.32
PE 0.58 0.017
SM 0.14 0.59

PC+LPC 0.37 0.15
a p value of the Pearson test (H0: r = 0); Abbreviations: FA, fatty acids; MUFA, monounsaturated fatty acids; ARA,
arachidonic acid; EPA, eicosapentaenoic acid; DHA, docosahexaenoic acid; PE, phosphatidylethanolamine; SM,
sphingomyelin; PC, phosphatidylcholine; LPC, lysophosphatidylcholine.
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2.3.4. Biological Results

Figure 5 shows the mean concentrations of lipid species in the livers of mice fed each diet obtained
from 1H-NMR spectra. Lipid modifications were in good agreement with the results previously
obtained with the standard GC-FID method [37]. The 1H-NMR and GC-FID methods also showed
comparable significant increases in triglycerides and CE in mice fed the COCO diet compared to mice
fed the REF diet. In addition, the 1H-NMR method highlighted significant increases in fatty acids,
MUFAs, and SFAs, and significant decreases in PUFAs (DHA, EPA, linoleic acid, and ω-3 FA) in mice
fed the COCO diet compared to mice fed the REF diet. Moreover, we observed significant increases in
DHA and ω-3 FAs in mice fed the FISH diet compared to mice fed the REF diet. Although we did not
compare the results on aqueous metabolites with results obtained with other methods, we found no
significant changes in aqueous metabolites among the three diets, based on absolute concentrations.

  

Figure 5. The quality of dietary fatty acids (FAs) affected hepatic lipid composition. Mouse liver
lipid compositions were measured after 12-week diets of COCO (red) or FISH (green), compared to
a reference (black) diet as revealed by 1H-NMR spectra. (a) Liver cholesterol (CE and FC) contents,
triglyceride (TG) contents, and MUFA/PUFA ratios. (b) Liver fatty acid contents. Abbreviations:
COCO, a diet with 5% saturated FA-rich oil; REF, a diet with 5% reference oil; FISH, a diet with 5% n-3
long-chain PUFA-rich oil; CE, cholesterol ester; FC, free cholesterol; MUFA, monounsaturated FAs;
PUFA, polyunsaturated FAs; TG, triglycerides; DHA, docosahexaenoic acid; EPA, eicosapentaenoic
acid; ARA, arachidonic acid; FA w-3, omega-3 FAs; SFA, saturated FAs.

Absolute quantification of metabolites (i.e., both aqueous and lipidic metabolites) requires knowing
the number of protons under each signal, which is given after all NMR signals are identified. Thus,
it is important to work with well-resolved signals with no overlap to ensure the integration of pure
signals. Because it was difficult to identify all the signals in a NMR spectrum of a biological sample,
due to numerous potential line overlaps, we applied the binning method to NMR data, so as to use the
entire spectrum to compare metabolic profiles between the three groups of animals.

To compare the metabolic profiles of livers from mice fed different diets, we performed a partial
least squares-discriminant analysis (PLS-DA), based on the 1H-NMR spectra. Mice were fed COCO,
REF, and FISH diets. For the lipidic extracts, mice fed the COCO diet were well separated on the first
component from mice fed the REF and FISH diets (Figure 6a). This component could explain 47.7% of
the variability. In addition, mice fed the FISH diet were separated from mice fed the REF diet on the
second component, which explained 38.9% of the variability. For aqueous extracts, prior to PLS-DA
modeling, we applied an orthogonal signal correction to the data to filter out variations that were
unrelated to the diet. Figure 6b shows that mice fed the COCO or FISH diets were clearly separated
from mice fed the REF diet on the first component, which explained 42.1% of the variability. We found
eight lipid species and fifteen aqueous metabolites that were responsible for the separation between
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diets (Table 6). From binning data, we observed significant increases in triglyceride, and MUFA levels
in mice fed the COCO diet compared to mice fed the REF diet. We also observed changes in aqueous
metabolites between the COCO and REF diets. Compared to the REF diet, the COCO diet caused
significant increases in 3-hydroxybutyrate, alanine, glycerophosphocholine, inosine, lactate, leucine,
phenylalanine, succinate, threonine, tyrosine, and valine and a significant decrease in glucose (Table 6).

Figure 6. Partial Least Squares-Discriminant Analysis score plot for 1H-NMR data. (a) Liver lipidic
extracts (R2 = 98.5%; Q2 = 0.884); (b) liver aqueous extracts (orthogonal signal correction filtration,
53.4% of the remaining variability, R2 = 98.7%; Q2 = 0.883). Ellipses indicate the 95% confidence regions.
Abbreviations: COCO, a diet with 5% saturated FA-rich oil; REF, a diet with 5% reference oil; FISH, a
diet with 5% n-3 long-chain PUFA-rich oil.

Table 6. Fold-change of discriminants metabolites from binning data in mouse liver extracts induced
by the COCO and FISH diets compared to the REF diet.

Metabolites a FC b COCO FC b FISH

FA (CH2)n 0.71 * 0.82
EPA+ARA 0.67 * 0.80

FA CH3 0.73 * 0.80
Linoleic acid 0.28 * 0,92

MUFA 1.99 * 0.84
PC+LPC+SM 0.61 * 0.94

PL (Except LPC) 0.65 * 1.15
TG 1.63 * 0.98

3-Hydroxybutyrate 1.21 * 1.10
Alanine 1.30 * 0.97
Choline 1.02 1.68 *
Glucose 0.88 * 0.88 *

Glutamine 1 1.18 *
Glutathione 1.07 1.30 *

GPC 1.39 * 1.61 *
Inosine 1.24 * 1
Lactate 1.27 * 1.14 *
Leucine 1.23 * 1.11 *

Phenylalanine 1.32 * 1.15
Succinate 1.50 * 1.38 *
Threonine 1.28 * 1.03
Tyrosine 1.47 * 1.28 *

Valine ↑1.21 * 1.07
a Metabolites that were significantly different between groups; relative integrations of buckets were compared
between groups with the Kruskal-Wallis test and a multiple test correction (p < 0.05). bFC, Fold Change = test
diet/control diet. * indicates a significative difference between diets. Abbreviations: COCO, a diet with 5% saturated
FA-rich oil; REF, a diet with 5% reference oil; FISH, a diet with 5% n-3 long-chain PUFA-rich oil; FA, fatty acids;
EPA, eicosapentaenoic acid; ARA, arachidonic acid; MUFA, monounsaturated FAs; PC, phosphatidylcholine; LPC,
lysophosphatidylcholine; SM, sphingomyelin; PL, phospholipids; TG, triglycerides; GPC, glycerophosphocholine.
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3. Discussion

3.1. Lipid Quantification: Comparison to Other Methods

In this study, we evaluated the usefulness of an NMR method for quantifying lipid species, based
on peak integration and a linear combination of integrals with a standard. We started by optimizing
the standard (either internal or external), the organic solvent in which the lipid species would be
dissolved, and a mixture of standard lipids. We found that an external standard, TSP, dissolved in
D2O in a coaxial tube provided better results than the internal standard, which was TMS dissolved in
the sample. Because TMS is a volatile compound, it was difficult to determine its exact concentration
after completing the sample preparation process. With an external standard, quantification was more
accurate, because there was no interaction between the standard solution in the coaxial tube and the
molecules in the sample. In previous studies, several organic solvents were used to analyze lipidic
extracts with NMR, including CDCl3 alone [38] or mixtures of solvents, such as CDCl3/CD3OD [17]
or CDCl3/CD3OD/D2O-EDTA [39]. Because phospholipids contain polar headgroups and nonpolar
fatty acyl residues, they form bilayers in an aqueous environment and ‘inverse’ micelles in an organic
solvent, which are characterized by line broadening in 1H-NMR spectroscopy. When a solvent mixture
contains both nonpolar and polar solvents, stable micelles are formed, which results in well resolved
NMR signals and more accurate quantification [39].

The NMR method developed here for lipid quantification provided good correlations with the
quantifications of different lipid classes determined with GC-FID and LC-MS. Both GC-FID and LC-MS
are time-consuming, because they require an extraction and analysis method per class of lipids, as well
as calibration curves for absolute quantification. In 1H-NMR spectroscopy, deconvolution or line fitting
is useful for overlapping signals. We compared our 1H-NMR spectroscopy method with the LipSpin
method for the quantification of lipid species [36]. The LipSpin tool is user-friendly, fast, requires only
the import of NMR spectra, and it automatically provides the integration value for each lipid species.
We obtained good correlations between our method and the LipSpin method for ω-3 FA, MUFA,
linoleic acid, EC, and triglycerides. For the other lipid species, the correlations between quantification
values obtained with the two methods were not very good, likely due to the lower resolution of our
spectra; indeed, some peaks, like PC, LPC, and SM, were not well resolved. In addition, we had not
optimized all the parameters available in the LipSpin tool.

3.2. Metabolic Differences between Livers of Mice Fed an Essential Fatty Acid-Deficient Diet or a Control Diet

In this study, we investigated the metabolic disturbances that occurred during the development of
steatosis induced by an essential PUFA deficiency. Deficiencies in essential fatty acids are well-known
to promote de novo lipogenesis through transcriptional processes [40] involving the transcription
factors, SREBP1c [41], ChREBP [42], and LXR [37]. These processes increase the expression and
activity of hepatic enzymes involved in de novo lipogenesis (ACC, FAS), elongation (ELOVL6), and
desaturation (SCD1). In turn, the elevated activities of these enzymes cause an increase in triglycerides
enriched in MUFAs, such as oleic acid (C18:1n-9). Our metabolomics approach revealed that, with
the COCO diet, liver triglycerides and MUFAs were up-regulated, as expected, but we also observed
up-regulated levels of liver CEs, 3-hydroxybutyrate, alanine, glycerophosphocholine, inosine, lactate,
leucine, phenylalanine, succinate, threonine, tyrosine, and valine, compared to mice fed the REF diet.
In addition, we observed down-regulated levels of phospholipids and glucose in livers of mice fed
the COCO diet compared to mice fed the REF diet. A similar increase in CE was previously reported
in lipidic extracts of livers from mice with NASH [43]. That study also highlighted a reduced PUFA
to MUFA ratio in NASH, but they observed no difference in triglyceride levels, compared to healthy
mice. A reduced PUFA/MUFA ratio is considered a marker of lipid peroxidation in association with
oxidative stress. In cancer tissues, such as HCC, a glycolytic shift was observed, with high levels of
lactate and low levels of glucose [23,44]. Liver mitochondria produce 3-hydroxybutyrate during fatty
acid oxidation. High levels of 3-hydroxybutyrate were also found in human HCC tissues. The aromatic
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amino acids, phenylalanine and tyrosine, are oxidized in the TCA cycle, after conversion into fumarate.
Therefore, accumulations of aromatic amino acids and 3-hydroxybutyrate suggested that mitochondrial
function and inflammatory status were impaired in the livers of mice fed the COCO diet.

The present study also revealed changes in amino acid metabolism associated with the COCO
diet. Previous studies have shown that changes in branched chain amino acid levels in human liver
occurred in hepatic pathologies, such as NASH or alcohol-related liver damage [45]. We observed
elevated hepatic concentrations of leucine, and valine, consistent with previous reports that hepatic
amino acid metabolism was abnormally regulated, and branched chain amino acid oxidation was
reduced in these pathologies. Elevations in alanine were also described in hepatic pathologies [6].

3.3. Advantages and Limitations of 1H-NMR Spectroscopy for Metabolic Profiling in Liver

We evaluated a simple protocol for the simultaneous characterization of lipidic and aqueous
metabolic profiles in mouse liver tissues. We used NMR spectroscopy to identify and quantify both
polar and non-polar metabolites. 1H-NMR spectroscopy is often used to quantify aqueous metabolites
in metabolomic studies, but it has rarely been used for quantifying lipid species. Currently, there
is much interest in using this technique for obtaining absolute quantifications of complex lipids,
such as phospholipids or sphingolipids, which cannot be obtained with MS. Furthermore, NMR
is a non-destructive technique; therefore, the analyzed sample can subsequently be used in MS
analyses, which can provide a molecular species characterization for each family. 1H NMR has
some drawbacks, such as low sensitivity, signal overlapping, and low resonance discrimination.
Nevertheless, this technique can provide a rapid quantitative overview of the major lipid classes (fatty
acids, triglycerides, phospholipids, and cholesterol) with a simple, single extraction, without extensive
sample preparation, and due to its spectral linearity, without the need of multiple internal standards
for quantitative estimations.

4. Materials and Methods

4.1. Animals

In vivo studies were conducted under E.U. guidelines for the use and care of laboratory animals,
and they were approved by an independent Ethics Committee (TOXCOM/0043/NL AP). To address the
relative contribution of the quantity and quality of dietary FAs to triglyceride accumulation, we fed
6-week old male C57BL6 mice (Charles River, Les Oncins, France) different diets for 12 weeks (n = 6 in
each group). The diets were as follows: one contained 5% saturated FA-rich oil (COCO), a second
contained 5% reference oil (REF), and a third contained 5% n-3 long-chain PUFA-rich oil (FISH) [37].
At sacrifice, the liver was collected and immediately cut into samples that were snap-frozen in liquid
nitrogen and stored at −80 ◦C until use for NMR and GC analysis.

4.2. Extraction Procedure

Liver samples (100–120 mg) were homogenized in 1.2 mL methanol in the Fastprep-24 homogenizer
(MP Biomedicals, Irvine, CA, USA). For the comparison of extraction methods, a homogenate that
corresponded to 50 mg of tissue was extracted, with modifications, according to the method described
by Bligh and Dyer [26], in dichloromethane/methanol/water (2.5:2.5:2.1, v/v/v), and a second homogenate
from the same sample that corresponded to 50 mg of tissue was extracted according to the method
described by Folch [27] in dichloromethane/ methanol/NaCl 0.9% in water (2:1:0.2, v/v/v). After
centrifugation (1000× g, 15 min, 4 ◦C), the solutions separated into an upper methanol/water phase
(with polar metabolites) and a lower dichloromethane phase (with lipophilic compounds), with an
intermediate phase of protein and cellular debris. The aqueous and organic phases were collected and
evaporated to dryness. Chloroform was replaced by dichloromethane for security reason [46]. For the
dietary intervention study, liver samples (100–120 mg) were homogenized in 1.2 mL methanol in a
Fastprep-24 homogenizer (MP Biomedicals, Irvine, CA, USA). A homogenate that corresponded to
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50 mg of tissue was extracted as described above for NMR analysis, and two homogenates from the
same sample that corresponded to 1 mg of tissue were extracted for GC and LC-MS analyses.

4.3. GC Analysis of Neutral Lipids and Fatty Acids

To analyze neutral lipids, we introduced three internal standards (3 μg of stigmasterol, 3 μg of
cholesteryl heptadecanoate, and 15 μg of glyceryl trinonadecanoate) before extracting lipids from
the homogenates. The dichloromethane phases were evaporated to dryness and dissolved in 20 μL
ethyl acetate. Then, 1 μL of the lipid extract was analyzed with GC on a FOCUS-FID system (Thermo
Electron, Waltham, MA, USA) equipped with a Zebron-1 fused silica capillary column (Phenomenex,
Torrance, CA, USA; 5 m × 0.32 mm i.d., 0.50 μm film thickness) [47]. The oven temperature was
programmed to increase from 200 ◦C to 350 ◦C at a rate of 5 ◦C per min, and the carrier gas was
hydrogen (0.5 bar). The injector and detector were maintained at 315 ◦C and 345 ◦C, respectively.

To analyze fatty acid methyl ester (FAME), we introduced the internal standard, glyceryl tri
heptadecanoate (2 μg), before extracting lipids from the homogenates. The lipid extracts were
hydrolyzed in KOH (0.5 M in methanol) at 50 ◦C for 30 min, and transmethylated in a 10% boron
trifluoride methanol solution (1 mL, Sigma-Aldrich, St. Louis, MO, USA) and hexane (1 mL) at 80 ◦C
for one hour. After adding water (1 mL) to the crude solution, FAMEs were extracted with hexane
(3 mL), evaporated to dryness, and dissolved in ethyl acetate (20 μL). FAMEs (1 μL) were analyzed
with gas-liquid chromatography [48] on a Clarus 600-FID system (Perkin Elmer, Waltham, MA, USA)
equipped with a Famewax fused silica capillary column (RESTEK, Lisses, France; 30 m × 0.32 mm i.d.
0.25 μm film thickness). The oven temperature was programmed to increase from 130 ◦C to 220 ◦C at a
rate of 2 ◦C per min, and the carrier gas was hydrogen (0.5 bar). The injector and the detector were
maintained at 225 ◦C and 245 ◦C, respectively.

4.4. HPLC-MS Analysis of Phospholipids

Lipids were extracted from 1 mg of liver with a method adapted from that described by Bligh
and Dyer [26]. Extractions were performed in dichloromethane/methanol (2% acetic acid)/water
(2.5:2.5:2 v/v/v), in the presence of six internal standards, including ceramides (Cer, d18:1/15:0, 16 ng);
phosphatidylethanolamine (PE 12:0/12:0, 180 ng); phosphatidylcholine (PC, 13:0/13:0, 16 ng); SM
(d18:1/12:0, 16 ng); phosphatidylinositol (PI, 16:0/17:0, 30 ng); and phosphatidylserine (PS, 12:0/12:0,
156.25 ng). The solution was centrifuged at 1500 rpm for 3 min. The organic phase was collected
and dried under nitrogen, then dissolved in 50 μl methanol. The extract (5 μL) was analyzed with an
Agilent 1290 UPLC system coupled to a G6460 triple quadrupole spectrometer (Agilent Technologies,
Santa Clara, CA, USA) and equipped with MassHunter software, for data acquisition and analysis. A
Kinetex HILIC column (Phenomenex, 50 × 4.6 mm, 2.6 μm) was used for LC separations. The column
temperature was controlled at 40 ◦C. The flow rate of the mobile phase was 0.3 mL/min. The mobile
phase contained two parts: A was acetonitrile; and B was 10 mM ammonium formate in water, pH 3.2.
The gradient was prepared with the following specifications: from 10% to 30% B in 10 min; 10–12 min
in 100% B; and then, at 13 min, back to 10% B for 1-min re-equilibrium, prior to the next injection.
An electrospray source was employed in positive ion mode for Cer, PE, PC, and SM analyses and in
negative ion mode for PI and PS analyses. The collision gas was nitrogen. The needle voltage was set
at +4000 V. Several scan modes were used. First, to obtain the natural masses of different species, we
analyzed cellular lipid extracts with precursor ion scans of 184 m/z, 241 m/z, and 264 m/z for PC/SM,
PI, and Cer, respectively; and neutral loss scans of 141 and 87 for PE and PS, respectively. The collision
energy optimums for Cer, PE, PC, SM, PI, and PS were 25 eV, 20 eV, 30 eV, 25 eV, 45 eV, and 22 eV,
respectively. Then, the corresponding SRM transitions were used to quantify different phospholipid
species in each class. Two MRM acquisitions were necessary, due to important differences between
phospholipid classes. Data were analyzed with QqQ Quantitative (vB.05.00) and Qualitative analysis
software (vB.04.00).
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4.5. 1H-NMR Measurements

All NMR experiments were performed on a Bruker Avance spectrometer (Bruker Biospin,
Rheinstetten, Germany), operating at a proton frequency of 600.13 MHz, with an inverse detection
5-mm 1H-13C-15N cryoprobe attached to a Cryoplatform (the preamplifier unit).

Dry lipid extracts were reconstituted in 500 μl CDCl3/CD3OD (4:1, v/v) and transferred into 5-mm
NMR tubes. 1H-NMR spectra were recorded in the presence of a reusable coaxial capillary tube that
contained 120 μl TSP (1.17 mM) in D2O, which also served as an internal standard for quantitative
estimations. Dry aqueous extracts were reconstituted in 600 μl D2O containing TSP (0.70 mM) and
transferred into 5-mm NMR tubes.

A T1 (spin-lattice relaxation) measurement experiment was performed on the entire liver
lipid extract (with TSP solution in the coaxial capillary as reference) in a sealed tube using an
inversion-recovery sequence. The T1 values for TC (0.68 ppm), FC (1.01 ppm), CE (1.02 ppm), TG
(5.27 ppm), TG (4.16 and 4.32 ppm), PL (5.23 ppm), UFA (5.35 ppm), linoleic acid (2.76 ppm), PUFA
(2.82 ppm), FA (0.88 ppm), w3 UFA (0.98 ppm), MUFA (2.02 ppm), ARA+EPA (2.10 ppm), DHA
(2.38 ppm) and TSP were 0.792, 0.792, 0.792, 1.44, 0.576, 1.44, 2.88, 1.58, 1.73, 3.17, 3.17, 1.44, 1.44, 1.15
and 3.45 s, respectively.

1H-NMR spectra of liver lipid extracts were obtained with a one-pulse sequence, with a spectral
width of 10 ppm, and the time domain data had 32,000 data points. The flip angle of the radio-frequency
pulse was 30◦, and the total relaxation delay was 15 s to ensure complete recovery of the magnetization
between scans of the lipid components and for the external reference TSP. For each sample, 256 scans
were accumulated, and data were Fourier-transformed, after multiplying by an exponential window
function with a line-broadening function of 0.3 Hz to the free induction decays (FIDs).

1H-NMR spectra of aqueous liver extracts were acquired at 300 K with a conventional presaturation
pulse sequence for water suppression, based on the first increment of the nuclear Overhauser effect
spectroscopy (NOESY) pulse sequence. Solvent presaturation was applied during a recycling delay
and mixing time (100 ms) to suppress residual water. A total of 256 transients were collected into
32,000 data points with a spectral width of 12 ppm and a relaxation delay of 15 s. Prior to the Fourier
transform procedure, we applied an exponential line-broadening of 0.3 Hz to the FIDs.

4.6. Data Processing and Multivariate Analysis

NMR spectra were phase- and baseline-corrected, then calibrated (TSP, 0.0 ppm for aqueous
extracts and TC, 0.68 ppm for lipidic extracts) with Topspin software (version 2.1, Bruker). Next, NMR
data were reduced with AMIX software (version 3.9, Bruker) to integrate 0.01 ppm-wide regions that
corresponded to the δ 10.0–0.5 ppm and the δ 6.4–0.6 ppm regions for aqueous and lipidic extracts,
respectively. The 5.1–4.5 ppm region, which included water resonance, was excluded in the NMR
spectra of aqueous extracts. We included 757 and 552 NMR buckets in the data matrices for aqueous
and lipidic extracts, respectively. To account for differences in sample volumes, each integration region
was normalized to the total spectral area.

Multivariate pattern-recognition techniques were applied to study the effects of diet on the
metabolome. First, we performed a PCA to reveal intrinsic clusters and detect eventual outliers. We
then performed a PLS-DA to model the relationship between diet and NMR data. For aqueous extracts,
prior to PLS-DA modeling, we applied orthogonal signal correction [49] to remove confounding
variability; i.e., variability that was not linked to the diet (e.g., physiological, experimental, or
instrumental variability). Data were Pareto-scaled (the square root of the standard deviation is used
as the scaling factor). For all plots of scores, we performed Hotelling’s T2 statistics to construct
95% confidence ellipses. The R2Y parameter represented the explained variance. Seven-fold cross
validation was used to determine the number of latent variables that should be included in the PLS-DA
model and to estimate the predictive ability (or predicted variance, Q2 parameter) of the fitted model.
PLS-DA models with Q2 values higher than 0.4 were considered valid [50]. In addition, the robustness
of PLS-DA models was assessed with a permutation test (number of permutations = 200). In the
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permutation plot, a Q2 intercept < 0.05 indicated a robust model [51]. Discriminant variables were
determined with the Variable Importance in the Projection (VIP) value, a global measure of the influence
of each variable in the PLS components. Variables with VIPs > 1 were considered discriminants.
Finally, we tested the significance of relative integration differences between groups, based on the
non-parametric Kruskal-Wallis test. The false discovery rate (FDR) was applied to account for multiple
testing. NMR variables that showed FDR-adjusted p-values < 0.05 were considered significantly
different. We used SIMCA-P software (V13, Umetrics, Umea, Sweden) to perform the multivariate
analyses, and we used R (https://www.r-project.org/) for univariate testing.

4.7. Statistical Analysis

We performed analytical validations of 1H-NMR lipid quantifications by comparing the results
with analogous measurements obtained with other methods. Comparisons were performed with linear
regression and Pearson’s (r) correlation.

Linear regression analyses were used to compare known concentrations of lipidic species and
signal integrations obtained with 1H-NMR. A known concentration was used as the independent
variable, and the NMR-predicted concentration was used as the response variable. Hypotheses of linear
regression were assessed based on the residuals: the Durbin-Watson, Shapiro-Wilks, and Breush-Pagan
tests were applied, respectively, to test for the independence, normality, and homogeneity of residuals.

Pearson’s correlation was used to compare LipSpin-computed and NMR-computed quantifications
of lipids and to compare GC-FID-computed and NMR-computed quantifications. We set 0.05
as the threshold for significance. Univariate analyses were performed with R software (https:
//www.r-project.org/).

5. Conclusions

The current study showed the potential and limitations of 1H-NMR spectroscopy for quantifying
aqueous, and specially, lipid metabolites in the liver. We demonstrated that 1H-NMR spectra could
provide a rapid overview of the major lipid classes and the most abundant aqueous metabolites.
To achieve better extractions of aqueous and lipid metabolites and more accurate quantifications, we
recommend the Folch extraction method, an external standard, and the CDCl3/CD3OD mixture of
solvents. We found that LipSpin was a good alternative for lipid quantification, but the parameters
must be optimized. Our metabolomics analysis allowed us to discriminate between livers of mice
fed a diet deficient in essential fatty acids from livers of mice fed a balanced diet. The COCO dietary
challenge was mainly associated with disturbances in lipid and energy metabolism, accompanied by
altered amino acid metabolism.
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of NMR quantifications and lipid concentrations in lipid mixtures of Table S3 dissolved in CDCl3 and using an
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acids, Figure S9: Scatter plot and linear regressions of NMR quantifications and lipid concentrations in lipid
mixtures of Table S1 dissolved in CDCl3-CD3OD mixture and using an internal standard (TMS) for neutral lipids
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Abstract: Metabolites represent the most downstream information of the cellular organisation. Hence,
metabolomics experiments are extremely valuable to unravel the endogenous pathways involved in
a toxicological mode of action. However, every external stimulus can introduce alterations in the
cell homeostasis, thereby obscuring the involved endogenous pathways, biasing the interpretation
of the results. Here we report on sodium saccharin, which is considered to be not hepatotoxic and
therefore can serve as a reference compound to detect metabolic alterations that are not related
to liver toxicity. Exposure of HepaRG cells to high levels of sodium saccharin (>10 mM) induced
cell death, probably due to an increase in the osmotic pressure. Yet, a low number (n = 15) of
significantly altered metabolites were also observed in the lipidome, including a slight decrease in
phospholipids and an increase in triacylglycerols, upon daily exposure to 5 mM sodium saccharin for
72 h. The observation that a non-hepatotoxic compound can affect the metabolome underpins the
importance of correct experimental design and data interpretation when investigating toxicological
modes of action via metabolomics.

Keywords: in vitro; HepaRG; sodium saccharin; reference toxicants

1. Introduction

Since the introduction of metabolomics as a new “-omics” domain in 1999, the field of research
has proved to be a valuable source of information for the actual phenotype or state of organisms [1].
Metabolomics is defined as the study of the biochemical profile of small molecules in an organism [1].
Because the metabolome is the most downstream level in the biomolecular organisation of a system,
metabolomics fingerprints are very dynamic and alterations may be induced even by small external
triggers [2,3]. Many of these stimuli, such as gender, age (young vs. old), dietary status (e.g., fasting vs.
fed) and activity (rested vs. active) potentially form biases that obscure the metabolic signature related
to exposure. These biases are important, but can be anticipated through strict subject selection criteria
and proper randomisation [4].
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An effect often not considered is the exposure itself. Although this placebo effect is well-known
in medicine, precautions are often not taken during metabolomics studies. The “exposure bias” is
relevant when combining metabolomics with in vitro experiments, since it is one of the main potential
sources of bias. Although the biological variation and bias is reduced in cell culture experiments,
confounding factors still pose a risk during metabolomics investigations. Indeed, the mere presence of
a xenobiotic may theoretically cause a metabolic shift, even though this compound is not considered
harmful. This confounding factor of “exposure” can generate results falsely interpreted to be related
to toxicity [5].

Sodium saccharin is an artificial sweetener that has been used for over a century. Except for a
case study describing an idiosyncratic reaction after exposure to different pharmaceutical products
containing the sweetener, no evidence of human hepatotoxicity has been reported so far [6,7]. The safe
characteristics of sodium saccharin make it a good candidate to investigate potential metabolic
alterations triggered in vitro upon exposure to a non-hepatotoxic molecule.

2. Materials and Methods

2.1. Materials and Methods

Materials, exposure and acquisition methods have been performed as described previously [8].
A brief description highlighting the principles is mentioned in-text and full details concerning the
experimental protocols are provided in the Supplementary Materials SM-1 to SM-5.

2.2. Determination of Testing Concentrations

Seven days after initial cell seeding, the wells were divided into two negative control groups and
eight groups that were exposed to sodium saccharin at different concentrations ranging from 0.40 to
40 mM for a period of 72 h in a repeated dose exposure, in which the medium was refreshed every
24 h. Viability was assessed using the neutral red uptake (NRU) assay [9,10]. Full details are available
in the Supplementary Materials SM-2.

2.3. Metabolomics Experiments

2.3.1. Seeding of the HepaRG® Cells and Exposure to Sodium Saccharin

Cryopreserved differentiated HepaRG® cells were thawed and seeded in collagen-coated two-well
Lab-Tek chamber slides at a density of 1.03 × 106 cells/well. Two additional blank chamber slides were
treated identically to serve as blanks during further analysis. After seven days of cultivation, the cell
cultures were visually checked for hepatocyte/biliary cell ratio and block randomised in three groups:
a negative control group in comparison to a dose of sodium saccharin at a concentration of 5.5 mM
(high dose) and a 1/10 dilution of the high dose, i.e., 0.5 mM (low dose). Higher concentrations of
sodium saccharin were not applied because of hyperosmotic toxic effects (additional osmotic pressure
>20 mOsm/L). Each group contained six replicates, which is often considered an adequate sample size
for in vitro metabolomics experiments [5,11]. The cell cultures were exposed for 72 h with a medium
refreshment every 24 h. The exposure experiment has been performed twice to reduce false positive
results [8].

2.3.2. Sample Preparation

The cell cultures were harvested according to previously described protocols, full details are
available in SM-3 [12,13]. Briefly, cells were prepared for extraction with a wash in phosphate buffered
saline (37 ◦C) followed by freezing on liquid nitrogen. Cells were scraped from the surface three times
with 200 μL of a cooled (−80 ◦C) 80% (v/v) methanol (MeOH)/milliQ water solution. Liquid/liquid
extraction was performed using ultrapure water, methanol, and chloroform. Quality control (QC) pools
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were generated through the collection of aliquots of all samples for the polar and non-polar phases [14].
Both fractions were evaporated to dryness and reconstituted in LC-MS-compatible solvents.

2.3.3. LC-MS Analysis

LC-MS analysis was performed using separation mechanisms described in SM-4 [8,15].
The non-polar fraction was analysed using reversed phase chromatography on a Kinetex XB-C18
(150 × 2.1 mm; 1.7μm particle size, Phenomenex, Utrecht, the Netherlands). Mobile phase compositions
were mixtures of methanol, isopropanol (IPA) and water with ammonium acetate (pH 6.7) and of
acetonitrile (ACN), IPA and water with an acetate buffer (pH 4.2) for negative and positive ionisation
modes, respectively.

The polar fractions were analysed using HILIC systems using an iHILIC column (100 × 2.1 mm;
1.8 μm particle size, HILICON, Umea, Sweden) with ACN, MeOH and water with an ammonium
formate buffer (pH 3.15) for the positive ionisation mode, and a polymeric iHILIC Fusion Column
(100 × 2.1 mm, 5 μm particle size, HILICON) in combination with ACN, MeOH and water with an
ammonium carbonate ((NH4)2CO3) buffer (pH 9.0) for the negative ionisation mode. LC-separation was
performed on an Agilent Infinity 1290 UPLC (Agilent Technologies, Santa Clara, CA, USA), connected
to an Agilent 6530 QTOF with Agilent Jet Stream nebuliser (Agilent Technologies). The LC-MS system
was equilibrated using 15 QC-injections at the start of the data acquisition. The injection order of the
samples was block-randomised to prevent bias related to instrumental drift. One QC injection was
performed after every four sample injections to monitor instrumental drifts.

2.3.4. Data Analysis

Data Quality Control

Internal standards were used to evaluate the precision of the retention time and m/z-accuracy
within and between experimental batches. The raw data were searched for the internal standards
using the Find by Formula algorithm (Agilent Technologies) with the following parameters: formula
matching ± 10 ppm, expected variation 2 mDa ± 8 ppm. Samples were only considered when internal
standards were detected and the number of molecular features was comparable to those of the other
samples. The absence of internal standards and/or molecular features in an acquired LC-MS run may
indicate analytical issues during the run and, therefore, the removal of the failed runs was considered
to improve the quality of the final dataset. The results of internal standard quality control were used to
set the parameters for further data processing.

Data Pretreatment

Acquired data were imported on the MassHunter Qualitative software (Agilent Technologies,
v 2.06.00) and converted to centroid m/z data. The generic datafiles were processed using the XCMS
package in the R workspace [16,17]. Features representing the ions of the extracted metabolites were
searched using the centWave algorithm. Features were aligned with the Obiwarp algorithm and
grouped by density [18]. Missing peaks were re-extracted using the fillPeaks algorithm [17].

The dataset was cleaned by removing isotopes and features present in blank samples. Other applied
filters were based on a high number of missing values and within-group variability. All preprocessing
functions were executed using the MetaboMeeseeks package [19]. A principal component analysis
(PCA) was performed and outliers were removed for further analysis (n = 4) (Figure S6). After
outlier removal, the filter process was re-iterated and samples were normalised using BatchCorr
normalisation [20]. Missing values imputation was considered but not applied, since it had no positive
impact on the within-group variance. The final dataset was once more evaluated using a PCA to assess
important trends and their potential impact on the subsequent multivariate analysis. All parameters of
feature extraction and data clean-up are mentioned in SM-5.
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Statistical Analysis

Univariate statistical analysis was performed through the non-parametric Mann–Whitney U
test with a Benjamini–Hochberg correction for multiple testing using the multtest package in R [21].
In addition, a partial least squares discriminant analysis (PLS-DA) and a random forest classification
were performed as multivariate analyses [19,22]. Performances were checked using leave-one-out
cross-validation. Metabolic alterations were defined based on significance in the univariate tests
(q-value <0.05) and on importance in the multivariate models (based on the covariance of the latent
values of the first component of the PLS-DA and the bimodal distribution of the variable importance
measure (VIM) of the random forest classifier model). The raw signals of the selected signals were
manually checked to confirm the result.

Metabolite Annotation

The details of metabolite annotation are mentioned in SM-6. Briefly, annotation was performed
in Mass Hunter using the molecular feature extractor algorithm: the signals corresponding to the
altered metabolite were selected, the complete result set was extracted and the Molecular Formula
Generator (MFG) generated a list of possible chemical formulas. The identification was based on the
m/z-value, the isotope pattern, the measured retention time and the fragmentation spectra acquired
during the equilibration runs. Results were reported according to the standards of the CAWG and
MSI [23,24]. Level 2 and level 3 identifications were considered of sufficient quality to infer a biological
interpretation to the outcome of the experiments. All metabolites, including molecular features with
lower levels of confidence in annotation (levels 4–5), are reported in Table S4.

3. Results

3.1. Experimental Observations

The dose–response curves of the viability assay in Figure 1 showed a clear decrease in viability
from 10 mM sodium saccharin onwards. Indeed, concentrations of 10 mM increased the osmotic
pressure over 20 mOsm/L to supra-physiological ranges [25]. Hyperosmolarity is a form of toxicity not
related to physiological hepatotoxicity, and such high exposures are therefore not considered as a good
reference for investigating the chemical hazard of the product. A high-dose exposure of 5 mM induced
an osmotic pressure of ±10 mOsm/L, yet no cytotoxic effects were observed.

Figure 1. Averaged viability curve for the neutral red uptake (NRU)-assay upon daily exposure to
sodium saccharin for a period of 72 h. Cytotoxicity is observed from 10 mM onwards, which is equal to
an osmotic pressure of ±20 mOsm/L.
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3.2. Data Quality

The injections that were not considered during statistical analysis are reported in Table S2. For the
non-polar fraction, injections QC-1 and QC-2 were excluded from the analysis because of failed
injections, reflected by the absence of internal standards in the chromatogram and the absence of the
typical chromatogram.

As shown in Table S3, standard deviations were higher during the first experimental batch due to
autosampler thermostatic issues. The high mRSDs for QCs in comparison to all other experiments using
lipidomics approaches can be explained by the shift in retention times between the two experimental
batches. To correctly match corresponding peaks, the parameters for alignment and grouping were
less strict, which introduced extra noise in the data.

3.3. Selection of Potential Endogenous Markers of Exposure

As shown in the PCA plots in Figure 2 and Figures S7–S10, no clear distinction between all
exposure groups was observed. The overlap between the different exposure groups indicated that the
source of variation in the dataset was probably not related to the exposure. This was also reflected
by the poor performance of both multivariate and univariate tests: all AUCs for the random forest
classifiers reported in Table 1 were below 0.7, except for the high-dose exposure conditions. According
to the R2 and Q2 values in Table 2, the PLS-models overfit, with Q2 values < 0.2. The R2 of the non-polar
fraction in positive mode was good (>0.8), but the cross-validation showed this was an overfit value,
and the Q2 was reduced to 0.40.

 
Figure 2. PCA plots of the non-polar fraction in positive mode during the 72-h exposure showing PC1
vs. PC2. There is strong overlapping of the different exposure groups in all principal components,
indicating the variance is not related to exposure. Only a slight trend is visible between the negative
control group and the group exposed to the higher dose.

Univariate tests did not reveal major differences between the exposure groups and the negative
control group. Only 15 features were observed to be significantly different between the negative control
group and the high-dose exposure group, and only for the non-polar fraction in positive mode.

The identified features given in Table S4 represent a decreased presence of six
phosphatidylethanolamines, two phosphatidylinositols and one sphingomyelin. Further differences
included the increase of two low-saturated triacylglycerols. Their respective boxplots are represented
in Figure S10.
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Table 1. AUCs of the random forest classifiers comparing the negative control group against the
different exposures.

Exposure Non-Polar Positive Non-Polar Negative Polar Positive Polar Negative

Low Dose 0.51 0.55 0.59 0.17
High Dose 0.95 0.40 0.69 0.21

Table 2. R2 and Q2 values for the PLS-DA discrimination between the exposure groups and the negative
control group.

Exposure
Non-Polar Positive Non-Polar Negative Polar Positive Polar Negative

R2 Q2 R2 Q2 R2 Q2 R2 Q2

Low Dose 0.01 0.01 0.1 0.06 0.22 0.14 0.21 0.05
High Dose 0.84 0.4 0.42 0.10 0.08 0.03 0.33 0.04

4. Discussion

The metabolome is a dynamic level of the cellular organisation. External stimuli theoretically
invoke a response of the cell, resulting in a change of the metabolome. Sodium saccharin is considered
to be a non-hepatotoxic chemical, which makes it an ideal compound to select markers of exposure not
necessarily related to hepatotoxicity [8,9].

The acquisition of the metabolome of cells exposed to a hepatotoxicant in comparison to vehicle
only would reveal alterations that would all be addressed to a toxic mode of action. The main
consequence of this assumption is the questionable predictive value of the observed metabolic
alterations, especially in small-scale experiments (one dose, one time point exposure of a single
chemical exposure). This consideration stresses the importance of an exposure to a non-toxic negative
control during the experiment.

Few features of the lipidome were changed significantly (n = 15) and included the presence of
triacylglycerols and a lower presence of phospholipids. The absence of significant changes in the
polar fraction suggested that the cell culture did not implement major adaptations in metabolism as a
response to the external stimuli.

Effects related to hyperosmolarity have also been described in human cell cultures, which
showed the increased presence of monosaccharides and amino acids to retain the osmotic balance [26].
However, it is possible that these effects were not observed in this current experiment due to the
deliberate choice to avoid these hyperosmolar (non-physiological) concentrations. The choice of
a supra-physiological dose would imply a bias to select metabolic alterations related to modes of
action not relevant in physiological conditions. This bias is especially relevant in in vitro techniques,
as exposure concentrations can be increased to unrealistic, non-physiological levels. A potential
prevention is the use of toxicokinetic data to confirm the plausibility of the exposure conditions.

García-Cañaveras et al. [27] and Ramirez et al. [28] classified different toxicants according to
the mode of action, observing specific fingerprints for different end-points of toxicity. Ramirez et al.
described the downregulation of carnitine, creatine, phosphocreatine, and pantothenic acid during
exposure to peroxisome proliferating agents, the decrease of oleic acid, galactose and acetyl aspartate
in combination with an increase of tryptophan and alanine during exposure to enzyme-inducing
xenobiotics [28]. Garcia et al. compared the fingerprint of xenobiotics inducing oxidative stress, steatosis
and phospholipidosis, in which they observed alterations in glutamate levels, oxido-reductive status,
lysophospholipid/phospholipid ratio and lipid accumulation [27]. The inclusion of non-hepatotoxic
compounds in their experimental design, such as citrate and ketotifen, states the importance of
reference compounds for non-hepatotoxicity as metabolic changes were observed, albeit with a
different fingerprint.

A qualitative comparison of the metabolic alterations for steatosis and cholestasis obtained in
previous experiments are presented in Table 3 [8,29]. The clear alterations of the metabolome during
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hepatotoxic modes of action can be discriminated from the exposure to a non-hepatotoxic toxicant.
Next to significant differences in the polar metabolome, the lipidome of a cell culture exposed to
hepatotoxic compounds showed clear and strong alterations, with multiple lipid species of several
classes involved in the downstream effect, whereas the effects during exposure to sodium saccharin
were not substantial.

Table 3. Heat map for the endogenous markers of toxicity for hepatotoxicants inducing steatosis
(sodium valproate) [8] and cholestasis (bosentan) [29] showing their up- (red) or down-regulation
(green) in comparison to a negative control group (sodium saccharin). Common alterations indicate
the importance of the use of non-hepatotoxic reference compounds as a negative control to prevent an
exposure bias, especially in the lipidomics group.

Bosentan Sodium Valproate Sodium Saccharin

Time Frame 24 h 72 h 24 h 72 h 72 h

Concentration (μg/mL) 23 230 9.5 95 230 2300 66.5 665 1000

Acetylcholine
Acetylspermidine
Aminergic Oligopeptides
Carnitine
citric-acid N-sugar
Choline
Cholesterol Sulfate
Creatine
diacetylspermidine
GTP
Isoputreanine
Methylbutyryl Carnitine
Methylhydroxylysine
Nucleotides
Ornithine
Pantothenic Acid
Phosphocholine
Phosphorylated Metabolites
Phosphorylethanolamine
Putrescine
SAM
Spermidine
Taurine
Trimethylammonium Butanoic Acid
UDP Glucuronic Acid
Bile Acids
Ceramide
Ceramide, Derivative
Diacylglycerol
Glycosfingolipid
LPE 18:1
PC
PE (non PUFA)
PE (PUFA)
PE (P)
PS
Sfingomyelin
Triacylglycerol (O)
Triacylglycerol (>50, PUFA)
Triacylglycerol (>50, non PUFA)
Triacylglycerol (<50)

(A)
Abbreviations: GTP, guanosyl triphosphate; LPE, lysophosphatidylethanolamine; PC, phosphatidylcholine;
PE, phosphatidylethanolamine; PI, phosphaditylinositol; PS, phosphatidylserine; SAM, S-adenosyl methionine;
TG, triacylglycerol.

Colour

Number of Lipid Species >3 1–3 0 1–3 4–10 >10

Signal Abundance Lower Lower N/A Higher Higher Higher

(B)

A mechanistic interpretation based on the observed metabolic alterations provides an additional
value to the localisation of the specific molecular initiating event and the potential adverse outcome, as
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this observation is an additional argument for a toxic cascade. Although metabolic alterations were
observed upon exposure to sodium saccharin, no specific affected pathway could be identified. Based
on all observations, the use of a non-hepatotoxic compound instead of a vehicle-only negative control
group may help reducing false positive results without jeopardising the sensitivity of toxic insults.

5. Conclusions

The exposure of HepaRG cells to high levels of sodium saccharin induced cell death, possibly
due to osmotic pressure. The exposure concentration should not solely be determined from viability
curves, but should also be checked for physiological relevance to prevent unrealistic exposure scenarios.
Although sodium saccharin is not considered to be a hepatotoxicant, minor changes were observed in
the lipidome, including a slight decrease in phospholipids and an increase in saturated triacylglycerols.
The metabolome was altered upon exposure to non-hepatotoxic compounds, indicating the importance
of reference compounds when investigating toxicological insults. The metabolic changes were less
pronounced than those of reference hepatotoxicants and can therefore be used as a background response
to prevent false positive results related to the exposure bias.

Supplementary Materials: The following are available online at http://www.mdpi.com/2218-1989/9/11/265/s1,
Figure S1: Viability curves for the NRU-assay 72 h of exposure., Figure S2: Extracted ion chromatogram for all
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Abstract: Bile acids represent a large class of steroid acids synthesized in the liver and further
metabolized by many bacterial and mammalian enzymes. Variations in bile acid levels can be used as
a measure of liver function. There still exists, however, a need to study the variation of individual
circulating bile acids in the context of hepatotoxity or liver disease. Acetaminophen (APAP), a drug
commonly taken to relieve pain and decrease fever, is known to cause acute liver failure at high doses.
We have developed a targeted liquid chromatography-tandem mass spectrometry method to monitor
the effects of different doses of APAP on the bile acid plasma profile in a rat model. The analysis
method was optimized to ensure chromatographic resolution of isomeric species using a mixture
of 46 standard bile acids, and 14 isotopically-labeled internal standard (IS) compounds detected in
multiple reaction monitoring (MRM) mode on a triple quadrupole mass spectrometer. Four doses of
acetaminophen were studied, the highest of which shows signs of hepatotoxicity in rats. This targeted
method revealed that high dose APAP has an important effect on bile acid profiles. Changes were
seen in several unconjugated bile acids as well as glycine conjugates; however, no obvious changes
were apparent for taurine-conjugated species.

Keywords: bile acids; metabolomics; rat plasma; tandem mass spectrometry; liquid chromatography;
acetaminophen; hepatotoxicity

1. Introduction

Bile acids play many roles crucial for metabolism and liver health. They are formed from
cholesterol through a series of enzymatic reactions and they represent the primary pathway for
cholesterol catabolism [1]. In addition, bile acids emulsify fat from our diet and help absorb lipids and
cholesterol [2]. Primary bile acids, such as cholic acid (CA) and chenodeoxycholic acid (CDCA) in
humans and α-muricholic acid (α-MCA) and β-muricholic acid (β-MCA) in rodents, are synthesized
in the liver. Before being secreted by the liver, bile acids can be conjugated to taurine or glycine amino
acids. In the intestines, bile acids are unconjugated and converted into secondary bile acids, such as
deoxycholic acid (DCA) and lithocholic acid. Most bile acids are reabsorbed in the liver, conjugated
again, and excreted in the bile to complete the enterohepatic circulation [2,3].

An increased plasma concentration of bile acids is a sign of liver disease [4]. High concentrations
are toxic, though the potential for toxicity depends on the bile acid profile. For example, it has been
reported that chenodeoxycholic acid and lithocholic acid, as well as their conjugates, can damage
hepatic cells and induce mitochondrial malfunction, oxidative stress, and apoptosis [5–8]. Bile acids
can also damage cells within the colon [9,10]. The different physiological functions of bile acids and
their implication in pathological processes highlight the importance of understanding circulating bile
acid profiles in drug-induced hepatotoxicity.

Acetaminophen (APAP) is a drug commonly used to relieve pain and decrease fever. When taken
in therapeutics doses, APAP is considered a very safe drug. With excessive doses, APAP can become
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highly toxic [11]. In North America, it is the main cause of acute liver failure, and often requires liver
transplantation if too severe or not treated rapidly enough [12]. In extreme cases, APAP toxicity can
cause death within 48 h. Previous studies have shown APAP interferes with bile acid synthesis [13–15].

Different LC-MS based methods to measure bile acids exist [16,17], but a gap still remains with
regards to the wide range of bile acid derivatives that exist and their changing profiles with APAP dose.
By studying the effect on individual bile acids, specific reactions related to bile acid metabolism can be
assessed as being relevant to follow altered hepatic metabolism. The goal of this study was to develop
an optimized and semi-quantitative method to evaluate the effects of APAP on numerous bile acids,
including free and conjugated forms. Liquid chromatography coupled to tandem mass spectrometry
is a powerful technique that offers many advantages for selective detection of individual bile acids,
which are uniquely challenging due to the presence of many isomers. Bile acids can be difficult to
analyze due to the similarities between the structures. In this study, we developed a rapid method to
monitor 46 bile acids by LC-MS/MS on a triple quadrupole platform in multiple reaction monitoring
(MRM) mode.

2. Results and Discussion

A targeted liquid chromatography-multiple reaction monitoring (LC-MRM) method was
developed to monitor 46 bile acids in rat plasma following a simple sample preparation to evaluate
the effect of increasing APAP dose. Bile acids were extracted by protein precipitation using methanol,
following the addition of an isotopically labeled internal standard mix. A reverse-phase solid-core C18
column was employed to separate the 46 bile acids with excellent resolution and peak shape using
acidified water and acetonitrile as mobile phase, within a 45 min gradient. As shown in Figure 1,
all 46 bile acids in the standard mix were well resolved, including many bile acid isomers (e.g., UDCA,
CDCA, and DCA). For example, LC-MRM chromatograms for α-TMCA, β-TMCA, and TCA in rat
plasma show good resolution obtained and highlight the usefulness of this method to monitor these
isomers. The list of bile acids assessed in this study was based on the availability of a standard mix as
well as multiple isotopically-labeled bile acids for relative quantitation, through a generous gift from
MRM Proteomics Inc. The separation of these internal standard (IS) compounds is shown in Figure 2.

LC-MRM analyses in negative ion mode yielded better results than in positive ion mode in terms
of sensitivity (data not shown), though both were optimized. In positive mode, precursor ions were
often associated to in-source water losses and had limited sensitivity as compared to negative mode.
In negative mode, unconjugated bile acids were monitored with two transitions, the highest signal
coming from monitoring the pseudo-MRM transition of precursor ion to precursor ion, since their
fragmentation resulted in a complex mix of fragments, thus limiting sensitivity for more specific
fragment ions [18]. For conjugated bile acids, fragment ions resulting from the taurine and glycine
moieties were employed as product ions. For each bile acid, however, secondary transitions were
monitored for confirmatory purposes. In rat plasma samples, 39 of the 46 bile acids were measurable,
with peaks having signal-to-noise of at least 10 and retention time matching that of the standard
mix. No peak was observed for GDHCA, TDHCA, IDCA, DHCA, TLCA, AILCA and ILCA in rat
plasma samples. DHCA is a synthetic product of the oxidation of CA and is mainly converted into
3-α-hydroxylated-oxo bile acids [19]. It is therefore normal that the conjugated bile acids of DHCA
(GDHCA and TDHCA) are not present in rat plasma either. Iso-bile acids (IDCA, AILCA and ILCA)
are excreted in the feces of animals [20]. Of the 39 bile acids remaining, several had very small peaks
that did not yield any statistically-significant changes between APAP doses, including GHCA, GLCA,
GUDCA, NCA, NUDCA, DHLCA, LCA, di-oxo-LCA and 6,7 diketo-LCA.
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Figure 1. Representative LC-MRM chromatograms in negative mode of a standard mixture containing
46 bile acids (using the most sensitive transition for each bile acid, as shown). Acronyms for each bile
acid species are listed in the Abbreviations (and Methods) section.

The highest APAP dose administered in this study significantly influenced the peaks corresponding
to several bile acids (Figure 3). Table S1 shows the p-values and fold changes seen for each of these
changing bile acids at each of the dosing levels compared to the lowest dose. This table also shows the
integration data considering both MRM transitions monitored for each of these bile acids, and confirms
that for all except two which were too small to properly integrate, these secondary transitions correlated
well with the first (more sensitive) transition. Each MRM peak was also investigated for saturation
effects. Although no linear ranges were determined directly, based on the peak heights of these bile
acids, it was confirmed that we would be able to detect changes in terms of fold change (up or down).
It is, however, very important to state here that fold changes of peak area ratios do not directly translate
into concentration fold changes. These results are reported to determine which bile acids of the 46 from
the standard mix were well observed in rat plasma samples and which were altered significantly with
increased APAP dose. Thirteen bile acids of the 30 having significant signal-to-noise in our samples
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were shown to have statistically-relevant changes between the lowest and highest dose given in this
study, with a p-value of lower than 0.05, six of which had p-values lower than 0.01. Increasing the
APAP dose affected the concentration of some bile acids more than others. The bile acids with the most
significant changes (with p < 0.01) were GCA, GDCA, 7-keto-DCA, APCA, CA and DCA. The graphs
in Figure 3 show the peak area ratios at all four doses of APAP. The taurine conjugates monitored did
not show any statistically relevant changes with APAP dose. An important effect was seen, however,
for several conjugated glycine conjugates. All four glycine conjugates having adequate peak size (GCA,
GCDCA, GDCA and GHDCA) were found to significantly increase between 75 and 600 mg/kg APAP.
The three with less obvious quantitative changes were notably much smaller peaks in the rat plasma
extracts. For example, the peak area ratio for GDCA was 10.1 times higher (with a p-value of 0.0024)
with 600 mg/kg compared with 75 mg/kg APAP, while the corresponding taurine conjugate, TDCA,
did not show any effect at the highest dose. Since the conjugation of bile acids is an important pathway
for their secretion by the liver, our results indicate that APAP could influence the transfer pathway of
bile acids from the liver to the bloodstream.

Figure 2. Representative LC-MRM chromatograms from a 20 μL injection of IS mix containing 0.013-0.1
μM final concentration of each IS compound. (1) d4-GUDCA (2) d4-GCA (3) d4-TUDCA (4) d4-TCA (5)
d4-CA (6) d4-UDCA (7) d4-GCDCA (8) d4-GDCA (9) d4-TCDCA (10) d6-TDCA (11) d4-CDCA (12)
d4-DCA (13) d4-GLCA (14) d4-LCA.

We found that for the two primary bile acids, CDCA and CA, only CA was found to have a
statistically significant increase with APAP dose levels (fold change of 1.8 and p-value of 0.005 at highest
dose). Peak area ratios for α-MCA, and ω-MCA had increased by 4.6-, and 7.4-fold (p-value of 0.0268,
and 0.0322), respectively. Given that CDCA is transformed by 6β-hydroxylase in rat liver into α-MCA,
β-MCA, and ω-MCA, it is likely that CDCA is mostly converted into different MCA isomers [21].
The peak area ratio of DCA increased 5.6-fold, (with a p-value of 0.0003). Interestingly, DCA has been
reported to induce both early apoptosis and necrosis, thus affecting cell development [22]. The fold
changes between different individual bile acids cannot be directly compared, of course, since the
relative response and sensitivity of each compound by LC-MS/MS is unique. We are not assuming that
a larger fold change from this data set gives a stronger change in actual concentration. This would need
a follow-up study for absolute quantitation of individual bile acids, with calibration curves for each.
This is quite difficult, however, considering we are not able to construct traditional calibration curves
for endogenous metabolites in complex biological matrices, such as plasma, as is done for therapeutic
drug monitoring.
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Figure 3. Peak area ratios for bile acids having significant changes between 75 mg/kg and 600 mg/kg
APAP dosing, as measured in rat plasma after 24 h. * p-value < 0.05, ** p-value < 0.01.

The LC-MRM data was imported into metabolomics software (MarkerViewTM) to perform
statistical analyses (Student’s t-test, as shown previously) and also to visualize data presented within a
principal component analysis (PCA). Figure 4 shows the PCA plot of the first two principal components
(PC1 vs. PC2), with Pareto scaling to alleviate bias to highest peaks. This plot shows clearly that the
highest dose of 600 mg/kg clusters separately to the three lower doses (75, 150, and 300 mg/kg), as was
evident from the t-testing results of the individual bile acids. The PCA plot, which used all features
from the LC-MRM data, following supervised peak integration, serves to show that the high dose
had a marked effect compared to the three lower doses, instead of seeing a gradual shift between the
four doses.
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Figure 4. Unsupervised principal component analysis (PCA) of 39 bile acids detected in rat plasma
samples (comparing four APAP dosing groups).

A higher throughput method could be devised to assess the specific bile acids perturbed by APAP
in a follow-up study, for a more rapid assessment of changes in a clinical setting, for instance. It is
important to note, however, that there exists many isomers of bile acids in biological samples and that
even if we are interested in targeting a finite list of specific ones for a follow-up assay, we would still
need to ensure proper separation of all these isomers. The study presented here focused specifically on
evaluation the 46 bile acids available from a known standard mix. This method is not presented for the
purpose of being a clinical assay, since it would likely not be high throughput enough considering
the chromatographic separation needed to access all these different isomers. It also does not serve to
accurately quantify each bile acid (in terms of concentration), rather it looks at relative amounts of bile
acids (e.g., their profiles) in a biological matrix (rat plasma) to look for specific effects of APAP dose
on individual bile acids. Therefore, this work should not be considered as a new validated method,
as per US FDA guidelines. It would be interesting in a future study to validate a method for the bile
acids specifically perturbed by high dose APAP. This is quite challenging in the case of endogenous
metabolites since it would necessitate stable isotope standards for each metabolite to be quantified,
as well as a suitable “blank” biological matrix to be used for preparing calibration curves for each
analyte. Additionally, a non-targeted metabolomics approach using high-resolution tandem mass
spectrometry would be able to access many more bile acid isomers, as well as sulfate and glucuronide
metabolites, without the need for optimizing MS/MS parameters for MRM detection.

3. Materials and Methods

3.1. Materials

HPLC-grade acetonitrile (ACN) and methanol (MeOH), as well as LC-MS-grade formic acid
were purchased from Sigma-Aldrich (Oakville, ON, Canada). Purified water was prepared in-house.
MetaboloMetrics™ bile acids analysis kits were obtained from MRM Proteomics Inc. (Montreal, QC,
Canada). Kits contained a mix of 46 bile acids and an IS mix of 14 deuterated isotope-labeled internal
standards. Sprague-Dawley rats were dosed (IP) with 75, 150, 300, and 600 mg/kg APAP, in triplicate,
and plasma was collected after 24 h at INRS Centre de Biologie Experimentale (Laval, QC, Canada),
within standard ethical practices. The protocol was approved by the Ethics Committee of the INRS
Centre de Biologie Experimentale under the ethical practices of the Canadian Council on Animal
Care (project UQLK.14.02). These samples were collected in February 2014 and stored at −80 ◦C until
proceeding with sample preparation.
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• The standard mix containing 46 bile acids (each at 2.5 nmol), except for deoxycholic acid
(5 nmol) and taurohyocholic acid (6.5 nmol) was provided as a dried sample (Tube A).
The bile acids in the standard mix were as follows: glycodehydrocholic acid (GDHCA),
taurodehydrocholic acid (TDHCA), tauro-ω-muricholic acid (ω-TMCA), tauro-α-muricholic
acid (α-TMCA), tauro-β-muricholic acid (β-TMCA), taurohyocholic acid (THCA), taurocholic acid
(TCA), dehydrocholic acid (DHCA), dioxolithocholic acid (di-oxo-LCA), 6,7-diketolithocholic acid
(6,7-diketo-LCA), glycohyocholic acid (GHCA), glycocholic acid (GCA), ursocholic acid (UCA),
ω-muricholic acid (ω-MCA), α-muricholic acid (α-MCA), β-muricholic acid (β-MCA), allocholic
acid (ACA), cholic acid (CA), glycoursodeoxycholic acid (GUDCA), glycohyodeoxycholic acid
(GHDCA), glycochenodeoxycholic acid (GCDCA), glycodeoxycholic acid (GDCA), nordeoxycholic
acid (NDCA), norursodeoxycholic acid (NUDCA), 7-ketodeoxycholic acid (7-keto-DCA),
12-ketodeoxycholic acid (12-keto-DCA), 3-dehydrocholic acid (3-DHCA), norcholic acid (NCA),
tauroursodeoxycholic acid (TUDCA), taurochenodeoxycholic acid (TCDCA), taurodeoxycholic
acid (TDCA), murocholic acid (muro-CA), ursodeoxycholic acid (UDCA), hyodeoxycholic acid
(HDCA), chenodeoxycholic acid (CDCA), deoxycholic acid (DCA), isodeoxycholic acid (IDCA),
7-ketolithocholic acid (7-keto-LCA), 12-ketolithocholic acid (12-keto-LCA), apocholic acid (APCA),
glycolithocholic acid (GLCA), taurolithocholic acid (TLCA), alloisolithocholic acid (AILCA),
isolithocholic acid (ILCA), lithocholic acid (LCA) and dehydrolithocholic acid (DHLCA).

• Isotopically labeled bile acids were provided as an IS mix for normalization purposes. The labeled
bile acids were present at between 0.1–0.75 nmol, as a dried sample (Tube B). The labeled bile
acids in the IS mix were as follows: glycoursodeoxycholic acid-d4 (d4-GUDCA), glycocholic
acid-d4 (d4-GCA), tauroursodeoxycholic acid-d4 (d4-TUDCA), taurocholic acid-d4 (d4-TCA),
cholic acid-d4 (d4-CA), ursodeoxycholic acid-d4 (d4-UDCA), glycochenodeoxycholic acid-d4

(d4-GCDCA), glycodeoxycholic acid-d4 (d4-5GDCA), taurochenodeoxycholic acid-d4 (d4-TCDCA),
taurodeoxycholic acid-d6 (d6-TDCA), chenodeoxycholic acid-d4 (d4-CDCA), deoxycholic acid-d4

(d4-DCA), glycolithocholic acid-d4 (d4-GLCA) and lithocholic acid-d4 (d4-LCA).

3.2. Sample Preparation

For the standard mix preparation, 250 μL ACN was added to Tube A, followed by a 1:10 dilution
with 40% ACN. This standard mix was injected (2 μL) with the LC-MRM method described (shown in
Figure 1) for retention time matching of bile acids in samples. For the internal standard (IS) mix, 7.5 mL
of 40% ACN was added to Tube B. Plasma samples (50 μL) were mixed with 50 μL of the reconstituted
(Tube B) internal standard solution. The extraction of bile acids from rat plasma was then performed
by adding 300 μL MeOH to precipitate proteins. Samples were vortexed and sonicated for 15 min,
then centrifuged at 14,000 rpm for 8 min. Supernatants (300 μL) were transferred to new microtubes,
dried under nitrogen and reconstituted with 150 μL 50% MeOH prior to analysis. Extracts were stored
at −20 ◦C until LC-MS analysis.

3.3. LC-MS/MS

Extracted plasma and standards were separated on an AerisTM PEPTIDE XB-C18 column (1.7 μm,
100 mm × 2.1 mm) (Phenomenex®, Torrance, CA, USA) using a Nexera ultra high performance liquid
chromatography (UHPLC) system (Shimadzu, Columbia, MD, USA) at 50 ◦C with gradient elution
using water and ACN, each containing 0.1% formic acid as mobile phase A and B, respectively, at a
flow rate of 0.400 mL/min and injection volume of 15 μL. The gradient started at 10% B and was held
for 1 min increased linearly to 25% for 2 min, to 35% over 17 min, to 50% over 20 min, to 60% over
2 min and 90% for 1 min, followed by a 10 min column re-equilibration time at starting conditions.
MS data was collected using a QTRAP 5500 system (Sciex, Concord, ON, Canada). Electrospray
ionization (ESI) in negative ion mode and multiple reaction monitoring (MRM) was used. The MRM
parameters (first and second transitions with collision energies (CE)) for all 46 bile acids are listed in
Table 1). Each transition was monitored throughout the chromatogram with a dwell time of 7 ms.
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Because of the fragmentation behavior of the deprotonated unconjugated bile acids, the first transitions
chosen for the unconjugated forms were simply precursor to precursor ions, as has been done in many
previous reports on bile acid analysis [17,23–25]. This was necessary for ensuring the best sensitivity
of detection for these unconjugated forms. For glycine conjugated bile acids, there was a specific and
sensitive common fragment ion at m/z 74, corresponding to the deprotonated glycine moiety being
lost. Similarly, taurine conjugates yielded a common fragment at m/z 80, corresponding to the HSO3

−
ion from the taurine group. The secondary transitions were used for confirmation. For those bile
acids found to be altered significantly upon APAP dose, the secondary transition was also integrated
and compared.

Table 1. Optimized MRM transitions and collision energies for 46 standard bile acids along with their
respective retention times.

Bile Acid RT (min) 1st Transition (CE) 2nd Transition (CE) IS

GDHCA 7.9 458.2/74.0 (−66) 458.2/348.1 (−41) CDCA-d4

TDHCA 8.2 508.2/80.0 (−123) 508.2/124.1 (−67) CDCA-d4

T-ω-MCA 10.1 514.2/80.0 (−135) 514.2/107.0 (−82) TCA-d4

T-α-MCA 10.7 514.2/80.0 (−135) 514.2/107.0 (−82) TCA-d4

T-β-MCA 11.1 514.2/80.0 (−135) 514.2/124.0 (−65) TCA-d4

UCA 11.9 407.2/407.2 (−15) 407.2/343.1 (−46) CA-d4

di-oxo-LCA 12.3 403.2/403.2 (−18) 403.2/385.2 (−40) CDCA-d4

DHCA 12.4 401.2/401.2 (−18) 401.2/331.1 (−36) CDCA-d4

GHCA 13.6 464.2/74.0 (−82) 464.2/354.1 (−56) GCA-d4

THCA 14.1 514.2/80.0 (−135) 514.2/107.0 (−82) TCA-d4

ω-MCA 15.1 407.2/407.2 (−15) 407.2/371.1 (−43) CA-d4

GUDCA 15.5 448.2/74.0 (−83) 448.2/386.1 (−59) GUDCA-d4

NDCA 15.8 377.2/377.2 (−15) 377.2/331.1 (−46) CDCA-d4

α- MCA 16.0 407.2/407.2 (−15) 407.2/371.1 (−43) CA-d4

NCA 16.1 393.2/393.2 (−15) 393.2/375.1 (−45) CDCA-d4

GCA 16.2 464.2/74.0 (−82) 464.2/402.1 (−46) GCA-d4

7-keto-DCA 16.4 405.2/405.2 (−18) 405.2/289.1 (−51) CDCA-d4

TUDCA 16.4 498.2/80.0 (−130) 498.2/107 (−82) TUDCA-d4

GHDCA 16.6 448.2/74.0 (−83) 448.2/386.1 (−59) GUDCA-d4

β-MCA 16.9 407.2/407.2 (−15) 407.2/371.1 (−43) CA-d4

TCA 17.5 514.2/80.0 (−135) 514.2/124.0 (−65) TCA-d4

12-keto-CDCA 18.4 405.2/405.2 (−18) 405.2/387.1 (−45) CDCA-d4

ACA 19.9 407.2/407.2 (−15) 407.2/371.1 (−43) CA-d4

muro-CA 20.3 391.2/391.2 (−15) 391.2/343.1 (−53) UDCA-d4

3-DHCA 20.5 405.2/405.2 (−18) 405.2/289.1 (−51) CDCA-d4

CA 22.2 407.2/407.2 (−15) 407.2/343.1 (−46) CA-d4

UDCA 22.6 391.2/391.2 (−15) 391.2/373.2 (−48) UDCA-d4

HDCA 23.9 391.2/391.2 (−15) 391.2/373.2 (−48) CDCA-d4

GCDCA 24.0 448.2/74.0 (−83) 448.2/404.2 (−46) GCDCA-d4

TCDCA 25.3 498.2/80.0 (−130) 498.2/124 (−64) TCDCA-d4
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Table 1. Cont.

Bile Acid RT (min) 1st Transition (CE) 2nd Transition (CE) IS

GDCA 25.3 448.2/74.0 (−83) 448.2/404.2 (−46) GDCA-d4

7-keto-LCA 26.1 389.2/389.2 (−18) 389.2/354.1 (−43) LCA-d4

6,7-diketo-LCA 26.5 403.2/403.2 (−18) 403.2/347.1 (−39) LCA-d4

NUDCA 26.7 377.2/377.2 (−15) 377.2/359.1 (−45) CDCA-d4

TDCA 27.0 498.2/80.0 (−130) 498.2/124 (−64) TDCA-d6

12-keto-LCA 27.1 389.2/389.2 (−18) 389.2/354.1 (−43) LCA-d4

APCA 27.6 389.2/389.2 (−18) 389.2/371.1 (−43) CDCA-d4

CDCA 31.1 391.2/391.2 (−15) 391.2/373.2 (−48) CDCA-d4

DCA 32.1 391.2/391.2 (−15) 391.2/343.1 (−53) DCA-d4

GLCA 34.6 432.2/74.0 (−66) 432.2/388.1 (−45) GLCA-d4

TLCA 36.6 482.2/80.0 (−135) 482.2/107 (−80) LCA-d4

IDCA 37.8 391.2/391.2 (−15) 391.2/345.1 (−45) DCA-d4

AILCA 39.1 375.2/375.2 (−15) 375.2/45 (−50) LCA-d4

ILCA 39.7 375.2/375.2 (−15) 375.2/45 (−50) LCA-d4

LCA 42.5 375.2/375.2 (−15) 375.2/45 (−50) LCA-d4

DHLCA 43.1 373.2/373.2 (−18) 373.2/45 (−50) LCA-d4

3.4. Statistical Analysis

A mixture of 14 deuterated bile acids was added to the plasma samples prior to metabolite
extraction, for normalization of data as peak area ratios (analyte/IS) (see Table 2). For those bile acids
without corresponding deuterated analogs, the closest eluting deuterated analog was used as IS,
as noted in Table 1. Standards were used to confirm the identity of each bile acid, based on retention
and MRM signal. Peak integration was performed using Multiquant™ 2.1 (Sciex). Statistical analyses
were done using MarkerView™ 1.2.1 (Sciex). This software was used to perform Student’s t-tests,
yielding p-values and fold changes between different dosing groups, for each bile acid detected in rat
plasma samples. Within Markerview software, principal component analysis was performed on the
integrated LC-MRM data, without weighting and using Pareto scaling (unsupervised).

Table 2. Optimized MRM transitions and collision energies for 14 internal standards compounds, along
with their respective retention times.

RT (min) Q1 (m/z) Q3 (m/z) CE (V)

GUDCA-d4 15.5 452.3 74.0 −41
GCA-d4 16.2 468.3 74.0 −45

TUDCA-d4 17.4 502.3 80.0 −73
TCA-d4 18.7 518.3 80.0 −80
CA-d4 22.1 411.3 411.3 −15

UDCA-d4 22.5 395.3 395.3 −15
GCDCA-d4 23.8 452.3 74.0 −37
GDCA-d4 25.3 452.3 74.0 −41

TCDCA-d4 26.8 502.3 80.0 −80
TDCA-d6 28.7 504.3 80.0 −80
CDCA-d4 31 395.3 395.3 −15
DCA-d4 32 395.3 395.3 −15

GLCA-d4 34.5 436.3 74.0 −41
LCA-d4 42.4 379.3 379.3 −15
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4. Conclusions

In this study, we have developed a targeted metabolomics method to gain a better understanding
of the effects of APAP on circulating bile acid profiles. A simple protein precipitation procedure in
rat plasma was employed rapidly prepare samples for analysis. A standard mix of 46 bile acids was
successfully resolved by LC-MRM, 39 of which were detected in rat plasma samples. These analyses
highlighted significant changes in bile acid profiles with increasing APAP dose in rats. In general,
these results indicate that APAP can have an important effect on the metabolism of bile acids. Depending
on the dose level, exposure to high or repeated APAP doses has the potential to induce serious health
problems, related to bile acid metabolism and excretion. The specificity of these biomarkers to
APAP-related toxicity would still need to be investigated. Certain of these bile acids can also serve as
biomarkers to establish the level of hepatotoxicity; however, more work would be needed to validate
specific bile acid biomarkers for clinical use.

Supplementary Materials: The following are available online at http://www.mdpi.com/2218-1989/10/1/26/s1,
Table S1: Comparison of p-values and fold-changes between the four doses of APAP administered in this study
(using two MRM transitions for each peak) of known bile acids showing significant differences between the lowest
and highest dose APAP.
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Abbreviations

GDHCA glycodehydrocholic acid
TDHCA taurodehydrocholic acid
ω-TMCA tauro-ω-muricholic acid
α-TMCA tauro-α-muricholic acid
β-TMCA tauro-β-muricholic acid
THCA taurohyocholic acid
TCA taurocholic acid
DHCA dehydrocholic acid
di-oxo-LCA dioxolithocholic acid
6,7-diketo-LCA 6,7-diketolithocholic acid
GHCA glycohyocholic acid
GCA glycocholic acid
UCA ursocholic acid
ω-MCA ω-muricholic acid
α-MCA α-muricholic acid
β-MCA β-muricholic acid
ACA allocholic acid
CA cholic acid
GUDCA glycoursodeoxycholic acid
GHDCA glycohyodeoxycholic acid
GCDCA glycochenodeoxycholic acid
GDCA glycodeoxycholic acid
NDCA nordeoxycholic acid
NUDCA norursodeoxycholic acid
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7-keto-DCA 7-ketodeoxycholic acid
12-keto-DCA 12-ketodeoxycholic acid
3-DHCA 3-dehydrocholic acid
NCA norcholic acid
TUDCA tauroursodeoxycholic acid
TCDCA taurochenodeoxycholic acid
TDCA taurodeoxycholic acid
muro-CA murocholic acid
UDCA ursodeoxycholic acid
HDCA hyodeoxycholic acid
CDCA chenodeoxycholic acid
DCA deoxycholic acid
IDCA isodeoxycholic acid
7-keto-LCA 7-ketolithocholic acid
12-keto-LCA 12-ketolithocholic acid
APCA apocholic acid
GLCA glycolithocholic acid
TLCA taurolithocholic acid
AILCA alloisolithocholic acid
ILCA isolithocholic acid
LCA lithocholic acid
DHLCA dehydrolithocholic acid
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Abstract: Background and aims: Liver toxicity is a well-documented and potentially fatal adverse
complication of hyperthermia. However, the impact of hyperthermia on the hepatic metabolome
has hitherto not been investigated. Methods: In this study, gas chromatography-mass spectrometry
(GC-MS)-based metabolomics was applied to assess the in vitro metabolic response of primary
mouse hepatocytes (PMH, n = 10) to a heat stress stimulus, i.e., after 24 h exposure to 40.5 ◦C.
Metabolomic profiling of both intracellular metabolites and volatile metabolites in the extracellular
medium of PMH was performed. Results: Multivariate analysis showed alterations in levels of 22 intra-
and 59 extracellular metabolites, unveiling the capability of the metabolic pattern to discriminate cells
exposed to heat stress from cells incubated at normothermic conditions (37 ◦C). Hyperthermia caused
a considerable loss of cell viability that was accompanied by significant alterations in the tricarboxylic
acid cycle, amino acids metabolism, urea cycle, glutamate metabolism, pentose phosphate pathway,
and in the volatile signature associated with the lipid peroxidation process. Conclusion: These results
provide novel insights into the mechanisms underlying hyperthermia-induced hepatocellular damage.

Keywords: heat stress; primary mouse hepatocytes; metabolic profile; GC-MS; multivariate
statistical analysis

1. Introduction

Thermoregulation is a complex process, crucial for body homeostasis and survival, that is
meticulously orchestrated by the thermoregulatory center in the hypothalamus [1]. A failure in
hypothalamic regulation leads to an imbalance between heat accumulation (either due to extreme
environmental temperatures and/or body heat generation) and heat dissipation, and may cause a
huge increase in body temperature above that considered physiologically normal—this condition is
commonly referred as hyperthermia [2]. A wide variety of xenobiotics can affect the thermal homeostasis,
triggering or exacerbating the hyperthermia-induced damage, both by the increased metabolic heat
production (e.g., sympathomimetic agents) or by an impairment of heat-dissipating effector mechanisms
(e.g., anticholinergic agents) [3]. This disruption will consequently affect many other homeostatic
systems and may result in several life-threatening complications such as disseminated intravascular
coagulation, hyperkalemia, metabolic acidosis, multi-organ failure, and rhabdomyolysis [4–6].

Hepatocellular injury is a well-documented adverse complication of heat stroke, and oxidative
stress has been identified as the main mechanism underlying hyperthermia-induced liver toxicity [7–9].
Earlier in vitro studies have provided convincing evidence that hyperthermia per se stimulates an
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aggressive pro-oxidant state in freshly isolated rat and mouse hepatocytes and in rat liver, making liver
cells more vulnerable to prooxidant species that subsequently lead to lipid peroxidation and cellular
damage [9–12]. Furthermore, it is also known that variations in the cellular temperature affect the
effectiveness of various enzymes and alter membrane stability and diffusion capacity, which disrupts a
great number of critical cellular functions, such as energy use and membrane ion fluxes [13]. However,
specific hepatic metabolic pathways altered by hyperthermia remain largely unknown.

The aim of this study was to improve our understanding of how hyperthermia affects the cellular
metabolome of primary mouse hepatocytes (PMH). For this, a gas chromatography-mass spectrometry
(GC-MS) untargeted metabolomic approach was used to analyze the metabolic profile of primary
mouse hepatocytes at hyperthermic (40.5 ◦C) conditions and compare it with normothermic (37 ◦C)
conditions. The analysis of the metabolites released from (extracellular metabolome) or existing within
the cells (intracellular metabolome) was performed in order to obtain a more detailed metabolic
characterization profile. As far as we know, this is the first metabolomic study to investigate the
metabolic derangements triggered by hyperthermia in hepatic cells.

2. Results

2.1. Hyperthermic Conditions Affect the Viability of PMH

Changes in viability of PMH triggered by hyperthermic conditions were evaluated using the MTT
reduction and lactate dehydrogenase (LDH) leakage assays. The data presented in Figure 1A show
that a temperature rise from 37 to 40.5 ◦C, after 24 h, caused a significant reduction in cell viability
as compared with control (about 40% decrease in viability according to the MTT reduction assay,
p < 0.0001) and also significantly affected the cellular membrane integrity, according to the LDH release
assay (about 35% of the cells were affected, p < 0.0001) (Figure 1B). In order to ensure that pH of the
culture medium was not affected by temperature, and therefore contributed to the observed cell death,
this factor was measured, and no significant differences were found between groups.

 

Figure 1. Cell viability measured by (A) MTT reduction and (B) lactate dehydrogenase (LDH)
leakage, 24 h after exposure of primary mouse hepatocytes to normothermic (37 ◦C) and hyperthermic
(40.5 ◦C) conditions. Results were obtained from 10 independent experiments, performed in triplicate.
**** p < 1.00 × 10−4 (hyperthermic vs. normothermic conditions).

2.2. Hyperthermia Significantly Alters the Metabolic Profile of PMH

Data obtained in this study showed that all quality control (QC) samples and the internal standards
used in the analysis of the intracellular and extracellular (volatile organic compounds, VOCs and
volatile carbonyl compounds, VCCs) metabolome had good reproducibility over the acquisition
time (Figure S1), the chromatographic datasets being considered robust and qualified for statistical
analyses. Unsupervised multivariate analysis revealed that the exposure of PMH to heat stress
resulted in significant alterations in the intra- and extra-cellular metabolome, since the separation
between cells under normothermic and hyperthermic conditions was already apparent in all principal
component analysis (PCA) score plots (Figure S2), indicating a unique metabolite profile of each
group. This separation was maximized in the orthogonal projections to latent structures discriminant
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analysis (OPLS-DA) models (Figure 2A–C) which presented good quality parameters (R2X = 0.72,
R2Y = 0.77, Q2 = 0.54, and p-value = 1.5 × 10−2 for intracellular data; R2X = 0.54, R2Y = 0.88, Q2 = 0.74,
and p-value = 2.3 × 10−4 for VOCs, and R2X = 0.54, R2Y = 0.92, Q2 = 0.84, and p-value = 6.5 × 10−6 for
VCCs). Furthermore, the robustness of all OPLS-DA models was confirmed through a permutation test
(Figure 2D–F), since all R2 and Q2 values of the permuted classes are lower than the original classes.

Figure 2. Orthogonal projections to latent structures discriminant analysis (OPLS-DA) score scatter
plots obtained for the chromatograms corresponding to cells exposed to normothermic (n = 10,
�) and hyperthermic (n = 10, �) conditions, after analysis of the (A) intracellular metabolome,
(B) volatile organic compound (VOC) and (C) volatile carbonyl compound (VCC) in extracellular
metabolome. (D–F) Statistical validation of the respective OPLS-DA models obtained by permutation
tests (500 permutations).

Through the analysis of the corresponding loading S-plot, the variables with VIP > 1 combined
with |p(corr)| >0.5 were selected for integration in order to assess the magnitude and significance
of metabolic variations caused by hyperthermia (Figure 3). A total of 28 intracellular metabolites
were identified as potentially discriminant (|p(corr)| >0.5 and VIP > 1), including several amino
acids and derivatives, organic acids, carbohydrates, and fatty acids derivatives. In brief, only 22
intracellular metabolites appeared significantly (p < 0.05) affected by the temperature increase,
of which 15 were significantly decreased (namely 1,5-anhydrohexitol, fumarate, malate, 2-ketoglutarate,
aspartate, glutamate, ornithine, mannitol, myo-inositol, ribose, and five unidentified metabolites)
and seven significantly increased (including valine, phenylalanine, isoleucine, docosahexaenoic acid,
2-monostearin, glycerol monostearate, and one unidentified metabolite) (Figure 3A). In parallel,
the univariate analysis revealed that of a total of 31 potentially discriminating VOCs (|p(corr)| >0.5 and
VIP > 1), 30 varied significantly (p < 0.05) between the two groups (hyperthermia vs. normothermia).
Significantly altered VOCs include one alkane, one ester, two aldehydes, five alkanals, seven ketones,
seven alcohols, and seven unidentified metabolites. In general, VOCs appeared to be significantly
up-regulated, with exception of 1,1-dimethylpropyl acetate, cyclohexanol, and an unknown compound
which appeared to be significantly down-regulated after temperature rise (Figure 3B). Regarding VCCs
analysis, the metabolites found significantly altered in the hyperthermic conditions compared to the
normothermic condition are summarized in Figure 3C.
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Figure 3. Effect size of the metabolites altered by heat stress, evaluated by comparison of cells exposed
to hyperthermic vs. normothermic conditions in the (A) intracellular metabolome and (B and C)
extracellular metabolome (VOCs and VCCs, respectively). Unidentified compounds are reported as
‘IMi’, ‘VOCi’ and ‘VCCi’ (i = 1, 2, 3...) according to the ascending order of their retention time (RT)
values. Metabolites marked with ⊗ are not statistically significant after false discovery rate (FDR)
correction (FDR corrected p-value: 3.93 × 10−2 for intracellular metabolome, 4.84 × 10−2 for VOCs,
and 4.12 × 10−2 for VCCs). * p < 5.00 × 10−2, ** p < 1.00 × 10−2, *** p < 1.00 × 10−3, **** p < 1.00 × 10−4

(hyperthermic vs. normothermic conditions).

The corresponding loading S-plot indicates 36 VCCs as potentially discriminant (|p(corr)| >0.5
and VIP > 1), of which 30 were found significantly altered (p < 0.05). Significant metabolites
detected after VCCs analysis include an alcohol, an alkenal, a dicarbonyl, an aromatic aldehyde,
three alkanes, six ketones, eight alkanals, and nine unidentified metabolites. Univariate analysis
indicated that tetradecane, tridecane, 2,7,10-trimethyldodecane, acetone, 1-dodecanol, and four
unidentified compounds appeared to be significantly down-regulated in the medium after temperature
rise, while all other VCCs appeared to be significantly up-regulated in hyperthermic conditions. It is
noteworthy that in the analysis of VOCs and VCCs five common compounds were found (hexanal,
heptanal, octanal, 2-pentanone, and 2-hexanone) with the same alteration trends (up-regulation
under hyperthermia).

2.3. Discriminant Metabolites Identified

A total of 28 intracellular metabolites and 67 extracellular metabolites (31 VOCs and 36 VCCs) were
indicated as potentially altered under hyperthermic conditions. A complete list with the information
used for the identification of these discriminant metabolites (such as retention time (RT), characteristic
ions (m/z), retention indexes (RI), reverse match score, Human Metabolome Database (HMDB) and
Kyoto Encyclopedia of Genes and Genomes (KEGG) identification codes) as well as their identification
level is summarized in Tables S1 and S2 [14]. The identification of 44 metabolites was unequivocally
confirmed with analytical standards (level 1), 25 metabolites were putatively identified based on
commercial spectral libraries (level 2), a compound class was attributed to four metabolites (level 3),
and 22 metabolites were not yet identified (level 4) (Table S1 and S2).

2.4. Hepatic Biochemical Pathways Affected by Hyperthermia

To aid in the identification of the major disturbed metabolic pathways, metabolites significantly
altered by temperature (p < 0.05) were analyzed using the MetaboAnalyst 4.0 software. Our analysis
revealed that phenylalanine and tyrosine metabolism, aspartate metabolism, urea cycle, tricarboxylic
acid (TCA) cycle, the transference of acetyl groups into the mitochondria and malate-aspartate shuttle
were the hepatic pathways more affected by hyperthermia (Figure 4).
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Figure 4. Overview of the dysregulated metabolic pathways based on metabolites alteration caused
by hyperthermia. The node color is based on the p value, where a dark circle color indicates a more
significant pathway. The node radius corresponds to the pathway impact value. Pathways were
annotated when p < 0.05 and pathway impact > 0.1.

Due to the limitations associated with the software database and to overcome the lack of knowledge
about the role of some compounds in the metabolic pathways (especially volatile compounds),
Spearman’s correlation indexes were calculated using all discriminant metabolites (p < 0.01) (Figure 5).
Taking into account a |correlation index| ≥0.90 and p < 0.0001, data revealed the existence of several
strong positive correlations, namely between 2-pentanone and VCC11 (r = 0.90), 2-pentanone and
2-butanone (r = 0.90), 2-hexanone and VOC1 (r = 0.90), fumarate and 2-ketoglutarate (r = 0.91),
glycerol monostearate and 2-monostearin (r = 0.91), 2-butanone and VCC11(r = 0.91), 2-pentanone
and isoborneol (r = 0.91), VOC2 and VOC3 (r = 0.91), malate and ornithine (r = 0.92), 2-pentanone
and 2-hexanone (r = 0.92), malate and 1,5-anhydrohexitol (r = 0.93), 2-hexanone and VCC11 (r = 0.93),
2-methylbutanal and 3-methylbutanal (r = 0.93), heptanal and benzaldehyde (r = 0.93), 2-ketoglutarate
and ornithine (r = 0.94), valine and phenylalanine (r = 0.94), 2-hexanone and isoborneol (r = 0.94),
fumarate and malate (r = 0.96), phenylalanine and isoleucine (r = 0.96), fumarate and ornithine
(r = 0.97), and finally between valine and isoleucine (r = 0.97). These correlation magnitudes suggest
that these metabolites may share the same metabolic pathway or some common regulatory mechanism.
Moreover, the Spearman’s rank correlation coefficient suggests that VCC11 may also be a ketone
derivative due to their positive correlations with 2-butanone, 2-pentanone and 2-hexanone as well as
common characteristic MS fragments (Table S2).
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Figure 5. Heatmap representing the Spearman’s correlations between the metabolites significantly
altered (p < 0.01) after a thermal insult. 1. Docosahexaenoic acid; 2. Glycerol monostearate;
3. 1,1-Dimethylpropyl acetate; 4. 4-Methyl-2-pentanone; 5. 3-Ethyl-4-methylpentanol;
6. 2,4,6-Trimethyldecane; 7. 1-(2,4,6-Trimethylphenyl)ethanone; 8. 2,7,10-Trimethyldodecane.

3. Discussion

The number of metabolomic studies based on mass spectrometry methodologies has increased
exponentially due to its high sensitivity, selectivity, and rapid data acquisition [15]. In this
work, different GC-MS approaches were implemented to study the intracellular and extracellular
metabolome in order to better characterize the changes caused by hyperthermia in mice isolated
hepatocytes. Hyperthermia induced a significant loss of cell viability under our experimental conditions
(approximately 35%, according to the LDH assay). This may represent a limitation of the present study
as the metabolome reflects both viable and dead cells, but may also be more representative of the real
consequences derived from a hyperthermic state, as the resulting liver diseases are also associated
with the death of hepatic cells. The combination of intracellular and extracellular datasets clearly
demonstrated that an increase in temperature from physiological (37 ◦C) to hyperthermic (40.5 ◦C)
conditions, after 24 h, induces profound changes in the hepatic metabolome, reflected in the level of 22
intracellular metabolites and 59 extracellular volatile metabolites (30 VOCs and 29 VCCs). This high
number of metabolites suggests that several metabolic pathways may be altered and contribute to
the liver damage. Therefore, the main hepatic changes described in this study as being induced by
hyperthermia will be discussed below.
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First of all, our metabolomic study revealed that one of the major alterations caused by
hyperthermia was the significant decrease of some TCA cycle intermediates, namely 2-ketoglutarate
(p < 0.001), fumarate and malate (p < 0.0001), suggesting a mitochondrial dysfunction and consequently
an energetic failure. Heat stress has been shown to cause mitochondrial protein denaturation, specifically
the pyruvate decarboxylase complex subunits and the TCA cycle enzymes, which could explain these
decreased levels [16]. Additionally, cells exposed to a thermal insult showed alterations in the levels
of some glucogenic and/or ketogenic amino acids, with glutamate and aspartate having a significant
depletion (p < 0.0001) and phenylalanine (p = 0.0034), valine (p = 0.0040), and isoleucine (p = 0.0005) a
significant increase. Protein denaturation may also justify the accumulation of phenylalanine, valine,
and isoleucine, since they are not being used to restore the basal levels of TCA cycle intermediates,
possibly due to an ineffective activity of transaminases. This enzymatic alteration may contribute to
the impairment of the energetic pathway, and although a positive correlation between phenylalanine,
valine, and isoleucine support the existence of a common regulatory pathway, further studies are
needed to confirm this theory. Moreover, despite the impossibility of contributing to the restoration of
the TCA cycle intermediates via transamination, glutamate and aspartate seem to be used in other
metabolic pathways, since their intracellular levels are reduced.

As suggested by the pathway analysis, the urea cycle appears to be also affected, since a significant
decrease (p < 0.0001) in ornithine levels was observed after a rise in the incubation temperature from
37 to 40.5 ◦C. However, it is possible that the ornithine levels may have been grossly estimated, since
arginine can be converted into ornithine during the derivatization reaction and, therefore, some caution
in the interpretation of this result is necessary [17].

Another remarkable change observed in this study was the significant decrease of glutamate
levels (p < 0.0001) in hyperthermic conditions. This metabolite is crucial for the glutathione (GSH)
synthesis, since its first biosynthesis phase requires an ATP enzymatic step that leads to the formation
of γ-glutamylcysteine from glutamate and cysteine [18]. Thus, low levels of glutamate coupled
with the breakdown in ATP production indicate that the ability of hepatocytes to synthesize GSH
may be compromised [18]. Glutathione plays several vital functions, including detoxification of
xenobiotics and/or their metabolites and cell signaling, and is also a major cellular antioxidant crucial
in protecting cells against oxidative stress [18]. Since hyperthermia is a pro-oxidant aggressive
condition, decreased levels of hepatic GSH may compromise cellular antioxidant defenses and render
cells more susceptible to the deleterious effects of reactive oxygen and nitrogen species (ROS/RNS)
formed within the cell [9]. Consistent with our results, a significant reduction of GSH was observed
in freshly isolated rat hepatocytes and in the HepG2 cell line after exposure to heat stress [10,19].
Furthermore, it has been demonstrated that GSH depletion triggered by hyperthermic conditions is in
fact coupled with an increased ROS/RNS production [19]. Owing to their high reactivity, ROS/RNS
can interact with the lipids present in the cell and cause their oxidative damage with consequent
lipid peroxidation and impairment of cell membrane functions [20]. Lipid peroxidation gives rise to
diverse secondary end-products capable of reacting with several intracellular targets and exert adverse
biological effects [20]. The study of the volatile fraction of the extracellular metabolic profile developed
in this work detected several of these secondary end-products, where hydrocarbons, alcohols, ketones,
and aldehydes appeared as the main classes significantly altered under hyperthermic conditions.
Hydrocarbons are a class of compounds typically generated by polyunsaturated fatty acid (PUFA)
peroxidation [21,22]. However, in our study their levels were significantly decreased after a temperature
increase. Such decrease may be explained by a possible up-regulation of cytochrome P450 enzymes
responsible for hydroxylating alkanes and lead to the production of the corresponding alcohols,
which, with the exception of cyclohexanol and 1-dodecanol, appear increased under hyperthermic
conditions [21,22]. On the other hand, alcohols can be converted into ketones or aldehydes, which
could justify the reduced levels of cyclohexanol and 1-dodecanol and the significant increase of some
of the ketone and aldehyde metabolites found in the extracellular environment of cells exposed
to hyperthermia [21]. The increase in aldehydes may also have a direct origin in the reduction of
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hydroperoxides by cytochrome P450 [21,22]. Most of the volatile compounds detected in our study are
positively correlated, which may suggest a common metabolic origin. These results suggest that lipid
peroxidation is responsible for most of the metabolic changes that hyperthermia causes in the volatile
fraction of surrounding medium of PMH. In fact, this harmful process had already been associated
with the hepatotoxicity caused by heat stress [9].

Finally, another volatile compound found significantly increased after exposure to hyperthermia
was formaldehyde (p= 0.0230). Formaldehyde may be endogenously formed through the L-methionine,
histamine, methanol, and methylamine metabolic pathway, and its catabolism involves its conversion
to CO2 through reactions involving glutathione [23,24]. However, since increasing temperature
seems to compromise the glutathione metabolism, this could explain the endogenous accumulation
of formaldehyde, that can rapidly react with nucleophilic groups present in nucleic acids and
proteins, leading to mutagenesis and cell death [23]. Low glutathione levels may also represent
a limiting factor for methylglyoxal detoxification, which was another volatile compound found
with significantly increased levels in the extracellular environment of cells exposed to hyperthermia
(p = 0.0212) [25]. Although the main production pathway of methylglyoxal is associated with
glycolysis, in pathological conditions the oxidation of ketone bodies is also an important source of this
compound [26]. In fact, this study showed that this methylglyoxal formation route seems to be activated,
since hyperthermia led to a significant decrease (p = 0.0129) in acetone levels compared to the basal
levels found in normothermia. Methylglyoxal is one of the most potent and reactive glycating agents
present in cells, so its accumulation causes several deleterious effects, including genotoxic effects [25].
Evidence suggests that high levels of methylglyoxal causes interstrand cross-links in duplex DNA,
strand breaks, and increased mutation frequency [26]. Thus, taking into account that hyperthermia
considerably affects DNA repair mechanisms, PMH will be more sensitive to methylglyoxal’s genotoxic
effects [16].

In addition, our metabolomic results also suggest a dysfunction of the pentose phosphate pathway
since a significant decrease of the ribose reserves was observed (p = 0.0003), an intermediate metabolite
essential for the nucleotide biosynthesis and that can consequently affect DNA repair mechanisms [27].

In several in vivo studies where the global heat stress was evaluated in different matrices (serum,
plasma, urine, milk, liver), alterations in the amino acid metabolism, TCA cycle, and nucleotide
metabolism were also found [28–30]. Our findings are in agreement with the changes found in in vivo
studies, thereby suggesting translatability of our results.

4. Materials and Methods

4.1. Chemicals

All reagents were of analytical grade or of the highest grade available. Antibiotic mixture of
penicillin/streptomycin (10,000 U/mL/10,000 mg/mL), fungizone (250 mg/mL), and heat-inactivated fetal
bovine serum (FBS) were obtained from GIBCO Invitrogen (Barcelona, Spain). Collagen G was obtained
from Merck (Darmstadt, Germany). 4-Fluorobenzaldehyde (≥98%), collagenase from Clostridium
histolyticum Type IA, desmosterol (≥84%), dexamethasone, ethylene glycol-bis-(2-aminoethylether)-N,
N, N’, N’-tetraacetic acid (EGTA), gentamicin, insulin solution from bovine pancreas
(10 mg/mL), methoxyamine hydrochloride (≥98%), N,O-bis(trimethylsilyl)trifluoroacetamide with
1% trimethylchlorosilane (BSTFA + 1% TMCS), O-(2,3,4,5,6-pentafluorobenzyl)hydroxylamine
hydrochloride (PFBHA, ≥99%), sodium chloride (NaCl, ≥99.5%), thiazolyl blue tetrazolium bromide
(MTT, ≥98%), thymol (≥98.5%), Triton X-100, trypan blue solution, Williams’ E medium, and all
standards used throughout the work were purchased from Sigma-Aldrich (St. Louis, Missouri, USA).
Methanol (≥99.9%) and pyridine (≥99%) were purchased from VWR (Leuven, Belgium).

68



Metabolites 2019, 9, 228

4.2. Isolation and Primary Culture of Mouse Hepatocytes

Ten male CD-1 mice (7–9 weeks old) were used in these experiments. Animal housing and
experimental procedures were performed in accordance with Portuguese legislation (Decree-Law
No. 113/2013, of August 7th), and approved by the Ethical Committee of the Faculty of Pharmacy
of University of Porto (protocol number P158/2016) and by the Portuguese National Authority for
Animal Health (reference number 0421/000/000/2017). Isolation of hepatocytes was performed using
a modified collagenase perfusion method, as described by Godoy et al. [31]. Surgical procedures
were performed under isoflurane anesthesia and carried out between 10.00 and 11.00 a.m. The initial
viability of the isolated mouse hepatocytes was estimated by the trypan blue exclusion test and
was always greater than 80%. Subsequently, a suspension containing 0.5 × 106 viable cells/mL was
prepared in complete culture medium (William’s E medium supplemented with 10% FBS, 100 U/mL
penicillin, 100 mg/mL streptomycin, 100 μg/mL gentamicin, 5 μg/mL insulin, 50 nM dexamethasone,
and 2.5 μg/mL fungizone) and seeded into a collagen-coated 35-mm Petri dishes (for metabolomic
studies) and 96-well culture plates (for cell viability assays). The cells were then incubated overnight
at 37 ◦C with 5% CO2 to allow cell adhesion. After seeding, the maintenance media was replaced by
serum-free medium and the cells were incubated for 24 h under normothermic (37 ◦C) or hyperthermic
(40.5 ◦C) conditions. For each 96-well plate, a positive control (1% Triton X-100) was also considered.

4.3. Cell Viability Assays

The effect of temperature on metabolic activity of PMH was determined using the MTT reduction
assay, as described in a previous work [32]. In order to evaluate the effect of temperature in the
cell membrane disruption, the release of lactate dehydrogenase (LDH) to the extracellular medium
was assessed using a protocol previously described by Valente et al. [33]. For both assays data
were normalized to a no-effect (PMH at 37 ◦C) and a maximum-effect (PMH lysed with 1% Triton
X-100) controls.

4.4. Collection, Preparation, and Analysis of Samples for Metabolomic Analysis

The collection of samples was performed according to a protocol used in a previous study [32].
Briefly, for the analysis of the extracellular volatile fraction, the culture medium from each well was
collected on ice and subsequently centrifuged (2000× g, 5 min, 4 ◦C) to eliminate possible cellular
fragments. Adherent cells were washed twice with 0.9% NaCl, and then an ice-cold methanol:water
solution (80:20, v/v) was added to extract the intracellular metabolites. In sequence, cells were
scraped, harvested, sonicated on ice for a few seconds, and centrifuged for 10 min at 3000× g at 4 ◦C.
The supernatant was collected in a glass vial for further intracellular metabolome analysis. For each
GC-MS procedure, quality control (QC) samples were prepared by pooling the same amount of each
sample used in the study. All samples were kept at −80 ◦C until analysis.

The analysis of volatile fraction of the extracellular metabolome was performed by two
methodologies based on headspace solid-phase microextraction (HS-SPME) coupled to GC-MS
previously optimized by our group [34]. The analysis VOCs was carried out directly in the headspace
of the cell culture medium, while VCCs were determined after a previous derivatization step.
Sample preparation and GC-MS analysis of samples is described in detail in previous studies of our
group [32,34].

4.5. GC-MS Data Pre-Processing

The GC-MS data were converted to the CDF file format using the software MASSTransit 3.0.1.16
(Palisade Corp, Newfield, NY) and pre-processed using the software MZmine 2.23 [35]. The parameters
used in the pre-processing steps were set as follows: RT range 4.3–24.5 min, m/z range 50–400, MS data
noise level 3 × 104, m/z tolerance 0.5, baseline level 8 × 104 and peak duration range 0.02–0.35 min for
the intracellular analysis; RT range 2.1–25.0 min, m/z range 40–300, MS data noise level 1 × 105, m/z
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tolerance 0.5, baseline level 4 × 104 and peak duration range 0.02–0.3 for the VOCs analysis; and RT
range 10.5–35.5 min, m/z range 50–500, MS data noise level 1 × 105, m/z tolerance 0.5, baseline level
2 × 104 and peak duration range 0.02–0.5 min for the VCCs analysis. After pre-processing steps,
data were normalized by total chromatogram area to eliminate systematic and biological bias [36].
All known artefacts including peaks from the chromatographic column, SPME fibers (e.g., phthalates
and siloxanes) and plasticizers, as well as chromatographic peaks with a signal to noise less than three
and with relative standard deviation (RSD) higher than 30% across all QCs, were not considered in the
statistical analysis.

4.6. Multivariate and Univariate Statistical Analysis

The final matrices were imported into the SIMCA-P 13.0.3 software (Umetrics Umea, Sweden)
for multivariate analysis. Principal component analysis (PCA) and orthogonal projections to latent
structures discriminant analysis (OPLS-DA) were applied to Pareto scaled data, with a default 7-fold
internal cross validation, from which R2 and Q2 values reflect, respectively, the explained variance
and the predictive capability of the models [37]. Simultaneously, all OPLS-DA models were validated
through permutation test (500 permutations) and CV-ANOVA p-value (cross-validated analysis of
variance) were also performed to determine the level of significance of group separation, a p-value
< 0.05 being indicative of a significant model [37]. The variables (m/z-RT pairs) relevant for groups
separation were assessed through the inspection of loading S-plots. Only the variables corresponding
to the metabolite fingerprint (based on relative abundance and selectivity) and that simultaneously
presented variables importance to the projection (VIP) > 1 and p(corr) >|0.5| were used in subsequent
univariate analysis [37]. In addition, metabolites that resulted in multiple chromatographic peaks
as a consequence of derivatization reactions were summed, as suggested by Mastrangelo et al. [38].
The statistical significance between the mean of two groups under study (PMH under normothermic
vs. hyperthermic conditions) was assessed for the relevant metabolites (|p(corr)| >0.5 and VIP > 1) in
GraphPad Prism version 6 (GraphPad Software, San Diego, CA, USA). The p-value was determined
through an unpaired student t-test for normal distribution data or an unpaired Mann–Whitney test
for a non-normal distribution. False discovery rate (FDR) corrected p-values were considered in the
assessment of statistical significance [39]. Additionally, the effect size (ES), corrected for a small number
of samples, were also determined for each relevant metabolite, according to equations provided in the
literature [40].

4.7. Identification of Discriminant Metabolites

The identification of discriminant metabolites was done according to the Metabolomics Standards
Initiative (MSI) guidelines, being based on the comparison of the retention index (RI) determined
for each metabolite with the RI described in the literature and by comparing the retention time (RTs)
and mass spectrum of the discriminant metabolite with spectra accessible in the National Institute
of Standards and Technology (NIST14) mass spectral library [14]. Only for reverse match factors
greater than 700, the tentative metabolite identification was considered. Whenever possible, the
identification was unequivocally confirmed with authentic reference standards injected under the same
chromatographic conditions. Metabolites that do not meet these identification criteria are reported
throughout the paper according to their crescent RT values as ‘IMi’ (for the intracellular metabolites),
‘VOCi’ or ‘VCCi’ (i = 1, 2, 3 . . . ).

4.8. Biochemical Interpretation

Metabolic pathway analysis was used to identify biochemical pathways associated with alterations
caused by the temperature increase. Metabolites significantly altered (p< 0.05) with Human Metabolome
Database (HMDB) codes were imported into a Metaboanalyst 4.0 software (http://www.metaboanalyst.
ca) and were searched against Mus musculus database [41]. Biochemical pathways were selected
according to the p-value (p < 0.05) and pathway impact value (>0.1). The Human Metabolome Database
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(HMDB, www.hmdb.ca) and Kyoto Encyclopedia of Genes and Genomes (KEGG, www.kegg.jp) were
also checked to support the biochemical interpretation. Furthermore, to search for possible correlations
between metabolites significantly altered (p < 0.01), Spearman’s rank correlation coefficient was also
calculated and represented in a heatmap.

5. Conclusions

Heat stress is a life-threatening condition capable of disturbing cellular homeostasis. In this
work, we presented a metabolomic study of the liver following hyperthermia in an in vitro model.
Our data revealed that GC-MS metabolomic profiling can be successfully used to visualize the
hyperthermia-induced disorders, since in the present study prominent derangements were observed
in the intra and extracellular hepatic metabolome. Multivariate and univariate statistical analysis
revealed a high number of compromised metabolites that are essentially associated with the energetic
pathway, synthesis of antioxidant defenses, and with the lipid peroxidation process. Taking into
account the results obtained, it is our belief that this metabolomic study may represent an interesting
platform to evaluate and understand the deleterious effects of heat stroke in humans.

Supplementary Materials: The following are available online at http://www.mdpi.com/2218-1989/9/10/228/s1,
Figure S1: Principal component analysis (PCA) score scatter plots obtained for the GC-MS chromatograms of the
three distinct procedures ((A) intracellular metabolite profiling, (B) extracellular metabolite profiling—VOCs and
(C) extracellular metabolite profiling—VCCs) to evaluate data quality. Each sample is represented in the score’s
scatter plot as an individual variable, namely quality control (QC) samples (�) and the intracellular/extracellular
content of all primary mouse hepatocytes samples (�). (D) Boxplot of the three internal standards used in the
different metabolomics studies. Data are expressed as the mean and standard deviation (SD) of the normalized
peak area by total area of the chromatogram. All internal standards presented a variation coefficient inferior
to 20%.; Figure S2: PCA score scatter plots obtained for the chromatograms corresponding to cells exposed
to normothermic (n = 10, �) and hyperthermic (n = 10, �) conditions, after analysis of the (A) intracellular
metabolome, as well as (B) VOCs and (C) VCCs present in the extracellular metabolome.; Table S1. Identification
of discriminant intracellular metabolites selected from OPLS-DA loading S-plots (VIP > 1 and |p(corr)| >0.5).
The identification of the metabolites was done according to the Metabolomics Standards Initiative (MSI) levels.
They were characterized by retention time (RT), characteristic ions (m/z), retention index (from the literature (RIlit)
and compared with the calculated (RIcalc) for the same chromatographic column), reverse match factor from
National Institute of Standards and Technology (NIST) and Human Metabolome Database (HMDB) and Kyoto
Encyclopedia of Genes and Genomes (KEGG) code (when available). Table S2. Identification of discriminant
volatile extracellular metabolites (VOCs and VCCs) selected from OPLS-DA loading S-plots (VIP > 1 and |p(corr)|
>0.5). The identification of the metabolites was done according to the MSI levels. They were characterized by
retention time (RT), characteristic ions (m/z), retention index (from the literature (RIlit) and compared with the
calculated (RIcalc) for the same chromatographic column), reverse match factor from NIST and HMDB and KEGG
code (when available).
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Abstract: Cells efficiently adjust their metabolism according to the abundance of nutrients and energy.
The ability to switch cellular metabolism between anabolic and catabolic processes is critical for cell
growth. Glucose-6 phosphate is the first intermediate of glucose metabolism and plays a central role
in the energy metabolism of the liver. It acts as a hub to metabolically connect glycolysis, the pentose
phosphate pathway, glycogen synthesis, de novo lipogenesis, and the hexosamine pathway. In this
review, we describe the metabolic fate of glucose-6 phosphate in a healthy liver and the metabolic
reprogramming occurring in two pathologies characterized by a deregulation of glucose homeostasis,
namely type 2 diabetes, which is characterized by fasting hyperglycemia; and glycogen storage
disease type I, where patients develop severe hypoglycemia during short fasting periods. In these
two conditions, dysfunction of glucose metabolism results in non-alcoholic fatty liver disease, which
may possibly lead to the development of hepatic tumors. Moreover, we also emphasize the role of the
transcription factor carbohydrate response element-binding protein (ChREBP), known to link glucose
and lipid metabolisms. In this regard, comparing these two metabolic diseases is a fruitful approach
to better understand the key role of glucose-6 phosphate in liver metabolism in health and disease.

Keywords: de novo lipogenesis; carbohydrate response element-binding protein; ChREBP; diabetes;
glucose production; glycogen; glycolysis; glycogen storage disease type I; hexosamine; nonalcoholic
fatty liver disease; NAFLD; pentose phosphate pathway; steatosis

1. Introduction

The liver plays a crucial role in the maintenance of glucose homeostasis by extracting glucose from
the blood and then storing it after a meal, and also by producing glucose in post-absorptive state. When
its concentration increases in the bloodstream, glucose enters the hepatocytes mainly through the glucose
transporter 2 (GLUT2). Within the cells, free glucose is immediately phosphorylated on the sixth carbon
by glucokinase (also named hexokinase IV), producing glucose-6 phosphate (G6P) and consuming one
molecule of ATP. Contrary to the other hexokinases, glucokinase has relatively low affinity for glucose
and is not inhibited by G6P [1]. Glucokinase expression is transcriptionally regulated by hormones
[induced by insulin through the transcription factor SREBP1c (Sterol Response Element-Binding
Protein 1c) and inhibited by glucagon] and metabolites of glucose and glucokinase activity is dependent
on its binding to a specific inhibitor named glucokinase regulatory protein (GKRP) (see [2] for a
review of glucokinase regulation). Other binding proteins such as 6-phosphofructo-2-kinase/fructose
2,6 biphosphatase (PFK2/FBP2) are also able to activate glucokinase by direct interaction with this
enzyme [3].

The phosphorylation of glucose by glucokinase adds a charged phosphate group to this molecule.
Consequently, G6P cannot cross the cell membrane, preventing the diffusion of free glucose out of the
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cells. Thanks to this phosphorylation step, glucokinase enables hepatocytes to trap glucose. During
fasting periods, G6P is also produced after isomerization of glucose-1 phosphate during the breakdown
of glycogen and by gluconeogenesis in the hepatocyte. It should be noted that a limited amount of
free glucose can be directly released from glycogen through the action of the debranching enzyme
α-1,6-glucosidase (AGL) and/or the lysosomal acid α-1,4 glucosidase (also known as acid maltase) [4].

Within the cells, G6P has many possible fates and therefore it represents a central hub for
carbohydrate metabolism (Figure 1). After isomerization, it initiates major metabolic pathways,
i.e., glycolysis, pentose phosphate pathway (PPP), glycogen synthesis, hexosamine pathway, and
glucose production according to the nutritional or hormonal states. This review is focused on the key
metabolic roles of G6P in cell signaling in the healthy or pathological liver. Here, we will highlight the
metabolic reprogramming taking place in two metabolic diseases characterized by a dysfunction of
glucose metabolism, namely type 2 diabetes and glycogen storage disease type I (GSDI). Interestingly,
type 2 diabetes is an epidemic disease characterized by hyperglycemia, while GSDI is a rare genetic
disease due to a loss of endogenous glucose production leading to severe hypoglycemia during
short fasting. In type 2 diabetes, hyperglycemia is responsible for an increase in metabolic pathways
downstream of G6P, while in GSDI the blockage of glucose production leads to the accumulation of
G6P in the hepatocytes, which also increases all the metabolic pathways downstream of G6P (Figure 2).
These two diseases are characterized by an accumulation of ectopic lipids in the liver, which leads to
the development of hepatic steatosis and promotes hepatic tumorigenesis over time [5]. In this review,
we will also consider the well-established role of the Carbohydrate-Responsive Element-Binding
Protein (ChREBP) as the carbohydrate sensor that coordinates glucose and lipid metabolism in the
liver according to nutritional states.
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Figure 1. Glucose-6 phosphate, a central hub for liver carbohydrate metabolism. The increase of flux
through G6P is responsible for increasing glycogen synthesis, glycolysis, pentose phosphate pathway
(PPP), hexosamine pathway and de novo lipogenesis.
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Figure 2. Comparison of hepatic glucose metabolism in glycogen storage disease type I (GSDI) or type
2 diabetes. Type 2 diabetes is characterized by an increase in endogenous glucose production (EGP)
while GSDI is due to an absence of EGP. In GSDI, the absence of G6Pase activity is responsible for
G6P accumulation in the hepatocyte. In diabetes, hyperglycemia is responsible for the increase flux
through G6P. In both cases, this leads to a metabolic reprogramming characterized by the activation of
glycolysis, PPP, and de novo lipogenesis. This metabolic reprogramming promotes hepatic steatosis in
type 2 diabetes and GSDI, in which the risk of liver tumorigenesis is increased. Figures were drawn
using Sevier Medical Art images.

2. Metabolic Fate of Glucose-6 Phosphate in the Healthy Liver

In order to control cell metabolism and proliferation, G6P enters different metabolic pathways
to provide energy and/or precursors for biomolecule synthesis needed to sustain these processes.
First, glucose concentrations fluctuate between the fed state and fasting periods. The liver plays a
crucial role in maintaining blood glucose levels by its capacity to produce glucose during fasting
periods. Moreover, in the case of overnutrition, excessive G6P is converted into fatty acids via de novo
lipogenesis in the liver. Secondly, during fasting periods, glucose should be preserved to supply
precursors for maintaining biomass, especially for cell renewal. Ketone bodies then become a major
energy source for most tissues. Thus, the liver plays a central role by coordinating the storage and
synthesis of glucose and the redistribution of nutrients, through the G6P metabolism.

2.1. Glucose and Lipid Storage

After a meal, a large portion of the excess carbohydrates (approximately 30–40% of the glucose
ingested) is stored as glycogen in the liver, inside the hepatocytes, and in muscles (glycogenesis).
In healthy individuals, hepatic glycogen represents around 5% of the liver weight. Glycogen is a
polymer of glucose residues linked byα-(1,4) andα-(1,6)-glycosidic bonds. To synthesize glycogen, G6P
is isomerized into glucose-1 phosphate and then converted into UDP-glucose. For de novo glycogen
synthesis, UDP-glucose molecules are attached to a protein known as glycogenin. Once a linear chain
of 10–20 glucose moieties is formed, glycogen synthase extends the glycogen chain, forming α-1-4
glycosidic links, and a branching enzyme introduces a branch point. The branching enzyme transfers a
glycosyl chain of 6 to 8 units to the glycogen thread forming an α-1-6 linkage [6]. G6P is a precursor
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for glycogen synthesis but it also plays a huge role in regulating the activities of glycogen synthase
and glycogen phosphorylase. Indeed, G6P is an allosteric inhibitor of glycogen phosphorylase and
an allosteric activator of glycogen synthase, thus favoring hepatic glycogen increase [7]. In addition,
glycogen synthesis/degradation is tightly regulated by hormones and nutritional states, which has
been extensively described (see [7] for a review). It is of note that the presence of high insulin level
after a meal favors glycogen synthesis.

Importantly, the capacity to store glycogen in the liver is limited. In case of excessive feeding
of carbohydrates or in pathological states such as GSDI, glycogen turnover allows to continually
breakdown glycogen to limit glycogen accumulation [4,8]. Moreover, the excess of dietary glucose
that cannot be stored as glycogen is converted into fat by de novo lipogenesis (see below) [9].
A deregulation of glycogen storage or metabolic dysfunctions leading to abnormal glycogen storage
in the liver results in hepatic glycogen storage diseases, which are metabolic inherited diseases
characterized by hypoglycemia. GSDI belongs to this group of hepatic diseases, representing about
30% of GSD cases [10].

In the liver, triglycerides can be packed into very low density lipoproteins (VLDL) and secreted
into the circulation, stored as lipid droplets, or be metabolized by the β-oxidation pathway. Excessive
G6P is converted into fatty acids via de novo lipogenesis using the acetyl-CoA generated from
glycolysis-driven pyruvate and NADPH derived from PPP. After glucose load, lipogenesis is markedly
increased at the expense of glycogen synthesis; conversely, low carbohydrate diets reduce de novo
lipogenesis [9]. Interestingly, insulin secreted in response to elevated blood glucose levels and
glucose can induce hepatic lipogenesis through the synergistically activation of SREBP-1c and ChREBP,
respectively [11]. Thus, increased consumption of simple sugars leads to the ectopic accumulation
of lipids in the liver and increases the risk of metabolic diseases such as obesity, type 2 diabetes and
nonalcoholic fatty liver disease (NAFLD).

2.2. Maintenance of Glycaemia and Endogenous Glucose Production

The liver plays a key role in the maintenance of blood glucose, particularly during the beginning
of fasting periods. Just after the intestinal glucose absorption from food is completed, hepatic G6P is
mainly derived from glycogen breakdown, while gluconeogenesis becomes the major source of G6P
after more prolonged fasting. Indeed, hepatic glycogen stores are depleted after a 12h-fasting in mice
and an overnight fasting period in Humans [12,13]. Glycogenolysis requires the intervention of two
different enzymes: glycogen phosphorylase that degrades the glycogen chain down to a chain length of
4 units into glucose-1 phosphate, and glycogen debranching enzyme (GDE) that first transfers 3 glucose
units to the terminal end of another chain and then cleaves off the final glucose unit, releasing it as free
glucose. Glucose-1-phosphate must further be converted by phosphoglucomutase into G6P to enter
the metabolism mainstream. During a longer fast or starvation, the liver synthetizes glucose de novo
mainly from lactate, alanine, and glycerol while glutamine is a predominant gluconeogenic substrate in
the kidney and intestine [14,15]. Interestingly, the contribution of hepatic glucose production decreases
during fasting [16]. This decrease is compensated by glucose production from the kidneys and intestine,
which are especially capable of producing glucose thanks to gluconeogenesis and to participate in the
maintenance of blood glucose when fasting is prolonged [17–20]. The significance of the renal and
intestinal gluconeogenesis has been firmly demonstrated in mice that are incapable to produce glucose
by the liver (Liver-specific G6pc knockout mice- L.G6pc−/−) [21]. Indeed, despite a drop in blood sugar
levels in the post-prandial period, L.G6pc−/− mice regulate their blood sugar similarly to control mice
after several hours of fasting thanks to an induction of gluconeogenic genes in the kidney and the
intestine [13,22].

To be released as glucose into the bloodstream, G6P has to be dephosphorylated into glucose by
glucose-6 phosphatase (G6Pase), which is expressed only in the liver, kidneys, and intestine. G6P
is first translocated into the endoplasmic reticulum by the G6Pase transporter subunit (G6PT) and
subsequently hydrolyzed into free glucose and inorganic phosphate by the G6Pase catalytic subunit
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(G6PC). Glucose is finally released from the cytosol into the bloodstream through GLUT2. Thus,
the liver, kidneys, and intestine play a central role in maintaining blood glucose levels at around 1 g/L
(5 mM) since most mammals, including Humans, are incapable of tolerating hypoglycemia for more
than a few minutes. Failure to activate these physiological pathways results in severe hypoglycemia
that can be fatal, especially in GSDI or in diabetic patients treated with inappropriate doses of insulin.

2.3. Glucose-6 Phosphate: A Source of Energy and Carbon Skeletons

In feeding periods, glucose can be oxidized to CO2 through a series of metabolic pathways,
namely glycolysis in the cytosol, followed by the tricarboxylic acid cycle and the respiratory chain in
the mitochondria. The first step of glycolysis is the isomerization of G6P into fructose-6 phosphate to
produce triose-phosphate, then resulting in the generation of 2 pyruvate molecules and a small amount
of ATP (net gain of 2 ATP molecules). The oxidation of pyruvate then generates the bulk of ATP under
aerobic conditions in quiescent differentiated cells (Figure 3).

Figure 3. Glucose-6 phosphate: a source of energy and carbon skeletons. The G6P is metabolized either
through the glycolytic pathway or PPP, which are tightly connected, depending on metabolic demands.
Non-dividing normal differentiated cells mainly depend on mitochondrial oxidative phosphorylation
of pyruvate, which is produced from glycolysis, to generate ATP. During cell proliferation or starvation
periods, G6P is preferentially metabolized via PPP to maintain carbon homeostasis and produce
biomass. In this case, glycolysis produces pyruvate and lactate as final metabolites and becomes
inefficient in producing ATP. Indeed, G6P is preferentially metabolized via PPP to provide precursors
for nucleotide and amino acid biosynthesis and to provide reducing molecules in the form of NADPH
used in reductive biosynthesis reactions within cells (e.g., fatty acid synthesis). Lactate is also used by
the hepatocyte to produce glucose and maintain glycaemia.

While glucose is generally considered to be the main source of cell energy, it is above all a
major provider of carbon skeletons for cell growth and survival [16]. Indeed, glucose oxidation
to CO2 to produce energy should be avoided to permit to supply essential functions in some
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situations, in particular during long-term fasting or during cell proliferation. Glycolysis supplies
3 carbon-compounds, such as triose-phosphate, pyruvate and lactate that can be used to maintain
cellular homeostasis and produce biomass (Figure 3). Hence, global glucose turnover decreases
and glucose is used to supply PPP that provides the carbon skeletons needed for the synthesis of
nucleotides, chromosomal duplication and cell proliferation (Figure 3). PPP is an important metabolic
pathway known to provide reducing equivalents (NADPH) for anabolism and it plays a pivotal
role in counteracting oxidative stress. Indeed, during oxidative stress, NADPH is needed for the
generation of reduced glutathione. In the first step of PPP, G6P is oxidized into gluconolactone
and carbon dioxide by glucose-6 phosphate dehydrogenase and 6-phosphogluconic dehydrogenase
(oxidative branch). Ribulose-5 phosphate yielded is then isomerized to ribose-5 phosphate, which is
the critical precursor for de novo ribonucleotide synthesis or epimerized into xylulose-5 phosphate.
Additionally, a series of reversible reactions that recruit additional glycolytic intermediates, such as
fructose-6 phosphate and glyceraldehyde-3-phosphate, can be converted into pentose phosphates and
vice versa (non-oxidative branch). Transketolase (TKT) and transaldolase (TALDO) are the two major
reversible enzymes that mediate the non-oxidative PPP and determine the diversion of metabolite
flux in the PPP (Figure 4). Thus, in proliferative cells, TKT and TALDO divert fructose-6 phosphate
and glyceraldehyde-3-phosphate from glycolysis to generate additional ribonucleotides. Interestingly,
cancer cells can accelerate non-oxidative PPP by elevating the expression of these enzymes [23], while
deficiency in TALDO can prevent HCC [24].

Figure 4. Scheme of the pentose phosphate pathway. The oxidative branch of PPP is highlighted in
the brown part and the non-oxidative branch is represented in the yellow part of the figure. G6PDH:
glucose-6 phosphate dehydrogenase; 6PGDH: 6-phosphogluconic dehydrogenase; TKT: Transketolase;
TALDO: transaldolase.

Thus, the ability to switch the glucose metabolism from a catabolic to an anabolic process is critical
for cells to thrive, especially during long fasting periods. This capacity is also an advantage for cancer
cells that can grow and multiply by using glucose as a carbon source to build proteins and nucleotides
rather than as an energy source, thanks to the Warburg effect [25].

2.4. Hexosamine Pathway

When G6P is increased, the hexosamine pathway produces carbohydrate units for glycosylation
of proteins and contributes to the synthesis of complex molecules such as glycolipids, proteoglycans
and glycosylphosphatidylinositol anchors. First, G6P is converted into fructose-6 phosphate,
which may either enter the hexosamine pathway in combination with glutamine to produce
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UDP-Nacetylglucosamine or it can follow the glycolytic pathway. The hexosamine pathway usually
accounts for only 2–5% of total glucose metabolism. Interestingly, O-GlcNAcylation of different key
transcription factors involved in energy metabolism, including ChREBP and the nuclear receptor
Farnesoid X receptor (FXR), requires the hexosamine pathway [26].

3. ChREBP: A Glucose Sensor

In the hepatocyte, the transcriptional effects of glucose on gene expression are mediated by
the transcription factor ChREBP, which in interaction with Max-like protein (Mlx) binds conserved
consensus sequences (Carbohydrate Response Element, ChoRE). Indeed, in response to increased
glucose concentration, ChREBP is translocated to the nucleus and it activates several genes involved
in glucose and lipid metabolism [such as liver-Pyruvate kinase (L-PK), Fatty Acid Synthase (FAS)
acetyl-CoA carboxylase (ACC), and stearoyl-CoA desaturase (SCD1)], but also genes involved in
insulin signaling [27–29]. Recently, ChREBP was pointed out as a potential regulator of VLDL secretion
in the liver [30]. Thus, it is assumed that ChREBP has important roles in the development of liver
diseases including NAFLD [31]. In consequence, inactivation of ChREBP or liver-specific inhibition of
ChREBP led to a decrease in glycolytic and lipogenic gene expression and a decrease in hepatic steatosis
in mice [29,32,33]. On the contrary, the overexpression of ChREBP led to the development of hepatic
steatosis without concomitant insulin resistance [27]. More recently, a key regulatory role for ChREBP
in hepatic tumorigenesis was also suggested, since ChREBP expression was found to be increased in
non-tumorous surrounding tissue in liver samples and further increased in HCC in Humans [34]. In
addition, a recent study reported the importance of ChREBP in HCC [35]. The genetic deletion of
ChREBP in mice impaired hepatocarcinogenesis driven by protein kinase B/Akt overexpression [36].
Furthermore, in vitro studies of ChREBP silencing in hepatoma cells resulted in a metabolic switch
from aerobic glycolysis to mitochondrial oxidative phosphorylation, concomitantly with a reduction
of cell proliferation [37]. In GSDI, the overexpression of ChREBP has been linked to glucose and
lipid metabolism reprogramming [38,39]. In this context, enhanced ChREBP could partly account for
increased proliferation of hepatocytes by favoring cancer cell-like metabolism. Further investigation is
required to unravel the exact role of ChREBP in hepatocarcinogenesis in the context of NAFLD.

Two isoforms of ChREBP have been recently described originating from an alternative first exon
promoter - ChREBP α and β [40]. The presence of a ChoRE sequence in the exon promoter 1β suggests
that ChREBPα directly regulates the expression of ChREBPβ, considered as a constitutively active
isoform (due to the loss of a regulatory inhibitory domain). Consequently, the response to glucose
under hyperglycemic conditions could be exacerbated. The regulation of ChREBP activity by glucose
is complex and the relative role of xylulose-5 phosphate, G6P or other glucose metabolites on the
triggering of ChREBP activation is still discussed [41]. It was shown that xylulose-5 phosphate activates
PP2A promoting dephosphorylation of ChREBP and its nuclear translocation and activation [42].
However, G6P seems to have a central role for the increase in ChREBP activity, especially by favoring
ChREBP translocation to the nucleus and transactivation [28]. The key role of G6P was supported
by the identification of a putative G6P recognition motif in the transactivation domain, called
glucose-activation conserved element (GRACE), suggesting the possibility of an allosteric regulation of
ChREBP by G6P [43]. High glucose also stimulates ChREBP activity and affinity to ChoRE sequences
through acetylation and/or O-GlcNacetylation [44,45]. Finally, during fasting periods, phosphorylation
of ChREBP by AMPK, in response to glucagon or to an increase in cellular AMP, is responsible for its
cytoplasmic retention and/or for its decreased binding to target promoters [46,47].

In conclusion, ChREBP is a carbohydrate-signaling transcription factor, which masters, in the
liver, the storage of lipids in feeding response. Recent studies have also supported the importance of
ChREBP in the regulation of fructose metabolism [48,49].
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4. Imbalance of Glucose-6 Phosphate Metabolism Leads to Metabolic Diseases and Promotes
Hepatocarcinogenesis

In this review, we have chosen to illustrate two different pathological states characterized by
impaired glucose metabolism. Firstly, type 2 diabetes is a chronic disease with the status of a
global pandemic that is closely linked to overnutrition and obesity [50,51]. The main hallmark of
diabetes is hyperglycemia due to insulin resistance and an overproduction of glucose by the body [52].
Hyperglycemia results in non-enzymatic glycosylation (glycation) and thus loss of function of proteins,
glucose-induced oxidative damage and other adverse effects such as macrovascular and microvascular
complications [53]. The second metabolic disease characterized by carbohydrate metabolism disruption
is GSDI. This is a rare genetic disease (1 birth over 100,000) due to mutations in G6PC (that cause
GSDIa) or G6PT (that cause GSDIb) leading to a loss of G6Pase activity and endogenous glucose
production. In consequence, patients develop severe hypoglycemia during short fasting periods [54].
Thus, although type 2 diabetes and GSDI appear to be opposite diseases in terms of glucose production
and insulin sensitivity, the liver is chronically exposed to either hyperglycemia or G6P accumulation,
respectively, leading the same metabolic consequences, in particular hepatic steatosis (Figure 2).
Comparing type 2 diabetes and GSDI will allow us to highlight metabolic perturbations that promote
tumour development in relation to the ectopic accumulation of lipids in the liver.

In both type 2 diabetes and GSDI, liver metabolism is characterized by an increased metabolic
flux downstream of G6P (Figure 2). Even if glucose uptake is impaired in obese and/or diabetic mice or
patients, high blood glucose levels are responsible for the activation of all G6P-dependent pathways
previously described [7]. Subsequently, one major metabolic consequence is an increase in triglyceride
synthesis by the liver leading to hepatic steatosis [55,56]. Indeed, up to 70% of diabetic subjects
may present NAFLD [56,57] and all GSDI develop a NAFLD-like pathology [54]. In insulin-resistant
states, hyperglycemia and hyperinsulinemia are in part responsible for enhancing de novo lipogenesis
through the activation of both ChREBP and SREBP1c. Interestingly, both transcription factors are
also induced in the context of a high carbohydrate feeding independently of insulin signaling [58].
As previously mentioned, it has been shown that the global or liver-specific inhibition of ChREBP
protected mice against carbohydrate-induced hepatic steatosis [29,33]. However, the effects of ChREBP
inhibition on hepatic insulin sensitivity are still controversial. In GSDI, the absence of G6Pase activity
leads to the accumulation of G6P in the liver and consequently the accumulation of glycogen and
lipids, responsible for hepatomegaly and hepatic steatosis. Contrarily to diabetes, lipid synthesis is
activated by ChREBP but independently of liver X receptor (LXR) and SREBP-1c [59]. The lack of
SREBP-1c activation is probably due to a low intensity of insulin signaling in GSDI [37]. De novo
lipogenesis is not the only process contributing to fatty liver. Indeed, the accumulation of lipid is
also caused by an unbalanced diet, elevated non-esterified fatty acid due to a decreased inhibition of
adipose tissue lipolysis, and reduced hepatic VLDL export [60,61]. All these disturbances contribute to
hypertriglyceridemia and hypercholesteridemia observed in diabetes and GSDI. In conclusion, the
liver metabolism of diabetes and GSDI is very similar, albeit exacerbated in GSDI, with G6P being at
the metabolic crossroad as a main responsible for metabolic reprogramming [39,62].

Interestingly, both diabetes and GSDI patients are prone to the development of hepatic tumors.
In diabetes, NAFLD can progress to liver fibrosis associated with inflammation i.e., non-alcoholic
steatohepatitis NASH, cirrhosis and finally to the development of HCC. However, an important fraction
of obese/diabetic patients develop HCC in the absence of liver cirrhosis [63,64]. Interestingly, GSDI
subjects develop simple hepatic steatosis, which was long considered as a benign reversible condition.
Nonetheless, lipid accumulation in the liver is a fertile ground for the development of hepatic tumors
and most of patients with GSDI develop hepatocellular adenomas (HCA) that can later progress into
HCC [54]. Despite the important accumulation of glycogen and lipids, GSDI patients present only
low-grade hepatic inflammation and no hepatic injuries (namely normal hepatic transaminase levels
and absence of liver failure). It is noteworthy that in obese/diabetic patients a part of HCA arises
at the state of NAFLD characterized by a low-grade inflammation and may progress to HCC [65].
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The comparison of HCC occurrence in NAFLD and GSDI livers argues for a dominant role of metabolic
reprogramming in the molecular induction of tumor development.

Interestingly, tumor cells are metabolically reprogrammed to fuel cell proliferation, mostly by
increasing glucose uptake and flux through aerobic glycolysis (Warburg effect) and anabolic pathways
(PPP and de novo lipogenesis). The Warburg effect is characterized by high rates of glycolysis and
lactic acid fermentation that occur in the cytosol regardless of the oxygen level. This provides essential
bioenergetic substrates for cell growth and replication, i.e., components needed for cellular membrane
biogenesis and amino acids and nucleotide synthesis for cell division. Recently, we showed that GSDI
hepatocytes exhibit the main characteristics of cancer cell metabolism, with a Warburg-like metabolic
reprogramming that predisposes GSDIa livers to tumor development [15]. Indeed, we observed
a hyperactivation of the glycolysis pathway notably characterized by an overexpression of the M2
isoform of pyruvate kinase in the tumors and an increase in lactate production. Moreover, OXPHOS
analyses revealed a decrease in mitochondrial respiration with a reduction of pyruvate oxidation [39].

A rational therapeutic approach for the treatment of NAFLD is to increase hepatic energy
expenditure and thereby increase hepatic fat oxidation. Recently, we showed that the use of PPAR-α
agonists, in particular fenofibrate, prevented NAFLD and hepatic injuries in GSDI, as previously
described in diabetes [66–68]. Interestingly, the activation of β-oxidation by fenofibrate promoted
the utilization of G6P through lipid metabolism, avoiding the accumulation of glycogen [66].
In diabetes, thyroid hormone receptor-β agonist combined with glucagon treatment, or glucacon
like peptide 1 agonist-gastric inhibitory peptide-glucagon tri-conjugate [69], or liver targeted
mitochondrial protonophores [70,71] were shown to reverse NAFLD in preclinical studies. Interestingly,
glucose-lowering medications such as metformin also reduce the risk of HCC in diabetes, suggesting
that better control of hepatic glucose metabolism should permit prevention of carcinogenesis.

To conclude, the activation of G6P-mediated metabolism is a hallmark of both GSDI and diabetes
that causes hepatic steatosis and may promote cell proliferation and liver cancer. Thus, an optimal
metabolic control, thanks to a strict diet with a reduced consumption of simple carbohydrates, should
prevent tumor occurrence in GSDI [54]. In diabetes, better control of hyperglycemia should also
permit better control of glucose/G6P metabolism and its possible consequences in hepatocytes. Thus,
comparing these two metabolic diseases is a useful approach to better understand the key role of G6P
in the liver both in health and pathological conditions.
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Abstract: Obesity is the primary risk factor for the pathogenesis of non-alcoholic fatty liver disease
(NAFLD), the worldwide prevalence of which continues to increase dramatically. The liver plays
a pivotal role in the maintenance of whole-body lipid and glucose homeostasis. This is mainly
mediated by the transcriptional activation of hepatic pathways that promote glucose and lipid
production or utilization in response to the nutritional state of the body. However, in the setting of
chronic excessive nutrition, the dysregulation of hepatic transcriptional machinery promotes lipid
accumulation, inflammation, metabolic stress, and fibrosis, which culminate in NAFLD. In this
review, we provide our current understanding of the transcription factors that have been linked to the
pathogenesis and progression of NAFLD. Using publicly available transcriptomic data, we outline
the altered activity of transcription factors among humans with NAFLD. By expanding this analysis
to common experimental mouse models of NAFLD, we outline the relevance of mouse models to the
human pathophysiology at the transcriptional level.

Keywords: non-alcoholic fatty liver disease; non-alcoholic steatohepatitis; transcription factors;
inflammation; metabolic stress; fibrosis; lipid homeostasis; glucose homeostasis

1. Introduction

Obesity often results in the dysregulation of lipid and glucose metabolism and is therefore the
primary risk factor for the pathogenesis of metabolic disorders, including cardiovascular disease,
type 2 diabetes mellitus (T2DM), and non-alcoholic fatty liver disease (NAFLD) [1]. The global
prevalence of NAFLD, which was 15% in 2005, has quickly escalated to 24% by 2016 in a parallel
trend to obesity [2]. NAFLD encompasses a spectrum of pathologies ranging from hepatocellular
lipid accumulation (steatosis) to non-alcoholic steatohepatitis (NASH) characterized by steatosis and
inflammation. In addition, chronic inflammation activates hepatic stellate cells (HSC), which promote
fibrosis by secreting type I and III collagen and fibronectin into the extracellular matrix (ECM) [3].
When fibrotic NASH remains untreated, it can lead to cirrhosis and hepatocellular carcinoma (HCC) [4].
Despite alarming increases in prevalence, the treatment strategy of NAFLD remains limited to weight
loss regiments and requires a more complete understanding of diet-induced pathogenesis of NAFLD
in obese patients [5].
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The pathogenesis of NAFLD is complex, and evolving theories have culminated in a two-hit
versus multiple-hit hypotheses [6]. In the ‘two-hit hypothesis’, the first hit originates from the
accumulation of more than 5% hepatic steatosis, during which insulin resistance emerges as a
pathogenic contributor. This makes the liver more susceptible to a second hit, including oxidative
stress, the production of pro-inflammatory cytokines, and apoptosis, which progress the disease
to the necro-inflammatory stage defined as NASH [7]. In contrast, the ‘multiple-hit’ hypothesis
encompasses the interplay of multiple factors whereby genetics, environment, unhealthy dietary
habits, insulin resistance, adipocyte differentiation, and the intestinal microbiota together contribute to
disease development and progression [8]. Regardless of the source of the hit (s), hepatic responses to
extrahepatic stimuli are controlled by well-described transcriptionally regulated pathways that help
transcribe the relevant biological machinery to maintain energy homeostasis. However, obesity-induced
maladaptive activation or the inhibition of these transcriptional regulators often exacerbates lipid
accumulation, insulin resistance, inflammation, and fibrosis [9].

The efforts toward identifying the promoters of obesity-induced NAFLD have relied heavily
on rodent models due to limited access to and the variability within human samples arising from
differences in disease stage, age, sex, medication, body weight, and other lifestyle choices such
as alcohol consumption. However, rodent models do not capture all the features of the human
pathophysiology. The rodent NAFLD models described in this review are categorized by their mode of
induction using diet, chemicals, or genetic alteration (Box 1). For the diet-induced models, we highlight
high-fat diet (HFD), Western diet (WD), methionine- and choline-deficient diet (MCD), choline-deficient
l-amino acid-defined (CDAA) diet, and fructose-palmitate-cholesterol and trans-fat (FPC or NASH)
diet. The chemically induced models include the combination of HFD with streptozotocin (STZ)
supplementation or the use of carbon tetrachloride (CCl4). For genetic models, we highlight the
APOE2 knock-in (APOE2-KI) mouse [10], hepatocyte-specific phosphatase and tensin homolog (PTEN)
knockout model [11], and Mice expressing urokinase-type plasminogen activator (uPA) under the
control of the major urinary protein (MUP) promoter (MUP-uPA mice) [12].

In this review, we discuss our current understanding of the transcription factors that have been
linked to the pathogenesis and progression of NAFLD. Transcription factors that are associated with
obesity-induced liver injury and the pathogenesis and progression of NAFLD often serve essential
biological functions in the maintenance of energy homeostasis and stress response. Furthermore,
recent studies have indicated that the gut microbiota may contribute to NAFLD by altering the
production of endogenous substrates that control the activity of hepatic transcription factors. Therefore,
we have categorized these transcriptional regulators under lipid and glucose metabolism, inflammation,
metabolic stress, fibrosis, and microbiome dysbiosis. Key transcriptional regulators that play significant
roles in multiple metabolic responses have been addressed in all relevant categories.
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Box 1. Mouse models of non-alcoholic fatty liver disease (NAFLD).

Diet-based models
High-fat diet (HFD, 60 kcal% fat) and Western diet (WD, 40% kcal fat and 40% kcal carbohydrates)—HFD feeding of

mice (8–12 weeks) leads to a phenotype similar to simple steatosis in humans, which is characterized by obesity,
insulin resistance, and hyperlipidemia [13]. Alanine aminotransferase (ALT) and aspartate aminotransferase
(AST) levels also become exacerbated after extended exposure (>8 months). However, this diet barely induces
fibrosis even after extended exposure (up to 1 year) [13].

MCD diet—In the MCD diet, the absence of methionine (4–8 weeks) leads to hepatic injury, inflammation,
and fibrosis, while the deficiency of choline leads to macrovesicular steatosis. Due to the nature of its pathogenesis,
this model is less representative of the initiation of NAFLD in humans. Nonetheless, the diet induces progressive
steatohepatitis leading to fibrosis, which is histologically similar to the human disease. The main drawback of
MCD is its induction of body weight loss and decrease in plasma triglyceride levels [14].

CDAA diet—CDAA is similar to MCD due to their shared deficiency in choline. However, in CDAA, proteins
are substituted with an equivalent and corresponding mixture of l-amino acids [15]. Animals fed CDAA develop
the same or perhaps a more severe degree of NASH as well as a larger increase in alanine aminotransferase
(ALT) levels, albeit on a longer time frame (12 weeks) [15].

FCP (NASH) diet—The FCP or NASH diet entails a HFD supplemented with 1.25% cholesterol and
drinking water containing glucose and fructose (95%/45%, w/v). The FCP diet includes Western and American
Lifestyle-Induced Obesity Syndrome model diets to achieve both metabolic and hepatic NASH features within 4
months. Fructose-supplemented drinking water for eight weeks results in simple steatosis in rodents without
features of NASH and induces a significant increase in body weight and plasma triglyceride and glucose
levels [16].

Pharmacological models
STAM—STZ-induced T2DM is a well-known experimental model of T2DM and is achieved by the

administration of a low dose of STZ shortly after birth, which results in the apoptotic death of insulin-secreting
pancreatic islets. When this approach is combined with HFD, it can be used as a model for NAFLD and
NASH [17]. This model results in simple steatosis at 6 weeks of age, NASH with inflammatory foci and
ballooning at 8 weeks, and progressive peri-cellular fibrosis starting between 8 and 12 weeks. Starting at 6 weeks
of age, mice exhibit elevated ALT levels and fasting glycemia. Multiple hepatocellular carcinomas appear after
20 weeks of treatment [17].

CCl4—Supplementation of diet with CCl4 exacerbates the histological features of NASH, fibrosis, and tumor
development in the setting of HFD. HFD coupled with CCl4 results in advanced fibrosis at 12 weeks and HCC at
24 weeks in rodent models [18].

Genetic models
Apoe—A rodent model that replicates the early stages of NAFLD is the APOE2-KI mouse in which the mouse

Apoe gene is replaced by the human APOE2 allele. In addition to dyslipidemia and atherosclerosis, APOE2-KI
mice develop diet-induced NASH when fed WD. A major advantage of this mouse model is that it displays
good responses to pharmacological treatments [10].

Pten—PTEN is a tumor suppressor gene mutated in many human cancers, and its expression is reduced or
absent in almost half of hepatoma patients, making this a relevant model for human HCC [11]. Hepatocyte-specific
PTEN deficiency results in steatohepatitis and HCC in mouse models [11].

MUP-uPA mice—This model is based on feeding HFD to MUP-uPA transgenic mice, which express high
amounts of uPA specifically in hepatocytes during the first 6 weeks of life [12]. HFD-fed MUP-uPA mice
exhibit increased HSC activation and a substantial upregulation of collagen gene expression. Key diagnostic
parameters of NASH, including ballooning, inflammatory infiltrates and pericellular and bridging fibrosis,
are evident following 4 months of HFD and are indistinguishable from human NASH, making this a relevant
study model [12].

2. Lipid Metabolism

Hepatic steatosis is a consequence of increased hepatic lipid uptake, increased de novo lipogenesis,
and reduced lipid clearance. Excessive nutrition, accompanied by hyperinsulinemia and hyperglycemia,
drives steatosis by promoting de novo lipogenesis in the liver, which contributes substantially to the
accumulation of triglycerides and other lipid species [19]. Hepatic lipid homeostasis is mainly
regulated by peroxisome proliferator-activated receptor alpha (PPARα), PPARγ, PPARδ and sterol
regulatory element binding protein 1c (SREBP1c), which coordinate transcriptional responses to altered
metabolic conditions such as feeding and fasting to promote fat storage or catabolism, respectively.
Other transcription factors of lipid metabolism that are altered in the setting of NAFLD include the
constitutive androstane receptor (CAR), liver X receptor (LXR), Cyclic AMP-responsive element-binding
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protein H (CREBH), Farnesoid X receptor (FXR), signal transducer and activator of transcription 5
(STAT5), and CCAAT/enhancer binding protein alpha (C/EBPα) (Table 1).

Table 1. Changes in the activity of transcription factors that regulate glucose and lipid metabolism,
inflammation and fibrosis in the setting of NAFLD in humans and mice.

Factor Model Pathway Regulation Reference

PPARα Humans, mice Lipid metabolism, inflammation,
fibrosis Upregulation [20]

PPARγ Humans, mice Lipid metabolism, inflammation,
fibrosis Upregulation [20]

SREBP Family Humans, mice Lipid metabolism Genetic variations increase risk
of NAFLD [21]

ChREBP Humans, mice Lipid metabolism Upregulation [22]

CAR Humans, mice Lipid metabolism, inflammation Upregulation [23]

LXR Humans Lipid metabolism, inflammation Upregulation [24]

FXR Humans Lipid metabolism Downregulation [25]

STAT5 Humans Lipid metabolism Upregulated [26]

C/EBPα Mice Lipid metabolism Upregulation [27]

PGC1α Mice Glucose homeostasis Downregulation [28]

FoxO Humans Glucose homeostasis Upregulation [29]

HNF4α Humans Central regulator, Glucose
homeostasis Downregulation [25]

NF-κB Humans, mice Inflammation Upregulation [30]

IRFs Mice Inflammation Upregulation [31]

STAT1/3 Mice Inflammation Upregulation [32]

AP-1 and c-Jun Humans, mice Inflammation, fibrosis Upregulation [30,33]

SHP Humans, mice Inflammation Downregulation [34]

Nrf2 Mice Inflammation Upregulation [35]

Runx2 Mice Inflammation Upregulation [36]

C/EBPβ Inflammation

IRE1α Human Metabolic stress Upregulation [37]

Xbp1 Mice Metabolic stress Upregulation [38]

eIF2α Mice Metabolic stress Upregulation [39]

ATF4 Humans Metabolic stress Upregulation [40]

ATF6 Humans Metabolic stress Upregulation [41]

Smad Humans, mice Fibrosis Upregulation [42]

TGFβ Humans, mice Fibrosis Upregulation [42]

AEBP1 Humans, mice Fibrosis Upregulation [43]

AATF/che-1 Humans, mice Fibrosis Upregulation [44]

YAP Humans, mice Fibrosis Upregulation [45]

Abbreviations: peroxisome proliferator-activated receptor (PPAR), sterol regulatory element binding protein (SREBP),
carbohydrate-responsive element-binding protein (ChREBP), constitutive androstane receptor (CAR), liver X receptor
(LXR), farnesoid X receptor (FXR), signal transducer and activator of transcription (STAT), CCAAT/enhancer binding
protein (C/EBP), PPARγ coactivator 1 alpha (PGC1α), forkhead protein O (FoxO), hepatocyte nuclear factor (HNF),
nuclear factor of the κ light chain enhancer of B cells (NF-κB), interferon regulatory factors (IRFs), activator protein 1
(AP-1), small heterodimer partner (SHP), nuclear factor erythroid 2-related factor 2 (Nrf2), runt-related transcription
factor 2 (Runx2), inositol-requiring enzyme 1α (IRE1α), X box-binding protein 1 (Xbp1), eukaryotic translation
initiation factor 2α (eIF2α), activating transcription factor (ATF), transcription factors against decapentaplegic
homolog (Smad), transforming growth factor β (TGFβ), adipocyte enhancer binding protein 1 (AEBP1), apoptosis
antagonizing transcription factor (AATF/che-1), yes-associated protein (YAP).

2.1. PPARα

PPARα belongs to the PPAR nuclear receptor family. PPARα is mostly expressed in hepatocytes
where it becomes activated upon binding by fatty acids (FAs) and promotes FA uptake and utilization
through β-oxidation and ketogenesis [46]. Hepatic PPARα expression is increased in male mice and
both male and female humans with NAFLD [20,46]. Suggestive of a protective function, mice lacking
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PPARα expression exhibit more severe steatosis [47]. Therefore, NAFLD-induced increases in PPARα
abundance can be further enhanced by its pharmacological activation: the PPARα agonist WY-14643
protects mice against steatosis and steatohepatitis by preventing intrahepatic lipid and lipoperoxide
accumulation [47]. Since WY-14643 causes toxicity in humans, other fibrates have been extensively
used in the treatment of hypertriglyceridemia. However, these studies failed to establish benefits
against NASH, which is most likely due to the widespread extrahepatic expression of PPARα [48].

2.2. PPARγ

Another member of the PPAR family, PPARγ is also activated by FA ligands and promotes
lipogenesis and lipid accumulation. In humans and mice, two isoforms of PPARγ exist: PPARγ1 is
found in nearly all tissues except muscle, while PPARγ2 is mostly expressed in adipose tissue and
the intestine. PPARγ2 expression is upregulated in the liver and adipose tissue of obese humans
and high-fat diet (HFD)-fed mice, whereas the PPARγ1 expression remains unchanged under these
conditions [49]. In hepatocytes, PPARγ1 increases the transcription of genes that are required for FA
uptake and de novo lipogenesis [50]. Meanwhile, lipidomic analyses suggest that PPARγ2 plays an
important anti-lipotoxic role when induced ectopically in liver and muscle by facilitating the deposition
of lipid droplets and preventing the accumulation of reactive lipid species, such as ceramides and
pro-inflammatory lysophosphatidylcholine [51]. HFD-fed mice with a hepatocyte specific loss of
PPARγ expression exhibit a reduction of hepatic lipid vacuoles as well as the downregulation of
genes involved in de novo lipogenesis [52]. Furthermore, the liver-specific ablation of PPARγ in ob/ob
mice reduces hepatic triglycerides despite increasing serum FAs [53]. Livers of NAFLD patients have
increased hepatic PPARγ expression [20,46]. Whereas increased PPARγ activity within hepatocytes
would be expected to contribute to steatosis [54,55], the treatment of patients with the PPARγ agonists
rosiglitazone or pioglitazone result in reduced hepatic steatosis [56–58]. This alleviation could be
explained by the extrahepatic effects of PPARγ activation in the adipose tissue where it promotes
the storage of excess energy in the form of lipid droplets, thereby limiting exposure of the liver to
excess lipids.

2.3. PPARδ

Similar to other PPARs, PPARδ binds to the PPAR response element (PPRE) to initiate or repress the
expression of target genes [59]. PPARδ is ubiquitously expressed and is activated by polyunsaturated
fatty acids and their metabolites. In mouse livers, PPARδ prevents lipid accumulation by increasing
β-oxidation and autophagy. In addition, the activation of PPARδ in the adipose tissue of mice
upregulates the expression of genes involved in β-oxidation and energy dissipation [60,61]. Recent
clinical studies using PPARδ agonists atorvastatin and cardarine reduced hepatic fat content in
overweight patients with mixed dyslipidemia [61,62].

2.4. SREBP

The SREBP family transcription factors consist of three isoforms: SREBP1a, SREBP1c, and SREBP2.
Each isoform exhibits a different tissue expression pattern and metabolic control [63]. SREBP1a is the
predominant isoform in the intestine, spleen, and cultured cells, while SREBP1c and SREBP2 exhibit
higher abundance in the liver [63]. SREBP1a is a potent activator of genes that mediate the synthesis
of cholesterol, fatty acids, and triglycerides. The roles of SREBP1c and SREBP2 are more restricted
than those of SREBP1a. SREBP1c promotes the transcription of genes involved in lipogenesis, such as
acetyl-coenzyme A (CoA) carboxylase (ACC), FA synthase (FASN), and steroyl–CoA desaturase in
response to insulin and high-energy state [64]. By contrast, hepatic markers for energy deprivation,
such as glucagon signaling (protein kinase A [PKA], AMP activated protein kinase [AMPK]) and the
deacetylase sirtuin1 (SIRT1) inhibit SREBP1c, suggesting that SREBP1c does not promote hepatic lipid
synthesis in the setting of starvation [65]. Among the genes involved in lipogenesis, SREBP1c also
promotes the transcription of patatin-like phospholipase3 (PNPLA3), which in turn stimulates lipid
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accumulation [66]. Independent studies in humans have confirmed that PNPLA3 variants are strongly
associated with the severity of NAFLD and NASH [67–69]. SREBP1c is upregulated in the livers of
humans and mice with NAFLD [70]. Interestingly, there is also a positive correlation between single
nucleotide polymorphisms (i.e., rs2297508) as well as rare variants of SREBP1 with the risk of developing
NAFLD [21]. Unlike SREBP1c, SREBP2 preferentially activates cholesterol synthesis [71]. In mice,
SREBP2 contributes to the onset of NASH by triggering cholesterol accumulation [72]. Increased
hepatic SREBP2 is also associated with increased free cholesterol in NASH patients [73].

2.5. CAR

CAR is a member of the nuclear receptor superfamily [74]. It mainly functions as a sensor of
endobiotic and xenobiotic substances, as CAR-activated genes regulate drug metabolism and enhance
bilirubin clearance [74]. Unlike most nuclear receptors, this transcriptional regulator is constitutively
active in the absence of a ligand. CAR activity is anti-obesogenic and improves insulin sensitivity [75].
The metabolic benefits of CAR activation stem from the combined effects of reduced lipogenesis,
very low-density lipoprotein (VLDL) secretion, and gluconeogenesis, as well as increased peripheral fat
mobilization for thermogenesis in brown adipose tissue [75]. The anti-steatotic effect of CAR was first
demonstrated using a mouse model with the genetic ablation of cytoplasmic CAR retention protein
(CCRP), which isolates CAR to the cytosol and inactivates it. Subsequent CAR activation represses
lipogenic gene expression and increases β-oxidation [76]. Similar to mouse models of NAFLD, CAR is
also upregulated in the livers of patients with NAFLD [23].

2.6. LXR

LXR is a member of the nuclear receptor family of transcription factors that is closely related
to PPARs [77]. LXR forms heterodimers with the obligate partner retinoid X receptor (RXR),
which is activated by retinoic acid and cholesterol derivatives. LXR is an important regulator
of cholesterol, FA, and glucose homeostasis [77]. LXR activation increases hepatic triglyceride
accumulation and cholesterol metabolism in both humans and mice and initiates bile acid degradation
in mice [78]. Humans express two LXR family members, namely LXRα (NR1H3) and LXRβ (NR1H2).
LXRα expression increases by 2- and 3-fold in the livers of NAFLD and NASH patients, respectively,
compared to healthy controls [24]. Furthermore, LXRα expression positively correlates with the amount
of hepatic fat and hepatic expression of the cholesterol transporter ATP-binding cassette sub-family G
member 5 (ABCG5/8), the FA transporter cluster of differentiation 36 (CD36), and SREBP1c [24].

2.7. CREBH

CREBH is primarily expressed in the endoplasmic reticulum (ER) of cells in the liver and small
intestine [79,80]. CREBH expression increases in response to fasting through glucagon signaling [81].
CREBH expression is also controlled by the binding of glucocorticoid or PPRE to its promotor region [82].
Therefore, CREBH expression can be induced by a variety of PPARα agonists such as palmitate and
oleate [82]. ER-anchored CREBH becomes activated in response to hepatic lipid accumulation and
VLDL assembly. The activation of CREBH requires ER-to-golgi trafficking followed by proteolytic
cleavage and nuclear translocation [81,83,84]. CREBH activates a group of genes that are involved in
TG and lipoprotein production [85,86]. CREBH also binds to and functions as a co-activator for both
PPARα and LXRα to promote FA uptake and utilization [86]. CREBH-deficient mice are susceptible to
hepatic steatosis following fasting [81] or diets with high-fat content [79,86]. Interestingly, the livers
of CREBH-deficient mice exhibit the reduced expression of genes that promote de novo lipogenesis
and FA elongation [86]. Observed steatosis most likely arises from the reduced hepatic expression of
genes involved in FA oxidation and increased lipolysis in the adipose tissue, resulting in an increased
flow of FA from adipose tissue to the liver [79]. Furthermore, fibroblast growth factor (FGF) 21 is a
critical CREBH target that reduces hepatic lipid storage. CREBH overexpression in the livers of mice
suppresses hepatic lipid accumulation by increasing FGF21 secretion [87].
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2.8. FXR

FXR is a major member of the ligand-activated nuclear receptor superfamily [78]. The family
consists of four isoforms namely, FXRα1, FXRα2, FXRβ1, and FXRβ2 [88]. Similar to LXR, bile acids
are natural ligands for FXR, which plays an important role in regulating bile acid homeostasis, glucose
and lipid metabolism, intestinal bacterial growth, and hepatic regeneration [89]. While LXR facilitates
the storage of carbohydrate- and fat-derived energy, FXR decreases TG levels and improves glucose
metabolism [90]. One of the primary functions of FXR activation is the suppression of CYP7A1,
the rate-limiting enzyme in bile acid synthesis from cholesterol [91]. FXR expression is decreased in
NASH patients [25], which can aggravate the development of steatosis and NASH: (1) FXR activation
represses hepatic lipogenesis via the FXR–SHP–SREBP1c pathway (see below for more on small
heterodimer partner [SHP]), (2) FXR activation promotes β-oxidation by stimulating the expression of
PPARα and CPT1, and (3) FXR activation reduces hepatic FA uptake by reducing the expression of
CD36 [89].

2.9. STAT5

STAT5 belongs to a family of intracellular transcription factors that are activated by membrane
receptor-associated Janus kinases (JAK). The growth hormone (GH)-mediated activation of STAT5 [92]
plays an important role in hepatic fat metabolism through the downregulation of CD36 [93].
The liver-specific loss of STAT5 in mice induces hepatic steatosis following a HFD [92]. These mice
also exhibit hyperglycemia, hyperinsulinemia, hyperleptinemia, and elevated free FA and cholesterol
concentrations following HFD. At the transcriptional stage, the loss of STAT5 results in the transcription
of genes involved in lipid uptake (CD36), VLDL uptake (very low-density lipoprotein receptor), and
lipogenesis (stearoyl-CoA desaturase and PPARγ) [93]. However, it is unclear whether STAT5 directly
regulates the expression of these factors. In addition, its relevance in human steatosis associated with
GH-deficiency is yet to be established.

2.10. C/EBPα

C/EBPα belongs to a transcription factor family of six members which are involved in a variety of
cellular responses [94]. C/EBPα plays a role in lipogenic gene expression by inducing the expression of
PPARγ [95]. The liver-specific ablation of C/EBPα reduces lipogenic gene expression and triglycerides
in the livers of leptin-deficient ob/ob mice, which otherwise display severe steatosis [95]. These findings
were confirmed by a similar observation of reduced hepatic gene expression following siRNA-mediated
inhibition of C/EBPα expression in the livers of leptin receptor-deficient (db/db) mice [27].

3. Glucose Metabolism

The liver does not only play a central role in systemic lipid homeostasis but also regulates
the glucose balance in circulation. This is mediated by the activation of carbohydrate-responsive
element-binding protein (ChREBP) in response to increases in plasma glucose and the nuclear
localization of PPARγ coactivator 1 alpha (PGC1α), cAMP response element binding protein (Creb),
CREBH, forkhead protein O1 (FOXO1), and hepatocyte nuclear factor 4α (HNF4α) in response to
fasting to promote hepatic glucose production [96] (Table 1). Furthermore, PPARδ also plays a role in
glucose homeostasis. The exacerbation of hepatic glucose production coupled with hyperglycemia
and insulin resistance play an important pathogenic role in NAFLD.

3.1. ChREBP

ChREBP consists of ChREBPα, the full-length isoform, or ChREBP-β, the truncated isoform [97].
ChREBPα is directly activated by glucose, independently from insulin signaling [98]. Little is known
about ChREBPβ, which was reported to be expressed in a glucose- and ChREBP-dependent manner
whereby glucose-activated ChREBPα initiates ChREBPβ transcription from an alternate promoter [99].
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In the liver, ChREBP promotes glycolysis and lipogenesis. ChREBP expression is increased in the
livers of NASH patients with advanced steatosis [100]. By contrast, decreased ChREBP expression is
associated with severe insulin resistance [22]. This pattern indicates that ChREBP is essential for the
storage of excess glucose as triglycerides. In fact, mice that overexpress ChREBP exhibit improved
insulin sensitivity and glucose tolerance despite having more pronounced hepatic steatosis. Together,
these studies have demonstrated that increased ChREBP activity improves insulin sensitivity by
promoting simple steatosis without lipotoxicity [22].

3.2. PGC1α

The PGC1 family of transcriptional co-activators play a central role in the regulation of metabolism.
The PGC1 family consists of three members, namely PGC1α, PGC1β, and the PGC-related co-activator
(PRC), which interact with transcription factors and nuclear receptors to exert their biological functions.
PGC1α expression is induced by metabolic cues such as exercise, cold, and fasting [101]. The activation
of PGC1α in the liver drives the expression of genes that are essential to gluconeogenesis, FA oxidation,
lipid transport, and mitochondrial biogenesis. The activity of PGC1α becomes impaired in the setting of
liver injury and steatosis in mice, and the loss of PGC1α has been linked to the increased susceptibility
to NAFLD in HFD-fed mice [102]. PGC1α haploinsufficiency in mouse liver inhibits β-oxidation and
increases triglyceride synthesis, leading to hepatic steatosis and insulin resistance. Similarly, PGC1α
overexpression in rat hepatocytes results in reduced concentrations of hepatic triglycerides in vitro
and in vivo, due to increased β-oxidation [28].

3.3. CREB

CREB becomes activated in response to glucagon-mediated increases in cellular cAMP.
The knockdown of CREB dramatically reduces fasting plasma glucose concentrations in several rodent
models for obesity and type 2 diabetes, including Zucker diabetic fatty (ZDF) rats, STZ-treated/HFD-fed
rats, and ob/ob mice. CREB does not only promote the expression of gluconeogenic genes but also
increases plasma TG and cholesterol concentrations as well as hepatic steatosis by activating de novo
lipogenesis in the liver [103].

3.4. CREBH

CREBH was reported to bind and upregulate genes that contain cAMP-responsive elements,
including phosphoenolpyruvate carboxykinase 1 (Pck1) and glucose-6-phosphatase (G6Pase) [80,81],
which are essential promoters of gluconeogenesis. CREBH also upregulates the rate-limiting enzyme
for hepatic glycogenolysis, namely glycogen phosphorylase (Pygl) [81]. Consequently, CREBH
overexpression in the livers of mice increases plasma glucose levels, while its knockdown reduces
circulating glucose [81].

3.5. FOXO

The forkhead protein family comprises of more than 100 members in humans and are enumerated
FOXA to FOXR based on their sequence similarity [104]. The members of the FOXO subfamily,
which consists of FOXO1, FOXO3, FOXO4, and FOXO6, are regulated by insulin signaling whereby
Akt-mediated phosphorylation sequesters FOXOs within the cytosol, inhibiting their transcriptional
activity in the nucleus [105]. FOXO family members mediate the expression of genes that play a role in
cell death, DNA repair, glucose, and energy metabolism [106]. Hepatic FOXO1 regulates the expression
of both gluconeogenic and lipogenic genes. Under fasting conditions, FOXO1 drives the expression
of gluconeogenic enzymes. In addition, FOXO1 induces the transcription of genes involved in the
hepatic assembly of VLDL, reducing hepatic steatosis [106]. The genetic ablation of FOXO increases
susceptibility to NAFLD and NASH in mice [105]. Specifically, the deletion of FOXO1/3 or FOXO1/3/4
genes in mouse livers leads to mild or moderate hepatic steatosis, even when mice are maintained on a
regular chow diet [105]. Exposing the mice to HFD supplemented with cholesterol further exacerbates
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steatosis in FOXO1/3/4-deficient mice [105]. Conversely, the overexpression of a constitutively active
FOXO1 reduces hepatic triglycerides [105]. On the other hand, livers of NASH patients exhibit a greater
expression of FOXO1 compared to patients with simple steatosis as well as metabolically healthy
patients with and without obesity [29]. More investigation into FOXO1 activity during different stages
of human liver disease is needed to establish mechanisms and physiological relevance.

3.6. HNF4α

HNF4α is a member of the nuclear hormone receptor superfamily and has been shown to play an
essential role in maintaining bile acid, lipid, and glucose homeostasis. HNF4α translates extracellular
endocrine signals and intracellular stress and nutritional state onto transcriptional responses in the
liver. HNF4α is regulated by growth hormone, glucocorticoids, thyroid hormone, insulin, transforming
growth factor beta (TGFβ), estrogen, and cytokines [107]. HNF4α target genes have been identified
in the liver, pancreas, and colon. In the liver, the targets include genes involved in glucose (PEPCK,
glucose-6-phosphatase (G6Pase)), bile (CYP7A1), xenobiotics and drug metabolism (CYP3A4, CYP2D6,
and CYP2E1) [108]. HNF4α also regulates circulating levels of cholesterol and triglycerides by inducing
the transcription of genes that encode for apolipoproteins. HFD-induced oxidative stress promotes
hepatic steatosis by blocking the activity of HNF4α in mice [109]. The expression of HNF4α is
decreased in NASH patients [25]. Furthermore, a systematic integrative analysis of gene transcription
has identified HNF4α as ‘the central gene’ in the NASH pathogenesis [25].

3.7. PPARδ

In addition to its activation of fatty acid oxidation, PPARδ improves glucose homeostasis and
protects from insulin resistance by promoting insulin secretion in the pancreatic islet β-cells [110,111]
and by increasing energy utilization [112]. Mice lacking PPARδ expression have reduced energy
expenditure and are glucose-intolerant. In contrast, receptor activation by GW50516, a PPARδ-specific
agonist, suppresses hepatic glucose output, improves insulin sensitivity and increases glucose disposal
in mice [112]. This increase in energy disposal has been linked to increased β-oxidation in the skeletal
muscle of mice following GW50516 treatment [113].

4. Inflammation

The hepatic inflammatory response is an important driving force for NASH progression as it
promotes sustained hepatic fibrogenesis. Transcription factors activated in response to inflammatory
stimuli mainly belong to the family of nuclear factor of the κ light chain enhancer of B cells (NF-κBs),
interferon regulatory factors (IRFs), STAT, and activator protein 1 (AP-1) [114]. Other factors that have
also been implicated in the transcriptional regulation of the inflammatory response include apoptosis
antagonizing transcription factor (AATF, synonym: che-1), SHP, Runt-related transcription factor 2
(Runx2), and C/EBPβ. In addition to inflammation-specific regulators, transcriptional regulators of
lipid homeostasis PPARα, PPARγ, CAR, and LXR also affect the hepatic inflammatory state (Table 1).

4.1. NF-κB

NF-κB is a protein complex that controls cytokine production and cell survival, and as such,
it plays a key role in the immune response to infection. NF-κB is also critical for the development
of inflammation in various metabolic disorders such as T2DM [115] and is highly activated in both
mice and patients with NASH [30,116]. The pharmacological inhibition of NF-κB signaling protects
MCD-fed mice from the pathogenesis of NASH with significant reductions in hepatocellular injury
and hepatic inflammation. Furthermore, the stage of inflammation and fibrosis in livers of NASH
patients correlates with the expression of the p65 subunit of NF-κB [117].
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4.2. IRFs

IRFs are a family of transcription factors that regulate the transcription of interferons and consist of
nine members. Most IRFs are involved in innate immunity and defense against pathogens. IRF family
members impose variable impacts on inflammation in the pathogenesis of NAFLD. Studies using mice
with the deletion of IRF7 expression indicated that IRF7 promotes weight gain, hepatic fat deposition,
and insulin resistance in the setting of HFD [118]. In contrast, a similar study using IRF9-deficient
mice demonstrated that IRF9 promotes insulin sensitivity and attenuates inflammation and hepatic
steatosis [119]. Interestingly, IRF9 was shown to interact with PPARα and activate its target genes [119].

4.3. STAT

STAT family members with inflammatory biological functions (STAT1 and STAT3) have been
associated with NAFLD and NASH. The oxidative hepatic environment in obesity inhibits the STAT1
and STAT3 phosphatase, T cell protein tyro-sine phosphatase (TCPTP), which results in increased
STAT1 and STAT3 signaling. This in turn increases the risk of developing NASH and HCC in the
setting of excessive nutrition [32]. Furthermore, the inactivation of TCPTP, coupled with increased
STAT1 and STAT3 signaling, are easily detectable events in the livers of humans with NASH [32].

4.4. AP1

AP1 activation requires the synthesis of c-Jun and c-Fos proteins and c-Jun phosphorylation by
c-Jun N-terminal kinase (JNK) for the full transactivation of target genes. Obese patients with NASH
exhibit an enhanced hepatic expression of AP1 targets [30]. JNK activation and the extent of c-Jun
nuclear localization correlates very well with the pathogenesis and progression of NASH in humans
and mouse models [33]. Activated c-Jun promotes nuclear accumulation of JNK, which provides
a positive feedback loop to further enhance AP1 transcriptional activity and exacerbate NASH
progression [120,121].

4.5. AATF

AATF mediates cell proliferation and survival [122–124]. Its expression in the liver increases with
simple steatosis [44]. Indicative of a role in inflammation, AATF expression increases in response to
tumor necrosis factor α (TNFα)-mediated activation of SREBP1 in cultured cells. In turn, AATF induces
the expression of the inflammatory cytokine monocyte chemotactic protein 1 (MCP1) by activating
STAT3. Hepatic AATF expression does not increase any further with disease progression to NASH [44],
suggesting that it plays a role in exacerbating simple steatosis toward the pathogenesis of inflammatory
stages of steatohepatitis. However, its contribution to the progression of NASH to advanced stages
remains unclear.

4.6. SHP

SHP is technically not a transcription factor, since it lacks a DNA binding domain but is still
classified as such due to its sequence homology to other nuclear receptor families. The principal
role of SHP is the repression of other nuclear receptors by binding and forming a dysfunctional
heterodimer. SHP is a critical repressor of various genes involved in glucose and lipid metabolism
and bile acid synthesis [125]. Several factors indicate a role in inflammation: first, SHP inhibits
inflammatory responses that are triggered by the Toll-like receptor (TLR) [126] as well as the NLR
family pyrin domain containing 3 (NLRP3) inflammasome, which consists of a multimeric protein
complex that triggers inflammatory cell death and the release of pro-inflammatory cytokines interleukin
(IL)-1β and IL-18 [127]. In addition, SHP suppresses inflammation by inhibiting transcription of the
chemokine CCL2 whose biological function is to recruit macrophages and promote inflammation [34].
The SHP-mediated mitigation of inflammatory responses could play a protective role in NASH. SHP
expression is drastically decreased in the livers of a mouse model of NASH and in the livers of
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NASH patients compared healthy or steatotic livers [34]. The rescue of SHP expression in the livers
of mice prevents the progression of NAFLD to NASH [34]. Mechanistically, the reduction of SHP
expression in NASH was linked to inhibitory binding of c-Jun to the SHP promoter, suggesting that
the JNK/SHP/NF-κB/CCL2 axis is a promising target for NASH prevention and treatment.

4.7. Runx2

Runx2 plays an important role in atherosclerosis. It has been indicated that atherosclerosis shares
a similar histopathology with NASH with respect to macrophage infiltration. Indeed, experiments in
mouse primary HSCs have elucidated a mechanism whereby Runx2 within HSCs promotes macrophage
infiltration by increasing the transcription of MCP1 [36].

4.8. C/EBPβ

C/EBPβ was originally identified as nuclear factor interleukin-6 (NFIL6) because of its inducibility
by IL-6 and its important role in the activation of acute inflammatory response genes in human
hepatoma cells [128]. The livers of mice lacking C/EBPβ express reduced markers of inflammation and
endoplasmic reticulum (ER) stress and exhibit decreased steatosis following an MCD diet. By contrast,
C/EBPβ overexpression increases the hepatic prevalence of PPARγ, ER stress, NF-κB activation,
and steatosis [27].

4.9. PPARα

In addition to its role in the regulation of metabolism, PPARα also exhibits anti-inflammatory
effects through its regulation of NF-κB [129]. The treatment of non-steatotic mice with the PPARα
agonist WY-14643 decreases the hepatic inflammatory gene expression profile, suggesting a direct
anti-inflammatory effect of PPARα independent of changes in liver triglycerides [130].

4.10. PPARγ

Hepatic PPARγ does not only regulate hepatocyte metabolism but also plays an important
regulatory role in liver-resident macrophages (Kupffer cells), where it acts as an inhibitor of macrophage
activation and cytokine production. This regulation is mediated through the PPARγ1-mediated
inhibition of AP-1, STAT, and NF-κB, which are the major regulators of macrophage activation and
TNFα synthesis [131]. Mice with Kupffer cell-specific loss of PPARγ expression exhibit increased
hepatic expression of inflammatory cytokines TNFα and IL1β and fibrosis in response to CCl4-induced
liver injury [132]. Conversely, PPARγ induction by rosiglitazone decreases the number of hepatic
Kupffer cells, attenuating the inflammatory response as well as steatosis in a diet-induced mouse
model of NAFLD [133].

4.11. CAR

CAR activation can potentially be used to delay or reduce the progression of NAFLD due to its dual
anti-steatotic and anti-inflammatory effects. In the MCD mouse model of NASH, the administration
of the CAR agonist 2,2′-[1,4-phenylenebis(oxy)]bis[3,5-dichloro]-pyridine (TCPOBOP) reduces
inflammation and hepatocellular apoptosis by reducing the accumulation of Kupffer cells and enhancing
the hepatic clearance of pro-inflammatory leukotriene B4 [134]. On the other hand, CAR knockout
mice exhibit improved lipid peroxidation and hepatic fibrosis after exposure to the MCD diet [135].
Therefore, the precise role of CAR in the pathophysiology of NASH requires additional studies.

4.12. LXR

Although LXR promotes inflammation, its impact on obesity and steatosis is inconsistent.
Mouse models with the deletion of LXR expression have indicated that LXR decreases inflammation
by inhibiting the transcription of TNFα, IL-6, and IL-1β but increases steatosis [136]. On the other
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hand, the treatment of mice with the LXR antagonist SR9238 generates both anti-steatotic [137] and
anti-fibrotic effects [138] with a dramatic reduction in steatosis, inflammation, and collagen disposition
in the livers of mice. Overall, all studies indicate that LXR could be a valuable target for the treatment
and prevention of NASH.

5. Metabolic Stress

The pathogenesis of NAFLD does not only depend on energy metabolism and inflammation but
has also been mechanistically linked to increased cellular stress. Upon excessive nutrition, the ER
cannot meet high metabolic demands and initiates the unfolded protein response (UPR) by activating
three transmembrane factors located on the ER membrane: protein kinase R-like ER kinase (PERK),
inositol-requiring enzyme 1α (IRE1α), and activating transcription factor 6 (ATF6). PERK activates
eukaryotic translation initiation factor 2α (eIF2α), which in turn activates ATF4. Meanwhile, IRE1α
splices the mRNA of X box-binding protein 1 (Xbp1) to its active isoform Xbp1s. ATF4, ATF6, and Xbp1
together initiate transcriptional events to resolve ER stress. However, excessive reactive oxygen
species (ROS) and ER stress due to excessive lipid accumulation in the liver can lead to inflammation
and hepatocyte death [139]. For instance, increased CYP2E1 expression promotes ROS production
and the progression of NAFLD. In contrast, stress-induced activation of nuclear erythroid 2-related
factor 2 (NRF2) protects against oxidative stress and the pathogenesis of NAFLD [140]. Furthermore,
unresolved ER stress results in the activation of apoptotic transcription factor CCAAT/enhancer binding
protein (CHOP). The prolonged activation of IRE1α also leads to the activation of the inflammatory
transcription factors c-Jun and NF-κB. Thus, the transcription factors involved in stress-induced
responses may contribute to the development of NASH (Table 1).

5.1. Xbp1

High caloric stress leads to the splicing and nuclear localization of Xbp1, which in turn transcribes
factors that improve protein folding as well as lipogenesis [38]. However, obesity-induced chronic
stress limits the nuclear localization of Xbp1 and aggravates ER stress and insulin resistance [141].
The rescue of Xbp1 activity in HFD-fed or ob/ob mice improves glucose homeostasis and reduces hepatic
steatosis, which is associated with reductions in the expression of lipogenic genes [142]. Whether
the improvement of hepatic steatosis in these mouse models is a direct outcome of transcriptional
regulation by Xbp1 or a secondary consequence of resolved metabolic stress and improved insulin
sensitivity remains unclear. Nonetheless, the lipogenic role of Xbp1 is demonstrated using a mouse
model with a liver-specific ablation of Xbp1 following WD, whereby the loss of Xbp1 is associated with
reduced steatosis but enhanced liver injury and fibrosis with the upregulation of type-I collagen α1
(Colα1), TGFβ1, CHOP, and p-JNK [38,143].

5.2. ATF4

In NASH patients, the mRNA expression of ATF4 and CHOP and protein expression of CHOP are
significantly elevated compared to liver samples from patients with simple steatosis [40]. ATF4 depletion
protects mice from high fructose-induced hepatic steatosis by reducing lipogenesis through the reduced
hepatic expression of PPARγ, SREBP1c, ACC, and FASN [144].

5.3. ATF6

Hepatic ATF6 knockdown or overexpression of its dominant-negative form by adenovirus in
WD-fed mice exacerbates insulin resistance and hepatic steatosis with reduced transcriptional activity
of the PPARα/RXR complex. Conversely, overexpression of the cleaved active from of ATF6 protects
mice from hepatic steatosis and promotes hepatic FA oxidation. Experiments in hepatocytes have
shown that ATF6 promotes hepatic FA oxidation by enhancing PPARα transcriptional activity through
direct interaction and activates its downstream targets such as carnitine palmitoyltransferase 1 alpha

100



Metabolites 2020, 10, 283

(CPT1α) and medium-chain acyl-CoA dehydrogenase (MCAD) [145]. Activated ATF6 also interacts
with SREBP2 and inhibits SREBP2 target genes in hepatocytes [146].

5.4. NRF2

NRF2 is the primary driver of gene expression via the antioxidative response elements (ARE).
In response to oxidative damage such as lipid peroxidation and DNA damage, NRF2 increases the
transcription of antioxidative factors, including [140,147] NRF2, which suppresses inflammation by
preventing the increased transcription of pro-inflammatory cytokines [140]. Specifically, NRF2 interferes
with the lipopolysaccharide-induced transcriptional upregulation of IL-6 and IL-1β. Accumulating
evidence supports a protective role of NRF2 in NASH [148]. In rats and mice with diet-induced NASH,
NRF2 activation improves glucose homeostasis and inhibits hepatic steatosis, inflammation, and fibrosis
by decreasing lipid synthesis and upregulatingβ-oxidation and lipoprotein assembly [35,149]. In contrast,
the loss of NRF2 exacerbates hepatic steatosis and accelerates the development of NASH in mice fed
an HFD or MCD [150,151]. Mechanistically, the oxidative stress due to the deletion of NRF2 in these
mice activates NF-κB and leads to the upregulation of the inflammatory cytokines IL-6 and TNFα.

5.5. CYP2E1

Although it is not a transcription factor, it is important to include CYP2E1, which becomes
activated following insulin resistance and lipotoxicity [152] and promotes ROS production in the setting
of NAFLD [153]. CYP2E1 plays key metabolic roles in gluconeogenesis and fatty acid metabolism.
It controls the formation of lactate or glucose from the ketone body acetone [154]. Furthermore, CYP2E1
carries out the omega hydroxylation of fatty acids, increasing lipotoxicity and inflammation [155],
which represent major pathophysiological mechanisms in NAFLD progression [156]. The role of
CYP2E1 in liver injury was first identified following the alcohol-induced induction of CYP2E1 protein.
However, clear differences exist between alcoholic liver disease (ALD)- and NAFLD-induced activation
of CYP2E1: while alcohol consumption only stabilizes the CYP2E1 protein without changes in
mRNA expression, excessive nutrition increases both protein stability and mRNA abundance [157].
Although the transcriptional regulation of CYP2E1 has been linked to the activities of HNF1α [158],
HNF4α [108], SP1 [159], and C/EBP [154], the mechanisms by which obesity and NAFLD exacerbate
CYP2E1 activity requires additional studies [153].

6. Fibrosis

Fibrosis is the strongest predictor of adverse clinical outcomes for NASH. Fibrogenesis during liver
injury is initiated by the activation of HSCs in the liver [160,161]. Established inducers of fibrogenesis
and HSC activation include adipocyte enhancer binding protein 1 (AEBP1), AATF, yes-associated
protein (YAP), and transforming growth factor beta-(TGFβ)-mediated activation of transcription factors
against decapentaplegic homolog (SMAD). In addition to these fibrosis-specific regulators, the main
transcriptional regulators of lipid homeostasis (including PPARα and PPARγ) and inflammation
(RUNX2 and c-Jun) have also been reported to dictate the fibrotic stage in NASH (Table 1).

6.1. TGFβ/SMAD axis

TGFβ is secreted from activated HSC and is a potent inducer of fibrogenesis. Its pro-fibrogenic
effect is mainly mediated by the TGFβ receptor (TGFβR)-dependent activation of the SMAD family
in HSC: the phosphorylated SMAD2/3 complex binds to SMAD4 and translocates to the nucleus to
promote the transcription of fibrogenic genes including Co1α1, Co3α1, smooth muscle alpha 2 actin
(αSMA), and TGFβ as well as the production of tissue inhibitor of metalloproteinases (TIMPs) [162],
which promote fibrosis by inhibiting matrix degradation [163]. In contrast, Smad7 inhibits the
regulation of the TGFβ signaling by recruiting ubiquitin E3 ligases that promote the degradation of
TGFβR1 and by recruiting the protein phosphatase PP1C, which inactivates TGFβR1 [164]. The livers
of NASH patients as well as a mouse model of NASH exhibit increased nuclear localization of the
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SMAD2/3/4 complex and the reduced expression of SMAD7, which all together contribute to increased
TGFβ, Co1α1, and αSMA [42]. The regulation of SMAD2/3 has also highlighted the role of additional
transcription factors in mediating TGFβ-mediated fibrogenesis: the interactions of the transcriptional
coactivators CREB binding protein (CBP) and p300 with SMAD2/3 promotes histone acetylation
and increased transcriptional activity [165]. Supporting the pathophysiological relevance of this
axis, the AMPK-mediated degradation of p300 results in the inhibition of TGFβ/SMAD3-mediated
fibrogenesis in HSC [166]. Finally, the transcription factor v-ets avian erythroblastosis virus E26
oncogene homolog 1 (ETS1), which is elevated in a NASH mouse model, enhances TGFβ/SMAD
signaling by directly binding to SMAD3 and preventing its ubiquitination and degradation [167].

6.2. AEBP1

AEBP1 plays a role in adipogenesis [168,169], myofibroblast differentiation [170], and macrophage
cholesterol homeostasis [171]. AEBP1 was identified as a key transcription factor during the transition
from simple steatosis to NASH using a co-regulatory network approach, which assessed AEBP1
expression in NASH fibrosis versus other NAFLD histological classes using pairwise comparisons [172].
In support of this database analysis, AEBP1 expression increases in the setting of NASH compared
to simple steatosis in the livers of ApoE+/− mice. A recent clinical study demonstrated that AEBP1
is specifically expressed in HSC and at a greater extent in the livers of patients with NASH [43].
The ablation of AEBP1 only in the HSC of mice protects against high fat and high cholesterol
diet-induced fibrosis. Mechanistically, AEBP1 activates Wnt signaling by specifically binding frizzled-8
and low-density lipoprotein-related receptor 6, which blocks the PPARγ-dependent inhibition of
activated HSC. Another study confirmed that hepatic AEBP1 is directly associated with the degree of
steatosis, lobular inflammation, and fibrosis in NASH patients [168]. This study also found that AEBP1
upregulates the expression of genes identified as part of an algorithm-predicted AEBP1-associated
NASH co-regulatory network [168]. These target genes include the regulators of fibrosis (AKR1B10,
CCDC80, DPT, EFEMP1, ITGBL1, LAMC3, MOXD1, SPP1, and STMN2), ECM production and
maintenance (COL4A2 and MARCO), and myofibroblast transition (ACTA2, COL1A1, COL1A2,
SERPINE1 and PLAU). Taken together, these findings strongly implicate AEBP1 in the diagnosis and
treatment of NASH.

6.3. YAP

The Hippo pathway and its effector YAP are particularly important for controlling liver size
by regulating proliferation and growth [173]. The expression of YAP is barely detectable in healthy
livers of humans and mice but becomes activated in the setting of NASH [45]. YAP is expressed in
hepatocytes and activates the expression of proteins that promote fibrosis (ColL1α1, TIMP1, TGFβ2)
and inflammation (TNFα, IL-1β), which stimulate the expansion of myofibroblasts and the recruitment
of immune cells, exacerbating liver fibrosis [174]. YAP is also activated in Kupffer cells by the
lipopolysaccharides (LPS)/TLR4 signaling pathway, where it promotes the development of NASH
by enhancing the production of pro-inflammatory cytokines [175]. Further gain and loss of function
experiments have shown that the activation of the YAP/transcriptional co-activator with PDZ-binding
motif (TAZ) axis leads to the expression of a key matricellular chemokine (CYR61), which stimulates
and recruits extrahepatic macrophages to promote liver fibrosis.

6.4. PPARα

In addition to beneficial effects on steatosis and inflammation, PPARα agonist treatment also
reverses fibrosis by targeting PPARα in HSC, which decreases the expression of fibrogenic factors
including Col1α1 and TIMPs and reduces the number of activated HSC. The protective effect of
PPARα was further demonstrated by treating fibrotic APOE2KI811A mice with the PPARα agonist
fenofibrate, which protected mice from NASH by reducing both steatosis and hepatic macrophage
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accumulation [10]. By contrast, mice with a genetic ablation of PPARα display increased susceptibility
to NASH [130,176].

6.5. PPARγ

In humans, growth factors activate HSC that display decreased PPARγ expression during the
progression of NAFLD to NASH [160]. On the other hand, livers with simple steatosis exhibit increased
PPARγ expression. The treatment of rats with NASH with the PPARγ agonist pioglitazone prevents
hepatic fibrosis and reduces the expression of TIMPs [177]. Indicating that the inhibition of PPARγ in
HSC is responsible for the increased transcription of TIMPs, the overexpression of PPARγ reduces the
expression of TIMP1, TIMP2, and alpha smooth muscle actin (αSMA) and reverses hepatic fibrosis.
By contrast, the HSC-specific ablation of PPARγ aggravates CCl4-induced liver fibrosis and increases
αSMA expression [132]. Collectively, these findings clearly link decreased PPARγ activity in HSC
to hepatic fibrosis. Accordingly, pioglitazone ameliorates only moderate pericentrilobular fibrosis
in rats with no effect on severe bridging fibrosis, which is most likely due to the reduced PPARγ
availability for pioglitazone to target under the advanced stages of the disease [178]. On the other hand,
the effect of TZDs on fibrosis in humans have been less clear. Unlike in rats, a meta-analysis of TZD
effects from eight randomized trials (n = 516) on NASH-associated liver fibrosis found pioglitazone to
significantly improve fibrosis, particularly in the advanced fibrosis stage with bridging fibrosis and
cirrhosis compared to NASH with mild perisinusoidal/periportal fibrosis [179]. This effect could have
been independent of PPARγ, as TZDs can bind alternative targets such as the mitochondrial pyruvate
carrier [179]. In fact, the inhibition of the mitochondrial pyruvate carrier by a next-generation TZD
(MSDC0602) was found to reverse hepatic fibrosis in mice, supporting the mitochondria pyruvate
carrier as a relevant treatment target [180,181]. Nonetheless, the relevance of targeting PPARγ for the
treatment of advanced fibrosis in humans remains unclear.

6.6. RUNX2

Studies have shown that Runx2 acts as a fibrogenic or tumorigenic transcription factor in hepatic
fibrosis or hepatocellular carcinoma [182,183]. Runx2 is expressed in the non-parenchymal cells of the
liver but not in the hepatocytes. In a mouse model of NAFLD/NASH, Runx2 becomes upregulated in
the HSCs during the development of NAFLD [163].

6.7. c-Jun

The impact of c-Jun on fibrogenesis depends on the liver cell type. The deletion of c-Jun only
in hepatocytes reduces steatosis but increases fibrosis, whereas its deletion in both hepatocytes and
non-parenchymal cells protects against MCD-induced fibrosis in mice [142]. This was linked to
reductions in the pro-inflammatory cytokine osteopontin (Opn, also known as SPP1), which is an
established marker of a regenerative response called the ductular reaction (DR), which is an essential
driver of fibrogenesis. Additional investigations using Opn−/− mice established that c-Jun expression in
NPLC promotes NASH-related DR and subsequent fibrosis by upregulating Opn expression [39,184].

7. Microbiome Dysbiosis

The contribution of obesity-induced changes in the gut microbiome to the pathogenesis and
progression of NAFLD [185] was initially established using germ-free mice and fecal transplant from
lean [186] and diet-induced obese mice [187]. Furthermore, the inoculation of germ-free mice with the
gut microbiota of obese humans [188] and NASH patients [189] leads to the onset of hepatic steatosis
and NASH, respectively. These findings formed the base or microbiota-based therapies for NAFLD
such as pre- and probiotics and fecal microbiota transplantation [190–192].
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The gut microbiota can influence the progression of NAFLD through several pathways, which has
been reviewed extensively elsewhere [193]. Briefly, these pathways include changes in gut permeability,
low-grade inflammation and immune balance, the modulation of dietary choline and bile acid
metabolism, and the production of endogenous substrates [186]. In this review, we highlight that the
microbiota, through the production of endogenous substrates, may alter the transcriptional profile of the
liver. Major metabolites that are linked to alterations in the gut microbiota include bile acids [194–196],
short-chain fatty acids (SCFA) [197] and lipopolysaccharides (LPS) [189]. These metabolites can play
an important role in NAFLD progression by mediating the gut–liver axis [198]. Products derived
from bile acid metabolism act on FXR to decrease hepatic triglyceride levels and improve glucose
metabolism [90]. Specifically, the HFD-induced remodeling of the gut microbiota increases the
production of bile salt hydrolase (BSH), which is a bacterial enzyme that hydrolyzes and inactivates
tauro-β-muricholic acid (T-β-MCA) [199]. T-β-MCA inhibits intestinal FXR signaling, which suppresses
ceramide synthesis [200]. Therefore, microbiome dysbiosis results in increased FXR signaling and
ceramide production, which in turn promotes SREBP1c activity and steatosis in the liver [201].

SCFAs have been shown to increase the AMPK activity in liver and muscle tissue [202].
The activation of AMPK triggers PGC-1α expression, which controls the transcriptional activity
of PPARα, PPARγ, PPARδ, LXR, and FXR, which are important transcriptional regulators of cholesterol,
lipid, and glucose metabolism [203]. LPS has been shown to activate NF-κB in cultured hepatocytes [204],
which plays a major role in the development of inflammation during NAFLD progression [91] and is
highly activated in both mice and patients with NASH. Furthermore, LPS can induce MAP kinase
kinase-3 (MKK3) activation, which in turn stimulates C/EBPβ and C/EBPδ binding elements to promote
the transcription of CYP2E1 and induce oxidative stress [154].

8. Prediction of Transcriptional Regulators by Database Analyses

8.1. Prognostic Biomarkers for Human NAFLD and NASH

Many transcriptomic studies have been conducted to elucidate novel biomarkers for the different
stages of NAFLD, including steatosis, ballooning, and fibrosis. To elucidate the transcriptional changes
that are associated with human NAFLD, we procured publicly available human NAFLD/NASH
transcriptome data from the Gene Expression Omnibus (GEO) and subjected them to Ingenuity
Pathway Analysis for the prediction of changes in upstream factors (Table 2). Predictions were based
on two GEO datasets with strong power analysis (Table 2) as well as a previously published Ingenuity
Pathway Analysis (IPA)-based prediction analysis [7,205,206]. The activation of PPARγ was the only
consistent prediction for simple steatosis, whereas the onset of fibrosis was associated with changes
in a larger number of transcription factors, which were consistent in at least half of the datasets.
These included the activation of inflammation (NF-κB, RELA, JUN, IRF1, IRF3, STAT1, SP1), glucose
production (FOXO1), and lipogenesis (SREBP1), as well as the inhibition of PPARα, PPARγ, and RXRα.
The activation of C/EBPβ, CTNNB1, and SMAD3 and the inhibition of HNF4α and SMAD7 were also
associated with NASH and NASH-induced HCC, suggesting that these factors might contribute to the
pathogenesis of advanced stage fibrosis.
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8.2. Altered Transcription Factors in Mouse Models of NAFLD and NASH

The same strategy was applied to predict the changes in the activity of transcription factors in
mouse models of NAFLD/NASH. We performed IPA upstream activity prediction analysis for publicly
available liver transcriptome data from mouse models of steatosis that were established by feeding
high caloric diets [18,207] as well as mouse models of NASH that were established by feeding an MCD
diet [207], NASH diet, or a combination of high caloric diets coupled with CCl4 treatment [18,208].
Additionally, we included the observations of a previously published STZ-induced NASH and HCC
model (STAM) [7]. Transgenic mouse models that involve genetic manipulations were excluded,
since our comparative analysis was not aimed at delineating the transcriptional consequences of rare
gene variants in humans and mice. As anticipated, the activation of most consistent pathways in humans
(Table 2) were also confirmed in most mouse models. However, in contrast to the downregulation of
PPARα, PPARγ, and RXRα in human livers with NASH, these pathways were upregulated in most
mouse models of NASH (Table 2). The activity regulation of PPARα, PPARγ, and RXRα in mouse
models of NASH was instead more representative of their activity in human livers with simple steatosis
(Table 2).

IPA analysis of the mouse models also identified pathways that were not predicted to be affected
among human NASH datasets. Among these, the activation of SMAD2, SMAD4, YAP1, NOTCH1,
EP300, p63, and the inhibition of nuclear receptor corepressor (NCOR) has been previously linked
to human NASH by independent studies (Table 3) [42,166,173,209–212]. Therefore, most mouse
models mimic the transcriptional signature of human NASH for these transcription factors. However,
the consistent inhibition of SREBP2 and the activation of fos proto-oncogene (FOS) and PGC1α in
mouse NASH models mimicked human steatosis but were absent in the setting of human fibrosis
(Table 3) [102,213,214]. Furthermore, increased FOS mRNA in fibrotic versus non-fibrotic NAFLD
patients was in line with increased EGR1 activity, which promotes FOS expression, as previously
published (Table 2). However, IPA did not predict FOS activation, as this would be anticipated to
inhibit NF-κB and SP1 and activate CEBBP, which was in contrast with the regulation in fibrotic livers
(Table 2). Other frequently altered transcriptional mechanisms in mouse NASH models, which were
not previously associated with human NASH, included PPARδ, HIF1α, MED1, NCOA1, NCOA2,
SMARCA4, FOXO3, HDAC2, STAT5b, and STAT6 (Table 4). Individual transcriptomic datasets from
mouse livers also predicted the regulation of unique pathways for each dataset, which were not
predicted to be regulated in other mouse models (Table 4). Since IPA prediction of upstream factors in
human NASH also failed to identify changes in the activity of these sets of transcription factors in
Tables 3 and 4, studying their relevance in the pathogenesis of NASH in humans would be beneficial
prior to investigating their roles in pre-clinical rodent models of NASH. It is worth mentioning that
the activation of ChREBP and C/EBPα were only confirmed in the mouse models using MCD and
WD coupled with CCl4, respectively, but they were not detected in human fibrosis datasets. Another
category of altered transcription factors belonged to those that were altered in a single human dataset
but not in any of the mouse models (Table 5). Although the activity regulation of these factors could be
relevant in the pathogenesis of NASH, corroborating evidence is lacking.

To determine how the transcriptional activity of popular NASH mouse models faired against
human NASH, we implemented a scoring strategy ranging from +2 to −2 for each transcription
factor: +2 for the confirmation of a transcriptional activity in a mouse model, which was observed
in more than one human NASH dataset (i.e., NF-κB); −2 for the reversal of a transcriptional activity,
which was observed in more than one human NASH dataset (i.e., PPARγ); +1 for the confirmation of a
transcriptional activity, which was observed only in one human NASH dataset (i.e., SMAD7); −1 for the
reversal of a transcriptional activity, which was observed only in one human NASH dataset (i.e., THRβ
for CCl4 model); −1 when multiple confirmations for a transcriptional activity among human datasets
remained unchanged in a mouse model (i.e., NF-κB for NASH diet + CCl4 model); 0 for a lack of
transcriptional activity in a mouse model, which was also observed in some of the human NASH
datasets (i.e., THRb for all models except CCl4); and 0 when a transcriptional activity was predicted
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to be inconsistently regulated among different human NASH datasets regardless of the state of the
activity of that transcription factor within the mouse models (i.e., STAT3). From a possible maximum
score of +47 for all the common transcription factors (Table 2), the NASH diet, MCD diet, NASH diet +
CCl4, CCl4 alone, and WD + CCl4 netted total scores of 23, 27, −10, 12 and 7, respectively, suggesting
that the NASH diet and MCD diet exhibit transcriptional activity profiles that are more representative
of human NASH, whereas the models that involved CCl4 treatment did not. We excluded the STAM
mouse model due to the low number of predicted matches.

Table 3. IPA prediction of upstream regulators that were detected in the livers of mouse models of
NASH but not in human NASH cohorts.

j MCD k NASH Diet l NASH Diet + CCl4
n CCl4

m WD + CCl4 Association with Human Fibrosis

SMAD4 NASH
SMAD2 NASH

YAP1 NASH
NOTCH1 NASH

EP300 NASH
NCOR NASH

p63 NASH, steatosis
SREBP2 Steatosis

CAR Steatosis
FOS Steatosis, insulin resistance

PGC1α Steatosis, insulin resistance
PPARδ N/A
HIF1α N/A
MED1 N/A

NCOA1 N/A
SMARCA4 N/A

NCOA2 N/A
FOXO3 N/A
HDAC2 N/A
STAT5b N/A
STAT6 N/A

Mouse models of NASH using j MCD diet (GSE93132), k NASH diet (GSE52748), l NASH diet coupled with
CCl4 treatment (GSE129525), m CCl4 treatment alone (GSE99010) and n Western diet coupled with CCl4 treatment
(GSE99010). Abbreviations: transcription factors against decapentaplegic homolog (SMAD), yes-associated protein
(YAP), notch receptor 1 (NOTCH1), Histone Acetyltransferase P300 (EP300), nuclear receptor corepressor (NCOR),
sterol regulatory element binding protein (SREBP), constitutive androstane receptor (CAR), fos proto-oncogene
(FOS), PPARγ coactivator 1 alpha (PGC1α), peroxisome proliferator-activated receptor (PPAR), hypoxia inducible
factor 1α (HIF1α), mediator complex subunit 1 (MED1), nuclear receptor coactivator (NCOA), SWI/SNF related,
matrix associated, actin dependent regulator of chromatin subfamily A member 4 (SMARCA4), forkhead protein O
(FoxO), histone deacetylase (HDAC), signal transducer and activator of transcription (STAT).
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Table 4. IPA prediction of upstream mechanistic networks that are unique to each mouse model.

j MCD k NASH Diet l NASH Diet + CCl4
n CCl4

m WD + CCl4

AR
ARNTL

CDKN2A
C/EBPα
ChREBP

CIITA
E2F

FOXO4
HNF1α
HSF1
IRF9
KLF4
MAX
MYB
PGR

RARB
RB1

RORA
SNAI
SP3

STAT4
TCF7L2
THRα
VDR
WT1
Ybx1

ZNFn1a1
Mouse models of NASH using j MCD diet (GSE93132), k NASH diet (GSE52748), l NASH diet coupled with CCl4
treatment (GSE129525), m CCl4 treatment alone (GSE99010) and n Western diet coupled with CCl4 treatment
(GSE99010). Abbreviations: androgen receptor (AR), aryl hydrocarbon receptor nuclear translocator like
(ARNTL), cyclin dependent kinase inhibitor 2A (CDKN2A), CCAAT/enhancer binding protein (C/EBP), class ii
major histocompatibility complex transactivator (CIITA), forkhead protein O (FoxO), hepatocyte nuclear factor
(HNF), heat shock transcription factor 1 (HSF1), interferon regulatory factor (IRF), kruppel like factor 4 (KLF4),
MYC associated factor X (MAX), myb proto-oncogene (MYB), progesterone receptor (PGR), retinoic acid receptor
beta (RARB), retinoblastoma transcriptional corepressor 1 (RB1), retinoic acid receptor-related orphan receptor alpha
(RORA), snail family transcriptional repressor (SNAI), specificity protein 3 (SP3), signal transducer and activator of
transcription (STAT), transcription factor 7 like 2 (TCF7L2), thyroid hormone receptor α (THRα), vitamin D receptor
(VDR), Wilms’ tumor protein (WT1), Y box-binding protein 1 (Ybx1), IKAROS family zinc finger 1 (ZNFn1a1).

Table 5. IPA prediction of upstream mechanistic networks that are unique to each human NASH cohort.

a Fibrotic vs. Healthy
b Fibrotic vs.

Non-Fibrotic NAFLD
d NASH vs. Healthy f External IPA NASH

CCND1
CCNE1
HMGB1

IRF2
IRF5
KLF2

NRIP1
SOX2

Human GEO Accession GSE130970 was divided into three independent IPA comparative analyses: a Advanced
fibrotic (fibrosis score > 3, n = 16) versus healthy (n = 8), b Fibrotic versus non-fibrotic NAFLD (NAS > 3, n = 11),
and d non-fibrotic NAFLD versus healthy. f Previously reported IPA of NASH (Kakehashi et al.). Abbreviations:
cyclin D1 (CCND1), cyclin E1 (CCNE1), high mobility group box 1 (HMGB1), interferon regulatory factor (IRF),
kruppel like factor 2 (KLF2), nuclear receptor interacting protein 1 (NRIP1), sex determining region Y box transcription
factor 2 (SOX2).

109



Metabolites 2020, 10, 283

9. Conclusions

Maladaptive responses to obesity results in the activation of inflammatory and fibrogenic pathways
in the liver. Here, we reviewed the transcription factors, the activity of which have been commonly
associated with obesity-induced NAFLD and NASH. The development of NAFLD and NASH strongly
correlates with the dysregulation of transcriptional regulators that play a role in lipid metabolism,
inflammation, metabolic stress, and fibrosis. Interestingly, the review of gluconeogenic transcription
factors indicated a protective function against steatosis and NASH, since their loss often resulted in
disease. The field of main regulators will continue to increase with heightened focus on delineating
new pathways in the pathogenesis of NAFLD, as each of the areas discussed in this review are still
being actively researched and adding to our understanding of the transcriptional regulation of NAFLD.

Our review also indicates that none of the diet-based rodent models replicate all the features of
the human pathophysiology. Our observations suggested that the FCP diet and MCD diet exhibit
transcriptional activity profiles that are more representative of human NASH, whereas the models that
involved chemical induction, such as CCl4 treatment, did not. The generation of novel experimental
models that more accurately reproduce human pathophysiology, including mice with humanized
livers [215], will be central to the discovery of tractable targets for the management of NAFLD.
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Abstract: Nonalcoholic fatty liver disease (NAFLD) is categorized based on histological severity into
nonalcoholic fatty liver (NAFL) or nonalcoholic steatohepatitis (NASH). We used a multiplatform
metabolomics approach to identify metabolite markers and metabolic pathways that distinguish
NAFL from early NASH and advanced NASH. We analyzed fasting serum samples from
57 prospectively-recruited patients with histologically-proven NAFLD, including 12 with NAFL,
31 with early NASH and 14 with advanced NASH. Metabolite profiling was performed using a
combination of liquid chromatography-mass spectrometry (LC-MS) and nuclear magnetic resonance
(NMR) spectroscopy analyzed with multivariate statistical and pathway analysis tools. We targeted
237 metabolites of which 158 were quantified. Multivariate analysis uncovered metabolite profile
clusters for patients with NAFL, early NASH, and advanced NASH. Also, multiple individual
metabolites were associated with histological severity, most notably spermidine which was more
than 2-fold lower in advanced fibrosis vs. early fibrosis, in advanced NASH vs. NAFL and
in advanced NASH vs. early NASH, suggesting that spermidine exercises a protective effect
against development of fibrosing NASH. Furthermore, the results also showed metabolic pathway
perturbations between early-NASH and advanced-NASH. In conclusion, using a combination
of two reliable analytical platforms (LC-MS and NMR spectroscopy) we identified individual
metabolites, metabolite clusters and metabolic pathways that were significantly different between
NAFL, early-NASH, and advanced-NASH. These differences provide mechanistic insights as well as
potentially important metabolic biomarker candidates that may noninvasively distinguish patients
with NAFL, early-NASH, and advanced-NASH. The associations of spermidine levels with less
advanced histology merit further assessment of the potential protective effects of spermidine
in NAFLD.

Keywords: nonalcoholic fatty liver; nonalcoholic steatohepatitis; liquid chromatography-mass
spectrometry; nuclear magnetic resonance spectroscopy; metabolic pathway

1. Introduction

Nonalcoholic fatty liver disease (NAFLD) is strongly associated with the metabolic syndrome
and each of its components [1,2]. In fact, NAFLD is regarded as the hepatic manifestation of the
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metabolic syndrome [1]. By definition, all patients with NAFLD have excessive lipid deposition
within lipid droplets in hepatocytes, a condition known as hepatic steatosis. However, patients with
NAFLD can exhibit a very broad spectrum of hepatic inflammation and fibrosis ranging from almost
none (a condition known as simple steatosis or “nonalcoholic fatty liver” (NAFL)) to variable degrees
of inflammation and fibrosis (known as “nonalcoholic steatohepatitis” or “NASH”) to established
cirrhosis [3,4]. Patients with NAFL have a very low probability of progression to cirrhosis or
hepatocellular carcinoma (HCC). On the other hand, patients with NASH have significantly higher
probability of progression [4,5]. Furthermore, among the histological features that distinguish NASH,
hepatic fibrosis is emerging as the feature most strongly associated with adverse liver-related outcomes
and even all-cause mortality, rather than inflammation or the presence of balloon hepatocytes [6,7].
Therefore, there is a pressing clinical need to understand the factors that lead to the development of
fibrosing NASH, rather than NAFL and to identify non-invasive tests that can distinguish the presence
of NASH versus simple steatosis. Given the strong link between metabolic factors and NAFLD,
we hypothesized that serum metabolite profiling using metabolomics could identify serum metabolites
that distinguish NAFL from NASH.

The growing field of metabolomics describes the study of concentrations and fluxes of low
molecular weight metabolites (molecular weight <1000 Da) present in biofluids or tissue that
provide detailed information for understanding biological phenotypes, deciphering mechanisms, and
identifying biomarkers or drug targets for a variety of conditions [8–10]. Utilization of two powerful
analytical platforms, liquid chromatography-mass spectrometry (LC-MS) [11] and nuclear magnetic
resonance (NMR) [12] spectroscopy, leads to the quantitative analysis of hundreds of small molecules
on a relatively routine basis. In the area of liver diseases, to date, several cross-sectional studies have
demonstrated the potential for serum or plasma-derived metabolite biomarkers to distinguish different
liver diseases and hepatocellular carcinoma (HCC) [13–19]. Metabolomics studies in this area have
focused on both early biomarker detection as well as identification of altered metabolic pathways [20].
It has been shown that metabolite-based biomarkers can distinguish HCC from cirrhosis better than the
conventional marker, alpha-fetoprotein (AFP) [14,21]. However, metabolomic investigations focused
on distinguishing high risk NASH from NAFL are scarce.

In the current study, metabolite profiling of serum samples employing both MS and NMR
spectroscopy methods, in combination with multivariate statistical methods, was performed to identify
serum metabolites or metabolite profiles that distinguish simple steatosis from NASH, or even early
NASH from advanced NASH. Our results show promise for developing metabolite profiles to stage
patients as well as providing insights on the pathogenesis and progression of NAFLD.

2. Results

2.1. Patient Characteristics

Among 57 patients with biopsy-proven NAFLD included in this study, the mean age was 51 years
and the majority were white and male—consistent with recruitment from a VA hospital (Table 1).
As expected in patients with NAFLD, diabetes was very common, mean BMI was in the range of
obesity and mean serum AST and ALT were mildly elevated (Table 1).

By study design, patients with early-NASH and advanced-NASH had progressively increasing
NAS, ballooning degeneration, inflammation, steatosis, and fibrosis scores compared to patients with
simple steatosis. Patients with early-NASH had a mean NAS score of 3.3 ± 0.7 and fibrosis stage of
0.8 ± 0.6. Patients with advanced-NASH had a mean NAS score of 5.7 ± 0.6 and fibrosis stage of
2.0 ± 0.9.
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Table 1. Demographic and clinical characteristics of study participants divided according to histological
severity of nonalcoholic fatty liver disease (NAFLD) (simple steatosis, early-nonalcoholic steatohepatitis
(NASH), advanced-NASH).

Parameter
Simple Steatosis

n = 12
Early NASH

n = 31
Advanced NASH

n = 14

Age (yrs), mean (SD) 50.2 (12) 50.4 (9.5) 52.3 (9.1)

Race:

White, non-Hispanic (%) 100% 73% 87%

Black, non-Hispanic (%) 0% 7% 0%

Other (%) 0% 10% 3%

Not-declared (%) 0% 10% 10%

Male (%) 92% 93% 80%

Diabetes (%) 75% 71% 40%

BMI (Kg/m2), mean (SD) 35 (7) 33 (5) 34 (6)

Serum Laboratory Tests, mean (SD):

AST (U/L) 39 (32) 39 (20) 66 (39)

ALT (U/L) 50 (30) 62 (32) 97 (42)

Albumin (g/dL) 4.4 (0.4) 4.6 (0.2) 4.6 (0.2)

Bilirubin (g/dL) 0.7 (0.4) 0.5 (0.1) 0.5 (0.3)

Liver Histology:

Steatosis Grade 0/1/2/3 0/7/4/1 0/19/11/1 0/1/9/4

Inflammation Grade 0/1/2/3 3/9/0/0 0/30/1/0 0/4/10/0

Ballooning Degeneration 0/1/2 12/0/0 0/27/4 0/1/13

Fibrosis Stage 0/1/2/3/4 12/0/0/0/0 10/21/0/0/0 0/4/6/3/1

NAS Score (0–8), mean (SD) 2.4 (0.8) 3.3 (0.7) 5.7 (0.6)

2.2. Serum Metabolite Profiles Cluster According to NAFL, Early-NASH and Advanced-NASH

Serum metabolite profiling using LC-MS and NMR techniques targeted 237 metabolites. Of these,
158 metabolites were quantified, 106 metabolites by MS (Table S1) and 52 metabolites by NMR
(Table S2). Partial least squares-discriminant analysis (PLS-DA) results are shown as score plots in
Figure 1. Each circle or point in the score plot represents one patient. The points (also known as
scores) for patients that exhibit similar metabolite profiles in serum appear closer to each other and
vice versa. Ideally, the scores for patients with NAFL, early NASH and advanced NASH will form
separate and distinct clusters owing to the potential differences in metabolic profiles between the
groups. In our study, multivariate analysis showed clustering of the serum metabolite profiles of
patients depending on the histological severity of NAFLD (NAFL vs. NASH and early-NASH, vs.
advanced-NASH) as shown in Figure 1a–c. In particular, the metabolite profiles of NAFL and NASH
showed a distinct clustering with minimal overlap of the scores for patients (Figure 1a); the dispersion
of the scores was greater for NASH compared to NAFL. However, results for the analysis of the data
after dividing NASH patients into early NASH and advanced NASH showed significant improvement
in the separation; both early NASH vs. NAFL as well as advanced NASH vs. NAFL exhibited distinct
clusters (Figure 1b,c).
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Figure 1. The results of PLS-DA analysis of metabolite levels derived from MS are shown as score
plots. Each red or green point in the score plot represents one patient. In these plots, points (known as
scores) for patients that exhibit similar metabolite profiles will appear closer to each other and vice
versa. The score plots show good clustering and separation of the patients with (a) nonalcoholic fatty
liver (NAFL) vs. NASH; (b) NAFL vs. early NASH; (c) NAFL vs. advanced NASH; (d) Early NASH vs.
advanced NASH; (e) Fibrosis stage 0–1 vs. Fibrosis stage 2–4; and (f) Steatosis grade 0–1 vs. Steatosis
grade 2–3.
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Multivariate statistical results also reflected the metabolic differences between early NASH and
advanced NASH; a comparison between the two groups showed separate clusters, although there was
some degree of overlap (Figure 1d). In addition, analysis performed after subdividing the patients
according to fibrosis stage (0–1 vs. 2–4) or steatosis grade (0–1 vs. 2–3) also showed clusters, although
the two clusters were again partially overlapped (Figure 1e,f).

2.3. Individual Metabolites were Associated with Histological Severity in NAFLD

Univariate analysis identified 11 metabolites that were significantly different between NAFL and
NASH with fold changes ranging from 0.57 to 3.13 (Table 2). Nine metabolites were significantly
different between NAFL and early-NASH (with fold changes from 0.83 to 1.19) and ten were significantly
different between NAFL and advanced-NASH (with FC from 0.33 to 2.38). Six metabolites were
significantly different between early-NASH and advanced-NASH with FC from 0.49 to 1.33; further,
the metabolites that distinguished early-NASH from advanced-NASH were largely different from
the ones that distinguished NAFL from early-NASH (Table 2). In addition, we identified eight
metabolites that were significantly different between fibrosis stages 0–1 and fibrosis stages 2–4 and
four significantly different between steatosis grades 0–1 and steatosis grades 2–3. (Table 3). The most
notable example was spermidine, which was more than 2-fold decreased in advanced fibrosis vs. early
fibrosis, in advanced NASH vs. NAFL, and in advanced NASH vs. early NASH, suggesting that
spermidine exercises a protective effect against development of fibrosing NASH.

Table 2. Metabolites that differed significantly between patients with NAFL (n = 12), early NASH
(n = 31) and advanced NASH (n = 14).

NASH vs. NAFL Early NASH vs. NAFL

Metabolite p Value
Fold *

Change
Method Metabolite p Value

Fold *
Change

Method

Acetylglycine 0.03 0.57 MS Hydroxyphenylpyruvate 0.002 0.83 MS
Cysteine 0.04 0.88 MS Inositol 0.03 0.86 MS
Alanine 0.02 0.96 NMR Cysteine 0.04 0.87 MS
Glucose 0.04 1.16 MS Acetylcarnitine 0.04 0.90 MS

Erythrose 0.02 1.18 MS Phenylalanine 0.03 1.12 NMR
Tyrosine 0.01 1.18 NMR Tyrosine 0.02 1.18 NMR

Isovaleric acid 0.02 1.25 MS Erythrose 0.04 1.18 MS
Leucic acid 0.04 1.28 MS Alanine 0.03 1.18 NMR
Xanthine 0.02 1.49 MS Tryptophan 0.04 1.19 NMR

Oxypurinol 0.01 1.54 MS
Glycochenodeoxycholate 0.04 3.13 MS

Advanced NASH vs. Early NASH Advanced NASH vs. NAFL

Metabolite p Value
Fold *

Change
Method Metabolite p Value

Fold *
Change

Method

Spermidine 0.005 0.49 MS Spermidine 0.005 0.33 MS
Oxaloacetate 0.01 0.85 MS Acetylglycine 0.01 0.48 MS

Orotate 0.0009 0.85 MS Glucose 0.04 1.20 MS
Linoleic acid 0.01 1.32 MS Isovaleric acid 0.04 1.30 MS

Linolenic acid 0.01 1.33 MS Leucic acid 0.02 1.30 MS
2-hydroxyglutarate 0.01 1.33 MS 2-hydroxyisovaleric acid 0.03 1.49 MS

Xanthine 0.04 2.08 MS
Oxypurinol 0.04 2.17 MS

Glycocholate 0.02 2.22 MS
Glycochenodeoxycholate 0.01 2.38 MS

* Fold changes shown are the ratios of NASH/NAFL; Early NASH/NAFL; Advanced NASH/NAFL; Advanced
NASH/ Early NASH. They are ordered from the lowest ratio (i.e., most “protective” against advanced disease) to the
highest ratio (i.e., most highly associated with advanced disease).
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Table 3. Metabolites that differed significantly between patients with different levels of hepatic fibrosis
(F0-1 (n = 43) vs. F2-4 (n = 14) or steatosis (grade 0-1 (n = 27) vs. grade 2-3 (n = 30)).

Fibrosis Stage 2–4 vs. Fibrosis Stage 0–1 Steatosis Grade 2–3 vs. Steatosis Grade 0–1

Metabolite p Value
Fold

Change
*

Method Metabolite p Value
Fold

Change
*

Method

Spermidine 0.0008 0.47 MS Erythrose 0.01 1.19 MS
N-acetylglycine 0.001 0.63 MS Mannose 0.002 1.33 NMR

Oxaloacetate 0.004 0.83 MS Isovaleric acid 0.01 1.33 MS
Orotate 0.01 0.85 MS Glucose 0.02/0.005 1.37/1.22 NMR/MS

Adipic acid 0.03 1.20 MS
Sucrose 0.04 1.20 MS

Aconitate 0.03 1.23 MS
Azelaic acid 0.04 1.25 MS

* The fold changes are the ratios of Fibrosis stage 2–4/Fibrosis stage 0–1; Steatosis grade 2–3/Steatosis grade 0–1.
They are ordered from the lowest ratio (i.e., most “protective” against advanced disease) to the highest ratio (i.e.,
most highly associated with advanced disease).

2.4. Metabolic Pathways and Metabolite Enrichment Distinguished NAFL, Early-NASH, Advanced-NASH

Metabolic pathway enrichment analysis was performed using the Metaboanalyst software
platform [22–24]. The results are shown in Figure S1, where each pathway is shown as a circle.
The color of the circle indicates the significance of the pathway with red being the most significant
(p < 0.05) and the size of the circle indicates the impact of the pathway. Pathway analysis made based
on 106 MS derived metabolite levels showed a total of 56 matched pathways and the analysis based on
52 NMR derived metabolites showed 48 matched metabolic pathways. A number of these pathways
were significantly altered (p < 0.05) between different groups of patients (Table S3). All comparisons
except NAFL vs. advanced NASH showed significant differences in at least one pathway. In particular,
the differences between early-NASH and advanced-NASH, and between steatosis grade 0,1 and
steatosis grade 2,3 were more significant than between the other groups; the former exhibited the most
number of altered pathways and the latter exhibited the most number of pathways that were highly
significant (p ≤ 0.003) (Table S3, Figure S1).

Separately, metabolite set enrichment analysis was performed using quantitative metabolite data.
Both advanced NASH vs. NAFL and early NASH vs. advanced NASH identified 31 sets of metabolites
(Figure 2; Figure S2). For advanced NASH vs. NAFL, two sets that correspond to beta-alanine
metabolism and arginine and proline metabolism exhibited high significance; the p value adjusted
using FDR for both sets was 0.02 (Figure 2a). On the other hand, for early NASH vs. advanced NASH
(Figure 2b), one set that corresponds to butanoate metabolism exhibited high significance; as shown in
the figure, its p value adjusted using FDR was 0.05.
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Figure 2. Biological patterns identified from metabolite set enrichment analysis. Metabolite data
were derived from MS. The enrichment analysis combines functionally related metabolites to discern
consistent changes among the related metabolites. The color and the bar length indicate p value and
the fold enrichment, respectively. (a) In the advanced NASH vs. NAFL comparison, the analysis
identified 31 sets, of which two sets that correspond to beta-alanine metabolism and arginine and
proline metabolism exhibited high significance; the p value adjusted using false discovery rate for both
sets was 0.02. (b) In the early NASH vs. advanced NASH comparison, 31 sets were also identified,
of which one set that corresponds to butanoate metabolism exhibited high significance; its p value
adjusted using false discovery rate was 0.05.

2.5. Association of the GSG-Index with Histological Severity

Neither the GSG-index nor its amino acids, individually, discriminated between NAFLD and
NASH (data not shown). They also did not discriminate either between mild (stage 0, 1) and advanced
fibrosis (stage 2–4) or between mild (grade 0, 1) and advanced steatosis (grade 2, 3). However, the
alanine, aspartate, and glutamate metabolism pathway, which involves one of the amino acids of the
GSG index was altered between early NASH and advanced NASH and between hepatic fibrosis stage
0–1 and Fibrosis stage 2–3 (Table S3). In addition, glycine, serine, and threonine metabolism, which
involves glycine as one of the amino acids of the GSG index was altered between hepatic fibrosis stage
0–1 and Fibrosis stage 2–4.

2.6. Evaluation of the Confounding Effects of Gender and Diabetes on the Biomarkers of NASH/NAFL

Female patients were minimally differentiated in the multivariate statistical analysis results as
shown in the Supplementary Figure S3a. Univariate analysis results showed that 17 metabolites were
statistically different (p < 0.05) between male vs. female patients (Table S4). However, none of these
metabolites was common to the biomarkers of NASH/NAFL disease patients (Table 2). Similarly,
evaluation of metabolite signatures that differ between diabetes and non-diabetes patients showed
minor differences as seen from the partial overlap of the two clusters in the Supplementary Figure S3b.
Ten metabolites were statistically different between diabetes and non-diabetes patients (Table S5),
of which 4 metabolites (isovaleric acid, oxypurinol, xanthine and sucrose) were common to those
observed for NASH/NAFL disease (Table 2).
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3. Discussion

There is great interest in identifying patients with NAFLD who are at risk of having, or progressing
to, histologically advanced disease. Our goal was to identify serum metabolite profiles or metabolite
pathways that distinguished NAFL, early-NASH and advanced-NASH using targeted LC-MS and
quantitative NMR-based metabolomics approaches, combined with multivariate statistical methods.
Serum samples obtained from patients after overnight fasting were used to avoid potential interferences
from diet. For a global visualization of the data, multivariate statistical analysis was utilized and
showed distinct clustering of patients, which provides evidence for the metabolic differences between
NAFLD patients grouped by histological severity (Figure 1). In particular, the separation of the clusters
between NAFL and NASH reveals a large difference in metabolism between these groups and the
ability of the serum markers to identify the high risk NASH patients. We also found a significant
difference between early NASH and advanced NASH, which indicates the potential to identify the
patients at highest risk.

The results that many individual metabolite levels are significantly different (p < 0.05) between
patients with NASH vs. NAFL not only substantiate the results of multivariate statistical analysis but
also provide more specific information on altered cellular metabolism (Table 2). Among the many
metabolites that were altered significantly, notable metabolic perturbations are the more than 2-fold
reduction of spermidine and acetylglycine, and the more than 2-fold increase of oxypurinol, xanthine
and bile acids (glycocholate and glycochenodeoxycholate) in advanced NASH compared to NAFL or
early NASH (Table 2). Spermidine, which is found in mushrooms, aged cheese, soybeans, legumes
and whole grains, has recently been shown to prevent liver fibrosis and hepatocellular carcinoma and
to ameliorate fatty liver disease in mouse models [25]. However, we are not aware of other human
studies suggesting a protective effect of spermidine against NASH. We found that levels of spermidine
were more than two times lower consistently when comparing advanced fibrosis vs. early fibrosis, or
advanced NASH vs. NAFL, or advanced NASH vs. early NASH. This suggests that spermidine might
exercise a protective effect against development of fibrosing NASH and should be confirmed in future
human studies.

A number of studies have shown the association of acetylglycine with liver disease; for example,
its increased level was observed in liver tissue, serum as well as urine due to drug induced injury to
the liver [26] or liver disease induced by alcohol [27,28]. Oxypurinol is an inhibitor of xanthine oxidase
and is monitored to assess liver function [29]. The large changes observed for these metabolite levels
in our study indicates their potential utility as distinguishing markers in clinical management of the
NASH patients, as such large perturbations are more likely to hold upon independent validation.

Metabolic pathway analyses enabled global visualization of alterations in metabolism between the
NAFLD patient groups. In particular, the results indicate that while the measured serum metabolites
mapped to a large number of metabolic pathways, only six were significantly different between NASH
and NAFL (Table S3). The most significant among the pathways is fatty acid biosynthesis. Our results
indicate that the fatty acid synthesis pathway is associated with NAFLD, which is in accordance with
previous findings that showed hepatic accumulation of triglycerides [30]. Taurine and hypotaurine
metabolism is another pathway that distinguishes NASH from NAFL. It is well known that bile acid
synthesis is one of the major functions of the liver and taurine conjugated bile acids are a major
component in human bile [31]. Altered metabolism of taurine may indicate its association with altered
bile acids synthesis in NASH. In accordance with the altered pathway, our univariate analysis results
show that two primary bile acids, glycocholate and glycochenoxycholate differ significantly between
advanced NASH and simple steatosis; both bile acids were higher in NASH by more than 2-fold
(Table 2).

Metabolite set enrichment analysis enabled identification of biologically meaningful patterns for
NAFLD patients. This analysis combines functionally related metabolites to discern consistent changes
among the related metabolites. Although, patterns with high significance (p < 0.05) were identified for
many groups of NAFLD patients, only two groups, advanced NASH vs. NAFL and early NASH vs.
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advanced NASH, showed patterns that exhibited high significance (p < 0.05) even after adjusting the
p value using the false discovery rate (FDR) (Figure 2; Figure S2). Beta-alanine metabolism and arginine
and proline metabolism were significantly altered for advanced NASH vs. NAFL (Figure 2a), whereas
butanoate metabolism was significantly altered for early NASH vs. advanced NASH (Figure 2b).
In terms of specific metabolites, spermidine contributed the most for advanced NASH vs. NAFL,
which is in agreement with its down regulation in advanced NASH vs. NAFL (Table 2). On the other
hand, 2-hydroxyglutrate contributed the most for early NASH vs. advanced NASH, which is also in
accordance with its upregulation in advanced NASH vs. early NASH (Table 2).

We also found that metabolism is altered significantly depending on the degree of hepatic fibrosis
or steatosis. These differences were significant and observed in the: (A) multivariate statistical
analysis results, where clusters were clearly visible (Figure 1e,f); (B) univariate analysis results, where
many metabolites are significantly different (Table 3); and (C) metabolic pathway analysis, where
several pathways were significantly impacted (Figure S1d,e, Table S3). Overall, the results indicate
that metabolic profiling is sensitive to differences in fibrosis and steatosis, the two most important
histological features of NAFLD.

Numerous studies indicate serum amino acids levels, particularly, glutamate, glycine and serine,
are altered in liver diseases [32–37]. More recently, the ratio of glutamate to the sum of serine and
glycine, termed the GSG-index, was tested for its association with blood levels of BCCAs, ALT, AST,
and GGT [38]. Amino acids of the GSG-index are critical for the synthesis of glutathione (GSH), which
is the major antioxidant that controls oxidative stress in the liver [39]. The GSG-index was moderately
correlated with ALT (r = 0.34 ± 0.13) and AST (r = 0.45 ± 0.12). However, in our study the GSG-index
did not discriminate between NAFLD vs. NASH or between mild (stage 0–1) and more advanced
(stage 2–4) liver fibrosis. In the prior study the GSG-index was shown to be significantly associated
with stage 3–4 vs. stage 0–2 fibrosis (rather than stage 2–4 vs. 0–1 as we tested). Future, larger studies
will need to further evaluate whether the GSG-index is a marker of histological severity in NAFLD.

Considering the lack of metabolomics studies that focus on identifying biomarkers that distinguish
NASH from NAFLD, our results that demonstrate numerous altered metabolites and metabolic
pathways between the two groups are potentially of high significance. In prior studies, urine and serum
were used to distinguish different stages of NAFLD based on metabolomics [40]. Some of the findings,
such as the higher levels of xanthine and tryptophan in NASH as well as the association of energy
metabolism and amino acid metabolism with the pathological processes in NASH are in accordance
with our findings (Table 2, Table S3). Another recent study using mice as well as patient samples
identified several metabolites that distinguished simple steatosis from NASH [41]. Metabolic signatures
including fatty acids, amino acids and bile acids that differentiate NAFL and NASH were detected,
and these findings are somewhat in accordance with our results. A study of blood plasma, rather
than serum, showed metabolic differences between controls vs. NAFLD as well as control vs. NASH;
however, it could not identify a distinguishing metabolite profile between steatosis and NASH [32].
In that study, global LC/MS and GC-MS methods were used, while in our study the more quantitative
targeted LC-MS and NMR platforms were used to analyze the determined pool of pre-identified
metabolites, unambiguously. It is important to note that in the metabolomics field different analytical
platforms have been used to investigate the same disease; depending on the sensitivity, selectivity,
and reliability of metabolite identification, different analytical platforms enable access to different
facets of the metabolome. In this study the combined use of the robust LC-MS and NMR methods
for quantitative analysis of metabolites represents a broad based approach. In our study, apart from
differentiating between NAFL and NASH, we have identified metabolites and metabolic pathways
that differentiate various subtypes of NAFLD including early NASH and advanced NASH, as well as
fibrosis stage and steatosis grade, and find many differentiating metabolites and pathways among
the different histologies. Separately, analysis of the metabolite profiles showed that the confounding
effects of demographics such as gender and diabetes are minimal in the biomarker identification for
NAFL disease. To our knowledge, this is the first study to identify distinguishing metabolites and

131



Metabolites 2020, 10, 168

metabolic pathways for different liver histology associated with NAFL, combining targeted LC-MS
and NMR based metabolomics methods.

Many other “non-metabolite”, serum-based biomarkers (e.g., type 4 collagen, M2BPGi) or
biomarker panels (e.g., Fibrosis-4 score, Enhanced Liver Fibrosis score, Fibrotest/Fibrosure, Fibrospect)
have been described that may distinguish advanced NASH, early NASH and NAFL [42]. Future
studies should compare the performance characteristics of these tests with the metabolites that we
described in distinguishing disease severity in NAFLD.

There are several limitations to this study, most notably the moderate sample size. Our results of
novel metabolite (e.g., spermidine) and metabolite pathways associated with NASH severity will need
to be confirmed in future studies. The small number of subjects does not allow us to make conclusions
as to the separate effects of diabetes and insulin resistance, as insulin resistance was not measured in
this study. Although two widely used metabolomics platforms, MS and NMR, were used to profile
serum metabolites, the number of metabolites profiled is still small compared to the breadth of the
serum metabolite profile. Moreover, no independent validation of the results was made.

In conclusion, a comprehensive metabolite profiling combining data from two analytical platforms,
MS and NMR, provides new insights into the underlying metabolites and metabolic pathways
that distinguish NAFLD patients based on histological severity. In particular, numerous features
distinguished high risk NASH from low risk NAFL that potentially offers new avenues to identify
high-risk NASH patients in the clinical setting. Of significance is that apart from identifying many
altered metabolic pathways, our study enabled the identification of metabolites such as spermidine,
acytylglycine, oxypurinol, and bile acids that varied by as much as 2-fold or higher between NAFL
and NASH. These findings are particularly remarkable considering the tight regulation of many
blood metabolites.

4. Materials and Methods

4.1. Study Population

All subjects gave their informed consent for inclusion before they participated in the study.
The study was conducted in accordance with the Declaration of Helsinki, and the protocol was
approved by the Institutional Review Board (IRB) at the Veterans Affairs Puget Sound Healthcare
System (IRB protocol # 01010). Patients were identified from a prospective biorepository of chronic liver
disease patients established at the Veterans Affairs Puget Sound Healthcare System, which recruited
patients undergoing clinically indicated liver biopsy. We identified patients with NAFLD based on
histological hepatic steatosis from liver biopsies in the absence of hepatitis C virus (negative serum
HCV antibody and HCV RNA), hepatitis B virus (negative serum HBV surface antigen), excessive
alcohol consumption (dedicated alcohol questionnaire administered on the day of liver biopsy), iron
overload (hepatic stain and serum iron markers), or markers of autoimmune liver diseases. The liver
biopsies of these patients with NAFLD were prospectively reviewed by a single hepatopathologist
who scored the grade of steatosis (1–3), inflammation (0–3) and ballooning degeneration (0–2) and the
stage of fibrosis (0–4) according to the system proposed by Kleiner et al. [43]. Based on these scores we
divided the patients with NAFLD a priori according to their histological severity into the following
groups, without any knowledge of their metabolomic profiles:

a. NAFL (n = 12): Steatosis grade 1–3 with no or minimal inflammation (grade 0–1), no ballooning
degeneration (grade 0) and no fibrosis (stage F0).

b. Early-NASH (n = 31): No or mild fibrosis (stage F0-F1) and NAFLD activity score (NAS) 3–4,
including steatosis grade ≥1, inflammation ≥1, and ballooning degeneration score ≥1. The NAS
score is the sum of steatosis (0–3) plus inflammation (0–3) plus ballooning degeneration (0–2)
grades and takes values ranging from 1–8 [43].

c. Advanced-NASH (n = 14): Fibrosis score F1-F4 and NAS score 5–8, including ballooning
degeneration score = 2.
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The European Association for the Study of the Liver (EASL) defines “early” NASH as “no or
mild fibrosis F0-F1” [44], which is consistent with the definition we chose above. However, there is no
universally agreed definition of “advanced” NASH and we wanted to categorize NASH based on both
fibrosis and NAS scores, hence we used the categories above.

In addition, we performed analyses based on subdividing patients by fibrosis stage (0–1 vs. 2–4)
and by steatosis grade (0–1 vs. 2–3), given the fundamental importance of these histological features.

4.2. Serum Metabolite Profiling: LC-MS

A fasting serum specimen was prospectively collected from all patients between 7–9 am after an
overnight fast just prior to liver biopsy and stored at −80 ◦C until the analysis.

Frozen serum samples were thawed at 4 oC, after which protein precipitation and metabolite
extraction was performed by adding 150 μL of methanol; the mixture was then vortexed for 2 min,
stored at −20 ◦C for 20 min and centrifuged at 20,800× g for 10 min. The supernatant was collected
into a new Eppendorf vial and dried using a Vacufuge Plus evaporator (Eppendorf, Hauppauge, NY,
USA). The dried samples were stored at −20 ◦C and were reconstituted in 500 μL of 5 mM ammonium
acetate in 40% water/60% acetonitrile + 0.2% acetic acid containing 5.13 μM tyrosine-13C2 and 22.5 μM
sodium lactate-13C3. The two isotope-labeled internal standards were added to each sample to monitor
the MS system performance. The samples were filtered through 0.45 μm PVDF filters (Phenomenex,
Torrance, CA, USA) prior to LC−MS analysis. A pooled human serum extracted using the same
procedure as described above was used as the quality-control (QC) sample and was analyzed once
every 10 patient samples.

Targeted LC-MS analysis was performed using an AB Sciex QTrap 5500 mass spectrometer
(AB Sciex, Toronto, ON, Canada) equipped with an electrospray ionization (ESI) source. The MS
instrument was connected to an LC system composed of two Agilent 1260 binary pumps, an Agilent
1260 autosampler, and Agilent 1290 column compartment containing a column-switching valve
(Agilent Technologies, Santa Clara, CA, USA). Two hydrophilic interaction chromatography (HILIC)
columns (SeQuant ZIC-cHILIC columns; 150 × 2.1 mm, 3.0 μm particle size, Merck KGaA, Darmstadt,
Germany) connected in parallel were used. One column was used for positive ionization and the
other, for negative ionization. Each sample was injected twice, once for positive ionization mode
(2 μL) and once for negative ionization mode (10 μL). Targeted data acquisition was performed in
multiple-reaction-monitoring (MRM) mode. The mobile phase, the gradient conditions and the MS
parameters used have been described previously in detail [45]. The extracted MRM peaks were
integrated using MultiQuant 2.1 software (AB Sciex).

4.3. NMR Spectroscopy

NMR analyses were performed on a Bruker Avance III 800 MHz spectrometer equipped
with a cryogenically cooled probe and Z-gradients suitable for inverse detection. The CPMG
(Carr-Purcell-Meiboom-Gill) pulse sequence with water suppression using presaturation, was used
with 9615 Hz spectral width, 32 k time domain points, 6 s relaxation delay and 256 transients for
each sample. Fourier transformation was performed using a spectral size of 32 k data points after
multiplying the raw data by an exponential window function with line broadening of 0.5 Hz. Chemical
shifts were referenced to the internal TSP signal for 1H 1D spectra. Bruker Topspin software (version
3.0 or 3.1) was used for NMR data acquisition, processing and analyses. Peak assignments relied on
established literature values [46]. Bruker AMIX software was used to quantitate metabolites.

4.4. Statistical, Enrichment, and Pathway Analyses

Relative peak integrals or (where available) absolute concentrations of metabolites obtained from
MS and NMR were used for data analysis. The MS and NMR data were subjected to univariate
(Student’s t-test) analysis, multivariate analysis, principle component analysis (PCA), partial least
squares discriminant analysis (PLS-DA), statistical correlations, and metabolic pathway analysis. Prior
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to statistical analysis the MS and NMR data were normalized using Pareto scaling, where each variable
(concentration for each metabolite) was mean-centered and divided by the square root of standard
deviation of each variable. Metabolites with p < 0.05 were considered statistically significant. Pathway
enrichment analysis was performed to identify pathways significantly associated with the different
groups of NAFLD patients. For multivariate analysis, statistical correlations, enrichment analysis
and pathway analysis, the Metaboanalyst software package version 4.0 [22–24] was used. We have
also evaluated whether the confounding factors such as gender and diabetes affected the biomarkers
of NAFLD.

4.5. Evaluation of the GSG-Index

The GSG-index, a newly developed parameter associated with NAFLD, refers to the ratio of
glutamate to sum of serine and glycine [glutamate/(serine + glycine)] [38]. Amino acids of the
GSG-index, glutamate, serine, and glycine, are critical for the synthesis of glutathione (GSH), which is
the major antioxidant that controls oxidative stress in the liver. Several amino acids including those
associated with the GSG-index, branched chain amino acids (BCCAs) and aromatic amino acids (AAAs)
were shown to be altered in NAFLD [38]. Hence, we evaluated the associations of the GSG-index with
histological severity of NAFLD.
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for (a) male vs female; and (b) diabetes vs non-diabetes patients, Table S1: List of metabolites quantified by
mass spectrometry (MS), Table S2: List of metabolites quantified by NMR spectroscopy, Table S3: Metabolic
pathways that are significantly different between patients with NAFL, early-NASH or advanced-NASH, and
between different fibrosis stages or steatosis grades, Table S4: Metabolites that differed significantly between male
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Abstract: Nicotinamide adenine dinucleotide (NAD) has a critical role in cellular metabolism and
energy homeostasis. Its importance has been established early with the discovery of NAD’s therapeutic
role for pellagra. This review addresses some of the recent findings on NAD physiopathology and
their effects on nonalcoholic fatty liver disease (NAFLD) pathogenesis, which need to be considered
in the search for a better therapeutic approach. Reduced NAD concentrations contribute to the
dysmetabolic imbalance and consequently to the pathogenesis of NAFLD. In this perspective,
the dietary supplementation or the pharmacological modulation of NAD levels appear to be an
attractive strategy. These reviewed studies open the doors to growing interest in NAD metabolism
for NAFLD diagnosis, prevention, and treatment. Future rigorous clinical studies in humans will be
necessary to validate these preliminary but promising results.

Keywords: nicotinamide; NAFLD; steatosis

1. Introduction

The global diabesity (diabetes and obesity) [1] epidemic has dramatically increased the prevalence
of nonalcoholic fatty liver disease (NAFLD), such that it is the most frequent cause of chronic liver
disease. NAFLD is considered to be the liver manifestation of the metabolic syndrome, because of its
frequent association with dyslipidemia, cardiovascular disease, obstructive sleep apnea, vitamin D
deficiency, and other components of the metabolic syndrome, and insulin resistance is central to its
pathogenesis [2,3].

Liver steatosis is the hallmark histologic feature of NAFLD, and it is the result of triglyceride
accumulation in the hepatocytes cytoplasm. Liver lipid accumulation arises from an imbalance
between lipid accumulation and removal, which is linked to increased liver lipogenesis, increased lipid
uptake, and/or reduced triglyceride export or β-oxidation [4,5]. Liver secretion of triglycerides as very
low-density lipoprotein (VLDL) particles for delivery to peripheral tissues is a crucial pathway for the
mobilization of hepatic fat. Defects in VLDL processing are directly linked to hepatic steatosis. Jiang et
al. showed that non-alcoholic steatohepatitis (NASH) was related to an increment in VLDL particle
size, while hepatic fibrosis was related to a reduction in the concentration of small VLDL particles [6].
Moreover, there is a relationship between choline deficiency and accumulation of liver lipid, which is
why choline-deficient diets are often used to induce NAFLD in animal models. Within hepatocytes,
choline may be oxidized for phosphatidylcholine synthesis. Liver phosphatidylcholine is used to build
the monolayers of VLDL, and its deficiency increases de novo hepatic lipogenesis [7].

The present model for NAFLD pathophysiology, called “the multiple-hit hypothesis”, defines
NAFLD as the manifestation of environmental and genetic factors, including the dysfunction of
different organs and organelles, together with the intricate interaction between hepatocytes and other
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cells (such as stellate cells and Kupffer) in the liver [8]. Additionally, the liver is a hub for several
metabolic pathways defining NAFLD as a multistep, progressive systemic disease.

2. NAD: Behind Its Metabolism

Nicotinamide adenine dinucleotide (NAD) is a hydride acceptor producing the reduced NADH,
as well as the derivate phosphorylated dinucleotide pair NADP/NADPH, which is required for
many cellular biosynthetic pathways and for protecting cells from reactive oxygen species (ROS).
The keystone function of NAD is to facilitate hydrogen transfer in metabolic pathways as enzyme
cofactors dealing with hydrogen transfer in reductive or oxidative metabolic reaction. So, it plays
a central role in basic energy metabolism such as assisting with mitochondrial electron transport,
glycolysis, the oxidation of fatty acids and amino acids in mitochondria, and the citric acid cycle. NAD
is also a substrate for signaling enzymes such as poly (ADP ribose) polymerase (PARP), sirtuins (SIRTs),
and ADP ribosyl transferases, called “NAD consumers” [9] (Figure 1). For example, it is involved in
repairing and maintaining genomic integrity, thanks to PARP, which transfers ADP-ribose from NAD
to itself, histones, and other proteins at sites of DNA damage.

Figure 1. NAD synthesis pathways. NA, nicotinic acid; NAD, nicotinamide adenine dinucleotide; NAM,
nicotinamide; NAMN, nicotinic acid mononucleotide; NAPT, nicotinic acid phosphoribosyltransferase;
NMN, nicotinamide mononucleotide; NMNAT, nicotinamide nucleotide adenylyltransferase; NR,
nicotinamide riboside; NRK, NR kinase; NNMT, nicotinamide-N-methyltransferase; PARP, poly
(ADP ribose) polymerase; NNMT, nicotinamide N-methyltransferase; NAMPT, nicotinamide
phosphoribosyltransferase; SIRT, sirtuin.

The cellular NAD pool is created by a balance between the activity of NAD-consuming and
synthesizing enzymes [10–12]. NAD concentrations display the cell energy state and are modulated by
physiological processes. In fact, during fasting, caloric restriction, and exercise, NAD levels increase.
Conversely, caloric excess and aging diminish NAD levels [13].
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NAD is synthesized from four distinct biosynthetic precursors in two different pathways
(Figure 1). De novo synthesis (the deamidated pathway) uses as precursor the dietary amino
acid tryptophan, which is metabolized to create biosynthetic intermediates. In particular, the creation
of unstable α-amino-β-carboxymuconate-ε-semialdehyde (ACMS) forms a branching point of the
deaminated pathway. The ACMS is subjected to both non-enzymatic cyclization or complete enzymatic
oxidation to quinolinic acid, and this is the first limiting step [14]. The second limiting mechanism
involves the catalytic conversion of quinolinic acid to nicotinic acid mononucleotide (NAMN) by
quinolinate phosphoribosyl transferase. Next, NAMN is transformed into NAD by the nicotinamide
mononucleotide adenylyltransferase (NMNAT) enzyme. This pathway is recognized as the minor
contributor to the total NAD pool [14].

Dietary vitamin B3 compounds, including nicotinic acid (NA), also known as niacin, NAM, and
nicotinamide riboside (NR), supply as NAD biosynthetic precursors and are rescued from the diet (the
amidated pathway) for generating cellular NAD. This salvage pathway is the most relevant for NAD
homeostasis [15]. NA is converted to NAMN by nicotinic acid phosphoribosyltransferase (NAPT),
which is afterward converted to NAD by NMNAT. The NAM and NR are transformed into NMN
by nicotinamide phosphoribosyltransferase (NAMPT) and NR kinase (NRK) enzymes, respectively.
Finally, NMN is enzymatically transformed into NAD by NMNAT [15].

NAMPT, also known with the name visfatin, is a highly conserved protein with cytokine functions,
which is expressed in almost all tissues and cells (Figure 1) [16]. In particular, it is an essential regulator
of the intracellular NAD pool by catalyzing the formation of nicotinamide mononucleotide (NMN) from
nicotinamide and 5′-phosphoribosyl-1-pyrophosphate, which is the limiting step in the NAD salvage
pathway [17]. NAMPT has both intracellular and extracellular forms in mammals. The extracellular
NAMPT (eNAMPT) is secreted from adipocytes [18], hepatocytes [19], and leucocytes [20] and circulates
in the blood where, additionally to its enzymatic function, it has also cytokine-like actions [16,21,22].
In virtue of its NAD biosynthetic activity, intracellular NAMPT (iNAMPT) controls the activity of
NAD-dependent and consuming enzymes, such as SIRTs [23], the NADase CD38 (a cyclic ADP-ribose
synthesis) [24], and PARPs [25], by which it controls mitochondrial biogenesis, cellular metabolism [26],
and adaptive responses to oxidative, inflammatory, genotoxic, and proteotoxic stress [27]. Genotoxic
stress and nutrient deprivation activate NAMPT, which protects cells from these stresses through the
maintenance of the mitochondrial NAD level [23].

The NAD levels are also regulated by the cytosolic enzyme nicotinamide-N-methyltransferase
(NNMT), which methylates nicotinamide to produce N1-methyl nicotinamide (MNAM) toward the
universal methyl donor S-adenosylmethionine as a methyl donor (Figure 1). NNMT is mainly expressed
in the liver, but also in other organs such as muscle, adipose tissue, and heart. An increase of NNMT
expression has been observed in obesity and diabetes [28–30].

SIRTs are NAD-dependent deacylases [31]. SIRTs have key roles in response to environmental and
nutritional perturbations, such as DNA damage, oxidative stress, and fasting. For this reason, SIRTs
have to be considered as nutritional sensors that operate in regulating glucose and lipid homeostasis,
inflammatory responses, and cell death [23,32–34]. Additionally, SIRTs influence cells’ metabolism
through the regulation of the circadian clock machinery with the deacetylation of central clock
components in the liver [35,36]. Accordingly, NAD synthesis is controlled by the circadian machinery
to furnish a crucial link from the clock oscillator to metabolic pathways [37]. NAD is synthesized with
circadian oscillations, leading to a circadian schedule of SIRT activation and mitochondrial metabolism,
such as the oxidation of fatty acids [38]. SIRTs’ activity is dependent on its cofactor NAD and it
is sensitive to the cellular NAD levels [39], designating NAD as a rate-limiting substrate for their
reactions [32,40,41]. As NAM is the product of SIRT-catalyzed deacetylation reactions, high levels
of NAM have been used as a SIRTs inhibitor [42]. This drives speculation that enzymes involved in
NAD synthesis could control SIRTs’ activity. For example, an increment in NAD was proposed by
Lin et al. to mediate the health span and extension of life by dietary restriction [43], and recently,
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studies demonstrated that the activity of SIRTs declines with aging by a systemic reduction in NAD
levels [44,45].

3. NAD Involvement in NAFLD Pathogenesis

In the last years, an emerging role of NAD metabolism in protection against NAFLD stimulated a
growing interest. Von Shönfels et al. performed a small-molecule metabolite screen of human hepatic
tissue to find metabolic markers related to NASH histology. According to its concentration in liver
tissue, they suggested a protective effect of NA, which was subsequently verified in a nutritional
animal model of NAFLD showing a marked effect on steatosis and transaminases levels with NA
supplementation [46]. NAD deficiency decreases the oxidation of fatty acids, promoting steatosis [47].
Usually, the triglycerides are broken down into glycerol and fatty acids, so they can enter into the
mitochondria and proceed on with fatty acid oxidation. Fatty acids shift in this pathway as Coenzyme
A (CoA) derivatives utilizing NAD. The acetyl groups created by the β-oxidation of the fatty acid
take part in the activity of the Krebs cycle, causing the formation of NADH. The reduced coenzyme
(NADH) is oxidized by leaving the protons and electrons to oxygen in the mitochondria to synthesize
ATP in the electron transport system [48]. So, NAD deficiency causes a reduction of β-oxidation, and
consequently the accumulation of triglycerides in the hepatocytes (steatosis).

The control of rate-limiting enzymes of NAD biosynthesis avoids the negative effects of high-fat
diet (HFD) and keeps up insulin sensitivity and glucose homeostasis. Penke et al. [49] reported
increased hepatic NAD levels in mice under HFD thanks to increased NAMPT expression. So, it seems
that NAD deficiency is a crucial risk factor for NAFLD resulting from having compromised the
NAMPT-controlled NAD salvage pathway in liver [50]. Plasma levels of eNAMPT may be closely
linked to NAFLD, obesity, diabetes, and atherosclerosis [51–54]. Moreover, decreased NAMPT
expression in NAMPT +/−mice, which reduced circulating NMN levels and decreased NAD levels in
brown adipose tissue, impaired glucose-stimulated insulin secretion [22]. This event can be rescued
by NMN supplementation, suggesting that the maintenance of NAD concentrations is critical for
pancreatic function [22].

The mechanisms of NAMPT protecting the liver from HFD are depicted in Figure 2. NAMPT
induces the production of NAD by activating the NAD salvage pathway, and consecutively,
the augmented NAD (as a substrate) activates the SIRT 1 and 3 signaling pathways, alleviating
HFD-induced hepatic steatosis. De novo lipogenesis (DNL) is known to be high in individuals with
NAFLD, and provides about 26% of hepatic lipids [55,56]. The NAMPT is critical for the formation of
acetyl-CoA and for the increase of fatty acid oxidation by providing NAD for SIRT3 with the activation
of acetyl-CoA synthetase (ACS) [57]. At the same time, the activation of SIRT1 by NAMPT promotes
the deacetylation of sterol regulatory element-binding protein 1 (SREBP1), which inhibits SREBP1
activity, resulting in the lower expression of lipogenesis genes, including fatty acid synthase (FAS)
and acetyl-CoA carboxylase (ACC). Additionally, SIRT 1 directly activates AMP-activated protein
kinase (AMPK), which further inhibits SREBP1 activity. All together, these results show that NAMPT
modulates processes involved in NAFLD pathogenesis (such as de novo lipogenesis and fatty acid
oxidation). Accordingly, Zhou et al. showed that dominant negative-NAMPT transgenic mice, under
normal chow, display systemic NAD decrease and had a moderate NASH phenotype, with enhanced
oxidative stress, lipid accumulation, impaired insulin sensitivity, and triggered inflammation in liver.
These features deteriorate further under HFD [50].
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Figure 2. NAMPT involvement in lipids metabolism. NAMPT, nicotinamide phosphoribosyltransferase;
NAD, nicotinamide adenine dinucleotide; ACS, acetyl-CoA synthetase; AMPK, AMP-activated protein
kinase; SIRT, sirtuin; SREBP1, sterol regulatory element-binding protein 1.

NNMT has also been associated to the development of diabetes, obesity, and metabolic
syndrome [28–30]. An increase of NNMT expression has been observed in obesity and diabetes [28–30],
probably because NNMT controls lipid, cholesterol, and glucose metabolism by stabilizing SIRTs [58].
In humans, adipose tissue NNMT expression and its product MNAM correlate positively with insulin
resistance. Kannt et al. [29] showed an increased expression of NNMT in the adipose tissue of diabetic
patients according to the insulin resistance severity, suggesting that NNMT could be a “bad actor”
limiting fuel oxidation and promoting fat storage. NNMT protein levels are upregulated in the liver
and adipose tissue of mouse models of insulin resistance and obesity, and NNMT knockdown has
a protective effect against the metabolic consequences of HFD [28], suggesting that NNMT may
have a critical role in NAFLD pathogenesis. The dietary regulation of liver NNMT expression,
the site of its major expression, shows some interesting patterns. The ketogenic diet suppresses
liver NNMT expression, contributing to the increased liver and serum cholesterol levels in this
model [59]. Conversely, caloric restriction increased NNMT liver expression, promoting SIRT1 protein
stability, which mediates several metabolic effects of caloric restriction [60]. Liver NNMT expression
inversely correlates with serum triglycerides (TGs), cholesterol, and free fatty acid levels, suggesting
that increased liver NNMT expression is associated with a better metabolic profile, contrary to its
expression in adipose tissue [28,29]. Furthermore, a genome-wide association study showed significant
associations between the risk of developing NASH and a specific single-nucleotide polymorphisms
(SNPs) in the NNMT gene (rs694539) [61]: in this case, subjects with the AA genotype showed a
statistically significant increased NASH risk, while the GG genotype seemed to be protective. Similarly,
Hasan et al. showed that the AA genotype correlates with the degree of steatosis as detected by the
controlled attenuation parameter, even if it does not correlate with the degree of fibrosis detected by
FibroScan [62].

4. NAD as Biomarker for NAFLD Diagnosis

The identification of non-invasive biomarkers has become a major focus of interest in NAFLD.
Since the diagnosis of NASH is still a histological one, the dramatic increase in the prevalence of
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NAFLD and its severity spectrum mean that liver biopsy is not feasible for all patients. Current plasma
biomarkers include predictive models for diagnosing or grading steatosis (such as the fatty liver index)
or staging fibrosis (such as the NAFLD fibrosis score), and other ones specific to NAFLD (such as the
BARD and NAFLD fibrosis scores), even if some have been initially developed in a hepatitis C setting
(AST/ALT ratio, APRI, FIB-4) [63].

Several studies evaluated the relationship between NAD metabolism and NAFLD [29,64–68]
(Table 1). Human studies investigated how plasma and liver NAMPT protein levels are affected in
subjects with steatosis and NAFLD [64–68]. Gaddipati et al. [64] showed that a significant reduction in
the NAMPT levels of the visceral adipose tissue is associated to degree of steatosis in NAFLD patients.
Similarly, Amirkalali et al. [68] showed that higher serum NAMPT is associated with lower liver DNL
in female subjects (probably associated with a higher adipose tissue DNL according to the higher
fat mass), while the only significant association in male subjects was between serum NAMPT and
liver fat content, probably for the inflammatory role of NAMPT. Thus, the plasma NAMPT levels
could have a different meaning for each sex because of the opposing effects of liver and adipose tissue
DNL on NAFLD pathogenesis. Conversely, Kannt et al. [29] showed that NNMT mRNA in adipose
tissue and 1-methylnicotinamide serum concentrations are higher in patients with insulin resistance
and correlate with insulin resistance severity. An additional interesting result is that improvements
of insulin sensitivity obtained with exercise and bariatric surgery are associated with a reduction of
NNMT expression in adipose tissue and of 1-methylnicotinamide serum levels [29].

5. NAD Supplementation for NAFLD Prevention

The evidence for using dietary supplementation to prevent chronic disease is a longstanding
issue of debate. Several evidences are emerging to support the hypothesis that supplementation with
NAD precursors could protect against metabolic imbalance and liver steatosis (Table 2) [12,49,69–71].
A supplementation study with NMN showed its property to restore NAD levels either in nuclear
and mitochondrial cells compartments and to prevent diet-induced and age-induced diabetes in
C57BL/6 mice [12]. Tao et al. showed that NAMPT gives resistance to hepatic steatosis through
NAD synthesis [69], and NR supplementation gives protection against steatosis in mice under
high-fat/high-sucrose diet [70,71]. NAM supplementation protects hepatocytes from palmitate-induced
cell death, and autophagy induction contributes to the anti-lipotoxic property of NAM through SIRT1
activation in hepatocytes. Additionally, NAM prevents hepatic alterations in glucose-6-phosphate
dehydrogenase and the redox state, and attenuates increased serum FFA, oxidative stress, inflammation,
and hepatic damage in high fructose or high glucose consumption-induced liver steatosis in rats [72].
Lastly, Komatsu et al. showed that NNMT and NAM supplementation causes liver steatosis and
fibrosis, although increased lipid metabolism and decreased adiposity. NNMT overexpression induces
genes for liver steatosis and fibrosis by decreasing tissue NAD content and methylation pool, suggesting
that NNMT connects NAD and methionine metabolism and causes NAFLD progression [73]. Thus,
NAD supplementation may represent a preventive treatment for metabolic dysfunctions such as
diabetes, and NAFLD spectrum disease, from steatosis to NASH.

6. NAD Supplementation for NAFLD Treatment

The relevance of dietary NAD precursors in health is well known, thanks to the historical use of
NA and NAM in the treatment of dietary tryptophan deficits (pellagra) and hyperlipidemia, although
high-dose NA use is limited by painful flushing, while high-dose NAM is hepatotoxic [74,75]. In fact,
the use of NA is associated with a flush of face and chest and a sensation of warmth or burning.
NA causes flushing principally by releasing prostaglandins D2 and E2 from skin cells, which afterwards
dilates skin arterioles [76,77]. The precursors NA, NMN, and NR, but also PARP or CD38 inhibitors,
rise NAD levels in different mice cells and tissues [12,13,70]. Boosting NAD concentrations can be
therapeutic in metabolic diseases such as diabetes [12,53] and NAFLD [70], and potentially protects
against obesity [51] and age-related disorders (Table 3).
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Due to its ability to increase NAD synthesis without inducing side effects [44,70], NR has been used
in mice to increase NAD metabolism and improve health in models of metabolic stress, showing that
NR abolishes DNA damage in HFD-fed mice [70,78]. Canto et al. [70] treated mice with NR (400 mg/kg
animal weight per day), demonstrating an increase of NAD levels in muscle and liver. Mice under
HFD were protected from body weight increase and showed an improvement of mitochondrial
function and fatty acids oxidation as a fuel source. In accordance with increases in tissue NAD levels,
SIRT1 and SIRT3 were upregulated [70]. NR also ameliorated insulin sensitivity in weight-matched
mice [70]. Similarly, Zhou et al. [50] demonstrated that the oral administration of NR corrects NAFLD
phenotypes induced by NAD deficiency alone or combined with HFD. Trammell et al. [79] performed
a clinical study enrolling 12 healthy subjects receiving three single doses of NR, demonstrating that NR
supplementation safely induces NAD metabolism at all doses. They also demonstrated that NR is
more orally bioavailable than NAM, which is more orally bioavailable than NA. The capability of NR
to increase ADPR is threefold higher than NAM. This validates NR as the preferred NAD precursor
vitamin for boosting NAD and NAD-consuming activities in liver. No dose-dependent side effects
of NR have been reported, contrary to high-dose NAM, which may lead to liver damage [15]. Shi
et al. [80] carried out a dose–response dietary intervention mice study using a wide range of NR (from
5 to 900 mg NR per kg of an obesogenic diet), concluding that 30 mg/kg diet constitutes the best
concentration to reinforce metabolic health. These studies showed the powerful biological effects of
NR in mitigating the negative consequences of HFDs [70,71,81,82], suggesting that NAD substrates
supplementation may be a promising therapeutic strategy for preventing and treating NAFLD/NASH.

Another possibility to modulate NAD levels consists of using NMN. Supplementation with NMN,
an enzymatic product of NAMPT, improves diabetes [12,13] and other damages such as vascular
dysfunction, oxidative stress [83], and cognitive impairment [84]. Yoshino et al. demonstrated that
increasing NAD biosynthesis by the intraperitoneal injection of NMN improves glucose homeostasis
in obese mice, and that NAMPT activity is altered by HFD and can cause diabetes [12]. Similarly,
supplementation with MNAM significantly reduces hepatic cholesterol and triglycerides concentrations,
by suppressing fatty acid and cholesterol synthesis and the expression of lipogenic and cholesterol
synthesis genes [58]. MNAM supplementation produces a selective reduction in larger lipoprotein
particles but not high-density lipoprotein, suggesting that MNAM or its derivatives could be used to
reduce low-density lipoprotein levels [58].

Another attractive angle to modulate NAD levels consists in targeting the activity of
NAD-consuming enzymes, such as CD38 [10] and PARPs [11]. Several studies showed that CD38
knockout (KO) mice have higher NAD levels than Wild-type (WT) animals, and are protected against
obesity and metabolic syndrome [10,85]. The treatment of obese mice with CD38 inhibitors augments
intracellular NAD concentrations and improves glucose and lipid homeostasis [86]. Increased
PARP activity causes an elevated consumption of cellular NAD, which is associated to increased
ATP consumption, compromising energy balance and facilitating cell death [87]. Upon persistent
PARP activation, decreased mitochondrial ATP production inhibits NAD re-synthesis, creating a
feed-forward loop in ATP-consuming processes, and resulting in metabolic catastrophe and cell death.
PARP inhibition causes an increase in NAD levels. Rucaparib (a PARP inhibitor) significantly increases
hepatic NAD levels, as previously described with NAM treatment [88], while in PARP1 KO liver, NAD
levels were similar to those in treated PARP1 WT liver. So, CD38 and PARP inhibition combined with
NAD precursors may be an intriguing therapeutic perspective for NAFLD [13].

Finally, Katsiuba et al. presented an additional mechanism for increasing NAD levels toward the
inhibition of the ACMS decarboxylase with a selective inhibitor recently developed, TES-991. ACMS
decarboxylase inhibition in a mouse model of diet-induced NAFLD increased levels of NAD and the
activation of SIRT1 with improvement of the NAFLD phenotype, without systemic side effects [14].
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7. Conclusions

Until now, there is still no approved drug for the treatment of NAFLD, and although lifestyle
modification appears beneficial in patients with NAFLD, no single approach is likely to be suitable for
all patients. NAD reduction might be caused by the imbalance in NAD biosynthesis and depletion,
both of which occur in NAFLD. NAD reduction may induce NAFLD through decreased SIRT activities
in the nucleus and mitochondria. The supplementation of key NAD intermediates, such as NMN and
NR, can ameliorate NAFLD.
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Abstract: Nonalcoholic fatty liver disease (NAFLD) is a major public health problem worldwide.
NAFLD ranges in severity from benign steatosis to nonalcoholic steatohepatitis (NASH), cirrhosis,
and primary hepatocellular cancer (HCC). Obesity and type 2 diabetes mellitus (T2DM) are strongly
associated with NAFLD, and the western diet (WD) is a major contributor to the onset and progression
of these chronic diseases. Our aim was to use a lipidomic approach to identify potential lipid
mediators of diet-induced NASH. We previously used a preclinical mouse (low density lipoprotein
receptor null mouse, Ldlr -/-) model to assess transcriptomic mechanisms linked to WD-induced NASH
and docosahexaenoic acid (DHA, 22:6, ω3)-mediated remission of NASH. This report used livers from
the previous study to carry out ultra-high-performance liquid chromatography coupled with tandem
mass spectrometry (LC-MS/MS) and high-performance liquid chromatography coupled with dynamic
multi-reaction monitoring (HPLC-dMRM) to assess the impact of the WD and DHA on hepatic
membrane lipid and oxylipin composition, respectively. Feeding mice the WD increased hepatic
saturated and monounsaturated fatty acids and arachidonic acid (ARA, 20:4, ω6) in membrane lipids
and suppressed ω3 polyunsaturated fatty acids (PUFA) in membrane lipids and ω3 PUFA-derived
anti-inflammatory oxylipins. Supplementing the WD with DHA lowered hepatic ARA in membrane
lipids and ARA-derived oxylipins and significantly increased hepatic DHA and its metabolites in
membrane lipids, as well as C20–22 ω3 PUFA-derived oxylipins. NASH markers of inflammation and
fibrosis were inversely associated with hepatic C20–22 ω3 PUFA-derived Cyp2C- and Cyp2J-generated
anti-inflammatory oxylipins (false discovery rate adjusted p-value; q ≤ 0.026). Our findings suggest
that dietary DHA promoted partial remission of WD-induced NASH, at least in part, by lowering
hepatic pro-inflammatory oxylipins derived from ARA and increasing hepatic anti-inflammatory
oxylipins derived from C20–22 ω3 PUFA.

Keywords: nonalcoholic fatty liver disease; nonalcoholic steatohepatitis; arachidonic acid;
docosahexaenoic acid; inflammation; fibrosis; lipidomics; mass spectrometry

1. Introduction

Nonalcoholic fatty liver disease (NAFLD) is the most common chronic fatty liver disease
worldwide [1–3] and is defined as excessive neutral lipid deposition in the liver in individuals
who consume little or no alcohol [4,5]. Obesity and type 2 diabetes mellitus (T2DM) are strongly
associated with NAFLD [3,6–8]. In fact, 60% of patients with a BMI > 30 display evidence of liver
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steatosis [9]. Based on estimates from the Centers for Disease Control, ~93 million adults [10] and
~14 million children [11] in the US are obese. As such, both obese children and adults are at risk of
developing NAFLD [12]. Lifestyle, diet, genetics, and endocrine status contribute to the onset of NAFLD
and its progression to nonalcoholic steatohepatitis (NASH), cirrhosis, and primary hepatocellular
cancer (HCC) [7,13]. Moreover, NAFLD is a risk factor for cardiovascular disease [14–16]. The top four
risk factors for NAFLD are obesity, T2DM, dyslipidemia, and metabolic syndrome [17,18].

The progression of benign steatosis to NASH is a multicellular and multi-hit process [19–23] that
is associated with excessive lipid accumulation in hepatocytes leading to insulin resistance and hepatic
injury involving endoplasmic reticulum stress, oxidative stress, and inflammation [24]. Hepatic injury
leads to cell death and fibrosis [25–27]. The best strategies to prevent NAFLD and stop its progression
from benign steatosis to NASH remain ill-defined [28–31]. While current strategies focus on lifestyle
management (exercise and diet) [28,32–43], patient noncompliance remains a major concern when using
lifestyle interventions to improve health outcomes [44–46]. Although targeted pharmacological agents
are in development to treat NAFLD [46–48], adverse drug effects arising from off-target mechanisms
often occur. To date, the Food and Drug Administration has not approved any specific therapies
for NASH [49]. The absence of specific treatment strategies makes NAFLD a major public health
concern [30].

While the clinical features of NAFLD are well described, the impact of diet, such as the western
diet, on hepatic physiology and lipid metabolism remains poorly defined. Accordingly, we developed
a preclinical NASH model using the low density lipoprotein (LDL)-receptor null (Ldlr -/-) mouse and
the western diet (WD). This model recapitulates human NASH in male and female mice [50–52]. Mice
fed the WD become obese and the liver presents all the hallmarks of NASH, i.e., hepatosteatosis,
leukocyte accumulation in the liver, centrilobular fibrosis, and increased expression of HCC markers.

A key outcome of our research established that the WD lowers hepatic content of C18-22

polyunsaturated fatty acids (PUFA, both ω3 and ω6). The WD is moderately high in saturated
(SFA) and monounsaturated (MUFA) fatty acids, simple sugar and cholesterol, but low in essential
fatty acids, e.g., linoleic acid (LA, 18:2,ω6) and α-linolenic acid (ALA, 18:3,ω3) [50,53,54]. Interestingly,
clinical studies have shown that NASH patients have low hepatic C18-22 PUFA when compared to
patients with benign steatosis [55–57]. Moreover, PUFA and ω3 PUFA, specifically, affect whole body
lipid metabolism by decreasing blood triglycerides, suppressing fatty acid synthesis, and promoting
fatty acid oxidation. In contrast, dietary ω6 PUFAs are precursors to bioactive pro-inflammatory
oxylipins [58,59]. As such, changes in the relative abundance of hepatic SFA, MUFA, PUFA, and the
type of PUFA, i.e., ω3 versus ω6 PUFA, has the potential to affect whole body and liver health.

To reinforce the role of dietary PUFA in NAFLD development, we established that supplementing
the WD with docosahexaenoic acid (DHA, 22:6,ω3) at 2% total calories restored hepatic C20–22 ω3 PUFA,
lowered arachidonic acid (ARA, 20:4,ω6), a precursor to harmful pro-inflammatory ARA-derived
oxylipins, and lowered histologic and transcriptomic markers of inflammation, oxidative stress, and
fibrosis [52]. More recently, we used a lipidomic approach to assess the impact of the WD on hepatic
membrane lipids and oxylipins in female Ldlr -/- mice [60]. These studies established that feeding
mice the WD significantly changed the acyl chain composition of multiple hepatic membrane lipid
classes and ω3 and ω6 PUFA-derived oxylipins. Specifically, the WD increased the hepatic membrane
content of SFA and MUFA, as well as ARA and ARA-derived oxylipins. The hepatic abundance of ω3
PUFA-derived oxylipins, however, was low in mice fed the WD. This oxylipin profile was associated
with increased hepatic markers of inflammation, oxidative stress, fibrosis, apoptosis, autophagy, notch
and hedgehog signaling, and hepatic cancer [60].

Fatty acids and their derivatives are well-established regulators of cell function. The principal
targets for this action include regulation of membrane lipid composition, oxylipin type and abundance,
and regulation of cell signaling originating from the plasma membrane, as well as targeting nuclear
receptors [59,61]. The rationale for using DHA to combat NASH is based on the well-established role of
C20–22 ω3 PUFA in the control of blood triglycerides and hepatic fatty acid synthesis and oxidation [62].
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Moreover, C20–22 ω3 PUFA interfere with ARA-derived oxylipin production and function [58]. Finally,
clinical studies support the use of ω3 PUFA dietary supplementation to treat NAFLD [12,47]. Recent
meta-analyses of clinical trials using C20–22 ω3 PUFA dietary supplementation indicate significant
improvement in several metabolic outcomes, including lowering plasma triglycerides and hepatic fat
content [12,47]. The most consistent improvement in liver health is seen with dietary DHA [12] or the
combination of DHA and eicosapentaenoic acid (EPA, 20:5, ω3), e.g., LovazaTM, GlaxoSmithKline [63].
EPA treatment alone, however, has proven ineffective in improving liver health in NAFLD patients [50,64].

In this report, we used liver samples from our previous study which documented the capacity of
DHA to block NASH progression (Figure 1) [52]. This study included detailed gas chromatographic
(GC) analysis of diet effects on hepatic lipids as well as extensive transcriptomic analysis of
hepatic markers of inflammation and fibrosis. Herein, we expanded our lipidomic analysis by
using ultra-high-performance liquid chromatography coupled with tandem mass spectrometry
(UPLC-MS/MS) and high-performance liquid chromatography coupled with dynamic multi-reaction
monitoring (HPLC-dMRM), as described [60]. Our aim was to document how the WD and DHA
altered hepatic membrane lipid and non-esterified oxylipin composition in a preclinical NASH model.
We then used a statistical approach to determine how these diet-induced changes in hepatic lipids
correlated with changes in hepatic markers of inflammation and fibrosis.

Figure 1. Study design for docosahexaenoic acid (DHA)-mediated nonalcoholic steatohepatitis (NASH)
remission in male Ldlr -/- mice. Liver samples used in this lipidomic analysis were obtained from our
previously published study assessing the capacity of DHA to promote NASH remission [52]. Briefly,
mice at 10 wks of age were fed a chow diet (Purina Pico Lab diet 5053) and served as a reference diet
(RD) group. The RD group was maintained on the RD for the duration of the study, i.e., 30 weeks (wks;
RD30, number of animals (N) = 5). Mice were also fed the western diet (WD) (Research Diets, D12079B)
for 22 wks. At 22 wks, a group of WD-fed mice were euthanized for recovery of blood and liver. This
group (WD22, N = 5) served as a baseline for disease progression. The remaining WD-fed mice were
switched to a WD supplemented with either olive oil (WDO30, N = 6) or DHASCO (WDD30, N = 7)
and euthanized 8 weeks (8 wks) later. See Materials and Methods for more details.

2. Results

2.1. Impact of the Western Diet (WD) on Membrane Lipids

The study designed included 4 groups of male Ldlr-/- mice as described in Figure 1. A control
group consisted of mice maintained on a reference diet (RD) for 30 weeks. The remaining mice were
fed the WD for 22 weeks. At 22 weeks, WD-fed mice were split into three groups. One group was
euthanized and served as the baseline group (WD22) for NASH progression analysis. The remaining
mice were fed the WD supplemented with either olive oil (WDO) or DHASCO (WDD) for 8 weeks (see
Materials and Methods). The WDO and WDD diets were matched for calories as fat. The dose of DHA
used in these studies was equivalent to a human taking 4 g of Lovaza™ (GlaxoSmithKline)/day to treat
hypertriglyceridemia [65]. After 8 weeks on the WDO and WDD diets, mice were euthanized for blood
and liver collection. The group identifications for these mice are WDO30 and WDD30, respectively.
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Total hepatic lipids were extracted and fractionated using the UPLC-MS/MS approach described in
Materials and Methods.

Our UPLC-MS/MS analysis identified 13 classes of membrane lipids (Figure 2). To assess the
impact of diet on these lipids, we quantified the cumulative saturation index (CSI). The CSI reflects the
amount of lipid within a lipid class and the level of saturation of the fatty acyl chains within each lipid
class. Figure 2A represents the CSI across all major membrane lipids in mice maintained on the RD for
30 weeks (RD30). The highest CSI was in the lipid classes including phosphatidyl choline (PC) and
phosphatidyl ethanolamine (PE) and the lowest in lysophosphatidyl serine (lyso PS).

Figure 2. Diet effects on membrane lipids. (A): Cumulative saturation index of lipids in each lipid class.
The saturation index (SI) was calculated as follows: one minus (number of double bonds) divided
by (number of fatty acyl carbons minus one). The cumulative saturation index was calculated by
multiplying the SI by the peak intensity of each lipid species and summing all lipids within each lipid
class. (B): Effect of diet on the cumulative saturation index for each lipid class. Results are presented as
fold change, mean ± standard error of the mean (SEM); *, q < 0.05 vs. RD30; #, q < 0.05 vs. WDO30;
[q-value is the false discovery rate (FDR) adjusted p-value].

The impact of the WD and DHA on CSI is shown in Figure 2B. Since the WD is enriched
in SFA and MUFA, we expected a significant increase in the CSI. Accordingly, feeding mice the
WD increased the CSI in phosphatidic acid (PA), phosphatidyl glycerol (PG), phosphatidyl serine
(PS), all lysophospholipids [(lysophosphatidyl choline (lyso PC), lysophosphatidyl ethanolamine PE
(lyso PE), phosphatidyl inositol (lyso PI), phosphatidyl serine (lyso PS)], ether phosphatidyl choline
(ePC), and sphingomyelin (SM), but not in PC, PE, phosphatidyl inositol (PI), or ether phosphatidyl
ethanolamine (ePE). PA is a precursor to multiple membrane lipids, while PG is a precursor to
cardiolipins. Surprisingly, including DHA in the WD significantly lowered the CSI (by 20%) in only
one lipid class, ePC. Yet, a detailed examination of all lipid species within each lipid class revealed
assimilation of DHA and its metabolites (20:5, ω3; 22:5, ω3) in all lipid classes, except SM (Table S1: diet
effects on all lipids). While the WD significantly increased the CSI as a result of increased dietary SFA
and MUFA content, DHA and its metabolites had little impact on the overall CSI of most lipid classes.

We next used a statistical approach to establish differences between treatment groups. Accordingly,
all lipid data from the UPLC-MS/MS and HPLC-dMRM analysis plus our previous GC analysis [52]
was subject to a principal component analysis (PCA) (Figure 3). While four groups were included
in our study, the PCA revealed only three clusters. Two clusters (WD22 and WDO30) overlapped
indicating that these groups differed little in terms of lipid composition. The lipid composition of
the WD22 and WDO30 groups clearly differed from the reference diet group (RD30). Interestingly,
the WDD30 group does not overlap with either the RD30 or WD22 and WD30 clusters, reflecting
its unique lipid composition. This outcome indicates that 8 wks of DHA treatment does not restore
hepatic membrane lipid acyl chain composition to that seen in the RD30 group.
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Figure 3. Principal component analysis of diet effects on hepatic lipids. All lipid data collected for
this study and our previous study [52] was used in this analysis. The data included fatty acid methyl
esters reported previously [52] and all membrane lipid and oxylipin data obtained by UPLC-MS/MS
and HPLC-dMRM analysis, respectively. The principal component analysis was carried out using the
statistical package in Metabolanalyst 4.0 [66].

Further analysis identified the top 25 highly significant differences (q ≤ 3.0 × 10−7) in lipid
composition amongst the four groups (Figure 4 and Table S2: Lipids significantly affected by diet). A
key result of this analysis was that the WD increased 20:4, ω6 and its metabolites in multiple membrane
lipids (PC 38:4, PG 42.8; PE 40:5, lyso PC 20:3; lyso PC 22:4; lyso PE 20:3), but lowered oxylipins
derived from linoleic acid (18:2, ω6), i.e., 12,13-DiHOME. This finding replicates our previous results
documenting the effects of the WD on hepatic lipids derived from WD-fed female Ldlr -/- mice [60].

Figure 4. Heat map illustrating diet effects on the top 25 lipid features. As in Figure 3 all lipid data was
used to perform an ANOVA (one-way) and a heat map was constructed using the statistical package in
Metabolanalyst features [66]. The top 25 highly significant lipid features are illustrated in the heat map.
The q-value for each lipid is on the left side of the heat map. Columns at the right list specific lipids
within each lipid class that were on the heat map. Arrows indicate the effect of the diet WDO30 and
WDD30 when compared to the RD30 group (increase, decrease, no change (NC)) (WD supplemented
with either olive oil (WDO) or DHASCO (WDD)).
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Addition of DHA to the WD not only increased the abundance of DHA and its metabolites in
hepatic phospholipids (PC 36:5, PG 44:12, PS 36.5, lyso PC 22:6, lyso PE 22:6), but also decreased levels
of specific membrane lipids containing 20:4,ω6 and its metabolites (PC 38:4, PE 40:5, PE 38.5). Such
effects of dietary ω3 PUFA on membrane lipid composition are not new. What is new, however, is the
impact of WD and DHA on a broad range of hepatic lipids, including phosphoglycerol lipids (PC, PE,
PG, PI, PS), ether lipids (ePC, ePE), lysophospholipids (lyso-PC, -PE, -PI, -PS), and sphingolipids. The
sphingolipids were the only lipid class significantly affected by WD and DHA, but found to contain no
C20–22 PUFA (both ω3 and ω6) (Table S1: Diet effects on all lipids). As such, DHA mediated effects on
SM acyl chain content likely involves DHA regulation of hepatic abundance of SFA and MUFA, as well
as the incorporation of these fatty acyls into SM.

2.2. Diet Effects on Hepatic Non-Esterified Oxylipins

Intrahepatic non-esterified oxylipins arise from phospholipase-mediated excision of fatty acyls
from membrane lipids. These non-esterified fatty acids serve as substrates for cell-specific pathways
generating oxylipins that, in turn, serve as regulatory ligands for G-protein receptors (GPR) and nuclear
receptors [61,66]. Herein, we examined the effect of the WD and DHA on hepatic oxylipins derived
from LA, ARA, EPA, and DHA (Figures 5 and 6) and the expression of enzymes involved in oxylipin
metabolism (Figure 7); results are summarized in Figure 8.

Figure 5. Diet effects on oxylipins derived from ω6 polyunsaturated fatty acids (PUFA). (A,D):
Hepatic content of linoleic acid (LA; 18:2, ω6) and arachidonic acid (ARA; 20:4, ω6) as determined by
gas chromatographic (GC) analysis. Results are presented as nmoles/mg protein, mean ± SEM.
Oxylipins derived from LA (B) and ARA (C) were quantified, by HPLC-dMRM as described
in the Materials and Methods Section. Liver samples were derived from the RD group and
oxylipin levels are presented as the peak area/mg protein, mean ± SEM. Effects of diet on specific
oxylipins are presented in (Panels E,F) as Fold Change, mean ± SEM. (Panels E,F) present LA-
and ARA-derived oxylipins, respectively. *, q < 0.05 vs. RD30; #, q < 0.05 vs. WDO30.
9(S)-HODE, 9(S) hydroxyl octadecadienoic acid; 13(S)-HODE, 13(S) hydroxyl octadecadienoic acid;
12,13-DiHOME, 12,13-dihydroxy octadecenoic acid; 6-keto PGF1α, 6-keto prostaglandin F1α; TbxB2,
thromboxane B2; PGD2, prostaglandin D2; PGE2, prostaglandin E2, 5-HETE, 5-hydroxyeicosatrienoic
acid; 12-HETE, 12-hydroxyeicosatrienoic acid; 15-HETE, 15-hydroxyeicosatrienoic acid; 20-HETE,
20-hydroxyeicosatrienoic acid; 11,12-EpETrE, 11,12 epoxyeicosatrienoic acid; 14,15-EpETrE, 14,15
epoxyeicosatrienoic acid; 14,15-diHETrE, 14,15-dihydroxyeicosatrienoic acid.
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Figure 6. Diet effects on oxylipins derived from ω3 PUFA. Hepatic content of eicosapentaenoic
acid (EPA; 20:5, ω3) (Panel A) and docosahexaenoic (DHA; 22:6, ω3) (Panel C). Hepatic EPA
and DHA were quantified as described in the Materials and Methods Section and presented
as the mean ± SEM of nmoles/mg hepatic protein. (Panels B,D): Effects of diet on EPA and
DHA derived oxylipins, respectively. Results are presented as Peak area/mg protein (Panel B)
and Fold Change, mean ± SEM (Panel D). *, q < 0.05 vs. RD30; #, q < 0.05 vs. WDO30.
8,9-EpETE, 8,9-epoxyeicosatetraenoic acid; 14,15-EpETE, 14,15-epoxyeicosatetraenoic acid; 17,18-EpETE,
17,18-epoxyeicosatetraenoic acid; 5,6-DiHETE, 5,6-dihydroxyeicosatetraenoic acid; 8,9-DiHETE,
8,9-dihydroxyeicosatetraenoic acid; 11,12-DiHETE, 11,12-dihydroxyeicosatetraenoic acid; 17,18-DiHETE,
17,18-dihydroxyeicosatetraenoic acid; RvE1, resolvin E1; 7,8-EpDPE, 7,8-epoxydocosapentaenoic acid;
10,11-EpDPE, 10,11-epoxydocosapentaenoic acid; 13,14-EpDPE, 13,14-epoxydocosapentaenoic acid;
16,17-EpDPE, 16,17-epoxydocosapentaenoic acid; 19,20-EpDPE, 19,20-epoxydocosapentaenoic acid;
7,8-DiHDPE, 7,8-dihydroxydocosapentaenoic acid; 10,11-DiHDPE, 10,11-dihydroxydocosapentaenoic acid;
13,14-DiHDPE, 13,14-dihydroxydocosapentaenoic acid; 16,17-DiHDPE, 16,17-dihydroxydocosapentaenoic
acid; 19,20-DiHDPE, 19,20-dihydroxydocosapentaenoic acid; RvD1, resolvin D1; PDX, protectin DX.

We previously reported that feeding female Ldlr -/- mice fed the WD decreased hepatic oxylipins
derived from linoleic acid (LA, 18:2, ω6), but increased hepatic oxylipins derived from arachidonic
acid (ARA, 20:4, ω6) [60]. As illustrated in Figure 5, the WD and WDO diets had similar effects on
hepatic oxylipins in male Ldlr -/- mice as seen in female mice [60]. Our oxylipin analysis identified 14 ω6
PUFA-derived oxylipins; three from LA and 11 from ARA (Figure 5). Three oxylipins, 12,13-DiHOME;
14,15-DiHETE; and 5-HETE ranked in the top 25 highly significantly lipids affected by the WD (Figure 4).
The dihydroxy fatty acid, 12,13-DiHOME, is one of three LA-derived oxylipins, and 14,15-DiHETE is
one of eleven ARA-derived oxylipins identified in our analysis (Figures 5 and 8). These dihydroxy
oxylipins are generated by the action of a soluble epoxide hydrolase (Ephx2) action on epoxy fatty
acids, i.e., 12,13-EpHOME and 14,15-EpETrE, respectively. The LA and ARA derived epoxides are
generated by hepatic epoxygenases (Cyp2C; Cyp2J). Highly abundant ω6 PUFA-derived oxylipins
include 9(S)-HODE, 13(S)HODE, 12,13-DiHOME, 5-HETE, and 12,15-DiHETrE, while low abundance
oxylipins include 6-keto PGF1α, TBXB2, PGD2, PGE2, and HETEs (12-, 15-, 20-HETE) and 14,15-EpETrE.
WD or WDO feeding increased hepatic ARA and significantly increased 6-keto PGF1α and TBX2B, but
had little effect on other 20:4, ω6 derived oxylipins (Figure 5C,D).

We identified eight and 12 oxylipins derived from EPA and DHA, respectively, in male mice fed
the RD, i.e., RD30 group (Figures 6 and 8). Feeding female Ldlr-/- mice the WD lowered hepatic levels

163



Metabolites 2019, 9, 252

of all ω3 PUFA-derived oxylipins [60]. Male Ldlr -/- mice fed the WD or WDO resulted in significantly
lower levels of all hepatic ω3-PUFA-derived oxylipins (Figure 6). The decline in these oxylipins
paralleled the WD-mediated decline in hepatic EPA and DHA (Figure 6A,C).

Supplementing the WD with DHA, i.e., WDD30 group, had no effect on hepatic LA or LA-derived
oxylipin abundance. The WDD, however, significantly lowered hepatic ARA and all ARA-derived
oxylipins, except PGD2 and 20-HETE (Figure 5D,F). The decline in hepatic 20:4, ω6-derived oxylipins
paralleled the DHA-mediated suppression of hepatic 20:4, ω6 content (Figure 5D). Clearly, the WD
has a potent effect on hepatic oxylipin type and abundance. Supplementing the WD with DHA
had an equally potent effect on hepatic ω3 PUFA-derived oxylipins by reversing the WD effect on
ARA-derived and C20–22 ω3 PUFA-derived oxylipins.

Figure 7. Diet effects on hepatic enzymes involved in oxylipin metabolism. Hepatic RNA was
extracted, converted to cDNA and used to quantify transcript abundance using qRTPCR as previously
described [52]. The primers used to measure each transcript were previously described [51,60].
Cyclophilin was used as the reference gene. (Top panels A,B): Relative abundance of transcripts
encoding enzymes involved in hepatic oxylipin metabolism. Results are presented as delta CT, mean ±
SEM. (Lower panels C,D): Diet effects on hepatic transcripts encoding enzymes involved in oxylipin
metabolism. Results are presented as Fold Change, mean ± SEM; *, q < 0.05 vs. RD30. COX,
cyclooxygenase; ALOX, arachidonic lipoxygenase; CYP, cytochrome P450, Ephx1, microsomal epoxide
hydrolase; Ephx2, soluble epoxide hydrolase.

We next examined the diet effects on hepatic enzymes involved in generating hepatic oxylipins
(Figure 7). Cyclooxygenases (Cox1, Cox2) and arachidonic acid lipoxygenases (Alox5, Alox12/15,
Alox15) are expressed at low levels in mouse liver (Figure 7A), whereas enzymes generating fatty
epoxides (Cyp2C29, Cyp2C37, Cyp2C44, Cyp2J5) and dihydroxy fatty acids (Ephx1, Ephx2) are
highly expressed in liver (Figure 7B). The differential expression of these enzymes likely reflects cell
specific expression in the liver. For example, Cox1 and Cox2 are expressed in liver, but not in hepatic
parenchymal cells, i.e., hepatocytes. These enzymes are likely expressed in resident macrophage
(Kupffer cells) and infiltrating leukocytes. Hepatocytes, however, express receptors for Cox products,
e.g., EP4, and respond to changes in oxylipins through paracrine mechanisms [67].

Feeding mice the WD and WDO resulted in the induction of both Cox1 and Cox2, but the
WD and WDO diets had no significant effects on the Alox subtypes (5-, 12/15-, 15-Alox) (Figure 7).
Supplementing the WD with DHA did not attenuate Cox1 or Cox 2 expression. If Cox 1 and Cox 2
expression parallels Cox 1 and 2 activity, then the decline in Cox-products, e.g., prostacyclin (PGI2,
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precursor of 6-keto PGF1α), PGE2, and thromboxane A2 (precursor of TBXB2) cannot be explained by
a suppression of enzyme expression. As such, our data suggest that the DHA-mediated decline in
Cox products may be due, at least in part, to the DHA-mediated suppression of hepatic ARA levels,
particularly in membrane lipids (Figures 4 and 5). Cyp2c29, Cyp2c37 and Cyp2c44 expression was
suppressed ~50% by the WD. Only Cyp2c29 expression was partially restored by the addition of DHA
to the diet. Neither WDO nor WDD affected the expression of Cyp2J or Ephx subtypes.

Figure 8. Summary of WD and DHA effects on hepatic oxylipins derived from ω6 PUFA (A) and ω3
PUFA (B). The diagrams illustrate the pathway for the conversion of dietary essential fatty acids to
C18-22 PUFA and the conversion of PUFA to oxylipins. The pathways are modified from pathways
published by Gabbs et al. [61]. Oxylipins highlighted in blue represent oxylipins that were quantified
by LC/MS or gas chromatography (Figures 5 and 6). Enzymes involved in oxylipin metabolism are in
gray boxes (Figure 7). Red and green arrows are used to represent the effects (increase; decrease) of the
WDO versus RD30 (red arrows) and WDD30 versus RD30 (green arrows) on hepatic abundance of fatty
acids, oxylipins, and transcripts involved in PUFA and oxylipins metabolism. Thin and thick arrows
represent a weak and strong response to diet, respectively. EFA: essential fatty acids; ROS, reactive
oxygen species. Fads, fatty acid desaturase; Elovl, fatty acid elongase; pβOx, peroxisomal β-oxidation;
COX, cyclooxygenase; ALOX, arachidonic lipoxygenase; CYP, cytochrome P450, Ephx1, microsomal
epoxide hydrolase; Ephx2, soluble epoxide hydrolase.
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2.3. Associations between Hepatic Lipids and NASH Markers of Inflammation and Fibrosis

We previously reported that the WD promoted hepatic inflammation and fibrosis, while addition
of DHA to the WD blocked disease progression by attenuating expression of inflammation and fibrosis
markers [52]. Herein, we asked if changes in specific transcriptomic markers of inflammation and
fibrosis were associated with changes in membrane lipids and oxylipins. Accordingly, we used an
unbiased statistical approach, i.e., Pattern Hunter in Metabolanalyst 4.0 [66], to identify associations
between diet-induced changes in membrane lipids, oxylipins, and NASH pathology, i.e., inflammation
and fibrosis (Tables 1 and 2). The transcriptomic data for this analysis was from our previous study [52],
the same study used for the current lipidomic analysis. Results are presented as the top 10 positive
and negative associations between specific lipids and markers of inflammation (Table 1: osteopontin
(Opn), monocyte chemoattractant protein 1 (Mcp1), cell differentiation 68 (CD68)) and fibrosis (Table 2:
collagen 1A1 (Col1A2), tissue inhibitor metalloprotease 1 (Timp1) and lysyl oxidase (Lox)).

2.3.1. Inflammation

Lipids positively associated with Opn expression include phosphatidyl glycerol (PG) containing
MUFA and PUFA (ω6 >ω3) while 50% of the lipids negatively associated with Opn expression were
ω3 PUFA-derived oxylipins (Table 1). In contrast, lipids positively associated with Mcp1 and CD68
include no PG, but several ether lipids (e.g., PC 16:0e; PC 18:1e) containing predominantly MUFA
and short and long chain SFAs. Lipids negatively associated with Mcp1 and CD68 expression include
oxylipins (12,13-DiHOME, 14,15-DiHETrE) and membrane phospholipids (PA, PE, PI) containing
C18–22 ω3 and ω6 PUFA. These association studies indicate that elevated expression of inflammation
markers was associated with increased membrane abundance of C18–20 MUFA and C20–22 ω6 PUFA,
while attenuated expression of these markers was associated with increased membrane content of
C18–22 ω3 and ω6 PUFA and hepatic levels of ω3 and ω6 PUFA derived oxylipins. The epoxygenase
and epoxide hydrolase pathways (Cyp2C, Cyp2J and Ephx2) rather than the Cox/Alox and oxidative
stress pathways generate the majority of these oxylipins. In addition, lipids associated (positively and
negatively) with Opn expression are clearly distinct from the lipids associated with Mcp1 and CD68
expression, suggesting different membrane-associated mechanisms involved in the expression of these
inflammation markers.

2.3.2. Fibrosis

Lipids positively and negatively associated with the expression of Col1A2 and Timp1 are nearly
identical; and include membrane lipids (lyso PA, lyso PE, lyso PC, SM) containing C14–16 SFA, C18

MUFA, and C18–22 ω6 PUFA, but no ω3 PUFA. Lipids negatively associated with Col1A2 and Timp1
expression include DHA derived oxylipins (7, 8-DiHDPE; 10, 11-DiHDPE) and membrane lipids
(PA, PC, PE, PI) containing C16–22 MUFA and C18–20 ω6 PUFA. Interestingly, lipids positively and
negatively associated with Lox expression are remarkably similar to those associated with Opn
expression. PG containing MUFA and C20–22 ω6 PUFA are positively associated with Lox expression,
while 60% of the lipids negatively associated with Lox expression are oxylipins derived from ARA and
EPA. This outcome may reflect common membrane-associated mechanisms associated with Lox and
Opn expression.
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3. Discussion

The aim of this study was to use a lipidomic approach to identify potential lipid mediators of
inflammation and fibrosis associated with WD-induced NASH and DHA-mediated NASH remission.
Accordingly, we identified and quantified hepatic membrane lipids and non-esterified oxylipins in a
preclinical mouse model of NASH. Feeding mice the WD significantly increased the saturation index of
many, but not all membrane lipids (Figure 2). The WD increased SFA and MUFA in several membrane
lipids, i.e., PA, PG, lyso PC, lyso PE, lyso PI, lyso PS, ePC, and SM. Surprisingly, addition of DHA to the
WD had little effect on the membrane saturation index, despite the fact that DHA and its metabolites
were assimilated into all lipid classes, except SM (Table S1). We suspect the assimilation of DHA and
its metabolites into membranes has local effects on membrane fluidity, lipid raft composition, and
membrane cholesterol content that potentially affects receptor-mediated mechanisms emanating from
membranes [58,59].

On a more granular level, we identified strong associations between diet-induced changes in
hepatic membrane lipid composition, membrane derived signaling molecules, and the expression of
genes linked to WD-induced hepatic inflammation and fibrosis (Tables 1 and 2). We identified two
membrane derived lipid classes that are known to play a role in cell signaling, i.e., lysophospholipids
(Lyso PL) and oxylipins. Lyso PLs form in the process in de novo membrane lipid synthesis (Kennedy
Pathway) and membrane lipid remodeling (Lands Pathway). Our untargeted lipidomic analysis cannot
distinguish between these pathways, nor can it distinguish between acyl chains in the sn1 or sn2
positions of the lyso PLs. Dietary fat content clearly affected the acyl chain composition of these lyso
PLs (Figure 4). Oxylipin precursors, i.e., non-esterified fatty acids (NEFA), are generated as a result of
membrane remodeling and involves phospholipase activation. NEFA excised from membranes are
substrates for several enzymatic pathways that are active in the liver, including cyclooxygenases (Cox
(-1 and -2), arachidonate lipoxygenases (Alox (-5, -12/15, -15)), cytochrome P450 class 2 ((Cyp2 (C and
J)), and epoxide hydrolases (Ephx 1 and 2) (Figure 8).

Lyso PLs and oxylipins functioning as ligands have the potential to regulated cell function through
multiple receptor-mediated mechanisms. Both bioactive lipids regulate cell function through G-protein
receptors (GPR) and nuclear receptors. Lyso PLs signal through GPR23, GPR34, GPR44, GPR92,
GPR93, and GPR174, while oxylipins signal through GPR for eicosanoids (prostaglandins (PGE2),
thromboxanes (TBXA2), and prostacyclins (PGI2)). Lyso PLs and oxylipins also signal through nuclear
receptors, e.g., PPARα, β/δ, γ1, γ2) [68–75]. Our studies clearly establish that both the WD and DHA
have major effects on membrane lipid composition and the type and abundance of hepatic lyso PLs
and oxylipins derived from PUFA (Figures 4–8).

We took advantage of our transcriptomic data [52] to identify associations between membrane
lipids, oxylipins, and markers of inflammation and fibrosis, key markers of NASH (Tables 1 and 2).
Hepatic levels of lyso PC and lyso PE containing C20–22 ω6 PUFA were positively associated with the
expression of inflammation (Opn, CD68) and fibrosis (Col1A2, Timp1, LOX) markers (Tables 1 and 2).
As such, changes in the hepatic abundance of lyso PL enriched in C20–22 ω6 PUFA, acting through
membrane GPR and/or nuclear receptors, may contribute to hepatic pathology. Key enzymes involved
in lyso PL metabolism include phospholipases (PLA, multiple subtypes) and lysophosphatidyl choline
acyl transferases (LpCAT; 4 subtypes). We previously established that hepatic phospholipase (PLA2g6)
and LpCAT1 and LpCAT2 were induced by the WD, while DHA, but not EPA, suppressed LpCAT
1 and 2 expression [50]. Thus, DHA has the potential to regulate cellular levels of LpCAT-derived
ligands controlling specific G-protein (GPRs) and nuclear receptors.

Oxylipins represent the second group of regulatory lipids examined in this study (Figures 5–8).
Prostaglandins and leukotrienes are well-studied oxidation products of PUFA that are generated
by cyclooxygenases (Cox) and lipoxygenases (Alox), respectively. The products of these enzymes
are short-lived oxidized lipids that bind to and activated G-protein receptors (GPRs) that induce
changes in intracellular second messengers, i.e., cAMP and calcium, affecting multiple signaling
pathways [76]. These active products are rapidly degraded to relatively inactive compounds. Because
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of the short-lived nature of these active products, the inactive compounds are quantified as surrogates
for in vivo synthesis of the bioactive Cox/Alox products [76]. Two 20:4, ω6-derived oxylipins identified
in our analysis include 6-keto-PGF1α and TXB2; these are degradation products of PGI2 and TXA2,
respectively. PGI2 and TXA2 are involved in platelet aggregation, vasodilation, and inflammation,
while PGD2 and PGE2 are involved in inflammation and vasodilation [61]. Increased hepatic levels of
these products are associated with the induction of expression of Cox1 and Cox2 mRNAs in response
to the WD (Figure 7). Dietary DHA, however, lowers hepatic TBX2, 6-keto-PGF1α, and PGE2. This
response parallels DHA-mediated suppression of hepatic ARA levels, as opposed to DHA-mediated
suppression of Cox1 and Cox2 expression (Figures 5 and 7). Alox products (5 HETE, 12-HETE and
15-HETE) are also lower in livers of WDD-fed mice. Like the Cox products, hepatic levels of Alox
products paralleled changes in hepatic ARA.

Other ω6 PUFA derived oxylipins include 9(S)-HODE and 13(S)-HODE, both of which are derived
from linoleic acid by enzymatic (Alox) and non-enzymatic (oxidative stress) pathways. These products
affect ER-stress, apoptosis, inflammation, cellular adhesions, and PPARγ function [77]. Since there
was little effect of diet on hepatic Alox5, Alox12/15, or Alox15 expression, hepatic oxidative stress
likely accounts for the increased hepatic levels of 9(S)-HODE and 13(S)-HODE in response to the
WD [50]. The decline in these oxylipins parallel the WD-mediated suppression of hepatic LA content
(Figure 5A). Feldstein et al. recently reported increased levels of these oxylipins in NASH patients,
when compared to patients with benign steatosis [78]. This finding contrast with our findings and may
reflect differences in hepatic oxidative stress management in human versus mouse livers. This group
also reported no significant change in 5-HETE, 12-HETE, or 15-HETE in normal, steatotic, or NASH
livers of patients. These results are similar to our findings (Figure 5F).

The other class of oxylipins examined included products generated by epoxygenases (Cyp2C,
Cyp2J) and a soluble epoxide hydrolase (Ephx2). Like the Cox products, the epoxide products of Cyp2C
and CYP2J are bioactive compounds. Moreover, Cyp2C and Cyp2J products are rapidly degraded
to dihydroxy fatty acids with low bioactivity [79]. The WD has little effect on the formation of the
ARA-derived products, but DHA lowered hepatic levels of the epoxy (11,12-EpETrE; 14,15-EpETrE)
and dihydroxy (14,15-DiHETrE) products derived from ARA. Since there was little effect of diet on the
expression of the Cyp2C, Cyp2J, and Ephx2 (Figure 7), we attribute the declined in Cyp2C, Cyp2J,
and Ephx2 products to DHA-mediated suppression of hepatic ARA content (Figure 5). However, we
cannot exclude post-translational mechanisms controlling the activity of these enzymes.

ARA-derived epoxygenase products are anti-inflammatory, pro-resolving bioactive mediators [79].
A decline in the hepatic abundance of these metabolites suggest an increase in hepatic inflammation.
However, we previously reported that the WD increased hepatic markers of inflammation while the
WD supplemented with DHA suppressed hepatic inflammation [52]. To explain this outcome, our
analysis revealed a massive suppression (> 70%) of C20–22 ω3 PUFA-derived oxylipins (Figures 7
and 8B) in livers of WDO30 fed mice. In WDD30 fed mice, however, the Cyp2C and Cyp2F-derived
ω3-PUFA oxylipins were restored to levels at or above levels seen in mice fed the RD. Changes in
C20–22 ω3 PUFA-derived oxylipins are inversely associated with transcriptomic markers of hepatic
inflammation and fibrosis (q ≤ 0.026; Tables 1 and 2). The concept of an inverse association between
tissue levels of C20–22 ω3 PUFA and inflammation is not new [80]. In fact, other investigators using
the choline-methionine-deficient rat [81] and mouse [82] models of NAFLD reported a similar inverse
association between tissue levels of DHA and liver injury. Our studies extend these observations by
showing how specific classes of bioactive lipids are responsive to diet and associated with NASH
markers (Figures 4–8; Tables 1 and 2).

The outcome of our lipidomic analysis supports the notion that dietary supplementation with
DHA mitigates WD-induced NASH progression, at least in part, by lowering hepatic pro-inflammatory
oxylipins derived from C20–22 ω6 PUFA and increasing hepatic reparative/anti-inflammatory oxylipins
derived from C20–22 ω3 PUFA. While there is limited information on the differential bioactivity of
ω3 PUFA versus ω6 PUFA-derived Cyp2C and Cyp2J, Lopez-Vicario et al. reported that, when
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compared to ω6 PUFA-derived epoxides, ω3 PUFA-derived epoxides were more effective inhibitors of
inflammation and autophagy in insulin sensitive tissues, like liver [83]. As such, tissue levels of ω3
PUFA-derived epoxides may be a good predictor of liver health status in the context of WD-induced
NASH. Key next steps will be to identify mechanisms linking specific ω3 PUFA- and ω6 PUFA-derived
oxylipins to the expression of specific genes involved in hepatic inflammation and fibrosis.

4. Materials and Methods

4.1. Study Design for DHA-Mediated NASH Remission in Male Ldlr -/- Mice

This study was carried out in strict accordance with the recommendations in the Guide for the
Care and Use of Laboratory Animals of the National Institutes of Health. All procedures for the
use and care of animals for laboratory research were approved by the Institutional Animal Care and
Use Committee at Oregon State University (Permit Number: A3229-01). Liver samples used in this
lipidomic analysis were obtained from our previously published study assessing the capacity to DHA
to promote NASH remission [52]. Briefly, male mice (B6:129S7-Ldlrtm1Her/J, stock# 002207 purchased
from Jackson Labs) were group housed (4 mice/cage) and maintained on a 12 h light/dark cycle. Mice
were acclimatized to the Oregon State University (OSU) animal facilities for 2 weeks before proceeding
with experiments.

At 10 wks of age, mice were fed a chow (Purina Pico Lab diet 5053) and served as a reference
diet (RD) group. The RD group was maintained of the RD for the duration of the study, i.e., 30 wks
(RD30, n = 5) (Figure 1). Ldlr -/- mice were also fed the western diet (Research Diets, D12079B). The
WD consists of 41% energy as fat, 43% energy as carbohydrate, 17% energy as protein, and 0.15% w/w
cholesterol [52]. After 22 wks on the WD, a group of WD-fed mice was euthanized for recovery of
blood and liver. This group (WD22, n = 5) served as a baseline for disease progression. The remainder
of the WD-fed mice were switched to a diet supplemented with olive oil or DHASCO. DHASCO is a
dietary supplement provided by DSM Nutritional Products; it contains DHA in a triglyceride form.
DHA represents ~40% of total acyl chains in DHASCO and DHASCO contains no EPA, DPA (22:5,
ω3), ARA, or LA [50]. DHA is present in the diet at 2% total calories (WDD30, n = 7). In order to have
isocaloric diets, olive oil was added to the WD diet, i.e., WDO30. The WDO30 and WDD30 groups
were maintained on their respective diets for 8 wks. Mice were then fasted overnight and euthanized
for the collection of liver and blood. All samples were stored at −80 ◦C until used for extraction. The
design of this study allowed for the assessment of disease progression from 22 to 30 weeks and the
capacity of DHA to affect disease progression (Figure 1).

4.2. RNA Extraction and qRTPCR

Liver RNA was extracted using Trizol (Ambion by Life Technologies, Carlsbad, CA, USA),
quantified, and used for qRTPCR as described previously [52]. Primers use for qRTPCR are described
in our previous study [60]. Relative quantitation was determined using the delta CT methods using
cyclophilin as the reference gene. The delta CT value was used for all statistical analyses.

4.3. Sample Preparation for Lipidomic Analysis

Liver lipids were extracted using a biphasic solvent system of cold methanol, methyl tert-butyl
ether (MTBE), and water with some modifications [84]. Liver (~20–25 mg) was transferred to 2 mL
pre-weighted polypropylene tubes containing ceramic beads and of LC–MS-grade cold methanol
(240 μL). Deuterated lipid recovery standards (5 μL of Splash® Lipidomix® Mass Spec Standards
(Avanti Polar Lipids, Alabaster, AL, USA) were added to each sample. Samples were homogenized in
a Precellys® 24 bead-based homogenizer for 2 min at 1350 rpm. Cold MTBE (750 μL) was added to
the samples, followed by vortexing (10 s) and shaking (6 min) at 4 ◦C. Phase separation was induced
by adding LC–MS-grade water (188 μL) followed vortexing and centrifugation (14,000 rpm, 2 min).
The upper organic phase (300 μL) was recovered and evaporated using a Labconco centrivap vacuum
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concentrator (Kansas City, MO, USA). Dried lipid extracts were resuspended in a methanol/toluene (9:1,
v/v, 100 μL) mixture containing CUDA (1-cyclohexyl ureido, 3-dodecanoic acid, 50 ng/mL; Cayman
Chemical, Ann Arbor, MI, USA) as an additional internal standard. Samples were vortexed (10 s) and
centrifuged (14,000 rpm, 2 min) prior to LC–MS/MS analysis.

4.4. Sample Preparation for Oxylipins Analysis

Oxylipins were extracted from liver using the approach described by Pedersen et al. [85], with
minor modifications. Liver (~20–25 mg) was transferred 2 mL pre-weighted polypropylene tubes
containing ceramic beads. Cold LC–MS-grade methanol (35 μL) and an anti-oxidant solution [0.2
mg mL−1 solution BHT (butylated hydroxytoluene) in 1:1 methanol:water] (5 μL) was added to each
sample. Each sample also received 10 μL of a deuterated oxylipin recovery standard solution; the
standards included 20 deuterated oxylipins (Table S1) in methanol at a concentration of 5 ng/μL each.
Ten mM ammonium formate +1% formic acid in isopropanol (550 μL) and water (100 μL) was added
and the tubes were placed in a Precellys® 24 bead-based homogenizer for 2 min at 1350 rpm. Samples
were centrifuged (9000 rpm for 5 min) at room temperature. Supernatants were transferred to a 96-well
Ostro Pass Through Sample Preparation Plate (Waters Corp, Milford, MA, USA) and eluted into glass
inserts containing 10 μL 20% glycerol in methanol by applying a vacuum (15 mm Hg) for 10 min.
Eluents were dried by vacuum centrifugation in a Labconco centrivap vacuum concentrator for 2 h at
room temperature. Once dry, samples were reconstituted with 100 μL of methanol: acetonitrile (50:50),
containing the internal standard (CUDA at 50 ng/mL). Samples were transferred to a spin filter (0.22
μm PVDF membrane, Millipore-Sigma, Burlington, MA, USA) and centrifuged (3 min at 6 ◦C at 9000
rpm) before transferred to 2 mL amber LC–MS vials. Extracts were stored at −20 ◦C until analysis by
ultra-performance liquid chromatography tandem mass spectrometry (UPLC–MS/MS). The internal
oxylipin standards added to the samples (Table S3) were used to correct the recovery of the quantified
oxylipins [86].

4.5. Chromatographic and Mass Spectrometry Conditions for Lipids and Oxylipins Analysis

4.5.1. Untargeted Lipidomics

UHPLC was performed using a Shimadzu Nexera system (Shimadzu, Columbia, MD, USA)
coupled to a triple time-of-flight (TOF)™ 5600 mass spectrometer (AB SCIEX, Framingham, MA, USA).
Compounds were separated using a Waters Acquity UPLC CSH C18 column (100 mm length × 2.1 mm
id; 1.7 μm particle size) with an additional Waters Acquity VanGuard CSH C18 pre-column (5 mm
× 2.1 mm id; 1.7 μm particle size) held constant at 65 ◦C while utilizing a flow rate of 0.6 mL min−1.
Resuspended samples were injected at 2 μL and 3 μL for electrospray ionization (ESI) positive and
negative modes, respectively. To improve lipid coverage, different mobile phase modifiers were used
for positive and negative mode analysis [87]. For positive mode, 10 mM ammonium formate + 0.1%
formic acid was used, while 10 mM ammonium acetate (Sigma–Aldrich, St. Louis, MO, USA) was
used for negative mode. Both positive and negative modes used the same mobile phase composition of
(A) 60:40 v/v acetonitrile: water (LC–MS grade) and (B) 90:10 v/v isopropanol:acetonitrile. To enhance
solubilization of ammonium formate and ammonium acetate after its addition in the mobile phase, the
salts were dissolved first in small volume of water before their addition in the mobile phases (0.631 g
ammonium formate or 0.771 g ammonium acetate/1 mL water/1 L mobile phase). Each mobile phase
with modifiers was mixed, sonicated for 15 min to achieve complete dissolving of modifiers, mixed
again, and then sonicated for another 15 min [88]. The separation was conducted under the following
gradient: 0 min 15% (B), 0–2 min 30% (B), 2–2.5 min 48% (B), 2.5–11 min 82% (B), 11–11.5 min 99% (B),
11.5–12 min 99% (B), 12–12.1 min 15% (B), and 12.1–15 min 15% (B), at a flow rate of 0.6 mL min−1. All
samples were kept at 4 ◦C throughout the analysis.

All analyses were performed at the high-resolution mode in MS1 (~35,000 full width at half
maximum (FWHM)) and at the high sensitivity mode (~15,000 FWHM) in MS2. Sequential window
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acquisition of all theoretical fragment-ion spectra (SWATH) in positive/negative ion mode was used as
the data independent acquisition (DIA) system for all samples. Data dependent acquisition (DDA) on
a separate quality control (QC) pool sample was used in order to verify the annotations from SWATH
acquisition for the most abundant lipid species. Detailed information of SWATH conditions included
in Supplemental Information entitled SWATH parameters for untargeted analysis.

The mass calibration was automatically performed every 6 injections using an APCI
positive/negative calibration solution (AB SCIEX) via a calibration delivery system (CDS). Quality
control was assured by (i) randomization of the sequence, (ii) injection of QC pool samples at the
beginning and the end of the sequence and between each 10 actual samples, (iii) procedure blank
analysis, and (iv) checking the peak shape and the intensity of spiked internal standards and the
internal standard added prior to injection.

4.5.2. Targeted Oxylipidomics

High Performance Liquid Chromatography (HPLC) was performed using a Shimadzu system
(Shimadzu, Columbia, MD, USA) coupled to a QTRAP 4000 (AB SCIEX, Framingham, MA, USA).
Employing dynamic multi-reaction monitoring (dMRM) we evaluated 39 oxylipins, 17 deuterated
oxylipins, CUDA, and the deuterated surrogates eicosapentaenoic acid-d5 (EPA-d5), docosahexaenoic
acid-d5 (DHA-d5), and arachidonic acid-d8 (ARA-d8) in a 22 min LC-run in a targeted approach (Figure
S1). For each compound, optimal transitions were determined by flow injection of pure standards
using the optimizer application, and transitions were compared to literature values when available for
certain compounds. The detailed list of MRM transitions is in Table S4. In the dMRM acquisition mode
the triple quadrupole MS system focuses directly on the expected analyte retention time (RT) with a
defined detection window instead of user-defined time segments to capture groups of closely eluting
compounds. Establishing a constant cycle time for each transition improves peak symmetry and
allows for a more accurate quantification of narrow chromatographic peaks. For co-eluting metabolites,
compound specific precursor ions and their corresponding fragment ions were used for selective
detection and quantification of those compounds. For instance, for 11,12-EpETE (m/z 317→195) and
12-HETE (m/z 319→135), both elute at RT 16.14 min.

Compounds were separated using a Waters Acquity UPLC CSH C18 column (100 mm length ×
2.1 mm id; 1.7 μm particle size) with an additional Waters Acquity VanGuard CSH C18 pre-column (5
mm × 2.1 mm id; 1.7 μm particle size) held constant at 60 ◦C. The mobile phase and gradient elution
conditions were adopted from Pedersen and Newman [85]. In summary, the mobile phase consisted of
(A) water (0.1% acetic acid) and (B) acetonitrile/isopropanol (ACN/IPA) (90/10, v/v) (0.1% acetic acid).
Gradient elution conditions were carried out for 22 min at a flow rate of 0.15 mL min−1. Gradient
conditions were: 0–1.0 min, 0.1–25% B; 1.0–2.5 min, 25–40% B; 2.5–4.5 min, 40–42% B; 4.5–10.5 min,
42–50% B; 10.5–12.5 min, 50–65% B; 12.5–14 min, 65–75% B; 14–14.5 min, 75–85% B; 14.5–20 min, 85–95%
B; 20–20.5 min, 95–95% B; 20.5–22 min, 95–25% B. A 5 μL aliquot of each sample was injected onto the
column. Limits of detection (LOD) and quantification (LOQ) (Table S3) were calculated based on one
concentration point (0.1 ng μL−1) for each oxylipin and deuterated surrogate.

4.6. Data Processing

4.6.1. Untargeted Lipidomics

MS-DIAL (v. 2.80) was the software program used for data processing [89]. This open-source
software permits processing of LC–MS data acquired either in MS1 only or with accompanying MS/MS
information collected in data-dependent or data-independent mode from different MS platforms.
We used LipidBlast [90] for lipid identification. Chromatographic peaks were annotated based on
different levels of identification [91]. Peak intensities were normalized using the internal standard
CUDA and the QC pool sample to correct for differences in injection volume and platform stability
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throughout the fully randomized batch of samples. The SPLASH Lipidomics Mix was used for the
precise identification of major lipid classes and to perform relative quantitation.

4.6.2. Targeted Analysis of Oxylipins

Oxylipin data obtained by HPLC-dMRM-based analyses was processed using our in-house library
on MultiQuant™ software.

4.6.3. Statistical Analyses

Annotated metabolites were used for multivariate statistical analysis. Pathway analysis, principal
component analysis (PCA) and heat map plots were generated with MetaboAnalyst 4.0 [66]. The
significance of individual metabolites between the treatment groups was assessed with a one-way
ANOVA followed by Fisher’s post hoc analysis and Holm FDR-correction, with a q-value of <0.05
indicating significance. If needed, data was logarithmically transformed to correct for unequal variance
or non-normal distribution. No outliers were excluded from the statistical analyses. Differences in
oxylipins among treatments were analyzed in GraphPad Prism 7.03 (La Jolla, CA, USA). Discovery
was determined using the two-stage linear step-up procedure of Benjamini et al., [92], with q-value =
5% (cutoff for FDR = 0.05). Each compound was analyzed individually, without assuming a consistent
standard deviation. Figures were generated with GraphPad Prism 7.03 (La Jolla, CA), PowerPoint
2018 (Microsoft, Redmond, WA, USA), and MetaboAnalyst 4.0 [66].

Supplementary Materials: The following are available online at http://www.mdpi.com/2218-1989/9/11/252/s1,
Figure S1. LC-MS/MS chromatogram of 60 transitions in a 22 min LC-run allowing monitoring 39 oxylipins, 17
deuterated oxylipins, CUDA, and the deuterated surrogates eicosapentaenoic acid-d5 (EPA-d5), docosahexaenoic
acid-d5 (DHA-d5), and arachidonic acid-d8 (ARA-d8). Analysis were performed on a SCIEX linear ion trap
(LIT) QTRAP 4000 using the dMRM method implemented from Pedersen et al., [80]. The use of a quadrupole
mass spectrometer with a linear ion trap significantly enhances platform performance by increasing ion capacity,
improving injection and trapping efficiencies, and increasing duty cycle, Table S1. Diet effects on all lipids, Table
S2. Lipids significantly affected by diet, Table S3. Detailed list of multi-reaction monitoring (MRM) transitions for
the deuterated-oxylipins (surrogates) and CUDA (12-[[(cyclohexylamino) carbonyl] amino]-dodecanoic acid) used
as internal standards for our analysis. Compounds are ordered based on retention time (RT), Table S4. Detailed list
of multi-reaction monitoring (MRM) transitions for the oxylipins contained in our in-house library. Compounds
are ordered based on retention time (RT).
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Abstract: Nonalcoholic fatty liver disease (NAFLD) is one of the most common chronic liver diseases
worldwide, and its treatment remain a constant challenge. A number of clinical trials have shown that
acupuncture treatment has beneficial effects for patients with NAFLD, but the molecular mechanisms
underlying its action are still largely unknown. In this study, we established a mouse model of NAFLD
by administering a methionine- and choline-deficient (MCD) diet and selected three acupoints (ST36,
CV4, and KI1) or nonacupoints (sham) for needling. We then investigated the effects of acupuncture
treatment on the progression of NAFLD and the underlying mechanisms. After two weeks of
acupuncture treatment, the liver in the needling-nonapcupoint group (NG) mice appeared pale
and yellowish in color, while that in the needling-acupoint group (AG) showed a bright red color.
Histologically, fewer lipid droplets and inflammatory foci were observed in the AG liver than in
the NG liver. Furthermore, the expression of proinflammatory signaling factors was significantly
downregulated in the AG liver. A lipid analysis showed that the levels of triglyceride (TG) and
free fatty acid (FFA) were lower in the AG liver than in the NG liver, with an altered expression of
lipid metabolism-related factors as well. Moreover, the numbers of 8-hydroxy-2′-deoxyguanosine
(8-OHdG)-positive hepatocytes and levels of hepatic thiobarbituric acid reactive substances (TBARS)
were significantly lower in AG mice than in NG mice. In line with these results, a higher expressions
of antioxidant factors was found in the AG liver than in the NG liver. Our results indicate that
acupuncture repressed the progression of NAFLD by inhibiting inflammatory reactions, reducing
oxidative stress, and promoting lipid metabolism of hepatocytes, suggesting that this approach might
be an important complementary treatment for NAFLD.

Keywords: nonalcoholic fatty liver disease; acupuncture; imflammation; lipid metabolism; oxidative
stress
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1. Introduction

Nonalcoholic fatty liver disease (NAFLD) is one of the most common clinicopathological conditions
in chronic liver disease and is characterized by an obvious increase in fat deposition in the hepatocytes
of the liver parenchyma [1]. Epidemiologically, NAFLD affects approximately 40% of the population
worldwide, and the prevalence is increasing annually all over the world [2]. This disease has been
considered to carry a high risk of developing into liver cirrhosis and hepatocellular carcinoma.

However, there are still no effective drugs specifically developed for the treatment of NAFLD,
especially in patients with non-alcoholic steatohepatitis (NASH), a severe stage of NAFLD. Although
several agents have shown some benefits for patients with NAFLD, even the most promising of such
pharmacological agents are associated with significant adverse effects, and none have been approved
by the Food and Drug Administration (FDA) for NAFLD therapy [3]. Balancing the benefits and risks
in drugs for long-term treatment remains a constant challenge that has hampered the development of
therapy strategies for NAFLD [4].

Ectopic fat accumulation in the hepatocytes, a hallmark of NAFLD, is thought to be caused
by a complex and multiple mechanism that is still not completely understood but involves several
interdependent molecular processes, such as inflammation, lipid metabolism, and oxidative stress [5].
An abnormal lipid metabolism, such as an increased uptake of lipids and the upregulation of de novo
lipogenesis in the liver, is the initial trigger of NAFLD. Lipid overload promotes reactive oxygen species
(ROS) generation and peroxidation itself, which causes the release of pro-inflammatory cytokines and
inflammatory cellular infiltration [6,7]. The activation of the nuclear factor-κB (NF-κB) inflammatory
pathway regulating downstream target genes plays very important roles in the progression of NAFLD.
These inflammatory cytokines can recruit and activate Kupffer cells/macrophages and further aggravate
liver injury and steatohepatitis formation [8].

Oxidative stress caused by the imbalance between oxidants and antioxidants seems to be one of
the most important mechanisms leading to NAFLD liver injury, which plays a fundamental role in the
progression from simple steatosis to NASH. The enhanced production of ROS can reportedly lead to
necroinflammation and fibrosis through lipid peroxidation induced by astrocyte activation [9].

Acupuncture is a treatment method found in traditional Chinese medicine (TCM). Due to its
advantages of low cost, few side effects, and simple operation, the role of acupuncture in disease
prevention and treatment has recently attracted attention, and a large body of evidence has shown that
acupuncture can induce pathophysiological consequences and alleviate the symptoms of diseases in
multiple organs [10–12]. A number of clinical trials have also indicated that acupuncture treatment can
improve metabolism conditions and exert beneficial effects on patients with NAFLD [13–15], but the
mechanisms underlying its action remain unclear.

According to the theory of TCM, fatty liver formation primarily involves metabolic disorders
caused by qi and blood stasis, and acupuncture at certain points of related meridians can improve
the metabolism by keeping the body in a balanced state between “Yin” and “Yang” [16]. However,
from a modern medicine viewpoint, how acupuncture exerts its therapeutic role and what kind of
physiological consequences acupuncture causes at different acupoints of meridians are still unclear.

In the present study, we established a mouse model of NAFLD by administering a methionine-
and choline-deficient diet (MCD), a classic diet inducing NAFLD [17]. We selected three acupoints
of related meridians regulating the metabolism to needle the mice with NAFLD and observed the
roles of acupuncture in the progression of NAFLD. Furthermore, we also investigated the pathogenic
mechanisms leading to these significant effects through laboratory and molecular biology experiments.
Our results suggest that acupuncture might be a useful treatment for NAFLD and provide solid
evidence supporting the incorporation of acupuncture into therapy for metabolic syndrome from a
modern medicine viewpoint.
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2. Results

2.1. Lipid Accumulation was Significantly Reduced in the Livers of AG Mice with NAFLD Induced by an
MCD Diet

After two weeks of acupuncture, the livers from the needling-nonapcupoint group (NG) mice
were variably pale and yellowish in color. In contrast, the livers from the needling-acupoint group (AG)
showed a bright red color (Figure 1A). The mouse body weight and liver weight were significantly
lower in AG mice than in those of NG mice (p < 0.0001, n = 17) (Figure S1). However, the mouse
liver/BW ratios were no significant difference between the two groups (p < 0.0001, n = 17) (Figure 1B).

Figure 1. The appearance of the liver and ratio of the liver to the body weight after two weeks of
acupuncture. (A) The liver tissues of the NG mice were obviously pale and yellowish in color, and
while the tissue of the AG liver showed a bright red color. Bar = 1 cm. (B) There was no marked
difference in the ratio of the liver to the body weight between the two groups. Values are shown as
the mean ± SD, * p < 0.05, ** p < 0.001, *** p < 0.0001, n = 17. NG: needling-nonacupoint group, AG:
needling-acupoint group, MCD diet: methionine- and choline-deficient diet, HF diet: high-fat diet,
NAFLD: nonalcoholic fatty liver disease.

Hematoxylin and eosin (H&E) staining showed that the AG liver tended to contain fewer lipid
droplets and inflammatory foci than those of NG mice, and there was also a significant histological
difference between the two livers. Ballooning of hepatocytes, inflammation, and fibrosis were noted in
the livers of NG mice. Furthermore, the NASH score in the AG livers was significantly lower than that
in the NG livers after acupuncture (n = 17) (Figure 2A and Table 1). Oil red-O staining revealed few
lipid droplets in the AG mice, while the numbers of lipid-positive hepatocytes and droplets in each
hepatocyte were increased in NG mice (n = 17) (Figure 2B). These morphology and histology findings
indicate that acupuncture can treat the liver damage caused by a high-fat diet.
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Figure 2. Histological observation of the liver from the two groups of mice. (A) Representative
photomicrographs of liver (H&E). H&E-stained sections revealed macrovesicular and microvesicular
steatosis throughout the entire lobules in the NAFLD livers from NG mice, as well as scattered lobular
and perivenular inflammation (arrowhead). (original magnification: ×40 [low]; Bars = 50 μm, ×200
[high]; Bars = 100 μm, n = 17). (B) Oil Red-O staining revealed a number of lipid droplets accumulated
in NG liver, while fewer lipid droplets were observed in the AG liver (original magnification: ×400,
Bars = 50 μm, n = 17). NG: needling-nonacupoint group, AG: needling-acupoint group, H&E:
hematoxylin and eosin, NAFLD: nonalcoholic fatty liver disease.

Table 1. Quantitative scoring of the fat accumulation, inflammation and ballooning in the NAFLD
livers of model AG and NG mice.

Steatosis Score

Score NG AG P

0 0 11 <0.001
1 8 6
2 4 0
3 5 0

Inflammation Score

Score NG AG P

0 0 5 0.003
1 12 12
2 4 0
3 1 0

Ballooning Score

Score NG AG P

0 5 16 <0.001
1 10 1
2 2 0
3 0 0

NAFLD Score

Score NG AG P

0–3 7 17 <0.001
4–6 8 0
7–9 6 0

Values are shown as the means ± standard deviation, * p < 0.05, ** p < 0.001, *** p < 0.0001, n = 17. NG:
needling-nonacupoint group, AG: needling-acupoint group, NAFLD: nonalcoholic fatty liver disease.

2.2. Acupuncture Treatment Inhibits the Inflammation Reaction during the Progression of MCD
Diet–Induced NAFLD

IHC for Mac-2 revealed that the AG livers contained a significantly smaller number of infiltrating
macrophages (Kupffer cells) than the NG livers (AG 6.7 ± 2.5 vs. NG 12.3 ± 4.7; p < 0.001, n = 17)
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(Figure 3A). In addition, fibrogenesis and stellate cell activation, as determined by IHC for α-smooth
muscle actin (α-SMA), were not apparent in the AG liver, and the specific and linear expression of
α-SMA along with the activation of hepatic stellate cells in AG mice was much lower than that in NG
mice (AG 18.7 ± 6.1.0 vs. NG 39.4 ± 7.5; p < 0.0001, n = 17) (Figure 3B).

Figure 3. Inflammatory responses in the livers of AG and NG mice. (A) Immunocytochemistry (IHC)
showed the number of Mac-2-positive infiltrating macrophages in the NAFLD liver. (B) α-SMA-positive
activated hepatic stellate cells in the NAFLD liver. Values are shown as the means ± SD, Bars = 100
μm * p < 0.05, ** p < 0.001, *** p < 0.0001, n = 17. (C) The IL-1β, TNFα, NF-κB and p-NF-κB protein
expression was determined by Western blotting. Values are normalized β-actin expression (Western
blotting) expression and are presented as means ± SD. n = 7. NG: needling-nonacupoint group,
AG: needling-acupoint group, IHC: immunocytochemistry, α-SMA: α-smooth muscle actin, IL-1β:
interleukin 1β, TNFα: tumor necrosis factor-α, NF-κB: nuclear factor-κB, p-NF-κB: phospho-nuclear
factor-κB.

A Western blot analysis showed that the expression of proinflammatory signaling factors and
inflammatory cytokines or transcriptional factor and their receptors, such as interleukin 1β (IL-1β),
tumor necrosis factor-α (TNFα) and the key regulators of inflammation, NF-κB and phospho-nuclear
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factor-KB (p-NF-κB), was significantly lower in the AG livers than in the NG livers. Therefore,
acupuncture can promote liver metabolism by inhibiting inflammatory reaction (n = 7) (Figure 3C).

2.3. Acupuncture Treatment Changed the Lipid Profiles and Regulated Lipid Metabolism in the Liver with
NAFLD Induced by an MCD Diet

The hepatic triglyceride (TG) and free fatty acid (FFA) levels in liver were significantly lower in
AG mice than in NG mice (TG: AG 6.7 ± 3.5 mg/g vs. NG 11.0 ± 5.2 mg/g; p < 0.05, n = 17; FFA: AG
0.15 ± 0.15 mEq/g vs. NG 0.4 ± 0.2 mEq/g; p < 0.01, n = 17). However, the liver T-cho levels were not
significantly different between AG and NG mice (Figure 4A).

Figure 4. Acupuncture improved the lipid metabolism in the livers of mice with NAFLD. (A) A hepatic
lipid analysis in NG and AG mice after two weeks of acupuncture. Values are shown as the mean ±
SD, * p < 0.05, ** p < 0.001, *** p < 0.0001, n = 17. (B) Real time PCR revealed that the expression of
several proinflammatory signaling factors (SREBP1 and PPARγ) was significantly lower in the livers of
AG mice than in those of NG mice. LDLR, SR-A, SR-B1, and SREBP2 showed no significant difference
between the groups, nor did PPARα or PPARβ/δ. Values are normalized by the 18S rRNA expression.
RT-PCR values are presented as the means ± SD. * p < 0.05, ** p < 0.001, *** p < 0.0001, n = 7. NG:
needling-nonacupoint group, AG: needling-acupoint group, TG: triglyceride, T-cho: total cholesterol,
FFA: free fatty acid, LDLR: low-density lipoprotein receptor, SR-A: scavenger receptor class A, SR-B1:
scavenger receptor class B type 1, SREBP: sterol regulatory element-binding protein, PPAR: peroxisome
proliferator-activated receptor.

Real Time Reverse Transcription Polymerase Chain Reaction (RT-PCR) showed that no marked
differences between the two groups were observed in the expression of some receptors related to
the lipid uptake in the liver, including low-density lipoprotein receptor (LDLR), scavenger receptor
class A (SR-A) and scavenger receptor class B type 1 (SR-B1) (Figure 4B). However, the expression of
transcription factor sterol regulatory element binding protein 1 (SREBP1), an important transcriptional
protein that regulates lipid synthesis with a well-studied function in lipid metabolism [18], was
significantly lower in the AG livers than in the NG livers (p < 0.05, n = 7), while that of SREBP2, which
primarily regulates cholesterol biosynthesis, showed no significant difference between the two groups
(Figure 4B). The expression of SREBP1 target genes, such as fatty acid synthase (FAS) and stearoyl-CoA
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9-desaturase 1 (SCD1), was also significantly lower in the AG livers than in the NG livers (p < 0.05,
n = 7) (Figure S2B). Peroxisome proliferator-activated receptors (PPARs) are primary modulators in
the metabolism of fatty acids in the liver [19] and include PPARα, PPARβ/δ, and PPARγ. The PPARγ
RNA expression was significantly lower in AG livers than NG livers (p < 0.05, n = 7), as well as the the
expression of PPARγ target such as adiponectin receptor 2 (AdipoR2). The expression was significantly
lower in AG livers than NG livers (p < 0.05, n = 7) (Figure S2B), but the PPARα and PPARβ/δ RNA
expression did not differ significantly between the groups (Figure 4B). Moreover, the expression of
genes involved in hepatic lipid secretion apolipoprotein B (ApoB), apolipoprotein E (ApoE), and
microsomal triglyceride transfer protein (MTTP) were significantly higher in the AG livers than in the
NG livers (p < 0.05, n = 7) (Figure S2A).

2.4. Acupuncture Treatment Improved Oxidative Stress Induced by Lipid Accumulation of the NAFLD Liver
in Mice

We used IHC to determine the expression of 8-hydroxy-2′-deoxyguanosine (8-OHdG) as a marker
for oxidative stress. There were significantly fewer cells positive for 8-OHdG in AG mice than in NG
mice after 2 weeks of acupuncture (AG: 104.5 ± 26.4 vs. NG: 221.8 ± 63.9; p < 0.001, n = 17) (Figure 5A).

Figure 5. The analysis of hepatic oxidative stress in mice with NAFLD. (A) 8-hydroxy-20-
deoxyguanosine (8-OHdG) staining revealed significantly fewer accumulated 8-OHdG-positive
hepatocytes in the livers of AG mice than in those of NG mice after acupuncture. Values are
shown as the mean ± SD, * p < 0.05, ** p < 0.001, *** p < 0.0001, n = 17. (B) The levels of the oxidative
stress marker thiobarbituric acid reactive substances (TBARS) in AG mice were significantly lower than
in NG mice after acupuncture. Values are shown as the mean ± SD, * p < 0.05, ** p < 0.001, *** p < 0.0001,
n = 17. (C) Real time PCR showed that the GPx1, GPx2, GPx3, Gss, Catalase, and Nrf2 expression in
the liver was significantly higher in AG mice than in NG mice. Values are shown as the means ± SD. * p
< 0.05, ** p < 0.001, *** p < 0.0001, n = 7. NG: needling-nonacupoint group, AG: needling-acupoint
group, GPx: glutathione peroxidase, Gss: glutathionylspermidine synthetase/amidase, Nrf2: nuclear
factor erythroid 2-related factor 2.

We next measured the liver levels of another oxidative stress marker, thiobarbituric acid reactive
substances (TBARS). The TBARS levels were significantly lower in AG mice than in NG mice after 2
weeks of acupuncture (AG 4.5 ± 2.5 nmol malondialdehyde ([MDA]) protein vs. NG 6.3 ± 3.3 nmol
MDA protein, p < 0.05, n = 17) (Figure 5B).

Real time PCR showed that the hepatic expression of several antioxidant enzymes, including
glutathione peroxidase 1, 2, and 3 (GPx1, 2, and 3), glutathionylspermidine synthetase/amidase
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(Gss), and catalase and the transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2), were
significant higher in AG mice than in NG mice (p < 0.05, n = 7) (Figure 5C). Therefore, acupuncture
may reduce oxidative stress by upregulating the antioxidant expression.

3. Discussion

Acupuncture is a vital component of TCM and has a history of more than 2500 years. Given
its safety and few side effects, this major TCM has been widely used to treat various diseases and
symptoms, especially chronic metabolic illness [20]. Many modern studies have proven the efficacy of
acupuncture against a wide range of diseases [21–23]. However, due to lack of understanding of the
mechanisms underlying its action, acupuncture is the subject of severe controversy, with its effects
proposed to be placebo effects [24]. To clarify these points and the efficacy of acupuncture on the
systemic metabolism, it is necessary to determine the molecular mechanism underlying acupuncture’s
effects on specific tissues and cell metabolism.

Since it is illegal and unethical to carry out laboratory experiments on the human body without
need, animal studies of acupuncture are of great value and show obvious advantages regarding
research on the metabolic signal pathways compared to clinical studies [25]. Therefore, in this study,
we used a mouse model of MCD + HF diet-induced NAFLD to investigate the mechanisms by which
acupuncture treatment improves the conditions of this chronic disease.

According to TCM, the three acupoints of Zusanli (ST36), Yongquan (KI1) and Guanyuan (CV4)
were selected for needling model mice in order to harmonize the Yin and Yang and dredge the channel
of Qi and Blood. Our pathological and experimental results showed that acupuncture treatment
significantly attenuated the progression of NAFLD by inhibiting inflammatory reactions, reducing
oxidative stress and promoting lipid metabolism of hepatocytes. These results provide solid evidence
from a modern medicine perspective supporting the notion that acupuncturing these three acupoints
may be beneficial for patients with NAFLD.

Inflammation plays very important roles in the process of NAFLD progression. Injured liver cells
can release damage-associated molecular patterns (DAMPs) to promote the activation of the NF-κB
pathway, thus inducing the production of pro-inflammatory cytokines like TNF-α and ILs, which is a
key step in the progression from simple steatosis to NASH [26,27]. Many studies have confirmed that
acupuncture can downregulate the NF-κB expression [28,29]. Indeed, in the present study, hepatic
injury induced by the absence of methionine and choline in the diet clearly upregulated the expression
and enhanced the activation of NF-κB, thus increasing the production of downstream factors TNF-α
and IL-1β in the livers of NG mice, while acupuncture treatment significantly inhibited the NF-κB
inflammatory signals in the AG mice. These cytokines can contribute to the recruitment and activation
of macrophages/Kupffer cells (resident hepatic macrophages) to mediate inflammation [30], which is
critical in NASH. A significant increase in macrophages has been shown to occur in the liver tissue
of patients with NASH compared to those with simple steatosis [31]. In the present study, with the
reduction in the TNF-α and IL-1β expression, much fewer Mac-2- and α-SMA-positive cells were
observed in the livers of AG mice with simple steatosis than in NG mice showing progression to NASH.
These results indicate that acupuncture treatment can improve the pathological progression of NAFLD
by inactivating the inflammatory signaling pathways.

The regulatory role of acupuncture in inflammation has also been reported in other studies, but the
effects are not the same when needling different acupoints. For example, acupuncture of the Sanyinjiao
(SP6) acupoint can increase IL-10 levels [32], while needling Fenglong (ST40) and Neiguan (PC6)
acupoints reduced the IL-17 expression [33]. These data imply that although acupuncture treatment at
several acupoints can suppresses the inflammation response, different acupoints can achieve the same
effect by regulating specific cytokines.

The accumulation of excess lipid in hepatocytes causes organelle failure, such as mitochondrial
dysfunction and endoplasmic reticulum stress, and leads to liver injury in patients with NAFLD [34,35].
However, in some NAFLD patients, the accumulation of lipids is not toxic to liver cells, a paradoxical
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effect that is believed to be related to the type of lipid itself. For example, TG reportedly does not
seem toxic, but FFA and cholesterol—including its metabolites—are highly toxic to cells [36,37]. In our
MCD-induced NAFLD mouse model, the hepatic total cholesterol levels were not markedly different
between NG and AG mice, but the TG and especially the FFA levels were markedly reduced in the
livers of AG mice compared to the livers of NG mice. Therefore, a significant decrease in the FFA level
in the liver may play a more important role in acupuncture treatment for NAFLD than a reduction
in TG. The FFA pool in the circulation is the major source of FFA in the liver [38], but no remarkable
difference in the hepatic expression of receptors related to the lipid uptake were noted between NG
and AG mice. However, we found that some regulators expressions regarding de novo lipogenesis
and lipid storage in the liver were significantly decreased and genes involved in hepatic lipid secretion
increased in AG mice compared with NG mice, suggesting that the reduction in hepatic lipid deposition
after acupuncture treatment is induced by reducing the synthesis and promoting the metabolism of
lipids rather than by inhibiting their uptake in the liver altogether.

Mitochondrial dysfunction and endoplasmic reticulum stress caused by the accumulation of lipids,
especially FFA, can also result in the increased production of ROS and lead to oxidative stress that
promotes inflammatory reactions, the activation of stellate cells and fibrosis in the liver, which have
been recognized as important events in the development of NAFLD [39–41]. In the present study, the
number of 8-OHdG-positive cells and the level of MDA in the liver were significantly reduced in AG
mice compared to NG mice, showing that acupuncture treatment can also improve the oxidative stress
status during NAFLD progression. It seems easy to understand that the lower level of hepatic FFA
inhibited organelle failure and repressed the increased production of ROS in AG mice. These results
should be rational, however, the consideration is probably oversimplified, as we also found expressions
of some protective antioxidants to significantly increase in the livers of AG mice (Figure 5C), which
may be the real reason for the inhibition of oxidative stress by the accumulation of lipids. Another
interesting finding of the present study was that acupuncture treatment had significant regulatory
effects on inflammatory reaction, lipid metabolism and redox homeostasis, which was found to be
closely associated with changes in the expression of transcription factors related to these signaling
pathways, like NF-κB, PPARs, and Nrf2 (Figure 3C, Figure 4B, and Figure 5C respectively). These
results remind us that acupuncture may regulate cell metabolism at the expression level. To confirm
this suspicion, more molecular mechanism experiments will be needed in the future.

In summary, from this study, we obtained some novel findings: (1) acupuncture on the three
acupoints, ST36, CV4 and KI1, can improve pathological process of NAFLD; (2) acupuncture treatment
can inhibit inflammatory reactions, reduce oxidative stress and promote lipid metabolism; (3)
acupuncture on different acupoints can inhibit inflammatory reactions by regulating specific cytokines;
(4) acupuncture treatment have regulatory effects on the expression of transcription factors. Although
some exciting results were found in the present study, there are still some limitations to be noted.
First, an MCD + HF diet-induced NAFLD model was used to investigate the roles of acupuncture
in inhibiting the progression of NAFLD in this study, but the molecular mechanism underlying
special diet-induced NAFLD does not totally reflect the pathogenesis of this disease in human, even
though some pathological manifestations are consistent between the two entities. Second, although
acupuncture treatment has few side effects, since this was the first instance of observing the effects
of needling the three acupoints ST36, KI1, and CV4 in mice with NAFLD, and since this treatment
was administered daily for only two weeks, we cannot confirm that no side effects would be noted
with this approach over a long period of time. Finally, after two weeks of acupuncture treatment,
we also found metabolic changes in other tissues and organs aside from the liver, largely related to
gastrointestinal absorption, lipid storage and energy metabolism (data not shown), which have a major
influence on metabolic syndrome, such as insulin resistance, obesity and fatty liver. However, in the
present study, we ignored these other influences temporarily and instead focused on the metabolic
changes in the liver after acupuncture treatment. The influence of other factors should therefore be
discussed in future studies.
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4. Materials and Methods

4.1. Animals and Experimental Protocol

Experiments were performed using 8-week-old male C57BL/6 mice weighing approximately 20 g
that were maintained in a temperature- and light-controlled facility with free access to water. Mice
were fed an MCD +HF diet (60% fat; KBT Oriental Corporation, Saga, Japan) for 3 weeks and then
given an HF diet for two weeks to maintain their hyperlipidemia. As described previously [17], mice
were anesthetized with an injection of ketamine-medetamidine and euthanized by exsanguination.
The liver was excised and cut into small pieces, frozen, and fixed in 10% neutral-buffered formalin for
the experiments described below.

4.2. Acupuncture Manipulation

The mice were randomly divided into two groups: AG and NG. They were fed an MCD + HF
diet for three weeks and then given HF diet for two weeks to maintain their hyperlipidemia. For the
needling treatment, three acupoints (AG) or no acupoints (NG) were needled (Figure 6A).

Figure 6. Acupoints and experimental design. (A) Schematic diagram of the experimental design.
After being fed an MCD +HF diet for three weeks, mice were needled at acupoints or nonacupoints
(sham) under a HF diet. (B) The acupoints and nonacupoints (sham) are shown in the diagrams (upper
pictures). The actual acupoints and nonacupoints (sham) in mice are indicated in the middle and
lower pictures. NG: needling-nonacupoint group, AG: needling-acupoint group, ST36: Zusanli, CN4:
Guanyuan, KI1: Yongquan, sham: nonacupoints, MCD diet: methionine- and choline-deficient diet,
HF diet: High Fat diet.
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The ST36 acupoint is located near the knee joint of the hind limb and 1.5 mm from the distal side
of the anterior tibial tubercle. The KI1 acupoint is located in the middle of the hind paw. The pubic
symphysis was obliquely stabbed at point CV4 at the mouse abdomen median line, 10 mm below
the navel [22,42,43] (Figure 6B). AG mice received acupuncture at both sides of ST36 and CV4 with
13-mm needles. Acupuncture was delivered using stainless steel needles (length: 13 mm, diameter:
0.25 mm; Hwatuo, Suzhou Medical Supplies Factory Co., Ltd., Suzhou, China). ST36 and CV4 needling
was performed by straightly inserting a stainless steel needle to a depth of 3 mm. KI1 was needled
obliquely toward the elbow to a depth of 2 mm. NG mice received nonacupoint needling. All points
were rotated slowly at 60 rounds per minute, completed in 2 min, without retaining the needle.

4.3. Ethics

The Ethics Committee of Animal Care and Experimentation, Kanazawa Medical University, Japan,
approved the protocols. The project code of the approval, 2019-21, was identified on 3 July 2019.
Experiments were performed according to the Institutional Guidelines for Animal Experiments and
the Law (no. 105) and Notification (no. 6) of the Japanese government. The number of animals used
and their suffering were minimized.

4.4. Histopathology

After fixation in 10% neutral-buffered formalin for 24 h, paraffin-embedded liver specimens were
systematically cut into sequential 4-μm-thick sections. For histological analyses of the liver, images of
hematoxylin and eosin (H&E), oil red-O, and immunohistochemistry.

IHC sections were captured and quantified using the NanoZoomer Digital Pathology Virtual
Slide Viewer software program (Hamamatsu Photonics Corp, Hamamatsu, Japan). To evaluate the
degree of lipid accumulation (steatosis score and lipid accumulation score for the liver), we performed
oil red-O staining using frozen liver sections and categorized the tissues into 4 grades, as follows: no
lipid droplets (score = 0); lipid droplets in <33% of hepatocytes (score = 1); lipid droplets 33%–66% of
hepatocytes (score = 2) and lipid droplets in >66% of hepatocytes (score = 3). In addition, the degree
of liver cell ballooning injury (ballooning score) was classified into three grades as follows: none
(score = 0); few balloon cells (score = 1) or many balloon cells/prominent ballooning (score = 2).

4.5. IHC

To evaluate the severity of NAFLD, we determined the intensity of inflammation (inflammatory
score) using an anti-mouse Mac-2 monoclonal antibody (1:1000; Cedarlane Laboratories Ltd., Burlington,
Ontario, Canada). As described previously [44], we counted the number of positive macrophages in 10
randomly selected fields per liver section (original magnification: ×200). The NAFLD liver tissues
were then classified into four (inflammation score) grades, as follows: no inflammation (score = 0); <10
inflammatory foci, each consisting of>5 inflammatory cells (score= 1); ≥10 inflammatory foci (score= 2)
or uncountable diffuse or fused inflammatory foci (score = 3). We used the HistoMouse™–Plus Kit
(Invitrogen Corporation, Camarillo, CA, USA) to block endogenous IgG and then stained tissue with a
monoclonal mouse anti-human α-SMA antibody (1:1000; Dako Cytomation, Carpenteria, CA, USA.).
The number of activated stellate cells was then counted in 10 randomly selected fields per section
(original magnification: ×200), as described previously [44]. To determine the ROS/oxidative stress
or expression in hepatocytes after acupuncture, we used an 8-OHdG monoclonal antibody (1:200;
Japan Institute for the Control of Aging, Fukuroi, Japan) and quantified the number of hepatocytes
positive for either antibodies in 10 randomly selected fields per section (original magnification: ×200),
as previously described. For IHC studies, we examined at least 1 section from each of 17 mice per
experimental group.

All histological and immunohistochemical slides were evaluated by two independent observers
(certified surgical pathologists in our department; X.G. and S.Y.) using a blind protocol design (observers
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blinded to the mice treatment data). The agreement between the observers was excellent (more than
95%) for all antibodies investigated.

4.6. Western Blotting

Liver protein samples were separated by electrophoresis on 10% sodium dodecyl
sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) gels and transferred onto Immun-Blot PVDF
membranes (Bio-Rad Laboratories, K.K., Tokyo, Japan). The membranes were then incubated overnight
at 4 ◦C with IL-1β antibody (#12242; Cell Signaling,), TNF-α antibody (#11948; Cell Signaling), NF-κB
antibody (#8242; Cell Signaling), phospho-NF-κB antibody (#3033; Cell Signaling) and anti-β-actin
monoclonal antibody (Wako Pure Chemical Co., Osaka, Japan) diluted in Can Get Signal solution
1 (Toyobo, Osaka, Japan), after which the membranes were incubated for 1 h at room temperature
with a horseradish peroxidase-conjugated goat anti-rabbit antibody (Vector Laboratories, Burlingame,
CA, USA).

4.7. Analyses of Lipid Contents from the Liver

To examine the hepatic lipid profiles, each snap-frozen tissue (70 mg) was homogenized and
extracted with chloroform-methanol (2/1 v/v), as described previously [45]. The organic phase was
dried and resolubilized in 2-propanol. The TG, FFA, and TCHO levels were then determined using
commercial assay kits (Wako Pure Chemical Co.)

4.8. Real Time Reverse Transcription Polymerase Chain Reaction (RT-PCR)

Real time PCR was used to analyze the gene expression in the liver. Total RNA was extracted
from mouse liver using the extracted by ReliaPrep™ RNA Tissue Miniprep kit (Promega, Leiden,
Netherlands). The whole extraction process was performed under RNase-free conditions in order to
prevent RNA degradation. Custom primers and TaqMan probe for gene amplification were purchased
from Life Technologies. The mRNA expression of SREBP1, LDLR, SR-A, SREBP2, SR-B1, PPARγ,
PPARα, PPARβ/δ, GPx1, GPx2, GPx3, Gss, catalase, and Nrf2 was analyzed by real time PCR (TaqMan
probes Applied Biosystems, Warrington, UK). The relative expression of each gene was normalized to
that of 18S ribosomal RNA using random primers.

4.9. The Measurement of the TBARS Levels

We measured the liver TBARS levels using a TBARS Assay Kit (Cayman Chemical Company, Ann
Arbor, MI, USA). Liver tissue specimens were homogenized in 250 RIPA buffer solution. A 100-μL
aliquot of the homogenate was added to a reaction mixture containing 200 μL of 8.1% (w/v) SDS,
1.5 mL of 20% (v/v) acetic acid, pH 3.5, 1.5 mL of 0.8% (w/v) thiobarbituric acid, and 700 μL of distilled
water. Samples were then boiled for 1 h at 95 ◦C and centrifuged at 1600× g for 10 min. The absorbance
of the supernatant was measure spect rophotometrically at a wavelength of 530–540 nm [46].

4.10. Statistical Analyses

The results are expressed as the means ± standard deviation (SD). Significant differences were
analyzed using Student’s t-test, Welch’s t-test or a one-way analysis of variance (ANOVA), where
appropriate. Values of p < 0.05 were considered to be statistically significant.

Supplementary Materials: The following are available online at http://www.mdpi.com/2218-1989/9/12/299/s1,
Figure S1: The body weight and liver weight after two weeks of acupuncture. (A) The body weight was
significantly lower in AG mice than in those of NG mice. Values are shown as the mean ± SD, * p < 0.05, ** p <
0.001, *** p < 0.0001, n = 17. (B) The liver weight was significantly lower in AG mice than in those of NG mice.
Values are shown as the mean ± SD, * p < 0.05, ** p < 0.001, *** p < 0.0001, n = 17. NG: needling-nonacupoint
group, AG: needling-acupoint group, MCD diet: methionine- and choline-deficient diet, HF diet: high-fat diet,
NAFLD: nonalcoholic fatty liver disease.; Figure S2: Acupuncture improved the lipid metabolism in the livers of
mice with NAFLD. (A) Real time PCR revealed that the expression of ApoB, ApoE and MTTP were significantly
higher in the livers of AG mice than in those of NG mice. ApoC-III showed no significant difference between the
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groups. (B)The expression of Fas, SCD1 and AdipoR2 were significantly lower in the livers of AG mice than in
those of NG mice. Values are normalized by the 18S rRNA expression. RT-PCR values are presented as the means
± SD. * p < 0.05, ** p < 0.001. *** p < 0.0001, n = 7. NG: needling-nonacupoint group, AG: needling-acupoint group,
ApoB: apolipoproteinsB, ApoE: apolipoproteinsE, MTTP: microsomal triglyceride transfer protein, ApoC-III:
apolipoproteins C-III, Fas: fat acid syntheas, SCD1: stearoyl-CoA 9-desaturase 1, AdipoR2: adiponectin receptor 2.
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Abstract: In recent years, there has been a plethora of attempts to discover biomarkers that are
more reliable than α-fetoprotein for the early prediction and prognosis of hepatocellular carcinoma
(HCC). Efforts have involved such fields as genomics, transcriptomics, epigenetics, microRNA,
exosomes, proteomics, glycoproteomics, and metabolomics. HCC arises against a background of
inflammation, steatosis, and cirrhosis, due mainly to hepatic insults caused by alcohol abuse, hepatitis
B and C virus infection, adiposity, and diabetes. Metabolomics offers an opportunity, without
recourse to liver biopsy, to discover biomarkers for premalignant liver disease, thereby alerting the
potential of impending HCC. We have reviewed metabolomic studies in alcoholic liver disease (ALD),
cholestasis, fibrosis, cirrhosis, nonalcoholic fatty liver (NAFL), and nonalcoholic steatohepatitis
(NASH). Specificity was our major criterion in proposing clinical evaluation of indole-3-lactic acid,
phenyllactic acid, N-lauroylglycine, decatrienoate, N-acetyltaurine for ALD, urinary sulfated bile
acids for cholestasis, cervonoyl ethanolamide for fibrosis, 16α-hydroxyestrone for cirrhosis, and the
pattern of acyl carnitines for NAFL and NASH. These examples derive from a large body of published
metabolomic observations in various liver diseases in adults, adolescents, and children, together with
animal models. Many other options have been tabulated. Metabolomic biomarkers for premalignant
liver disease may help reduce the incidence of HCC.

Keywords: metabolomics; lipidomics; biomarker; premalignant; alcoholic liver disease; cholestasis;
fibrosis; cirrhosis; NAFL; NASH

1. The Need for Biomarkers of Premalignant Liver Disease

Hepatocellular carcinoma (HCC) and intrahepatic cholangiocarcinoma (ICC) are the commonest
types of primary liver cancer, and their combined incidence ranks among the highest cancer rates
in the world [1]. HCC in particular is a major health problem, with an annual death rate in excess
of 500,000 worldwide [2]. HCC in the United States, which comprises 75% of all primary liver
cancers [3], has been attributed primarily to a number of infectious and lifestyle causes. The principal
attributable factors among these are alcohol (32.0% in males, 30.7% in females), adiposity (26.6% in
males, 15.6% in females), hepatitis C virus (HCV) infection (17.5% overall), smoking (9.0% in males,
8.0% in females), diabetes (6.9% in males, 5.5% in females), and hepatitis B virus (HBV) infection
(5.3% overall). In contrast, in China, HBV (53.8% overall) is the principal cause, with adiposity a
relatively minor contributor (7.2% in males, 4.2% in females) [4]. These causative factors produce
insults to the liver that include inflammation, steatosis, and fibrosis, all of which can progress through
various stages, in particular cirrhosis, that can eventually lead to HCC. In recent years, there have
been multiple attempts to develop predictive biomarkers of HCC, but many of these have involved
the study of HCC cases themselves. Understanding the progression from hepatic insult through
premalignant stages to HCC would seem to be the most fruitful means of predicting the development
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of HCC in susceptible individuals. In this review, we examine the investigations into key premalignant
stages of HCC and ICC that have employed metabolomics both in patients and in animal models.
In particular, we have focused on the metabolomics of alcoholic liver disease (ALD), cholestasis,
fibrosis, cirrhosis, nonalcoholic fatty liver (steatosis, NAFL), and nonalcoholic steatohepatitis (NASH).
In each case, we evaluated whether the experimental data provide sufficient grounds, especially in
terms of specificity, to warrant further development of clinical biomarkers of hepatic premalignancy.
Additionally, we considered only metabolites that were upregulated as potential biomarkers for the
aforementioned premalignant liver diseases. The references cited in this review were culled from
PubMed searches with keywords metabolomics OR metabonomics AND the various disease entities,
such as alcoholic liver disease. Some references also arose from the bibliographies cited by publications
found in these initial searches.

2. Hepatic Metabolism

The human body comprises around 34 trillion cells of which ca. 240 billion (0.7%) make up
the approximately 1.5 kg of healthy liver, the largest solid organ and the biggest gland in the body.
Of the roughly 20,000 human protein-coding genes, 60% are transcribed in the liver, many of which
are not expressed in any other tissue [5]. Studies in mice using single cell transcriptomics revealed
that about half of all hepatocyte genes were expressed in a zonal manner, supporting the concept
that different liver regions have diverse metabolic functions. This was interpreted as being due
to variable microenvironments attributable to gradients of oxygen, nutrients, and hormones [6].
Metabolic reactions that are specific to the liver include de novo synthesis and secretion of the primary
bile acids glycocholate, taurocholate, glycochenodeoxycholate, and taurochenodeoxycholate, together
with ornithine degradation. Overall, the liver is the most metabolically-active tissue, followed by
adipose tissue and skeletal muscle [5]. Parenchymal hepatocytes comprise up to 85% of the liver
volume, with sinusoidal endothelial cells, perisinusoidal stellate cells and phagocytic Kupffer cells, with
intrahepatic lymphocytes making up the rest. Strong evidence suggests that different hepatic cell types
possess variable gene expression profiles [6–8]. The liver is therefore highly heterogeneous in both gene
expression and metabolic function. Assignment of metabolic function to discrete hepatic regions based
upon in vivo observations alone is extremely challenging, since metabolic phenotypes vary between
cell types and also across the liver. The role of in vitro studies in this regard will be increasingly
important as aids to the interpretation of in vivo metabolic phenotyping. For example, laser capture
microdissection has been employed as an adjunct to genomic, transcriptomic, and proteomic analyses
of liver diseases [9], but so far, rarely for metabolic profiling of liver tissue.

3. Metabolomics—The What, the How, and the Why

It is two decades since Jeremy Nicholson and colleagues introduced the concept of metabonomics,
with the promise of biomarker discovery from changes in metabolite profiles that result from
constitutional differences such as disease or genetics or from exogenous challenges due to drug
administration or exposure to toxicants [10]. The initial protocols based upon high-resolution proton
nuclear magnetic resonance spectroscopy (1H NMR) of body fluids have been supplemented by an
array of additional technologies, based mostly on mass spectrometry (MS), which have infiltrated
virtually every branch of biology and medicine. The literature currently stands at virtually 30,000
PubMed citations with almost 6000 in 2019 alone. The identification and quantitation of all metabolites
in a given organism or biofluid was at first seen as a realistic goal [11]. However, as the biochemical
complexity and analytical shortcomings came more into focus, global metabolite quantitation was
abandoned, and more realistic definitions emerged, such as, “metabolomics studies the low molecular
weight metabolites [e.g., <1.5 kDa] found in cells and organisms, usually through the analysis of
plasma/serum, urine or cell culture medium using mainly MS or NMR technologies” [12]. There has also
been some confusion regarding the use of the terms “metabolomics” and “metabonomics.” Although it
has been stated that the difference in terms is not a technical one, and that the terminologies are
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often used interchangeably [13], almost without exception, metabonomics published reports were
conducted using NMR rather than MS. Other commonly-used phrases include untargeted and targeted
metabolic phenotyping. Untargeted metabolomics is commonly conducted by first separating the
biological analytes that have a large range of physicochemical properties using ultraperformance
liquid chromatography (UPLC) with either reversed phase (RP) and/or hydrophobic interaction
chromatography (HILIC) columns [14]. Interfaced by electrospray ionization (ESI) in either positive
(ESI+) and/or negative (ESI-) mode, the UPLC eluate is analyzed by quadrupole time-of-flight mass
spectrometry (QTOFMS). This may yield in excess of 5000 ions in each ionization mode, which
should not be interpreted as 5000 biological constituents, as many of these features correspond to
adducts, dimers, multiply charged species, and fragment ions formed in the electrosprayer. In targeted
metabolomics, specific metabolites, for example amino acids or acyl carnitines, are quantitated using
stable isotope labeled standards [15]. This is frequently conducted using tandem mass spectrometry,
often with a triple quadrupole mass spectrometer (TQMS), rather than a QTOFMS. Another common
technology used in metabolomics is gas chromatography-mass spectrometry (GC-MS). This has the
benefit of a high confidence in metabolite identification, albeit for a small number of metabolites and a
lower throughput than UPLC-QTOFMS. The technologies available for metabolomic analysis have
recently been reviewed in detail [16].

In a typical metabolomics experiment, two or more groups of samples are investigated. These could
be biofluids from a patient group and age- and sex-matched healthy controls, genetically-modified mice
and their wild-type (WT) controls, and persons or experimental animals that have been administered
a drug, specific diet, or with some other lifestyle variable (e.g. smoking or particular occupation),
compared with a suitable control group. Analysis of the biofluids, usually urine and/or serum/plasma,
by MS- or NMR-based methods produces a data table that must first be preprocessed (normalization,
scaling, peak picking) prior to multivariate data analysis (MDA). It is first prudent to conduct
unsupervised MDA, for example, with principal components analysis (PCA), which reveals the internal
structure of the dataset, the principal components of variance, and the existence of any outliers.
A number of presentations of the data are common, including the scores plot (with one data point
for each sample) and the loadings plot, which for MS methods show the ions responsible for the
distribution of samples in the scores plot. If each sample group analyzed clusters and separates from
the other group(s), then this leads to supervised analyses such as partial least squares-discriminant
analysis (PLS-DA) and orthogonal PLS-DA (OPLS-DA). Unless at least a partial separation of scores
was observed in the PCA analysis, there is a danger that the data could be overmodeled using these
supervised analyses. The literature is replete with examples of this. The generated loadings plots
can be used with various software packages that assist in the identification of metabolites that differ
significantly between the test groups. The reader is directed to specific reviews in this area [17–19].

Various estimates of distinct human metabolomes have been reported that were derived using
multiple analytical platforms to gain maximum metabolite coverage. The human cerebrospinal
fluid metabolome (308 metabolites) [20], the human serum metabolome (4229 “highly probable”
metabolites) [21], the human urine metabolome (2651 “confirmed” metabolites) [22], and the human
fecal metabolome (>6000 identified metabolites) [23] have all been described. The culmination of these
efforts is the human metabolome database (HMDB 4.0) that comprises 114,100 total metabolites that
encompass “the complete collection of small molecules found in the human body including peptides,
lipids, amino acids, nucleic acids, carbohydrates, organic acids, biogenic amines, vitamins, minerals,
food additives, drugs, cosmetics, contaminants, pollutants, and just about any other chemical that
humans ingest, metabolize, catabolize or come into contact with” [24]. This still may be the tip of
the iceberg. It has been estimated that humans are probably exposed to some 1–3 million discrete
chemicals in their lifetimes [11] of which >25,000 have already been described in the diet [25].

The lipidome refers to the total number of lipid species present in a cell, tissue, organ, organism,
or biofluid such as plasma. Although there is overlap with the human metabolome, the human
lipidome is expected to be highly complex due in great part to the varying chain lengths and degrees
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of unsaturation, together with structural isomerism. As of January 2018, there were more than 40,000
lipid structures listed in the LIPID MAPS database [26]. Our conservative estimate is that the human
lipidome is made up of at least 100,000 discrete lipid entities.

Based on the foregoing evidence, it is likely that a human metabolome that includes the lipidome
may have some 200,000 members. As stated above, there are thought to be ~20,000 protein coding
human genes, although the exact number is yet to be determined. The total number of cellular proteins
(proteome) may be 16,000–17,000, similar to the total number of mRNA transcripts (transcriptome)
obtained by untargeted RNA sequencing (RNA-seq) [27]. In addition, the existence of a human
core proteome of 10,000–12,000 ubiquitously expressed proteins has been postulated, whose primary
function is the general control and maintenance of cells [28]. Many of these are enzymes, and therefore
contribute to the human metabolome, either through the metabolism of a single specific metabolite or
pair of metabolites, such as lactate dehydrogenase or in a pleiotropic fashion, such as the thousands
of potential metabolites produced by the human cytochromes P450 [29]. Nevertheless, it has been
estimated that there are 1–2 million “protein entities” that are expressed in a cell at a given time as a result
of posttranslational modifications (PTMs), such as acetylation, phosphorylation, and glycosylation [30].
To study mechanisms of liver disease through the lens of untargeted proteomics would be an extremely
demanding task. However, targeted proteomics in the form of specific protein biomarkers in plasma or
serum has a long history. This is because of the availability of commercial antibodies against virtually
every protein and this forms the basis of convenient quantitative immunoassays such as ELISA.

The expression of phenotypes, including metabolic phenotypes, from a genomic sequence that
is transcribed, spliced, and translated to protein with potential post-translational modifications,
is analogous to the information flow involved when listening to a music compact disk or some other
digital music format. In the former case, the genome is analogous to the compact disk itself, which
without the apparatus for converting it to sound, is simply a digital storage system (Figure 1). This is
why the metabolic phenotype is more revealing of the status of a cell, tissue, or organism than a genetic
sequence, because it more resembles the musical experience rather than analyzing the so-called pits
and lands (Figure 1) on a CD.

 
Figure 1. The flow of genetic information vs. digital music data flow.

In terms of generating new knowledge regarding the liver, metabolomics has for some years
offered this opportunity. Because the liver is the seat of much of the body’s metabolic processes,
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the systemic measurement of metabolites that originate in the liver should provide clear signposts
to liver wellbeing or disease. This alone justifies the inclusion of metabolomic protocols in the study
of hepatic pathogenesis. As we will demonstrate below, a plethora of such studies has already been
reported, but the picture is still not in focus. We will seek to highlight the potential biomarkers that can
be determined through metabolomics and that point most directly to disease mechanisms. We will
discuss below the shortcomings of the current trend of identifying metabolomic biomarkers as risk
factors for liver disease.

4. Biomarkers—The Good, the Bad, and the Ugly

A biomarker has been characterized as “a defined characteristic that is measured as an
indicator of normal biological processes, pathogenic processes, or responses to an exposure or
intervention, including therapeutic interventions.” It has also been emphasized that biomarkers can
be medical measurements, including physiological measurements, blood tests, molecular analyses
of biopsies, genetic or metabolic data, and measurements from images [31]. Blood pressure and
blood glucose are commonly determined biomarkers of both pathogenic processes and therapeutic
interventions. Neither of these biomarkers point to mechanisms of either disease or therapeutic
response. Measurement of the pressure of various parts of the arterial circulation was initiated in
the mid-18th century by the English clergyman Stephen Hales [32]. The testing of the color, smell,
and taste of urine as indicators of disease goes back at least as far as the ancient Greeks, with diagnostic
‘urine charts’ dating from the Middle Ages [13]. Determination of blood glucose developed relatively
recently and as a substitute to urine taste as a diagnostic biomarker for diabetes [33].

The first metabolic biomarkers that indicated disease mechanisms are contained in the remarkable
work of Sir Archibald Garrod (1857–1936) who coined the phrases “inborn errors of metabolism” [34]
and “chemical individuality” [35] in the early part of the 20th century. Garrod contended that four
diseases, i.e., alkaptonuria, albinism, cystinuria, and pentosuria, were Mendelian autosomal recessive
traits, therefore pointing to genetic mechanisms for each. Moreover, he recognized that increased
urinary homogentisic acid (HGA; known then as “alkapton acid”) in newborn babies with alkaptonuria
that stained their diapers black could be further increased by the oral administration of tyrosine
or a diet rich in proteins containing aromatic amino acids such as tyrosine and phenylalanine [36].
This led Garrod to propose an impairment in the aromatic ring opening of aromatic amino acids as the
mechanism of alkaptonuria. This flew in the face of the contemporaneous “germ theory of disease” that
focused on external rather than inborn causes of disease, and maintained that alkaptonuria resulted
from a gastrointestinal infection. These ideas hindered the acceptance of Garrod’s concepts for many
years [37]. Today, we recognize that Garrod’s interpretation was correct, and also that mutations in
the HGO gene causing a deficiency in hepatic homogentisate 1,2-dioxygenase (EC 1.13.11.5) activity
result in an accumulation of HGA and its clinical sequelae such as ochronosis, the yellowish staining of
connective tissue by HGA [38]. The major impact of a metabolic biomarker of disease (HGA) is that the
mechanism when unmasked can lead to potential therapies of the disease. In the case of alkaptonuria,
nitisinone has been shown in several studies to reduce the circulating levels of HGA. Nitisinone is an
inhibitor of 4-hydroxyphenylpyruvate dioxygenase (EC 1.13.11.27), the enzyme responsible for the
formation of HGA. A daily dose of 2 mg slowed progression of alkaptonuria and arrested ocular and
ear ochronosis [39]. This old example of alkaptonuria is a clear-cut prototype for a metabolic biomarker
of disease that originates in the liver, which has led to both an understanding of the disease mechanism
and its potential treatment. Sadly, many recent examples of liver disease metabolic biomarkers have
not lived up to this paradigm.

Alpha-fetoprotein (AFP) was reported in 1956 to be in human fetal serum but not in the serum of
healthy adults. The production of AFP by fetal liver largely ceases before birth [40]. The discovery
a few years later of AFP in animal models with hepatocellular carcinoma (HCC) [41] led to clinical
investigations that associated AFP with HCC. It has been stated that ~70% HCC secrete AFP [42] and
up to 40% of HCC patients may not show elevated serum AFP [43]. This suboptimal sensitivity is
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coupled with specificity issues in relation to premalignant liver diseases such as hepatitis and cirrhosis,
together with ovarian and testicular malignancies. Therefore, the clinical interpretation of serum AFP
with respect to HCC requires care. Nevertheless, serum AFP is widely used as both a diagnostic and
prognostic biomarker for HCC [42–44]. In these regards, it is recognized that it should be replaced
with more specific and sensitive biomarkers [43,44]. Neither European nor American guidelines for
HCC screening include serum AFP concentration [45].

Although osteopontin (OPN), a protein normally expressed in kidney and bone, has a high
sensitivity for the detection of HCC, its elevation can be linked to more than 30 types of cancer [45] and
to many other diseases, including diseases of the liver [46]. Its employment as a HCC risk biomarker
is clearly inappropriate. We will examine below whether metabolomics can disclose liver disease
biomarkers with high sensitivity and especially with high specificity.

Of the biomarkers for liver disease discussed above, the determination of metabolite HGA to
diagnose the rare inborn error of metabolism alkaptonuria is by far the most sensitive and specific.
Studies in experimental animals in the 1950s suggested that homogentisate 1,2-dioxygenase was
expressed in liver, to a lesser extent in kidney, and with little enzyme activity reported for heart,
skeletal muscle, brain, intestine, spleen, and blood [47]. Contemporary biochemical and molecular
methodologies have recently revealed that homogentisate 1,2-dioxygenase is expressed in human
and mouse brain, explaining the various observations of brain pigmentation found in cases of
alkaptonuria [48]. Both AFP and OPN are compromised by insufficient specificity, which would require
them to be used in combination with other biomarkers for liver disease risk.

5. Biomarkers of Premalignant Liver Disease

5.1. Alcoholic Liver Disease (ALD)

Excessive alcohol consumption is a global healthcare problem that accounts for almost 1% of all
global deaths and 50% of all liver cirrhosis-attributable deaths [49]. The spectrum of hepatic lesions
includes steatosis, alcoholic steatohepatitis (ASH), alcoholic hepatitis, fibrosis, cirrhosis, and HCC.
Alcohol is a principal cause of end-stage liver disease, for which the only curative treatment is
transplantation [50]. The insult on the liver by alcohol is closely related to the fact that the liver is the
site of most of the metabolism of alcohol. Alcohol dehydrogenase (ADH; EC 1.1.1.1) converts ethanol
to acetaldehyde with the generation of NADH reducing equivalents. Subsequent metabolism by
acetaldehyde dehydrogenase (ALDH; EC 1.2.1.3) generates further equivalents of NADH. The elevated
ratio of NADH/NAD+ due to excess alcohol consumption is responsible for many of the biochemical
consequences in the liver. For example, lactic acidosis, hyperuricemia, enhanced lipogenesis, and
depressed fatty acid β-oxidation have long been known to be driven by excess hepatic NADH [51].
However, the influence of ethanol exposure on lipid metabolism is considerably more complicated
than redox inhibition of fatty acid β-oxidation [52].

Much of the understanding of the mechanisms of liver disease have been generated using
animal models. In pioneering studies, rats fed a 5% ethanol diet (36% total calories) had a plasma
glycerolipid profile that mirrored the serum ethanol profile. Relative to paired rats fed a sucrose
diet, the ethanol-fed rats displayed a 3-fold increase in total hepatic lipids and an 8-fold greater
hepatic triglyceride content [53]. This early work led to the establishment of the Lieber-Decarli
experimental alcohol diet [54], which is still widely employed [55]. Binge ethanol administration
to mice (5 g/kg in three divided doses over 36 h) has also been used [56], in which case, hepatic
S-adenosylmethionine (SAM), cysteine, and glutathione were decreased, while hypotaurine and taurine
levels were elevated. These findings were interpreted as being due to both oxidative injury and a
rapid elevation in cysteine dioxygenase (EC 1.13.11.20) activity, responsible for the production of
hypotaurine and taurine. These markers could be attenuated by the co-administration of betaine,
thought to be due to the regulation by betaine of hepatic levels of SAM and GSH [56]. Changes in
hepatic lipid profiles occurred after chronic feeding of Yucatan micropigs (20–40 kg) with a 40% ethanol
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folate-deficient diet. In alcoholic pigs, hepatic triglycerides were elevated with increased desaturation
of fatty acids (16:0 to 16:1n7 and 18:0 to 18:1n9) by stearoyl-CoA desaturase (SCD; EC 1.14.19.1) and
decreased fatty acid elongation pathway (ELOVL5; EC 2.3.1.199) and phosphatidylethanolamine
N-methyltransferase (PEMT; EC 2.1.1.17) activity. This latter enzyme attenuation led to a shift from
phosphatidylethanolamines to phosphatidylcholines in the liver [57].

The above studies of the effect of alcohol administration were highly targeted, and therefore,
limited in their description of the hepatic metabolic phenotype induced by alcohol. They were also
limited by the vastly different protocols of ethanol administration. A study in mice was conducted
using the Lieber-Decarli diet treated wild-type (WT) and Ppara-null mice (PPARα is a nuclear
receptor that regulates much of lipid metabolism including fatty acid β-oxidation) [58]. Six months’
chronic alcohol exposure led to increased hepatic triglyceride accumulation in the Ppara-null mice.
Urines collected from 2 to 6 months were analyzed using an untargeted metabolomic protocol
by UPLC-ESI-QTOFMS, and showed differential elevated metabolite profiles for the WT and null
mice. In WT mice, the principal elevated urinary metabolites resulting from alcohol administration
were ethyl sulfate and ethyl-β-D-glucuronide, secondary metabolites of ethanol, together with
4-hydroxyphenylacetic acid and its sulfate conjugate. These were also found for the null mice and,
in addition, elevated urinary excretion of indole-3-lactic acid was found only in the Ppara-null mice,
which was mechanistically related to the administration of ethanol in these animals. In a subsequent
and more detailed investigation [59] that used WT and Ppara-null mice with two different strain
backgrounds, indole-3-lactic acid and phenyllactic acid were reported as ALD biomarkers, with
their formation arising from their corresponding pyruvic acids having been driven by the NADH
hepatic overload due to ethanol consumption (Figure 2). The mechanism-based biomarkers also
shed light on the development of steatosis, driven by the deficit in NAD+ and the hepatic increase
in NADH. The redox inhibition of fatty acid β-oxidation is an initial step of triglyceride and lipid
droplet accumulation in the liver [52]. Metabolomic investigations in rats fed the Lieber-DeCarli
liquid diet for 2 and 3 months have been conducted using high-field 1H and 31P NMR. These studies
reported a two-fold increase in plasma triglycerides and a halving of plasma free fatty acids, mirroring
smaller but statistically significant changes in the liver. Both total and free cholesterol were increased
two-fold in the liver [60]. Metabolomics has identified specific lipids in serum that were associated with
alcohol-induced liver diseases, specifically, N-lauroylglycine identified cirrhosis with 100% sensitivity
and 90% specificity, while decatrienoic acid could evaluate liver disease severity with 100% sensitivity
and specificity [61].

N-Acetyltaurine (NAT) has been reported to be a biomarker of alcohol exposure in mice, arising
from metabolism of ethanol to acetaldehyde via ADH and CYP2E1 (EC 1.14.13.n7), and further by
ALDH to acetate [62]. NAT is not specific to alcohol exposure, since it has been described as a
biomarker of gamma-irradiation in both rats [63] and rhesus monkeys [64]. NAT urinary excretion has
been reported in healthy human subjects who drank alcohol (0.66 to 0.84 g/kg) [65]. In blood, NAT
concentration as a biomarker of alcohol exposure was of limited value [66]. To date, NAT has not been
evaluated with respect to liver disease.
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Figure 2. Generation of mechanism-based biomarkers of ALD (adapted from Manna et al., 2011 [59]
with permission).

Chronic alcohol exposure in both experimental animals and humans leads to functional
perturbations in the intestinal microbiota as determined by metabolomic investigations of intestinal
metabolites. A wide range of altered intestinal microbiota metabolites has been reported, including
decreased amino acids, changes in steroid, lipid, carnitine, and bile acid metabolism. Short-chain fatty
acids (SCFAs) that are produced by bacterial fermentation were lowered by alcohol administration
to rats, with the exception of acetate, which is an end-product of ethanol metabolism [67,68].
Additionally, saturated long-chain fatty acid (LCFA) biosynthesis by the microbiota is reduced
by ethanol administration. These attenuated LCFA metabolites have been shown to contribute to
alcohol-associated dysbiosis, influencing ALD [69]. Microbial metabolites combined with reduced
levels of Lactobacillus trigger intestinal inflammation and liver disease following alcohol administration
highlighting the role of gut microbiome-liver cross talk in ALD [49]. Studies that identified metabolomic
and lipidomic biomarkers of alcoholic liver disease are listed in Table 1.

204



Metabolites 2020, 10, 50

Table 1. Metabolomic and lipidomic biomarkers of alcoholic liver disease.

Species Alcohol Dose Pathology Metabolites Reported Ref.

Rat 20% or 36% of total
calories; 24 days

Hepatomegaly
Fatty infiltration

Plasma triglycerides↑
Plasma phospholipids↑

Hepatic triglycerides↑ 8-fold
[53]

Rat
5% alcohol

Lieber-DeCarli diet;
2-3 months

Fatty infiltration
Mild inflammatory
infiltrate; 3 months

Mild oxidative
stress, 3 months

Liver triglycerides↑
Liver cholesterol↑

Liver phospholipids and
lysophospholipids↓

[60]

Rat 6 g/kg alcohol +
high-fat diet

Regional laminar
necrosis and edema
around central vein.

Inflammatory
cell infiltrate.

Total of 37 core ALD
biomarkers identified.
Pathways perturbed
included TCA cycle,

carbohydrate and amino
acid metabolism.

[70]

Mouse 5 g/kg every 12 h X 3 Serum ALT↑
Hepatic CYP2E1↑

Malondialdehyde↑
Methionine↑

Hypotaurine↑ Taurine↑
SAM↓ GSH↓

[56]

Mouse
129 Sv WT and

Ppara-null

4% alcohol
Lieber-DeCarli diet;

2–6 months

Little change after
1 month

Ethylsulfate↑
Ethyl-β-D-glucuronide↑

4-hydroxyphenylacetic acid
(4HPAA)↑ 4HPAA sulfate↑

in both WT and null.
Indole-3-lactic acid↑ in

null only.

[58]

Mouse
129 Sv and

C57BL/6 WT
and Ppara-null

4% alcohol
Lieber-DeCarli diet;

1 month

Steatosis in B6
null mice

Indole-3-lactic acid↑ and
phenyllactic acid↑ in

alcohol-treated Ppara-null
mouse, both 129 Sv

and C57BL/6

[59]

Mouse
WT and

Cyp2e1-null

2.2%, 4.5%, 5.4%
Lieber-DeCarli
semi-solid diet;

21 days

CYP2E1↑ in WT
Microvesicular and

macrovesicular
steatosis around

central vein;
WT>null

Hepatic and serum
triglycerides↑ in WT only.
Urinary N-acetyltaurine,

4HPAA sulfate, ethylsulfate,
ethyl-β-D-glucuronide↑

[62]

Mouse 4.896 g/kg; 7 days

ALT↑ AST↑
Focal hepatic

necrosis
Inflammatory

infiltrate

Serum Malondialdehyde↑
GSH↓ GSSG↑

Methylglyoxal↑
[71]

Mouse
5% alcohol

Lieber-DeCarli diet;
8 weeks

Mild
steatohepatitis

No fibrosis

Correlation between urinary
and fecal metabolites. Many

fecal and urinary
metabolites altered. Amino
acid metabolism perturbed.

Indole-3-lactic acid↑

[72]

Mouse
Cramp-null

and WT

5% alcohol
Lieber-DeCarli diet;

24 days
Not clearly stated

In alcohol-fed WT, fecal
taurine, α-aminoisobutyric
acid, nicotinic acid, serine,

SCFAs↓
In alcohol-fed null mice,

only nicotinic acid↑

[73]
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Table 1. Cont.

Species Alcohol Dose Pathology Metabolites Reported Ref.

Micropig 40% total calories
Folate-depleted diet Not determined

Hepatic triglycerides↑
SCD pathway↑

ELOVL5 pathway↑
PEMT pathway↓

Phospholipid export↓

[57]

Human

100–300 g/day;
10 days

118 g/day; 11 days,
141 g/day; 8 days

Fatty infiltration Plasma triglycerides↑ [53]

Human

30 ALD patients
(mean daily alcohol
consumption 109.7

g/day) vs. 10
healthy controls

Cirrhosis (80%)
Decompensated

cirrhosis (DC; 23%)

N-Lauroylglycine↑
in cirrhosis.

Decatrienoic acid associated
with disease severity.

[61]

Human

30 Alcohol use
disorder (AUD), 13
alcoholic hepatitis

(AH) and 16
nonalcoholic controls

ALT↑ (AUD = AH)
AST↑ (AH>>AUD)

Seven serum oxylipins and
nine fecal oxylipins↑

Results related to
inflammation and

platelet aggregation.
Inflammatory ω-6 PUFA
oxylipins counteracted by

ω-3 bioactive
lipid mediators.

[74]

Human
64 AH patients,
26 DC patients

without AH

AST and GGT↑
(AH > DC). Other

serum markers and
MELD score

AH = DC

Metabolomic signature of
AH claimed but

not disclosed.
[75]

5.2. Cholestasis

Cholestasis is the impaired formation or secretion of bile into the small intestine, and can be
classified as intrahepatic or extrahepatic, together with obstructive or nonobstructive. There are many
causes of the various manifestations of cholestasis including gallstones, malignancy, and defective bile
acid synthesis and secretion [76]. Metabolomics has been employed to attempt to distinguish between
the different mechanisms of cholestasis. In the first such study, rat models of inhibited biliary secretion
(intrahepatic) and obstructed bile flow (extrahepatic) were employed, and urine was analyzed by
1H NMR. It was concluded that bile acids, valine, and methyl malonate were possible cholestatic
biomarkers [77]. These biomarkers did not appear to be specific to cholestatic injury. Another early
approach was to use metabolomics to understand the metabolic consequences of perturbed bile acid
(BA) homeostasis, as occurs in cholestasis. The farnesoid X receptor (FXR) is a nuclear receptor
that regulates genes involved in BA synthesis, metabolism, and transport. Fxr-null and WT mice
dosed with the FXR ligands CA or LCA generated metabolites indicative of intrahepatic cholestasis.
These included the sulfate and β-D-glucuronic acid conjugates of p-cresol [78], a fermentation product
of tyrosine produced by Clostridium difficile in the gut [79], thereby providing further evidence of gut
microbiota-liver crosstalk. Other metabolites related to cholestasis included corticosterone and CA
metabolites, with the latter being produced by induced CYP3A11 [78]. Furthermore, in LCA-induced
experimental intrahepatic cholestasis in mice, TGFβ-SMAD3 signaling mediated the alterations in
phospholipid and BA metabolism [80]. In a rat model for cholestasis, mass spectrometry-based targeted
metabolomics revealed elevations in urinary taurine and hypotaurine (5- to 9-fold). The largest increases
between cholestatic and control rats were for CA, LCA, deoxycholic acid, and ursodeoxycholic acid (10-
to 23-fold, respectively) [81]. Four independent rat studies that employed the experimental cholestatic
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compound α-naphthylisothiocyanate (ANIT) reported that both free and conjugated primary BAs were
significantly elevated above controls by ANIT administration [82–85]. It has been demonstrated that
several traditional Chinese medicine (TCM) remedies for treating jaundice can reverse the metabolomic
fingerprint of ANIT, and therefore, protect against ANIT-induced cholestasis. These treatments include
paeoniflorin (from the dried root of Paeonia lactiflora) [83,84], rhubarb [85], Yinchenhao decoction
(from the above ground parts of Artemisia annua) [86], chicken bile powder (containing mainly
taurochenodeoxycholic acid that is deconjugated in the gut producing the primary BA that is a FXR
ligand) [87], Huangqi decoction (a TCM comprising Radix Astragali and Radix Glycyrrhizae) [88],
gentiopicroside (from Gentiana rigescens Franch. ex Hemsl.) [89], and Da-Huang-Xiao-Shi decoction [90].
In addition to TCMs, melatonin (100 mg/kg p.o.) has been administered to rats 24 h after they had
received ANIT (25 mg/kg i.p.). This high dose of melatonin (relative to the 4-20 mg/kg doses used in
mouse melatonin studies [91,92]) produced a modest reduction in serum liver enzymes and bilirubin
with a less severe liver histology. The metabolomic changes in serum due to melatonin administration
were unexceptional and, in part, derived metabolically from melatonin [93]. The mechanism of
ANIT-induced cholestasis continues to be investigated using metabolomic tools. The plasma and liver
biomarkers described in mice administered ANIT gave rise to the conclusion that the cholestatic liver
injury might correlate significantly with hepatocyte necrosis, metabolic disorders, and an imbalance of
intestinal microbiome ecology as a result of BA accumulation [94].

A metabolomic investigation has also been reported, whereby regulation of BA metabolism by the
nuclear receptor PPARα and inhibition of NF-κB/STAT3 signaling protected against cholestasis induced
by ANIT [95]. Furthermore, a lipidomic study of ANIT-induced intrahepatic cholestasis uncovered
the role of the aryl hydrocarbon receptor (AHR) in regulating expression of choline kinase (CHK)
in mice. Knockout of the Ahr gene significantly reversed ANIT-induced lipid metabolism via Chka
expression, and reversed the intrahepatic cholestasis [96]. Vascular protein sorting-associated protein
33B (VPS33B) is involved in the trafficking of intracellular proteins to distinct organelles. Mutations in
VPS33B are associated with a neonatal syndrome that includes cholestasis (OMIM 208085). Using the
lipidomic and metabolomic profiles of hepatic Vps33b-null male mice, which displayed cholestasis
with elevated serum liver enzymes and total bilirubin and total BAs, demonstrated the importance of
VPS33B in BA, glycerolipid, phospholipid, and sphingolipid metabolism. In particular, the elevation of
hepatic ceramides was thought to influence apoptosis and the progression of cholestasis [97].

Bile duct ligation (BDL) is a nonchemical means to produce experimental cholestasis in rats.
Compared with sham operated rats, BDL rats displayed oxidative stress, with diminished serum
GSH, total antioxidant capacity, and superoxide dismutase and glutathione peroxidase activities,
with upregulated serum malondialdehyde. Changes in certain amino acids, lipids, Krebs cycle
intermediates, and lactic acid were signs of the effects of cholestasis on energy metabolism [98].
The BDL cholestasis rat model was shown to generate similar metabolic characteristics as thioacetamide
(TAA)-induced cholestasis in rats, with excessive fatty acid oxidation, insufficient glutathione
regeneration, and disturbed gut microbiota. These features in both rat models could be reversed by the
TCM Huang-Lian-Jie-Du-Decoction [99]. A metabolomic study recently compared three models of
chemically-induced cholestasis, using ANIT, 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC), or LCA.
BAs were increased in all three models, whereas arginine was decreased. Hepatic protoporphyrin IX,
a metabolic precursor of heme and cytochrome c, was increased only in the DDC model [100].

Both primary biliary cholangitis (PBC) (previously known as primary biliary cirrhosis) and
primary sclerosing cholangitis (PSC) are chronic cholestatic liver diseases. PBC and PSC patients
were investigated using targeted profiling of serum BAs. In PBC with cholestasis, total primary
BAs (CA and chenodeoxycholic acid) were 13.5-fold higher than noncholestatic donors, in particular,
their taurine conjugates (34- to 46.5-fold accumulation) [101]. A similar pattern of elevated free
and conjugated primary BAs was reported in another PBC metabolomic investigation. The total
secondary BAs (deoxycholic acid and LCA) were not significantly altered in PBC, nor were the
6α-hydroxylated BAs (hyocholic acid and hyodeoxycholic acid). In PSC with cholestasis, primary
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BAs were more abundant and both secondary BAs, and 6α-hydroxylated BAs were significantly
reduced. The authors recognized that the BA composition of bile requires determination in these two
cholestatic diseases [102]. Similar findings were reported in a later study that also included some small
changes in free fatty acids and markers of inflammation and oxidative stress [103]. Furthermore, BAs
increased during progression of PBC with a decline in acylcarnitines, such as propionyl and butyryl
carnitine [104]. The metabolic signatures of PBC and celiac disease have been compared and contrasted
with healthy controls using 1H NMR-based metabolomics on serum and urine. Both diseases showed
distinct metabolite patterns, although relatively few metabolites, such as pyruvate, lactate, glutamate,
glutamine, hippurate, and trigonelline (a metabolite of niacin also found in coffee) were described [105].
It is unclear whether the differences described were due to dietary factors. Intrahepatic cholestasis
of pregnancy (ICP) has an incidence of between 0.1% (Europe) and 15.6% (South America) [106].
A urinary metabolomic study of ICP revealed several significant predictive biomarkers of ICP, including
the primary BA metabolites glycocholic acid and chenodeoxycholic acid 3-sulfate [107]. In a serum
targeted metabolomics ICP study, 60 BAs were detected of which most conjugated BAs were elevated
in ICP. Metabolomics was also employed to monitor BAs during treatment with ursodeoxycholic
acid [108]. Targeted metabolomics of urinary sulfated BAs was used to define biomarkers for the
diagnosis and grading of ICP. Total sulfated BAs were remarkably increased in ICP, particularly those
formed from glycine and taurine conjugated BAs. Clear clustering and separation of the PCA and
OPLS-DA scores for controls, mild ICP, and severe ICP were reported, and are depicted in Figure 3.
In order to better understand how ICP endangers the fetus and the links between fetal BA homeostasis
and sulfation capacity, a metabolomic investigation in pregnant swine was conducted. It was found
that sulfation played a pivotal role in maintaining BA homeostasis in the fetus. Furthermore, fetal
mortality showed an exponential increase in relation to the total BA increase from week 60 to week
90 [109]. A controversial condition related to ICP that is asymptomatic and difficult to distinguish
from ICP is asymptomatic hypercholanemia of pregnancy (AHP). A targeted metabolomics study was
undertaken in order to establish a differential diagnosis of AHP. Compared to a control group, AHP
had several higher urinary BAs and sulfated BAs than controls, and more that were lower in AHP than
ICP. Glycocholic acid and tauro-ω-muricholic acid were a potential combination biomarker for AHP,
whereas a further combination biomarker involving BA sulfates could distinguish AHP from ICP [110].
Metabolomic profiling of maternal hair was conducted to find predictive biomarkers of ICP. Despite
the identification of 105 metabolites in hair, none was associated with ICP [111].

 
Figure 3. (A) PCA scores plot for controls vs. mild ICP vs. severe ICP; (B) OPLS-DA scores plot for
controls vs. ICP; (C) OPLS-DA scores plot for mild ICP vs. severe ICP. Note the data clustering and
separation (taken from Li et al., 2018 [112] with permission).
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Cholestasis may also occur in neonates. Infantile hepatitis syndrome (IHS) and biliary atresia
(BLA) are the most common in the first three months of life. Using GC-MS metabolomics on urine, it was
reported that IHS could be distinguished from BLA with the biomarkers N-acetyl-D-mannosamine
and α-aminoadipic acid [113]. A summary of studies is given in Table 2.

Table 2. Metabolomic and lipidomic biomarkers of cholestasis.

Species Manipulation/Condition Pathology
Analytical

Methodology
Metabolites Reported Ref.

Rat
Inhibition of bile

secretion vs. bile flow
obstruction

Intrahepatic
cholestasis vs.
extrahepatic
cholestasis

1H NMR
Bile acids↑ Bilirubin↑

vs. Bile acids↑ BCAAs↑
SCFAs↑

[77]

Mouse
Fxr-null vs. WT treated
with FXR ligands CA

and LCA
Cholestasis UPLC-ESI-QTOFMS

p-Cresol sulfate and
β-D-glucuronide↑

Corticosterone metabolites↑
Cholic acid metabolites↑

[78]

Rat Eisai hyperbilirubinemic
rat Cholestasis UPLC-TQMS

Taurine↑ Hypotaurine↑
Unconjugated primary and

secondary bile acids↑
[81]

Rat
ANIT

Methapyrilene
Dimethylnitrosamine

Cholestasis
UPLC-TQMS

GC-MS
UPLC-QTOFMS

Bile acids↑ Arginine↓
Pantothenate↑

Protoporphyrin IX↑
Palmitoyl carnitine↑

Arachidonic, linoleic and
oleic acids↓

[82–85]

Mouse Vps33b-depleted mouse Cholestasis UPLC-MS
Serum bile acids↑
triglycerides↑ and
sphingomyelins↑

[97]

Rat Bile duct ligation (BDL) Cholestasis UPLC-QTOFMS

Phenylalanine↑ Glutamate↑
Tyrosine↑ Kynurenine↑

Lactate↑ LPC(14:0) ↑
Glycine↑ Succinate↑MDA↑
GSH↑ Valine↓ Isoleucine↓

Citrate↓ Palmitate↓ Taurine↓
LPC(19:0)↓

[98]

Rat TAA or BDL Cholestasis 1H NMR

BDL vs. TAA:
2-Hydroxybutyrate↑

BCAAs↑ Lysine↑ Arginine↑
Glycine↑ Citrate↑

2-Oxoglutarate↑ Fumarate↑
Hippurate↑

Phenacetylglycine↑

[99]

Mouse ANIT or DDC or LCA Cholestasis UPLC-QTOFMS Phospholipids↑
Protoporphyrin IX↑ GSH↓ [100]

Human Primary biliary
cholangitis Cholestasis UPLC-QTOFMS

Primary bile acids↑
Phospholipids↑ Oleic and

Linoleic acids↑
[101–103]

Human Intrahepatic cholestasis
of pregnancy (ICP) Cholestasis HPLC-QTOFMS

MG(22:5) ↑ LPE(22:5) ↑
L-Homocysteine sulfonic
acid↑ Glycocholic acid↑
Chenodeoxycholic acid

3-sulfate↑

[107]

Human
Hypercholanemia of
pregnancy (HCP) vs.

ICP
Cholestasis UPLC-QTOFMS

Sulfated bile acid pattern
used for differential

diagnosis of HCP and ICP
[110]

Human
Infantile hepatitis

syndrome (IHS) vs.
biliary atresia

Cholestasis GC-MS

N-Acetyl-D-mannosamine
and α-Aminoadipic acid

used for differential
diagnosis

[113]

5.3. Fibrosis and Cirrhosis

Fibrosis occurs when damage to the liver causing overactive wound healing leads to the formation
of scarring or deposition of extracellular matrix proteins including collagen. This process occurs in
most chronic liver diseases, and can ultimately lead to cirrhosis and liver failure. Such end-stage liver
disease may require transplantation [114]. Fibrosis is staged 0 to 4 by liver biopsy using the METAVIR
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scoring system, F0 = no fibrosis, F1 = portal fibrosis, F2 = periportal fibrosis, F3 = bridging fibrosis,
F4 = cirrhosis. Fibrosis is also graded according to the severity of the underlying disease process,
activity grades A0 to A3 [115]. Fibrosis and cirrhosis are primarily caused by hepatitis or chronic
alcoholism, but can also arise due to nonalcoholic fatty liver disease (NAFLD), including nonalcoholic
steatohepatitis (NASH). In compensated cirrhosis, the liver is still able to perform most of its basic
functions despite the scarring. Compensated cirrhosis involves Stage 1 (no varices, no ascites) and
Stage 2 (varices, no ascites). In decompensated cirrhosis, excessive scarring inhibits basic liver functions
and comprises Stage 3 (ascites ± varices) and Stage 4 (bleeding varices ± ascites) [116]. The 1-year
survival for compensated and decompensated cirrhosis is 87.3% and 75.0% and 5-year survival is 66.5%
and 45.4%, respectively [117]. As the terminal stages of liver fibrosis that can lead to HCC have a high
morbidity and mortality with only transplantation as a therapeutic option, there have been extensive
studies using metabolomics to define biomarkers for the underlying disease progression.

Relatively few investigations have sought biomarkers of fibrosis using metabolomics. The greatest
both quantity and quality of potential biomarker data has been leveraged using mass spectrometry
methodologies. Metabolic pathways associated with hepatic fibrosis, specifically, for carbohydrates,
amino acids, and lipids, have been reviewed [118]. In a Japanese study that employed CE-TOFMS and
LC-TOFMS, the progression of fibrosis in NAFLD was reported to be associated with increased serum
concentrations of several metabolites, among them the sulfates of the three steroids etiocholanolone
(a major testosterone metabolite), dehydroepiandrosterone (a precursor of androgens and estrogens)
and 16α-hydroxy-dehydroepiandrosterone (a precursor of estriol). The first of these sulfates decreased
in relation to fibrosis progression from F0/F1 to F4, while the last steroid sulfate increased during
fibrosis progression, especially when expressed as a ratio to either of the other two sulfates [119].
Although these steroid sulfates and their ratios appeared to be biomarkers of fibrosis progression in
NAFLD, the key biomarker, 16α-hydroxy-dehydroepiandrosterone sulfate, has also been reported in
serum of patients with breast cancer and endometrial cancer [120]. A Brazilian study in chronic hepatitis
C collected large amounts of clinical data on 69 fibrotic patients classified with fibrosis by METAVIR
that was significant (≥F2; 42), nonsignificant (<F2; 27), also as advanced (≥F3; 28), nonadvanced (<F3;
41), and as cirrhosis (F4; 18) and noncirrhosis (<F4; 51). 1H NMR was used to analyze serum, but not
to identify metabolites. The PLS-DA 3-D scores plots showed clustering and separation for F0-F1 vs.
F2-F4, F0-F2 vs. F3-F4 with partial separation of F0-F3 vs. F4, leading the authors to hypothesize
that their metabolomic strategy could distinguish between significant fibrosis, advanced fibrosis,
and cirrhosis [121]. Without knowledge of the altered metabolites central to the metabolomic model
used, it is not possible to delineate whether the discriminatory signals arise as biomarkers for the disease
process or due to confounding factors such as comorbidities or drug treatment, as commented in another
similar case (see below) [122]. A 1H NMR-based metabolomic study was conducted in rats injected i.p.
for 8 weeks with CCl4. Seven metabolites were diminished in urine of treated rats compared with
controls, namely, 2-oxoglutarate, citrate, dimethylamine, phenacetylglycine, creatinine, and hippurate.
Only taurine urinary excretion was found to be significantly elevated in this rat model of fibrosis [123].
A subsequent report from this group found more metabolomic changes in their CCl4 fibrosis rat model.
They proposed that the TCM Corydalis saxicola Bunting exhibited antifibrotic effects by regulating
ALT, FXR, COX-2, metalloproteinase-1, and angiotensinogen based upon network analysis with their
NMR metabolomic data [124], about which we remain skeptical. Shi-Wei-Gan-Ning-Pill (SWGNP) is a
multicomponent Tibetan recipe used to treat viral hepatitis, hepatic fibrosis and steatosis, cirrhosis,
and HCC. In a study in the CCl4 rat model, SWGNP was also administered at a low, medium, and high
dose, equivalent to 3-, 6-, and 12-times the clinical dose, respectively. 1H NMR-based metabolomics
was conducted on liver extracts and serum. A total of 39 metabolites were identified in rat liver extracts
and 28 in serum. Alterations in energy metabolites suggested that the liver responded to CCl4 crisis by
metabolic remodeling from mitochondrial respiration to cytosolic aerobic glycolysis, increased fatty
acid β-oxidation, glycogenolysis, and metabolism of ketone bodies. The medium and high doses of
SWGNP significantly decreased the histological scores in the CCl4 model, together with fibrosis and
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oxidative stress markers. SWGNP also reversed changes in amino acids and nucleosides caused by CCl4.
The authors concluded that SWGNP could alleviate liver fibrosis caused by CCl4 [125]. Another Tibetan
folk remedy has been investigated in the CCl4 rat fibrosis model, that of Herpetospermum caudigerum
Wall. (HCW), the Himalayan Bitter Gourd, a large climbing plant that grows at an altitude of 1500 to
3600 m, whose dry ripe seeds have been used as a hepatoprotectant. In the CCl4 experiments, HCW was
administered at doses of 1 and 3 g/kg. HCW produced similar effects on fibrosis markers as SWGNP,
with the exception that the lower dose was more effective than the higher dose. The metabolomic effects
and proposed mechanisms were very similar for HCW [126] to those of SWGNP [125]. The active
principles of neither of these TCMs have been identified, except that HCW was said to comprise mainly
lignans, coumarins, triterpenes, saponins, phenols, essential oils, amino acids, and trace elements [126].
The underlying antifibrotic mechanisms of these TCM remedies remain unknown, despite the clues
provided by metabolomics.

Earliest serum biomarkers of liver cirrhosis (LC) were derived from chronic hepatitis B patients in
China, and comprised the four primary bile salts found by UPLC-QTOFMS [127]. However, elevated
glycine and taurine conjugated primary bile acids are not specific to LC (see above). A similar
population studied using GC-MS identified several elevated metabolic intermediates in cirrhotic serum,
including butanoic and hexanoic acid [128]. These two SCFAs are presumably products of the gut
microflora (see above). Amino acid D- and L-enantiomers in serum and urine have been examined
using two-dimensional gas chromatography-time-of-flight mass spectrometry (GC X GC-TOFMS)
in 25 LC patients and 16 controls in Germany. No L-amino acids were significantly higher in the
serum of LC patients, although several were significantly higher in controls. In contrast, D-alanine and
D-proline were significantly elevated in LC serum, and D-valine, D-leucine, and D-threonine were only
detected in LC serum [129]. It is attractive to consider these D-amino acids as candidate biomarkers for
LC. However, only D-serine and D-aspartate are considered human tissue-derived, while the rest most
likely arise from microbial sources, either in the diet or from the gut microbiota [130]. This may be
further evidence of gut microbiota-liver cross-talk in liver disease. Further evidence of this crosstalk is
furnished by a Chinese study that examined stool samples by UPLC-ESI-QTOFMS taken from cirrhotic
patients (etiologies either HBV, HCV or alcohol; 17) and healthy controls (24). The two groups clustered
and separated in both the PCA and PLS-DA scores plots. Several metabolites that were reduced in
cirrhotic feces, chenodeoxycholic acid, 7-ketolithocholic acid, urobilin, and urobilinogen. A number
of metabolites were more prominent in cirrhotic feces, including amino acids, and long-chain fatty
acids and their carnitine esters. These findings were interpreted as due to changes in biliary function
and the gut microbiota in cirrhosis leading to fat malabsorption [131]. Another Chinese study claimed
that taurocholate was not merely a biomarker for cirrhosis progression, but also actively promoted
this progression. Of the 12 BAs targeted using UPLC-TQMS, taurocholate increased 76-fold between
LC (32) and HV (27). This was said to be due to increased synthesis. In addition, the promotion of
cirrhosis progression by taurocholate was postulated to be due to stellate cell activation via the TLR4
pathway [132].

We have reported a metabolomic and lipidomic investigation of into Swiss HCC patients (20)
using UPLC-ESI-QTOFMS and GC-MS, in which LC patients (7) were included together with healthy
volunteers (HV; 6) and an acute myelogenous leukemia (AML) control group (22). With one exception,
all the HCC patients also had LC. Interestingly, LC and HCC clustered together in both the unsupervised
(PCA) and supervised (PLS-DA) scores plots, and clearly segregated from the HV and AML clusters.
This suggests that the greatest insult to liver metabolism resulted from LC rather than HCC. No elevated
biomarkers specific to LC were described, although several were found for HCC (see below) [133].
The investigation by GC-MS of urine from HCV-positive untreated Egyptian patients with LC (40) and
HCC (55), together with HV (45) essentially confirmed the findings of metabolomic similarity between
LC and HCC patients. With the exception of AFP, serum biochemistry was similar for the LC and
HCC. Several urinary metabolites were elevated above HV for both LC and HCC in a similar fashion,
including serine, glycine, threonine, and citrate [134]. Although not stated, the HCC patients almost
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certainly also had LC, underlining the difficulties of distinguishing between HCC and LC in studies of
this kind for an HCV population. In a Chinese study of LC (20), healthy controls (20) and HCC (59) using
UPLC-ESI-QTOFMS, three ions corresponding to canavaninosuccinate (CVS) were virtually absent in LC
serum relative to the other groups [135]. CVS is a derivative of aspartate formed from ureidohomoserine;
aspartate is further converted to creatine [136]. The extinction of CVS in LC serum is an appealing
biomarker for LC, except that it is also massively reduced in plasma of chronic kidney disease patients
relative to controls, correlating strongly with the glomerular filtration rate [137]. A US study compared
patients with high both liver and kidney disease severity (ascites present, GFR ≤ 60; n = 34) with those
with low liver and kidney disease (ascites absent, GFR ≥ 60; n = 69) severity. Using UPLC-ESI-TQMS,
34/1028 plasma metabolites were significantly increased in the severe hepatorenal dysfunction group.
The greatest change (2.39) was for 4-acetamidobutanoate, the acetylated metabolite of GABA and
a product of arginine and proline metabolism (http://www.hmdb.ca/metabolites/HMDB0003681).
Pathway enrichment analysis identified glucuronidation and methylation, together with ascorbate
and aldarate metabolism, that were linked to hepatorenal dysfunction [138]. Another study in China
used both NMR and UPLC-ESI-QTOFMS to analyze serum from LC (42), HCC (43) and HV (18).
Several phospholipids and fatty acids together with bilirubin were elevated in LC vs. HV [139], findings
similar to those which we had previously reported in Swiss patients [133]. A UK study that employed
both NMR and UPLC-ESI-QTOFMS of plasma from 248 subjects examined the differences between
surviving and nonsurviving patients with decompensated cirrhosis. NMR profiles of nonsurvivors had
increased plasma lactate, tyrosine, methionine and phenylalanine. UPLC-ESI-QTOFMS showed that
lysophosphatidylcholines (LPC) and phosphatidylcholines (PC) were downregulated in nonsurvivors.
LPC concentrations negatively correlated with the circulating markers of cell death, M30 and M65.
Therefore, metabolomic phenotyping (“metabotyping”) was said to accurately predict mortality
in decompensated cirrhosis, due to LPC and amino acid metabolism dysregulation that reflected
hepatocyte cell death [140]. Using LC-MS, a Chinese group profiled 43 steroids in the urine of HV
(21), LC (21), and HCC (28) relative to urinary creatinine. The PCA scores plot showed some overlap
between these three groups. Many steroids in LC displayed lower urinary excretion than HV controls,
including pregnanediol, corticosterone, androsterone, etiocholanolone, dehydroepiandrosterone,
and testosterone. In contrast, LC urinary excretion of 16α-hydroxyestrone was markedly elevated
above HV controls. These findings are consistent with what has been described as a “feminization”
phenotype in LC [141]. It is worth noting that these investigators treated the urines with sulfatase
and β-glucuronidase prior to steroid analysis to determine total (free plus conjugated) steroids;
therefore, their results are difficult to compare with those cited above where sulfated steroids were
quantitated [120]. Using GC-MS, serum from Chinese HBV-positive (49), LC (52) and HCC patients
(39), together with healthy controls (61) was analyzed. All four groups clustered and separated
in the OPLS-DA scores plot. Of the top 30 discriminating metabolites, serine, succinate, malate,
5-oxoproline, glutamate, phenylalanine, ornithine, citrate, and tyrosine were all elevated in LC relative
to controls. Palmitate was proposed as a biomarker for cirrhosis development in HBV hepatitis, with
high sensitivity and specificity in ROC analysis. The purpose of this study however was to examine
the progression of hepatitis B to HCC via cirrhosis [142]. Interestingly, a review of metabolomic studies
of hepatitis B, HBV-related LC and HBV-related HCC clearly shows the overlap in these three groups
in upregulated metabolites [143]. Oxylipins are another group of lipids that have been investigated in
HBV-related LC and HCC. UPLC-ESI-TQMS was utilized to quantitate 18 omega-6 fatty acid-derived
oxylipins in serum from patients with chronic hepatitis B (34), HBV-related LC (46), HBV-related HCC
(38), and healthy controls (50). Compared with healthy controls, LC had statistically significantly
elevated 13-HODE, but lower levels of TXB2 [144]. The 13(S)-HODE and 13(R)-HODE enantiomers
are produced from linoleic acid by 15-lipoxygenase and are credited with differential effects on cell
growth and apoptosis [145]. Unfortunately, it was not determined which enantiomer was elevated
in plasma of LC patients [144]. Apparently, patients with HBV-related LC can be classified under
the theory of TCM as having one of two typical patterns, Gan Dan Shi Re (GDSR) or Gan Shen Yin
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Xu (GSYX). Serum of cases with GDSR (40), GSYX (41), and those with no obvious pattern (called
“Latent Pattern” (LP); 30) were investigated using GC-TOFMS metabolomics. Eight metabolites were
specific to the GDSR type of HBV cirrhosis, a separate eight were specific to the GSYX type, and a
further 10 metabolites were common to both types. The GDSR metabolites were said to be related
to abnormalities in linoleic acid metabolism, while the GSYX metabolites were said to arise from
abnormalities in glycine, serine, and threonine metabolism. All these 26 metabolites were potential
biomarkers for HBV-related cirrhosis [146].

As mentioned earlier, BLA is a neonatal cholestatic condition and is the most life-threatening
cholestatic disorder in children. In a Chinese study, liver samples from BLA (52) and IHS (16) were
profiled for amino acids and biogenic amines using UPLC-ESI-TQMS. Several amino acids had higher
hepatic concentrations in IHS than in BLA. However, histamine was twice as abundant in BLA as in
IHS liver. In addition, the degree of fibrosis from F1/F2 to F4 correlated with histamine concentration.
Histamine therefore presents a potential target for preventing fibrosis in BLA [147].

Several investigators have used 1H NMR in the search of biomarkers for liver fibrosis and cirrhosis.
For example, a Spanish study of LC with minimal hepatic encephalopathy was conducted by 1H NMR,
resulting in elevated glucose, lactate, methionine, trimethylamine N-oxide (TMAO), and glycerol [148],
none of which is specific to LC or even liver disease. A further Spanish NMR study compared liver
biopsies from cirrhosis and chronic hepatitis due to HCV, HBV, alcohol, and autoimmunity. Elevated in
cirrhosis were glutamate and phosphoethanolamine [149]. A UK study used 1H NMR metabolite
profiling to compare livers removed from patients with either LC associated with ALD (5) or with
NASH (14) with healthy donor transplant livers (16). Cirrhotic livers had significantly increased levels
of isoleucine, valine, succinate, lactate, and betaine [150]. Another NMR study was conducted on
Chinese patients that included those with HCC. The elevated serum metabolites in LC occurred also
when the patients had HCC, with the exception of taurine, namely, acetate, pyruvate, glutamine,
α-ketoglutarate, glycerol, tyrosine, 1-methylhistidine, and phenylalanine [151]. A French study using
1H NMR examined metabolic differences between alcoholic cirrhotic patients with severe and mild
chronic liver failure (CLF) that had been stratified by MELD score. Lactate, pyruvate, glucose, amino
acids, and creatinine were significantly higher in patients with severe CLF than mild CLF [152].
These findings cannot be considered as biomarkers of severe CLF, as they are not specific. A Chinese
study in compensated cirrhosis (30), decompensated cirrhosis (30), and healthy controls (30) using
1H NMR on serum samples reported that succinate, pyruvate, and phenylalanine increased with
cirrhosis progression [153]. Yet, again, these cannot be considered as biomarkers due to their lack
of specificity. An earlier Canadian study had been the first to profile metabolites in compensated
and decompensated cirrhosis patients with HCV, together with healthy volunteers, but used 31P
magnetic resonance spectroscopy performed on the abdomen over the liver. The acquired spectra
showed phosphomonoesters (PME), phosphodiesters (PDE), and β-ATP resonances, the last of which
was significantly lower in decompensated cirrhosis vs. the other two groups combined, and the
PME/PDE ratio was significantly higher in decompensated cirrhosis than controls. This ratio was
interpreted based upon published findings as an indicator of a disturbed endoplasmic reticulum
membrane in decompensated cirrhosis [154]. Austrian investigators used high-field 1H-MRS and
ultrahigh-field 31P-MRS to examine in vivo the livers of NAFLD patients with little or no fibrosis and
NASH patients with advanced fibrosis. The 1H-MRS lipid signal was massively increased in NASH
livers over NAFLD livers and cross-correlated with histology from liver biopsies. The lipid saturation,
polyunsaturation, and monounsaturation indices did not differ between NAFLD and NASH livers.
Moreover, 31P-MRS measures of the PME (including phosphoethanolamine) and PDE (including
glycerophosphocholine) resonances reflected the severity of fibrosis. Changes in energy metabolism,
as reflected by ATP flux, were decreased in advanced fibrosis. This noninvasive real-time profiling
technique appeared to be of significant value for investigation of hepatic structure and function [155].
An Italian study combined NMR metabolomics of stool samples with 16S rRNA sequencing of gut
microbiota in LC patients (46) and healthy age-matched controls (14). Peripheral blood and liver
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biopsies were also analyzed together with portal blood from seven cirrhotics and caecal biopsies taken
during colonoscopy in 17 LC patients and 6 controls. The metagenomics data demonstrated a marked
dysbiosis in LC patients. The principally elevated metabolites in LC feces relative to controls were
phenylalanine, threonine, butanoate, methanol, cadaverine, and α-glucose. Using the metagenomics
data, eight pathways were underrepresented and two overrepresented in LC. The authors concluded
that intervention with prebiotics/probiotics/synbiotics, diet, or fecal microbiota transplant could
support development of new customized treatments for LC patients [156]. Interestingly, partial
reversal of dysbiosis and metabolomic profile was reported after splenectomy in LC patients (12) [157].
A combined metagenomics and metabolomic investigation of LC was conducted in China with HV
(47), compensated LC (49) and decompensated LC (46). Urine was analyzed by UPLC-ESI-QTOFMS
and PCA scores plots for total metabolites and a subset of 75 differential metabolites both separated
HV from LC urines, with compensated and decompensated LC clustering together. Six metabolites
were reported to be lower in LC urine than in HV urine, but none greater [158]. Another combined
metagenomics and metabolomics investigation was conducted to compare Turkish patients on a
Mediterranean diet (HV, 46; compensated LC, 50; decompensated LC, 43) with American patients on a
Western diet (HV, 48; compensated LC, 59; decompensated LC, 50). In this study, 1H NMR was used
for plasma metabolomics, which showed higher lactate concentrations in Turkey vs. USA. There were
similar trends between decompensated LC and HV in both Turkey and USA, with reduced lipids and
phosphocholines. Correlation networks in cirrhotics showed differences between the beneficial taxa
Blautia and Oscillispira in Turkish compared with American patients [159]. The metabolomic differences
described in this unique study were disappointing and would have greatly benefitted from analysis
using MS-based methodology.

Acute-on-chronic liver failure (ACLF) refers to patients with acute deterioration of liver function
in compensated or decompensated but stable cirrhosis. Serum from a group of French compensated
and decompensated cirrhosis patients (93) was compared with that from ACLF patients (30) using
1H NMR metabolomics. The latter group showed higher serum lactate, pyruvate, ketone bodies,
glutamine, phenylalanine, tyrosine, and creatinine [160], none of which is a specific biomarker. A UK
study examined plasma by 1H NMR for stable cirrhotic patients (18), patients with stable cirrhosis
during an episode of encephalopathy (18), together with matched controls (17). With the exception of
pyruvate, which was significantly higher, glycolysis end-products and gluconeogenesis precursors
(pyruvate, alanine, threonine, glycine and aspartate) were significantly lower in cirrhotics with
encephalopathy than without and both higher than controls. There was no discernable effect of
encephalopathy on branched-chain and aromatic amino acids or on urea cycle intermediates [161].
Yet, again, such NMR-derived metabolites do not show sufficient specificity to be considered as
biomarkers. In contrast, a French group compared hepatic encephalopathy (HE) patients (14)
with control patients without neurological disease (27) using UPLC-MS analysis of cerebrospinal
fluid (CSF) and plasma. A total of 73 metabolites were identified in CSF including amino acids,
acylcarnitines, bile acids, and nucleosides. It was further reported that acetylated amino sugars,
acetylated amino acids, and metabolites involved in ammonia, amino acid, and energy metabolism
were specifically and significantly increased in CSF of HE patients [162]. These findings underscore the
superiority of MS-based over NMR-based metabolomics protocols in terms of metabolite identification.
Serum analysis by 1H NMR was conducted on a Spanish two groups of HCV patients, one without
fibrosis (F0; 30) and the other with cirrhosis (F4; 27). Glucose, citrate, and VLDL1 were significantly
elevated, and choline, glutamine, acetoacetate, glycoprotein N-acetyl groups, cysteine, histidine,
and LDL1 were significantly depressed in the serum of cirrhotic HCV patients. The authors believed
that these results provided new biomarkers to distinguish no fibrosis from severe fibrosis (cirrhosis) in
HCV infection [163]. An investigation of Italian patients with chronic HCV attempted to diagnose the
degree of fibrosis using 1H NMR on plasma, serum, and urine samples. Remarkably, these investigators
did not identify metabolites, but rather, used statistical analysis of their spectra in an attempt to classify
and distinguish chronic hepatitis C (little or no fibrosis) from cirrhosis (severe fibrosis) [164]. This study
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has been severely criticized not only on the basis of the lack of metabolite identification, but also for
the statistical methods employed for data analysis [122].

Animal models have also been employed. TAA has been administered i.p. to rats to generate
experimental fibrosis and cirrhosis. One such study tracked serum and urine by 1H NMR metabolomics
over 7 weeks of TAA administration. Liver injury included fibrosis and cirrhosis. TAA was found
to increase 2-oxoglutarate and decrease succinate in both serum and urine, while urinary excretion
of fumarate, oxaloacetate, and citrate was increased, leading investigators to conclude that TAA
impaired the TCA cycle [165]. These and other reported amino acid changes are not specific to fibrosis
or cirrhosis. The i.p. administration of dimethylnitrosamine (DMN) to rats produces histologically
confirmed fibrosis. UPLC-ESI-QTOFMS metabolomics on serum from control and DMN-treated
rats, together with serum from rats treated with DMN together with Yin-Chen-Hao-Tang decoction
(YCHT), a TCM long used in the treatment of liver diseases including fibrosis. Biochemical parameters
including serum liver enzymes and total bilirubin, together with liver histology, in the YCHT treated
rats were intermediate between the controls and the DMN-treated animals. Moreover, several serum
lipids, including LPC(18:1), LPC(18:2), oleic acid (18:1), linoleic acid (18:2), arachidonic acid (20:4),
and docosahexaenoic acid (22:6; DHA) that were altered by DMN treatment (LPCs ↑, fatty acids ↓),
remained relatively stable with co-administration of YCHT [166]. Despite these lipidomic findings,
the antifibrotic mechanism of YCHT remains unclear. Another TCM that has been evaluated in the
DMN rat liver fibrosis model is Huangqi Decoction (HQD). In these experiments, 16 individual bile
acids were profiled by LC-MS and demonstrated that bile acids were elevated by DMN treatment and
that HQD restored these to normal levels. Additionally, gene expression related to bile acid synthesis
and transport was examined, and also altered by DMN treatment, but restored by HQD [167].

Carbon tetrachloride (CCl4) is another hepatotoxin that can produce liver fibrosis in rats. Its effects
upon the serum metabolome of rats has been reported using UPLC-ESI-QTOFMS. The protocol involved
12 weeks twice weekly s.c. injections of 50% CCl4 in olive oil at a dose of 5 mL/kg. Blood biochemistry
and liver histology were consistent with liver fibrosis. Of the many prominent metabolites detected, two,
i.e., cervonoyl ethanolamide (8,11,14-eicosatrienoyl ethanolamide) and β-muricholic acid, were defined
as biomarker candidates. Pathway analysis proposed that CCl4 induction of liver fibrosis altered
glycerophospholipid metabolism, linoleic acid metabolism, α-linoleic acid metabolism, glycine, serine
and threonine metabolism, arachidonic acid metabolism, tryptophan metabolism, and aminoacyl-tRNA
biosynthesis [168]. This provided a paradigm for chemically-induced liver fibrosis against which other
studies could be compared. CCl4 has also been employed to induce decompensated cirrhosis with
ascites in rats, using a similar protocol that that described above. In this study, serum and urine were
analyzed by Orbitrap UPLC-MS. Aromatic amino acids, alanine, and bile acids were elevated in the
CCl4-treated rats, while LPCs, eicosapentaenoic acid, creatine, carnitine, branched-chain amino acids
(BCAAs), and arginine were significantly lowered [169].

The TCM used to treat liver fibrosis, Jiaqi Ganxian Granule (JGG), was tested against CCl4-induced
hepatic fibrosis in rats. As the mechanism was unknown, detailed UPLC-ESI-QTOFMS metabolomics
was conducted on rat serum. Fibrosis markers in serum, namely collagen type IV, procollagen
III, hyaluronic acid, and laminin were all significantly increased by CCl4, but normalized by JGG
intervention, as was liver histology. Lipid markers that were downregulated by CCl4, but normalized
by JGG included sphinganine, dihydroceramide, and monostearoylglycerol. Metabolites that were
upregulated by CCl4 but normalized by JGG were the bile acid 3,7-dihydroxy-12-oxocholanoic
acid, the phosphatidylinositol PI(18:0/16:0), the ethanolamide metabolite of DHA, LPC(22:6),
and PC(20:4/18:2). JGG, therefore, affected sphingolipid and glycerophospholipid metabolism among
other pathways [170]. These represent further examples of where metabolomics has informed about
the mechanism of action of a TCM on liver disease. A similar study reported in Chinese that
Scutellariae Radix decoction, prepared from the root of a flowering plant of the mint family, and baicalin,
a flavone glycoside purified from Scutellaria baicalensis, were effective against liver fibrosis in this
rat model. UPLC-ESI-QTOFMS analysis showed that several elevated metabolites in fibrotic rat
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urine were ameliorated by the decoction treatment, including, L-tryptophan, 3-methyldioxyindole,
5-hydroxyindoleacetylglycine, kynurenic acid, 4-(2-amino-3-hydroxyphenyl)-2,4-dioxobutanoic acid,
methylmalonic acid, and L-leucine. Baicalin treatment also reversed these urinary metabolites with
the exception of L-leucine [171]. Another rat model of fibrosis uses dimethylnitrosamine (DMN)
i.p. administration over a period of 8 weeks. Cultured bear bile powder (CBBP) has been used as
a TCM to treat liver diseases for thousands of years. Using Orbitrap UPLC-MS, it was reported
that CBBP co-administration (65, 130 and 260 mg/kg) restored the lowered serum concentrations of
eicosapentaenoic and docosahexaenoic acids that occurred when DMN provoked fibrosis. CBBP
had the additional effect of inducing the expression of the nuclear receptors PPARα and PPARγ.
Moreover, expression of four PPARα-regulated genes involved in fatty acid β-oxidation (Cpt1b, Cpt2,
Mcad, and Hadha) was decreased by DMN treatment but restored by CBBP, suggesting that CBBP may
improve fatty acid β-oxidation. By inducing PPARγ, CBBP decreased the downstream expression
of the inflammatory cytokine IL-6, while also inhibiting activation of hepatic stellate cells, thereby
ameliorating fibrogenesis [172]. Further details of the aforementioned studies appear in Table 3.

Table 3. Metabolomic and lipidomic biomarkers of liver fibrosis and cirrhosis.

Species Manipulation/Condition Pathology
Analytical

Methodology
Metabolites Reported Ref.

Human NAFLD Fibrosis
progression

CE-TOFMS
LC-TOFMS

F0/F1→F4 Etiocholanolone
sulfate↓

Dehydroepiandrosterone sulfate↓
16α-hydroxy-dehydroepiandrosterone

sulfate↑
(all in serum)

[119]

Human Fibrosis or Cirrhosis
Significant fibrosis,
advanced fibrosis,

cirrhosis

1H NMR
No metabolites reported, only

multivariate model used to
distinguish pathologies.

[121]

Human Chronic hepatitis B Cirrhosis UPLC-QTOFMS

Glycocholic acid↑
Glycochenodeoxycholic acid↑

Taurocholic acid↑
Taurochenodeoxycholic acid↑

(all in serum)

[127]

Human Chronic hepatitis B Cirrhosis GC-MS
Acetate↑ Hexanoate↑ Butanoate↑

Glucose↓ Sorbitol↓
(all in serum)

[128]

Human Causes not stated Cirrhosis 2D-GC-TOFMS

D-Alanine↑ D-Proline↑
D-Valine↑ D-Leucine↑

D-Threonine↑
(all in serum)

[129]

Human HBV, HCV, alcohol Cirrhosis UPLC-QTOFMS

Chenodeoxycholic acid↓
7-Ketolithocholic acid↓

Urobilin↓ Urobilinogen↓
LPC(16:0)↑ LPC(18:0)↑ LPC(18:1)↑

LPC(18:2)↑
(all in feces)

[131]

Human HBV, alcohol, PBC,
cryptogenic cirrhosis Cirrhosis UPLC-TQMS

Taurocholic acid↑
Taurochenodeoxycholic acid↑
Tauroursodeoxycholic acid↑

Glycocholic acid↑
Ursodeoxycholic acid↑

Chenodeoxycholic acid↑
Cholic acid↑

Taurolithocholic acid↑
Taurodeoxycholic acid↑

Hyodeoxycholic acid↑ Lithocholic
acid↑

Deoxycholic acid↑
(all in serum)

[132]
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Table 3. Cont.

Species Manipulation/Condition Pathology
Analytical

Methodology
Metabolites Reported Ref.

Human Chronic hepatitis C Cirrhosis GC-MS

Proline↑ Serine↑ Glycine↑
Threonine↑ Citrate↑ Xylitol↓

Arabinose↓ Urea↓
(all in urine)

[134]

Human Chronic hepatitis B Cirrhosis UPLC-QTOFMS

Phenylalanine↑
Glycochenodeoxycholic acid↑

Oleamide↑ LPC(16:0)↓
PC(16:0/18:2)↓ PC(16:0/22:6)↓
PC(16:0/20:4)↓ PC(18:0/18:2)↓

Canavaninosuccinate↓
(all in serum)

[135]

Human Hepatorenal syndrome Cirrhosis UPLC-TQMS 4-Acetamidobutanoate↑
(in plasma) [138]

Human Chronic hepatitis B Cirrhosis
1H NMR

UPLC-QTOFMS

Tyrosine↑ Oxaloacetate↑
Phenylalanine↑

C16-Sphinganine↑
Phytosphingosine↑ Isobutyrate↑

LPC(18:1) ↑ Linoelaidic acid↑
Bilirubin↑ PC(18:4/20:1)↓
PC(14:1/14:1)↓ LPC(16:0)↓

Formate↓ Ascorbate↓ Carnitine↓
α-CEHC↓

(all in serum)

[139]

Human Causes not stated

Decompensated
cirrhosis (90-day

mortality vs.
survivors)

1H NMR
UPLC-QTOFMS

Isoleucine↑ Leucine↑ Lactate↑
Creatinine↑ Urea↑ Tyrosine↑
Histidine↑ Phenylalanine↑

Formate↑ LPC(16:0) ↑ Pyruvate↓
Choline↓ Phosphocholine↓

Glycine↓ Glucose↓ PC(34:2)↓
PC(18:2/18:2)↓ PC(16:0/18:2)↓

PC(18:0/18:2)↓ LPC(18:2)↓
PC(18:2/18:5)↓ PC(22:5/20:4)↓

PI(37:2)↓ PS(41:4)↓
(all in plasma)

[140]

Human Causes not stated Cirrhosis UPLC-Orbitrap
MS

16α-Hydroxyestrone↑
4-Androstenedione↓

17α-Hydroxyprogesterone↓
18-Hydroxycorticosterone↓

Cortisol↓ Cortexolone↓
Allotetrahydrocortisol↓
Deoxycorticosterone↓

Epitestosterone↓
Testosterone↓

Dehydroepiandrosterone↓
Etiocholanolone↓

Tetrahydrodeoxycortisol↓
Androsterone↓

17α-Hydroxypregnenolone↓
Epiandrosterone↓

11-Oxoetiocholanolone↓
7β-Hydroxy-dehydroepiandrosterone↓

Androstenetriol↓
Androstenediol↓

Pregnanediol↓
(all in urine)

[141]

Human Chronic hepatitis B Cirrhosis (vs. HBV) GC-TOFMS

Serine↑ 5-Oxoproline↑
Phenylalanine↑ Tyrosine↑

Ornithine↑ Citrate↑ Palmitic acid↑
Fructose↓ Glutamate↓

Indole-3-acetic acid↓ arachidonic
acid↓ 2-Deoxy-D-glucose↓

(all in serum)

[142]

Human Chronic hepatitis B Cirrhosis (vs.
HBV/HV) UPLC-TQMS 9,10-DiHOME↑ 13-HODE↑ TXB2↓

(all in serum) [144]
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Table 3. Cont.

Species Manipulation/Condition Pathology
Analytical

Methodology
Metabolites Reported Ref.

Human Chronic hepatitis B

Cirrhosis (GDSR
and GSYX patterns,

vs. latent
pattern (LP))

GC-TOFMS

GDSR vs. LP:
Nonanoate↑ Urea↓ Serine↓

2-Hydroxybutyrate↓
2-Hydroxyglutarate↓

Phenylalanine↓ Asparagine↓
Citrulline↓ Tyrosine↓ Arabinose↓

Sorbose↓ Fructose↓Myristate↓
Palmitolate↓ Palmitate↓ Linolate↓
Tryptamine↓ Glycolate↓ Quinate↓

Petroselinate↓
GSYX vs. LP:

1,5-Anhydrosorbitol↑ Fructose↑
2-Hydroxybutyrate↓ Serine↓
Threonine↓ 5-Oxoglutarate↓

2-Hydroxyglutarate↓
Phenylalanine↓ Asparagine↓

Tyrosine↓ Arabinose↓ Arabitol↓
Nonanoate↓ Glycerate↓

Pipecolate↓ Glutarate↓ Quinate↓
α-Tocopherol↓
(all in serum)

[146]

Human
Biliary atresia (BA) and

neonatal hepatitis
syndrome (NHS)

Fibrosis F1 to F4 UPLC-TQMS

BA/NHS:
Histamine↑Methionine↓
Phenylalanine↓ Serine↓

Threonine↓ Valine↓ Glutamine↓
Sarcosine↓ Lysine↓
F4>F3>F1/F2 in BA:

Histamine↑
(all in liver homogenates)

[147]

Human Alcohol

Cirrhosis ±
minimal hepatic
encephalopathy

(MHE)

1H NMR

MHE+/MHE-:
Lactate↑ Glucose↑ TMAO↑

Glycerol↑ LDL↓ VLDL↓
Isoleucine↓ Leucine↓ Valine↓

Alanine↓ Acetoacetate↓ Choline↓
Glycine↓

(all in serum)

[148]

Human
Chronic hepatitis C,
Chronic hepatitis B,

Alcohol, Autoimmunity
Cirrhosis MAS 1H NMR

Phosphoethanolamine↑
Phosphocholine↑ Glutamate↑

Aspartate↓
α-Glucose↓
β-Glucose↓
(all in liver)

[149]

Human ALD, NASH Cirrhosis 1H NMR

ALD Cirrhosis:
Isoleucine↑ Valine↑

1,2-Propanediol↑ Succinate↑
Aspartate↑ Betaine↑ Lactate↑

Glucose↑ Uracil↑ Phenylalanine↑
NASH Cirrhosis:

Leucine↑ Isoleucine↑ Valine↑
1,2-Propanediol↑ Succinate↑
Aspartate↑ Betaine↑ Lactate↑

Phenylalanine↑ Uracil↑ Uridine↓
Inosine↓

(all in liver)

[150]

Human Causes not stated Cirrhosis 1H NMR

Acetate↑ Pyruvate↑ Glutamine↑
α-Ketoglutarate↑ Taurine↑

Glycerol↑ Tyrosine↑
1-Methylhistidine↑

Phenylalanine↑
N-Acetylglycoproteins↑ LDL↓
VLDL↓ Isoleucine↓ Leucine↓

Valine↓ Acetoacetate↓ Choline↓
(all in serum)

[151]
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Table 3. Cont.

Species Manipulation/Condition Pathology
Analytical

Methodology
Metabolites Reported Ref.

Human Alcohol Cirrhosis (mild vs.
severe liver failure)

1H NMR

Correlated with severity of
liver failure:

3-Hydroxybutyrate↑ Alanine↑
Acetate↑

Choline/Phosphocholine↑
(all in serum)

[152]

Human Chronic hepatitis B
Cirrhosis

(compensated vs.
decompensated)

1H NMR

Distinguishing between
compensated and

decompensated cirrhosis:
Succinate, Pyruvate,

Phenylalanine, Histidine, Lysine,
Glutamine, Acetone, Glutamate,

Creatine, Alanine
(all in serum)

[153]

Human Causes not stated Cirrhosis 1H NMR

Positively correlated with portal
blood proinflammatory cytokines

IL6, TNFα and IL1β:
Trimethylamine

Negatively correlated with portal
blood proinflammatory cytokines

IL6, TNFα and IL1β:
Acetate, n-Heptanoate

Positively correlated with WBC
and platelet counts:

Threonine, α-Galactose,
β-Glucose

(all in feces)

[156]

Human Various liver injuries
Cirrhosis

(compensated vs.
decompensated)

UPLC-QTOFMS

Lower in LC:
N6-Methyladenosine,

1-Methyluric acid,
Cinnamic acid, Decenoylcarnitine,

Phenacetylglutamine
(all in urine)

[158]

Human
Various etiologies, incl.

HBV, HCV, alcohol,
NASH

Cirrhosis
US vs. Turkish (TR)

population
(dietary)

1H NMR

Lactate (Controls and
Decompensated; TR>US),

Glucose (Controls and
Decompensated; US>TR )

(all in plasma)

[159]

Human Alcohol

Acute-on-chronic
liver failure (ACLF)

vs. stable
compensated or
decompensated
cirrhosis (CLF)

1H NMR

ACLF > CLF:
3-Hydroxybutyrate, Lactate,

Acetoacetate, Pyruvate,
Glutamine, Glutamate, Creatinine,

Tyrosine, Phenylalanine
(all in serum)

[160]

Human Causes not stated
Stable cirrhosis (C)
± encephalopathy
(E) (C±E) and HV

1H NMR

C±E > HV:
Lactate, Pyruvate, Alanine,

Threonine, Glycine, Aspartate,
Acetoacetate,

3-Hydroxybutyrate,
Phenylalanine, Tyrosine,
Methionine, Glutamate,

Methylamine, Dimethylamine,
TMAO, Glycerol

C±E < HV:
Valine, Glutamine, Histidine,

Arginine
E > HV:

Leucine, Isoleucine
C > HV:

Myoinositol
(all in plasma)

[161]
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Table 3. Cont.

Species Manipulation/Condition Pathology
Analytical

Methodology
Metabolites Reported Ref.

Human Alcohol, HBV or
HCV, NASH

Hepatic
encephalopathy

(HE), cirrhosis (C),
neurological

patients without
liver disease

(NP), HV

UPLC-Orbitrap
MS

HE > NP:
13x N-Acetyl metabolites,
5x Glutamate/Glutamine

metabolites, 4x Methionine
metabolites, 4x Phenylalanine

metabolites, 6x Tryptophan
metabolites, 6x Fatty acid

metabolites, Pyruvate, 5x Amino
acid derivatives, 2x Dipeptides, 3x

Bile acids, 3x Nucleoside
derivatives, Dihydrothymine, 4x

Alcohols and polyols,
Ribitol/Arabitol, Cortisol,

Pyridoxic acid, Phenyl sulfate
HE < NP:

Alanine, Taurine, Anhydro
sorbitol, Levulinic acid

(both in CSF and plasma)
HE > C:

9x N-Acetyl metabolites,
Phenacetylglutamine,

2x Methionine metabolites,
2x Phenylalanine metabolites,

3x Tryptophan metabolites,
4x Fatty acid metabolites,
Citrulline, 2x Dipeptides,

Taurocholic acid, 3x Nucleosides
and derivatives, Anhydro sorbitol,

2x Alcohols, Ribitol/Arabitol,
Cortisol, Phenyl sulfate

HE < C:
Methionine sulfoxide,

Levulinic acid
(all in plasma)

[162]

Human Chronic hepatitis C Fibrosis (F4 vs. F0) 1H NMR

F4 vs. F0:
VLDL↑ Citrate↑ Glucose↑

Phenylalanine↑ LDL↓ HDL↓
Choline↓ Acetoacetate↓

Isoleucine/Leucine↓
Creatinine/Creatine↓ Glutamate↓
Glutamine↓ Asparagine↓ Valine↓

Lysine↓ Cysteine↓ Glycerol↓
Arginine↓ Histidine↓
3-Hydroxybutyrate↓

(all in serum)

[163]

Rat TAA Fibrosis/Cirrhosis
vs. controls

1H NMR

3-Hydroxybutyrate↑
Acetoacetate↑ Butyrate↑ Choline↑

Glycine↑ Alanine↑ Leucine↑
Lysine↑ Succinate↑ Valine↑
2-Oxoglutarate↓ Acetate↓

Adipate↓ Dimethylglycine↓
Lactate↓ Pyruvate↓ TMAO↓

Tyrosine↓
(all in serum)

1-Methylhistidine↑
3-Hydroxybutyrate↑ Acetate↑
Alanine↑ Butyrate↑ Choline↑

Creatinine↑ Hippurate↑
Isoleucine↑ Pyruvate↑ Succinate↑
Taurine↑ TMAO↑ Tryptophan↑

Valine↑
2-Hydroxybutyrate↓

2-Oxoglutarate↓ Acetoacetate↓
Acetone↓ Adipate↓ Citrate↓

Dimethylamine↓
Dimethylglycine↓ Fumarate↓
Methylamine↓ Oxaloacetate↓
Sarcosine↓ Trimethylamine↓

(all in urine)

[165]
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Table 3. Cont.

Species Manipulation/Condition Pathology
Analytical

Methodology
Metabolites Reported Ref.

Rat Dimethylnitrosamine Fibrosis UPLC-QTOFMS

LPC(18:1) ↑ LPC(18:2) ↑
LPC(20:4)↓ FA(22:6)↓

FA(20:4)↓ FA(18:1)↓ FA(18:2)↓
(all in serum)

[166]

Rat Dimethylnitrosamine Fibrosis UPLC-QTOFMS

Cholic acid↑ Deoxycholic acid↑
Ursodeoxycholic acid↑

Chenodeoxycholic acid↑
Hyodeoxycholic acid↑ Lithocholic

acid↑ Taurocholic acid↑
Taurodeoxycholic acid↑

Tauroursodeoxycholic acid↑
Taurochenodeoxycholic acid↑
Taurohyodeoxycholic acid↑

Taurolithocholic acid↑ Glycocholic
acid↑ Glycodeoxycholic acid↑
Glycoursodeoxycholic acid↑

Glycochenodeoxycholic acid↑
(all in serum)

[167]

Rat CCl4 Fibrosis UPLC-QTOFMS
Cervonoyl ethanolamide↑

β-Muricholic acid↑
(all in serum)

[168]

Rat CCl4
Decompensated
cirrhosis/ascites

UPLC-Orbitrap
MS

Alanine↑ Phenylalanine↑
Tryptophan↑ Tyrosine↑

Nutriacholic acid↑ LPC(16:0)↓
LPC(18:0)↓ LPC(18:2)↓ FA(20:5)↓

Carnitine↓ Creatine↓ Valine↓
Isoleucine↓ Arginine↓

(all in serum)
Glutamyltaurine↑

4,6-Dihydroxyquinoline↑
Phenylalanine↑ TMAO↑
3-Methyldioxyindole↑

1,2,3-Trihydroxybenzene↑
Tryptophan↑ Histamine↑

Tyrosine↑ Pantothenic acid↑
2-Phenylglycine↑ Proline↑
N6,N6,N6-Trimethyllysine↑

Dopamine↑ Phenacetylglycine↓
Creatinine↓ Creatine↓

4-Acetamidobutanoate↓ Indole↓
Carnitine↓

(all in urine)

[169]

Rat CCl4 Fibrosis UPLC-QTOFMS

12-Ketochenodeoxycholic acid↑
PI(18:0/16:0) ↑ Cervonoyl

ethanolamide↑ LPC(18:2)↑
LPC(22:6)↑ PC(18:1/16:0)↑

PC(18:2/16:0)↑ PC(20:4/18:2)↑
PC(22:6/18:1)↑ Creatine↓

Sphinganine↓ Dihydroceramide↓
8-HETE↓ LPC(18:0)↓ LPC(20:1)↓

LPC(22:0)↓
(all in serum)

[170]

Rat Dimethylnitrosamine Fibrosis UPLC-Orbitrap
MS

Leucine↓ LPC(16:0)↓ LPC(16:0)↓
LPC(18:0)↓ LPC(20:1)↓ LPC(20:4)↓

LPC(22:6)↓ FA(16:0)↓ FA(18:0)↓
FA(20:4)↓ FA(20:5)↓ FA(22:6)↓

All-trans-retinoic acid↓ Bilirubin↓
(all in serum)

[172]

Rat CCl4 Fibrosis 1H NMR

2-Oxoglutarate↓ Citrate↓
Dimethylamine↓ Creatinine↓

Phenacetylglycine↓ Hippurate↓
Taurine↑

(all in urine)

[123]

Rat CCl4 Fibrosis 1H NMR

Glucose↓ Lactate↑ Fumarate↓
NADPH↓ Succinate↑ Acetate↑

3-Hydroxybutyrate↓
UDP-glucose↑

UDP-galactose↑
(in serum and liver)

[125]
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5.4. NAFL and NASH

Nonalcoholic fatty liver disease (NAFLD) is the most common liver disorder in Western countries,
affecting 17–46% of adults. NAFLD includes two pathologically-distinct conditions with different
prognoses: nonalcoholic fatty liver (NAFL) and nonalcoholic steatohepatitis (NASH). “NAFLD is
characterized by excessive hepatic fat accumulation, associated with insulin resistance (IR), and defined
by the presence of steatosis in>5% of hepatocytes according to histological analysis“ [173]. The diagnosis
of NAFLD requires the exclusion of chronic alcohol consumption as a cause. NASH is characterized by
the presence of steatosis, inflammation, and ballooning degeneration of hepatocytes, with or without
fibrosis [174]. NASH can progress to cirrhosis in up to 20% of cases [173,174]. The definitive diagnosis of
NASH requires a liver biopsy [173]. A number of biomarkers of NAFLD have been evaluated, including
fatty liver index (FLI), NAFLD liver fat score (NAFLD-LFS), hepatic steatosis index (HSI), visceral
adiposity index (VAI), and triglyceride x glucose (TyG) index. When steatosis was histologically
graded as none (<5%), mild (5–33%), moderate (33-66%), and severe (>66%), with the exception
of VAI, all biomarkers showed a linear trend across the steatosis grades. The authors concluded,
“More research is needed to identify truly independent and quantitative markers of steatosis” [175].
Metabolomics, therefore, has a role to play in delivering biomarkers for steatosis and its progression.
Recently, it has been argued that NAFLD patients should be classified into different subtypes dependent
upon perturbation of the principal pathways regulating fatty acid homeostasis. Specific serum lipid
signatures can be associated with individual mechanisms of progression from steatosis to NASH,
and possibly lead to novel and specific NASH therapies [176]. Such metabolomic approaches that help
refine definition of the disease phenotype have now been integrated into orthogonal technologies,
such as genomics, proteomics, structural biology, imaging [177], and metagenomics.

Investigation of both NAFL and NASH in a metabolomic context is a relatively recent endeavor.
Because of the nature of the disease, many investigators have focused on the lipidome. Until a decade
ago, the plasma lipidome of NAFLD and whether or not NASH expressed a distinct lipidomic signature
were unknown. An early US study examined plasma lipid profiles in both NAFL and NASH compared
to healthy controls (HV), and reported significantly increased monounsaturated fatty acids (MUFAs)
with an altered pattern of polyunsaturated fatty acids (PUFAs) in both NAFL and NASH. Moreover,
the progression of NAFL to NASH was characterized by an increase in the lipoxygenase metabolites
5-HETE, 8-HETE, and 15-HETE. Interestingly, the nonenzymic oxidation product of arachidonic acid,
11-HETE, was significantly increased only in NASH [178]. A Spanish group reported an altered
pattern of serum phosphocholines and potentially antioxidant lyso plasmalogens [PC(P-24:0/0:0) and
PC(P-22:0/0:0)] in NASH compared to stage 3 hepatic steatosis. Several sphingolipids were also altered
in NAFLD compared with healthy subjects. Furthermore, arachidonic acid and glutamate were both
decreased in NASH. Metabolic profiling by these authors of an animal model for NAFLD (glycine
N-methyltransferase Gnmt-null mice) produced finding consistent with the patient observations [179].
Serum lyso plasmalogens are therefore potential biomarkers for NASH. Another US study of NAFL,
NASH and HV found that NAFLD patients had perturbed glutathione metabolism compared to HV,
with markedly higher conjugated primary bile acids in plasma. NASH patients displayed lower
long-chain fatty acids, higher carnitine and short-chain acyl carnitines, together with several other
metabolites. While the metabolomic fingerprints could distinguish NAFL or NASH from HV, they could
not distinguish between NAFL and NASH [180]. A 1H NMR-based study in China investigated NAFLD
patients and HV, together with mice fed a methionine- and choline-deficient (MCD) diet as a model for
NAFLD. Based upon both clinical and animal model findings, four potential biomarkers of NAFLD
were proposed: serum glucose, lactate, glutamate/glutamine, and taurine [181]. None of these “usual
suspects” provides a basis for evaluating the progression of NAFLD due to lack of specificity. A dietary
intervention study in US patients with NAFL examined the effect of insulin sensitivity on the plasma
metabolome in NAFL. The pattern of LPCs, in particular LPC(16:0), which was significantly lower in
insulin resistant NAFL patients (see Table 4), was put forward to potentially provide biomarkers for
NAFL-associated insulin resistance [182]. Serum BA concentrations have also been investigated in
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NASH and reported to be elevated both fasting and after a fatty breakfast designed to contract the
gall bladder. Elevated fasting BAs included secondary BAs, which are formed by dihydroxylation of
primary BAs by gut microbiota species belonging to the orders Bacteroides, Clostridium, and Escherichia,
which may be increased in the dysbiosis associated with NAFLD. Altered patterns of circulating BAs
in NASH may contribute to hepatic damage [183]. The pattern of BCAAs and acyl carnitines has
been investigated in liver samples from healthy subjects, NAFL, fatty NASH, and nonfatty NASH.
Hepatic valine was decreased in NAFL, and all BCAAs and phenylalanine were elevated in NASH,
with and without steatosis. Certain carnitine esters were elevated in NAFLD (see Table 4). The findings
were interpreted as due to oxidative stress and inflammation in the liver [184]. None of these findings
yielded a suitably specific biomarker of NASH or its progression. A US group examined whether or not
arachidonic acid-derived eicosanoids could distinguish between NAFL and NASH, since lipotoxicity is
a key component of the progression of NAFL to NASH. Several such lipids were altered between NAFL
and NASH, including elevated PGE2, 13,14-dihydro-15-keto-PGD2, 11,12-diHETrE, 14,15-diHETrE and
attenuated 15-HETE (Table 4). It was reported that 11,12-diHETrE, 13,14-dihydro-15-keto-PGD2 and
eicosatetraenedioic acid (20-COOH AA) were the top candidate biomarkers to distinguish NASH from
NAFL with an area under the receiver operating characteristic curve (AUROC) of 1 for 11,12-diHETrE
and 1 for the combination of 13,14-dihydro-15-keto-PGD2 and 20-COOH AA [185]. If confirmed
in other studies, these findings would have great potential as biomarkers for NASH in NAFLD.
Another potential distinction between NAFL and NASH are ketone bodies, such as acetoacetate and
3-hydroxybutyrate, which are produced in the liver from fatty acids. NASH patients were found to
have lower serum ketone bodies than NAFL patients, with a lower serum total free fatty acid level
(Table 4) [186]. Although these findings contribute to an understanding of NASH pathogenesis, they
are not useful for the generation of biomarkers of NASH. Examination of increasing severity of NAFL
in obese patients revealed α-ketoglutarate as the principal marker of NAFL (Table 4) [187]. With a
specificity of only 62.5%, α-ketoglutarate is unlikely to be a biomarker for NAFL. Patients undergoing
bariatric surgery that have a wedge liver biopsy taken routinely during surgery have been investigated
with lipidomics and metabolomics. Patients were classified histologically as non-NASH, non-NAFLD,
NAFL, and NASH. PNPLA3 I148M (isoleucine→methionine) variant was also determined that is
more common in NASH. Discovery and validation cohorts were also used. A strong negative
correlation was reported between the number of TG double bonds and the TG concentrations in NASH
relative to non-NASH livers, for both discovery and validation cohorts. A “NASH ClinLipMet score”
was developed based upon (i) clinical variables, (ii) PNPLA3 genotype, (iii) lipidomic data and (iv)
metabolomic data. This was highest performing combination biomarker with sensitivity of 85.5% and
specificity of 72.1% for NASH (Table 4) [188]. In terms of biomarker discovery, the large amount of
data were derived only from liver biopsies, and so there are no indications how parts (iii) and (iv) of
the aforementioned NASH ClinLipMet score relate to, and can be determined from, serum or plasma.
A small clinical study was conducted in liver samples from control, NAFL, and NASH patients in which
lipidomic analyses were conducted in liver biopsies. These authors identified a signature comprising
32 lipids that distinguished NASH with 100% specificity and sensitivity. This signature comprised
various phospholipids, sphingolipids, fatty acids, triglycerides, and cholesteryl esters, measured by
LC-MS, which we do not believe could represent a viable biomarker for NASH due to its complexity.
Furthermore, five fatty acids were identified as accumulating in NASH that were demonstrated to be
toxic to HepG2 cells and primary human hepatocytes in culture (see Table 4) [189]. A Chinese urinary
metabolomics study compared NAFL patients with normal liver function with NASH patients with
abnormal liver function. Many discriminating metabolites were reported (Table 4) [190], although
none displayed a large fold-change or was seen as highly specific to NASH. An elegant study was
reported containing several large clinical cohorts containing biopsy-proven NASH patients that also
had liver fat determined by CT. Serum metabolomics identified the top metabolite associated with
liver fat as a mass of 202.1185+. Databases contained a large number of hits for this mass and so a
GWAS strategy was adopted yielding SNPs for the AGXT2 gene whose expressed enzyme produces
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a metabolite, dimethylguanidino valeric acid (DMGV), which matched this mass [191]. In terms
of a biomarker for NASH or NAFL, DMGV displayed a wide overlap between control and NASH
with approx. 20% higher mean value for NASH. This is not a viable biomarker and perhaps other
ions in their “Top-20” [191] should be investigated. Other investigators chose a single biomarker for
progression of NAFL to NASH, i.e. pyroglutamate (5-oxoproline), based upon a serum metabolomic
study. 5-Oxoproline had a higher AUROC value than adiponectin, TNF-α, or IL-8 [192]. The utility
of 5-oxoproline as a biomarker for NASH is doubtful, as it is often found to be elevated in relation
to hepatic oxidative stress. We have recently reported a highly statistically significant upregulation
of 5-oxoproline in HepG2 cells treated with the experimental anti-HCV drug [193], in the liver of
whole-body γ-irradiated mice [194] and in γ-irradiated HepG2 cells [195].

An in vivo MRS technique has been applied to patients with biopsy-proven NAFL or NASH.
Both high-field 1H and ultra-high-field 31P MRS were employed. Many MRS alterations correlated
with NASH, mostly with advanced fibrosis, e.g. phosphoethanolamine/total phosphorus (TP) ratio.
ATP/TP declined in advanced fibrosis and ATP flux was lower in NASH [155]. While these rapid
noninvasive techniques are useful in a research setting, it is still premature to evaluate their diagnostic
potential for NASH. A lipidomic study of patients with chronic hepatitis B virus infection (CHB)
with and without NAFLD has been conducted in China. Monounsaturated triacylglycerols (TGs)
were found more commonly in NASH patients than non-NASH patients [196]. However, there was
considerable overlap between these groups, and examination of the raw data does not support the
specificity of monounsaturated TGs, with both saturated and diunsaturated TGs associated with NASH.
Patients with steatosis are known to have dysregulation of branched-chain and aromatic amino acids.
A metabolomic, transcriptomic and metagenomic study of morbidly obese women with and without
steatosis has been reported. The plasma metabolite phenylacetic acid produced from phenylalanine
by gut microbiota was the most strongly correlated metabolite to steatosis. Mechanistic studies in
human hepatocytes and in mice confirmed this association [197]. Using biopsy-proven patients with
normal liver (NL), NAFL, and NASH, serum lipidomics was used to define the pattern of TGs in all
three groups. Triglycerides were elevated in the order NAFL > NL ≥ NASH. Of the 28 TGs measured,
TG(46:0), (48:0), (53:0), (44:1), (48:1), (49:1), (52:1), (53:1), (50:2), (54:5), and (58:2) were always NAFL >
NL and NASH < NAFL. Satisfactory AUROC values were obtained for NAFLD vs. NL. Exclusion of
patients with glucose > 136 mg/dL improved the sensitivity and specificity for NASH vs. NAFL [198].
As with all studies of this nature, there was considerable overlap between the three different clinical
states in serum metabolite profiles. A lipidomic investigation in Greece reported differences between
NASH, NAFL, and healthy subjects for several lipid groups and for certain free fatty acids in serum
(Table 4). The authors proposed that their bioinformatic methods could distinguish between NASH,
NAFL, and healthy status based upon the determination of 36 lipids, 61 glycans, and 23 fatty acids.
Moreover, the authors stated that they could differentiate with very high accuracy (up to 90%) using
10–20 total variables between these three conditions. They also reported that they could robustly
discriminate between the presence of fibrosis or not using a model containing 10 lipid species [199]. It is
unclear to us at this time how such a complex procedure could be adapted to routine clinical diagnosis.

A large study in Germany measured plasma and urine metabolomic profiles across a wide range
of liver fat content (LFC) that had been determined by MRI in 769 selected nondiabetic patients. A wide
number of metabolites correlated both positively and negatively with LFC (Table 4). Usual positive
associations included BCAAs and aromatic amino acids and their metabolites. A more unusual
metabolite correlating with LFC was 7α-hydroxy-3-oxo-4-cholestenoate [200], which is a metabolite
in the primary bile acid synthesis pathway. Unfortunately, its utility as a potential biomarker for
NAFLD is reduced by its occurrence in sterol 27-hydroxylase deficiency, familial hypercholanemia
and Zellweger syndrome. A Mexican study targeted 31 acyl carnitines and 7 amino acids in relation
to obesity and NAFLD. No biomarkers of NAFLD per se were reported [201]. A search for plasma
biomarkers of visceral adipose tissue and hepatic triglyceride content (HTGC) has been reported.
A significant number of plasma phospholipids were associated with HTGC (Table 4). Similar findings
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have been reported by other groups. The aromatic amino acids tyrosine and tryptophan were also
positively associated with HTGC [202]. No useful biomarkers for NAFL emerged from this study.

As stated earlier, redox changes in the liver can contribute to both steatosis (NAFL) and
hyperuricemia (HU). It has been observed that HU often progresses together with NAFLD, and this
has stimulated a metabolomic investigation of HU, HU that progressed to HU with NAFLD within
one year, HU with NAFLD, and healthy controls. The principal serum changes were upregulated
phosphatidic acid and CE(18:0) and downregulated inosine (Table 4) during progression from HU to
HU plus NAFLD [203]. Unfortunately, the exact nature of the phosphatidic acid was not given by the
authors, although the empirical formula cited corresponded to PA(16:0/16:0), the exact mass given did
not, otherwise this could have been a potential biomarker for NAFLD.

A dual investigation in human and mouse liver was conducted in which GC-MS analysis of
both human discovery and validation sets found two hepatic metabolites negatively correlated with
nonalcoholic steatosis score, i.e., nicotinic acid and hydroquinone. When HFD was supplemented with
nicotinic acid or hydroquinone, nicotinic acid prevented fat accumulation in mouse liver and reduced
serum ALT (Table 4). The authors discussed the use of nicotinic acid as a lipid lowering agent and the
potential of future such studies in identifying novel therapeutic targets for NAFLD [204]. Another dual
human and mouse liver investigation conducted a metabolomic and lipidomic analysis of Mat1a-KO
and WT mouse liver and serum. MAT1A synthesizes the methylation cofactor S-adenosylmethionine.
Mat1a-KO mice spontaneously develop steatohepatitis. Based upon the Mat1a-KO metabolome that is
associated with NASH, serum of biopsy proven NAFLD patients was also analyzed and compared with
Mat1a-KO mouse findings. The metabolomic signature of these mice, comprising high concentrations
of triglycerides, diglycerides, fatty acids, ceramides, and oxidized fatty acids, was present in serum of
49% of NAFLD patients, leading to two subtypes of patient, so-called M-subtype and non-M-subtype.
Metabolite patterns also distinguished NAFL from NASH. Potential biomarkers might be used to
monitor disease progression and identify novel therapeutic targets [205].

A metabolomic study of Chinese NAFLD patients with and without type-2 diabetes mellitus
(T2DM) reported elevated bilirubin, various amino acids, and acyl carnitines, together with
oleamide [206]. Many of these metabolic changes were confirmatory of published studies. The elevated
acyl carnitines reported are consistent with impaired long-chain fatty acid β-oxidation. Interestingly,
we had previously reported a three-fold elevation of plasma oleamide in HCV-positive patients versus
HCV-negative subjects [207]. Apparently, these authors did not test their patients for HCV, despite the
high prevalence of HCV in liver disease patients in China [208].

The metabolomics of NAFLD has also been investigated in children and adolescents. A noninvasive
breath test was employed to examine 21 volatile organic compounds (VOCs). Compared with
children with a normal liver, children with NAFLD had significantly greater breath concentrations of
acetaldehyde, acetone, isoprene, pentane, and trimethylamine. It is highly likely that the gut microbiota
plays a role in the generation of both acetaldehyde and trimethylamine. We agree with the authors that
breath testing represents a potential for screening with diagnostic biomarkers of pediatric NAFLD [209].
However, many of these VOCs may not be specific to NAFLD because of the 17 VOCs identified in
the caecal contents of mice, eight, including acetaldehyde, were reported for mice fed either the MCD
diet or normal chow [210]. An Italian study recruited children with biopsy-proven NAFLD (64) and
matched healthy controls (64). HPLC was used to measure oxidative stress markers that arose from
excessive consumption of GSH [211]. In obese Hispanic-American adolescents, with and without
NAFLD, untargeted high resolution mass spectrometry demonstrated changes in lipid and amino
acid biochemistry with a particular effect on tyrosine metabolism (see Table 4) [212]. The effect of
NAFLD with and without obesity, together with small intestine bacterial overgrowth, on the urinary
metabolome was examined in Italian children. Data were reported on multiple perturbed host and
gut microbiota pathways (Table 4), and in particular, on elevated urine glucose concentrations in
NAFLD [213]. Again, none of the reported changes met criteria for a diagnostic biomarker, in particular,
the biochemical distinctiveness of the findings. A further Italian study investigated obese adolescents
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with and without NAFLD. Plasma metabolomics established increases in branched-chain and aromatic
amino acids, together with certain acyl carnitines in NAFLD subjects (Table 4) [214]. Although one
of the elevated metabolites in NAFLD (hydroxydecenoylcarnitine) was an unusual finding, the fold
difference between the two groups (±NAFLD) was small with large variances and a borderline statistical
significance, reducing the opportunity to develop this as a biomarker. Obese adolescents with and
without NAFL and with and without metabolic syndrome (MetS) have been studied for their salivary
metabolomic changes. Several fatty acids and sugars were reported to differ between these groups
(Table 4) [215]. How NAFLD was diagnosed in adolescents, whether by ultrasound or liver enzyme
elevations, made a significant difference to the metabolomic findings, especially with lipid profiles,
and amino acid and ketone body plasma concentrations [216]. Another NAFLD study in children and
adolescents reported changes in certain plasma amino acids and phospholipids (Table 4). These authors
generated a model using random forests machine learning with a sensitivity of 73% and specificity of
97% for detecting NAFLD. Random forests was applied to a combination of metabolite and clinical
data, such as waist circumference, whole-body insulin sensitivity index (based on an oral glucose
tolerance test) and blood triglyceride level [217].

Investigations in animal models have been used frequently to understand the mechanisms of
NAFLD and to find biomarkers for disease progression. A mechanistic investigation in MCD diet
fed mice with NASH, using UPLC-QTOFMS, reported significant decreases in several serum LPCs
with marked increases in tauro-β-muricholate, taurocholate and 12-HETE compared with control mice.
These results could be explained by the observed up- and down-regulation of several enzyme and
transporter genes. The authors concluded that phospholipid and bile acid metabolism is disrupted in
NASH, probably due to enhanced inflammatory signaling in the liver [218]. This group conducted
a second study with mice fed MCD, in which they reported an increase in serum oleic and linoleic
acids and of nonesterified fatty acids that they attributed to enhanced fatty acid release from white
adipose tissue in NASH. They demonstrated that this was due to methionine deficiency and not choline
deficiency [219]. Another group fed mice a different NASH-inducing diet based upon lard, cholesterol,
and cholic acid. Although this was essentially a proteomic investigation, various key metabolites
were measured in liver extracts and found to be altered, including predictable lipid changes, but also
perturbations in methionine cycle intermediates (Table 4) [220]. Another strategy for the investigation
dietary-induced NASH was reported, whereby livers from mice with a disrupted LDL receptor gene
(Ldlr-null) that had been fed a western diet (WD; 17% energy as protein, 43% as carbohydrate, 41% as
fat, and 0.2% as cholesterol; supplemented with olive oil) were examined. Ldlr-null mice fed regular
chow served as controls. WD livers displayed a histology and gene expression profile consistent with
NASH. Experiments were conducted by replacing the olive oil supplementation with DHA (22:6n-3).
As Table 4 shows, multiple lipid classes were either up- or downregulated by WD + olive oil in this
genetic/dietary mouse model of NASH. DHA dietary supplementation was effective at protecting
against the effects of WD in this mouse line [221]. The effect of NAFLD progression on hepatic BA pools
and 70 genes involved in BA homeostasis have been examined in human liver samples. Expression of
CYP7B1 mRNA and protein were highly upregulated in NASH, together with clear changes in glycine-
and taurine-conjugated BAs away from the classical BA synthesis pathway towards the alternative
BA synthetic pathway (Table 4). These findings were interpreted as an attempt by the liver in NASH
to minimize hepatotoxicity [222]. Other investigators have used a 16-week high-fat diet (HFD with
60% calories from fat) in WT mice compared with controls on normal chow (12.7% calories from fat).
This HFD regimen produced NAFLD, which was then investigated by 1H NMR metabolomics in
serum, liver and urine. Elevations in serum and liver glucose and lipids were reported, together with a
decreased urinary excretion of amino acids (BCAAs, aromatic amino acids), energy metabolites and gut
microbiota metabolites [223]. A similar study has been reported in which the mouse sera were analyzed
by UPLC-QTOFMS and GC-MS. Glucose was elevated and GSH attenuated after HFD-induced NAFL.
Several serum metabolites were altered and related to oxidative stress, inflammation, and mitochondrial
dysfunction (Table 4) [224]. Although this was a detailed account of the effects of HFD-NAFLD on
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the metabolome, the findings do not lend themselves readily as biomarkers of NAFLD for reasons of
specificity. A different diet feeding regimen has been used to generate NAFLD in the mouse without
obesity. This procedure used a high-fat, high-cholesterol, cholate diet (HFDCC) and both liver and
plasma were analyzed by GC-TOFMS and UPLC-QTOFMS. Total cholesterol and CE(16:1), (18:1), (18:2),
(18:3), (20:1), (20:3), (20:4), (22:5), (22:6) were elevated in liver, together with cholic acid, DGs, TGs,
CERs, SMs, LPCs, the PC/PE ratio, while PEs were downregulated. The nonlipid metabolites xylitol,
xanthosine, squalene, and phenylethylamine were elevated in liver tissue of HFDCC-fed mice. Citrate,
G-1-P, and saccharic acid were all downregulated in these livers. Subtle differences were reported for
plasma of HFDCC-fed mice, including elevated total cholesterol, CE(16:1), (18:1), (18:2), (18:3), (20:1),
(20:3), (20:4), (22:5), cholic acid, deoxycholic acid, CERs, SMs, and PEs, while FFAs, glycerol, TGs, and
LPEs were all diminished in pathological livers [225]. Xanthosine, the ribonucleoside of xanthine,
could be a potential biomarker when evaluated in patients. However, it was elevated in liver and its
levels in plasma were not reported. Moreover, xanthosine has been reported to be a urinary biomarker
for nephropathy in T2DM patients [226] thereby reducing its specificity.

A further means of producing features of NASH in the mouse is with 5-diethoxycarbonyl-1,4-
dihydrocollidine (DDC). The three mouse strains A/J, C57BL/6J and PWD/PhJ were placed on a
diet supplemented with 0.1% DDC or a control diet for 8 weeks. Livers were analyzed for 44
metabolites by targeted MS methods and also subjected to proteomic and RNA-Seq analyses, which
showed that many pathways were altered by DDC treatment, in particular, arachidonic acid and
S-adenosylmethionine metabolism. However, after Bonferroni correction of their findings for multiple
comparisons, the following hepatic metabolites were elevated by DDC: putrescine, arginine, citrulline,
cAMP, 2-oxoglutarate, asparagine, and glutamate (Table 4). In silico modelling was conducted to
understand the effect of DDC on eicosanoid metabolism [227]. Livers from mice fed a HFD were
compared with controls in a wide-ranging lipidomics study that analyzed diacylglycerols (DAG),
cholesterol esters (CE), phospholipids, plasmalogens, sphingolipids, and eicosanoids. A large number
of differences between HFD and controls were observed (Table 4) [228]. Another NASH-generating
diet has been employed in mice, that of a high-trans-fat, high-fructose diet (TFD) for 8 weeks (steatosis)
and 24 weeks (NASH). These experiments sought to examine flux through the hepatic TCA cycle
using 13C NMR-based mass isotopomer analysis, which remained normal during steatosis but was
two-fold induced in NASH. In parallel to TCA cycle flux induction, ketogenesis was impaired and
hepatic diacylglycerols (DGs), ceramides (CERs) and long-chain acyl carnitines accumulated in the liver
(Table 4), suggesting inefficient disposal of free fatty acids. The authors concluded that accumulation
of “lipotoxic” metabolites could promote inflammation and the metabolic transition to NASH [229].
As serum or plasma was not analyzed, it is not known whether or not any of the accumulated lipids
associated with NASH were also present in the circulation and could be evaluated in patients as
potential biomarkers for NAFLD progression.

Correlations between specific gut microbiome species and plasma lipids in mice fed HFD that
developed NAFL or NASH. Bacteroides uniformis species decreased while Mucispirillum schaedleri
species increased in mice with NASH. Interestingly, Bacteroides uniformis correlated positively with
TGs and negatively with FFAs. Mucispirillum schaedleri correlated positively with FFAs, LPC(20:3),
LPC(20:4), and DG(16:1/18:2). Mechanistically, it was claimed that Bacteroides uniformis increased
specific TGs and decreased hepatic injury and inflammation in diet-induced mice [230]. Clearly, these
observations need to be independently evaluated and then investigated in NAFLD patients before
potential biomarkers can be proposed.

The db/db mouse model of leptin receptor deficiency is currently the most widely-used mouse
model of type-2 diabetes mellitus (T2DB). Another means of examining the metabolic pathways
associated with NAFL is to reverse the steatosis. Caloric restriction (CR) was applied to obese diabetic
db/db mice with insulin resistance and steatosis, which were also compared pre- and post-CR to
nondiabetic heterozygous db/m mice without insulin resistance and steatosis. Compared to db/m
mice, db/db mice had elevated hepatic ketone bodies, lactate, acetate, glutathione, and various
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glycerolipids, in particular, diglycerides and triglycerides, many of which were reversed by CR
(Table 4). The transcriptomic findings were consistent with these observations [231]. In addition to the
db/db mouse, a leptin-deficient obese mouse (ob/ob) has also been developed, which is a model for
NAFLD. Homozygous ob/ob mice have been compared with nonsteatotic heterozygous ob/+ mice
using high resolution magic-angle spinning (HR MAS) 1H NMR. 1H signals from lipids were highly
statistically significantly elevated in ob/ob livers, as expected. Several other molecules involved in
betaine (N,N,N-trimethylglycine) metabolism were altered (Table 4) [232].

Rats have also been fed a HFD to induce NASH and serum analyzed by
UPLC-QTOFMS. Elevated glucose, triglycerides and cholesterol were indicative of insulin
resistance. Altered lipid metabolites involved sphingomyelin (SM), phosphatidylcholine (PC),
13-hydroperoxy-9,11-octadecadienoic acid (13-HpODE), and fatty acids (FA) 20:3, 22:3, 20:1 and
phytomonic acid (11,12-methyleneoctadecanoic acid) (Table 4) [233]. This last fatty acid is an unusual
finding and, if confirmed, could be evaluated in human samples as a potential biomarker for NASH.
Another rat study designed to evaluate the effect of turmeric extract on experimental NASH compared
HFD-fed with control-fed rats. UPLC-QTOFMS analysis or serum revealed relatively few upregulated
metabolites and a much greater number of downregulated lipids, in particular several steroids,
including androgen and corticosteroid metabolites (Table 4) [234]. The only highly statistically
significant upregulated metabolite was the fatty acid FA(28:8), which has been described as a marine
ω-3 fatty acid [235] derived from dinoflagellate species [236]. If confirmed and a mechanism for
its formation in human liver by fatty acid elongases and desaturases can be described, this would
represent a potential NASH biomarker. A study was conducted comparing metabolomic profiles of
rat and human liver, and, of particular interest, MCD diet-fed rat liver (model for NASH) and liver
from NASH patients. Despite the large number of metabolic differences reported between treated
and control rat liver and NASH liver and healthy patient liver, very few metabolites corresponded
between MCD rat liver and human NASH liver. In fact, in the scores plot presented, healthy rat liver
was closer to diseased rat liver than to healthy human liver, which was itself closer to diseased human
liver. Asparagine, citrulline, and lysine, together with stearoyl carnitine, were the only metabolites
upregulated in both rat MCD liver and human NASH liver (Table 4) [237]. Interestingly, stearoyl
carnitine together with (9E)-octadecenoyl carnitine, docosapentaenoic acid and vitamin D2 were
elevated in serum of rats fed either HFD (NAFL), MCD diet (NASH), or HFD plus streptozocin
(NASH plus T2DM) [238]. These rat observations reduce the potential value of long-chain fatty acyl
carnitines, like stearoyl carnitine, as potential biomarkers for clinical NASH or NAFLD progression.
Another investigation was conducted in rats focusing on fatty acid profiles in blood cells and the liver
of rats fed either a control diet or a HFD/cholesterol diet. Correlations between certain MUFAs and
PUFAs were reported for both diets [239]. None of these fatty acids changes were specific enough to be
evaluated as biomarkers of NAFLD in patients. Finally, an investigation of the pattern of BAs in serum,
liver, and caecal contents was undertaken in rats fed HFD and control diet. Metagenomic analyses
established that hyodeoxycholate, which was decreased in both serum and caecal contents of rats
fed HFD, was related to the level of the Bacteroidetes phylum. The concentration of cholate that
was increased in the caecal contents of rats fed HFD, was correlated with levels of Firmicutes and
Verrucomicrobia phyla, but correlated inversely with Bacteroidetes [240]. As the BA pattern appeared to
be dependent upon the status of the gut microbiota, the data obtained were not useful for evaluation
as biomarkers of NAFLD.
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Table 4. Metabolomic and lipidomic biomarkers of NAFL and NASH.

Species Manipulation/Condition Pathology
Analytical

Methodology
Metabolites Reported Ref.

Human Obesity/metabolic syndrome NAFL and NASH
NAFL→NASH HPLC-TQMS

FA(14:0)↑ FA(16:0)↑
FA(14:1n5)↑ FA(16:1n7)↑
FA(18:2n6)↓ FA(18:3n6)↑

FA(20:3n6)↑
FA(22:6n3)/FA(22:5n3) in PC

and PE pools↓
5-HETE↑ 8-HETE↑

15-HETE↑
(all in plasma)

[178]

Human Nondiabetic. NAFLD
confirmed by liver biopsy NAFLD vs. HV UPLC-TQMS

GC-MS

Glycocholate↑
Taurocholate↑

Glycochenodeoxycholate↑
Homocysteine↑ Cysteine↑

GSH↓
Glutamylvaline↑

γ-Glutamylleucine↑
γ-Glutamylphenylalanine↑

γ-Glutamyltyrosine↑
Cysteine-glutathione-disulfide↓

Carnitine↑
Propionylcarnitine↑

2-Methylbutanoylcarnitine↑
Butanoylcarnitine↑

Tyrosine↑ Glutamate↑
Isoleucine↑ Leucine↑

Valine↑ Taurocholate↑
(all in plasma)

[180]

Human

Liver samples from normal
(17), steatosis (4), NASH

(fatty) (14) and NASH (not
fatty) (23)

NAFL→NASH UPLC
Orbitrap-MS

Taurocholate↑
Taurodeoxycholate↑

Glycochenodeoxycholate↑
Taurine↑

Cholic acid↓
Glycodeoxycholate↓

(all in liver)
Gene expression data

consistent with the above
(CYP7B1↑)

[222]

Human
Dietary intervention study,
unrelated healthy surgical

liver samples

NAFL (20
insulin-resistant/20

insulin sensitive)
vs. control

UPLC-TQMS
GC-MS

Insulin-resistant NAFL vs.
insulin-sensitive NAFL:
Total LPCs↓ LPC(16:0)↓

(all in plasma)

[182]

Human

NASH and healthy subjects
given high-fat meal to
stimulate gall bladder

contraction

Fasting and
postprandial serum

from NASH and
healthy subjects

UPLC-TQMS

NASH vs. control
(preprandial):

Total BAs↑ Glyco-BAs↑
Tauro-BAs↑

NASH vs. control
(postprandial):

Mainly Total BAs↑
Glyco-BAs↑

(all in serum)

[183]

Human
Normal, Steatosis, NASH

with steatosis, NASH
without steatosis livers

Normal, NAFL,
fatty NASH,

nonfatty-NASH

UPLC
Orbitrap-MS

Control→NAFL:
Acetyl carnitine↑

Lauroyl carnitine↑
Butanoyl carnitine↑
Palmitoyl carnitine↑

Hexanoyl carnitine↓ Valine↓
NAFL→NASH:

Leucine↑ Isoleucine ↑
Tyrosine↑ Valine↑

Phenylalanine↑
(all in liver)

[184]
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Table 4. Cont.

Species Manipulation/Condition Pathology
Analytical

Methodology
Metabolites Reported Ref.

Human

Biopsy-proven NAFL,
biopsy-proven NASH and
normal controls with MRI

fat fraction <5%

Normal, NAFL and
NASH

UPLC-QTRAP
MS/MS

NAFL→NASH:
PGE2↑

13,14-dihydro-15-keto-PGD2↑
11,12-diHETrE↑

14,15-diHETrE↑ 15-HETE↓
[all AA-derived]
(all in plasma)

[185]

Human Obese normal liver, obese
NAFL and obese NASH

Normal, NAFL and
NASH

1H NMR

LDL-cholesterol↑ Alanine↑
Histidine↑ Phenylalanine↑

Tyrosine↑ Leucine↑
Free fatty acids↓ Citrate↓

3-Hydroxybutyrate↓
Acetoacetate↓
(all in serum)

[186]

Human Morbid obesity with and
without NAFL

Obesity without
NAFL, mild NAFL,

moderate NAFL,
severe NAFL

UPLC-LITMS
GC-TOFMS

Metabolon, Inc.

α-Ketoglutarate principal
plasma marker with

AUROC of 0.743, sensitivity
of 80%, specificity of 62.5%.

(all in plasma)

[187]

Human
Mouse

Liver biopsies from patients
with normal liver and

NAFLD
HFD, HFD + nicotinic acid,
HFD + hydroquinone, HFD
+ tert-butylhydroquinone

NASH vs. NAFL
vs. control GC-MS

Nicotinic acid and
hydroquinone negatively
correlated with steatosis

(NAS) score.
Nicotinic acid

supplementation of HFD
prevented fat accumulation
and improved serum ALT.

(all in liver)

[204]

Human
NAFLD, NAFLD + T2DM,

control, evaluated by
ultrasound

NAFLD, NAFLD +
T2DM, control UPLC-QTOFMS

NAFLD vs. control:
Proline↑ Phenylalanine↑

Oleamide↑ Bilirubin↑
Palmitoyl carnitine↑

LPC(20:5)↑ Lyso-PAF C-18↓
NAFLD + T2DM vs. control:

Leucine↑ Oleamide↑
LPC(14:0)↑ Bilirubin↑

Tetradecenoyl carnitine↑
Linoleoyl carnitine↑

Tetradecadienoyl carnitine↑
(all in serum)

[206]

Human

Hyperuricemia (HU),
HU+NAFLD, HU

progressed to HU+NAFLD,
healthy controls

HU, initial
HU+NAFLD,

initial
HU→outcome
HU+NAFLD,

healthy controls

UPLC-QTOFMS

HU vs. control:
Phosphatidic acid↑

3,4-Dihydroxyphenylglycol↑
Valine↑ CE(18:0)↑ Uric acid↑
Acetyl carnitine↑ Inosine↓

5-Hydroxyindoleacetic acid↓
5-Aminoimidazole ribotide↓
Pyrrolidonecarboxylic acid↓

Glycerophosphocholine↓
HU vs. outcome

HU+NAFLD:
Phosphatidic acid↑ Inosinic
acid↑ Tryptophan↑ Valine↑

Alanine↑ Lactate↑ CE(18:0)↑
Uric acid↑ Trimethylamine↑

Acetyl carnitine↑
5-Methoxyindoleacetic acid↑

Acetoin↑ Inosine↓
Kynurenine↓

5-Hydroxyindoleacetic acid↓
Pyrrolidonecarboxylic acid↓

4-Fumarylacetoacetate↓
Pregnenolone sulfate↓

(all in serum)

[203]
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Table 4. Cont.

Species Manipulation/Condition Pathology
Analytical

Methodology
Metabolites Reported Ref.

Human

Bariatric surgery patients
with wedge liver biopsy
during surgery classified

histologically as non-NASH,
non-NAFLD, NAFL and
NASH. PNPLA3 I148M
variant also determined

(more common in NASH).
Discovery and validation

cohorts used.

non-NASH vs.
non-NAFLD vs.

NAFL vs. NASH

UPLC-QTOFMS
2D-GC-TOFMS

Strong negative correlation
between number of TG

double bonds to TG
concentrations in NASH
relative to non-NASH for

both discovery and
validation cohorts. A

“NASH ClinLipMet score”
was developed based upon

(i) clinical variables, (ii)
PNPLA3 genotype, (iii)
lipidomic data and (iv)

metabolomic data. This was
highest performing

combination biomarker with
sensitivity of 85.5% and
specificity of 72.1% for

NASH.
(all in liver)

[188]

Human Normal liver, NAFL liver,
NASH liver

NASH vs. NAFLD
vs. control
lipidomics

UPLC-TQMS
GC-MS

Thirty-two lipids
discriminated NASH with

100% sensitivity and
specificity. Accumulated

hepatotoxic lipids in NASH
included FA(14:0), FA(16:0),
FA(16:1n-7), FA(18:1n-7) and

FA(18:1n-9). Reduced in
NASH: FA(20:4n-6),

FA(20:5n-3), FA(22:6n-3),
total CER, total SM, total PI,
total PS, total PE, total PC.

(all in liver)

[189]

Human

Nondiabetic NAFL patients
with normal liver function,
NASH with abnormal liver
function, healthy controls.

NASH vs. NAFL
vs. control urines. LC-TQMS

NASH vs. control:
Lysine↑ Valine↑ Citrulline↑

Arginine↑ Threonine↑
Tyrosine↑ Leucine↑

Hippurate↑
3-Indoleacetate↑

5-Hydroxyindoleacetate↓
3-Indoleformate↓ Cortisol↓

NASH vs. NAFL:
Methyl xanthine↑

Tryptophan↑
3-Indoleacetate↑ Gluconate↑

Proline↓
(all in urine)

[190]

Human
Several large clinical cohorts

with CT-defined liver fat
plus NASH patients.

NASH vs. controls UPLC-Q-
Orbitrap-MS

Top metabolite correlated
with liver fat was 202.1185+,
which produced 24 hits in

HMDB. Dimethylguanidino
valeric acid (DMGV) chosen

on basis of GWAS, which
found SNPs for AGXT2 that

produces DMGV.
(all in plasma)

[191]

Human
NAFLD criteria met/not met

at baseline, after dietary
manipulation.

Non-NAFLD,
Non-NAFLD→

NAFLD, NAFLD→
Non-NAFLD

UPLC-QTOFMS

Phospholipid and
sphingolipid changes not of
great statistical significance.

Also lipid groups, not
individual lipids, given only.

(all in serum)

[241]
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Species Manipulation/Condition Pathology
Analytical

Methodology
Metabolites Reported Ref.

Human
NAFL and NASH based

upon liver biopsy,
healthy controls.

NASH vs. NAFL
vs. controls

HPLC-
Orbitrap-MS

Five metabolites increased
control→NAFL→NASH –

Uracil, α-Linolenic acid
(all-cis-9,12,15-octadecatrienoic
acid), Glutamate, Glutamine

and 5-Oxoproline, which
was chosen as a biomarker
with a better AUROC for

NASH vs. NAFL, than
adiponectin,

TNF-α, or IL-8.
(all in serum)

[192]

Human NAFL and NASH confirmed
by liver biopsy NASH vs. NAFL

High-field 1H
MRS and

ultra-high-field
31P MRS
(in vivo)

Many MRS alterations
correlated with

NAFL→NASH, mostly with
advanced fibrosis, e.g.

phosphoethanolamine/total
phosphorus (TP) ratio.
ATP/TP↓ in advanced
fibrosis and ATP flux↓

in NASH

[155]

Human

Chronic hepatitis B (CHB)
with biopsy-proven NAFLD

and without NAFLD,
healthy controls

CHB +NAFLD vs.
CHB-NAFLD vs.

controls
UPLC-QTOFMS

Most neutral lipids and
ceramides were elevated in
CHB+NAFLD but decreased
in CHB-NAFLD vs. healthy
controls. Monounsaturated
TGs were a good predictor

of NASH, superior to
cytokeratin-18 or ALT.

[196]

Human Hepatic steatosis in
morbidly obese women

Metagenomic
signature of

hepatic steatosis

1H NMR (urine
and plasma)

UPLC-TQMS
(plasma)

Microbiota metabolite
produced from

phenylalanine, phenylacetic
acid (PAA) associated

with steatosis.

[197]

Human
Biopsy-proven subjects with

normal liver (NL), NAFL
and NASH

NASH vs. NAFL
vs. NL discovery

and validation
cohorts

UPLC-QTOFMS

Triglycerides are elevated
NAFL >NL ≥NASH. Of the
28 TGs measured, TG(46:0),
(48:0), (53:0), (44:1), (48:1),
(49:1), (52:1), (53:1), (50:2),

(54:5) and (58:2) were always
NAFL > NL and NASH <

NAFL.
(all in serum)

[198]

Human

Large study of 769
nondiabetic patients with
liver fat content measured

by MRI and correlated with
metabolite profiles of urine

and fasting plasma

613 plasma and 587
urine samples

across a range of
liver pathologies

(34.7% with
steatosis)

UPLC-LITMS
1H NMR

Associations in plasma
with LFC:

BCAAs↑ Aromatic amino
acids↑ Dipeptides↑ Proline↑
Tryptophan↑ Indoleacetate↑

Urate↑ Piperine↑
7α-Hydroxy-3-oxo-cholestenoate↑

Ether-PCs↓
3-Phenylpropionate↓ Proline

betaine↓
Associations in urine

with LFC:
BCAA derivatives↑ Lactate↑

Isovalerylglycine↓
Isobutyrylglycine↓

γ-Glutamylthreonine↓
4-Vinylphenol sulfate↓

Hippurate↓
Cinnamoylglycine↓

[200]
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Species Manipulation/Condition Pathology
Analytical

Methodology
Metabolites Reported Ref.

Human NAFLD determined by
hepatic ultrasound

BMI < 25 vs. BMI >
30 vs. BMI > 30

with NAFLD

TQMS for 31
acyl carnitines
and 7 amino

acids

Family history predicted
obesity correlating with

amino acids that contributed
to an increase in specific acyl

carnitines. Excess FFAs
related to obesity were

associated with NAFLD.

[201]

Human

Patients with normal fasting
glucose. Visceral adipose
tissue (VAT) assessed by
MRI. Hepatic TG content
(HTGC) determined by

proton-MR spectroscopy.

Range of VAT and
HTGC ESI-FIA-MS/MS

Associated with HTGC:
LPC(14:0), PC(28:1),

PC(30:0), PC(32:1), PC(32:2),
PC(34:1), PC(34:3), PC(34:4),
PC(36:1), PC(36:2), PC(36:3),
PC(36:6), PC(38:3), PC(38:5),
PC(40:4), PC(40:5), SM(22:3),

Tryptophan, Tyrosine
(all in plasma)

[202]

Human

NAFL and NASH
determined by liver biopsy

and healthy controls by
ultrasound and liver

enzymes

NASH vs. NAFL
vs. controls

UPLC-Orbitrap-MS
GC

Lipid group trends:
DG: NASH > NAFL >

healthy
PG: NASH ≈ NAFL >

healthy
PA: NASH ≈ NAFL >

healthy
AcCa: NASH < NAFL ≈

healthy
CE: NASH < NAFL <

healthy
LPC: NASH < NAFL ≈

healthy
SM: NASH < NAFL ≈

healthy
FA(16:0): NASH > NAFL >

healthy
FA(16:1n-7cis): NASH >

NAFL > healthy
FA(18:1n-9cis): NASH >

NAFL > healthy
FA(18:2n-6): NASH < NAFL

< healthy
FA(20:4n-6): NASH < NAFL

< healthy

[199]

Human

Children, overweight or
obese, with or without

clinical/radiological signs of
NAFLD

NAFLD vs. control

Selective ion
flow tube mass
spectrometry

(SIFT-MS)

Acetaldehyde↑ Acetone↑
Isoprene↑ Pentane↑

Trimethylamine↑
(all in breath)

[209]

Human
Children with

biopsy-proven NAFLD and
matched healthy controls

NAFLD vs. control HPLC
Homocysteine↑ Cysteine↑

CysGly↑ GSH↓
(all in plasma)

[211]

Human
Children with obesity and
NAFL confirmed by MRS

and matched obese controls
NAFL vs. control UPLC-Q-

Orbitrap-MS

Tyrosine↑ Glutamate↑
Octanoic acid↑ Linoleic

acid↓
(all in plasma)

[212]

Human
Children with obesity,

NAFL, NASH and
healthy controls

NASH vs. NAFL
vs. control GC-MS

1-Butanol↑ (in NAFL)
1-Pentanol↑ (in NAFL) ↓ (in
NASH) Phenol↑ (in NAFL)
2-Butanone↑ (in NAFL and

NASH)
4-Methyl-2-pentanone↓ (in

NAFL)↑ (in NASH)
(all in feces)

Metagenomics also
conducted. Correlations
with NAFLD and certain

VOCs reported

[242]
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Species Manipulation/Condition Pathology
Analytical

Methodology
Metabolites Reported Ref.

Human Children with NAFLD, with
or without obesity

Obese − NAFL,
obese + NAFL,
normal weight

healthy controls

GC-MS

NAFL vs. control:
Glucose↑

1-Methylhistidine↑
Pseudouridine↑ Glycolic
acid↑Mannose↓ p-Cresol

sulfate↓ Kynurenine↓
Hydroquinone↓ Adipate↓

Phenylacetic acid↓
Small intestine bacterial

overgrowth (SIBO):
Glycolic acid↑Mannose↑
Valine↓ p-Cresol sulfate↓

Butanoate↓ Adipate↓
(all in urine)

[213]

Human
Children with obesity, with

and without NAFLD
assessed by MRI

Obese +NAFLD vs.
obese − NAFLD UPLC-QTRAP-MS

Isoleucine↑ Leucine↑
Valine↑ C4-carnitine↑

C5-carnitine↑
C14:1-OH-carnitine↑
Tryptophan↑ Lysine↑
Glutamate↑ PC(32:1)↑

(all in plasma)

[214]

Human

Children with obesity, with
and without NAFL assessed

by ultrasound (US), with
and without metabolic
syndrome (MetS) and

nonobese controls

Obese + NAFL vs.
obese − NAFL

Obese +MetS vs.
obese −MetS

GC-MS

Obese − NAFL vs. controls:
Palmitate↑Myristate↑ Urea↑

N-Acetylgalactosamine↑
Maltose↑ Gluconate↑

Isoleucine↑
Hydroxybutanoate↓Malate↓
Obese + NAFL vs. controls:

Laurate↑Maltose↑
(all in saliva)

[215]

Human Adolescents with NAFLD
assessed by US or ALT/AST

US vs. ALT vs.
AST diagnostic

methods

Biochemical
lipid analysis

1H NMR

Many differences in lipid
profiles, amino acids
(alanine, glutamine,

histidine; BCAAs; aromatic
amino acids) and ketone

bodies (acetate, acetoacetate,
β-hydroxybutyrate)

(all in plasma)

[216]

Human
Adolescents with obesity

and with or without NAFLD
confirmed by MRI

NAFLD vs.
non-NAFLD

UPLC-Q-
Orbitrap-MS

Leucine/Isoleucine↑
Tryptophan↑ Serine↓

Dihydrothymine↓
LPE(20:0)↓ LPC(18:1)↓

(all in plasma)

[217]

Human

Children with or without
NAFLD confirmed by

ultrasound and
liver enzymes

NAFLD vs.
non-NAFLD GC-MS

24-h Urinary steroid profiles:
Cortisol (obese controls)↑

Tetrahydrocortisone
(NAFLD)↑

Overall data pointed to
5α-reductase↑,

21-hydroxylase↑ and
11β-hydroxysteroid
dehydrogenase 1↓

[243]

Human
Mouse

Morbidly obese, nondiabetic
Gnmt-null vs. WT

NAFL→NASH
NASH vs. control UPLC-QTOFMS

PC(14:0/20:4)↑ LPC(18:1)↑
PC(P-24:0/0:0)↓
PC(P-22:0/0:0)↓

PC(O-20:0/0:0)↓ FA(20:4)↓
Glutamate↓

(all in serum)
Results consistent with

human studies

[179]
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Analytical

Methodology
Metabolites Reported Ref.

Mouse
Human

Methionine and choline
deficient diet (MCD)

HBV-negative, NAFLD
confirmed by liver biopsy

NASH vs. NAFL
vs. control

1H NMR

Glucose↑ Lactate↑
Glutamate↑ Taurine↑

TG↑ Total cholesterol↑
LDL cholesterol↑

Glucose↑ Lactate↑
Glutamate↑ Taurine↑

(all in serum)

[181]

Mouse
Human

Mat1a-KO vs. WT mouse
liver and serum metabolome
NAFL and NASH discovery

and validation cohorts

Mat1a-KO vs. WT
Clustering analysis

into M-subtype
and

Non-M-subtype
based upon mouse

metabolomes

UPLC-QTOFMS

M-subtype NASH
biomarkers:

Amino acids (5), Fatty acyls
(8), Triglycerides (3),

Glycerophospholipids (37),
Sphingomyelins (1)

Non-M-subtype NASH
biomarkers:

Amino acids (1), Fatty acids
(1), Bile acids (1),
Triglycerides (3)

M-subtype patients: 34%
NASH

Non-M-subtype patients:
39% NASH

[205]

Mouse MCD NASH vs. control UPLC-QTOFMS

Tauro-β-muricholate↑
Taurocholate↑ 12-HETE↑

LPC(16:0)↓ LPC(18:0)↓
LPC(18:1)↓

(all in serum)

[218]

Mouse
MCD vs.

choline-supplemented MCD
(MCS)

Differential effects
of methionine and
choline deficiency

UPLC-QTOFMS

MCD vs MCS:
Oleic acid↑ Linoleic acid↑
Total nonesterified fatty

acids↑
(all in serum)

[219]

Mouse
NASH-inducing diet (35%

lard, 1.25% cholesterol, 0.5%
sodium cholate)

NAFLD vs. control HPLC-TQMS

Glycerol↑ Free cholesterol↑
Esterified cholesterol↑

Putrescine↑
N8-Acetylspermidine↓
Spermine↓ Adenine↓

Adenosine↓ Homocysteine↓
Methylthioadenosine↓

S-Adenosylhomocysteine↓
S-Adenosylmethionine↓
Proteomic findings were
consistent with the above

(all in liver)

[220]

Mouse

Ldlr-null mice fed a Western
diet (energy as 17% protein,
43% carbohydrate, 41% fat,
0.2% cholesterol) + olive oil

(WD + O)

NAFLD/NASH vs.
control

UPLC-LITMS
GC-MS

Metabolon, Inc.

Saturated fatty acids↑
MUFAs↑

Palmitoyl-sphingomyelin↑
Cholesterol↑ n-6 PUFA↑

12-HETE↑ C20-22 n-3
PUFA-containing

phosphoglycerolipids↓
18-HEPE↓ 17,18-diHETE↓

S-Lactoyl-glutathione↓
(all in liver)

F3-Isoprostanes↓
(in urine)

[221]
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Mouse
HFD (60% calories from fat)

and normal chow (12.7%
calories from fat)

NAFLD vs. control 1H NMR

Glucose↑ Total cholesterol↑
HDL-cholesterol↑ AST↑

ALT↑ Phosphatidylcholine↑
Pyruvate↓ Acetate↓ Lactate↓

Citrate↓ Arginine↓
Ornithine↓ Acetoacetate↓

3-Hydroxybutyrate↓
Isoleucine↓ Leucine↓
Valine↓ Glutamate↓

Glutamine↓ Tyrosine↓
Phenylalanine↓ Alanine↓

Lysine↓ Glycine↓ Betaine↓
Isobutanoate↓

1-Methylhistidine↓
(all in serum)

Total cholesterol↑
Triglycerides↑ Fatty acids↑

PUFA/MUFA↓
(all in liver)

Pyruvate↑ Creatinine↑
Taurine↑ Glycine↑ Formate↑

Butanoate↑
Guanidinoacetate↑ Glucose↑

1-Methylnicotinamide↑
Nicotinamide N-oxide↑

Acetoacetate↓ Succinate↓
Citrate↓ 2-Oxoglutarate↓

Trimethylamine↓
Trans-aconitate↓ Hippurate↓
Trigonelline↓ Niacinamide↓

Tyrosine↓
1-Methylhistidine↓

Phenylalanine↓
(all in urine)

[223]

Mouse
HFD (60% calories from fat)

and normal chow (13.5%
calories from fat)

NAFLD vs. control UPLC-QTOFMS
GC-MS

Methylhippurate↑ Glycerol
3-phosphate↑Mannose↑

Ketoleucine↑
2-Ketohexanoate↑

Hydroxyphenyllactate↑
Succinate↑

Xylose/Ribose/Arabinose↓
Glucuronate↓ Catechol↓

4-Coumarate↓ Hippurate↓
Taurocholate↓

Glycochenodeoxycholate↓
Glycocholate↓ Histamine↓

(all in serum)

[224]

Mouse
A/J, C57BL/6J and PWD/PhJ

strains fed standard diet
with 0.1% DDC

DDC-treated vs.
control UPLC-Q-LITMS

Putrescine↑ Arginine↑
Citrulline↑ cAMP↑

2-Oxoglutarate↑
Asparagine↑ Glutamate↑

(all in liver)

[227]

Mouse

HFD-fed mice (42% calories
from fat, 43% from

carbohydrates, 15% from
protein) vs. standard chow

(17% from fat, 58% from
carbohydrates, 25% from

protein)

NAFLD vs. control UPLC-Q-LITMS

SFA-DAGs↑MUFA-DAGs↑
PUFA-DAGs↓ SFA-CEs↑
MUFA-CEs↑ PAs↑ PGs↑

SFA-CERs↑ Sphingosine↑
Sphingosine-1-phosphate↑

Dihydrosphingosine↑
Dihydrosphingosine-1-phosphate↑

Galactosylceramide↓
Glucosylceramide↓
Lactosylceramide↑

Globotrioseacylceramide↑
TxB2↑ PGF2α↑ All other

eicosanoids↓
Pattern changed from weeks

16-52.
(all in liver)

[228]
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Table 4. Cont.

Species Manipulation/Condition Pathology
Analytical

Methodology
Metabolites Reported Ref.

Mouse

db/db leptin
receptor-deficient mice with

insulin resistance and
steatosis subjected to caloric
restriction (CR), db/m mice
without insulin resistance

and steatosis

db/db, pre- and
post-caloric

restriction, db/m

1H NMR
UPLC-QTOFMS

db/db vs. db/m:
Acetone↑

3-Hydroxybutyrate↑
Lactate↑ Acetate↑

Glutathione↑ Ascorbate↑
Many glycerolipids↑

db/db + CR vs. db/db:
3-Hydroxybutyrate↓

Ascorbate↓
Many glycerolipids↓

RT-PCR findings consistent
with metabolomic data

(all in liver)

[231]

Mouse
Leptin-deficient obese ob/ob
mice and nonsteatotic ob/+

heterozygous mice

Intact liver tissues
of two mouse lines

compared

HR-MAS 1H
NMR

Many lipid 1H signals
highly statistically

significantly elevated in
steatotic ob/ob livers

compared with nonsteatotic
ob/+ livers, as expected.

ob/ob livers vs. ob/+ livers:
Betaine↑ Phenylalanine↑

Uridine↑ Creatinine↓
Glutamate↓ Glycine↓

Glycolate↓ Trimethylamine
N-oxide↓

N,N-Dimethylglycine↓
ADP↓ AMP↓

[232]

Mouse

High-trans-fat high-fructose
diet (TFD) for 8 weeks

(steatosis) and 24 weeks
(NASH)

TFD-fed, normal
diet-fed

Fasting hepatic
mitochondrial

flux by 13C
NMR

isotopomer
analysis.

LC-TQMS
lipidomics

8-week (steatosis) vs.
24-week (NASH):

Endogenous glucose
production↑ TCA cycle

flux↑ Anaplerosis↑ Pyruvate
cycling↑

Control vs. 8-week
(steatosis):

Total diacylglycerols↑ Total
ceramides↑ C8-acyl
carnitine↑ C16-acyl

carnitine↑
8-week (steatosis) vs.

24-week (NASH):
DG(16:1/16:1)↑

DG(16:0/18:1)↑ DG(34:2)↑
DG(18:1/18:1)↑
DG(18:1/18:2)↑
DG(18:2/18:2)↑
DG(16:0/20:4)↑
DG(18:0/20:4)↑
DG(18:1/20:4)↑
DG(18:2/20:4)↑
DG(18:2/20:2)↑
DG(16:1/22:6)↑

DG(18:1/22:6)↑ C6-acyl
carnitine↑ C8-acyl carnitine↑
C14-acyl carnitine↑ C16-acyl

carnitine↑ CER(20:0)↓
CER(22:0)↓
(all in liver)

[229]
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Table 4. Cont.

Species Manipulation/Condition Pathology
Analytical

Methodology
Metabolites Reported Ref.

Mouse

High-fat, high-cholesterol,
cholate (HFDCC)-fed mice

with NAFLD without
obesity

HFDCC vs. control GC-TOFMS
UPLC-QTOFMS

Total cholesterol↑ CE(16:1),
(18:1), (18:2), (18:3), (20:1),
(20:3), (20:4), (22:5), (22:6)↑
Cholic acid↑ DGs↑ TGs↑

CERs↑ SMs↑ LPCs↑ PC/PE↑
PEs↓ Xylitol↑ Xanthosine↑

Squalene↑
Phenylethylamine↑ Citrate↓

G-1-P↓ Saccharic acid↓
(all in liver)

Total cholesterol↑ CE(16:1),
(18:1), (18:2), (18:3), (20:1),

(20:3), (20:4), (22:5)↑ Cholic
acid↑ Deoxycholic acid↑
CERs↑ SMs↑ PEs↑ FFAs↓

Glycerol↓ TGs↓ LPEs↓
(all in plasma)

[225]

Rat HFD-induced NASH HFD vs. control
diet UPLC-QTOFMS

Glucose↑ Triglycerides↑
LDL-cholesterol↑ SM(36:1)↑

LPC(18:1)↑ LPC(20:2)↑
SM(34:2)↑ PC(34:1)↑
PC(38:4)↑ PC(38:3)↑

LPC(17:1)↑ PC(35:2)↑
FA(20:1)↑ FA(20:3)↑

FA(22:3)↑ Phytomonate↑
LPC(14:0)↑

13-HpODE↑ PC(37:4)↓
PC(38:4)↓ PC(38:6)↓

SM(34:1)↓
SM(34:2)↓SM(42:3)↓
SM(40:1)↓ PC(40:5)↓
PC(40:6)↓ PC(40:8)↓

Creatine↓ Indoxyl sulfate↓
(all in serum)

[233]

Rat

HFD-induced NASH,
positive controls

(methionine plus choline
supplementation), control

diet

HFD vs. positive
control vs. control

diet
UPLC-QTOFMS

HFD vs. control:
FA(28:8)↑ CE(12:0)↑

PG(14:0/18:1)↑ Cortisone↓
Antrosta-1,4-diene-3,17-dione↓
All-trans-retinoyl-β-glucuronide↓

LPA(18:2)↓ PE(15:0/22:2)↓
Cortol↓

21-Hydroxypregnenolone↓
Cortolone↓ Urobilin↓

LPA(18:1)↓ PA(P-20:0/14:0)↓
(all in serum)

[234]

Rat
Human

Rats fed HFD to lead to
steatosis, rats fed MCD diet

to lead to NASH, rats fed
methionine and choline

sufficient diet as
controls→liver samples

NASH (fatty), NASH (not
fatty), steatosis, healthy liver

samples

NASH vs. NAFL
vs. control

(rat and human)

UPLC
Orbitrap-MS

Bile acid metabolomics:
Significant BA profile

differences between rat
MCD and human NASH.

Amino acid metabolomics:
Asparagine↑ Citrulline↑

Lysine↑ comparable
between rat MCD and

human NASH.
Fatty acid, carnitine and

LPC metabolomics:
Stearoyl carnitine↑ only

lipid in both rat MCD and
human NASH

[237]

Rat

HFD, MCD diet and
streptozocin (STZ) in rats.

Metabolomics and
transcriptomics on serum

and liver.

NAFL vs. NASH
vs. NAFL + T2DM UPLC-QTOFMS

Venn diagram for HFD,
MCD and HFD+STZ serum:

Stearoyl carnitine↑
(9E)-octadecenoyl carnitine↑

docosapentaenoic acid↑
vitamin D2↑

[238]
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Table 4. Cont.

Species Manipulation/Condition Pathology
Analytical

Methodology
Metabolites Reported Ref.

Rat HFD/cholesterol diet vs.
normal diet

Stage of steatosis,
inflammation and

fibrosis determined
histologically

GC

Correlation between liver
and blood cell total fatty

acids for control diet:
FA(16:1), FA(22:6),

FA(18:1n-7), FA(22:5)
Correlation between liver
and blood cell total fatty

acids for HFD/cholesterol
diet:

FA(22:6), FA(18:1n-7)

[239]

Rat HFD vs. normal diet

NAFLD
established by

histology and liver
enzymes

UPLC-TQMS

BAs in liver:
Taurocholate↑

Taurohyodeoxycholate↓
Ursodeoxycholate↓

BAs in caecal contents:
Cholate↑Hyodeoxycholate↓

Muricholate↓
BAs in serum:
Taurocholate↑

Hyodeoxycholate↓
Taurohyodeoxycholate↓

[240]

Overall Summary

A summary of metabolic, metabolomic, and lipidomic investigations into ALD is given in Table 1.
It is clear that the hepatic metabolic phenotypes and therefore biomarkers of both chronic alcohol
consumption and ALD are far from being defined. Despite the considerable number of published
investigations, large variations in study design, species investigated, experimental methodologies and
metabolic findings render a consensus opinion difficult to formulate. Nevertheless, it is becoming clear
that various lipid classes may play a role in both ALD etiology and in shaping the resultant hepatic
metabolic phenotype. Moreover, the recent attention to gut microbiota-liver cross talk offers new
avenues to solving the mechanisms of ALD and providing effective predictive biomarkers. The effects
of alcohol on lipid metabolism has recently been reviewed [52], as has the Lieber-DeCarli diet as a
model for experimental liver disease [55].

Regarding cholestasis, it is well known to be associated with elevated hepatic and serum bile
acids, and can occur in the diseases PBC and PSC, as well as in pregnancy and in the neonatal period.
Metabolomics has revealed that not just the expected primary BAs are elevated in these conditions,
but also BA removal is enhanced by sulfation, with various sulfate conjugates found in the urine.
More mechanistic investigations were generally conducted in rats, predominantly by administration
of the hepatotoxin ANIT. This protocol has found particular utility in the screening of TCMs that
have been used for centuries to treat jaundice in China. Attesting to the efficacy of these treatments,
the metabolomic signature of ANIT-induced cholestasis was attenuated in all cases. In addition,
a number of combination biomarkers have been evaluated for the various manifestations of both
clinical and experimental cholestasis, but it remains to be seen if any of these are adopted into routine
clinical practice (Table 2).

In the case of fibrosis and cirrhosis, a total of 38 studies are summarized in Table 3, i.e., 22 conducted
by MS and 16 by NMR. Nine investigations were conducted in rats and 29 in patients and volunteers.
Considering first the NMR-based studies, it should be noted that these investigations in general identify
in liver samples, serum, plasma, or urine relatively high concentration metabolites, such as Krebs cycle
intermediates, amino acids and simple sugars that have been described as “the usual suspects” [244].
This simple fact renders these targets unsuitable as biomarker candidates for the detection or progression
of fibrosis because of their ubiquitous nature. Although 1H NMR-based metabolomic studies are
seen as having many advantages, such as simplicity, rapidity, and reproducibility, they suffer from
modest resolution and sensitivity. MS-based methodologies, in contrast, are able to resolve, identify
and quantitate hundreds of molecules in a sample, rather than tens of metabolites by NMR. They have
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the distinct advantage in the realm of the relatively low concentration constituents of the metabolome.
As Table 3 demonstrates, fibrosis progression in NAFLD could be evaluated in terms of decreasing serum
concentrations of etiocholanolone sulfate (E) and dehydroepiandrosterone sulfate (D), with concomitant
increasing concentration of 16α-hydroxy-dehydroepiandrosterone sulfate (16). Discovery of these
molecules as potential biomarkers was assessed in a validation cohort [119]. The ratios 16/D and 16/E
exhibited clear statistically significant trends across F0-1, F2, F3, to F4, with sensitivities/specificities
of 81%/80% and 76%/85%, respectively [119]. More commonly, MS-based methods have shown
elevations in specific serum bile acids in human liver cirrhosis [128,132,135], together with fluctuations
in a broad range of urinary steroids [141]. Another common finding were alterations in serum
phospholipids in both human liver cirrhosis [135,139,140] and in animal models [169,170,172]. In both
the human and animal model investigations, perturbations in metabolic intermediates, akin to
those revealed by NMR, have also been described. We consider that only metabolites that appear
unique to fibrosis and/or cirrhosis, such as etiocholanolone sulfate, dehydroepiandrosterone sulfate,
and 16α-hydroxy-dehydroepiandrosterone sulfate should be evaluated as biomarkers. The unusual
metabolite cervonoyl ethanolamide (8,11,14-eicosatrienoyl ethanolamide) was elevated in the rat CCl4
fibrosis model, but has so far not been evaluated in patients with liver fibrosis. However, this fatty acid
amide was also elevated in hyperlipidemic rats [245], reducing its potential as a biomarker for fibrosis.

A total of 30 studies involving adult patients, nine involving adolescents or children, and 21
studies that involve mouse or rat investigations of NAFLD, are included in Table 4. Of these, a total of
49 investigations used mass spectrometry-based methodologies and ten used NMR-based methods.
A large quantity of literature has described a wealth of metabolomic and lipidomic investigations
into steatosis (NAFL) and NASH, together with experiments in laboratory rodent models. In the
most part, this accumulated information largely describes potential mechanisms by which the liver
accumulates lipid droplets and the transition to an accompanied inflammation that defines NASH.
As Table 4 shows, there is a wealth of information regarding up- and down-regulated molecules in
plasma/serum, urine and liver itself. The question is: how useful are these data for the generation
of biomarkers of NAFL or NASH, or the progression of NAFL to NASH? The metabolic profiles of
liver that have been determined in certain investigations are not immediately useful for biomarker
evaluation unless serum/plasma or urine was also investigated. The purpose of a biomarker for liver
disease is to avoid liver biopsy. The increase in peripheral fatty acids and acyl carnitines are consistent
with the known etiology of fatty liver disease. Elevated concentrations of BAs, BCAAs, and aromatic
amino acids are also well-known characteristics of these diseases. The issue is specificity, especially
as many of the studies involved obese patients and those with diabetes and insulin resistance, all of
which factors could confound the NAFLD findings. In a study of nondiabetic patients with steatosis
and NASH, an interesting candidate biomarker emerged, γ-glutamyltyrosine, but unfortunately the
change between control subjects and NAFLD patients was small (1.2–1.3-fold, but highly statistically
significant) with a number of outliers [180]. Larger fold-changes were observed for acyl carnitines.
Lauroyl carnitine was four-fold increased over controls in steatosis and NASH and hexanoyl carnitine
was 3.5-fold elevated in NASH but 2.5-fold decreased in steatosis [184]. As no other study reported
these acyl carnitine changes in NAFLD, they would need to be independently verified. Nevertheless,
acyl carnitine patterns represent potential biomarkers for progression from steatosis to NASH. We have
already discussed above 7α-hydroxy-3-oxo-4-cholestenoate [200] as a potential biomarker for steatosis.
Providing that the patients under investigation were negative for sterol 27-hydroxylase deficiency,
familial hypercholanemia and Zellweger syndrome, with which this BA intermediate is also associated,
it could be further evaluated as a potential biomarker for steatosis. Regarding NAFL in children and
adolescents, almost all patient groups in Table 4 were also obese. These studies did not appear to yield
potential biomarkers of pediatric NAFLD.

NAFLD does not have a natural history in almost all laboratory rodent studies; rather, it is
induced with specialized diets or occurs in genetically modified mice, such as leptin-deficient obese
mice (ob/ob) or leptin receptor-deficient mice (db/db) (Table 4). Unusual metabolites such as the
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globotrioseacylceramide Gb3(d18:1/22:1), which was highly statistically significantly elevated in the
livers of mice fed a high-fat high-cholesterol diet [228], could not be further evaluated because
their serum concentrations were not determined. Another unusual metabolite, phytomonic acid
(11,12-methyleneoctadecanoic acid), reported in serum of HFD-induced NASH in rats [233] may also
not be useful as human biomarkers of NAFLD, because it may be produced by the gut microbiota, given
that its older name is lactobacillic acid. The C8 and C16 acyl carnitines were elevated in liver tissue of
mice fed a high-fructose high-trans-fat diet [229] similar to human findings referred to above [184].
However, again there were no serum/plasma data from which to evaluate the potential of acyl carnitines
as biomarkers of human NAFLD. Other data from rats with different NAFLD phenotypes pointed to the
elevation of stearoyl and elaidoyl [(9E)-octadecenoyl] carnitine in serum, with palmitoyl and stearoyl
carnitine upregulated in liver tissue [238]. In summary, an abundance of metabolomic data from
human and animal model studies of NAFLD provide a number of leads for evaluation of biomarkers
in independent trials.
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