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Preface to ”Recent Investigations of Differential and

Fractional Equations and Inclusions”

During the past decades, the subject of calculus of integrals and derivatives of any arbitrary

real or complex order has gained considerable popularity and impact. This is mainly due to its

demonstrated applications in numerous seemingly diverse and widespread fields of science and

engineering. In connection with this, great importance is attached to the publication of results that

focus on recent and novel developments in the theory of any types of differential and fractional

differential equation and inclusions, especially covering analytical and numerical research for such

kinds of equations.

This book is a compilation of articles from a Special Issue of Mathematics devoted to the topic

of “Recent Investigations of Differential and Fractional Equations and Inclusions”. It contains some

theoretical works and approximate methods in fractional differential equations and inclusions as well

as fuzzy integrodifferential equations. Many of the papers were supported by the Bulgarian National

Science Fund under Project KP-06-N32/7.

Overall, the volume is an excellent witness of the relevance of the theory of fractional differential

equations.

Snezhana Hristova

Editor
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A Note on the Topological Transversality Theorem for
Weakly Upper Semicontinuous, Weakly Compact Maps
on Locally Convex Topological Vector Spaces

Donal O’Regan

School of Mathematics, Statistics and Applied Mathematics, National University of Ireland, H91 TK33 Galway,
Ireland; donal.oregan@nuigalway.ie

Received: 8 January 2020; Accepted: 18 February 2020; Published: 25 February 2020

Abstract: A simple theorem is presented that automatically generates the topological transversality
theorem and Leray–Schauder alternatives for weakly upper semicontinuous, weakly compact maps.
An application is given to illustrate our results.

Keywords: weakly upper semicontinuous; essential maps; homotopy

1. Introduction

Many problems arising in natural phenomena give rise to problems of the form x ∈ F x, for some
map F. In applications for a complicated F, the intent is to attempt to relate it to a simpler (and solvable)
problem x ∈ G x, where the map G is homotopic (in an appropriate way) to F, and then to hopefully
deduce that x ∈ F x is solvable. This approach was initiated by Leray and Schauder and extended to a
very general formulation in, for example, [1,2]. The goal, to begin with, is to consider a class of maps that
arise in applications and then to present the notion of homotopy for the class of maps that are fixed point
free on the boundary of the considered set.

In this paper we consider weakly upper semicontinuous, weakly compact maps F and G, with F ∼= G.
We present the topological transversality theorem, which states that F is essential if, and only if, G is
essential. The proof is based on a new result (Theorem 1) for weakly upper semicontinuous, weakly
compact maps. Our topological transversality theorem will then immediately generate Leray–Schauder
type alternatives (see Theorem 4 and Corollary 1). In addition, we note that these results are useful from
an application viewpoint (see Theorem 5).

2. Topological Transversality Theorem

Let X be a Hausdorff locally convex topological vector space and U be a weakly open subset of C,
where C is a closed convex subset of X. First we present the class of maps, M, that we will consider in
this paper.

Definition 1. We sayF ∈ M(Uw, C) if F : Uw → K(C) is a weakly upper semicontinuous, weakly compact map;
here Uw denotes the weak closure of U in C and K(C) denotes the family of nonempty, convex, weakly compact
subsets of C.

Definition 2. We say F ∈ M∂U(Uw, C) if F ∈ M(Uw, C) and x /∈ F(x) for x ∈ ∂U; here ∂U denotes the weak
boundary of U in C.

Mathematics 2020, 8, 304; doi:10.3390/math8030304 www.mdpi.com/journal/mathematics
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Now we present the notion of homotopy for the class of maps, M, with the fixed point free on
the boundary.

Definition 3. Let F, G ∈ M∂U(Uw, C). We write F ∼= G in M∂U(Uw, C) if there exists a weakly upper
semicontinuous, weakly compact map Ψ : Uw × [0, 1] → K(C) with x /∈ Ψt(x) for x ∈ ∂ U and t ∈ (0, 1) (here
Ψt(x) = Ψ(x, t)), Ψ0 = F and Ψ1 = G.

Definition 4. Let F ∈ M∂U(Uw, C). We say that F is essential in M∂U(Uw, C) if, for every map J ∈
M∂U(Uw, C) with J|∂U = F|∂U , there exists a x ∈ U with x ∈ J (x).

We present a simple theorem that will immediately yield the so called topological transversality
theorem (motivated from [1]) for weakly upper semicontinuous, weakly compact maps (see Theorem 2).
The topological transversality theorem essentially states that if a map F is essential and F ∼= G then the
map G is essential (and so in particular has a fixed point).

Theorem 1. Let X be a Hausdorff locally convex topological vector space, U be a weakly open subset of C, C be a
closed convex subset of X, F ∈ M∂U(Uw, C) and G ∈ M∂U(Uw, C) is essential in M∂U(Uw, C). Also suppose{

for any map J ∈ M∂U(Uw, C) with J|∂U = F|∂U
we have G ∼= J in M∂U(Uw, C).

(1)

Then F is essential in M∂U(Uw, C).

Proof. Let J ∈ M∂U(Uw, C) with J|∂U = F|∂U . We must show there exists a x ∈ U with x ∈ J(x). Let
HJ : Uw × [0, 1] → K(C) be a weakly upper semicontinuous, weakly compact map with x /∈ HJ

t (x) for
any x ∈ ∂U and t ∈ (0, 1) (here HJ

t (x) = HJ(x, t)), HJ
0 = G and HJ

1 = J (this is guaranteed from (2.1)). Let

Ω =
{

x ∈ Uw : x ∈ HJ(x, t) for some t ∈ [0, 1]
}

and
D =

{
(x, t) ∈ Uw × [0, 1] : x ∈ HJ(x, t)

}
.

Now recall that X = (X, w), the space X endowed with the weak topology, is completely regular.
First, D �= ∅ (note G is essential in M∂U(Uw, C)) and D is weakly closed (note HJ is weakly upper
semicontinuous) and so D is weakly compact (note HJ is a weakly compact map). Let π : Uw × [0, 1] → Uw

be the projection. Now Ω = π(D) is weakly closed (see Kuratowski’s theorem ([3] p. 126)) and so in fact
weakly compact. Also note that Ω ∩ ∂U = ∅ (since x /∈ HJ

t (x) for any x ∈ ∂U and t ∈ [0, 1]). Thus there
exists a weakly continuous map μ : Uw → [0, 1] with μ(∂U) = 0 and μ(Ω) = 1. We define the map R
by R(x) = HJ(x, μ(x)) = HJ ◦ g(x), where g : Uw → Uw × [0, 1] is given by g(x) = (x, μ(x)). Note that
R ∈ M∂U(Uw, C) with R|∂U = G|∂U (note, if x ∈ ∂U, then R(x) = HJ(x, 0) = G(x)) so the essentiality
of G guarantees a x ∈ U with x ∈ R(x) i.e., x ∈ HJ

μ(x)(x)). Thus x ∈ Ω so μ(x) = 1 and as a result

x ∈ HJ
1(x) = J(x).

Before we state the topological transversality theorem we note two things:

2
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(a). If Λ, Θ ∈ M∂U(Uw, C) with Λ|∂U = Θ|∂U then Λ ∼= Θ in M∂U(Uw, C). To see this let Ψ(x, t) =

(1 − t)Λ(x) + tΘ(x) and note that Ψ : Uw × [0, 1] → K(C) is a weakly upper semicontinuous, weakly
compact map [some authors prefer to assume (but it is not necessary) the following property:{

if W is a weakly compact subset of
C then co (W) is weakly compact

to guarantee that Ψ is weakly compact. Note, this property is a Krein–Šmulian type property [4,5], which
we know is true if X is a quasicomplete locally convex linear topological space]. Note, x /∈ Ψt(x) for
x ∈ ∂U and t ∈ [0, 1] (note, Λ|∂U = Θ|∂U).
(b). A standard argument guarantees that ∼= in M∂U(Uw, C) is an equivalence relation.

Theorem 2. Let X be a Hausdorff locally convex topological vector space, U be a weakly open subset of C, and C
be a closed convex subset of X. Suppose F and G are two maps in M∂U(Uw, C) with F ∼= G in M∂U(Uw, C). Then
F is essential in M∂U(Uw, C) if, and only if, G is essential in M∂U(Uw, C).

Proof. Assume G is essential in M∂U(Uw, C). To show that F is essential in M∂U(Uw, C) let J ∈
M∂U(Uw, C) with J|∂U = F|∂U . Now since F ∼= G in M∂U(Uw, C), then (a) and (b) above guarantees
that G ∼= J in M∂U(Uw, C) i.e., (2.1) holds. Then Theorem 1 guarantees that F is essential in M∂U(Uw, C).
A similar argument shows that if F is essential in M∂U(Uw, C), then G is essential in M∂U(Uw, C).

Next, we present an example of an essential map in M∂U(Uw, C), which will be useful from an
application viewpoint (see Corollary 1 and Theorem 5).

Theorem 3. Let X be a Hausdorff locally convex topological vector space, U be a weakly open subset of C, 0 ∈ U,
and C be a closed convex subset of X. Then the zero map is essential in M∂U(Uw, C).

Proof. Let J ∈ M∂U(Uw, C) with J|∂U = {0}|∂U . We must show there exists a x ∈ U with x ∈ J(x).
Consider the map R given by

R(x) =

{
J(x), x ∈ Uw

{0}, x ∈ C \Uw.

Note, R : C → K(C) is a weakly upper semicontinuous, weakly compact map, thus [6] guarantees that
there exists a x ∈ C with x ∈ R(x). If x ∈ C \Uw then since R(x) = {0} and 0 ∈ U we have a contradiction.
Thus x ∈ U so x ∈ R(x) = J(x).

We combine Theorem 2 and Theorem 3 and we obtain:

Theorem 4. Let X be a Hausdorff locally convex topological vector space, U be a weakly open subset of C, 0 ∈ U,
and C be a closed convex subset of X. Suppose F ∈ M∂U(Uw, C) with

x /∈ t F(x) for x ∈ ∂U and t ∈ (0, 1). (2)

Then F is essential in M∂U(Uw, C) (in particular there exists a x ∈ U with x ∈ F(x)).

Proof. Note, Theorem 3 guarantees that the zero map is essential in M∂U(Uw, C). The result will follow
from Theorem 2 if we note the usual homotopy between the zero map and F, namely, Ψ(x, t) = t F(x)
(note x /∈ Ψt(x) for x ∈ ∂U and t ∈ [0, 1]; see (2.2)).

3
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Corollary 1. Let X be a Hausdorff locally convex topological vector space, U be a weakly open subset of C, 0 ∈ U,
C be a closed convex subset of X, and Uw be a Šmulian space (i.e., for any Ω ⊆ Uw if x ∈ Ωw then there exists a
sequence {xn} in Ω with xn ⇀ x). Suppose F : Uw → K(C) is a weakly sequentially upper semicontinuous i.e., for
any weakly closed set A of C we have that F−1(A) = {x ∈ Uw : F(x) ∩ A �= ∅} is a weakly sequentially closed),
weakly compact map with

x /∈ t F(x) for x ∈ ∂U and t ∈ (0, 1]. (3)

Then F is essential in M∂U(Uw, C) (in particular there exists a x ∈ U with x ∈ F(x)).

Proof. The result follows from Theorem 4, as F ∈ M∂U(Uw, C). To see this we simply need to show that
F : Uw → K(C) is weakly upper semicontinuous. The argument is similar to that in [2,7]. Let A be a weakly
closed subset of C and let x ∈ F−1(A)

w. As Uw is Šmulian then there exists a sequence {xn} in F−1(A)

with xn ⇀ x. Now, x ∈ F−1(A) since F−1(A) is weakly sequentially closed. Thus, F−1(A)
w
= F−1(A) so

F−1(A) is weakly closed.

We consider the second order differential inclusion{
y′′ ∈ f (t, y, y′) a.e. on [0, 1]
y(0) = y(1) = 0

(4)

where f : [0, 1] × R2 → CK(R) is a Lp–Carathéodory function (here p > 1 and CK(R) denotes the
family of nonempty, convex, compact subsets of R); by this we mean
(a). t �→ f (t, x, y) is measurable for every (x, y) ∈ R2,
(b). (x, y) �→ f (t, x, y) is upper semicontinuous for a.e. t ∈ [0, 1],
and
(c). for each r > 0, ∃ hr ∈ Lp[0, 1] with | f (t, x, y)| ≤ hr(t) for a.e. t ∈ [0, 1] and every (x, y) ∈ R2 with
|x| ≤ r and |y| ≤ r.

We present an existence principle for (2.4) using Corollary 1. For notational purposes for appropriate
functions u, let

‖u‖0 = sup
[0,1]

|u(t)|, ‖u‖1 = max{‖u‖0, ‖u′‖0} and ‖u‖Lp =

(∫ 1

0
|u(t)|p dt

) 1
p

.

Recall that Wk,p[0, 1], 1 ≤ p < ∞ denotes the space of functions u : [0, 1] → Rn , with u(k−1) ∈
AC[0, 1] and u(k) ∈ Lp[0, 1]. Note, Wk,p[0, 1] is reflexive if 1 < p < ∞.

Theorem 5. Let f : [0, 1]× R2 → CK(R) be a Lp–Carathéodory function (1 < p < ∞) and assume there exists
a constant M0 (independent of λ) with ‖y‖1 �= M0 for any solution y ∈ W2,p[0, 1] to{

y′′ ∈ λ f (t, y, y′) a.e. on [0, 1]
y(0) = y(1) = 0

for 0 < λ ≤ 1. Then (2.4) has a solution in W2,p[0, 1].

Proof. Since f is Lp–Carathéodory, there exists hM0 ∈ Lp[0, 1] with{
| f (t, u, v)| ≤ hM0(t) for a.e. t ∈ [0, 1] and
every (u, v) ∈ R2 with |u| ≤ M0 and |v| ≤ M0.

4
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Let

G(t, s) =

{
(t − 1) s, 0 ≤ s ≤ t ≤ 1
(s − 1) t, 0 ≤ t ≤ s ≤ 1

and N = max{N0, N1, M0} where (here 1
p + 1

q = 1),

N0 = ‖hM0‖Lp sup
t∈[0,1]

(∫ 1

0
|G(t, s)|q ds

) 1
q

and

N1 = ‖hM0‖Lp sup
t∈[0,1]

(∫ 1

0
|Gt(t, s)|q ds

) 1
q

.

We also let
N2 = ‖hM0‖Lp .

We will apply Corollary 1 with X = W2,p[0, 1],

C =
{

u ∈ W2,p[0, 1] : ‖u‖1 ≤ N and ‖u′′‖Lp ≤ N2

}
and

U =
{

u ∈ W2,p[0, 1] : ‖u‖1 < M0 and ‖u′′‖Lp ≤ N2

}
.

Now, let
F = L ◦ Nf : C → 2X

where L : Lp[0, 1] → W2,p[0, 1] and Nf : W2,p[0, 1] → 2Lp [0,1] are given by

L y(t) =
∫ 1

0
G(t, s) y(s) ds

and
Nf u =

{
y ∈ Lp[0, 1] : y(t) ∈ f (t, u(t), u′(t)) a.e. t ∈ [0, 1]

}
.

Note, Nf is well defined, since if x ∈ C then ([8] p. 26 or [9], p. 56) guarantees that Nf x �= ∅.
Notice that C is a convex, closed, bounded subset of X. We first show that U is weakly open in C.

To do this, we will show that C \U is weakly closed. Let x ∈ C \Uw. Then there exists xn ∈ C \U
(see [10] p. 81) with xn ⇀ x (here W2,p[0, 1] is endowed with the weak topology and ⇀ denotes weak
convergence). We must show x ∈ C \U. Now since the embedding j : W2,p[0, 1] → C1[0, 1] is completely
continuous ([11], p. 144 or [12], p. 213), there is a subsequence S of integers with

xn → x in C1[0, 1] and x′′n ⇀ x′′ in Lp[0, 1]

as n → ∞ in S. Also

‖x‖1 = lim
n→∞

‖xn‖1 and ‖x′′‖Lp ≤ lim inf ‖x′′n‖Lp ≤ N2.

Note, M0 ≤ ‖x‖1 ≤ N since M0 ≤ ‖xn‖1 ≤ N for all n. As a result, x ∈ C \U, so C \Uw = C \U.
Thus, U is weakly open in C. Also,

5
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∂ U = {u ∈ C : ‖u‖1 = M0} and Uw = {u ∈ C : ‖u‖1 ≤ M0} ;

note, Uw = U ([5] p. 66) since U is convex (alternatively take x ∈ Uw and follow a similar argument as
above). Also note that Uw is weakly compact (note W2,p[0, 1] is reflexive) so Uw is Šmulian. Notice also
that F : Uw → 2C since if y ∈ Uw then from above we have

‖F y‖0 ≤ ‖hM0‖Lp sup
t∈[0,1]

(∫ 1

0
|G(t, s)|q ds

) 1
q
= N0,

‖(F y)′‖0 ≤ ‖hM0‖Lp sup
t∈[0,1]

(∫ 1

0
|Gt(t, s)|q ds

) 1
q
= N1,

and
‖(F y)′′‖0 ≤ ‖hM0‖Lp = N2.

A standard argument (see for example ([13] p. 283)) guarantees that F : Uw → K(C) is weakly sequentially
upper semicontinuous.

Now we apply Corollary 1 to deduce our result: Note that (2.3) holds since, if there exists x ∈ ∂ U
and λ ∈ (0, 1] with x ∈ λ F x , then ‖x‖1 = M0 (since x ∈ ∂ U) and ‖x‖1 �= M0 by assumption. Thus, F
is essential in M∂U(Uw, C), so in particular, F has a fixed point in U.
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Abstract: The main aim of this paper is to suggest an algorithm for constructing two monotone
sequences of mild lower and upper solutions which are convergent to the mild solution of the initial
value problem for Riemann-Liouville fractional delay differential equation. The iterative scheme
is based on a monotone iterative technique. The suggested scheme is computerized and applied
to solve approximately the initial value problem for scalar nonlinear Riemann-Liouville fractional
differential equations with a constant delay on a finite interval. The suggested and well-grounded
algorithm is applied to a particular problem and the practical usefulness is illustrated.
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1. Introduction

Fractional differential operators are applied successfully to model various processes with
anomalous dynamics in science and engineering [1,2]. At the same time, only a small number of
fractional differential equations could be solved explicitly. It requires the application of different
approximate methods for solving nonlinear factional equations.

This paper deals with an initial value problem for a nonlinear scalar Riemann-Liouville (RL)
fractional differential equation with a delay on a closed interval is studied. Mild lower and mild upper
solutions are defined. An algorithm for constructing two convergent monotone functional sequences
{vn}, {wn} are given. It is proved both sequences {(t − t0)

1−qvn} and {(t − t0)
1−qwn} are the mild

minimal and the mild maximal solutions of the given problem. The uniform convergence of both
sequences is proved. A special computer program is built and applied to solve particular problems
and to illustrate the practical application of the suggested schemes.

Note the monotone iterative techniques combined with lower and upper solutions are applied in
the literature to solve various problems in ordinary differential equations [3], differential equations
with maxima [4], difference equations with maxima [5], Caputo fractional differential equations [6],
Riemann-Liouville fractional differential equations [7–10].

In this paper, we consider an initial value problem for a scalar nonlinear Riemann-Liouville
fractional differential equation with a constant delay on a finite interval. We apply the method of
lower and upper solutions and monotone-iterative technique to suggest an algorithm for approximate
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solving of the studied problem. The suggested and well-grounded algorithm is used in an appropriate
computer environment and it is applied to a particular problem to illustrate the practical usefulness.

2. Preliminary and Auxiliary Results

Let m : [0, ∞) → R be a given function and q ∈ (0, 1) be a fixed number. Then the Riemann-
Liouville fractional derivative of order q ∈ (0, 1) is defined by (see, for example, [2]

RL
0 Dq

t m(t) =
1

Γ (1 − q)
d
dt
( t∫

0

(t − s)−q m(s)ds
)
, t ≥ 0.

We will give RL fractional derivatives of some elementary functions which will be used later:

Proposition 1. Reference [2] the following equalities are true:

RL
0 Dq

t C =
1

Γ(1 − q)
t−q,

RL
0 Dq

t tβ =
Γ(1 + β)

Γ(1 + β − q)
tβ−q.

Consider the initial value problem (IVP) for the nonlinear Riemann-Liouville delay fractional
differential equation (FrDDE)

RL
0 Dq

t x(t) = F(t, x(t), x(t − τ)) for t ∈ (0, T]

x(s) = ψ(s) for s ∈ [−τ, 0]

t1−qx(t)|t=0 = lim
t→0+

t1−qx(t) = ψ(0),
(1)

where q ∈ (0, 1), F : [0, T]×R×R → R, ψ : [−τ, 0] → R : ψ(0) < ∞ with T ∈ ((N − 1)τ, Nτ], N is
a natural number, and τ > 0 is a given number.

The solution of the IVP (1) could have a discontinuity at t = 0.
Denote the interval I = [−τ, T]/{0}.
Denote

C1−q([a, b]) = {x(t) : [a, b] → R : (t − a)1−qx(t) ∈ C([a, b],R)},

where a, b, a < b are real numbers.
Define the norm in C1−q([a, b]) by ||x||C1−q [a,b] = max

t∈[a,b]
|(t − a)1−qx(t)|.

Consider the linear scalar delay RL fractional equation of the type

RL
0 Dq

t x(t) = λx(t) + μx(t − τ) + f (t) for t ∈ (0, T],

x(t) = ψ(t) for t ∈ [−τ, 0], t1−qx(t)|t=0 = ψ(0),
(2)

where λ, μ are real constant, f ∈ C([0, T],R). There exits an explicit formula for the solution of (2)
given by see [11]:

x(t) =

⎧⎨⎩ψ(t) for t ∈ [−τ, 0],

ψ(0)Γ(q)Eq,q(λtq)tq−1 +
∫ t

0
(t − s)q−1Eq,q(λ(t − s)q)

(
f (s) + μx(s − τ)

)
ds, t ∈ (0, T]

(3)

where Eα,β(z) = ∑∞
k=0

zk

Γ(αk+β)
is the Mittag-Leffler function with two parameters.

Note that the solution in the simplest linear case is not easy to obtain. It requires the application
of some approximate methods.
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Similar to References [12], we have the following result:

Proposition 2. Let f ∈ C([0, T],R), ψ ∈ C([−τ, 0],R), λ ∈ R, μ ≥ 0 be constants and

RL
0 Dq

t v(t) ≤ λv(t) + μv(t − τ) + f (t) for t ∈ (0, T],

v(t) = ψ(t) for t ∈ [−τ, 0], t1−qv(t)|t=0 = ψ(0).

Then

v(t) ≤
⎧⎨⎩ψ(t), t ∈ [−τ, 0],

ψ(0)Γ(q)Eq,q(λtq)tq−1 +
∫ t

0
(t − s)q−1Eq,q(λ(t − s)q)

(
f (s) + μv(s − τ)

)
ds, t ∈ (0, T].

Similar to References [7], we define the mild solutions:

Definition 1. The function x ∈ C(I,R) is a mild solution of the IVP for FrDDE (1), if it satisfies

x(t) =

⎧⎨⎩ψ(t) for t ∈ [−τ, 0],

ψ(0)Γ(q)Eq,q(λtq)tq−1 +
∫ t

0
(t − s)q−1Eq,q(λ(t − s)q) f (s, x(s), x(s − τ))ds, t ∈ (0, T].

(4)

Remark 1. Note that the mild solution x(t) ∈ C(I,R) of the IVP for FrDDE (1) might not be from C1−q([0, T])
and it might not have the fractional derivative RL

0 Dq
t x(t).

Definition 2. The function x ∈ C(I,R) is a mild maximal solution (a mild minimal solution) of the IVP
for FrDDE (1), if it is a mild solution of (1) and for any mild solution u(t) ∈ C(I,R) of (1) the inequality
x(t) ≤ u(t) (x(t) ≥ u(t)) holds on I and t1−qx(t)|t=0 ≤ (≥)t1−qu(t)|t=0.

3. Mild Lower and Mild Upper Solutions of FrDDE

Definition 3. The function v(t) ∈ C(I,R) is a mild lower (a mild upper) solution of the IVP for FrDDE (1),
if it satisfies the integral inequalities

v(t) ≤ (≥)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ψ(t) for t ∈]− τ, 0],

ψ(0)Γ(q)Eq,q(λtq)tq−1+

+
∫ t

0
(t − s)q−1Eq,q(λ(t − s)q) f (s, v(s), v(s − τ))ds, t ∈ (0, T]

(5)

and t1−qv(t)|t=0 = ψ(0).

Definition 4. We say that the function v(t) ∈ C1−q(I,R) is a lower (an upper) solution of the IVP for
FrDDE (1), if

RL
0 Dq

t v(t) ≤ (≥)F(t, v(t), v(t − τ)) for t ∈ (0, T],

v(t) = ψ(t) for t ∈ [−τ, 0], t1−qv(t)|t=0 = ψ(0).

Remark 2. A function could be a mild lower solution or a mild upper solution, respectively, of the IVP for
FrDDE (1) but it could not be a lower solution or an upper solution, respectively, of the IVP for FrDDE (1).

Remark 3. Note that the mild lower solution (mild upper solution) is not unique. At the same time, because of
the inequalities in (5) it is much easier to obtain at least one mild lower solution (mild upper solution) than a
mild solution of the IVP for FrDDE (1).
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4. Monotone-Iterative Techniques for FrDDE

Now we will consider a nonlinear RL fractional differential equation with a constant delay. We will
apply a monotone iterative technique to obtain approximate solution. The idea of the formulas for the
successive approximations is based on linear RL-fractional differential equations of type (2) and its
explicit formula for the solution obtained in [11].

For any two u, v ∈ PC([−τ, T],R) and the constants M, L define the operator (the values of the
constants M, L will be defined later):

Ω(u, v)(t) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ψ(t), t ∈ [−τ, 0]

ψ(0)Γ(q)Eq,q(Mtq)tq−1 +
∫ t

0
(t − s)q−1Eq,q(M(t − s)q)F(s, u(s), u(s − τ))ds

−
∫ t

0
(t − s)q−1Eq,q(M(t − s)q)

(
Mu(s) + L(u(s − τ)− v(s − τ))

)
ds, t ∈ (0, T].

Theorem 1. Let the following conditions be fulfilled:

1. Let the functions v, w ∈ C(I,R) ∪ C1−q([0, T]) be a lower solution and an upper solution, respectively,
of the IVP for FrDDE (1) such that v(t) ≤ w(t) for t ∈ [0, T] and v(0) − ψ(0) ≤ v(s) − ψ(s),
w(0)− ψ(0) ≥ w(s)− ψ(s) for s ∈ [−τ, 0).

2. The function F ∈ C([0, T]×R×R,R) and there exist constants M ∈ R and L > 0 : LTq

Γ(1q)
< 1 such

that for any t ∈ [0, T], x, y, u, v ∈ R : v(t) ≤ x ≤ y ≤ w(t), v(t − τ) ≤ u ≤ v ≤ w(t − τ) the
inequality F(t, x, u)− F(t, y, v) ≤ M(x − y) + L(u − v) holds.

Then there exist two sequences of functions {v(n)(t)}∞
0 and {w(n)(t)}∞

0 , t ∈ [−τ, T], such that:

a. The sequences {v(n)(t)} and {w(n)(t)} are defined by v(0)(t) = v(t), w(0)(t) = w(t) and

v(n)(t) = Ω
(

v(n−1), v(n)
)
(t), w(n)(t) = Ω

(
w(n−1), w(n)

)
(t) for n ≥ 1,

that is,

v(n)(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ψ(t), t ∈ [−τ, 0],

ψ(0)Γ(q)Eq,q(Mtq)tq−1+

+
∫ t

0
(t − s)q−1Eq,q(M(t − s)q)F(s, v(n−1)(s), v(n−1)(s − τ))ds−

−
∫ t

0
(t − s)q−1Eq,q(M(t − s)q)×

×
(

Mv(n−1)(s) + L(v(n−1)(s − τ)− v(n)(s − τ))
)

ds, t ∈ (0, T],

w(n)(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ψ(t), t ∈ [−τ, 0],

ψ(0)Γ(q)Eq,q(Mtq)tq−1

+
∫ t

0
(t − s)q−1Eq,q(M(t − s)q)F(s, w(n−1)(s), w(n−1)(s − τ))ds

−
∫ t

0
(t − s)q−1Eq,q(M(t − s)q)×

×
(

Mw(n−1)(s) + L(w(n−1)(s − τ)− w(n)(s − τ))
)

ds, t ∈ (0, T],

where the constants M, L are defined in condition 2.
b. The sequence {v(j)(t)}∞

j=0 is increasing, that is, v(j−1)(t) ≤ v(j)(t) for t ∈ (0, T], j = 1, 2, . . . .
c. The sequence {w(j)(t)}∞

j=0 is decreasing , that is, w(j−1)(t) ≥ w(j)(t) for t ∈ (0, T], j = 1, 2, . . . .
d. The inequality

v(k)(t) ≤ w(k)(t) for t ∈ (0, T], k = 1, 2, . . . (6)

holds.
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e. The sequences {t1−qv(n)(t)}∞
0 and {t1−qw(n)(t)}∞

0 converge uniformly on [0, T] and t1−qV(t) =

lim
k→∞

t1−qv(n)(t), t1−qW(t) = lim
k→∞

t1−qw(n)(t) on [0, T].

f. The limit functions V(t) and W(t) are mild solutions of the IVP for FrDDE (1) on [−τ, T].
g. The inequalities v(n)(t) ≤ V(t) ≤ W(t) ≤ w(n)(t) hold on (0, T] for any n = 0, 1, 2, . . . .

Proof of Theorem 1. Let v(t) be a lower solution of the IVP for FrDDE (1), that is,

RL
θ0

Dq
t v(t) ≤ Mv(t) + Lv(t − τ) + G(t, v(t), v(t − τ)), (7)

where G(t, u, v) = F(t, u, v)− Mu − Lv, t ∈ [0, T], u, v ∈ R.
According to Proposition 2, the inequality

v(t) ≤ ψ(0)Γ(q)Eq,q(Mtq)tq−1 +
∫ t

0
(t − s)q−1Eq,q(M(t − s)q)G(s, v(s), v(s − τ))ds

+ L
∫ t

0
(t − s)q−1Eq,q(M(t − s)q)v(s − τ)ds, t ∈ (0, T]

(8)

holds.
Let v(0)(t) = v(t) and w(0)(t) = w(t) for t ∈ [−τ, T].
We use induction w.r.t. the interval to prove properties of the sequences of successive

approximations.
From the definition of the operator Ω and equality Eq,q(0) = 1

Γ(q) it follows that t1−qw(n)(t)|t=0 =

t1−qv(n)(t)|t=0 = lim
t→0+

t1−qv(n)(t) = lim
t→0+

ψ(0)Γ(q)Eq,q(Mtq) = ψ(0) for all integers n ≥ 1.

Let t ∈ (0, τ]. From the definition of the operator Ω and inequalities (8) we obtain

v(0)(t) ≤ ψ(0)Γ(q)Eq,q(Mtq)tq−1 +
∫ t

0
(t − s)q−1Eq,q(M(t − s)q)G(s, v(0)(s), v(0)(s − τ))ds

+ L
∫ t

0
(t − s)q−1Eq,q(M(t − s)q)ψ(s − τ)ds = v(1)(t) for t ∈ (0, τ].

(9)

From the definition of the operator Ω, condition 2, the inequality (9) and the equality v(1)(s −
τ)− v(2)(s − τ) = 0 for s ∈ (0, τ] we get

v(1)(t) = ψ(0)Γ(q)Eq,q(Mtq)tq−1 + L
∫ t

0
(t − s)q−1Eq,q(M(t − s)q)v(1)(s − τ)ds

+
∫ t

0
(t − s)q−1Eq,q(M(t − s)q)F(s, v(0)(s), v(0)(s − τ))ds

−
∫ t

0
(t − s)q−1Eq,q(M(t − s)q)

(
Mv(0)(s) + Lv(0)(s − τ)

)
ds

≤ ψ(0)Γ(q)Eq,q(Mtq)tq−1 + L
∫ t

0
(t − s)q−1Eq,q(M(t − s)q)v(2)(s − τ)ds

+
∫ t

0
(t − s)q−1Eq,q(M(t − s)q)F(s, v(1)(s), v(1)(s − τ))ds

−
∫ t

0
(t − s)q−1Eq,q(M(t − s)q)

(
Mv(1)(s) + Lv(1)(s − τ)

)
ds

= v(2)(t) for t ∈ (0, τ].

(10)

Similarly, we can prove

v(n)(t) ≤ v(n+1)(t), for t ∈ (0, τ], n = 2, . . . ,

11
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and
w(n)(t) ≥ w(n+1)(t), for t ∈ (0, τ], n = 0, 1, 2, . . . .

Let t ∈ (τ, 2τ]. From the definition of the operator Ω, the inequalities (8) and v(0)(t − τ) ≤
v(1)(t − τ) for t ∈ (τ, 2τ] we obtain

v(0)(t) ≤ ψ(0)Γ(q)Eq,q(Mtq)tq−1 +
∫ t

0
(t − s)q−1Eq,q(M(t − s)q)F(s, v(0)(s), v(0)(s − τ))ds

+ L
∫ τ

0
(t − s)q−1Eq,q(M(t − s)q)v(1)(s − τ)ds

+ L
∫ t

τ
(t − s)q−1Eq,q(M(t − s)q)v(1)(s − τ)ds

−
∫ t

0
(t − s)q−1Eq,q(M(t − s)q)

(
Mv(0)(s) + Lv(0)(s − τ)

)
ds = v(1)(t).

(11)

Also, from condition 2, the inequalities (8) and v(1)(t − τ) ≤ v(2)(t − τ) for t ∈ (τ, 2τ] we get

v(1)(t) = ψ(0)Γ(q)Eq,q(Mtq)tq−1 +
∫ t

0
(t − s)q−1Eq,q(M(t − s)q)F(s, v(0)(s), v(0)(s − τ))ds

−
∫ t

0
(t − s)q−1Eq,q(M(t − s)q)

(
Mv(0)(s) + L(v(0)(s − τ)− v(1)(s − τ)

)
ds

≤ ψ(0)Γ(q)Eq,q(Mtq)tq−1 +
∫ t

0
(t − s)q−1Eq,q(M(t − s)q)F(s, v(1)(s), v(1)(s − τ))ds

+
∫ t

0
(t − s)q−1Eq,q(M(t − s)q)

(
M(v(0)(s)− v(1)(s)) + L(v(0)(s − τ)− v(1)(s − τ))

)
ds

−
∫ t

0
(t − s)q−1Eq,q(M(t − s)q)

(
Mv(0)(s) + L(v(0)(s − τ)− v(1)(s − τ))

)
ds

= ψ(0)Γ(q)Eq,q(Mtq)tq−1 +
∫ t

0
(t − s)q−1Eq,q(M(t − s)q)F(s, v(1)(s), v(1)(s − τ))ds

−
∫ t

0
(t − s)q−1Eq,q(M(t − s)q)Mv(1)(s)ds

≤ ψ(0)Γ(q)Eq,q(Mtq)tq−1 +
∫ t

0
(t − s)q−1Eq,q(M(t − s)q)F(s, v(1)(s), v(1)(s − τ))ds

−
∫ t

0
(t − s)q−1Eq,q(M(t − s)q)

(
Mv(1)(s) + L(v(1)(s − τ)− v(2)(s − τ))

)
ds

= v(2)(t), t ∈ (τ, 2τ].

Similarly, we can prove

v(n)(t) ≤ v(n+1)(t), for t ∈ (τ, 2τ], n = 2, 3 . . . ,

and
w(n)(t) ≥ w(n+1)(t), for t ∈ (τ, 2τ], n = 0, 1, 2, . . . .

Following the induction process w.r.t. the interval we prove the claims (b) and (c).

12
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Now, we will prove the claim (d). Let t ∈ (0, τ]. From the definition of the operator Ω, condition 2,
the inequality (9) we get

v(1)(t)− w(1)(t) =
∫ t

0
(t − s)q−1Eq,q(M(t − s)q)F(s, v(0)(s), v(0)(s − τ))ds

−
∫ t

0
(t − s)q−1Eq,q(M(t − s)q)F(s, w(0)(s), w(0)(s − τ))ds

−
∫ t

0
(t − s)q−1Eq,q(M(t − s)q)×

×
(

Mv(0)(s) + L(v(0)(s − τ)− v(1)(s − τ))
)

ds

+
∫ t

0
(t − s)q−1Eq,q(M(t − s)q)×

×
(

Mw(0)(s) + Lw(0)(s − τ)− Lw(1)(s − τ)
)

ds

≤ L
∫ t

0
(t − s)q−1Eq,q(M(t − s)q)(v(1)(s − τ)− w(1)(s − τ))ds

= 0 for t ∈ (0, τ].

(12)

Similarly, we can prove

v(n)(t) ≤ w(n+1)(t), for t ∈ (0, τ], n = 2, 3, . . . .

Let t ∈ (τ, 2τ]. From condition 2, the inequalities (8) and v(1)(t − τ) ≤ w(1)(t − τ) for t ∈ (τ, 2τ]

we obtain we get

v(1)(t) = ψ(0)Γ(q)Eq,q(Mtq)tq−1 +
∫ t

0
(t − s)q−1Eq,q(M(t − s)q)F(s, v(0)(s), v(0)(s − τ))ds

−
∫ t

0
(t − s)q−1Eq,q

(
M(t − s)q)(Mv(0)(s) + L(v(0)(s − τ)− v(1)(s − τ))

)
ds

≤ ψ(0)Γ(q)Eq,q(Mtq)tq−1 +
∫ t

0
(t − s)q−1Eq,q(M(t − s)q)F(s, w(0)(s), w(0)(s − τ))ds

+
∫ t

0
(t − s)q−1Eq,q(M(t − s)q)

(
M(v(0)(s)− w(0)(s)) + L(v(0)(s − τ)− w(0)(s − τ))

)
ds

−
∫ t

0
(t − s)q−1Eq,q(M(t − s)q)

(
Mv(0)(s) + L(v(0)(s − τ)− v(1)(s − τ))

)
ds

≤ ψ(0)Γ(q)Eq,q(Mtq)tq−1 +
∫ t

0
(t − s)q−1Eq,q(M(t − s)q)F(s, w(0)(s), w(0)(s − τ))ds

−
∫ t

0
(t − s)q−1Eq,q(M(t − s)q)Mw(0)(s)

≤ ψ(0)Γ(q)Eq,q(Mtq)tq−1 +
∫ t

0
(t − s)q−1Eq,q(M(t − s)q)F(s, w(0)(s), w(0)(s − τ))ds

−
∫ t

0
(t − s)q−1Eq,q(M(t − s)q)

(
Mw(0)(s) + L(w(0)(s − τ)− w(1)(s − τ))

)
ds

= w(1)(t), t ∈ (τ, 2τ].

Similarly, we can prove

v(n)(t) ≤ w(n)(t), for t ∈ (τ.2τ], n = 2, 3, . . . .

Now consider the sequences {t1−qv(n)(t)}∞
0 and {t1−qw(n)(t)}∞

0 . They are increasing and
decreasing, respectively, and bounded. Thus, they are equicontinuous on [0, T] (the proof is similar
to that in [13] and we omit it). Therefore, they are uniformly convergent on [0, T]. Denote,

13
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Ṽ(t) = lim
n→∞

t1−qv(n)(t) and W̃(t) = lim
n→∞

t1−qw(n)(t), t ∈ [0, T]. According to the above (b), (c)

and (d) the inequalities

t1−qv(n)(t) ≤ Ṽ(t), t ∈ [0, T], W̃(t) ≤ t1−qw(n)(t), t ∈ [0, T], n = 0, 1, 2, . . . ,

Ṽ(t) ≤ W̃(t), t ∈ [0, T].
(13)

hold.
From the uniform convergence of the sequences {t1−qv(n)(t)}∞

0 and {t1−qw(n)(t)}∞
0 we have

the point-wise convergence of the sequences {v(n)(t)}∞
0 and {w(n)(t)}∞

0 on (0, T] to V(t) = Ṽ(t)
t1−q ∈

C1−q([0, T]) and W(t) = W̃(t)
t1−q ∈ C1−q([0, T]), respectively.

Consider the continuous extension of the integral form of t1−qv(n+1)(t) on [0, T]:

t1−qv(n)(t) = ψ(0)Γ(q)Eq,q(Mtq)

+ t1−q
∫ t

0
(t − s)q−1Eq,q(M(t − s)q)F(s, v(n−1)(s), v(n−1)(s − τ))ds

− t1−q
∫ t

0
(t − s)q−1Eq,q(M(t − s)q)×

×
(

Mv(n−1)(s) + L(v(n−1)(s − τ)− v(n)(s − τ))
)

ds.

(14)

Take the limit in (14) and we obtain the Volterra fractional integral equation

Ṽ(t) = ψ(0)Γ(q)Eq,q(Mtq)

+ t1−q
∫ t

0
(t − s)q−1Eq,q(M(t − s)q)

(
F(s, V(s), V(s − τ))− MV(s)

)
ds, for t ∈ (0, T],

(15)

or

V(t) = ψ(0)Γ(q)Eq,q(Mtq)t1−q

+
∫ t

0
(t − s)q−1Eq,q(M(t − s)q)

(
F(s, V(s), V(s − τ))− MV(s)

)
ds, for t ∈ (0, T].

(16)

From equalities t1−qV(t)|t=0 = Ṽ(t)|t=0 = lim
n→∞

(t − 0)1−qv(n)(t)|t=0 = lim
n→∞

ψ(0) = ψ(0)

according to Proposition 2 applied to Equation (16) the limit function V(t) is a solution of the
linear FrDDE

RL
t0

Dq
t v(t) = Mv(t)−

(
F(t, v(t), v(t − τ))− Mv(t)

)
= F(t, v(t), v(t − τ)), t ∈ (0, T].

Therefore, the function v(t) is a solution of the IVP for FrDDE (1).
The proof about w(t) is similar.
Proof of claim g). From claim (d) and the inequality (6) it follows that t1−qv(k)(t) ≤ t1−qw(k)(t)

for any fixed t ∈ (0, T] and k = 1, 2, . . . . Then applying claim (e) we get t1−qv(k)(t) ≤ t1−qV(t) ≤
t1−qW(t) ≤ t1−qw(k)(t) for any fixed t ∈ (0, T]. Therefore, v(k)(t) ≤ V(t) ≤ W(t) ≤ w(k)(t) for any on
t ∈ (0, T].

5. Application of the Suggested Algorithm

Now we will apply the algorithm suggested in Theorem 1 for approximate obtaining of the
solution of nonlinear RL fractional differential equation with a delay. We will use computer realization
of this algorithm to obtain the values of the approximate solutions and to graph them.

14
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Example 1. Let τ = 0.5, T = 1 and consider the IVP for scalar nonlinear Riemann-Liouville FrDDE

RL
0 D0.5

t x(t) = (x2(t) + 0.05)
(
−0.5 +

x(t − 0.5)
t + 1

)
for t ∈ (0, 1],

x(t) = 0.5t for t ∈ [−0.5, 0],

t0.5x(t)|t=0 = 0

(17)

with ψ(t) = 0.5t, t ∈ [−0.5, 0], and F(t, x, y) = (x2 + 0.05)(−0.5 + y
t+1 ).

The function

w(t) =

{
0.5t, t ∈ [−0.5, 0]

t2, t ∈ (0, 1]

is an upper solution on [−0.5, 1] of the IVP for FrDE (17) since t0.5t2|t=0 = 0 and according to Proposition 1
with q = 0.5 and β = 2 the following inequalities

RL
0 D0.5

t t2 =
Γ(3)

Γ(2.5)
t1.5 ≥

⎧⎪⎨⎪⎩
(t4 + 0.05)

(
−0.5 + 0.5(t−0.5)

t+1

)
, t ∈ (0, 0.5]

(t4 + 0.05)
(
−0.5 + (t−0.5)2

t+1

)
, t ∈ (0.5, 1]

are satisfied (see Figure 1).

0.2 0.4 0.6 0.8 1.0

-0.5

0.5

1.0

1.5

RLDw(t)
F(t,w(t),w(t-0.5))

Figure 1. Graphs of the fractional derivative of the function w(t) and the right side part of the equation
on [0, 1].

The function

v(t) =

{
0.5t, t ∈ [−0.5, 0]

−0.2t0.5, t ∈ (0, 1]

15
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is a lower solution on [−0.5, 1] of the IVP for FrDDE (17) because t0.5(−5t0.5)|t=0 = 0 holds and according to
Proposition 1 with q = β = 0.5 the following inequalities

RL
0 D0.5

t (−0.2t0.5) = −0.2Γ(1.5) ≤

⎧⎪⎨⎪⎩
(
(0.2t0.5)2 + 0.05

) (−0.5 + 0.5 t−0.5
t+1

)
, t ∈ (0, 0.5](

(−0.2t0.5)2 + 0.05
) (−0.5 − 0.2 (t−0.5)0.5

t+1

)
, t ∈ (0.5, 1]

are satisfied (see Figure 2).

0.2 0.4 0.6 0.8 1.0

-0.15

-0.10

-0.05

RLDv(t)
F(t,v(t),v(t-0.5))

Figure 2. Graphs of the fractional derivative of the functions v(t) and the right side part of the equation
on [0, 1].

Note that the lower and upper solutions v(t) and w(t) are not unique. For example the function

w(t) =

{
0.5t, t ∈ [−0.5, 0]

t3, t ∈ (0, 1]

is also an upper solution. But we take just one lower (upper) solution to start the procedure.
Also, the inequality v(t) ≤ w(t) on [−0.5, 1] holds.
For any t ∈ [0, 1], x, y, u, v ∈ R we have −0.2 ≤ −0.2t0.5 = v(t) ≤ x ≤ y ≤ w(t) = t2 ≤ 1,

−0.25 ≤ v(t − 0.5) ≤ u ≤ v ≤ w(t − 0.5) ≤ √
0.5 and therefore,

F(t, x, u)− F(t, y, v) = (x2 + 0.05)
(
−0.5 +

u
t + 1

)
− (y2 + 0.05)

(
−0.5 +

v
t + 1

)
= −0.5(x2 + 0.05 − y2 − 0.05) + (x2 + 0.05)

u
t + 1

− (y2 + 0.05)
u

t + 1
+ (y2 + 0.05)

u
t + 1

− (y2 + 0.05)
v

t + 1

=

(
u

t + 1
− 0.5

)
(x + y)(x − y) +

y2 + 0.05
t + 1

(u − v).

16
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Applying the inequalities −0.5 ≤ ( u
t+1 − 0.5) ≤ √

0.5 − 0.5, −0.4 ≤ x + y ≤ 2, and ( u
t+1 − 0.5)(x +

y) ≥ −1, y2+0.05
t+1 ≥ 0.05, we get the inequality F(t, x, u)− F(t, y, v) ≤ M(x − y) + L(u − v) with M =

−1, L = 0.05 > 0. Therefore, all conditions of Theorem 1 are fulfilled.
We apply the iterative scheme, suggested in Theorem 1, to obtain the successive approximations to the mild

solution and to illustrate the claims of Theorem 1.
Define the zero approximation by v(0)(t) = v(t) and w(0)(t) = w(t) for t ∈ [−0.5, 1].
Starting from the function v(0)(t) we obtain the first lower approximation

v(1)(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

0.5t, t ∈ [−0.5, 0]

∫ t

0
(t − s)−0.5E0.5,0.5(−(t − s)0.5)((v(0)(s))2 + 0.05)(−0.5 +

v(0)(s − 0.5)
s + 1

))ds

−
∫ t

0
(t − s)−0.5E0.5,0.5(−(t − s)0.5)×

×(−(v(0)(s)) + 0.05)(v(0)(s − 0.5)− v(1)(s − 0.5))ds, t ∈ (0, 1],

(18)

the second lower approximation

v(2)(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

0.5t, t ∈ [−0.5, 0]

∫ t

0
(t − s)−0.5E0.5,0.5(−(t − s)0.5)((v(1)(s))2 + 0.05)(−0.5 +

v(1)(s − 0.5)
s + 1

))ds

−
∫ t

0
(t − s)−0.5E0.5,0.5(−(t − s)0.5)×

×(−(v(1)(s)) + 0.05)(v(1)(s − 0.5)− v(2)(s − 0.5))ds, t ∈ (0, 1]

(19)

and so on.
About the upper approximations we start from w(0)(t) and obtain the first upper approximation

w(1)(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

0.5t, t ∈ [−0.5, 0]

∫ t

0
(t − s)−0.5E0.5,0.5(−(t − s)0.5)((w(0)(s))2 + 0.05)(−0.5 +

w(0)(s − 0.5)
s + 1

))ds

−
∫ t

0
(t − s)−0.5E0.5,0.5(−(t − s)0.5)×

×(−(w(0)(s)) + 0.05)(w(0)(s − 0.5)− w(1)(s − 0.5))ds, t ∈ (0, 1],

the second upper approximation

w(2)(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

0.5t, t ∈ [−0.5, 0]

∫ t

0
(t − s)−0.5E0.5,0.5(−(t − s)0.5)((w(1)(s))2 + 0.05)(−0.5 +

w(1)(s − 0.5)
s + 1

))ds

−
∫ t

0
(t − s)−0.5E0.5,0.5(−(t − s)0.5)×

×(−(w(1)(s)) + 0.05)(w(1)(s − 0.5)− w(2)(s − 0.5))ds, t ∈ (0, 1],

and so on.
The numerical values of the lower/upper approximations, given analytically above, are obtained by a

computer program written in C#. We will briefly describe the computerized algorithm for obtaining these
successive approximations:

The numerical values of the sequences of successive approximations v(k)(t) and w(k)(t), k = 0, 1, 2, 3, . . . ,
t ∈ [−0.5, 1], are written in two dimensional arrays. The length of any of these arrays depends on the step in the
interval [−0.5, 1].

17
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We calculate in advance the values of the Mittag-Leffler function E0.5,0.5(−t0.5), t ∈ [0, 1), in the points t,
which will be used for numerical solving of the integrals

∫ t
0 ...ds, t ∈ (0, 1) (see Equations (18) and (19)). In the

same points we also obtain the values of (t)−0.5. These results are written in arrays with lengths, depending on
the step on interval (0, 1). Note that the values of the Mittag-Leffler function are calculated by the help of the
main definition (as an infinite sum) with an initially given error.

We use the trapezoid method with an initially given error to solve numerically the integrals of the type∫ t
0 (t − s)−0.5E0.5,0.5(−(t − s)0.5) . . . ds for each approximation k and any fixed t ∈ (0, 1]. The values of both

multipliers (t − s)−0.5 and E0.5,0.5(−(t − s)0.5) are taken from initially formed arrays. Note that it could be
used another numerical method for solving the required definite integrals.

For example, to calculate the values of v(k)(t) we use the following function

private double Calc_v_t(double[,] v, int k, long it)

{

double f, pf, sum = 0, s = 0, q = 0.5;

long shift = (long)(0.5/eps)+1;

long sh2 = shift/2;

long i = shift, ie = it;

pf = PowTmS[ie] * Eqq[ie] *

((v[k-1,i]*v[k-1,i]+0.05) * (-q+v[k-1,i-sh2]/(s+1)) -

(-v[k-1,i]+0.05*(v[k-1,i-sh2]-v[k,i-sh2])));

while (s < tval)

{

i++; ie--; s += eps;

f = PowTmS[ie] * Eqq[ie] *

((v[k-1,i]*v[k-1,i]+0.05) * (-q+v[k-1,i-sh2]/(s+1)) -

(-v[k-1,i]+0.05*(v[k-1,i-sh2]-v[k,i-sh2])));

sum += (pf + f) * eps;

pf = f;

}

return sum / 2;

}

A part of the obtained numerical values of the successive approximations are given in Table 1 and they are
used to generate the graphs on Figures 3–6).

Table 1 and Figures 3–6 illustrate the claims of Theorem 1 for the obtained successive approximations:

- claim (b) - the sequence of lower approximate solutions v(n)(t), n = 0, 1, 2, 3 is increasing (see Figure 4
and the last four columns of Table 1);

- claim (c)- the sequence of upper approximate solutions w(n)(t), n = 0, 1, 2, 3 is decreasing (see Figure 5
and the first four columns of Table 1);

- claim (d) - the inequality v(3)(t) ≤ w(3)(t), t ∈ [0, 1] holds (see Figure 6 and the 5-th and 6-th columns
of Table 1).

According to the claim (g) of Theorem 1 the mild solutions V(t) and W(t) of the FrDDE (17) are between
the last obtained lower solution v(3)(t) and upper solution w(3)(t). So, practically the suggested algorithm for
the approximate solving of IVP for FrDDE gives us a lower and upper bounds of the unknown exact solution.
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0.2 0.4 0.6 0.8 1.0

-0.2

-0.1

0.1

0.2

w0(t)
w1(t)
w2(t)
w3(t)
v0(t)
v1(t)
v2(t)
v3(t)

Figure 3. Graphs of the upper/lpwer successive approximations v(n)(t) and w(n)(t), n = 0, 1, 2, 3,
on the interval [0, 1].

0.2 0.4 0.6 0.8 1.0

-0.20

-0.15

-0.10

-0.05

0.00

0.05

v
(0)(t)
v
(1)(t)
v
(2)(t)
v
(3)(t)

Figure 4. Graphs of the successive lower approximations v(n)(t), n = 0, 1, 2, 3, on the interval [0, 1].
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0.00
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0.15

0.20

w
(0)(t)

w
(1)(t)

w
(2)(t)

w
(3)(t)

Figure 5. Graphs of the successive upper approximations w(n)(t), n = 0, 1, 2, 3, on the interval [0, 1].

0.2 0.4 0.6 0.8 1.0

-0.020

-0.015

-0.010

-0.005

0.000

0.005

0.010

w
(t )(3)

v
(t )(3)

Figure 6. Graphs of the successive approximations v(3)(t) and w(3)(t) on the interval [0, 1].
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Table 1. Values of successive approximations w(n)(t) and v(n)(t), n = 0, 1, 2, 3 for t ∈ [0, 1].

t w(0)(t) w(1)(t) w(2)(t) w(3)(t) v(3)(t) v(2)(t) v(1)(t) v(0)(t)

0 0 0 0 0 0 0 0
. . . . . . . . . . . . . . . . . . . . . . . . . . .

0.05 0.0025000 −0.0024014 −0.002669875 −0.0026830 −0.0026910 −0.0028370 −0.0054822 −0.0447213
. . . . . . . . . . . . . . . . . . . . . . . . . . .
0.1 0.0100000 −0.0028030 −0.003707587 −0.0037665 −0.0038006 −0.0042116 −0.0094143 −0.0632455
. . . . . . . . . . . . . . . . . . . . . . . . . . .

0.15 0.0225000 −0.0023273 −0.004371989 −0.0045293 −0.0046100 −0.0053537 −0.0130148 −0.0774596
. . . . . . . . . . . . . . . . . . . . . . . . . . .
0.2 0.0400000 −0.0010073 −0.004782033 −0.0051102 −0.0052606 −0.0063855 −0.0164157 −0.0894427
. . . . . . . . . . . . . . . . . . . . . . . . . . .

0.25 0.0625000 0.0011752 −0.004974678 −0.0055640 −0.0058104 −0.0073536 −0.0196715 −0.1000000
. . . . . . . . . . . . . . . . . . . . . . . . . . .
0.3 0.0900000 0.0041728 −0.005025551 −0.0059818 −0.0063535 −0.0083442 −0.0228876 −0.1095445
. . . . . . . . . . . . . . . . . . . . . . . . . . .

0.35 0.1225000 0.0080102 −0.004920663 −0.0063617 −0.0068915 −0.0093546 −0.0260671 −0.1183215
. . . . . . . . . . . . . . . . . . . . . . . . . . .
0.4 0.1600000 0.0127018 −0.004640016 −0.0066932 −0.0074170 −0.0103733 −0.0291992 −0.1264911
. . . . . . . . . . . . . . . . . . . . . . . . . . .

0.45 0.2025000 0.0182403 −0.004175051 −0.0069743 −0.0079311 −0.0113985 −0.0322849 −0.1341640
. . . . . . . . . . . . . . . . . . . . . . . . . . .
0.5 0.2500000 0.0246100 −0.003520597 −0.0072042 −0.0084358 −0.0124294 −0.0353267 −0.1414213
. . . . . . . . . . . . . . . . . . . . . . . . . . .

0.55 0.3025000 0.0320137 −0.002426030 −0.0071326 −0.0086820 −0.0131993 −0.0378996 −0.1483239
. . . . . . . . . . . . . . . . . . . . . . . . . . .
0.6 0.3600000 0.0402038 −0.001086952 −0.0069496 −0.0088569 −0.0138649 −0.0401436 −0.1549193
. . . . . . . . . . . . . . . . . . . . . . . . . . .

0.65 0.4225000 0.0490747 0.000417801 −0.0067284 −0.0090315 −0.0145008 −0.0422464 −0.1612451
. . . . . . . . . . . . . . . . . . . . . . . . . . .
0.7 0.4900000 0.0585998 0.002078399 −0.0064716 −0.0092072 −0.0151118 −0.0442469 −0.1673320
. . . . . . . . . . . . . . . . . . . . . . . . . . .

0.75 0.5625000 0.0687781 0.003887027 −0.0061807 −0.0093841 −0.0157009 −0.0461668 −0.1732050
. . . . . . . . . . . . . . . . . . . . . . . . . . .
0.8 0.6400000 0.0796462 0.005842443 −0.0058527 −0.0095575 −0.0162662 −0.0480153 −0.1788854
. . . . . . . . . . . . . . . . . . . . . . . . . . .

0.85 0.7225000 0.0912844 0.007949841 −0.0054815 −0.0097203 −0.0168024 −0.0497938 −0.1843908
. . . . . . . . . . . . . . . . . . . . . . . . . . .
0.9 0.8100000 0.1038155 0.010211677 −0.0050684 −0.0098728 −0.0173114 −0.0515115 −0.1897366
. . . . . . . . . . . . . . . . . . . . . . . . . . .

0.95 0.9025000 0.1174206 0.012636895 −0.0046141 −0.0100154 −0.0177952 −0.0531754 −0.1949358
. . . . . . . . . . . . . . . . . . . . . . . . . . .

0.999 0.9980010 0.1320345 0.015188142 −0.0041287 −0.0101456 −0.0182462 −0.0547594 −0.1998999

6. Conclusions

The main aim of the paper is to suggest a scheme for the approximate solving of the initial
value problem for scalar nonlinear Riemann-Liouville fractional differential equations with a constant
delay on a finite interval. The iterative scheme is based on the method of lower and upper solutions.
In connection with this, mild lower and mild upper solutions are defined. An algorithm for constructing
two monotone sequences of mild lower and mild upper solutions, respectively, is given. It is proved
both sequences are convergent to the exact solution of the studied problem. The iterative scheme is
used in a computer environment to illustrate its application for solving a particular nonlinear problem.
The suggested and computerized algorithm can be applied to solve approximately and to study the
behavior of scalar models with RL fractional derives and delays. The practical application requires the
next step in the investigations, more exactly to obtain an algorithm for approximate solving of systems
with RL derivatives and delays.
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Abstract: The existence of infinitely many homoclinic solutions for the fourth-order differential
equation

(
ϕp (u′′ (t))

)′′
+ w

(
ϕp (u′ (t))

)′
+ V(t)ϕp (u (t)) = a(t) f (t, u(t)), t ∈ R is studied in the

paper. Here ϕp(t) = |t|p−2 t, p ≥ 2, w is a constant, V and a are positive functions, f satisfies some
extended growth conditions. Homoclinic solutions u are such that u(t) → 0, |t| → ∞, u �= 0, known in
physical models as ground states or pulses. The variational approach is applied based on multiple
critical point theorem due to Liu and Wang.

Keywords: homoclinic solutions; fourth-order p-Laplacian differential equations; minimization
theorem; Clark’s theorem

1. Introduction

In this paper, we study the existence of infinitely many nonzero solutions homoclinic solutions
for the fourth-order p-Laplacian differential equation

(
ϕp

(
u′′ (t)

))′′
+ w

(
ϕp

(
u′ (t)

))′
+ V(t)ϕp (u (t)) = a(t) f (t, u(t)), (1)

where t ∈ R, w is a constant, ϕp(t) = |t|p−2 t, for p ≥ 2, V is a positive bounded function, a is a positive
continuous function and f ∈ C1(R,R) satisfies some growth conditions with respect to p. As usual,
we say that a solution u of (1) is a nontrivial homoclinic solution to zero solution of (1) if

u �= 0, u(t) → 0, |t| → ∞. (2)

They are known in phase transitions models as ground states or pulses (see [1]). The existence
of homoclinic and heteroclinic solutions of fourth-order equations is studied by various authors
(see [2–12] and references therein). Sun and Wu [4] obtained existence of two homoclinic solutions for
a class of fourth-order differential equations:

u(4) + wu′′ + a(t)u = f (t, u) + λh(t) |u|p−2 u, t ∈ R,

where w is a constant, λ > 0, 1 ≤ p < 2, a ∈ C (R,R+) and h ∈ L
2

2−p (R) by using mountain
pass theorem.

Yang [8] studies the existence of infinitely many homoclinic solutions for a the fourth-order
differential equation:

u(4) + wu′′ + a(t)u = f (t, u), t ∈ R,

where w is a constant, a ∈ C (R) and f ∈ C (R×R,R). A critical point theorem, formulated in
the terms of Krasnoselskii’s genus (see [13], Remark 7.3), is applied, which ensures the existence of
infinitely many homoclinic solutions.

We suppose the following conditions on the functions a, f and V.

Mathematics 2020, 8, 505; doi:10.3390/math8040505 www.mdpi.com/journal/mathematics23
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(A) a ∈ C(R,R+) and a(t) → 0 as |t| → +∞.
(F1) There are numbers p and q s.t. 1 < q < 2 ≤ p and for f ∈ C1(R,R)

u f (t, u) ≤ qF(t, u), ∀u ∈ R, u �= 0,

where F(t, u) =
∫ u

0 f (t, x)dx.
(F2) | f (t, u)| ≤ b(t)|u|q−1, ∀(t, u) ∈ R×R, where b is a positive function, s.t. b ∈

Lr(R)
⋂

L
p

2−q (R), where r = p
p−q .

(F3) There exists an interval J ⊂ R and a constant c > 0 s. t. F(t, u) ≥ c|u|q, ∀(t, u) ∈ J ×R.
(F4) F(t,−u) = F(t, u) for all (t, u) ∈ R×R.
(V) There exist positive constants v1 and v2 such that 0 < v1 ≤ V(t) ≤ v2, ∀t ∈ R.
Let

w∗ = inf
u �=0

∫
R

(|u′′(t)|p + |u(t)|p) dt∫
R
|u′(t)|p dt

.

Denote by X the Sobolev’s space

X := W2,p (R) = {u ∈ Lp(R) : u′ ∈ Lp(R), u′′ ∈ Lp(R)},

equipped by the usual norm

||u||X :=
(∫

R

(∣∣u′′(t)
∣∣p

+
∣∣u′(t)

∣∣p
+ |u(t)|p

)
dt
)1/p

.

The functional I : X → R is defined as follows

I(u) =
∫
R

(Φp(u′′(t))− wΦp(u′(t)) + V(t)Φp(u(t)))dt −
∫
R

a(t)F(t, u(t)dt, (3)

where Φ(t) = |t|p
p for p ≥ 2.

Under conditions (A), (F1)− (F3) and V the functional I is differentiable and for all u, v ∈ X
we have 〈

I′(u), v
〉

=
∫
R

(
ϕp

(
u′′ (t)

)
v′′(t)− wϕp

(
u′ (t)

)
v′(k)

)
dt + V(t)ϕp (u(t)) v(t)dt

−
∫
R

a(t) f (t, u(t)) v(t)dt.

where 〈., .〉 means the duality pairing between X and it’s dual space X∗. The homoclinic solutions of
the Equation (1) are the critical points of the functional I, i.e., u0 is a homoclinic solution of the problem
if 〈I′(u0), v〉 = 0 for every v ∈ X (see [6,11,12]).

Let v0 = min{1, v1}, where v1 is the positive constant from condition (V). Our main result is:

Theorem 1. Let p ≥ 2, w < v0w∗ and the functions a, f and V satisfy the assumptions (A), (F1)− (F3)

and (V) . Then the Equation (1) has at least one nonzero homoclinic solution u0 ∈ X. Additionally if (F4) holds,
the Equation (1) has infinitely many nonzero solutions uj such that ||uj||∞ → 0 as j → ∞.

Remark 1. An example of a function f (t, u), which satisfies the assumptions (F1) − (F4) is as follows.
Let p = 3, q = 3

2 and f (t, u) = α(t)|u|1/2u, where

α(t) =

{
3−t2

2 , |t| ≤ 1,
1
|t| , |t| ≥ 1.
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We have that r = p
p−q = 2, p

2−q = 6 and b(t) = α(t) ∈ L2(R) ∩ L6(R), because
∞∫
1

1
t2 dt = 1 and

∞∫
1

1
t6 dt = 1

5 . Moreover α(t) ≥ 1 if t ∈ (−1, 1) = J. Next, we have

| f (t, u)| = α(t)|u|3/2,

F(t, u) =
2
5

α(t)|u|5/2,

and F(t, u) ≥ 2
5 |u|5/2, t ∈ J = (−1, 1).

As an open problem we state the existence of weak solutions of the problem when 1 < q < p < 2.
This paper is organized as follows. In Section 2 we present the variational formulation of the

problem and critical point theorems used in the proof of the main result. In Section 3, we give the
proof of Theorem 1.

2. Preliminaries

In this section we give the variational formulation of the problem and present two critical point
theorems.

Let X1 be the Sobolev’s space

X1 := {u ∈ X :
∫
R

(∣∣u′′(t)
∣∣p − w

∣∣u′(t)
∣∣p

+ V(t) |u(t)|p
)

dt < ∞},

equipped by the norm

||u|| :=
(∫

R

(∣∣u′′(t)
∣∣p − w

∣∣u′(t)
∣∣p

+ V(t) |u(t)|p
)

dt
)1/p

.

Denote

w∗ = inf
u �=0

∫
R

(|u′′(t)|p + |u(t)|p) dt∫
R
|u′(t)|p dt

.

and v0 = min{1, v1}. The next lemma shows that under condition (V) for w < v0w∗ the norms ||.||
and ||.||X are equivalent and X = X1.

Lemma 1. Let w < v0w∗. Then, there exists a constant C > 0 such that∫
R

(∣∣u′′(t)
∣∣p − w

∣∣u′(t)
∣∣p

+ V(t) |u(t)|p
)

dt ≥ C ‖u‖p
X , ∀u ∈ X. (4)

Proof of Lemma 1. In view of Lemma 4.10 in [14], there exists a positive constant K = K(p) depending
only on p such that ∫

R

∣∣u′(t)
∣∣p dt ≤ K

∫
R

(∣∣u′′(t)
∣∣p

+ |u(t)|p
)

dt.

Then
1
K

≤ w∗ = inf
u �=0

∫
R

(|u′′(t)|p + |u(t)|p) dt∫
R
|u′(t)|p dt

.

Let
C0 =

v0w∗ − w
(K + 1)v0w∗

and C = v0C0. We have
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∫
R

(∣∣u′′(t)
∣∣p − w

∣∣u′(t)
∣∣p

+ V(t) |u(t)|p
)

dt

≥ v0

∫
R

(∣∣u′′(t)
∣∣p − w

v0

∣∣u′(t)
∣∣p

+ |u(t)|p
)

dt

= v0((1 − w
v0w∗ )

∫
R

(∣∣u′′(t)
∣∣p

+ |u(t)|p
)

dt

+
w

v0w∗
∫
R

(∣∣u′′(t)
∣∣p − w∗ ∣∣u′(t)

∣∣p
+ |u(t)|p

)
dt)

≥ v0(1 − w
v0w∗ )

∫
R

(∣∣u′′(t)
∣∣p

+ |u(t)|p
)

dt

= v0C0(K + 1)
∫
R

(∣∣u′′(t)
∣∣p

+ |u(t)|p
)

dt

≥ v0C0

∫
R

(∣∣u′′(t)
∣∣p

+
∣∣u′(t)

∣∣p
+ |u(t)|p

)
dt = C||u||pX ,

which completes the proof.

By Brezis [15], Theorem 8.8 and Corollary 8.9 for u ∈ X and s > p

||u||∞ : = ||u||L∞(R)
≤ C1||u||X ,∫

R

|u(t)|sdt ≤ ||u||s−p
∞ ||u||pX ,

and lim
|t|→∞

u(t) = 0.

We consider the functional I : X → R

I(u) =
∫
R

(Φp(u′′(t))− wΦp(u′(t)) + V(t)Φp(u(t)))dt −
∫
R

a(t)F(t, u(t)dt, (5)

where Φ(t) = |t|p
p for p ≥ 2.

One can show that under conditions (A), (F1)− (F3) and V the functional I is differentiable and
for all u, v ∈ X we have〈

I′(u), v
〉
=

∫
R

(
ϕp

(
u′′ (t)

)
v′′(t)− wϕp

(
u′ (t)

)
v′(k)

)
dt + V(t)ϕp (u(t)) v(t)dt

−
∫
R

a(t) f (t, u(t)) v(t)dt. (6)

Let Lp
a (R), p ≥ 1 be the weighted Lebesque space of functions u : R → R with norm ||u||p,a :=(∫

R

a(t)|u(t)|pdt

)1/p

. We have

Lemma 2. Assume that the assumptions (A) and (V) hold. Then, the inclusion X ⊂ Lp
a (R) is continuous

and compact.

Proof of Lemma 2. The embedding X ⊂ Lp
a (R) is continuous by the boundedness of the function

a by (A). We show that the inclusion is compact. Let
{

uj
} ⊂ X be a sequence such that ||uj|| ≤ M

and uj ⇀ u weakly in X. We’ll show that uj → u strongly in Lp
a (R). Without loss of generality we

can assume that u = 0, considering the sequence
{

uj − u
}

. By (A) for any ε > 0, there exists R > 0,
such that for |t| ≥ R

0 ≤ a(t) ≤ ε

2(1 + Mp)
.
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Then ∫
|t|≥R

a(t)|uj(t)|pdt ≤ εMp

2(1 + Mp)
.

By Sobolev’s imbedding theorem uj → 0 strongly in C([−R, R]) and there exists j0 such that for
j > j0 : ∫

|t|≤R

a(t)|uj(t)|pdt <
ε

2(1 + Mp)
.

Then, for j > j0 we have
∫
R

a(t)|uj(t)|pdt < ε, which shows that uj → 0 strongly in Lp
a (R).

Lemma 3. Let assumptions (A), (F1)− (F3) and (V) hold. If uj ⇀ u weakly in X, there exists a subsequence
of the sequence

{
uj
}

, still denoted by
{

uj
}

such that f (t, uj) → f (t, u) in Lp
a (R).

Proof of Lemma 3. Let uj ⇀ u weakly in X. By Banach-Steinhaus theorem there exists M1 > 0,
such that ||uj|| ≤ M1 and ||u|| ≤ M1. By the elementary inequality for a > 0, b > 0, p > 1

(a + b)p ≤ 2p−1(ap + bp),

and (F2) we have

| f (t, uj)− f (t, u)|p ≤ 2p−1(| f (t, uj)|p + | f (t, u)|p)
≤ 2p−1|b(t)|p(|uj|p(q−1) + |u|p(q−1)).

Let 0 < a(t) ≤ A. Then, by Hölder inequality and b ∈ L
p

2−q (R) it follows that

∫
R

a(t)| f (t, uj(t))− f (t, u(t))|pdt

≤ 2p−1 A
∫
R

|b(t)|p(|uj|p(q−1) + |u|p(q−1))dt

≤ 2p−1 A(
∫
R

|b(t)|
p

2−q )2−q((
∫
R

|uj(t)|pdt)q−1 + (
∫
R

|u(t)|pdt)q−1)

≤ 2p A||b||p
L

p
2−q (R)

Mp(q−1)
1 .

By Lemma 2, uj ⇀ u weakly in X implies that there exists a subsequence {uj}, such that uj → u
strongly in Lp

a (R). By analogous way as above we have that there exists B > 0, such that∫
R

| f (t, uj(t))− f (t, u(t))|pdt ≤ B.

Let ε > 0, R > 0 are s.t. 0 < a(t) < ε
2B for |t| ≥ R by (A). Then∫

|t|≥R
a(t)| f (t, uj(t))− f (t, u(t))|pdt <

ε

2
. (7)

Let 0 < aR < a(t) ≤ A for |t| ≤ R. By uj → u strongly in Lp
a (R) it follows that∫

|t|≤R
a(t)|uj(t)− u(t)|pdt ≥ aR

∫
|t|≤R

|uj(t)− u(t)|pdt → 0
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and uj(t)− u(t) → 0 a.e. in |t| ≤ R. Then, by Lebesque’s dominated convergence theorem

IR :=
∫
|t|≤R

a(t)| f (t, uj(t))− f (t, u(t))|pdt → 0.

Let j0 is sufficiently large, such that for j > j0, 0 ≤ IR < ε
2 . Then by (7) for j > j0 we have∫

R

a(t)| f (t, uj(t))− f (t, u(t))|pdt < ε,

which completes the proof.

Next we have:

Lemma 4. Under assumptions (A), (F1)− (F3), (V) the functional I ∈ C1(X,R) and the identity (6) holds
for all u, v ∈ X. holds.

It can be proved in a standard way using Lemma 3 (see Yang [8], Tersian, Chaparova [6]).

Lemma 5. Under assumptions (A), (F1)− (F3) and (V) the functional I satisfies the (PS) condition.

Proof of Lemma 5. Let {uj} be a sequence such that {I(uj)} is bounded in X and I′(uj) → 0 in X∗.
Then, there exists a constant C1 > 0, s.t.

||I(uj)|| ≤ C1, ||I′(uj)||X∗ ≤ C1.

By (F2) we have

C1 +
C1

q
||uj|| ≥ 1

q
< I′(uj), uj > −I(uj)

=

(
1
q
− 1

p

)
||uj||p +

∫
R

a(t)(F(t, uj(t))− 1
q

f (t, uj(t))uj(t))dt

≥
(

1
q
− 1

p

)
||uj||p.

Then, {uj} is a bounded sequence in X and up to a subsequence, still denoted by {uj}, uj ⇀ u
weakly in X. There exists M2 > 0, such that ||uj|| ≤ M2, ||u|| ≤ M2. By Lemma 2, um → u in L2

a(R)

and by Lemma 3, f (t, um(t)) → f (t, u(t)) in L2
a(R) . By Hölder inequality we have:

Ij :=
∫
R

a(t)( f (t, uj(t))− f (t, u(t)))(uj(t)− u(t))dt

=
∫
R

a
p−1

p (t)( f (t, uj(t))− f (t, u(t)))a
1
p (t)(uj(t)− u(t))dt

≤ A
p−1

p

∫
R

a(t)|uj(t)− u(t)|pdt
(∫

R

| f (t, uj(t))− f (t, u(t))|
p

p−1 dt
) p−1

p
.

As in the proof of Lemma 3, by assumption (F2), b ∈ L
p

p−q (R) and Hölder inequality we have for
p1 = p

p−1 > 1:

28



Mathematics 2020, 8, 505

∫
R

| f (t, uj(t))− f (t, u(t))|p1 dt

≤ 2p1−1
∫
R

|b(t)|p1 |
(
|uj(t)|(q−1)p1 + |u(t)|(q−1)p1

)
dt

≤ 2p1−1
(∫

R

|b|
p

p−q dt
) p−q

p−1

⎛⎝(∫
R

|uj|pdt
) q−1

p−1
+

(∫
R

|u|pdt
) q−1

p−1

⎞⎠
≤ 2p1 ||b||p1

L
p

p−q
M(q−1)p1

2 .

Then, by uj → u in L2
a(R) it follows that Ij → 0 as j → ∞. Next, we have

||uj − u||p ≤< I′(uj)− I′(u), uj − u > +Ij,

which shows that uj → u in X.

Next, we recall a minimization theorem which will be used in the proof of Theorem 1. (see [16],
Theorem 2.7 of [13]).

Theorem 2. (Minimization theorem) Let E be a real Banach space and J ∈ C1(E,R) satisfying (PS) condition.
If J is bounded below, then c = infE I is a critical value of J.

We will use also the following generalization of Clark’s theorem (see Rabinowitz [13], p. 53) due
to Z. Liu and Z. Wang [17]:

Theorem 3. (Generalized Clark’s theorem, [17]) Let E be a Banach spa ce, J ∈ C1(E,R). Assume that J
satisfies the (PS) condition, it is even, bounded from below and J(0) = 0. If for any k ∈ N, there exists
a k−dimensional subspace Ek of E and ρk > 0 such that supEk∩Sρk

J < 0, where Sρ = {u ∈ E , ‖u‖E = ρ},
then at least one of the following conclusions holds:

1. There exists a sequence of critical points {uk} satisfying J(uk) < 0 for all k and limk→∞ ‖uk‖E = 0.
2. There exists r > 0 such that for any 0 < α < r there exists a critical point u such that ‖u‖E = α and

J(u) = 0.

Note that Theorem 3 implies the existence of infinitely many pairs of critical points (uk,−uk),
uk �= 0 of J, s.t. J(uk) ≤ 0, limk→+∞ J(uk) = 0 and limk→+∞ ‖uk‖E = 0.

Lemma 6. Assume that assumptions (A), (F2) and (V) hold. Then the functional I is bounded from below.

Proof of Lemma 6. By (F2) and the proof of Lemma 3 we have

|F(t, u)| ≤ 1
q

b(t)|u|q.

and

I(u) =
1
p
||u||p −

∫
R

a(t)F(t, u(t))dt

≥ 1
p
||u||p − A

q

∫
R

b(t)|u(t)|qdt

≥ 1
p
||u||p − A

q

(∫
R

|b(t)|
p

p−q dt
) p−q

p
(∫

R

|u(t)|pdt
) q

p

≥ 1
p
||u||p − A

q
||b||

L
p

p−q
||u||q.
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By p > q it follows that I is bounded from below functional.

3. Proof of the Main Result

In this section we prove Theorem 1. The proof is based on the minimization Theorem 2 and
multiplicity result Theorem 3. Their conditions are satisfied according to Lemmas 1–6.

Proof of Theorem 1. The functional I satisfies the assumptions of minimization Theorem 2. Let u0 be
the minimizer of I. Since I(0) = 0 to show that u0 �= 0, let us take v ∈ W2,p

0 (J), where J is the interval
from condition (F3). Suppose that ||v||∞ ≤ 1. Then for λ > 0 by (F3)

I(λv) =
λp

p
||v||p −

∫
J

a(t)F(t, λv(t))dt

≤ λp

p
||v||p − cλq

∫
J

a(t)|v(t)|qdt.

By 1 < q < p and the last inequality it follows for λ0 sufficiently small and λ0 > λ > 0 I(λv) < 0.
Then I(u0) = min{I(u) : u ∈ X} < I(λv) < 0 and u0 is a nonzero weak solution. Let the condition (F4)

holds additionally. We show that the functional I satisfies the assumptions of Theorem 3. We construct
a sequence of finite dimensional subspaces Xn ⊂ X and spheres Sn−1

rn ⊂ Xn with sufficiently small
radius rn > 0 such that sup{I(u) : u ∈ Sn−1

rn } < 0. Let J = (a, b) ⊂ R and for k ∈ {1, 2, ..., n}
Jk = (xk−1, xk) , where xk = a + k

n (b − a). Next, we choose functions vk ∈ C2
0(Jk) such that ||vk||∞ < ∞

and ||vk||X = 1.
Let Xn be the n− dimensional subspace Xn := span{v1, ..., vk} ⊂ X and

Sn−1
ρ := {u ∈ Xn : ||u||X = ρ}.

For u = ∑n
k=1 ckvk ∈ Xn we have

||u||p =
∫
R

(∣∣u′′(t)
∣∣p − w

∣∣u′(t)
∣∣p

+ V(t) |u(t)|p
)

dt

=
n

∑
j=k

|ck|p
∫

Jk

(|v′′k (t)|p − w|v′k(t)|p + V(t)|vk(t)|p))dt

=
n

∑
k=1

|ck|p.

By analogous way for γk =
∫

Jk
(|vk(t)|qdt > 0 we have

||u||qn =
n

∑
k=1

γk|ck|q (8)

The space Xn is n-dimensional and the norms ||.|| and ||.||n are equivalent. There are positive
constants d1n and d2n s.t.

d1n||u|| ≤ ||u||n ≤ d2n||u||, ∀u ∈ Xn. (9)

Then, for u ∈ Xn
⋂

Sn−1
1

I(λu) =
λp

p
||u||p −

n

∑
k=1

∫
Jk

a(t)F(t, λckvk(t))dt

≤ λp

p
||u||p − cλq

n

∑
k=1

|ck|q
∫

Jk

a(t)|vk(t)|qdt

≤ λp

p
||u||p − cλqd1n||u||q
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By 1 < q < p and the last inequality it follows that I(v) < 0 for v ∈ Sρ
n−1 := {u ∈ Xn : ||u|| = ρ}.

Finally, all assumptions of Theorem 3 are satisfied and by Remark 1 there exist infinitely many weak
solutions {uj} of the problem (1), such that I({uj}) ≤ 0 and ||uj|| → 0. By imbedding X ⊂ L∞(R) it
follows that ||uj||∞ → 0 as j → ∞ which completes the proof.

4. Conlusions

In this paper, we obtained the existence of infinitely many homoclinic solutions of Equation (1)
under conditions (A), (F1)− (F4), (V) in the case 1 < q < 2 ≤ p. The equation is an extension of the
stationary Fisher-Kolmogorov equation which appears in the phase transition models. The variational
approach is applied based on the multiple critical point theorem due to Liu and Wang. It will be
interesting to extend the result to the case 1 < q < p < 2.
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Abstract: An exponential dichotomy is studied for linear differential equations. A constructive
method is presented to derive a roughness result for perturbations giving exponents of the dichotomy
as well as an estimate of the norm of the difference between the corresponding two dichotomy
projections. This roughness result is crucial in developing a Melnikov bifurcation method for either
discontinuous or implicit perturbed nonlinear differential equations.
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1. Introduction

Exponential dichotomy of a linear system of differential equations is a type of conditional stability
that goes back to an idea in Perron [1]. It was revealed to be a very important tool for the study of
nonlinear systems because of its roughness. Indeed, it has been used to show the existence of chaotic
behaviour in non autonomous perturbations of autonomous nonlinear equations having a homoclinic
solution, since transverse intersection of stable and unstable manifolds along a homoclinic solution
corresponds to the fact that the linearization of the nonlinear system along it has an exponential
dichotomy on R [2]. Exponential dichotomies are also related with the so called reducibillty. A linear
system of differential equations ẋ = A(t)x is said to be reducible if there exists an invertible C1 matrix
S(t) such that the change of variables x = S(t)y transforms the system into a block diagonal system

ẏ =

(
B1(t) 0

0 B2(t)

)
y.

In [3], it is proven that a system is reducible if and only if the original system has an exponential or
ordinary dichotomy. The difference between the two cases is that in ordinary dichotomy the exponents
are equal to zero. Another interesting property is the following (see [3]). The linear system ẋ = A(t)x
has an exponential dichotomy on R+ if and only if for every locally integrable function f (t), t ∈ R+,
such that

sup
t≥0

∫ t+1

t
f (s)ds < ∞,

the inhomogeneous linear system ẋ = A(t)x + f (t) has a bounded solution. Exponential dichotomies
have also relations with such notions as integral separation or spectral theory, see for example [4,5].
Recently, it has been proved in [6] that if a bounded linear Hamiltonian system is exponentially
separated into two subspaces of the same dimension, then it must have an exponential dichotomy.

Mathematics 2020, 8, 651; doi:10.3390/math8040651 www.mdpi.com/journal/mathematics33
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Let us start with the definition of exponential dichotomy. A linear system

ẋ = A(t)x (1)

where A(t) is a piecewise continuous n × n matrix, is said to have an exponential dichotomy on
an interval I ⊂ R (usually R,R+,R−) with projection P, constant k ≥ 1 and exponents α, β > 0 if the
fundamental matrix X(t) of the Equation (1) (with X(0) = I) satisfies the following conditions:

|X(t)PX(s)−1| ≤ ke−α(t−s) for s ≤ t, s, t ∈ I
|X(s)(I− P)X(t)−1| ≤ ke−β(t−s) for s ≤ t, s, t ∈ I.

(2)

Here R = (−∞, ∞), R+ = [0, ∞) and R− = (−∞, 0]. It follows immediately from the definition
that, if α′ ≤ α and β′ ≤ β then α′ and β′ are also exponents of the dichotomy with the same projection
P and constant k and also that the linear system (1) has an exponential dichotomy on an interval J ⊆ I
if it has one in the interval I. Next, from Gronwall inequality it follows that, on a compact interval,
the linear system (1) has an exponential dichotomy with any projection P and exponents α and β (but
the constant may change).

We give few examples of systems having an exponential dichotomy. An autonomous system
ẋ = Ax has an exponential dichotomy on R if and only if all the eigenvalues of A have nonzero real
parts. A periodic system ẋ = A(t)x has an exponential dichotomy on R if and only if all the Floquet
exponents have nonzero real parts. A scalar equation ẋ = a(t)x has an exponential dichotomy on
I = R+ or I = R−, if and only if

lim inf
t−s→∞

1
t − s

∫ t

s
a(τ)dτ > 0 or lim sup

t−s→∞

1
t − s

∫ t

s
a(τ)dτ < 0.

where the limits are taken as t − s → ±∞ in case I = R± respectively.
Suppose the linear system ẋ = A(t)x has an exponential dichotomy on R+ with exponents α

and β. The result that motivates this paper is the following, see [3] (Proposition 1, p. 34).

Theorem 1 (Roughness). Let ẋ = A(t)x have an exponential dichotomy on R+ with exponents α and β.
Given 0 < α̃ < α and 0 < β̃ < β there exists ε > 0 such that if B(t) is a piecewise continuous matrix such
that supt∈R+

|B(t)| < ε then the linear system ẋ = [A(t) + B(t)]x has an exponential dichotomy on R+ with
exponents α̃, β̃ (but the constant may be larger).

As a matter of fact in [3] (Proposition 1, p. 34), an estimate on the size of ε is also given, showing
that, if β = α and ε < α

4k2 then ẋ = [A(t) + B(t)]x has an exponential dichotomy on R+ with exponent
α− 2kε. So if β = α and α̃ = β̃ < α we have ε = α−α̃

2k . We emphasize the fact that in [7] the assumptions
on B(t) have been weakened to obtain a roughness result valid also for unbounded perturbations.

However, the exponents of the dichotomy determine the rate of convergence to zero of bounded
solution either at ∞ (when the dichotomy is in R+) or at −∞ (when the dichotomy is in R−). Sometimes
it becomes important to determine this rate of convergence, and hence the exponents of the dichotomy,
for example when studying chaotic behaviour of discontinuous systems [8] or developing Melnikov
theory for implicit nonlinear differential equations [9]. As a matter of fact in [8] the following result
has been proved.

Theorem 2. Let ẋ = A(t)x have an exponential dichotomy on R+ with exponents α, β. Then there exists
ε > 0 such that if B(t) is a piecewise continuous function such that, for some T > 0, supt≥T |B(t)| < ε and

∫ ∞

T̄
|B(t)|dt <

1
k
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then the linear system ẋ = [A(t) + B(t)]x has an exponential dichotomy on [T, ∞) (and hence also on R+)
with the same exponents α, β.

Of course Theorems 1 and 2 hold equally well when the dichotomy of ẋ = A(t)x is on R−.
The proof given in [8] follows an idea in [3] where an exponential estimate is derived for bounded

solutions of certain integral inequalities. In this paper we want to give another, more direct, proof of
the same result. As a matter of fact we work directly in the space of continuous functions decaying to
zero as t → ∞ at a certain given rate. This approach leads us to derive the first of the two exponential
estimates given in (2). The second is derived passing to the adjoint system and using the fact that one
has a certain freedom in choosing the projection of the dichotomy (see Proposition 2).

Our method has also the advantage that relates the projection of the dichotomy of the perturbed
system with the one of the unperturbed. As a matter of fact, we will give an estimate of the norm of
the difference between the two projections in term of supt∈I |B(t)|, where I = R+,R− is the interval
where the exponential dichotomy is considered. This estimate allows us to prove the same result also
when the dichotomy of the unperturbed system is on R, a fact that was not noted in [8].

We now briefly resume the content of this paper. In Section 2 we recall basic properties of
exponential dichotomy, stable and unstable spaces, roughness, freedom in the choice of the projection
etc. Section 3 is devoted to the proof of our main result. Finally, Section 4 contains applications to
asymptotically constant matrices and to the linearization of nonlinear systems.

We conclude this section by giving some notations used in the paper. For a linear map L from
a Banach space into another, we denote by RL and N L its range, resp. its kernel. Next C0

b(I)
denotes the Banach space of bounded continuous functions x(t) on the interval I with the norm
‖x‖ = supt∈I |x(t)|. When I = R+ or R− we omit I and write C0

b instead of C0
b(R+) or C0

b(R−).

2. Properties of Exponential Dichotomies

First we start with a remark. Let ν ∈ R be a real number. Then Y(t) = X(t)eνt is a fundamental
matrix of the linear system

ẋ = [A(t) + νI]x. (3)

Assuming that (1) has an exponential dichotomy on I with exponents α, β, we have, for s, t ∈ I,
with s ≤ t:

|Y(t)PY(s)−1| ≤ ke−(α−ν)(t−s)

|Y(s)(I− P)Y(t)−1| ≤ ke−(β+ν)(t−s)

that is (3) has an exponential dichotomy on I with the same projection P, constant k and exponents
(α − ν) and (β + ν). Viceversa, if (3) has an exponential dichotomy on I with projections P, constant
k and exponents α̃, β̃, then (1) has an exponential dichotomy on I with the same projections P and
constant k, and exponents α = α̃ + ν, β = β̃ − ν. Taking ν = α−β

2 the exponents of the dichotomy of (3)
are then

α̃ = α − α − β

2
=

α + β

2
= β +

α − β

2
= β̃.

So, starting from a linear system with an exponential dichotomy, shifting the coefficient matrix by
νI, ν = α−β

2 , we can assume that the exponents are the same.

Proposition 1. Suppose that (1) has an exponential dichotomy of the intervals I1 and I2 with the same projection
and exponents. Suppose, also, that I1 ∩ I2 �= ∅. Then (1) has an exponential dichotomy of the interval I1 ∪ I2

with the same projection and exponents but possibly different constant.

Proof. If I1 ⊂ I2 or I2 ⊂ I1 there is nothing to prove. So we assume that I = I1 ∩ I2 is different from
both I1 and I2. We can also assume that I1 is on the left and I2 is on the right that is: if t1 ∈ I1 \ I and
t2 ∈ I2 \ I then t1 < t2.
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It is clear that (2) holds if s, t ∈ I1 or s, t ∈ I2. So, let s ∈ I1 \ I and t ∈ I2 \ I. Take t̄ ∈ I. Then
s < t̄ < t and we have:

|X(t)PX(s)−1| ≤ |X(t)PX(t̄)−1| |X(t̄)PX(s)−1|
≤ ke−α(t−t̄)ke−α(t̄−s) = k2e−α(t−s)

|X(s)(I − P)X(t)−1| ≤ |X(s)(I− P)X(t̄)−1| |X(t̄)(I− P)X(t)−1|
≤ keβ(s−t̄)keβ(t̄−t) = k2eβ(s−t)

the proof is complete.

Since in compact intervals I = [a, b] a linear system (1) has an exponential dichotomy with any
projection and any exponents, it follows from Proposition 1 that if a linear system has an exponential
dichotomy on an interval [T, ∞) (resp. (−∞,−T]) then it has an exponential dichotomy with the same
exponents and projection on R+ = [0, ∞) (resp. R− = (−∞, 0]). Hence, in the following we will only
consider I = R+ or I = R−.

When the dichotomy is on R+ (or on R−) we have some freedom in the choice of the projection.
Indeed we have the following

Proposition 2. [3] (p. 16–17). Suppose (1) has an exponential dichotomy on R+ with projection P. Then

RP = {ξ ∈ R
n : sup

t≥0
|X(t)ξ|eαt < ∞} = {ξ ∈ R

n : sup
t≥0

|X(t)ξ| < ∞}

but the kernel of P, N P, can be any complement of RP. Moreover if Q : Rn → Rn is another projection
such that RQ = RP then there exist a constant kQ such that (2) holds with Q and kQ instead of P and k (with
the same exponents). If the dichotomy is on R− then it is N P which is uniquely defined being

N P = {ξ ∈ R
n : sup

t≤0
|X(t)ξ|e−βt < ∞} = {ξ ∈ R

n : sup
t≤0

|X(t)ξ| < ∞}.

Moreover RP can be any complement of N P and if Q : Rn → Rn is another projection such that
NQ = N P then there exist a constant kQ such that (2) holds with Q and kQ instead of P and k (with the
same exponents).

A consequence of the roughness Theorem 1 is the following.

Corollary 1. Suppose the linear system (1) has an exponential dichotomy on R+ [resp. R−] with projection P
and exponents α and β. Let B(t) be a matrix such that

lim
t→∞

|B(t)| = 0

where the limit is taken at +∞ if I = R+ and at −∞ when I = R−. Then, given α̃ < α and β̃ < β, the linear
system ẋ = [A(t) + B(t)]x has an exponential dichotomy on R+ [resp. R−] with exponent α̃ and β̃ and
projection P̃ such that N P̃ = N P [resp. RP̃ = RP].

Proof. Let α̃ and β̃ be as in the statement of the theorem and let ε > 0 be as in Theorem 1. It follows
from the assumption the existence of T such that for t ≥ T we have |B(t)| ≤ ε and the linear system
ẋ = A(t)x has an exponential dichotomy on [T,+∞) with projection P and exponents α and β. Then
from Theorem 1 it follows that ẋ = [A(t) + B(t)]x has an exponential dichotomy on [T, ∞) with
exponent α̃ and β̃ and projection as in the statement of the Corollary. However, we have already
observed that on [0, T], ẋ = [A(t) + B(t)]x has an exponential dichotomy with the same projection
and exponents. Then the conclusion follows from Proposition 1.
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Example. Consider the scalar equation ẋ =
(
−1 + 1

t+1

)
x. The unperturbed equation ẋ = −x has

an exponential dichotomy on R (and hence on both R+ and R−) with k = 1, α = 1 and projection
P = I. The solution of the perturbed equation with x(0) = 1 is x(t) = (t + 1)e−t and∣∣∣∣ x(t)

x(s)

∣∣∣∣ = t + 1
s + 1

e−(t−s).

Let α < 1. The function (t + 1)e−(1−α)t is increasing on
[
0, α

1−α

]
and decreasing on

[
α

1−α , ∞
)

hence

(t − s + 1)e−(1−α)(t−s) ≤ e−α

1 − α

for any s ≤ t. Next, observe that for 0 ≤ s ≤ t we have

1
s + 1

≤ 1 ⇔ t − s
s + 1

≤ t − s ⇔ t + 1
s + 1

≤ t − s + 1

hence
t + 1
s + 1

e−(t−s) ≤ e−α

1 − α
e−α(t−s).

So the equation ẋ =
(
−1 + 1

t+1

)
x has an exponential dichotomy on R+ with exponent α < 1 but

not with exponent = 1 since otherwise there should exists k ≥ 1 such that

t + 1
s + 1

≤ k

for any 0 ≤ s ≤ t which is absurd. However, the fundamental solution of scalar equation ẋ =(
−1 + 1

t2+1

)
x is

x(t) = e−t+arctan t

and ∣∣∣∣ x(t)
x(s)

∣∣∣∣ = earctan t

earctan s e−(t−s) ≤ e
π
2 e−(t−s).

for any 0 ≤ s ≤ t. So, the scalar equation ẋ =
(
−1 + 1

t2+1

)
x has an exponential dichotomy on R+

with exponent α = −1.
The difference between the two examples is that the integral of 1

t+1 in [0, ∞) is divergent whereas
the integral of 1

t2+1 in [0, ∞) is convergent. Thus we guess that that the statement of Theorem 1 can be
improved when ∫ ∞

0
|B(t)|dt < ∞.

3. The Main Result

In this section we prove the following result.

Theorem 3. Suppose the linear system ẋ = A(t)x has an exponential dichotomy on R+ with exponents α, β.
Then there exists ε > 0 such that if B(t) is a piecewise continuous function such that supt∈R+

|B(t)| < ε and

∫ ∞

0
|B(t)|dt < ∞

then the linear system ẋ = [A(t) + B(t)]x has an exponential dichotomy on R+ with the same exponents α, β

and projection Q such that
|Q − P| = O(ε).
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A similar result holds when the dichotomies are considered on R− and on R.

Proof. First, replacing A(t) with A(t) = A(t) + νI, ν = α−β
2 , we may assume that the exponents are

equal. Denote them by δ. Next, consider the perturbed system

ẋ = [A(t) + B(t)]x. (4)

Let δ̃ < δ and take ε > 0 as in Theorem 1. Then (4) has an exponential dichotomy on R+ with
projection, say, P̃ and exponent δ̃. We now follow the approach in [10] to construct a suitable projection
for the dichotomy of the perturbed equation.

Let XB(t) be the fundamental matrix of system (4) and X(t) be the fundamental matrix of
ẋ = A(t)x. A well known standard argument shows that a bounded solution of (4) satisfies the fixed
point equation

x̂(t) = X(t)Pξ +
∫ t

0
X(t)PX(s)−1B(s)x(s)ds −

∫ ∞

t
X(t)(I− P)X(s)−1B(s)x(s)ds.

for some ξ ∈ Rn. It is easy to see that if x(t), x1(t) and x2(t) are bounded functions then

|x̂(t)| ≤ k|ξ|+ 2k
δ
‖B‖ ‖x‖b

and
|x̂1(t)− x̂2(t)| ≤ 2k

δ
‖B‖ ‖x1 − x2‖b

So taking ε > 0 such that 2kε < δ, we see that the map x(t) �→ x̂(t) is a uniform contraction (with
respect to ξ) on the space C0

b(R+) of bounded continuous functions of R+. So, for any ξ ∈ Rn the map
x(t) �→ x̂(t) has a unique fixed point x(t, ξ) such that

‖x(·, ξ)‖b ≤ k(1 − 2kεδ−1)−1|ξ|. (5)

Note that x(t, Pξ) is the unique fixed point of

x̂(t) = X(t)P2ξ +
∫ t

0
X(t)PX(s)−1B(s)x(s)ds −

∫ ∞

t
X(t)(I− P)X(s)−1B(s)x(s)ds

and then x(t, Pξ) = x(t, ξ), because of P2 = P and the uniqueness of the fixed point.
It is straightforward to see that such a fixed point is a solution of (4) and that it is linear with

respect to ξ. So
x(t, ξ) = XB(t)Qξ.

where
Qξ = x(0, ξ) = Pξ −

∫ ∞

0
(I− P)X(s)−1B(s)x(s, ξ)ds.

We pause for a moment to observe that

|(Q − P)ξ| ≤
∫ ∞

0
ke−δs|B(s)||x(s, ξ)|ds ≤ k2(δ − 2kε)−1ε|ξ|

that is
|Q − P| ≤ k2(δ − 2kε)−1ε. (6)

From the previous considerations it follows that XB(t)ξ is a bounded solution of (4) if and only if
ξ = Qξ. Moreover, we have

PQ = P and
QPξ = x(0, Pξ) = x(0, ξ) = Qξ
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So
Q2 = [QP]Q = Q[PQ] = QP = Q

that is Q is a projection. Next, if ξ ∈ NQ then Pξ = PQξ = 0 and if ξ ∈ N P then Qξ = QPξ = 0. So

N P = NQ.

Finally, ξ ∈ RQ if and only if XB(t)ξ = XB(t)Qξ is a bounded solution of (4). From Proposition 2
it follows, then, that Q is a projection for the dichotomy of (4). So

|XB(t)QXB(s)−1| ≤ Ke−δ̃(t−s), 0 ≤ s ≤ t
|XB(s)(I− Q)XB(t)−1| ≤ Ke−δ̃(t−s), 0 ≤ s ≤ t

for some K ≥ 1, or, if we go back to the original system with A(t) instead of A(t) + νI:

|XB(t)QXB(s)−1| ≤ Ke−α̃(t−s), 0 ≤ s ≤ t
|XB(s)(I− Q)XB(t)−1| ≤ Ke−β̃(t−s), 0 ≤ s ≤ t.

Now assume that
∫ ∞

0
|B(t)|dt < ∞ and let T > 0 be such that

Δ :=
∫ ∞

T
|B(t)|dt <

1
2k

together with sup
t≥0

|B(t)| ≤ ε and α = β = δ. Let t ≥ s ≥ T. From the previous part we know that

x(t, s, ξ) = XB(t)QXB(s)−1ξ is a solution of ẋ = [A(t) + B(t)]x which is bounded for t ≥ s ≥ T.
Actually we have

|x(t, s, ξ)| ≤ k|ξ|e−δ̃(t−s).

We want to show that δ̃ can be replaced by δ. To this end we consider the map x(t) �→ x̂(t):

x̂(t) = X(t)PX(s)−1ξ +
∫ t

s
X(t)PX(σ)−1B(σ)x(σ)dσ

−
∫ ∞

t
X(t)(I− P)X(σ)−1B(σ)x(σ)ds

(7)

in the space C0
δ([s, ∞)), s ≥ T, of functions x(t) such that

sup
t≥s

|x(t)|eδ(t−s) < ∞

with norm ‖x(·)‖ = supt≥s |x(t)|eδ(t−s). We have

|x̂(t)| ≤ ke−δ(t−s)|ξ|+
∫ t

s
ke−δ(t−s)|B(σ)|‖x(·)‖ds +

∫ ∞

t
keδ(t+s−2σ)|B(σ)|‖x(·)‖ds

≤ ke−δ(t−s)
(
|ξ|+

∫ ∞

s
|B(σ)|dσ‖x(·)‖

)
≤ ke−δ(t−s) (|ξ|+ Δ‖x(·)‖) .

or else
‖x̂(·)‖ ≤ k (|ξ|+ Δ‖x(·)‖)

and similarly
‖x̂1(·)− x̂2(·)‖ ≤ kΔ‖x1(·)− x2(·)‖.

So we have proved the following
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Proposition 3. Suppose the linear system (1) has an exponential dichotomy on R+ with projection P constant
k and exponents α = β = δ. Let B(t) be a matrix and suppose there exists T ≥ 0 such that such that

‖B‖ = sup
t≥T

|B(t)| ≤ ε,

and ∫ ∞

T
|B(t)|dt = Δ < ∞

where ε > 0 is sufficiently small and Δ satisfies 2kΔ ≤ 1. Then for any s ≥ T the map (7) is a contraction on the
set C0

δ([s, ∞)) and contraction constant = 1
2 . Thus its unique fixed point x(t, s, ξ) belongs to C0

δ([s, ∞)) and

‖x(t, s, ξ)‖ ≤ 2k|ξ|.

Hence we proved that
|XB(t)QXB(s)−1| ≤ 2ke−δ(t−s)

for any t ≥ s ≥ T, and we extend this inequality for any t ≥ s ≥ 0 provided we change 2k with
a possibly larger constant K1. Next, from Proposition 2, we also know that

|XB(s)(I− Q)XB(t)−1| ≤ K2e−δ̃(t−s)

for 0 ≤ s ≤ t and possibly another constant K2, since we know that Q can be taken as a projection of
the dichotomy of the perturbed system. Thus:

|XB(t)QXB(s)−1| ≤ Ke−δ(t−s)

|XB(s)(I− Q)XB(t)−1| ≤ Ke−δ̃(t−s) (8)

(where δ̃ < δ) for any t ≥ s ≥ 0 and K = max{K1, K2}.
To complete the proof we still have to prove that, for T ≤ s ≤ t, it results

|XB(s)(I− Q)XB(t)−1| ≤ Ke−δ(t−s) (9)

for possibly another constant K. The fundamental matrix Y(t) = X(t)−1∗ of the adjoint system

ẋ = −A(t)∗x

has an exponential dichotomy on R+ with projection (I− P∗). Indeed:

|Y(t)(I− P∗)Y(s)−1| ≤ ke−δ(t−s)

|Y(t)P∗Y(s)−1| ≤ ke−δ(t−s)

for any 0 ≤ s ≤ t. From the previous part applied to the system ẋ = −[A(t) + B(t)]∗x we see that
a projection Q̃∗ exists such that RQ̃∗ = RP∗ and

|YB(t)(I− Q̃∗)YB(s)−1| ≤ Ke−δ(t−s)

|YB(s)Q̃∗YB(t)−1| ≤ Ke−δ̃(t−s)

for 0 ≤ s ≤ t, where YB(t) = XB(t)−1∗ is the fundamental matrix of the perturbed system ẋ =

−[A(t) + B(t)]∗x. Going back to XB(t) we see that

|XB(t)Q̃XB(s)−1| ≤ Ke−δ̃(t−s)

|XB(s)(I− Q̃)XB(t)−1| ≤ Ke−δ(t−s)
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for 0 ≤ s ≤ t and a certain constant K (possibly different from the previous one, however we do not
introduce other notations for these constants since at the end we can take the larger of all). From the
first inequality it follows that, if ξ ∈ RQ̃ then |XB(t)ξ| ≤ Ke−δ̃t and hence RQ̃ ⊂ RQ. So

RQ̃ = RQ

since rankQ̃ = rankQ̃∗ = rankP∗ = rankP = rankQ. Next:

ξ ∈ N Q̃ ⇔ Q̃ξ = 0 ⇔ 〈Q̃ξ, η〉 = 0, ∀η

⇔ 〈ξ, Q̃∗η〉 = 0, ∀η ⇔ ξ ∈ [RQ̃∗]⊥ = [RP∗]⊥.

But in the same way we see that [RP∗]⊥ = N P and hence

N Q̃ = N P = NQ.

As a consequence Q = Q̃ and we have

|XB(t)QXB(s)−1| ≤ Ke−δ(t−s)

and
|XB(s)(I− Q)XB(t)−1| = |XB(s)(I− Q̃)XB(t)−1| ≤ Ke−δ(t−s)

for 0 ≤ s ≤ t.
Going back to the original system (that is before the shifting from A(t) to A(t) + νI) we see that

|XB(t)QXB(s)−1| ≤ 2Ke−α(t−s)

|XB(s)(I− Q)XB(t)−1| ≤ 2Ke−β(t−s).

for 0 ≤ s ≤ t. This completes the proof when the dichotomy is on R+.
When the dichotomy is on R−, we reduce to the case of R+ by changing t with −t, X(t) with

X(−t) and A(t) with −A(−t). When ẋ = A(t)x has an exponential dichotomy on R, we apply the
previous result to see that ẋ = [A(t) + B(t)]x has an exponential dichotomy on R+ with projection Q+

and on R− with projection Q−. Then RQ+ ∩NQ− = {0} because both projections are close to P and
RP ∩N P = {0} since ẋ = A(t)x has an exponential dichotomy on R. The conclusion follows from [3]
[p. 19], (see also [2] (Proposition 2.1)).

4. Asymptotically Constant Matrices

Let A(t) be a piecewise continuous n × n matrix, t ∈ R+ and assume that a constant matrix A
exists such that

(A1) lim
t→∞

A(t) = A and
∫ ∞

0
|A(t)− A|dt < ∞;

(A2) A has two semi-simple eigenvalues −α < 0 and β > 0;
(A3) there exists μ > 0 such that all others eigenvalues λ of A satisfy either �λ ≤ −(α + μ) or

�λ ≥ β + μ.

Let X0(t) be the fundamental matrix of ẋ = Ax such that X0(0) = I. Since −α and β are
semi-simple eigenvalues, their generalized eigenspaces, that we denote with Vs and Vu, consist of
eigenvectors of −α and β, that is for any v ∈ Vs (resp. v ∈ Vu) we have X0(t)v = ve−αt (resp.
X0(t)v = veβt). Write

R
n = Vss ⊕ Vs ⊕ Vu ⊕ Vuu

where Vss is the generalized eigenspace of the eigenvalues of A with real parts less than −α − μ and
Vuu is the generalized eigenspace of the eigenvalues of A with real parts greater than α + μ. Let dss, ds,
du duu be the dimensions of Vss, Vs Vu, Vuu respectively.
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Let Pss : Rn → Rn be the projection onto Vss with kernel Vs ⊕ Vu ⊕ Vuu, Ps : Rn → Rn be the
projection onto Vs with kernel Vss ⊕ Vu ⊕ Vuu, Pu : Rn → Rn be the projection onto Vu with kernel
Vss ⊕ Vs ⊕ Vuu, and Puu : Rn → Rn be the projection onto Vuu with kernel Vss ⊕ Vs ⊕ Vu.

Let {vss
1 , . . . , vss

dss
} be a orthonormal basis of Vss, {vs

1, . . . , vs
ds
} be a orthonormal basis of Vs,

{vu
1 , . . . , vu

du
} be a orthonormal basis of Vu and {vuu

1 , . . . , vuu
duu

} be a orthonormal basis of Vuu. For
any ξ ∈ Rn we have

Pssξ =
dss

∑
j=1

css
j vss

j Psξ = ∑ds
j=1 cs

j v
s
j

Puuξ =
duu

∑
j=1

cuu
j vuu

j Puξ = ∑du
j=1 cu

j vu
j

Hence {
dss

∑
j=1

|css
j |2

} 1
2

= |Pssξ| ≤ |Pss| |ξ|.

Similarly {
ds

∑
j=1

|cs
j |2

} 1
2

≤ |Ps| |ξ|{
du

∑
j=1

|cu
j |2

} 1
2

≤ |Pu| |ξ|{
duu

∑
j=1

|cuu
j |2

} 1
2

≤ |Puu| |ξ|.

Next, Vss, Vs, Vu and Vuu are all invariant under X0(s), that is

ξ ∈ V ⇒ X0(s)ξ ∈ V

for V = Vss, Vs, Vu, Vuu. So we have, for example

X0(t)Pssξ = PssX0(t)Pssξ

and
PssX0(t)(I− Pss) = 0

because X0(t)(I− Pss) = X0(t)Ps + X0(t)Pu + X0(t)Puu ∈ Vs + Vu + Vuu. So

X0(t)Pss = PssX0(t).

Similarly:
X0(t)Ps = PsX0(t)
X0(t)Pu = PuX0(t)
X0(t)Puu = PuuX0(t).

Now we observe that

X0(t)X0(s)−1Psξ = X0(t − s)Psξ = X0(t − s)
ds

∑
j=1

cs
j v

s
j =

ds

∑
j=1

cs
j X0(t − s)vs

j

= e−α(t−s)
ds

∑
j=1

cs
j v

s
j = e−α(t−s)Psξ
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then
|X0(t)X0(s)−1Ps| ≤ |Ps|e−α(t−s)

for any 0 ≤ s, t. Similarly,
|X0(t)X0(s)−1Pu| ≤ |Pu|eβ(t−s)

for any 0 ≤ s, t. A slightly different estimate occurs when considering Y0(t)Y0(s)−1Pss and
Y0(t)Y0(s)−1Puu. Indeed in this case the eigenvalues may not be simple so that, for example

X0(t)X0(s)−1vss
i = X0(t − s)vss

i =
dss

∑
j=1

qij(t − s)eλj(t−s)vss
j

where qij(t) is a polynomial that may have positive degree (but less than the multiplicity of λi as
an eigenvalue of A.) Since �λi ≤ −α − μ, for any i = 1, . . . , dss in this case we have then

|X0(t)X0(s)−1vss
i | = |X0(t − s)vss

i | ≤ cie
−(α+

μ
2 )(t−s)

for some ci > 0. As a consequence

|X0(t)X0(s)−1Pssξ| ≤
dss

∑
i=1

|css
i | |X0(t − s)vss

i | ≤ ci

dss

∑
i=1

|css
i |e−(α+

μ
2 )(t−s)

≤ k1|Pss|e−(α+
μ
2 )(t−s)|ξ|

for any t ≥ s ≥ 0. Similarly:

|X0(t)X0(s)−1Puuξ| ≤ k2|Puu|e(β+
μ
2 )(t−s)|ξ|

for some k2 and any s ≥ t ≥ 0. Summarising we see that k ≥ 1 exists such that:

|X0(t)X0(s)−1Pss| ≤ k|Pss|e−(α+
μ
2 )(t−s) for any 0 ≤ s ≤ t

|X0(t)X0(s)−1Ps| ≤ |Ps|e−α(t−s) for any 0 ≤ s, t
|X0(t)X0(s)−1Pu| ≤ |Pu|eβ(t−s) for any 0 ≤ s, t
|X0(t)X0(s)−1Puu| ≤ k|Puu|e(β+ f racμ2)(t−s) for any 0 ≤ t ≤ s.

and hence, using the commutativity of X0(s) with the projections

|X0(t)PssX0(s)−1| ≤ k|Pss|e−(α+
μ
2 )(t−s) for any 0 ≤ s ≤ t

|X0(t)PsX0(s)−1| ≤ |Ps|e−α(t−s) for any 0 ≤ s, t
|X0(t)PuX0(s)−1| ≤ |Pu|eβ(t−s) for any 0 ≤ s, t
|X0(t)PuuX0(s)−1| ≤ k|Puu|e(β+

μ
2 )(t−s) for any 0 ≤ t ≤ s.

Setting
P = Pss + Ps

and then I − P = Puu + Pu we get

|X0(t)PX0(s)−1| ≤ (|Ps|+ k|Pss|)e−α(t−s) for any t ≥ s ≥ 0
|X0(s)(I− P)X0(t)−1| ≤ (|Pu|+ k|Puu|)eβ(t−s) for any s ≥ t ≥ 0

From Theorem 3 we obtain the following result.

Proposition 4. Suppose conditions (A1)–(A3) hold. Then the linear system ẋ = A(t)x has an exponential
dichotomy on both R+ and R− with exponents α and β.
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We conclude this Section with an application of Proposition 4 to nonlinear systems. Let f (x) be
a C1-function such that f ′(x) is Lipschitz with L f as Lipschitz constant. Suppose the system ẋ = f (x)
has two hyperbolic fixed points x = x− and x+ (that may coincide, i.e., x− = x+) together with
a heteroclinic orbit u(t), i.e., a bounded solution such that

lim
t→±∞

u(t) = x±.

The fixed points being hyperbolic means that the matrices f ′(x−) and f ′(x+) have no eigenvalues
with zero real part. Then both systems

ẋ = f ′(x±)x

have an exponential dichotomy on R with projections, say, P+ and P−. It is known that rankP± equals
the number of eigenvalues of f ′(x±) having negative real parts counted with multiplicities. Let α± and
β± be the exponents of the dichotomy of ẋ = f ′(x±)x respectively. First we observe that u̇(t) = f (u(t))
is bounded and it is also a solution of ẋ = f ′(u(t))x. From the roughness theorem we know that
this system has an exponential dichotomy on R+ with exponents α̃+ and β̃+ slightly less that α+ and
β+ respectively. Hence we get |u(t)− x+| ≤ Ke−α̃+t for t ≥ 0. Similarly we get |u(t)− x−| ≤ Keβ̃−t,
for t ≤ 0. So we see that f ′(u(t)) − f ′(x+) ∈ L1(R+) and f ′(u(t)) − f ′(x−) ∈ L1(R−). A simple
application of Theorem 3 gives then the following

Theorem 4. Let f (x) be a C1-function with Lipschitz continuous derivative. Suppose there exists x = x−
and x+ such that f (x−) = f (x+) = 0 and f ′(x−), f ′(x+) has no eigenvalues with zero real parts. Then both
linear systems ẋ = f ′(x−)x and ẋ = f ′(x+)x have an exponential dichotomy on R. Let α±, β± and P± be the
corresponding exponents and projections. Suppose further that the (nonlinear) equation ẋ = f (x) has a solution
u(t) such that

lim
t→±∞

u(t) = x±

Then the linear equation ẋ = f ′(u(t))x has an exponential dichotomy on both R− and R+ with exponents
α−, β− and α+, β+ respectively, and projections Q± such that

rank Q± = rank P±.

5. Conclusions

We have given a new proof of a roughness result for linear systems with an exponential dichotomy
different than the one in [8]. This new proof has the advantage that it is is more direct, can be
easily extended to system having an exponential dichotomy on the whole line and gives a precise
estimate on the norm of the difference of the projections of the dichotomies of the perturbed and the
unperturbed system. Moreover it extends also to more general situations. Indeed the assumptions that
supt∈I |B(t)| < ε is used just to prove that the map

x(t) �→ X(t)Pξ +
∫ ∞

0
Γ(t, s)B(s)x(s)ds,

where

Γ(t, s) =

{
X(t)PX(s)−1 if 0 ≤ s ≤ t
−X(t)(I− P)X(s)−1 if 0 ≤ t < s,

is a contraction on C0
b . According to [7] this holds also under the weaker assumption that

inf
T>0

sup
t≥0

∫ t+T

t
|B(s)|ds

(
k

1 − e−αT +
k

1 − e−βT

)
< 1 (10)
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and the fixed point x(t, s) satisfies again ‖x‖ ≤ C|ξ|, for a suitable constant C. The remaining part of the
proof showing that this fixed point indeed belongs to C0

δ just depends on the fact that |B(t)| ∈ L1(R+).
Hence Theorem 3 holds also under the weaker condition (10) instead of supt≥0 |B(t)| < ε.
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Abstract: In this paper, the double fuzzy Sumudu transform (DFST) method was used to find the
solution to partial Volterra fuzzy integro-differential equations (PVFIDE) with convolution kernel
under Hukuhara differentiability. Fundamental results of the double fuzzy Sumudu transform for
double fuzzy convolution and fuzzy partial derivatives of the n-th order are provided. By using these
results the solution of PVFIDE is constructed. It is shown that DFST method is a simple and reliable
approach for solving such equations analytically. Finally, the method is demonstrated with examples
to show the capability of the proposed method.

Keywords: double fuzzy Sumudu transform; partial Volterra fuzzy integro-differential equations;
n-th order fuzzy partial H-derivative

1. Introduction

Modeling of different physical systems gives us different differential, integral and
integro-differential equations. We are not always sure that the models obtained are perfect. The fuzzy
set theory is one of the most popular theories for describing this situation. The fuzzy logic is introduced
with the proposal of fuzzy set theory by Zadeh and is applied when the observational parameters
are imprecise or unclear. The neutrosophic logic is considered as the extension of the fuzzy logic and
the measure of indeterminacy is added to the measures of truthiness and falseness. The theory
of neutrosophic statistics can be applied when to observation indeterminate, imprecise, vague,
and incomplete parameters. For more details [1–4].

The concept of fuzzy sets, fuzzy numbers and arithmetic operations firstly introduced by Zadeh [5].
In [6] Seikkala defined fuzzy derivatives. The concept of fuzzy integration was given by Dubois and
Prade [7]. One of the first applications of fuzzy integration was given by Wu and Ma who investigated
the fuzzy Fredholm integral equation of the second kind. The idea of fuzzy partial differential equations
was introduced by Buckley in [8]. Allahveranloo proposed the difference method for solving this
equations in [9].

In recent years, many mathematicians have studied the solution of fuzzy differential equations [10–12],
fuzzy integral equations [13–17], and fuzzy integro-differential equations [18–21], which play a key role
in engineering [22,23]. These equations in a fuzzy setting are a natural way to model the ambiguity of
dynamic systems in different scientific fields such as physics, geography, medicine, and biology [24,25].

The fundamental tool in operational calculus are integral transforms. They are used in solving
many practical problems in applied mathematics, physics and engineering. The integral transforms be
very useful in solving partial differential equations. They convert the original function to a function that
is simpler to solve. The Fourier transform is the precursor of the integral transforms. This transform
is used to express functions in a finite interval. Similar integral transforms are Laplace, Mellin and
Hankel transforms. In the 1990s Watugala [26,27] has introduced a new integral transform called the
Sumudu transform. Later, Weerakon [28] used the Sumudu transform for solving partial differential
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Mathematics 2020, 8, 692

equations. Some fundamental theorems and properties for Sumudu transform can be seen in [8,29].
Furthermore, in [30] the Sumudu transform is applied for Bessel functions and equations.

One of the recent methods in handling problems modelled under fuzzy environment is fuzzy
Sumudu transform proposed by Ahmad and Abdul Rahman [31]. This transform is used for solving
of fuzzy differential equations , fuzzy integral equations and fuzzy integro-differential equations as
the problem is reduced to problem which is much simpler to be solved.

In [29] Ahmad and Abdul Rahman proposed the idea of the fuzzy method of transformation of
Sumudu to solve fuzzy partial differential equations. The technique of the fuzzy Sumudu transform
method for solving a fuzzy convolution Volterra integral equations and the fuzzy integro-differential
equation was developed in [32,33]. The studies are the followed by the application of fuzzy Sumudu
transform on fuzzy fractional differential equations and fuzzy Volterra integral equations in [34].
In [35] is introduced double fuzzy Sumudu transform (DFST) method and is applied to solve fuzzy
convolution Volterra integral equation of two variable.

In [36] the solution of classical partial integro-differential equations was discussed using classical
double Elzaki transform method. In the present paper we investigate the solution of PVFIDE with
convolution kernel under Hukuhara differentiability using DFST method. The main difficulties
overcome in solving the this problem are related to the application of the DFST for fuzzy partial
H-derivative of the n-th order. So, we obtain a new results on the Sumudu transform for fuzzy partial
H-derivative of the n-th order . After, the studied equation we convert to a nonlinear system of partial
Volterra integro-differential equations in a crisp case. To be find the lower and upper functions of the
solution we us DFST and we convert this system to system of algebraic equations.

The paper is organized as follows: In Section 2, some definitions and results of fuzzy numbers,
fuzzy functions and fuzzy partial derivative of the n-th order is given. In Section 3, the definition of
DFST is recalled, double fuzzy convolution theorem is stated. New results on DFST for fuzzy partial
derivative of the n-th order are proposed. In Section 4, the DFST is applied to fuzzy partial convolution
Volterra fuzzy integro-differential equation to construct the general technique. In Section 5, an example
is provided to demonstrate the proposed method and finally in Section 6, conclusions are drawn.

2. Premilinaries and Notations

In this section, we give some basics definitions and theorems for fuzzy number,
fuzzy-valued function and derivative of fuzzy-valued function.

Definition 1 ([37]). A fuzzy number is defined as the mapping u : R → [0, 1] satisfying the following
four properties:

(i) u is upper semi-continuous on R;
(ii) u(x) = 0 outside of some interval [c, d];

(iii) there are the real numbers a and b with c ≤ a ≤ b ≤ d, such that u is increasing on [c, a], decreasing on
[b, d] and u(x) = 1 for each x ∈ [a, b];

(iv) u(rx + (1 − r)y) ≥ min{u(x), u(y)} for any x, y ∈ R, r ∈ [0, 1] .

needed throughout the paper such

Denote E1 the set of all fuzzy numbers and D = R+ × R+. Any real number a ∈ R can be
interpreted as a fuzzy number ã = χ(a) and therefore R ⊂ E1.

Definition 2 ([38]). Let u ∈ E1 and r ∈ (0, 1]. The r-level set of u is the crisp set

[u]r = {x ∈ R : u(x) ≥ r},

where [u]r denotes r-level set of fuzzy number u.
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It can be concluded that any r-level set is bounded and closed interval and denoted by [u(r), u(r)]
for all r ∈ [0, 1], where the functions u, u : [0, 1] → R are the lower and upper bound of
[u]r, respectively.

Definition 3 ([38]). A fuzzy number in parametric form is given as an order pair of the form u = (u(r), u(r)),
where 0 ≤ r ≤ 1 satisfying the following conditions:

(i) u(r) is a bounded left continuous monotonic increasing function in [0, 1];
(ii) u(r) is a bounded left continuous monotonic decreasing function in [0, 1];

(iii) u(r) ≤ u(r).

For arbitrary fuzzy number u = (u(r), u(r)), v = (v(r), v(r)) and an arbitrary crisp number k ∈ R

the addition and the scalar multiplication are defined by [u ⊕ v]r = [u]r + [v]r = [u(r) + v(r), u(r) +
v(r)] and

[k � u]r = k.[u]r =

{
[ku(r), ku(r)], k ≥ 0

[ku(r), ku(r)], k < 0.
The neutral element with respect to ⊕ in E1 is denoted by 0̃ = χ{0}.
For basic algebraic properties of fuzzy numbers, please see ([37]).

Definition 4 ([39]). Let x, y ∈ E1 and exists z ∈ E1, such that x = y ⊕ z. Then z is called the H-difference of
x and y and is given by x � y.

We use the Hausdorff metric as a distance between fuzzy numbers.

Definition 5 ([37]). For arbitrary fuzzy numbers u = (u(r), u(r)) and v = (v(r), v(r)) the quantity

d(u, v) = sup
r∈[0,1]

max{|u(r)− v(r)|, |u(r)− v(r)|}

is the distance between u, v.

The metric d is a complete metric space in E1.
For any fuzzy-number-valued function w : D → E1 we define the functions w(., ., r), w(., ., r) :

D → R, for all r ∈ [0, 1]. These functions are called the left and right r− level functions of w.

Definition 6 ([15]). A fuzzy-number-valued function w : D → E1 is said to be continuous at (s0, t0) ∈ D
if for each ε > 0 there is δ > 0 such that d( f (s, t), f (s0, t0)) < ε whenever |s − s0|+ |t − t0| < δ. If w be
continuous for each (s, t) ∈ D then we say that w is continuous on D.

Let R > 0. Denote DR = D ∩ U(0, R), where

U(0, R) = {(x, y) : x2 + y2 ≤ R2}

is the closed circle with radius R.
Let w : D → E1 be fuzzy-valued function with parametric form (w(x, y, r), w(x, y, r)) for all

r ∈ [0, 1].

Theorem 1. Let for all r ∈ [0, 1]

1. the functions w(x, y, r) and w(x, y, r) are Riemann-integrable on DR,
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2. there are constants M(r) > 0 and M(r) > 0, such that∫ ∫
DR

|w(x, y, r)|dxdy ≤ M(r),
∫ ∫

DR

|w(x, y, r)|dxdy ≤ M(r)

for every R > 0.

Then the function w(x, y) is improper fuzzy Riemann-integrable on D and

(FR)
∞∫

0

(FR)
∞∫

0

w(x, y)dxdy =

⎛⎝ ∞∫
0

∞∫
0

w(x, y, r)dxdy,
∞∫

0

∞∫
0

w(x, y, r)dxdy

⎞⎠ .

Proof. Define the function I : (0, ∞) → R+ by

I(R) =
∫ ∫

DR

|w(x, y, r)|dxdy f orall r ∈ [0, 1].

From condition 2, it follows that I is bounded and monotonically increasing. Hence, there exists

lim
R→∞

I(R) =
∞∫

0

∞∫
0

w(x, y, r)dxdy.

For fuzzy valued functions w = w(x, y) we define the n-th order partial H-derivatives with
respect to x and y as given in [11].

Definition 7. Let w : (a, b)× (c, d) → E1 be a fuzzy function. We call that w is H-differentiable of the n-th
order at x0 ∈ (a, b), with respect to x, if there exists an element ∂nw(x0,y)

∂xn ∈ E1 such that

1. for all h > 0 sufficiently small the H-differences

∂n−1w(x0 + h, y)
∂xn−1 � ∂n−1w(x0, y)

∂xn−1 ,
∂n−1w(x0, y)

∂xn−1 � ∂n−1w(x0 − h, y)
∂xn−1 ,

exist and the following limits hold (in the metric d)

lim
h→0

1
h

(
∂n−1w(x0 + h, y)

∂xn−1 � ∂n−1w(x0, y)
∂xn−1

)

= lim
h→0

1
h

(
∂n−1w(x0, y)

∂xn−1 � ∂n−1w(x0 − h, y)
∂xn−1

)
=

∂nw(x0, y)
∂xn

or
2. for all h > 0 sufficiently small the H-differences

∂n−1w(x0, y)
∂xn−1 � ∂n−1w(x0 + h, y)

∂xn−1 ,
∂n−1w(x0 − h, y)

∂xn−1 � ∂n−1w(x0, y)
∂xn−1 ,

exist and the following limits hold (in the metric d)

lim
h→0

−1
h

(
∂n−1w(x0, y)

∂xn−1 � ∂n−1w(x0 + h, y)
∂xn−1

)

= lim
h→0

−1
h

(
∂n−1w(x0 − h, y)

∂xn−1 � ∂n−1w(x0, y)
∂xn−1

)
=

∂nw(x0, y)
∂xn .
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Similarly,

Definition 8. Let w : (a, b)× (c, d) → E1 be a fuzzy function. We call that w is H-differentiable of the n-th
order at y0 ∈ (c, d), with respect to y, if there exists an element ∂nw(x,y0)

∂yn ∈ E1 such that

1. For h > 0 sufficiently small the H-differences

∂n−1w(x, y0 + h)
∂yn−1 � ∂n−1w(x, y0)

∂yn−1 ,
∂n−1w(x, y0)

∂yn−1 � ∂n−1w(x, y0 − h)
∂yn−1 ,

exist and the following limits hold (in the metric d)

lim
h→0

1
h

(
∂n−1w(x, y0 + h)

∂yn−1 � ∂n−1w(x, y0)

∂yn−1

)

= lim
h→0

1
h

(
∂n−1w(x, y0)

∂yn−1 � ∂n−1w(x, y0 − h)
∂yn−1

)
=

∂nw(x, y0)

∂yn

or
2. For h > 0 sufficiently small the H-differences

∂n−1w(x, y0)

∂yn−1 � ∂n−1w(x, y0 + h)
∂yn−1 ,

∂n−1w(x, y0 − h)
∂yn−1 � ∂n−1w(x, y0)

∂yn−1 ,

exist and the following limits hold (in the metric d)

lim
h→0

−1
h

(
∂n−1w(x, y0)

∂yn−1 � ∂n−1w(x, y0 + h)
∂yn−1

)

= lim
h→0

−1
h

(
∂n−1w(x, y0 − h)

∂yn−1 � ∂n−1w(x, y0)

∂yn−1

)
=

∂nw(x, y0)

∂yn .

The first type of differentiability as in Definition 7 and Definition 8 are referred as (i)-differentiable,
while the second type as (ii)-differentiable.

Theorem 2 ([11]). Let w : R × R → E1 be a continuous fuzzy-valued function and w(x, y) =

(w(x, y, r), w(x, y, r)) for all r ∈ [0, 1]. Then

1. if w(x, y) is (i)-differentiable of the n-th order with respect to x, then w(x, y, r) and w(x, y, r) are
differentiable of the n-th order with respect to x and

∂nw(x, y)
∂xn =

(
∂nw(x, y, r)

∂xn ,
∂nw(x, y, r)

∂xn

)
, (1)

2. if w(x, y) is (ii)-differentiable of the n-th order with respect to x, then w(x, y, r) and w(x, y, r) are
differentiable of the n-th order with respect to x and

∂nw(x, y)
∂xn =

(
∂nw(x, y, r)

∂xn ,
∂nw(x, y, r)

∂xn

)
. (2)

3. Two-Dimensional Fuzzy Sumudu Transform

In this part, we give DFST definition and its inverse. We introduced the concept of double fuzzy
convolution and give two new results of DFST for fuzzy partial derivative of the n-th order.
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Definition 9 ([35]). Let w : R×R → E1 be a continuous fuzzy-valued function and the function e−x−y �
w(ux, vy) is improper fuzzy Riemann-integrable on D, then

(FR)
∞∫

0

(FR)
∞∫

0

e−x−y � w(ux, vy)dxdy,

is called DFST and is denote by

W(u, v) = S[w(x, y)] = (FR)
∞∫

0

(FR)
∞∫

0

e−x−y � w(ux, vy)dxdy, (3)

for u ∈ [−τ1, τ2] and v ∈ [−σ1, σ2], where the variables u, v are used to factor the variables x, y in the argument
of the fuzzy-valued function and τ1, τ2, σ1, σ2 > 0.

The parametric form of DFST is follows

S[w(x, y)] = (s[w(x, y, r)], s[w(x, y, r)]), (4)

where

s[w(x, y, r)] =
∞∫

0

∞∫
0

e−x−yw(ux, vy, r)dxdy, (5)

s[w(x, y, r)] =
∞∫

0

∞∫
0

e−x−yw(ux, vy, r)dxdy. (6)

The equation (3) we can rewrite in the form

W(u, v) = S[w(x, y)] = 1
uv (FR)

∞∫
0
(FR)

∞∫
0

e−( x
u +

y
v ) � w(x, y)dxdy. (7)

Definition 10 ([35]). Double fuzzy inverse Sumudu transform can be written as the formula

S−1 [W(u, v)] = w(x, y) =
(

s−1[W(u, v, r)], s−1[W(u, v, r)]
)

, (8)

where

s−1[W(u, v, r)] =
1

2πı

γ+ı∞∫
γ−ı∞

e
x
u du

1
2πı

δ+ı∞∫
δ−ı∞

e
y
v W(u, v, r)dv,

s−1[W(u, v, r)] =
1

2πı

γ+ı∞∫
γ−ı∞

e
x
u du

1
2πı

δ+ı∞∫
δ−ı∞

e
y
v W(u, v, r)dv.

For all r ∈ [0, 1] the functions W(u, v, r) and W(u, v, r) must be analytic functions for all u and v in the
region defined by the inequalities Reu ≥ γ and Rev ≥ δ, where γ and δ are real constants to be chosen suitably.

In [40] classical double Sumudu transform is applied on some special functions.

1. Let g(x, y) = 1 for x > 0, y > 0, then s[g(x, y)] = 1.
2. Let g(x, y) = xmyn, where m, n are positive integers, then

s[g(x, y)] = (m!)(n!)umvn. (9)
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3. Let g(x, y) = eax+by, where a, b are any constants, then

s[g(x, y)] =
1

(1 − au)(1 − bv)
. (10)

4.

s[cos(ax + by)] =
(1 − abuv)

(1 + a2u2)(1 + b2v2)
, (11)

s[sin(ax + by)] =
(bv + au)

(1 + a2u2)(1 + b2v2)
. (12)

Theorem 3 ([35]). Let g(x, y) be a continuous fuzzy-valued function. If G(u, v) is the double fuzzy Sumudu
transform of g(x, y) and a, b are arbitrary constants, then

S[eax+by � g(x, y)] =
1

(1 − au)(1 − bv)
� G

(
u

1 − au
,

v
1 − bv

)
. (13)

In [35] DFST theorems and properties generated by DFST are given.

Definition 11 ([35]). If k(x, y) and w(x, y) are fuzzy Riemann integrable functions, then double fuzzy
convolution of k(x, y) and w(x, y) is given by

(k ∗ ∗w)(x, y) = (FR)

y∫
0

(FR)
x∫

0

k(x − α, y − β)w(α, β)dαdβ (14)

and the symbol ∗∗ denotes the double convolution respect to x and y.

Theorem 4 ([35]). Let k : D → R and w(x, y) be fuzzy functions. Then the DFST of the double fuzzy
convolution k and w, is given by

S[(k ∗ ∗w)(x, y)] = uvS[k(x, y)]� S[w(x, y)]. (15)

We introduce results of DFST for fuzzy partial derivatives.

Theorem 5. Let w : R×R → E1 be a continuous fuzzy-valued function. The functions e−x−y � w(ux, vy),
e−x−y � ∂nw(ux,vy)

∂xn are improper fuzzy Riemann-integrable on D. Then

S
[

∂nw(x, y)
∂xn

]
=

∂n

∂xn S[w(x, y)], (16)

where S[w(x, y)] denotes the DFST of the function w and n ∈ N.

Proof. Let the function w(x, y) is (i)-differentiable. From definition of DFST, we have

S[
∂nw(x, y)

∂xn ] = (FR)
∞∫

0

(FR)
∞∫

0

e−x−y � ∂nw(ux, vy)
∂xn dxdy

=

⎛⎝ ∞∫
0

∞∫
0

e−x−y ∂nw(ux, vy)
∂xn dxdy,

∞∫
0

∞∫
0

e−x−y ∂nw(ux, vy)
∂xn dxdy

⎞⎠
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=
∂n

∂xn

⎡⎣ ∞∫
0

∞∫
0

e−x−yw(ux, vy)dxdy,
∞∫

0

∞∫
0

e−x−yw(ux, vy)dxdy

⎤⎦ =
∂n

∂xn S[w(x, y)].

Theorem 6. Let w : R × R → E1 be a fuzzy-valued function. The functions e−x−y � w(ux, vy),
e−x−y � ∂nw(ux,vy)

∂xn are improper fuzzy Riemann-integrable on D. For all x > 0 and n ∈ N there exist to continuous

partial H-derivatives to (n − 1)−th order with respect to x and there exists ∂nw(x,y)
∂xn . Then

1. if the function w(x, y) is (i)-differentiable then

S
[

∂nw(x, y)
∂xn

]
=

(
s
[

∂nw(x, y)
∂xn

]
, s
[

∂nw(x, y)
∂xn

])
,

2. if the function w(x, y) is (ii)-differentiable then

S
[

∂nw(x, y)
∂xn

]
=

(
s
[

∂nw(x, y)
∂xn

]
, s
[

∂nw(x, y)
∂xn

])
,

where

s
[

∂nw(x, y, r)
∂xn

]
=

1
un s [w(x, y, r)]−

n

∑
j=1

1
uj s

[
∂n−jw(0, y, r)

∂xn−j

]
, (17)

s
[

∂nw(x, y, r)
∂xn

]
=

1
un s [w(x, y, r)]−

n

∑
j=1

1
uj s

[
∂n−jw(0, y, r)

∂xn−j

]
. (18)

Proof. Let the function w(x, y) is (i)-differentiable. By induction we proof the equation (17). For n = 1
from condition (4) we have

S
[
w′

x(x, y)
]
= (s[w′

x(x, y, r)], s
[
w′

x(x, y, r)
]
).

By us part integration on x and condition (4) we obtain

s[w′
x(x, y, r)] =

∞∫
0

∞∫
0

e−x−yw′
x(ux, vy, r)dxdy =

1
u
(s[w(x, y, r)− s[w(0, y, r)).

Let for n = k the equation (17) holds. Then

s[
∂kw(x, y, r)

∂xk ] =
1
uk s[w(x, y, r)]−

k

∑
j=1

1
uj s[

∂k−jw(0, y, r)
∂xk−j ].

Hence, for n = k + 1 we get

s[ ∂k+1w(x,y,r)
∂xk+1 ] = ∂

∂x s[ ∂kw(x,y,r)
∂xk ] = ∂

∂x (
1
uk s[w(x, y, r)])− ∂

∂x (
k
∑

j=1

1
uj s[ ∂k−jw(0,y,r)

∂xk−j ])

= 1
uk s[w′

x(x, y, r)]− k
∑

j=1

1
uj s[ ∂k+1−jw(0,y,r)

∂xk+1−j ]

= 1
uk+1 (s[w(x, y, r)]− s[w(0, y, r)])− k

∑
j=1

1
uj s[ ∂k+1−jw(0,y,r)

∂xk+1−j ]

= 1
uk+1 s[w(x, y, r)]− k+1

∑
j=1

1
uj s[ ∂k+1−jw(0,y,r)

∂xk+1−j ].
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4. DFST for Solving PVFIDE

In this section, we application of the DFST method for solving of PVFIDE. This equation is
defined as

m
∑

i=1
ai � ∂iw(x,y)

∂xi ⊕ n
∑

j=1
bj � ∂jw(x,y)

∂yj ⊕ c � w(x, y)

= g(x, y)⊕ (FR)
y∫

0
(FR)

x∫
0

k(x − α, y − β)� w(α, β)dαdβ,
(19)

with initial conditions
∂iw(0, y)

∂xi = ϕi(y), i = 0, 1, ..., m − 1 (20)

∂iw(x, 0)
∂yj = ψj(x), i = 0, 1, ..., n − 1, (21)

where k : [0, b]× [0, d] → R, is a continuous functions and g, w : [0, b]× [0, d] → E1, ϕi : [0, d] → E1,
ψj : [0, b] → E1 are continuous fuzzy functions and ai, i = 1, 2, ...m, bj, j = 1, 2, ...n, c, are constants.

Applying DFST on both side of it we get the following

S
[

m
∑

i=1
ai

∂iw(x,y)
∂xi

]
⊕ S

[
n
∑

j=1
bj

∂jw(x,y)
∂yj

]
⊕ S[c � w(x, y)]

= S[g(x, y)]⊕ S

[
(FR)

y∫
0
(FR)

x∫
0

k(x − α, y − β)� w(α, β)dαdβ

]
,

By using double fuzzy convolution (15) we obtain

m
∑

i=1
ai � S

[
∂iw(x,y)

∂xi

]
⊕ n

∑
j=1

bj � S
[

∂jw(x,y)
∂yj

]
⊕ c � S[w(x, y)]

= S[g(x, y)]⊕ uvs[k(x, y)]� S[w(x, y)]

Let the constants ai, i = 1, ..., m, bj, j = 1, ...n, c be positive and the function k(x, y) > 0.

1. if w(x, y) is (i)-differentiable, then

m
∑

i=1
ais

[
∂iw(x,y,r)

∂xi

]
+

n
∑

j=1
bjs

[
∂jw(x,y,r)

∂yj

]
+ cs[w(x, y, r)] = s[g(x, y, r)] + uvs[k(x, y)]s[w(x, y, r)]

and

m
∑

i=1
ais

[
∂iw(x,y,r)

∂xi

]
+

n
∑

j=1
bjs

[
∂jw(x,y,r)

∂yj

]
+ cs[w(x, y, r)] = s[g(x, y, r)] + uvs[k(x, y)]s[w(x, y, r)]

Then from (17) and (18) we have(
m
∑

i=1

ai
ui +

n
∑

j=1

bj

vj + c − uvs[k(x, y)]

)
s[w(x, y, r)]

= s[g(x, y, r)] +
m
∑

i=1

i
∑

k=1

ai
uk s

[
∂i−kw(0,y,r)

∂xi−k

]
+

n
∑

j=1

j
∑

k=1

bj

vk s
[

∂j−kw(x,0,r)
∂yj−k

]
and (

m
∑

i=1

ai
ui +

n
∑

j=1

bj

vj + c − uvs[k(x, y)]

)
s[w(x, y, r)]

= s[g(x, y, r)] +
m
∑

i=1

i
∑

k=1

ai
uk s

[
∂i−kw(0,y,r)

∂xi−k

]
+

n
∑

j=1

j
∑

k=1

bj

vk s
[

∂j−kw(x,0,r)
∂yj−k

]
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Using the initial conditions (20) and (21) we get(
m
∑

i=1

ai
ui +

n
∑

j=1

bj

vj + c − uvs[k(x, y)]

)
s[w(x, y, r)]

= s[g(x, y, r)] +
m
∑

i=1

i
∑

k=1

ai
uk s

[
ϕi−k

i−k
(0, y, r)

]
+

n
∑

j=1

j
∑

k=1

bj

vk s
[
ψ

j−k
j−k(x, 0, r)

]
and (

m
∑

i=1

ai
ui +

n
∑

j=1

bj

vj + c − uvs[k(x, y)]

)
s[w(x, y, r)]

= s[g(x, y, r)] +
m
∑

i=1

i
∑

k=1

ai
uk s

[
ϕi−k

i−k(0, y, r)
]
+

n
∑

j=1

j
∑

k=1

bj

vk s
[
ψ

j−k
j−k(x, 0, r)

]
Then

s[w(x, y, r)] =

s[g(x, y, r)] +
m
∑

i=1

i
∑

k=1

ai
uk s

[
ϕi−k

i−k
(0, y, r)

]
+

n
∑

j=1

j
∑

k=1

bj

vk s
[
ψ

j−k
j−k(x, 0, r)

]
m
∑

i=1

ai
ui +

n
∑

j=1

bj

vj + c − uvs[k(x, y)]
(22)

and

s[w(x, y, r)] =

s[g(x, y, r)] +
m
∑

i=1

i
∑

k=1

ai
uk s

[
ϕi−k

i−k(0, y, r)
]
+

n
∑

j=1

j
∑

k=1

bj

vk s
[
ψ

j−k
j−k(x, 0, r)

]
m
∑

i=1

ai
ui +

n
∑

j=1

bj

vj + c − uvs[k(x, y)]
(23)

2. if w(x, y) is (ii)-differentiable, then

s[w(x, y, r)] =

s[g(x, y, r)] +
m
∑

i=1

i
∑

k=1

ai
uk s

[
ϕi−k

i−k(0, y, r)
]
+

n
∑

j=1

j
∑

k=1

bj

vk s
[
ψ

j−k
j−k(x, 0, r)

]
m
∑

i=1

ai
ui +

n
∑

j=1

bj

vj + c − uvs[k(x, y)]
(24)

and

s[w(x, y, r)] =

s[g(x, y, r)] +
m
∑

i=1

i
∑

k=1

ai
uk s

[
ϕi−k

i−k
(0, y, r)

]
+

n
∑

j=1

j
∑

k=1

bj

vk s
[
ψ

j−k
j−k(x, 0, r)

]
m
∑

i=1

ai
ui +

n
∑

j=1

bj

vj + c − uvs[k(x, y)]
(25)

By using the inverse of DFST we obtain w(y, y) = (w(x, y, r), w(x, y, r).

5. Examples

In this section, we find the solution of partial convolution Volterra fuzzy integro-differential
equation using DFST.

Example 1. Consider the following PVFIDE

w′′
xx(x, y)⊕ w′′

yy(x, y)⊕ w(x, y) = g(x, y)⊕ (FR)
y∫

0
(FR)

x∫
0

ex−α+y−βw(α, β)dαdβ,

(x, y) ∈ [0, 1]× [0, 1] r ∈ [0, 1]
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with initial conditions

w(x, 0) = (ex(2 + r), ex(4 − r)), w′
y(x, 0) = (ex(2 + r), ex(4 − r)),

w(0, y) = (ey(2 + r), ey(4 − r)), w′
x(0, y) = (ey(2 + r), ey(4 − r))

and
g(x, y) = (ex+y(2 + xy)(2 + r), ex+y(2 + xy)(4 − r)).

In this case m = n = 2, a1 = b1 = 0, a2 = b2 = 1, c = 1,
k(x − α, y − β) = ex−α+y−β > 0 for 0 ≤ α ≤ x ≤ 1 and 0 ≤ β ≤ y ≤ 1,

ψ0(x, 0) = (ex(2 + r), ex(4 − r)), ϕ0(y) = (ey(2 + r), ey(4 − r)).

ψ1(x, 0) = (ex(2 + r), ex(4 − r)), ϕ1(y) = (ey(2 + r), ey(4 − r)).

From (10), we find

s[k(x, y)] = s[ex+y] =
1

(1 − u)(1 − v)
,

S[ψ0(x)] = S[ψ1(x)] = (s[ex(2 + r)], s[ex(4 − r)]) =
(

1
1 − u

(2 + r),
1

1 − u
(4 − r)

)
,

S[ϕ0(y)] = S[ϕ1(y)] = (s[ey(2 + r)], s[ey(4 − r)]) =
(

1
1 − v

(2 + r),
1

1 − v
(4 − r)

)
From Theorem 3 we obtain

S[g(x, y)] = (s[(2 + xy)ex+y(2 + r), s[(2 + xy)ex+y(4 − r)])

=

((
3 − uv

(1 − u)(1 − v)

)
(2 + r)

(1 − u)(1 − v)
,
(

3 − uv
(1 − u)(1 − v)

)
(4 − r)

(1 − u)(1 − v)

)
.

Then, of (22) and (23) for the solution of the equation we have

s[w(x, y, r)] =
1

(1 − u)(1 − v)
(2 + r).

and
s[w(x, y, r)] =

1
(1 − u)(1 − v)

(4 − r).

By inverse double Sumudu transform the solution of the equation is w(x, y) = (ex+y(2+ r), ex+y(4− r)).

6. Conclusions

In this paper, the double fuzzy Sumudu transform method for solving partial convolution Volterra
fuzzy integro-differential equations have been studied. The concept of double fuzzy convolution
have been introduced. New results on DFST for fuzzy partial H-derivative of the n-th order have
been proposed.

By using the parametric form of fuzzy functions we convert the investigated equation to a
nonlinear system of partial Volterra integro-differential equations in a crisp case. Applying DFST
method for this system we obtain system of algebraic equations. Hence we find the lower and upper
functions of the solution. Finally, the examples to show that the investigation method is effective in
solving the equations of considered kind.
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Abstract: We develop a new concept of a solution, called the limit solution, to fully nonlinear
differential inclusions in Banach spaces. That enables us to study such kind of inclusions under
relatively weak conditions. Namely we prove the existence of this type of solutions and some
qualitative properties, replacing the commonly used compact or Lipschitz conditions by a dissipative
one, i.e., one-sided Perron condition. Under some natural assumptions we prove that the set of limit
solutions is the closure of the set of integral solutions.

Keywords: m-dissipative operators; limit solutions; integral solutions; one-sided Perron condition;
Banach spaces

1. Introduction and Preliminaries

Let X be a real Banach space with the norm | · |, A : D(A) ⊂ X ⇒ X an m–dissipative operator
generating the semigroup {S(t) : D(A) → D(A); t ≥ 0} and F : I × X ⇒ X a multifunction with
nonempty, closed and bounded values, where I = [t0, T].

In this paper, we study evolution inclusions of the form

ẋ(t) ∈ Ax(t) + F(t, x(t)), x(t0) = x0 ∈ D(A). (1)

Notice that many parabolic systems can be written in the form (1). We refer the reader to [1–3] for the
general theory of the system (1) when F is single valued. In the case when X∗ is uniformly convex,
the system (1) is comprehensively studied in [4]. We recall also the monograph [5], where (1) is studied
in different settings.

An important problem regarding the system (1) is to find the closure of the set of integral solutions.
This problem is not solved in the case of general Banach spaces.

We consider the associated Cauchy problem

ẋ(t) ∈ Ax(t) + f (t), x(t0) = x0 ∈ D(A), (2)

where f (·) is a Bochner integrable function. We denote by [·, ·]+ the right directional derivative of the
norm, i.e., [x, y]+ = lim

h→0+
h−1(|x + hy| − |x|) (see, e.g., ([6], Section 1.2) for definition and properties).

Mathematics 2020, 8, 750; doi:10.3390/math8050750 www.mdpi.com/journal/mathematics61
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Following [7], we say that a continuous function x : [t0, T] → D(A) is an integral solution of (2) on
[t0, T] if x(t0) = x0 and for every u ∈ D(A), v ∈ Au and t0 ≤ τ < t ≤ T the following inequality holds

|x(t)− u| ≤ |x(τ)− u|+
∫ t

τ
[x(s)− u, f (s) + v]+ds.

Definition 1. The Bochner integrable function g(·) is said to be pseudoderivative of the continuous function
y(·) (with respect to A) if y(·) is an integral solution of (2) on [t0, T] with f (·) replaced by g(·).

Notice that the pseudoderivative g(·) (if it exists) depends on A and y(·). However, along this
paper A is fixed and we assume without loss of generality that the pseudoderivative depends only on
y(·). To stress this dependence on y, we will denote the pseudoderivative g(·) by gy(·).

It is well known that for each x0 ∈ D(A) the Cauchy problem (2) has a unique integral solution
on [t0, T]. Moreover, if x(·) and y(·) are integral solutions of (2) with x(t0) = x0 and y(t0) = y0 then

|x(t)− y(t)| ≤ |x0 − y0|+
∫ t

t0

[x(s)− y(s), fx(s)− fy(s)]+ds, (3)

|x(t)− y(t)| ≤ |x0 − y0|+
∫ t

t0

| fx(s)− fy(s)|ds, (4)

for every t ∈ [t0, T] (see, e.g., [7]).
We define now the notion of integral solution for the differential inclusion (1). Moreover,

following [8], where the semilinear case was considered, we define the notions of ε-solution (called
outer ε-solution in [8]) and limit solution for (1). In the following, B denotes the closed unit ball in X.

Definition 2. The function x : I → D(A) is said to be an integral solution of (1) on I if it is an integral
solution of (2) such that its pseudoderivative fx(·) satisfies fx(t) ∈ F(t, x(t)) for a.a. t ∈ I.

Consider the following system{
ẋ(t) ∈ Ax(t) + F(t, x(t) +B) +B,

x(t0) = x0.
(5)

Definition 3. (i) Let ε > 0. The continuous function x : I → D(A) is said to be an ε–solution of (1) on I if it
is a solution of (5) and its pseudoderivative fx(·) satisfies∫

I
dist( fx(t), F(t, x(t)))dt ≤ ε.

(ii) The function x(·) is said to be a limit solution of (1) on I if x(t) = lim
n→∞

xn(t) uniformly on I for some

sequence (xn(·)) of εn–solutions as εn ↓ 0+.

Recall that the distance between a point u ∈ X and a subset C of X is given by dist(u; C) =

inf{‖u − c‖; c ∈ C}.
In the literature, we can find different definitions for ε–solutions. Maybe the most popular is

when its pseudoderivative satisfies fx(t) ∈ F(t, x(t) + εB) a.e. on I. However, our definition given
above is more convenient for the study of the qualitative properties of the set of integral solutions
of (1) in the case when X is an arbitrary Banach space.

For ordinary differential inclusions (A = 0), the limit solutions are usually called quasitrajectories
(cf., [9] ). We prefer the notion of limit solution because it is the original definition of the integral
solution in the case of m–dissipative systems (cf. [6]). For ordinary differential inclusions in Rn,
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the limit solutions are the integral solutions of the relaxed system. In our case, the relaxed system has
the form

ẋ(t) ∈ Ax(t) + co F(t, x(t)), x(t0) = x0, (6)

where co F(t, x(t)) stands for the closed convex hull of the set F(t, x(t)). In this general setting, the limit
solutions are not integral solutions of the relaxed system (6).

It is well known that the set of integral solutions of (6) is not necessarily closed in C(I, X) even if
X is finite dimensional. For instance, in [10] the author constructed an example in which a sequence
(xn(·)) of integral solutions of

ẋ(t) ∈ Ax(t) + fn(t), x(t0) = x0,

converges uniformly on [t0, T] to a function x(·), ( fn(·)) converges weakly in L1(t0, T; X) to f (·),
but x(·) is not an integral solution of

x′(t) ∈ Ax(t) + f (t), x(t0) = x0.

The main results of this paper are summarized as follows.

(I) We prove that the set of limit solutions of (1) is nonempty and closed in C(I, X) when X is a
general Banach space and F(·, ·) is almost continuous and satisfies a one-sided Perron condition.

(II) We prove that in the case when A generates a compact semigroup, the closure of the set of
integral solutions of (1) is exactly the set of limit solutions, which in general does not coincide
with the set of integral solutions of the relaxed system. The same result is proved also when
F(t, ·) is full Perron, but without any restrictions on the semigroup A.

The limit solutions in the case when A is linear were studied in [8]. It was shown there that the
limit solutions of (1) and (6) coincide. It is not the case for the nonlinear problem.

Let us now define a few classes of multifunctions which will be used in the following.
We say that F(·, ·) is lower semicontinuous (LSC) at (t0, x0) ∈ I × X if for every f0 ∈ F(t0, x0),

every xk → x0 and every tk → t0 there exists fk ∈ F(tk, xk) such that fk → f0. This definition is
equivalent to the following property of the graph: for every α ∈ F(t0, x0) and every ε > 0, there exists
δ > 0 such that α ∈ F(t, x) + εB, when |t − t0| ≤ δ and |x − x0| ≤ δ.

The multifunction F(·, ·) is called LSC if it is LSC at every (t, x) ∈ I × X.
The multifunction F(·, ·) is called continuous if it is continuous with respect to the Hausdorff

distance. We recall that the Hausdorff distance between the bounded sets B and C is defined by

DH(B; C) = max{e(B; C), e(C; B)},

where e(B; C) is the excess of B to C, defined by e(B; C) = supx∈B dist(x; C).
The multifunction F(·, ·) is called almost LSC (continuous) if for every ε > 0 there exists a compact

set Iε ⊂ I with Lebesgue measure meas(I \ Iε) ≤ ε such that F |Iε×X is LSC (continuous).
Let v : I ×R+ → R+ be Carathéodory and integrally bounded on the bounded sets. As is well

known, the scalar differential equation

ṙ(t) = v(t, r(t)), r(t0) = r0 ≥ 0, (7)

has maximal solutions h(·), i.e., 0 ≤ r(t) ≤ h(t) for every solution r(·) of (7) on the existence interval
of h(·) (see, e.g., [6]).

We introduce now the standing hypotheses of this paper.

Hypothesis 1 (H1). The multifunction F(·, ·) is almost continuous.
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Hypothesis 2 (H2). There exists γ > 0 such that ‖F(t, x)‖ ≤ γ(1 + |x|) for a.a. t ∈ I and every x ∈ X. We
recall that ‖F(t, x)‖ = sup

y∈F(t,x)
|y|.

Hypothesis 3 (H3). (One-sided Perron condition) There exist a Perron function w(·, ·) and a null set N ⊂ I
such that such for every x, y ∈ X, for every ε > 0 and for every f ∈ F(t, x) there exists g ∈ F(t, y) such that

[x − y, f − g]+ ≤ w(t, |x − y|) + ε

on I \ N .

We recall that the Carathéodory function w : I ×R+ → R+ is said to be Perron function if it is
integrally bounded on bounded sets, w(t, 0) ≡ 0, w(t, ·) is nondecreasing for every t ∈ I and the zero
function is the only solution of the scalar differential equation r′(t) = w(t, r(t)), r(t0) = 0, on I.

Notice that it is more popular to call such kind of functions Kamke functions. We refer the reader
to [11], where Perron and Kamke functions are comprehensively studied. That paper is the main reason
to use here the notion of Perron (not Kamke) function. In [12] some examples of the Perron (Kamke)
functions different from the Lipshitz one are given (see, e.g., Corollary 1.13 and Corollary 1.15).

Remark 1. Due to Gronwall’s lemma, there exists a constant M > 0 such that |x(t)| ≤ M for every t ∈ I and
every solution x(·) of (5). Let N = 1 + γ(2 + M). Then ‖F(t, x(t) + B) + B‖ ≤ N for every solution x(·)
of (5).

Clearly, for every solution x(·) of (5), in particular for every ε–solution x(·) of (1), with the
pseudoderivative fx(·), we have that dist( fx(t), F(t, x(t))) ≤ 2N on I, since | fx(t)| ≤ N and
‖F(t, x(t))‖ ≤ N for every t ∈ I.

2. Main Results

The main results are given in three subsections. In the first one, we prove the existence of limit
solutions. In the second subsection, we prove the most interesting results of this paper, namely, that the
set of limit solutions of (1) is the closure of the set of integral solutions of (1) when A generates a
compact semigroup or when F(t, ·) is full Perron. An example and some applications are discussed in
the last two subsections.

2.1. Existence of Limit Solutions

In this subsection we prove an existence result of ε-solutions of the Cauchy problem (1) on I and a
variant of the well known lemma of Filippov–Pliś.

First, recall that t̄ is said to be a right dense point of a closed subset I ⊂ I if for every τ > 0 there
exists a point s ∈ (t̄, t̄ + τ)

⋂ I . Clearly, t̄ is not a right dense point of I if there exists τ > 0 such that
(t̄, t̄ + τ)

⋂ I = ∅.

Lemma 1. Assume that F(·, ·) is almost LSC and satisfies (H2). Then for every ε > 0 there exists at least one
ε–solution of (1) defined on the whole I.

Proof. Let ε > 0. We take ε′ ≤ ε

T − t0 + 2N
. There exists I′ ⊂ I a closed set with Lebesgue measure

meas(I′) ≥ T − t0 − ε′ such that F|I′×X is LSC on I′ × X.
We take f0 ∈ F(t0, x0) arbitrary but fixed and let f1(·) be Bochner integrable with f1(t) ∈ F(t, x0)

on I. Two cases are possible.
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Case 1. If t0 is a right dense point of I′. Since F|I′×X is LSC at (t0, x0), then there exists δ ∈ (0, 1/2)
such that if t ∈ I′ with t − t0 ≤ δ and |y − x0| ≤ δ then f0 ∈ F(t, y) + ε′B. We pick

fy(t) =

{
f0, t ∈ I′

f1(t), t ∈ I \ I′.

Let y1(·) be the integral solution of the Cauchy problem

ẏ(t) ∈ Ay(t) + fy(t), y(t0) = x0.

Since lim
t↓t0

y1(t) = x0, we deduce that there exists τ ∈ (t0, t0 + δ) such that |y1(t)− x0| ≤ δ whenever

t ∈ [t0, τ). Thus, f0 ∈ F(t, y1(t)) + ε′B for every t ∈ [t0, τ)
⋂

I′ and f1(t) ∈ F(t, y1(t) + B) for
t ∈ [t0, τ)

⋂
(I \ I′). Therefore, fy(t) ∈ F(t, y1(t) + B) + B for every t ∈ [t0, τ), i.e., y1(·) is a solution

of (5) on [t0, τ).
We let y(t) = y1(t) for every t ∈ [t0, τ). Thus, dist( fy(t), F(t, y(t))) ≤ ε′ for every t ∈ [t0, τ)

⋂
I′

and, due to Remark 1, dist( fy(t), F(t, y(t))) ≤ 2N for every t ∈ [t0, τ)
⋂
(I \ I′).

Case 2. If t0 is not a right dense point of I′, let y1(·) be the integral solution of the Cauchy problem

ẏ(t) ∈ Ay(t) + f1(t), y(t0) = x0.

Then there exists τ > t0 such that [t0, τ) ⊂ I \ I′ and |y1(t)− x0| < ε′ for t ∈ [t0, τ). Thus, y1(·) is a
solution of (5) on [t0, τ).

We let y(t) = y1(t) and fy(t) = f1(t) for every t ∈ [t0, τ). Moreover, dist( fy(t), F(t, y(t))) ≤ 2N
for every t ∈ [t0, τ).

In both cases we let yτ = lim
t↑τ

y(t). We continue the above construction in a similar way by

replacing t0 by τ and x0 by yτ .
Let [t0, t̄) be the maximal interval of the existence of solution y(·) of (5), with the properties

that dist( fy(t), F(t, y(t))) ≤ ε′ on [t0, t̄)
⋂

I′ and dist( fy(t), F(t, y(t))) ≤ 2N on [t0, t̄)
⋂
(I \ I′),

where fy(·) is the pseudoderivative of y(·). Suppose that t̄ < T. Due to the growth condition
lim
t↑t̄

y(t) exists. Let yt̄ = lim
t↑t̄

y(t). Then, using a similar construction as above with t̄ instead of t0

and yt̄ instead of x0, we can extend the solution y(·) on some interval [t0, t̄ + θ), θ > 0, such that
dist( fy(t), F(t, y(t))) ≤ ε′ on [t0, t̄ + θ)

⋂
I′ and dist( fy(t), F(t, y(t))) ≤ 2N on [t0, t̄ + θ)

⋂
(I \ I′),

which contradicts the maximality of [t0, t̄). Hence t̄ = T.
It is clear that the pseudoderivative fy(·) satisfies dist( fy(t), F(t, y(t))) = ky(t) with ky(t) ≤ ε′ for

every t ∈ I′ and ky(t) ≤ 2N for every t ∈ I \ I′. One checks easily that
∫

I
ky(t)dt ≤ ε. Hence, y(·) is an

ε–solution of (1) on I.

The next lemma will play a crucial role in the sequel.

Lemma 2. Assume (H1)–(H3). Let ε > 0 and let x(·) be an ε–solution of (1) on I. Then, there exist l(·)
positive and bounded on I with

∫
I

l(t)dt ≤ 2ε and η > 0 such that for every y0 ∈ D(A) with |x0 − y0| < η

we have that:

(i) the maximal solution ṽ(·) of the scalar differential equation

v̇(t) = w(t, v(t)) + l(t), v(t0) = |x0 − y0|,

exists on I and
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(ii) for every 0 < δ < ε there exists a δ–solution y(·) of (1) on I with x0 replaced by y0, satisfying

|x(t)− y(t)| ≤ ṽ(t),

for all t ∈ I.

Proof. The assertion (i) follows from ([13], Lemma 2.4) (see also Lemma 3 below).
Let ε > 0 be fixed and let fx(·) be the pseudoderivative of x(·). Then, due to Definition 3,

fx(t) ∈ F(t, x(t) +B) +B a.e. on I and kx(t) = dist( fx(t), F(t, x(t))) satisfies
∫

I
kx(t)dt ≤ ε. Moreover,

due to Remark 1, kx(t) ≤ 2N for any t ∈ I.

We take ε′ ≤ ε

5(T − t0 + N)
. We can assume without loss of generality that there exists a compact

set Iε ⊂ I, with meas(I \ Iε) < ε′, such that the functions fx|Iε , kx|Iε and w|Iε×R are continuous.
Let δ < ε. We can assume that there exists a compact set Iδ ⊂ I such that Iε ⊂ Iδ, meas(I \ Iδ) < δ′,

where δ′ ≤ min
{

δ

5(T − t0 + N)
, ε′

}
, and F|Iδ×X is continuous.

We take fx ∈ F(t0, x0) such that | fx − fx(t0)| ≤ kx(t0) + ε′. Let η ∈ (0, 1) and y0 ∈ D(A) with
|x0 − y0| < η. By (H3), there exists f1 ∈ F(t0, y0) such that

[x0 − y0, fx − f1]+ ≤ w(t0, |x0 − y0|) + ε′. (8)

Hence,

[x0 − y0, fx(t0)− f1]+ ≤ [x0 − y0, fx − f1]+ + | fx(t0)− fx| ≤ w(t0, |x0 − y0|) + 2ε′ + kx(t0).

Let f (·) be a Bochner integrable function such that f (t) ∈ F(t, y0) for every t ∈ I.
We consider the following cases.

Case 1. t0 is a right dense point of Iε (hence it is a right dense point also for Iδ).
We pick

fy(t) =

{
f1, if t ∈ Iδ

f (t), if t ∈ I \ Iδ.

Let y1(·) be the integral solution of

ẏ(t) ∈ Ay(t) + fy(t), y(t0) = y0. (9)

Then, by the continuity of F|Iδ×X and y1(·), there exists τ > t0 such that f1 ∈ F(t, y1(t)) + δ′B for every
t ∈ [t0, τ)

⋂
Iδ.

Due to the continuity of y1(·), the upper semicontinuity of [·, ·]+ and the continuity of w(·, ·) at

(t0, |x0 − y0|) and of kx(·) at t0, the number τ > t0 can be chosen such that |y1(t)− y0| ≤ 1
2

for every

t ∈ [t0, τ), and moreover,

[x(t)− y1(t), fx(t)− f1]+ ≤ [x0 − y0, fx(t0)− f1]+ + ε′

≤ w(t0, |x0 − y0|) + 3ε′ + kx(t0)

≤ |w(t0, |x0 − y0|)− w(t, |x(t)− y1(t)|)|+ w(t, |x(t)− y1(t)|) + 4ε′ + kx(t)

≤ w(t, |x(t)− y1(t)|) + 5ε′ + kx(t),

for every t ∈ [t0, τ)
⋂

Iε.
Clearly, due to our choice of τ, we have that fy(t) ∈ F(t, y1(t) +B) +B for any t ∈ [t0, τ), hence

y1(·) is a solution of (5) on [t0, τ).
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We set y(t) = y1(t) for any t ∈ [t0, τ) and let ky(t) = dist( fy(t), F(t, y(t))). Then ky(t) ≤ δ′ for
t ∈ [t0, τ)

⋂
Iδ and ky(t) ≤ 2N for t ∈ [t0, τ)

⋂
(I \ Iδ).

Hence, for any t ∈ [t0, τ)
⋂

Iε,

[x(t)− y(t), fx(t)− fy(t)]+ ≤ w(t, |x(t)− y(t)|) + 5ε′ + kx(t).

On the other hand, for any t ∈ [t0, τ)
⋂
(I \ Iε) we have that

[x(t)− y(t), fx(t)− fy(t)]+ ≤ | fx(t)− fy(t)| ≤ 2N ≤ 2N + w(t, |x(t)− y(t)|).

Case 2. t0 is not a right dense point of Iε but it is a right dense point of Iδ.
Let y1(·) be the integral solution of (9), where fy(·) is chosen as in Case 1. Then there exists τ > t0

such that |y1(t)− y0| ≤ 1
2

for every t ∈ [t0, τ), and moreover, [t0, τ) ⊂ I \ Iε. Moreover, we can choose

τ such that f1 ∈ F(t, y1(t)) + δ′B for every t ∈ [t0, τ)
⋂

Iδ.
We set, as in the previous case, y(t) = y1(t) for any t ∈ [t0, τ). Hence ky(t) ≤ δ′ for t ∈ [t0, τ)

⋂
Iδ

and ky(t) ≤ 2N for t ∈ [t0, τ)
⋂
(I \ Iδ).

Case 3. t0 is not a right dense point of Iδ.
In this case, we let y1(·) to be the integral solution of

ẏ(t) ∈ Ay(t) + f (t), y(t0) = y0.

Then there exists τ > t0 such that |y1(t)− y0| ≤ 1
2

for every t ∈ [t0, τ), and moreover, [t0, τ) ⊂ I \ Iδ ⊂
I \ Iε. We have that y1(·) is a solution of (5) on [t0, τ).

We let y(t) = y1(t) and fy(t) = f (t) for every t ∈ [t0, τ) and hence ky(t) ≤ 2N on [t0, τ).
Moreover, in both cases 2 and 3, for any t ∈ [t0, τ) we have that

[x(t)− y(t), fx(t)− fy(t)]+ ≤ 2N + w(t, |x(t)− y(t)|).

We continue the above construction in a similar way by replacing t0 by τ and y0 by yτ = lim
t↑τ

y(t).

Finally, reasoning as in the proof of Lemma 1, we define y(·) on I, solution of (5).
Its pseudoderivative fy(·) satisfies dist( fy(t), F(t, y(t))) = ky(t) with ky(t) ≤ δ′ for every t ∈ Iδ

and ky(t) ≤ 2N for every t ∈ I \ Iδ. One checks easily that
∫

I
ky(t)dt ≤ δ. Hence, y(·) is a δ–solution

of (1) on I.
Moreover, for any t ∈ Iε, we have that

[x(t)− y(t), fx(t)− fy(t)]+ ≤ w(t, |x(t)− y(t)|) + 5ε′ + kx(t)

and, for any t ∈ I \ Iε,

[x(t)− y(t), fx(t)− fy(t)]+ ≤ 2N + w(t, |x(t)− y(t)|).

Furthermore, using (3), we have that

|x(t)− y(t)| ≤ |x0 − y0|+
∫ t

t0

[x(s)− y(s), fx(s)− fy(s)]+ds

≤ |x0 − y0|+
∫
[t0,t]

⋂
Iε

(
w(s, |x(s)− y(s)|) + 5ε′ + kx(s)

)
ds

+
∫
[t0,t]

⋂
(I\Iε)

(
w(s, |x(s)− y(s)|) + 2N

)
ds
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≤ |x0 − y0|+
∫ t

t0

w(s, |x(s)− y(s)|)ds +
∫
[t0,t]

⋂
Iε

(5ε′ + kx(s))ds +
∫
[t0,t]

⋂
(I\Iε)

2Nds

for any t ∈ I. Let l(t) = 5ε′ + kx(t) for t ∈ Iε and l(t) = 2N for t ∈ I \ Iε. Then, for any t ∈ I,

|x(t)− y(t)| ≤ |x0 − y0|+
∫ t

t0

w(s, |x(s)− y(s)|)ds +
∫ t

t0

l(s)ds.

Hence, |x(t) − y(t)| ≤ ṽ(t) for every t ∈ I, where ṽ(·) is the maximal solution of the scalar
differential equation

v̇(t) = w(t, v(t)) + l(t), v(t0) = |x0 − y0|
on I. Clearly, l(·) is bounded on I and∫

I
l(s)ds =

∫
Iε

(5ε′ + kx(s))ds +
∫

I\Iε

2Nds ≤ 5ε′(T − t0) + ε + 2Nε′ ≤ 2ε.

The proof is completed.

The proof of the following result follows the same steps as the proof of ([13], Lemma 2.4) and it
is omitted.

Lemma 3. Let λ ∈ L1(I;R+) and let v : I ×R+ → R+ be a Carathéodory function, integrally bounded on
the bounded sets, with v(t, ·) nondecreasing for every t ∈ I. If the maximal solution h(·) of (7) exists on I,
then for every ε > 0 there exists δ > 0 such that the maximal solution r̄(·) of

ṙ(t) = v(t, r(t)) + μ(t), r(t0) = r̄0 ∈ [r0, r0 + δ],

exists on I and r̄(t) ≤ h(t) + ε on I, for every function μ(·) such that 0 ≤ μ(t) ≤ λ(t) for t ∈ I and∫
I

μ(t)dt ≤ δ.

Now, by using the previous lemmas, we will prove the following existence result of a limit
solution for the Cauchy problem (1).

Theorem 1. Assume (H1)–(H3). Let ε > 0 and let x(·) be an ε–solution of (1). Then, there exist a positive

and bounded function l(·) with
∫

I
l(t)dt ≤ 2ε and η > 0 such that for every y0 ∈ D(A) with |x0 − y0| < η

we have that:

(i) the maximal solution ṽ(·) of the scalar differential equation

v̇(t) = w(t, v(t)) + l(t), v(t0) = |x0 − y0|, (10)

exists on I and
(ii) there exists a limit solution y(·) of (1) on I with y(t0) = y0 such that

|x(t)− y(t)| ≤ ṽ(t) + ε,

for every t ∈ I.

Proof. Let δ > 0 be given by Lemma 3, corresponding to ε/2. Take ε1 ≤ min{ε/2, δ/2}. By Lemma 2

there exist l1(·) a positive and bounded function with
∫

I
l1(t)dt ≤ 2ε and η > 0 such that for any

y0 ∈ D(A) with |x0 − y0| < η there exists y1(·) an ε1–solution of (1) with y1(t0) = y0 satisfying

|x(t)− y1(t)| ≤ v1(t),
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where v1(·) is the maximal solution of

v̇(t) = w(t, v(t)) + l1(t), v(t0) = |x0 − y0|, (11)

on I.
Let δ1 > 0 be given by Lemma 3 corresponding to ε1/2. Take ε2 ≤ min{ε1/2, δ1/2}. By Lemma 2

there exists an ε2–solution y2(·) of (1) on I with y2(t0) = y0 such that

|y2(t)− y1(t)| ≤ v2(t),

for every t ∈ I. Here v2(·) is the maximal solution of

v̇(t) = w(t, v(t)) + l2(t), v(t0) = 0,

where l2(·) is positive and bounded on I and
∫

I
l2(t)dt ≤ 2ε1 ≤ δ. Then, by Lemma 3, v2(t) ≤ ε/2 for

any t ∈ I.
We construct by induction a sequence of εn–solutions (yn(·)) of (1) on I, where εn ≤

min{εn−1/2, δn−1/2}, for any n = 2, 3, . . ., such that

|yn+1(t)− yn(t)| ≤ vn+1(t),

for every t ∈ I. Here vn+1(·) is the maximal solution of

v̇(t) = w(t, v(t)) + ln+1(t), v(t0) = 0,

where ln+1(·) is positive and bounded on I and satisfies
∫

I
ln+1(t)dt ≤ 2εn ≤ δn−1. Moreover,

vn+1(t) ≤ εn−1/2 for every t ∈ I and every n = 2, 3, . . .. Therefore,

|yn+1(t)− yn(t)| ≤ εn−1

for every t ∈ I and every n = 2, 3, . . .. Taking into account that
∞

∑
n=1

εn ≤ ε, we conclude that (yn(·))
is a Cauchy sequence in C(I; X). Thus, there exists a continuous function y : I → X such that
lim

n→∞
yn(t) = y(t) uniformly on I. Furthermore, |x(t)− y(t)| ≤ v1(t) + ε, where v1(·) is the maximal

solution of (11).

The next theorem is a variant of the well known lemma of Filippov–Pliś. This lemma has numerous
applications in optimal control theory and had been proved on different variants by different authors.
In the next theorem, we extend this result to the case when the integral solutions do not necessarily
exist. Variants of this lemma have been proved in [14,15] for the case of uniformly convex dual space
and in [16] for the case when A generates a compact semigroup.

Theorem 2. Assume (H1)–(H3). Let x(·) be an integral solution of the differential inclusion{
ẋ(t) ∈ Ax(t) + F(t, x(t)) + g(t)B,

x(t0) = x0 ∈ D(A),
(12)

on I, where g ∈ L1(I;R+). Then for every ε > 0 and every y0 ∈ D(A) for which the maximal solution v(·) of
the scalar differential equation

v̇(t) = w(t, v(t)) + g(t), v(t0) = |x0 − y0|, (13)
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exists on I, there exists a limit solution z(·) of (1) on I with z(t0) = y0, satisfying

|x(t)− z(t)| ≤ v(t) + ε,

for all t ∈ I.

Proof. Let fx(·) be the pseudoderivative of x(·). Then fx(t) ∈ F(t, x(t)) + g(t)B for every t ∈ I.
Furthermore, for every ε > 0 there exists a compact Iε ⊂ I with Lebesgue measure meas(I \ Iε) < ε

such that fx|Iε , g|Iε , F|Iε×X and w|Iε×R+
are continuous. We fix ν > 0 and define the multifunction

G(t, u) = {v ∈ F(t, u); [x(t)− u, fx(t)− v]+ < w(t, |x(t)− u|) + g(t) + ν}.

It follows from (H3) that G(·, ·) has nonempty closed values. Moreover, G(·, ·) is almost LSC (the proof
follows, with obvious modifications, the same lines as the proof of ([16], Theorem 2). Due to Lemma 1,
for every μ > 0 the evolution inclusion{

ẋ(t) ∈ Ax(t) + G(t, x(t)),

x(t0) = y0

has a μ–solution y(·) defined on the whole I. Then, its pseudoderivative fy(·) satisfies fy(t) ∈
G(t, y(t)) + hy(t)B for any t ∈ I, where hy(t) ≤ 2N on I and

∫
I

hy(s)ds ≤ μ. It follows from the

properties of [·, ·]+ that

[x(t)− y(t), fx(t)− fy(t)]+ ≤ w(t, |x(t)− y(t)|) + g(t) + ν + hy(t).

Thus, |x(t)− y(t)| ≤ r(t), where r(·) is the maximal solution of the inequality ṙ(t) ≤ w(t, r(t)) + g(t) +
ν + hy(t) with r(t0) = |x0 − y0|.

Due to Lemma 3, r(·) exists on the whole I for sufficiently small ν and μ and moreover, for every
ε > 0 there exists κ > 0 such that r(t) ≤ v(t) + ε for μ, ν < κ.

Clearly, y(·) is a μ–solution also of (1). It follows from Theorem 1 that there exists a limit
solution z(·) of (1) such that |z(t) − y(t)| ≤ ε. The proof is therefore complete thanks to the
triangle inequality.

Remark 2. In fact, Theorem 2 says that the solution set of (1) depends continuously on small perturbations of
the initial condition and the right-hand side.

2.2. Limit and Integral Solutions

We start this subsection by giving a simple example to illustrate the notion of limit solutions.

Example 1. Let A ≡ 0. We consider the ordinary differential inclusion:

ẋ(t) ∈ B, t ∈ (0, 1), x(0) = 0. (14)

Here B denotes the unit ball in L1(0, 1;Rn). Clearly, the limit solutions of (14) are all Lipschitz functions (of
Lipschitz constant 1). However, there exists such kind of functions nowhere differentiable, i.e., which are not
integral solutions.

First, we will prove that the set of limit solutions is the closure of the set of integral solutions of (1)
when F(·, ·) satisfies the following stronger assumption than (H3).
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Hypothesis 3′ (H3′). (Full Perron condition) There exists a Perron function w(·, ·) such that

DH(F(t, x), F(t, y)) ≤ w(t, |x − y|)

for every x, y ∈ X and every t ∈ I.

Theorem 3. Assume (H1), (H2) and (H3′). Then (1) has integral solutions. Furthermore, the set of integral
solutions of (1) is dense in the set of limit solutions of (1).

Proof. Let ε > 0 and let y(·) be an ε-solution (1) with the pseudoderivative fy(·). Then fy(t) ∈
F(t, y(t)) + hy(t)B for any t ∈ I, where hy(t) ≤ 2N on I and

∫
I

hy(t)dt ≤ ε.

Let 0 < δ < ε. Since the function w(·, ·) is Perron, there exists 0 < μ < ε such that
∫

I
w(t, μ)dt < δ.

Furthermore, there exists t1 > t0 such that |y(t)− x0| < μ for t ∈ [t0, t1]. Let z(t) := y(t) on [t0, t1)

and denote z1 = z(t1). By (H1) and (H3′), there exists a strongly measurable function f1(·) such that
f1(t) ∈ F(t, z1) and

| fy(t)− f1(t)| ≤ w(t, |y(t)− z1|) + hy(t) + μ

a.e. on [t1, T]. Consider the problem {
ż(t) ∈ Az(t) + f1(t)

z(t1) = z1
(15)

and let z1(·) be a solution of (15) on [t1, T]. There exists t2 > t1 such that |z1(t)− z1| < μ for any
t ∈ [t1, t2]. Then, on [t1, t2],

| fy(t)− f1(t)| ≤ w(t, |y(t)− z1(t)|) + |w(t, |y(t)− z1(t)|+ μ)− w(t, |y(t)− z1(t)|) + hy(t) + μ.

Denote Mw(μ) := sup
|x|≤2N

|w(t, |x| + μ) − w(t, |x|)| and let z(t) := z1(t) on [t1, t2]. Then, z(·) is a

solution of ż(t) ∈ Az(t) + F(t, z(t)) + w(t, μ)B and

| fy(t)− fz(t)| ≤ w(t, |y(t)− z(t)|) + Mw(μ) + hy(t) + μ

on [t1, t2].
Using the same method as above, as in the proof of Lemma 1, we can extend z(·) on the whole

interval I, such that ż(t) ∈ Az(t) + F(t, z(t)) + w(t, μ)B and

| fy(t)− fz(t)| ≤ w(t, |y(t)− z(t)|) + Mw(μ) + hy(t) + μ

for any t ∈ I. Moreover,
∫

I
dist( fz(t), F(t, z(t)))dt ≤

∫
I

w(t, μ) < δ on I. Hence, z(·) is a δ-solution

of (1). Using (4), we get that |y(t)− z(t)| ≤ r(t), where r(·) is the maximal solution of

ṙ(t) ≤ w(t, r(t)) + Mw(ε) + hy(t) + ε, r(t0) = 0.

Now, let εn ↓ 0 and let (xn(·)) be a sequence of εn-solutions of (1), constructed as above,
with ( fn(·)) the corresponding sequence of pseudoderivatives. Then

|xn(t)− xn+1(t)| ≤ rn(t)

and
| fn(t)− fn+1(t)| ≤ w(t, rn(t)) + Mw(εn) + hn+1(t) + εn,
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where rn(·) is the maximal solution of

ṙn(t) ≤ w(t, rn(t)) + Mw(εn) + hn+1(t), rn(t0) = 0.

Due to the definitions of Mw(εn) and since w(·, ·) is Perron, one can choose (εn) such

that
∞

∑
n=1

|xn(t) − xn+1(t)| converges uniformly to 0 and ( fn(·)) converges L1-strongly. Therefore,

lim
n→∞

xn(t) = x(t) and lim
n→∞

fn(t) = f (t). Then f (t) ∈ F(t, x(t)) since F(·, ·) is almost continuous and

ẋ(t) ∈ Ax(t) + f (t) with x(t0) = x0. Therefore, x(·) is an integral solution of (1).
To prove the second part of the theorem, let δ > 0. Let z(·) be a limit solution of (1). Therefore,

for any ε > 0 there exists an ε-solution zε(·) such that |z(t)− zε(t)| < ε for t ∈ I. As in the first part
of the proof starting from zε(·), we can choose εn ↓ 0 with ε1 = ε such that there exists an integral
solution x(·) of (1) with |x(t)− zε(t)| < δ on I. Hence, |z(t)− x(t)| < ε + δ for any t ∈ I. The proof
is completed.

We refer the reader to ([4], pp. 25–27), where the author gives one example of nonexistence of
solutions even when X = Rn. In this case, the set of limit solutions is nonempty and closed.

In [4] it is also studied another example where the solution set of

ẋ(t) ∈ Ax(t) + K, x(t0) = x0 ∈ D(A),

with K convex compact, is not closed. In this case, since the multivalued term is constant, due to
Theorem 3, the set of integral solutions is nonempty and dense in the set of limit solutions.

Remark 3. Consider the relaxed problem (6). The solution set of this problem is not closed, in general. We are
not able to prove that it is contained in the set of limit solutions of (1), even if F(t, ·) is Lipshitz continuous.
Nevertheless, if the solution set of (1) is dense in the solution set of (6), then every relaxed solution is also a
limit solution. We refer the reader to [16,17], where this type of relaxation theorems are proved in Banach spaces
with some additional properties. In our opinion, the limit solution set is more adequate, because it is compact
and, under mild assumptions, it is the closure of the solution set of (1).

Definition 4. (see, e.g., [18]) The m-dissipative operator A is said to be of complete continuous type if for
every a < b and every ( fn(·)) in L1(a, b; X) and (xn(·)) in C([a, b], X), with xn(·) a solution on [a, b] of
ẋn(t) ∈ Axn(t) + fn(t), n = 1, 2, . . ., limn→∞ fn = f weakly in L1(a, b; X) and limn→∞ xn = x uniformly
in C([a, b], X), it follows that x is a solution on [a, b] of

ẋ(t) ∈ Ax(t) + f (t).

We need the following assumption:

Hypothesis 4 (H4). F(·, ·) has nonempty convex weakly compact values.

We give now sufficient conditions that the limit solutions to be integral ones.

Theorem 4. Let A be of complete continuous type. If (H1)–(H4) hold, then every limit solution of (1) is also
an integral solution of (1).

Proof. Let (xn(·)) be a sequence of εn–solutions of (1) with εn ↓ 0 such that lim
n→∞

xn(t) = x(t) uniformly

on I. Consequently, the set M =
⋃
t∈I

∞⋃
n=1

{xn(t)} is compact. Denote by ( fn(·)) the corresponding

sequence of pseudoderivatives, hence
∫

I
dist( fn(t), F(t, xn(t)))dt ≤ εn for any natural n. Let f̄n(·) ∈
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L1(I; X) be such that f̄n(t) ∈ F(t, xn(t)) and | fn(t)− f̄n(t)| ≤ 3
2

dist( fn(t), F(t, xn(t))) for a.a. t ∈ I.

Take yn(·) the solutions of
ẏn(t) ∈ Ayn(t) + f̄n(t), yn(t0) = x0.

Due to (4), |xn(t)− yn(t)| ≤
∫ t

t0

| fn(t)− f̄n(t)|dt ≤ 3
2

εn. Consequently, (yn(·)) converges uniformly

to x(·).
On the other hand, since F(·, ·) is almost continuous, for any ε > 0 there exists a compact set Iε ⊂ I

with meas(I \ Iε) ≤ ε such that F|Iε×X is continuous. Therefore, F : Iε × X ⇒ Xw is also continuous.

Here Xw is X endowed with the weak topology. Due to (H4), the set Kε := co(
⋃

t∈Iε

∞⋃
n=1

F(t, xn(t))) is

weakly compact. We have that f̄n(t) ∈ Kε on Iε. Moreover, since ( f̄n(·)) is uniformly integrable, it is
relatively weakly compact. Then, passing to subsequences, f̄n(·) → f (·) weakly in L1(I; X). Moreover,
as F(·, ·) is almost continuous, f (t) ∈ F(t, x(t)) a.e. on I.

Finally, since A is of complete continuous type, we get that x(·) is the solution of

ẋ(t) ∈ Ax(t) + f (t), x(t0) = x0.

The proof is therefore complete.

2.3. m–Dissipative Inclusions with Compact Semigroup

In this section, we will study the differential inclusion (1) under the following additional
assumption on A.

(A) The semigroup {S(·); t ≥ 0} is compact, i.e., S(t) is a compact operator for every t > 0.

Since ‖F(t, x(T))‖ ≤ N for every solution x(·) of (5) the following result is a consequence of ([4],
Lemma 3.1).

Lemma 4. Under hypotheses (H1)–(H3) and (A), the set of integral solutions of (1) is C(I, X) precompact
(if nonempty).

Notice also the following theorem which is proved in [19].

Theorem 5. Let F(·, ·) be almost LSC with closed bounded values and let X be a separable Banach space.
Under hypotheses (H2) and (A), the set of integral solutions of (1) is nonempty.

As a corollary, one can prove the following variant of Filippov–Pliś Lemma (see ([16], Theorem 3)
for the separable case).

Proposition 1. Assume (H1)–(H3) and (A). Let x(·) be an integral solution of the Cauchy problem

ẋ(t) ∈ Ax(t) + fx(t), x(t0) = x0 ∈ D(A),

on I, where dist( fx(t); F(t, x(t))) ≤ g(t) for all t ∈ I and g ∈ L1(t0, T;R+). Then for any ε > 0 and any
y0 ∈ D(A), there exists a solution y(·) of the Cauchy problem (1) on I with x0 replaced by y0 such that

|x(t)− y(t)| ≤ v(t) + ε,

for all t ∈ I, where v(·) is the maximal solution of the scalar differential equation v̇(t) = w(t, v(t)) +
g(t), v(t0) = |x0 − y0|, on I.

We are ready to prove the following interesting result.
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Theorem 6. Under hypotheses (H1)–(H3) and (A), the set of integral solutions of (1) is dense in the set of limit
solutions of (1).

Proof. Let x(·) be a limit solution of (1) on I. Then there exists a sequence (xn(·)) of εn–solutions of
(1) with εn ↓ 0 such that lim

n→∞
|xn(t)− x(t)| = 0 uniformly on I. Then, for any natural n, xn(·) is a

solution of ẋn(t) ∈ Axn(t) + fn(t), where dist( fn(t); F(t, xn(t)) = gn(t) with 0 < gn(t) ≤ 2N on I and∫
I

gn(t)dt ≤ εn. Due to Proposition 1, to every n there exists a solution yn(·) of (1) such that

|xn(t)− yn(t)| ≤ vn(t) +
ε

2n ,

where vn(·) is the maximal solution of the scalar differential equation v̇(t) = w(t, v(t)) + gn(t), v(t0) = 0,
on I. From Lemma 1, we have that lim

n→∞
vn(t) = 0 uniformly on I. Consequently, lim

n→∞
|xn(t)− yn(t)| = 0

uniformly on I, i.e., x(t) = lim
n→∞

yn(t) uniformly on I.

2.4. Example

The following example is a modification of ([20], Example) and ([16], Example 1).
Let Ω ⊂ Rn with n ≥ 4 be a domain with smooth boundary ∂Ω. Define ϕ(r) = |r|γ−1r for r �= 0

and 0 < γ <
n − 2

n
. We consider the following system:

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ut ∈ Δϕ(u) + G(t, y, u)

−∂ϕ(u)
∂ν

∈ β(u) on (0, T)× ∂Ω

u(0, y) = u0(y).

Here, u ∈ R,
∂ϕ(u)

∂ν
is the outward normal derivative on ∂Ω and β(·) is a maximal monotone graph in

R with β(0) ! 0. The multifunction G has nonempty compact values, is measurable on all variables
and continuous on the third one.

Define the operator B in L1(Ω) by

Bu = Δϕ(u), for u ∈ D(B), where

D(B) = {u ∈ L1(Ω); ϕ(u) ∈ W1,1(Ω), Δϕ(u) ∈ L1(Ω), −∂ϕ(u)
∂ν

∈ β(u) on ∂Ω}.

The derivatives here are understood in the sense of distributions.
As it is shown in ([4], p. 97), the operator B defined above is m-dissipative in L1(Ω) and generates

a noncompact semigroup. Notice that in [4] the author works with m-accretive operators A; however A
is m-dissipative iff −A is m-accretive.

Let
F(t, x) = { f ∈ L1(Ω); f (y) ∈ G(t, y, x(t, y)) a.e. in Ω},

which is jointly measurable and continuous on x. We assume also that there exists h ∈ L1([0, T]) such
that ‖F(t, x)‖ ≤ h(t)(1 + |x|). Let x0 = u(·) ∈ D(B). Therefore (H1), (H2) hold true.

Suppose also that there exists a Perron function w(·, ·) such that for every x, z ∈ Ω and every
f ∈ F(t, x) there exists g ∈ F(t, z) such that∫

Ω+(x→z)
( f (y)− g(y))dy −

∫
Ω−(x→z)

( f (y)− g(y))dy

±
∫

Ω0(x→z)
( f (y)− g(y))dy ≤ w

(
t,
∫

Ω
| f (y)− g(y)|

)
dy.
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Here, Ω+(−,0)
x→y = {y ∈ Ω; f (y) > g(y)(<,=)}. It follows from the characterization of [·, ·]+ (see,

e.g., [21], Example 1.4.3) that (H3) also hold true.

In the case when γ >
n − 2

n
the operator B generates a compact semigroup and it is of complete

continuous type.

2.5. Applications to Optimal Control

Our results can be applied to the following optimal control problem:

min
{

g(x(T)) +
∫ T

t0

f (t, x(t))dt
}

, (16)

where x(·) is a solution of (1). Here, f (·, ·) is Carathéodory and integrally bounded on the bounded
sets and the function g : X → R is assumed to be lower semicontinuous.

Assume (H1)–(H3) and (A). In this case, the limit solution set of (1) is compact and moreover,
the set of integral solutions of (1) is dense in the set of limit solutions (see Theorem 6 and Lemma 4).

Clearly, in general, the problem (16) has no optimal solution.

Theorem 7. Under the above conditions, the problem (16) admits an optimal limit solution.

Proof. The functional x(·) →
∫ T

t0

f (t, x(t))dt is continuous from C(I, X) into R. Furthermore, x(·) →

g(x(T)) is lower semicontinuous. Consequently, the functional J(x(·)) = g(x(T)) +
∫ T

t0

f (t, x(t))dt is

lower semicontinuous from C(I, X) into R. The proof follows from the facts that the limit solution set
is C(I, X) compact and every lower semicontinuous real valued function attains its minimum on a
compact set.

3. Conclusions

As we pointed out, the theory of parabolic differential equations and inclusions written in
the abstract operator form is growing rapidly. We refer the reader to [1–3] for the theory of PDE
and their investigations as abstract equations. Especially the multivalued evolution equations are
comprehensively studied in [4,5,18]. In the book by [5], the authors study differential inclusions in
evolution (Gelfand) triple. The authors provide many interesting results and examples. In that case,
the compactness assumptions are crucially used. In [17], the author prove relaxation theorem in
that case.

In [4], the author restricted the study to Banach spaces with uniformly convex duals and A
generating a compact semigroup, or he used compactness-type assumptions regarding the Kuratowski
(or Hausdorff) measure of noncompactness. In that case, every limit solution is also an integral one.
That implies that our existence results extend the existence result there. Notice also [19] where lower
semicontinuous perturbations of m-dissipative operators are considered. The existence theorem there
is used in the proof of Theorem 6 in this paper. We recall also the book by [18], devoted to nonlocal
problems of evolution inclusions with time lag. The main assumptions there are that A is completely
continuous and generates a compact semigroup. We mention also [22] where functional evolution
inclusions are studied.

In [12], the author uses full Perron condition in the case of ordinary differential inclusions in
Banach spaces. The author assumes that the multifunction F has strongly compact values.

The one-sided Perron condition as used here was introduced in [23]. Using integral representation
of the solutions the author defined the so-called weak solutions (which are developed in [8]). Here the
integral representation of the solution does not hold when A is nonlinear and we use limit solutions.
The case of a Banach space with uniformly convex dual was studied in [13] where it was shown
that if F has compact values, then the solution set of (1) is compact Rδ and a relaxation theorem has
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been proved. No other compactness conditions were used. The paper [14] was devoted to Lemma
of Filippov–Pliś. The papers [15,16] study the problem (1) in the case when the Banach space has
uniformly convex dual.

In the present paper we introduce the so-called limit solutions for the fully nonlinear evolution
inclusion (1) and we study their properties. In general, the limit solutions of (1) are not solutions of the
relaxed system (6).

(a) The set of limit solutions is nonempty and always C(I, X) closed when the right hand side F
is almost continuous with closed bounded values and one-sided Perron in the state variable.
Furthermore, every integral solution is also a limit solution.

(b) The set of limit solutions is the closure of the set of integral solutions when F(t, ·) is full Perron
or A generates a compact semigroup. In the last case every control problem admits an optimal
limit solution. We extend the existence and relaxation results of [4,5,15,16].

(c) The existence of limit solutions can be also shown for a large class of evolution inclusions.

It appears that the notion of limit solutions is meaningful and it deserves further investigations.
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Abstract: The main objective of this paper is to introduce the (α,β)-type ϑ-contraction, (α,β)-type
rational ϑ-contraction, and cyclic (α-ϑ) contraction. Based on these definitions we prove fixed point
theorems in the complete metric spaces. These results extend and improve some known results in the
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of an integral boundary value problem for scalar nonlinear Caputo fractional differential equations
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1. Introduction

Fixed point theorems are useful tools in nonlinear analysis, the theory of differential equations,
and many other related areas of mathematics. One of the most applicable method for various
investigations is Banach’s contraction principle [1]. Many researchers generalized and extended
this theorem to different directions. For example, Boyd and Wong [2] elongated the main result
of Banach and they replaced the constant in the contractive condition by an appropriate function.
Recently, Samet et al. in [3] defined α-admissible and α-ψ-contractive type mappings and studied some of
their properties in the framework of complete metric spaces. Later on, Salimi et al. in [4] introduced and
investigated the twisted (α,β)-admissible mappings. Many extensions of the notion of α-ψ-contractive
type mappings have been developed, see, for example, [5–9] and the references therein.

In 2012, Wardowski ([10]) defined ϑ-contraction in the setting of metric space. Wardowski et al. [11]
also presented the concept of ϑ-weak contraction and generalized the conception of ϑ-contraction.
Kaddouri et al. [12] extended the notion of ϑ-contraction and gave applications of their results to
integral inclusions. Arshad et al. in [13] instigated the rational ϑ-contraction and obtained some fixed
points results in a metric space. Concerning ϑ-contractions, we mention the researchers in [14–22].

In all these investigations, the underlying space was complete metric space. There were some open
problems for fixed point theorems in ordered metric spaces and cyclic representations of ϑ-contraction.
To solve the first problem, we define (α,β)-type ϑ-contraction with the help of control functions α and
β. With this new notion, we not only generalize the main theorem of Wardowski [10] but also derive
the results for ordered metric spaces by these control functions. We also introduce (α,β)-type rational
ϑ-contraction which extend the notion of ϑ-contraction. Moreover, a cyclic (α-ϑ) contraction and cyclic
ordered (α-ϑ) contraction are also introduced to solve the second problem.

Mathematics 2020, 8, 1168; doi:10.3390/math8071168 www.mdpi.com/journal/mathematics79
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To illustrate some of the applications of the fixed point theorems studied in this paper, we use
the Caputo fractional differential equation. Note that nonlinear fractional differential equations play
a very useful role in modeling in various fields of science, such as physics, engineering, bio-physics,
fluid mechanics, chemistry, and biology [23,24]. In this paper, based on the proved fixed point theorems,
we provide some new sufficient conditions for the existence of the solutions of an integral boundary
value problem for a scalar nonlinear Caputo fractional differential equations with fractional order in
(1, 2). We also compare the obtained existence results with known ones in the literature.

2. Preliminaries

Let (Ω, ω) (Ω, for short) and CL(Ω) be the complete metric space Ω with a metric ω and the set
of all non-empty closed subsets of Ω, respectively.

To be more precise and to be easier for readers to see the novelty of the results in this paper,
we will initially give some that are known in the literature definitions.

In 2012, Samet et al. ([3]) defined α-admissibility of mapping in the following way:

Definition 1. ([3]) Let the function α : Ω × Ω → [0,+∞). The mapping J : Ω → Ω is α-admissible if:

α(l, κ) ≥ 1 implies α(J (l),J (κ)) ≥ 1 for l, κ ∈ Ω.

Later, Salimi et al. ([4]) defined twisted (α,β)-admissible mappings in the following way:

Definition 2. ([4]). Let the functions α, β : Ω × Ω → [0,+∞). The mapping J : Ω → Ω is twisted (α,β)
-admissible if: {

α(l, κ) ≥ 1
β(l, κ) ≥ 1

=⇒
{

α(J (l),J (κ)) ≥ 1
β(J (l),J (κ)) ≥ 1 for l, κ ∈ Ω.

.

Wardowski ([10]) presented a new family of mappings named Wardowski-contractions.

Definition 3. ([10]) The mapping J : Ω → Ω is ϑ-contraction if there exists a number π > 0 such that:

ω(J (l),J (κ)) > 0 =⇒ π + ϑ
(
ω(J (l),J (κ))

) ≤ ϑ
(
ω(l, κ)

)
, l, κ ∈ Ω (1)

where ϑ : (0,+∞) → R is a function satisfying the assertions:

(F1) for all 0 < x < y the inequality ϑ(x) < ϑ(y) holds;
(F2) for {xj}∞

j=1 ⊆ (0,+∞) the equality limj→∞ xj = 0 holds if limj→∞ ϑ(xj) = −∞;
(F3) ∃ 0 < k < 1 such that limx→0+ xkϑ(x) = 0.

Let Δ be the set of all mappings ϑ : (0,+∞) → R satisfying the assertions (F1)–(F3).

Theorem 1. ([10]) Let ϑ ∈ Δ and J : Ω → Ω is ϑ-contraction, then the mapping J has a fixed point in Ω,
i.e., there exists a point l∗ ∈ Ω such that J (l∗) = l∗.

We will give some examples of functions from the set Δ which will be used later.

Example 1. ([10]) Let the function ϑ(l) = ln(l), l > 0. Then ϑ satisfies conditions (F1)-(F3), i.e., ϑ ∈ Δ.
Any function J : Ω → Ω satisfying (1) is a ϑ-contraction because:

ω(J (l),J (κ)) ≤ e−πω(l, κ)

∀ l, κ ∈ Ω with ω(J (l),J (κ)) > 0 and π > 0. Note that e−π ∈ (0, 1), and therefore, the above condition is
also the contractive condition of Banach ([1]).
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Example 2. Let the function ϑ(l) = l− 1√
l
, l > 0. Then ϑ satisfies conditions (F1)-(F3) with k ∈ ( 1

2 , 1), i.e.,
ϑ ∈ Δ.

Any function J : Ω → Ω satisfying (1) is a ϑ-contraction because:

π − 1√
ω(J (l),J (κ))

+ ω(J (l),J (κ)) ≤ − 1√
ω(l, κ)

+ ω(l, κ)

∀ l, κ ∈ Ω with ω(J (l),J (κ)) > 0 and π > 0.

3. Fixed Point Results

We will introduce a new type of contraction mapping.

Definition 4. Let the functions ϑ ∈ Δ and α, β : Ω × Ω → {−∞} ∪ (0, ∞). The mapping J : Ω → Ω is
(α,β)-type ϑ-contraction if for all l, κ ∈ Ω : ω(J (l),J (κ)) > 0 the inequality:

π + α(l, κ)β(l, κ)ϑ (ω(J (l),J (κ))) ≤ ϑ (ω(l, κ)) (2)

holds where π > 0 is a real number.

Definition 5. Let the functions ϑ ∈ Δ and α, β : Ω × Ω → {−∞} ∪ (0, ∞). The mapping J : Ω → Ω is
(α,β)-type rational ϑ-contraction if for all l, κ ∈ Ω : ω(J (l),J (κ)) > 0 the inequality:

π + α(l, κ)β(l, κ)ϑ (ω(J (l),J (κ))) ≤ ϑ (R(l, κ)) (3)

holds, where π > 0 is a real number and

R(l, κ) = max
{

ω(l, κ),
ω(l,J (l))ω(κ,J (κ))

1 + ω(l, κ)

}
. (4)

Remark 1. Note that the (α,β)-type ϑ-contraction defined in Definition 4 is a generalization of ϑ-contraction
given in [10] with α(l, κ) = β(l, κ) = 1 (see Definition 3).

We will obtain some new fixed point results applying the introduced above types of mappings.

Theorem 2. Let the functions ϑ ∈ Δ and α, β : Ω × Ω → {−∞} ∪ (0, ∞) and J : Ω → Ω be (α,β)-type
ϑ-contraction and the following conditions be satisfied:

(a) The mapping J is twisted (α,β) -admissible;
(b) There exists an element l0 ∈ Ω such that α(l0,J (l0)) ≥ 1 and β(l0,J (l0)) ≥ 1;
(c) The mapping J is continuous.

Then the mapping J has a fixed point in Ω, i.e., there exists a point l∗ ∈ Ω such that J (l∗) = l∗.

Proof. Let l0 ∈ Ω be the element from condition (b). Define the sequence {lj}∞
j=0 in Ω by lj+1 = J (lj)

for j = 0, 1, 2, . . . . If lj+1 = lj for some j = 0, 1, 2, . . . , then l∗ = lj is the fixed point of the mapping
J . Assume lj+1 �= lj for all j = 0, 1, 2, . . . . Then from condition (a) and the choice of l0 it follows that
α(l1, l2) = α(J (l0),J (l1)) ≥ 1 and β(l1, l2) = β(J (l0),J (l1)) ≥ 1. By induction we get α(lj, lj+1) ≥ 1
and β(lj, lj+1) ≥ 1 for j ∈ N. Now by inequality (2) with l = lj−1 and κ = lj, we have:

π + ϑ
(
ω(lj, lj+1)

)
= π + ϑ

(
ω(J (lj−1),J (lj))

)
≤ π + α(lj−1, lj)β(lj−1, lj)ϑ

(
ω(J (lj−1),J (lj))

)
≤ ϑ(ω(lj−1, lj)).

(5)
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From inequality (5) it follows that:

ϑ
(
ω(lj, lj+1)

) ≤ ϑ(ω(lj−1, lj))− π. (6)

Therefore, applying inequality (6) step by step we obtain:

ϑ
(
ω(lj, lj+1)

) ≤ ϑ(ω(lj−1, lj))− π ≤ ϑ(ω(lj−2, lj−1))− 2π

≤ . . . ≤ ϑ(ω(l0, l1))− jπ.
(7)

Since ϑ ∈ Δ, so letting j → ∞ in (7), we get:

lim
j→∞

ϑ
(
ω(lj, lj+1)

)
= −∞ ⇐⇒ lim

j→∞
ω(lj, lj+1) = 0. (8)

From condition (F3), ∃ 0 < k < 1 such that:

lim
j→∞

ω(lj, lj+1)
kϑ

(
ω(lj, lj+1)

)
= 0. (9)

From Equation (7) we get:(
ω(lj, lj+1)

)k
ϑ
(
ω(lj, lj+1)

)− (
ω(lj, lj+1)

)k
ϑ (ω(l0, l1))

≤ (
ω(lj, lj+1)

)k
(ϑ(ω(l0, l1))− jπ)− (

ω(lj, lj+1)
)k

ϑ (ω(l0, l1))

≤ − (
ω(lj, lj+1)

)k jπ ≤ 0, j ∈ N. (10)

From inequality (10) for j → ∞ and (8), (9) we obtain:

lim
j→∞

(
j
(
ω(lj, lj+1)

)k
)
= 0. (11)

Thus there exists j1 ∈ N such that j
(
ω(lj, lj+1)

)k ≤ 1 for j ≥ j1, or:

ω(lj, lj+1) ≤ 1

j
1
k

, j ≥ j1. (12)

Then for m, j ∈ N with m > j ≥ j1, we have:

ω(lj, lm)

≤ ω(lj, lj+1) + ω(lj+1, lj+2) + ω(lj+2, lj+3) + ... + ω(lm−1, lm)

=
m−1

∑
i=j

ω(li, li+1) ≤
∞

∑
i=j

ω(li, li+1) ≤
∞

∑
i=j

1

i
1
k
< ∞.

(13)

Hence {lj} is a Cauchy sequence in Ω. From completeness of Ω there exists an element l∗ ∈
ΩL lim

j→∞
lj+1 = l∗. As J is continuous, we have J (l∗) = lim

j→∞
J (lj) = lim

j→∞
lj+1 = l∗. It proves

the claim.

In the partial case of α-admissible mapping we get the following result:

Corollary 1. Let the assumptions be satisfied:

1. The functions ϑ ∈ Δ and α : Ω × Ω → {−∞} ∪ (0, ∞), the mapping J : Ω → Ω is α-admissible
mapping and for l, κ ∈ Ω and ω(J (l),J (κ)) > 0 the inequality:

π + α(l, κ)ϑ (ω(J (l),J (κ))) ≤ ϑ (ω(l, κ)) ,
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holds.
2. There exists an element l0 ∈ Ω such that α(l0,J (l0)) ≥ 1.
3. The mapping J is continuous.

Then the mapping J has a fixed point in Ω.

Proof. The claim follows from Theorem 2 with β(l, κ) ≡ 1 for l, κ ∈Ω.

In the case when the mapping J is not continuous we get the following result:

Theorem 3. Let J : Ω → Ω be an (α,β)-type rational ϑ-contraction and the following condition be satisfied:

(a) The mapping J is twisted (α,β) -admissible;
(b) There exists l0 ∈ Ω such that α(l0,J (l0)) ≥ 1 and β(l0,J (l0)) ≥ 1;
(c) If the sequence {lj}∞

j=0 : lj+1 = J (lj) ∈ Ω for j = 0, 1, 2, ... with l0 from condition (b), is convergent to
l∗ ∈ Ω, i.e., lim

j→∞
ω(lj, l∗) = 0 and α(lj, lj+1) ≥ 1 and β(lj, lj+1) ≥ 1, then the inequalities α(lj, l∗) ≥ 1

and β(lj, l∗) ≥ 1, j ∈ N, hold.

Then the point l∗ from condition (c) is a fixed point of the mapping J .

Proof. As in the proof of Theorem 2 we construct the sequence {lj}∞
j=0 and obtain the inequalities

α(lj, lj+1) ≥ 1, β(lj, lj+1) ≥ 1. The sequence {lj}∞
j=0 is a Cauchy sequence in Ω and lim

j→∞
ω(lj, l∗) = 0

with l∗ ∈ Ω.
Therefore by condition (c) of Theorem 3, we have α(lj, l∗) ≥ 1 and β(lj, l∗) ≥ 1 for all j ∈ N. We

will prove that J (l∗) = l∗. Assuming the contrary that J (l∗) �= l∗. Then there exists a number j0 ∈ N

such that lj+1 �= J (l∗), for all j ≥ j0. Therefore, ω(J (lj),J (l∗)) > 0, for j ≥ j0. By (2), we have:

π + ϑ(ω(lj+1,J (l∗))) = π + ϑ(ω(J (lj),J (l∗)))
≤ π + α(lj, l∗)β(lj, l∗)ϑ(ω(J (lj),J (l∗))) (14)

≤ ϑ(ω(lj, l∗)).

This implies that:

ϑ
(
ω(lj+1,J (l∗))

) ≤ ϑ
(
ω(lj, l∗)

)− π

< ϑ
(
ω(lj, l∗)

)
.

By (F1), we have:
ω(lj+1,J (l∗)) < ω(lj, l∗).

Letting j → ∞ and using the fact that lim
j→∞

ω(lj, l∗) = 0 and lim
j→∞

ω(lj, lj+1) = 0 we get

ω(l∗,J (l∗)) ≤ 0 which is a contradiction. Therefore ω(l∗,J (l∗)) = 0, i.e., J (l∗) = l∗.

In the partial case of α-admissible mapping we obtain the result:

Corollary 2. Let the assumptions be fulfilled:

1. The functions ϑ ∈ Δ and α : Ω × Ω → {−∞} ∪ (0, ∞) and the mapping J : Ω → Ω is α-admissible
mapping such that for l, κ ∈ Ω and ω(J (l),J (κ)) > 0 the inequality:

π + α(l, κ)ϑ (ω(J (l),J (κ))) ≤ ϑ (ω(l, κ))

holds.
2. The conditions (b) and (c) of Theorem 3 are fulfilled.
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Then the point l∗ from condition (c) is a fixed point of the mapping J .

Proof. The claim follows from Theorem 3 with β(l, κ) ≡ 1 for l, κ ∈Ω.

We state the following property.
(P) α(l, κ) ≥ 1 and β(l, κ) ≥ 1 for all fixed points l, κ ∈Ω.

Theorem 4. Suppose that the assertions of Theorem 2 are satisfied and the property (P) holds, then the fixed
point of the mapping J is unique.

Proof. Let l∗, l̂ ∈ Ω be such that J (l∗) = l∗ and J (̂l) = l̂ but l∗ �= l̂. Then by (P), α(l∗, l̂) ≥ 1 and
β(l∗, l̂) ≥ 1. Thus by (2), we have:

π + ϑ
(
ω(l∗, l̂)

)
= π + ϑ

(
ω(J (l∗),J (̂l))

)
≤ π + ϑ

(
α(l∗, l̂)β(l∗, l̂)ω(J (l∗),J (̂l))

)
≤ ϑ(ω(l∗, l̂)).

The above inequality is a contradiction because π > 0. Hence, l∗ is unique.

The fixed point result in Theorem 4 generalize the known in the literature result.

Corollary 3. ([10]). Let J : Ω → Ω be ϑ -contraction . Then the mapping J has a fixed point in Ω.

Proof. The claim follows from the proof of Theorem 4 with α(l, κ)=β(l, κ) ≡ 1 for all l, κ ∈Ω.

Example 3. Consider the set Ω =
{
lj : j ∈ N

}
where the natural numbers:

lj = 1 × 2 + 3 × 4 + . . . + (2j − 1)(2j) =
j(j + 1)(4j − 1)

3
, for j = 1, 2, . . . .

Let ω (l, κ) = |l− κ| for any l, κ ∈ Ω. Define the mapping J : Ω → Ω by,

J (l1) = l1, J (
lj
)
= lj−1, for all j ≥ 2.

Let the functions α : Ω × Ω → {−∞} ∪ (0, ∞) be defined by α(l, κ) = β(l, κ) ≡ 1 for all l, κ ∈ Ω and
ϑ : (0,+∞) → R be defined by ϑ(l) = l− 1√

l
, l > 0. According to Example 2 the function Θ ∈ Δ.

Then the mapping J is (α,β)-type ϑ-contraction, with π = 12. or it is ϑ-contraction (see Remark 1).
Consider the following three possible cases:

Case 1. Let 1 = j < ι. Then,

|J (lι)−J (l1) | = |lι−1 − l1| = 3 × 4 + 5 × 6 + . . . + (2ι − 3)(2ι − 2) (15)

and
ω (lι, l1) = |lι − l1| = 3 × 4 + 5 × 6 + . . . + (2ι − 1)(2ι). (16)

As ι > 1, so we get,

−1√
3 × 4 + . . . + (2ι − 3)(2ι − 2)

<
−1√

3 × 4 + . . . + (2ι − 1)(2ι)
. (17)
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From (17), we have,

12 − −1√
3 × 4 + . . . + (2ι − 3)(2ι − 2)

+ 3 × 4 ++5 × 6 + . . . + (2ι − 3)(2ι − 2)

< 12 − −1√
3 × 4 + . . . + (2ι − 1)(2ι)

+ [3 × 4 ++5 × 6 + . . . + (2ι − 3)(2ι − 2)]

≤ − −1√
3 × 4 + . . . + (2ι − 1)(2ι)

+ [3 × 4 ++5 × 6 + . . . + (2ι − 3)(2ι − 2)] + (2ι − 1)(2ι).

By (15) and (16), we have,

12 − 1√|J (lι) ,J (l1) |
+ |J (lι) ,J (l1) | < − 1√|lι − l1|

+ |lι − l1|. (18)

Case 2. Let 1 = ι < j This case is similar to Case 1 and therefore we omit it.
Case 3. Let ι > j > 1. Then we have,

|J (lι)−J (
lj
) | = (2j − 1)(2j) + (2j + 1)(2j + 2) + ... + (2ι − 3)(2ι − 2) (19)

and
|lι − lj| = (2j + 1)(2j + 2) + (2j + 3)(2j + 4) + ... + (2ι − 1)(2ι). (20)

As ι > j > 1, we get:

(2ι − 1)(2ι) ≥ (2j + 2)(2j + 1) > (2j + 2)(2j + 2) = 2j(2j + 2) + 2(2j + 2) ≥ 2j(2j + 2) + 12.

We know that,

−1√
(2j − 1)(2j) + ... + (2ι − 3)(2ι − 2)

<
−1√

(2j + 1)(2j + 2) + ... + (2ι − 1)(2ι)
. (21)

By (21), we have:

12 − 1√
(2j − 1)(2j) + (2j + 1)(2j + 2) + ... + (2ι − 3)(2ι − 2)

+(2j − 1)(2j) + (2j + 1)(2j + 2) + ... + (2ι − 3)(2ι − 2)

< 12 − 1√
(2j + 1)(2j + 2) + (2j + 3)(2j + 4) + ... + (2ι − 1)(2ι)

+(2j − 1)(2j) + (2j + 1)(2j + 2) + ... + (2ι − 3)(2ι − 2)

< − 1√
(2j + 1)(2j + 2) + (2j + 3)(2j + 4) + ... + (2ι − 1)(2ι)

+(2j − 1)(2j) + (2j + 1)(2j + 2) + ... + (2ι − 3)(2ι − 2)

+(2ι − 1)(2ι)

= − 1√
(2j + 1)(2j + 2) + (2j + 3)(2j + 4) + ... + (2ι − 1)(2ι)

+(2j − 1)(2j) + (2j + 1)(2j + 2) + ... + (2ι − 1)(2ι)

By (19) and (20), we have:

12 − 1√
|J (lι)−J (

lj
) | + |J (lι)−J (

lj
) | < − 1√

|lι − lj|
+ |lι − lj|.
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Thus all the hypotheses of Theorem 3 hold and therefore, the mapping J has a unique fixed point l1.

Now we provide some fixed point theorems for (α,β)-type rational ϑ-contraction.

Theorem 5. Let the functions ϑ ∈ Δ and α : Ω × Ω → {−∞} ∪ (0, ∞) and J : Ω → Ω be (α,β)-type
ϑ-contraction and:

(a) The mapping J is twisted (α,β) -admissible;
(b) ∃ l0 ∈ Ω such that α(l0,J (l0)) ≥ 1 and β(l0,J (l0)) ≥ 1’
(c) The mapping J is continuous.

Then the mapping J has a fixed point in Ω, i.e., there exists a point l∗ ∈ Ω such that J (l∗) = l∗.

Proof. As in the proof of Theorem 2 we construct the sequence {lj}∞
j=0 in Ω. Assume that lj+1 �= lj

for all j = 0, 1, 2, . . . . Then from condition (a) and the choice of l0 it follows that α(l1, l2) =

α(J (l0),J (l1)) ≥ 1 and β(l1, l2) = β(J (l0),J (l1)) ≥ 1. By induction we get α(lj, lj+1) ≥ 1 and
β(lj, lj+1) ≥ 1 for j ∈ N. Now by inequality (3) with l = lj−1 and κ = lj, we have:

π + ϑ
(
ω(lj, lj+1)

)
= π + ϑ

(
ω(J (lj−1),J (lj))

)
≤ π + α(lj−1, lj)β(lj−1, lj)ϑ

(
ω(J (lj−1),J (lj))

)
≤ ϑ(R(lj−1, lj))

(22)

where

R(lj−1, lj) = max
{

ω(lj−1, lj),
ω(lj−1,J (lj−1))ω(lj,J (lj))

1 + ω(lj−1, lj)

}
(23)

= max
{

ω(lj−1, lj),
ω(lj−1, lj)ω(lj, lj+1)

1 + ω(lj−1, lj)

}
.

If we assume max
{

ω(lj−1, lj),
ω(lj−1,lj)ω(lj ,lj+1)

1+ω(lj−1,lj)

}
=

ω(lj−1,lj)ω(lj ,lj+1)

1+ω(lj−1,lj)
, then from (22) we obtain:

π + ϑ
(
ω(lj, lj+1)

) ≤ ϑ(
ω(lj−1, lj)ω(lj, lj+1)

1 + ω(lj−1, lj)
) < ϑ

(
ω(lj, lj+1)

)
.

The above inequality is a contradiction because π > 0. Hence,

max
{

ω(lj−1, lj),
ω(lj−1, lj)ω(lj, lj+1)

1 + ω(lj−1, lj)

}
= ω(lj−1, lj).

Therefore the inequality (22) is reduced to:

π + ϑ
(
ω(lj, lj+1)

) ≤ ϑ(ω(lj−1, lj)). (24)

Following the same procedure as we did in Theorem 2, we get l∗ ∈ Ω such that J (l∗) =l∗. Thus
l∗ is a fixed point of J

In the partial case of α-admissible mapping we obtain the result:

Corollary 4. Let the following assumptions be satisfied:

1. The functions ϑ ∈ Δ and α : Ω × Ω → {−∞} ∪ (0, ∞) and the mapping J : Ω → Ω is α-admissible
mapping such that for l, κ ∈ Ω and ω(J (l),J (κ)) > 0 the inequality

π + α(l, κ)ϑ (ω(J (l),J (κ))) ≤ ϑ (R(l, κ)) ,
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holds where

R(l, κ) = max
{

ω(l, κ),
ω(l,J (l))ω(κ,J (κ))

1 + ω(l, κ)

}
;

2. ∃ l0 ∈ Ω such that α(l0,J (l0)) ≥ 1;
3. The mapping J is continuous.

Then the mapping J has a fixed point in Ω.

Proof. The claim follows from Theorem 5 with β(l, κ) ≡ 1 for l, κ ∈Ω.

Now we prove a result for (α,β)-type rational ϑ-contraction when the mapping J is not continuous.

Theorem 6. Let the functions ϑ ∈ Δ and α, β : Ω × Ω → {−∞} ∪ (0, ∞) and J : Ω → Ω be an (α,β)-type
rational ϑ-contraction and the following condition be satisfied:

(a) The mapping J is twisted (α,β) -admissible;
(b) there exists a point l0 ∈ Ω such that the inequalities α(l0,J (l0)) ≥ 1 and β(l0,J (l0)) ≥ 1 hold;
(c) If the sequence {lj}∞

j=0 : lj+1 = J (lj) ∈ Ω for j = 0, 1, 2, ... with l0 from condition (b), is convergent to
l∗ ∈ Ω, i.e., lim

j→∞
ω(lj, l∗) = 0 and α(lj, lj+1) ≥ 1 and β(lj, lj+1) ≥ 1, then the inequalities α(lj, l∗) ≥ 1

and β(lj, l∗) ≥ 1, j ∈ N, hold.

Then the point l∗ from condition (c) is a fixed point of the mapping J in Ω.

Proof. As in the proof of Theorem 2 we construct the sequence {lj}∞
j=0 in Ω. Similarly to the proof of

Theorem 5 we obtain the inequalities α(lj, lj+1) ≥ 1, β(lj, lj+1) ≥ 1 and {lj}∞
j=0 is a Cauchy sequence in

Ω which converges to l∗, i.e., lim
j→∞

ω(lj, l∗) = 0.

Therefore by condition (c) of Theorem 6, we have α(lj, l∗) ≥ 1 and β(lj, l∗) ≥ 1 for all j ∈ N.
We will prove that J (l∗) = l∗. Assume the contrary that J (l∗) �= l∗. Then there exists j0 ∈ N such that
lj+1 �= J (l∗), for all j ≥ j0. Therefore, ω(J (lj),J (l∗)) > 0, for j ≥ j0. By (3), we have:

π + ϑ
(
ω(lj+1,J (l∗))

)
= π + ϑ

(
ω(J (lj),J (l∗))

)
≤ π + α(lj, l∗)β(lj, l∗)ϑ

(
ω(J (lj),J (l∗))

)
≤ ϑ

(
max{ω(lj, l∗),

ω(lj ,J (lj))ω(l∗ ,J (l∗))
1+ω(lj ,l∗)

})
= ϑ

(
max{ω(lj, l∗),

ω(lj ,J (lj))ω(l∗ ,J (l∗))
1+ω(lj ,l∗)

})
= ϑ

(
max{ω(lj, l∗),

ω(lj ,lj+1)ω(l∗ ,J (l∗))
1+ω(lj ,l∗)

})
(25)

which implies:

ϑ
(
ω(lj+1,J (l∗))

) ≤ ϑ
(

max{ω(lj, l∗),
ω(lj, lj+1)ω(l∗,J (l∗))

1 + ω(lj, l∗)
})− π

< ϑ
(

max{ω(lj, l∗),
ω(lj, lj+1)ω(l∗,J (l∗))

1 + ω(lj, l∗)
}).

By (F1), we have:

ω(lj+1,J (l∗)) < max{ω(lj, l∗),
ω(lj, lj+1)ω(l∗,J (l∗))

1 + ω(lj, l∗)
}

Letting j → ∞ and using the fact that lim
j→∞

ω(lj, l∗) = 0 and lim
j→∞

ω(lj, lj+1) = 0 we get

ω(l∗,J (l∗)) ≤ 0 which is a contradiction. Therefore ω(l∗,J (l∗)) = 0, i.e., J (l∗) = l∗.
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Example 4. Let Ω = {0} ∪ [ 9
4 , 5] and ω (l, κ) = |l− κ| for l, κ ∈ Ω. Clearly (Ω, ω) is a complete metric

space. Consider the function ϑ (l) = −1√
l
+ l ∈ Δ for l ∈ Ω (see Example 2) and π ∈

(
0, 112−3

√
5

15

)
.

Define J : Ω → Ω and α, β : Ω → {−∞} ∪ (0, ∞) by:

J (l) =

{
9
4 , l ∈ {0} ∪ [ 9

4 , 5)
0 , l = 5.

and
α (l, κ) = β (l, κ) = 1

We prove that J is (α, β)-type rational ϑ-contraction. Consider these possible cases:
Case I. For l = 0 and κ = 5, we have

ω (J (0),J (5)) = ω

(
{9

4
}, 0

)
=

9
4
> 0

and

R (0, 5) = 5 = max
{

ω (0, 5) ,
ω (0,J (0)) · ω(5,J (5))

1 + ω (0, 5)

}
.

Since,

ω (J (0),J (5)) =
9
4
< 5 = ω (0, 5) ≤ R (0, 5) .

So, we have

− 1√
ω (J (0),J (5))

< − 1√R (0, 5)
,

which further implies:

− 1√
ω (J 0,J 5)

+ ω (J (0),J (5)) < − 1√R (0, 5)
+R (0, 5) .

Thus we obtain:

π + α (0, 5) β (0, 5) ϑ (ω (J (0),J (5))) = π + ϑ (ω (J (0),J (5)))

= π − 1√
ω (J (0),J (5))

+ ω (J (0),J (5)) = π −
√

4
9
+

9
5

≤ −
√

1
5
+ 5 ≤ − 1√R (0, 5)

+R (0, 5) = ϑ (R (0, 5)) .

Hence,
π + α (0, 5) β (0, 5) ϑ (ω (J (0),J (5))) ≤ ϑ (R (5, κ)) .

Case II.
For l ∈ [ 9

4 , 5), κ = 0

ω (J (l),J (0)) = ω

(
{9

4
}, {9

4
}
)
= 0.

Case III.
For l = 5, κ ∈ [ 9

4 , 5), we have:

ω (J (5),J (κ)) = ω

(
{0},

9
4

)
=

9
4
> 0.
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Therefore,

ω (J (5),J (κ)) < max
{

ω (5, κ) ,
ω (5,J (5)) · ω (≤,J (κ))

1 + ω (5, κ)

}
= R (5, κ) .

Similarly to case I, we get:

π + α (5, κ) β (5, κ) ϑ (ω (J (5),J (κ))) ≤ ϑ (R (5, κ))

ThusJ is (α, β)-type rational ϑ-contraction. Moreover all the assumptions of Theorem 6 are satisfied and 9
4

is a fixed point of J .

Corollary 5. Let:

1. The functions ϑ ∈ Δ and α : Ω × Ω → {−∞} ∪ (0, ∞) and the mapping J : Ω → Ω is α-admissible
mapping such that for l, κ ∈ Ω and ω(J (l),J (κ)) > 0 the inequality:

π + α(l, κ)ϑ (ω(J (l),J (κ))) ≤ ϑ (R(l, κ))

holds where

R(l, κ) = max
{

ω(l, κ),
ω(l,J (l))ω(κ,J (κ))

1 + ω(l, κ)

}
.

2. The conditions (b) and (c) of Theorem 6 are fulfilled.

Then the point l∗ from condition (c) is a fixed point of the mapping J .

Proof. The claim follows from Theorem 6 with β(l, κ) ≡ 1 for l, κ ∈Ω.

Theorem 7. Suppose that the assertions of Theorem 5 are satisfied and the property (P) holds. Then the fixed
point of the mapping J is unique.

Proof. Let l∗, l̂ ∈ Ω be such that J (l∗) = l∗ and J (̂l) = l̂ but l∗ �= l̂. Then by (P), α(l∗, l̂) ≥ 1 and
β(l∗, l̂) ≥ 1. Thus,

π + ϑ
(
ω(l∗, l̂)

)
= π + ϑ

(
ω(J (l∗),J (̂l))

) ≤ π + ϑ
(
α(l∗, l̂)β(l∗, l̂)ω(J (l∗),J (̂l))

)
≤ ϑ(max{ω(l∗, l̂),

ω(l∗,J (l∗))ω(̂l,J (̂l))

1 + ω(l∗, l̂)
}) = ϑ(ω(l∗, l̂)).

The above inequality is a contradiction because π > 0. Hence, l∗ is unique.

Now we define cyclic (α-ϑ) contraction and derive some results from our main theorems.

Definition 6. Let the functions α : Ω × Ω → {−∞} ∪ (0, ∞), ϑ ∈ Δ, the sets S1, S2 ∈ CL(Ω), and
J : S1 ∪ S2 → S1 ∪ S2 with J S1 ⊆ S2 and J S2 ⊆ S1. The mapping J is cyclic (α-ϑ) contraction if there
exists a number π > 0 such that:

ω(J (l),J (κ)) > 0 =⇒ π + α(l, κ)ϑ
(
ω(J (l),J (κ))

) ≤ ϑ
(
ω(l, κ)

)
holds for all l ∈ S1 and κ ∈ S2.

Theorem 8. Let the functions α : Ω × Ω → {−∞} ∪ (0, ∞), ϑ ∈ Δ, the mapping J : S1 ∪ S2 → S1 ∪ S2 is
a cyclic (α-ϑ) contraction and the following conditions be satisfied:

(a) The mapping J is α- admissible;
(b) There exists l0 ∈ Ω such that α(l0,J (l0)) ≥ 1;
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(c) The mapping J is continuous.

Then the mapping J has a fixed point in S1 ∩ S2.

Proof. We take Ω = S1 ∪ S2. Then (Ω, ω) is a complete metric space. Define β : Ω × Ω → {−∞} ∪
(0, ∞) by:

β(l, κ) =

{
1, if l ∈S1 and κ∈S2

0, otherwise.

Then J is twisted (α,β)-admissible. Let the point l0 ∈ Ω be defined in condition (b).
Then β(l0,J (l0)) ≥ 1 holds. Therefore, the assumptions of Theorem 2 are fulfilled and there exists
a point l∗ ∈ S1 ∪ S2 such that J (l∗) = l∗. If l∗ ∈ S1, then l∗ = J (l∗) ∈ S2 because J S1 ⊆ S2. Thus ∃
l∗ ∈ S1 ∩ S2 such that J (l∗) = l∗. Similarly, if l∗ ∈ S2, then l∗ = J (l∗) ∈ S1 because J S2 ⊆ S1. Thus ∃
l∗ ∈ S1 ∩ S2 such that J (l∗) = l∗.

Theorem 9. Let the functions α : Ω × Ω → {−∞} ∪ (0, ∞), ϑ ∈ Δ, the mapping J : S1 ∪ S2 → S1 ∪ S2 is
a cyclic (α-ϑ) contraction and the following conditions be satisfied:

(a) The mapping J is α- admissible;
(b) There exists a point l0 ∈ Ω such that α(l0,J (l0)) ≥ 1;
(c) If {lj} ⊆ Ω such that α(lj, lj+1) ≥ 1 for all j and lj → l∗ ∈ Ω as j → ∞, then α(lj, l∗) ≥ 1 for all

j ∈ N∪ {0}.

Then the mapping J has a fixed point in S1 ∩ S2.

Proof. We take Ω = S1 ∪ S2. As in the proof of Theorem 8 we define the function β : Ω × Ω →
{−∞} ∪ (0, ∞). Then J is twisted (α,β)-admissible. Let the point l0 ∈ Ω be defined in condition
(b). Then β(l0,J (l0)) ≥ 1 holds. Let {lj} ⊆ Ω such that α(lj, lj+1) ≥ 1 and β(lj, lj+1) ≥ 1 for all
j ∈ N ∪ {0} and lj → l∗ as j → +∞. Then lj ∈ S1 and lj+1 ∈ S2. Now as S2 is closed, so l∗ ∈ S2

and hence α(lj, l∗) ≥ 1 and β(lj, l∗) ≥ 1. Therefore, the assumptions of Theorem 3 are fulfilled and
∃ l∗ ∈ S1 ∪ S2 such that J (l∗) = l∗. If l∗ ∈ S1, then l∗ = J (l∗) ∈ S2 because J S1 ⊆ S2. Thus ∃
l∗ ∈ S1 ∩ S2 such that J (l∗) = l∗. Similarly, if l∗ ∈ S2, then l∗ = J (l∗) ∈ S1 because J S2 ⊆ S1. Thus ∃
l∗ ∈ S1 ∩ S2 such that J (l∗) = l∗.

Corollary 6. Let the function ϑ ∈ Δ, the sets S1, S2 ∈ CL(Ω), and J : S1 ∪ S2 → S1 ∪ S2 with J S1 ⊆ S2

and J S2 ⊆ S1 is continuous and the inequality:

ω(J (l),J (κ)) > 0 =⇒ π + ϑ
(
ω(J (l),J (κ))

) ≤ ϑ
(
ω(l, κ)

)
holds for all l ∈ S1 and κ ∈ S2.
Then the mapping J has a fixed point in S1 ∩ S2.

Proof. The claim follows from Theorem 8 with α(l, κ) = 1 for all l ∈S1 and κ∈S2.

Now we define cyclic ordered (α-ϑ) contraction and derive some results from our main theorems.

Definition 7. Let (Ω, ω, #) be an ordered metric space and S1, S2 ∈ CL(Ω), and J : S1 ∪ S2 → S1 ∪ S2

with J S1 ⊆ S2 and J S2 ⊆ S1. The mapping J is a cyclic ordered (α-ϑ) contraction if there exists a number
π > 0 and α : Ω × Ω → {−∞} ∪ (0, ∞) such that:

ω(J (l),J (κ)) > 0 =⇒ π + α(l, κ)ϑ
(
ω(J (l),J (κ))

) ≤ ϑ
(
ω(l, κ)

)
holds for all l ∈ S1 and κ ∈ S2 with l # , where ϑ ∈ Δ.
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Theorem 10. Let the functions α : Ω × Ω → {−∞} ∪ (0, ∞), ϑ ∈ Δ, the mapping J : S1 ∪ S2 → S1 ∪ S2

is decreasing continuous cyclic ordered (α-ϑ) contraction and the following conditions be satisfied:

(a) The mapping J is α- admissible;
(b) There exists a point l0 ∈ Ω such that α(l0,J (l0)) ≥ 1 and l0 # J (l0).

Then ∃l∗ ∈ S1 ∩ S2 such that l∗ = J (l∗).

Proof. We take Ω = S1 ∪ S2. Then (Ω, ω) is a complete metric space. Define β : Ω × Ω → {−∞} ∪
(0, ∞) by:

β(l, κ) =

{
1, if l ∈S1 and κ∈S2, with l # κ

0, otherwise.

Let β(l, κ) ≥ 1, for all l, κ ∈ Ω, then l ∈S1 and κ∈S2 with l # κ. It follows that J (l)∈S2 and
J (κ)∈S1 with J (κ) # J (l), since J is decreasing. Therefore β(J (κ),J (l)) ≥ 1, that is, J is twisted
(α,β)-admissible. Now, let α(l0,J (l0)) ≥ 1, with l0 ∈ S1 and l0 # J (l0). From l0 ∈ S1, we have
J (l0) ∈ S2 with l0 # J (l0), that is β(l0,J (l0)) ≥ 1. Then all assumptions of Theorem 2 are satisfied
and J has a fixed point l∗ in S1 ∪ S2. The remaining proof is identical to the proof of Theorem 9.

Theorem 11. Let the functions α : Ω × Ω → {−∞} ∪ (0, ∞), ϑ ∈ Δ, the mapping J : S1 ∪ S2 → S1 ∪ S2

is a cyclic ordered (α-ϑ) contraction and the following conditions be satisfied:

(a) The mapping J is α- admissible;
(b) There exists a point l0 ∈ Ω such that α(l0,J (l0)) ≥ 1 and l0 # J (l0);
(c) If {lj} ⊆ Ω such that α(lj, lj+1) ≥ 1 for all j and lj → l∗ ∈ Ω as j → ∞, then α(lj, l∗) ≥ 1 for all

j ∈ N∪ {0};
(d) If {lj} ⊆ Ω such that lj # lj+1) for all j and lj → l∗ ∈ Ω as j → ∞, then lj # l∗ for all j ∈ N∪ {0}.

Then ∃l∗ ∈ S1 ∩ S2 such that l∗ = J (l∗).

Proof. We take Ω = S1 ∪ S2. As in the proof of Theorem 10 we define the function β : Ω×Ω → [0,+∞).
Then J is twisted (α,β)-admissible. Let {lj} ⊆ Ω such that α(lj, lj+1) ≥ 1 and β(lj, lj+1) ≥ 1 for all
j ∈ N ∪ {0} and lj → l∗ as j → +∞. Then lj ∈ S1 and lj+1 ∈ S2. Now as S2 is closed, so l∗ ∈ S2 and
hence lj # l∗ and β(lj, l∗) ≥ 1. Therefore, the assumptions of Theorem 3 are fulfilled and ∃ l∗ ∈ S1 ∪ S2

such that J (l∗) = l∗. The remaining proof is identical to the proof of Theorem 6.

4. Applications to Caputo Fractional Differential Equations

Recently, many researchers have studied the existence of solutions of varies types of fractional
differential equations. In this paper we will emphasize our study of Caputo fractional differential
equations of the fractional order in (1, 2) and the integral boundary condition. Note that similar
problems are studied in [25–27] but the main condition is connected with enough small Lipschitz
constant of the right hand side part of the equation. Based on the obtained fixed points theorems we
can use weaker conditions for the right hand side part of the equation (see Example 5).

We will apply some of the proved above Theorems to investigate the existence of the solutions of
the nonlinear Caputo fractional differential equation:

C
a Dq

t (x(t)) = f (t, x(t)) for t ∈ (a, b) (26)

with the integral boundary condition:

x(a) = 0 , x(b) =
λ∫

a

x(s)ds (a < λ < b) (27)
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where x ∈ R, q ∈ (1, 2), C
a Dq

t x(t) = 1
Γ(2−q)

t∫
a
(t − s)1−q x′′(s)ds represents the Caputo fractional

derivative, and a, b : 0 ≤ a < b are given real numbers.
Let Ω = C([a, b],R) with a norm ‖x‖[a,b] = sups∈[a,b] |x(s)| . For any x, y ∈ Ω we define ω(x, y) =

‖x − y‖[a,b].
Consider the linear fractional differential equation:

C
a Dq

t (x(t)) = g(t) for t ∈ (a, b) (28)

with the integral boundary condition (27) where g ∈ Ω.

Lemma 1. Let g ∈ Ω. Then the boundary value problem (28), (27) has a solution:

x(t) =
1

Γ(q)

∫ t

a
(t − s)q−1g(s)ds

+
2(t − a)

((λ − a)2 − 2(b − a))Γ(q)

∫ b

a
(b − s)q−1g(s)ds

− 2(t − a)
((λ − a)2 − 2(b − a))Γ(q)

λ∫
a

∫ s

a
(s − ξ)q−1g(ξ)dξds.

(29)

The proof of Lemma 1 is based on the presentation of the solution x(t) = 1
Γ(q)

∫ t
a (t− s)q−1g(s)ds−

d1 − d2(t − a) given in [28].
Based on the presentation (29) we will define a mild solution of (26) and (27).

Definition 8. The function x ∈ Ω is a mild solution of the boundary value problem (26) and (27) if it satisfies:

x(t) =
1

Γ(q)

∫ t

a
(t − s)q−1 f (s, x(s)) ds

+
2(t − a)

((λ − a)2 − 2(b − a))Γ(q)

∫ b

a
(b − s)q−1 f (s, x(s)) ds

− 2(t − a)
((λ − a)2 − 2(b − a))Γ(q)

∫ λ

a

∫ s

a
(s − ξ)q−1 f (ξ, x(ξ)) dξds, t ∈ [a, b].

For any function u ∈ Ω, we define the mapping J : Ω → Ω by:

J (u)(t) =
1

Γ(q)

∫ t

a
(t − s)q−1 f (s, u(s)) ds

+
2(t − a)

((λ − a)2 − 2(b − a))Γ(q)

∫ b

a
(b − s)q−1 f (s, u(s)) ds

− 2(t − a)
((λ − a)2 − 2(b − a))Γ(q)

∫ λ

a

∫ s

a
(s − ξ)q−1 f (ξ, u(ξ)) dξds,

for t ∈ [a, b].

(30)

Now, we establish the existence result as follows.

Theorem 12. Suppose that:

(i) The function f ∈ C([a, b]×R,R) and there exists a constant K such that:

K(b − a)q

Γ(1 + q)

(
1 +

2K(b − a)
(2(b − a)− (λ − a)2)

(
1 +

λ − a
1 + q

))
∈ (0, 1) (31)
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and a number p ∈ (0, 1] such that:

| f (t, x)− f (t, y)| ≤ K|x − y|p, x, y ∈ R, t ∈ [a, b];

(ii) There exists a function x0 ∈ Ω such that ω(x0,J (x0)) > 0, where the operator J is defined
by (30);

(iii) For any two functions x, y ∈ Ω such that ω(x, y) > 0 the inequality ω(J (x),J (y)) > 0 holds.

Then the boundary value problem (26),(27) has a mild solution.

Proof. Note that any fixed point of the mapping J is a mild solution of the boundary value
problem (26) and (27).

Now, let x, y ∈ Ω be such that ω(x, y) > 0. By condition (i) of Theorem 12 we obtain:

|J (x)(t)−J (y)(t)| ≤ 1
Γ(q)

∫ t

a
(t − s)q−1 | f (s, x(s))− f (s, y(s)) |ωs

+
2(t − a)

(2(b − a)− (λ − a)2)Γ(q)

∫ b

a
(1 − s)q−1 | f (s, x(s))− f (s, y(s)) |ωs

+
2(t − a)

(2(b − a)− (λ − a)2)Γ(q)

∫ λ

a

(∫ s

a
(s − t)q−1 | f (t, x(t))− f (t, y(t)) |ωt

)
ωs

≤ K
Γ(q)

∫ t

a
(t − s)q−1 |x(s)− y(s)|pds

+
2K(t − a)

(2(b − a)− (λ − a)2)Γ(q)

∫ b

a
(b − s)q−1 |x(s)− y(s)|pds

+
2K(t − a)

(2(b − a)− (λ − a)2)Γ(q)

∫ λ

a

(∫ s

a
(s − ξ)q−1 |x(ξ)− y(ξ)|pdξ

)
ds

≤
(

K(t − a)q

qΓ(q)
+

2K(t − a)
(2(b − a)− (λ − a)2)Γ(q)

( (b − a)q

q
+

(λ − a)1+q

q(1 + q)

))
||x − y||p∞

≤ K(b − a)q

Γ(1 + q)

(
1 +

2K(b − a)
(2(b − a)− (λ − a)2)

(
1 +

λ − a
1 + q

))
||x − y||p∞

= Λ||x − y||p∞, t ∈ [a, b]

with Λ = K(b−a)q

Γ(1+q)

(
1 + 2K(b−a)

(2(b−a)−(λ−a)2)

(
1 + λ−a

1+q

))
∈ (0, 1) (see (31)).

Therefore,
||J (x)−J (y)||∞ ≤ Λ||x − y||p∞

or
ω(J (x),J (y)) ≤ Λ(ω(x, y))p. (32)

From (32) applying condition (ii) we get:

ln (ω(J (x),J (y))) ≤ ln(Λ) + p ln (ω(x, y))) .

Thus,

ln
(

1
Λ

) 1
p
+

1
p

ln (ω(J (x),J (y))) ≤ ln(ω(x, y)).
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Therefore, the operator J is (α, β)-type ϑ-contraction with ϑ(u) = ln u ∈ Δ (see Example 1),

π = ln
(

1
Λ

) 1
p
> 0, and the mappings α, β : Ω × Ω → {−∞} ∪ (0,+∞) are defined by:

α(x, y) =

{
1
p if ω(x, y) > 0,

0.1 otherwise
β(x, y) =

{
1 if ω(x, y) > 0,

−∞ otherwise.

Therefore, the assumption (i) of Theorem 3 is satisfied.
The operator J is twisted (α,β)-admissible because for any x, y ∈ Ω if α(x, y) ≥ 1 and β(x, y) ≥ 1

then from definitions of α, β it follows that ω(x, y) > 0 and from condition (iii) of Theorem 12
the inequality ω(J (x)(t),J (y)(t)) > 0 holds. Thus, α(J (x),J (y)) ≥ 1 and β(J (x),J (y)) ≥ 1.
Therefore, the condition (a) of Theorem 2 is satisfied.

From condition (ii) of Theorem 12, there exists a point x0 ∈ Ω such that ω(x0,J (x0)) > 0
and therefore, α(x0,J (x0)) = 1

p ≥ 1 and β(x0,J (x0)) = 1 ≥ 1. Thus condition (b) of Theorem 2
is satisfied.

According to Theorem 3 the operator J has a fixed point in Ω, i.e., there exists a function
x∗ ∈ C([a, b],R) such that x∗ = J (x∗). This function x∗ is a mild solution of the boundary value
problem for (26) and (27).

Remark 2. Note that the condition (i) of Theorem 12 for the function f (t, x) is less restrictive than the Lipschitz
condition used in many existence results (see, for example [25]).

Now we will provide an example to demonstrate the existence result.

Example 5. Consider the nonlinear Caputo fractional differential equation:

C
2 D1.75

t (x(t)) =
1√

t + 14
arctan(

√
|x(t)|+ et cos t) + sin t for t ∈ (2, 3) (33)

with the integral boundary condition:

x(2) = 0 x(3) =
2.5∫
0

x(s)ds. (34)

In this case f (t, u) = 1√
t+14

arctan(
√|u|+ et cos t) + sin t and | f (t, x)− f (t, u)| ≤ 0.25

√|x − y|.
The condition (31) is reduced to:

K(b − a)q

Γ(1 + q)

(
1 +

2K(b − a)
(2(b − a)− (λ − a)2)

(
1 +

λ − a
1 + q

))
=

K
Γ(2.75)

(
1 +

2K
1.75

3.25
2.75

)
= 0.215998 ∈ (0, 1)

with K = 0.25.
According to Theorem 12 the boundary value problem (33) and (34) has a solution.

Remark 3. Note that the boundary value problem (33) and (34) is studied in [25], but the absolute value is
missing under the square root. Also, the function f (t, x) is assumed as Lipschitz, but it is not (see Figure 1
for the particular value t = 2.2 ∈ (2, 3)). At the same time the function f (t, x) satisfies the condition 1 with
k = 0.25 (see Figure 2 for the particular value t = 2.2 ∈ (2, 3)), and by one of the fixed point theorems proved
in this paper the existence of the solution follows.
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Figure 1. Graphs of 0.25|x − 0| and f (2.2, x)− f (2.2, 0)|.

Figure 2. Graphs of 0.25
√|x − 0| and f (2.2, x)− f (2.2, 0)|.

5. Discussion

In fixed point theory, the contractive inequality and underlying space play a significant role.
A pioneer result in this theory is a Banach contraction principle that consists of compete metric space
(Ω, ω) as underlying space and the following contractive inequality:

ω(J (l),J (κ)) ≤ πω(l, κ) (35)

in which J is a self mapping and π ∈ [0, 1). Over the years, many mathematicians have generalized
and extended above contractive inequality in different ways.

In 2012, Wardowski ([10]) initiated the application of a mapping J : (Ω, ω) → (Ω, ω) and π > 0
such that:

ω(J (l),J (κ)) > 0 =⇒ π + ϑ
(
ω(J (l),J (κ))

) ≤ ϑ
(
ω(l, κ)

)
(36)

for l, κ ∈ Ω, where ϑ : (0,+∞) → R satisfies the following conditions:

• ϑ(l) < ϑ(κ) for 0 < l < κ;
• For {lj} ⊆ (0,+∞), limj→∞ lj = 0 iff limj→∞ ϑ(lj) = −∞;
• There exists 0 < k < 1 such that liml→0+ lkϑ(l) = 0.

As it is pointed out in [10] the introduced mapping and inequality (36) are a generalization of
Banach contraction (35) with ϑ(l) = ln(l), for l > 0.

In this paper, we generalized the mapping used in [10] by introducing two new notions (α, β)-type
ϑ-contraction and (α, β)-type rational ϑ-contraction.
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As a partial case of some of our results, we obtained known results in the literature. For example,
if α(l, κ) = β(l, κ) = 1 in Theorem 2 then we obtain Theorem 1 ([10]) by which one can derive the result
of [1].

6. Conclusions

In the present paper, we introduced two new types of contractions: (α,β)-type ϑ-contraction
and (α,β)-type rational ϑ-contraction. Based on their applications we proved new fixed points
theorems. These results generalized some known ones from fixed point theory. To support our
results, we provided two non trivial examples. The obtained results are noteworthy contributions to
the current results of literature in the theory of fixed points. In this field, one can establish (α,β)-type
ϑ-contraction and (α,β)-type rational ϑ-contraction for the multivalued mappings in the perspective of
complete metric spaces and generalized metric spaces. To illustrate the application of the new fixed
point theorems, we considered an integral boundary value problem for a Caputo fractional scalar
equation of order from the interval (1,2) and proved the existence of the solution.
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Abstract: The study of the existence of an optimal feedback control problem for the initial-boundary
value problem that describes the motion of the fractional Voigt-α model of a viscoelastic medium
is investigated in this paper. In this model, the Voigt rheological relation is considered with the
left-side fractional Riemann-Liouville derivative, which allows to take into account the memory of
the medium. Also in this model, the memory is considered along the trajectory of the motion of fluid
particles, determined by the velocity field. Due to the insufficient smoothness of the velocity field and,
as a consequence, the impossibility of uniquely determining the trajectory for the velocity field for
any initial value, a weak solution to the problem under study is introduced using regular Lagrangian
flows. Based on the approximation-topological approach to the study of fluid dynamic problems,
the existence of an optimal solution that gives a minimum to a given cost functional is proved.

Keywords: optimal feedback control; Voigt model; alpha-model; fractional derivative

MSC: 76D55; 49J20; 35Q35

1. Introduction

The aim of this work is to study the optimal feedback control problem for the alpha-model with the
Voigt fractional rheological relation, taking into account the background of a fluid along the trajectory.
Note that memory properties in general arise not only in the fluid dynamics field but in many absolute
different fields [1]. So the results of this paper can be useful in many fields. A large number of papers
have been devoted to the investigation of control problems [2–4]. Although the control problems for
linear systems are sufficiently well studied, the situation is not so good for nonlinear systems (even
for finite-dimensional cases or local domains). However, due to the complexity of nonlinear systems
describing the fluids motion the control of non-Newtonian fluids motion, such as bitumen, polymers,
various solutions, emulsions and suspensions, blood, and many others, has not been fully studied.
In hydrodynamics the control (optimal control) problems often connected with the fluid control by
external forces. Usually in solving such problems, a control is considered from a given (finite) set.
In our situation, we consider the external forces control depending on the velocity field. Such types
of problems are called feedback control problems [2–5]. In this situation the control is chosen more
accurately, since in such a way the control belongs to the image of some multi-valued map. This is
more naturally due to the fact that control is not chosen from a finite set of available options.

Mathematics 2020, 8, 1197; doi:10.3390/math8071197 www.mdpi.com/journal/mathematics99
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Also in this paper the alpha model case of fractional Voigt model is considered. Alpha-models
are some kind of regularized approximate systems that depend on some positive parameter α, and
regularization is carried out by some filtering of the velocity vector, which is contained in the argument
of the nonlinear term. The α parameter reflects the width of the spatial filtering scale for the modified
speed. The Helmholtz operator I − α2Δ is most often used as the filtration kernel. The choice of such
an operator is associated with its good mathematical properties. Thus, we ready to proceed to the
formulation of the problem. In a bounded domain Ω ⊂ Rn (in 2D and 3D cases, that is, n = 2, 3)
with a sufficiently smooth boundary ∂Ω on a time interval [0, T], where T > 0,, we consider the
initial-boundary value problem:

∂v
∂t

+
n

∑
i=1

ui
∂v
∂xi

− μ0Δv − μ1

Γ(1 − β)
Div

∫ t

0
(t − s)−βE(v)(s, z(s; t, x)

)
ds +∇p = f , (1)

u = (I − α2Δ)−1v, t ∈ [0, T], x ∈ Ω, (2)

z(τ; t, x) = x +
∫ τ

t
v
(
s, z(s; t, x)

)
ds, t, τ ∈ [0, T], x ∈ Ω, (3)

div v(t, x) = 0, t ∈ [0, T], x ∈ Ω, (4)

v|t=0 = v0, v|[0,T]×∂Ω = 0. (5)

Here v is a vector-function of the velocity of a medium particle, u is a vector-function of a modified
velocity of a medium particle, defined by equality (2), z(τ; t, x) is the trajectory of a medium particle,
indicating at time τ the location of a medium particle located at time moment t at point x, p is a
pressure function, f is a function of the density of external forces, α > 0 is scalar parameter, μ0 > 0,
μ1 ≥ 0, 0 < β < 1 are some constants.

E = (Eij(v)), Eij(v) =
1
2

( ∂vi
∂xj

+
∂vj

∂xi

)
, i, j = 1, n,

is the strain rate tensor. Γ(β) is the Euler gamma function [6] defined through an absolutely convergent
integral

Γ(β) =
∫ ∞

0
tβ−1e−t dt.

This initial-boundary value problem (1)–(5) is an alpha model for the mathematical model
of viscoelastic Voigt medium with fractional rheological relation. The idea of using this kind of
approximation (the alpha-model) first appeared in paper of J. Leray [7] (in this work, J. Leray used the
general form of the filtration kernel) to prove the existence of a weak solution for the Navier-Stokes
system of equations. Later, various alpha-models for the Euler equations [8,9], the Navier-Stokes
system [10] and others were built on this idea. In general, each alpha model is characterized by its
first-order vector differential operator F(u, v) = (F1(u, v), . . . , Fn(u, v)), in which components Fi(u, v)
are linear combinations of all kinds of operators of form uk∂xj v

m, vk∂xj u
m, uk∂xj u

m:

Fi(u, v) =
n

∑
k,j,m=1

Ci
kjmuk∂xj v

m + Di
kjmvk∂xj u

m + Ei
kjmuk∂xj u

m, (6)

where Ci
kjm, Di

kjm, Ei
kjm are some real coefficients. Note that in representation (6) monomials of the form

vk∂xj v
m are not used, since they do not contain the components of the «smoothed» vector field u.

Interest in the study of alpha-models is primarily associated with their application to the study
of turbulence effects for fluid flows. It is also associated with obtaining better numerical results for
alpha-models in comparison to the original models. However, most of the works on the solvability of
alpha-models are devoted to models of the motion of an ideal or Newtonian fluid [11–14]. Only in the
last few years, works began to appear on the study of alpha-models of non-Newtonian fluid [15–18].
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This work continues the study of alpha-models for non-Newtonian fluids, namely, for the fractional
Voigt model of the viscoelastic medium [19]. This mathematical model describes a viscoelastic fluid
flow with a rheological relation σ = μ0E(v) + μ1Dβ

0tE(v) = μ0E(v) + μ1 I1−β
0t E(v), considered along

the trajectories of fluid motion. Here Dβ
0t is the left-side fractional Riemann-Liouville derivative and

I1−β
0t is the Riemann-Liouville fractional integral. This model is a fractional analog of the Voigt model,

which describes the motion of a linearly elastic-retarded fluid. In order to study a large class of
polymers with creep and relaxation effects one must to consider models with fractional derivatives.
It turns out that the models with fractional derivatives are most suitable for this [20,21]. Note that the
advantage of this model is that, together with the definition of the vector-velocity v of the particle’s
motion, the trajectory of the particles of this medium motion z is also determined. Also, note that
the consideration of fractional derivatives in fluid dynamics has many physical applications [22–24].
One of the possible continuations of this model studies is laid out in References [25] and [26].

2. Preliminary Information and Statement of the Main Results

We introduce the main notation and auxiliary statements.
By Lp(Ω), 1 ≤ p < ∞, we denote the set of measurable vector functions v : Ω → Rn, summable

with p degree. By Wm
p (Ω), m ≥ 1, p ≥ 1, we denote Sobolev spaces. We consider the space C∞

0 (Ω)n of
infinitely differentiable vector functions from Ω to Rn with compact support in Ω. Denote by V the set
{v ∈ C∞

0 (Ω)n, div v = 0}. Also by V0 and V1 we denote the closure of V with respect to the norm of
L2(Ω) and W1

2 (Ω), respectively, and by V2 we denote the space V2 = W2
2 (Ω) ∩ V1.

We introduce from Reference [27] the scale of spaces Vβ, β ∈ R. For this we consider the Leray
projector P : L2(Ω) → V0 and the operator A = −PΔ defined on D(A) = V2. From this operator we
can get a self-adjoint positive operator with compact inverse in V0. Let 0 < λ1 ≤ λ2 ≤ · · · ≤ λk ≤ . . .
be the eigenvalues of the operator A. We can get an orthonormal basis in V0 by the eigenfunctions
{ej} of the operator A due to the Hilbert theorem on the spectral decomposition of compact operators.
Denote by

E∞ =

{
v =

N

∑
j=1

vjej : vj ∈ R, N ∈ N

}
,

the set of finite linear combinations of ej. Thus, we get the space Vβ, β ∈ R as the completion of E∞

with respect to the norm

‖v‖Vβ =

( ∞

∑
k=1

λ
β
k |vk|2

) 1
2

. (7)

In Reference [27] it is shown that on the space Vβ, β > −1/2, norm (7) is equivalent to the
ordinary norm ‖ · ‖

Wβ
2 (Ω)n of the space Wβ

2 (Ω)n. In addition, according to Reference [28], the norms in

the spaces V1, V2 and V3 can be defined as follows:

‖v‖V1 =

( ∫
Ω
∇v(x) : ∇v(x)dx

) 1
2

, ‖v‖V2 =

( ∫
Ω

Δv(x)Δv(x)dx
) 1

2

,

‖v‖V3 =

( ∫
Ω
∇Δv(x) : ∇Δv(x)dx

) 1
2

.

Here the symbol ” : ” denotes the component-wise matrix product, that is, for C = (cij), D = (dij),

i, j = 1, . . . m, we put C : D =
m
∑

i,j=1
cijdij.

Further, through the V−β = (Vβ)∗, β ∈ N, we denote the space dual to Vβ.
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Note that C([0, T]; F) is the Banach space of continuous on [0, T] functions, Cw([0, T]; F) is the
Banach space of weakly continuous on [0, T] functions, Lp(0, T; F) is the Banach spaces of summable
on [0, T] with p degree functions with values in a Banach space F, respectively.

The set C1D(Ω) consists of one-to-one mappings z : Ω → Ω coinciding with the identity mapping
on ∂Ω and having continuous first-order partial derivatives on Ω such that det (∂z/∂x) = 1 at every
point of the domain Ω. For this set the norm of continuous functions C(Ω) is used. Further, we will
consider the following set CG = C([0, T]× [0, T], C1D(Ω)). Note that CG ⊂ C([0, T]× [0, T], C1(Ω)),
therefore, in what follows, CG is considered a metric space with a metric defined by the norm of the
space C([0, T]× [0, T], C(Ω)).

We introduce the space in which the solvability of the considered problem will be proved:

W1 = {v ∈ L2(0, T; V1) ∩ L∞(0, T; V0), v′ ∈ L4/3(0, T; V−1)}

with the norm ‖v‖W1 = ‖v‖L2(0,T;V1) + ‖v‖L∞(0,T;V0) + ‖v′‖L4/3(0,T;V−1).

Denote by Δα : Vβ → Vβ−2, β ≥ 0 the operator Δα = (J + α2 A), where J = PI, and I is the
identity operator. By virtue of Reference [28], the operator Δα is invertible. If we apply the Leray
projection P : L2(Ω) → V0 to the equality v = (I − α2Δ)u for β = 3 and express from the last equality
u: u = (J + α2 A)−1v = Δ−1

α v. Then, since v ∈ V1, we get that u ∈ V3.
Note that for the correct formulation of the considered initial-boundary value problem the

trajectories z must be uniquely determined by the velocity field v. In other words, it is necessary that
Equation (3) has a unique solution for the velocity field v. However, the existence of solutions to
Equation (3) for a fixed v is known in Reference [29] only in case v ∈ L1(0, T; C(Ω)n) and this solution
is unique for v ∈ L1(0, T; C1(Ω)n) such that v|(0,T)×∂Ω = 0. Therefore, the trajectories of motion are not
uniquely determined even for strong solutions whose partial derivatives that appear in Equation (3)
are contained in L2(0, T; L2(Ω)). One possible way out of this situation is to regularize the velocity
field at each time instant t by averaging over the variable x and determine the trajectories z(τ; t, x)
for the regularized velocity field [30]. However, relatively recently [31,32], the solvability of Cauchy
integral problem (3) was investigated in the case when the velocity v belongs to the Sobolev space.
Also the existence and uniqueness of regular Lagrangian flows, which are a generalization of the
concept of a classical solution, are established.

Definition 1. Regular Lagrangian flow associated to v is the function z(τ; t, x), (τ; t, x) ∈ [0, T]× [0, T]× Ω
satisfying conditions:

1. the function γ(τ) = z(τ; t, x) is absolutely continuous and satisfies Equation (3) for almost all x ∈ Ω and
t ∈ [0, T];

2. the equality m(z(τ; t, B)) = m(B) holds for any t, τ ∈ [0, T] and an arbitrary Lebesgue measurable set
B ⊆ Ω with Lebesgue measure m(B);

3. for all ti ∈ [0, T], i = 1, 2, 3, and almost all x ∈ Ω

z(t3; t1, x) = z(t3; t2, z(t2; t1, x)).

We give the necessary results from a regular Lagrangian flow.

Theorem 1. [31] Let v ∈ L1(0, T; W1
p(Ω)n), 1 ≤ p ≤ ∞ with conditions div v(t, x) = 0, (t, x) ∈ [0, T]×Ω,

and v|[0,T]×∂Ω = 0. Then there exists a unique regular Lagrangian flow z ∈ C(D; Ln) associated to v (where
C(D, L) is the Banach space of continuous functions on D = [0, T]× [0, T] with values in the metric space of
vector functions L measurable on Ω). Moreover, z(τ; t, Ω) ⊂ Ω up to a set of measure zero and

∂

∂τ
z(τ; t, x) = v(τ, z(τ; t, x)), t, τ ∈ [0, T], for almost all x ∈ Ω.
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Theorem 2. Let v, vm ∈ L1(0, T; Wp
1 (Ω)n), m = 1, 2, . . . for some p > 1. Let div v = 0, div vm = 0,

v|[0,T]×∂Ω = 0, vm|[0,T]×∂Ω = 0. Also, let the inequalities

‖vx‖L1(0,T;Lp(Ω)n×n) + ‖v‖L1(0,T;Lp(Ω)n) ≤ M,

‖vm
x ‖L1(0,T;Lp(Ω)n×n) + ‖vm‖L1(0,T;Lp(Ω)n) ≤ M

are valid. Here vx and vm
x are the Jacobi matrices of the vector functions v and vm. Let vm converges to v in

L1(QT)
N as m → +∞. Let zm(τ; t, x) and z(τ; t, x) are regular Lagrangian flows associated to vm and v,

respectively. Then the sequence zm converges (up to a subsequence) to z with respect to the Lebesgue measure on
the set [0, T]× Ω uniformly on t ∈ [0, T].

This result was proved in Reference [33] in the general case.
Thus, by virtue of Theorem 1 for each v ∈ L2(0, T; V1) and for almost all x ∈ Ω, the Equation (3)

has a unique solution z(v), where z(v)(τ; t, x) = z(τ; t, x), in the class of regular Lagrangian flows.
As a control function, we consider the multi-valued map Ψ : W1 � L2(0, T, V−1). Assume that Ψ

satisfies the following conditions:

(Ψ1) Ψ is defined on the space W1 and has nonempty, compact, and convex values;
(Ψ2) Ψ is compact and upper semicontinuous (that is, for any function v ∈ W1 and any open

set Y ⊂ L2(0, T, V−1) such that Ψ(v) ⊂ Y, there exists a neighborhood U(v) such that
Ψ(U(v)) ⊂ Y);

(Ψ3) Ψ is globally bounded, that is, there exists a constant R1 > 0 such that

‖Ψ(v)‖L2(0,T,V−1) := sup{‖u‖L2(0,T,V−1) : u ∈ Ψ(v)} ≤ R1 for all v ∈ W1;

(Ψ4) Ψ is weakly closed, that is: if {vl}∞
l=1 ⊂ W1, vl ⇀ v0, ul ∈ Ψ(vl) and ul → u0 in L2(0, T, V−1)

then u0 ∈ Ψ(v0).

In this paper, a weak statement of the feedback control problem for initial-boundary value problem
(1)–(5) is considered. By feedback, we mean the condition

f ∈ Ψ(v). (8)

We formulate the definition of a weak solution to feedback control problem (1)-(5), (8):

Definition 2. A pair of functions (v, f ) ∈ W1 × L2(0, T, V−1) is called a weak solution of feedback control
problem (1)–(5), (8), if it for all ϕ ∈ V1 and almost all t ∈ (0, T) satisfies the equality

〈v′, ϕ〉 −
∫

Ω

n

∑
i,j=1

(Δ−1
α v)ivj

∂ϕj

∂xi
dx + μ0

∫
Ω
∇v : ∇ϕ dx

+
μ1

Γ(1 − β)

( ∫ t

0
(t − s)−βE(v)(s, z(v)(s; t, x)) ds, E(ϕ)

)
= 〈 f , ϕ〉, (9)

the initial condition v(0) = v0 and feedback condition (8). Here z(v) is a regular Lagrangian flow associated
to v.

Remark 1. It is known that W ⊂ Cw(0, T; V0) [34]. Therefore, initial condition (5) has sense.

The following theorem is the first result of the paper:

Theorem 3. Let a multi-valued mapping Ψ satisfy conditions (Ψ1)− (Ψ4). Then there is at least one weak
solution (v∗, f∗) ∈ W1 × L2(0, T, V−1) of feedback control problem (1)–(5), (8).
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We denote by Σ ⊂ W1 × L2(0, T; V−1) the set of all weak solutions of problem (1)–(5), (8). Consider
an arbitrary cost functional Φ : Σ → R, satisfying the following conditions:

(Φ1) For all (v, f ) ∈ Σ a number R2 exists such that Φ(v, f ) ≥ R2.
(Φ2) If vl ⇀ v∗ in W1 and fl → f∗ in L2(0, T; V−1) then Φ(v∗, f∗) ≤ lim

m→∞
Φ(vl , fl).

As an example of this functional, we can take

Φ(v, f ) =
T∫

0

‖v(t)− u∗(t)‖2
V1 dt +

T∫
0

‖ f (t)‖2
V−1 dt.

Here u∗ is some specified velocity field. This functional characterizes the deviation of velocity from
the required, and its minimum yields the minimal deviation of velocity from the one specified by the
minimal control. One of the possible applications of the proposed approach is an optimal feedback
control problem and the results are in the consideration, analysis and calculation of different such
problems with special (necessary in industry) cost functionals Φ.

The following theorem is the second result of this paper.

Theorem 4. If the mapping Ψ satisfies conditions (Ψ1)–(Ψ4) and the functional Φ satisfies conditions
(Φ1), (Φ2), then optimal feedback control problem (1)–(5), (8) has at least one weak solution (v∗, f∗) such that

Φ(v∗, f∗) = inf
(v, f )∈Σ

Φ(v, f ).

The proof of Theorems 3 and 4 is based on the approximation-topological method for investigating
fluid dynamics problems [35]. To do this, first, we pass to the operator interpretation of the problem
under consideration (operator inclusion) in suitable function spaces. Further, since the operators in
the obtained operator inclusion do not have the necessary properties, we consider a problem that
approximates the original one (in this case, it is also an operator inclusion, but with a better operator
that has the required properties and in better functional spaces). Then, based on a priori estimates
of solutions and the theory of the topological degree of multi-valued vector fields, the existence of
a solution to the approximation problem is proved. Finally, it is shown that from the sequence of
solutions of the approximation problem, one can extract a subsequence that converges in a weak sense
to the solution of the original operator inclusion. After proving the solvability of the control problem,
it is shown that in the set of solutions there is at least one solution that gives a minimum to a given
cost functional (this is why this type of problem is called the optimal feedback control problem for
fluid motion).

The work is organized as follows—in Section 3 we consider the family of auxiliary problems and
prove the necessary properties of an introduced operators. Also on the basis of the topological degree
theory for multivalued maps we prove the solvability of the auxiliary problem and establish necessary
estimates for solutions to the auxiliary problem. Section 4 is devoted to the passage, the limit and
the proof of Theorem 3. Section 5 is devoted to the proof of Theorem 4. The final Section 6 contains
conclusions.

3. The Family of Auxiliary Problems

Throughout this section we will assume that v0 ∈ V3.
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Consider the following auxiliary family of systems of equations (0 ≤ ξ ≤ 1) with a small
parameter ε > 0:

ε
∂Δ2v

∂t
+

∂v
∂t

+ ξ
n

∑
i=1

(Δ−1
α v)i

∂v
∂xi

− μ0Δv

− μ1ξ

Γ(1 − β)
Div

∫ t

0
(t − s)−βE(v)(s, z(s; t, x)

)
ds +∇p = ξ f , (10)

z(τ; t, x) = x +
∫ τ

t
v
(
s, z(s; t, x)

)
ds, t, τ ∈ [0, T], x ∈ Ω, (11)

div v = 0, t ∈ [0, T], x ∈ Ω, (12)

v|∂Ω = 0, Δv|∂Ω = 0, t ∈ [0, T] (13)

v|t=0 = v0, x ∈ Ω. (14)

For this family we consider another functional space:

W2 = {v ∈ C([0, T]; V3), v′ ∈ L2(0, T; V3)}

with the norm ‖v‖W2 = ‖v‖C(0,T;V3) + ‖v′‖L2(0,T;V3).
Equation (10) includes the integral calculated along the trajectories of motion of the fluid particles.

As was noted in the previous section, it is necessary that the trajectories are uniquely determined by
the velocity field v(t, x). In other words, Equation (11) must have a unique solution for the velocity
field v(t, x). Note that for the family of auxiliary problems (10)–(14), the velocity v from the space
W2 has sufficient smoothness (due to the embedding of the space V3 in C1(Ω) for n = 2, 3). Thus,
it follows from Reference [29] that the Cauchy problem (11) is non-locally uniquely solvable.

Analogously with the definition of a weak solution for feedback control problem (1)–(5), (8),
we formulate the definition of a weak solution to auxiliary problem (10)–(14), (8) for fixed 0 ≤ ξ ≤ 1.

Definition 3. A pair of functions (v, f ) ∈ W2 × L2(0, T; V−1) is called a weak solution to auxiliary problem
(10)–(14), (8) if it satisfies for any ϕ ∈ V1 and almost all t ∈ (0, T) the equality

〈v′, ϕ〉 − ξ
∫

Ω

n

∑
i,j=1

(Δ−1
α v)ivj

∂ϕj

∂xi
dx + μ0

∫
Ω
∇v : ∇ϕ dx − ε

∫
Ω
∇Δv′ : ∇ϕ dx

+
μ1ξ

Γ(1 − β)

( ∫ t

0
(t − s)−βE(v)(s, z(s; t, x)) ds, E(ϕ)

)
= ξ〈 f , ϕ〉, (15)

feedback condition (8) and initial condition (14). Here z is the trajectory associated to the velocity v.
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To prove the existence of a weak solution to auxiliary problem (10)–(14),(8) for ξ = 1, we rewrite
the auxiliary family in operator form. Using the terms in equality (15), we introduce the operators
using the following equalities:

J : V3 → V−1, 〈Jv, ϕ〉 =
∫

Ω
vϕ dx, v ∈ V3, ϕ ∈ V1;

A : V1 → V−1, 〈Av, ϕ〉 =
∫

Ω
∇v : ∇ϕ dx, v ∈ V1, ϕ ∈ V1;

A2 : V3 → V−1, 〈A2v, ϕ〉 = −
∫

Ω
∇Δv : ∇ϕ dx, v ∈ V3, ϕ ∈ V1;

B : L4(Ω) → V−1, 〈B(v), ϕ〉 =
∫

Ω

n

∑
i,j=1

(Δ−1
α v)ivj

∂ϕj

∂xi
dx, v ∈ L4(Ω), ϕ ∈ V1;

C : V1 × CG → V−1, (C(v, z)(t), ϕ) =
( ∫ t

0
(t − s)−βE(v)(s, z(s; t, x)) ds, E(ϕ)

)
,

v ∈ V1, z ∈ CG, ϕ ∈ V1, for almost all t ∈ (0, T).

Since the function ϕ ∈ V1 is arbitrary in (15), for almost all t ∈ (0, T) this equality is equivalent to
the following operator equation in L2(0, T; V−1):

Jv′ + εA2v′ + μ0 Av − ξB(v) +
μ1ξ

Γ(1 − β)
C(v, z) = ξ f .

Thus, a weak solution to auxiliary problem (10)–(14), (8) for a fixed 0 ≤ ξ ≤ 1 is a solution v ∈ W2

of the following operator inclusion

Jv′ + εA2v′ + μ0 Av − ξB(v) +
μ1ξ

Γ(1 − β)
C(v, z) = ξ f ∈ Ψ(v), (16)

satisfying initial condition (14).
We also define the operators using the following equalities:

L : W2 → L2(0, T; V−1)× V3, L(v) = ((J + εA2)v′ + μ0 Av, v|t=0);

K : W2 → L2(0, T; V−1)× V3, K(v) = (B(v), 0);

G : W2 → L2(0, T; V−1)× V3, G(v) = (
μ1

Γ(1 − β)
C(v, z), 0);

Y : W2 → L2(0, T; V−1)× V3, Y(v) = (Ψ(v), v0);

M : W2 → W2, M(v) = L−1(Y(v) + K(v)− G(v)).

Thus, from our problem of finding a solution to operator inclusion (16) for a fixed 0 ≤ ξ ≤ 1
satisfying initial condition (14) we get the problem of finding a solution for a fixed 0 ≤ ξ ≤ 1 to the
following operator inclusion

v ∈ ξM(v) = ξL−1(Y(v) + K(v)− G(v)). (17)

We need the following properties of the operators from inclusions (16) and (17). In order to not
to pile up the notation, we will use the same letter to denote the same operators acting in different
function spaces.

Lemma 1. 1. For any function v ∈ C([0, T]; V3) it holds that the function Av ∈ L2(0, T; V−1) and the
operator A : C([0, T]; V3) → L2(0, T; V−1) is continuous and the following estimates hold:

‖Av‖V−1 ≤ ‖v‖V1 ; ‖Av‖L2(0,T;V−1) ≤ ‖v‖L2(0,T;V1); (18)
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‖Av‖L2(0,T;V−1) ≤ C1‖v‖C([0,T];V3). (19)

2. The operator A2 : V3 → V−1 is linear, continuous, invertible and the following estimate holds:

‖A2v‖V−1 ≤ ‖v‖V3 . (20)

In addition, the operator A−1
2 : V−1 → V3 is also continuous.

3. For any function v ∈ Lp(0, T; V3), 1 ≤ p < ∞ the function (J + εA2)v belongs to Lp(0, T; V−1) and
the operator (J + εA2) : Lp(0, T; V3) → Lp(0, T; V−1) is continuous and invertible. In addition, the
following estimate holds:

ε‖v‖Lp(0,T;V3) ≤ ‖(J + εA2)v‖Lp(0,T;V−1) ≤ C2(1 + ε)‖v‖Lp(0,T;V3). (21)

Moreover, the inverse to it operator (J + εA2)
−1 : Lp(0, T; V−1) → Lp(0, T; V3)is continuous and for

any w ∈ Lp(0, T; V−1) we have the estimate

‖(J + εA2)
−1w‖Lp(0,T;V3) ≤

1
ε
‖w‖Lp(0,T;V−1). (22)

4. The operator L : W2 → L2(0, T; V−1)× V3 is invertible and the operator L−1 : L2(0, T; V−1)× V3 →
W2 is a continuous operator.

Proof. The proof is carried out in the same way as in Reference [36].

Lemma 2. 1. The map B : L4(Ω) → V−1 is continuous and the following estimate holds:

‖B(v)‖V−1 ≤ C3‖v‖2
L4(Ω). (23)

2. For any v ∈ L4(0, T; L4(Ω)) the function B(v) ∈ L2(0, T; V−1) and the map B : L4(0, T; L4(Ω)) →
L2(0, T; V−1) is continuous.

3. For any function v ∈ W2 the function B(v) ∈ L2(0, T; V−1) and the map B : W2 → L2(0, T; V−1) is
compact.

Proof. 1. For any v ∈ L4(Ω), ϕ ∈ V1 using Holder’s inequality, we obtain

|〈B(v), ϕ〉| =
∣∣∣∣ n

∑
i,j=1

∫
Ω
(Δ−1

α v)ivj
∂ϕj

∂xi
dx

∣∣∣∣ ≤ n

∑
i,j=1

( ∫
Ω
|(Δ−1

α v)ivj|2 dx
) 1

2

×
( ∫

Ω

∣∣∣∣∂ϕj

∂xi

∣∣∣∣2 dx
) 1

2

≤
n

∑
i,j=1

( ∫
Ω
|(Δ−1

α v)i|4 dx
) 1

4
( ∫

Ω
|vj|4 dx

) 1
4

‖ϕ‖V1

≤ C4‖Δ−1
α v‖L4(Ω)‖v‖L4(Ω)‖ϕ‖V1 ≤ C4C5‖v‖2

L4(Ω)‖ϕ‖V1 = C6‖v‖2
L4(Ω)‖ϕ‖V1 .

This implies inequality (23). Note that here we used the following well-known estimate [37,38]:

‖Δ−1
α v‖Lp(Ω) = ‖(I − α2Δ)−1v‖Lp(Ω) ≤ C5‖v‖Lp(Ω), p > 1. (24)
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We show the continuity of the map B : L4(Ω) → V−1. For arbitrary vm, v0 ∈ L4(Ω) we have

|〈B(vm), ϕ〉 − 〈B(v0), ϕ〉| =
∣∣∣∣ ∫Ω

n

∑
i,j=1

(Δ−1
α vm)ivm

j
∂ϕj

∂xi
dx −

∫
Ω

n

∑
i,j=1

(Δ−1
α v0)iv0

j
∂ϕj

∂xi
dx

∣∣∣∣
≤

n

∑
i,j=1

‖(Δ−1
α vm)ivm

j − (Δ−1
α v0)iv0

j ‖L2(Ω)

∥∥∥∥∂ϕj

∂xi

∥∥∥∥
L2(Ω)

≤ ‖ϕ‖V1

n

∑
i,j=1

‖(Δ−1
α vm)ivm

j − (Δ−1
α v0)iv0

j ‖L2(Ω)

= ‖ϕ‖V1

( n

∑
i,j=1

‖(Δ−1
α vm)ivm

j − (Δ−1
α vm)iv0

j + (Δ−1
α vm)iv0

j − (Δ−1
α v0)iv0

j ‖L2(Ω)

)
≤ ‖ϕ‖V1

( n

∑
i,j=1

‖(Δ−1
α vm)ivm

j − (Δ−1
α vm)iv0

j ‖L2(Ω) +
n

∑
i,j=1

‖(Δ−1
α vm)iv0

j − (Δ−1
α v0)iv0

j ‖L2(Ω)

)
≤ C7‖ϕ‖V1

( n

∑
j=1

‖Δ−1
α vm‖L4(Ω)‖vm

j − v0
j ‖L4(Ω) +

n

∑
j=1

‖Δ−1
α (vm − v0)‖L4(Ω)‖v0

j ‖L4(Ω)

)
≤ C7C5‖ϕ‖V1

( n

∑
j=1

‖vm‖L4(Ω)‖vm
j − v0

j ‖L4(Ω) +
n

∑
j=1

‖vm − v0‖L4(Ω)‖v0
j ‖L4(Ω)

)
≤ C8(‖vm‖L4(Ω)‖vm − v0‖L4(Ω) + ‖vm − v0‖L4(Ω)‖v0‖L4(Ω))‖ϕ‖V1

= C8(‖vm‖L4(Ω) + ‖v0‖L4(Ω))‖vm − v0‖L4(Ω)‖ϕ‖V1 .

Thereby
‖B(vm)− B(v0)‖V−1 ≤ C8(‖vm‖L4(Ω) + ‖v0‖L4(Ω))‖vm − v0‖L4(Ω).

Assuming that vm → v0 in L4(Ω), we obtain that the map B : L4(Ω) → V−1 is continuous.
2. To prove this item, it is necessary to use the last estimate and repeat the proof of Lemma 2.5.4

(item 2) from Reference [28].
3. To prove this item, we use the Aubin-Simon theorem:

Theorem 5. [28,39,40] Let X ⊂ E ⊂ Y are Banach spaces, the embedding X ⊂ E is compact and the
embedding E ⊂ Y is continuous. Also let F ⊂ Lp(0, T; X), 1 ≤ p ≤ ∞. We assume that for any f ∈ F
its generalized derivative belongs to Lr(0, T; Y), 1 ≤ r ≤ ∞. Now let:

• F is bounded in Lp(0, T; X);
• { f ′ : f ∈ F} is bounded in Lr(0, T; Y).

Then for p < ∞ the set F is relatively compact in Lp(0, T; E), and for p = ∞ and r > 1 the set F is
relatively compact in C([0, T]; E).

Consider the set F = {v ∈ L4(0, T; V3), v′ ∈ L2(0, T; L2(Ω))}. Since the embedding V3 ⊂ L4(Ω)

is compact, the embedding F ⊂ L4(0, T; L4(Ω)) is also compact.

From continuity of embeddings

C([0, T]; V3) ⊂ L4(0, T; V3), L2(0, T; V3) ⊂ L2(0, T; L2(Ω))

the continuous embedding W2 ⊂ F follows. In addition, also we have that the operator B :
L4(0, T; L4(Ω)) → L2(0, T; V−1) is continuous (from the second item of this lemma). Thus, we
have the superposition of embeddings:

W2 ⊂ F ⊂ L4(0, T; L4(Ω))
B−→ L2(0, T; V−1),
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where the first embedding is continuous, the second is compact, and the map B is continuous.
Therefore, for any function v ∈ W2 we obtain that the function B(v) ∈ L2(0, T; V−1), and the map
B : W2 → L2(0, T; V−1) is compact. The proof is complete.

We proceed to investigate the properties of the map C. We introduce the following norm
‖v‖k,L2(0,T;V−1) equal to the norm ‖v‖L2(0,T;V−1) where v(t) = e−ktv(t), k ≥ 0. Then the following
lemma holds.

Lemma 3. For any v ∈ L2(0, T; V1), z ∈ CG we have that C(v, z) ∈ L2(0, T; V−1) and the map C :
L2(0, T; V1)× CG → L2(0, T; V−1) is continuous and bounded. In addition, for any fixed function z ∈ CG
and arbitrary u, v ∈ L2(0, T; V1) the following estimate holds:

‖C(v, z)− C(u, z)‖k,L2(0,T;V−1) ≤ C9T1−β
√

T/k‖v − u‖k,L2(0,T;V1). (25)

Proof. The first part of this lemma is proved similarly to the Lemma 2.2 [30]. We prove necessary
estimate (25). Let v(t) = e−ktv(t), u(t) = e−ktu(t). By definition, for almost all t ∈ [0, T] we have
ϕ ∈ L2(0, T, V1) and obtain

〈e−ktC(v, z)(t)− e−ktC(u, z)(t), ϕ(t)〉

=
∫ T

0

∫
Ω

∫ t

0
e−k(t−s)(t − s)−βEij(v − u)(s, z(s; t, x)) ds Eij(ϕ)(t) dx dt.

Then, using the Holder inequality, we obtain

〈e−ktC(v, z)(t)− e−ktC(u, z)(t), ϕ(t)〉 ≤
∫ T

0

∫ t

0
e−k(t−s)(t − s)−β

( ∫
Ω
E2(v − u)(s, z(s; t, x)) dx

)1/2

×
( ∫

Ω
E2(ϕ)(t, x) dx

)1/2
ds dt =

∫ T

0

∫ t

0
e−k(t−s)(t − s)−β‖(v − u)(s, ·)‖V1‖ϕ(t, ·)‖V1 ds dt

≤ C9T1−β‖v − u‖L2(0,T;V1)‖ϕ‖L2(0,T;V1)

( ∫ T

0

∫ t

0
e−k(t−s) ds dt

)1/2.

The last inequality holds by virtue of the following estimate [41] (Theorem 2.6)

‖
∫ t

0
(t − s)−β ϕ(s) ds‖Lp(0,T) ≤ C9T1−β‖ϕ(s)‖Lp(0,T), ϕ(s) ∈ Lp(0, T), 1 ≤ p < ∞.

Estimate the remaining integral:

( ∫ T

0

∫ t

0
e−k(t−s) ds dt

)1/2
=

1
k

∫ T

0
1 − e−kt dt ≤ 1

k

∫ T

0
dt =

T
k

.

Thus, we obtain the estimate

〈e−ktC(v, z)(t)− e−ktC(u, z)(t), ϕ(t)〉 ≤ C9T1−β
√

T/k‖v − u‖L2(0,T;V1)‖ϕ‖L2(0,T;V1).

From where necessary estimate (25) follows.

We formulate one more necessary property of the operator C.
But first we define several concepts concerning the measure of noncompactness and L-condensing

operators [30,42].

Definition 4. A non-negative real function ψ defined on a subset of a Banach space F is called a measure of
non-compactness if for any subset M of this space the following properties are satisfied:
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• ψ(co M) = ψ(M);
• for any two sets M1 and M2 from M1 ⊂ M2 follows that ψ(M1) ≤ ψ(M2).

Here, by co M we denote the convex closure of the set M. As an example of a measure of
non-compactness, we give the Kuratowski measure of non-compactness: the exact lower bound d > 0
for which the set M can be divided into a finite number of subsets whose diameters are less than d.
Kuratowski’s non-compactness measure has several important properties:

• ψ(M) = 0, if M is a relatively compact subset;
• ψ(M∪ K) = ψ(M) if K is a relatively compact set.

Definition 5. Let X be bounded subset of a Banach space, and L : X → F is a map from X into a Banach
space F. A map g : X → F is called L-condensing if ψ(g(M)) < ψ(L(M)) for any set M ⊆ X such that
ψ(g(M)) �= 0.

Let γk be the Kuratowski measure of noncompactness in the space L2(0, T; V−1) with the norm
‖v‖k,L2(0,T;V−1). Then the following lemma holds.

Lemma 4. The map G : W2 → L2(0, T; V−1)× V3 is L-condensing with respect to the Kuratowski measure
of noncompactness γk.

Proof. Let M ⊂ W2 ⊂ L2(0, T; V1) be an arbitrary bounded set. By virtue of Theorem 2, the set z(M)

is the set of trajectories z that are uniquely determined by the velocities v ∈ M and this set is relatively
compact. Then for any fixed v ∈ W2 the set C(v, z(M)) is relatively compact. In addition, for any
z ∈ z(M), the map C(·, z) satisfies the Lipschitz condition with constant C9T1−β

√
T/k in the norms

‖ · ‖k,L2(0,T,V1) and ‖ · ‖k,L2(0,T,V−1). Then, by Theorem 1.5.7 [42], the map C(v, z) and, therefore, the
map G are C9T1−β

√
T/k-bounded with respect to the Hausdorff measure χk. It is known, see Theorem

1.1.7 [42], that the non-compactness measures of Hausdorff and Kuratowski satisfy the following
inequalities χk(M) ≤ γk(M) ≤ 2χk(M). Therefore, the estimate

γk(G(M)) ≤ C9T1−β
√

T/kγk(L(M))

hold. Choosing k so that C9T1−β
√

T/k < 1, we obtain the statement of the lemma.

Using the above estimates and the properties of the operators, we prove the following a priori
estimates for auxiliary family (10)–(14), (8).

Lemma 5. Let v0 ∈ V3. Then for any solution v ∈ W2 of operator inclusion (16) the following estimates hold:

‖v‖L2(0,T;V1) ≤ C10(‖v0‖V0 +
√

ε‖v0‖V2); (26)

‖v‖C([0,T];V0) ≤ C11(‖v0‖V0 +
√

ε‖v0‖V2); (27)

ε‖v‖2
C([0,T];V2) ≤ C12(‖v0‖2

V0 + ε‖v0‖2
V2), (28)

where the constants C10, C11, C12 do not depend on ε and ξ.
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Proof. Let v ∈ W2 be a solution of operator inclusion (16). Then for any ϕ ∈ V1 and almost all t ∈ (0, T)
equality (15) holds. Since it is valid for all ϕ ∈ V1, we assume that ϕ = v, where v(t) = e−ktv(t). Then

∫
Ω

v′(t)v(t) dx − ξ
∫

Ω

n

∑
i,j=1

(Δ−1
α v)i(t)vj(t)

∂vj(t)
∂xi

dx + μ0

∫
Ω
∇v(t) : ∇v(t) dx

+
μ1ξ

Γ(1 − β)

( ∫ t

0
(t − s)−βE(v)(s, z(s; t, x)) ds, E(v(t))

)
− ε

∫
Ω
∇Δv′(t) : ∇v(t) dx = ξ〈 f (t), v(t)〉. (29)

Let us replace v(t) = ektv(t) and separately transform the terms in the left side of the last equality
as follows. Consider the first term:∫

Ω
v′(t)v(t) dx =

∫
Ω
(ektv(t))′v(t) dx = ekt

∫
Ω

v′(t)v(t) dx + kekt
∫

Ω
v(t)v(t) dx

=
ekt

2

∫
Ω

∂(v(t)v(t))
∂t

dx + kekt‖v(t)‖2
V0 =

ekt

2
d
dt
‖v(t)‖2

V0 + kekt‖v(t)‖2
V0 . (30)

Now we turn to the consideration of the following term:

∫
Ω

n

∑
i,j=1

(Δ−1
α v)i(t)vj(t)

∂vj(t)
∂xi

dx = ekt
∫

Ω

n

∑
i,j=1

(Δ−1
α v)i(t)vj(t)

∂vj(t)
∂xi

dx

=
ekt

2

∫
Ω

n

∑
i,j=1

(Δ−1
α v)i(t)

∂(vj(t)vj(t))
∂xi

dx = − ekt

2

∫
Ω

n

∑
i,j=1

∂(Δ−1
α v)i(t)
∂xi

v2
j (t) dx

= − ekt

2

∫
Ω

n

∑
j=1

div u(t)v2
j (t) dx = 0.

Finally, we transform the last term:

−ε
∫

Ω
∇Δv′(t) : ∇v(t) dx = −ε

∫
Ω
∇Δ(ektv(t))′ : ∇v(t) dx − εkekt

∫
Ω
∇Δv(t) : ∇v(t) dx

−εekt
∫

Ω
∇Δv′(t) : ∇v(t) dx = εkekt

∫
Ω

Δv(t)Δv(t) dx +
εekt

2

∫
Ω

∂

∂t

(
Δv(t)Δv(t)

)
dx

= εkekt‖v(t)‖2
V2 +

εekt

2
d
dt
‖v(t)‖2

V2 .

Thus, equality (29) can be rewritten as follows:

ekt

2
d
dt
‖v(t)‖2

V0 + kekt‖v(t)‖2
V0 + μ0ekt‖v(t)‖2

V1 + εkekt‖v(t)‖2
V2 +

εekt

2
d
dt
‖v(t)‖2

V2

= − μ1ξ

Γ(1 − β)

( ∫ t

0
(t − s)−βE(ektv)(s, z(s; t, x)) ds, E(v(t))

)
+ ξekt〈 f (t), v(t)〉. (31)

We estimate modulo the right-hand side of the resulting equality. Using the Cauchy inequality

bc ≤ δb2

2
+

c2

2δ

for δ = 1/μ0, we obtain:

ξekt〈 f (t), v(t)〉 ≤ ekt‖ f (t)‖V−1‖v(t)‖V1 ≤ ekt

2μ0
‖ f (t)‖2

V−1 +
μ0ekt

2
‖v(t)‖2

V1 .
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Multiplying both sides of equality (31) on e−kt, for almost all t ∈ (0, T) we have

1
2

d
dt
‖v(t)‖2

V0 +
ε

2
d
dt
‖v(t)‖2

V2 + k‖v(t)‖2
V0 +

μ0

2
‖v(t)‖2

V1 + εk‖v(t)‖2
V2

≤ μ1

Γ(1 − β)

∣∣∣∣(e−kt
∫ t

0
(t − s)−βE(ektv)(s, z(s; t, x)) ds, E(v(t))

)∣∣∣∣+ 1
2μ0

‖ f (t)‖2
V−1 .

We integrate the last inequality with respect to t from 0 to τ, where τ ∈ [0, T]. Then

1
2
‖v(t)‖2

V0 +
ε

2
‖v(t)‖2

V2 + k
∫ τ

0
‖v(t)‖2

V0 dt + εk
∫ τ

0
‖v(t)‖2

V2 dt

+
μ0

2

∫ τ

0
‖v(t)‖2

V1 dt ≤ 1
2
‖v0‖2

V0 +
ε

2
‖v0‖2

V2 +
1

2μ0

∫ τ

0
‖ f (t)‖2

V−1 dt

+
μ1

Γ(1 − β)

∫ τ

0

∣∣∣∣(e−kt
∫ t

0
(t − s)−βE(ektv)(s, z(s; t, x)) ds, E(v(t))

)∣∣∣∣ dt.

We use estimate (25) for u = 0. In this way,

1
2
‖v(t)‖2

V0 +
ε

2
‖v(t)‖2

V2 + k
∫ τ

0
‖v(t)‖2

V0 dt + εk
∫ τ

0
‖v(t)‖2

V2 dt

+
μ0

2

∫ τ

0
‖v(t)‖2

V1 dt ≤ 1
2
‖v0‖2

V0 +
ε

2
‖v0‖2

V2 +
μ1C9T1−β

√
T/(2k)

Γ(1 − β)
‖v‖2

L2(0,T;V1) +
1

2μ0
‖ f ‖2

L2(0,T;V−1).

We assume that the number k is sufficiently large such that
μ1C9T1−β

√
T/(2k)

Γ(1 − β)
≤ μ0/4.

The nonnegativity of the quantities ‖v(t)‖2
V0 , ‖v(t)‖2

V2 and ‖v(t)‖2
V1 yields the following estimates:

μ0

2

∫ τ

0
‖v(t)‖2

V1 dt ≤ 1
2
‖v0‖2

V0 +
ε

2
‖v0‖2

V2 +
1

2μ0
‖ f ‖2

L2(0,T;V−1) +
μ0

4
‖v‖2

L2(0,T;V1),

ε

2
‖v(t)‖2

V2 ≤ 1
2
‖v0‖2

V0 +
ε

2
‖v0‖2

V2 +
1

2μ0
‖ f ‖2

L2(0,T;V−1) +
μ0

4
‖v‖2

L2(0,T;V1),

1
2
‖v(t)‖2

V0 ≤ 1
2
‖v0‖2

V0 +
ε

2
‖v0‖2

V2 +
1

2μ0
‖ f ‖2

L2(0,T;V−1) +
μ0

4
‖v‖2

L2(0,T;V1).

Since the right-hand side in all the above inequalities does not depend on τ, we pass to the
maximum in τ ∈ [0, T] in the left-hand sides of these inequalities. Then

μ0

2
‖v‖2

L2(0,T;V1) ≤
1
2
‖v0‖2

V0 +
ε

2
‖v0‖2

V2 +
1

2μ0
‖ f ‖2

L2(0,T;V−1) +
μ0

4
‖v‖2

L2(0,T;V1),

ε

2
‖v‖2

C([0,T];V2) ≤
1
2
‖v0‖2

V0 +
ε

2
‖v0‖2

V2 +
1

2μ0
‖ f ‖2

L2(0,T;V−1) +
μ0

4
‖v‖2

L2(0,T;V1),

1
2
‖v‖2

C([0,T];V0) ≤
1
2
‖v0‖2

V0 +
ε

2
‖v0‖2

V2 +
1

2μ0
‖ f ‖2

L2(0,T;V−1) +
μ0

4
‖v‖2

L2(0,T;V1).

From this and feedback condition (8) the required estimates (26)-(28) directly follow. The proof
is complete.
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Lemma 6. Let v0 ∈ V3. For any solution v ∈ W2 for operator inclusion (16) we have the following estimates

ε‖v′‖L2(0,T;V3) ≤ C13

(
1 +

1
ε

)
‖v0‖2

V0 + C13
√

ε‖v0‖V2 + C13‖v0‖2
V2 ; (32)

‖v‖C([0,T];V3) ≤ ‖v0‖V3 +
C13T

1
2

ε

(
1 +

1
ε

)
‖v0‖2

V0 +
C13T

1
2√

ε
‖v0‖V2 +

C13T
1
2

ε
‖v0‖2

V2 ; (33)

‖v′‖L4/3(0,T;V−1) ≤ C14(‖v0‖2
V0 + ε‖v0‖2

V2 + 1); (34)

ε‖v′‖L4/3(0,T;V3) ≤ C15(‖v0‖2
V0 + ε‖v0‖2

V2 + 1); (35)

where the constants C13, C14, C15 do not depend on ε, v and ξ.

Proof. Let v ∈ W2 be a solution of (16). Then it satisfies the following operator equality

Jv′ + εA2v′ + μ0 Av − ξB(v) +
μ1ξ

Γ(1 − β)
C(v, z) = ξ f . (36)

Hence,

‖(J + εA2)v′‖L2(0,T;V−1) = ‖ξ f + ξB(v)− μ0 Av − μ1ξ

Γ(1 − β)
C(v, z)‖L2(0,T;V−1).

We estimate the right-hand side of the last equality. By estimates (18) and (25) for u = 0, we get:

‖ξ f + ξB(v)− μ0 Av − μ1ξ

Γ(1 − β)
C(v, z)‖L2(0,T;V−1)

≤ ‖ f ‖L2(0,T;V−1) + ‖B(v)‖L2(0,T;V−1) +
μ1C9T1−β

Γ(1 − β)
‖v‖L2(0,T;V1) + μ0‖v‖L2(0,T;V1). (37)

We separately estimate the ‖B(v)‖L2(0,T;V−1). Using (23), and the continuity of the embedding
V2 ⊂ L4(Ω), we have:

‖B(v)‖L2(0,T;V−1) =
( ∫ T

0
‖B(v)‖2

V−1 dt
) 1

2 ≤ C3

( ∫ T

0
‖v(t)‖4

L4(Ω) dt
) 1

2

≤ C16

( ∫ T

0
‖v(t)‖4

V2 dt
) 1

2 ≤ C16T
1
2 max

t∈[0,T]
‖v(t)‖2

V2 = C16T
1
2 ‖v‖2

C([0,T];V2).

We rewrite inequality (37) as follows

‖ξ f + ξB(v)− μ0 Av − μ1ξ

Γ(1 − β)
C(v, z)‖L2(0,T;V−1)

≤ C17(‖ f ‖L2(0,T;V−1) + C16T1/2‖v‖2
C([0,T];V2) + ‖v‖L2(0,T;V1)).

From the a priori estimates (26) and (28) it immediately follows that

‖(J + εA2)v′‖L2(0,T;V−1) ≤ C13

(
1 +

1
ε

)
‖v0‖2

V0 + C13
√

ε‖v0‖V2 + C13‖v0‖2
V2 .

To prove estimate (32), it remains to use the left (21) for p = 2:

ε‖v′‖L2(0,T;V3) ≤ ‖(J + εA2)v′‖L2(0,T;V−1)

≤ C13

(
1 +

1
ε

)(
‖v0‖2

V0 + ‖ f ‖2
L2(0,T;V−1)

)
+ C13

√
ε‖v0‖V2 + C13‖v0‖2

V2 .

Hence, inequality (32) is established.
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We pass to the proof of estimate (33). Represent the function v ∈ W2 as follows:

v(t) =
∫ t

0
v′(s)ds + v0.

Then

‖v(t)‖V3 ≤
∥∥∥∥v0 +

∫ t

0
v′(s) ds

∥∥∥∥
V3

≤ ‖v0‖V3 +
∫ t

0
‖v′(s)‖V3 ds ≤ ‖v0‖V3 + T

1
2 ‖v′‖L2(0,T;V3).

Since the right-hand side of the resulting inequality does not depend on t, we pass to the maximum
in τ ∈ [0, T] in the left-hand side. Then, taking into account estimate (32), we obtain

max
t∈[0,T]

‖v(t)‖V3 ≤ ‖v0‖V3 +
C13T

1
2

ε

(
1 +

1
ε

)
‖v0‖2

V0 +
C13T

1
2√

ε
‖v0‖V2 +

C13T
1
2

ε
‖v0‖2

V2 .

Thus, we received estimate (33).
Now we prove inequality (34). As before, v ∈ W2 is a solution of operator Equation (36). Then

‖v′‖L4/3(0,T;V−1) ≤ ‖ξ f + ξB(v)− μ0 Av − μ1ξ

Γ(1 − β)
C(v, z)− εA2v′‖L4/3(0,T;V−1)

≤ ‖ f ‖L4/3(0,T;V−1) + ‖B(v)‖L4/3(0,T;V−1) + μ0‖Av‖L4/3(0,T;V−1)

+
μ1

Γ(1 − β)
‖C(v, z)‖L4/3(0,T;V−1) + ε‖A2v′‖L4/3(0,T;V−1). (38)

We separately consider the terms on the right-hand side of the last inequality. First, we estimate
‖B(v)‖L4/3(0,T;V−1). Given from Reference [34] the well-known inequality for n = 3

‖u‖L4(Ω) ≤ 2
1
2 ‖u‖

1
4
L2(Ω)

‖∇u‖
3
4
L2(Ω)

, u ∈ V1,

and estimate (23), we obtain (for the case n = 2 the proof is similar):

‖B(v)‖L4/3(0,T;V−1) =
( ∫ T

0
‖B(v)‖

4
3
V−1 dt

) 3
4 ≤ C3

( ∫ T

0
‖v‖

8
3
L4(Ω)

dt
) 3

4

≤ 2C3

( ∫ T

0
‖v‖

2
3
L2(Ω)

‖∇v‖2
L2(Ω) dt

) 3
4 ≤ C18

( ∫ T

0
‖v‖

2
3
V0‖v‖2

V1 dt
) 3

4

≤ C18‖v‖
1
2
C([0,T];V0)

( ∫ T

0
‖v‖2

V1 dt
) 3

4
= C18‖v‖

1
2
C([0,T];V0)

‖v‖
3
2
L2(0,T;V1)

. (39)

Consider the following term. We use the Holder inequality and estimate (18). Then

‖Av‖L4/3(0,T;V−1) =
( ∫ T

0
‖Av‖

4
3
V−1 dt

) 3
4 ≤

( ∫ T

0
‖v‖

4
3
V1 dt

) 3
4

≤ T
1
4

( ∫ T

0
‖v‖2

V1 dt
) 1

2
= T

1
4 ‖v‖L2(0,T;V1). (40)

Similarly, using the Holder inequality and estimate (25) for u = 0, we obtain an estimate for the
next term:

‖C(v, z)‖L4/3(0,T;V−1) =
( ∫ T

0
‖C(v, z)‖

4
3
V−1 dt

) 3
4 ≤ T

1
4

( ∫ T

0
‖C(v, z)‖2

V−1 dt
) 1

2

= T
1
4 ‖C(v, z)‖L2(0,T;V−1) ≤ T

1
4 T1−βC9‖v‖L2(0,T;V1).
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Finally, we consider the last term. Using inequality (20), we get:

ε‖A2v′‖L4/3(0,T;V−1) = ε

( ∫ T

0
‖A2v′‖

4
3
V−1 dt

) 3
4

≤ ε

( ∫ T

0
‖v′‖

4
3
V3 dt

) 3
4

≤ ε‖v′‖L4/3(0,T;V3).

Let us estimate the right-hand side of the last inequality. We use the left side of estimate (22)
for p = 4/3. Thus, to obtain an estimate of ε‖v′‖L4/3(0,T;V3), it is necessary to obtain an estimate of
‖(J + εA2)v′‖L4/3(0,T;V−1). To do this, we again use operator Equation (36). From its appearance, it
follows that

ε‖v′‖L4/3(0,T;V3) ≤ ‖ f ‖L4/3(0,T;V−1) + ‖B(v)‖L4/3(0,T;V−1)−μ0‖Av‖L4/3(0,T;V−1) +μ1‖C(v, z)‖L4/3(0,T;V−1).

Thus,

ε‖A2v′‖L4/3(0,T;V−1) ≤ ε‖v′‖L4/3(0,T;V3)

≤ ‖ f ‖L4/3(0,T;V−1) + ‖B(v)‖L4/3(0,T;V−1) + μ0‖Av‖L4/3(0,T;V−1) +
μ1

Γ(1 − β)
‖C(v, z)‖L4/3(0,T;V−1). (41)

From (38), estimates (39)–(41) and a priori estimates (26) and (27), we get

‖v′‖L4/3(0,T;V−1) ≤ 2(‖ f ‖L4/3(0,T;V−1) + ‖B(v)‖L4/3(0,T;V−1) + μ0‖Av‖L4/3(0,T;V−1)

+
μ1

Γ(1 − β)
‖C(v, z)‖L4/3(0,T;V−1)) ≤ C19(‖ f ‖L2(0,T;V−1) + ‖v‖L2(0,T;V1)

+‖v‖
1
2
C([0,T];V0)

‖v‖
3
2
L2(0,T;V1)

) ≤ C20(‖ f ‖L2(0,T;V−1) + ‖v0‖V0 +
√

ε‖v0‖V2

+(‖v0‖V0 +
√

ε‖v0‖V2 + ‖ f ‖L2(0,T;V−1))
1
2 (‖v0‖V0 +

√
ε‖v0‖V2 + ‖ f ‖L2(0,T;V−1)))

3
2

≤ C21(‖v0‖V0 +
√

ε‖v0‖V2 + ‖ f ‖L2(0,T;V−1) + 1)2 ≤ 4C21(‖v0‖2
V0 + ε‖v0‖2

V2 + 1).

This completes the proof of inequality (34), where C14 = 4C21.
Finally, applying again estimates (39) and (40), for the right-hand side of (41), as well as a priori

estimates (26) and (27), we obtain

ε‖v′‖L4/3(0,T;V3) ≤ 2(‖ f ‖L4/3(0,T;V−1) + ‖B(v)‖L4/3(0,T;V−1) + μ0‖Av‖L4/3(0,T;V−1)

+
μ1

Γ(1 − β)
‖C(v, z)‖L4/3(0,T;V−1)) ≤ C22(‖ f ‖L2(0,T;V−1) + ‖v‖L2(0,T;V1)

+‖v‖
1
2
C([0,T];V0)

‖v‖
3
2
L2(0,T;V1)

) ≤ C23(‖ f ‖L2(0,T;V−1) + ‖v0‖V0 +
√

ε‖v0‖V2

+(‖v0‖V0 +
√

ε‖v0‖V2 + ‖ f ‖L2(0,T;V−1))
1
2 (‖v0‖V0 +

√
ε‖v0‖V2 + ‖ f ‖L2(0,T;V−1))

3
2 )

≤ C24(‖v0‖V0 +
√

ε‖v0‖V2 + ‖ f ‖L2(0,T;V−1) + 1)2 ≤ 4C24(‖v0‖2
V0 + ε‖v0‖2

V2 + 1).

Thus, inequality (35), where C15 = 4C24 is established. The proof is complete.

Lemma 7. Let v0 ∈ V3. Then for any solution v ∈ W2 of operator Equation (16) we have the following
estimate:

‖v‖W2 ≤ C25, (42)

where C25 > 0 is a constant that depends on ε.

Theorem 6. Let v0 ∈ V3. Then there is at least one solution v ∈ W2 of auxiliary problem (10)–(14), (8) for
ξ = 1.
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Proof. To prove this theorem, we use the topological degree theory for multi-valued vector fields [2,43].
Consider operator inclusion (17). From Corollary 7 it follows that all solutions of inclusion (17) are
in the ball BR ⊂ W2 of radius R = C25 + 1 centered at zero. By item 4 of Lemma 1 the operator
L : W2 → L2(0, T; V−1) × V3 is invertible. Then there is no solution of the family of following
inclusions

v ∈ ξM, where ξ ∈ [0, 1],

on the boundary of the same ball BR.
By virtue of item 4 of Lemma 1 the operator L−1 : L2(0, T; V−1)× V3 → W2 is continuous. By

the Lemmas 2 and 4 the map (Y(v) + K(v)− G(v)) : W2 → L2(0, T; V−1)× V3 is L - condensing with
respect to the Kuratowski γk non-compactness measure. Therefore, the operator M : W2 → W2 is
condensing with respect to the Kuratowski γk non-compactness measure.

Thus, the vector field v − ξM(v) is non-degenerate on the boundary of the ball BR, which means
that the topological degree deg(I − ξM(v), BR, 0) is defined for this vector field . By the properties of
homotopy invariance and normalization of degree we obtain that

deg(I −M(v), BR, 0) = deg(I, BR, 0) = 1.

The non-zero degree of the mapping ensures the existence of at least one solution v ∈ W2 of
inclusion (17) for ξ = 1, and therefore of auxiliary problem (8), (10)–(14) for ξ = 1. The theorem is
proved.

4. Proof of Theorem 3

We proceed directly to the proof of the solvability of feedback control problem (1)–(5), (8). To do
this, we carry out the passage to the limit in auxiliary problem (10)–(14), (8) for ξ = 1. Since the space
V3 is dense in V0, then for each v∗0 ∈ V0 there exists a sequence vm

0 ∈ V3 converging to v∗0 in V0.
If v∗0 ≡ 0, then we put vm

0 ≡ 0, εm = 1/m. If ‖v∗0‖V0 �= 0, then starting from some number we have
‖vm

0 ‖V2 �= 0. Then we put εm = 1/(m‖vm
0 ‖2

V2). Under our choice {εm} resulting sequence converges
to zero as m → ∞. Moreover, εm‖vm

0 ‖2
V2 ≤ 1.

By Theorem 6, for each εm and vm
0 there exists a solution vm ∈ W2 ⊂ W1 of auxiliary problem

(10)–(14), (8) for ξ = 1. Thus, each solution vm for all ϕ ∈ V1 for almost all t ∈ (0, T) satisfies
the equality

〈v′m, ϕ〉 −
∫

Ω

n

∑
i,j=1

(Δ−1
α vm)i(vm)j

∂ϕj

∂xi
dx + μ0

∫
Ω
∇vm : ∇ϕ dx

−εm

∫
Ω
∇Δv′m : ∇ϕ dx +

μ1

Γ(1 − β)

( ∫ t

0
(t − s)−βE(vm)(s, zm(s; t, x)) ds, E(ϕ)

)
= 〈 fm, ϕ〉, (43)

and the initial condition
vm|t=0 = vm

0 .

Since the sequence {vm
0 } converges in V0, it is bounded by the norm V0. Hence,

‖vm
0 ‖2

V0 + εm‖vm
0 ‖2

V2 ≤ C26.
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Thus, from estimates (26), (27), (34) and (35) we obtain that

‖vm‖2
L2(0,T;V1) ≤ C27, (44)

‖vm‖2
C([0,T];V0) ≤ C28, (45)

‖v′m‖L4/3(0,T;V−1) ≤ C29, (46)

ε‖v′m‖L4/3(0,T;V3) ≤ C30, (47)

where the constants C27, C28, C29, C30 do not depend on ε. Due to the continuity of the embedding
C([0, T]; V0) ⊂ L∞(0, T; V0) and estimates (44)–(46), without loss of generality (if necessary, passing to
a subsequence) we obtain that

vm → v∗ weakly in L2(0, T; V1) as m → ∞, (48)

vm → v∗ *-weakly in L∞(0, T; V0) as m → ∞, (49)

v′m → v′∗ weakly in L4/3(0, T; V−1) as m → ∞, (50)

and that the limit function v∗ belongs to the space W1.
Consider Cauchy problem (3) for the limit function v∗. Since v∗ ∈ W1, therefore v∗ satisfies

the conditions of Theorem 1. Therefore, in [0, T]× [0, T]× Ω there exists a Lagrangian regular flow
z∗(τ; t, x) associated to v∗. We denote by zm(τ; t, x) the Lagrangian regular flow associated to vm.

Lemma 8. The sequence zm(τ; t, x) converges to z(τ; t, x) with respect to the Lebesgue measure on the set
[0, T]× Ω in (τ, x) for t ∈ [0, T].

This lemma follows from the a priori estimate (42) and Theorem 2.
The proofs of the solvability of feedback control problem (8), (1)–(5) are divided into two parts.

First, we prove the passage to the limit in auxiliary problem (8), (10)–(14) for ξ = 1 and a test function
ϕ from V1, which is sufficiently smooth, then for the arbitrary function ϕ ∈ V1.

I part. Let the test function ϕ ∈ V1 be smooth. We pass to the limit in each term of (43).

For m → ∞, by the definition of weak convergence vm → v∗ in L2(0, T; V1) we get

μ0

∫
Ω
∇vm : ∇ϕ dx → μ0

∫
Ω
∇v∗ : ∇ϕ dx

for any ϕ ∈ V1.

Due to weak convergence v′m → v′∗ in L4/3(0, T; V−1) as m → ∞ we obtain that

〈v′m, ϕ〉 → 〈v′∗, ϕ〉

for any ϕ ∈ V1.

Further, using estimate (47), without loss of generality and, if necessary, passing to a
subsequence, we have that there exists a function u ∈ L4/3(0, T; V3) such that

εmv′m → u weakly in L4/3(0, T; V3) as m → ∞.

Then
εm〈∇Δv′m,∇ϕ〉 → 〈∇Δu,∇ϕ〉, as m → ∞.

However, the sequence εmv′m converges to zero in the sense of distributions on [0, T] with
values in V−3. Indeed, for any smooth scalar function ψ with compact support and for
ϕ ∈ V3, we obtain
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lim
m→∞

∣∣∣∣εm

∫ T

0

∫
Ω
∇Δv′m : ∇ϕ dxψ(t) dt

∣∣∣∣ = lim
m→∞

εm

∣∣∣∣ ∫ T

0

∫
Ω

Δv′mΔϕ dxψ(t) dt
∣∣∣∣

= lim
m→∞

εm

∣∣∣∣ ∫ T

0

∫
Ω
∇v′m : ∇Δϕ dxψ(t) dt

∣∣∣∣ = lim
m→∞

εm lim
m→∞

∣∣∣∣ ∫ T

0

∫
Ω
∇v′m : ∇Δϕ dxψ(t) dt

∣∣∣∣
= lim

m→∞
εm lim

m→∞

∣∣∣∣ ∫Ω

( ∫ T

0
∇v′mψ(t) dt

)
: ∇Δϕ dx

∣∣∣∣
= lim

m→∞
εm lim

m→∞

∣∣∣∣ ∫Ω

( ∫ T

0
∇vm

∂ψ(t)
∂t

dt
)

: ∇Δϕ dx
∣∣∣∣

= lim
m→∞

εm lim
m→∞

∣∣∣∣ ∫ T

0

∫
Ω
∇vm : ∇Δϕ dx

∂ψ(t)
∂t

dt
∣∣∣∣.

Since vm weakly converges to v∗ in L2(0, T; V1) and, therefore, converges to v∗ in the sense
of distributions, then

lim
m→∞

εm lim
m→∞

∣∣∣∣ ∫ T

0

∫
Ω
∇vm : ∇Δϕ dxψ(t) dt

∣∣∣∣ = ∣∣∣∣ ∫ T

0

∫
Ω
∇v∗ : ∇Δϕ dx

∂ψ(t)
∂t

dt
∣∣∣∣ lim

m→∞
εm = 0.

Thus, due to the uniqueness of the weak limit

εm〈∇Δv′m,∇ϕ〉 → 0 as m → ∞.

Since the embedding V1 ⊂ L4(Ω) is completely continuous, and the embedding L4(Ω) ⊂
V−1 is continuous, by Theorem 5 it follows, that

F = {v ∈ L2(0, T; V1), v′ ∈ L4/3(0, T; V−1)} ⊂ L2(0, T; L4(Ω)).

Then, taking into account estimates (45) and (46) we conclude that

vm → v∗ strongly in L2(0, T; L4(Ω)).

Since the operator Δ−1
α = (I − α2Δ)−1 : L2(0, T; V1) → L2(0, T; V3) is continuous, then

∫
Ω

n

∑
i,j=1

(Δ−1
α vm)i(vm)j

∂ϕj

∂xi
dx →

∫
Ω

n

∑
i,j=1

(Δ−1
α v∗)i(v∗)j

∂ϕj

∂xi
dx as m → ∞,

where the first sequence (Δ−1
α vm)i weakly converges in L2(0, T; V1), and the second (vm)j

strongly in L2(0, T; L4(Ω)). Consequently, their product converges weakly to the product
of limits.

Now show that

μ1

Γ(1 − β)

( ∫ t

0
(t − s)−βE(vm)(s, zm(s; t, x)) ds, E(ϕ)

)
→ μ1

Γ(1 − β)

( ∫ t

0
(t − s)−βE(v∗)(s, z∗(s; t, x)) ds, E(ϕ)

)
. (51)
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Consider the following difference

μ1
Γ(1 − β)

( ∫ t

0
(t − s)−βE(vm)(s, zm(s; t, x)) ds, E(ϕ)

)
− μ1

Γ(1 − β)

( ∫ t

0
(t − s)−βE(v∗)(s, z∗(s; t, x)) ds, E(ϕ)

)
=

μ1
Γ(1 − β)

( ∫ t

0
(t − s)−β

∫
Ω

[
E(vm)(s, zm(s; t, x))− E(v∗)(s, zm(s; t, x))

]
: E(ϕ) dx ds

)
+

μ1
Γ(1 − β)

( ∫ t

0
(t − s)−β

∫
Ω

[
E(v∗)(s, zm(s; t, x))− E(v∗)(s, z∗(s; t, x))

]
: E(ϕ) dx ds

)
= Zm

1 + Zm
2 .

(1) We show first that Zm
1 → 0 as m → ∞.

Denote the integral over domain Ω in Zm
1 by I:

I =
∫

Ω

[
E(vm)(s, zm(s; t, x))− E(v∗)(s, zm(s; t, x))

]
: E(ϕ) dx.

We make the change of variables x = zm(t; s, y) in I (where the reverse change is y =

zm(s; t, x)):

I =
∫

Ω

[
E(vm)(s, y)− E(v∗)(s, y)

]
: E(ϕ)(zm(t; s, y)) dy.

We rewrite Zm
1 and continue the further expansion:

Zm
1 =

μ1

Γ(1 − β)

( ∫ t

0
(t − s)−β

∫
Ω

[
E(vm)(s, y)− E(v∗)(s, y)

]
: E(ϕ)(zm(t; s, y)) dy ds

)

=
μ1

Γ(1 − β)

( ∫ t

0
(t − s)−β

∫
Ω

[
E(vm)(s, y)− E(v∗)(s, y)

]
:
[
E(ϕ)(zm(t; s, y))

−E(ϕ)(z∗(t; s, y))
]

dy ds
)
+

μ1

Γ(1 − β)

( ∫ t

0
(t − s)−β

∫
Ω

[
E(vm)(s, y)

−E(v∗)(s, y)
]

: E(ϕ)(z∗(t; s, y)) dy ds
)
= Zm

11 + Zm
12.

(a) Due to the weak convergence vm to v∗ in the space L2(0, T; V1), we obtain that Zm
12 → 0

as m → ∞.
(b) Applying the Holder and the Cauchy-Bunyakovsky inequalities, we get

|Zm
11|2 ≤ C31

( ∫ t

0
(t − s)−β‖vm(s, ·)− v∗(s, ·)‖V1‖ϕx(zm(t; s, ·))− ϕx(z∗(t; s, ·))‖V0 ds

)2

≤ C32‖vm(s, ·)− v∗(s, ·)‖L2(0,T;V1) ×
∫ T

0
‖ϕx(zm(t; s, ·))− ϕx(z∗(t; s, ·))‖V0 ds. (52)

We denote the second efficient in the last inequality by Φm(s) :

Φm(s) =
∫ T

0
‖ϕx(zm(t; s, ·))− ϕx(z∗(t; s, ·))‖V0 ds.

We show the convergence Φm(s) → 0 as m → ∞ for every s ∈ [0, T]. Note, that

Φm(s) =
∫ T

0

∫
Ω
|ϕx(zm(t; s, y))− ϕx(z∗(t; s, y))|2 dy ds.
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Let ε > 0 be a sufficiently small number.The continuity of the function ϕx in Ω means that
there exists δ(ε) such that if |x′′ − x′| ≤ δ(ε), then

|ϕx(x′′)− ϕx(x′)| ≤ ε. (53)

Since the sequence zm(t; s, y) converges to z∗(t; s, y) in the Lebesgue measure with respect to
(t, y), therefore for δ(ε) there exists the number N = N(δ(ε)) which for m ≥ N the following
inequality holds:

m({(t, y) : |zm(t; s, y)− z∗(t; s, y)| ≥ δ(ε)}) ≤ ε. (54)

We denote
Q(> δ(ε)) = {(t, y) ∈ QT : |zm(t; s, y)− z∗(t; s, y)| > δ(ε)};

Q(≤ δ(ε)) = {(t, y) ∈ QT : |zm(t; s, y)− z∗(t; s, y)| ≤ δ(ε)}.

Then

Φm(s) ≤ C33

( ∫
Q(>δ(ε))

|ϕx(zm(t; s, y))− ϕx(z∗(t; s, y))|2 dy ds

·
∫

Q(≤δ(ε))
|ϕx(zm(t; s, y))− ϕx(z∗(t; s, y))|2 dy ds

)
= C33

(
Φ1

m(s) + Φ2
m(s)

)
. (55)

By virtue of (53) for Φ2
m(s) we have |zm(t; s, y)− z∗(t; s, y)| ≤ δ(ε). Hence

Φ2
m(s) ≤

∫
Q(≤δ(ε))

ε2 dy ds = C34ε2. (56)

By virtue of (54) for Φ1
m(s) we have m(Q(> δ(ε))) ≤ ε. Hence

Φ1
m(s) ≤ C35‖ϕx‖C(Ω)

∫
Q(>δ(ε))

dy ds = C35ε‖ϕx‖C(Ω). (57)

Thus, from (55), (56) and (57) it follows that for small ε > 0 and m ≥ N(δ(ε)) the following
inequality holds

Φm(s) ≤ C36ε.

Consequently, convergence Φm(s) → 0 as m → ∞ for all s ∈ [0, T] is obtained. Consider
the right side of inequality (4). Due to the boundedness of the first efficient (since vm ∈
L2(0, T; V1)) and the convergence to 0 of the second efficient as m → ∞, we get that Zm

11 → 0
as m → ∞.

Thus, it is proved that Zm
1 → 0 as m → ∞.

(2) Now show that Zm
2 → 0 as m → ∞. Consider the auxiliary function ṽ(t, x) smooth and finite

on [0, T]× Ω such that ‖v∗ − ṽ‖L2(0,T;V1) ≤ ε for sufficiently small ε > 0. We now estimate
Zm

2 through three integrals

|Zm
2 | ≤ C37

( ∫ t

0
(t − s)−β

∫
Ω
‖v∗(s, zm(s; t, x))− ṽ(s, zm(s; t, x))‖V1 ds

+
∫ t

0
(t − s)−β

∫
Ω
‖ṽ(s, zm(s; t, x))− ṽ(s, z∗(s; t, x))‖V1 ds

+
∫ t

0
(t − s)−β

∫
Ω
‖ṽ(s, z∗(s; t, x))− v∗(s, z∗(s; t, x))‖V1 ds

)
= C37

(
Zm

21 + Zm
22 + Zm

23
)
.
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We make a change of variables in the norms under the integrals Zm
21 and Zm

23:

‖v∗(s, zm(s; t, x))− ṽ(s, zm(s; t, x))‖V1 = ‖v∗(s, y)− ṽ(s, y)‖V1 ;

‖ṽ(s, z∗(s; t, x))− v∗(s, z∗(s; t, x))‖V1 = ‖ṽ(s, y)− v∗(s, y)‖V1 .

Then we get

Zm
21 + Zm

23 = C37(
∫ t

0
(t − s)−β‖v∗(s, ·)− ṽ(s, ·)‖V1 ds) ≤ C37ε.

We estimate also Zm
22

Zm
22 ≤ C37(

∫ t

0
(t − s)−β

( ∫
Ω
|ṽx(s, zm(s; t, ·))− ṽx(s, z∗(s; t, ·))|2 dx

)1/2 ds).

By virtue of Lemma 8 zm(s; t, x) converges to z(s; t, x) and the function ṽx(t, x) is bounded
and smooth. Therefore, by the Lebesgue theorem, we obtain that Zm

2 → 0 as m → ∞. Thus,
convergence (51) is proved.

Taking into account the a priori estimates (44)–(46) and conditions (Ψ1)-(Ψ4), without loss of
generality, we can assume that there exists f∗ ∈ L2(0, T; V−1) such that fm → f∗ ∈ Ψ(v∗) as
m → ∞.

As a result, it was shown that the functions v∗ and f∗ with a smooth test function ϕ from V1

satisfy the equality:

〈v′∗, ϕ〉 −
∫

Ω

n

∑
i,j=1

(Δ−1
α v∗)i(v∗)j

∂ϕj

∂xi
dx + μ0

∫
Ω
∇v∗ : ∇ϕ dx

+
μ1

Γ(1 − β)

( ∫ t

0
(t − s)−βE(v∗)(s, z∗(s; t, x)) ds, E(ϕ)

)
= 〈 f∗, ϕ〉. (58)

Since the sequence {vm} has a priori estimates (44), (45) and (46), due to the weak
convergence properties for v∗ we immediately obtain the estimate:

‖v∗‖L∞(0,T;V0) + ‖v∗‖L2(0,T;V1) + ‖v∗‖L4/3(0,T;V−1) ≤ C38.

Whence it follows that v∗ ∈ W1. Thus, the passage to the limit was proved for a test function
ϕ ∈ V1, which is smooth.

II part. Let us prove this passage to the limit for an arbitrary test function ϕ from V1. We rewrite (58)
for smooth ϕ in the form:

[G1, ϕ]− [G2, ϕ] = 0, (59)

where

[G1, ϕ] = 〈v′, ϕ〉 −
∫

Ω

n

∑
i,j=1

(Δ−1
α v)i(v)j

∂ϕj

∂xi
dx + μ0

∫
Ω
∇v : ∇ϕ dx

+
μ1

Γ(1 − β)

( ∫ t

0
(t − s)−βE(v)(s, z(s; t, x)) ds, E(ϕ)

)
; [G2, ϕ] = 〈 f , ϕ〉.

Lemma 9. Let the test function ϕ be smooth. Then

|[G1, ϕ]| ≤ C39‖ϕ‖V1 , |[G2, ϕ]| ≤ C40‖ϕ‖V1 . (60)

The proof of this Lemma is similar to obtaining a priori estimates in section 3.
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Since the set of smooth functions is dense in V1, for ϕ ∈ V1 there exists a sequence of smooth
functions ϕl ∈ V1 such that |ϕl − ϕ|V1 → 0 for l → ∞. By virtue of (59) we obtain

[G1, ϕ]− [G2, ϕ] = [G1, ϕ − ϕl ]− [G2, ϕ − ϕl ] + [G1, ϕl ]− [G2, ϕl ]

= [G1, ϕ − ϕl ]− [G2, ϕ − ϕl ].

From the last equality and estimates (60) we obtain

|[G1, ϕ]− [G2, ϕ]| ≤ C41|ϕ − ϕl |.

Taking into account the last inequality and passing to the limit as l → ∞ in equality (58)
for ϕ = ϕl we obtain equality (58) for arbitrary ϕ ∈ V1, which completes the proof of the
existence of weak solutions for feedback control problem (1)–(5), (8).

5. Proof of Theorem 4

From Theorem 3 we obtain that the set of solutions is nonempty. Therefore, there exists a
minimizing sequence (vl , fl) ∈ Σ such that

lim
l→∞

Φ(vl , fl) = inf
(v, f )∈Σ

Φ(v, f ).

As before, in the proof of Theorem 3 from estimates (44)–(46) it follows:

vl ⇀ v∗ weakly in L2(0, T; V1),

vl ⇀ *-weakly in L∞(0, T; V0),

v′l ⇀ v′∗ weakly in L4/3(0, T; V−1),

vl → v∗ strongly in L2(0, T; L4(Ω)),

zl(τ; t, x) → z(τ; t, x) in the Lebesgue measure with respect to (τ, x) on [0, T]× Ω,

fl → f∗ ∈ Ψ(v∗) strongly in L2(0, T; V−1).

Similarly from inclusion

Jv′l + μ0 Avl − B(vl) +
μ1

Γ(1 − β)
C(vl , zl) = fl ∈ Ψ(vl),

passing to the limit, we obtain

Jv′∗ + μ0 Av∗ − B(v∗) +
μ1

Γ(1 − β)
C(v∗, z∗) = f∗ ∈ Ψ(v∗).

We get that (v∗, f∗) ∈ Σ. Since the functional Φ is lower semicontinuous with respect to the
relatively weak topology, we have

Φ(v∗, f∗) ≤ inf
(v, f )∈Σ

Φ(v, f ).

Thereby (v∗, f∗) is the required solution. The theorem is proved.

6. Conclusions

To summarize all reasonings, calculations and proofs in this paper, the mathematical model
describing the motion of viscoelastic mediums was investigated. This model is equipped with the
Voigt rheological relation. This relation is considered with the left-side fractional Riemann-Liouville
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derivative, which allows us to take into account the memory of the medium. This memory is considered
along the trajectory of the motion of fluid particles, determined by the velocity field. This allows a
more accurate description of the physical process of fluid motion. Also in this paper the model under
consideration is called the alpha-model. Interest in the study of alpha-models is primarily associated
with their application to the study of turbulence effects for fluid flows.

The main result of this paper is the solutions existence to the feedback control problem for the
mathematical model under consideration. Also the existence of an optimal solution to the problem
under consideration that gives a minimum to a given bounded quality functional is proved. Results of
this paper provide an opportunity for the future investigation of this model. The authors propose the
following future research directions for the model under consideration—1) the numerical analysis of
the obtained solutions; 2) the consideration of a turbulence case of this problem; 3) the investigation of
a II class of alpha-models for this problem and so forth.
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1. Introduction

We consider the system of fractional differential equations{
Dα1

0+(ϕr1(Dβ1
0+u(t))) + f (t, u(t), v(t)) = 0, t ∈ (0, 1),

Dα2
0+(ϕr2(Dβ2

0+v(t))) + g(t, u(t), v(t)) = 0, t ∈ (0, 1),
(1)

with the nonlocal boundary conditions⎧⎪⎪⎪⎨⎪⎪⎪⎩
u(j)(0) = 0, j = 0, . . . , n − 2; Dβ1

0+u(0) = 0, Dγ0
0+u(1) =

p

∑
i=1

∫ 1

0
Dγi

0+u(t) dHi(t),

v(j)(0) = 0, j = 0, . . . , m − 2; Dβ2
0+v(0) = 0, Dδ0

0+v(1) =
q

∑
i=1

∫ 1

0
Dδi

0+v(t) dKi(t),
(2)

where α1, α2 ∈ (0, 1], β1 ∈ (n − 1, n], β2 ∈ (m − 1, m], n, m ∈ N, n, m ≥ 3, p, q ∈ N, γi ∈ R for all
i = 0, . . . , p, 0 ≤ γ1 < γ2 < · · · < γp ≤ γ0 < β1 − 1, γ0 ≥ 1, δi ∈ R for all i = 0, . . . , q, 0 ≤ δ1 <

δ2 < · · · < δq ≤ δ0 < β2 − 1, δ0 ≥ 1, r1, r2 > 1, ϕri (τ) = |τ|ri−2τ, ϕ−1
ri

= ϕ�i , �i =
ri

ri−1 , i = 1, 2,
the functions f and g are nonnegative and they may be singular at t = 0 and/or t = 1, the integrals from
the boundary conditions (2) are Riemann–Stieltjes integrals with Hi, i = 1, . . . , p and Kj, j = 1, · · · , q
functions of bounded variation, and Dθ

0+u denotes the Riemann–Liouville fractional derivative of
order θ of function u (for θ = α1, β1, α2, β2, γi for i = 0, . . . , p, δj for j = 0, . . . , q). The fractional

derivative Dθ
0+u is defined by Dθ

0+u(t) = 1
Γ(r−θ)

(
d
dt

)r ∫ t
0 (t − s)r−θ−1u(s) ds, t > 0, where r = %θ&+ 1,

%θ& stands for the largest integer not greater than θ, and Γ(ζ) =
∫ ∞

0 tζ−1e−t dt, ζ > 0, is the gamma
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function (the Euler function of second type). This work is motivated by the application of p-Laplacian
operator in several fields such as nonlinear elasticity, fluid flow through porous media, glaciology,
nonlinear electrorheological fluids, etc., for details, see [1] and the references cited therein.

Under some assumptions on the functions f and g, we present existence and multiplicity results
for the positive solutions of problem (1) and (2). By a positive solution of problem (1) and (2) we mean
a pair of functions (u, v) ∈ (C([0, 1],R+))2, satisfying the system (1) and the boundary conditions (2),
with u(t) > 0 for all t ∈ (0, 1], or v(t) > 0 for all t ∈ (0, 1], (R+ = [0, ∞)). In the proof of our main
theorems we use the Guo–Krasnosel’skii fixed point theorem (see [2]). The existence and nonexistence
of positive solutions for the system (1) with two positive parameters λ and μ, and nonsingular and
nonnegative nonlinearities, supplemented with the multi-point boundary conditions{

u(j)(0) = 0, j = 0, . . . , n − 2; Dβ1
0+u(0) = 0, Dp1

0+u(1) = ∑N
i=1 aiD

q1
0+u(ξi),

v(j)(0) = 0, j = 0, . . . , m − 2; Dβ2
0+v(0) = 0, Dp2

0+v(1) = ∑M
i=1 biD

q2
0+v(ηi),

where p1, p2, q1, q2 ∈ R, p1 ∈ [1, n − 2], p2 ∈ [1, m − 2], q1 ∈ [0, p1], q2 ∈ [0, p2], ξi, ai ∈ R for
all i = 1, . . . , N (N ∈ N), 0 < ξ1 < · · · < ξN ≤ 1, ηi, bi ∈ R for all i = 1, . . . , M (M ∈ N),
0 < η1 < · · · < ηM ≤ 1, was investigated in [3], by applying the Guo–Krasnosel’skii theorem.
In the paper [4], the authors studied the system (1) with positive parameters, and nonsingular and
nonnegative nonlinearities, subject to the nonlocal coupled boundary conditions⎧⎪⎪⎪⎨⎪⎪⎪⎩

u(j)(0) = 0, j = 0, . . . , n − 2; Dβ1
0+u(0) = 0, Dγ0

0+u(1) =
p

∑
i=1

∫ 1

0
Dγi

0+v(t) dHi(t),

v(j)(0) = 0, j = 0, . . . , m − 2; Dβ2
0+v(0) = 0, Dδ0

0+v(1) =
q

∑
i=1

∫ 1

0
Dδi

0+u(t) dKi(t),

where p, q ∈ N, γi ∈ R for all i = 0, 1, . . . , p, 0 ≤ γ1 < γ2 < · · · < γp ≤ δ0 < β2 − 1, δ0 ≥ 1, δi ∈ R for
all i = 0, 1, . . . , q, 0 ≤ δ1 < δ2 < · · · < δq ≤ γ0 < β1 − 1, γ0 ≥ 1.

In [5], by applying the fixed point theorem for mixed monotone operators, the authors proved the
existence of positive solutions for the multi-point boundary value problem for nonlinear Riemann–
Liouville fractional differential equations⎧⎪⎨⎪⎩

Dβ
0+ϕp(Dα

0+u(t)) = f (t, u(t)), 0 < t < 1,
u(0) = 0, Dγ

0+u(1) = ∑m−2
i=1 ξiD

γ
0+u(ηi), Dα

0+u(0) = 0,
ϕp(Dα

0+u(1)) = ∑m−2
i=1 ζi ϕp(Dα

0+u(ηi)),

where α, β ∈ (1, 2], γ ∈ (0, 1], ξi, ηi, ζi ∈ (0, 1), i = 1, . . . , m − 2, and f is a nonnegative function which
may be singular at x = 0. In [6], the authors investigated the existence and uniqueness of positive
solutions for the fractional boundary value problem⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

cDα
0+ϕp

(
Dβ

0+u(t) + ϕq(Ir
0+h(t, Iρ1

0+u(t), Dγ
0+u(t)))

)
+ f (t, Iρ2

0+u(t), Dγ
0+u(t)) = 0, t ∈ (0, 1),

u(0) = Dδ1
0+u(0) = · · · = Dδn−2

0+ u(0) = Dβ
0+u(0) = 0,

Dk0
0+u(1) = λ1

∫ 1
0 l1(τ)Dk1

0+u(τ)dA1(τ) + λ2
∫ ζ

0 l2(τ)Dk2
0+u(τ)dA2(τ)

+λ3 ∑∞
i=1 μiD

k3
0+u(ηi),

where α ∈ (0, 1], β ∈ (n−1, n], n ≥ 3, cDα
0+u denotes the Caputo fractional derivative of order α of function

u defined by cDα
0+u(t) = 1

Γ(1−α)

∫ t
0 (t − s)−αu′(s) ds, t > 0, for α ∈ (0, 1), and cDα

0+u(t) = u′(t), t > 0,
for α = 1, and the nonlinear terms f and h may be singular on the time variable and space variables.
The authors used in [6] the theory of mixed monotone operators, and they also discussed there the
dependence of solutions upon a parameter.
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Systems with fractional differential equations without p-Laplacian operators, with parameters or
without parameters, subject to various multi-point or Riemann–Stieltjes integral boundary conditions
were studied in the last years in [7–27]. For various applications of the fractional differential equations in
many scientific and engineering domains we refer the reader to the books [28–34], and their references.

The paper is organized as follows. In Section 2, we study two nonlocal boundary value problems
for fractional differential equations with p-Laplacian operators, and we present some properties of the
associated Green functions. Section 3 contains the main existence theorems for the positive solutions
for our problem (1) and (2), and in Section 4, we give two examples which illustrate our results.

2. Auxiliary Results

We consider firstly the nonlinear fractional differential equation

Dα1
0+(ϕr1(Dβ1

0+u(t))) + h(t) = 0, t ∈ (0, 1), (3)

with the boundary conditions⎧⎪⎨⎪⎩
u(j)(0) = 0, j = 0, . . . , n − 2; Dβ1

0+u(0) = 0,

Dγ0
0+u(1) =

p

∑
i=1

∫ 1

0
Dγi

0+u(t) dHi(t),
(4)

where α1 ∈ (0, 1], β1 ∈ (n − 1, n], n ∈ N, n ≥ 3, p ∈ N, γi ∈ R for all i = 0, . . . , p, 0 ≤ γ1 < γ2 < · · · <
γp ≤ γ0 < β1 − 1, γ0 ≥ 1, Hi, i = 1, . . . , p are bounded variation functions, and h ∈ C(0, 1) ∩ L1(0, 1).
We denote by

Δ1 =
Γ(β1)

Γ(β1 − γ0)
−

p

∑
i=1

Γ(β1)

Γ(β1 − γi)

∫ 1

0
sβ1−γi−1 dHi(s).

Lemma 1. If Δ1 �= 0, then the unique solution u ∈ C[0, 1] of problem (3) and (4) is given by

u(t) =
∫ 1

0
G1(t, s)ϕ�1(Iα1

0+h(s)) ds, t ∈ [0, 1], (5)

where the Green function G1 is given by

G1(t, s) = g1(t, s) +
tβ1−1

Δ1

p

∑
i=1

(∫ 1

0
g2i(τ, s) dHi(τ)

)
, t, s ∈ [0, 1], (6)

with

g1(t, ζ) =
1

Γ(β1)

{
tβ1−1(1 − ζ)β1−γ0−1 − (t − ζ)β1−1, 0 ≤ ζ ≤ t ≤ 1,
tβ1−1(1 − ζ)β1−γ0−1, 0 ≤ t ≤ ζ ≤ 1,

g2i(τ, ζ) =
1

Γ(β1 − γi)

⎧⎪⎨⎪⎩
τβ1−γi−1(1 − ζ)β1−γ0−1 − (τ − ζ)β1−γi−1,

0 ≤ ζ ≤ τ ≤ 1,
τβ1−γi−1(1 − ζ)β1−γ0−1, 0 ≤ τ ≤ ζ ≤ 1,

i = 1, . . . , p.

(7)

Proof. We denote by ϕr1(Dβ1
0+u(t)) = x(t). Then problem (3) and (4) is equivalent to the following

two boundary value problems

Dα1
0+x(t) + h(t) = 0, 0 < t < 1; x(0) = 0, (8)
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and ⎧⎪⎨⎪⎩
Dβ1

0+u(t) = ϕ�1(x(t)), 0 < t < 1;

u(j)(0) = 0, j = 0, . . . , n − 2; Dγ0
0+u(1) =

p

∑
i=1

∫ 1

0
Dγi

0+u(t) dHi(t).
(9)

For the first problem (8), the function

x(t) = −Iα1
0+h(t) = − 1

Γ(α1)

∫ t

0
(t − s)α1−1h(s) ds, t ∈ [0, 1], (10)

is the unique solution x ∈ C[0, 1] of (8). For the second problem (9), if Δ1 �= 0, then by [7] (Lemma 2.2),
we deduce that the function

u(t) = −
∫ 1

0
G1(t, s)ϕ�1(x(s)) ds, t ∈ [0, 1], (11)

where G1 is given by (6), is the unique solution u ∈ C[0, 1] of problem (9). Now, by using relations (10)
and (11), we find formula (5) for the unique solution u ∈ C[0, 1] of problem (3) and (4).

Next we consider the nonlinear fractional differential equation

Dα2
0+(ϕr2(Dβ2

0+v(t))) + k(t) = 0, t ∈ (0, 1), (12)

with the boundary conditions⎧⎪⎨⎪⎩
v(j)(0) = 0, j = 0, . . . , m − 2; Dβ2

0+v(0) = 0,

Dδ0
0+v(1) =

q

∑
i=1

∫ 1

0
Dδi

0+v(t) dKi(t),
(13)

where α2 ∈ (0, 1], β2 ∈ (m − 1, m], m ∈ N, m ≥ 3, q ∈ N, δi ∈ R for all i = 0, . . . , q, 0 ≤ δ1 < δ2 < · · · <
δq ≤ δ0 < β2 − 1, δ0 ≥ 1, Ki, i = 1, . . . , q are bounded variation functions, and k ∈ C(0, 1) ∩ L1(0, 1).
We denote by

Δ2 =
Γ(β2)

Γ(β2 − δ0)
−

q

∑
i=1

Γ(β2)

Γ(β2 − δi)

∫ 1

0
sβ2−δi−1 dKi(s).

In a similar manner as above we obtain the following result.

Lemma 2. If Δ2 �= 0, then the unique solution v ∈ C[0, 1] of problem (12) and (13) is given by

v(t) =
∫ 1

0
G2(t, s)ϕ�2(Iα2

0+k(s)) ds, t ∈ [0, 1], (14)

where the Green function G2 is given by

G2(t, s) = g3(t, s) +
tβ2−1

Δ2

q

∑
i=1

(∫ 1

0
g4i(τ, s) dKi(τ)

)
, t, s ∈ [0, 1], (15)

with

g3(t, ζ) =
1

Γ(β2)

{
tβ2−1(1 − ζ)β2−δ0−1 − (t − ζ)β2−1, 0 ≤ ζ ≤ t ≤ 1,
tβ2−1(1 − ζ)β2−δ0−1, 0 ≤ t ≤ ζ ≤ 1,

g4i(τ, ζ) =
1

Γ(β2 − δi)

⎧⎪⎨⎪⎩
τβ2−δi−1(1 − ζ)β2−δ0−1 − (τ − ζ)β2−δi−1,

0 ≤ ζ ≤ τ ≤ 1,
τβ2−δi−1(1 − ζ)β2−δ0−1, 0 ≤ τ ≤ ζ ≤ 1,

i = 1, . . . , q.

(16)
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By using the properties of the functions g1, g2i, i = 1, . . . , p, g3, g4i, i = 1, . . . , q given by (7) and
(16) (see [7,17]), we obtain the following properties of the Green functions G1 and G2 that we will use
in the next section.

Lemma 3. Assume that Hi : [0, 1] → R, i = 1, . . . , p, and Kj : [0, 1] → R, j = 1, . . . , q are nondecreasing
functions and Δ1 > 0, Δ2 > 0. Then the Green functions G1 and G2 given by (6) and (15) have the properties:

(a) G1, G2 : [0, 1]× [0, 1] → [0, ∞) are continuous functions;
(b) G1(t, s) ≤ J1(s) for all t, s ∈ [0, 1], where

J1(s) = h1(s) + 1
Δ1

∑
p
i=1

∫ 1
0 g2i(τ, s) dHi(τ), with

h1(s) = 1
Γ(β1)

[(1 − s)β1−γ0−1 − (1 − s)β1−1], s ∈ [0, 1];

(c) G1(t, s) ≥ tβ1−1J1(s) for all t, s ∈ [0, 1];
(d) G2(t, s) ≤ J2(s) for all t, s ∈ [0, 1], where

J2(s) = h2(s) + 1
Δ2

∑
q
i=1

∫ 1
0 g4i(τ, s) dKi(τ), with

h2(s) = 1
Γ(β2)

[(1 − s)β2−δ0−1 − (1 − s)β2−1], s ∈ [0, 1];

(e) G2(t, s) ≥ tβ2−1J2(s) for all t, s ∈ [0, 1].

By similar arguments used in the proof of [17] (Lemma 2.5), we deduce the next lemma.

Lemma 4. Assume that Hi : [0, 1] → R, i = 1, . . . , p and Kj : [0, 1] → R, j = 1, . . . , q are nondecreasing
functions, Δ1 > 0, Δ2 > 0, h ∈ C(0, 1) ∩ L1(0, 1), k ∈ C(0, 1) ∩ L1(0, 1), h(t) ≥ 0 for all t ∈ (0, 1),
k(t) ≥ 0 for all t ∈ (0, 1). Then the solutions u and v of problems (3), (4), (12) and (13), respectively, satisfy
the inequalities u(t) ≥ 0, v(t) ≥ 0 for all t ∈ [0, 1]. In addition, we have the inequalities u(t) ≥ tβ1−1u(τ),
v(t) ≥ tβ2−1v(τ) for all t, τ ∈ [0, 1].

3. Existence of Positive Solutions

In this section, we investigate the existence of positive solutions for problem (1) and (2) under
various assumptions on the functions f and g which may be singular at t = 0 and/or t = 1. We present
the basic assumptions that we will use in the main theorems.

(I1) α1, α2 ∈ (0, 1], β1 ∈ (n − 1, n], β2 ∈ (m − 1, m], n, m ∈ N, n, m ≥ 3, p, q ∈ N, γi ∈ R for all
i = 0, . . . , p, 0 ≤ γ1 < γ2 < · · · < γp ≤ γ0 < β1 − 1, γ0 ≥ 1, δi ∈ R for all i = 0, . . . , q,
0 ≤ δ1 < δ2 < · · · < δq ≤ δ0 < β2 − 1, δ0 ≥ 1, Hi, i = 1, . . . , p, Kj, j = 1, . . . , q are nondecreasing
functions, Δ1 > 0, Δ2 > 0, ri > 1, ϕri (s) = |s|ri−2s, ϕ−1

ri
= ϕ�i , �i =

ri
ri−1 , i = 1, 2.

(I2) The functions f , g ∈ C((0, 1)×R+ ×R+,R+) and there exist the functions ζi ∈ C((0, 1),R+)

and χi ∈ C([0, 1]×R+ ×R+,R+), i = 1, 2, with Λ1, Λ2 ∈ (0, ∞) such that

f (t, x, y) ≤ ζ1(t)χ1(t, x, y), g(t, x, y) ≤ ζ2(t)χ2(t, x, y), ∀ t ∈ (0, 1), x, y ∈ R+, (17)

where Λ1 =
∫ 1

0 (1 − s)β1−γ0−1 ϕ�1(Iα1
0+ζ1(s)) ds, Λ2 =

∫ 1
0 (1 − s)β2−δ0−1 ϕ�2(Iα2

0+ζ2(s)) ds.

Remark 1. We present below two cases in which Λ1, Λ2 ∈ (0, ∞); for other cases see the examples from
Section 4.
a) If f , g ∈ C([0, 1]×R+ ×R+,R+), that is ζi(s) = 1 for all s ∈ [0, 1], i = 1, 2, χ1 = f , χ2 = g, then the
inequalities (17) are satisfied with equality. In addition, the conditions Λ1, Λ2 ∈ (0, ∞) are also satisfied,
because in this nonsingular case, we obtain

131



Mathematics 2020, 8, 1890

Λ1 =
∫ 1

0
(1 − s)β1−γ0−1 ϕ�1(Iα1

0+ζ1(s)) ds =
∫ 1

0
(1 − s)β1−γ0−1(Iα1

0+ζ1(s))�1−1 ds

=
1

(Γ(α1))�1−1

∫ 1

0
(1 − s)β1−γ0−1

(∫ s

0
(s − τ)α1−1 dτ

)�1−1
ds

=
1

(Γ(α1 + 1))�1−1

∫ 1

0
(1 − s)β1−γ0−1sα1(�1−1) ds

=
1

(Γ(α1 + 1))�1−1 B(α1(�1 − 1) + 1, β1 − γ0) ∈ (0, ∞),

where B(θ1, θ2) =
∫ 1

0 tθ1−1(1 − t)θ2−1 dt is the beta function (the Euler function of first type), with θ1, θ2 > 0.
In a similar manner we have Λ2 = 1

(Γ(α2+1))�2−1 B(α2(�2 − 1) + 1, β2 − δ0) ∈ (0, ∞).

b) If ζ1, ζ2 ∈ L2(0, 1), ζ1 �≡ 0, ζ2 �≡ 0, and α1, α2 ∈ (1/2, 1], then by using the Cauchy inequality we find

0 < Λ1 ≤ 1
(Γ(α1))�1−1

∫ 1

0
(1 − s)β1−γ0−1

(∫ s

0
(s − τ)2(α1−1) dτ

) �1−1
2
(∫ s

0
ζ2

1(τ) dτ

) �1−1
2

ds

≤ ‖ζ1‖�1−1
2

(Γ(α1))�1−1(2α1 − 1)
�1−1

2

∫ 1

0
s
(2α1−1)(�1−1)

2 (1 − s)β1−γ0−1 ds

=
‖ζ1‖�1−1

2

(Γ(α1))�1−1(2α1 − 1)
�1−1

2

B
(
(2α1 − 1)(�1 − 1)

2
+ 1, β1 − γ0

)
< ∞,

where ‖ζ1‖2 is the norm of ζ1 in the space L2(0, 1). In a similar manner we obtain Λ2 ∈ (0, ∞).

By using Lemmas 1 and 2 (the relations (5) and (14)), (u, v) is a solution of problem (1) and (2) if
and only if (u, v) is a solution of the nonlinear system of integral equations⎧⎪⎨⎪⎩

u(t) =
∫ 1

0
G1(t, s)ϕ�1(Iα1

0+ f (s, u(s), v(s))) ds, t ∈ [0, 1],

v(t) =
∫ 1

0
G2(t, s)ϕ�2(Iα2

0+g(s, u(s), v(s))) ds, t ∈ [0, 1].

We consider the Banach space X = C[0, 1] with supremum norm ‖u‖ = supt∈[0,1] |u(t)|, and the
Banach space Y = X ×X with the norm ‖(u, v)‖Y = ‖u‖+ ‖v‖. We define the cone Q ⊂ Y by

Q = {(u, v) ∈ Y , u(t) ≥ 0, v(t) ≥ 0, ∀ t ∈ [0, 1]}.

We also define the operators A1, A2 : Y → X and A : Y → Y by⎧⎪⎨⎪⎩
A1(u, v)(t) =

∫ 1

0
G1(t, s)ϕ�1(Iα1

0+ f (s, u(s), v(s))) ds, t ∈ [0, 1],

A2(u, v)(t) =
∫ 1

0
G2(t, s)ϕ�2(Iα2

0+g(s, u(s), v(s))) ds, t ∈ [0, 1],

and A(u, v) = (A1(u, v),A2(u, v)), (u, v) ∈ Y . Then (u, v) is a solution of problem (1) and (2) if and
only if (u, v) is a fixed point of operator A.

Lemma 5. Assume that (I1) and (I2) hold. Then A : Q → Q is a completely continuous operator (continuous,
and it maps bounded sets into relatively compact sets).
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Proof. We denote by Mi =
∫ 1

0 Ji(s)ϕ�i (Iαi
0+ζi(s)) ds, i = 1, 2. Using (I2) and Lemma 3, we deduce that

Mi > 0, i = 1, 2. In addition, we find

M1 =
∫ 1

0

[
h1(s) +

1
Δ1

p

∑
i=1

∫ 1

0
g2i(τ, s) dHi(τ)

]
ϕ�1(Iα1

0+ζ1(s)) ds

=
∫ 1

0

1
Γ(β1)

(1 − s)β1−γ0−1(1 − (1 − s)γ0)ϕ�1(Iα1
0+ζ1(s)) ds

+
1

Δ1

∫ 1

0

(
p

∑
i=1

∫ 1

0
g2i(τ, s) dHi(τ)

)
ϕ�1(Iα1

0+ζ1(s)) ds

≤ 1
Γ(β1)

∫ 1

0
(1 − s)β1−γ0−1 ϕ�1(Iα1

0+ζ1(s)) ds

+
1

Δ1

∫ 1

0

(
p

∑
i=1

∫ 1

0

1
Γ(β1 − γi)

τβ1−γi−1(1 − s)β1−γ0−1 dHi(τ)

)
ϕ�1(Iα1

0+ζ1(s)) ds

= Λ1

(
1

Γ(β1)
+

1
Δ1

p

∑
i=1

1
Γ(β1 − γi)

∫ 1

0
τβ1−γi−1 dHi(τ)

)
< ∞,

M2 =
∫ 1

0

[
h2(s) +

1
Δ2

q

∑
i=1

∫ 1

0
g4i(τ, s) dKi(τ)

]
ϕ�2(Iα2

0+ζ2(s)) ds

=
∫ 1

0

1
Γ(β2)

(1 − s)β2−δ0−1(1 − (1 − s)δ0)ϕ�2(Iα2
0+ζ2(s)) ds

+
1

Δ2

∫ 1

0

(
q

∑
i=1

∫ 1

0
g4i(τ, s) dKi(τ)

)
ϕ�2(Iα2

0+ζ2(s)) ds

≤ 1
Γ(β2)

∫ 1

0
(1 − s)β2−δ0−1 ϕ�2(Iα2

0+ζ2(s)) ds

+
1

Δ2

∫ 1

0

(
q

∑
i=1

∫ 1

0

1
Γ(β2 − δi)

τβ2−δi−1(1 − s)β2−δ0−1 dKi(τ)

)
ϕ�2(Iα2

0+ζ2(s)) ds

= Λ2

(
1

Γ(β2)
+

1
Δ2

q

∑
i=1

1
Γ(β2 − δi)

∫ 1

0
τβ2−δi−1 dKi(τ)

)
< ∞.

By Lemma 3 we conclude that A maps Q into Q.
We will show that A maps bounded sets into relatively compact sets. Suppose S ⊂ Q is an arbitrary

bounded set. Then there exists L1 > 0 such that ‖(u, v)‖Y ≤ L1 for all (u, v) ∈ S. By the continuity
of χ1 and χ2 we deduce that there exists L2 > 0 such that L2 = max{supt∈[0,1], u,v∈[0,L1]

χ1(t, u, v),
supt∈[0,1], u,v∈[0,L1]

χ2(t, u, v)}. By using Lemma 3, for any (u, v) ∈ S and t ∈ [0, 1], we obtain

A1(u, v)(t) ≤
∫ 1

0
J1(s)ϕ�1(Iα1

0+ f (s, u(s), v(s))) ds

≤
∫ 1

0
J1(s)ϕ�1

(
1

Γ(α1)

∫ s

0
(s − τ)α1−1ζ1(τ)χ1(τ, u(τ), v(τ)) dτ

)
ds

≤ L�1−1
2

∫ 1

0
J1(s)ϕ�1

(
1

Γ(α1)

∫ s

0
(s − τ)α1−1ζ1(τ) dτ

)
ds

= L�1−1
2

∫ 1

0
J1(s)ϕ�1(Iα1

0+ζ1(s)) ds = M1L�1−1
2 ,

A2(u, v)(t) ≤
∫ 1

0
J2(s)ϕ�2(Iα2

0+g(s, u(s), v(s))) ds

≤
∫ 1

0
J2(s)ϕ�2

(
1

Γ(α2)

∫ s

0
(s − τ)α2−1ζ2(τ)χ2(τ, u(τ), v(τ)) dτ

)
ds

≤ L�2−1
2

∫ 1

0
J2(s)ϕ�2

(
1

Γ(α2)

∫ s

0
(s − τ)α2−1ζ2(τ) dτ

)
ds

= L�2−1
2

∫ 1

0
J2(s)ϕ�2(Iα2

0+ζ2(s)) ds = M2L�2−1
2 .
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Then ‖A1(u, v)‖ ≤ M1L�1−1
2 , ‖A2(u, v)‖ ≤ M2L�2−1

2 for all (u, v) ∈ S , and so A1(S), A2(S) and
A(S) are bounded.

We will prove next that A(S) is equicontinuous. By using Lemma 1, for (u, v) ∈ S and t ∈ [0, 1]
we deduce

A1(u, v)(t) =
∫ 1

0

(
g1(t, s) +

tβ1−1

Δ1

p

∑
i=1

∫ 1

0
g2i(τ, s) dHi(τ)

)
ϕ�1(Iα1

0+ f (s, u(s), v(s))) ds

=
∫ t

0

1
Γ(β1)

[
tβ1−1(1 − s)β1−γ0−1 − (t − s)β1−1

]
ϕ�1(Iα1

0+ f (s, u(s), v(s))) ds

+
∫ 1

t

1
Γ(β1)

tβ1−1(1 − s)β1−γ0−1 ϕ�1(Iα1
0+ f (s, u(s), v(s))) ds

+
tβ1−1

Δ1

∫ 1

0

p

∑
i=1

(∫ 1

0
g2i(τ, s) dHi(τ)

)
ϕ�1(Iα1

0+ f (s, u(s), v(s))) ds.

Hence for any t ∈ (0, 1) we find

(A1(u, v))′(t) =
∫ t

0

1
Γ(β1)

[
(β1 − 1)tβ1−2(1 − s)β1−γ0−1 − (β1 − 1)(t − s)β1−2

]
×ϕ�1(Iα1

0+ f (s, u(s), v(s))) ds

+
∫ 1

t

1
Γ(β1)

(β1 − 1)tβ1−2(1 − s)β1−γ0−1 ϕ�1(Iα1
0+ f (s, u(s), v(s))) ds

+
(β1 − 1)tβ1−2

Δ1

∫ 1

0

p

∑
i=1

(∫ 1

0
g2i(τ, s) dHi(τ)

)
ϕ�1(Iα1

0+ f (s, u(s), v(s))) ds.

Then for any t ∈ (0, 1) we obtain

|(A1(u, v))′(t)| ≤ 1
Γ(β1 − 1)

∫ t

0
[tβ1−2(1 − s)β1−γ0−1 + (t − s)β1−2]

×ϕ�1(Iα1
0+(ζ1(s)χ1(s, u(s), v(s)))) ds

+
1

Γ(β1 − 1)

∫ 1

t
tβ1−2(1 − s)β1−γ0−1 ϕ�1(Iα1

0+(ζ1(s)χ1(s, u(s), v(s)))) ds

+
(β1 − 1)tβ1−2

Δ1

∫ 1

0

p

∑
i=1

(∫ 1

0
g2i(τ, s) dHi(τ)

)
ϕ�1(Iα1

0+(ζ1(s)χ1(s, u(s), v(s)))) ds.

Therefore for any t ∈ (0, 1) we deduce

|(A1(u, v))′(t)| ≤ L�1−1
2

[
1

Γ(β1 − 1)

∫ t

0
[tβ1−2(1 − s)β1−γ0−1 + (t − s)β1−2]ϕ�1(Iα1

0+ζ1(s)) ds

+
1

Γ(β1 − 1)

∫ 1

t
tβ1−2(1 − s)β1−γ0−1 ϕ�1(Iα1

0+ζ1(s)) ds

+
(β1 − 1)tβ1−2

Δ1

∫ 1

0

p

∑
i=1

(∫ 1

0
g2i(τ, s) dHi(τ)

)
ϕ�1(Iα1

0+ζ1(s)) ds
]

.

(18)

We denote by

θ1(t) =
1

Γ(β1 − 1)

∫ t

0
[tβ1−2(1 − s)β1−γ0−1 + (t − s)β1−2]ϕ�1(Iα1

0+ζ1(s)) ds

+
1

Γ(β1 − 1)

∫ 1

t
tβ1−2(1 − s)β1−γ0−1 ϕ�1(Iα1

0+ζ1(s)) ds,

θ2(t) = θ1(t) +
(β1 − 1)tβ1−2

Δ1

∫ 1

0

p

∑
i=1

(∫ 1

0
g2i(τ, s) dHi(τ)

)
ϕ�1(Iα1

0+ζ1(s)) ds.
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We compute the integral of function θ1, by exchanging the order of integration, and we have

∫ 1

0
θ1(t) dt =

1
Γ(β1)

∫ 1

0
(1 − s)β1−γ0−1(1 + (1 − s)γ0)ϕ�1(Iα1

0+ζ1(s)) ds

≤ 2
Γ(β1)

∫ 1

0
(1 − s)β1−γ0−1 ϕ�1(Iα1

0+ζ1(s)) ds =
2Λ1

Γ(β1)
< ∞.

For the integral of the function θ2, we obtain

∫ 1

0
θ2(t) dt =

∫ 1

0
θ1(t) dt +

(∫ 1

0

(β1 − 1)tβ1−2

Δ1
dt
)

×
(∫ 1

0

p

∑
i=1

(∫ 1

0
g2i(τ, s) dHi(τ)

)
ϕ�1(Iα1

0+ζ1(s)) ds

)
≤ 2

Γ(β1)

∫ 1

0
(1 − s)β1−γ0−1 ϕ�1(Iα1

0+ζ1(s)) ds

+
1

Δ1

(∫ 1

0

p

∑
i=1

(∫ 1

0

1
Γ(β1 − γi)

τβ1−γi−1(1 − s)β1−γ0−1 dHi(τ)

)
ϕ�1(Iα1

0+ζ1(s)) ds

)
=

2
Γ(β1)

∫ 1

0
(1 − s)β1−γ0−1 ϕ�1(Iα1

0+ζ1(s)) ds

+
1

Δ1

(∫ 1

0
(1 − s)β1−γ0−1 ϕ�1(Iα1

0+ζ1(s)) ds
)(

p

∑
i=1

1
Γ(β1 − γi)

∫ 1

0
τβ1−γi−1dHi(τ)

)
.

Then we deduce

∫ 1

0
θ2(t) dt ≤ Λ1

(
2

Γ(β1)
+

1
Δ1

p

∑
i=1

1
Γ(β1 − γi)

∫ 1

0
τβ1−γi−1 dHi(τ)

)
< ∞. (19)

We conclude that θ2 ∈ L1(0, 1). Hence for any t1, t2 ∈ [0, 1] with t1 ≤ t2 and (u, v) ∈ S , by (18)
and (19), we find

|A1(u, v)(t1)−A1(u, v)(t2)| =
∣∣∣∣∫ t2

t1

(A1(u, v))′(t) dt
∣∣∣∣ ≤ L�1−1

2

∫ t2

t1

θ2(t) dt. (20)

By (19), (20) and the absolute continuity of the integral function, we deduce that A1(S) is
equicontinuous. By a similar approach, we obtain that A2(S) is also equicontinuous, and so A(S) is
equicontinuous. Using the Ascoli–Arzela theorem, we conclude that A1(S) and A2(S) are relatively
compact sets, and so A(S) is also relatively compact. Besides, we can prove that A1, A2 and A are
continuous on Q (see [16] (Lemma 1.4.1)). Then A is a completely continuous operator on Q.

We define now the cone

Q0 = {(u, v) ∈ Q, min
t∈[0,1]

u(t) ≥ tβ1−1‖u‖, min
t∈[0,1]

v(t) ≥ tβ2−1‖v‖}.

Under the assumptions (I1) and (I2), by using Lemma 4, we obtain A(Q) ⊂ Q0, and so A|Q0 :
Q0 → Q0 (denoted again by A) is also a completely continuous operator. For r > 0 we denote by Br

the open ball centered at zero of radius r, and by Br and ∂Br its closure and its boundary, respectively.

Theorem 1. Assume that (I1) and (I2) hold. In addition, the functions χ1, χ2, f and g satisfy the conditions

(I3) There exist μ1 ≥ 1 and μ2 ≥ 1 such that

χ10 = lim
x+y→0
x,y≥0

sup
t∈[0,1]

χ1(t, x, y)
ϕr1((x + y)μ1)

= 0 and χ20 = lim
x+y→0
x,y≥0

sup
t∈[0,1]

χ2(t, x, y)
ϕr2((x + y)μ2)

= 0;

135



Mathematics 2020, 8, 1890

(I4) There exists [a1, a2] ⊂ [0, 1], 0 < a1 < a2 < 1 such that

f i
∞ = lim

x+y→∞
x,y≥0

inf
t∈[a1,a2]

f (t, x, y)
ϕr1(x + y)

= ∞ or gi
∞ = lim

x+y→∞
x,y≥0

inf
t∈[a1,a2]

g(t, x, y)
ϕr2(x + y)

= ∞.

Then problem (1) and (2) has at least one positive solution (u(t), v(t)), t ∈ [0, 1].

Proof. We consider the above cone Q0. By (I3) we deduce that for ε1 = 1
(2M1)

r1−1 and ε2 = 1
(2M2)

r2−1 ,

there exists R1 ∈ (0, 1) such that

χi(t, x, y) ≤ εi(x + y)μi(ri−1), ∀ t ∈ [0, 1], x + y ≤ R1, i = 1, 2, (21)

where Mi, i = 1, 2 are defined in the proof of Lemma 5. Then by (21) and Lemma 3, for any (u, v) ∈
∂BR1 ∩Q0 and t ∈ [0, 1], we obtain

Ai(u, v)(t) ≤
∫ 1

0
Ji(s)ϕ�i (Iαi

0+(ζi(s)χi(s, u(s), v(s)))) ds

≤
∫ 1

0
Ji(s)ϕ�i (Iαi

0+(ζi(s)εi(u(s) + v(s))μi(ri−1))) ds

≤ ε
�i−1
i

∫ 1

0
Ji(s)ϕ�i (Iαi

0+ζi(s)(‖u‖+ ‖v‖)μi(ri−1)) ds

= ε
�i−1
i ‖(u, v)‖μi

Y
∫ 1

0
Ji(s)ϕ�i (Iαi

0+ζi(s)) ds

= Miε
�i−1
i ‖(u, v)‖μi

Y ≤ Miε
�i−1
i ‖(u, v)‖Y = 1

2‖(u, v)‖Y , i = 1, 2.

So we deduce that

‖A(u, v)‖Y = ‖A1(u, v)‖+ ‖A2(u, v)‖ ≤ ‖(u, v)‖Y , ∀ (u, v) ∈ ∂BR1 ∩Q0. (22)

By (I4), we suppose that f i
∞ = ∞ (in a similar manner we can study the case gi

∞ = ∞). Then for

ε3 = 2(A min{aβ1−1
1 , aβ2−1

1 })1−r1 , where A =
a

β1−1
1

(Γ(α1+1))�1−1

∫ a2
a1

J1(s)(s− a1)
α1(�1−1) ds, there exists C1 > 0

such that
f (t, x, y) ≥ ε3(x + y)r1−1 − C1, ∀ t ∈ [a1, a2], x, y ≥ 0. (23)

Then by (23), for any (u, v) ∈ Q0 and t ∈ [a1, a2], we find

A1(u, v)(t) ≥
∫ a2

a1

G1(t, s)
(

1
Γ(α1)

∫ s

a1

(s − τ)α1−1 f (τ, u(τ), v(τ)) dτ

)�1−1
ds

≥ aβ1−1
1

∫ a2

a1

J1(s)
(Γ(α1))�1−1

(∫ s

a1

(s − τ)α1−1(ε3(u(τ) + v(τ))r1−1 − C1) dτ

)�1−1
ds

= aβ1−1
1

∫ a2

a1

J1(s)
(Γ(α1))�1−1

(∫ s

a1

(s − τ)α1−1(ε3(aβ1−1
1 ‖u‖+ aβ2−1

1 ‖v‖)r1−1 − C1)dτ

)�1−1
ds

=
aβ1−1

1
(Γ(α1))�1−1

∫ a2

a1

J1(s)
[
ε3(aβ1−1

1 ‖u‖+ aβ2−1
1 ‖v‖)r1−1 − C1

]�1−1 (s − a1)
α1(�1−1)

α
�1−1
1

ds

≥ aβ1−1
1

(Γ(α1))�1−1

[
ε3

(
min{aβ1−1

1 , aβ2−1
1 }

)r1−1 ‖(u, v)‖r1−1
Y − C1

]�1−1

×
∫ a2

a1

J1(s)
(s − a1)

α1(�1−1)

α
�1−1
1

ds

=

[
A

1
�1−1 ε3

(
min{aβ1−1

1 , aβ2−1
1 }

)r1−1 ‖(u, v)‖r1−1
Y − A

1
�1−1 C1

]�1−1

=
(

2‖(u, v)‖r1−1
Y − C2

)�1−1
, C2 = Ar1−1C1.
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Hence we deduce

‖A1(u, v)‖ ≥ (2‖(u, v)‖r1−1
Y − C2)

�1−1, ∀ (u, v) ∈ Q0.

We can choose R2 ≥ max
{

1, C�1−1
2

}
and then we conclude

‖A(u, v)‖Y ≥ ‖A1(u, v)‖ ≥ ‖(u, v)‖|Y , ∀ (u, v) ∈ ∂BR2 ∩Q0. (24)

By using Lemma 5, the relations (22), (24), and the Guo–Krasnosel’skii fixed point theorem,
we deduce that A has a fixed point (u, v) ∈ (BR2 \ BR1) ∩ Q0, that is R1 ≤ ‖(u, v)‖Y ≤ R2,
and u(t) ≥ tβ1−1‖u|| and v(t) ≥ tβ2−1‖v‖ for all t ∈ [0, 1]. Then ‖u‖ > 0 or ‖v‖ > 0, that is u(t) > 0 for
all t ∈ (0, 1] or v(t) > 0 for all t ∈ (0, 1]. Hence (u(t), v(t)), t ∈ [0, 1] is a positive solution of problem (1)
and (2).

Remark 2. Theorem 1 remains valid if the functions χ1, χ2 and f satisfy the inequalities (21) and (23),
instead of (I3) and (I4).

Theorem 2. Assume that (I1) and (I2) hold. In addition the functions χ1, χ2, f and g satisfy the conditions

(I5)

χ1∞ = lim
x+y→∞
x,y≥0

sup
t∈[0,1]

χ1(t, x, y)
ϕr1(x + y)

= 0 and χ2∞ = lim
x+y→∞
x,y≥0

sup
t∈[0,1]

χ2(t, x, y)
ϕr2(x + y)

= 0;

(I6) There exist [a1, a2] ⊂ [0, 1], 0 < a1 < a2 < 1, ν1 ∈ (0, 1] and ν2 ∈ (0, 1] such that

f i
0 = lim

x+y→0
x,y≥0

inf
t∈[a1,a2]

f (t, x, y)
ϕr1((x + y)ν1)

= ∞ or gi
0 = lim

x+y→0
x,y≥0

inf
t∈[a1,a2]

g(t, x, y)
ϕr2((x + y)ν2)

= ∞.

Then problem (1) and (2) has at least one positive solution (u(t), v(t)), t ∈ [0, 1].

Proof. We consider again the cone Q0. By (I5) we deduce that for 0 < ε4 < min
{

1
(2M1)

r1−1 , 1
2M

r1−1
1

}
,

0 < ε5 < min
{

1
(2M2)

r2−1 , 1
2Mr2−1

2

}
, there exist C3 > 0, C4 > 0 such that

χ1(t, x, y) ≤ ε4(x + y)r1−1 + C3, χ2(t, x, y) ≤ ε5(x + y)r2−1 + C4, ∀ t ∈ [0, 1], x, y ≥ 0. (25)

By using (I2) and (25), for any (u, v) ∈ Q0, we obtain

A1(u, v)(t) ≤
∫ 1

0
J1(s)ϕ�1(Iα1

0+(ζ1(s)χ1(s, u(s), v(s)))) ds

≤
∫ 1

0
J1(s)ϕ�1(Iα1

0+(ζ1(s)(ε4(u(s) + v(s))r1−1 + C3))) ds

≤
∫ 1

0
J1(s)

1
(Γ(α1))�1−1

(
ε4‖(u, v)‖r1−1

Y + C3

)�1−1
(∫ s

0
(s − τ)α1−1ζ1(τ) dτ

)�1−1
ds

= M1

(
ε4‖(u, v)‖r1−1

Y + C3

)�1−1
, ∀ t ∈ [0, 1],

A2(u, v)(t) ≤
∫ 1

0
J2(s)ϕ�2(Iα2

0+(ζ2(s)χ2(s, u(s), v(s)))) ds

≤
∫ 1

0
J2(s)ϕ�2(Iα2

0+(ζ2(s)(ε5(u(s) + v(s))r2−1 + C4))) ds

≤
∫ 1

0
J2(s)

1
(Γ(α2))�2−1

(
ε5‖(u, v)‖r2−1

Y + C4

)�2−1
(∫ s

0
(s − τ)α2−1ζ2(τ) dτ

)�2−1
ds

= M2

(
ε5‖(u, v)‖r2−1

Y + C4

)�2−1
, ∀ t ∈ [0, 1].
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Then we find
‖A1(u, v)‖ ≤ M1

(
ε4‖(u, v)‖r1−1

Y + C3

)�1−1
,

‖A2(u, v)‖ ≤ M2

(
ε5‖(u, v)‖r2−1

Y + C4

)�2−1
,

and so
‖A(u, v)‖Y ≤ M1

(
ε4‖(u, v)‖r1−1

Y + C3

)�1−1
+ M2

(
ε5‖(u, v)‖r2−1

Y + C4

)�2−1
,

for all (u, v) ∈ Q0. We choose

R3 > max

{
1, M1C

�1−1
3 +M2C�2−1

4

1−
(

M1ε
�1−1
4 +M2ε

�2−1
5

) , M12�1−2C
�1−1
3 +M22�2−2C�2−1

4

1−
(

M12�1−2ε
�1−1
4 +M22�2−2ε

�2−1
5

) ,

M1C
�1−1
3 +M22�2−2C�2−1

4

1−
(

M1ε
�1−1
4 +M22�2−2ε

�2−1
5

) , M12�1−2C
�1−1
3 +M2C�2−1

4

1−
(

M12�1−2ε
�1−1
4 +M2ε

�2−1
5

)
}

,
(26)

and then we deduce
‖A(u, v)‖Y ≤ ‖(u, v)‖Y , ∀ (u, v) ∈ ∂BR3 ∩Q0. (27)

The choosing of R3 above is based on the inequalities (a + b)p ≤ 2p−1(ap + bp) for p ≥ 1 and
a, b ≥ 0, and (a + b)p ≤ ap + bp for p ∈ (0, 1] and a, b ≥ 0. Here p = �1 − 1 or �2 − 1. We explain
the above inequality (27) in one case, namely �1 ≥ 2 and �2 ≥ 2. In this situation, by using (26),
and the relations M12�1−2ε

�1−1
4 < 1

2 , M22�2−2ε
�2−1
5 < 1

2 (from the definition of ε4 and ε5), we have
the inequalities

M1(ε4Rr1−1
3 + C3)

�1−1 + M2(ε5Rr2−1
3 + C4)

�2−1

≤ M12�1−2(ε
�1−1
4 R3 + C�1−1

3 ) + M22�2−2(ε
�2−1
5 R3 + C�2−1

4 )

= (M12�1−2ε
�1−1
4 + M22�2−2ε

�2−1
5 )R3 + M12�1−2C�1−1

3 + M22�2−1C�2−1
4 < R3.

In a similar manner we treat the cases: �1 ∈ (1, 2] and �2 ∈ (1, 2]; �1 ≥ 2 and �2 ∈ (1, 2]; �1 ∈ (1, 2]
and �2 ≥ 2.

By (I6), we suppose that gi
0 = ∞ (in a similar manner we can study the case f i

0 = ∞). We deduce

that for ε6 = (min{aβ1−1
1 , aβ2−1

1 )ν2(1−r2) Ã1−r2 , where Ã =
aβ2−1

1
(Γ(α2+1))�2−1

∫ a2
a1
(s − a1)

α2(�2−1)J2(s) ds,

there exists R4 ∈ (0, 1] such that

g(t, x, y) ≥ ε6(x + y)ν2(r2−1), ∀ t ∈ [a1, a2], x, y ≥ 0, x + y ≤ R4. (28)

Then by using (28), for any (u, v) ∈ ∂BR4 ∩Q0 and t ∈ [a1, a2], we find

A2(u, v)(t) ≥
∫ a2

a1

G2(t, s)
(

1
Γ(α2)

∫ s

a1

(s − τ)α2−1g(τ, u(τ), v(τ)) dτ

)�2−1
ds

≥ aβ2−1
1

∫ a2

a1

J2(s)
1

(Γ(α2))�2−1

(∫ s

a1

(s − τ)α2−1ε6(u(τ) + v(τ))ν2(r2−1)dτ

)�2−1
ds

≥ aβ2−1
1

∫ a2

a1

J2(s)
1

(Γ(α2))�2−1

(∫ s

a1

(s − τ)α2−1ε6(aβ1−1
1 ‖u‖+ aβ2−1

1 ‖v‖)ν2(r2−1)dτ

)�2−1
ds

≥ aβ2−1
1 ε

�2−1
6

(
min{aβ1−1

1 , aβ2−1
1 }

)ν2 ‖(u, v)‖ν2
Y

(Γ(α2 + 1))�2−1

∫ a2

a1

(s − a1)
α2(�2−1)J2(s) ds

= ‖(u, v)‖ν2
Y ≥ ‖(u, v)‖Y .

Therefore ‖A2(u, v)‖ ≥ ‖(u, v)‖Y for all (u, v) ∈ ∂BR4 ∩Q0, and then

‖A(u, v)‖Y ≥ ‖A2(u, v)‖ ≥ ‖(u, v)‖Y , ∀ (u, v) ∈ ∂BR4 ∩Q0. (29)
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By Lemma 5, the relations (27), (29), and the Guo–Krasnosl’skii fixed point theorem, we conclude
that A has at least one fixed point (u, v) ∈ (BR3 \ BR4) ∩Q0, that is R4 ≤ ‖(u, v)‖Y ≤ R3, which is a
positive solution of problem (1) and (2).

Remark 3. Theorem 2 remains valid if the functions χ1, χ2 and g satisfy the inequalities (25) and (28),
instead of (I5) and (I6).

Theorem 3. Assume that (I1), (I2), (I4) and (I6) hold. In addition, the functions χ1 and χ2 satisfy the condition

(I7) D�1−1
0 M1 < 1

2 , D�2−1
0 M2 < 1

2 , where

D0 = max{ max
t,x,y∈[0,1]

χ1(t, x, y), max
t,x,y∈[0,1]

χ2(t, x, y)}.

Then problem (1) and (2) has at least two positive solutions (u1(t), v1(t)), (u2(t), v2(t)), t ∈ [0, 1].

Proof. We consider the operators A1, A2, A, and the cone Q0 defined in this section. If (I1), (I2) and
(I4) hold, then by the proof of Theorem 1, we deduce that there exists R2 > 1 (we can consider R2 > 1)
such that

‖A(u, v)‖Y ≥ ‖(u, v)‖Y , ∀ (u, v) ∈ ∂BR2 ∩Q0. (30)

If (I1), (I2) and (I6) hold, then by the proof of Theorem 2 we find that there exists R4 < 1 (we
can consider R4 < 1) such that

‖A(u, v)‖Y ≥ ‖(u, v)‖Y , ∀ (u, v) ∈ ∂BR4 ∩Q0. (31)

We consider now the set B1 = {(u, v) ∈ Y , ‖(u, v)‖Y < 1}. By (I7), for any (u, v) ∈ ∂B1 ∩Q0

and t ∈ [0, 1], we obtain

Ai(u, v)(t) ≤
∫ 1

0
Ji(s)

(
1

Γ(αi)

∫ s

0
(s − τ)αi−1ζi(τ)χi(τ, u(τ), v(τ)) dτ

)�i−1
ds

≤ D�i−1
0

∫ 1

0
Ji(s)

(
1

Γ(αi)

∫ s

0
(s − τ)αi−1ζi(τ) dτ

)�i−1
ds

= D�i−1
0

∫ 1

0
Ji(s)ϕ�i (Iαi

0+ζi(s)) ds = D�i−1
0 Mi <

1
2

, i = 1, 2.

So ‖Ai(u, v)‖ < 1
2 , for all (u, v) ∈ ∂B1 ∩Q0, i = 1, 2. Then

‖A(u, v)‖Y = ‖A1(u, v)‖+ ‖A2(u, v)‖ < 1 = ‖(u, v)‖Y , ∀ (u, v) ∈ ∂B1 ∩Q0. (32)

Therefore, by (30), (32) and the Guo–Krasnosel’skii fixed point theorem, we conclude that problem
(1), (2) has one positive solution (u1, v1) ∈ Q0 with 1 < ‖(u1, v1)‖Y ≤ R2. By (31), (32) and the
Guo–Krasnosel’skii fixed point theorem, we deduce that problem (1), (2) has another positive solution
(u2, v2) ∈ Q0 with R4 ≤ ‖(u2, v2)‖Y < 1. Then problem (1) and (2) has at least two positive solutions
(u1(t), v1(t)), (u2(t), v2(t)), t ∈ [0, 1].

Remark 4. Theorem 3 remains valid if the functions f and g satisfy the inequalities (23) and (28), instead of
(I4) and (I6).

4. Examples

Let α1 = 1/3, α2 = 1/2, β1 = 5/2, (n = 3), β2 = 13/4, (m = 4), r1 = 4, �1 = 4/3, r2 = 5, �2 = 5/4,
p = 2, q = 1, γ0 = 4/3, γ1 = 1/4, γ2 = 6/5, δ0 = 11/5, δ1 = 7/6, H1(t) = t/3 for all t ∈ [0, 1],
H2(t) = {1/6, t ∈ [0, 2/3); 2/3, t ∈ [2/3, 1]}, K1(t) = {1/4, t ∈ [0, 1/3); 9/4, t ∈ [1/3, 1]}.
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We consider the system of fractional differential equations{
D1/3

0+ (ϕ4(D5/2
0+ u(t))) + f (t, u(t), v(t)) = 0, t ∈ (0, 1),

D1/2
0+ (ϕ5(D13/4

0+ v(t))) + g(t, u(t), v(t)) = 0, t ∈ (0, 1),
(33)

with the nonlocal boundary conditions⎧⎪⎪⎨⎪⎪⎩
u(0) = u′(0) = 0, D5/2

0+ u(0) = 0, D4/3
0+ u(1) =

1
3

∫ 1

0
D1/4

0+ u(t) dt +
1
2

D6/5
0+ u

(
2
3

)
,

v(0) = v′(0) = v′′(0) = 0, D13/4
0+ v(0) = 0, D11/5

0+ v(1) = 2D7/6
0+ v

(
1
3

)
.

(34)

We obtain here Δ1 ≈ 0.60331103 > 0 and Δ2 ≈ 1.12479609 > 0. We also find

g1(t, s) =
1

Γ(5/2)

{
t3/2(1 − s)1/6 − (t − s)3/2, 0 ≤ s ≤ t ≤ 1,
t3/2(1 − s)1/6, 0 ≤ t ≤ s ≤ 1,

g21(t, s) =
1

Γ(9/4)

{
t5/4(1 − s)1/6 − (t − s)5/4, 0 ≤ s ≤ t ≤ 1,
t5/4(1 − s)1/6, 0 ≤ t ≤ s ≤ 1,

g22(t, s) =
1

Γ(13/10)

{
t3/10(1 − s)1/6 − (t − s)3/10, 0 ≤ s ≤ t ≤ 1,
t3/10(1 − s)1/6, 0 ≤ t ≤ s ≤ 1,

g3(t, s) =
1

Γ(13/4)

{
t9/4(1 − s)1/20 − (t − s)9/4, 0 ≤ s ≤ t ≤ 1,
t9/4(1 − s)1/20, 0 ≤ t ≤ s ≤ 1,

g41(t, s) =
1

Γ(25/12)

{
t13/12(1 − s)1/20 − (t − s)13/12, 0 ≤ s ≤ t ≤ 1,
t13/12(1 − s)1/20, 0 ≤ t ≤ s ≤ 1,

G1(t, s) = g1(t, s) +
t3/2

Δ1

[
1
3

∫ 1

0
g21(τ, s) dτ +

1
2

g22

(
2
3

, s
)]

, t, s ∈ [0, 1],

G2(t, s) = g3(t, s) +
2t9/4

Δ2
g41

(
1
3

, s
)

, t, s ∈ [0, 1],

h1(s) =
1

Γ(5/2)
[(1 − s)1/6 − (1 − s)3/2], s ∈ [0, 1],

h2(s) =
1

Γ(13/4)
[(1 − s)1/20 − (1 − s)9/4], s ∈ [0, 1].

In addition we deduce

J1(s) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

h1(s) + 1
Δ1

{
4

27Γ(9/4) (1 − s)1/6 − 4
27Γ(9/4) (1 − s)9/4 + 1

2Γ(13/10)

×
[( 2

3
)3/10

(1 − s)1/6 − ( 2
3 − s

)3/10
]}

, 0 ≤ s < 2
3 ,

h1(s) + 1
Δ1

[
4

27Γ(9/4) (1 − s)1/6 − 4
27Γ(9/4) (1 − s)9/4 + 1

2Γ(13/10)

× ( 2
3
)3/10

(1 − s)1/6
]

, 2/3 ≤ s ≤ 1,

J2(s) =

⎧⎪⎨⎪⎩
h2(s) + 2

Δ2Γ(25/12)

[(
1
3

)13/12
(1 − s)1/20 −

(
1
3 − s

)13/12
]

, 0 ≤ s < 1
3 ,

h2(s) + 2
Δ2Γ(25/12)

(
1
3

)13/12
(1 − s)1/20, 1

3 ≤ s ≤ 1.

Example 1. We consider the functions

f (t, x, y) =
(x + y)3a

tη1(1 − t)η2
, g(t, x, y) =

(x + y)4b

tη3(1 − t)η4
, t ∈ (0, 1), x, y ≥ 0, (35)

where a > 1, b > 1, η1, η2 ∈ (0, 1/4), η3, η4 ∈ (0, 1/3). Here f (t, x, y) = ζ1(t)χ1(t, x, y), g(t, x, y) =

ζ2(t)χ2(t, x, y), ζ1(t) = 1
tη1 (1−t)η2 , ζ2(t) = 1

tη3 (1−t)η4 for all t ∈ (0, 1), χ1(t, x, y) = (x + y)3a, χ2(t, x, y) =

(x + y)4b for all t ∈ [0, 1], x, y ≥ 0. By using the Hölder inequality, we obtain
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0 < Λ1 =
∫ 1

0
(1 − s)β1−γ0−1 ϕ�1(Iα1

0+ζ1(s)) ds =
∫ 1

0
(1 − s)1/6

(
I1/3
0+ ζ1(s))

)1/3
ds

=
1

(Γ(1/3))1/3

∫ 1

0
(1 − s)1/6

(∫ s

0
(s − τ)−2/3 1

τη1(1 − τ)η2
dτ

)1/3
ds

≤ 1
(Γ(1/3))1/3

∫ 1

0
(1 − s)1/6

⎡⎣(∫ s

0
(s − τ)−8/9dτ

)3/4
(∫ s

0

(
1

τη1(1 − τ)η2

)4
dτ

)1/4
⎤⎦1/3

ds

≤ 1
(Γ(1/3))1/3

∫ 1

0
(1 − s)1/6

[
(9s1/9)3/4(B(1 − 4η1, 1 − 4η2))

1/4
]1/3

ds

=
31/2

(Γ(1/3))1/3 (B(1 − 4η1, 1 − 4η2))
1/12B

(
37
36

,
7
6

)
< ∞,

0 < Λ2 =
∫ 1

0
(1 − s)β2−δ0−1 ϕ�2(Iα2

0+ζ2(s)) ds =
∫ 1

0
(1 − s)1/20

(
I1/2
0+ ζ2(s)

)1/4
ds

=
1

(Γ(1/2))1/4

∫ 1

0
(1 − s)1/20

(∫ s

0
(s − τ)−1/2 1

τη3(1 − τ)η4
dτ

)1/4
ds

≤ 1
(Γ(1/2))1/4

∫ 1

0
(1 − s)1/20

[(∫ s

0
(s − τ)−3/4dτ

)2/3 (∫ s

0
τ−3η3(1 − τ)−3η4 dτ

)1/3
]1/4

ds

≤ 1
(Γ(1/2))1/4

∫ 1

0
(1 − s)1/20[(4s1/4)2/3(B(1 − 3η3, 1 − 3η4))

1/3]1/4 ds

=
21/3

(Γ(1/2))1/4 (B(1 − 3η3, 1 − 3η4))
1/12B

(
25
24

,
21
20

)
< ∞.

Hence assumptions (I1) and (I2) are satisfied.
In addition, in (I3), for μ1 = μ2 = 1, we obtain χ10 = χ20 = 0, and in (I4) for [a1, a2] ⊂ (0, 1) we

have f i
∞ = ∞ (and gi

∞ = ∞). Then by Theorem 1, we conclude that problem (33) and (34) with the
nonlinearities (35) has at least one positive solution (u(t), v(t)), t ∈ [0, 1].

Example 2. We consider the functions

f (t, x, y) =
c0(t + 1)
(t2 + 4) 5

√
t
[(x + y)σ1 + (x + y)σ2 ], t ∈ (0, 1], x, y ≥ 0,

g(t, x, y) =
d0(2 + sin t)
(t + 3)4 4

√
1 − t

(xσ3 + yσ4), t ∈ [0, 1), x, y ≥ 0,
(36)

where c0 > 0, d0 > 0, σ1 > 3, σ2 ∈ (0, 3), σ3 > 0, σ4 > 0. Here we have ζ1(t) = 1
5√t

, t ∈ (0, 1],

χ1(t, x, y) = c0(t+1)
t2+4 [(x + y)σ1 + (x + y)σ2 ], t ∈ [0, 1], x, y ≥ 0, ζ2(t) = 1

4√1−t
, t ∈ [0, 1), χ2(t, x, y) =

d0(2+sin t)
(t+3)4 (xσ3 + yσ4), t ∈ [0, 1], x, y ≥ 0. By using a computer program, we obtain

Λ1 =
∫ 1

0
(1 − s)β1−γ0−1 ϕ�1(Iα1

0+ζ1(s)) ds =
∫ 1

0
(1 − s)1/6(I1/3

0+ ζ1(s))1/3 ds

=
1

(Γ(1/3))1/3

∫ 1

0
(1 − s)1/6

(∫ s

0
τ−1/5(s − τ)−2/3 dτ

)1/3
ds

τ=sx
=

1
(Γ(1/3))1/3

∫ 1

0
(1 − s)1/6

(∫ 1

0
(sx)−1/5(s − sx)−2/3s dx

)1/3

ds

=
1

(Γ(1/3))1/3

(∫ 1

0
s2/45(1 − s)1/6 ds

)(∫ 1

0
x−1/5(1 − x)−2/3dx

)1/3

=
1

(Γ(1/3))1/3 B
(

47
45

,
7
6

)(
B
(

4
5

,
1
3

))1/3
≈ 0.877777,
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Λ2 =
∫ 1

0
(1 − s)β2−δ0−1 ϕ�2(Iα2

0+ζ2(s)) ds =
∫ 1

0
(1 − s)1/20(I1/2

0+ ζ2(s))1/4 ds

=
1

(Γ(1/2))1/4

∫ 1

0
(1 − s)1/20

(∫ s

0
(s − τ)−1/2(1 − τ)−1/4dτ

)1/4
ds

τ=sx
=

1
(Γ(1/2))1/4

∫ 1

0
(1 − s)1/20

(∫ 1

0
(s − sx)−1/2(1 − sx)−1/4s dx

)1/4

ds

=
1

(Γ(1/2))1/4

∫ 1

0
(1 − s)1/20

(
s1/2

∫ 1

0
(1 − x)−1/2(1 − sx)−1/4 dx

)1/4

ds

=
1

(Γ(1/2))1/4

∫ 1

0
(1 − s)1/20

(
s1/2√π 2F1

[
1
4

, 1,
3
2

, s
])1/4

ds ≈ 0.901313,

where 2F1[a, b, c, z] = 1
Γ(b)Γ(c−b)

∫ 1

0
sb−1(1− s)c−b−1(1− sz)−a ds is the regularized hypergeometric function.

So Λi ∈ (0, ∞), i = 1, 2, and then assumptions (I1) and (I2) are satisfied.

For [a1, a2] ⊂ (0, 1), we find f i
∞ = ∞, and if we consider 0 < ν1 ≤ 1, 3ν1 > σ2 we obtain f i

0 = ∞,
and then assumptions (I4) and (I6) are satisfied. After some computations we deduce

M1 =
∫ 1

0
J1(s)ϕ�1(Iα1

0+ζ1(s)) ds =
∫ 1

0
J1(s)ϕ4/3

(
I1/3
0+

1
5
√

s

)
ds

=
1

(Γ(1/3))1/3

∫ 1

0
J1(s)

(∫ s

0
(s − τ)−2/3τ−1/5dτ

)1/3
ds

=
1

(Γ(1/3))1/3

∫ 1

0
J1(s)

(
s2/15B

(
4
5

,
1
3

))1/3
ds ≈ 0.78160052,

M2 =
∫ 1

0
J2(s)ϕ�2(Iα2

0+ζ2(s)) ds =
∫ 1

0
J2(s)ϕ5/4(I1/2

0+ ζ2(s)) ds

=
∫ 1

0
J2(s)

(
1

Γ(1/2)

∫ s

0
(s − τ)−1/2(1 − τ)−1/4dτ

)1/4
ds

=
1

(Γ(1/2))1/4

∫ 1

0
J2(s)

(
s1/2√π 2F1

[
1
4

, 1,
3
2

, s
])1/4

ds ≈ 0.65997289.

In addition, we find D0 = max
{

2c0
5 (2σ1 + 2σ2), 4d0

81

}
. If c0 < min

{
5

16M3
1(2

σ1+2σ2 )
, 5

32M4
2(2

σ1+2σ2 )

}
and

d0 < min
{

81
32M3

1
, 81

64M4
2

}
, then the inequalities D1/3

0 M1 < 1
2 and D1/4

0 M2 < 1
2 are satisfied (that is,

assumption (I7) is satisfied). For example, if σ1 = 4 and σ2 = 2, and c0 ≤ 0.032 and d0 ≤ 5.301,
then the above inequalities are satisfied. By Theorem 3, we conclude that problem (33) and (34) with
the nonlinearities (36) has at least two positive solutions (u1(t), v1(t)), (u2(t), v2(t)), t ∈ [0, 1].

5. Conclusions

In this paper, we have discussed the existence and multiplicity of positive solutions for a system
of Riemann–Liouville fractional differential equations with singular nonnegative nonlinearities and
p-Laplacian operators, complemented with nonlocal boundary conditions involving fractional derivatives
and Riemann–Stieltjes integrals. Some properties of the associated Green functions are also presented.
Two examples are constructed for the illustration of the obtained results.
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1. Introduction

The subject of fractional order boundary value problems has been addressed by many researchers
in recent years. The interest in the subject owes to its extensive applications in natural and social
sciences. Examples include bio-engineering [1], ecology [2], financial economics [3], chaos and
fractional dynamics [4], etc. One can find many interesting results using boundary value problems
dealing with Caputo, Riemann–Liouville and Hadamard type fractional derivatives and equipped
with a variety of boundary conditions in [5–17].

Integro-differential equations constitute an important area of investigation due to their occurrence
in several applied fields, such as heat transfer phenomena [18,19], fractional power law [20], etc.
Fractional integro-differential equations complemented with different kinds of boundary conditions
have also been studied by many researchers, for example, [21–28]. In a recent paper [29], a nonlocal
boundary value problem containing left Caputo and right Riemann–Liouville fractional derivatives,
and both left and right Riemann–Liouville fractional integral operators was discussed.

Motivated by aforementioned work on integro-differential equations, we introduce and
investigate a nonlinear Caputo–Riemann–Liouville type fractional integro-differential boundary value
problem involving multi-point sub-strip boundary conditions given by⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

cDqx(t) +
k

∑
i=1

Ipi gi(t, x(t)) = f (t, x(t)), 0 < t < 1,

x(0) = a, x′(0) = 0, x′′(0) = 0, . . . , x(m−2)(0) = 0,

αx(1) + βx′(1) = γ1

∫ ζ

0
x(s)ds +

p

∑
j=1

αj x(ηj) + γ2

∫ 1

ξ
x(s)ds,

(1)
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where cDq represents the Caputo fractional derivative operator of order q ∈ (m − 1, m], m ∈ N, m ≥ 2,
pi > 0, 0 < ζ, η1, η2, . . . , ηp, ξ < 1, f , gi : [0, 1] × R → R, (i = 1, . . . , k) are continuous functions
a, α, β, γ1, γ2 ∈ R and αj ∈ R, j = 1, 2, . . . , p. Notice that the fixed/nonlocal points involved in the
problem (1) are non-singular.

We emphasize that the problem considered in this paper is novel in the sense that the fractional
integro-differential equation involves many finitely Riemann–Liouville fractional integral type
nonlinearities together with a non-integral nonlinearity. In the literature, one can find results on
linear integro-differential equations [30], fractional integro-differential equations with nonlinearity
depending on the linear integral terms [31,32], and initial value problems involving two nonlinear
integral terms [33]. In contrast to the aforementioned work, our problem contains many finitely
nonlinear integral terms of fractional order, which reduce to the nonlinear integral terms by fixing
pi = 1, ∀i = 1, . . . , k. For specific applications of integral-differential equations in the mathematical
modeling of physical problems such as the spreading of disease by the dispersal of infectious
individuals, and reaction-–diffusion models in ecology, see [1,2]. In particular, one can find more
details on the topic in [34] and the references cited therein. For some recent work on fractional
integro-differential equations, see [35,36]. In a more recent work [37], the authors studied the existence
of solutions for a fractional integro-differential equation supplemented with dual anti-periodic
boundary conditions. Concerning the boundary condition at the terminal position t = 1, the linear
combination of the unknown function and its derivative is associated with the contribution due to
two sub-strips (0, ζ) and (ξ, 1) and finitely many nonlocal positions between them within the domain
[0, 1]. This boundary condition covers many interesting situations, for example, it corresponds to the
two-strip aperture condition for all αj = 0, j = 1, . . . , p. By taking γ1 = 0 = γ2, this condition takes the
form of a multi-point nonlocal boundary condition. It is interesting to note that the role of integral
boundary conditions in studying practical problems such as blood flow problems [38] and bacterial
self-regularization [39], etc., is crucial. For the application of strip conditions in engineering and real
world problems, see [40,41]. On the other hand, the concept of nonlocal boundary conditions plays a
significant role when physical, chemical or other processes depend on the interior positions (non-fixed
points or segments) of the domain, for instance, see [42–45] and the references therein.

The rest of the paper is arranged as follows. Section 2 contains some related concepts of fractional
calculus and an auxiliary result concerning a linear version of the problem (1). We prove the existence
and uniqueness of solutions for the problem (1) by applying Banach and Krasnosel’skiĭ’s fixed point
theorems in Section 3. Finally, examples illustrating the main results are demonstrated in Section 4.

2. Preliminaries

Let us first outline some preliminary concepts of fractional calculus [5].

Definition 1. The Caputo derivative for a function h ∈ ACn[a, b] of fractional order q ∈ (n − 1, n], n ∈ N,
existing almost everywhere on [a, b], is defined by

cDqh(t) =
1

Γ(n − q)

∫ t

a
(t − u)n−q−1h(n)(u)du, t ∈ [a, b].

Definition 2. The Riemann–Liouville fractional integral for a function h ∈ L1[a, b] of order r > 0, which exists
almost everywhere on [a, b], is defined by

Irh(t) =
1

Γ(r)

∫ t

a

h(u)
(t − u)1−r du, t ∈ [a, b].

Lemma 1. For m − 1 < r ≤ m, the general solution of the fractional differential equation cDrx(t) = 0 can be
written as

x(t) = b0 + b1t + b2t2 + . . . + bm−1tm−1, (2)
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where bi ∈ R, i = 0, 1, 2, . . . , m − 1.

It follows by Lemma 1 that

Ir cDrx(t) = x(t) + b0 + b1t + b2t2 + . . . + bm−1tm−1, (3)

for some bi ∈ R, i = 0, 1, 2, . . . , m − 1, are arbitrary constants.
The following lemma deals with the linear version of the problem (1).

Lemma 2. For a given function h ∈ C([0, 1],R) the unique solution of the following boundary value problem⎧⎪⎪⎪⎨⎪⎪⎪⎩
cDqx(t) = h(t), 0 < t < 1,
x(0) = a, x′(0) = 0, x′′(0) = 0, . . . , x(m−2)(0) = 0,

αx(1) + βx′(1) = γ1

∫ ζ

0
x(s)ds +

p

∑
j=1

αj x(ηj) + γ2

∫ 1

ξ
x(s)ds,

(4)

is given by

x(t) =
∫ t

0

(t − s)q−1

Γ(q)
h(s)ds + a − tm−1

Λ1

[
α
∫ 1

0

(1 − s)q−1

Γ(q)
h(s)ds + β

∫ 1

0

(1 − s)q−2

Γ(q − 1)
h(s)ds

− γ1

∫ ζ

0

∫ s

0

(s − u)q−1

Γ(q)
h(u)duds −

p

∑
j=1

αj

∫ ηj

0

(ηj − s)q−1

Γ(q)
h(s)ds

− γ2

∫ 1

ξ

∫ s

0

(s − u)q−1

Γ(q)
h(u)duds + Λ2

]
,

(5)

where it is assumed that

Λ1 =

(
α + β(m − 1)− γ1

(
ζm

m

)
−

p

∑
j=1

αjη
m−1
j − γ2

(
1 − ξm

m

))
�= 0, (6)

Λ2 = a
[
α − γ1ζ −

p

∑
j=1

αj − γ2(1 − ξ)
]
. (7)

Proof. Using (3), we can write the general solution of the fractional differential equation in (4) as

x(t) =
∫ t

0

(t − s)q−1

Γ(q)
h(s)ds − c0 − c1t − c2t2 − . . . − cm−1tm−1, (8)

where c0, c1, c2, . . . , cm−1 ∈ R are arbitrary constants. From (8), we have

x′(t) =
∫ t

0

(t − s)q−2

Γ(q − 1)
h(s)ds − c1 − 2c2t − . . . − (m − 1)cm−1tm−2,

x′′(t) =
∫ t

0

(t − s)q−3

Γ(q − 2)
h(s)ds − 2c2 − . . . − (m − 1)(m − 2)cm−1tm−3,

...

(9)
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Applying the conditions x(0) = a, x′(0) = 0, . . . , x(m−2)(0) = 0 in (8), it is found that c0 = −a,
c1 = 0, . . . , cm−2 = 0. Then (8) becomes

x(t) =
∫ t

0

(t − s)q−1

Γ(q)
h(s)ds + a − cm−1tm−1, (10)

and

x′(t) =
∫ t

0

(t − s)q−2

Γ(q − 1)
h(s)ds − (m − 1)cm−1tm−2. (11)

Combining (10) and (11) with the condition αx(1) + βx′(1) = γ1

∫ ζ

0
x(s)ds +

p

∑
j=1

αj x(ηj)

+ γ2

∫ 1

ξ
x(s)ds, we get

α

[∫ 1

0

(1 − s)q−1

Γ(q)
h(s)ds + a − cm−1

]
+ β

[∫ 1

0

(1 − s)q−2

Γ(q − 1)
h(s)ds − (m − 1)cm−1

]
= γ1

∫ ζ

0

[∫ s

0

(s − u)q−1

Γ(q)
h(u)du + a − cm−1sm−1

]
ds +

p

∑
j=1

αj

[∫ ηj

0

(ηj − s)q−1

Γ(q)
h(s)ds

+a − cm−1ηm−1
j

]
+ γ2

∫ 1

ξ

[∫ s

0

(s − u)q−1

Γ(q)
h(u)du + a − cm−1sm−1

]
ds,

which, together with (6) and (7), yields

cm−1 =
1

Λ1

[
α
∫ 1

0

(1 − s)q−1

Γ(q)
h(s)ds + β

∫ 1

0

(1 − s)q−2

Γ(q − 1)
h(s)ds

−γ1

∫ ζ

0

∫ s

0

(s − u)q−1

Γ(q)
h(u)duds −

p

∑
j=1

αj

∫ ηj

0

(ηj − s)q−1

Γ(q)
h(s)ds

−γ2

∫ 1

ξ

∫ s

0

(s − u)q−1

Γ(q)
h(u)duds + aα − aγ1ζ − a

p

∑
j=1

αj − aγ2(1 − ξ)

]
.

Substituting the value of cm−1 in (10), we obtain

x(t)

=
∫ t

0

(t − s)q−1

Γ(q)
h(s)ds + a − tm−1

Λ1

[
α
∫ 1

0

(1 − s)q−1

Γ(q)
h(s)ds + β

∫ 1

0

(1 − s)q−2

Γ(q − 1)
h(s)ds

−γ1

∫ ζ

0

∫ s

0

(s − u)q−1

Γ(q)
h(u)duds −

p

∑
j=1

αj

∫ ηj

0

(ηi − s)q−1

Γ(q)
h(s)ds

−γ2

∫ 1

ξ

∫ s

0

(s − u)q−1

Γ(q)
h(u)duds + Λ2

]
.

We can obtain the converse of this lemma by direct computation. This finishes the proof.

Using Lemma 2, we can transform problem (1) into a fixed point problem as x = Fx, where the
operator F : C → C is defined by

Fx(t) =
∫ t

0

(t − s)q−1

Γ(q)
f (s, x(s))ds −

k

∑
i=1

∫ t

0

(t − s)q+pi−1

Γ (q + pi)
gi(s, x(s))ds + a
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− tm−1

Λ1

[
α
∫ 1

0

(
(1 − s)q−1

Γ(q)
f (s, x(s))−

k

∑
i=1

(1 − s)q+pi−1

Γ (q + pi)
gi(s, x(s))

)
ds

+β
∫ 1

0

(
(1 − s)q−2

Γ(q − 1)
f (s, x(s))−

k

∑
i=1

(1 − s)q+pi−2

Γ(q + pi − 1)
gi(s, x(s))

)
ds

−γ1

∫ ζ

0

∫ s

0

(s − u)q−1

Γ(q)
f (u, x(u)) du ds (12)

+γ1

k

∑
i=1

∫ ζ

0

∫ s

0

(s − u)q−1

Γ(q)

∫ u

0

(u − w)pi−1

Γ (pi)
gi(w, x(w))dw du ds

−
p

∑
j=1

αj

(∫ ηj

0

(ηj − s)q−1

Γ(q)
f (s, x(s))ds −

k

∑
i=1

∫ ηj

0

(ηj − s)q+pi−1

Γ(q + pi)
gi(s, x(s))ds

)

−γ2

∫ 1

ξ

∫ s

0

(s − u)q−1

Γ(q)
f (u, x(u)) du ds

+γ2

k

∑
i=1

∫ 1

ξ

∫ s

0

(s − u)q−1

Γ(q)

∫ u

0

(u − w)pi−1

Γ (pi)
gi(w, x(w))dw du ds + Λ2

]
.

Here C, represents the Banach space of all continuous functions x : [0, 1] → R equipped with the
norm ‖x‖ = supt∈[0,1] |x(t)|.

By a solution of (1), we mean a function x ∈ C of class Cm[0, 1] satisfying the nonlocal
integro-multipoint boundary value problem (1).

For computational convenience, we set

Ω =

[
1

Γ(q + 1)
+

1
|Λ1|

(
|α|

Γ(q + 1)
+

|β|
Γ(q)

+
|γ1|ζq+1

Γ(q + 2)
+

p
∑

j=1
|αj|ηq

j

Γ(q + 1)

+
|γ2||1 − ξq+1|

Γ(q + 2)

)]
, (13)

Ωi =

[
1

Γ(q + pi + 1)
+

1
|Λ1|

(
|α|

Γ(q + pi + 1)
+

|β|
Γ(q + pi)

+
|γ1|ζq+pi+1

Γ(q + pi + 2)

+

p
∑

j=1
|αj|ηq+pi

j

Γ(q + pi + 1)
+

|γ2||1 − ξq+pi+1|
Γ(q + pi + 2)

)]
, i = 1, 2, . . . , k. (14)

3. Existence and Uniqueness Results

In the following theorem, we make use of Banach’s fixed point theorem.

Theorem 1. Let f , gi : [0, 1] × R → R be continuous functions and let there exist constants L, Li > 0,
(i = 1, . . . , k) such that:

(A1) | f (t, x)− f (t, y)| ≤ L |x − y|, and |gi(t, x)− gi(t, y)| ≤ Li |x − y| for all t ∈ [0, 1], x, y ∈ R.

Then, the boundary value problem (1) has a unique solution on [0, 1] if

LΩ +
k

∑
i=1

LiΩi < 1, (15)

where Ω, Ωi, i = 1, 2, . . . , k are given by (13) and (14), respectively.

Proof. The proof will be given in two steps.
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Step 1. We show that FBr ⊂ Br, where Br = {x ∈ C : ‖x‖ ≤ r} with r ≥
(

MΩ +
k
∑

i=1
MiΩi + |a|+

(Λ2/Λ1)
/(

1 − (LΩ +
k
∑

i=1
LiΩi)

)
and M, Mi are positive numbers such that M = sup

t∈[0,1]
| f (t, 0)| and

Mi = sup
t∈[0,1]

|gi(t, 0)| , i = 1, 2, . . . , k.

For x ∈ Br and t ∈ [0, 1], it follows by (A1) that

| f (t, x(t))| ≤ | f (t, x(t))− f (t, 0)|+ | f (t, 0)| ≤ L‖x‖+ M ≤ Lr + M. (16)

In a similar manner, we have |gi(t, x(t))| ≤ Li r + Mi, i = 1, 2, . . . , k. Then

‖Fx‖

≤ sup
t∈[0,1]

{∫ t

0

(t − s)q−1

Γ(q)
| f (s, x(s))|ds +

k

∑
i=1

∫ t

0

(t − s)q+pi−1

Γ (q + pi)
|gi(s, x(s))|ds + |a|

+
tm−1

|Λ1|

[
|α|

∫ 1

0

(
(1 − s)q−1

Γ(q)
| f (s, x(s))|+

k

∑
i=1

(1 − s)q+pi−1

Γ (q + pi)
|gi(s, x(s))|

)
ds

+|β|
∫ 1

0

(
(1 − s)q−2

Γ(q − 1)
| f (s, x(s))|+

k

∑
i=1

(1 − s)q+pi−2

Γ(q + pi − 1)
|gi(s, x(s))|

)
ds

+|γ1|
∫ ζ

0

∫ s

0

(s − u)q−1

Γ(q)
| f (u, x(u))| du ds

+|γ1|
k

∑
i=1

∫ ζ

0

∫ s

0

(s − u)q−1

Γ(q)

∫ u

0

(u − w)pi−1

Γ (pi)
|gi(w, x(w))| dw du ds

+
p

∑
j=1

|αj|
(∫ ηj

0

(ηj − s)q−1

Γ(q)
| f (s, x(s))|ds +

k

∑
i=1

∫ ηj

0

(ηj − s)q+pi−1

Γ(q + pi)
|gi(s, x(s))|ds

)

+|γ2|
∫ 1

ξ

∫ s

0

(s − u)q−1

Γ(q)
| f (u, x(u))| du ds

+|γ2|
k

∑
i=1

∫ 1

ξ

∫ s

0

(s − u)q−1

Γ(q)

∫ u

0

(u − w)pi−1

Γ (pi)
|gi(w, x(w))| dw du ds + |Λ2|

]}

≤ (Lr + M)

⎡⎢⎢⎢⎣ sup
t∈[0,1]

⎧⎪⎪⎪⎨⎪⎪⎪⎩
tq

Γ(q + 1)
+

tm−1

|Λ1|

⎛⎜⎜⎜⎝ |α|
Γ(q + 1)

+
|β|

Γ(q)
+

|γ1|ζq+1

Γ(q + 2)
+

p
∑

j=1
|αj|ηq

j

Γ(q + 1)

+
|γ2|(1 − ξq+1)

Γ(q + 2)

)]
+

k

∑
i=1

(Lir + Mi)

[
tq+pi

Γ(q + pi + 1)
+

tm−1

|Λ1|
( |α|

Γ(q + pi + 1)

+
|β|

Γ(q + pi)
+

|γ1|ζq+pi+1

Γ(q + pi + 2)
+

p
∑

j=1
|αi|ηq+pi

j

Γ(q + pi + 1)
+

|γ2|(1 − ξq+pi+1)

Γ(q + pi + 2)

⎞⎟⎟⎟⎠
⎤⎥⎥⎥⎦

+|a|+ tm−1|Λ2|
|Λ1|

}
= (Lr + M)Ω +

k

∑
i=1

(Lir + Mi)Ωi + |a|+
∣∣∣∣Λ2

Λ1

∣∣∣∣
=

(
LΩ +

k

∑
i=1

LiΩi

)
r + MΩ +

k

∑
i=1

MiΩi + |a|+
∣∣∣∣Λ2

Λ1

∣∣∣∣ ≤ r,
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which shows that FBr ⊂ Br.
Step 2. We show that F is a contraction. For x, y ∈ C and for each t ∈ [0, 1], we obtain

‖Fx −Fy‖
≤ sup

t∈[0,1]

{∫ t

0

(t − s)q−1

Γ(q)
| f (s, x(s))− f (s, y(s))|ds

+
k

∑
i=1

∫ t

0

(t − s)q+pi−1

Γ (q + pi)
|gi(s, x(s))− gi(s, y(s))|ds

+
tm−1

|Λ1|
[
|α|

∫ 1

0

(
(1 − s)q−1

Γ(q)
| f (s, x(s))− f (s, y(s))|

+
k

∑
i=1

(1 − s)q+pi−1

Γ(q + pi)
|gi(s, x(s))− gi(s, y(s))|

)
ds

+|β|
∫ 1

0

(
(1 − s)q−2

Γ(q − 1)
| f (s, x(s))− f (s, y(s))|

+
k

∑
i=1

(1 − s)q+pi−2

Γ(q + pi − 1)
|gi(s, x(s))− gi(s, y(s))|

)
ds

+|γ1|
∫ ζ

0

∫ s

0

(s − u)q−1

Γ(q)
| f (u, x(u))− f (u, y(u))| du ds

+|γ1|
k

∑
i=1

∫ ζ

0

∫ s

0

(s − u)q−1

Γ(q)

∫ u

0

(u − w)pi−1

Γ (pi)
|gi(w, x(w))− gi(w, y(w))|dwduds

+
p

∑
j=1

|αj|
(∫ ηj

0

(ηj − s)q−1

Γ(q)
| f (s, x(s))− f (s, y(s))|ds

+
k

∑
i=1

∫ ηi

0

(ηi − s)q+pi−1

Γ(q + pi)
|gi(s, x(s))− gi(x, y(s))|ds

)

+|γ2|
∫ 1

ξ

∫ s

0

(s − u)q−1

Γ(q)
| f (u, x(u))− f (u, y(u))| du ds

+|γ2|
k

∑
i=1

∫ 1

ξ

∫ s

0

(s − u)q−1

Γ(q)

∫ u

0

(u − w)pi−1

Γ (pi)
|gi(w, x(w))− gi(w, y(w))| dw du ds

]}

≤ L

⎡⎢⎢⎢⎣ sup
t∈[0,1]

⎧⎪⎪⎪⎨⎪⎪⎪⎩
tq

Γ(q + 1)
+

tm−1

|Λ1|

⎛⎜⎜⎜⎝ |α|
Γ(q + 1)

+
|β|

Γ(q)
+

|γ1|ζq+1

Γ(q + 2)
+

p
∑

j=1
|αj|ηq

j

Γ(q + 1)

+
|γ2|(1 − ξq+1)

Γ(q + 2)

)}]
‖x − y‖+

k

∑
i=1

Li

[
tq+pi

Γ(q + pi + 1)
+

tm−1

|Λ1|
( |α|

Γ(q + pi + 1)

+
|β|

Γ(q + pi)
+

|γ1|ζq+pi+1

Γ(q + pi + 2)
+

p
∑

j=1
|αj|ηq+pi

j

Γ(q + pi + 1)
+

|γ2|(1 − ξq+pi+1)

Γ(q + pi + 2)

⎞⎟⎟⎟⎠
⎤⎥⎥⎥⎦ ‖x − y‖

≤
(

LΩ +
k

∑
i=1

LiΩi

)
‖x − y‖,

which, by the condition (15), implies that F is a contraction. Thus the conclusion of the Banach
contraction mapping principle applies and hence the operator F has a unique fixed point. Therefore,
there exists a unique solution for the boundary value problem (1) on [0, 1].
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Next, we prove an existence result for the boundary value problem (1), which relies on
Krasnosel’skiĭ’s fixed point theorem [46].

Theorem 2. Let f , gi : [0, 1]×R → R, (i = 1, . . . , k) be continuous functions satisfying the condition (A1).
In addition, we assume that:

(A2) | f (t, x)| ≤ μ(t), |gi(t, x)| ≤ μi(t), for all (t, x) ∈ [0, 1]×R, μ, μi ∈ C([0, 1],R+).

Then, the boundary value problem (1) has at least one solution on [0, 1], provided that

L
[

Ω −
(

1
Γ(q + 1)

)]
+

k

∑
i=1

Li

[
Ωi −

(
1

Γ(q + pi + 1)

)]
< 1, (17)

where Ω, Ωi, i = 1, 2, . . . , k are given by (13) and (14), respectively.

Proof. Consider Bρ = {x ∈ C : ‖x‖ ≤ ρ}, ‖μ‖ = sup
t∈[0,1]

|μ(t)|, ‖μi‖ = sup
t∈[0,1]

|μi(t)|, i = 1, 2, . . . , k with

ρ ≥ ‖μ‖Ω + ∑k
i=1 ‖μi‖Ωi + |a|+ |Λ2|/|Λ1|. Then, we define the operators Φ and Ψ on Bρ as

Φx(t) =
∫ t

0

(t − s)q−1

Γ(q)
f (s, x(s))ds +

k

∑
i=1

∫ t

0

(t − s)q+pi−1

Γ (q + pi)
gi(s, x(s))ds, t ∈ [0, 1],

Ψx(t) = a − tm−1

Λ1

[
α
∫ 1

0

(
(1 − s)q−1

Γ(q)
f (s, x(s))−

k

∑
i=1

(1 − s)q+pi−1

Γ (q + pi)
gi(s, x(s))

)
ds

+β
∫ 1

0

(
(1 − s)q−2

Γ(q − 1)
f (s, x(s))−

k

∑
i=1

(1 − s)q+pi−2

Γ(q + pi − 1)
gi(s, x(s))

)
ds

−γ1

∫ ζ

0

∫ s

0

(s − u)q−1

Γ(q)
f (u, x(u)) du ds

+γ1

k

∑
i=1

∫ ζ

0

∫ s

0

(s − u)q−1

Γ(q)

∫ u

0

(u − w)pi−1

Γ (pi)
gi(w, x(w))dw du ds

−
p

∑
j=1

αj

(∫ ηj

0

(ηj − s)
Γ(q)

f (s, x(s))ds −
k

∑
i=1

∫ ηj

0

(ηj − s)q+pi−1

Γ(q + pi)
gi(s, x(s))ds

)

−γ2

∫ 1

ξ

∫ s

0

(s − u)q−1

Γ(q)
f (u, x(u)) du ds

+γ2

k

∑
i=1

∫ 1

ξ

∫ s

0

(s − u)q−1

Γ(q)

∫ u

0

(u − w)pi−1

Γ (pi)
gi(w, x(w))dwduds + Λ2

]
, t ∈ [0, 1].

We complete the proof in three steps.

Step 1. We show that Φx + Ψy ∈ Bρ. For x, y ∈ Bρ, we find that

‖Φx + Ψy‖

≤ sup
t∈[0,1]

{∫ t

0

(t − s)q−1

Γ(q)
| f (s, x(s))|ds +

k

∑
i=1

∫ t

0

(t − s)q+pi−1

Γ (q + pi)
|gi(s, x(s))|ds + |a|

+
tm−1

|Λ1|

[
|α|

∫ 1

0

(
(1 − s)q−1

Γ(q)
| f (s, y(s))|+

k

∑
i=1

(1 − s)q+pi−1

Γ (q + pi)
|gi(s, y(s))|

)
ds

+|β|
∫ 1

0

(
(1 − s)q−2

Γ(q − 1)
| f (s, y(s))|+

k

∑
i=1

(1 − s)q+pi−2

Γ(q + pi − 1)
|gi(s, y(s))|

)
ds

+|γ1|
∫ ζ

0

∫ s

0

(s − u)q−1

Γ(q)
| f (u, y(u))| du ds
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+|γ1|
k

∑
i=1

∫ ζ

0

∫ s

0

(s − u)q−1

Γ(q)

∫ u

0

(u − w)pi−1

Γ (pi)
|gi(w, y(w))| dw du ds

+
p

∑
j=1

|αj|
(∫ ηj

0

(ηj − s)q−1

Γ(q)
| f (s, y(s))|ds +

k

∑
i=1

∫ ηj

0

(ηj − s)q+pi−1

Γ(q + pi)
|gi(s, y(s))|ds

)

+|γ2|
∫ 1

ξ

∫ s

0

(s − u)q−1

Γ(q)
| f (u, y(u))| du ds

+|γ2|
k

∑
i=1

∫ 1

ξ

∫ s

0

(s − u)q−1

Γ(q)

∫ u

0

(u − w)pi−1

Γ (pi)
|gi(w, y(w))| dw du ds + |Λ2|

]}

≤ ‖μ‖

⎡⎢⎢⎢⎣ sup
t∈[0,1]

⎧⎪⎪⎪⎨⎪⎪⎪⎩
tq

Γ(q + 1)
+

tm−1

|Λ1|

⎛⎜⎜⎜⎝ |α|
Γ(q + 1)

+
|β|

Γ(q)
+

|γ1|ζq+1

Γ(q + 2)
+

p
∑

j=1
|αj|ηq

j

Γ(q + 1)

+
|γ2|(1 − ξq+1)

Γ(q + 2)

)}]
+

k

∑
i=1

‖μi‖
[

tq+pi

Γ(q + pi + 1)
+

tm−1

|Λ1|
( |α|

Γ(q + pi + 1)
+

|β|
Γ(q + pi)

+
|γ1|ζq+pi+1

Γ(q + pi + 2)
+

p
∑

j=1
|αj|ηq+pi

j

Γ(q + pi + 1)
+

|γ2|(1 − ξq+pi+1)

Γ(q + pi + 2)

⎞⎟⎟⎟⎠
⎤⎥⎥⎥⎦+

(
|a|+

∣∣∣∣Λ2

Λ1

∣∣∣∣)

= ‖μ‖Ω +
k

∑
i=1

‖μi‖Ωi + |a|+
∣∣∣∣Λ2

Λ1

∣∣∣∣ ≤ ρ.

Thus, Φx + Ψy ∈ Bρ.
Step 2. We show that Ψ is a contraction mapping. For that, let x, y ∈ C. Then, for each t ∈ [0, 1],

we have

‖Ψx − Ψy‖
≤ sup

t∈[0,1]

{
tm−1

|Λ1|
[
|α|

∫ 1

0

(
(1 − s)q−1

Γ(q)
| f (s, x(s))− f (s, y(s))|

+
k

∑
i=1

(1 − s)q+pi−1

Γ(q + pi)
|gi(s, x(s))− gi(s, y(s))|

)
ds

+|β|
∫ 1

0

(
(1 − s)q−2

Γ(q − 1)
| f (s, x(s))− f (s, y(s))|

+
k

∑
i=1

(1 − s)q+pi−2

Γ(q + pi − 1)
|gi(s, x(s))− gi(s, y(s))|

)
ds

+|γ1|
∫ ζ

0

∫ s

0

(s − u)q−1

Γ(q)
| f (u, x(u))− f (u, y(u))| du ds

+|γ1|
k

∑
i=1

∫ ζ

0

∫ s

0

(s − u)q−1

Γ(q)

∫ u

0

(u − w)pi−1

Γ (pi)
|gi(w, x(w))− gi(w, y(w))| dw du ds

+
p

∑
j=1

|αj|
(∫ ηj

0

(ηj − s)q−1

Γ(q)
| f (s, x(s))− f (s, y(s))|ds

+
k

∑
i=1

∫ ηj

0

(ηj − s)q+pi−1

Γ(q + pi)
|gi(s, x(s))− gi(x, y(s))|ds

)

+|γ2|
∫ 1

ξ

∫ s

0

(s − u)q−1

Γ(q)
| f (u, x(u))− f (u, y(u))| du ds
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+|γ2|
k

∑
i=1

∫ 1

ξ

∫ s

0

(s − u)q−1

Γ(q)

∫ u

0

(u − w)pi−1

Γ (pi)
|gi(w, x(w))− gi(w, y(w))| dw du ds

]}

≤ L

⎡⎢⎢⎢⎣ sup
t∈[0,1]

⎧⎪⎪⎪⎨⎪⎪⎪⎩
tm−1

|Λ1|

⎛⎜⎜⎜⎝ |α|
Γ(q + 1)

+
|β|

Γ(q)
+

|γ1|ζq+1

Γ(q + 2)
+

p
∑

j=1
|αj|ηq

j

Γ(q + 1)
+

|γ2|(1 − ξq+1)

Γ(q + 2)

⎞⎟⎟⎟⎠
⎫⎪⎪⎪⎬⎪⎪⎪⎭
⎤⎥⎥⎥⎦

×‖x − y‖+
k

∑
i=1

Li

[
tm−1

|Λ1|
( |α|

Γ(q + pi + 1)
+

|β|
Γ(q + pi)

+
|γ1|ζq+pi+1

Γ(q + pi + 2)

+

p
∑

j=1
|αj|ηq+pi

j

Γ(q + pi + 1)
+

|γ2|(1 − ξq+pi+1)

Γ(q + pi + 2)

⎞⎟⎟⎟⎠
⎤⎥⎥⎥⎦ ‖x − y‖

≤
(

L
[

Ω −
(

1
Γ(q + 1)

)]
+

k

∑
i=1

Li

[
Ωi −

(
1

Γ(q + pi + 1)

)])
‖x − y‖,

which is a contraction by the condition (17).
Step 3. We show that Φ is compact and continuous.

(i) Observe that the continuity of the operator Φ follows from that of f and gi, i = 1, . . . , k.
(ii) Φ is uniformly bounded on Bρ as:

‖Φx‖ ≤ sup
t∈[0,1]

{∫ t

0

(t − s)q−1

Γ(q)
| f (s, x(s))|ds +

k

∑
i=1

∫ t

0

(t − s)q+pi−1

Γ (q + pi)
|gi(s, x(s))|ds

}

≤ ‖μ‖ sup
t∈[0,1]

{∫ t

0

(t − s)q−1

Γ(q)
ds
}
+ ‖μi‖ sup

t∈[0,1]

{
k

∑
i=1

∫ t

0

(t − s)q+pi−1

Γ (q + pi)
ds

}

≤ ‖μ‖
Γ(q + 1)

+
k

∑
i=1

‖μi‖
Γ(q + pi + 1)

.

(iii) Φ is equicontinuous.

Let us set max
(t,x)∈[0,1]×Bρ

| f (t, x)| = f̂ and max
(t,x)∈[0,1]×Bρ

|gi(t, x)| = ĝi, i = 1, 2, . . . , m. Then, for t1, t2 ∈
[0, 1], t1 > t2, we have

|Φx (t1)− Φx (t2)|

=

∣∣∣∣∣
∫ t1

0

(t1 − s)q−1

Γ(q)
f (s, x(s))ds −

k

∑
i=1

∫ t1

0

(t1 − s)q+pi−1

Γ (q + pi)
gi(s, x(s))ds

−
∫ t2

0

(t2 − s)q−1

Γ(q)
f (s, x(s))ds +

k

∑
i=1

∫ t2

0

(t2 − s)q+pi−1

Γ (q + pi)
gi(s, x(s))ds

∣∣∣∣∣
≤

∣∣∣∣∫ t2

0

(t1 − s)q−1 − (t2 − s)q−1

Γ(q)
f (s, x(s))ds

∣∣∣∣+ ∣∣∣∣∫ t1

t2

(t1 − s)q−1

Γ(q)
f (s, x(s))ds

∣∣∣∣
+

∣∣∣∣∣ k

∑
i=1

∫ t2

0

(t2 − s)q+pi−1 − (t1 − s)q+pi−1

Γ (q + pi)
gi(s, x(s))ds

∣∣∣∣∣
+

∣∣∣∣∫ t1

t2

(t1 − s)q+pi−1

Γ (q + pi)
gi(s, x(s))ds

∣∣∣∣
≤ f̂

Γ(q + 1)

{
|(t1 − t2)

q|+ |tq
1 − tq

2|+ |(t1 − t2)
q|
}
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+
ĝi

Γ(q + pi + 1)

{
|tq+pi

2 − tq+pi
1 |+ |(t1 − t2)

q+pi |+ |(t1 − t2)
q+pi |

}
≤ f̂

Γ(q + 1)

∣∣∣2 (t1 − t2)
q + tq

1 − tq
2

∣∣∣+ ĝi
Γ(q + pi + 1)

|2 (t1 − t2)
q+pi − tq+pi

1 + tq+pi
2 |,

which tends to zero, independent of x, as t1 − t2 → 0. So, Φ is equicontinuous. Hence, we deduce by
the Arzelá–Ascoli Theorem that Φ is compact on Br. So, the hypothesis (Steps 1–3) of Krasnosel’skiĭ’s
fixed point theorem [46] holds true. Consequently, there exists at least one solution for the boundary
value problem (1) on [0, 1]. The proof is completed.

4. Examples

Here, we illustrate the applicability of our results by constructing numerical examples.

Example 1. Consider the following boundary value problem:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

cD13/4x(t) +
2
∑

i=1
Ipi gi(t, x(t)) = f (t, x(t)), t ∈ [0, 1],

x(0) = 0, x′(0) = 0, x′′(0) = 0,

αx(1) + βx′(1) = γ1

∫ 1/4

0
x(s)ds +

3

∑
j=1

αj x(ηj) + γ2

∫ 1

1/2
x(s)ds.

(18)

Here, m = 4, q = 13/14, p1 = 10/14, p2 = 11/14, p3 = 12/14, α = β = γ1 = γ2 = 1, ζ = 1/4,
α1 = 1/2, α2 = 3/4, α3 = 1, η1 = 1/7, η2 = 2/7, η3 = 3/7, ξ = 1/2.

(i) Let f (t, x) =
e2t

70
(arctan x + sin 5t), g1(t, x) =

1
4

(
e−t cos x + t2 + 1√

t2 + 49

)
, and g2(t, x) =

1
34

(sin x +

e−t
√

57). It is easy to see that (A1) is satisfied with L = e2/70, L1 = 1/28, and L2 = 1/34.

Using the given data, we have Ω ≈ 1.932128, Ω1 ≈ 0.677039, Ω2 ≈ 1.237301, and

Λ1 =

(
α + β(m − 1)− γ1

(
ζm

m

)
−

3

∑
j=1

αjη
m−1
j − γ2

(
1 − ξm

m

))
≈ 3.666981.

Then, LΩ +
2
∑

i=1
LiΩi ≈ 0.203951 + 0.060571 < 1. Thus, by Theorem 1, the boundary value

problem (18) has a unique solution on [0, 1].
(ii) We choose the following functions in problem (18) for illustrating Theorem 2:

f (t, x) =
2

17
(sin x + e−t cos 7t), g1(t, x) =

3
32

( |x|
1 + |x|

)
+ 2t, g2(t, x) =

1
34

(sin x + e−t
√

32). (19)

Here L = 2/17, L1 = 3/32 and L2 = 1/34 as | f (t, x)− f (t, y)| ≤ 2
17

|x − y|, |g1(t, x)− g1(t, y)| ≤
3

32
|x − y| and |g2(t, x)− g2(t, y)| ≤ 1

34
|x − y|.

Further,

‖ f (t, x)‖ ≤ 2
17

| sin x|+ e−t| cos 7t| ≤ 2
17

+ e−t cos 7t = μ(t),

‖g1(t, x)‖ ≤ 3
32

+ 2t = μ1(t),

and
‖g2(t, x)‖ ≤ 1

34
| sin x|+ e−t

√
32 ≤ 1

34
+ e−t

√
32 = μ2(t).
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Obviously, ‖μ‖ = 19/17, ‖μ1‖ = 67/32 and ‖μ2‖ = 5.686266. Moreover, we have(
L
[

Ω −
(

1
Γ(q + 1)

)]
+

2

∑
i=1

Li

[
Ωi −

(
1

Γ(q + pi + 1)

)])
≈ 0.1824334 < 1.

As the hypothesis of Theorem 2 holds true, so there exists least one solution for problem (18) with
the functions given by (19).

5. Conclusions

We have studied a nonlinear fractional integro-differential equation involving many finitely
Riemann–Liouville fractional integral type nonlinearities together with a non-integral nonlinearity
complemented by multi-point sub-strip boundary conditions. In fact, we considered a more general
situation by considering the fractional order nonlinear integral terms in the integro-differential equation
at hand, which reduce to the usual nonlinear integral terms for pi = 1, ∀i = 1, . . . , k. Under appropriate
assumptions, the existence and uniqueness results for the given problem are proved by applying the
standard tools of the fixed point theory. The results obtained in this paper are not only new, but they
also lead to some new results associated with the particular choices of the parameters involved in the
problem. For example, our results correspond to the two-strip aperture (ζ, ξ) boundary value problem
when αj = 0, ∀j = 1, . . . , p. On the other hand, by letting γ1 = 0 = γ2 in the the results of this paper,
we obtain the ones for a nonlinear Caputo–Riemann–Liouville type fractional integro-differential
equation with multi-point boundary conditions. Thus, the work presented in this paper significantly
contributes to the existing literature on the topic.
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Abstract: We use classical Galerkin approximations, the generalized Aubin–Lions Lemma as well
as the Bellman–Gronwall Lemma to study the asymptotical behavior of a two-dimensional fractional
Navier–Stokes equation with variable delay. By modifying the fractional Halanay inequality and the
comparison principle, we investigate the dissipativity of the corresponding system, namely, we obtain the
existence of global absorbing set. Besides, some available results are improved in this work. The existence
of a global attracting set is still an open problem.

Keywords: fractional Navier–Stokes equations; variable delay; modified fractional Halanay inequality;
generalized comparison principle; dissipativity

1. Introduction

We study the longtime behavior of the following two-dimensional Navier–Stokes equation of
fractional order with variable delay on a bounded domain Ω ⊂ R2,

Dα
t u − νΔu + (u · ∇)u +∇p = f (t) + g(t, ut), in (0, T)× Ω, (1)

div u ≡ 0, in (0, T)× Ω, (2)

u = 0, on (0, T)× ∂Ω, (3)

u(t, x) = φ(t, x), t ∈ [−h, 0], x ∈ Ω, (4)

where Dα
t is a fractional derivative of order α ∈ (0, 1), T > 0, Ω ⊂ R2 is a bounded open set with regular

boundary ∂Ω, ν > 0 is the kinematic viscosity, u is the velocity field of the fluid, p is the pressure, φ is
the initial datum, h > 0 is a constant, f is an external force field without delay, and g is the external force
containing some functional delay. We will refer to (1)–(4) as problem (P).

In fact, hereditary characteristics are ubiquitous in engineering, biology and physics. For example,
feedback control problem, immune systems, soft matter with viscoelasticity [1] could all have hereditary
properties (including memory, variable delay or distributed delay, constant delay, etc). The delay term is
very often denoted by a function ut(·) defined on some interval [−h, 0] (here h could be −∞). The memory
effect is modeled by using fractional calculus, which actually has been widely applied in many sciences [2–5].
We would like to mention that the concept of fractional calculus was raised by L’Hospital, who wrote to
Leibniz in the year 1695, seeking the meaning of dny

dxn when n = 1
2 . However, it only became popular in

practical applications in the past few decades. Several kinds of definitions of fractional derivatives have
been introduced [2], but maybe the most commonly used nowadays are the so-called Riemann–Liouville
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derivative and Caputo derivative. More definitions for Riemann–Liouville and Caputo derivative can be
found in [3,6,7].

It is worth pointing out that using a convolution group, Li and Liu [8] introduced a generalized
definition of Caputo derivative of order α ∈ (0, 1), and built a convenient framework for studying initial
value problems of time fractional differential equations. Compared with Riemann–Liouville derivative,
the Caputo derivative defined in [8] removes the singularity at t = 0 and characterizes memory from
t = 0+. It is probably this character that makes the Caputo derivative share many similarities with the
corresponding ordinary derivative and then more manageable for Cauchy problems. In this work, we use
the Caputo derivative introduced in [8] to investigate the fractional dynamic system (1).

On the other hand, there are many results about time-fractional Navier–Stokes equations, which can
be used to simulate anomalous diffusion in fractal media. For instance, applying Laplace and finite Hankel
transforms, Chaurasia and Kumar [9] obtained the solution of a time-fractional Navier–Stokes equation.
In [10], Zhou and Peng studied the mild solutions of Navier–Stokes equations with a time-fractional
derivative, meanwhile Nieto and Planas [11] investigated the existence and uniqueness of mild solutions
to the Navier–Stokes equations with time fractional differential operators, and obtained several interesting
properties about the solution, such as regularity and decay rate in Lebesgue spaces. Nevertheless, most of
the available works including the mentioned ones did not take into account the delay in the external forcing
term, and are concerned mainly with the existence of solution/mild solution or the regularity. There is no
result on the limit behavior of solutions, even less work about fractional Navier–Stokes equations with
delay, such as the existence of weak solution and asymptotical behavior of solutions. Actually, for general
fractional PDEs, this discussion is limited due to the lack of tools although some special cases have been
studied [12–14].

The traditional method used to study solutions of classic nonlinear PDEs is to find some “a priori”
estimates of approximate solutions, then to apply some compactness criteria—i.e., the Arzelà-Ascoli
theorem, etc. However, this method seems not to work for fractional PDEs with variable delay. Because of
the appearance of variable delay term, the generalized fractional Gronwall inequality [15] (Theorem 1) is
not enough to find some “a priori” estimates of Lyapunov functions. Even though Ye and Gao [16] obtained
the Henry-Gronwall type retarded integral inequalities, this only works for fractional differential equations
with constant delay but not for variable delay. Fortunately, Li and Liu [17] (Theorem 4.1–4.2), generalized
the classic Aubin–Lions lemma and some convergence theorem to the fractional case, respectively. To our
purpose, we first improve [17] (Proposition 3.5) and [8] (Theorem 4.10). Then, under the condition that
α ∈ ( 1

2 , 1), we investigate the solutions of our system by combing the Galerkin approximation and the
generalized Aubin–Lions lemma as well as the Bellman–Gronwall Lemma.

We would like to mention that Wen, Yu and Wang [18] analyzed the dissipativity of Volterra functional
differential equations by using the generalized Halanay inequalities, while Wang and Zou [19] studied the
dissipativity and contractivity analysis for fractional functional differential equations and their numerical
approximations via a fractional Halanay inequality. However, to analyze the dissipativity of fractional
PDEs with variable delay, the fractional Halanay inequality [19] alone is not enough any more, in fact, it
cannot be applied directly for our case, either. We modify the fractional Halanay inequality [19] (Lemma 4)
to a more general case, and then improve the comparison principle [20] (Lemma 3.4) and combine the
fractional Halanay inequality to overcome this difficulty.

Motivated by [19], we study the long time behavior of fractional Navier–Stokes equations with
variable delay. More precisely, we first prove the existence and uniqueness of weak solutions by Galerkin
approximation, and then analyze the dissipativity of system (P), namely, we obtain the existence of an
absorbing set by fractional Halanay inequalities and generalized comparison principle. We would like to
mention that similar results about the classic model of problem (P) can be found in [21].

160



Mathematics 2020, 8, 2037

The organization of this work is as follows. In the next Section, we recall some basic concepts about
fractional calculus, and present some auxiliary lemmas which will be useful in later study. In Section 3,
we focus on the existence and uniqueness of weak solutions, and the dissipativity of the fractional dynamic
system (P) is shown in Section 4. Throughout the work, C, c are positive constants, which can be different
from line to line, even in the same line.

2. Preliminaries

In this Section, we first recollect the generalize definitions of fractional calculus to functions valued in
general Banach spaces as studied in [8,17]. Then we prefer to recall some notations and abstract spaces
for the sake of completeness and to make the reading of the paper easier, although the notations and
results included in this section may seem somehow repetitive, since they can be found in several already
published monographs or articles [22–24]. Besides, two examples of delay are presented and some lemmas,
propositions that will be used in our later discussion are stated.

Now, we start with the definition of fractional integral, readers are referred to [2,3,8] for more details.

Definition 1. ([3,17]) The fractional Riemann–Liouville integral of order α ∈ (0, 1) for a function u : R+ → R

locally integrable is defined by

[Iαu](t) =
1

Γ(α)

∫ t

0
(t − s)α−1u(s)ds, t > 0,

where Γ(α) =
∫ ∞

0 xα−1e−xdx is the classical Gamma function.

Definition 2. ([8]) Let X be a Banach space. For a locally integrable function u ∈ L1
loc((0, T); X), if there exists

u0 ∈ X such that

lim
t→0+

1
t

∫ t

0
‖u(s)− u0‖Xds = 0,

then u0 is called the right limit of u at t = 0, denote as u(0+) = u0. Similarly, we define u(T−) = uT to be the left
limit of u at t = T—i.e., uT ∈ X such that

lim
t→T−

1
T − t

∫ T

t
‖u(s)− uT‖Xds = 0.

As pointed out in [8], this fractional integral can be expressed as the convolution between the kernel

gα(t) =
H(t)tα−1

Γ(α) and H(t)u(t) on R, where

H(t) =

{
1, t ≥ 0,

0, t < 0.

is the standard Heaviside step function. By this fact, it is not difficult to verify that the integral operators Iα

form a semigroup, and Iα is a bounded linear operator from L1(0, T) to L1(0, T). Inspired by [25] (Section 5,
Chapter 1), Li and Liu [8] proposed a generalized definition of Caputo derivative. The new definition
is consistent with various definitions in the literature while revealing the underlying group structure.
The underlying group property makes many properties of the Caputo derivative natural.
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Before introducing this generalized Caputo derivative, we need to use the distributions {gα} as the
convolution kernels for α ∈ (−1, 1):

gα(t) :=

⎧⎪⎪⎨⎪⎪⎩
H(t)tα−1

Γ(α) , α ∈ (0, 1),

δ(t), α = 0,
D(H(t)tα)

Γ(1+α)
, α ∈ (−1, 0),

where δ is the usual Dirac distribution, and D means the distributional derivative. As in [8], the fractional
integral operator Iα can be expressed as

[Iαu](t) := gα ∗ [H(t)u(t)].

Given f , g ∈ L1
loc(0, T), we define the convolution between f and g as

f (t) ∗ g(t) =
∫ t

0
f (s)g(t − s)ds.

Now, we introduce the generalized Caputo derivative as

Definition 3. ([8]) Let α ∈ (0, 1). Suppose that u ∈ L1
loc(0, T) has a right limit u(0+) = u0 at t = 0 in the sense

of Definition 2. The Caputo derivative of fractional order α of u is a distribution in D′(−∞, T) with support in
[0, T), given by

Dα
t u := I−αu − u0g1−α = g−α ∗ [(u − u0)H(t)].

The right fractional Caputo derivative is defined as

Definition 4. ([17]) Let α ∈ (0, 1). Consider that u ∈ L1
loc(−∞, T) has a left limit uT at t = T in the sense of

Definition 2. The right Caputo derivative fractional order α of u is a distribution in D′(R) with support in (−∞, T],
given by

D̃α
c;Tu := g̃−α ∗ [H(T − t)(u − uT)].

To introduce the Caputo derivatives for functions valued in general Banach spaces, for fix T > 0,
we present the following sets:

D′ := {v|v : C∞
c ((−∞, T);R) → X is a bounded linear operator},

which is analogous of the distribution D′ used in [17]. We would like to point out that D′ can be understood
as the generalization of distribution. In fact, if X = R, then it is reduced to the usual distribution as in [17].

The weak fractional Caputo derivative of the functions valued in Banach spaces is given by

Definition 5. ([17]) Let X be a Banach space and u ∈ L1
loc([0, T); X). Let u0 ∈ X. We define the weak Caputo

derivative of fractional order α of u associated with initial value u0 to be Dα
t u ∈ D′ such that for any test function

v ∈ C∞
c ((−∞, T);R),

〈v, Dα
t u〉 :=

∫ T

−∞
(D̃α

c;Tv)(u − u0)H(t)dt =
∫ T

0
(D̃α

c;Tv)(u − u0)dt.
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Next, let us consider the following usual abstract spaces:

V =
{

u ∈ (C∞
0 (Ω))2 : div u = 0

}
.

H = the closure of V in (L2(Ω))2 with norm | · |, and inner product (·, ·), where for u, v ∈ (L2(Ω))2,

(u, v) =
2

∑
j=1

∫
Ω

uj(x)vj(x)dx.

V= the closure of V in (H1
0(Ω))2 with norm ‖ · ‖, and inner product ((·, ·)), where for u, v ∈ (H1

0(Ω))2,

((u, v)) =
2

∑
i,j=1

∫
Ω

∂uj

∂xi

∂vj

∂xi
dx.

It follows that V ⊂ H ≡ H′ ⊂ V′, where the injections are dense and compact. We will use ‖ · ‖∗
for the norm in V′, and 〈·, ·〉 for the duality pairing between V and V′. Now we define A : V → V′ by
〈Au, v〉 = ((u, v)), and the trilinear form B on V × V × V by

B(u, v, w) =
2

∑
i,j=1

∫
Ω

ui
∂vj

∂xi
wjdx, ∀ u, v, w ∈ V.

Note that the trilinear form B satisfies the following inequalities which will be used later in proofs
(see [23] (p. 2015)).

|B(u, v, u)| ≤ ‖u‖2
(L4(Ω))2‖v‖ ≤ 2−1/2|u|‖u‖‖v‖, ∀ u, v ∈ V. (5)

The phase space used in this paper is defined as CH = C([−h, 0]; H) with the norm

‖ut‖CH = sup
−h≤θ≤0

|u(t + θ)|, for ut ∈ CH and t ≥ 0,

where ut is a function defined on [−h, 0]—i.e., ut := ut(θ) = u(t + θ), θ ∈ [−h, 0].
We now enumerate the assumptions on the delay term g. For g : [0, T]× CH → (L2(Ω))2, we assume:

(g1) For any ξ ∈ CH , the mapping [0, T] ! t �→ g(t, ξ) ∈ (L2(Ω))2 is measurable.
(g2) g(·, 0) = 0.
(g3) There exists Lg > 0 such that, for any t ∈ [0, T] and all ξ, η ∈ CH ,

|g(t, ξ)− g(t, η)| ≤ Lg‖ξ − η‖CH .

Remark 1. (i) As pointed out in [23], condition (g2) is not a restriction. Indeed, if |g(·, 0)| ∈ L2(0, T), we could
redefine l̂(t) = l(t) + g(t, 0) and ĝ(t, ·) = g(t, ·)− g(t, 0). In this way the problem is exactly the same, l̂ and ĝ
satisfy the required assumptions.
(ii) Conditions (g2) and (g3) imply that

|g(t, ξ)| ≤ Lg‖ξ‖CH ,

whence |g(t, ξ)| ∈ L∞(0, T).
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Example 1. A forcing term with bounded variable delay. Let G : [0, T]×R2 → R2 be a measurable function
satisfying G(t, 0) = 0 for all t ∈ [0, T], and assume that there exists LG > 0 such that

|G(t, u)− G(t, v)|
R2 ≤ LG|u − v|

R2 , ∀u, v ∈ R
2.

Consider a function ρ(·) : [0,+∞) → [0, h], which plays the role of the variable delay. Assume that ρ(·) is
measurable and define g(t, ξ)(x) = G(t, ξ(−ρ(t))(x)) for each ξ ∈ CH, x ∈ Ω and t ∈ [0, T]. Notice that, in this
case, the delayed term g in our problem becomes

g(t, ξ) = G(t, ξ(−ρ(t))).

Example 2. A forcing term with finite distributed delay. Let G : [0, T]× [−h, 0]×R2 → R2 be a measurable
function satisfying G(t, s, 0) = 0 for all (t, s) ∈ [0, T]× [−h, 0], and there exists a function β(s) ∈ L1(−h, 0)
such that

|G(t, s, u)− G(t, s, v)|
R2 ≤ β(s)|u − v|

R2 , ∀u, v ∈ R
2, ∀(t, s) ∈ [0, T]× [−h, 0].

Define g(t, ξ)(x) =
∫ 0
−h G(t, s, ξ(s)(x))ds for each ξ ∈ CH, t ∈ [0, T], and x ∈ Ω. Then, the delayed term g

in our problem becomes

g(t, ξ) =
∫ 0

−h
G(t, s, ξ(s))ds.

After introducing the above operators, an equivalent abstract formulation to problem (P) is

Dα
t u + νAu + B(u) = f (t) + g(t, ut), ∀t > 0, (6)

u(t) = φ(t), t ∈ [−h, 0]. (7)

The definition of weak solution to problem (6) and (7) is defined as

Definition 6. ([17]) Given an initial datum φ ∈ CH, a weak solution u to (6) and (7) in the interval [−h, T] is a
function u ∈ C([−h, T]; H) ∩ L2(0, T; V) with u0 = φ(0) such that, for all v ∈ V,

(Dα
t u(t), v) + ν((u(t), v)) + B(u(t), u(t), v) = 〈 f (t), v〉+ (g(t, ut), v),

where the equation must be understood in the sense of distribution.

The following auxiliary Lemmas will be needed in this work.

Lemma 1. (See [17,26]) For any function u(t) absolutely continuous on [0, T], one has the inequality

u(t)Dα
t u(t) ≥ 1

2
Dα

t u2(t), α ∈ (0, 1).

The following result is a generalization of the Aubin–Lions Lemma [27].

Lemma 2. ([17] (Theorem 4.2)) Let T > 0, α ∈ (0, 1) and p ∈ [1, ∞). Let M, X, Y be Banach spaces. The inclusion
M ↪→ X compact and the inclusion X ↪→ Y continuous. Suppose W ⊂ L1

loc((0, T); M) satisfies:
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(i) There exists r1 ∈ [1, ∞) and C > 0 such that ∀u ∈ W,

sup
t∈(0,T)

Iα(‖u‖r1
M) = sup

t∈(0,T)

1
Γ(α)

∫ t

0
(t − s)α−1‖u‖r1

M(s)ds ≤ C.

(ii) There exists p1 ∈ (p, ∞], such that, W is bounded in Lp1((0, T); X).
(iii) There exists r2 ∈ [1, ∞), C > 0 such that for any u ∈ W with right limit u0 at t = 0, it holds that

‖Dα
t u‖Lr2 ((0,T);Y) ≤ C.

Then, W is relatively compact in Lp((0, T); X).

Proposition 1. (An improvement in [17] (Proposition 3.5)) Suppose Y is a reflexive Banach space, α ∈ (0, 1) and
T > 0. Assume the sequence {un} converges to u in Lp((0, T); Y), p ≥ 1. If there is an assignment of initial values
u0,n for un such that the weak Caputo derivatives Dα

t un are bounded in Lr((0, T); Y) (r ∈ [1, ∞)), then

(i) There is a subsequence such that u0,n converges weakly to some value u0 ∈ Y.
(ii) If r > 1, there exists a subsequence such that Dα

t unk converges weakly to v and u0,nk converges weakly to u0.
Moreover, v is the Caputo derivative of u with initial value u0 so that

u(t) = u0 +
1

Γ(α)

∫ t

0
(t − s)α−1v(s)ds.

Further, if r ≥ 1, then, u(0+) = u0 in Y is the sense of Definition 2.

Proof. We would like to mention that this Proposition is just a slightly improvement of [17]
(Proposition 3.5), in which, the final conclusion—i.e., u(0+) = u0 in Y—holds true for r ≥ 1

α . However,
this conclusion holds for r ≥ 1.

So, we just need to prove that for r ≥ 1, if Dα
t u ∈ L1

loc([0, T), Y), then u(0+) = u0 in Y under the sense
of Definition 2. By a similar argument in [17] (Corollary 2.16) and Young’s inequality with the conjugate
index p = ∞, q = 1, 1

p + 1
q = 1, we find

1
t

∫ t

0
‖u − u0‖Ydt ≤ 1

tΓ(α)

∫ t

0

∫ τ

0
(τ − s)α−1‖Dα

t u‖Ydsdτ

≤ 1
tΓ(α + 1)

∫ t

0
(t − s)α‖Dα

t u‖Yds

≤ 1
Γ(α + 2)

tα‖Dα
t u‖L1((0,t),Y) → 0 as t → 0+,

Since ‖Dα
t u‖Y is integrable on [0, T − δ] for some δ > 0. The proof is finished immediately.

Remark 2. Li and Liu in [17] (Theorem 5.2) proved the existence of weak solution for a time fractional incompresible
Navier–Stokes equation for α ∈ [ 1

2 , 1), because u(0+) = u0 is obtained under this condition. However, by using
this Proposition 1, we also can prove u(0+) = u0 for α ∈ (0, 1). Therefore, the existence result of [17] (Theorem 5.2)
still holds for α ∈ (0, 1). In this extent, we say that Proposition 1 improves [17] (Proposition 3.5).
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Proposition 2. (Modified Fractional Halanay Inequality) Assume that the non-negative continuous function
v satisfies

Dα
t v(t) ≤ γ + av(t) + b sup

t−τ(t)≤s≤t
v(s), 0 < t ≤ T,

v(t) = |ϕ(t)|, −σ ≤ t ≤ 0,
(8)

where γ is a positive constant and a + b �= 0, σ = − inf
t≥0

(t − τ(t)) > 0, and the delay function τ(t) ≥ 0.

If a + b < 0, then the following estimates holds

v(t) ≤ − γ

a + b
+ M′Eα(λ

∗tα), for all t ≥ τ(t), (9)

where M′ = sup
−h≤t≤0

|ϕ(t)|, and the parameter λ∗ is defined by

λ∗ = sup
t−τ(t)≥0

{λ : λ − a − b
Eα(λ(t − τ(t))α)

Eα(λtα)
= 0},

and it holds that λ∗ ∈ [a + b, 0].
Further, if the delay is bounded—i.e., τ(t) ≤ τ0 for some constant τ0—then the parameter λ∗ defined by

λ∗ = sup
t−τ(t)≥1

{λ : λ − a − b
Eα(λ(t − τ(t))α)

Eα(λtα)
= 0},

is strictly negative, namely, there exists some positive constants ε0 satisfying a+ b < −ε0 such that λ∗ ∈ [a+ b,−ε0],
and the estimate in (9) holds for all t such that t ≥ τ(t) + 1.

Proof. Actually, Proposition 2 is a slightly modification of [19] (Lemma 4), in which τ(t) > 0 strictly for
the first conclusion (9). However, in our case, (9) holds true for τ(t) ≥ 0. So, we only need to prove (9) is
true when τ(t) = 0. We prove this by comparison principle.

If τ(t) = 0, then the original system (8) becomes.

Dα
t v(t) ≤ γ + (a + b)v(t), 0 < t ≤ T,

v(0) = |ϕ(0)|, t = 0,

where γ is a positive constant and a + b < 0.
From system (8), there exists a nonnegative function m(t) satisfying

Dα
t v(t) = γ + (a + b)v(t) + m(t), 0 < t ≤ T,

v(0) = |ϕ(0)|, t = 0.
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According to [2] (Theorem 4.3), the initial value problem (8) has a unique solution that can be
represented by

v(t) = |φ(0)|Eα((a + b)tα) +
∫ t

0
(t − s)α−1Eα,α((a + b)(t − s)α)(γ + m(s))ds

≤ |φ(0)|Eα((a + b)tα) + γ
∫ t

0
(t − s)α−1Eα,α((a + b)(t − s)α)ds

≤ |φ(0)|Eα((a + b)tα)− γ

a + b

≤ M′Eα(λ
∗tα)− γ

a + b
,

where we used that tα−1 and Eα,α((a + b)tα) are nonnegative and λ∗ ∈ [a + b, 0], as well as the fact that
Eα(λtα) is non-decreasing respect to λ. The proof is complete.

Remark 3. It turns out that the modified fractional Halanay inequality holds true not only for delay fractional
dynamical system but also for the nondelay case, which means that it could be applied to more fractional differential
equations. In this sense, we say it improves [19] (Lemma 4).

Proposition 3. (The generalized comparison principle.) Assume that for any function u and w are absolutely
continuous on [0, T], one has the inequality

Dα
t u(t) ≤ −au(t) + bu(t − τ(t)) + c, 0 < t < T,

u(t) = ϕ(t), −h ≤ t ≤ 0,
(10)

and the following fractional differential equation

Dα
t w(t) = −aw(t) + bw(t − τ(t)) + c, 0 < t < T,

w(t) = ϕ(t), −h ≤ t ≤ 0,
(11)

where a, b, c are positive constants. Then it holds that

u(t) ≤ w(t), for all t ≥ −h. (12)

Proof. Obviously, (12) holds true for any t ∈ [−h, 0]. Hence, we only need to verify that (12) is correct for
t ∈ [0, T]. We will prove this through two steps.

Step 1. We first prove that (12) holds for t > τ(t). By contradiction, if it is not true, then there exists
some t > τ(t) such that u(t) ≥ w(t). Denote t∗ by

t∗ = inf{t > τ(t) : u(t) ≥ w(t)}.

Now, set z(t) = u(t) − w(t). Then we know from the definition that z(t∗) = 0, and z(t) < 0 for
0 < t∗ − τ(t∗) ≤ t < t∗. Then by the fractional comparison principle in [19] (Lemma 3), we have that

Dα
t z(t∗) ≥ 0. (13)
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However,

Dα
t z(t∗) = Dα

t u(t∗)− Dα
t w(t∗)

≤ −a(u(t∗)− w(t∗)) + b(u(t∗ − τ(t∗))− w(t∗ − τ(t∗)))
= −az(t∗) + bz(t∗ − τ(t∗)) ≤ bz(t∗ − τ(t∗)) < 0,

which contradicts (13); therefore, u(t) ≤ w(t) for t > τ(t).
Step 2. On the other hand, when 0 < t ≤ τ(t), then −h ≤ t − τ(t) ≤ 0, since τ(t) ∈ [0, h].

So (14) and (15) can be rewritten as, respectively,

Dα
t u(t) ≤ −au(t) + bϕ(t − τ(t)) + c, 0 < t ≤ τ(t),

u(t) = ϕ(t), −h ≤ t ≤ 0,
(14)

and the following fractional differential equation

Dα
t w(t) = −aw(t) + bϕ(t − τ(t)) + c, 0 < t ≤ τ(t),

w(t) = ϕ(t), −h ≤ t ≤ 0,
(15)

Then there is a nonnegative function m(t), such that

Dα
t u(t) = −au(t) + bϕ(t − τ(t))− m(t) + c, 0 < t ≤ τ(t),

u(t) = ϕ(t), −h ≤ t ≤ 0,
(16)

Then, by [28] (Theorem 1), system (16) has a unique solution on [0, h] that can be represented as

u(t) =
∫ t

0
(t − s)α−1Eα,α(−a(t − s)α)(bϕ(s − τ(s))− m(s) + c)ds + c′Eα(−atα), 0 < t ≤ τ(t).

Similarly, the solution of system (15) can be written as

w(t) =
∫ t

0
(t − s)α−1Eα,α(−a(t − s)α)(bϕ(s − τ(s)) + c)ds + c′Eα(−atα), 0 < t ≤ τ(t).

Notice that tα and Eα,α(−atα) are non-negative for a > 0, then we have u(t) ≤ w(t) for all 0 < t ≤ τ(t).
In summary, u(t) ≤ w(t) for all t ≥ −h.

Therefore the proof is complete.

Remark 4. We would like to point out that Proposition 3 generalizes the conclusion in [8] (Theorem 4.10) to some
extent. Proposition 3 also improves the comparison principle in [20] (Lemma 3.4), which is proven only for constant
delay—i.e., τ(t) = τ. However, in our case, the delay term τ(t) is a function taking values in [0, h]. In this way, we
could say that Lemma 3.4 of [20] is a special case of Proposition 3.

Lemma 3. (Bellman–Gronwall Lemma [29] (p. 252)) Let T > 0, g ∈ L1(0, T) and g ≥ 0 a.e., C1, C2 be positive
constants. If ϕ ∈ L1(0, T), ϕ ≥ 0 a.e., satisfying gϕ ∈ L1(0, T) and

ϕ(t) ≤ C1 + C2

∫ t

0
g(s)ϕ(s)ds, a.e. t ∈ (0, T),
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then

ϕ(t) ≤ C1 exp{C2

∫ t

0
g(s)ds}, a.e. t ∈ (0, T).

Remark 5. Actually, the positive constants C1, C2 can be replaced by functions C1(t) or C2(t), but a similar result
can be obtained—readers are referred to [29] (p. 252) for more information.

3. Existence and Uniqueness of Weak Solutions

In this section, we prove the existence and uniqueness of weak solutions to problem (6) and (7) by
Galerkin approximations. Denote

λ1 = inf
v∈V\{0}

‖v‖2

|v|2 > 0.

Moreover, ∫ t

0
‖ f (s)‖2(1+ 1

α )∗ ds < ∞, α ∈ (0, 1), for any t ≥ 0. (17)

We have the following result:

Theorem 1. Suppose that (g1)− (g3) and (17) hold true, then for any φ ∈ CH and α ∈ ( 1
2 , 1) system, (6) and (7)

has a unique weak solution.

Proof. We split it into several steps.
Step 1. The Galerkin approximation. By the definition of A = −Δ and the classical spectral theory

of elliptic operators, it follows that A possesses a sequence of eigenvalues {λj}j≥1 and a corresponding
family of eigenfunctions {wj}j≥1 ⊂ V, which form a Hilbert basis of H, dense on V. We consider the
subspace Vm = span{w1, w2, · · · , wm}, and the projector Pm : H → Vm given by Pmu = ∑m

j=1(u, wj)wj,

and define u(m)(t) = ∑m
j=1 γm,j(t)wj, where the superscript m will be used instead of (m), for short, since

no confusion is possible with powers of u, and where the coefficients γm,j(t) are required to satisfy the
Cauchy problem

(Dα
t um(t), wj) + ν((um(t), wj)) + B(um(t), um(t), wj) = 〈 f (t), wj〉+ (g(t, um

t ), wj), 1 ≤ j ≤ m,

um(t) = Pmφ(t), t ∈ [−h, 0]. (18)

The above system of fractional order functional differential equations with finite delay fulfills
the conditions for the existence and uniqueness of a local solution (e.g., cf. [30] (Theorem 3.1)).
Hence, we conclude that (18) has a unique local solution defined in [0, tm) with 0 ≤ tm ≤ T. Next, we will
obtain a priori estimates and ensure that the solutions um do exist in the whole interval [0, ∞). Assume that
M = ‖φ‖2

CH
= sup

−h≤t≤0
|φ(t)|2.

Step 2. A priori estimates. Multiplying (18) by γm,j(t), j = 1, . . . , m, summing up, and using Lemma 1,
Cauchy–Schwartz and Young’s inequalities, we obtain

1
2

Dα
t |um(t)|2 + ν‖um(t)‖2 ≤ ‖ f (t)‖∗‖um(t)‖+ |g(um

t )||um(t)|

≤ ν

2
‖um(t)‖2 +

‖ f (t)‖2∗
2ν

+ Lg‖um
t ‖2

CH
.

Hence,
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Dα
t |um(t)|2 + ν‖∇um(t)‖2 ≤ ‖ f (t)‖2∗

ν
+ 2Lg‖um

t ‖2
CH

. (19)

Multiplying (19) by Iα, and let p = 1 + α, q = 1 + 1
α , we find

|um(t)|2 + ν

Γ(α)

∫ t

0
(t − s)α−1‖∇um(s)‖2ds

≤ |um(0)|2 + 1
νΓ(α)

∫ t

0
(t − s)α−1‖ f (s)‖2∗ds +

2Lg

Γ(α)

∫ t

0
(t − s)α−1‖um

s ‖2
CH

ds

≤ |um(0)|2 + 1
νΓ(α)

(
∫ t

0
(t − s)p(α−1)ds)

1
p (
∫ t

0
‖ f (s)‖2q

∗ ds)1/q +
2Lg

Γ(α)

∫ t

0
(t − s)α−1‖um

s ‖2
CH

ds

≤ |um(0)|2 + 1
να2Γ(α)

tα2
F(t) +

2Lg

Γ(α)
(
∫ t

0
(t − s)p(α−1)epsds)

1
p (
∫ t

0
e−qs‖um

s ‖2q
CH

ds)1/q

≤ |um(0)|2 + 1
να2Γ(α)

tα2
F(t) +

2LgΓ(α2)

Γ(α)
(1 + α)−

α2
1+α et(

∫ t

0
e−qs‖um

s ‖2q
CH

ds)1/q.

(20)

Denote by A(t) = |um(0)|2 + 1
να2Γ(α) tα2

F(t), B(t) = 2LgΓ(α2)

Γ(α) (1 + α)−
α2

1+α et. Then, we have

‖um
t ‖2

CH
+ ν

∫ t+θ

0
(t + θ − s)α−1‖∇um(s)‖2ds ≤ A(t) + B(t)(

∫ t

0
‖um

s ‖2qds)1/q.

Therefore,

‖um
t ‖2q

CH
≤ 2q Aq(t) + 2qBq(t)(

∫ t

0
‖um

s ‖2q
CH

ds).

Using the Gronwall Lemma, we obtain that

‖um
t ‖2

CH
≤ c(A(t) + B(t)

∫ t

0
A(s)ec

∫ t
s B(r)drds), for all t ∈ [0, T] and θ ∈ [−h, 0].

Hence, we conclude that for any T > 0, ‖um
t ‖CH is finite, which means the local solution um(t; φ) is

actually a global one. We also can have that there exists a constant C > 0, depending on some constants of
the problem (namely, ν, Lg and f ), and on T and M > 0, such that

‖um
t ‖2

CH
≤ C(T, M) ∀t ∈ [0, T], ‖φ‖CH ≤ M, ∀m ≥ 1,

which also implies that {um} is bounded in L∞(−h, T; H).
Now it follows from (20) and the above uniform estimates that

ν‖um‖2
L2(0,T;V) ≤ νt1−α

∫ t

0
(t − s)α−1‖um(s)‖2ds

≤ t1−α

(
Γ(α)|um(0)|2 +

∫ t

0
(t − s)α−1

(
1
ν
‖ f (s)‖2∗ + 2LgC(T, M)

)
ds
)

≤ C(T, M), ∀m ≥ 1.
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Therefore, we conclude that

{um} is bounded in L2((0, T); V) ∩ L∞((−h, T); H). (21)

From (5) and (18), it holds ‖Dα
t um‖∗ ≤ ν‖um‖ + 21/2|um| · ‖um‖ + ‖ f ‖∗ + λ−1/2

1 |g(t, um
t )|,

which implies that
{Dα

t um} is bounded in L2(0, T; V′). (22)

Step 3. Approximation of initial datum in CH . Let us check

Pmφ → φ in CH . (23)

Assume that θm → θ ∈ [−h, 0], then Pmφ(θm) → φ(θ), since ‖Pmφ(θm) − φ(θ)‖ ≤ ‖Pmφ(θm) −
Pmφ(θ)‖+ ‖Pmφ(θ)− φ(θ)‖ → 0 as m → ∞. So (23) holds true.

Step 4. Compactness results. By (21) and (22), the compact imbedding V ↪→ H, and the generalized
Aubin–Lions Lemma 2 as well as Proposition 1, for any α ∈ (0, 1), we obtain there exist a subsequence
still relabeled as {um} and a function u ∈ C([−h, T); H) ∩ L2((0, T); V) for all T > 0, with u(t) = φ(t) in
[−h, 0], u(0+) = u0, and Dα

t u ∈ L2((0, T); V′) for all T > 0, and an element χ ∈ L∞((0, T); H) such that

um ∗
⇀ u weakly-star in L∞((0, T); H),

um ⇀ u weakly in L2((0, T); V),

Dα
t um ⇀ Dα

t u weakly in L2((0, T); V′),
um → u strongly in L2((0, T); H),

g(·, um
t )

∗
⇀ χ weakly-star in L∞((0, T); H).

(24)

Observe that if α ∈ ( 1
2 , 1), for all s, t ∈ [0, T], by

um(t)− um(s) =
1

Γ(α)

∫ t

s
(t − r)α−1(Dα

r um)(r)dr

≤ 1
Γ(α)(2α − 1)

(t − s)2α−1‖Dα
t um‖L2((s,t),V′), in V′,

and combing (22) we find that um is equi-continuous on [0, T] with values in V′. Notice that the inclusion
H ↪→ V′ compact, so using Ascoli-Arzelà and (24), we conclude that

um → u in C([0, T]; V′), ∀ T > 0. (25)

Combining (21) and (25), then for any {tm} ⊂ [0, T) with tm → t, one obtains

um(tm) ⇀ u(t) weakly in H. (26)

Now we prove that
um → u in C([0, T]; H), ∀ T > 0. (27)

By contradiction, if (27) is not true, then there would exists a ε1 > 0, {tm} and t∗ with tm → t∗
such that

|um(tm)− u(t∗)| ≥ ε1. (28)
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On one hand, by (26), we have |u(t∗)| ≤ lim
n→∞

inf |um(tm)|. Therefore, if we could prove |um(tm)| →
|u(t∗)|, then (28) is contradictory, in other words, (27) is obtained immediately. To this end, it is enough to
show that

lim
m→∞

sup |um(tm)| ≤ |u(t∗)|. (29)

On the other hand, for system (18), we have the following energy inequality,

|um(t)|2 + ν

Γ(α)

∫ t

0
(t − s)α−1‖um(s)‖2ds

≤ |um(0)|2 + 1
Γ(α)

∫ t

0
(t − s)α−1‖ f (s)‖2∗ds +

2LgC(T, M)

Γ(α + 1)
(t − s)α.

(30)

Besides, by (24), passing to the limit in (18), we have that u ∈ C([0, T]; H) is a solution of a similar
problem to (6)—i.e.,

(Dα
t u, v) + ν(Au, v) + (B(u), v) = 〈 f (t), v〉+ (χ, v), ∀v ∈ V′,

which also has the energy inequality,

|u(t)|2 + ν

Γ(α)

∫ t

0
(t − s)α−1‖u(s)‖2ds

≤ |u(0)|2 + 1
Γ(α)

∫ t

0
(t − s)α−1‖ f (s)‖2∗ds +

1
Γ(α)

∫ t

0
(t − s)α−1(χ(s), u(s))ds.

Combing the last convergence in (24) and the dominate convergence theorem, we find

∫ t

0
(t − s)α−1|χ(s)|2ds ≤ lim

m→∞
inf

∫ t

0
(t − s)α−1|g(um

s )|2ds ≤ 2Lg

α
C(T, M)(t − s)α.

Therefore, u also satisfies inequality (30) with the same last term on the right-hand side.
Consider now two continuous functions defined as

J(t) = |u(t)|2 − 1
Γ(α)

∫ t

0
(t − s)α−1‖ f (s)‖2∗ds − 2LgC(T, M)

Γ(α + 1)
(t − s)α,

Jm(t) = |um(t)|2 − 1
Γ(α)

∫ t

0
(t − s)α−1‖ f (s)‖2∗ds − 2LgC(T, M)

Γ(α + 1)
(t − s)α.

J and Jm are non-increasing in t. Moreover, again from (24), we have

Jm(t) → J(t), a.e. t ∈ (0, T). (31)

Assume that t∗ > 0, consider {tk} ⊂ (0, t∗) with tk → t∗, by the continuity of J,

∃kε : |J(tk)− J(t∗)| < ε

2
, ∀k ≥ kε.

Take now m(kε) such that

tm ≥ tkε
: |Jm(tkε

)− J(tkε
)| < ε

2
, ∀n ≥ n(kε).
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Then, we conclude that for all m ≥ n(kε)

Jm(tm)− J(t∗) ≤ |Jm(tkε
)− J(tkε

)|+ |J(tkε
)− J(t∗)| < ε,

which gives (29).
Therefore, we find that

um → u in C([0, T]; H).

Then, steps 3 and 4 imply that

um
t → ut in CH , ∀ 0 ≤ t ≤ T.

Therefore, combining (g3), we can prove that

g(·, um· ) → g(·, u·) in L2(0, T; H).

Thus, we can finally pass to the limit in (18), concluding that u solves (P).
Step 5. Uniqueness of solution. Let u(t; φ), v(t; φ) be two solutions of (P) with the same initial

values—i.e., u(t) = v(t) = φ(t), t ∈ [−h, 0]. Set w(t) = u(t)− v(t), t ≥ 0, then w(t) = 0, for all t ∈ [−h, 0].
For w(t), we have

Dα
t w − νΔw + B(u)− B(v) = g(t, ut)− g(t, vt).

Multiplying above equation by w(t), and integral over Ω, we obtain

Dα
t |w|2 + ν‖w‖2 = −(B(u)− B(v), w) + (g(t, ut)− g(t, vt), w)

≤ c|w|2‖v‖2 + 2Lg sup
0≤s≤t

|w(s)|2

≤ c(‖v‖2 + 1) sup
0≤s≤t

|w(s)|2, for all t ∈ [0, T].

The above inequality holds true for any t ∈ [0, T], then we have

sup
0≤s≤t

|w(s)|2 ≤ |w(0)|2 + c
∫ t

0
(‖v‖2 + 1)(t − s)α−1 sup

0≤r≤s
|w(r)|2ds.

Using the Bellman–Gronwall Lemma 3 and (21), we have

sup
0≤s≤t

|w(s)|2 ≤ |w(0)|2 exp
{

c
∫ t

0
(‖v‖2 + 1)(t − s)α−1ds

}
= 0, for all t ∈ [0, T].

Therefore, |w(t)| = 0 on [−h, T]. The proof is finished.

Remark 6. We prove the existence of solution for a general delay case, namely, g(t, ut) could be variable delay or
distributed delay. In Section 4, we take g(t, ut) = g(u(t − τ(t)))—i.e., the delay function τ(t) ∈ C(R+; [0, h]),
to study the dissipativity.

Remark 7. It is worth mentioning that only the existence result is proved under the condition that α ∈ ( 1
2 , 1), which is

due to the phase space C([−h, 0]; H). If C([−h, 0]; H) is replaced by some Sobolev space, such as L2((−h, 0); H).
Then the existence of solution can be established for any α ∈ (0, 1) and without additional conditions.
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Theorem 2. Suppose that (g1)− (g3) hold true, then the solutions of system (P) are continuous with respect of
initial values—i.e.,

‖ut − vt‖2
CH

≤ c‖φ − ϕ‖2
CH

exp
{

c
∫ t

0
(‖v‖2 + 1)(t − s)α−1ds

}
, t ∈ [0, T].

Proof. Let u(t; φ), v(t; ϕ) be the solutions of (1)–(4) with initial values, φ and ϕ, respectively. Set w(t) =
u(t)− v(t) for t > 0, and w(t) = φ(t)− ϕ(t) for t ∈ [−h, 0]. Then we have

Dα
t w − νΔw + B(u)− B(v) = g(t, ut)− g(t, vt), t > 0.

Multiplying above equation by w(t), and integral over Ω, we obtain

Dα
t |w|2 + ν‖w‖2 = −(B(u)− B(v), w) + (g(t, ut)− g(t, vt), w)

≤ c|w|2‖v‖2 + 2Lg‖wt‖2
CH

≤ c|w|2‖v‖2 + 2Lg(‖φ − ϕ‖2
CH

+ sup
0≤t≤T

|w|2)

≤ (c‖v‖2 + 2Lg) sup
0≤t≤T

|w(t)|2 + 2Lg‖φ − ϕ‖2
CH

.

Hence, we have

sup
0≤t≤T

|w(t)|2≤|w(0)|2+ 2LgTα

Γ(α+1)
‖φ − ϕ‖2

CH
+

1
Γ(α)

∫ t

0
(c‖v‖2+2Lg)(t − s)α−1 sup

0≤s≤t
|w(s)|2ds

Again using the Bellman–Gronwall Lemma 3 and (21), we find that

‖wt‖2
CH

≤ c‖φ − ϕ‖2
CH

exp
{

c
∫ t

0
(‖v‖2 + 1)(t − s)α−1ds

}
, t ∈ [0, T].

The proof is complete.

4. Dissipativity

In this section, we derive some uniform estimates of solutions to problem (P) by using Proposition 2.
Besides, in this section, we assume that g(t, ut) = g(u(t − τ(t))).

Definition 7. The system (P) is said to be dissipative in CH if there exists a bounded set B ⊂ CH, such that for
any given bounded set A ⊂ CH, there is a time t∗ = t∗(A), such that for any given initial function φ ∈ A, for all
t ∈ [−h, 0], the values of the corresponding solution u(t) of the problem (P) are contained in B for all t ≥ t∗.
The set B is called an absorbing set of the system (P).

We assume that
λ1ν >

√
2Lg. (32)

Theorem 3. (Existence of absorbing sets in CH) Assume that (g1)− (g3), (17) and (32) hold. Then there exists
T > 0, such that for all t ≥ T, the solution of problem (P) satisfies

‖ut‖2
CH

≤ λ1ν f0

(λ1ν)2 − 2L2
g
+ 1, ∀ t ≥ T,

where f0 = ν−1 sup
t≥0

‖ f (t)‖2∗.
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Proof. Multiplying (1) by u, integrating over Ω, we have

Dα
t |u(t)|2 + ν‖u(t)‖2 ≤ ‖ f (t)‖∗‖u(t)‖+ |g(u(t − τ(t)))||u(t)|

≤ ‖ f (t)‖2∗
ν

+
2L2

g

λ1ν
sup

t−τ(t)≤s≤t
|u(s)|2.

(33)

Then we obtain

Dα
t |u(t)|2 ≤ f0 − λ1ν|u(t)|2 + 2L2

g

λ1ν
sup

t−τ(t)≤s≤t
|u(s)|2, t ∈ (0, T],

|u(t)|2 = |φ(t)|2, t ∈ [−h, 0],

where f0 = ν−1 sup
t≥0

‖ f (t)‖2∗. Using Proposition 2, we find that

|u(t)|2 ≤ λ1ν f0

(λ1ν)2 − 2L2
g
+ MEα(λ

∗tα)

for all t ≥ τ(t), where M = ‖φ‖2
CH

= sup
−h≤t≤0

|φ(t)|2, and the parameter λ∗ is defined by

λ∗ = sup
t−τ(t)≥1

{λ : λ − (−λ1ν)− 2L2
g

λ1ν

Eα(λ(t − τ(t))α)

Eα(λtα)
= 0},

is strictly negative, namely, there exists some positive constants ε0 satisfying −λ1ν +
2L2

g
λ1ν < −ε0 such

that λ∗ ∈ [−λ1ν +
2L2

g
λ1ν ,−ε0], and the estimate in (9) holds for all t such that t ≥ τ(t) + 1. In other words,

for λ∗ ∈ [−λ1ν +
2L2

g
λ1ν ,−ε0], we have

|u(t)|2 ≤ λ1ν f0

(λ1ν)2 − 2L2
g
+ MEα(λ

∗tα), ∀ t ≥ τ(t) + 1.

For the case of t < τ(t) + 1, in order to analyze the dissipativity of problem (P) in phase space CH by
Proposition 3, we first need to consider the following fractional differential equation,

Dα
t w(t) + λ1νw(t) = f0 +

2L2
g

λ1ν
w(t − τ(t)), 0 < t ≤ h + 1,

w(t) = |φ(t)|2, t ∈ [−h, 0],
(34)

Then, by using the method of steps [28] (Theorem 1), we have that the initial value problem (34) has,
on the interval [0, kh], a unique solution that can be represented by w(t) = wih(t), if (i − 1)h ≤ t ≤ ih,

wih(t) =
∫ t

0
Eα,α(−λ1ν(t − s)α) fih(s)ds + cihEα(−λ1νtα), t ∈ [(i − 1)h, ih],
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where cih is a constant, i = 1, 2, · · · , k.

fkh(t) :=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

2L2
g

λ1ν w0h(t − h) + f0, 0 < t ≤ h,
2L2

g
λ1ν w1h(t − h) + f0, h < t ≤ 2h,

· · ·
2L2

g
λ1ν w(k−1)h(t − h) + f0, (k − 1)h < t ≤ kh,

is continuous and w0h(t) = |φ(t)|2. k is a smallest integer such that kh ≥ h + 1. Therefore, we obtain that

|w(t)| ≤ ∑
0≤i≤k

|wih(t)| ≤ CEα(−λ1νtα), ∀ 0 ≤ t ≤ τ(t) + 1. (35)

Now, we estimate the solution of (1), for t < τ(t) + 1. By (33), we have

Dα
t |u(t)|2 + λ1ν|u(t)|2 ≤ ‖ f (t)‖2∗

ν
+

2L2
g

λ1ν
|u(t − τ(t))|, 0 ≤ t < τ(t) + 1,

|u(t)|2 = |φ(t)|2, t ∈ [−h, 0].
(36)

Then, by Proposition 3 and (34)–(36), we have

|u(t)|2 ≤ CEα(−λ1νtα), 0 ≤ t < τ(t) + 1.

So, we find that

|u(t)|2 ≤ λ1ν f0

(λ1ν)2 − 2L2
g
+ MEα(λ

∗tα) + CEα(−λ1νtα), for all t ≥ 0.

By the norm of CH , we conclude that

‖ut‖2
CH

≤ λ1ν f0

(λ1ν)2 − 2L2
g
+ MEα(λ

∗tα) + CEα(−λ1νtα), for all t ≥ 0, θ ∈ [−h, 0].

Since λ∗ and −λ1ν are strictly negative, by the property of Mittag–Leffler function [2], we obtain

‖ut‖2
CH

≤ λ1ν f0

(λ1ν)2 − 2L2
g
+ C

Cα

tα
, as t → +∞,

where Cα > 0 is a constant independent of t. Therefore, there exists T > 0 large enough, such that for all
t ≥ T, the solution of problem (P) satisfies

‖ut‖2
CH

≤ λ1ν f0

(λ1ν)2 − 2L2
g
+ 1, t ≥ T.

Denote by BCH = B(0,
√

λ1ν f0
(λ1ν)2−2L2

g
+ 1) the absorbing set in phase space CH , which implies that

system (P) is dissipative. The proof is complete.
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5. Discussion

In this work, we prove the existence and uniqueness of solution for fractional Navier–Stokes equations
with variable delays for α ∈ ( 1

2 , 1), and we show that this system is dissipative in the phase space CH ,
namely, there exists a global absorbing set in CH . Different from the classic Navier–Stokes equations with
variable delays [22–24], in which the existence of pullback absorbing set and pullback attractors were
established. Here, we obtained the forward absorbing set, which is more meaningful from the view of
applications. Besides, the existence of global attracting set as well as the existence of solution for α ∈ (0, 1)
in phase space CH are still open problems. These will be considered in the future.
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