
﻿Short-Term
 Load Forecasting 2019   •   Antonio Gabaldón, M

aría Carm
en Ruiz-Abellón and Luis Alfredo Fernández-Jim

énez

Short-Term Load 
Forecasting 2019

Printed Edition of the Special Issue Published in Energies

ww.mdpi.com/journal/energies

Antonio Gabaldón, María Carmen Ruiz-Abellón and 
Luis Alfredo Fernández-Jiménez

Edited by



Short-Term Load Forecasting 2019





Short-Term Load Forecasting 2019

Editors

Antonio Gabaldón

Marı́a Carmen Ruiz-Abellón

Luis Alfredo Fernández-Jiménez
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Preface to ”Short-Term Load Forecasting 2019”

The future of power systems and markets is exciting but presents a number of risks for

customers, utilities, network operators, and society as a whole. The integration of renewable

generation sources by 2030–2050 [1] and the potentiation of “active customers” [2] will lead to quite

different planning and operation tasks in this new scenario [3]. Traditional tools will no longer

perform as they do at present. For instance, the ability of the future generation mix to meet load

demands, at all times, becomes a more complex task with interesting opportunities for new actors

both in the demand and supply sides of a power system. Uncertainties and randomness concerns

related to electricity demand appear in the literature: how can we manage the availability of energy

outputs from renewable generation resources and the flexibility of customers? New and complex

forecasting methods [4] can provide a partial solution to this challenge. In our case, short-term load

forecasting methods (STLF) are used to evaluate demand, and perhaps supply.

While STLF has usually been applied to non-responsive customers, this scenario is anticipated

to change to ”active customers”. This concept refers to a new dynamic actor that can participate

in electricity markets (energy, capacity, or balance), alone or through demand aggregators, and

changes its demand due to economic and technical considerations. This participation requires an

estimation of demand in the short term (much more complex) to avoid penalties for non-compliance

at lower aggregation levels (from hundreds of kW to some MW), where STLF methodologies should

be revisited and modified to improve their performance.

This book compiles thirteen papers published in the Special Issue titled “Short-Term Load

Forecasting 2019”, which represent a research advance inside a wide range of specific topics described

below, all of them of great importance in the field of STLF. The usefulness and relevance of hybrid

or combined models, together with multistep methodologies, is indisputable. There are many recent

papers in this context. All of them try to overcome the drawbacks of other existing methods, while

at the same time seeking to gain robustness and improve predictions. To some extent, all the articles

of this Special Issue employ combined or/and multistep methods to provide predictions: in some

cases, they employ them as an intermediate tool, and the novelty of the research is focused on other

aspects; in other cases, the hybrid method proposed by the authors represents the main contribution.

The latter group of studies includes the following papers: [5], where a novel model combining a

data pre-processing technique, forecasting algorithms, and an advanced optimization algorithm is

developed; [6], which proposes a very short-term bus load prediction model based on a phase space

reconstruction and deep belief network; [7], which proposes a hybrid load-forecasting method that

combines classical time series formulations with cubic splines to model electricity load; and [8],

where the electricity demand time series is divided into two major components (deterministic and

stochastic) and both components are estimated using different regression and time series methods

with parametric and nonparametric estimation techniques. These last two papers remind us that we

must not forget the usefulness of classical methods.

Despite the great number of papers on this topic, there is an issue that remains open: how to

guide researchers to employ proper hybrid technology for different datasets [4]. Two review papers

of this book represent an advance on this topic: [9], which discusses four categories of state-of-the-art

STLF methodologies (similar pattern, variable selection, hierarchical forecasting, and weather station

selection), where each of these methods proposes a specific solution for load prediction, and [10],

where the authors highlight the necessity of developing additional and case-specific performance

ix



criteria for electricity load forecasting (better accuracy does not imply lower costs caused by

forecasting errors).

Another aspect of interest related to the mix of methodologies can be found in the context of

demand response programs in hybrid energy systems. In [11], a methodology is proposed that could

help power systems or aggregators to make up for the lack of accuracy of the current forecasting

methods when predicting renewable energy generation, whereas [12] utilizes both long and short

data sequences to propose a model that supports the demand response program in hybrid energy

systems, especially systems using renewable and fossil sources.

There are many features we must consider developing a good STLF model, such as climatic

factors, seasonality, and calendar effects. The authors of [13] highlight the importance of

distinguishing different types of special days (those on which working or social habits differ from

the ordinary) to reduce the greatest forecasting errors and propose several ways to classify those

special days.

Current forecasting methods have shown high efficiency and accuracy, mainly at the power

system and great consumer levels. However, there is much to be done at the residential level due

to the high volatility and uncertainty of the electric demand of a single household. This topic is

dealt with by [14] and [15]: the former presents a scalable system for day-ahead household electrical

energy consumption forecasting, based on a deep residual neural network, and extracts features

from the historical load of the particular household and all households present in the dataset;

the latter proposes a forecasting method based on convolution neural networks combined with a

data-augmentation technique that can artificially enlarge the training data.

The issue caused by a lack of historical data or limited data is also addressed in [16] and [17]: in

the first case, the authors propose a novel STLF model to predict energy consumption for buildings

with limited data sets by using multivariate random forest to construct a transfer learning-based

model; in the second case, the author introduces the problem of load “nowcasting” to the energy

forecasting literature, where one predicts the recent past using limited available metering data from

the supply side of the system.
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Editors

xi





energies

Article

Research and Application of a Novel Combined
Model Based on Multiobjective Optimization for
Multistep-Ahead Electric Load Forecasting

Yechi Zhang 1, Jianzhou Wang 1,* and Haiyan Lu 2

1 School of Statistics, Dongbei University of Finance and Economics, Dalian 116025, China;
derchi666@gmail.com

2 School of Software, Faculty of Engineering and Information Technology, University of Technology,
Sydney 2007, Australia; Haiyan.Lu@uts.edu.au

* Correspondence: wangjz@dufe.edu.cn; Tel.: +86-13009480823

Received: 10 April 2019; Accepted: 16 May 2019; Published: 20 May 2019

Abstract: Accurate forecasting of electric loads has a great impact on actual power generation, power
distribution, and tariff pricing. Therefore, in recent years, scholars all over the world have been
proposing more forecasting models aimed at improving forecasting performance; however, many of
them are conventional forecasting models which do not take the limitations of individual predicting
models or data preprocessing into account, leading to poor forecasting accuracy. In this study, to
overcome these drawbacks, a novel model combining a data preprocessing technique, forecasting
algorithms and an advanced optimization algorithm is developed. Thirty-minute electrical load data
from power stations in New South Wales and Queensland, Australia, are used as the testing data to
estimate our proposed model’s effectiveness. From experimental results, our proposed combined
model shows absolute superiority in both forecasting accuracy and forecasting stability compared
with other conventional forecasting models.

Keywords: electric load forecasting; data preprocessing technique; multiobjective optimization
algorithm; combined model

1. Introduction

It is known that the electric power industry plays a vital role in many aspects of people’s lives [1].
Effective forecasting enables adjustments to be made of power generation according to market demand,
and to the reduction of management and operational costs [2]. On this basis, accurate power load
forecasting is necessary in daily operations of power systems [3]. However, due to various uncertainties
and climate change, economic fluctuations, industrial structure, and national policy and other social
environment complexity, it is difficult to meet expectations in terms of the accuracy of power load
forecasting [4]. Inaccurate forecasting often results in considerable loss of power systems. For example,
overestimated forecasts often result in wasted energy, while underestimated forecasts will result in
economic loss [5]. With the development of society, the expansion of urbanization, and the continuous
improvement of industry, the demand for electricity is continuously increasing, which poses a challenge
to electric load prediction systems [6]. Accurate power load forecasting is indispensable to the whole
society, which not only reflects the economic rationality of power dispatching, but can also be reflected
in power construction planning and power supply reliability. Therefore, developing a novel and robust
model to improve forecasting performance is essential for power load forecasting [7]. In the past few
years, in order to achieve accurate short-term time series forecasting of power load, a lot of research
has been carried out. There are mainly four types of related algorithms: (i) physical arithmetic, (ii)
spatial correlation arithmetic, (iii) conventional statistical arithmetic, (iv) and artificial intelligence
arithmetic [8].

Energies 2019, 12, 1931; doi:10.3390/en12101931 www.mdpi.com/journal/energies1
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2. Literature Review

“Physical algorithm” is a general term referring to models that primarily use physical data such as
temperature, velocity, density, and terrain information based on a numerical weather prediction (NWP)
model to predict wind speeds in subsequent periods [9]. The NWP model is a computer program
designed to solve atmospheric equations. Based on the NWP wind resource assessment method,
Cheng et al. [10] evaluated wind speed distribution by comparing three deterministic probabilities.
From their experiment results, they found that NWP could not only achieve reliable probability
assessment but also supply precise forecasting estimates. However, physical methods cannot handle
time series for short-term horizons [11]. Moreover, when using an NWP model, much calculation
time and many computing resources are required [12]. Spatial correlation models, which are applied
to solve time series forecasting to make up for the shortcomings of physical algorithms, take the
relationships of time series from different locations into consideration [13]. A classic case is a novel
model proposed by Tascikaraoglu et al. [14] utilizing a spatiotemporal method and a wavelet transform,
successfully improving the performance of forecasting compared to other benchmark models. However,
spatial correlation arithmetic is always difficult to use in practice because of its requirements of strict
measurements and a large amount of meticulous measuring in many spatially related sites [15].

Traditional prediction methods also include random time series models such as exponential
smoothing, autoregressive (AR) methods, filtering methods, autoregressive moving average (ARMA)
methods, and the well-known autoregressive integrated moving averages (ARIMA) and seasonal
ARIMA models, mainly focusing on regression analysis [16,17]. The regression model is aimed at
establishing a relationship between historical data, treated as dependent variables, and influencing
factors, treated as independent variables [18]. For example, Lee and Ko [19] adopted an ARIMA-based
model to forecast and simulate hourly electric load data of the Taipower system. Wang et al. [20]
improved the accuracy of seasonal ARIMA applied to electricity demand forecasting by the use of
residual modification models. They applied a seasonal ARIMA approach, an optimal Fourier model,
and a combined model including seasonal ARIMA and the PSO optimal Fourier method. They used
these three models to predict electric load time series data in northwestern China. After juxtaposing
the results, they found that the combined model was the most accurate one. Brożyna et al. [21] used
the TBATS model to overcome the seasonality in data, which may bring difficulties when doing time
series forecasting by using models such as ARIMA.

Modern forecasting methods include artificial neural networks (ANNs), support vector machines
(SVMs), fuzzy systems, expert system forecasting methods, chaotic time series methods, gray models,
adaptive models, optimization algorithms, etc. [22]. These modern methods are getting more popular
among researchers when dealing with time series forecasting [23]. These artificial intelligence models
can achieve good forecasting performance because of their unique characteristics, such as memory,
self-learning, and self-adaptability, since the neural networks are products of biological simulation
that follow the behavior of the human brain [24]. Park [25] showed good performance of this type of
model after first applying ANNs in power load forecasting in 1991. He concluded that ANNs were
highly effective in electrical load forecasting. After that, many time series forecasting studies were
performed using various artificial neural networks by a lot of researchers [26]. Lou and Dong [27]
proved that electric load forecasting with RFNN showed much higher variability with hourly data in
Macau. Okumus and Dinler [28] integrated ANNs and the adaptive neuro-fuzzy inference system to
predict wind power, and forecasting results proved that their proposed hybrid model was better than
the classical methods in forecasting accuracy. Hong [29] selected better parameters for SVR by using
the CPSO algorithm, while Che and Wang [30] established a hybrid model that was a combination
of ARIMA and SVM, called SVRARIMA. Liu et al. [31] built a model integrating EMD, extended
extreme learning machine (ELM), Kalman filter, and PSO algorithm. Although the hybrid model
seemed better than individual classical models, the limitations of each model due to the nature of
the structure seemed inevitable [32]. In order to solve this problem, a combined forecasting model
is proposed. The combined forecasting theory has been developed through the joint efforts of three
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generations of scientists. It was initiated by Bates and Granger [33] and developed by Diebold and
Pauly [34], then further extended by Pesaran and Timmermann [35] as a combination of several
individual models. Many kinds of ANNs have been combined into short-term forecasting models
in order to fully utilize the advantages of individual models and at the same time overcome their
shortcomings. There are some typical studies: Zhang et al. [36] successfully obtained promising results
of wind speed forecasting by developing a combined model that consisted of CEEMDAN, five neural
networks, CLSFPA, and no negative constraint theory (NNCT). In addition, Che et al. [37] developed a
kernel-based SVR combination model in a study on electric load prediction.

It is obvious from the review of forecasting methods that there are shortcomings in both traditional
and modern techniques. The shortcomings of these models are summarized as follows:

For physical algorithms, the main problem is that physical methods cannot deal with short-term
horizons. Physical methods perform well when dealing with long-term forecasting problems [38].
Moreover, it costs a lot of computing time and resources when using NWP models because of
their complex calculation process and high cost. Spatial correlation arithmetic requires detailed
measurements from multiple spatially correlated sites, which increases the difficulty in searching for
electric load data. Moreover, because of the strict measuring requirements and time delays, the model
is always hard to implement [39].

For conventional statistical arithmetic, mainly known as the linear model, there are insurmountable
shortcomings. First and foremost, these models cannot deal with nonlinear features of electric load
time series [40]. Moreover, the regression method also fails to achieve the expected forecasting accuracy.
Linear regression relies too much on historical data to cope with nonlinear forecasting problems; as
time goes by, the forecasting effect of regression analysis models will become weaker and weaker [41].
In addition, when faced with complex objective data, it is hard to choose the appropriate influencing
factors. The exponential smoothing model also has shortcomings, in that it cannot recognize the turning
point of the data and does not perform well in long-term forecasting [42]. As for the autoregressive
moving average model, it only gets results through historical and current data, ignoring potential
influencing factors. In addition, strong random factors of the data may lead to instability of the model,
which affects the accuracy of the forecasting performance [43]. All in all, none of these models meet
the accuracy required by an electric load forecasting system.

For artificial intelligence arithmetic, although artificial intelligence neural network performance is
superior to traditional forecasting techniques, ANNs are impeccable; the defects and shortcomings
of their structure cannot be ignored. There are three major problems. First, it is hard to choose the
parameters of ANN models, as a slight change in parameters may cause huge differences in the
outcomes [44]. Second, ANNs are inclined to fall into local minima owing to their relatively slow
self-learning convergence rate [45]. Lastly, the number of layers and neurons in a neural network
structure has an effect on the forecasting result and computing time [46]. As to other models, SVM has
a high requirement for storage space and expert systems strongly rely on knowledge databases, while
gray forecasting models can produce decent results only under the condition of exponential growth
trends [47]. To solve these problems, evolutionary algorithms are applied. When the optimization
algorithms are combined with forecasting models, more reasonable parameters will be selected and
more accurate results will be obtained.

To overcome the abovementioned drawbacks, in our proposed model, we use a data preprocessing
method, no negative constraint theory (NNCT) [48], a multiobjective optimization algorithm, a linear
forecasting method, autoregressive integrated moving average (ARIMA) [49], and three artificial
intelligence forecasting algorithms, wavelet neural network (WNN) [50], extreme learning machine
(ELM) [51], and back propagation neural network (BPNN) [52]. The proposed model improves
forecasting performance by maximizing the benefits of both linear and nonlinear advantages by using
each single model. It is worth mentioning that for the purpose of improving the forecasting effect
of our model, a mechanism based on decomposition and reconstruction is employed to ensure that
the main features of the original data are identified and extracted by removing high-frequency noise
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signals. Then, four individual models are applied to the electrical load forecasting. Lastly, a new weight
decision technique based on the multiobjective grasshopper optimization algorithm and stay-one
strategy was successfully used to integrate the four models. The experimental results show that our
combined model has high forecasting accuracy and strong stability.

The main contributions and novelties of our proposed model are summarized as follows:

(1) Applying the decomposition and reconstruction strategy, data preprocessing methods are adopted to extract
main features of the original data by eliminating high-frequency signals, making predictions more accurate.
Decomposing the original power data and reconstructing it into a filtering sequence can eliminate
the irregularity and uncertainty of the data and achieve better power load forecasting performance.

(2) Applying the multiobjective optimization algorithm, the optimal weight coefficient of each single model can
be optimized. Our proposed combined model is not only robust, but also economical in power
load forecasting. Moreover, it has higher precision and greater stability.

(3) With the combination of the linear model (ARIMA) and nonlinear models (WNN, ELM, and BPNN), the
developed model can reflect both the linearity and nonlinearity of electrical load data. Our proposed
model can use each individual model thoroughly and it spontaneously overcomes limitations
such as low precision and instability to ensure the effectiveness of power load forecasting.

(4) The new combined model beats other single models and will provide effective technical support for power
system management. The developed model was simulated and examined based on the electric load
data of three different sites, which indicates its strong robustness and adaptability regardless of
location and forecasting steps.

The rest of the paper is arranged as follows. In Section 2, we introduce the methodology we applied
in the proposed model, including the data preprocessing technique, ARIMA, WNN, ELM, BPNN, the
theory of combined models, and multiobjective grasshopper optimization. Section 3 describes the
electric load time series we selected and three experiments aimed at verifying the effectiveness of our
forecasting model. In Section 4, we provide an in-depth discussion of the proposed model, including
a test of the performance of the proposed optimization algorithm, two tests of the effectiveness of
the model, and a test showing the improvement of the model and a comparative experiment of the
combination method.

3. Methods

In this section, we discuss the methods of the proposed combined model in detail, including the
singular spectrum analysis (SSA) technique, the individual models used in the combined model, and
the multiobjective grasshopper optimization algorithm (MOGOA). After that, a combined model that
can significantly improve the definition of electric load forecasting is presented.

3.1. SSA Technique

SSA is a nonparametric spectral estimation method usually used for filtering in the preprocessing
stage of time series forecasting. The advantage of SSA is that it always works well in both linear and
nonlinear time series. Moreover, it performs well whether the time series is stationary or not. In short,
the way SSA works is to identify the trend and noise parts of a time series, after which it reconstructs a
new series.

3.2. Wavelet Neural Network

Wavelet neural network (WNN) is a modern artificial intelligence model. It is essentially a
feed-forward neural network based on wavelet transform [53]. Its basic working principle is to use
wavelet space as the feature space of pattern recognition to realize the feature extraction of signals by
weighting the inner product of the wavelet base and the signal vector and combining the time-frequency
localization of the wavelet transform and the self-learning function of the neural network. It has the
advantage of being able to effectively learn the input/output characteristics of the system without the
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need for a priori information such as data structures and characteristics. In addition, compared with
traditional neural networks, wavelet neural networks can often achieve better prediction accuracy,
faster convergence, and better fault tolerance when forecasting in complex nonlinear, uncertain, and
unknown systems. So, we applied WNN as an individual nonlinear model in our proposed model.

3.3. Extreme Learning Machine

Extreme learning machine (ELM) is a kind of machine learning algorithm based on feed-forward
neuron network [54]. Its main feature is that the hidden layer node parameters can be given randomly
or artificially and do not need to be adjusted. The learning process only needs to calculate the output
weight. ELM has the advantages of high learning efficiency and strong generalization ability and is
widely used in time series forecasting. As a result, we applied ELM as an individual nonlinear model
in our proposed model.

3.4. Back Propagation Neural Network

The back propagation neural network (BPNN), composed of an input layer, a hidden layer, and
an output layer, is a concept that was proposed by scientists led by Rumelhart and McClelland in
1986 [55]. It is a multilayer feed-forward neural network trained according to the error back propagation
algorithm. Learning and working stages are the whole process of BPNN. It is the most widely used
neural network. It has arbitrary complex pattern classification ability and excellent multidimensional
function mapping ability, which solves the exclusive OR (XOR) and other problems that cannot be
solved by simple perception. In essence, the BP algorithm uses the network error squared as the
objective function and the gradient descent method to calculate the minimum value of the objective
function. Moreover, because of its flexible structure and strong nonlinear mapping capability, BPNN is
widely applied in the engineering field. So, we applied it as an individual nonlinear model in our
proposed model.

3.5. Autoregressive Integrated Moving Average Model

The ARIMA model, also known as the autoregressive moving average model, is a model used for
time series forecasting with relatively high prediction accuracy. The ARIMA model mainly consists of
3 forms, a moving average MA model, an autoregressive AR model, and a mixture of autoregressive
moving average ARMA models. Before using this model, it is necessary to first analyze whether the
time series is stable. If the sequence is a nonstationary time series, the first step is to differentiate the
time series, and the difference must be smoothed before the model is established, otherwise it cannot
be used.

The difference between the ARIMA model and the ARMA model is that the ARMA model is
built for stationary time series and the ARIMA model is used for nonstationary time series. In other
words, to establish an ARMA model for a nonstationary time series, you first need to transform into a
stationary time series and then build an ARMA model. We applied ARIMA as an individual linear
model in our proposed model.

3.6. Basic concepts of Multiobjective Optimization Problems

Conventional relational operators such as >, <, and =, which are always found in single-objective
optimization problems, cannot be applied in multiobjective optimization. To address this problem, a
new concept of dominates was proposed and then extended by Edgeworth in 1881 and Pareto in 1964.
Details of Pareto dominance are as follows:

Definition 1 (Pareto dominance):
The definition of Pareto dominance is: vector y = (y1, y2,...yz) is dominated by vector x =

(x1, x2,...xz) (i.e., x > y) when

∀ t ∈ [1, z], [ f (xt) ≥ f (yt)] ∧ [∃t ∈ [1, z] : f (xt) > f (yt)] (1)
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where z represents the length of vectors.

3.7. Multiobjective Grasshopper Optimization Algorithm

MOGOA is the latest nature-inspired method, proposed by Mirjalili [56]. Essentially, MOGOA is
a multiobjective version of GOA. GOA is a nature-inspired algorithm that simulates the swarming
behavior of grasshoppers. The position of a grasshopper in the swarm representing a possible solution
of a given single-objective optimization problem is the main principal of GOA. The details of MOGOA,
and the main steps of building it, are as follows:

In order to replicate the real living conditions of grasshoppers in nature, MOGOA takes 3
factors—gravity force, social interaction, and wind advection—into the model. Xi means the position
of the ith grasshopper and is represented by:

Xi = Si + Gi + Ai (2)

where Si, Gi, and Ai mean social interaction, gravity force, and wind advection, respectively.
Social interaction is the most important factor, calculated by the following equation:

Si =
N∑

j = 1
j � i

s(dij)d̂i j (3)

dij =
∣∣∣x j − xi

∣∣∣ (4)

d̂i j =
(
x j − xi

)
/dij (5)

s(r) = f e−r/l − e−r (6)

where dij means the distance between the ith and jth grasshoppers, and d̂i j is a unit vector of dij.
Function s defines that the values of parameters f and l are changed, so the social forces can be changed
too. The distance between grasshoppers is limited to the interval of [1,4], because, according to common
sense, when 2 grasshoppers are far apart, they will not have a strong social influence on each other.
Gravity force is defined as:

Gi = −gêg (7)

where g is the gravitational constant and êg represents the unity vector toward the center of the earth.
Wind advection is defined as:

Ai = uêw (8)

where u means constant drift and êw represents the unity vector in the wind direction. After replacing
Equation (2) with the above 3 equations, we can get:

Xi =
N∑

j = 1
j � i

s(
∣∣∣x j − xi

∣∣∣)x j − xi

di j
− gêg + uêw (9)

Considering that the influence of gravity force on grasshoppers is too weak and assuming that the
wind direction is always toward the best solution T̂d, some parameters are added to the mathematical
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model to enhance the ability to explore and exploit for the purpose of solving the optimization problem
more effectively. After that, the mathematical model turns to:

Xi
d = c(

N∑
j = 1
j � i

c
ubd − lbd

2
s(
∣∣∣x j

d − xi
d
∣∣∣)x j − xi

di j
) + T̂d (10)

where ubd and lbd are the upper and lower bound of the dth dimension, respectively, and T̂d is the
best solution’s dth dimension value so far. For the purpose of reducing exploration and increasing
exploitation proportional to cmax at the same time, the parameter c is updated with the following
equation:

c = cmax − l
cmax − cmin

L
(11)

Compared with finding solutions from a series of Pareto optimal solutions obtained by MOGOA,
it is easier to find the best solution calculated so far in a single-objective search. Because the archive
has all the Pareto optimal solutions, the position of the target is determined. Finding the target that
can improve the solution’s distribution becomes the biggest problem. The possibility of choosing the
target from the archive is calculated by:

Pi =
1

Ni
(12)

where Ni represents the neighborhood of the ith solution’s total number. With this probability, there
are 2 advantages to using the roulette method when selecting a target from a file: first, the roulette
method can improve the distribution of less distributed areas of the search space, and second, when
premature convergence occurs, a solution with a crowded neighborhood can be selected as a target to
solve the problem.

When updating the content of the archive regularly in MOGOA, 2 criteria are implemented: (1)
give up an external solution as long as this external solution is dominated by one archive solution; and
(2) add an external solution to the archive when the external solution does not dominate all solutions
inside the archive. Moreover, as long as an external solution dominates a solution inside the archive,
the inside one should be replaced by the external one. All in all, MOGOA can not only find Pareto
optimal solutions, but also store them in an archive.

The pseudocode of MOGOA is as follows:
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Algorithm 1: MOGOA

Objective functions:

min
{

O1 =
∣∣∣Bias(ŷ)

∣∣∣
O2 = std(y− ŷ)

Input:

ŷB = (ŷB(1), ŷB(2), · · · , ŷB(q))- BPNN
ŷE = (ŷE(1), ŷE(2), · · · , ŷE(q))- ELM
ŷW = (ŷW(1), ŷW(2), · · · , ŷW(q))-WNN
ŷA = (ŷA(1), ŷA(2), · · · , ŷA(q))-ARIMA

Output:

ŷ f =
(
ŷ f (1), ŷ f (2), · · · , ŷ f (l)

)
- forecasting results

Parameters:

L—the maximum number of iterations
n—the number of grasshoppers
lbi,ubi—boundaries of the i-th variable
xi—i-th grasshopper’s position
l—current iteration number
d—dimension amount.
cmax—c’s maximum value
cmin— c’s minimum value
T̂d—best solution’s d-th dimension value so far
dij—the distance between the i-th and the j-th grasshopper

s—social forces function
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3.8. SSA-MOGOA Combined Model

In our study, a new combined model applying a data preprocessing technique, a new parameter
determination method, and several individual prediction algorithms, including both linear and
nonlinear models, is successfully developed. The main steps are listed below. The flowcharts of the
proposed model are depicted in Figure 1.

3.8.1. Stage 1: Data Preprocessing

SSA is a nonparametric spectral estimation method usually used for filtering in the preprocessing
stage of time series forecasting [57]. The advantage of SSA is that it always works well in both linear
and nonlinear time series. In addition, the processed data will be used in subsequent forecasting. The
main steps of SSA are depicted in Figure 1.

3.8.2. Stage 2: Individual Models used for Forecasting

Three nonlinear models, BPNN, ELM, and WNN, and a linear model, ARIMA, are chosen as the
individual models that together form the combined model. It is worth mentioning that all 4 models
can achieve good prediction results in our electric load forecasting.

3.8.3. Stage 3: Optimization of Weight Parameters of Combined Model

Determining the parameter coefficients of each individual model is very important for construction
of the combined model. In past combined models, a simple average coefficient allocation strategy was
often used. In our research, we adopted a multiobjective optimization algorithm called MOGOA for
the deciding parameters and made the combined model achieve good prediction results in electric
load forecasting.
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4. Experiments and Analysis

In this section, we introduce the electric load time series we selected and the performance metric
and testing methods. We also present three experiments aimed at verifying the effectiveness of our
forecasting model. The main steps and flowchart of the developed model are described in Figure 1,
which includes a data preprocessing technique, application of several individual models, optimization
of the combined model’s weight coefficients, and forecasting results.

4.1. Datasets

In this paper, original electric load time series data were collected from two areas in Australia,
New South Wales (NSW) and Queensland (QLD), on a half-hourly basis (48 data points per day). Two
datasets were collected in New South Wales and Queensland, which were sampled from 13 to 31 July
2011, 19 days in all. The third dataset was sampled from 13 to 31 July 2010 in Queensland. Figure 2
presents a simple map of the study area, some descriptive statistical indicators of the datasets, and three
general trends of testing samples. Specifically, in each dataset, the training set included 768 data points
and the testing set consisted of 144 data points. There were 48 data points in a single day according
to the data, therefore we selected the period T = 48 for the combined model. Statistical indicators
including minimum, maximum, mean, and standard deviation are listed in Table 1. From one-step
to three-step prediction, forecasting outcomes are all based on the historical data, which means this
experimental outcome is not used as input data to forecast the subsequent values in this study, while
in artificial intelligence models, based on plenty of experimental results, five historical data points are
chosen as input so as to obtain the best forecasting performance in the multistep forecasting mechanism.
The detailed data structure is presented in Figure 2.

Table 1. Statistical indicators of experimental samples for three sites.

Dataset. Samples Numbers
Statistical Indicator(kw)

Max Min Mean Std.

QLD(2010)
All samples 912 7033.21 4316.89 5788.65 741.36

Training 768 7033.21 4316.89 5803.04 746.40
Testing 144 6476.49 4361.6 5711.87 708.99

QLD(2011)
All samples 912 7234.04 4399.42 5782.99 724.57

Training 768 7234.04 4412.33 5834.35 729.96
Testing 144 6718.05 4399.42 5509.06 627.75

NSW(2011)
All samples 912 12883.81 6821.4 9707.66 1337.86

Training 768 12883.81 6821.4 9819.03 1346.71
Testing 144 11314.46 6939.18 9113.68 1115.41

4.2. Performance Metrics

In our study, to evaluate the predictive power of the proposed model, we needed performance
metrics in our time forecasting experiments. Because there is no general standard for evaluating a
time forecasting model, we decided to apply three performance metrics: mean absolute error (MAE),
root mean square error (RMSE), and mean absolute percent error (MAPE), as presented in Table 2 [58].
Next, we introduce these three performance metrics in detail.

From the definitions of MAE and RMSE, it is obvious that the advantage of these two performance
metrics is that they can avoid canceling between positive and negative forecasting errors due to the
use of absolute value symbols. They can evaluate the average dimension of the forecasted time series
with actual data. MAPE, which is regarded as the most widely used performance metric in time series
forecasting, is obtained by calculating the average of absolute error. The advantage of MAPE is that it
can reflect the reliability and validity of the time series forecasting method. When observing the values
of all three of these metrics, the smaller the value, the more accurate the prediction. Table 2 shows
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the formulas of the three error metrics. Here Ai means actual values of the time series and Fi means
predicted values, and N means sample size.

Figure 2. Location of electric load and data structure.

Table 2. Three error metrics.

Metric Definition Equation

MAE The mean absolute error of N forecasting results MAE = 1
N

N∑
i=1
|Fi −Ai|

RMSE The square root of the average of error squares RMSE =

√
1
N ×

N∑
i=1

(Fi −Ai)
2

MAPE The average of N absolute percentage error MAPE = 1
N

N∑
i=1

∣∣∣∣Ai−Fi
Ai

∣∣∣∣× 100%

4.3. Testing Method

In this section, we introduce the Diebold–Mariano (DM) test and the forecasting effectiveness that
were applied to statistically test the accuracy of our proposed model in time series forecasting.

4.3.1. Diebold–Mariano Test

Diebold and Mariano [59] developed a test to compare a model’s prediction efficiency with that of
other models. The main steps of the DM test are as follows:

Since the DM test is essentially a hypothesis test, the first things to introduce are the null hypothesis
H0 and alternative hypothesis H1:

H0 : E
[
F
(
e1

t

)]
= E

[
F
(
e2

t

)]
(13)

H1 : E
[
F
(
e1

t

)]
� E

[
F
(
e2

t

)]
(14)

where e1
t and e2

t are subtracted from actual time series data and the different models’ predicted time
series values, also called forecasting errors, and F is the loss function of e1

t and e2
t .

d =
1
L

L∑
t=1

[
F
(
e1

t

)
− F

(
e2

t

)]
(15)
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d is obtained by calculating the average of the sum of differences between the two models’ loss
function, and L is the length of predicted values.

DM =
d√

2π
∼

fd(0)/L

→ N(0, 1) (16)

As shown in the above formula, the test statistic DM is convergent in the standard normal
distribution N (0, 1). The null hypothesis will be rejected if |DM| is bigger than

∣∣∣Zα/2
∣∣∣, where zα/2

stands for the critical z-value of the standard normal distribution and α denotes the significance level.

4.3.2. Forecasting Effectiveness

Forecasting effectiveness can be calculated by the accuracy of the mean squared deviation, which
the DM test cannot do [60]. Forecasting effectiveness is also employed in our study. The principal
ideas of forecasting effectiveness are as follows:

mk =
n∑

i=1
QiAk

i is used to calculate the kth order forecasting effectiveness unit, where Ai means

forecasting accuracy time i; Qi object to
n∑

i=1
Qi = 1, Qi > 0, called discrete possibility distribution. Qi

will be defined as Qi = 1/n, i = 1, 2, . . . , n when there is no prior information of Qi. The kth order
forecasting effectiveness is calculated by H

(
m1, m2, · · · , mk

)
, where H is a continuous function with

k units. The first-order forecasting effectiveness will be defined as H
(
m1

)
= m1 when H(x) = x is a

continuous constant function. H
(
m1, m2

)
= m1

(
1−

√
m2 − (m1)2

)
will be called as the second-order

forecasting effectiveness when H(x, y) = x
(
1− √

y− x2
)

is a continuous function with two variables.

4.4. Experiments and Analysis

In this part, to examine our proposed model’s performance in electric load time series forecasting,
we did three experiments from corresponding power station sites.

4.4.1. Experiment I: Compare with Other Models Based on SSA

In order to determine the necessity of combining the models, we made this experiment comparing
the electric load time series forecasting results of our new model with the four SSA-based models. The
experimental results are shown in Table 3. Detailed descriptions are as follows:

• By observing the experimental results using the 2010 Queensland power data, the following
results were found: First of all, the most obvious was that our proposed combined model had the
best prediction performance whether the statistical indicator was MAE, RMSE, or MAPE; in other
words, the smallest error metrics values. Second, if we look closely at the forecasting steps, we
can find that the forecasting accuracy gets worse. In one-step forecasting, our proposed model’s
MAPE value is 0.37%, and it increases to 0.68% in three-step forecasting.

• For the 2011 Queensland power data, we found the following: First, our proposed model was still
the most accurate one. It is worth mentioning that in one-step forecasting, the forecasting gap
between our model and the SSA-ELM model was big. Specifically, the MAE values of our model
and SSA-ELM were 20.79 and 23.90, respectively, while they were 21.26 and 22.35 with the 2011
Queensland power station data. The superiority of the proposed model can be more intuitively
reflected in the Figure 3.

• Regarding the results using the 2011 New South Wales power data, compared to the first two
experiments, which used electric load data from Queensland, the error metric values were
significantly larger in the third experiment. This reflects the differences among different power
plants. The great thing was that our proposed combined model still outperformed other SSA-based
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models in one-step to three-step forecasting. This is powerful proof that our model is indeed
superior. At the same time, we can also determine the necessity of combining models through this
experiment by the fact that it really can improve forecast accuracy.

N.B. By comparing the forecasting results of our proposed combined model with other SSA-based
models, there were many useful findings from Experiment I. Our model’s overall performance in
predicting accuracy demonstrates the need to combine models. Moreover, our proposed model greatly
improves electric load forecasting accuracy with an average MAPE of 0.52% in all experiments.

Table 3. Comparison of proposed model with other SSA-based models.

Dataset Model
MAE RMSE MAPE (%)

1-step 2-step 3-step 1-step 2-step 3-step 1-step 2-step 3-step

QLD(2010)

SSA-BP 24.78 32.79 62.15 30.87 39.70 80.51 0.44 0.58 1.10
SSA-ELM 22.35 36.58 68.08 28.35 44.18 86.52 0.40 0.66 1.20
SSA-WNN 26.23 52.69 95.45 36.09 68.78 126.16 0.47 0.93 1.71

SSA-ARIMA 39.18 40.71 43.54 52.83 54.84 57.59 0.70 0.72 0.78
Proposed

Model 21.26 25.94 37.97 26.98 32.83 46.51 0.37 0.45 0.68

QLD(2011)

SSA-BP 26.21 35.21 71.09 34.48 45.07 86.81 0.50 0.65 1.31
SSA-ELM 23.90 34.98 90.62 30.43 45.20 118.89 0.44 0.65 1.69
SSA-WNN 35.30 80.94 169.98 45.58 100.84 216.67 0.68 1.53 3.16

SSA-ARIMA 42.82 44.60 48.70 58.27 58.10 61.19 0.77 0.81 0.90
Proposed

Model 20.79 23.43 34.84 27.75 30.73 44.80 0.38 0.43 0.65

NSW(2011)

SSA-BP 47.49 77.03 130.75 62.67 97.79 159.54 0.53 0.86 1.49
SSA-ELM 46.43 73.69 153.61 59.45 90.02 197.51 0.51 0.82 1.74
SSA-WNN 58.74 125.89 258.21 75.26 163.72 324.61 0.66 1.43 2.94

SSA-ARIMA 90.62 95.95 105.31 127.67 128.47 130.37 0.99 1.04 1.16
Proposed

Model 44.29 57.83 77.74 57.63 73.87 97.92 0.48 0.64 0.86
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4.4.2. Experiment II: Comparing Models using Other Data Preprocessing Methods

In order to verify whether singular spectrum analysis (SSA) is the best choice for data processing,
we conducted an experiment comparing the electric load time series forecasting results of our proposed
model with other data processing method–based models. The experimental results are shown in
Table 4. Detailed descriptions are as follows:

• Observing the experimental results using the 2010 Queensland power data, the proposed combined
model achieved the highest forecasting accuracy. In contrast, the CEEMD preprocessed model
was the most effective among the other three data processing methods, with MAPE values of
0.54%, 0.64%, and 0.90% from one-step to three-step forecasting, respectively. For the proposed
model, MAPE values were 0.37%, 0.45%, and 0.68% from one to three steps, respectively.

• For the experiment using the 2011 Queensland power data, according to the evaluation criteria,
the proposed model outperformed the other models. The MAPE values of the models using
EMD, EEMD, and CEEMD were, respectively, 0.33%, 0.21%, and 0.18% higher than those of the
proposed model in one-step forecasting. Figure 4 shows a comparison of the one- to three-step
forecasting performance of Experiment II. It can be concluded that the proposed combined model
achieved the highest accuracy compared to the models using other data preprocessing methods in
three-step forecasting.

• When using the 2011 New South Wales power data, similar to Experiment I, compared to the first
two experiments using data from Queensland, the error metric values of the third experiment
were significantly larger. This reflects the difference between different power plants. In addition,
there were also some interesting conclusions. For example, in the first two sets of power plant
data, the CEEMD model performed better than the EMD model, but in the third group, the EMD
and CEEMD models performed almost the same. However, our model still the performed the
best. We can also determine the necessity of applying singular spectrum analysis (SSA) in our
model so that it performs better than the other three classic data processing methods.

N.B. In experiment II, by comparing the forecasting results of our proposed combined model with
other models using different data processing methods, there are many useful findings. Our model’s
overall lead in predicting accuracy demonstrates that SSA is the best choice of data processing method.

Table 4. Comparison of forecasting performance of combined model and models using different data
preprocessing methods.

Dataset Model
MAE RMSE MAPE (%)

1-step 2-step 3-step 1-step 2-step 3-step 1-step 2-step 3-step

QLD(2010)

EMD 39.86 47.91 56.38 45.93 56.44 67.71 0.72 0.88 1.05
EEMD 33.72 42.97 55.97 50.84 56.95 70.47 0.60 0.78 0.99

CEEMD 30.04 35.90 51.47 36.74 44.14 64.19 0.54 0.64 0.90
Proposed

Model 21.26 25.94 37.97 26.98 32.83 46.51 0.37 0.45 0.68

QLD(2011)

EMD 38.37 46.63 60.59 50.13 57.51 72.93 0.71 0.86 1.12
EEMD 31.56 55.11 84.83 38.57 73.23 107.65 0.59 1.00 1.56

CEEMD 30.48 32.89 53.04 43.11 44.62 66.12 0.56 0.61 0.97
Proposed

Model 20.79 23.43 34.84 27.75 30.73 44.80 0.38 0.43 0.65

NSW(2011)

EMD 60.95 74.46 110.60 83.78 95.41 135.10 0.66 0.82 1.24
EEMD 65.29 112.21 166.16 80.19 140.71 213.64 0.73 1.25 1.81

CEEMD 62.29 82.48 100.39 82.51 100.77 125.26 0.67 0.92 1.12
Proposed

Model 44.29 57.83 77.74 57.63 73.87 97.92 0.48 0.64 0.86
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4.4.3. Experiment III: Comparing with Classic Models

In Experiment III we took the forecasting results of our proposed model and the artificial
intelligence model to compare the BP, WNN, ELM, and ARIMA. In order to make the experiment
more complete and persuasive, we also compared it with some classic conventional models. The
experimental results are shown in Table 5. Figure 5 shows a comparison of the one- to three-step
forecasting performance of Experiment III. Detailed descriptions are as follows:

• With the experiments using the 2010 Queensland power data, we found that, first, our proposed
combined model had the best prediction performance whether the statistical indicator was MAE,
RMSE, or MAPE. For instance, taking the one-step forecasting MAE values for comparison, the
values were 46.12, 47.54, 51.24, 45.76, 46.24, 64.08, 38.971, and 21.26. The proposed model’s MAE
value was only about half of other methods’ values. Second, in two- and three-step forecasting,
the combined model was more effective than the other methods. The prediction performance
of all other models was significantly worse than that of our model and there was still a big gap,
which was sufficient to reflect the excellence of our model.

• With the 2011 Queensland power data, the results were as follows: First, our proposed model
was still the most accurate. Second, although the data were from a different year, it is clear that
forecasting results of the first two experiments are fairly similar, which reflects the stability of our
method. The RMSE values of the proposed model were 27.75, 30.73, and 44.80 for one to three
steps, respectively.

• For the 2011 New South Wales power data, the RMSE values of the proposed model were 57.63,
73.87, and 97.92 for one to three steps, respectively. The great thing is that our proposed combined
model still outperformed the other data processing methods in one- to three-step forecasting. This
is powerful proof that our model is indeed the best of all eight models. Although not as accurate
as the predictions in the first two experiments, the degree of improvement in the prediction results
did not change much at around 50%. This will be discussed in the next section.

Table 5. Comparison of forecasting performance of combined model and some classic individual models.

Dataset Model
MAE RMSE MAPE (%)

1-step 2-step 3-step 1-step 2-step 3-step 1-step 2-step 3-step

QLD(2010)

BP 46.12 80.44 119.79 59.34 102.45 150.21 0.81 1.40 2.10
BP-MODA 47.54 86.23 121.67 59.98 108.89 162.77 0.84 1.52 2.13

WNN 51.24 99.72 145.12 64.72 136.56 189.77 0.90 1.75 2.58
ENN 45.76 82.88 126.34 60.95 104.71 168.20 0.80 1.46 2.24
ELM 46.24 85.19 130.82 59.28 110.41 171.58 0.81 1.50 2.34
RBF 64.08 134.02 185.37 86.13 185.85 275.07 1.12 2.33 3.22

ARIMA 38.97 73.96 88.00 49.44 91.95 105.91 0.70 1.32 1.58
Proposed Model 21.26 25.94 37.97 26.98 32.83 46.51 0.37 0.45 0.68

QLD(2011)

BP 45.61 93.75 147.05 64.12 127.47 217.66 0.82 1.71 2.66
BP-MODA 44.23 85.21 124.31 61.31 116.22 163.60 0.79 1.56 2.28

WNN 62.72 138.62 200.49 80.68 181.26 268.88 1.16 2.55 3.75
ENN 50.62 98.11 152.69 70.11 135.34 207.65 0.92 1.80 2.79
ELM 48.77 96.45 158.82 66.91 133.68 216.32 0.89 1.76 2.91
RBF 85.22 170.73 308.71 198.05 524.76 971.50 1.53 3.10 5.64

ARIMA 37.50 68.01 87.55 46.94 87.81 107.32 0.71 1.28 1.64
Proposed Model 20.79 23.43 34.84 27.75 30.73 44.80 0.38 0.43 0.65

NSW(2011)

BP 89.72 163.56 276.83 124.34 215.84 349.76 0.96 1.79 3.05
BP-MODA 85.23 180.48 268.43 110.79 251.79 360.47 0.92 1.98 2.94

WNN 92.97 243.25 400.39 118.54 323.58 538.95 1.02 2.71 4.52
ENN 101.07 191.08 282.89 133.22 265.73 362.33 1.09 2.08 3.13
ELM 98.76 205.09 317.34 130.92 274.27 410.74 1.06 2.24 3.53
RBF 149.92 216.50 351.10 280.01 318.79 449.90 1.60 2.36 3.84

ARIMA 78.00 130.15 159.76 95.68 161.82 203.99 0.88 1.46 1.80
Proposed Model 44.29 57.83 77.74 57.63 73.87 97.92 0.48 0.64 0.86
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N.B. In experiment III, by observing the results including our proposed method, models that we
applied in our model, and traditional models we did not use, we found that our model had an overall
lead in predicting accuracy. This demonstrates that our proposed combined model will save a lot of
energy for power systems and should be applied in actual electric load forecasting practice.

5. Discussion

This section provides an in-depth discussion of the proposed model, including a proposed
optimization algorithm performance test, two proposed model effectiveness tests, and an experiment
showing the improvements of the proposed model and a comparative experiment.

5.1. Multiobjective Grasshopper Algorithm Experiments

Four typical test functions (shown in Table 6) were applied to examine the excellence of the
proposed algorithm. We chose multiobjective ant lion optimization (MOALO) and the multiobjective
dragonfly algorithm (MODA) to compare with MOGOA to examine its optimization performance. To
control variables, we set the maximum iterations and search agents as 100 and the size of archive as
150. We applied inverted generational distance (IGD), which is a metric showing the evaluation degree
of multiobjective optimization algorithms. Table 7 shows the test results of IGD, for which we did
60 experiments for every test function [61]. Moreover, Figure 6 shows the obtained Pareto optimal
solutions by these three algorithms.

Table 6. Test functions of algorithms.

ZDT1 ZDT2

Minimize: f1(x) = x1
Minimize: f2(x) = g(x) × h( f1(x), g(x))

Where: g(x) = 1 + 9
N−1

∑N
i=2 xi

h( f1(x), g(x)) = 1−
√

f1(x)
g(x)

0 ≤ x1 ≤ 1, 1 ≤ i ≤ 30

Minimize: f1(x) = x1
Minimize: f2(x) = g(x) × h( f1(x), g(x))

Where: g(x) = 1 + 9
N−1

∑N
i=2 xi

h( f1(x), g(x)) = 1−
(

f1(x)
g(x)

)2

0 ≤ x1 ≤ 1, 1 ≤ i ≤ 30

ZDT3 ZDT1 with linear front

Minimize: f1(x) = x1
Minimize: f2(x) = g(x) × h( f1(x), g(x))

Where: g(x) = 1 + 9
N−1

∑N
i=2 xi

h( f1(x), g(x)) = 1−
√

f1(x)
g(x)

−
(

f1(x)
g(x)

)
sin(10π f1(x))

0 ≤ x1 ≤ 1, 1 ≤ i ≤ 30

Minimize: f1(x) = x1
Minimize: f2(x) = g(x) × h( f1(x), g(x))

Where: g(x) = 1 + 9
N−1

∑N
i=2 xi

h( f1(x), g(x)) = 1− f1(x)
g(x)

0 ≤ x1 ≤ 1, 1 ≤ i ≤ 30

From the experimental results we can see the following:

(a) MOGOA gets the best IGD values among the optimization algorithms in all four test functions,
which proves that its optimizing ability is superior to that of MODA and MOALO.

(b) By observing the contrast of the number of the Pareto optimal solutions calculated by MOGOA,
MODA, and MOALO shown in Figure 6, we find that MOGOA had the most Pareto optimal
solutions among all three algorithms.

N.B. The optimization ability of MOGOA is proven to be good through the experiment
and discussion above. Therefore, MOGOA can be widely applied to deal with multiobjective
optimization problems.
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Table 7. Results of multiobjective algorithms using inverted generational distance (IGD) on four
test functions.

Algorithm Ave. Std. Median Min Max

ZDT1
MOALO 0.006213 0.007038 0.005901 0.004272 0.024323
MODA 0.005826 0.005798 0.005082 0.002613 0.025404

MOGOA 0.004275 0.003089 0.004669 0.002573 0.024234
ZDT2

MOALO 0.009454 0.007343 0.008998 0.004738 0.022138
MODA 0.008173 0.005193 0.008532 0.003643 0.023234

MOGOA 0.008015 0.003140 0.005395 0.002157 0.023118

ZDT3
MOALO 0.027063 0.000867 0.026627 0.028135 0.026727
MODA 0.025089 0.000521 0.024982 0.028182 0.027322

MOGOA 0.024270 0.000469 0.024246 0.024186 0.023801

ZDT1 with linear front

MOALO 0.006821 0.005623 0.006532 0.005431 0.026626
MODA 0.006101 0.005541 0.005926 0.003863 0.024777

MOGOA 0.005569 0.004986 0.003985 0.002211 0.024461

Figure 6. Pareto optimal solutions obtained by optimization algorithm for test functions.

5.2. Proposed Model’s Effectiveness

The Diebold–Mariano test was used to verify the validity of the developed model, which means
every model mentioned above was compared to the SSA-MOGOA combined model. The DM test
is a kind of hypothetical test. The null hypothesis is that there is no significant difference in the
models’ forecasting performance. The opposite hypothesis is that there is a significant different in the
models’ forecasting performance. Table 8 shows average DM test values of all experiments for one- to
three-step forecasting.
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Table 8. DM test of different models.

Model 1-step 2-step 3-step

SSA-BP 2.7503 * 3.8971 * 6.1244 *
SSA-ELM 1.6379 ** 3.9104 * 6.3244 *
SSA-WNN 4.0126 * 6.8486 * 7.3544 *

SSA-ARIMA 4.9261 * 5.0164 * 4.0033 *

EMD 5.4365 * 5.5545 * 5.7057 *
EEMD 4.3034 * 5.0669 * 5.21 *

CEEMD 3.7225 * 3.8063 * 4.3806 *

BP 4.7348 * 5.9805 * 6.3855 *
BP-MODA 5.2960 * 5.8782 * 6.2118 *

WNN 6.3481 * 6.2092 * 7.1581 *
ENN 5.3966 * 6.1685 * 6.3538 *
ELM 5.4820 * 5.7369 * 6.3290 *
RBF 3.3792 * 3.7372 * 3.5957 *

ARIMA 5.6641 * 7.0336 * 7.5187 *

* 1% significance level; ** 5% significance level.

Table 8 shows that except for the one-step SSA-ELM experiment, the DM value in all the other
experiments is big enough to be rejected at the 1% significance level, while the null hypothesis of
one-step SSA-ELM is rejected at 5%. Moreover, for the DM test of individual models, the value is
3.3792, which shows that the accuracy of the proposed model is fairly high.

To further evaluate our model, as introduced in Section 3.3, we also applied the forecasting
effectiveness method in our testing experiments. Forecasting effectiveness can effectively reflect the
accuracy of the forecasting performance of various models, making it easy to comparing their pros
and cons. In Table 9, we record the detailed forecasting effectiveness values of all models in one- to
three-step forecasting.

Table 9. Forecasting effectiveness of different models.

Model
1-step 2-step 3-step

1-order 2-order 1-order 2-order 1-order 2-order

Proposed Model 0.9959 0.9962 0.9949 0.9957 0.9927 0.9935

SSA-BP 0.9951 0.9950 0.9931 0.9935 0.9870 0.9869
SSA-ELM 0.9955 0.9956 0.9929 0.9935 0.9846 0.9831
SSA-WNN 0.9940 0.9932 0.9870 0.9847 0.9740 0.9684

SSA-ARIMA 0.9918 0.9923 0.9914 0.9919 0.9905 0.9910

EMD 0.9930 0.9929 0.9915 0.9914 0.9887 0.9888
EEMD 0.9936 0.9941 0.9899 0.9900 0.9855 0.9844

CEEMD 0.9941 0.9944 0.9928 0.9939 0.9900 0.9903

BP 0.9914 0.9918 0.9837 0.9829 0.9740 0.9734
BP-MODA 0.9915 0.9921 0.9831 0.9844 0.9755 0.9772

WNN 0.9897 0.9884 0.9766 0.9745 0.9638 0.9625
ENN 0.9906 0.9908 0.9822 0.9820 0.9728 0.9721
ELM 0.9908 0.9911 0.9817 0.9824 0.9707 0.9709
RBF 0.9858 0.9847 0.9740 0.9690 0.9589 0.9473

ARIMA 0.9924 0.9929 0.9865 0.9872 0.9833 0.9836

The forecasting effectiveness results in Table 9 show the following results: First, the most obvious
is that our proposed combined model has the best prediction performance with the highest forecasting
effectiveness values in all forecasting. Second, the prediction performance of other individual models
is significantly worse than that of our model and there is still a big gap between them and our proposed
model, which is sufficient to reflect the excellence of our model.
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5.3. Proposed Combined Model’s Improvements

In order to make the traditional MAPE criteria more clear in comparing the pros and cons of the
models, in this paper we propose a new form of MAPE, defined as:

PMAPE =

∣∣∣∣∣MAPE1 −MAPE2

MAPE1

∣∣∣∣∣ (17)

This new MAPE criterion is used to compare the proposed model with the other models in
the above experiments, including three data denoising algorithms, seven classic models, and four
individual models with singular spectrum analysis. Table 10 shows the experimental results, and some
interesting conclusions can be summarized as follows:

• Comparing the proposed model with other SSA-based models, it is obvious that the novel
proposed model has lower MAPE values. For example, the average improvement of the proposed
model’s MAPE is 7.71%, 29.18%, and 51.88% compared with the SSA-ELM model, which is the
least improved of the four models.

• Comparing the proposed model with the other three data preprocessing methods, its superiority
is obvious. The lowest MAPE improvement is 22.09%, while the largest comes to 56.84%, which
fully reflects the excellent prediction accuracy of our proposed model.

• Comparing the proposed model with the classic models, forecasting accuracy is greatly improved
in every experiment. Compared with the ARIMA model, the proposed model improves by 45.75%,
62.68%, and 56.47% while the ARIMA model was the single model with the best prediction
accuracy in the experiment.

Table 10. Percentage improvement of the proposed model.

Model
Site 1 Site 2 Site 3 Average

1-step 2-step 3-step 1-step 2-step 3-step 1-step 2-step 3-step 1-step 2-step 3-step

SSA-BP 22.64% 33.80% 50.34% 8.66% 25.58% 42.01% 14.66% 21.23% 38.48% 15.32% 26.87% 43.61%
SSA-ELM 12.61% 33.77% 61.43% 4.96% 22.46% 50.35% 5.55% 31.32% 43.85% 7.71% 29.18% 51.88%
SSA-WNN 43.95% 71.78% 79.41% 27.19% 55.24% 70.63% 19.65% 51.45% 60.49% 30.26% 59.49% 70.18%

SSA-ARIMA 50.37% 46.41% 27.33% 51.26% 38.70% 25.26% 46.33% 37.50% 13.76% 49.32% 40.87% 22.12%
EMD 45.58% 49.99% 41.74% 27.16% 22.09% 30.29% 48.34% 48.42% 35.46% 40.36% 40.17% 35.83%

EEMD 35.39% 56.84% 58.19% 34.38% 48.75% 52.29% 37.92% 41.76% 32.02% 35.90% 49.12% 47.50%
CEEMD 31.79% 28.77% 32.63% 28.47% 30.30% 23.02% 30.47% 29.66% 25.22% 30.24% 29.58% 26.96%

BP 53.29% 74.77% 75.57% 49.74% 64.28% 71.63% 53.78% 67.55% 67.77% 52.27% 68.87% 71.66%
BP-MODA 51.66% 72.40% 71.48% 47.87% 67.72% 70.57% 55.26% 70.17% 68.35% 51.60% 70.10% 70.13%

WNN 66.78% 83.08% 82.65% 52.83% 76.47% 80.86% 58.62% 74.15% 73.79% 59.41% 77.90% 79.10%
ENN 58.38% 76.02% 76.67% 55.70% 69.29% 72.41% 53.43% 68.92% 69.90% 55.84% 71.41% 72.99%
ELM 56.65% 75.48% 77.67% 54.65% 71.56% 75.49% 53.92% 69.74% 71.14% 55.07% 72.26% 74.77%
RBF 74.90% 86.07% 88.46% 69.96% 72.97% 77.51% 66.48% 80.54% 79.01% 70.45% 79.86% 81.66%

ARIMA 45.65% 66.20% 60.38% 45.25% 56.24% 51.93% 46.34% 65.59% 57.11% 45.75% 62.68% 56.47%

5.4. Combined Strategy

We selected and applied a simple averaging strategy to calculate the prediction results of all
individual models to compare with the results of MOGOA optimization to test the effectiveness of the
proposed combination strategy. The results of the comparison between the two methods are shown in
Table 11.

From Table 11, we can easily find from the prediction results that the proposed combined model
using MOGOA always outperformed the model applying a simple average strategy, no matter which
sites and forecasting steps were used in all three error metrics. For instance, in the three-step forecasting
of NSW (2011), the MAPE of the proposed model is 0.8648% while the corresponding MAPE is 1.8336%,
which shows the excellence of the model’s combined strategy.
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Table 11. Comparison between proposed model and simple average strategy.

Dateset Multi-Step Model MAE RMSE MAPE (%)

QLD(2010)

1-step Simple average strategy 28.13 37.04 0.50
Proposed model 21.26 26.98 0.37

2-step Simple average strategy 40.69 51.88 0.72
Proposed model 25.94 32.83 0.45

3-step Simple average strategy 67.30 87.69 1.20
Proposed model 37.97 46.51 0.68

QLD(2011)

1-step Simple average strategy 32.06 42.19 0.60
Proposed model 20.79 27.75 0.38

2-step Simple average strategy 48.93 62.31 0.91
Proposed model 23.43 30.73 0.43

3-step Simple average strategy 95.10 120.89 1.76
Proposed model 34.84 44.80 0.65

NSW(2011)

1-step Simple average strategy 60.82 81.26 0.67
Proposed model 44.29 57.63 0.48

2-step Simple average strategy 93.14 120.00 1.04
Proposed model 57.83 73.87 0.64

3-step Simple average strategy 161.97 203.01 1.83
Proposed model 77.74 97.92 0.86

6. Conclusions

As an indispensable part of the economic operation of power systems, electric load prediction has
developed a lot in the past few years. Many studies have been developed and have contributed to
improving forecasting accuracy. Establishing a model with perfect forecasting performance and strong
stability can provide huge economic and social benefits. At the same time, it can help managers to
develop blueprints for future power system construction to ensure the reliability and efficiency of the
power supply. As a result, developing a new, robust model with high forecasting accuracy means a
lot to the whole world. However, classic and individual models do not always produce satisfactory
results. A combined model using data preprocessing technology, a combination of four individual
models optimized by an intelligence algorithm called the multiobjective grasshopper optimization
algorithm, and the multistep forecasting strategy was used for electric load forecasting in our study.
Specifically, the technique of singular spectrum analysis, based on decomposition and reconstruction,
was employed to get basic features of the time series by removing high-frequency signals. Moreover,
the weight coefficients of individual models in the combined model were optimized by the latest
advanced optimization algorithms to obtain both high precision and strong stability. With regard to
the individual models in the combined model, the ARIMA model was selected to reflect the linearity
of the sequence and artificial intelligence models were selected to reflect the nonlinearity. Furthermore,
the combined model was employed in multistep forecasting to validate its forecasting performance.
The experimental results show that the new combined model performed significantly better than
the other benchmark models on the basis of multiple comparisons and analysis. Additionally, by
comparing the outcomes of DM and forecasting effectiveness tests, we found that our model performed
best among all the models applied in the experiments. The proposed combined model, with its
brilliant prediction performance, can yield tremendous economic benefits and lead to a dramatic
reduction in the consumption of environmental resources. Apart from that, it is certain that wide
application of this model will contribute to the management of power systems, rational electric
dispatching, and electric power scheduling. In conclusion, our proposed combined model can improve
the performance of electric load time series forecasting and provide a new feasible choice for smart
power distribution planning.
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Abstract: With the refinement and intelligence of power system optimal dispatching, the widespread
adoption of advanced grid applications that consider the safety and economy of power systems,
and the massive access of distributed energy resources, the requirement for bus load prediction
accuracy is continuously increasing. Aiming at the volatility brought about by the large-scale
access of new energy sources, the adaptability to different forecasting horizons and the time series
characteristics of the load, this paper proposes a phase space reconstruction (PSR) and deep belief
network (DBN)-based very short-term bus load prediction model. Cross-validation is also employed
to optimize the structure of the DBN. The proposed PSR-DBN very short-term bus load forecasting
model is verified by applying the real measured load data of a substation. The results prove that,
when compared to other alternative models, the PSR-DBN model has higher prediction accuracy and
better adaptability for different forecasting horizons in the case of high distributed power penetration
and large fluctuation of bus load.

Keywords: Load forecasting; VSTLF; bus load forecasting; DBN; PSR; deep learning

1. Introduction

Electricity cannot be stored in large quantities, and the investment recovery cycle of large-scale
energy storage equipment is long. Therefore, in order to ensure the safe operation of power systems
and power quality on the user side, the operators must have knowledge of future power loads [1].
Power system load forecasting is an important method to understand the trend of future electric
load. In addition, power load forecasting is of great significance for the planning of power systems
and scheduling of generation and transmission maintenance. Power system load forecasting is
generally divided into long-term forecasting, medium-term forecasting, short-term forecasting, and
very short-term forecasting [2]. Among them, short-term load forecasting (STLF) and very short-term
load forecasting (VSTLF) are of great significance for economic dispatch, optimal power flow, and
electricity market trading. The higher the accuracy of load forecasting is, the more beneficial it is to
improve the utilization rate of power generation equipment and the effectiveness of economic dispatch,
and reduce the operation cost of smart grid.

In the past decades, experts and scholars have made systematic and effective research on traditional
deterministic and probabilistic STLF and VSTLF. Deterministic forecasting methods can be divided
into two main categories [3]: The first category uses statistical forecasting models, such as linear
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regression [4], curve extrapolation [5], Autoregressive Integrated Moving Average (ARIMA) model [6,7],
and other time series methods; the second category uses artificial intelligent forecasting models, such as
Bayesian estimation [8], Random Forests [9], Support Vector Regression (SVR) [10,11], Artificial Neural
Network (ANN) [12,13], Deep Belief Network (DBN) [14,15], and Long Short Term Memory (LSTM)
Network [16,17]. These methods have achieved high forecasting accuracy and good robustness in
day-ahead and hour-ahead load forecasting. However, most of the studies are focused on system-level
load forecasting and there are relatively few on bus load forecasting. Generally, bus loads can refer to
loads supplied by transmission and distribution systems transformers [18]. Bus load forecasting can
be conducive to the optimal scheduling of decentralized generation, network congestion studies, and
others [19].

With the refinement and intelligence of power grid optimal dispatching and the wide application
of advanced smart grid applications, which take into account the security and economy of power
system, the demand for bus load forecasting accuracy is increasing. Since bus load base is much smaller
than that of a system, the uncertainty of bus load and the multi-dimensional nonlinearity [20] are
more obvious. The traditional method of distributing the predicted value of system through bus load
ratio often fails to achieve satisfactory results [21]. In this regard, the literature [18] modifies the ANN
model for the aggregated load of the interconnected system and proposes two novel hybrid forecasting
models, which can capture and successfully treat the special characteristics of bus load patterns. In
Ref. [19], a bus load forecasting model based on clustering and ANN is proposed; the day-ahead load
forecasting and hour-ahead load forecasting are carried out, achieving high prediction accuracy.

With a large number of distributed power access, the uncertainty and nonlinear characteristics
of system [22] and bus load are further enhanced. As the collection time interval of distributed
photovoltaic power, plant data is generally several minutes. The short-term and day-ahead load
forecasting in hours of bus cannot make full use of historical information and have low prediction
accuracy. In order to ensure the reliable operation of power system real-time security analysis and
economic dispatch, more detailed VSTLF is needed. The authors of [23] proposed a chaotic-radial basis
function (RBF) photovoltaic power generation prediction model and verified its prediction accuracy
under different weather conditions. However, the author only validated the prediction accuracy of the
model in the case of single-step prediction and did not involve the forecasting horizon problem of the
model [24]. Ref. [20] proposes a novel load forecasting model based on phase space reconstruction
(PSR) algorithm and bi-square kernel (BSK) regression, and achieves high prediction accuracy on
different data sets. However, after phase space reconstruction, different BSK models are used to
independently predict the various dimensional data, which neglect the time series characteristics of
the load.

In view of the shortcomings of the above forecasting model, considering the adaptability to
different forecasting horizons, the time series characteristics of load, and the volatility brought by
large-scale access of new energy sources, this paper proposes a novel very short-term bus load
forecasting model based on phase space reconstruction and deep belief network (PSR-DBN). Because
the amount of historical data in VSTLF is relatively large and closely related to future load trend, the
impact of weather, electricity price, and other factors on VSTLF is not considered in this paper. Firstly,
the proposed PSR-DBN model performs phase space reconstruction on bus load history data, and
projects the historical data to the motion track of a moving point in the phase space. Then the model
takes advantage of the excellent nonlinear fitting ability of the deep belief network to fit the moving
point trajectory and provide a prediction of the trajectory. Finally, the predicted value of the load
is obtained. At the same time, the structure of the DBN is optimized by cross-validation. In order
to test the validity and superiority of the proposed PSR-DBN very short-term bus load forecasting
model, this paper applies the measured load data of a substation in China to verify the forecasting
effectiveness of the model under different forecasting horizons (5 min–1 h). In addition, other six
alternative forecasting models are employed to further compare with the proposed PSR-DBN model.

The major contributions of this paper are as follows:
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• A novel hybrid VSTLF model based on phase space reconstruction ensemble deep belief network
is proposed, which can maintain high prediction accuracy in the case of high distributed power
penetration and large fluctuation of bus load.

• The Levenberg-Marquardt backpropagation (LMBP) algorithm is used to fine-tune the DBN,
which can make DBN convergence faster and more accurate, compared with a BP algorithm.

• A practical method based on cross-validation is proposed to tune the structure of DBN for better
forecasting performance.

• The PSR algorithm is adopted to make a regular pattern that could not be obtained in
one-dimensional time series appear in a high-dimensional phase space, which improves the
adaptability of a forecasting model to different forecasting horizons, especially long estimation.

The rest of this paper is organized as follows. In Section 2, the relevant theory of the PSR-DBN
model is introduced. Section 3 provides the principal steps of the PSR-DBN model and covers the
tuning method of network hyperparameter based on cross-validation. Section 4 presents the evaluation
criteria of forecasting accuracy, case study settings, forecasting results, and a comparison. Section 5
gives the conclusion of the paper and an outlook for future research.

2. Methodology

2.1. Phase Space Reconstruction (PSR)

Phase space reconstruction (PSR) is an efficient method for analyzing nonlinear time series. The
basic idea of phase space reconstruction is to regard the time series as a component generated by
a nonlinear dynamic system. The variation law of the component can reconstruct the equivalent
high-dimensional phase space of the dynamic system, and the time series can be projected into a
moving point trajectory in the high-dimensional phase space. If there is a one-dimension time series
x = {x1, x2 · · · xN}, the embedding dimension is m, and the delay time is t, then the set of time series
reconstructed by phase space can be expressed as:⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

X1

X2
...

XM

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1 x1+t · · · x1+(m−1)t
x2 x2+t · · · x2+(m−1)t
...

... · · · ...
xM xM+t · · · xN

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (1)

where M = N − (m− 1)t.
The key to PSR is to determine the optimal embedding dimension mopt and optimal delay topt. In

this paper, the C-C method [25] is employed to determine the optimal embedding dimension mopt and
delay topt at the same time.

Based on Equation (1), the associated integral is defined as:

C(m, N, rk, t) =
2

M(M− 1)

∑
1≤i< j≤M

θ
(
rk − ‖Xi −X j‖

)
(2)

where θ(x) =
{

0 x < 0
1 x ≥ 0

.

According to BDS (Brock-Dechert-Scheinkman) statistical conclusions [26,27], when N > 3000,
the range of values of m and rk can be obtained, m ∈ {2, 3, 4, 5}, rk = k× 0.5σ, where σ is the standard
deviation of the time series and k ∈ {1, 2, 3, 4}.

Based on matrix partitioning average strategy, the test statistics S is defined as:

S(m, N, rk, t) =
1
t

t∑
i=1

Ci

(
m,

N
t

, rk, t
)
−Cm

i

(
m,

N
t

, rk, t
)

(3)
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For N→∞ , Equation (3) can be deformed to:

S(m, rk, t) =
1
t

t∑
i=1

Ci(m, rk, t) −Cm
i (m, rk, t) (4)

For the fixed m and t, S(m, rk, t) will equal for 0 for all r, if the data are iid and N→∞ . However,
the real data set is not infinite, and there may be a correlation between data. Thus, the optimal delay
time may be either the zero crossing of S(m, rk, t) or the times at which S(m, rk, t) shows the least
variation with r [25].

To represent the variation of S(m, rk, t) with r, the test statistics ΔS is defined as:

ΔS(m, t) = max
[
S
(
m, rk1 , t

)]
−min

[
S
(
m, rk2 , t

)]
(5)

where k1 ∈ {1, 2, 3, 4}, k2 ∈ {1, 2, 3, 4}.
The means of S and ΔS are defined as S and ΔS, and the equations are shown as:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

S(t) = 1
4×4

5∑
m=2

4∑
k=1

S(m, rk, t)

ΔS(t) = 1
4

5∑
m=2

ΔS(m, t)
(6)

For all values of t, S(t) and ΔS(t) can find corresponding values. Wherein, the t value corresponding
to the first zero point of S(t) or the first minimum point of ΔS(t) is rounded to be the optimal delay topt.

The test statistic Scor is defined as:

Scor(t) = ΔS(t) +
∣∣∣S(t)∣∣∣ (7)

where the t value corresponding to the global minimum point of Scor(t) is the optimal embedded
window tω.

When the optimal delay topt is determined by Equation (6) and the optimal embedded window tω
is determined by Equation (7), the optimal embedding dimension mopt can be determined by rounding
the value of Equation (8).

tω = (mopt − 1)topt (8)

2.2. Deep Belief Network (DBN)

The Deep Belief Network (DBN) is a deep learning model proposed by Geoffrey Hinton [28] in
2006 and is a stack of multiple Restricted Boltzmann Machines (RBM). Compared with the Artificial
Neural Network (ANN), DBN employs pre-training technology combined with Backpropagation (BP)
algorithm to solve network parameters. Therefore, it is not easy for DBN to fall into a local optimal
solution and has higher convergence accuracy. Furthermore, when the number of layers and the
number of neurons in each layer are large, DBN also has a fast convergence speed, which makes it
more suitable for the fitting problem of complex nonlinear time series [29].

2.2.1. Restricted Boltzmann Machine (RBM)

The RBM consists of a visible layer V and a hidden layer H. As shown in Figure 1, the visible
layer consists of nv neurons and the hidden layer consists of mh neurons, each of which takes a value of
0 or 1 and obeys the Bernoulli distribution, i.e., vi ∈ {0, 1}(i = 1, 2 · · · n), hj ∈ {0, 1}( j = 1, 2 · · ·m). There
is no connection between the neurons in each layer, and the neurons between the layers are connected
by weights ω.
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Figure 1. Structure of Restricted Boltzmann Machine (RBM).

RBM is a kind of probabilistic unsupervised learning. Its network parameters are composed
of visible layer bias b, weight matrix ω, and hidden layer bias c, and the optimal value of network
parameters is determined by the minimum energy function. The energy function is defined as:

E(v, h |θ ) = −
n∑

i=1

bivi −
m∑

j=1

cjhj −
n∑

i=1

m∑
j=1

viωi jhj (9)

where ωi j is the connection weight of the i-th visible layer neuron and the j-th hidden layer neuron,
and θ = {b,ω, c}.

Based on Equation (9), the joint probability distribution of the visible neuron state and the hidden
neuron state is shown as:

P(v, h |θ ) =
e−E(v,h|θ)

Z
(10)

where normalization factor Z =
∑
v,h

e−E(v,h|θ), which represents the sum of the energy function negative

exponents under all possible values of visible layer neuron state variable v and hidden layer neuron
state variable h.

The probability distribution P(v) of v can be derived from Equation (10) as:

P(v |θ ) =
∑

h

e−E(v,h|θ)

Z
(11)

Thus, the objective function of RBM training can be expressed as a likelihood function of the
probability distribution of visible layer state variable v on the training set, and the likelihood function
can be derived from the Equation (11) as:

L(θ) =
∑
v∈T

log P(v |θ ) (12)

where T represents the set of sample inputs on the training set, and when the objective function takes
the maximum value, the energy function is the minimum.

According to the network structure in Figure 1, the activation probability of vi in a given hidden
layer neuron state h and the activation probability of hj in a given visible layer neuron state v can be
derived as:

P(vi = 1 |h ) = σ

⎛⎜⎜⎜⎜⎜⎜⎝bi +
m∑

j=1

ωi jhj

⎞⎟⎟⎟⎟⎟⎟⎠ (13)

P
(
hj = 1 |v

)
= σ

⎛⎜⎜⎜⎜⎜⎝ci +
n∑

i=1

ωi jvi

⎞⎟⎟⎟⎟⎟⎠ (14)

where σ represents the sigmoid function, σ(x) = 1
1+e−x .
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Since the gradient cannot be directly obtained when using stochastic gradient ascent algorithm to
seek the maximum of Equation (12), the training of RBM usually applies Contrastive Divergence (CD)
algorithm to approximate the gradient of likelihood function [30]. The specific steps of RBM training
are as follows:

Step 1: Substitute the input of the training set as v1 in Equation (14) to obtain P(h1 = 1|v1 ), then
employ random sampling to acquire the reconstructed value of h1.

Step 2: Substitute h1 in Equation (13) to obtain P(v2 = 1|h1 ) and then employ random sampling
to acquire the reconstructed value of v2.

Step 3: Substitute v2 in Equation (14) to obtain P(h2 = 1|v2 ).
Step 4: Update network parameters. The iteration algorithm of network parameters is as follows:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

ω(k+1) = ω(k) + ε
(
h1vT

1 − P(h2 = 1|v2 )v
T
2

)
b(k+1) = b(k) + ε(v1 − v2)

c(k+1) = c(k) + ε(h1 − P(h2 = 1|v2 ))

(15)

where ε is the learning rate, which takes the value of 0.8 in this paper, and the superscript k represents
the k-th iteration.

2.2.2. DBN based on Levenberg-Marquardt backpropagation (LMBP) Algorithm

Traditional DBN is formed by stacking multiple RBMs, in which the hidden layer of the previous
RBM is used as the visible layer of the next RBM. CD algorithm is used to determine the network
parameters layer by layer during pre-training, which is unsupervised learning. Then the pre-trained
network parameters are assigned to the neural network as the initial training value of network
parameters. The network parameters are fine-tuned by using the sample labels in the training set
combined with BP algorithm, which is supervised learning. The structure of a traditional DBN is
shown in Figure 2.

l

l

 
Figure 2. Structure of the traditional Deep Belief Network (DBN).

In this paper, the LM (Levenberg-Marquardt) BP algorithm [31] is used to replace the traditional
BP algorithm to fine-tune the DBN. Compared with the traditional BP algorithm, the LMBP algorithm
has faster convergence speed and higher convergence reliability, and is more suitable for training
neural networks with many hidden layers and neurons.

34



Energies 2019, 12, 4349

Different from the traditional BP algorithm, the LMBP algorithm is based on the Gauss-Newton
method in the least square solution. The square of error v is taken as the objective function and the
second-order Taylor expansion of objective function is derived. After approximating the gradient of
the objective function (ignoring the high-order term), the correction of weight ω is:

Δω = −
[
JT(ω)J(ω) + μI

]−1
JT(ω)v(ω) (16)

where μ is the correction coefficient, which is set to prevent JT(ω)J(ω) from being irreversible; I is the
identity matrix; J(ω) is the Jacobian matrix of v(ω), which can be written as:

J(ω) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂v1
∂ω1

∂v1
∂ω2

· · · ∂v1
∂ωa

∂v2
∂ω1

∂v2
∂ω2

· · · ∂v2
∂ωa

...
...

. . .
...

∂va
∂ω1

∂va
∂ω2

· · · ∂va
∂ωa

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(17)

where ∂vi
∂ω j

represents the partial derivative of vi to ω j.

Similar to BP algorithm, the modifier expression of weight ω(k+1) in the k-th iteration is:

ω(k+1) = ω(k) + Δω(k) (18)

μ needs to be adjusted in each iteration to obtain a better convergence effect. When μ is small, the
algorithm is standard Gauss-Newton method, which has higher convergence accuracy. However, if
the difference between the objective function and the approximate quadratic function is too large in
the iteration, the convergence effect will be poor. When μ is large, the algorithm becomes traditional
BP algorithm. When the Gauss-Newton method has a poor convergence performance, the gradient
descent BP algorithm can be used as an auxiliary solution.

3. PSR-DBN Forecasting Model

3.1. The Procedure of the PSR-DBN Model

For a list of bus load historical data time series p =
{
p1, p2 · · · pN

}
, the prediction process of the

PSR-DBN forecasting model is as follows:
Step 1 normalization: The load time series is normalized to prepare for the training of deep belief

network, and the maximum and minimum values of data are saved for subsequent denormalization of
the load predicted value to restore real value.

Step 2 PSR: The C-C method is adopted to process the load time series to find the optimal embedding
dimension m and the optimal delay t of time series. Then the load time series is reconstructed according
to the obtained embedding dimension m and delay t. The reconstructed load time series is as follows:⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

p1
p2
...

pM

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

p1 p1+t · · · p1+(m−1)t
p2 p2+t · · · p2+(m−1)t
...

... · · · ...
pM pM+t · · · pN

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (19)

where M = N − (m− 1)t.
Step 3 DBN: The DBN is constructed by using the phase space matrix in step 2 as the training

set and employing cross-validation to optimize the hyperparameters of the network. The details of
hyperparameters tuning are introduced in Section 3.2. Finally, the trained DBN is adopted to predict
the load value of the future moment.
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Step 4 denormalization: The load prediction value returned by the deep belief network in step 3 is
denormalized by applying the maximum and minimum values saved in step 1, then the actual load
forecasting value is obtained.

The flow chart corresponding to the above steps is shown in Figure 3:

m t

 
Figure 3. Flowchart of the PSR-DBN forecasting model.

3.2. Determination of DBN Network Structure

Similar to the neural network, DBN also has many hyperparameters to be set. The rationality of
hyperparameters adjustment determines the prediction accuracy of the prediction model. Unreasonable
hyperparameters will lead to a significant increase in prediction error. The determination of the network
structure is an important part of DBN hyperparameters adjustment.

For the input layer of the DBN, since the original load data is input to DBN after passing through
PSR, the number of the input layer neurons of DBN does not need to be tuned and can be directly
set to embedding dimensions m, that is, one line of elements in Equation (19) is input each time. For
the DBN output layer, when the DBN input is a row of elements in Equation (19), it is equivalent to
inputting the position vector of the moving point in phase space at a certain moment. Then it needs to
output the predicted value of the moving point position vector at the next moment.

However, if the input of the model is pi(1 ≤ i ≤M) in the phase space matrix of Equation (19),
only pi+1+(m−1)t in the position vector pi+1 at the next moment is unknown, so the output layer only
needs to output the predicted value p̂i+1+(m−1)t of the load at time i + 1 + (m− 1)t. If i+1 is greater
than M, then the phase space matrix of Equation (19) needs to be extended downwards, pi+1 is added
as a new row, and pi+1 is taken as the input of the model to obtain the predicted value of pi+2+(m−1)t;
Then the matrix is augmented and the predicted value of pi+3+(m−1)t is obtained, and so on until the
end of the forecasting. The expression of pi+1 in the augmented matrix is:

pi+1 =
[

pi+1 pi+1+t · · · pi+1+(m−1)t

]
(20)

where the value of pi+1+(m−1)t is determined by the forecasting horizons. If it is one-step forecasting,
pi+1+(m−1)t takes the real value of load measured at time i + 1 + (m− 1)t. If it is multi-step forecasting
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and the number of forecasting steps is k, pi+1+(m−1)t = p̂i+1+(m−1)t is taken until the k-th step forecasting.
and then the predicted value in the augmented matrix is replaced by the real value of the measured load.

For the hidden layer of DBN, the number of hidden layers and neurons in each hidden layer
has a significant influence on the prediction result, and it is found that the effect of optimizing the
number of hidden layers is usually more obvious. Too few hidden layers will cause the under-fitting
to affect the forecasting performance, and too many hidden layers will lead to over-fitting and will
make forecasting performance worse. Therefore, in order to improve the prediction accuracy of the
PSR-DBN model, cross-validation is used to optimize the number of hidden layers and neurons in each
hidden layer. The flow is shown in the blue dotted line in Figure 3. The specific steps are as follows:

1. Cross-validation method: Considering that the load data is a time series, it is not appropriate to
use a K-fold cross-validation method to disrupt the order. Therefore, the last part of the training
set is eliminated and used as a verification set by hold-out cross-validation. The rest of the data is
kept as a training set.

2. Determine the optimal number of layers: The enumeration is used to determine the optimal
number of hidden layers. Many researchers find that a shallow network requires exponential
width (number of neurons in each layer) to implement a function that a deep network of
polynomial width could implement [32]. That is, compared with the number of layers, the
number of neurons in each layer has less influence on prediction, so it is fixed during the
enumeration. The number of neurons in each layer is set to be 2m, and the number of hidden
layers is increased layer by layer until a significant over-fitting occurs. Then the number of hidden
layers with the smallest forecasting error is selected.

3. Determine the number of neurons in each layer: Since the forecasting performance of DBN varies
with the initial value, the effect of changing the number of neurons one by one on forecasting
performance is easily submerged in the fluctuation of forecasting performance caused by different
initial values. Therefore, this paper uses a fixed step size to search for the superior number
of neurons roughly. After determining the number of hidden layers according to step 2, the
combination of the number of neurons with minimum prediction error is searched in steps of m
in each layer. Because too many neurons will make the training of network slow and bring the
risk of over-fitting, the selected search range of this paper is m to 5m, and a good combination of
the number of neurons is determined by testing.

In summary, the structure, input, and output of the proposed DBN are shown in Figure 4, in
which the number of the hidden layers and the number of neurons in each hidden layer are obtained
by cross-validation.

pi+1+(m-1)t

pi

pi+t

pi+(m-1)t

Figure 4. The input, output, and structure of the network.
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4. Case Study

4.1. Bus Load Data

In order to test the validity of the model, the load data of a 220-kV substation bus in a city of China
from 1 May to 18 May 2017 are used in this paper. The bus is connected with a distributed photovoltaic
power station with an installed capacity of about 50 MW, and the sampling time interval of load data
is 5 min. During the period, the substation had no overhaul or fault shutdown. The reliability of
historical data is high, and 3σ criteria is used to detect that there is no abnormal data.

In this paper, the data of 1–14 May are selected as the training set of the PSR-DBN forecasting
model, and cross-validation is used to adjust the model hyperparameters. The data of 15–18 May are
selected as the forecasting test set. If only one-step forecasting of the load in the next 5 min is used
as given in Ref. [22], the prediction horizons are too short to meet the real-time safety analysis and
economic dispatching requirements of the power system. However, short-term load forecasting on an
hourly scale combined with the interpolation has poor forecasting accuracy. Therefore, the forecasting
horizons of very short-term load forecasting in this paper are from 5 min to 1 h, and the proposed
model is validated in the MATLAB (R2018a, MathWorks Inc., Massachusetts, USA) environment.

4.2. Forecasting Evaluation Index

In order to more intuitively and accurately evaluate the forecasting performance of the model
and the accuracy of prediction, this paper adopts Mean Absolute Percentage Error (MAPE), Mean
Absolute Scaled Error (MASE), Symmetric Mean Absolute Error (sMAPE), Geometric Mean Absolute
Error (GMAE), and Root Mean Square Error (RMSE) [33] as evaluation indicators.

MAPE =
1
n

n∑
i=1

∣∣∣∣∣pi − p̂i

pi

∣∣∣∣∣× 100% (21)

MASE =
1
n

n∑
i=1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
∣∣∣pi − p̂i

∣∣∣
1

n−1

n∑
j=2

∣∣∣pj − pj−1
∣∣∣
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ (22)

sMASE =
100%

n

n∑
i=1

∣∣∣pi − p̂i
∣∣∣

0.5
(∣∣∣pi

∣∣∣+ ∣∣∣p̂i
∣∣∣) (23)

GMAE = n

√√ n∏
i=1

∣∣∣pi − p̂i
∣∣∣ (24)

RMSE =

√√
1
n

n∑
i=1

(pi − p̂i)
2 (25)

where n represents the number of predicted samples, pi represents the real value of the load at time i,
and p̂i represents the predicted value of the load at time i.

The smaller the values of each metric, the higher the prediction accuracy of the model. However,
these indicators are relative values and need to be compared under the same data scale to be meaningful.

4.3. PSR Reconstruction Results

Based on the theoretical analysis of PSR in Section 2.1, the C-C method is employed to reconstruct
the phase space of the bus load data from 1 May to 14 May. The corresponding statistics of ΔS(t) and
Scor(t) are shown in Figure 5. It can be seen that the first minimum point of ΔS(t) is t = 18, while Scor(t)
cannot get the optimal embedding window tω without an obvious minimum point. However, from the
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BDS statistics, when N > 3000, m ∈ {2, 3, 4, 5}, so the maximum value of m can only be 5. According to
Equation (8), the final optimal embedding dimension mopt = 5 and the optimal delay topt = 18.

Figure 5. Curves of ΔS(t) and Scor(t).

4.4. DBN Hyperparameter Setting

In Section 4.3, the optimal embedding dimension obtained by PSR is mopt = 5. The structure of
DBN is determined by the method described in Section 3.2. The number of neurons in the input layer
and output layer of DBN is 5 and 1, respectively.

To determine the hidden layer hyperparameter, 13–14 May of the training set is eliminated and
used as a verification set; the rest are reserved as the training set. The number of hidden layer neurons
of DBN is fixed to 10, the number of layers is increased one by one, and the MAPE of the prediction
result on the verification set is used as the criterion. The forecasting horizon is 1 h, and the MAPE of
different hidden layers models is shown in Table 1.

Table 1. Mean Absolute Percentage Error (MAPE) of models with various number of hidden layers.

Number of Hidden Layers 2 3 4 5 6 7 8

MAPE 1.0387 1.0129 0.9358 1.0443 1.0413 1.0857 1.1336

In Table 1, when the number of hidden layers equals 8, the MAPE is significantly increased, and
it can be inferred that over-fitting occurs at this time, so the continuation of increasing the number
of layers is stopped. When the number of hidden layers is 4, MAPE is the smallest and is 0.9358.
Therefore, the optimal number of hidden layers equals 4.

Based on the four hidden layers, the optimal number of neurons was roughly searched by a fixed
step size, and the step size was set to 5 neurons. The MAPE of prediction result on the verification set
is used as the criterion, and the forecasting horizon is 1 h. The sample space of the search is 54 = 625.
When the MAPE is the smallest, the number of neurons in each hidden layer is [25, 15, 20, 15]. At this
time, the MAPE of predicted value on the verification set is 0.8447, which is obviously better than
the MAPE = 0.9358 of 4 hidden layers and the number of neurons in each layer is 10. Therefore, the
number of neurons in each hidden layer is [25, 15, 20, 15].

In summary, the hyperparameter setting of DBN in this paper is shown in Table 2.
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Table 2. Hyperparameter setting of DBN.

Hyperparameter Value

DBN Network structure [5, 25, 15, 20, 15]
learning rate 0.8

Maximum epochs of RBM 100
NN Network structure [5, 25, 15, 20, 15, 1]

LMBP(μ) 0.001
Maximum epochs of NN 150

4.5. Forecasting Result

4.5.1. One Hour Ahead Load Forecasting

In order to verify the forecasting performance of the proposed method, the ARIMA model, NN
model, PSR-NN model, LSTM model, PSR-DBN model (without tuning), and DBN model are adopted
to predict the load of 15–18 May after training with 1–14 May as historical data. The forecasting horizon
is 1 h, and the corresponding evaluation indicators of each model are calculated. The ARIMA model
employs the Akaike Information Criterion (AIC) to determine the optimal autoregressive model (AR
model) order p and moving average model (MA model) order q. The hyperparameter of the NN model,
LSTM model, and DBN model are also optimized by cross-validation. The PSR-DBN model (without
tuning) has four hidden layers and 10 neurons per layer. The curves of the load predicted value and
the load measured value corresponding to different models on 15–18 May are shown in Figure 6.

Figure 6. Load forecasting curve one hour ahead of 15–18 May.

The solid black line in Figure 6 is the measured value. It can be inferred that the active output
of the photovoltaic power station has large fluctuations, and the bus load curve is severely distorted
by the general saddle type, showing irregular fluctuations. If short-term load forecasting is used at
this time, it will cause a large error and waste a lot of information. The remaining curves are the
forecasting values of the ARIMA model, NN model, PSR-NN model, LSTM model, PSR-DBN model
(no tuning), and DBN model. It can be clearly seen that the predicted curves of the ARIMA model with
the golden dashed line and the NN model with the blue dashed line deviate significantly from the
black measured values, while the forecasting performance of other models cannot be directly judged
by curves. In order to more intuitively see the prediction accuracy of each model, the forecasting
evaluation indicators and training time of each model are calculated as shown in Table 3.
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Table 3. Forecasting performance of each model.

Model MAPE (%) RMSE MASE sMASE GMAE Training Time (s)

PSR-DBN 0.9892 3.2316 2.5403 0.9856 1.2027 12.3397
PSR-NN 1.0125 3.2310 2.6098 1.0126 1.2259 18.9233

DBN 1.1322 3.4684 2.9353 1.1358 1.3815 7.2980
ARIMA 1.5929 4.8657 4.0986 1.5922 Inf 20.0625

NN 1.6222 4.6757 4.2132 1.6333 Inf 15.1189
LSTM 1.0736 3.3266 2.7877 1.0799 Inf 17.2867

PSR-DBN (no tuning) 1.0380 3.2792 2.6737 1.0358 1.3279 10.2336

In Table 3, it is seen that the training time of all models meet the requirements of VSTLF. The
PSR-DBN model proposed in this paper has the smallest indicators, except for the second smallest
RMSE in all seven models. The RMSE of the PSR-DBN model proposed in this paper is only 0.0006
more than the minimum RMSE from the PSR-NN model. The ‘Inf’ of GAME indicates that the product
of local error exceeds the upper limit of double type. It can be seen that the prediction accuracy of the
DBN pre-trained by the CD method is better than that of the ordinary NN. The forecasting evaluation
indicators of the PSR-DBN model and PSR-NN model, which adds PSR link to reconstruct original
data, are also significantly less compared with the DBN model and the NN model. Compared with
the PSR-DBN model without tuning, the tuned PSR-DBN model also has less evaluation indicators.
Therefore, it can be inferred that the proposed method has higher prediction accuracy and better
forecasting performance in the one-hour very short-term prediction of bus load with high distributed
energy permeability and large fluctuation.

Figure 7 is a bar graph of the relative error of the predicted values of each model on 17 May. It can
be seen from Figure 7 that the prediction errors of the ARIMA model and NN model are larger than
those of the other five models, and the time with large prediction errors is concentrated in the noon
period. At this time, the power output of the photovoltaic power station is large and vulnerable to
clouds and other weather factors, resulting in great fluctuations of output and difficulties in prediction.
Although the prediction accuracy of the noon period is not improved after adding the PSR algorithm,
the reconstruction of the data reduces the influence of the fluctuation of the historical load data at
noontime on the load forecasting of other time periods, thus effectively reducing the relative error of
other time periods and improving the prediction accuracy of the model.
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(a) (b) 

 
(c) (d) 

 
(e) (f) 

(g) 

Figure 7. Relative error of load forecasting on 17 May. (a) PSR-DBN; (b) ARIMA; (c)PSR-NN; (d) NN;
(e) DBN; (f) LSTM; (g) PSR-DBN (no tuning).
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4.5.2. Prediction of Different Forecasting Horizons (5 min to 1 h ahead)

In order to verify the adaptability of the proposed PSR-DBN model to different forecasting
horizons, the DBN and NN models are still employed in this paper, and the load of 15–18 May is
forecasted by using historical data of 1–14 May. The forecasting horizons are 5 min to 1 h, and the
corresponding MAPE is calculated, respectively. The MAPE curves of different models vary with
forecasting horizons (shown in Figure 8).

Figure 8. The curve of MAPE varies with forecasting horizons.

As can be seen in Figure 8, MAPE generally increases with increase of the forecasting horizon.
The model proposed in this paper has higher prediction accuracy in most of the forecasting horizon,
while the forecasting performance of the NN model is not ideal. When the forecasting horizon is 5
min to half an hour, the DBN model and PSR-DBN model do not have much difference in prediction
accuracy. However, when the forecasting horizon is further increased from half an hour to one hour,
the advantage of reconstructing data by PSR begins to appear. At this time, the MAPE of the PSR-DBN
model is obviously less than that of the pure DBN model. Therefore, the model proposed in this
paper can also have a small prediction error within the forecasting horizon of 5 min to 1 h and better
adaptability in different forecasting horizons.

As can be seen in Figure 8, MAPE generally increases with increase of the forecasting horizon.
The model proposed in this paper has higher prediction accuracy in most of the forecasting horizon,
while the forecasting performance of the NN model is not ideal. When the forecasting horizon is
5 min to half an hour, the DBN model and PSR-DBN model do not have much difference in prediction
accuracy. However, when the forecasting horizon is further increased from half an hour to one hour,
the advantage of reconstructing data by PSR begins to appear. At this time, the MAPE of the PSR-DBN
model is obviously less than that of the pure DBN model. Therefore, the model proposed in this
paper can also have a small prediction error within the forecasting horizon of 5 min to 1 h and better
adaptability in different forecasting horizons.

5. Conclusions

In this paper, aiming at the adaptability of forecasting horizons, the time series characteristics
of the load, and the fluctuation caused by large amounts of distributed power access in bus load
forecasting, a very short-term bus load forecasting model based on phase space reconstruction and
deep belief network is proposed. The time series is projected by phase space reconstruction as the
trajectory of a moving point in phase space, then the excellent non-linear fitting ability of DBN network
is applied to fit the trajectory, so as to realize bus load forecasting. This paper also employs a practical
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method based on cross-validation to optimize the DBN network structure, and the real bus load data
are employed to verify that:

• The PSR-DBN forecasting model proposed in this paper can still maintain relatively high prediction
accuracy under the condition of high distributed power penetration and large fluctuation of bus
load. The prediction accuracy of the proposed model is greatly improved, when compared to the
ARIMA model of traditional time series models and the general neural network model.

• The proposed practical tuning method, which is based on cross-validation, can effectively improve
prediction accuracy of the model compared with the random structure selection strategy.

• Under different forecasting horizons (5 min to 1 h), the PSR-DBN model proposed in this paper
can still have a small prediction error. Compared with the model only using DBN, the phase-space
reconstruction technique improves the adaptability of the model to long forecasting horizons.
Therefore, the PSR-DBN model in this paper can maintain a small prediction error even in long
forecasting horizons.

In this paper, the hyperparameters, such as the network structure of DBN, are only optimized by
a roughly tuning method, and it is difficult to find the optimal value of hyperparameters. In practice,
the corresponding load regular pattern will change greatly with the change of bus operation mode.
The temperature elements also have an impact on load forecasting. Therefore, there are several factors
of the bus load very short-term prediction model proposed in this paper that need to be considered
and improved upon in the future.
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Abstract: Forecasting of real-time electricity load has been an important research topic over many
years. Electricity load is driven by many factors, including economic conditions and weather.
Furthermore, the demand for electricity varies with time, with different hours of the day and different
days of the week having an effect on the load. This paper proposes a hybrid load-forecasting method
that combines classical time series formulations with cubic splines to model electricity load. It is
shown that this approach produces a model capable of making short-term forecasts with reasonable
accuracy. In contrast to forecasting models that utilize a multitude of regressor variables observed
at multiple time points within a day, only the hourly temperature is used in the proposed model
and predictive power gains are achieved through the modeling of the 24-hour load profiles across
weekends and weekdays while also taking into consideration seasonal variations of such profiles.
Long-term trends are accounted for by using population and economic variables. The proposed
approach can be used as a stand-alone predictive platform or be used as a scaffolding to build a more
complex model involving additional inputs. The data cover the period from 1 January 1993 through
31 December 2013 from the Atlantic City Electric zone.

Keywords: forecasting; time series; cubic splines; real-time electricity load; seasonal patterns

1. Introduction

There is a long history of research on the modeling of hourly real-time electricity load. They range
from standard regression and time series approaches to methods that use machine learning algorithms,
such as artificial neural networks (ANNs), which require training by experts familiar with the algorithms
being utilized. In contrast to naive regression approaches or the use of more sophisticated machine
learning algorithms, a hybrid method that amalgamates regression splines with time series methods
is proposed. One advantage of the proposed method is that it is implementable by using standard
off-the-shelf software that does not require specialized training to be an effective user. Another is that it
utilizes temperature as the only weather-related variable. Moreover, the proposed time-varying spline
approach allows one to model the profile of daily electricity load for weak days as well as weekends for
winter, summer, and shoulder months, providing valuable information about the daily electricity use
patterns and how they evolve across days and seasons. In addition, the proposed method can be used
as a platform for building more sophisticated models with additional variables. Finally, the model is
readily interpretable as opposed to a forecasting model that utilizes a “black box” type algorithm.

The literature on load forecasting is extensive, and therefore, a complete discussion of the literature
is not possible in this paper. However, a sample of the approaches to load forecasting is presented
herein to demonstrated the variety of available methods. For early classical work, the reader is
referred to Bunn and Farmer [1], which summarized approaches developed for short-term forecasting
of electricity load. An important reference that classifies different methods of load forecasting is
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Alfares and Nazeeruddin [2]. They categorized the various approaches into nine classes, which are: (1)
multiple regression, (2) exponential smoothing, (3) iterative reweighted least-squares, (4) adaptive
load forecasting, (5) stochastic time series, (6) Autoregressive Moving Average models with exogenous
inputs (ARMAX models) and those with optimal model selection using the genetic algorithm, (7) fuzzy
logic, (8) neural networks, and (9) expert systems. Alfares and Nazeeruddin also commented that while
the pure time series approach is widely used, hybrid approaches, which combine several techniques,
have become more common.

As mentioned by Alfares and Nazeeruddin, there are many instances of the use of hybrid
methods. For example, El-Keib et al. [3] presented a hybrid approach where exponential smoothing
was augmented with power spectrum analysis and adaptive autoregressive modeling. On the other
hand, Dash et al. [4] utilized an expert system modeled fuzzy neural network and a hybrid neural
network to forecast electricity load. Other publications that employed hybrid approaches are: Kim
et al. [5] Chow et al. [6], and Choueiki et al. [7]. A more recent two-stage approach to forecasting
the hourly electricity load for 24 hours ahead was developed by Gajowniczek and Zabkowski [8].
In this approach, the peak load values were determined by using the generic function quantile in
the first stage, followed by building of three classification models, corresponding to the 99th, 95th,
and 90th percentile of the distribution, to identify the load level. They used two machine learning
algorithms, namely support vector machine (SVM) and artificial neural networks (ANN), to forecast
the 24-hour electricity load. Another recently introduced approach, based on an extreme learning
technique, was proposed by Das et al. [9]. This method considered relative difference in percentage of
load at different intervals in its modeling approach. More recently, Annamareddi et al. [10] proposed
a hybrid model based on a wavelet transform technique and double exponential smoothing to forecast
the electricity load. Another hybrid method for predicting the electricity load using Support Vector
Regression (SVR) and the Krill-Herd (KH) algorithm was proposed by Baziar and Kavousi-Fard [11].
The first step used training data, and the KH algorithm was used to optimize the SVR parameters.
Consequently, in the second step, the optimized SVR was used to forecast the electricity load.

A research paper that influenced our approach to electricity load modeling is the publication
by Nowicka-Zagrajek and Weron [12], which proposed a two-step procedure based on removing the
trend and seasonal effects first and then fitting an autoregressive moving average (ARMA) model
to the de-seasonalized data to obtain day-ahead predictions for the real-time load. In addition to
removing trend and seasonal effects, our approach uses spline regression to model daily load profiles.
In contrast, Liu et al. [13] utilized a semi-parametric model for nonlinear time series data, with the
model consisting of two components. One of the components is nonparametric, while the other is
a parametric Autoregressive Integrated Moving Average (ARIMA) component. Another approach
that accounts for periodicity is a generalization of the logistic Smooth Transition Autoregressive
(STAR) model for short term forecasting, developed by Amaral et al. [14]. This approach combines
periodic models with a smooth transition between the regimes. Another publication that deals with
cyclical behavior is that by Dordonnat et al. [15], which presented a periodic state space model,
with different equations and different parameters for each hour, for forecasting of the hourly electricity
load. The multi-equation linear model with autoregressive order two AR(2) approach developed by
Chapagain and Kittipiyakul [16] uses 48 separate equations to forecast every half hour electricity load
for one day ahead. Two different techniques, namely the ordinary least square (OLS) and a Bayesian
approach, were used to estimate the model parameters for each type of day separately weekdays,
weekends, and holidays.

The daily electricity use profile over a 24-hour period has prompted researchers to use functional
approaches to modeling electricity load. Kosiorowski [17] compared methods of load forecasting that
utilizes such approaches and concluded that the moving functional median is the appropriate approach
for functional time series that contain outliers and nonstationary functional time series. In comparison,
the other three approaches, functional autoregressive, fully functional regression, and the method
proposed by Hyndman and Shang [18], work for a stationarity functional time series, and the prediction
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accuracy of the Hyndman and Shang method was the best overall. Our proposed methodology treats
the 24-hour load profile as a function, which changes according to the type of day and season; however,
we model these changing profiles using the well-understood cubic spline approach.

More recently, Papadopoulos and Karakatsanis [19] compared four different approaches, namely
the seasonal autoregressive moving average (SARIMA), seasonal autoregressive moving average with
exogenous variable (SARIMAX), random forests (RF), and gradient boosting regression trees (GBRT).
Among the methods compared, GBRT showed the most accurate results based on mean absolute
percentage error (MAPE) and root mean square error (RMSE). Alkhathami [20] also discussed the
merits of various forecasting methodologies for load forecasting. He mentioned that the complex
methods give more accurate results. Yang et al. [21] developed a hybrid method to forecast the
half-hour electricity load, and they applied autocorrelation function (ACF) to select the important input
features of least square support vector machines (LSSVM), followed by the grey wolf optimization
algorithm (GWO) and cross validation (CV) to optimize the parameters of LSSVM. This method was
more accurate compared to nine other approaches over three electricity load data sets from Australia.

In addition to the literature discussed in the previous paragraphs, there are a plethora of
publications on the topics of load forecasting. Nevertheless, for the sake of brevity, we presented only
a limited sample to illustrate the diversity of approaches taken by researchers in this area.

It is worth noting that many of the RTOs (Regional Transmission Organizations) and ISOs
(Independent System Operators), as well as utility companies, have tended to use multiple regression
models with a multitude of weather-related inputs for short-term prediction in spite of recent research
that tend to include more sophisticated approaches. Possible reasons for this are discussed later in
this section.

The Pennsylvania-New Jersey-Maryland (PFM) RTO uses multiple regression models with many
regressor, such as 26 calendar variables, which are the days of the week (6), month of the year (11),
holidays (15), and daylight-saving time impacts (see PJM Manual 19 [22]). Different variables for
heating, cooling and shoulder seasons are included in the PJM model. Moreover, several formulae are
used to calculate some of the weather, economic, and end-use variables. Another variable labeled load
adjustment has also been used in PJM model.

It is evident that while many sophisticated models have been proposed, at least some practitioners,
such as the modelers at PJM, seem to prefer models based on classical statistical approaches. One reason
for this may be that the less sophisticated multiple regression models work reasonably well and are
both interpretable as well as easy to modify and re-train compared to those that are based on ANNs
(Artificial neural networks) or RFs (Random Forests). Keeping this perspective in mind, an approach
for short-term forecasting of electricity load using classical techniques that are relatively easy to
implement, is proposed. One of the goals is to avoid using “black box” approaches that result in
non-interpretable formulations, but instead to utilize methodologies that result in easy to understand
models. The proposed method, while somewhat more complex than straightforward regression
approaches, is nevertheless based on regression and basic time series modeling that can be executed
using widely available software. In addition, it uses a minimum amount of weather variables and drives
the forecasting power by capturing the effect of such variables implicitly embedded in the lagged values
of the load series as well as by exploiting the cyclical patterns inherent in the data. While relatively
simple when compared to the more sophisticated models described earlier, the proposed approach
nevertheless provides flexibility to model non-linear and non-stationary components that exhibit
seasonal variability. In addition, it provides a platform on which more complex models, involving
regressors such as additional weather variables, can be built.

The rest of the paper follows the following format. In Section 2, the main factors that affect
electricity load are discussed and their impact on the load is illustrated graphically using empirical
data. Section 3 describes the sources of the electricity load data employed in the analysis as well as
weather and macro-economic data utilized in the proposed model. The proposed modeling approach
is detailed in Section 4 and concluding remarks are made in Section 5.
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2. The Factors Affecting Electricity Load

There are many factors that affect the electricity load, some in the short term and others in the
long term. Fahad and Arbab [23] described the impact of various factors on the short-term load and
grouped those factors into four categories, namely time, weather, economy, and random disturbances.
Several economic and macroeconomic factors influence the electricity load over the long-term and
researchers have utilized these to obtain long-term forecasts. Some examples of such variables are gross
domestic product (GDP), gross domestic product per capita (GDP per capita), and population size.
At the initial stages of the proposed modeling approach, long-term trend is removed using a regression
model that accounts for several macro-economic variables and population size.

The time related changes in electricity load are not only due to long-term trend. Daily variations
in human activity due to working, leisure, and sleeping periods (see Figure 1) can introduce a cyclical
pattern with a 24-hour period. Other time related factors including day of the week, holidays,
and seasonal changes in consumer behavior can affect this 24-hour cycle as seen in Figure 1.

  
Figure 1. The average of a 24-hour of load curve of weekdays (blue solid) and weekends (red dashed)
1993–2012 (left: January; right: July).

The weather variables, such as temperature, humidity, precipitation, and wind speed, have played
a significant role in electricity load forecasting, such as in the models used by the PJM TRO. Out of
these factors, the temperature plays a major role (Figure 2). The effect of seasons on the electricity load,
as seen in Figure 3, can be mainly attributed to seasonal fluctuation of the temperature, even though
seasonal changes in human behavior can also play a role. The proposed approach to modeling
electricity load strives to capture these effects due to seasonality, week-day and weekend differences,
as well as the intra-day fluctuation of temperature on the 24-hour load curve. Details of how this is
accomplished are given in Section 4.
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Figure 2. The relationship between the hourly load and hourly temperature—South New
Jersey 1993–2012.

  
Figure 3. The average of 24-hour load curves (blue solid) and the temperature (red doted) (left: January
2013; right: July 2013).

3. Data Sources

The historical load dataset used in this study was obtained from the Pennsylvania-New
Jersey-Maryland RTO website (PJM) [24]. The data cover a sub region of PJM (see Figure 4), namely the
Atlantic City Electric company (AE), which serve approximately 556,000 customers in eight counties
(Atlantic, Burlington, Camden, Cape May, Cumberland, Gloucester, Ocean, and Salem), in southern
New Jersey. This dataset includes hourly observations measured in megawatts (MW) over 20 years
from 1 January 1993 through 31 December 2012 (see Figure 5), which were used for modeling purposes
(i.e., as training data), and data from 1 January 2013 through 31 December 2013, shown in Figure 6,
which were used as test data for computing forecasting error. The weather data were obtained from
the National Oceanic Atmospheric Administration (NOAA) based on four weather stations in different
locations of the study area, southern New Jersey. These stations are located in Atlantic City, Millville,
Mount Holly, and Wildwood.
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The economic data were obtained from Federal Reserve Bank of St. Louis. The specific economic
variables used in this study are: industrial production index in the US (IPI) which is an economic
indicator that measures the amount of the output from manufacturing, mining, electric and gas
industries; government employment in New Jersey (NJGOVTN), which is defined as the total body
of employees in all government agencies apart from the military; home vacancy rate in New Jersey
(NJHVAC), which is defined as the percentage of all available units in a rental property that are vacant
or unoccupied at a particular time.

 
Figure 4. Map of Pennsylvania-New Jersey-Maryland (PJM) [25].

 
Figure 5. The hourly observed load over 20 years.
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Figure 6. The hourly load of Atlantic City Electric Company (AE) in 2013.

4. The Proposed Approach to Modeling Electricity Load

The approach used in the following assumes a traditional structural time series model with trend,
seasonal, and cyclical components, but utilizes a variation of cubic splines to estimate the 24-hour load
profile for weekdays and weekends in a given season with hourly temperature playing an explanatory
role. Specifically, model parameters are estimated for the mean load curve separately for weekdays
and weekend days within each season after performing a de-trending operation. This approach
can be considered suitable for short term prediction because of the need to have good estimates of
hourly temperature.

The model assumes that Yt,i, the real-time load at hour i on day t, is a composite of structural
components consisting of a long-term trend τt, a seasonal component St, a weekly cycle wt, a set of
functions fs,d(x) representing the hourly load profile at time x for season s and day of the week d (taking
one value for week-days and a different value for weekends), and an irregular stochastic component
ut,i. Thus, Yt,i can be expressed as:

Yt,i = τt + St + wt + fs,d(i) + ut,i,

where t = 1, 2, . . . , N and i = 1, 2, . . . , 24. Note that N denotes the number of days in the training data
set and i denotes the hour of the day.

The long-term trend was modeled using classical regression with select economic variables as
regressors. The weakly seasonal component was modeled using a vector autoregressive moving
average with exogenous terms (ARMAX) formulation with the average weekly temperature and its
square as exogenous variables. The 24-hour load profiles were modeled by using a separate set of
cubic splines for each season and weekdays/weekend combinations. Different spline models were
used for each season because the 24-hour load profile within a season has almost the same pattern
but differs across seasons. The weekdays were modeled separately within each season because they
have quite different load profiles as well when compared to weekend patterns. The assumption of only
one functional form for the load profile of weekdays can be relaxed by adding unique functions for
each day of the week or for Monday, Friday, and the rest of the weekdays. Similarly, one can assume
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separate functional forms for Saturday and Sundays. Since such an approach can reduce the accuracy
of estimates due to reduced sample sizes, the number of different functions was kept to a minimum.

Details of the modeling process are described below, beginning with the detrending process
followed by the estimation of the seasonal components and concluding with the spline modeling of
the 24-hour load profile.

4.1. Predicting Long-Term Trend

The first step included modeling the hourly average electricity load per year, τ∗l =
1

24Nl

Nl∑
t=1

24∑
i=1

Yt,i,

using classical regression analysis. Note that in the above expression for the average load, l denotes the
year with l = 1, 2, . . . , 20, and Nl denotes the total number of days in that year. A stepwise selection
method was used to determine the independent variables to be included in the model. Out of more
than 20 economic variables plus population size and the average monthly temperature, the following
variables were selected: government employment in New Jersey (NJGOVTN), industrial production
index in the US (IPI), home vacancy rate in New Jersey (NJHVAC), and the average temperature of
September (Temp_Sep). Table 1 provides the results of the multiple linear regression analysis.

Table 1. The results for the regression model for annual load.

Analysis of Variance

Source DF Sum of Squares Mean Square F-Ratio Prob > F

Model 4 117546 29386 310.41 <0.0001
Error 15 1420.061 94.67q

Corrected Total 19 118966

Root MSE 9.73 R-Square 0.988 Adjusted R-Square 0.985
AIC 95.255 Dependent Mean 1237.84 Coefficient of Variation 0.78604

Variable DF
Parameter
Estimate

Standard
Error

t-Statistic Prob > |t|
Variance
Inflation

Intercept 1 −422.011 91.167 −4.63 0.0003 0
NJGOVTN 1 1.61 0.109 14.71 <0.0001 2.429
NJHVAC 1 −36.776 4.975 −7.39 <0.0001 1.041

IPI 1 2.769 0.343 8.08 <0.0001 2.399
Sep_M 1 7.247 1.276 5.68 <0.0001 1.079

Note: The above results are for the training data set only.

The estimated regression model for the annual data is:

τ̂∗l = −422.01− 36.78 NJHVAC + 1.61 NJGOVTN + 2.77 IPI +7.25 Temp_Sep.

The selected independent variables explain 98.5% of the variation in the average annual load
and the root mean square error (RMSE) is 9.7, which is relatively small. Moreover, no serious
multicollinearity among the independent variables was detected. The residual analysis is shown in the
Figure A1 in the Appendix A, and while two outliers (with high Cook’s distance) are shown, no major
concern is raised. In addition, the model does a good job of predicting the annual load, as seen in
Figure 7.

Figure 7 displays the average annual real-time load per hour for the 20 years of training data
and one year of test data and the average annual load predicted, using the estimated regression
model. The figure shows the predicted trend using actual macroeconomic data for the test year, but the
macroeconomic data for the test year can be predicted very accurately using an ARMA model, and the
results do not change by much. The display shows very good in-sample agreement between the
observed and predicted load and a reasonable agreement between the two for the test year. One word
of caution is that we observed that the electricity load decreased in the last three years, but one of the
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two most important variables in the model, the government employment in New Jersey (NJGOVTN),
decreased only slightly, while the industrial production index in the US (IPI) increased. Those two
variables explained 92% of the variation in the electricity load. Thus, some delinking of these variables
with electricity load may be occurring and developing an annual model with more recent data may
be pragmatic.

 
Figure 7. The annual average of hourly load (blue solid) and the predicted load (red doted) 1993–2013.

4.2. Estimating Seasonal Variation in Data

The trend estimates for each year were transposed onto a weekly series, and a 52-week moving
average was applied to this series to smooth the predictions from a step function to a smooth one.

The smoothed trend, τ̃∗w, for week w, was subtracted from the average load Yt,• = (24)−1 24∑
i=1

Yt,i for each

day within the corresponding week, with the process repeated for all weeks, yielding the detrended
daily averages Y

∗
t,•. The resulting data can be represented in a vector series S∗w, where each vector

contains the seven detrended daily averages Y
∗
t,• corresponding to that week. Note that w = 1, 2, . . . ,

W, where W is the total number of weeks in the training data set. The de-trended weekly time series,
Ŝ∗w, was then used to fit a subset ARMAX model (see Baillie, R. T [26] for details) given below:

S∗w = 1023 + 1.13S(w−1) − 0.23S∗
(w−2)

+ 0.76S∗
(w−52)

− 0.67S ∗
(w−53)

+0.75Z(w−1)

− 0.06Z(w−50) + 0.71Z(w−52) − 0.44Z(w−53) − 0.11Z(w−54) − 50.36T + 0.53T2,

where L(w−lag) denotes the autoregressive lag term, Z(w−lag) denotes the moving average lag terms,
and T denotes the weekly average temperature. The residuals of the fit do not show any major
autocorrelations and the test for white noise (bottom right hand corner of Figure A2 in the Appendix A)
shows no evidence that the residuals are anything other than white noise. The check for normality of
the residuals, given in Figure A3 in the Appendix A, shows some deviation from normality, but this
is not much of a concern because the model performed an adequate job of extracting the seasonal
component as indicated by white noise residual.

The forecasted weekly vector values for the test data set (year 2013) were then obtained using
the estimated ARMAX model. These estimated vectors Ŝ∗w contain forecasted daily values for each
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week. These daily values were averaged to get a forecast weekly average. The trend model was then
employed to forecast a yearly trend for the test data (year 2013). Note that to predict a trend, we needed
macroeconomic data for the test year and in practice, these have to be predicted. We found that
applying an ARMA model to the past macroeconomic data would yield accurate forecasts for the test
year. This yielded a constant forecast across all the weeks of the test year. These were them smoothed
using a 52-week moving average that utilized previous year’s data for the smoothing. The smoothed
weekly trend data were then added to the forecast weekly average obtained from averaging the daily
values from the ARMAX vector forecasts. The resulting weekly averages were then compared with the
observed weekly average load for the test year (Figure 8). These out-of-sample checks show that the
seasonal (weekly) model provides a satisfactory estimation of the seasonal component.

Note that the smoothing of the yearly trend data allows for a smooth transition from one year
to the next. It also reduces any bias due to poor estimation of the trend value for the test year,
when computing trend values for the early part of the test year. The trend estimates can be updated
later in the test year by reforecasting the trend value by using updated macroeconomic variables that
may become available after the first quarter of that year and later after the second and third quarter.

 
Figure 8. The weekly average of the hourly load (blue solid) and the predicted load (red dashed)
in 2013.

4.3. Modeling the Hourly Load

At this point, the weekly smoothed trend τ̃∗w and the estimated seasonal component Ŝ∗w were
removed from the hourly data Yt,i for both training and test data years, and a new de-trended and
de-seasonalized time series, Y∗t,i, was obtained. The times series Y∗t,i was modeled using the training
data set, by fitting cubic splines to model the 24-hour daily profile. Different spline estimates were
obtained for each season, weekday, and weekend combination. Temperature and its interaction with
time were also fitted as regressors.

Two scenarios were applied here. The first one modeled each season and each day type (weekday
or weekend) separately. We denoted the resulting model as Model 1. The second scenario modeled
each season separately and ignored the day type but added a dummy variable to identify the type of
day. This approach provided us with Model 2.

56



Energies 2019, 12, 4169

4.3.1. The First Scenario

The general spline Model 1 is:

Y∗t,i = b0 + b1i + b2i2 + b3i3 + b4(i− κ1)
2 + b5(i− κ2)

2 + b6(i− κ3)
2 + b7(i− κ1)

3 + b8(i− κ2)
3

+ b9(i− κ3)
3 + b10Tt,i + b11Tt,i ∗ i + b12Tt,i ∗ i2 + b13Tt,i ∗ i3 + b14Tt,i ∗ (i− κ1)

2 + b15Tt,i ∗ (i− κ2)
2

+ b16Tt,i ∗ (i− κ3)
2 + b17Tt,i ∗ (i− κ1)

3 + b18Tt,i ∗ (i− κ2)
3 + b19Tt,i ∗ (i− κ3)

3,

where i is the hour, κ′js are the knots that change according to season and day type, and Tt,i is
temperature at hour i on day t. The knot positions were chosen by inspection for each season and
are given, together with the parameter estimates, in the Tables A2–A5 in the Appendix A. Note that
non-significant terms were dropped from the model and what is given above is the reduced model.

4.3.2. The Second Scenario

The general spline Model 2 is:

Y∗t,i = b0 + b1i + b2i2 + b3i3 + b4(i− κ1)
2 + b5(i− κ2)

2 + b6(i− κ3)
2 + b7(i− κ1)

3 + b8(i− κ2)
3

+ b9(i− κ3)
3 + b10Tt,i + b11Tt,i ∗ i + b12Tt,i ∗ i2 + b13Tt,i ∗ i3 + b14Tt,i ∗ (i− κ1)

2 + b15Tt,i ∗ (i− κ2)
2

+ b16Tt,i ∗ (i− κ3)
2 + b17Tt,i ∗ (i− κ1)

3 + b18Tt,i ∗ (i− κ2)
3 + b19Tt,i ∗ (i− κ3)

3 + b20wt,

where i is the hour, κ is a knot that changes according to the season and the knot positions and parameter
estimates are given in the Tables A6 and A7 in the Appendix A. Note that Tt,i is the temperature at
time i on day t, and wt is a dummy variable denoting weekend day. Note that non-significant terms
were dropped from the model and the results reported are for the reduced model.

As mentioned previously, the Table A2 through Table A7, given in the Appendix A, present the
knot positions and the results of the regression model for each season and each type of day. The tables
for weekdays and weekends for a given season are paired together for easy comparison.

Model obtained for each season is different from the others, reflecting changes in the daily load
profiles across seasons. The comparison between Model 1 and Model 2, based on Akaike Information
Criteria (AIC) and Root Mean Square Error (RMSE) is presented in Table 2. The results show very little
difference between the two models. In addition, the Figures 10 and 11 show the comparison between
the two models based on the Coefficient of Variation (CV) for each month and each hour, respectively.

Table 2. The comparison between the two models.

Season Day Type
RMSE AIC

Model 1 Model 2 Model 1 Model 2

Winter
Weekdays 72.961 72.997 260089.07 260119.13
Weekends 74.395 74.743 100751.11 100862.34

Spring Weekdays 73.524 73.484 271284.41 271249.53
Weekends 84.087 84.273 111701.59 111757.18

Summer
Weekdays 121.68 121.754 303082.91 303118.57
Weekends 138.232 138.465 124225.17 124267.61

Fall
Weekdays 94.403 92.402 282449.53 282449.54
Weekends 100.777 101.231 115155.18 115268.54

Figure 9 shows very close agreement between the two models when compared using the CV by
month. There is a slight drop in the CV for Model 1 suggesting a slight gain in accuracy when the
weekdays and weekends are modeled separately. Figure 10 given below shows the CV for the two
models by each hour of the day. Again, Model 1 shows a slight advantage with the CV for Model 2
showing higher values for hours before 10 am. This may be because the load profile for weekends
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shows a two-hour shift in the morning load profile and the inclusion of a dummy variable is not
sufficient to account for this difference in the shape of the load profile.

 
Figure 9. The comparison between the CV of the predicted monthly average load of Model 1 (blue
solid) and Model 2 (red doted).

 
Figure 10. The comparison between the CV of the predicted hourly average load of Model 1 (blue
solid) and Model 2 (red doted).

The Figures 11–14 provide a comparison between the two models for four different weeks of
the test year. The weeks were chosen from the middle of each season. The forecasts based on each
model were very close to one another, which suggests that adding a dummy variable for the day type
instead of building the extra models for the type of day provides satisfactory forecast overall; however,
for all seasons except summer, Model 2 yielded forecasts that fall below the observed load during the
weekends (last two days in the graph), especially in the morning period. However, except for the
weekends, both models underestimated the afternoon peak in winter and spring. For the summer
season (Figure 13), the afternoon peak was overestimated by both models on Fridays.
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Table 3 provides an additional contrast between the two models based on CV. It is immediately
apparent that any difference between the two models is quite marginal and may not have any practical
consequences. The cells highlighted in light blue indicate places where the CV for a given model
is lower than that for the competing model. If any conclusion can be made based examining these
results, it may be that Model 1 is slightly better than Model 2 across most hours in winter and fall,
and Model 1 appears to perform slightly better before noon during spring. One reason for this may be
the somewhat poor performance of model two during the weekend mornings. If pressed to select one
model over the other, the natural choice would be Model 1, but a strong argument cannot be made that
it is much more superior to Model 2.

 
Figure 11. The comparison between the observed hourly load (blue solid), the predicted hourly load of
Model 1 (red doted), and Model 2 (green dashed). 7 January 2013–13 January 2013.

 
Figure 12. The comparison between the observed hourly load (blue solid), the predicted hourly load of
Model 1 (red doted), and Model 2 (green dashed). 1 April 2013–7 April 2013.
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Figure 13. The comparison between the observed hourly load (blue solid), the predicted hourly load of
Model 1 (red doted), and Model 2 (green dashed). 8 July 2013–14 July 2013.

Figure 14. The comparison between the observed hourly load (blue solid), the predicted hourly load of
Model 1 (red doted), and Model 2 (green dashed). 7 October 2013–13 October 2013.
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Table 3. The comparison between the CV of the two models for each season by hour.

Hour
Winter Spring Summer Fall

Model 1 Model 2 Model 1 Model 2 Model 1 Model 2 Model 1 Model 2

1 0.064 0.068 0.077 0.082 0.087 0.090 0.083 0.092
2 0.061 0.063 0.076 0.090 0.093 0.094 0.077 0.086
3 0.063 0.065 0.075 0.080 0.093 0.093 0.078 0.086
4 0.065 0.067 0.079 0.080 0.093 0.091 0.081 0.088
5 0.063 0.063 0.077 0.077 0.092 0.089 0.081 0.085
6 0.059 0.059 0.077 0.079 0.087 0.088 0.081 0.081
7 0.066 0.075 0.087 0.093 0.091 0.092 0.088 0.093
8 0.062 0.076 0.076 0.090 0.096 0.090 0.088 0.095
9 0.056 0.064 0.072 0.080 0.104 0.098 0.088 0.088

10 0.063 0.066 0.078 0.081 0.104 0.106 0.092 0.091
11 0.072 0.071 0.083 0.084 0.100 0.101 0.096 0.097
12 0.076 0.074 0.090 0.089 0.102 0.102 0.105 0.107
13 0.076 0.076 0.099 0.096 0.107 0.104 0.119 0.120
14 0.073 0.075 0.105 0.104 0.101 0.100 0.132 0.132
15 0.071 0.072 0.107 0.107 0.096 0.095 0.139 0.138
16 0.069 0.069 0.110 0.111 0.093 0.093 0.144 0.145
17 0.068 0.070 0.114 0.115 0.090 0.091 0.150 0.150
18 0.072 0.073 0.118 0.117 0.087 0.086 0.156 0.155
19 0.060 0.062 0.116 0.115 0.085 0.085 0.134 0.135
20 0.059 0.060 0.106 0.105 0.083 0.083 0.116 0.117
21 0.061 0.062 0.099 0.097 0.079 0.078 0.107 0.109
22 0.062 0.062 0.090 0.085 0.080 0.078 0.096 0.098
23 0.060 0.060 0.080 0.074 0.092 0.088 0.086 0.088
24 0.060 0.060 0.078 0.075 0.085 0.084 0.081 0.086

Note: The numbers highlighted in blue indicates the lower of the two CV values for each hour of each season.

5. Conclusions

A multi-step approach to modeling the hourly electricity load using a structural time series
model that utilizes only standard statistical modeling techniques was introduced. While the proposed
methods require multiple steps to model the load data, every step can be implemented using commonly
available statistical software packages, and therefore, they are within the reach of empirical modelers
who do not have training in the use of sophisticated machine learning algorithms or have the time
required to master complex analytical techniques. The results of modeling observed real-time load
data from the PJM market show that the proposed method performs reasonably well in modeling the
training data and short-term forecasting out-of-sample data. In addition, the proposed methodology
utilized only macroeconomic and temperature data, and the use of additional input variables has the
potential to further improve the performance of the models considered in this study. One shortcoming
of the proposed study is the need to know macroeconomic data and the population figures to predict
long-term trend, but in the context of forecasting in the short-term, this may not be a great drawback,
because near-term forecasts of these can be quite reliable or one can use the most recent data without
sacrificing much accuracy. In spite of the above shortcoming, it is seen that the cubic spline model
worked very well in capturing the 24-hour load curve, and therefore, the proposed methodology can
provide a framework for modeling other phenomena that exhibit a daily cycle, especially if long-term
trend forecasting is not needed.
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Appendix A

In this appendix, additional figures and tables relevant to material presented in this paper
are given.

Figure A1. Residual Analysis of the Annual Regression Model.

Figure A2. Analysis of Residual for the Weekly ARMAX Model.
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Figure A3. Normality Diagnostics of the Residuals of the Weekly ARMAX Model.

Table A1. The Results for the Weekly ARMAX Model.

Maximum Likelihood Estimation

Parameter Estimate Standard Error t Value Approx. Pr > |t| Lag

MU 1023.0 28.446 35.96 <0.0001 0
MA1,1 0.751 0.06 12.55 <0.0001 1
MA1,2 −0.056 0.019 −2.99 0.0028 50
MA1,3 0.712 0.037 19.22 <0.0001 52
MA1,4 −0.440 0.048 −9.22 <0.0001 53
MA1,5 −0.105 0.025 −4.24 <0.0001 54
AR1,1 1.128 0.057 19.67 <0.0001 1
AR1,2 −0.227 0.033 −6.87 <0.0001 2
AR1,3 0.762 0.027 28.06 <0.0001 52
AR1,4 −0.673 0.031 −22.11 <0.0001 53

T −50.357 0.958 −52.56 <0.0001 0
T2 0.533 0.01 57.50 <0.0001 0

Constant Estimate 10.074 Std Error Estimate 41.473
AIC 10765.4 SBC 10824.8
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Table A2. The Results for the Regression Model for the Winter Season (Model 1).

Winter—Weekdays Winter—Weekends

Variable Parameter Estimate Pr > |t| Variable Parameter Estimate Pr > |t|

Intercept −43.94700 0.0003 Intercept 33.16159 0.0438

i 43.00126 <0.0001 i −68.74540 <0.0001

i2 −28.47236 <0.0001 i2 10.86316 0.0456

i3 3.90525 <0.0001 i3 −0.34335 0.5244

(i − 6)2 −72.28854 <0.0001 (i − 5)2 4.53027 0.1994

(i − 14)2 −42.29815 <0.0001 (i − 12)2 21.97808 <0.0001

(i − 17)2 −103.8987 <0.0001 (i − 17)2 −42.63870 <0.0001

(i − 6)3 −1.95948 <0.0001 (i − 5)3 −0.98781 0.0461

(i − 14)3 8.92152 <0.0001 (i − 12)3 2.63976 <0.0001

(i − 17)3 −9.58272 <0.0001 (i − 17)3 −0.96957 0.0194

temp −2.89175 <0.0001 temp −2.59769 <0.0001

T*i −0.71365 <0.0001 T*i −0.15635 0.0027

T* i2 0.17868 <0.0001 T* (i − 5)2 0.06344 <0.0001

T* i3 −0.01462 <0.0001 T*(i − 12)2 −0.56360 <0.0001

T* (i − 6)2 0.26047 <0.0001 T*(i − 17)2 −0.67866 0.0005

T*(i − 14)2 0.23657 <0.0001 T*(i − 12)3 0.06180 <0.0001

T*(i − 17)3 0.02458 <0.0001 T*(i − 17)3 −0.03642 0.0005

RMSE 72.961 RMSE 74.388
Adj-R2 0.767 Adj-R2 0.707

AIC 260089.07 AIC 100750.97

Table A3. The Results for the Regression Model for the Spring Season (Model 1).

Spring—Weekdays Spring—Weekends

Variable Parameter Estimate Pr > |t| Variable Parameter Estimate Pr > |t|

Intercept 93.65097 <0.0001 Intercept −7.13119 0.6187

i −150.22285 <0.0001 i −48.84602 <0.0001

i2 68.15250 <0.0001 i2 13.06001 <0.0001

i3 −8.97118 <0.0001 i3 −0.74388 <0.0001

(i − 4)2 115.05545 <0.0001 (i − 9)2 −13.54758 0.0001

(i − 8)2 61.51265 <0.0001 (i − 18)2 124.02630 0.0021

(i − 19)2 −124.08785 <0.0001 (i − 20)2 231.54827 0.0011

(i − 4)3 −3.47963 0.0009 (i − 9)3 2.62643 <0.0001

(i − 8)3 13.74708 <0.0001 (i − 18)3 −66.42324 <0.0001

(i − 19)3 9.48140 <0.0001 (i − 20)3 65.77067 <0.0001

temp −2.50879 <0.0001 Temp −1.45289 <0.0001

T* i2 −0.41258 <0.0001 T* i2 −0.22542 <0.0001

T* i3 0.07054 0.0001 T* i3 0.02324 <0.0001

T* (i − 4)2 −1.05263 <0.0001 T* (i − 9)2 −0.43314 <0.0001

T* (i − 8)2 −1.02330 <0.0001 T*(i − 18)2 −2.77329 <0.0001

T*(i − 19)2 1.75668 <0.0001 T*(i − 20)2 −5.14219 <0.0001

T* (i − 4)3 0.06608 <0.0001 T*(i − 9)3 −0.03102 <0.0001

T* (i − 8)3 −0.14706 <0.0001 T*(i − 18)3 1.26328 <0.0001

T*(i − 19)3 −0.19409 <0.0001 T*(i − 20)3 −1.22318 <0.0001

RMSE 73.524 RMSE 84.087
Adj-R2 0.75 Adj-R2 0.625

AIC 271284.41 AIC 111701.59
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Table A4. The Results for the Regression Model for the Summer Season (Model 1).

Summer—Weekdays Summer—Weekends

Variable Parameter Estimate Pr > |t| Variable Parameter Estimate Pr > |t|

Intercept −1031.8216 <0.0001 Intercept −1121.8108 <0.0001

i 20.83889 0.6311 i 92.24404 0.0765

i2 23.34519 0.0028 i2 −4.50357 0.5201

i3 −2.15146 <0.0001 i3 0.23011 0.4594

(i − 9)2 −58.35710 <0.0001 (i − 7)2 −50.56548 0.0002

(i − 14)2 −52.55395 0.0212 (i − 12)2 79.89184 <0.0001

(i − 19)2 −55.43427 0.1113 (i − 20)2 −45.09066 0.0476

(i − 9)3 13.63412 <0.0001 (i − 7)3 0.75179 0.4427

(i − 14)3 −10.04996 <0.0001 (i − 12)3 −1.41147 0.3334

(i − 19)3 −3.42800 <0.0001 (i − 20)3 −5.65133 <0.0001

temp 12.30673 <0.0001 temp 13.92763 <0.0001

T*i −1.67881 0.0056 T*i −2.61695 <0.0001

T* i2 −0.23403 0.0326 T* i2 0.15085 0.0283

T* i3 0.03886 <0.0001 T* (i − 7)2 1.43653 <0.0001

T*(i − 14)2 1.07409 0.0002 T*(i − 20)2 0.72256 0.0058

T*(i − 19)2 1.20714 0.0053 T*(i − 7)3 −0.14516 <0.0001

T*(i − 9)3 −0.17607 <0.0001 T*(i − 12)3 0.15275 <0.0001

T*(i − 14)3 0.09527 <0.0001

RMSE 121.682 RMSE 138.235
Adj-R2 0.866 Adj-R2 0.815

AIC 303082.91 AIC 124226.62

Table A5. The Results for the Regression Model for the Fall Season (Model 1).

Fall—Weekdays Fall—Weekends

Variable Parameter Estimate Pr > |t| Variable Parameter Estimate Pr > |t|

Intercept −124.73508 <0.0001 Intercept −21.40477 0.3987

i 49.54582 0.0001 h −27.84008 0.0282

i2 −20.69335 <0.0001 h2 7.44891 0.0016

i3 2.88465 <0.0001 h3 −0.32170 0.0803

(i − 6)2 −62.12202 <0.0001 (i − 8)2 −14.30060 0.3538

(i − 15)2 106.77851 <0.0001 (i − 10)2 5.40145 0.5837

(i − 20)2 190.28792 <0.0001 (i − 18)2 −147.68332 <0.0001

(i − 6)3 −1.41533 <0.0001 (i − 8)3 −1.67366 0.6195

(i − 15)3 −17.40696 <0.0001 (i − 10)3 5.28608 0.1368

(i − 20)3 4.95084 <0.0001 (i − 18)3 5.18245 <0.0001

temp −0.55227 0.0901 temp −1.22595 0.0026

T* i −0.95896 <0.0001 T* i −0.87935 <0.0001

T* i2 0.05788 0.0049 T* i2 0.00681 <0.0001

T* (i − 6)2 0.31932 <0.0001 T* (i − 8)2 0.68040 0.0036

T*(i − 15)2 −1.29167 <0.0001 T*(i − 18)2 1.72536 <0.0001

T*(i − 20)2 −3.25219 <0.0001 T*(i − 8)3 −0.14824 0.0002

T* (i − 6)3 −0.02245 <0.0001 T*(i − 10)3 0.11613 0.0105

T*(i − 15)3 0.23814 <0.0001 T*(i − 18)3 −0.10069 <0.0001

RMSE 92.402 RMSE 100.78
Adj-R2 0.745 Adj-R2 0.653

AIC 282449.54 AIC 115156.88
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Table A6. The Results for the Regression Model for the Winter and Spring Seasons (Model 2).

Winter Spring

Variable Parameter Estimate Pr > |t| Variable Parameter Estimate Pr > |t|

Intercept −16.55248 0.1207 Intercept −28.71512 0.3281

i 23.25116 0.0014 i 43.44180 0.1746

i2 −20.66445 <0.0001 i2 −18.69310 0.0568

i3 2.96367 <0.0001 i3 2.56499 0.0042

(i − 6)2 −52.98180 <0.0001 (i − 5)2 17.48659 <0.0001

(i − 15)2 −16.66555 <0.0001 (i − 8)2 42.40157 <0.0001

(i − 17)2 −112.22096 <0.0001 (i − 19)2 −123.9761 <0.0001

(i − 6)3 −1.83272 <0.0001 (i − 5)3 −13.11806 <0.0001

(i − 15)3 13.03173 <0.0001 (i − 8)3 11.98398 <0.0001

(i − 17)3 −12.65773 <0.0001 (i − 19)3 9.16725 <0.0001

temp −2.76643 <0.0001 temp −0.64997 0.2414

T* i −0.64320 <0.0001 T* i −2.15721 0.0003

T* i2 0.13092 <0.0001 T* i2 0.50905 0.0049

T* i3 −0.00834 <0.0001 T* i3 −0.04807 0.0027

T*(i − 6)2 0.12037 0.0070 T*(i − 8)2 −0.96311 <0.0001

T*(i − 15)2 0.13705 0.0009 T*(i − 19)2 1.72975 <0.0001

T*(i − 17)3 0.01452 <0.0001 T* (i − 5)3 0.18007 <0.0001

Weekend −49.01851 <0.0001 T*(i − 8)3 −0.14305 <0.0001

T*(i − 19)3 −0.18822 <0.0001

Weekend −59.90003 <0.0001

RMSE 75.781 RMSE 79.687
Adj-R2 0.741 Adj-R2 0.705

AIC 363556.63 AIC 386694.58
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Table A7. The Results for the Regression Model for the Summer and Fall Seasons (Model 2).

Summer Fall

Variable Parameter Estimate Pr > |t| Variable Parameter Estimate Pr > |t|

Intercept −1131.9170 <0.0001 Intercept −84.22522 <0.0001

i 115.72585 <0.0001 i 40.45021 0.0004

i2 1.12711 0.2755 i2 −17.21285 <0.0001

i3 −0.77157 <0.0001 i3 2.41275 <0.0001

(i − 9)2 −83.52495 <0.0001 (i − 6)2 −51.38721 <0.0001

(i − 14)2 −46.86818 0.0578 (i − 15)2 120.69047 <0.0001

(i − 19)2 −45.76871 0.1566 (i − 20)2 205.64318 <0.0001

(i − 9)3 13.02938 <0.0001 (i − 6)3 −1.34485 <0.0001

(i − 14)3 −11.66866 <0.0001 (i − 15)3 −18.15278 <0.0001

(i − 19)3 −3.20285 <0.0001 (i − 20)3 4.97629 <0.0001

temp 13.81380 <0.0001 temp −0.70591 0.0145

T*i −2.73699 <0.0001 T*i −0.99218 <0.0001

T* i3 0.02435 <0.0001 T* i2 0.06113 0.0008

T* (i − 9)2 0.30996 0.0564 T* (i − 6)2 0.30423 <0.0001

T*(i − 14)2 1.08035 0.0008 T*(i − 15)2 −1.37326 <0.0001

T*(i − 19)2 1.11159 0.0059 T*(i − 20)2 −3.36051 <0.0001

T*(i − 9)3 −0.17592 <0.0001 T*(i − 6)3 −0.02131 <0.0001

T*(i − 14)3 0.11706 <0.0001 T*(i − 15)3 0.24565 <0.0001

Weekend −55.87929 <0.0001 Weekend −71.82423 <0.0001

RMSE 128.175 RMSE 97.147
Adj-R2 0.85 Adj-R2 0.717

AIC 428670.67 AIC 399798.26
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Abstract: Currently, in most countries, the electricity sector is liberalized, and electricity is traded in
deregulated electricity markets. In these markets, electricity demand is determined the day before
the physical delivery through (semi-)hourly concurrent auctions. Hence, accurate forecasts are
essential for efficient and effective management of power systems. The electricity demand and
prices, however, exhibit specific features, including non-constant mean and variance, calendar effects,
multiple periodicities, high volatility, jumps, and so on, which complicate the forecasting problem.
In this work, we compare different modeling techniques able to capture the specific dynamics of
the demand time series. To this end, the electricity demand time series is divided into two major
components: deterministic and stochastic. Both components are estimated using different regression
and time series methods with parametric and nonparametric estimation techniques. Specifically,
we use linear regression-based models (local polynomial regression models based on different types of
kernel functions; tri-cubic, Gaussian, and Epanechnikov), spline function-based models (smoothing
splines, regression splines), and traditional time series models (autoregressive moving average,
nonparametric autoregressive, and vector autoregressive). Within the deterministic part, special
attention is paid to the estimation of the yearly cycle as it was previously ignored by many authors.
This work considers electricity demand data from the Nordic electricity market for the period covering
1 January 2013–31 December 2016. To assess the one-day-ahead out-of-sample forecasting accuracy,
Mean Absolute Percentage Error (MAPE), Mean Absolute Error (MAE), and Root Mean Squared Error
(RMSE) are calculated. The results suggest that the proposed component-wise estimation method
is extremely effective at forecasting electricity demand. Further, vector autoregressive modeling
combined with spline function-based regression gives superior performance compared with the rest.

Keywords: Nordic electricity market; electricity demand; component estimation method; univariate
and multivariate time series analysis; modeling and forecasting

1. Introduction

Liberalization of the energy sector, changes in climate policies, and the upgrade of renewable
energy resources have completely changed the structure of the previous strictly-controlled energy
sector. Today, most energy markets have been liberalized and privatized with the purpose of gaining
consistent and inexpensive facilities for power trades. Within the energy sector, the liberalization
of the electricity market has also introduced new challenges. In particular, electricity demand and
price forecasting have become extremely important issues for producers, energy suppliers, system
operators, and other market participants. In many electricity markets, electricity demand is fixed a day
before the physical delivery by concurrent (semi-)hourly auctions. Further, electricity cannot be stored
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in an efficient manner, and the end-user demand must be satisfied instantaneously; thus, accurate
forecast for electricity demand is crucial for effective power system management [1,2].

The electricity demand forecast can be broadly divided into three time horizons: (a) short-term,
(b) medium-term, and (c) long-term load forecasting. Long-Term Load Forecast (LTLF) includes
horizons from a few months to several years ahead. LTLF is generally used for planning and investment
profitability analysis, determining upcoming sites, or acquiring fuel sources for production plants [3].
Medium-Term Load Forecast (MTLF) normally considers horizons from a few days to months ahead
and is usually preferred for risk management, balance sheet calculations, and derivatives pricing [4].
Finally, Short-Term Load Forecast (STLF) generally includes horizons from a few minutes up to a few
days ahead. In practice, the most attention in electricity load forecasting has been paid to STLF since it
is an essential tool for the daily market operations [5].

However, electricity demand forecasting is a difficult task due to the features demand time series
exhibit. These features include non-constant mean and variance, calendar effects, multiple periodicities,
high volatility, jumps, etc. For example, the yearly, weekly, and daily periodicities can be seen from
Figure 1. The weekly phase is comprised of comparatively lower variation in the data. The load curves
are comparatively different on different days of the week, and the demand varies throughout the
day. The demand is high on weekdays as compared to weekends. Moreover, electricity demand is
also affected by calendar effects (bank/bridging holidays) and by seasons. In general, the demand
is considerably lower during bank holidays and bridging holidays (a day among two non-working
days). From the figure, high volatility in electricity demand can also be observed in almost all load
periods. In addition, different environmental, geographical, and meteorological factors have a direct
effect on electricity demand. Further, as electricity is a secondary source of energy, which is retrieved
by converting prime energy sources like fossil fuels, natural gas, solar, wind power, etc. [6], the cost
related to each source is different. Thus, a consistent electricity supply mechanism for different levels
of demand with short periods of high and rather longer periods of moderate demand is necessary.

Figure 1. Yearly seasonality for the period 01-01-2012–31-12-2015 (top left), weekly periodicity
for the period 01-01-2013–14-01-2013 (top right), box plot of hourly electricity load for the period
01-01-2013–31-12-2016 (bottom right), daily load curves for the period 01-01-2013–31-01-2013,
weekdays (solid lines), Saturdays (dashed lines), Sundays (dotted lines), and bank holidays at the
bottom (solid) representing 1 January (bottom left).
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To account for the different features of the demand series, in the last two decades, researchers
suggested different methods and models to forecast electricity demand [7–11]. For example, the work
in [12] proposed a semi-parametric component-based model consisting of a non-parametric (smoothing
spline) and a parametric (autoregressive moving average model) component. Exponential smoothing
techniques are also widely used in forecasting electricity demand [13,14]. Multiple equations time series
models, e.g., the Double Seasonal Autoregressive Moving Average (DSARIMA) model, the Double
Holt–Winters (D-HW) model, and Multiple Equations Time Series (MET) approaches are also used
for short-term load forecasting [15,16]. Regression methods are easy to implement and have been
widely used for electricity demand forecasting in the past. For example, the work in [17] used
parametric regression models to forecast electricity demand for the Turkish electricity market.
Some authors included exogenous variables in the time series models to improve the forecasting
performance [18–20]. Several researchers compared the classical time series models and computational
intelligence models [21–23]. For example, the work in [24] compared the Seasonal Autoregressive
Moving Average (SARIMA) and Adaptive Network-based Fuzzy Inference System (ANFIS) models.
For short-term load forecasting, the work in [25] introduced a new hybrid model that combines
SARIMA and the Back Propagation Neural Network (BPNN) model. Some authors suggested the use
of functional data analysis to predict electricity demand [26–28]. The main idea behind this approach
is to consider the daily demand profile as a single functional object; thus, functional approaches can be
applied to electricity load series. Other approaches used for demand forecasting can be seen in [29–33].
Apart from the forecasting models, Distributed Energy Resources (DERs) that are directly connected
to a local distribution system and can be used for electricity producing or as controllable loads are
also discussed in the literature [34,35]. DERs include solar panels, combined heat and power plants,
electricity storage, small natural gas-fueled generators, and electric water heaters.

The main objective of this work is to compare different modeling techniques for electricity
demand forecasting. The main attention is paid to the yearly cycle, which in many cases is ignored.
The authors suggest to estimate jointly the effect of the long-term trend and yearly cycle using one
component [36,37]. In practice, however, the yearly component shows regular cycles, while the
long-term component highlights the trend structure of the data. Thus, these two components must
be modeled separately [26]. Further, in our case, some pilot analyses suggested that modeling
these two components separately can significantly improve the forecasting results. Thus, the main
contribution of this paper is the thorough investigation of the impact of yearly component estimation on
one-day-ahead out-of-sample electricity demand forecasting. Within the framework of the components
estimation method, we compare models in terms of forecasting ability considering both univariate and
multivariate, as well as parametric and non-parametric models. Moreover, for the considered models,
the significance analysis of the difference in predication accuracy is also conducted.

The rest of the article is organized as follows: Section 2 contains a description of the proposed
modeling framework and of the considered models. Section 3 provides an application of the proposed
modeling framework. Section 4 contains a summary and conclusions.

2. Component-Wise Estimation: General Modeling Framework

The main objective of this study is to forecast one-day-ahead electricity demand using different
forecasting models and methods. To this end, let log(Dt,j) be the series of the log demand for the tth

day and the jth hour. Following [28,33], the dynamics of the log demand, log(Dt,j), can be modeled as:

log
(

Dt,j
)
= Ft,j + Rt,j (1)

That is, the log(Dt,j) is divided into two major components: a deterministic component Ft,j and
a stochastic component Rt,j. The deterministic component, Ft,j, is comprised of the long-run trend,
annual, seasonal, and weekly cycles, and calendar effects and is modeled as:

Ft,j = lt,j + at,j + st,j + wt,j + bt,j (2)
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where lt,j represents the long-run (trend component), at,j represents the annual cycles, st,j represents
the seasonal cycles, wt,j is the weekly cycles, and bt,j represents the bank holidays. On the
other hand, Rt,j is a (residual) stochastic component that describes the short-run dependence of
demand series. Concerning the estimation of the deterministic component, apart from the yearly
component at,j, the remaining components are estimated using parametric regression. For the
estimation of at,j, six different methods including the sinusoidal function-based regression techniques,
three local polynomial regression models, and two regression spline function-based models are
used. All the components in Equation (2) are estimated using the back fitting algorithm. In the
case of stochastic component Rt,j, four different methods, namely the Autoregressive Model
(AR), the Non-Parametric Autoregressive model (NPAR), the Autoregressive Moving Average
Model (ARMA), and the Vector-Autoregressive model (VAR) are used. Combining the models for
deterministic and stochastic components estimations leads us to comparing twenty four (6F × 4R =)

24 different combinations. Note that in the case of univariate models, each load period is modeled
separately to account for the intra-daily periodicity [38].

2.1. Modeling the Deterministic Component

This section will explain the estimation of the deterministic component. The long-run (trend)
component lt,j, which is a function of time t, is estimated using Ordinary Least Squares (OLS).
Dummy variables are used for seasonal periodicities, weekly periodicities, and for bank holidays,

i.e., st =
4
∑

i=1
αi Ii,t, with Ii,t = 1 if t refers to the ith season of the year and zero otherwise,

wt =
7
∑

i=1
βi Ii,t, with Ii,t = 1 if t refers to the ith day of the week and zero otherwise, and bt =

2
∑

i=1
γIi,t,

with Ii,t = 1 if t refers to a bank holiday or zero otherwise. The coefficients α’s, β’s, and γ’s
are estimated by OLS. On the other hand, the annual component at,j, which is a function of the
series (1, 2, 3, . . . , 365, 1, 2, 3, . . . , 365, . . .), is estimated by six different methods that include Sinusoidal
function-based Regression (SR), local polynomial regression models with three different kernels,
namely: tri-cubic ((L1), Gaussian (L2), and Epanechnikov (L3), Regression Splines (RS), and Smoothing
Splines (SS).

2.1.1. Sinusoidal Function Regression Model

Sinusoidal function Regression (SR) is widely used in the literature to capture the periodicity of
a periodic component [39–44]. In this method, we consider that the annual cycle can be estimated
using q sine and cosine functions given as:

at =
q

∑
i=1

(α1,i sin wat + α2,i cos wat) , (3)

where w = 2π
365.25 . The unknown parameters α1,i and α2,i (i = 1, . . . , q) are estimated by OLS.

2.1.2. Local Polynomial Regression

Local polynomial regression is a flexible non-parametric technique that approximates at at a point
a0 by a low-order polynomial (say, q), fit using only points in some neighborhood of a0.

ât =
q

∑
j=1

α̂j(at − a0)
j. (4)
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Parameters α̂j are estimated by Weighted Least Squares (WLS) by minimizing:

N

∑
t=1

(at − ât)
2Kδ(a)(at − a0), (5)

where Kδ(a)(at − a0) is a weighting kernel function, which depends on the smoothing parameter δ,
also known as the bandwidth. It controls the size of the neighborhood around a0 [45] and, thus,
of the locality of the approximation. In this work, the value of the bandwidth is selected by using the
cross-validation technique. Three different weighting kernel functions, namely the tri-cubic kernel (L1),
the Epanechnikov (L2), and Gaussian kernels (L3) are used. It is worth mentioning that these types of
local kernel-based regression techniques have been extensively used in the literature [31,39,40,44,46].

2.1.3. Regression Spline Models

Spline Regression (RS) is a popular non-parametric regression technique, which approximates at

by means of piecewise polynomials of order p, estimated in the subintervals delimited by a sequence
of m points called knots. Any spline function Z(a) of order p can be described as a linear combination
of functions Zj(a) called basis functions and is expressed in the following way:

Z(a) =
m+p+1

∑
j=1

αjZj(a).

The unknown parameters αj are estimated by the OLS. The most important choice is the number
of knots and their location because they define the smoothness of the approximation. Again, we chose it
by the cross-validation approach. In the literature, many authors considered this approach for long-run
component prediction [11,12,26]. The annual cycle component for regression splines is estimated as,

ât = Ẑ(a)

2.1.4. Smoothing Splines

To overcome the requirement for fixing the number of knots, spline functions can alternatively
be estimated by using the penalized least squares condition to minimize the sum of squares. Hence,
the expression to minimize becomes:

N

∑
j=1

(at − Z(a))2 + λ
∫

(Z′′(a))2dt (6)

where (Z′′(a)) is the second derivative of Z(a). The first term accounts for the degree of fitting,
while the second one penalizes the roughness of the function through the smoothing parameter λ.
The selection of smoothing parameter is an important task, which in this work is done using the
cross-validation approach. Smoothing Splines (SS) have been previously used by some authors to
estimate the long-run dynamics of the series, e.g., [11,47,48].

To see the performance of all six models defined above for the estimation of the annual component
at,j, the observed log demand and the estimated annual components are depicted in Figure 2. From the
figure, we can see that all six models for at,j were capable of capturing the annual seasonality, as the
annual cycles can be seen clearly from the figure.

Finally, it is worth mentioning that one-day-ahead forecast for the deterministic component is
straightforward as the elements of Ft,j are deterministic functions of time or calendar conditions,
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which are known at any time. Once all these components are estimated, the residual (stochastic)
component Rt,j is obtained as:

Rt,j = log(Dt,j)− (l̂t,j + ât,j + ŝt,j + ŵt,j + b̂t,j) (7)
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Figure 2. Observed log(Dt,21) with superimposed estimated at,j using: (first row) Sinusoidal Regression
(SR) (left), Local regression (L1) (middle), L2 (right), and (second row) L3 (left), Regression Splines
(RS) (middle), and Smoothing Splines (SS) (right).

2.2. Modeling the Stochastic Component

Once the stochastic (residual) component is obtained, different types of parametric and
non-parametric time series models can be considered. In our case, from the univariate class, we consider
parametric AutoRegressive (AR), Non-Parametric AutoRegressive (NPAR), and Autoregressive
Moving Average (ARMA). On the other hand, the Vector AutoRegressive (VAR) model is used to
compare the performance of the multivariate model with the univariate models.

2.2.1. Autoregressive Model

A linear parametric Autoregressive (AR) model defines the short-run dynamics of Rt,j taking into
account a linear combination of the past r observations of Rt,j and is given by:

Rt,j = c + β1Rt−1,j + β2Rt−2,j + .... + βrRt−r,j + εt (8)
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where c is the intercept, βi (i = 1, 2, . . . , r) are the parameters of the AR(r) model, and εt is a white
noise process. In our case, the parameters are estimated using the maximum likelihood estimation
method. After some pilot analysis on different load periods, we concluded that the lags 1, 2, and 7
were significant in most cases and hence were used to estimate the model.

2.2.2. Non-Parametric Autoregressive Model

The additive non-parametric counterpart of AR is an additive model (NPAR), where the relation
between Rt,j, and its lagged values do not have a particular parametric form, allowing, potentially,
for any type of non-linearity and given by:

Rt,j = g1(Rt−1,j) + g2(Rt−2,j) + . . . + gr(Rt−r,j) + εt,j (9)

where gi are smoothing functions describing the relation between each past values and Rt,j. In our
case, functions gi are represented by cubic regression splines. As in the parametric case, we used the
lags 1, 2, and 7 to estimate NPAR. To avoid the so-called “curse of dimensionality”, we used the back
fitting algorithm to estimate the model [49].

2.2.3. Autoregressive Moving Average Model

The Autoregressive Moving Average (ARMA) model not only includes the lagged values of the
series, but also considers the past error terms in the model. In our case, the stochastic component
Rt,j is modeled as a linear combination of the past r observations, as well as the lagged error
terms. Mathematically,

Rt,j = c + β1Rt−1,j + β2Rt−2,j + .... + βrRt−r,j + εt,j + φ1εt−1,j + φ2εt−2,j + .... + φεt−s,j (10)

where c is the intercept, βi (i = 1, 2, . . . , r) and φj (j = 1, 2, . . . , s) are parameters of the AR and MA
components, respectively, and εt ∼ N (0, σ2

ε ). In this case, some pilot analyses suggest that the lags
1, 2, and 7 are significant for the AR part, while only the lag 1 for the MA part, thus a constrained
ARMA(7,1) where β3 = · · · = β6 = 0 is fitted to Rt,j using the maximum likelihood estimation method.

2.2.4. Vector Autoregressive Model

In the Vector Autoregressive (VAR) model, both the response and the predictors are vectors, and
hence, they contain information on the whole daily load profile. This allows one to account for possible
interdependence among demand levels at different load periods. In our context, the daily stochastic
component Rt is modeled as a linear combination of the past r observations of Rt, i.e.,

Rt = G1Rt−1 + G2Rt−2 + · · ·+ GrRt−r + εt (11)

where Rt = {Rt,1, . . . , Rt,24}, Gj (j = 1, 2, · · · , r) are coefficient matrices and εt = (εt,1, . . . , εt,24) is
a vector of the disturbance term, such that εt ∼ N (0, Σε). Estimation of the parameters is done using
the maximum likelihood estimation method.

Finally, once estimation of both, deterministic and stochastic, components is done, the final
day-ahead electricity demand forecast is obtained as:

D̂t+1,j = exp
(

l̂t+1,j + ât+1,j + ŝt+1,j + ŵt+1,j + b̂t+1,j + R̂t+1,j

)
= exp

(
F̂t+1,j + R̂t+1,j

)
(12)

For the stochastic component Rt,j and the final model error εt,j, examples of the Autocorrelation
Function (ACF) and Partial Autocorrelation Function (PACF) are plotted in Figure 3 and 4. Note that
in the case of εt,j, both ACF and PACF refer to the models when VAR is used as a stochastic model.
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The reason for plotting the residual obtained after applying the VAR model to Rt,j is the superior
forecasting performance of the multivariate model (see Table 1). Overall, the residuals εt,j of each
model have been whitened. In some cases, residuals still show some significant correlation, but with
an absolute value so small that it is useless for prediction.

Figure 3. ACF and Partial Autocorrelation Function (PACF) plots for Rt,21 (first row), ACF and PACF
plots for εt,21 obtained with L1-VAR (second row), L2-VAR (third row), and L3-VAR (fourth row).
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Figure 4. ACF and PACF plots for εt,21 obtained with SR-VAR (first row), RS-VAR (second row),
and SS-VAR (third row).

Table 1. Descriptive statistics for one-day-ahead out-of-sample forecasting: The column represents
the estimation of the yearly component through Sinusoidal Regression (SR), Local regression (L1),
Local regression (L2), Local regression (L3), Regression Spline (RS), and Smoothing Spline (SS). The row
represents the estimation of the stochastic component thorough Autoregressive (AR), Non-Parametric
Autoregressive (NPAR), Autoregressive Moving Average (ARMA), and Vector Autoregressive (VAR).

ERRORS MODELS SR L1 L2 L3 RS SS

MAPE

AR 2.503 2.466 2.413 2.412 2.411 2.412
NPAR 2.510 2.434 2.413 2.411 2.399 2.395
ARMA 2.514 2.435 2.413 2.418 2.405 2.396

VAR 2.143 2.109 1.997 1.995 1.994 1.995

MAE

AR 1081.184 1069.125 1044.341 1044.686 1044.177 1044.611
NPAR 1086.336 1056.392 1045.753 1046.899 1041.275 1039.804
ARMA 1084.869 1055.017 1048.107 1045.881 1042.705 1038.553

VAR 922.405 907.187 856.497 856.135 856.082 856.088

RMSE

AR 1486.580 1493.652 1450.551 1454.510 1450.676 1453.358
NPAR 1476.394 1450.813 1436.108 1439.677 1434.670 1433.172
ARMA 1468.908 1443.367 1431.686 1431.296 1427.437 1422.794

VAR 1219.608 1211.225 1146.302 1146.002 1145.979 1146.014
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3. Out-of-Sample Forecasting

This work considers the electricity demand data for the Nord Pool electricity market. The data
cover the period from 1 January 2013–31 December 2016 (35,064 hourly demand levels for 1461 days).
A few missing observations in the load series were replaced by averages of the neighboring
observations. The whole dataset was divided into two parts: 1 January 2013-31 December 2015
(26,280 data points, covering 1095 days) for model estimation and 1 January 2016–31 December 2016
(8784 data points, covering 366 days) for one-day-ahead out-of-sample forecasting.

In the first step, the deterministic component was estimated separately for each load period as
described in Section 2.1. An example of estimated deterministic components, as well as of Rt,j is
plotted in Figure 5. In the figure, along with the log demand at the top left, the long trend, yearly,
seasonal, and weekly components are plotted on top right, middle left, middle right, and bottom left,
respectively. Note that the elements of the deterministic components capture different dynamics of the
log demand. An example of the series Rt,21 is plotted at the bottom right in Figure 5. In the second
step, the previously-defined models for stochastic component were applied to the residual series Rt,j.
In both steps, models were estimated and one-day-ahead forecasts were obtained for 366 days using
the rolling window technique. Final demand forecasts were obtained using Equation (12).
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Figure 5. log(Dt,21) (top left), l̂t,21 (top right), ât,21 (middle left), ŝt,21 (middle right), ŵt,21 (bottom left),
and Rt,21 (bottom right).
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To evaluate the forecasting performance of the final models obtained from different combinations
of deterministic and stochastic components, three accuracy measures, namely Mean Absolute
Percentage Error (MAPE), Mean Absolute Error (MAE), and Root Mean Squared Error (RMSE) were
computed as:

MAPE = mean

(
|Dt,j − D̂t,j|

Dt,j

)
× 100

MAE = mean
(
|Dt,j − D̂t,j|

)
RMSE =

√
mean(Dt,j − D̂t,j)2 ,

where Dt,j and D̂t,j are the observed and the forecasted demand for the tth day (t = 1, 2, . . ., 366) and
the jth (j = 1, 2, . . . , 24) load period.

As within the deterministic component, this work used six different estimation methods for at,j,
whereas the estimation of other elements was the same; six different combinations were obtained.
On the other hand, four different models were used to model the stochastic component. Hence,
the estimation of both, deterministic and stochastic, components led us to compare twenty four
different models. For these twenty four models, one-day-ahead out-of-sample forecast results are listed
in Table 1. From the table, it is evident that the multivariate VAR model combined with any estimation
technique used for at,j led to a better forecast compared to the univariate models. The best forecasting
model was obtained by combining VAR and RS, which produced 1.994, 856.082, and 1145.979 for
MAPE, MAE, and RMSE, respectively. VAR combined with SS or with L3 produced the second best
results. Within the univariate models, NPAR combined with the spline-based regression models
performed better than the other two parametric counterparts. Finally, any stochastic model combined
with SR or with L1 led to the worst forecast in their respective classes (univariate and multivariate).
Considering only MAPE, a graphical representation of the results for the twenty four combination
is given in Figure 6. From the figure, we can easily see that multivariate models performed better
than the univariate models. To assess the significance of the difference among accuracy measures
listed in Table 1 for different combinations, we performed the Diebold and Mariano (DM) [50] test of
equal forecast accuracy. The DM test is a widely-used statistical test for comparing forecasts obtained
from different models. To understand it, consider two forecasts, ŷ1t and ŷ2t, that are available for
the time series yt for t = 1, . . . , T. The associated forecast errors are ε1t = yt − ŷ1t and ε2t = yt − ŷ2t.
Let the loss associated with forecast error {εit}2

i=1 by L(εit). For example, time t absolute loss would
be L(εit) = |εit|. The loss differential between Forecasts 1 and 2 for time t is then ηt = L(ε1t)− L(ε2t).
The null hypothesis of equal forecast accuracy for two forecast is E[ηt] = 0. The DM test requires that
the loss differential be covariance stationary, i.e.,

E[ηt] = μ, ∀ t

cov(ηt − ηt−τ) = γ(τ), ∀ t

var(ηt) = ση , 0 < ση < ∞

Under these assumptions, the DM test of equal forecast accuracy is:

DM =
η̄

σ̂η̄

d−→ N(0, 1)

where η̄ = 1
T ∑T

t=1 ηt is the sample mean loss differential and σ̂η̄ is a consistent standard error estimate
of ηt.

The results for the DM test are listed in Table 2 and Table 3. The elements of these tables are
p-values of the Diebold and Mariano test where the null hypothesis assumes no difference in the
accuracy of predictors in the column and row against the alternative hypothesis that the predictor in
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the column is more accurate than the predictor in the row. From Table 2, it is clear that the multivariate
VAR models outperform their univariate counterparts. When looking at the results of VAR using
different methods of estimation for at,j in Table 3, it can be seen that, except for SR-VAR and L1-VAR,
the remaining four combinations had the same predictive ability. In the case of SR-VAR and L1-VAR,
the remaining four combinations performed statistically better.
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Figure 6. One-day-ahead out-of-sample MAPE for electricity demand using SR, L1, L2, L3, RS, SS, AR,
NPAR, ARMA, and VAR.

Table 2. p-values for the Diebold and Mariano test. H0: the forecasting accuracy for the model in the
row and the model in the column is the same; H1: the forecasting accuracy of the model in the column
is greater than that of the model in the row.

MODELS RS-AR RS-NPAR RS-ARMA RS-VAR

RS-AR - 0.33 0.40 < 0.01
RS-NPAR 0.67 - 0.75 < 0.01
RS-ARMA 0.60 0.25 - < 0.01

RS-VAR 0.99 0.99 0.99 -
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Table 3. p-values for the Diebold and Mariano test. H0: the forecasting accuracy for the model in the
row and the model in the column is the same; H1: the forecasting accuracy of the model in the column
is greater than that of the model in the row.

Models SR-VAR L1-VAR L2-VAR L3-VAR RS-VAR SS-VAR

SR-VAR - .28 < 0.01 < 0.01 < 0.01 < 0.01
L1-VAR 0.72 - < 0.01 < 0.01 0.01 < 0.01
L2-VAR 0.99 0.99 - 0.93 0.85 0.83
L3-VAR 0.99 0.99 0.07 - 0.47 0.45
RS-VAR 0.99 0.99 0.15 0.53 - 0.48
SS-VAR 0.99 0.99 0.17 0.55 0.52 -

The day-specific MAPE, MAE, and RMSE are tabulated in Table 4. From this table, we can see
that day-specific MAPE was relatively higher on Monday and Sunday and smaller on other weekdays.
As the VAR model performed better previously, the day-specific MAPE values for this model were
considerably lower compared to univariate models, except on Wednesday, Thursday, and Friday.
For these three days, both the univariate and multivariate models produced lower errors. The same
findings can be seen by looking at day-specific MAE and day-specific RMSE. The day-specific MAPE
values are also depicted in Figure 7. The figure clearly indicates that the MAPE value was lower in the
middle of the week and was higher on Monday and Sunday.
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Figure 7. Day-specific MAPEs for all stochastic component models: AR, NPAR, ARMA, and VAR.
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Table 4. Electricity demand: hourly day-specific MAPE, MAE, and RMSE.

ERRORS MODELS Monday Tuesday Wednesday Thursday Friday Saturday Sunday

MAPE

AR 3.33 2.18 1.99 1.82 1.83 2.24 3.49
NPAR 3.46 2.14 1.96 1.79 1.83 2.26 3.35
ARMA 3.44 2.12 1.96 1.81 1.82 2.24 3.42

VAR 2.33 1.71 1.94 1.72 1.73 1.93 2.60

MAE

AR 1728.10 1002.69 755.78 633.24 634.54 905.95 1649.36
NPAR 1811.31 973.38 740.55 618.19 638.20 921.64 1585.79
ARMA 1798.48 969.16 743.45 626.00 631.97 912.87 1615.01

VAR 1225.76 799.34 739.52 592.69 601.85 791.00 1250.86

RMSE

AR 2194.77 1288.65 980.01 774.78 798.23 1176.36 2142.07
NPAR 2252.48 1253.27 950.24 764.92 795.33 1187.31 2038.49
ARMA 2232.41 1248.31 952.02 775.92 789.30 1181.01 2028.24

VAR 1601.44 999.26 963.13 733.99 747.15 981.53 1619.33

To conclude this section, the hourly RMSE and forecasted demand for the best four combinations
including one for each stochastic model is plotted in Figure 8. From the figure (left), note that hourly
RMSE are considerably lower at the low load periods, while they are high at peak load periods. Further,
note the best forecasting performance of the SR-VAR model compared to the competing stochastic
models. For these models, the observed and the forecasted demand are also plotted in Figure 8 (right).
The forecasted demand was following the actual demand very well, especially when VAR was used
as a stochastic model. Thus, we can conclude that the multivariate model VAR outperformed the
univariate counterparts.
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Figure 8. (left) Hourly RMSE for: RS-AR (solid), RS-NPAR (dashed), RS-ARMA (dotted), and RS-VAR
(dotted-dashed). (Right) Observed demand (solid) and forecasted demand for: RS-AR (dashed),
RS-NPAR (dotted), RS-ARMA (dotted-dashed), and RS-VAR (long dash).

4. Conclusions

The main aim of this work was to model and forecast electricity demand using the component
estimation method. For this purpose, the log demand was divided into two components: deterministic
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and stochastic. The elements of the deterministic component consisted of a long trend, multiple
periodicities due to annual, seasonal, and weekly regular cycles, and bank holidays. Special attention
was paid to the estimation of the yearly seasonality as it was previously ignored by many
authors. The estimation of yearly components was based on six different estimation methods,
whereas other elements of the deterministic component were estimated using ordinary least squares.
In particular, for the estimation of annual periodicity, this work used the sinusoidal function-based
model (SR), the local polynomial regression models with three different kernels: tri-cubic (L1),
Gaussian (L2), and Epanechnikov (L3), Regression Splines (RS), and Smoothing Splines (SS). For the
stochastic component, we used four univariate and multivariate models, namely the Autoregressive
Model (AR), the Non-Parametric Autoregressive Model (NPAR), the Autoregressive Moving Average
model (ARMA), and the Vector Autoregressive model (VAR). The estimation of both, deterministic
and stochastic, components led us to compare twenty four different combinations of these models.
To see the predictive performance of different models, demand data from the Nord Pool electricity
market were used, and one-day-ahead out-of-sample forecasts were obtained for a complete year.
The forecasting accuracy of the models was assessed through the MAPE, MAE, and RMSE. To assess
the significance of the differences in the predictive performance of the models, the Diebold and
Mariano test was performed. Results suggested that the component-wise estimation method was
extremely effective for modeling and forecasting electricity demand. The best results were produced by
combining RS and the VAR model, which led to the lowest error values. Further, all the combinations
of the multivariate model VAR completely outperformed the univariate counterparts, suggesting the
superiority of multivariate models. Within the combination of VAR, however, the results were not
statistically different for all models.
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Abstract: Electricity demand forecasting has been a real challenge for power system scheduling in
different levels of energy sectors. Various computational intelligence techniques and methodologies
have been employed in the electricity market for short-term load forecasting, although scant evidence
is available about the feasibility of these methods considering the type of data and other potential
factors. This work introduces several scientific, technical rationales behind short-term load forecasting
methodologies based on works of previous researchers in the energy field. Fundamental benefits and
drawbacks of these methods are discussed to represent the efficiency of each approach in various
circumstances. Finally, a hybrid strategy is proposed.

Keywords: short-term load forecasting; demand-side management; pattern similarity; hierarchical
short-term load forecasting; feature selection; weather station selection

1. Introduction

Short-Term load forecasting (STLF) is an integral part of the energy planning sector. Designing
a time-ahead power market requires demand-scheduling for various energy divisions, namely,
generation, transmission, and distribution. STLF helps power system operators with various
decision-making in the power system, including supply planning, generation reserve, system security,
dispatching scheduling, demand-side management, financial planning, and so forth. While STLF is
particularly essential for the time-ahead power market operation, inaccurate demand forecasting will
cost the utility a tremendous financial burden [1].

Traditionally, engineering approaches were employed to predict the future demand manually
with the help of charts and tables. These traditional methods mainly considered weather impacts as
well as calendar effects. Nowadays, these features are still determined for developing load models
with novel methods [2].

With the advent of statistical software packages and artificial intelligence techniques, several
outstanding pieces of research are devoted to statistical [3] and computational intelligence (CI)
approaches [4] to model the future load. Some examples of statistical regression-based STLF
approaches in the literature, including auto-regressive moving average (ARMA) [5,6], auto-regressive
integrated moving average (ARIMA) [7], and seasonal ARIMA (SARMIA) [8]. Artificial neural network
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(ANN) [4], support vector machine (SVM) [9], fuzzy logic [10], etc., are considered prevailing CI-based
forecasting techniques.

CI-based load models, regardless of underlying computational algorithms, can be further categorized
into several methodological outlines. Correspondingly, it must be acknowledged that different forecasting
techniques cannot be interpreted as different methodological approaches. A method is defined as a
structured procedural solution designed for specific cases of forecasting practices; while a technique refers
to a certain model that can be categorized with all other similar models in one technical category such as
regression or neural network techniques. For example, Fan & Hyndman [11] and Mandal et al. [12] both
applied ANN architecture to develop a 24-hour ahead load model whereas different methodological
approaches were considered in each of these papers. In [11], a stepwise method, which locates the
lowest error in the model, is applied for selecting the optimal subset of variables including the historical
load and meteorological variables. However, in [12], only daily load profiles similar to day-ahead load
recognized by a similarity index (similar day type and similar weather) are fed into the engine. The
solution is not always narrowed down to the technique that the forecasters use. Instead, the strategy
to implement those techniques is important as well.

Generally, both methods and techniques are important when it comes to accurate estimation.
However, limited literature is available for STLF methodologies. Most surveys in the literature are
devoted to the investigation of different STLF techniques [13–16]. For example, Mogharm et al. [14]
investigated STLF techniques by classifying them into two categories of statistical approaches and
CI-based techniques. Hippert et al. [13] reviewed ANN-based STLF. Although these surveys addressed
most applicable STLF techniques, this still might be unclear for young researchers to understand the
merits behind developing any specific load model.

This paper explains the main framework of state-of-the-art methodologies applied for the CI-based
STLF via examples of several case studies. A comprehensive overview of technical and computational
difficulties for STLF is presented as well as the proposed strategies by various researchers to unravel
them. These strategies are categorized into four main groups based on their identical topologies. The
robustness of each method to deal with different type of load data is identified.

The rest of the paper is organized as follows. Section 2 presents a general overview of four
principal methodologies, followed by four subsections wherein details of each method are fully
described. Section 3 discusses the main advantages and disadvantages of STLF methods. Moreover, in
Section 3, advantages of hybrid methods are highlighted, and a hybrid method is proposed. Finally,
the concluding remarks are drawn in the last section.

2. STLF Methodologies

Load forecasting can be conducted by various methodologies. The selection of a forecasting
method relies on several factors including the relevance and availability of historical data, the forecast
horizon, the level of accuracy for weather data, desired prediction accuracy, and so forth. Accordingly,
selecting the proper load forecasting approach primarily depends on the time horizon of the prediction.

Different time horizons are adopted for load forecasting based on their specific applications in
power system planning. For instance, the distribution and transmission planning are involved with
STLF, while for longer durations, i.e., more than a year up to a few decades, the load prediction
provides a decision platform for financial or power supply planning. Likewise, the required level of
accuracy in these time horizons are not equal, as the decisions in the long-term are preliminary and
may need significant changes in subsequent planning stages due to very uncertain input information
while a short-term forecast provides information to the day-ahead market, which requires a high-level
of accuracy. Moreover, different kinds of predictor variables are considered for each horizon of the
forecast. For example, a long-term load forecasting takes into account population variations, economic
development, industrial construction, and technology development whereas a short-term forecast
mainly considers calendar variables, weather data, and customers’ behaviors [17].
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Generally, both time categories of load forecasts are important for power system operation and
development especially by the integration of distributed generators into the grid, which adds further
intermittency and vulnerability in power provision. This study exclusively investigates the STLF
approaches by reviewing original papers in this field. Even though some of the artificial intelligence
(AI) techniques that are used for STLF might be also applicable for long-term load forecasting, on a
methodological foundation, they are not comparable due to the aforementioned reasons.

Hong and Fan [2] identified four general categories of STLF methodologies, which can be applied
to several techniques to solve the STLF problem. The four categories, i.e., similar day, variable selection,
hierarchical forecasting, and weather station selection are specified based on different realizations of
forecast problem. For example, similar-day method determines the load data as a sequence of various
similar daily load profiles, while variable selection method presumes that the load data behaves like
a series of variables either correlated or independent from each other. Hierarchical method, on the
other hand, considers the data as an aggregated load, which is highly varying by changes in the load
at lower levels of the hierarchy. Finally, weather station selection is a method, which determines the
best-fitted weather data into the load model.

Hong and Fan outlined these general methodological approaches in a review [2], describing two
or three examples of each, while an extensive literature of STLF has not been assessed accordingly.
More investigation of the adopted STLF methodologies in the literature reveals that there are some
novel approaches that could further be subcategorized into the four root categories. For example,
the classic similar-day method, which distinguished the similarity between daily load profiles by
assigning the day type index, was later developed as similar-pattern method, in which similar load
profiles are extracted by using either a minimization algorithm or clustering techniques. Other novel
approaches, such as pattern-sequence and sequence learning, are also recognized to be in the category
of similar-pattern method, if their algorithms try to find or learn similar sequences of patterns within
the dataset.

Moreover, the majority of STLF researchers chose the variable selection method, while different
algorithms were employed for selecting prominent features of candidate variables. This research
distinguished five state-of-the-art feature selection approaches for STLF. These approaches are
specifically important to create the optimal subseries of data and leading to more accurate results.

Another category of STLF methodologies is assigned to hierarchical short-term load forecasting
(HSTLF), which has been limitedly addressed in the literature. HSTLF methodology addresses
forecasting at several levels of aggregate data. Although at each aggregate level, other methodologies,
i.e., similar pattern and variable selection are used for individual predictions, the novelty of HSTLF is
related to the applied combination method. Thus, four approaches are identified for HSTLF while each
one proposes a different strategy. The classical top-down and bottom-up approaches are two common
algorithms for hierarchical forecasting, with the latter aggregating the data and the former aggregating
the forecast. Yet, recent approaches for hierarchical forecasting, i.e., weighted combination and
ensemble model try to capture the model at each aggregate level individually and find the correlation
between the individual models at different levels of the hierarchies. Despite limited literature, HSTLF
lately received more attention by distribution and transmission operators for power system control
and planning. It takes into account recent advances in communication infrastructures for remote
measurement and automated metering, which enables operators with high granular data at user ends.
Thus, the most recent challenges of HSTLF methodology is highlighted in this study to help young
researchers find the competing research direction in this field.

By drawing attention towards HSTLF, a question might come to minds that by aggregating the
data, what happens to other exogenous variables such as meteorological variables, as they cannot be
aggregated. This challenge was raised for the first time by Hong and Pinson [18] and a competition
was launched to address this question. Results of this competition are further discussed in this paper
to draw a conclusion.
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Figure 1 shows the tree diagram of these four forecasting methods. As can be seen, each method
can be carried out via multiple strategies. For example, there are various approaches to predict a
hierarchical structure including bottom-up, top-down, ensemble, and weighted combination. A full
description of these four recognized categories of STLF methodologies is presented in the following
subsections with examples of several case studies.

 

Figure 1. Tree diagram of the STLF methods.

2.1. Similar-Pattern Method

Similarity-based methods are generalized forms of minimum distance approaches applied in
machine learning and pattern recognition. These methods have also been used for STLF by finding
similar demand patterns within the data set and predicting the future load using interpolation or
weighting [19]. There are different strategies for finding similar load profiles; in the simplest case, it
can be achieved by assigning a similarity index to the type-of-the-day in the calendar or meteorological
factors. Similar patterns will then be achieved by searching between those days with similar indexes.
Searching space is generally within a close neighborhood, although sometimes annual lagged data is
also determined. For example, Dudek et al. [20] developed a similarity-based forecasting model by
using the similarity between seasonal patterns of a load time series based on the calendar-lagged load
data. The search space in [20] was limited to the nearest neighbor of the forecast day as well as the
nearest neighbor of the same calendar day in the previous year. In fact, assigning the day-of-the-year
index besides the weekday index is essential to avoid seasonal variations. A typical search space for
similar-day method is illustrated in Figure 2.

Figure 2. Limitation of search space for similar days.
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Figure 3 illustrates the methodology applied by Dudek et al. [20]. In the first step, days similar to
the forecast day with similar weekday and day-of-the-year indices are extracted from the load time
series (first series). Thereupon, a sequence of days following these similar days (second series) is
created. In the second step, days with similar patterns within the first series (similar-day series) are
chosen by a selection strategy, and those followed by these newly selected days within the second
series (sequence series). The outcome of the third step is a regression model of load data extracted
from the sequence series. Eventually, the load of the next day in the original time series is forecasted
by decoding the final model.

Figure 3. Similar day-based prediction algorithm developed by Dedek et al. [20].

Besides the calendar index as the similarity indicator, other characteristics such as weather
similarities can be considered as well. For instance, Ying Chen et al. [21] proposed a similar-day
selection method based on the weather similarity of the forecast day. In their proposed method, which
was designed to forecast the load in a short-term period (two working days excluding the weekend)
by hourly resolution, the search for the similar days was limited to days with the same weekday and
weather indices to the forecast day. Days with similar weather condition were selected based on a
minimization process, while the meteorological condition was defined by wind chill, temperature,
humidity, wind speed, and cloud cover variables. In addition, the same index was assigned for some
of the weekdays with similar load pattern. It has also been shown that relying only on similar days’
data without establishing the initial status of tomorrow’s demand leads to an inaccurate forecast result.
Thus, the 24-hour today’s load has been fed as an input to the forecasting engine. Figure 4 illustrates
the schematic diagram of similar-day method developed in [21].

As already mentioned, the selection of similar load profiles between days with similar indexes
(weekday, the day-of-the-year and weather indexes) can be made by a distance minimization technique.
Some works in the literature applied Euclidean norm to measure the match level between similar
days [12,21,22]. As listed in Table 1, Chen et al. [21] used the Euclidean norm to evaluate the weather
similarity between the forecast day and previous days. Senjyu et al. [22] also applied a weighted
Euclidian to investigate the similarity of load patterns using load deviations between forecast day
and historical days, weather deviation, and the slope of load deviations. The assigned weights (w) in
Equation (2) is determined based on a regression model using the trend of load and temperature.
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Figure 4. Schematic diagram of similar-day method developed by Chen et al. [21].

Table 1. Distance minimization technique for similarity measurement.

Paper Method Formulae Parameters

[21] Euclidean distance minimization min
i

∑24
t=1

(
w(t) f − w(t)i

)
, i ∈ θ (1)

θ: historical days
f : forecast day

i: historical day in θ
w: weather factor under consideration

[12,22] Weighted Euclidean distance
minimization

min
t

√
w1(ΔLt)

2 + w2(ΔLs)
2 + w3(ΔTt)

2

(2)

ΔLt : deviation of load of forecast day and
historical day ΔLs : deviation of slope

between load on forecast day and load of
historical day

ΔTt : deviation of temperature between
forecast day and historical day

wn : Weight factor

Dynamic time warping (DTW) is another method to measure the similarity for those time series
with similar values not exactly at the same time point. Using DTW method might end up finding
several similar patterns of load profiles within the dataset. Teeraratkul et al. [23] indicated that by
using DTW method, the number of groups for similar profiles reduced by 50%.

More recently, clustering algorithms are used to find similar sequence of load patterns within the
dataset [24,25]. These clustering techniques are used to group data into a specific number of categories
of daily load patterns, which were termed pattern-sequence-based STLF method. Under this method,
a label indexes the load for each day in the dataset. Consequently, a sequence of labels is created in the
dataset. Alvarez et al. [26] applied K-means clustering technique to create different clusters of load
patterns and extracted a sequence of labels from the dataset as a pattern to search and predict the next
day’s load. A schematic diagram of pattern-sequence-based forecasting method is depicted in Figure 5.
According to Figure 5, all weekdays in a dataset are labeled by using a clustering method. To predict
the next day’s load, a window of a sequence of labels before the forecast day is selected. By using this
window, similar sequence of labels is searched within the dataset. Eventually, the load of the target
day can be predicted by averaging the next day’s load of the discovered sequences.

The prevalence of smart meters in a smart grid facilitated market planners with fine-grained
data in hourly and sub-hourly resolution. Load profiles at the customer-end provide sophisticated
information about the type of customers and their consumption behaviors. Quilumba et al. [27] used
a clustering technique to group smart meter customers according to their similar energy pattern
consumption. Temperature information was interpolated between neighbor values to become as
granular as the smart data.
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Figure 5. Schematic diagram of pattern sequence-based forecasting method [26].

Clustering methods can distinguish similar sequences within a dataset as discussed earlier;
however, they cannot differentiate among the main features of these patterns. More recently, adding
memory to the structure of learning engines such as recurrent neural network and deep learning,
outweighed this drawback.

Liu et al. [28] considered sequence learning approach for developing a load model by using
recurrent neural network structure (RNN). Kong et al. [29] recommended that long short-term memory
of RNN was a powerful engine to learn the look back sequences due to its memory cells, remember
important features, and forget gates to reset the cells for redundant features. Shi et al. [30] applied deep
RNN to map the sequence of input data into the corresponding output sequence. Zheng et al. [31]
proposed a hybrid method, by applying a clustering technique to capture similar days within a dataset,
and then used the sequence-to-sequence structure of the long short-term memory structure to adjust the
length of the input and output sequences. A sequence-to-sequence structure was primarily designed
to map sequences with different length [32,33]. Marino et al. [33] suggested that the main advantage of
the sequence-to-sequence structure was related to its ability to predict an arbitrary number of future
time steps having an arbitrary length of an input sequence. Satish et al. [34] investigated the optimum
learning sequence for the training stage. Results indicated that the number of patterns in a sequence
affected the accuracy of the model.

Table 2 lists some highly cited publications in which similar-pattern method was applied for
load prediction. These publications are categorized based on three common techniques, namely,
“similar-day”, “pattern-sequence”, and “sequence learning”.

In general, pattern similarity method is an efficient approach to capture repeated patterns of the
load series in the short term. The overall pattern of a system is rarely changing in the short term;
however, in longer periods, some significant deviations might lessen the similarity of future load to
past load.
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Table 2. Published articles employing similar-pattern method.

Method Publications Technique

Similar-Pattern Method
[12,20–23,35,36] similar day

[24–27,37–41] pattern-sequence

[28–34] sequence learning

2.2. Variable Selection Method

Variable selection is the process of selecting the most influential variables or features (predictor
variables) within the dataset while they can adequately capture the relationship between the available
data and the output. Despite time series forecasting relies only on past data, variable selection method
determines external variables besides historical load in order to embed into the model [42]. Some
of these external variables, which are termed explanatory variables to explain the reason of load
fluctuations, are calendar variables (time of the day, day of the week, month of the year, and day of the
year etc.), meteorological variables (temperature, humidity, cloud cover, wind chill, solar radiation etc.)
and so forth [43].

Several studies also considered the lagged load data into their model [44,45]. The lagged variables
determine the recency effect by incorporating alteration of demand level throughout load time series
into the model. For example, Ceperic et al. [44] proposed a feature selection algorithm to select the
optimum number of lagged loads in order to embed the sequential correlation of load variables into
the model. Another example is the work of Fan and Hyndman [11], which considered the following
variables as candidate predictors: the lagged load demand for each of the preceding 12 hours, lagged
values for the same hours of the two previous days, maximum and minimum load values in the past
24 hours, and the average load in the preceding week. Consequently, a selection algorithm was applied
to choose between potential variables and create a subset of optimal predictor variables.

Besides the lagged demand, some studies embedded lagged temperatures as input variables.
The electricity demand is remarkably impacted by the recent temperature as well as the current
temperature. That is why in the forecasting model developed by Fan and Hyndman [11], besides the
lagged demand, the current and 12-hour lagged temperature for the preceding day and the former two
days were involved in the model. However, the main concern about weather variables was its level of
validation, which depends partly on the weather station selection. It is discussed more in Section 2.4.

By nominating multiple input variables and considering a large amount of available data for
every variable, the predictor engine might not be able to converge to an accurate predictive model.
Therefore, an effective subset of the data with the optimal number of predictor variables will help
the forecast accuracy [46]. An efficient predictor variable is highly explanatory and independent of
other variables. The aim is to select the optimal subset of predictor variables with fewer numbers,
which suitably describes the characteristics of the output variable. Optimal input subset favors model
accuracy as well as cost efficiency and model interpretability [47].

In the literature, researchers employed different methods and techniques to select explanatory
variables optimally.

One of the methods used for variable selection is the stepwise refinement which is a step by
step approach for input selection. In this method, the primary model is a full model consisting of all
measured variables. Hence, based on the predictive capability of individual variables, redundant terms
from the model are omitted. The retained variables consequently lead to the best model. One example
is the work of Fan and Hyndman [11], who carried out a step by step variable selection method to
extract the best-suited model. The nominated inputs were the calendar variables, actual demand and
lagged demand (from the National Electricity Market of Australia-NEM), and forecasted temperature
data from more than one site in the target area. Assuming the selection of temperature differentials, in
the first step, the temperature differentials form the same period of the last six days were dropped
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one at a time, and the one leading to the lowest error was selected. Consequently, in the next step, the
temperature variable was frozen to only the selected day from the previous step, and temperatures of
the last six hours were considered for the trial. This procedure was continued until the final group of
variables was selected.

Nedellec et al. [48] followed the same strategy of stepwise refinement for variable selection as
well, but in a three-step procedure while the variables in each stage were selected based on the scale
of forecast. In a long-term module, monthly load and temperature time series for every region and
weather station were selected to extract long-term trend and low-frequency effects. The residual of
the first stage with no seasonality and weather effects were considered for a medium-term estimation.
Variables such as a type-of-the-day, type-of-the-year, de-trended electrical load, real temperature, and
lagged temperature were predictor variables in this medium-term model. In a short-term stage, more
localized factors, which remained from previous stages, were captured by selecting variables such as
year, month, day, hour, time-of-the-year, and day type as well as real and smoothed weather variables.
This stepwise algorithm is illustrated in Figure 6 for better understanding. As can be seen, the final
forecasted load is an additive model of three components.

Figure 6. Stepwise algorithm for STLF [48].

Xiao et al. [49] also developed an ensemble load model by applying a group of STLF techniques to
capture the trend of the load series. Consequently, the highly nonlinear characteristics of the residual
subseries were modeled by using various data handling techniques.

Moreover, there are other approaches to identify the maximum relevance between different
variables. Correlation-based methods use a heuristic algorithm to find a subset of variables, which
are highly correlated with the output but are not correlated with each other [50]. Chen et al. [9] used
correlation method to measure the dependency of the peak demand to temperature. Kouhi et al. [51]
developed a correlation-based feature selection method to reduce chaotic structure of load time series
and selected highly relevant variables within this reconstructed space. Amjady et al. [3] used a
correlation approach to create a subseries of load data to develop a hybrid forecast model.

Mutual information (MI) is an information theoretic-based approach to measure the interdependency
between two random variables. If MI is zero, two variables are independent and contain no mutual
information about each other. Higher MI values indicate higher relevance with more information about
the target feature [52]. Wang et al. [53] used MI method to obtain initial weights of the developed
ANN-based load forecast model. Elattar et al. [54] reconstructed a load time series by embedding
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dimension and time delay computed by MI approach. Young-Min Wi et al. [55] adopted MI method to
evaluate mutual information between dominant weather features and loads at different seasons.

Moreover, filtering methods can be applied to data to find the correlation among variables
independent of any learning machine. Filter-based feature selection algorithms use general
characteristics of the training data, i.e., statistical dependencies to select highly ranked features by
applying a threshold for the number of features [56]. Reis et al. [57] applied wavelet filter to reconstruct
a subseries of data after selecting input variables by using autocorrelation function. Amjady et al. [58]
proposed a hybrid load prediction algorithm, in which a filter-based technique was selected for
a minimum subset of inputs. Zhongyi Hu et al. [59] proposed a hybrid filter method for feature
selection procedure.

More recently, developing bio-inspired optimization tools as well as evolutionary optimization
algorithms led to improvement of CI-based feature selection techniques for STLF. Some examples
of developed optimization algorithms for feature selection in the literature include ant colony [60],
particle swarm [61,62], differential evolution [63], hybrid genetic and a colony [64] and so forth.

Some of the highly cited publications for STLF, which are categorized based on the applied feature
selection techniques, are listed in Table 3.

Table 3. List of publications employing different feature selection techniques.

Publication Technique

[11,48,49] Stepwise

[57,58] Filter

[3,9,47,51,65,66] Correlation

[47,53–55,67] Mutual Information

[60–64,68,69] Optimization Algorithms

Selecting proper variables is sometimes time-dependent, while variables have significant impacts
on load behavior of several hours and subtle effects on loads of other hours during a 24-hour period.
Thus, a suitable architecture for a forecasting engine can provide a simpler model to decrease the
number of redundant data [70]. A general idea is that instead of creating one subseries of data, different
subsets of variables can be created for each category of time, while data in each category is affected by
the same variables. For example, Khotanzad et al. [71] proposed two different parallel architectures for
load forecasting. The first design, as illustrated in Figure 7, was a three-module structure to model
hourly, daily, and weekly trends. In their developed architecture for prediction of the hourly load of
the next day, each of three modules would be trained by 24 ANN engines. Each of them represented
an hour of a day. The second architecture divides 24 hours into four categories, i.e., 1–9, 10–14 and
19–22, 15–18, and 23–24 while different input variables are determined for each group of hourly loads,
as depicted in Figure 7.

Some other papers in the literature also applied the so-called parallel architecture for
24-hour-ahead load forecasting [44,72]. The reasons for using this design are smaller number of
training data for each module with omitted parameters for each hour of the day, and a simpler model
for each hour of the day, compared to a general model for all 24 hours.

In overall, developing an explanatory model via variable selection method is appropriate when
forecasters have fundamental knowledge about the system. To forecast the variable of interest, one
needs to identify different exogenous variables. Generally, there are no rules implied for the selection
of input variables. The forecaster’s experiences in analyzing the type of data from a specific market
as well as a preliminary testing might help to select a proper group of variables. Thus, professional
judgment is undoubtedly part of the process.

96



Energies 2019, 12, 393

Hourly 
Module 

Daily 
Module 

Weekly 
Module 

Adaptive 
Combiner 

Hour 1 Early Morning 
Hours 

Mid-Morning & 
Early Afternoon & 
Early Night Hours 

Afternoon Peak 
Hours  

Late Night Hours 

Load of Hours 1-9

Load of Hours 10-14
&

Hours 19-22

Load of Hours 15-18

Load of Hours 23-24

25 
Inputs 

21 
 Inputs 

9 
Inputs 

72
 Inputs 

72 
Inputs 

Load of
 Hours 1

Load of 
Hours 2

Load of 
Hours 24

Second Architecture First  Architecture 

Adaptive 
Combiner 

Hour 2 

Adaptive 
Combiner 
Hour 24 

25 
Inputs 

19 
Inputs 

Figure 7. Parallel architecture for 24-hour ahead forecasting proposed in [71].

2.3. Hierarchical Forecasting

Previous methods presume load data as single time series, while these time series can be inherently
disaggregated by different attributes of interest [42]. Load time series naturally are organized based on
different hierarchies such as geographic, temporal, circuit connection, and revenue. Figure 8 depicts a
typical hierarchical structure of a time series divided into aggregate and disaggregate levels.

 
Figure 8. Schematic diagram of hierarchical structure of a load time series.

An example of hierarchical load structure can be found in a study conducted by Zhang et al. [73].
The load data was recorded consumption of three hundred smart meter customers of a subsection in
Australian utility within three years. The customers were clustered into 30 nodes according to their
postcodes. These 30 nodes were grouped into three nodes. Besides, these three nodes were summed
up at the final level to an aggregated time series. In the distribution level, however, the hierarchical
levels were specified as load of substations, feeders, transformers and, customers [74].

Recently, there has been a prevailing attention to HSTLF due to market considerations for
decision-making in different levels of the power system including independent system operator,
distribution operator, and customer-end. Utilities require load forecasting at low voltage levels to
effectively perform distribution operation such as circuit switching and load control. An accurate load
forecasting at low level could even increase the prediction accuracy at independent system operator
level [75]. In fact, the independent system operator in the upper level in a power system covered a
large geographical area, with extensive load diversities throughout the area. Hence, a single model
was not able to guarantee the prediction accuracy.

97



Energies 2019, 12, 393

The state-of-the-art HSTLF methods to address hierarchical load structure are sub-grouped into
bottom-up and top-down approaches [27,76]. The bottom-up approach aggregates forecasts from low
level to aggregated level, while the top-down method aggregates historical load prior to forecasting.
The former approach does not miss out any information due to the aggregation, although high volatility
of bottom level is challenging for prediction [77]. The top-down method, on the other hand, is simpler
for less noisiness due to the aggregation. However, some features of the individual series are lost [42].
For instance, Quilumba et al. [27] used the bottom-up approach for forecasting load of the customers
disaggregated by similar consumption patterns.

Some of the advantages and disadvantages of bottom-up and top-down approaches were
highlighted by Hyndman et al. [78] who referenced early works in the literature. Generally, the
bottom-up approach was robust when the data in bottom level was reliable without missing
information. Otherwise, the forecast at a low level was error-prone and the top-down approach
resulted in a more accurate forecast. Overall, the superiority of a method over another was not uniform.

HSTLF can also be conducted at all levels of hierarchies individually, which is termed “base
forecast”. However, the challenge here is that the prediction at aggregated level might not be consistent
with the summed base forecasts [79].

Zhang et al. [73] proposed a solution to optimally adjust base forecast at each node in order to be
consistent across the aggregation structure. This goal was accomplished by minimizing the redundancy
between the forecast at the aggregated level and the sum of the base forecasts, by using quadratic
programming in a post-processing scheme. The method was tested on two electricity networks; one
bulk system of a large area with several dispatch zones at the bottom level, and the other was a
distribution network covering a small area with hundreds of individual customers. Results indicate
that for more than 85% of nodes in the bulk network, the proposed method was more accurate. For
distribution network with more volatile load, the improvement was more obvious, especially at upper
aggregated level where the error was significantly decreased. Nose-Filho et al. [80] also developed a
load model for a sub-distribution system in New Zealand by finding participation factors between
local forecasts and global forecast.

Another example is the study by Fan et al. [81], who proposed a strategy to forecast load of
sub-regions within a large geographical area independently by finding the optimal region partition
in the combination procedure. It was reported in [81] that the weather condition was a dominant
factor for load variations and therefore, in a large geographical region, the extreme weather condition
throughout the area caused high load diversity. Another factor that rendered regional load profiles
vastly different was identified in [81] as non-coincident load peaks.

Sun et al. [74] proposed a strategy to predict loads of different nodes in a power distribution system
by a top-down approach. Firstly, loads of parent nodes were forecasted. Subsequently, by finding the
similarity between the parent node (aggregated level) and its child nodes (correspondent disaggregated
levels), two classes of regular and irregular nodes were identified. Thus, for regular nodes, the load is
a fraction of the origin load computed by a distribution factor. For those irregular loads, which did not
follow leading characteristics of the parent node, individual models were forecasted. The similarity
between nodes was identified by using distance minimization method for both weather parameter
and historical load.

More recently, with the dominance of smart meters, fine-grained data at sub-levels revealed more
information at the aggregate level. Wang et al. [82] used granular smart meter data to construct a
forecast model at an aggregated level. In their proposed model, data was clustered into different
groups of loads with similar patterns, and the aggregated forecast was obtained by adding the forecast
of individual clusters. However, instead of the bottom-up strategy, a weight was assigned to each
model while varying the number of clusters. The final forecast was an optimally weighted combination
of these individual forecasts. Their proposed method was implemented on a data set consisting of 5237
residential consumers’ information with half-hourly resolution for 75-week duration. It was shown
that results of the direct aggregated load were more accurate than the clustering strategy although
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their proposed methodology outweighed the conventional bottom-up method. Besides this data set,
the method was tested on 155 substations’ load data for a 103-week duration. In contrast to the first
data set, the outcomes of the forecast on the second dataset indicated that the bottom-up model was
more accurate than other individual clustering models. It was concluded that this contrast was due to
regularity in substation load in comparison to residential load profiles.

Table 4 illustrates two combination methods, which were applied to sum up base forecasts
for maintaining its coherence with the aggregated forecast. Both of these methods minimized
the error between the summed up base forecasts and aggregated forecast, either by linear [82]
or quadratic [73] programming. Other combination methods were discussed in [83] with further
theoretical explanations. This is suggested that new HSTLF methods might be expressed by selecting
an appropriate combination algorithm.

Table 4. Combination methods for base forecasts.

Combination Method Formulae Parameters

Linear Programming
w = arg min

w

T
∑

t=1

1
T
|Ŷ−Ỹ|

Ŷ

Ỹ =
N
∑

n=1
wn Ỹn

Ŷ: base forecast
Ỹ: adjusted forecast

w: weight factor

Quadratic Programming

min
Ỹ

1
2 (Ŷ − Ỹ)

T
Σ−1(Ŷ − Ỹ)

Ỹ =
[

ãT , b̃T
]T

ã = p b̃

Ŷ: base forecast
Ỹ: adjusted forecast

ã: load of the aggregated level
b̃: Load of the

disaggregated level
p: participation factor

Different levels of a hierarchical structure interacted with each other in a complicated fashion,
whereas a change in one series at one level could sequentially change the series at the same level
as well as other levels of a hierarchy. Sun et al. [74] considered the change that switching operation
might cause on the load trend by adjusting the forecast whenever a switching was detected. Abnormal
changes in the demand were identified by measuring the mean and standard deviation of the load by
using statistical process control. The load participation factor was then computed based on the new
data. Comparably, deviations in the meteorological conditions in a large geographical area caused
base forecasts to vary, leading to changes in the aggregated load accordingly. However, meteorological
information might not be available at every sub-level. There were usually several meteorological
services available at a geographical area for providing weather forecast information. Hong et al. [18]
recommended that, in a hierarchical structure with various nodes to be forecasted, the best-related
weather information could not be selected manually for each node. Weather station selection method
was one of the main objectives in the Global Energy Forecasting Competition 2012 (GEFC) [84]. More
about this is discussed in the next section.

2.4. Weather Station Selection

In a large electricity market covering an expanded area, a single forecasting model cannot capture
the load pattern. HSTLF method, which is discussed in the previous section, ensures a more satisfactory
forecast across different levels of hierarchy. However, in HSTLF method that disaggregates the load
based on geographical divisions or zonal hierarchies, meteorological hierarchies that are definitely a
dominant factor in load diversity cannot be easily captured. The challenge is to assign the most related
weather station information to each zone or area in the hierarchy.

Fan et al. [81] proposed a combination method to select the best adapted individual weather
forecast between multiple forecasts provided by different meteorological services. Several papers in
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the literature [85,86] used the average data from multiple services for its simple and effective result
compared to other weighted averaging methods.

In Hong & Pinson’s planned competition (GEFC competition) [18], weather station selection was
one of the addressed issues. Data provided in the competition was the hourly load history of 20 zones
in the U.S. along with weather data gathered from 11 weather stations, without specifying locations of
weather stations.

Among the winning teams, Charlton et al. [87] built 11 energy models for each zone based on
the weather data of 11 weather stations provided in the competition. The best-fitted weather station
for each zone was not a single station, rather, it was a linear combination of up to five best-fitting
weather stations for each group. Lloyd [88] also developed a forecast model based on data from all
weather stations and used a Bayesian model averaging to integrate these models into one final average
model. Moreover, in the proposed model by Nedellec et al. [48], one station was selected for each
zone, considering that other combination strategies led to unsatisfactory outcomes. Taieb et al. [89]
selected the best-fitted station for each zone by testing the temperature data from previous week for
each zone. The demand was modeled by using average temperature data of three best weather sites.
Hong et al. [18], on the other hand, proposed a method for weather station selection that, instead of
assigning the same number of weather station to all nodes at the same level of hierarchy (as it was the
common strategy in the GEFC competition), different numbers of weather stations were selected for
individual load zones. Yet, the result was not always superior to other alternatives.

3. Method Evaluation and Future Work

A comprehensive explanation of STLF methodologies is provided in the previous sections.
Generally, the logic behind every specific method helps the forecaster to choose the best-fitted
method based on their application. For example, similar-pattern method mainly relies on historical
values, whereas variable selection method incorporates information about explanatory variables.
Therefore, the forecaster might consider similar-pattern method in cases where the system might not
be comprehensive enough, or if it is explanatory, it is extremely difficult to extract the main features
that govern the demand behavior. In this situation, there are always some variations in the load
that cannot be captured by explanatory variables. In similar-pattern strategy, on the other hand, the
focus is on what is going to happen rather than why it happens. Still, when there is a correlation
between exogenous variables and load data, explanatory model, i.e., variable selection method is an
appropriate approach.

Some of the main advantages and disadvantages of these four methods are listed in Table 5. For
example, in variable selection method, despite efforts to find independent variables in the dataset by
using feature selection algorithms, the selected variables might still be partly correlated with each
other. This matter is expressed as one of the drawbacks in Table 5. Similar-pattern method, on the
other hand, presumes that the past values of a variable are important in predicting the future, although
the algorithms can only look back for a few steps for a limited sequence of data.

Despite the unique characteristics of these four categories of STLF methodologies, they were
not independent of each other and there might be some overlap between them. For example, in
similar-pattern method, the similarity of exogenous variables such as temperature or humidity were
used to find similar patterns [21]. Consequently, selection of highly correlated exogenous variables is
essential for detecting similar load patterns within a dataset.

Sometimes the selection of exogenous variables in variable selection method was conducted by
using similarity method. For example, Fujimoto et al. [90] applied the minimum distance technique to
find the relationship between exogenous variables and residential demands of multiple houses.

Another example was HSTLF method, as already discussed in Section 2, wherein either variable
selection method or similar-pattern method was applied to forecast the load at each level of aggregation.
Similarly, for weather station selection, a forecaster addressed a subset of exogenous variables, i.e.,
meteorological variables.
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Table 5. Advantages and disadvantages of STLF methodologies.

Method Advantages Disadvantages

Similar-Pattern Method

• Adapt to exceptional circumstances and
random events

• No previous knowledge about the system
is needed

• The horizon of forecast is limited up to a
couple of days ahead

• Limited search space
• Not explanatory

Variable Selection Method

• Embedding exterior variables into
the model

• Increase prediction accuracy by reducing
overfitting and addressing the curse
of dimensionality

• Simpler prediction (smaller number of
predictors or smaller size of input space)

• Improves the understanding of the
prediction model

• The load data might not be comprehensive
(difficult to measure the relationship that
govern the load’s behavior)

• Difficulty in identifying exogenous variables
• Huge number of variables
• Redundancy
• It is unrealistic to find a set of input

variables with zero correlation to each other

Hierarchical Method

• Help the power system operators to
perform the load control and circuit
switching at different levels of
the hierarchies

• Enhancing the model accuracy by using
the information at the lower levels

• Lack of coherency across the
aggregated structure

• Loss of information due to aggregation in
the top levels

• The high irregular data at the bottom levels
of the hierarchies

Weather Station Selection • Find the best-fitted weather data for each
level of the hierarchy

• Uncertainty about optimal number of
stations for each hierarchy

Hyndman et al. [78] discussed that taking advantage of the prominent features of different
methods and combining them in a hybrid scheme was what we needed to do now. Some examples
of this combination were available in the literature. For example, Quilumba et al. [27] applied
similar-pattern method in one step to group smart meter load profiles into an optimal number of
groups and then feature selection method in the next step to forecast the aggregated load at each group
of data.

In the proposed load model by Wang et al. [82], a three-stage combined model was applied. The
hierarchical structure of the load series was extracted by applying hierarchical clustering technique
based on similar consumption behavior of customers. Different load models were developed at each
subgroup of data by using variable selection method. Eventually, the final model was undertaken by
adding a weight factor to individual models to be coherent across the aggregate level.

Another example of the hybrid methodology could be found in the work of Zheng et al. [31], in
which feature selection method was used to help find similar days’ clusters. Each cluster was shaped
based on feature values of the data, whereas a weighted parameter was assigned to each feature.

In this paper, a hybrid method is represented based on some of the main features of methods
reviewed in the previous sections. The schematic diagram of the method is illustrated in Figure 9. As
can be seen, this method is proposed to find base forecasts at each level of the hierarchical structure
by applying similar-pattern method, and then by using a strategy to keep the coherency between the
loads at different levels. The strategy is performed in seven steps as shown in Figure 9. In the first step,
the patterns similar to today’s load profile are extracted from each load series at the disaggregate level.
Considering that n number of similar patterns are obtained for each subseries, and by assuming that
there is N number of subseries at the disaggregate level, nN number of aggregated profiles is created.
Between these aggregated profiles, the one with the minimum distance from today’s profile at the
aggregated level is selected. Subsequently, in the next step, the combined profile will be matched to
the real aggregated profile by finding the weighting factor. Eventually, to forecast the next day’s load
at the aggregated level, load profiles of sequential days (days after similar-pattern days), which are
selected in the optimal combination, will be summed up by using the weighting factor of step 5. This
method finds similar patterns in the disaggregated level, but measures the similarity distance again at
the aggregated level.
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Figure 9. Schematic diagram of the proposed hybrid method.

The novelty of the proposed method over the aforementioned hybrid method is that it neither
aggregates the data from bottom levels nor aggregates low-level forecasts. Following the hybrid
method developed in [80], either forecast results of similar-pattern method is aggregated or a weighted
averaged result of similar patterns are aggregated. However, the proposed method creates multiple
subsets of data at the disaggregate level; consequently, the optimal subset is selected by comparing
the combination results to the upper-level data. In this way, distinguishing the degree of similarity is
not limited to one subset of data with averaging results. However, it is still not clear that this method
might be more accurate than the conventional hybrid methods [82].

The proposed method assumes that finding the optimal subset of data might result in a more
accurate forecast than averaging similar patterns in each low-level subseries. In fact, the idea of
selecting an optimal subset of data at every disaggregate level for prediction of the next level’s
load is interesting; although, the technical difficulties for implementation need to be investigated in
future works.

4. Conclusions

This paper discusses four categories of state-of-the-art STLF methodologies, i.e., similar-pattern,
variable selection, hierarchical forecasting, and weather station selection while each of these methods
proposes a specific solution for load prediction. Similar-pattern method, which is rooted from the
minimum distance approach, presumes that the load trend is unlikely to vary during a short period.
Hence, by searching within close vicinity of today’s load, some similar patterns can be distinguished.
In fact, forecasting the future load is based on the subsequent behavior of the discovered similar
patterns in the load series.

Variable selection method, on the other hand, tries to find prominent and independent features
in a dataset with the lowest correlation with each other and the highest correlation with the output.
Constructing a subseries of these features helps to improve the forecast accuracy.

Hierarchical forecasting methods address the aggregated loads in different levels of the
hierarchical structure. Predicting loads in various zonal level help power system operators to effectively
perform the switching operation and load control. In addition, improving the forecast at sub-levels
enhances the prediction accuracy at upper levels.

Besides geographical and zonal hierarchies, the weather hierarchy is another vital factor in STLF,
which cannot be captured easily for each geographical zone. Various weather services in a large
geographical area provide different weather forecast information. Selecting the best-suited weather
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information is substantially important for STLF, considering the influence of weather variables on the
load trend.

Eventually, by highlighting the main advantages and disadvantages of each approach, it is
concluded that the load model can benefit from the robustness of individual methods in a hybrid
scheme. Finally, the general outline of a hybrid strategy is proposed for future evaluation.
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Abstract: When identifying and comparing forecasting models, there may be a risk that poorly selected
criteria could lead to wrong conclusions. Thus, it is important to know how sensitive the results are
to the selection of criteria. This contribution aims to study the sensitivity of the identification and
comparison results to the choice of criteria. It compares typically applied criteria for tuning and
performance assessment of load forecasting methods with estimated costs caused by the forecasting
errors. The focus is on short-term forecasting of the loads of energy systems. The estimated costs
comprise electricity market costs and network costs. We estimate the electricity market costs by
assuming that the forecasting errors cause balancing errors and consequently balancing costs to the
market actors. The forecasting errors cause network costs by overloading network components thus
increasing losses and reducing the component lifetime or alternatively increase operational margins
to avoid those overloads. The lifetime loss of insulators, and thus also the components, is caused by
heating according to the law of Arrhenius. We also study consumer costs. The results support the
assumption that there is a need to develop and use additional and case-specific performance criteria
for electricity load forecasting.

Keywords: short term load forecasting; performance criteria; power systems; cost analysis

1. Introduction

Bessa et al. [1] discussed two different ways of measuring the performance of a forecast. One way
is to measure the correspondence between forecasts and observations (forecast quality). Another way
is to measure the incremental benefits (economic/or other) when employed by users as an input into
their decision-making processes (forecast value). Assessing forecast quality is more straightforward
and the standard approach is statistical error metrics, such as:

• Mean absolute error (MAE),
• Mean absolute percentage error (MAPE), and
• Root mean squared error (RMSE).

Typically, these metrics apply some kind of loss function to individual errors and then calculate
a summary statistic [2]. For example, Screck et al. [3] surveyed the literature for 681 load forecasts
for the residential sector. Altogether, 15 error metrics were used, the most frequently used was mean
absolute percentage error (MAPE) with 392 values. The second was normalized root mean squared
error (NRMSE) with 209 error values and the third was RMSE. MAPE and NRMSE are relative metrics
that aim to be comparable amongst different experiments. In the literature, the meaning of NRMSE
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varies significantly, because there are many different ways to normalize the RMSE. Here, we use only
the most common definition that normalizes RMSE by dividing it by the mean of the measured values.
In the alternative definitions, the normalization is done by the difference between the maximum and
minimum, by the standard deviation, or be the interquartile range, etc. Some publications, such
as [4], even use a NRMSE definition that, similarly to MAPE, normalizes each individual error with
the simultaneous measured value before calculating the RMSE. So defined NRMSE and MAPE are
much more sensitive than the NRMSE we use to calculate absolute errors when the actual loads are
small or very small. MAPE also puts less weight on large deviations than NRMSE. MAPE is based on
assumptions that (1) accurate forecasting of small loads is important and (2) one large error is not more
significant than an equally large sum of small absolute errors. Both these assumptions are clearly in
conflict with the actual consequences of the short-term load forecasting errors that we discuss next.

Often, model identification is easier and computationally more efficient with quadratic criteria
such as sum of squared errors (SSE), RMSE and NRMSE. These criteria also reflect the combination of
errors from several independent sources. This is important, as typically several different component
forecasts are needed for forecasting the total power or power balance. The assumption of independence
may not be completely valid, however. For example, the forecasts of loads and generation are often
based on the same or mutually correlated weather forecasts or are connected by the behavior of certain
groups of humans. Technologies and energy markets also reduce independence of load behavior.
For example, demand side responses for electricity markets and ancillary services have very much
mutual correlation. Good short-term load forecasting methods utilize such dependencies efficiently
and their forecasting errors tend to be rather independent from each other. Correlated forecasting errors
may also stem from using the same forecasting methods or methods that have common weaknesses.
Mutual correlation of forecasting errors is usually easy to detect, and it is a sign that improving the
forecast is possible.

The concept of forecast value, on the other hand, views the forecast user’s business process more
extensively and is more difficult to assess. Forecast value includes the economic and noneconomic
benefits which are available to the user by using the forecast. An example is the reduction in imbalance
costs for a balance responsible party. A crucial aspect is that the value is user and problem specific [1].
For example, power market participants and the system operator may measure forecast value differently.
For the system operator, the most important issue is the expected maximum forecast error, and not
the mean forecast error. An UCTE position paper [5] discussed this issue for wind power forecasts.
We will employ a case study below to explore to what extent the consumer and the retailer aggregator
have different preferences. Such differences between different actors largely stem from the fact that the
electricity markets locally and imperfectly approximate marginal cost changes, but do not perfectly
reflect the real costs of the power systems.

It is often infeasible to calculate the benefits of the forecast accurately. When it is possible to
accurately model the decision-making process which exploits the forecasts and the resulting costs,
the error metric can be selected so that the resulting costs are minimized [6].

Forecast value is also related to the error metrics. According to [6], error metrics should be easy
to interpret, quick to compute and reflect the net increase in costs resulting from decisions made
based on incorrect forecasts. MAPE also penalizes over-forecasts (where forecast load is greater than
realized load) more than under–forecasts [7,8]. In addition, MAPE penalizes relatively lightly such
large absolute forecasting errors that occur during load peaks. However, in short-term load forecasting,
under–forecasting high loads tends to be especially costly for all the relevant actors, including the
system operator and the energy consumer.

The most commonly used error metrics also suffer from a double penalty effect for events which
are correctly predicted but temporally displaced [7,9]. There are criteria, such as the parameterized
earth mover’s distance [10], which do not suffer from this effect. For avoiding this double penalty
effect, time shifted error measures such as dynamic time warping and permutated (so called adjusted)
errors and their downsides are considered by [9].

110



Energies 2020, 13, 2054

Costs of large mutually correlated forecasting errors may behave differently from the SSE and
RMSE. MAE assumes that the costs due to forecasting errors depend linearly on the size of the errors.
It is often used to avoid the problem that SSE and RMSE put too much weight on large forecasting
errors as compared to the assumed real costs. Often this assumption is not valid and the actual costs
may grow even faster than the square of the error assumed in SSE and RMSE.

The power systems are changing in an increasing speed. Distributed new energy resources such
as active loads and other controllable distributed flexible energy resources make the power flows
in distribution grids more variable than before. The power flows to and from the customers of the
grid are correlated due to control actions, solar radiation and wind. The traditional load forecasting
methods become obsolete. The forecasting performance criteria also need some reconsideration and
updating in order to fit to this new situation.

Our aim in the present work is to show that there is still a need to develop the understanding,
selection and amendment of criteria for forecasting performance. In forecasting applications, assessing
or measuring the incremental benefits from the forecasts is both necessary and difficult. With case
studies, we assess how the forecasting errors increase the costs of the competitive electricity market
actors, electricity network operators and their customers, the consumers and prosumers that use the
power system.

2. Needs to Develop Short Term Load Forecasting Criteria

When studying and developing short term load forecasting methods for active demand, such
as [11], we have detected the following challenges:

• Assessing the economic costs of forecasting errors on the electricity markets is more complex than
often assumed.

• The cost impacts tend to be asymmetric. Under-forecasting the load peaks typically causes higher
costs than a similar amount of over-forecasting.

• The economic costs of forecasting errors tend to concentrate to the load peaks at the network
bottleneck and system levels and to the rarely occurring high price peaks on the markets for
electricity and the ancillary services of the power system and grids.

• Some popular and useful methods tend to predict higher and shorter load peaks than what
actually occur.

The costs of forecasting errors to the competitive electricity market actors mainly stem from the
balancing errors caused to their balance responsible party. When forecasting only components of the
total balance, the errors relative to the errors in the total balance matter and the errors relative to the
component forecast itself are not at all relevant. In addition, we need accurate forecasting during the
system peak loads and peak prices and the highest peaks are rare and unpredictable.

Underestimating the load when forecasting critical high load situations can lead to very expensive
unwanted measures in managing the grid constraints or peak load reserves at short notice.

A common problem with black box methods, such as machine learning methods, is that although
they generally tend to under-forecast load peaks, as shown in [4], for rarely occurring outdoor
temperature related peak loads they tend to predict higher and shorter load peaks than what actually
occur. This tends to happen because (1) the identification data do not include enough such extreme
situations in order to model the load saturation effects or (2) many nonlinear black box methods tend
to have large errors when extrapolating outside the situations included in the identification data. There
are several methods to deal with this problem. Daizong Dint et al. [12] proposed using (1) a memory
network technique to store historical patterns of extreme events for future reference and (2) a new
classification loss function called extreme value loss (EVL) for detecting extreme events in the future.
Those approaches can improve the deep neural network (DNN) performance regarding only those
extreme events that have been included in the learning data. Another approach is to add another model
for the power range and use that for limiting out those forecast values that exceed the limit by more
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than a tolerance [4]. Then, the energy of the peak should be preserved by extending the length of the
peak. Physically based model structures describing the existence of constrained maximum power are
useful for such peak limitation. Physically based model structures with power constraints can also be
used to model the main phenomenon that contributes to the peak load. We have improved forecasting
of rarely occurring and extreme situations by combining several different models into hybrid models,
see [11] for an example. In order to better assess, compare and develop methods, we need forecasting
criteria that adequately reflect the concentration of the economic costs of the forecasting errors to the
high load situations.

3. Cases Studied

3.1. Electricity Market Costs Due to Forecasting Errors

The costs relate to the overall forecasting error of the total energy balance of the balance responsible
party of the actor in the market. Thus, the load forecast of a consumer group segment is only one
component of the total forecast. There are forecasts for different types of load and local generation.
The different forecasts are not fully independent, because many of them may use the same weather
forecasts and be subject to interactions between consumer group behavior. However, the errors of
accurate forecasters tend to be independent and it is easy to check to what extent this assumption holds.
Going to such details is complicated and outside the scope of this paper. Thus, for clarity of the analysis,
we assume that the errors of different segment forecasts are independent. Then the contribution of the
expected individual error component e1 to the total expected forecast error e is as follows.

E
[
e2
]
= E[e0

2 + e1
2]= E[e0

2
]
+ E[e1

2] (1)

where e0 is the expected total error of all the other forecast components. Figure 1a shows how the total
error e behaves as a function of e1 when e0 is set to 1. For small e1, the increase in e is quadratic.

(a) (b) (c)

Figure 1. (a) Impact of an additional error std. component to the total error std. when assuming
normally distributed independent error sequences, (b) the behavior of the mean of simulated balancing
error costs, (c) the range of balancing error cost variation in the simulations.

The monetary cost of the total forecasting error needs to be assessed in the electricity market.
For simplicity, we assume that the forecasting errors cause costs via the market balancing errors.
The market rules for penalizing the balancing errors of loads vary from country to country. The Nordic
power market applies the balancing market price as the cost of the balancing errors. In the Nordic
countries, one price system is applied for errors in consumption (load) balance and, in addition, there is
a small cost component proportional to the absolute balancing error (volume fee for imbalance power).
Power generation plants below 1 MVA are included in the consumption balance.
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The price of consumption imbalance power is the price for which Fingrid both purchases balance
power from a balance responsible party and sells it to one. In the case of the regulating hour,
the regulation price is used. If no regulation has been made, the Elspot FIN price is used as the purchase
and selling price of consumption imbalance power. For an explanation, see [13]. All the prices and fees
are publicly available at the webpages of Fingrid and NordPool, such as [14]. In addition, imbalance
power in the consumption balance is subject to a volume fee. There is also a fee for actual consumption,
but that depends only on the actual consumption and not on the forecasting errors. The volume fee of
imbalance power for consumption during the whole study period was 0.5 €/MWh. See [15] for the fees.

From an actual or simulated component load forecasting error, the resulting increase the forecasting
error of the total energy balance can be calculated, and using this increase in error the resulting balancing
cost increase was calculated based on the price of imbalance power and the volume fee of the power
imbalance. In this way, we got an estimate for how much electricity market costs the forecasting error
causes to the balance responsible actor. We do not know the forecasting errors of the balance responsible
party. In the following study, we generated them as a normally distributed sequence that has standard
deviation 3 MW. The actual errors may be bigger, but as we see later, that will not affect the conclusions.
The price of imbalance price occasionally has very high peaks. Thus, the cost estimate will be very
inaccurate, even when a very long simulation period is applied. It is necessary to check the contribution
of the very highest price peaks to the cost in order to have a rough idea on the inaccuracy of the results.
We avoided this challenge as follows. We made a short-term load forecast using a residual hybrid of
physically based load control response models and a stacked booster network as explained in [16]
for a four-year-long test period. We found out that the forecasting errors were rather well normally
distributed and bounded. We generated 200 random normally distributed bounded error sequences
over the four–year period. With each one of these 200 normally distributed bounded random error
sequences, we calculated the balancing error costs for the forecast group. Then, the standard deviation
of the group errors was varied and the same cost calculation repeated. The variation of the costs
between the error sequences was very large. The mean behaved as assumed in Figure 1a and an
actual measured and forecast case was clearly in the area where the quadratic dependency dominates
(see Figure 1b). The demand response aggregator considers the actual and forecast active loads as
trade secrets and does not allow us to make them public information. Except for this one point, all
data used for the simulations in Figure 1 are publicly available.

The balancing error cost was very stochastic, because the impact of high balancing market price
peaks dominated (see Figure 1c). The balancing error cost over the whole four-year-long period
mostly depended on the forecasting error during those few price peaks. The red circle represents
the forecasting errors when an experimental short-term demand response forecasting algorithm was
applied to the forecasting on the morning of the previous day. There, the aggregated controllable power
was slightly over 18 MW. The results support the use of the quadratic error criteria std. and RMSE,
rather than linear criteria such as MAPE etc. In this case, data driven forecasters that do not model the
dynamic load control responses have so poor accuracy that the cost dependency approaches a linear
dependency. Here, we have ignored the fact that especially large forecasting errors can affect the price
of imbalance power significantly, thus increasing the balancing error cost much more than linearly.

Another observation is that with the good performance forecasting model, the forecasting errors
increased the imbalance costs very little, only 0.53 € per controllable house annually. This suggests
that the one price balancing error model gives only very weak incentives to improve the forecasting
accuracy in normal situations. The one–price balance error cost model may not adequately reflect
the situation from the power system point of view. A further study is needed to find out to what
extent, how much and with which market mechanisms the power system can in the future benefit
from improving the short-term forecasting accuracy. A conclusion of the H2020 SmartNet project [17]
was that improving the forecasting accuracy is critical for getting the benefits from the future ancillary
service market architectures for enabling the provision of the ancillary services using distributed
flexible energy resources.
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Some other countries apply a two–price system for balancing error costs. That means that the price
for the balancing errors is separately defined by the balancing market for both directions. Then the
costs of load forecasting errors are much higher than in a one–price system. They may even exaggerate
the related needs of power system, if the errors of the forecasts of the individual balancing are assumed
to be independent from each other. When the share of distributed generation increases, the one price
system may become problematic, because the consumption and distributed generation may not have
enough incentives to minimize their balancing errors. This increases the need for balancing reserves in
the system. The share of distributed generation is expected to increase much during the summertime,
which means that also in the Nordic countries there may appear needs to change the market rules
regarding the balancing costs somehow. Moving to two–price system may be one such possibility. Thus,
it may be worthwhile to repeat the above study using the two–price system of the generation balance.

3.2. Distribution Network Costs Due to Forecasting Errors

Overloading of network components causes high losses that increase the temperature of the
components. Overheating reduces the lifetime of the insulator materials in the network components
rapidly. If the forecast underestimates the peak load, the operational measures to limit overload are not
activated in time, energy losses increase and the component aging increases so much that the expected
lifetime is reduced.

The losses in the network components are generally proportional to the square of the current.
When the voltage is kept roughly constant and the reactive power, voltage unbalance and distortion
are assumed to be negligible, the losses are roughly proportional to the square of the transferred power.
In real networks, these assumptions are not accurate enough. Strbac et al. [18] calculated losses using a
complete model of three power distribution license areas in UK. The analysis highlighted that 36–47%
of the losses are in low voltage (LV) networks, 9–13% are associated with distribution transformer load
related losses, 7–10% are distribution transformer no-load losses and the remaining part in higher
voltage levels. They [18] (p. 43) showed the marginal transmission losses as a function of system
loading. A 1 MWh reduction in load would reduce transmission losses by 0.11 MWh during peak load
condition (100%). When system loading is 60%, reducing the load by 1 MWh will reduce transmission
losses by 0.024 MWh. This corresponds to the dependency f(P) = P2.98. The sample size is small, so the
accuracy of this dependency is questionable. Nevertheless, the dependency is clearly different from
f(P) = P2 that results from assuming constant voltage at the purely active power load and transmission
losses relative to the square of the current. Underestimating the peak loads causes much higher losses
and related costs than other load forecasting errors. Thus, the impact of forecasting errors to the energy
losses is very nonlinear and depends on the direction of the error and size of the load.

Ref. [19] studied how transformer oil lifetime depends on temperature. Arrhenius’ law describes the
observed aging rather well. Aging mechanisms of cable polymers were discussed in [20]. The Arrhenius
method is often used to predict the aging of cable insulation, although it is valid only in a narrow
temperature range. For example, it is applicable only below the melting point of the insulator.
For simplicity, we here model the aging using the Arrhenius method. According to it, k the rate of
chemical reaction (such as insulator aging) is an exponential function of the inverse of the absolute
temperature T.

k = Ae−Ea/RT (2)

where R is the gas constant, and the pre-exponential factor A and the activation energy Ea are almost
independent from the temperature T. In the steady state, the difference between the component or
insulator temperature and the ambient temperature is linearly proportional to the losses. Components
are normally operated much below their nominal or design capacity and the impact of forecasting
errors on the losses and aging is small. When the component during peak load is operated at or above
its nominal load and is subject to high ambient temperature and poor power quality high losses, fast
component aging, or expensive operational measures result from under-forecasting the load.
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Thus, the impact of forecasting errors to the costs is very nonlinear and depends on the direction
of the error and size of the load. Most of the time, the network costs from short term load forecasting
errors are small or even insignificant. However, the costs of forecasting errors increase rapidly when
the load is at or above the nominal capacity of the network bottlenecks, if the actual load is higher than
the forecast load.

3.3. A Consumer Cost Case Study: Load Forecasting Based Control of Domestic Energy Storage System

All the costs of the power supply are paid by the users of the electricity grid. The forecasting
errors discussed in the other chapters increase the electricity prices and grid tariffs by increasing the
costs of the electricity retailers, the aggregators and the grid operators. Here, we consider those costs
that the consumer has possibilities to control more directly.

By using energy storage in a domestic building, a customer can get savings in the electricity
bill [21]. The amount of the savings depends on many factors. The load profile of the customer and
the electricity pricing structure and price levels are the main variables that affect the savings, but the
customer has very limited possibilities to change them. The size of the energy storage can be optimized
for the customer’s load profile, but after that, controlling the energy storage and consumption is the
only way to maximize the savings. Energy storage can be used, e.g., to increase the self-consumption
of small-scale photovoltaic production, but it can also be used for minimizing costs from different
electricity pricing components. If the energy retailer’s price is based on the market price of electricity,
the customer can get savings by charging the energy storage during low price and discharging during
high price as in [21]. If electricity distribution price is based on the maximum peak powers, the customer
can get savings by discharging the battery during peak hours, as in [22].

Such electrical energy storage systems are still rare and typically installed to increase the
self-consumption of small-scale photovoltaic power production. Although the battery technologies
progress all the time, the profitability in such use is still typically poor, especially if there are loads that
can be easily shifted in time. One can improve the profitability of the battery system significantly by
having several control targets or a more holistic one. Such a possibility is minimizing the costs from
different electricity pricing components, but that requires short–term load forecasting.

In this case study, it is assumed that every customer in the study group has a market price-based
contract with an electricity retailer and the distribution price is partly based on the maximum peak
powers as in [23]. The energy retailer price is based on hourly day-ahead market prices of Finland’s area
in Nord Pool electricity markets [13]. The electricity retailer adds a margin of 0.25 c/kwh to the hourly
prices. Distribution prices are based on the study in [23], where the price components were calculated
for the area of the same distribution system operator (DSO) as where the customers’ data of this study
were measured. The price structure includes two consumption-based components: volumetric charge
(0.58 c/kWh) and power charge (5.83 €/kW). The power charge is based on the monthly highest hourly
average peak power. When value added tax (24%) is added to these charges, the prices which affect to
customers’ costs are: volumetric charge 0.72 c/kWh and power charge: 7.23 €/kWh. The same prices
were used in [22].

Customers’ load data are from one Finnish DSO, whose license area is partly rural and partly
small towns. The study group consists of 500 random customers. In simulations, each customer has
6 kWh with a 0.7 C-rate Lithium-ion battery. Battery type is lithium iron phosphate (LFP), because
it has good safety for domestic use. The energy storage system is controlled firstly to decrease the
monthly maximum peak power and secondly to decrease the electricity costs with market price-based
control as in [22]. The battery is discharged when power is forecast to increase over the monthly peak
and charged during low prices. The market price-based control algorithm and battery simulation
model were presented in [21]. In previous studies, the controlling of energy storage was based on load
forecasting. The load forecasts are based on a model, which utilizes customer’s historical load data
and temperature dependence of load with temperature forecast [24].
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In the present study, the dependence between the accuracy of load forecasting and the customers’
savings achieved by using the energy storage are studied. The simulations are made for every customer
with 11 different load forecasts each having a different load forecasting accuracy. The forecasting
accuracy is varied by scaling the forecast error time series. The actual load forecast time series is
nominated as the basic level (100%) and the real load data correspond to the ideal forecast (0%).
The range of studied error scaling is selected linearly between 0% and 200%, with 20% step size in every
hour. Customers’ yearly cost savings and different forecast accuracy criteria (SSE, RMSE, NRMSE,
MAE and MAPE) have been calculated during simulations. Additionally, because most of the savings
come from the decrease in monthly peak powers, the MAE of monthly peak powers (MAEmax) was
calculated. The monetary value of the cost savings depends on the customer’s load profile, so the
results are given as percentage values of cost savings. The results of the simulations are shown in
Figure 2. From the result points, we calculated least-squares fitted line (R1) and least-squares fitted
second-order curve (R2).

Figure 2. Percentage yearly savings of customers when using energy storage to decrease monthly
maximum peak powers and the costs of market priced energy, shown as a function of different forecast
error criteria. Color of points shows the used error level (0–200%).

From the results, we see that with ideal forecasts the savings of the customers vary a lot. This
stems from the different load profiles of the customers. The customers, whose load profile includes
high peaks during several months, can get very high savings. If customer’s load profile is very flat,
the savings can be low. When the errors in the forecast start to increase, the savings drop very fast at
first, but the decrease in the savings slows quickly and the decrease stays low until the end.

From the results of Figure 2 and the results of least-squared fittings, we collected the main results
and values for the Table 1, which helps to compare different criteria. In Table 1, data points mean the
points (maximum 5500 points) which can be used and logical order means that the data points are in
order, such that higher error gives lower savings.

The idea in the comparison is that good criteria predict as accurate as possible the cost savings
of a customer. Fitted lines and curves predict the cost savings best with MAPE, but MAPE can be
calculated only for a small part of the customers. For this reason, the values of MAPE seem better
than they really are. With NRMSE, the order of points is not logical: the savings do not monotonically
decrease as the NRMSE value increases. SSE gives the worst values in fittings. RMSE and MAE are
almost equal, but MAE is in this case marginally the best criteria. Differences between the criteria are
not large and selecting the most suitable criteria in this case requires accurate comparison.

Additionally, the MAE of the monthly peak powers is shown in Figure 2. As we can see, MAEmax

describe the effect of forecasting error for the savings almost as well as traditional forecast error criteria.
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This is logical when most of the savings come from the decrease in monthly peak powers. When
the other forecast error criteria take into account all hours during the year (8760 h), this MAEmax is
calculated only from one hour per month (12 h).

Table 1. Comparison of criteria in a consumer cost case study.

Criteria
Data

Points
Logical
Order

Mean of
Residuals

R1

Max
Error R1

Median of
Residual R1

Mean of
Residuals

R2

Max
Error R2

Median of
Residuals

R2

SSE 5500 Yes 1.70 26.39 1.32 1.69 26.14 1.31
RMSE 5500 Yes 1.63 25.41 1.25 1.59 24.81 1.23

NRMSE 5500 No 1.61 24.96 1.23 1.57 24.36 1.18
MAE 5500 Yes 1.62 25.43 1.23 1.58 24.83 1.22

MAPE 1310 Yes 1.25 13.20 1.03 1.25 13.17 1.04
MAEmax 5500 Yes 1.70 25.62 1.32 1.65 24.89 1.26

3.4. Comparison of Methods across Different Forecasting Cases

When the same method is used to forecast different aggregated loads the values of the same
accuracy criteria can be very different. Humeau et al. [25] analyzed the consumption of 782 households
and found out how the values of the NRMSE decrease with the increase in the number of sites in
clusters. They compared linear regression, support vector regression (SVR) and multilayer perceptron
(MLP) in this respect. [26] shows a typical short-term load forecasting accuracy dependence on the
prediction time horizon. The weather forecasts and load forecasting methods have improved much so
now the accuracy decreases somewhat later but the shape of the dependency is still similar. In addition
to the number of sites, the value of criteria depends also on the size and type of sites, type of loads,
the presence of active demand, etc. Figure 3 demonstrates some of the dependencies. It summarizes
some results from our past publications between the years 2012 and 2020. All these publications can
be found via [11,16]. All the most accurate methods in Figure 3 are hybrids that combine several
short-term forecasting methods and include both machine learning and physically based models.
In the case with about 59,000 customers, the most accurate method includes also a similar day method.
All of the most accurate methods use more than one hybridization approach, including residual hybrid,
ensemble and range constraining.

Figure 3. Load forecasting accuracy as a function of the number of aggregated customers as collected
from our own published results. The results support the assumption of independent errors except for
the largest group size and the other differences reduce the comparability among the cases much more.

In Figure 3, the four markers on the right end represent different forecasting method applied to
the exact same case. At about 1000 aggregated customers, there are combinations of four rather similar
groups of about 1000 customers and two different methods in all eight combinations. The blue line in
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the figure shows how the forecasting accuracy measured in std. depends on the number of customers
assuming completely independent forecasting errors. The expected behavior of uncorrelated forecasts
is like that. The cases are not fully comparable and the amount of them is too small for making any
reliable conclusions. Forecasting when active loads are not present is usually more accurate than when
dynamic load control is applied. Load control also makes the load behavior strongly correlated, which
also tends to increase the correlation of forecasting errors and thus reduce the NRMSE improvement
stemming from increasing the number of aggregated customers. In the cases with 59,000 customers at
the right side of Figure 3, the forecasting time resolution was 3 min and in the other cases it was 1 h.
In the lowest NRMSE case at about 3500 customers, it was 24 h. Using more accurate time resolution
causes higher values of criteria. At about 3500 customers, the range of the values shows the impact of the
improvement of the methods when the case remains the same. There, the outdated national load profiles
had the highest NRMSE. In the four groups that have about 1000 customers, the controllable loads
dominate. With two of these four groups, the forecasting performance is very good as compared to the
blue line. The two leftmost groups, each having 350 to 380 customers, suffered from communication
failures in the first third of the 5-year-long verification period. Selecting only the best year of the
verification would have given NRMSE = 20.1% for group 1 and NRMSE = 26.8% for group 2 of that case.

One observation is that the results are not always very well comparable between different groups
in the same case, nor between different years for the same group. Thus, meaningful comparison of
methods across different individual forecasting cases does not seem feasible. The comparability was
even worse when using MAPE instead of NRMSE. In addition, the results support the hypothesis
that with the best forecasting methods in the studied cases the assumption of mutually independent
forecasting errors may be justified if the number of houses is not very large. The amount of cases
is too small for making firm conclusions. When the forecasting cases represent the same time and
country the cross correlation can be calculated from the forecasts. We leave that now to further studies.
The purpose here is only to show that (1) this kind of analysis may be useful when made with many
more cases and (2) the comparison of forecasting methods between different cases is complex and
gives only very rough results. Further research with many more cases is needed in order to get reliable
quantitative results.

Figure 4 shows how the MAPE and NRMSE depended on each other in 38 short-term forecasts
that we have produced in six different forecasting cases. All the forecasts have the same forecasting
horizon. The differences in their behavior are rather small. This is the expected result for the errors
of accurate forecasts. We expect that the results may be much more different if either low accuracy
forecasts or more exceptional situations are included in the comparison. Further studies are needed
regarding that.

All those six forecasts that have NRMSE between 15% and 17% are from the same group in the
same case but use different forecasting methods. The group behavior in the verification was rather
different from the identification. The low MAPE in one of the forecasts may indicate that MAPE there
failed to adequately detect the rather large peak load errors caused by the behavior change. That may
happen, because the statistical behavior of the errors was not any more normally distributed, as is the
case with accurate forecasts.
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Figure 4. Comparison of normalized root mean squared error (NRMSE) and mean absolute percentage
error (MAPE) in 38 forecasts in 6 different short term load forecasting cases comprising together
12 different forecasting methods.

3.5. Load Peak Sensitive Validation

The most valuable forecasts for peak load can be obtained by modeling the actual costs of
forecasting errors in the electricity market, in the distribution grid or in both depending on the purpose
of forecasting. For most comparisons, this is not practical, because of the complexity and stochastic
nature of the costs as shown before. As the cost of the errors is the fundamental reason for the need for
accurate forecasts, it is nevertheless important to have at least a general idea on how the costs form
and use criteria that reflect the load peak sensitivity of the costs.

Conventional validation statistics cannot solely guarantee the performance of a model in load
peak situations. For instance, the recent study on weather forecast-based short-term fault prediction
using a neural network (NN) model [27] showed some inherent limitations of the standard MAPE
and mean absolute error (MAE) metrics. MAPE does not work due to existence of zero values, i.e.,
the absence of network faults. MAE does not properly reflect the model performance thoroughly, e.g.,
in rare peak events. The high fault rate periods are important to predict in order to temporarily increase
preparedness to manage them. On the other hand, the results indicate that the index of agreement
(IA) [28] may provide a more robust metric for measuring the model performance, including peak
events and for model evaluation and comparison in general:

IA = 1−
⎛⎜⎜⎜⎜⎜⎜⎜⎝ SSE∑n

i=1

(∣∣∣ŷi − y
∣∣∣+ ∣∣∣yi − y

∣∣∣)2

⎞⎟⎟⎟⎟⎟⎟⎟⎠ (3)

where SSE =
∑n

i=1(yi − ŷi)
2, yi is the true number of faults, ŷi is the predictied number of faults,

y = 1
n
∑n

i=1 yi, i = 1, n, n is the sample size, and IA ∈ [0, 1], higher values of IA indicate better models.
The study [27] also showed that the resampling/boosting of rare faults peaks in the training data

can be used to enhance the ability of an NN model to forecast fault events. Figure 5 demonstrates the
results of forecasting all types of faults and faults caused by wind, originally presented in [27].
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(a) (b)

Figure 5. Weather-based fault prediction in the electricity network: comparison of NN models in two
experiments with and without resampling. (a) All faults, (b) Faults caused by wind.

NN models without resampling do not predict peaks but have better MAE as they are more
accurate for samples of fewer faults, which are prevalent in the data. On the contrary, NN models
with resampling are less accurate for samples of fewer faults, which makes MAE higher. However,
the models with resampling are able to predict large peaks, which is more valuable from the problem
perspective. For the prediction of all the considered types of faults and wind faults, higher IA values
correspond to models with oversampling, which are better at predicting peaks. Based on the given
liner regression, we see that there is still a tendency to underestimate peaks. Anyway, the index of
agreement may be useful as an additional criterion also in short term load forecasting that has similarly
challenges in assessing the performance of forecasting the load peaks.

One option to the aforementioned standard evaluation metrics are categorical statistics i.e.,
to evaluate model’s performance in critical load peak situations by discriminating electric load to a
category/class (e.g., low and high) and then apply some conventional index for each class separately or
only to the peak loads. Discrimination can also be based on variables that affect the load such as the
outdoor temperature and electricity market price. Evaluation of the accuracy of the daily peak load
forecast is sometimes used as a peak load sensitive criterion.

Accurate peak load forecasting is so important that short term peak loads are often separately forecast,
as in [29,30], for example. Peak load forecasting may be less sensitive to the choice of criterion than the
forecasting of the full profile, but absolute maximum error (AME) was used in [30] to complement
MAPE when comparing forecasting methods. This seems justified although there both criteria rated
the compared four methods clearly in the same order.

Based on the discrimination and the contingency table, a set of different standard metrics can be
derived including:

• The fraction of correct prediction (true positive rate, TPR)
• the false positive rate, FPR
• the Success Index (SI): SI = TPR − FPR

where TPR is the true positive rate representing the sensitivity of the model (the fraction of correct
predictions) and FPR is the false positive rate, representing the specificity of the model. SI is limited
to the range of −1, 1 and for a perfect model SI = 1 [31–33]. With this approach, it is also necessary
to have a category for too high predictions, because otherwise too high peak predictions would not
be penalized.
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Such categorical statistics including probability of detection (POD), critical success index (CSI)
and false alarm ration (FAR) are used, e.g., in wind power ramp forecasting as measures of accuracy for
forecasts of sudden and large power changes [34,35]. The detection and forecasting of those events is
crucial with regard to power production and load balance. However, the ability of forecasting methods
to predict those events remains relatively low for short term operation.

• Probability of detection (POD): POD = TP/TP + FN
• Critical success index (CSI): CSI = TP/(TP + FN + FP)
• False alarms ratio (FAR): FAR = FP/(FP + TP).

A possible way to classify the load to suitable categories could be based on the gradient of
the load duration curve. Also, proportions of the observed peak load or time could be considered;
for example, those times could be used when the load is over 80% of the peak load or 20% of the
highest loads measured.

4. Criteria for other Relevant Aspects than Forecasting Performance

4.1. Estimation of Confidence Intervals for Short Term Load Forecasting

Forecasting peak loads too low increases risks and costs as already discussed. Traditionally,
these risks are managed by increasing operational margins depending on the situation and based on
experience. The operational margin calculation can be the standard deviation (std.) of the short-term
load forecast error tuned by a situation dependent coefficient. Forecast error quantiles are also
used instead of the std. as the basis of the estimation of the operational margins, because in rarely
occurring exceptional situations, such as extreme peak loads, the error distribution may not be normal.
For example, Petiau [36] presented a method to estimate the confidence intervals (CI). It is based on
the calculation of quantiles of past forecasting errors. CIs quantify the uncertainty of the forecast.

The estimation of the standard errors can be performed, e.g., using the method of bootstrapping.
The bootstrapping is a nonparametric approach based on the re-sampling of the data to produce the
distribution of re-sampled validation indices [37].

Probabilistic load forecasts provide even more information for risk assessment. Hong and Fan [38]
reviewed the methods to produce and evaluate probabilistic forecasts.

Estimation of confidence intervals and the assessment of forecasting performance in exceptional
situations are closely related. They both need to focus on exceptional situations where the general
assumptions well justified for the errors of accurate forecasts may not be valid.

4.2. Computational Time

In the model identification, many new forecasting methods need much computational resources.
This can be problematic, when online learning is applied. For some methods, this is a relevant problem
also in off–line model identification, especially because the models need to be updated due to changes
in the grid, market aggregation, customer behavior, new priorities, etc. For example, support vector
regression (SVR) has so poor computational scalability that it limits the possibilities to exploit it in
1 or 3 min time resolution short-term forecasting needed in electricity grid operation [11]. Based on
a brief discussion and comparison of computation times of their models in short term forecasting,
Lusis et al. [4] concluded that model run time in model training may be an important factor when
choosing between models.

Overly detailed models that have many parameters have poor forecasting performance as the
classical textbooks of system identification, such as [39], have shown. In a different application area,
a rather recent comparison of several popular statistical and machine learning methods [40] found out
that the methods with the best forecasting performance also had the lowest run time computational
complexity. Thus, we conclude that if a forecasting method needs excessive computational resources
during operation, it is a sign that it also may have both poor performance and unnecessary computations.
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That is not always the case, however. Some forecasting methods, such as Gaussian Process Regression
models, are more computationally intensive during operation, with no connection to overfitting and
produce confidence intervals without the need for bootstrapping, which is a big advantage in the
considered short-term load forecasting cases.

Different methods also require very different amounts of working time from different types of
experts. Physically based forecasting models require good knowledge of the domain and classical model
identification. Many forecasting methods, especially many ML methods, require much expertise and
time in the tuning of method parameters and model structure to the specific case. Also, the requirements
for preprocessing the data vary.

In order to be able to compare the costs and benefits of the forecasting methods, the computational
complexity and the need for expertise and working time need to be assessed in terms of monetary costs.
The computational complexity has several dimensions such as the need for computational operations
and different types of memory. How easily and efficiently the method suits for parallel processing also
affects the cost.

5. Discussion

Electricity market costs caused by the forecast errors are quite stochastic due to the impact of very
few very high price peaks. Thus, using the observed market costs as identification and tuning criterion
is not feasible as the results of the related case study demonstrate.

The results suggest that improving the short-term forecasting accuracy of the aggregated active
demand loads further from our best recent methods [11] now may not give adequately significant
savings in the expected value of the imbalance costs to justify much method development investments.
It seems more important to mitigate the risks caused by high imbalance price peaks. A possible reason
is that the one-price consumption imbalance fees of the case study may not reflect adequately the
costs of imbalance to the power system. A more important reason is that the forecasting errors of the
aggregated distributed flexible load are rather independent and small as compared to the forecasting
errors of the overall balance of the balance responsible party responsible for the flexible load.

In the electricity markets, such forecasting errors that are much smaller than the balancing errors
of the actor or its balance responsible party have very small impact on the total balancing error. Thus, it
is much more important to focus on large errors of the component forecasts. With them, the balancing
error costs depend typically linearly on the size of the balancing error. The balancing error costs
depend on the related rules and prices of the particular electricity market but in general they tend to
reflect only marginal linearized costs in the powers system, when the balancing errors are assumed not
to affect the prices. The actual costs for the system operator grow much faster than linearly and that
may be the actual case for the competitive market actors if the impacts on balancing power price and
risk–hedging costs are not ignored.

In power distribution networks, the costs of forecasting errors concentrate very much on the
load peaks of the network. Network losses depend on the square of the current. The aging of the
components is rapidly sped–up by temperature increase caused by the losses. Thus, during low load,
the impact of load forecast errors is insignificant. During high load peaks, the load forecasting error
requires additional operational margin that is expensive. Thus, it is crucial to focus on the forecasting
errors during network peak loads that may be at times that are different from times of the peaks of the
component load forecast.

Here our focus is in model verification and validation criteria. In model identification or learning
there are more limitations regarding the type of the performance criteria. Some model identification
methods or tools may accept only certain criteria types. Some others do not have such strict limitations,
but the form and properties of criteria always affect convergence and computational efficiency together
with the identification model and method.

It was shown that the actual cost of short-term load forecasting errors is a highly non-linear and
asymmetric function of the forecasting error. For example, the penalties for underestimating the load
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should be higher than for overestimating it. The cost of the errors is also highly load-dependent.
Arguably, the right thing to do would be to construct a loss function that is specific to the forecasting
problem at hand, and have the machine learning optimize that domain-specific loss function directly.
Here we only propose, using domain-specific criteria to complement or refine a common loss function
such as RMSE rather than replacing it completely. We do not yet experiment with such domain specific
load functions, but only aim to explain what they should include and why they are needed. Many
standard forecasting packages may not yet support the possibilities to use domain specific loss functions
and adding them there could make them better available to more practitioners. The properties of the
loss function affect the properties and number of the solution and the convergence of the method
identification. These are difficult to assess if there is no analytic form of the loss function available.
We show in Section 3.1 why the prices of the electricity markets and ancillary service markets are not
directly applicable in a domain specific loss function, because rarely occurring and very unpredictable
price peaks dominate the value of the loss function. Similarly, most of the grid costs tend to concentrate
to a very few short overload periods. Thus, domain specific loss functions for the short-term load
forecasting model identification may create substantial potential risks. The domain specific loss
functions need to be designed and considered carefully. We initially assume that directly using domain
specific load functions in identification should be used in parallel with other approaches rather than
instead of them. Then the good and weak sides of the approaches can be better detected, and the
strengths of the different approaches combined. Experimenting with the use of problem-specific loss
functions also in the learning phase is a topic worth considering for future research.

6. Conclusions

The main findings were evident but also way too often ignored. (1) It is important to consider the
actual costs and other consequences of the prediction errors when selecting criteria for short term load
forecasting. (2) The behavior of the actual costs can be very nonlinear. Even quadratic cost criteria may
underestimate the growth of the costs with the size of the error and the load peak. (3) Often, the costs
stem mainly from peaks in the loads and in the market prices. For such cases, criteria that normalize
each error to the simultaneous measurement, such as MAPE, can be very misleading. (4) The results do
not support using any of the commonly used criteria to compare methods across different short-term
forecasting cases. (5) The costs in real application cases may be so stochastic that their direct use in
validation may not be appropriate. (6) Model development effort, expertise need, and computational
complexity are also often relevant when selecting short term forecasting methods.

The research results by the authors suggest that integrating different short-term forecasting
methods together into hybrids can combine their mutual strengths, thus improving performance and
robustness without excessive development effort. The main challenge of such model integration is that
it requires expertise with many different modelling methods.

Our aim was to show that the selection, development and analysis of the performance criteria
deserves attention. Blindly using so-called standard criteria may mislead the development, tuning and
selection of the short-term forecasting methods in real applications.
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Abstract: The development of Short-Term Forecasting Techniques has a great importance for power
system scheduling and managing. Therefore, many recent research papers have dealt with the
proposal of new forecasting models searching for higher efficiency and accuracy. Several kinds
of artificial intelligence (AI) techniques have provided good performance at predicting and their
efficiency mainly depends on the characteristics of the time series data under study. Load forecasting
has been widely studied in recent decades and models providing mean absolute percentage errors
(MAPEs) below 5% have been proposed. On the other hand, short-term generation forecasting models
for photovoltaic plants have been more recently developed and the MAPEs are in general still far from
those achieved from load forecasting models. The aim of this paper is to propose a methodology that
could help power systems or aggregators to make up for the lack of accuracy of the current forecasting
methods when predicting renewable energy generation. The proposed methodology is carried out in
three consecutive steps: (1) short-term forecasting of energy consumption and renewable generation;
(2) classification of daily pattern for the renewable generation data using Dynamic Time Warping;
(3) application of Demand Response strategies using Physically Based Load Models. Real data from a
small town in Spain were used to illustrate the performance and efficiency of the proposed procedure.

Keywords: short-term load forecasting; demand response; distributed energy resources; prosumers

1. Introduction

There is a large literature related to short-term forecasting in the context of electric energy and this
topic also has a great interest in many other fields. In fact, the proposal of new forecasting methods is
daily increasing because of their applicability to dispatch unit commitment or market operations [1].
In this sense, short-term load forecasting models have always been a key instrument for carrying out
such operations, although in recent years, with the increasing integration of power plants based on
renewable energy with high variability (mainly wind and solar), forecasting models for these kinds of
power plants has gained the attention of researchers and utilities. Photovoltaic (PV) systems are the
most widespread renewable based power generation systems (they stand for more than half of the
total installed capacity in power plants based on renewable sources) with a large number of small-scale
installations on medium or low-voltage grids, right next to residential consumers.
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The search for more accurate and faster forecasting methods, both in load and in PV power
generation, has resulted in a set of efficient techniques that can be divided into three different categories:
time-series approaches, regression based, and artificial intelligence methods (see [2,3]).

In the field of short-term load forecasting there are some examples of classical time-series
approaches with auto-regressive integrated moving average (ARIMA), seasonal ARIMA (SARIMA)
and ARIMA with exogenous variables (ARIMAX) (see [4–6]). Regression-based models (see [4,7])
are also widely used in the field of short-term load forecasting, including non-linear regression [8]
and nonparametric regression [9] methods. Examples of artificial intelligence methods include
fuzzy logic [10,11], artificial neural networks (ANN) [12–14], ensemble methods based on regression
trees [15,16], and support vector machines (SVM) [17,18]. Recently [19], a new hybrid model was
proposed to improve accuracy that performs well in electricity load forecasting.

On the other hand, the development of short-term PV power forecasting models has followed
a parallel path. Thus, some published works use classical time-series approaches [20], regression
methods [21], fuzzy logic models [22], ANN-based models [23], ensemble methods [24,25], and support
vector machines [25]. A comparative study of the forecasting performance of different models of the
above-mentioned approaches for the same PV plant is presented in [26], and in which the best model,
among those studied, changes according to the data available for the training process.

Undoubtedly, fitting and computation velocity improvements are desirable, but at the same time,
it is essential to take advantage of current forecasting methods. The main objective of this paper was
not to propose a new short-term forecasting method, but to illustrate how some recent ones can be
combined to predict electricity consumption and photovoltaic (PV) generation, in order to propose
efficient strategies of Demand Response (DR) for an aggregated load of consumers. On the other
hand, DR acts a regulator or damper to correct excursions of net demand of Power System buses
with demand and generation (i.e., “prosumers”) due to punctual errors of forecasts both in demand,
but specially in renewable generation, reducing the own volatility of this last resource.

Political and regulatory scenarios in several countries support the development of the so-called
Distributed Energy Resources (DER), i.e., the integration of demand flexibility, energy storage, and
generation (mainly Renewable Energy Sources, RES), which facilitates the de-carbonization objectives
of power systems by 2030–2050 [27]. For example, the European Commission (EC) is concerned with
a necessary increase of flexibility of demand involved with the integration and exploitation of DER
possibilities. The Direction General of Energy (DG ENER) reported, in a public dissertation [28], that
the theoretical level of Demand Response in 2017 was 100 GW, but only 21 GW were activated (75% of
them through incentive based options, i.e., the so-called explicit DR). The policy scenario for 2030 is
160 GW of theoretical demand potential with 52 GW activated (24% of peak load demand, assuming it
will reach 570 GW).

To accomplish this forecast, this future scenario makes necessary an increase of 300% in DR
resources in a decade, and this seems a difficult task if future forecasts fail again in the trends about
the evolution of DR [29]. In this way, it is important to consider and enhance DR. Moreover, the
net benefit of the overall deployment of DER and RES could reach €5600 million/year for the EU
economy (i.e., generate up to 1% Gross Domestic Product increase over the next decade). The potential
in the Spanish case is 17 GW; around 50% of this potential could be explained by DR and RES in
small and medium customer segments. For these reasons, DR policies in this paper are centered in
these segments. This participation also involves the capability of aggregators and system operators
to develop more accurate forecasts both on demand and generation and the necessity of making
this information (forecasts) easily accessible to customers in order to increase their participation and
engagement in markets (mainly in energy markets but also in Ancillary Service markets). More accurate
forecasts could allow customers to take advantage of the retributions of energy markets and avoid
possible penalties due to imbalances between generation and consumption. Due to the size of demand
and generation, forecasts are more difficult and can represent a barrier for customers, especially in
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tasks involved with RES forecasting. This fact makes demand flexibility a potential tool to change
this scenario.

The proposed methodology can be summarized as follows:

• Firstly, short-term forecasting methods are used to predict hourly load and photovoltaic generation
with a horizon of 24 h.

• Secondly, the predicted daily PV generation of the training dataset is grouped into homogeneous
clusters according to their shape. Next, a representative PV curve is obtained for each cluster,
and a discriminant analysis is developed to assign each predicted PV curve of the test dataset to
a cluster.

• Finally, Demand Response strategies are applied to those days with a predicted PV curve in the
suitable cluster (the one that provides more accurate predictions).

Among the wide variety of machine learning methods, we have chosen random forest to predict
the electricity consumption with a horizon of 24 h due to its proven efficiency in short-term load
forecasting [15]: high accuracy, fast computing (even for parameter tuning), and easy understanding
of feature importance results. Prediction results obtained with random forest for this dataset showed
great accuracy; therefore, other forecasting methods were not really needed.

In the case of forecasting hourly PV generation, several machine learning methods were applied
and compared, searching for the most accurate. Specifically, linear regression, neural networks, random
forest, gradient boosting, and support vector regression models were developed and tuned choosing
the optimal values for their parameters by means of genetic algorithms. Unlike hourly load forecasting,
the goodness-of-fit measures of the predicted PV curves showed lower accuracy. Regarding the
clustering method applied to the PV curves, the dynamic time warping distance [30] and average
linkage were selected for the classification stage.

The rest of the paper is organized as follows: Section 2 describes in detail all forecasting and
clustering methods used, as well as DR strategies applied in this paper. Section 3 present the results
obtained for load and PV forecasts, explaining the application of clustering and DR to minimize the
effects of forecasting errors. Finally, some conclusions and future developments are stated in Section 4.

2. Materials and Methods

2.1. Methodology Overview

Day-ahead markets represent the most active markets in terms of economic value of transactions,
but other markets have experienced a noticeable growth (for example Intraday Markets in France
and Belgium with growth rates of 54.5% and 82.9%, respectively, in 2018). Real-Time Markets
have facilitated the integration of renewables in USA markets in the last decade, and wider-scale
markets with later gate closure would facilitate the integration of renewable in other systems (e.g.,
Balancing Markets, and specifically, Reserve Replacement). The integration of demand-side resources
in markets presents both risks and opportunities for Balance Responsible Parties (BRP, responsible for
its imbalances) and Balance Service Providers (BSP, i.e., the provision of bids for balancing) and need
the development of new and more integrated methodologies. The main idea of this research work
is providing new tools to aggregators for a best management of demand and generation in markets,
both in the short-term (around 24 h) and in the very short-term (from several minutes to 1 h), to
evaluate net demand unbalance, while the aggregator or other parties take into account gate closure
times. To perform this task, the proposed methodology takes profit from different databases which
should be able for DR (demand, customer, RES, and weather). From these databases, this work applies
different methodologies to obtain well fitted 24 h forecasts for demand and PV generation, and with
these predictions aggregators evaluate bids and offers to be sent to Intra-Day or Real Time Energy
Markets (with the objective of minimizing the energy costs for customers or prosumers). Logically,
both models (demand and PV) exhibits errors and these errors can involve penalties in the markets
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because other agents (BSP, LSE) should change their energy balance and buy or sell energy in the very
short term. Considering that PV-forecasts usually have a greater error than demand-forecast, and that
a fast model is needed to manage the potential flexibility of demand in the aggregator-side, a simple
and very short-term PV forecast model is developed based on historical recordings of PV generation
(in the site) and available real-time measurements (Information and Communication Technology, i.e.,
ICT devices). This model and the results of cassation processes in short-term energy markets provide a
reference signal for flexible resources (only DR resources are considered in this paper). With the help
of different tools and scripts from a DR-toolbox (e.g., segmentation, classification, disaggregation and
modeling), the aggregator can evaluate the “demand baseline” for different end-uses in the short-term
and can propose a control signal to change demand according to its requirements. This demand is
simulated and evaluated hour by hour with several indices of performance (and modified in some
cases) to fit the demand packages offered to energy markets (i.e., net demand). In other cases, when
the power system tackles for flexibility, the aggregator can provide additional flexibility to energy and
ancillary services markets, agents or Transmission Operators.

Figure 1 presents an overview flowchart, which depicts the methodologies and tools to be used
through the paper.

Figure 1. Methodology flowchart.

A quantitative analysis for demand-side flexibility seems necessary thorough the definition and
the evaluation of some indicators (i.e., DR indices in Figure 1) that allows to score the flexibility and
performance of loads being controlled, basically at the aggregated level. These indicators converge
with the idea of some voluntary schemes in the EU that intend to express the “readiness of a building”
(in this case the readiness of the load inside buildings). According to these proposals [31], these
indicators mean: “readiness to adapt in response to the needs of the occupants, readiness to facilitate
maintenance and efficient operation, and readiness to adapt in response to the situation of the energy
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grid”. Taking into account this last requirement, a score is performed through the indicators to be
described in Section 3.4.3.

2.2. Characteristics of the Customers: Demand, Photovoltaic Generation, and End-Uses

All electricity customers from a small town (4400 inhabitants), sited in the north Spain, have
been selected for simulation purposes in this work. These customers include residential, commercial,
and industrial clients, although most of the power consumption is due to the residential ones. Basically,
this group corresponds to average residential customers in the south countries of the EU. The rated
power per customer ranges from 3 to 8 kW. The climate is continental, and winter temperatures range
from 0 to 13 ◦C and in summer from 13 to 29 ◦C.

Regional investors built a PV plant in the vicinity of the town, with a significant capacity with
respect to its power demand. The PV plant is composed of two-axis solar trackers with a rated power
of 1.9 MW, and it is connected to the same power substation that links the town to the grid.

Hourly load and photovoltaic generation data from 1 October 2008 to 31 March 2011 (both included)
were available. These data were obtained from the electric utility distributor and corresponded to
hourly average power measurements in the substation. It is worth mentioning that it has been very
difficult to obtain real data corresponding to a considerable customer group that can act as prosumers
(consumers and producers); thus, we had to manage data not as recent as desired.

Figure 2a shows the winter and summer loads for two selected workdays monitored at the
distribution level (substation) that supplies power at 13.2 kV to the distribution transformer centers (CT)
of customers (basically residential and commercial supply). Figure 2b shows the average temperature
in the area for the same two selected workdays. Figure 2c plots the hourly PV power generation on the
peak production days (days with the highest energy generation) of January and June 2010. The PV
power generation values in the central hours of the day can mean an important fraction of the town
consumption (30–40%). The selection of January and June as representative months is due to the fact
that June corresponds to the month with the highest PV generation, while January corresponds to the
lowest PV generation and the highest energy consumption. In Figure 2, it is also shown the average
profiles of demand, temperature and PV generation for the period in which data is available (from 1
October 2008 to 31 March 2011). It is remarkable that the average PV generation profile (Figure 2c)
is lower compared to the other ones (June and January). This fact can be explained because months’
profiles are representing the peak power days, while the average profile includes days in which there
are no PV generation due to adverse weather conditions.

Figure 2. Load, Temperature and PV Generation profiles: (a) example of winter and summer Load
Curves in the power substation; (b) example of winter and summer temperature behavior; (c) example
of winter and summer power generation in the PV plant on peak production days.
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The use of DR portfolio for damping both the errors in the evaluation of demand in short-term and
the intrinsic variability of PV generation sources need the evaluation of DR potential and its flexibility
in each customer segment. First, this evaluation must be based on the knowledge of end-uses for an
average customer. The first alternative to know demand composition behind-the-meter is the use of
the information provided by Smart Meters (SM) and then apply some Non-Intrusive Load Monitoring
(NILM) methodology, for example [32]. This last approach involves the full development of capacities
of available home automation technologies, considering the increasing deployment of Smart Meter in
several countries around the world [33]. Some of these methodologies have been reported by authors
in previous papers [34] to obtain end-use disaggregation/profiles in residential segments and their real
flexibility when DR policies are applied (i.e., DR validation).

In some cases, and from a practical point of view, it is possible that some problems arise for a
practical implementation of DR based on end-uses, for instance: small customers do not have yet any
SM, confidentiality of data is in question, Data Exchange Platforms (DEO) are not fully developed,
and the availability of data is scarce [35] or the aggregator has access to meter data but without the
necessary granularity or quality (i.e., it is usual to have data with granularity ranging from 15 min to 1 h
which usually makes much more complex the identification of loads through NILM methods). In this
way, an alternative access to demand data should also be considered by aggregators to accomplish the
evaluation of DR potential. This alternative is based on periodic surveys performed by international
or national Energy Agencies, for example EIA (data from 2015, [36]) in the United States or the Joint
Research Centre (data from 2016, [37]) in the European Union. In this way, a residential “average” EU
or USA customer (and its end-use share) can be estimated according to these data. In the case under
study, available reports from the Institute for Energy Diversification and Energy Savings (IDAE, Spain)
and the Spanish Government [38] have been analyzed. Table 1 depicts the main end-uses for Spain,
EU-28 countries and the USA. Notice that in European Mediterranean countries, the Air Conditioning
load represents a higher percent (66% of households have this appliance and the increasing trend is
quite solid). A similar trend can be reported in the USA, because 87% of homes use air conditioning.
It accounts for 12% of annual residential energy expenditures and is a large factor in fluctuations in
residential electricity use. Heat Pumps (HP) exhibit similar trends according to EIA estimations [36]:
the share of heated homes using HP increased from 8% to 12% in a decade (from 2005 to 2015). At
the same time, the share of homes using electricity for water heating (WH) increased by 7% (to 46%).
Due to this fact, both loads (HP and WH) have been considered to evaluate demand flexibility in this
work. Moreover, winter period has been selected for simulation purposes in the following paragraphs,
because demand in winter is higher than in summer and the climate in this Spanish area is more
restrictive for PV generation possibilities.

Table 1. Main end-uses share in the residential sector according to some estimates in the USA [36],
EU-28 [37], and Spain [38] adapted and updated from [39].

Type of End-Use
USA (2015)
All Fuels

USA (2015)
Electricity

EU (2016)
All Fuels

Spain (2014)
All Fuels

Spain (2014)
Electricity

Space Heating 43 14.76 64.7 42.9 7.36
Water Heater 19 13.65 14.5 17.9 7.47

Air Conditioning 6.24 16.89 0.3 0.98 2.33
Refrigerators 4.75 7.02 - 7.94 -

Other * 29.8 47.67 20.5 39.22 82.84

*: Appliances and Electronics.

To obtain some representative profiles, it seems necessary to evaluate load dynamics, and the
service the customer obtains from them. Figure 3a,b shows some real end-use load profiles for a
household belonging to the overall customer demand, previously shown in Figure 2. In this case,
feedback from everyday activities [40] of the customer is important to refine profiles, improve DR&EE
(Demand Response and Energy Efficiency) success and gain customer interest in energy concerns.
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Regulations can help aggregators to establish load profiles. Figure 3a shows an average HP consumption
profile in winter, as in this study, DR simulations to balance generation are focused on this period.
Figure 3b shows an average water flow use to determine WH requirements extracted from EN 15316-3-1,
Section 5 (EU normative). Figure 3c shows the proposed end-use profiles for an average customer.

Figure 3. Daily end-uses and customer service: (a) HP profile; (b) daily use of residential Water Heater.
(c) Daily profiles for main end-uses (winter). Acronyms: EH: Heating (Electric heaters and Heat
pumps), WH: Water Heating; CO: cooking; LIG: lighting; FR: fridges; WM: washing machines; DW:
dishwasher; OV: Oven; PC: computers; DRY: dryers; OT: Others; and CUST: overall customer demand.

The procedure for obtaining end-uses profiles (Figure 3) could be explained as follows. In the
first place, the aggregator needs to recover basic information about customer daily overall demand
(aggregated or not) through Smart Metering (Figure 1, left bottom side). This information, alongside
weather databases and public reports of energy household demand and share of end-uses in terms of
energy, allows the aggregator the calculation of “household baselines”. At this point, the aggregator is
able to run and refine Physically Based Load Models (PBLM) both at elemental and aggregated levels
(i.e., include inputs/outputs for these models). With PBLM and average weather inputs the aggregator
obtains “end-use baselines” for each end-use with relevant potential for DR (e.g., HVAC, space heater,
WH, or thermal ceramic heaters, Figure 1), and their average daily demand in each season/month.
Finally, “elemental baselines” (kWh and profiles) are modulated through coefficients (considering
weather conditions and customer behavior) to fit the “overall baseline” for the customer.

2.3. Short-Term Forecasting Methods

In this section, the forecasting methods used to predict hourly load and PV generation are described.

2.3.1. Random Forest

Random forest is an ensemble method based on regression trees whose efficiency in load forecasting
has been widely illustrated [15]. Being based on regression trees makes random forest a flexible method
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in case of complex and non-linear relationships, and as an ensemble method, it can provide low bias
and reduces the variance of predictions.

Some other ensemble methods based on regression trees are bagging, conditional forest or boosting,
whose efficiency in load forecasting has been shown in different papers (see for instance [41]).

Random forest is a generalization of bagging (bootstrap aggregating), but only a random sample
of “mtry” predictors can be chosen at each split of the regression tree. This approach will reduce the
variance of the estimations more than bagging, mainly in the case of correlated predictors. In this paper
we have decided to use random forest to predict the electricity consumption instead of conditional
forest of boosting due to its simplicity in parameter calibration and fast computation.

The efficiency of random forest depends on a suitable selection of the number of trees N and the
number of predictors “mtry” tested at each split. However, random forests will not overfit when N
increases, thus, we can focus on calibrating only the parameter “mtry”. The calibration of the parameter
and the random forest method have been implemented throughout the R package “caret”, see [42].

2.3.2. Stochastic Gradient Boosting (SGB)

Another ensemble method based on regression trees is the stochastic gradient boosting. It has been
successfully used in short-term load [43] and PV power [44] forecasting applications. The SGB method
is based on the sequential construction of additive regression models, usually in the form or regression
trees with a maximum tree size. At each iteration, the models are fitted, by least squares, to a random
sample of pseudo-residuals of the previous stage. Thus, the SGB method applies a gradient descent
algorithm, reducing the error (difference between output value and expected value) at each iteration.

The develop of an SGB forecasting model requires the selection of the values for a set of tuning
parameters which include the number of trees (also called as iterations), the interaction depth,
the shrinkage or learning rate, the minimum number of observations in terminal nodes of the trees,
and the bagging or sampling fraction. Unlike the random forest method, SGB models with many
trees are prone to overfitting; thus, that number must be carefully chosen. The complexity of the SGM
model is related to the interaction depth which corresponds to the maximum size of each tree. The
shrinkage parameter manages the influence of each sequential tree on the final value provided by the
SGM model. The minimum number of observations in terminal nodes or leaves of the trees limits
the observations used to provide their mean value as the response of that terminal node. Finally, the
bagging fraction corresponds to the fraction of the training dataset observations randomly selected to
build each tree (small values reduce the possibility of overfitting, but increase the model uncertainty).
For a detailed description of the SGB method, see [45].

2.4. Time-Series Clustering

Clustering is an unsupervised technique whose objective is to separate objects (represented
by a multivariate dataset) into homogeneous groups (called clusters), such that objects in the same
cluster have high similarity among them, but low similarity with the objects in a different cluster. It is
considered an exploratory technique very useful by itself or as a previous step for other kind of data
analysis. Depending on the way the clusters are generated, clustering methods can be divided in two
big sets: hierarchical methods and divisive methods. In addition, the resulting clusters are determined
by the distance or similarity measure and the linkage method selected.

A special case is time-series clustering, where each object to be grouped corresponds to a sequence
of values as a function of time. One of the main advantages of clustering time-series is that it allows
the discovery of hidden patterns in time-series datasets. Generally, three different objectives can
be considered in this context: finding similar time series in time, in shape, or in change (structural
similarity). The selection of a suitable distance measure is essential and depends on the objective
pursued. Interesting surveys in the field can be found in [46,47].

In this paper, we have focused on similarity in shape to cluster the daily curves of photovoltaic
generation. Dynamic Time Warping (DTW) distance, described below, was chosen for that purpose.
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Regarding the nature of the clustering, hierarchical technique together with average linkage were
selected. These clustering methods were developed by means of the R package TSclust [48].

DTW distance, introduced by [30], is commonly used for measuring shape-based similarity
between two time series, which may vary in timing. The main advantage against other shape-based
distances such as Euclidean or Wavelet Transform is its invariance to warping. In our context, daily
curves of PV generation are conditioned by sunlight hours, which vary along the different seasons.
That makes DTW distance suitable for clustering a set of daily PV curves along different years.

Given two time series (xi) I = 1, . . . ,m and (yj) j = 1, . . . , m, it starts calculating a nxm matrix D
= (Dij) with the distance between every possible pair of point xi and yj in the two time series, Dij =
d(xi,yj), I = 1, . . . , n, j = 1, . . . , m, where d(xi,yj) can represents the Euclidean or the absolute distance.
According to [30], a warping path w is a contiguous set of matrix elements which defines a mapping
between (xi) and (yj) that satisfies the following conditions:

• Boundary conditions: w1 = (1; 1) and wk = (m; n), where k is the length of the warping path.
• Continuity: if wi = (a, b) then wi−1 = (a’, b’), where a − a’ ≤ 1 and b − b’ ≤ 1.
• Monotonicity: if wi = (a, b) then wi−1 = (a’, b’), where a − a’ ≥ 0 and b − b’ ≥ 0.

The objective in DTW distance is to find the shortest warping path. Due to its high computational
cost, different approaches have been proposed to optimize the calculation (see [49]).

2.5. Demand Response Strategies

Demand Response policies have been used by ISOs since the early 1980s. In the first years of
DR, the objective was to achieve a more rational planning and operation of resources. In recent years,
with the development of energy markets and the increasing share of RES in the generation mix, DR
becomes more centered in the customer and in the integration of the available RES potential. Demand
Response can be divided into explicit and implicit DR. Implicit DR means the change of demand due
to prices whereas explicit DR involves the change of demand when System or Distribution Operators
(i.e., ISO or DSO) forecast and declare an event into the system in the short-term.

To respond to these events or prices, the most common policy is to limit demand. This reduction
can be performed through the cycling of power supply (the supply is switched ON and OFF alternatively
following a rectangular wave u(t)). If the natural “cycling” of the end-use being controlled, m(t)
(the operating state of the control device), is greater than u(t), the DR action is effective (notice that
an appliance can describe cycles or not, for example a fridge or an inverter heat pump, but every
load has its operating state m(t) with respect to rated power). Considering that, in practice, demand
measurements are discrete (every 5, 15 or 60 min) and it is necessary to define average values in a time
period [t, t + k]. Mathematically, Equation (1):

m(t) =
Peu(t)
RPeu

; m(t, t + k) =
1

kRPeu

∫ t+k

t
Peu(t)dt; u(t, t + k) =

tON
k

(1)

where m(t, t + k) and ū(t, t + k) are mean values of m(t) and u(t) in the time period k, respectively,
and tON is the time in this period where a “representative” (average) load remains switched ON and
demands power.

The models to be used (to obtain m(t) and apply u(t)) are PBLM, a methodology proposed first
to solve problems such as cold load pickup. The main reason for this choice is that these models are
“white” [50] or “grey” [51] models which allow physically explaining the dynamics of the appliance
and its environment and consequently foreseeing its changes. In this work, PBLM “grey” models for
HVAC (Heating, Ventilation and Air Conditioning) and WH loads (heating and ventilation) previously
proposed in [39] have been used. Figure 4 shows an electrical-thermal equivalent for this model for
heating loads (a broader explanation of parameters can be found in several references [52,53]).
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Figure 4. Example of PBLM for: (a) HVAC (Heating, Ventilation and Air Conditioning); (b) WH
(Water Heater).

The main features of these models are: they consider heat gains and losses, for instance solar
radiation (Hsw, Hw) or internal gains due to inhabitants (Hr) or appliances (Ha) (Figure 4a); the model
takes into account heat storage from the specific heat of external walls (Cw), indoor masses (Ca, C1 and
C2, especially important for WH) or roof/ground (Crg); and it considers the control mechanisms which
drive appliances (for instance thermostats m(t) and DR policies u(t)). Moreover, their state variables
are temperatures: indoor (Xi), walls (Xw), roof/ground (Xrg) for HVAC loads (Figure 4a), and X1, X2 for
the stratification of water in the reservoir (“hot” WH1 and “cold” WH2 sub-tanks, Figure 4b), that is to
say, characteristics that allow the evaluation of energy flows and storage capabilities (i.e., the indirect
capacity of storage in the envelope of buildings), the direct storage in WH or the loss of customer
service due to the application of DR (i.e., internal or hot water temperature).

These models are individual ones and need a further aggregation to reach a minimum demand
level (size of reduction packages) established by specific regulations of electricity markets to bid or offer
into these markets (e.g., from 100 kW to 1 MW depending on each specific service or market [54,55]).
This task is often developed by energy aggregators.

To achieve these packages, the aggregator needs to rise ON-time to increase demand of each specific
end-load whereas a decrease of demand requires a reduction of ON-time. The second alternative
(the traditional one) is easier because the aggregator only needs to manage the rate of switching-OFF
and switching-ON times of the power supply to load. This is easy to perform through hardware by
classical methods (e.g., ripple control of WH in Germany, [56,57]) or home automation methods (e.g.,
controlled plugs through Z-Wave protocols [58] and universal software platforms for control [59]).

An important concern for the practical implementation of modern DR policies is the Automated
Demand Response (ADR), because customer manual control does not fit the requirements both of
accuracy and reliability of response. It is imperative for the success of ADR the development of standards
for the communications between operators, aggregators and their customers’ automation equipment [60]
and the feedback from them. Open automated demand response protocol (OpenADR [61]) represents
a good example of such a standard. Every day, more and more devices are certified to use OpenADR
2.0 protocols, and especially Smart Thermostats, but this certification is not necessary if some gateway
assumes the role of “last-mile” controller and is compliant to receive and transmit OpenADR protocols.
For example, home automation platforms such as Universal Devices ISY994 Series [62] allows the
communication of residential customers with OpenADR, sending consigns and commands to home
automation technologies working with different protocols (Zwave+, Insteon/X10, Zigbee Pro, Amazon
Echo or Google Home). Other platforms, from well-known manufacturers, such as ABB SACE’s Emax
2 Power Controller, develop similar functions [63] but at building scale. Examples of ADR capabilities
of grid-integrated buildings and building microgrids, architecture, and standards can be found in [60].

The rate of change is defined to the PBLM software by PWM waves: the carrier wave being tried
has a frequency of 0.833 mHz (i.e., 1 cycle every 20 min) and the modulating waveform is the desired
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decrease in the average value in m(t, t + 20 min) according to deviations between 24-h PV forecasts
(see Section 3.2) and 1-h PV forecasts used in markets (Figure 1).

The reasons for choosing 20 min have physical and technical senses. The first can be explained
from the point of view of load service in the case of HVAC: if a harsh control is needed, switch-OFF times
greater than 20 min can cause thermal fluctuations in the dwellings, easily noticeable by consumers
(this can produce a lack of customer engagement in DR). The second reason is the so-called “lock-out”
or mechanical delay of heating and air conditioning units. This mechanism is used to prevent a rapid
recycling of the compressor avoiding mechanical damages. From the point of view of DR, it can cause
an additional delay when applying ON/OFF and thermostat control signals. To evaluate the effect and
characterize (from a statistical point of view) this process, some residential HP appliances (rated power
from 1 kW to 3 kW) were monitored by authors. Changes in customer demand due to control actions
have been recorded by an electronic meter and several Z-wave wall plug switches which send data to
PCs using an USB gateway. Results depict that ON latency time ranges from 20–60 s and OFF latency
times range from 10–40 s [64]. That is to say, the minimum ON-time should be in the range of one
minute to limit inherent errors due to latency.

The first alternative (i.e., the increase of demand) is a less traditional option for DR [65]. Several
reasons explain both the lack of use of these alternatives and their real interest. For instance, the increase
of demand requires the control of thermostats. This control is more expensive than the supply control
because smart thermostats are expensive. The cheapest option (e.g., Z-Wave) cost around € 150–200,
whereas a remote switch costs around € 40–60. Fortunately, modern appliances include control of
temperature though mobile-phones or PC, and these alternatives can be used for control (notice that
some of them are compliant with well-known DR standard protocols [61]). In other cases, where
the control device is intrusive (this is the case of WH), the cost of thermostat is similar, but the
same maintenance (labor cost) is needed to include this option in the appliance. Over the last few
years, some HPWH manufacturers in the USA have included these options for large units (200–500 L
reservoir/storage tanks), for example [66].

The control of the thermostat (up or down, according to season, and usually used for pre-heating
or pre-cooling policies in the dwelling being conditioned) has been proposed as a “virtual-storage”
resource [67] for customers to take profit from Time of Use (ToU) tariffs or to “prepare” loads to face to
DR events policies and maintain customer service (i.e., internal temperatures of houses or dwellings).

Usually, these policies have been used before the load is controlled, but the proposal in this paper
is to use them continuously to adapt demand to changes in the forecasted PV generation. The control of
the thermostat is evaluated and changed, if necessary,±0.5 ◦C every 20 min. The reason for selecting this
value is that 0.5 ◦C is a usual value for the change of temperature settings in home smart-thermostats.

In this way, the proposed control strategy u(t, t + k) for heating is done by Equation (2):

u(t, t + k)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
> m(t, t + k)→ Xsup =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
Xsup + ΔX; u(t, t + k) > u(t− k, t) + db

2 and Xsup < Xlim

Xsup; u(t, t + k) > u(t− k, t) + db
2 and Xsup ≥ Xlim

Xsup; u(t− k, t) − db
2 < u(t, t + k) < u(t− k, t) + db

2
Xsup − ΔX; u(t, t + k) < u(t− k, t) − db

2

< m(t, t + k)→ u(t, t + k) =
{

PWM(ΔPVgen); Xi(t− k, t) > Xserv
i

u(t− k, t); Xi(t− k, t) < Xserv
i

(2)

where Xsup is the upper temperature of load’s thermostat, which is set as a simple hysteresis cycle with
dead-band db (usually ranging from 0.01–0.03 pu), and Xlim is the maximum reasonable temperature
inside the dwelling (for example 22–23 ◦C in the case of HVAC, in winter) or the maximum temperature
of water inside the tank (68 ◦C), which avoids risk of burns if a mixing valve is not used for the
control of hot water pipeline. Xi

serv is a minimum service level for the appliance (a minimum comfort
temperature inside the dwelling, for example 16 ◦C, or a minimum temperature of hot water inside the
WH, for example 36 ◦C).
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Basically, Equation (2) means that load control is done by a double control. In the case of heating
(electric heaters or HP) if the load must go up, the thermostat goes up until it reaches the maximum
allowable value (Xlim). Otherwise, if demand must fall to balance a decrease in PV generation (with
respect to 24 h forecast), the thermostat or the supply is controlled to reduce demand. Notice that a
“baseline”, (i.e., load demand evaluated without control m(t, t + k)) is also needed as reference for
controlled load. This baseline also comes from PBLM models (Figure 1).

3. Results and Discussion

3.1. Prediction Results for the Electricity Consumption

In this subsection, we provide 24-h-ahead predictions for the electricity consumption of the Spanish
town in order to apply them to the context of Demand Response. For that, the ensemble method
random forest described above was applied and some other aspects such as predictors importance or
parameter selection was also developed.

On the one hand, it is well known that hourly loads of the previous days are the most important
factors in short-term load forecasting. On the other hand, temperature is a factor that might affect the
electricity consumption (cooling and heating of buildings). Therefore, prediction of hourly temperature
for the location of the town under study was also used as an input in the load forecasting model,
obtained as explained in the Section 3.2. In addition, several calendar variables such as the hour of
the day, the day of the week, the month of the year and holidays have been taken into account in the
design of the load forecasting model. Table 2 depicts the 49 predictors used for the load forecasting
model: 23 dummies for the hour of the day, six dummies for the day of the week, 11 dummies for the
month of the year, one dummy for holidays, one predictor of the forecasting temperature and seven
predictors of historic loads (lags 24 h, 48 h, 72 h, 96 h, 120 h, 144 h, and 168 h).

Table 2. Description of the predictors.

Predictors Description

H2, H3, . . . H24 Hourly dummy variables corresponding to the hour of the day
WH2, WH3, . . . WH7 Hourly dummy variables corresponding to the day of the week

MH2, MH3, . . . , MH12 Hourly dummy variables corresponding to the month of the year
FH1 Hourly dummy variable corresponding to national, regional or local holidays

Temperature Predicted hourly external temperature.
LOAD_lag_i Hourly load lagged “i” hours, with i = 24, 48, . . . ,168.

Before any analysis, a previous data filtering has been developed in order to detect and substitute
missing cases or measurement errors. Moreover, in all cases the training period for model fitting
ranges from 1 October 2008 to 31 November 2010, whereas the test period ranges from 1 January 2011
to 31 March 2011.

Three different measurements, given in Equations (3)–(5), were used to obtain the accuracy of the
forecasting models: the root mean square error (RMSE), the R-squared (percentage of the variability
explained by the forecasting model), and the mean absolute percentage error (MAPE).

The root mean square error is defined by:

RMSE =

√√ n∑
t=1

(yt − ŷt)
2

n
(3)

The R-squared is given by:

R− squared = 1−
∑n

t=1 (yt − ŷt)
2∑n

t=1 (yt − y)2 (4)
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The mean absolute percentage error is defined by:

MAPE =
100
n

n∑
t=1

∣∣∣∣∣ yt − ŷt

yt

∣∣∣∣∣ (5)

where n is the number of data, yt is the actual load at time t, ŷt is the forecasting load at time t, and yt
is the mean value of the actual load. A slightly variants of this measure are the mean absolute error
(MAE) and the cumulative absolute error (CAE).

Taking into account that the accuracy for special days (weekends and holidays) is usually lower
than for regular days, the above goodness-of-fit measurements were obtained separately for each
group of the test data.

Parameter tuning in random forest mainly refers to select an optimal number of trees (ntree) and
an optimal number of predictors considered at each split (mtry). In fact, the selection of parameter
ntree is quite easy because higher values do not lead to overfitting; thus, only a high enough value is
needed. The optimal mtry = 12 was obtained by means of 10-fold cross-validation with three repeats
and using a random grid with nine values (among the 49 possible).

Table 3 shows the goodness-of-fit measures for the training and test datasets after applying
random forest with ntree = 200 and mtry = 12, and even for regular and special days separately.
Furthermore, the importance of each predictor in the forecasting model has been obtained through
the node impurity, getting that the electricity consumption at the same hour of the previous week
(predictor LOAD_lag_168) is the most important predictor and that the following five most important
ones are also historical loads. Temperature was in the 11th position of importance.

Table 3. Goodness-of-fit measures for regular and special days in the training and test datasets.

Measure Regular Days
Special
Days

All
Days

Error_mean_train (kW) 6.88 −11.87 0.83
Error_mean_test (kW) 35.39 −4.94 22.84
Error_sd_train (kW) 114.29 107.18 112.39
Error_sd_test (kW) 173.84 154.95 169.19

Error_skewness_train −0.16 −0.19 −0.15
Error_skewness_test 0.37 0.45 0.42
Error_kurtosis_train 10.93 8.48 10.21
Error_kurtosis_test 4.05 5.74 4.44
RMSE_train (kW) 114.49 107.83 112.39
RMSE_test (kW) 177.34 154.92 170.68
R-squared_train 0.98 0.94 0.98
R-squared_test 0.95 0.81 0.95

MAPE_train 2.05 2.45 2.18
MAPE_test 3.36 3.63 3.44

Figure 5 represents the evolution of the goodness-of-fit measures for each hour of the day, where
the best accuracy is reached early in the morning.

As an example, Figure 6 shows the actual and predicted load for a complete week in the test dataset.
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Figure 5. Goodness-of-fit measures by hour of the day in the test dataset: (a) using RMSE; (b)
using MAPE.

Figure 6. Actual and forecasting load for a week (14–20 February 2011).

3.2. Prediction Results for the Photovoltaic Generation

In this subsection, we describe the short-term PV power forecasting model able to offer 24-h-ahead
predictions for the PV plant placed in the town under study in the context of Demand Response.
As mentioned above, this forecasting model is based on the SGB method, which allowed the creation
of the forecasting model with the lowest RMSE from a set of models developed with techniques
such as linear multivariate regression, artificial neural networks, random forest, and support vector
machines. The SGB method was selected because it achieved the lowest RMSE with a five-fold
cross-validation procedure with the training dataset. All the forecasting models used the same training
dataset, and their parameters were optimized following a similar procedure to the described, for the
SGB, in the following paragraphs.

Table 4 shows the explanatory variables used to develop the PV power forecasting model.
The dependent or output variable was the hourly power generation in the PV plant for each hour of
the day (only daylight hours were considered). The explanatory variables include hourly weather
predictions obtained with the Weather and Research Forecast (WRF) mesoscale model [68], a numerical
weather prediction (NWP) model able to produce forecasts for a geographical region with the desired
spatiotemporal resolution. In order to produce the weather forecasts, the WRF model is started every
day with the initial and boundary conditions provided by the forecasts of the GFS model, an NWP
model with global coverage, run and maintained by the National Centers for Environmental Prediction
(NCEP) from USA. From the values provided by the GFS model with a 1◦ × 1◦ (latitude–longitude)
spatial resolution for the 00:00 Universal Time Coordinated (UTC) cycle, the WRF model provided
predictions of weather variables over the region where the town under study is located with a time
resolution of one hour, and a spatial resolution (distance between points of the grid of analysis) around
12 km. The forecasts of the desired weather variables for the location of the PV plant, or for the location
of the town, were calculated by bilinear interpolation from the forecasts for the four nearest grid points.
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For a real operation, these weather predictions can be available for a new day before dawn and include
all the forecasts for the 24 h ahead.

Table 4. Explanatory variables for the PV power forecasting model.

Name Description

swflx Surface downwelling shortwave flux (W·m−2)
temp Temperature at 2 m (Kelvin)
pres Surface sea level pressure (hPa)
mod Wind speed at 10 m (m/s)
dir Wind direction at 10 m (degrees)
rh Relative humidity at 2 m (per unit)
cft Global cloud cover (per unit)
cfl Cloud cover at low levels (per unit)

cfm Cloud cover at medium levels (per unit)
cfh Cloud cover at high levels (per unit)
prec Accumulated rainfall in the hour (kg·m−2)
vis Visibility (m)

clear Clear-sky global horizontal irradiance (W·m−2)
aghi Average global horizontal irradiance (W·m−2)
aip Average irradiance on panel (W·m−2)
h1 Cosine of the day fraction for the hour
h2 Sine of the day fraction for the hour

The WRF model provided the hourly values of most of the 17 explanatory variables of Table 4
(variables from swflx to clear). The variable swflx corresponded to the global horizontal irradiance.
Wind speed and direction were included because of the effect they could have on the temperature of
the PV panels and, therefore, in their efficiency. The aghi variable matched to the average value of
the forecasts for two consecutive hours of the swflx variable, that is, the average value of the global
horizontal irradiance throughout the last hour. The aip variable corresponded to the average value
of the irradiance on the PV panel throughout the last hour and it was calculated considering the
characteristics of the PV panel with two-axis trackers and the solar geometry, as the aggregation
of the direct normal and total diffuse irradiances on the tilted surface of the PV panels. The direct
normal irradiance was obtained with the Erbs model [69] using the values of aghi and the total diffuse
irradiance was calculated by means of the King model [70]. The variables h1 and h2 were used to code
the hour (on UTC hour basis).

In order to select the best structure of the forecasting model, an optimization methodology was
used based on the genetic algorithm (GA) with advanced generalization capabilities. This methodology
is the GA-PARSIMONY [71], which allows the selection of parsimonious models. The main difference of
this methodology with respect to the conventional GAs is a rearrange in the ranking of the individuals
based on their complexities, so that individuals with less complexity (in this case, models with a less
complex structure) are promoted to the best position of each generation. The promotion of less complex
models with respect to the rest of individuals in the same generation with comparable fitness, allows
the obtainment of models with improved generalization capability.

The GA-PARSIMONY methodology is implemented in the R package GAparsimony [72], which
was the tool used to optimize the PV power forecasting models. In the case of the SGB model,
the optimization process could choose the number of trees (in the range 20–250), the maximum
interaction depth (range 3 to 8), the shrinkage value (range 0.001 to 0.25), and the minimum number
of observations per terminal node (range 2 to 8), as well as select the input variables among those
available (Table 4). The bagging fraction was fixed in 0.5. The fitness function corresponded to the
negative value of the average RMSE obtained with five-fold cross-validation and three repeats with the
training dataset. The complexity of the forecasting models evaluated in the optimization process was
ten times the number of input variables used by the model plus the square of the maximum interaction

141



Energies 2020, 13, 11

depth. The number of individuals per generation was 50, the maximum number of generations 100,
and the re-rank error value 0.1 (individuals with lower complexity and difference in the fitness value
lower than the re-rank error were promoted to top positions in the ranking of each generation). The
final model, achieved after the optimization process, used only 11 input variables (swflx, hr, pres, prec,
mod, clear, cfm, temp, dir, cfl, and h2), had 182 trees, its maximum interaction depth was 6, its shrinkage
value was 0.1197, and the number of minimum observations in a terminal node was 3. Table 5 shows
the goodness-of-fit measures for the training and test datasets, where the RMSE, R-Squared and MAPE
values are calculated using Equations (3)–(5), taking as yt the actual PV generation power at time t and
ŷt the forecasted value for such hour. The high MAPE values are mainly due to very low actual PV
generations in early and late daylight hours, when a small forecasting error can correspond to a very
high absolute percentage error value.

Table 5. Goodness-of-fit measures in the training and test datasets for the PV power forecasting model.

Measure Value

Error_mean_train (kW) 4.96
Error_mean_test (kW) −19.52
Error_sd_train (kW) 308.60
Error_sd_test (kW) 362.12

Error_skewness_train −0.021
Error_skewness_test −0.173
Error_kurtosis_train 0.906
Error_kurtosis_test 0.994
RMSE_train (kW) 302.52
RMSE_test (kW) 350.34
R-squared_train 0.78
R-squared_test 0.70

MAPE_train 237.31
MAPE_test 310.06

Figure 7 plots the actual and forecasted hourly PV power generation values for a week in the testing
dataset. Notice that the forecast is carried out each day before dawn and, up to now, no correction is
applied along the day.

Figure 7. Actual and forecasting PV power for a week (14–20 February 2011).

3.3. Classification Results of Photovoltaic Curves

The classification stage of the proposed method has been carried out in three steps: firstly,
the predicted daily curves of PV generation corresponding to the training period (from 1 October 2008
to 31 December 2010) are clustered into homogenous groups using DTW distance and average linkage;
secondly, the “desired” cluster is selected (the one whose predicted PV curves better fit the real PV
curves) and a centroid curve for each resulting cluster is obtained; finally, each predicted daily curve in
the test period (from 1 January 2011 to 31 March 2011) is classified into the nearest cluster by computing
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its DTW distance with each centroid curve. Those days in the test dataset of which the predicted PV
curves are classified into the “desired” cluster will be the ones selected for applying DR policies.

First step described above implies the hierarchical clustering of 822 time series (number of days
in the training dataset) of length 24 (hourly data). The resulting dendrogram provided five possible
groups, whose centroid curves are given in Figure 8 (observe that the main difference among the curves
falls on the magnitude of the generated energy, except for the fifth cluster). For each of the five resulting
clusters, we computed the median of the percentage error for all days in the clusters, obtaining 19.36%
for Cluster 1, 39.95% for Cluster 2, 77.41% for Cluster 3, 57.09% for Cluster 4, and 48.15% for Cluster 5.
Therefore, Cluster 1 provided lower fitting errors than the rest of clusters, and hence, it was considered
the “desired” cluster for our purpose. As the desired cluster provides lower errors, those forecasting
PV curves of the test dataset that are classified into the desired cluster are expected to better fit the real
PV curves than the ones that are classified into any of the not desired clusters.

Figure 8. PV centroid curves of each cluster in the training dataset.

The results obtained in the final step of the classification stage were the following. A total of
31 days in the test period were classified into Cluster 1 (the “desired” cluster), whose dates are given in
Table 6 (recall that all days refer to year 2011) and some examples comparing the real PV and predicted
PV (24 h ahead) are given in Figure 9.

Table 6. Dates of the test period (2011) classified into Cluster 1 (and therefore selected for DR actions).

Day (Number) Date (dd/mm) Day (Number) Date (dd/mm) Day (Number) Date (dd/mm)

1 4 February 11 10 March 21 20 February
2 5 February 12 11 March 22 20 March
3 5 March 13 12 February 23 21 March
4 6 February 14 14 January 24 22 March
5 6 March 15 14 February 25 3 January
6 7 February 16 16 January 26 23 March
7 7 March 17 18 February 27 24 January
8 8 February 18 18 March 28 25 February
9 9 February 19 19 March 29 28 March
10 10 February 20 20 January 30 29 March

31 31 March
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Figure 9. Comparisons of actual PV and 24 h forecast PV generation for some days in Cluster 1: (a) day
3; (b) day 4; (c) day 9; (b) day 28.

3.4. Results for Demand Response Strategies

3.4.1. Very Short-Term PV Adjusted Forecasting

As was seen in Sections 3.1 and 3.2, the main accuracy problem when obtaining a 24 h-ahead
forecast of net demand is due to errors in the prediction of PV generation (compares Figures 6 and 7),
because this forecast is carried out each day before dawn, and no correction is applied during the
day. The problem of balancing net load with respect to 24 h predictions should be taken into account
by aggregators, because any imbalance can produce an important money flow from aggregators to
Balance Service Providers (BSP) or Load Serving Entities (LSE). For this reason, a very short-term
correction has been proposed. The idea is similar to the procedure used by ISOs to correct demand
when some power event is declared in the system taking into account measurements of demand before
the correction (i.e., the generation of customer’s baselines or CBL, for example [73]). In these methods
(used for the retribution of demand response in reliability programs), the adjustment factor is obtained
by means of the first two hours of the four-hour period prior to the commencement of the reliability
event. In our case, the methodology to correct the forecasting values should balance accuracy and
fast computation (it takes less than a minute to have enough time for the load control processing).
In this stage, we propose the determination of an adjustment factor by means of the first 60 min of
actual PV records of the one-and-a-half-hour period prior to the forecast window (it is assumed that PV
generation has an SM able to record every minute and that sends this information to the aggregator).
This adjustment factor is evaluated through the Equation (6):

a f (d, t) =

∑k=90
k=30 PVA(d, t− k)∑k=90
k=30 PVF(d, t− k)

(6)
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where af (d, t) denotes the adjusted factor for the time t of the current day d used to fix generation
forecasts, PVA(d, t − k) is the actual PV generation k min before, and PVF(d, t − k) is the predicted
24 h PV generation for day d at time t–k. Then, a first approximation of the forecasted PV baseline
(PVBL_aux) is computed in the time interval [t − 30, t] to obtain [t, t + 30] values (that is, predictions are
corrected in a time-window corresponding to very short-term according to the reduction of imbalances.
For the participation of customers in other markets, the window can be enlarged according to gate
closure times) through Equation (7):

PVBL_aux(d, t + k) = a f (d, t) × PVF(d, t + k); k = 1, 2 . . . 30 min (7)

To improve the goodness of this 1 h-ahead forecast, PVBL is compared with the average of
historical values of PV generation in the last two weeks:

PVupl(d, t) =
1

450

15∑
j=1

k=15∑
k=−15

PVA(d− j, t + k) (8)

where PVupl is the upper limit considered as acceptable for any correction through the adjusted factor
af (d, t). Therefore, Equation (7) is improved by Equation (9):

PVBL(d, t + k) =
{

PVBL_aux(d, t + k), i f PVBL_aux(d, t + k) < PVupl(d, t + k)
PVupl(d, t + k), otherwise

; k = 1, ..30 (9)

Results showed that the proposed correction by Equation (9) suits well its objective (Table 7
depicts the MAPE of the 24 h-ahead forecasts (PVF) and the 1 h-ahead forecasts (PVBL) for some
representative days in Cluster 1). As expected, 1 h-ahead forecasts outperform 24 h-ahead forecasts,
but achieve a significant improvement on days when the most serious errors took place (days 14, 16,
17, and 23). In some cases, a small increase of errors is reported (days 5 and 26).

Table 7. Improvement in PV forecast attributable to the adjustment given in Equation (9).

Day MAPE (%) of PVF (24 h-Ahead Forecast) MAPE (%) of PVBL (1 h-Ahead Forecast)

1 12.5 7.7
2 13.9 9.1
4 18.6 8.7
5 4.8 5.6
14 28.2 11.1
16 128.1 30.6
17 39.2 11.9
20 22.9 5.8
23 52.6 21.7
26 9.7 9.9
28 8.2 6.7

3.4.2. Balancing Net Demand through DR

Once the predictions (for customers’ demand and PV generation) were calculated, and the
clustering process selected the “desired” days for applying DR, the next objective was trying to adapt
the net demand (difference between customers’ real demand and real PV generation) to the predicted
net demand made for the day ahead (Figure 1).

In order to achieve this aim, DR policies were applied to two flexible loads: WHs and HVACs.
The reason of choosing these loads is their facility for implementing control strategies by changing the
thermostat temperature and their ability to act as thermal energy storage systems (by doing preheating
of water in the case of WH and precooling and preheating of rooms/walls in the case of HVAC),
see Section 2.5. DR policies were applied through PBLM and aggregation models [52], with the aim of
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ensuring that the final net consumption is adapted in a significant extent to the profile of net energy
demand predicted the day before, so that it was not necessary to trade additional resources into the
wholesale electricity market or to pay BSP.

The planning of DR actions that have to be performed was obtained hour-by-hour. That is to
say that DR actions for each next hour were planned, taking into account the differences between
predictions made for 24 h ahead and predictions made for 1 h ahead. As forecasts for electricity
consumption are more accurate than PV forecasts, in this study, the predictions made for 1 h ahead
only estimated the PV generation, thus, DR strategies only acted in order to manage the PV forecasting
error. This fact means that the control was performed in the period in which there was PV generation,
that is, approximately, from 8 a.m. to 9 p.m.

The PV variations between 24-h predictions and 1-h predictions must be compensated with
changes in the consumption of WHs and HVACs. As WHs and HVACs represent the 17.9% and 42.9%
of the total consumption, respectively (see Table 1); 25% of the PV variations was managed by WHs
loads, and the rest (75%) was assigned to HVACs.

To demonstrate the ability of the loads (HVAC and WH) to adapt their consumption and the
capacity of minimizing variability between predictions and real consumption and generation, the
31 days obtained from the “desired” cluster of PV curves have been simulated. Two different examples
(days 14 and 23) have been selected to illustrate the application of DR strategies and its results, being
explained in detail. Later, in Tables 8 and 9, overall results and indicators for a set of representative
days in Cluster 1 will be shown.

Table 8. Results for the net energy consumption (day 23).

Energy
24-h

(MWh)

Energy
w/o DR
(MWh)

Energy
w/DR

(MWh)

CAE 24
h-w/o DR

(MWh)

CAE 24
h-w/DR
(MWh)

Error
w/o DR

(%)

Error
w/DR

(%)

Max. ΔP
w/o DR

(kW)

Max. ΔP
w/DR
(kW)

42.16 45.96 40.37 6.02 2.96 14.27 7.02 1256.93 579.32

Table 9. Results for net energy consumption (day 14).

Energy
24-h

(MWh)

Energy
w/o DR
(MWh)

Energy
w/DR

(MWh)

CAE 24
h-w/o DR

(MWh)

CAE 24
h-w/DR
(MWh)

Error
w/o DR

(%)

Error
w/DR

(%)

Max. ΔP
w/o DR

(kW)

Max. ΔP
w/DR
(kW)

50.13 47.23 49.43 4.13 1.79 8.25 3.58 805.45 451.54

Figure 10a,b presents the results for day 23 (21 March 2011) in which the PV generation forecasts
made 24 h in advanced overestimate the real PV energy generated. As can be seen in Figure 10a,
the forecasts made 1 h in advance are much more accurate; thus, they can be used as a baseline
curve to plan the DR actions (Table 7 presents overall results). Figure 10b shows the effects on the
net consumption forecasts. In order not to trade additional resources, the objective is to reduce the
consumption in the way that the final actual net consumption matches the 24-h-ahead forecasts.

Taking into account that there is PV generation only from 8 a.m. to 9 p.m., control actions will be
applied to WH and HVAC only during this period. Figure 11 presents the variations in each predicted
load demand that have to be performed to obtain the desired net consumption profile.

Figure 12 depicts the load consumption after DR control strategies and the desired consumption
profile from 24-h forecasts. As can be seen, DR actions work properly and the differences between the
final and the “desired” load consumption have been significantly reduced.
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Figure 10. Differences between 24-h-ahead and 1-h-ahead forecasts (day 23): (a) PV generation;
(b) Net consumption.

Figure 11. Load demand variations between 24-h and 1-h forecasts (day 23): (a) WH; (b) HVAC.

Figure 12. Load consumption after DR actions and 24-h forecasts (day 23): (a) WH; (b) HVAC.

By modifying the WH and HVAC load consumption, it is also changed the temperature of water
and rooms respectively. These variations can cause some comfort problems for users, thus, aggregators
should assure that there are no large temperature variations and that the customer comfort is always
guaranteed. This effect is considered in double control strategies defined in Section 2.5. by Equation (2).

Figure 13 shows the temperature profile of the loads. In the case of WHs (Figure 13a), the
temperature is always above 45 and 50 ◦C in the cold and hot sub-tank, respectively [74]. Figure 13b
shows the temperature of the rooms, the temperature of the internal walls, the temperature of the
external walls, and the external ambient temperature. As can be seen, the internal temperature was
always above 16 ◦C, while the maximum internal and ambient temperature (external) were 19.5 and
13 ◦C, respectively; the difference between internal and external temperature was always above 5.5 ◦C.
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Figure 13. Loads’ temperature profile after DR actions (day 23): (a) WH (state variables X1 and X2,
Figure 4b); (b) HVAC (state variables Xi, Xw, Xrg, and input Xext, Figure 4a).

Finally, Figure 14 shows the net profiles for the 24-h-ahead forecasts compared with final net
consumption after DR actions and the real net consumption if no DR action was performed.

Figure 14. Net consumption profiles (day 23): 24-h forecasts, after DR actions and without DR.

It is clearly demonstrated that DR actions significantly reduce the differences with 24-h-ahead net
profile, efficiently compensating the forecasting errors and balancing the final net load consumption.
Table 8 presents some numerical results from this example. All variables were calculated during the
control period (from 8 a.m. to 9 p.m.).

As can be deduced from the Table 8, the total net consumption of the day is reduced from
45.96 MWh if no DR action is taken to 40.37 MWh if DR actions are applied. The differences between
the 24-h-ahead forecasts and the final net consumption are also shortened: cumulative absolute error
(CAE) reduces from 6.02 MWh without applying DR to 2.96 MWh with DR actions. In the same way, the
percentage of error, understood as the rate between the CAE and the net consumption for 24-h-ahead
forecasts, decreased from 14.27% (without DR) to 7.02% (with DR), which is a 51% of reduction.

In the next paragraphs, a different example of the DR strategy will be presented. In this case, day
14 (14 January 2011) was analyzed, where the 24-h-ahead forecast predicted less PV energy than the
final real PV generation; thus, the aggregator has bought more energy than is necessary in Electricity
Markets required. In order to not waste this energy, it was used to increase the temperature of WH
and HVAC, exploiting their capacities to act as thermal energy storage systems. Figure 15a presents
the 24-h-ahead and 1-h-ahead forecasts compared with real PV generation data. As can be seen,
the 24-h-ahead forecasts have underestimated the PV generation, while 1-h-ahead forecasts have much
more precision. Figure 15b shows that it is necessary to increase the final net demand to adapt the
1-h-ahead profile to 24-h-ahead forecasts, and in this way, consume the “excess” of PV generation.

Figure 16 depicts the results from the application of DR policies to the flexible loads (WH and
HVAC). In both cases, the consumption after DR actions follow the target, to match its energy
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consumption with the 24-h-ahead predicted energy consumption for each load. Thus, it is fair to say
that the DR control was working efficiently.

Figure 15. Differences between 24-h-ahead and 1-h-ahead forecasts (day 14): (a) PV generation;
(b) Net consumption.

Figure 16. Load demand variations among 24-h forecast, 1-h forecasts and final load consumption after
DR (day 14): (a) WH; (b) HVAC.

As mentioned before, the increase in the energy consumption of both WH and HVAC was used to
rise the temperature of the water inside the tank (in the case of WHs) and the temperature inside the
rooms (HVAC). In the case of the WHs (Figure 17a), the temperature increases in the cold sub-tank
from 49 to 59 ◦C and in the hot sub-tank from 58 to 63 ◦C (always ensuring that, for health security
issues, the temperature is not above 68 ◦C in any WH), while in the HVACs (Figure 17b), the internal
temperature of the rooms increased from 17 to 20.5 ◦C, whereas the maximum ambient temperature
(external) was 11.5 ◦C.

Figure 18 depicts the 24-h-ahead forecasts for the net energy consumption. The final net energy
consumption profile after the application of DR strategies is also shown, as is its comparison with the
net energy that will be consumed if no DR action is taken. The graph shows that DR actions reduced
the differences between the 24-h forecasts and final net consumption, minimizing the necessity of
selling back to Electricity Markets the PV generation surplus or to pay additional charges (or penalties)
for unbalance in markets.

Table 9 presents some numerical results from this example. All variables were calculated only
during the control period (8 a.m.–9 p.m.). Results show that the net energy consumption with DR
strategies increased to 49.43 MWh compared with the 47.23 MWh consumed without the application
of DR, and reached 50.13 MWh for 24-h forecasts. The variations between forecasts and final net
consumption were reduced from 4.13 MWh to 1.79 MWh, reducing the percentage of error by 57%
(from 8.25 to 3.58%). The maximum power peak difference was also reduced by 44%.
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Figure 17. Loads’ temperature profile after DR actions (day 14): (a) WH (state variables X1 and X2,
Figure 4b); (b) HVAC (state variables Xi, Xw, Xrg, and input Xext, Figure 4a).

Figure 18. Net consumption profiles (day 14): 24-h forecasts, after DR actions and without DR.

Table 10 shows overall results for net energy consumption of a representative part of the 31 days in
Cluster 1. Day 16 (Figure 19a) obtained the greatest reduction in the error (from 31.63 to 6.7%), whereas
day 28 (Figure 19b) was the one in which the percentage of error increased most (from 6.55 to 9.99%).
Notice that this rise in the error was not due to DR actions, but because of the lack of accuracy in the
prediction of customers’ load profile of that day (day 28), because only deviations of PV generations
were corrected by means of DR (see also Figure 9).

Table 10. Values for net energy consumption.

Day
Energy

24-h
(MWh)

Energy
w/o DR
(MWh)

Energy
w/DR

(MWh)

CAE 24
h-w/o DR

(MWh)

CAE 24
h-w/DR
(MWh)

Error
w/o DR

(%)

Error
w/DR

(%)

Max. ΔP
w/o DR

(kW)

Max. ΔP
w/DR
(kW)

1 44.84 43.41 43.09 3.09 3.04 6.90 6.78 629.51 558.59
2 32.52 30.93 31.22 2.39 2.00 7.37 6.14 732.47 449.26
4 27.06 25.19 26.42 3.24 1.71 11.99 6.32 581.92 411.86
5 22.34 22.07 21.86 1.32 1.44 5.94 6.48 419.74 380.21
14 50.13 47.23 49.43 4.13 1.79 8.25 3.58 805.45 451.54
16 29.70 38.64 30.09 9.39 1.99 31.63 6.70 1622.69 472.04
17 47.15 41.59 45.25 6.40 2.85 13.58 6.05 1108.13 538.99
20 48.31 47.04 48.74 2.89 1.68 5.99 3.49 622.92 342.69
21 27.59 23.97 25.27 3.86 2.59 13.99 9.40 776.20 534.47
23 42.16 45.96 40.37 6.02 2.96 14.27 7.02 1256.93 579.32
26 41.01 42.38 42.08 2.01 1.90 4.92 4.63 487.96 572.66
28 41.97 41.25 39.32 2.75 4.19 6.55 9.99 792.76 1124.70
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Figure 19. Net consumption profiles: 24-h forecasts, after DR and without DR: (a) day 16; (b) day 28.

Finally, Figure 20 presents the cumulative absolute error for the 31 days in Cluster 1 when
comparing the target (the 24-h-ahead forecast) with the final net consumption in two different scenarios
(without DR and after DR actions). It can be seen that, in general, errors were reduced after DR, except
in some particular days where they increased slightly. Notice that the set of days selected in Tables 10
and 11 (among the 31 days belonging to Cluster 1) represent different scenarios (low, medium, and
high reduction of the errors as well as increasing of them after DR policies).

Figure 20. Cumulative absolute error (CAE) between the final net consumption (without DR and after
DR actions) and the target (the 24 h-ahead forecast of the net consumption).

Table 11. DR performance and flexibility indicators.

Day
Balance Mileage

(MWh)
Demand Mileage

(MWh)
Mileage

Ratio (%)
Symmetry

Equation (12)
Performance
Equation (13)

1 2.64 5.54 47.5 0.95 0.27
2 2.62 4.52 57.5 1.59 0.34
4 2.86 4.06 70.17 4.24 0.05
5 1.52 3.92 38.89 0.83 1.89

14 3.12 5.72 54.50 7.06 0.047
16 3.06 4.12 74.20 0.008 0.036
17 4.32 5.34 80.9 17.92 0.064
20 1.66 5.54 28.9 5.24 0.268
23 4.14 5.28 78.13 0.038 0.073
26 1.88 5.16 36 0.953 0.467
28 2.08 5.22 39.8 0.224 2.34

3.4.3. Analysis of DR Flexibility

As mentioned in Section 2.1, a quantitative analysis for demand-side flexibility has been performed
thorough some indicators defined and calculated at an aggregated level.
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The first indicator of flexibility refers to signals’ dynamic. This is done through an indicator that
gives an idea about the variation of a signal and it is very close to the “mileage” score used for the
verification of assets in Ancillary Services. In this way, the “signal_mileage” is the absolute sum of
movement of the analyzed signal in a given time period with respect to the average value of the signal,
in our case daily:

signal_mileage =

∑end
kk=ini+1 abs(signal(kk) − signal(kk− 1))∑end

kk=ini+1 signal(kk)
(10)

where signal refers to the target foreseen for balancing PV generation through load (variable “balance”)
or the load demand (with DR or without DR, i.e., the variable “baseline” of demand or the new demand
with DR, in this case the variable “demand_DR”). These indicators give, respectively, an idea of
the variability of demand (hourly, daily,...) for the segment under study and the “amount of work”
involved through “balance” signals to match PV/demand forecast errors.

A second indicator is the “mileage_ratio”, which measures the relation of the value of mileage of
the balance signal sent to flexible demand versus the value of changes in demand in the steady state
(without DR). This indicator gives the aggregator a first insight with respect the effort that demand is
forced to yield to match PV generation in the short-term:

mileage_ratio =
balance_mileage
baseline_mileage

(11)

The third indicator represents the symmetry of the effort required from demand to follow the
energy balance signal (i.e., the overall increase of flexible demand versus the reduction of demand).
As has been discussed in previous paragraphs, in some cases, it is more difficult for the load to increase
in demand than achieve a reduction in demand (for instance, electric heating in winter). For these
reasons, the positive changes in demand were evaluated with respect to negative changes of demand.
Mathematically:

symmetry =

∑end
kk=ini abs((demand_DR(kk) − baseline(kk)) > 0)∑end
kk=ini abs((demand_DR(kk) − baseline(kk)) < 0)

(12)

Finally, the aggregator calculated a daily performance score that reflects the load resource’s
accuracy in increasing or decreasing its demand to provide balance in response to balance dispatch
signal. The performance score calculation evaluates each resource’s accuracy in following the balance
signal, that is to say:

performance = abs

⎛⎜⎜⎜⎜⎝1−
∑end

kk=ini abs(demand_DR(kk) − baseline(kk))∑end
kk=ini abs(balance(kk) − baseline(kk))

⎞⎟⎟⎟⎟⎠ (13)

These indicators have been evaluated through and Table 11 presents the main results.
A brief explanation of the results can help the reader to better understand the physical meaning

of these indicators. It is also interesting to consider the results of Section 3.4.2 for days 14 and 23.
Table 11 shows that the days 14 and 23 require a noticeable effort from flexible demand (3.12 and 4.14
for “balance_mileage” values that are above the average effort). Steady state fluctuations of demand
are similar for both days (5.72 and 5.28, see demand mileage column). This index (mileage_demand) is
of interest to reflect unusual changes of demand pattern.

Column five in Table 11 presents the symmetry of the effort. Day 14 requires a net increase of
demand (symmetry = 7.06), whereas day 23 basically requires a strong shaving of demand (symmetry
= 0.038). The score for the performance of flexible demand depicts that flexible loads follow with
enough accuracy their targets (performance indicator is around zero). Moreover, from Table 11,
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the aggregator can deduce that flexible demand fails in days 5 and 28 (performance has the greatest
values and over 1), but these days do not represent a big problem, because the effort required from
demand (balance_mileage) is low (1.52 and 2.08). These results and the results previously discussed in
Section 3.4.2 help both the customer and the aggregator to familiarize themselves with the demand
response and the usefulness of short-term predictions to manage their new role as prosumers or
energy aggregators.

4. Conclusions

Energy issues are a main concern for the sustainability of our society. This sustainability is based
on the integration of renewable sources and in the development of new energy markets, which should
be more customer-centered than in the past. These objectives need the development and validation of
additional tools to facilitate this change and to contribute to the effective engagement of customers
in these markets, as has happened in telecommunications markets. Technological aspects, such as
the forecast of demand and renewable sources or the management of energy, appeared as significant
barriers to the effective deployment of new markets in small and medium customer segments, i.e.,
benefits usually do not balance the complexity for new responsibilities and tasks in these scenarios.
Moreover, forecasts get more complex when the level of assets’ aggregation decreases, and this makes
the above-mentioned objectives more difficult. For these reasons, this work developed and validated
both demand and renewable generation forecasting methods at low aggregation levels (in the order of
some MW) of the power system (distribution), but focused the methodological effort on the application
of these methods to demonstrate the possibility of participation of “prosumers” in markets rather
than in the achievement of small improvements in forecasts accuracy (MAPE, RMSE, CAE) through
exponential complexity.

The interaction of demand, generation and management models demonstrated that this feedback
or linkage among models can balance errors through a “closed control loop” that drove the net demand
of “prosumers”. In the analyzed scenarios, results showed that 50% of prediction errors can be
balanced with naïf correction models (very short term) and a “reduced” portfolio of loads (HVAC and
WH) and policies. The paper also demonstrated the ability of these small and medium customers,
through demand aggregators, to exhibit in the market the necessary flexibility in demand (up and
down) to manage the volatility of renewables and build new power systems and new markets in the
horizon 2030–2050.

Further developments are necessary to advance in this approach, for instance: the consideration
of the participation of customers in new markets and more complex services (mixed participation
in two or more markets or services), the refinement of very short-term models (both in demand and
generation), the introduction and synthesis of new end-use PBLM and their further aggregation, the
integration and deployment of ICTs in the models and the validation, the hybridization of ESS and
demand models, both following PBLM philosophy, to provide more capabilities for flexibility, and the
adjustment and improvement of these models in actual customers through pilots. In the medium term,
and with these tools, the potential flexibility of these small and medium customer segments could be
exploited and used to balance the integration of renewable both in Smart Grids and in conventional
Power Systems.
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Abstract: A novel method for short-term load forecasting (STLF) is proposed in this paper. The method
utilizes both long and short data sequences which are fed to a wavenet based model that employs
dilated causal residual convolutional neural network (CNN) and long short-term memory (LSTM)
layer respectively to hourly forecast future load demand. This model is aimed to support the
demand response program in hybrid energy systems, especially systems using renewable and fossil
sources. In order to prove the generality of our model, two different datasets are used which are the
ENTSO-E (European Network of Transmission System Operators for Electricity) dataset and ISO-NE
(Independent System Operator New England) dataset. Moreover, two different ways of model testing
are conducted. The first is testing with the dataset having identical distribution with validation
data, while the second is testing with data having unknown distribution. The result shows that
our proposed model outperforms other deep learning-based model in terms of root mean squared
error (RMSE), mean absolute error (MAE), and mean absolute percentage error (MAPE). In detail,
our model achieves RMSE, MAE, and MAPE equal to 203.23, 142.23, and 2.02 for the ENTSO-E
testing dataset 1 and 292.07, 196.95 and 3.1 for ENTSO-E dataset 2. Meanwhile, in the ISO-NE dataset,
the RMSE, MAE, and MAPE equal to 85.12, 58.96, and 0.4 for ISO-NE testing dataset 1 and 85.31,
62.23, and 0.46 for ISO-NE dataset 2.

Keywords: short-term load forecasting; deep learning; wavenet; long short-term memory;
demand response; hybrid energy system

1. Introduction

Nowadays, the hybrid energy system has become more popular in the electricity industry. The main
reason of this trend is the exponential reduction of energy storage cost and the development of digital
connection, enabling real time monitoring and smarter grid establishment. Moreover, the hybrid
energy system is considered as one of the best solutions in tackling intermittency experienced by most
renewable energy schemes including solar- and wind-based energy. For example, in solar photovoltaic,
the energy is only delivered when obtaining sufficient solar irradiance. As a consequence, a lot of
research has been conducted in order to provide the best scheme of this hybrid system [1].

Among provided hybrid energy system schemes, the most possible way to be implemented in the
majority of countries is the integration between renewable and fossil energy, because fossil energy
has already well established. In case of sustainability, this scheme is very good, because fossil energy
is obviously able to supply adequate power to the grid when the alternative sources cannot handle
users’ load demand. The major concern of this scheme is the cost to be borne by users once the
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renewable sources cannot supply adequate power to the grid in which they will pay an expensive
fossil-based electric price. Moreover, fossil energy tends to gradually increase leading to economic
conflict in society [2]. Therefore, in order to tackle this issue, an appropriate demand response scheme
can be applied.

Demand response is the change of electric usage by users due to change of electric price or maybe
an incentive as a reward of lowering their power consumption [3]. Applying demand response to
this hybrid system is very beneficial for shaving peak load demand [4,5], leading to the reduction of
fossil energy consumption. Moreover, it can provide short-term impact and economic benefit for both
consumer and utility.

In order to support this demand response, short-term load forecasting (STLF) is very important for
predicting whether the energy storage from renewable sources is able to handle the forthcoming power
consumption or not. If the prediction states that the storage is not adequate to support the future load,
then the electricity utility can announce this situation to the users, which eventually triggers them to
reduce their electric usage, because users do not only want to pay more for conventional energy source
but also want to get incentives from the authorities.

Fortunately, with the help of developed infrastructures like smart meters equipped with a lot of
sensors and the Internet of Things (IoT), a robust STLF method is feasible to be implemented. Broadly
speaking, research in load forecasting can be categorized into two research classes, traditional and
advanced model. Traditional model uses simple statistics method for example regression models [6]
and Kalman filtering model [7]. Nevertheless, among proposed traditional models, autoregressive
integrated moving average (ARIMA) and generalized autoregressive conditional heteroscedascity
(GARCH) are two of the most popular techniques in regression function that were used in several
precedent research studies [8,9]. Unfortunately, these traditional models only provide good accuracy if
the electrical load and other parameters have a linear relationship. Meanwhile, the advanced model
is a data-driven model implementing the machine learning technique for instance support vector
machine (SVM) [10], K-nearest neighbor (KNN) [11], and others [12–14].

However, based on the recent publications [15–18], the deep learning-based methods show the
most convincing performance by outperforming other machine learning-based solutions. The main
reason of the deep learning superiority is first, deep learning does not highly rely on feature engineering
and the hyperparameters tuning is relatively easier compared to other data-driven models. The second
is the availability of huge datasets, where deep learning can precisely map the inputs to the certain
output by making complex relations among layers in the network based on that huge training data.
Moreover, since the availability of Graphics Processing Unit (GPU) parallel computation and methods
providing weights sharing like convolutional neural network (CNN) [19], the computational speed of
deep learning models become significantly faster.

Because of the superiority of the deep learning, this research proposes a method in load forecasting
task, specifically STLF, to predict the hourly power consumption by using deep learning algorithms
which is the combination of the advanced version of the convolutional neural network (CNN), dilated
causal residual CNN, and long short-term memory (LSTM) [20].Dilated causal residual CNN is inspired
by the Wavenet model [21], which is very famous for audio generation, and the residual network [22]
with gated activation function. This model will learn the trend based on long sequence input while the
LSTM layer works as a model’s output self-correction which relates the output of the wavenet-based
model with the recent load demand trend (short sequence).

The main contribution of this research is that we propose a novel model utilizing a combination
of dilated causal residual CNN and LSTM utilizing long and short sequential data and fine tuning
technique. External feature extraction or feature selection data are not included in this research.
Moreover, this research only takes into account time index information as the external factor data,
making it easy to be compared as a benchmark model for future research.

In order to prove the generality of our proposed model performance, two different scenarios
of model testing are conducted. The first scenario is using the testing dataset having identical
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distribution with the validation dataset, while the second is using dataset having unknown distribution.
As a comparison, our proposed model results are compared with the performance of the model
from [15,16] and the standard wavenet [21]. The simulation result shows that our proposed model
outperforms other deep learning models in root mean squared error (RMSE), mean absolute error
(MAE), and mean absolute percentage error (MAPE).

Therefore, due to the accuracy of our model performance, this model can be used for supporting
utilities in applying demand response program since it can help the utilities to obtain accurate prediction
about the future load demand that eventually providing precise information to the users whether the
future load demand can be supplied by the renewable source or not.

The rest of the paper is organized as follows. Section 2 describes the dataset used in detail
including preliminary data analysis and data preprocessing. Section 3 explains the model architecture
and its parameter, training, and testing stage. Section 4 provides information about results obtained by
using the proposed models compared with other deep learning-based models and clear explanation
about the reason why the proposed model can achieve the result. Lastly, Section 5 summarize the
findings discussed in this paper and also possible future works.

2. Dataset

In order to prove the generality of our proposed method, two datasets are used as the model’s input
which are the ENTSO-E (European Network of Transmission System Operators for Electricity) [23]
and ISO-NE (Independent System Operator New England) dataset [24]. The ENTSO-E dataset is
the dataset obtained from load demand in every country in Europe. In this research we only take
into account data gathered from Switzerland. Meanwhile, the ISO-NE dataset is data of hourly load
demand in New England.

Those datasets have different kinds of characteristics, especially in the case of load demand
range and complexity. In the ENTSO-E dataset, the lowest and highest value of load are 1483 KWh
and 18,544 KWh, respectively, while in the ISO-NE dataset they are 9018 KWh and 26,416 KWh,
respectively. Another different characteristic is the fluctuation trend in a single day load demand.
In the ENTSO-E dataset, the load demand is more oscillated compared to the ISO-NE dataset. As proof,
Figures 1 and 2 show the average daily power consumption and example of load trend in a day based
on those datasets and example of demand trend of each dataset.

Figure 1. Average daily power consumption of each dataset.
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(a) (b) 

Figure 2. Example of one-day load demand of each dataset (a) ISO-NE dataset; (b) ENTSO-E dataset.

In building a solution for load forecasting, deep understanding of the load demand trend is very
necessary. Figure 3 shows data in both datasets over a year period. From Figure 3, broadly speaking,
the trend of load demand has a periodicity that will be repeated over the next weeks. However,
this trend is highly affected by a lot of external factors causing a fluctuation over a certain period,
for example, the economic, weather, and time index. Unfortunately, obtaining those external factors
are difficult, the easiest external data that can be gathered is time index data containing information
about the date and clock. Therefore, in this research we not only fed the model by load demand trend
but also time index data represented by one-hot vector. One-hot vector is a sparse vector that maps
a feature with M categories into a vector which has M elements where only the corresponding element
is one while the remaining are zero.

Figure 3. Load demand trend over a year.

Before fed to the model, the datasets must be pre-processed, which consists of checking for null
values, splitting dataset into training, validation and testing dataset, and eventually data normalization.
The data used for this research is limited only to data taken from 1 January 2015 until 30 May 2017 for
the ENTSO-E dataset and from 1 January 2004 until 30 May 2006 for the ISO-NE dataset. The first
two years of data are used for the training stage, while the rest of the 3600 data are split into 3000
and 600 data. The first 3000 data are randomly taken for validation and testing data with proportion
of nearly 0.65 and 0.35 to be used for validation and the testing stage, respectively. In other words,
the total of validation data and first testing data are 1900 and 1100, respectively, while another 600 data
are used for the second testing data. We conduct two testing stage, because the first testing data
have a nearly identical distribution with the validation data which clearly make the model provide
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good accuracy in the testing stage. Meanwhile, the second testing data is clearly new data that their
distribution is never experienced by the model both in the training and validation stage. This kind of
testing process is appropriate for proving the generality of the model.

In the data normalization process, min-max scaling method as expressed in Equation (1)
is implemented.

zi =
xi −min(x)

max(x) −min(x)
(1)

x = x1, . . . , xn and zi is the ith normalized data. The parameters in the normalization process must
come from training dataset only, because we assume that the future data (validation and test set) have
different distribution with the training dataset.

3. Model Design

In this research, the cores of the proposed model are wavenet architecture implementing both of
the dilated causal CNN and residual network and LSTM, which have proven very well in time-series
data prediction.

Our proposed model consists of two stages that have a function to learn long and short sequence
data. Inspired by the success of wavenet architecture and LSTM in handling time series data, the long
sequence taken from the 32 time steps before the target is learned using wavenet while the short
sequence taken from 4 time steps before target is learned using LSTM.

3.1. Wavenet

Wavenet consists of deep generative models utilizing the dilated causal convolutional neural
network of audio waveform. Causal convolution means that the output of the recent time step is only
affected by the previous time step. Meanwhile, the dilated convolutional neural network is a modified
convolutional neural network where the filter weight alignment is expanded by a dilation factor that
eventually results in a broader receptive field that can be expressed as follows:

(F ∗l k)(p) =
∑

s+lt=p

F(s)k(t) (2)

while the standard convolution is expressed as follows:

(F ∗ k)(p) =
∑

s+t=p

F(s)k(t) (3)

The dilated convolution is denoted by ∗l notation. The difference between dilated convolution
with standard convolution is the notation l representing the dilation factor which causes the filter to
skip one or several points during the convolution process.

Figure 4 shows the dilated convolution applied in one dimensional data. The blue, white, and orange
circle are input data, hidden layer output, and output layer output, respectively. There are 32 input data
taken from t = 1 until t = 32 that are convoluted with filter with the size of two. The dilation rate is increased
by one in every hidden layer that causes a broader receptive field. This dilation rate is repeated twice. In the
output layer, only the last value is taken, which we assume represents the feature of load at t = 33.

In order to optimize the usage of the dilated convolutional neural network, the residual
technique [22] is applied to the model. The implementation of the residual network will take
into account lower levels outputs which have features that will help in predicting the future power
demand, especially in the case of a network implementing a sparse filter which has the potential to
lose several information from the previous layers.
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Figure 4. Dilated causal convolutional neural network with filter size 2.

The residual model is a famous way to build the deep neural network that was firstly proposed
for the image recognition task. Using this way, instead of only mapping input data x to a function
H(x) that outputs ŷ, the mapping scenario from the previous residual block f (x, {Wi}) where Wi is the
learned weights and biases from the residual block i is also considered. Therefore, the output of the
residual block can be expressed as:

H(x) = f (x, {Wi}) + x (4)

Moreover, since we use the stacked residual block, then the output of the residual block can be
represented as:

xK = x0 +
K∑

i=1

f (xi−1, Wi−1) (5)

xK is the output of residual block K, x0 is the input of the residual network and f (xi−1, Wi−1) is
the output and associated weight of the previous residual blocks. As a result of several summation
between the previous and final residual block, then the back propagation of the network to x0 can be
calculated using the following equation:

∂L
∂x0

=
∂L
∂xK

∂xK

∂x0
=
∂L
∂xK

⎛⎜⎜⎜⎜⎜⎝1 +
∂
∂x0

K∑
i=1

f (xi−1, Wi−1)

⎞⎟⎟⎟⎟⎟⎠ (6)

L is the total loss of the network and constant 1 indicates that the gradient of the network
output can be directly back-propagated without considering layers’ parameters (weights and biases).
This formulation ensures the layers do not suffer of vanishing gradient, even the weights are small.
Figure 5 shows the basic residual learning process.

Moreover, skip connection and gated activation are applied to the network for speeding up
the convergence and avoiding overfitting. The process of residual and skip connection with gated
activation is shown in Figure 6.
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Figure 5. Residual learning process.

Figure 6. Overview of residual dilated convolutional block and gated activation function.

The gated activations are inspired by the LSTM layer where tanh and sigmoid (σ) work as learned
filter and learned gate, respectively. The use of gated activations has been proved to work better
compared to using ReLU activation in time series data [21]. The output of dilated convolution with
gated activations can be expressed as:

z = tanh
(
w f ∗ x

)
� σ

(
wg ∗ x

)
(7)

where w f and wg are learned filter and learned gate, respectively.

3.2. LSTM

In the case of forecasting future data, the knowledge of the recent trend is very essential.
As an illustration, in predicting future data, we mostly start to figure out a long sequence trend.
After we have already known the pattern of the trend based on the long sequence of previous data,
then in order to provide better forecast, we also try to relate our understanding of long sequence
data with the recent trend. The same concept is applied to our proposed method. We fine tune the
wavenet-based model with one LSTM layer assigned to help the network to relate the output of dilated
CNN with the recent trend. This step can also be considered as a correction step of the dilated CNN
output, as we assert a fix input to be concatenated with dilated CNN output which are then fed to the
LSTM layer that also work as output layer.

Brief Explanation of LSTM

LSTM is the developed version of the standard recurrent neural network (RNN) where instead of
only having a recurrent unit, LSTM has “LSTM cells” that have an internal recurrence consisting of
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several gating units controlling flow of information [25]. Comparison between the simple RNN and
LSTM layer using tanh as the activation function is depicted in Figure 7.

 
(a) 

 
(b) 

Figure 7. Comparison between simple recurrent neural network (RNN) and long short-term memory
(LSTM) layer: (a) simple RNN layer, (b) LSTM layer.

From Figure 7, the difference between the simple RNN and LSTM layer is clear. The LSTM layer
is more complex than the simple RNN, because LSTM not only takes into account input (x) and hidden
state (h) at a certain time step, but also LSTM cells (c) that will replace the hidden state to prevent older
signals from vanishing during the process. Three control gates ruling the LSTM cells, forget gate, input
gate, and output gate are represented by ft, it, Ot, respectively. Those gates use sigmoid activation
function having an output range between 0 and 1 represented by σ. Meanwhile, c̃t is the input node
that works identical to the simple RNN layer.

Mathematically explained, forget gate and input gate, respectively can be expressed as:

it = σ(Wi × [ht−1, xt] + bi) (8)

ft = σ
(
W f × [ht−1, xt] + b f

)
(9)

[ht−1, xt] is the concatenation between input and hidden state value, while W and b are weight matrices,
respectively. On the other hand, the cell state is updated with the formulation:

ct = ft × ct−1 + it × c̃t (10)

where c̃t is expressed as:
c̃t = tanh(Wc × [ht−1, xt] + bc) (11)

The last, the output gate ot and hidden state ht is calculated by using the following equation:

ot = σ(Wo × [ht−1, xt] + bo) (12)

ht = ot × tanh(ct) (13)

3.3. Detailed Model Setup

Complete representation of our model is depicted in Figure 8. The wavenet-based model is fed
by 32 data sequences containing information of load demand and time index information (clock, day,
and month). This wavenet model is used for the initial forecasting algorithm based on long sequence
data. Before fed to dilated CNN, long sequence data are prepossessed using standard 1D-CNN with
filter size equal to one. Next, the prepossessed data is convoluted by dilated causal CNN with filter
size of 2. All of the convolutional layers have ReLU activation function expressed as:

f (x) = max(0, x) (14)
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Figure 8. Proposed model architecture.

In the case of the residual network, the total residual block in our model is 10 with a dilation
rate set to be a repetition of a sequence dr = [1, 2, 4, 8, 16]. Dilation rate is a hyperparameter that
represents how large the gap between the element of the filter is, as shown in Figure 4 and indicated
by the arrows. All of the residual blocks are summed followed by the ReLU activation function.
The post-processing is conducted before the last convolutional layer which works similar with time
distributed fully connected layer in which it is assigned for normalization of the residual output.

Because the length of input and output in the dilated causal CNN are identical, then the customize
layer is built for taking only the last output’s neuron representing load at t = 33. After completing the
wavenet-based network training, the output of the last convolutional layer is concatenated with recent
data sequences (t = 29 until t = 32) that work as LSTM input. Here, by using the fine tuning technique,
LSTM with linear activation function is assigned to make self-correction of convolutional output
in order to provide more accurate prediction based on short sequence. This self-correction method is
nearly identical to how humans make a prediction based on data sequences. For example, in predicting
the environment temperature, humans will relate the understanding between the temperature trend
from the previous day with the recent temperature trend in order to make an accurate prediction for
the next hour temperature.

Table 1 shows the summary of our model’s parameter where f, ks, s, and dr are the number of
filters, kernel size, stride, and dilation rate, respectively. Loss function and optimizer are mean absolute
error and adaptive and momentum (ADAM) [26], respectively, and batch size is 512. The model was
trained using Nvidia GTX 1070, Tensorflow 1.13.1 [27], CUDA 10, and CuDNN 7.6.2 with 500 epochs
and the final model is chosen based on the validation accuracy.

Table 1. Forecasting result obtained using dataset 1.

Layer Parameters

Input Layer (1) 32, 44
Conv1D (1) [f, ks, s] = [16, 1, 1]

Dilated Causal Conv1D [f, ks, s, dr] = [32, 2, 1, dr]
Conv1D (2) [f, ks, s] = [16, 1, 1]
Conv1D (3) [f, ks, s] = [128, 1, 1]
Conv1D (4) [f, ks, s] = [1, 1, 1]

Input Layer (2) 5, 1
LSTM 1 output node
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4. Result and Discussion

4.1. Model Performance Evaluation

In order to evaluate our model performance, we mainly compared this model with the two
previous deep learning-based models that work very well in the case of STLF. Those models are
inspired by [15] (Model 1), which utilizes stacked LSTM and [16] (Model 2) which combines the stacked
CNN and LSTM layer with the feature fusion layer. The configuration of each comparison model is
identical to the published papers. Model 1 consists of two stacked LSTM layers consisting of 20 units
followed by fully connected layers as an output layer. Model 2 is built with a combination between
the LSTM and CNN layer where their outputs are concatenated, which is eventually fed to the fully
connected layer called a feature fusion layer. All of the models are trained with the same input data.
Moreover, the original wavenet model is also used for a model comparison in order to prove the benefit
of LSTM as a self-correction layer in our proposed model.

This section reports on the performance of hourly load forecasting by using our proposed method
compared to other forecasting methods. In the testing stage, all of the models are evaluated with three
difference commonly used metrics, root mean squared error (RMSE), mean absolute error (MAE),
and mean absolute percentage error (MAPE). MAE is the average of absolute difference values between
predicted load and actual load consumption. MAPE is just identical to MAP but it uses a ratio between
the difference with the actual load while RMSE is another metric that tends to have a higher value
compared to other metrics. The higher value which results from the metrics, the worse performance of
the model. Those metrics are defined as follow:

RMSE =

√√√
1
N

N∑
i=1

(ŷi − yi)
2 (15)

MAE =
1
N

N∑
i=1

∣∣∣ ˆ̂
iy− yi

∣∣∣ (16)

MAPE =
1
N

N∑
i=1

∣∣∣∣∣∣ ˆ̂
iy− yi

yi

∣∣∣∣∣∣ (17)

4.2. ENTSO-E Load Prediction

Tables 2 and 3 show all of the models’ performance on dataset 1 and dataset 2, respectively.
Overall, our proposed model outperforms other models, especially in the case of dataset 1 where
the data distribution is nearly identical with the validation data, while the worst performance is
shown by [16]-based model. In Table 2, our proposed model clearly shows its excellence over other
methods which shows the success of the combination between deep residual causal CNN and LSTM
using fine tuning technique in understanding long sequence and short sequence data, respectively.
Moreover, compared to the standard wavenet model, our model performs better accuracy indicating
the usefulness of the LSTM layer in making self-correction for initial load forecasting output by dilated
causal residual CNN.

Table 2. Forecasting result obtained using European Network of Transmission System Operators for
Electricity (ENTSO-E) testing dataset 1.

Model RMSE MAE MAPE (%)

Tian et al. 240.57 171.71 2.45
Kong et al. 222.44 155.83 2.22
Wavenet 217.98 157.28 2.24

Our Model 203.23 142.23 2.02
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Table 3. Forecasting result obtained European Network of Transmission System Operators for Electricity
(ENTSO-E) testing dataset 2.

Model RMSE MAE MAPE (%)

Tian et al. 306.77 216.19 3.42
Kong et al. 304.07 209.22 3.29
Wavenet 305.04 212.99 3.36

Our Model 292.07 196.95 3.1

However, all of models exhibit downgraded performance in dataset 2. It indicates that all of the
model still cannot understand data which has slightly different distribution with training, validation,
and testing data 1. The failure of all of the models in testing using dataset 2 is highly affected by the
quality of the ENTSO-E dataset where the inconsistency of hourly power usage or unpredicted trends
occur several times. Figures 9 and 10 show the result of STLF on dataset 1 and dataset 2, respectively.

Figure 9. Forecasting result using ENTSO-E dataset 1.

Figure 10. Forecasting result using ENTSO-E dataset 2.
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4.3. ISO-NE Load Prediction

Tables 4 and 5 show all of models performance on ISO-NE dataset 1 and dataset 2 respectively.
Different with performances shown in the previous subsection, all of the models perform very well both
in known and unknown data distribution. However, the model based on [16] still exhibits the worst
accuracy, while our model still performs the best although its excellence is not absolute compared to the
model based on [15]. Same with the result obtained using the ENTSO-E dataset, the implementation of
the LSTM layer for tuning the wavenet-based model, is proven to help the network in making more
accurate load predictions.

Table 4. Forecasting result obtained using Independent System Operator New England (ISO-NE)
testing dataset 1.

Model RMSE MAE MAPE (%)

Tian et al. 114.33 82.18 0.56
Kong et al. 92.7 62.55 0.42
Wavenet 109.76 77.69 0.52

Our Model 85.12 58.96 0.4

Table 5. Forecasting result obtained using Independent System Operator New England (ISO-NE)
testing dataset 2.

Model RMSE MAE MAPE (%)

Tian et al. 141.97 89.07 0.66
Kong et al. 100.5 65.12 0.48
Wavenet 125.11 78.02 0.57

Our Model 88.31 62.23 0.46

The success of all models in understanding an unknown data distribution in this dataset is mainly
because of the ISO-NE data property, which is simpler compared to the ENTSO-E dataset in which
more fluctuations are experienced in certain ranges of time due to external factors. This simplicity
results in high accuracy both in validation and testing data, enabling all models to handle forthcoming
data sequences. Figures 11 and 12 show the forecasting result using input from dataset 1 and
dataset 2, respectively.

Figure 11. Forecasting result using ISO-NE dataset 1.
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Figure 12. Forecasting result using ISO-NE dataset 2.

4.4. Discussion

Overall, our proposed model shows the best performance compared to the other deep
learning-based models. It indicates that each network in the proposed model works very well.
The wavenet-based network provides understanding of long sequence data and the LSTM layer
helps the model do self-correction by relating the output of the first network with the recent or short
sequence data.

However, as suggested by [12,28,29], in order to show our proposed model significance over the
other models, both the Wilcoxon signed rank test [30] and Friedman test [31] are conducted using all
the models’ forecasting error given input from those testing datasets. The Wilcoxon signed rank test
will compare the Wstatistic with the Wilcoxon critical value W which are expressed in Equations (18)
and (19) (for huge number of data), respectively.

Wstatistic = min
{
r+, r−

}
(18)

W =
N(N + 1)

4
(19)

r+ and r− are the sum of the positive and negative rank, respectively, while N is the number of data.
If Wstatistic is less than W, and the p-value is less than α, then the null hypothesis is rejected, and it
indicates the superiority of our model.

On the other hand, the Friedman test is applied to show the significant differences of our proposed
models over all comparison models. The statistic F is expressed by:

F =
12N

k(k + 1)

⎡⎢⎢⎢⎢⎢⎢⎣ k∑
j=1

Rj
2 − k(k + 1)2

4

⎤⎥⎥⎥⎥⎥⎥⎦ (20)

where N is the number of forecasting results, k is the number of compared models, and Rj is the average
rank sum based on forecasting error r for jth compared model expressed by:

Rj =
1
N

N∑
1

ri
j (21)
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If the p-value of F is less than the critical value, than the null hypothesis is not accepted, indicating
the superiority of our model.

Tables 6–9 show the significance test in testing dataset 1 and dataset 2 ENTSO-E and testing dataset
1 and 2 ISO-NE, respectively. In the Wilcoxon signed-rank test, significant levels are set to α = 0.025
and α = 0.05 while in the Friedman test it is conducted only under α = 0.05. From results showed in the
tables, our proposed model shows significant contribution in forecasting accuracy improvement and
superiority over the other models, except in the ISO-NE dataset, where in the Wilcoxon signed rank
test between our proposed model and Kong et al. model the results indicate no significance, although
the results in terms of RMSE, MAE, and MAPE show that our model performs better.

Table 6. Result of the Wilcoxon signed-rank test and Friedman test using ENTSO-E testing dataset 1.

Compared Models

Wilcoxson Signed-Rank Test Friedman Test

α = 0.025
W = 285,423

p-value
α = 0.05

W = 285,423
p-value α = 0.05

Our Model vs Kong et al. 243,792 3.64 × 10−5 243,792 3.64 × 10−5 H0 : e1 = e2 = e3 = e4
F = 47.4618

p = 2.77 × 10−10 (Reject H0)
Our Model vs Tian et al. 211,190.5 1.81 × 10−13 211,190.5 1.81 × 10−13

Our Model vs Wavenet 246,095 9.60 × 10−5 246,095 9.60 × 10−5

Table 7. Result of the Wilcoxon signed-rank test and Friedman test using ENTSO-E testing dataset 2.

Compared Models

Wilcoxson Signed-Rank Test Friedman Test

α = 0.025
W = 80,792

p-value
α = 0.05

W = 80,792
p-value α = 0.05

Our Model vs Kong et al. 68,149.5 0.001227 68,149.5 0.001227 H0 : e1 = e2 = e3 = e4
F = 17.59

p = 0.00053 (Reject H0)
Our Model vs Tian et al. 66,885 3.77 × 10−4 66,885 3.77 × 10−4

Our Model vs Wavenet 69,587 0.004169 69,587 0.004169

Table 8. Result of the Wilcoxon signed-rank test and Friedman test using ISO-NE testing dataset 1.

Compared Models

Wilcoxson Signed-Rank Test Friedman Test

α = 0.025
W = 285,423

p-value
α = 0.05

W = 285,423
p-value α = 0.05

Our Model vs Kong et al. 274,482 2.78 × 10−1 274,482 2.78 × 10−1 H0 : e1 = e2 = e3 = e4
F = 140.032

p = 3.72 × 10−30(Reject H0)
Our Model vs Tian et al. 179,311 6.68 × 10−26 179,311 6.68 × 10−26

Our Model vs Wavenet 206,826.5 6.43 × 10−15 206,826.5 6.43 × 10−15

Table 9. Result of the Wilcoxon signed-rank test and Friedman test using ISO-NE testing dataset 2.

Compared Models

Wilcoxson Signed-Rank Test Friedman Test

α = 0.025
W = 80,792

p-value
α = 0.05

W = 80,792
p-value α = 0.05

Our Model vs Kong et al. 80,556 0.950686 80,556 0.950686 H0 : e1 = e2 = e3 = e4
F = 40.198

p = 9.67 × 10−9 (Reject H0)
Our Model vs Tian et al. 57,955 5.29 × 10−9 57,955 5.29 × 10−9

Our Model vs Wavenet 66,618.5 0.00029 66,618.5 0.00029

5. Conclusions and Future Works

This paper proposes a novel method for hourly load forecasting case which is very important
in the case of demand response for hybrid energy systems, especially for system use of both renewable
and fossil energy in order to reduce fossil energy usage. The proposed method is mainly inspired by the
wavenet-based model utilizing dilated causal residual CNN and LSTM. In this approach, two different
data sequences are fed to the model. The long data sequences are fed to the wavenet-based model
while the short data sequences are fed to the LSTM layer assigned for model self-correction using
fine-tuning technique.

In order to prove the generality of our model, two different datasets, which are the ENTSO-E and
ISO-NE dataset, are used with two different testing scenarios. The first testing scheme uses the dataset
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having nearly identical distribution with the validation dataset, while the second uses a dataset from
slightly different data distribution. Based on the obtained result, our proposed model exhibits the best
performance compared to other deep learning-based models in terms of RMSE, MAE, and MAPE.
In detail, our model achieves RMSE, MAE, and MAPE equal to 203.23, 142.23, and 2.02 for ENTSO-E
testing dataset 1 and 292.07, 196.95, and 3.1 for ENTSO-E dataset 2. Meanwhile, in the ISO-NE dataset,
the RMSE, MAE, and MAPE equal to 85.12, 58.96, and 0.4 for ISO-NE testing dataset 1 and 85.31, 62.23,
and 0.46 for ISO-NE dataset 2. However, there are several findings that can be improved in future work.
The first is in the ENTSO-E dataset testing result; all models cannot provide high accuracy forecasting
if they are fed using slightly different data distribution. It indicates that all models face difficulties
in understanding fluctuated or unpredicted data like the ENTSO-E dataset. The second is although
RMSE, MAE, and MAPE show our model exhibits better accuracy compared to the Kong et al. model
in the ISO-NE dataset, our model cannot provide a significant improvement.

Therefore, for future work, additional external factors data like information of holidays and
weather conditions can be fed as the models’ input in order to improve our findings. In addition,
building a new model can also be conducted since this research area and artificial intelligence (AI)
algorithms are developed very quickly, making a new idea come up very fast. All of the codes and
datasets used in this research are available on Github.
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Abstract: Short-Term Load Forecasting is a very relevant aspect in managing, operating or
participating an electric system. From system operators to energy producers and retailers knowing
the electric demand in advance with high accuracy is a key feature for their business. The load
series of a given system presents highly repetitive daily, weekly and yearly patterns. However, other
factors like temperature or social events cause abnormalities in this otherwise periodic behavior.
In order to develop an effective load forecasting system, it is necessary to understand and model
these abnormalities because, in many cases, the higher forecasting error typical of these special days
is linked to the larger part of the losses related to load forecasting. This paper focuses on the effect
that several types of special days have on the load curve and how important it is to model these
behaviors in detail. The paper analyzes the Spanish national system and it uses linear regression to
model the effect that social events like holidays or festive periods have on the load curve. The results
presented in this paper show that a large classification of events is needed in order to accurately
model all the events that may occur in a 7-year period.

Keywords: load forecasting; special days; regressive models

1. Introduction

Short-term load forecasting (STLF) is a determining factor for operation of an electric system.
It is a necessary process in order to ensure the balance between generation and demand. The system
operator needs to know the expected load to make decisions and to perform an optimal control
of the electrical system. Many countries have liberalised electrical markets, which promotes the
participation of multiple agents. This participation yields a competitive system, which leads to reduced
costs to the final consumer. The accuracy of load forecasting leads to an optimization of the power
generation and of operation of the system and a consequent reduction of the costs. In addition, a
good STLF leads to a better share of renewable energy in the electric system, therefore reducing
CO2 emitted to the atmosphere conforming with the Paris Agreement [1], which has been ratified
by several countries. This reduction helps to avoid the emission of excess CO2 for countries like
those of EU, Iceland, Liechtenstein and Norway, which must comply with the EU Emissions Trading
System [2]. The optimization of the electric generation reduces its cost, improving competitiveness
among companies and subsequently, the economical and industrial development of a country.

Several works have been published about STLF models in the last decades [3]. These methods
split into three large groups: artificial intelligence [4–19], statistical [20,21] and hybrid models [22–24].
Regarding artificial intelligence, these techniques have been successfully applied for STLF, such as
artificial neural networks (ANN) [4,5], extreme learning machine (ELM) [6,7], support vector machine
(SVM) [8,9,11], adaptive neuro-fuzzy inference system (ANFIS) [10–14], fuzzy logic (FL) [14–16], genetic
algorithm (GA) [16] and self-organizing map (SOM) [17–19]. On the other hand, statistical models such
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as autoregressive (AR) model [20,21], autoregressive integrated moving average (ARIMA) [21] and
exponential smoothing (ES) [25,26] have been extensively used in STLF. Other forecasting methods are
considered hybrid models [23,24], which use the combination of various techniques (statistical models
and/or artificial intelligence) to obtain forecasting load.

One of the most used methods of AI for the STLF is Neural Networks (NNs), and the amount
of research work on this topic found in reference databases like SCOPUS is much higher than for the
rest of artificial intelligence techniques. This technique has been used over the last decades obtaining
successful results. In the early days, a review [4] of different works published between 1991 and 1999,
reports the use of different models of NNs for STLF describing the doubts suggested by some authors
about adopting this technique for STLF. This study concludes that many research groups used small
data sets with only one NN for STLF. However, other groups have over-parameterized, increasing the
complexity of the forecasting model and decreasing the accuracy. In conclusion, further investigations
are needed to perform an NN prediction model that clears the controversy in the scientific community.

In recent years, different techniques based on NNs have provided good results forecasting load
due to the increase of the historical data used. In [5], different NN methodologies are compared,
multilayer perceptron (MLP) [27], radial basis function neural networks (RBFNN) [28], generalized
regression neural network (GRNN) [29] and counter-propagation neural networks (CPNN) [30] which
learn from patterns that represent the daily load curves. The results showed that the STLF of a GRNN
model is more accurate than the rest of NN models analysed in this work.

The ELM technique shown in [6] is a different forecasting model of AI. The method shown in [7]
is used to prove the accuracy for STLF versus other NN models. An ELM model provides a better
efficiency of the training and a better accuracy of the predictions.

Another technique based on AI is SVM, which is described in [8]. This method is used in [9]
to forecast load by combining four SVM models according to certain values of temperature and
demand. In [11], a comparison between SVM and ANFIS [12,13] is presented. The comparison uses
essential information about the days of a week, achieving much closer results to the actual load by the
SVM model.

The performance of the FL model was also compared to that of the ANFIS model using the same
parameters and data [14]. The predictions obtained in both cases were successful, although the ANFIS
model was more accurate than the FL model. The latter technique was used to obtain the STLF by
using different parameters in [15] (e.g., weather, time, historical data), demonstrating that this method
can provide a more accurate prediction than conventional models.

In most cases, the artificial intelligence technique called genetic algorithm was used to select the
most important parameters for forecasting electricity demand. A genetic algorithm like simulated
annealing is used with other technique like FL to obtain the optimal parameters [16] by means of the
back propagation method. This method improves the accuracy of the predictions.

Kohonen’s Self-Organizing Map (SOM) [17] was also used to successfully obtain forecasting
loads [18]. Moreover, the SOM model was a very useful tool for classifying the data of the parameters
used to forecast the load. The classification of the meteorological data [19] by using the SOM model
to cluster the data provided a prediction of demand through nonlinear autoregressive network with
exogenous inputs (NARX) [31].

The autoregressive models are the most commonly used statistical models. Many research articles
employ these statistical methods for STLF. In [20], Baharudin et al. analised autoregressive (AR) model
and autoregressive–moving-average (ARMA) [32] to obtain forecasting load, concluding that the
performance of AR model was more accurate.

A comparison of different statistical models was studied by Taylor et al. [21]. It compared
methods such as autoregressive (AR) models, autoregressive integrated moving average (ARIMA) [33],
a regression method with principal component analysis (PCA) [34], exponential smoothing (ES) [25]
and the Holt-Winters exponential smoothing method. The best performing method was double
seasonal Holt-Winters exponential smoothing.
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Regarding the hybrid models, which use the techniques from two different methods to obtain
the demand prediction, Fan et al. [23] analysed a SOM Neural Network to cluster each data set into
subsets. In addition, 24 SVMs are used to adjust each subset to the next day’s load profile. Hybrid
models can use several forecasting models, where the final forecast is provided by the combination of
both models. In previous research [24], the authors stated that, AR and NN methods provide separate
forecasts and a final result given by the linear combination of both methods. A linear combination was
implemented in order to enhance forecasting accuracy.

One issue that has not received as much attention as the forecasting engine is the forecasting of
special days. Several days throughout the year show a profile that does not match the expected profile
for its weekday. These differences may be caused by temperature [26] but, the more extreme cases are
caused by socio-economic effects of the calendar. In Figure 1, we can see how the load profile for a
special day (1 November, a national holiday in Spain) has lower demand values with respect to any
normal day. This and other special days are harder to forecast and incur higher forecasting errors that
increase forecasting losses. This is especially important because a low average forecasting error with
large peak errors may be costlier than a slightly less accurate forecast that has smaller peak errors.
This research focuses on how to provide the proper information about these special days so that a
forecasting engine may be able to forecast them more accurately.

Figure 1. Hourly electricity demand in Spain from 23 October 2017 to 5 November 2017.

There are several ways in which the calendar affects load profiles. Figure 1 already shows that
a national holiday has a profile more similar to a Sunday than to a typical weekday. However, this
does not mean that all national holidays share the same profile. In addition, the demand pattern of
normal days can be altered by the proximity of special days (see Figure 2) such as the Monday before a
holiday or the Friday after a holiday. The load profiles of special days do not have the same demand
pattern, it can be seen in Figure 2 that the load profile of 12 October is different to the load profiles of
normal days. In addition, the demand pattern on 13 October is lower than the demand pattern of a
normal Friday, which is because it happens after a holiday. If we consider all special days belonging to
only one kind of day, the accuracy of the demand prediction will be affected.
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Figure 2. Hourly electricity demand in Spain from 2 October 2017 to 15 October 2017.

Each day of the week may have its own profile and, in many cases, there are interactions causing
the type of special day to be conditioned by its weekday. The same special day may have different
demand patterns depending on the day of the week. Figure 3 displays the profile load of the special day
7 December for the period 2010 to 2017. The day before and after 7 December is a holiday. However,
the demand load for Monday, Saturday and Sunday are very different from the other days, as well as
the first hours of Thursday and the period between 9 am and 7 pm on the same day. Special days are
classified into several types depending on the day of the week.

Figure 3. Hourly electricity demand for December 7th, which fell on Tuesday (2010), Wednesday (2011),
Friday (2012), Saturday (2013), Sunday (2014), Monday (2015), Wednesday (2016) and Thursday (2017).

However, this classification of special days is not enough to obtain all the information that lies
within the profiles of the special days. A deeper classification of the special days is necessary to
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improve forecasting accuracy, which has been the subject of this work. All demand patterns different
from the demand patterns of normal days should be analyzed, taking into account the influences on
demand described in this paper. Special days with similar demand patterns are grouped to reduce the
complexity and computing times of the forecasting model.

The contribution of this research line in:

• This paper proposes a classification for special days that includes more than 40 types of day, while
most published articles limit their classification to 15 or less.

• The performance of this classification is tested against less extensive classifications, proving that
its use provides a more accurate forecast for each type of day.

• Non-linearities present in special days load profiles are overcome by using separate models for
each hour and categorical variables for each type of day.

• A detailed analysis of special days in Spain is provided, which can help to replicate this
classification in other systems.

• The benefits of this approach stem not only from the reduction of the average forecasting error
but especially on the reduction of error peaks which usually happen on these special days.

This paper is organized as follows: Section 2 describes the state of the art and previous work
related to forecasting special days. Section 3 shows the available data for the analysis, the characteristics
of the mathematical model used, the treatment to the input variables in order to be processed by the
model and the different experiments carried out. Section 4 includes the results of these experiments,
analyzing how each classification of days affects modeling accuracy. Section 5 is a brief conclusion
expressing the relevance of using complex classification schemes for the different types of days in
order to achieve accurate forecasts. Appendices A and B include a more extensive review of the results.

2. State of the Art and Related Work

The aim of this study is to improve STFL accuracy for special days by defining a more detailed
classification. Load profiles of the different days do not follow the same pattern and if we group
the most similar demand patterns, the accuracy of the prediction will increase. Demand patterns of
special days and demand patterns of normal days are very different. If our forecasting model does
not differentiate between normal and special days, the results obtained will be inaccurate on these
special days.

In most of the research works related to STFL, all days are classified into two or three large
groups such as weekdays, weekends and holiday periods [23,35–37]. Some research articles, where
special days are classified according to the demand pattern, they are grouped into 5 [38] and 15 [39]
different days, obtaining better results than choosing only three types of days. The profile loads on
special days do not have the same demand pattern (i.e., days adjacent to holidays, period of Christmas,
Easter, national holidays, week before Christmas) [26,38], consequently the forecasting uncertainty is
greater for these days. The day of the week is also an important factor in the load profiles of special
days [40–42]: the same special day may have different demand patterns depending on the day of
the week. In addition, demand pattern of normal days can be altered by the proximity of special
days [38,40,41,43].

Several works have been published for anomalous load forecasting [26,38–44]. In the case of
research [42], it only takes into account the days with the greatest errors in the prediction. These days
are the holidays that fall on a Saturday or a Monday. This research was done in Korea where Sundays
are holidays. Special days are classified into four categories (Tuesday, Wednesday, Thursday and
Friday; Saturday; Monday; Sunday). This research only classifies special days depending on the day of
the week they fall on. This method reduces the highest prediction errors. However, the accuracy of the
prediction can be improved if a deep classification of special days is performed. In [43], the different
types of day are classified based on the shape of the load curve into three categories (weekdays
(Monday to Friday); Saturday; Sunday and Holidays). Due to the application of special rules, the
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proximity of the forecast day to a holiday is taken into account. This classification does not differentiate
special days from each other. In [26], data are classified according to the type of day and month,
to capture the effects of seasonality on the load profile. In addition, three variables are added to
check the impact on electricity consumption of holidays, days following a holiday and Easter. In [38],
special days are classified into five different types of day (weekday, Saturday, Sunday, Monday and
special holidays), but a neural network is necessary for each type of special day. In addition, a fuzzy
inference model forecasts the maximum and the minimum loads of a special day. Therefore, if the
number of types of special days increases, the forecasting model will be more complex. In [39], SOM is
used to group the days with similar load profiles and STFL is performed by means of an NN. SOM
performs the classification of the different types of days into groups that can vary between 11 and 15.
This technique has been discarded, because the separation of the different types of days requires prior
knowledge that is difficult to assemble and whose result is not clear. The classification proposed in this
research is similar to the classification described in [40]. Special days are treated according to whether
they fall on the same date, the same day of the week, the day of the week is weekday or weekend.
However, the classification of special days must be greater as well as the number of days considered as
special days. In [41], a variation of the forecasting model described in [40], is used, increasing training
period to 8 years and formulating a specific rule to be applied in France. However, the classification
of special days into seven categories is still insufficient. In [44], special days are classified into four
categories such as common holidays (some national holydays and all local and regional holidays) and
three special national holidays.

The use of categorical variables to formulate such classifications in linear regression models is
very common [26,41,44–46] and it is the same approach used in this paper. These categorical variables
define the type of day and are translated into dummy binary categories that allow the regression
model to estimate each type of day individually without any linear assumption among normal or
special days.

3. Methodology

The starting point of this study is a load forecasting system currently in use at the Red Electrica
de España (REE) headquarters. REE is the Transport System Operator for the Spanish system.
The following paragraphs aim to describe the available data, the variables actually introduced in the
system and the mathematical aspects of the model. In addition, this section will describe the different
experiments carried out to determine how the variety of special days can be classified and the type of
information used to characterize each type of day.

3.1. Available Data

The input data can be grouped as load, temperature and calendar data:

• Load: The load data are hourly values from the whole Spanish inland system. Data covers the
period 2010 through 2017. The data have been filtered to discard incoherent outliers and fill in
missing data. Only 0.01% of the data points were affected.

• Temperature: The temperature data consists of maximum and minimum daily values from 59
stations scattered throughout the country. As described in [24], only the most relevant locations
are actually included in the model.

• Calendar: The information on special days is initially extracted from the B.O.E. (National Official
Gazette) [47]. This document includes all national and regional holidays for each year. However,
even though these dates present a specific load profile, they are not the only ones that need
special treatment and, therefore, additional information will be needed to establish a definite
classification of special days. This additional information can be extracted from the characteristics
of the load but in this case, the forecasting model was designed by an expert in the field.
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3.2. Mathematical Model

The forecasting model used as starting point is thoroughly described in [24]. It includes a
neural network and an autoregressive model whose output is combined to provide a single forecast.
The combination of both outputs is more accurate than both of them, therefore, both techniques
have advantages and are useful as forecasters. However, the black-box characteristics of the neural
network makes it less useful to extract conclusions about the model and it is consequently discarded
for this study. In addition, the limitation that regression models impose of linearity between each
variable and the output can be overcome by linearization methods (temperature) or other techniques.
The abnormalities that special days cause in the daily profiles are non-linear because each hour is
affected differently and, therefore, the resulting profile is not a scaled copy of the profile of a regular
day. In addition, there is no linear relation between the nature of each special day and its effect on the
load. The regression model used allows us to include these abnormalities by using individual models
for each hour, whose coefficients, therefore, are not restricted in any way and by using separate binary
categories for each type of day. The model then provides specific profiles for each category without
any relation between the hours within a profile or between profiles of different categories.

The autoregressive model is described by Equation (1), where a given output yt is a linear
combination of the model’s p previous known errors (et-i), a number of exogenous variables included
in Xt and a random shock εt:

yt =
p

∑
i=1

ϕi·et−i + Xt·θ + εt (1)

This type of process is useful for characterizing time series which are self-correlated to some extent.
However, the autoregressive part may also cover up the effect of the exogenous variables. Therefore,
in our study, the autoregressive part of the model has been eliminated as shown in Equation (2):

yt = Xt·θ + εt (2)

The effect that any exogenous variable may have on the load may vary throughout the day, which
means that the coefficient for each variable may take different values at different times. In order to meet
this requirement, the 24 h profile is obtained by using one model for each hour. The input structure
for each model is the same. In addition, the output used is the natural logarithm of the load, which
experimentally shows a lower modeling error than the actual load.

3.3. Input for the Model

The exogenous variables used in the model stem from the available data described above.
However, due to the non-linearities present in most load-variable relations, a pretreatment is necessary
to conform the definite variables going into the exogenous variables matrix:

• Load: The initial model contained two variables used to model the long-term trend as a quadratic
function of time. This approach may be valid for shorter periods of time (3 years) but for longer
periods, the long-term behavior is not reproduced by a quadratic function. Therefore, these
variables are substituted by a 52-week moving average of the previous load for each model.
In addition, the initial model included the last known load value at the time of the forecast.
This variable, as mentioned above about the autoregressive terms, may hide the effect of other
variables like temperature or special days. Therefore, it is also removed from our study.

• Temperature: The effect of temperature is non-linear as both hot or cold temperatures cause an
increase in electricity consumption. Moreover, it has a certain inertia and temperature during
previous days also has an influence on current demand. In addition, for large regions with a
diversity of climates, it is not desirable to use a calculated average temperature for the whole
region as it masks the extreme temperatures that may trigger high demands locally. To account
for all these factors, the temperature variables are first selected from all available locations: Only 5
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(Madrid, Barcelona, Seville, Bilbao and Zaragoza) of the 59 available series are used representing
the different climate areas in Spain. Linearity is achieved by using the Hot and Cold Degree
Days (HDD, CDD) method [44].This technique splits the data series into two different series each
one accounting for demand increases for hot and cold temperatures. It requires defining two
thresholds splitting the temperature range into three parts: cold days below the cold threshold,
neutral zone in between thresholds and hot days above the hot threshold. Therefore, this method
models the load-temperature relationship as a piecewise linear function that calculates different
slopes for cold and hot days while it sets the slope for the neutral zone to zero. Figure 4 illustrates
this methodology. In order to model temperature inertia, the model includes the current value
and lagged variables from all locations for the last two days. To sum up, the temperature
variables include HDD and CDD series from five locations with the current and two lagged
values. This treatment adds up to 30 variables.

• Calendar data: The information about the type of day is critical as load profiles vary greatly from
regular Mondays, to Fridays, Sundays, and even among holidays and special periods throughout
the year. Therefore, a detailed classification is key to forecasting these special days accurately.
In the starting model, 53 variables are used to classify the type of day along with eleven more to
assign the month. The variables included in the model from these 53 variables are described in
Tables 1–5.

Figure 4. Scatter plot of load from the region of Madrid against temperature from the Madrid weather
station. The linearization through HDDs and CDDs is shown in green.

A set of 24 variables is used to identify 24 specific days that are considered to have a profile of
their own, incompatible with any other day. These cases are described in Table 1:
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Table 1. National special days.

Type 1 (6) Type 2 (5) Type 3 (13)

All instances are
included regardless
of the day of the
week. (6 variables)

1 Jan

Only whenever the day
of the week is Mon-Fri. 1

(5 variables)

2 Jan
Each day from Mon.
before Good Friday to
Sat. after Easter Monday
(13 variables)

6 Jan 5 Jan
1 May 7 Dec
24 Dec 26 Dec
25 Dec 30 Dec
31Dec

1 Weekend instances may qualify into other categories.

The three variables used to classify the rest of national holidays from the B.O.E. are described in
Table 2:

Table 2. Regular national holidays.

Weekend Monday Tuesday-Friday

Days included as holidays in BOE:

Typically:
15 August
12 October

1 November
6 December
8 December

Days adjacent to a holiday or special day may show a different load profile depending on the day
of the week. Table 3 shows the four variables used to model this phenomenon.

Table 3. Days before and after a holiday.

Before After

Tuesday to Friday Monday 1 Monday to Thursday Friday 1

1 Typically, the profile is more affected if the day is in between the weekend and the holiday.

The classification of regular days is done through six variables for days Monday to Saturday.
Variables from Tables 1–3, described categories defined as exclusive: each day belonging to any of
these categories may not belong to any other. However, the following categories are thought of as
modifiers to the day of the week and may be active at the same time as the day of the week.

Religious holidays are widely observed in Spain and the work and school calendar includes two
periods besides the summer-time in which people concentrate their vacation days. The effect of Easter
was included in the exclusive variables because, by definition, it happens on the same weekday every
year, however, the period around Christmas presents a complexity that forces the use of the following
modifiers shown in Table 4:

Table 4. Periods affected by Christmas.

Week before Christmas Day Week after Christmas Day Week after New Year Day

Four variables 1 each for one day:
One variable for days only

Monday to Friday
One variable for days only

Monday to Friday
20 December

27–29 December 2–5 January21 December
22 December
23 December

1 Days from the week before seem to be differently affected among them while the days in other periods are all
equally affected within their own period.

The summer period is affected by a lower demand from industry due to holidays but a higher
demand from services due to tourism. This fluctuation is not constant throughout the summer, but
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may vary weekly. The inclusion of the month variables helps modeling this behavior but, in the case
of August, three additional variables have been added to model differences among weeks.

Finally, regional or local holidays are published in regional gazettes and identified by a variable
which, in this case, is not binary but equivalent to the fraction of the National Gross Product that the
particular region represents.

The effect of Daylight Savings Time is also considered in the initial forecasting model in two
ways. Firstly, it relies on the autoregressive part to phase out the error from the time shifts in March
and October and secondly, in order to ease the transition, the first three days from each season are
considered as special. These special days are not considered in this study because the autoregressive
part is removed. To sum up, Table 5 summarizes all variables for the type of day.

Table 5. Types of day category summary.

Type of Category General Description Specifics Number of Variables

EXCLUSIVE

Special days with specific
profiles

Easter 13
Any day of the week 6

Only weekdays 5

National holidays with
generic profile

Weekend 1
Monday 1

Tuesday to Friday 1

Days adjacent to holidays Before 2
After 2

DAYS OF THE WEEK 6

MODIFIERS
Christmas periods

Before Christmas day 4
After Christmas day 1

After New Year’s day 1

Summer vacation (August) Week number 3
Regional holidays GNP fraction 1

In summary, the model includes one long-term load variable, 30 temperature variables, 11 binary
variables for the month and 53 binary variables for the type of day. The output variable is the natural
logarithm of the load.

3.4. Experiments and Results

The aim of this study is to determine the different load profiles that a given day may have
depending on social- and labor-related characteristics. To determine whether the classification above
is adequate, simplistic or overly complex, this study proposes a series of tests to determine how the
accuracy of the model varies as the complexity of the classification increases. These experiments are
based on eight different classifications starting from the most simplistic, in which only the day of the
week is observed and finishing with the most complex, in which all categories described above are
considered. The different models are incrementally defined in Table 6, in which each incremental
change is described.

Special days are scarce and certain types may only happen every two or three years. This causes a
problem when splitting the data set into training data and out-of-sample testing data. In order to solve
this, all experiments have been carried out using each one of the 8 years as the testing period and the
other 7 as training data. Therefore, the results provided for each model correspond to an 8-year period
for which every year is obtained as an out-of-sample test of the model trained with the other 7 years.
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Table 6. Summary of incrementally complex models.

Number of Model General Description

0 Only six variables are included which are used to describe the day of the week.

1 Three variables are
added

Holidays
Type 1 of special holidays, Maundy Thursday, Good

Friday, Easter Monday and all regular
national holidays

Days before holidays Jan 5th, Dec 7th, Dec 30th, Good Wednesday and all
days from the before-holiday final category

Days after holidays Jan 2nd, Dec 26th and all days from the after-holiday
final category

2 Five variables are added

Regional As described in the final classification
Week before Christmas Dec 20th to Dec 23rd in one single category
Week after Christmas Dec 27th to Dec 29th in one single category

Week after New Year’s Jan 2nd to Jan 5th in one single category

Easter Monday and Tuesday prior to Good Friday and
Wednesday to Saturday from the next week

3 One variable added Summer holiday First three weeks of August

4 Four variables are added

Holidays is split into
three categories

Holidays I.P.M. that happen on weekend
Holidays I.P.M. that happen on Monday.

Holidays I.P.M. that happen on Tuesday to Friday
Days before holidays is
split into two categories

Days before holidays I.P.M. that happen on Monday.
Days before holidays I.P.M. that happen on Tuesday

to Friday
Days after holidays is

split into two categories
Days after holidays I.P.M. that happen on Friday.

Days after holidays I.P.M. that happen on Monday
to Thursday

5 Thirteen variables are
added

Easter
Easter I.P.M. each day gets its own category (6)

Saturday and Sunday after Good Friday each get their
own category (2).

Week before Christmas Dec 20th to Dec 23rd each get their own category (3)
August Each week gets its own category (2)

6 Eleven variables are
added Specific holidays All type one (6) and type 2 (5) national special days are

assigned their own category. (11)

7 Four variables are added Easter Wednesday, Thursday, Good Friday and Easter
Monday each get their own category (4)

Each model provides a different output which differs especially on days for which other models
use a different classification. It is obvious that when a model includes a new category to better suit
a type of day, the days falling under said category are expected to be more accurately modeled.
However, it is worth mentioning that by “cleaning up” the category in which these days were before,
the remaining days in the category also experience a change in their profile that should be for the best.
Therefore, even among models that apparently have the same definition of a category, i.e., all models
have a regular Monday category, there may be differences in these categories among these models.

The measure of reported error is the Mean Average Percentage Error (MAPE) and it is categorized
by type of day to focus on the specific changes among models. For each general category of type of
days, the error from each model that introduces a significant change in the definition of said category
is reported. Models that treat a category in the same way and that may only experience collateral
changes are not reported for clarity reasons.

In addition to the accuracy of a given classification, it is important to understand how each
classification models the load profile. This will help us in determining not only which classification is
more accurate but also, and more importantly, how each special day’s profile is different from each
other and learn the expected load from each of them.

Since the output of each model is not the actual load but the natural logarithm, the effect of
each coefficient on the load can be considered not as an addend but as a multiplier to the expected
load. Considering the way that the type of day categories are defined, the base profile is that of a
regular January Sunday. Therefore, a category coefficient higher than 1 means that the typical load at
that particular hour for that particular category is larger than the load expected for a regular January
Sunday controlling for other factors like temperature.
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The coefficient profile calculated for each category by each model is the second result of this
study and it provides a useful tool for understanding the nature of each type of special day and the
behavioral changes of the consumer on such types of day. These profiles are included in the results
section if they are relevant but all of them are also included in Appendix A for the reader’s reference.

4. Results

The following section describes the results obtained by each model for every category of type of
day. These results include the MAPE results for each model to assess the accuracy improvement that
the refining of each category adds to the model. In addition to the error, it also includes the coefficient
profile so that the accuracy change can be interpreted based on how the category is differently modeled.

4.1. Regular Days

Even though the aim of this study is not regular days, it will help understand the rest of the
results if this category is analyzed. The definition of the category remains unchanged through all eight
models; however, more and more special days are removed from the category from model 1 to model
7 and, therefore, the modeling of regular days is more accurate. Figure 5 shows the changes in MAPE
on each day of the week through all models. The largest improvement occurs from model 0 to model
1. This model is the first one to acknowledge the existence of special days. Nevertheless, accuracy
increases continuously through model 7, especially on Sundays, Mondays and Saturdays.

Figure 5. MAPE error of all seven models for the seven days of the week.

The change in the models can be seen in Figure 6a, in which the load profile and the reported
MAPE for each model is shown for regular Mondays. The graph shows how the model 0 profile is
lower than the other two, which are essentially equivalent. This is because model 0 models regular
Mondays after all Mondays in the data set while models 4 and 7 exclude most or all special days,
which have a lower profile. The rest of the regular days’ results are shown in Appendix A (Figure A3).
In Figure 6b the profile for all days of the week from model 7 can be seen and how Monday has a
lower start while Friday has a lower finish. Saturday has a unique profile and Tuesday, Wednesday
and Thursday are very similar.
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(a) (b) 

Figure 6. (a) Coefficient profile and error chart for regular Mondays.; (b) Coefficient profiles for all
regular days in model 7. Sunday is a straight line because it is the reference.

It is also important to quantify whether two profiles are similar enough to be considered the same
type of day. In order to do so, Table 7 presents the maximum difference between each profile and its
most similar pair. This measure expresses the difference between the profiles for two types of days.
Specifically, it is the maximum percentage difference between the two 24 h profiles. It is a measure of
how two profiles may or may not be equivalent and represent the same type of day. Both type-of-day
categories are named at the top and bottom of the table. In this case, there is less than 1% difference
between Tuesday, Wednesday and Thursday and, therefore these three categories are candidates for a
joint category.

Table 7. Differences between days of the week.

Date Sun Mon Tue Wed Thur Fri Sat

Difference 17.11% 8.27% 0.93% 0.57% 0.57% 3.26% 17.11%
Most similar Sat Tue Wed Thur Wed Thur Sun

4.2. Special Days Type 1 and Type 2

Special day types 1 and 2 include 11 fixed dates (see Table 1) that are considered to have specific
load profiles. The models that introduce differences into these categories are 0 (all days are regular
days), 3 (includes holidays and days before and after), 5 (distinguishes profiles for different days of the
week) and 7 (each day is considered unique). Figure 7a shows the model accuracy of the category in
these four models. Including these categories as general holidays or before/after holidays lowers the
error from 15.6% to around 7%, but then considering each individual holiday yields a much better
result of 2.8%. For these special days, assigning different profiles according to the day of the week
(model 3 vs. 5) does not improve the result.

In addition, Figure 7b shows the example of Christmas day and how the coefficient profile changes
in each model for this particular day. It is interesting how Christmas day shows a much lower load
profile than most other special days and so it needs to be considered apart. The coefficient profile
and error graphs for the rest of days within the category are included in Appendix A (Figure A3).
The maximum difference between the most similar profiles is detailed in Table 8 and it shows that all
profiles are independent.
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(a)  

(b) 

Figure 7. (a) MAPE for models 0, 3, 5 and 7 for all types 1 and 2 days. (b) Coefficient profile and MAPE
for models 0, 3, 5, and 7 for Christmas Day.

Table 8. Differences between special days type 1 and 2.

Date 1 Jan 2 Jan 5 Jan 6 Jan 1 May 7 Dec 24 Dec 25 Dec 26 Dec 30 Dec 31 Dec

Difference 5.79% 11.2% 10.2% 6.65% 6.65% 10.2% 3.43% 1 5.79% 11.9% 10.8% 3.43%
Most similar 25 Dec 7 Dec 7 Dec 1 May 6 Jan 5 Jan 31 Dec 1 Jan 31 Dec 7 Dec 24 Dec

1 The most similar profiles belong to 24 Dec and 30 Dec, but the peak difference is almost 3.5%.

4.3. Special Days Type 3

Special days type 3 include the Easter period. Each day is considered to have its own profile but
differently from types 1 and 2, these days do not happen on the same date each year. The models that
affect this type of days are 0, 3, 5 and 7 and the overall accuracy for these days is shown in Figure 8.

Figure 8. MAPE for models 0, 3, 5 and 7 for all type 3 days.

This type of special days includes some whose profile is deeply affected, like Good Friday, and
others, like the Wednesday after Easter Monday, that are only slightly different to a regular day.
Figure 9 shows the coefficient and error graph for these two examples while the rest are included in
Appendix A (Figure A3). For clarity reasons, days that happen in the same week as Good Friday are
from now on referred to as A, while those that happen on the next week will be known as B.
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(a) 

 
(b) 

Figure 9. (a) MAPE for models 0, 3, 5 and 7 for Good Friday. (b) Coefficient profile and MAPE for
models 0, 3, 5, and 7 for the Wednesday after Good Friday.

While Figure 9a shows how accuracy on Good Friday increases as the classification is more
complex, it does not happen the same way for the next Wednesday, as it is shown in Figure 9b.
This may lead to the conclusion that such a Wednesday should not be considered special, as model 0
yields the most accurate result. However, as aforementioned, the profiles for regular weekdays from
model 0 are lower than actual regular days due to the presence of holidays that, in that model, are
considered regular. The MAPE for such Wednesday if it was considered as a regular day in model
7 would go as high as 3.3%. Figure 10 shows these profiles and illustrates how the profile for that
specific Wednesday is lower than both the profile of a regular Wednesday in models 0 and 7. This
justifies the use of these specific categories.

Figure 10. The profile for Wednesday B is lower than any of the regular day profiles calculated in
models 0 or 7.

Table 9 shows the similarities among the coefficient profiles within the category. In order to
illustrate the fact that days like Wednesday B actually differ from regular days, the profiles for regular
days from model 7 are included as candidates for most similar. The results show that Friday and
Saturday from week B have the most similarities with regular Fridays and Saturdays, but this difference
is larger than two percent.
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Table 9. Differences between special days type 3.

Date Mon-A Tue-A Wed-A Thu-A Fri-A Sat-A Sun-A Mon-B Tue-B Wed-B Thu-B Fri-B Sat-B

Similarity 2.55% 4.24% 4.24% 8.02% 3.15% 9.55% 3.15% 11.27% 2.55% 2.81% 3.22% 2.17% 2.64%
Most similar Tue-B Wed-A Tue-A Sat-B Sun-A Fri-A Fri-A Thu-A Mon-A Fri-B Wed-B Reg Fri Reg Sat

4.4. Regular Holidays and Days Before and After

Regular holidays are those that are considered to have a generic holiday profile. The days before
and after include days which happen before or after a special day, not necessarily a regular holiday.
The models that affect these days are 0, 3, 5 and 7. The overall accuracy for these dates and models is
shown in Figure 11. In this case it is clear that taking into account the day of the week improves the
accuracy (from model 3 to model 5) but also that removing the previously studied special days (some
of which were holidays, but others were days before and after) also improves the generic ones (from
model 5 to 7).

Figure 11. MAPE for models 0, 3, 5 and 7 for generic holidays and days before or after a holiday.

The coefficient profiles and errors graphs for all days in these categories are included in A4. In the
case of holidays, the category is split into holidays on weekends, on Mondays and during the rest of
the week. Figure 12 shows the coefficient profiles for these categories in the final model.

Figure 12. The different profiles that a generic holiday may have depend on the day of the week.

The difference between them can be explained by considering the next and previous days.
Holidays whose previous day was a weekday start with a higher profile and holidays whose next day
is a holiday finish with a lower profile than a regular Sunday.

A similar phenomenon happens regarding days before and after a holiday. Their coefficient
profiles are shown in Figure 13a,b. In both cases, it is clear how, if the day is adjacent to both the
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holiday and a weekend, then the profile is lower and it is closer to a holiday’s profile. However,
Figure 13a shows that if the day before a holiday happens Tuesday to Friday then it is more similar to
a Friday than to the corresponding weekday. Similarly, Figure 13b shows that if the day after a holiday
happens Monday to Thursday, then its profile is more similar to a Monday than to its corresponding
profile. Nevertheless, in both cases the profile is slightly lower than a regular day. Table 10 shows
these similarities that justify the use of these variables.

 
(a) (b) 

Figure 13. (a) Coefficient profiles for days before a holiday with regular Mondays and Wednesday
as references. (b) Coefficient profiles for days after a holiday with regular Fridays and Wednesday
as references.

Table 10. Differences between special days type 1 and 2.

Date
Holiday

Sun & Sat
Holiday

Mon
Holiday
Tue-Fri

Before
Holiday &
Monday

Before
Holiday &

Tue-Fri

After
Holiday &
Mon-Thu

After
Holiday &

Friday

Difference 4.14% 4.14% 6.2% 2.38% 4.26% 3.17% 2.38%

Most similar Holiday
Mon

Holiday
Sun & Sat

Holiday
Mon

After &
Friday Reg Fri Reg Mon Before &

Monday

4.5. Christmas Periods

Three different periods are included in this category as described in Table 5. The models that
affect the classification of these periods are 0, 1, 4 and 7. Model 1 only affects the last period because
it considers Jan 2nd and 5th as special days, as described in Table 6. The overall accuracy for all the
periods is shown in Figure 14. The error increases from model 0 to 1 because both consider all these
days as regular, but model 0 assigns a lower profile because it includes more real holidays. Model 4
introduces one category for each period and model 7 assigns one category for each of the four days of
the first period.
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Figure 14. MAPE for models 0, 1, 4 and 7 for all days included in the three Christmas periods.

The first period (20–23 Dec) is defined by one variable for each day. These variables are modifiers,
which means that, in addition to them, the day of the week is also active. The meaning of the coefficient
profile of these variables is how a regular day is modified by having this variable active. Figure 15
shows the coefficient profiles associated with these four modifiers. It shows how, especially after noon,
all days are different to a regular day (which would equal a straight line with a value of 1). In addition,
the effect of Christmas is incremented gradually: each day closer to Christmas gets a lower profile than
the one before.

Figure 15. Coefficient profiles for the modifying variables of 20–23 Dec. Each day closer to Christmas
day lowers the demand.

The other two periods are defined by only one variable for each of them. Figure 16 shows the
coefficient profiles and error for these two periods. It can be seen in Figure 16a how model 1 yields a
worse result because regular days from model 1 have a higher, more realistic profile than in model
0. Nevertheless, the even lower profiles from models 4 and 7 provide a much better model. Panel
(b) shows that the last period is affected by the definition of special days in model 1. The lower error
in this period from model 0 to model 1 is not obtained through a different general profile (the graph
shows very similar profiles) but because two days in this period are affected by another variable.
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(a) 

 
(b) 

Figure 16. (a) Coefficient profile and MAPE for models 0, 1, 4, and 7 for the Christmas period 27–29 Dec.
(b) Coefficient profile and MAPE for models 0, 1, 4, and 7 for the Christmas period 2–5 Jan.

To determine whether any of these profiles can be joined together, or if any of them is sufficiently
similar to a regular day, Table 11 shows the most similar profiles.

Table 11. Similarities and differences among Christmas periods profiles.

Date 27 D–29 D 2 J–5 J 20 D 21 D 22 D 23 D

Difference 9.10% 5.46% 1.61% 1.61% 3.15% 5.46%
Most similar 2 J–5 J 23 D 21 D 20 D 21 D 2 J–5 J

The coefficient profiles and error graphs for all variables are included in Table A5.

4.6. Summer Vacation

The last period is the summer vacation during the month of August. As aforementioned, because
vacations are usually assigned by full weeks it is possible that each week will have a specific profile.
The results for models 0, 2, 4 and 7 are shown in Figure 17. Model 2 introduces the possibility of
distinguishing between the first three weeks and the fourth while model 4 allows the distinction
among all four weeks. Model 7 uses the same classification but it benefits from improvements from
the definition of other special days (probably related to the national holiday of Aug 15th.).

Figure 17. MAPE for models 0, 2, 4 and 7 for all days included in the summer vacation periods.

193



Energies 2019, 12, 1253

The different profiles for each week are shown in Figure 18. Weeks 2 and 3 show a profile around
4% lower than weeks 1 and 4, indicating that the two middle weeks concentrate vacations more than
the first and last. The coefficient profile and error graphs are included in A6.

Figure 18. Coefficient profiles for days within the summer vacation period. Central weeks in August
experience a lower demand than weeks 1 and 4.

4.7. Overall Result

The overall results for all the days that are considered special are shown in Figure 19. The boxplot
shows the 5th, 15th, 50th, 85th and 95th percentile of the model errors for regular and special days
from model 0 to model 7.

 
(a) 

 
(b) 

Figure 19. (a) Boxplot of the distribution of the error on regular days (b) Boxplot of the distribution of
the error on special days.

The main conclusions that can be drawn from this are that the proposed special day classification
yields an average error for special days of 1.84%, which is very near to the average error for regular
days (1.78%). In addition, the 95th percentile for special days drops from 17.6% in model 0 to only
4.56% in model 7. This means that only 5% of special days have a modeling error larger than 4.56%.
This number is even lower for regular days (4.33%). These results, shown in Table 12, suggest that the
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proposed classification is valid for modeling the special days present in the Spanish system almost as
accurately as regular ones.

Table 12. Differences between special days type 1 and 2.

%ile. Model 0 Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7

SPECIAL
DAYS

5th 0.80% 0.85% 0.84% 0.81% 0.82% 0.80% 0.78% 0.76%
15th 1.17% 1.18% 1.13% 1.13% 1.11% 1.10% 1.03% 1.01%
50th 2.43% 2.47% 2.24% 2.19% 2.11% 1.99% 1.88% 1.84%
85th 7.89% 5.85% 5.01% 4.95% 4.54% 4.31% 3.50% 3.32%
95th 17.61% 9.99% 8.86% 8.88% 8.68% 7.45% 5.18% 4.56%

REGULAR
DAYS

5th 0.77% 0.76% 0.77% 0.77% 0.76% 0.75% 0.74% 0.73%
15th 1.09% 1.04% 1.03% 1.01% 1.01% 1.01% 0.99% 0.98%
50th 2.07% 1.85% 1.80% 1.80% 1.81% 1.79% 1.78% 1.78%
85th 4.17% 3.34% 3.25% 3.18% 3.17% 3.16% 3.09% 3.13%
95th 5.62% 4.61% 4.48% 4.42% 4.38% 4.41% 4.31% 4.32%

The extensive categorization presented may be exported to other electrical systems although
not all categories may prove to be relevant and some others may be needed. Categories that are not
relevant can be identified by assessing the difference between their profile and those of other categories.
If two categories present similar profiles, then they may be joined together. However, in order to define
new variables, it would be necessary to study the error profiles of the least accurately modeled days
and search for a similar pattern in days that can be jointly described in their own category.

5. Conclusions

Load forecasting is a key activity to any electric system and a lack of accuracy leads to an increase
in operating costs. These costs grow exponentially as the error increases which leads to high costs on
days for which load is hard to anticipate. These special days are those on which working or social habits
differ from the ordinary like on holidays, vacation periods or days adjacent to them. The importance of
correctly modeling the behavior of consumers in these special dates is key to reducing the maximum
errors of a forecasting system. This paper has tested the validity of a special day classification system
with more than 40 variables. This large number of variables may seem excessive as most reported
models use much fewer categories. However, the results of this system compared to simpler versions
of itself show that in order to model accurately the extensive variety of effects that the calendar has on
consumer behavior it is necessary to implement a complex classification system like the one tested in
this research. The methodology described can be transferred to other electrical systems with some
adjustments to the category definition, but it is within reason that it would prove useful at least in
similar systems like France, Portugal or Italy.
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Appendix A

The coefficient profiles and error charts for all categories are included here:

 

   
 

 

 

Figure A1. Regular days.

   

Figure A2. Cont.
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Figure A2. Special days type 1 and 2.

   

Figure A3. Cont.
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Figure A3. Special days type 3.
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Figure A4. Regular holidays and days before and after.

   

Figure A5. Cont.
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Figure A5. Christmas periods.

   

Figure A6. Summer vacation.

Appendix B

All calculated coefficients from the final model for each variable are detailed here:
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Abstract: Short-term load forecasting is integral to the energy planning sector. Various techniques
have been employed to achieve effective operation of power systems and efficient market management.
We present a scalable system for day-ahead household electrical energy consumption forecasting,
named HousEEC. The proposed forecasting method is based on a deep residual neural network,
and integrates multiple sources of information by extracting features from (i) contextual data
(weather, calendar), and (ii) the historical load of the particular household and all households present
in the dataset. Additionally, we compute novel domain-specific time-series features that allow the
system to better model the pattern of energy consumption of the household. The experimental
analysis and evaluation were performed on one of the most extensive datasets for household electrical
energy consumption, Pecan Street, containing almost four years of data. Multiple test cases show
that the proposed model provides accurate load forecasting results, achieving a root-mean-square
error score of 0.44 kWh and mean absolute error score of 0.23 kWh, for short-term load forecasting for
300 households. The analysis showed that, for hourly forecasting, our model had 8% error (22 kWh),
which is 4 percentage points better than the benchmark model. The daily analysis showed that our
model had 2% error (131 kWh), which is significantly less compared to the benchmark model, with
6% error (360 kWh).

Keywords: short-term load forecasting; day ahead; feature extraction; deep residual neural network;
multiple sources; electricity

1. Introduction

Electrical energy (EE) is one of the most significant driving forces of economic development,
and is considered essential to daily life. Although EE is a clean form of energy when it is
used, the production and transmission of electricity can have a negative effect on the environment.
Additionally, overproduction of EE is problematic, because storing excess electricity is challenging and
difficult even with today’s technological advances. Hence, a system that can accurately predict EE
consumption can be used for electricity production planning, and significantly reduce the problems
with storage and overproduction.

In recent years, with the introduction of deregulation and liberalization of the energy markets, EE
consumption forecasting has become even more relevant. An accurate short-term load forecasting

Energies 2020, 13, 2672; doi:10.3390/en13102672 www.mdpi.com/journal/energies207
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(STLF) system can play a crucial role in effective power system operation and efficient market
management. Such a system has multiple benefits: (i) it can optimize the production process, thus
reducing the cost of overproduction and improving equipment utilization; (ii) it is eco-friendly,
with fewer resources used to produce electricity; (iii) it can help in optimizing power grid load and
strengthening reliability; (iv) it can potentially decrease EE consumption costs for households by better
planning the production/buying of EE in advance; and (v) it emphasizes EE trading possibilities.

The massive development of smart grid technologies in the residential sector brings many
challenges to the load forecasting community. It allows EE consumption to be obtained in close to real
time, and allows extraction of valuable data that both the supply and demand side can use for efficient
management of the electricity load network.

In recent years, there have been various data-driven approaches for modeling and forecasting EE
consumption. Most of them focus on industrial objects, factories, and companies, and some are more
focused on households. Furthermore, some focus on short-term forecasts (hourly, daily) with a small
prediction horizon (an hour in advance), and some focus on long-term forecasts (weekly, monthly).
The studies that focus on STLF with a large prediction horizon (at least one day ahead) are quite
limited. Therefore, in this paper, we present the household electrical energy consumption (HousEEC)
forecast system, which provides day-ahead household electrical energy (EE) consumption forecasts,
using a deep residual neural network (DRNN) that combines multiple sources of information. The key
contributions of the paper are as follows:

• A review of the existing EE consumption approaches and a highlight of their current limitations
(Section 2).

• An extensive analysis and evaluation of the Pecan Street dataset, the largest and richest household
EE consumption dataset (Section 3).

• A novel deep learning (DL) method with a scalable architecture that can work with different
numbers of households. It is based on DRNN and includes multisource feature extraction,
regression learning, and forecasting of hourly EE consumption of multiple households one day in
advance. The proposed DRNN uses pre-activation residual blocks and separate input branches
for different types of features (Section 4).

• Novel domain-specific historical time series, from which numerous time and frequency features
are extracted (Section 4). These features give new insight into the time-series dynamics and
significantly increase the performance of the forecast models.

• An extensive evaluation of the method, including: (i) a comparison of our proposed method
with seven machine learning (ML) algorithms, five deep learning (DL) approaches, and three
benchmark/reference approaches; (ii) error analysis of different application scenarios (hourly, daily
and monthly EE consumption); and (iii) a comparison of achieved results for household STLF
with results from other state-of-the-art approaches (Sections 5 and 6).

• A practical implementation of the system in a prototype web application, where ML models are
deployed and execute the forecasts on a daily basis (Section 7).

• A discussion about the results, the forecasting efficiency and its significance, and potential use of
the model in a commercial EE monitoring system (Section 8).

2. Related Work

Selecting a forecasting method depends on multiple factors, including the availability and
relevance of historical data, desired prediction accuracy, the forecast horizon, and so forth. In recent
years, the STLF problem has been tackled by utilizing various methods, each one characterized by
different advantages and disadvantages in terms of training complexity, prediction accuracy, limitations
in the forecasting horizon, etc. In general, the related work in STLF can be divided into two categories,
depending on the type of user (industrial entities or households) and method used (e.g., statistical,
ML, DL).
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2.1. Related Methods

With the advent of statistical software packages and artificial intelligence techniques, numerous
methods have been proposed to model future EE consumption and improve forecasting performance.
These methods can be divided into two categories: conventional statistical methods and methods
based on artificial intelligence (AI).

Statistical methods provide explicit mathematical models where the load is represented as a
function of several input factors. These were the first used methods, and for years represented the
benchmark among systems for STLF. All of these methods, which include smoothing techniques, data
extrapolation and curve fitting, assume that the load data have an internal structure. Autoregressive
moving average (ARMA) models were among the first used in STLF [1–3]. Soon they were replaced by
autoregressive integrated moving average (ARIMA) models [4] and seasonal ARIMA models [5] to deal
with time variance often exhibited by load consumption profiles. Other examples of statistical methods
used in STLF are multiple regression [6], exponential smoothing [7], adoptive load forecasting [8,9] and
Kalman filtering [10,11]. The major weakness of these approaches is their assumption of the linearity
of the observed system. EE forecasting is a complex multivariable and multidimensional estimation
problem, and these methods are not always suitable for finding the nonlinear relationship between the
independent influencing variables and the EE consumption.

On the contrary, advanced ML methods are suitable for finding patterns and regularities in
the data and use them to forecast future EE consumption. ML based methods have shown great
performance in the field of STLF. The most commonly used ML algorithms for STLF are support vector
machines (SVM) [12,13], random forest [14,15] and artificial neural networks (ANNs) [16]. However,
as shown in numerous studies and in the benchmark Global Energy Forecasting Competition 2012
(GEFCom2012) [17], very often, simple ML methods applied to manually crafted complex features
(polynomial and exponential interaction features combining multiple variables) achieve better and more
robust performance [18]. These features often use the lagged and recency effect, first introduced in [19].
One of the winning teams [20] at GEFCom2012 used lagged hourly and average daily temperature
variables in the competition. They applied a gradient boosting algorithm to learn the dependencies
between features and target variables. Another winning team at GEFCom2012 [21] used exponentially
smoothed temperature variables. They used generalized additive models and kernel regression for
long-term load and medium-term forecasting, and random forests for short-term load forecasting.

Over the past few years, DL has been a subject of intense study in many fields, especially in
time-series prediction. Deep neural networks (DNNs) have shown the capability to approximate any
complex function with arbitrary precision. In [22], the authors showed that some DNN architectures are
able to outperform classical ML approaches in the load forecasting task. The authors of [23] proposed
convolutional neural network (CNN), as an effective and accurate approach for household-level load
forecasting. They showed that CNN is able to capture short-term trends in load data and that a
data-augmentation technique can improve the load forecasting accuracy. Compared with conventional
feedforward neural networks, recurrent neural networks (RNNs) have the particular advantage of
coping with historical data through a feedback connection. In [24], the authors presented a deep
RNN to predict electricity consumption for commercial and residential buildings. As an extension
of RNN, long short-term memory (LSTM) networks have been used in the load forecasting field
in the last few years [25]. The authors of [26] utilized two types of LSTM networks (standard and
encoder-decoder architecture) to make predictions for one household. The authors of [27] proposed
enhanced-LSTM for EE consumption forecast of a metropolitan power system in France. Their method
takes into account the periodicity characteristic of the load consumption by using multiple sequences
of input time lags, and achieves higher performance than a single-sequence LSTM. Moreover, different
hybrid architectures have been explored in order to avoid the limitations of individual models. A
hybrid approach for STLF is presented in [28], where the authors processed the load signal in parallel
with a LSTM and CNN. The features generated by the two networks were then used as input in a
fully connected network in charge of forecasting the day-ahead load. The authors of [29] proposed
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a hybrid model which combines general regression neural network (GRNN), minimal redundancy
maximal relevance technique and empirical model decomposition. The efficiency of the model is
validated on aggregated load data from a power system in China. It shows higher forecasting accuracy
than single GRNN and SVM. In [30], a hybrid method is proposed, which combines LSTM, empirical
mode decomposition and similar-days selection to build a prediction architecture for short-term load
forecasting. The authors concluded that the robustness of individual methods in the hybrid scheme
can be an advantage for the forecasting model.

2.2. Related Studies According to User Type

According to the type of user, EE consumption forecasting approaches can be divided into
those that focus on industrial entities (industrial consumption) and those that focus on households
(residential consumption). The industrial approaches focus on entities such as factories, enterprises and
companies, and have substantial commercial potential because industry consumes significant amounts
of EE. STLF for industrial entities in Spain is discussed in [31]. The authors presented a neuro-fuzzy
system with a backpropagation learning algorithm and compared the results achieved with those of
other techniques, such as multilayer perceptron and statistical ARIMA processes. In [32], the authors
present a model for STLF for a hospital in China. They combined LSTM and CNN and explored
the network performance by considering coupling of electrical loads, gas and heating. The authors
of [33] introduced an ARMA model for load forecasting of industrial companies, with focus on EE
consumption profiles where stochastic changes in the regime can be observed. In [34], a set of multiple
linear regression models are developed for modeling industrial loads. The data used in the study
were collected from an Italian factory. In this study, the authors showed how few qualitive variables
characterize the production schedule. In [35], the authors develop different models for forecasting the
next hour load using data from a Spanish industrial pole. With an optimized model for single-hour
prediction, a hybrid strategy was applied to build a complete day-ahead hourly load forecasting model.
In general, the studies related to industrial EE consumption provide more accurate models compared
to households, probably because industrial entities have strict regulations (i.e., shifts and working
time), which makes the forecasting less challenging.

On the other hand, residential EE consumption is more challenging to forecast. Each household
has its own pattern and electricity consumption profile, which are determined by the number of
occupants, their lifestyle, the household area, electrical appliances present in the household, etc.
Additionally, household-level EE consumption can vary considerably from one day to the next due
to work schedules, holidays, weather conditions, etc. Therefore, most of the approaches in this field
tend to avoid such uncertainty by using load aggregation: they focus on forecasting EE consumption
of clusters of households, usually grouped by location (i.e., buildings and neighborhoods). Load
aggregation usually reduces the inherent variability in load consumption, which results in smoother
load shapes that are more predictable. This effect is illustrated in Figure 1.

In [36], the authors used clustering method to divide different types of households. For each
cluster, a neural network is fitted, and their forecasts are added together to form predictions for the
aggregated load. The authors demonstrate that clustering significantly increases forecast accuracy.
Similarly, in [37], the authors propose a three-step process, consisting of clustering approaches, load
forecasting for each cluster, and aggregating the forecasts to obtain results at a system level. The authors
of [38] also show that aggregating more households improves the relative forecasting performance.
They compare load forecasting accuracy at various levels of aggregation for many forecasting methods.
In [39], the load consumption forecasting problem is addressed using random forest and support
vector regression (SVR). Predictions are made on three spatial scales, and the obtained results show
that combination of K = 32 clusters and random forest yields highest forecasting accuracy.

The systems that focus on neighborhoods lose vital information about each household; thus, they
have lower commercial value, i.e., such systems cannot monitor and learn the behavior of individual
households. Therefore, they cannot offer personalization and planning of EE consumption, which
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will be useful for cost reduction. There are just a handful of recent studies covering short-term load
forecasts (e.g., day-ahead, hourly) for individual households, since they are still very challenging.
The authors of [40] present a pooling-based deep recurrent neural network (PDRNN), which batches
groups of customer EE consumption profiles into a pool of inputs. The authors of [41] applied Kalman
filtering to single household data for a sampling period and forecast horizon of one hour. In [42],
an approach is proposed to model the load of individual households based on daily schedule pattern
analysis and context information.

Figure 1. Weekly electrical energy (EE) consumption of: (a) 1 household, (b) 15 households,
(c) 50 households, (d) 100 households.

However, the authors focus on predicting consumption with a prediction horizon shorter than
one day, which does not have the same economic value as one-day-ahead hourly forecasts. Typically,
the results of day-ahead forecast are used as a baseline for planning of the 24 h period of the next
day, while forecasts with forecast horizon shorter than one day (intraday forecast) are mostly used for
adjustment of day-ahead purchases [43]. Accurate day-ahead forecast minimizes the possibility of
overproduction and underproduction, and satisfies load requirements in a more economical way, thus
reducing the total operation costs [44].

Our proposed solution for EE consumption forecasting includes short-term forecasting (day-ahead
forecast, for each hour of the day separately) for household consumption, which has significant
economic and industrial value. In our study, we focus on STLF of individual households, which
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we believe is very specific and challenging due to the variability in consumption and randomness
of households.

3. Dataset

3.1. Pecan Street Dataset

In order to develop a model that can accurately and reliably forecast the EE consumption,
we performed a thorough analysis of the existing datasets. We analyzed most of the datasets in this
domain and then selected Pecan Street dataset as the most appropriate one for our study. An extensive
analysis of other relevant datasets and their characteristics can be found in Appendix A.

The Pecan Street dataset is one of the richest datasets related to residential EE consumption.
It consists of EE consumption data, obtained from approximately 1000 households in the USA, mainly
Austin, Texas. The dataset contains the actual EE consumption values from each household in
one-minute intervals, collected by eGauge devices [45]. Our analysis is based on hourly household
EE consumption, given in kilowatt-hours (kWh). Descriptive statistics of the EE consumption are
provided in Table 1.

Table 1. Descriptive statistics of EE consumption.

Number of
Samples

Minimum Maximum Mean
Standard
Deviation

25th
Percentile

50th
Percentile

75th
Percentile

4,832,504 0.001 35.19 1.28 1.32 0.43 0.82 1.66

Figure 2 shows the average daily EE consumption, i.e., each line in the figure represents average
EE consumption for one day in the dataset. Each line is obtained by averaging the load consumption
values for each hour in the day separately. The dashed line represents the mean EE consumption at
hourly intervals.

Figure 2. Average daily EE consumption.

Additionally, the Pecan Street dataset contains extensive weather data for the observed region.
STLF is mainly influenced by weather parameters, because heating, ventilation and air-conditioning
(HVAC) are highly dependent on outdoor temperature, humidity, wind speed, etc. Figure 3 shows a
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two-dimensional heatmap of EE consumption. The heatmap represents average hourly consumption in
appropriate time intervals with predefined colors, where warmer colors represent higher consumption.
Figure 3 shows that there is a noticeable increase in average electricity consumption in the summer
months. This is specific to this dataset, i.e., it is collected in Texas, USA, where the summer temperature
is significantly high, and there is increased use of air-conditioning. Therefore, the steady increase in EE
consumption during the summer months can be attributed to the use of air-conditioners.

Figure 3. Heatmap of average EE consumption in a week.

The data used in this study were collected from 925 households for a period of almost four years
(2015, 2016, 2017, and nine months of 2018). In order to accurately evaluate the proposed forecasting
model’s performance, we divided the data into three parts: (i) 27 months were used for training
data (6 even-numbered months of 2015, all of 2016, and the first 9 months of 2017). (ii) Six months
(odd-numbered months) from 2015 were taken for validation data. (iii) The last 12 months were chosen
for test data (last 3 months of 2017 and 9 months of 2018).

3.2. Dataset Preprocessing

One of the most important steps towards developing an accurate ML model is data preprocessing.
This process prepares the data for analysis by dealing or removing the data that is incorrect, incomplete,
irrelevant, duplicated or improperly formatted. The preprocessing of the dataset included the
following steps:

• Handling incorrect values for certain variables—In particular, we encountered instances with
negative values for consumed electricity, which is impossible and indicates a mistake. In this case,
we were able to calculate the value from other variables available in the dataset. For instance,
we calculated the total EE consumption as the sum of consumed power from the solar grid and
power drawn from the electrical grid.

• Handling outliers (instances which greatly deviate from the expected range) and missing values—If
the outliers or missing values pertained to weather-related variables, the true value could be
extracted from other instances referring to the same moment in time. However, in the case that
the reported load consumption was incorrect from the start, the particular instance was omitted
from the dataset entirely.

• Handling sequential values for EE consumption that are identical—In some situations, the sensors
in certain households reported a constant value over a prolonged period of time. In this case, we
assumed there was a fault with the sensor. Due to the large number of distinct households in the
dataset, we could remove these instances.
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4. Methodology

In the day-ahead electricity market, generation companies and retailers submit supply and
demand orders for every hour of the following day. Therefore, the focus of our work was to create a
model that can forecast electricity consumption one day ahead, at 10:00, for every hour of the following
day (shown in Figure 4) [46].

Figure 4. Day-ahead forecast timeline.

This timeline allows planning of the production for the following day in accordance with the
day-ahead electricity market. According to this timeline, we developed two models that make
predictions for different hours of the next day: one for the hours from midnight to 09:00, and one for the
rest of the day. The main reason for developing two models is that we want to include the 24-h-before
load consumption value for the hours from midnight to 09:00, which, at the time when the predictions
are made (at 10:00), are only available for these hours. We considered this as valuable additional
information that can improve forecasting for the first nine hours of the following day, because the
periodic nature of EE consumption makes the most recent EE consumption values the dominant factor
in STLF [47].

4.1. Feature Engineering

EE load forecasting is a complex multivariable and multidimensional estimation problem. The
impacts of many influencing factors that affect load consumption need to be studied in order to develop
a precise load forecasting model. Thus, we extracted several features from multiple sources, which can
mainly be grouped into two categories: contextual and historical load features.

4.1.1. Contextual Features

• Weather features

The weather is a crucial driving factor in EE consumption. That is why it is a common EE
consumption forecasting practice to include weather variables, such as wind speed, humidity and
precipitation intensity, in forecasting models. The factor that has the most influence on EE consumption
is temperature. Several weather-related features were extracted, and the main focus was on the
temperature-related features.

• Calendar features

The social element is part of the reason for the hourly, daily and weekly patterns in EE
consumption [48]. To allow forecast models to take into account the EE consumption variations
which are tied to days, times of the day and seasons, we included some calendar data as nominal
features. We also included information about the special days according to the area of interest,
Austin, Texas.
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• Interaction features

We also used interaction features, i.e., combinations of two existing features [49]. The hours in
the days of a week may result in different loads due to human activities. For instance, there may be
a smaller load on weekend mornings than weekday mornings, because people usually do not get
up as early as when they have to go to work. This results in lower EE consumption values. The
implementation of this group of features was simply done by multiplying two features.

For a full table with all extracted contextual features, see Appendix B.

4.1.2. Historical Load Features

Load consumption is highly related to historical load, due to its periodic nature. Thus, in this
study, historical loads of up to one week were used to predict the day-ahead hourly load.

• Standard features

Due to the strong daily patterns of EE consumption, it is highly correlated to consumption at the
same hour of previous days [50–52]. That is why the following lagged values were used in the training
process of the forecasting model:

1. Historical EE consumption values by individual household for particular hours: loadt-24h, loadt-25h,
loadt-26h, loadt-48h, loadt-49h, loadt-50h, loadt-72h, loadt-96h, loadt-120h, loadt-144h, and loadt-168h

2. Average historical load consumption values from all households for particular hours:
avg_loadt-24h, avg_loadt-25h, avg_loadt-26h, avg_loadt-48h, avg_loadt-49h, avg_loadt-50h,
avg_loadt-72h, avg_loadt-96h, avg_loadt-120h, avg_loadt-144h, and avg_loadt-168h

Features loadt-24h, loadt-25h and loadt-26h are used only for the first model, for the hours from
midnight to 09:00 (see Section 4).

• Domain-specific historical load features

Based on the fact that future EE consumption is highly related to historical load, we additionally
analyzed four types of time series. The first two take into account the strong daily pattern of EE
consumption, and consist of historical load data from the day previous to the day when the predictions
are made (all 24 h): one refers to the average load consumption in each hour, calculated from all
households present in the system, and the other refers to the load consumption of each household in
the same hours. The other two types of time series take into account the significance of the lagged
values of EE consumption related to the same hours of previous days. More specifically, one of these
time series consists of average values for load consumption (from all households) from hour 24, 48, 72,
96, 120, 144 and 168 prior to the forecasted hour, and the other consists of load consumption of each
household in the same hours. As mentioned before, the 24-h-before EE consumption value is only
used for instances referring to the first defined interval (midnight to 09:00). It should be noted that in
the previous section, the lagged values of EE consumption were used as actual features, but in this
section they are used for constructing time series from which additional time and frequency features
will be extracted.

To include valuable characteristics about the manner of EE consumption in the feature vector, for
each instance we generated a comprehensive set of features based on these four types of time series. The
features were extracted using the TSFRESH (https://tsfresh.readthedocs.io/en/latest/text/list_of_features.
html) Python package, which offers extraction of time and frequency domain features from time-series.
We generated 400 new features for each instance. These features include minimum, maximum, variance,
correlation, covariance, skewness, kurtosis, number of times the signal is above/below its mean, signal
mean change, its autocorrelations (correlations for different delays), etc. These new features give new
insight into time-series dynamics, and we believe that they can be significant in improving forecast
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accuracy. Figure 5 shows how the four time series are constructed for a forecast for a particular
household at 08:00.

Figure 5. Domain-specific historical load feature extraction procedure.

4.2. Deep Residual Neural Network

DL is part of ML, and is based on artificial neural network architecture [53]. DL allows models
comprised of numerous processing layers to learn data representations with multiple levels of
abstraction. DL architectures have been applied to many fields, where they have produced results
comparable, or in some cases superior, to those of human experts.

One type of DNN that was recently proposed is the deep residual neural network (DRNN). This
type of deep network has performed extremely well on natural language processing tasks [54,55]
and has emerged as a state-of-the-art architecture in computer vision, image segmentation and object
detection [56,57] More recently, architectural variants of DRNN have also been used in load forecasting,
where they have shown improvement in aggregated load forecast compared to conventional regression
models [58,59]. Therefore, in this work we further explore the effectiveness of DRNN architecture in
day-ahead load forecasting for single households. A DRNN can easily be constructed by stacking
several residual blocks (Figure 6a). In the residual block, a mapping from x to Θ is learned, where Θ is
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a set of weights related to the residual block. Accordingly, the general representation of the residual
block can be written as shown in Equation (1):

H(x) = F(x, Θ) + x. (1)

  
(a) (b) (c) 

Figure 6. (a) Deep residual neural network (DRNN) structure; (b) original residual block; (c)
pre-activation variant of residual block.

The forward propagation of the structure, where k residual blocks are stacked, can be represented
as shown in Equation (2):

xK = x0 +
K∑

i=1

F(xi−1, Θi−1) (2)

where x0 and xK are the input and the output of the residual network, respectively, and
Θi = {Θ i,l

∣∣∣ 1 ≤ l ≤ L
}

is the set of weights related to the ith residual block, L being the number
of layers within the block. Basically, x has no parameters and only adds the output from the previous
layer to the layer ahead. The original structure of a residual block used for building a DRNN is shown
in Figure 6b.

As DRNNs gain more and more popularity in the research community, their architecture is more
intensely studied. There are many proposed interpretations of DRNN architecture and variants of
residual blocks. For our DRNN architecture, we used a pre-activation variant of the residual block,
proposed in [60]. In this residual block, the activation function rectified linear unit (ReLu) and batch
normalization (BN) are used as pre-activation of the weight layers, in contrast to the conventional
approach of post-activation. The residual block used for building the DRNN architecture is shown in
Figure 6c. In our case, instead of using convolutional layers as weight layers within the block, we used
dense layers, making the network more applicable for feature-based input.

4.3. Proposed Architecture for Household Electrical Energy Consumption Forecast (HousEEC)

In this section, we present our proposed architecture for STLF, which is based on a deep residual
neural network. First, we collect daily EE consumption, weather and calendar data. Weather
and calendar data are used for extracting contextual features (see Section 4.1.1). From the daily
EE consumption data, we extract standard historical load-related features referring to a particular

217



Energies 2020, 13, 2672

household, or average values for all households in the system. Additionally, we define four time
series (see Section 4.1.2) to extract domain-specific historical load features. The values of the extracted
contextual and load-related features are then transformed in such a way that their distribution is
centered around 0 (has a mean value 0) with a standard deviation of 1. This is done feature-wise,
i.e., independently for each feature.

The structure of the DRNN for load forecasting is illustrated in Figure 7. The input features are
separated into two groups, and each group is used as input in a separate branch. One branch uses
contextual features in combination with the classical historical load features as input, and the other uses
only domain-specific features. The left branch starts with a residual block containing 32 neurons in the
fully connected layers, while the right branch starts with a residual block containing 64 neurons in the
fully connected layers. The use of fully connected layers instead of the original convolutional layers in
the residual blocks makes the network more applicable for feature-based input and regression [61].
The output of the first two branches is then concatenated with the raw input features, and as such is
fed to a DRNN with five additional residual blocks. Each residual block consists of two fully connected
layers, activation function and batch normalization. The fully connected layers in the blocks consist
of 64, 32, 16, 16 and 8 neurons, consecutively. All such layers in the residual blocks use ReLu as the
activation function. Mathematically, it is defined as f(x) =max(0,x), which makes it suitable for the
STLF problem, since the forecasted consumption cannot have negative values. Additionally, we used a
dropout rate of 0.1 in order to reduce the chances of overfitting. A total of 6 levels of residual blocks are
stacked (1 input level with 2 residual blocks and an additional 5 levels after the concatenation block),
forming a 12 layer DRNN.

Figure 7. Proposed deep residual neural network (DRNN) architecture for short-term load
forecasting (STLF).
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5. Experimental Setup

5.1. Evaluation Metrics

In order to evaluate and compare the models, several evaluation metrics were used:
root-mean-square error (RMSE) [62], mean absolute error (MAE) [63], and R2 score [64], which
are well-known metrics used to measure performance on regression tasks.

MAE and RMSE are directly interpretable in terms of the used measurement unit (kWh in our
case). RMSE is a measure that shows how much the residuals are spread out. Residuals are the
difference between actual and predicted values. The definition of RMSE indicates that large errors
have higher weight. Since in our regression problem the forecasted values are in a small range, large
errors are particularly undesirable. Since we want to penalize large errors more, we focused more on
RMSE. MAE shows how close the forecasted values are to actual values. It is calculated as a mean of
the absolute values of each prediction error on all instances of the test dataset. R2 expresses how well
the model replicates the observed outcomes, based on the proportion of total variation of outcomes
explained by the model. This metric is positively oriented, and its highest value can be 1. RMSE, MAE
and R2 scores are calculated as shown in Equation (3)–(5):

RMSE =

√√
1
n

n∑
i=1

(
ypredicted − ytrue

)2
, (3)

MAE =
1
n

n∑
i=1

∣∣∣ypredicted − ytrue
∣∣∣, (4)

R2 = 1−
∑n

i=1 (ypredicted − ytrue)
2∑n

i=1

(
ytrue − yaverage

)2 , (5)

where n is the number of data samples.

5.2. Reference Models

A reference model or benchmark uses simple summary statistics to create predictions. These
predictions are used to measure the benchmark performance, and then this result becomes what
we compare our ML model results against. For this study, we implemented three baseline models.
One model provides the amount of consumed EE by a specific user 24 or 48 h before the hour of
prediction. The 24-h-before value is used for prediction of instances in the first interval, midnight
to 09:00, and the 48-h-before value is used for prediction of instances in the second interval, 10:00 to
23:00. Another baseline model is the Vanilla multiple regression Benchmark model [19]. This model
uses multiple sources of data to predict future load; in particular, polynomials of temperature and
their interaction with calendar variables. To enhance the accuracy of STLF, we augmented the Vanilla
multiple regression model by adding some lagged load variables, as well as other combinations of
variables that enhance the interaction effect. The last benchmark model is seasonal autoregressive
integrated moving average (SARIMA) [65].

For more detailed explanation of the reference models, see Appendix C.

6. Experimental Results

To explore the performance of our proposed model in EE consumption forecast, we did a series of
experiments. Sections 6.1–6.5 present numerous comparisons of results for disaggregated hourly load
forecast, and Section 6.6 presents the efficiency of the proposed method in aggregated load forecast.
Section 6.7 presents a general model to overcome the cold start issue.
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6.1. Comparison of Forecasting Techniques

To verify the predictive performance of our STLF model, we made comparison with the previously
mentioned benchmarks (see Section 5.2), as well as other ML algorithms—linear regression [66],
K-nearest neighbors (KNN) [67], decision tree regressor [68], random forest [69], linear SVR [70],
gradient boosting [71,72] and xgboost [73] (see Appendix D). We also considered a classic DRNN,
comprising five residual blocks, that takes all features together as input for the first residual block.

Table 2 shows RMSE, MAE and correlation R2 score for each model and the two benchmarks.
A comparison of the performance of the models using different sets of features was also conducted. In
the first scenario, only contextual features and standard historical load features were used as input. In
the second scenario, the proposed domain-specific historical load features were also included. From the
results, the benefit of including domain-specific historical load features can be seen. In almost all cases,
the proposed domain-specific historical load features significantly improved the model performance.
In addition, the results show that our proposed input structure of the DRNN significantly improves the
forecasting accuracy. Our proposed model outperformed all other models in both scenarios, achieving
RMSE of 0.44 kWh, MAE of 0.23 kWh and R2 score of 0.90.

Table 2. Performance of methods using different feature sets.

Method
Contextual + Standard Historical

Load Features

Contextual + Standard Historical
Load Features + Domain-Specific

Historical Load Features

RMSE ↓ MAE ↓ R2 ↑ RMSE ↓ MAE ↓ R2 ↑
Linear SVR 1.89 1.27 −0.80 1.91 1.28 −0.84

KNN 1.05 0.59 0.44 1.04 0.59 0.46
Decision tree 1.35 0.80 0.09 0.89 0.47 0.60

Linear regression 0.89 0.52 0.60 0.81 0.48 0.67
Gradient boosting 0.89 0.50 0.60 0.72 0.4 0.74

XGBoost 0.89 0.49 0.60 0.71 0.4 0.74
Random forest 0.96 0.59 0.54 0.64 0.33 0.79

DRNN 0.88 0.49 0.61 0.51 0.28 0.87

Statistical benchmark 1.13 0.60 0.35
SARIMA [65] 1.21 0.75 0.28

Vanilla benchmark [19] 1.00 0.58 0.50

HouseEEC (ours) 0.44 0.23 0.90

Computation time for execution of models’ training and testing is important for practical
implementation in a system, in the case of models retraining with new data and making daily
predictions. The training and testing times of the models used in the experiments are shown in Table 3.
In all, 2,544,962 instances were used for training and 1,654,499 for testing the models. The deep learning
models were trained and tested on NVIDIA Titan X GPU, with 12 GB GDDR5X memory and memory
bandwidth of 480 GB/s, while the conventional ML models were trained and tested on AMD Ryzen 7
2700 CPU with 8 cores and maximum clock frequency of 4.1 GHz.

Table 3. Computation time for model training and testing.

Method Training Time (s) Testing Time (s)

Linear SVR 2.428 3
KNN 239 10.053

Decision tree 1.849 6
Linear regression 204 3
Gradient boosting 8.383 12

XGBoost 12.232 22
Random forest 12.222 32

DRNN 948 331
HouseEEC 1.016 336
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6.2. Error Analysis of Application Scenarios

• Hourly forecast

Figure 8 shows the RMSE score for each hour of the day. The results are obtained by averaging
the errors for all users for each hour. Larger error can be observed for 03:00, 23:00, and the afternoon
hours when most people return from work and perform different activities at home.

Figure 8. Root-mean-square error (RMSE) for each hour of the day.

However, our model reports quite low error for the morning hours, which is significant because
morning hours are related to increased EE consumption, especially on workdays. Overall, there is no
significant difference in the reported error for any specific part of the day. Our model significantly
outperforms the benchmark model for each hour of the day.

• Weekday forecast

Figure 9 shows the RMSE score for each day of the week. The results are obtained by averaging
the errors for all users for each day. The benchmark makes a larger error for weekend days; they are
more challenging to forecast due to vacations, trips and irregularities in peoples’ lives. However, our
model performs similarly for each day of the week, regardless of the uncertainties that are usually
present on weekend days.

Figure 9. Root-mean-square error (RMSE) for each day of the week.

• Monthly forecast

Figure 10 shows the RMSE score for each month of the year. The results are obtained by averaging
the errors for all users for each month. Both the benchmark and our proposed method follow a similar
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trend in terms of the prediction error; the RMSE score is lowest for the spring months when there
is no need for heating or cooling. The largest error made by our model can be observed for May,
when the cooling season starts. However, after some time, the increased trend of EE consumption
is incorporated into the extracted features, so the prediction errors start decreasing. This is a very
important characteristic of our model, since the rest of the summer months are also characterized by
increased EE consumption. This is certainly not the case with the benchmark model, which reports the
largest error when EE consumption is at its peak.

Figure 10. Root-mean-square error (RMSE) for each month of the year.

6.3. Comparison with Other Deep Learning Approaches that Use only Time Series

We additionally made performance comparisons between our method and the most recent DL
architectures relevant to load forecasting, described in [74]. The authors present seven architectures
designed for 24 h prediction and evaluate them using the individual household electric power
consumption (IHEPC) [75] dataset, which contains 47 months of EE consumption data of single
households. Based on their results, we chose the five best architectures and evaluated them using the
Pecan Street dataset with classical feedforward neural network (FFNN), deep residual neural network
(DRNN), temporal convolutional network (TCN), long short-term memory (LSTM) and gated recurrent
unit (GRU). This DRNN uses different residual blocks compared to the one in our proposed model. All
mentioned networks are described in detail in the paper. For this evaluation, we used seven week-long
time series as input for the networks, two related to the historical load and five related to weather data.
The first time series is actual EE consumption by a specific household in the past week, and the second
is average load consumption by all households in the past week. The weather-related time series
are temperature, humidity, apparent temperature, wind speed and precipitation. The Pecan Street
dataset contains weather and load measurements for each hour, resulting in 168-hourly-measurements
long input and 24-hourly-measurements long output for the networks. Since the results in the paper
showed that including calendar information improves prediction accuracy, we additionally included
the following information: hour of the day, day of the week, month and work-/non-workday. For
training, we used the multiple input–multiple output (MIMO) strategy, meaning that a single predictor
is trained to forecast a whole 24 values-long output sequence in a single shot.

Table 4 shows the results: HousEEC shows better results in terms of RMSE, MAE and R2 compared
to end-to-end DL-based methods for load forecasting on the household level. The main conclusion that
can be drawn from these results is that the time-series consisting of 168 historical load values does not
contain enough information for proper training of DL end-to-end architectures. However, one-week
historical load appears to be enough for proper training of the feature-based DRNN, especially when it
is trained with extensive feature sets consisting of the domain-specific features which give new insights
into the load time-series dynamics.
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Table 4. Performance of end-to-end deep learning (DL) approaches.

Method RMSE MAE R2

FNN 1.05 0.70 0.47
DFNN 0.84 0.55 0.53
TCN 0.78 0.50 0.59

LSTM 0.81 0.54 0.54
GRU 0.80 0.54 0.54

HousEEC 0.44 0.23 0.90

6.4. State-of-the-Art STLF on Household Level

The STLF field lacks a unified comparison between conducted studies. There are many studies in
this field that address different segments related to load forecasting, and most of them are not directly
comparable. Nevertheless, we believe that a summary of the results achieved with state-of-the-art
methods might be informative and useful for new studies in a few ways. Authors can select the
most commonly used dataset for their work in order to produce comparable results, and it can help
researchers to avoid selecting nonrepresentative data for evaluation of their methods. In this section,
selected studies relevant to STLF on the household level are presented. The two criteria for study
selection were the forecasting horizon (up to 24 h) and the evaluation metric (RMSE). In order to
include more relevant studies, we additionally considered studies reporting normalized root mean
squared error (NRMSE), calculated as shown in Equation (6):

NRMSE =

√
1
n
∑n

i=1

(
ypredicted − ytrue

)2

1
n
∑n

i=1 ytrue
. (6)

We ended up with 12 relevant studies, including ours. Table 5 presents a summary of the studies
in terms of forecasting horizon, number of households used for evaluation, duration of the test data,
and results achieved in terms of RMSE (NRMSE). One parameter that should be considered in this
comparison is the size of the data used for evaluation. EE consumption is highly affected by the weather;
a lot of electricity is used for cooling in summer and heating in winter. This leads to the conclusion that
studies that use shorter periods for their evaluation might present unreliable results without checking
model performance in different seasons. Only one of the selected studies evaluated their methods
using data collected in a period of 12 months. In order to show how robust the proposed methods are,
more households are needed for evaluation. This is because there are different types of users, such as
elderly people who spend most of the time at home, people who go to work, students who have a
dynamic lifestyle, etc. Only four studies considered datasets with fewer than 100 households.

Table 5. Summary of state-of-the-art STLF studies.

Authors
Forecasting

Horizon
Number of
Households

Duration of
Evaluation

RMSE NRMSE

Shi et al. [40] 1 h 920 1 month 0.45 –
Lusis et al. [76] 30 min 27 28 days 0.52 –

Muralitharan et al. [77] 24 h – – 0.62 –
Gasparin et al. [74] 24 h 1 12 months 0.75 –

Yildiz et al. [78] 24 h 14 – 0.80 –
Ali et al. [79] 1 h 34 6 months 0.80 –

Ganz et al. [80] 24 h 74 2 months 0.85 –
Gerossier et al. [81] 24 h 226 2 months – 0.43

Vos et al. [82] 24 h 200 6 months – 0.53
Wijaya et al. [83] 24 h 782 6 months – 0.61

Humeau et al. [50] 24 h 782 6 months – 0.80

HousEEC 24 h 297 12 months 0.44 0.34
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For our work, we addressed the previously mentioned challenges; our model provides forecasting
one day ahead, and the results are evaluated on 297 households over a period of one year. We believe
that our results are very promising, considering that they show great performance of the model for a
large number of households evaluated for a period of 12 months.

6.5. Analysis of Different Lengths of Training Set

Over time, new households with different EE consumption patterns can appear in the forecasting
system. Therefore, it is a common practice for forecasting models to be trained with new data after a
certain time. This section presents the HousEEC model’s performance for three subsets of the initial
test set, when additional data is used for training. For comparison, we used the final HousEEC model
(trained with 27 months) to predict the EE consumption of the three new test subsets. Table 6 shows
the RMSE, MAE and R2 scores for different train-test splits.

Table 6. Performance of models with different train-test splits.

Train-Test Splits (M—Months).

27 M vs. 9 M 30 M vs. 9 M 27 M vs. 6 M 33 M vs. 6 M 27 M vs. 3 M 36 M vs. 3 M

RMSE 0.43 0.46 0.47 0.48 0.45 0.45
MAE 0.28 0.27 0.27 0.28 0.24 0.25

R2 0.92 0.9 0.9 0.9 0.9 0.92

Even though it is expected that constant inclusion of new data expands the knowledge of the
existing model, the results from this analysis showed that there was no significant benefit of it when
there were no changes in the dataset in terms of new households.

6.6. Aggregated Consumption Forecasting

Forecasting of aggregated load can be implemented by the standard strategy of direct forecast
of the aggregated load, or by aggregating the forecasts for individual households. In Figure 11, we
observe the curve of aggregated forecasts for all households and compare it to the actual aggregated
load curve. The observed period is the first week of July. It is one of the hottest months in the year,
characterized with increased EE consumption due to air-conditioning (Figure 3). Since the peak EE
consumption is the most challenging to forecast, we more closely observed the model’s performance
for a whole week in July—the month during which the EE consumption is the highest in our dataset. It
is obvious that the forecast successfully follows the trend of actual consumption, even for July 5, when
a significant drop of EE consumption is noted, which is not typical for the time period observed.

Figure 11. Weekly aggregated EE consumption.
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Finally, we calculated total consumption of all households and total error for hourly and daily
analysis. The hourly analysis showed that, on average, the aggregated EE consumption of the
households is 263 kWh. Our model makes 8% error on average per hour forecast (22 kWh); the Vanilla
multiple regression benchmark makes 12% error (32 kWh). The daily analysis showed that, on average,
the aggregated EE consumption of all households is 6140 kWh. Our model makes 2% error on average
per day forecast (131 kWh); the baseline makes 6% error (360 kWh).

6.7. Cold Start Issue

In order to predict next-day EE consumption of a new household in the system, the HousEEC
model requires the household’s historical EE consumption of the previous week. This means that
it suffers from a one-week cold start, which is a technical limitation of the model. To overcome this
limitation, we trained an additional general model that does not use household-specific standard
historical load features and domain-specific historical load features that are extracted from the third
type of time-series (see Figure 5). This model will to serve as a model for prediction of household EE
consumption for only the first week. We used the same HousEEC architecture, and the only difference
was the number of input features. The performance of this model on the same test set used in the
previous experiments can be seen in Table 7. As expected, this general model provided less precise
results compared to the final HousEEC model. However, we consider these results as acceptable, given
that this general model would be used for only a short period of time in an actual implementation of
the system. The presented results are also additional evidence of the significance of domain-specific
historical load features for a particular household.

Table 7. Comparison of performance of general and HousEEC models.

Method RMSE MAE R2

General model 0.50 0.26 0.87
HousEEC 0.44 0.23 0.90

7. HouseEEC System Prototype

This section presents the practical implementation of the HousEEC system and deployment of
the ML model in a prototype web application. The system enables end users to quickly and easily
access a service that allows different analyses. One of the most important features of this system is that
it can be easily implemented in larger systems that have different monitoring devices for electricity
consumption in households. The only prerequisite for implementing such a system for analyzing and
forecasting electricity consumption is access to the measured values of household EE consumption.
The system contains three main modules:

• Graphical user interface (GUI), through which forecasts of EE consumption can be accessed.
• Back end, which provides the functionality that is served to users through the graphical interface.

This section is also responsible for communication with the database, deployment and launch of
the forecast module, and similar functions. It also provides application program interfaces (APIs)
for interconnection with the ML module and the GUI.

• ML module, which is responsible for deployment of the ML model and its practical use. It contains
all the steps required for an ML pipeline: preprocessing data and dealing with missing data;
extracting features; and predicting with the ML model. For the implementation, we used libraries
including Pandas, Sklearn, NumPy, Tsfresh, SciPy, Keras and Tensorflow.

A visualization of the system and its households is shown in Figure 12. For better visualization,
multiple households that are very close geographically are presented as a group (blue circles on the
map). Note that this is a simulation, and the geographic locations are for illustration purposes only;
the dataset does not contain location information about the households. Next, the application provides
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access to a table of measured EE consumption of all households for the last 24 h. In addition, there is
an option to search for a specific household, which can provide insight into its individual time series of
EE consumption. This table also enables easy control of the accuracy of household measuring devices:
whether they show values or whether there are erroneous values in the metered data (negative values
for consumed electricity or values outside the expected range). If unexpected data are spotted in the
table, they can be deleted from the database, preventing them from affecting prediction by the ML
model in the following days.

 

Figure 12. Map of simulated households’ locations.

The next service of the system represents daily predictions of EE consumption for each hour
of the next day. These forecasts are obtained by executing the ML model at 10:00 every day. This
allows sufficient time for planning the actions of the day-ahead electricity market, which, as mentioned
before, closes at 12:00. Although forecasts are obtained at the household level, they are presented at
the aggregated level for all households. Figure 13 shows three lines, representing predicted electricity
consumption achieved by the three chosen models: random forest, benchmark and our final HousEEC.

Figure 13. Aggregated hourly predictions of EE consumption for the next day.
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The final service offered by the system is the performance analysis of the ML models (Figure 14).
With this service, users can load predictions for the past period and compare them to actual consumption
values. First, the user selects the interval of interest and the models. Then the system outputs the
predictions and true consumption. For example, Figure 14 shows predictions of the random forest and
HousEEC models and the true consumption for the randomly selected period from 1–15 June 2018.
The user can visually inspect the model errors.

Figure 14. Historical performance comparison of predicted to true EE consumption.

When using real-time data collection devices, it is inevitable that some amount of data gets lost
due to different circumstances (sensor fault, communication error, environmental disturbance, etc.). In
this context, the use of techniques that deal with missing data is a crucial part of the implementation of
a forecasting system. To guarantee that our forecasting system would work smoothly, we considered
two cases of missing data and appropriate techniques to handle it. The first case is missing values
of EE consumption for one hour for a particular household. For this case, we implemented linear
interpolation, a mathematical method that adjusts a function to the existing data and uses it to
extrapolate the missing data. The second case is when sensor readings are missing for two or more
consecutive hours for a particular household. In this case, the missing values are replaced with the
forecasted values for those hours by the HousEEC model (or the general model, if the missing values
occur in the first week of the data collection process for the household; see Section 6.7).

8. Conclusions

The paper presents the HousEEC system, which provides day-ahead household EE consumption
forecasting using a deep residual neural network. The experimental evaluation was performed on
one of the richest datasets for household EE consumption, the Pecan Street dataset. The DL approach
combines multiple sources of information by extracting features from (i) contextual data (e.g., weather,
calendar), and (ii) the historical load of the particular household and all households present in the
dataset. Additionally, we computed novel domain-specific time-series features that allow the system
to better model the pattern of household energy consumption. Their contribution to reducing the error
is shown in Table 2. Finally, we assessed performance by comparing the results achieved with our
model with those of seven other ML algorithms, five DL and two benchmarks widely used in this area.

The experimental results show that in all cases, our model outperformed every other algorithm
and approach, achieving RMSE of 0.44 kWh, MAE of 0.23 kWh and R2 score of 0.90. The analysis

227



Energies 2020, 13, 2672

shows the great potential of including our domain-specific historical load features in improved load
forecasting. The hourly analysis showed that all customers used 263 kWh per hour on average. Our
model makes 8% error on average per hour forecast (22 kWh), which is 4 percentage points better than
the benchmark model results. The daily analysis showed that all households used 6140 kWh per day
on average; our model makes 2% error on average per day forecast (131 kWh) and the benchmark
model makes 6% (360 kWh). The comparison between end-to-end DL architectures and our proposed
DL feature-based architecture showed that our method performs better, achieving significantly lower
RMSE compared to the best performing end-to-end DL architecture, the temporal convolutional
network. We believe that the main reason for this improvement is the domain-specific features, which
give the algorithms the most relevant information derived from the raw data for future load forecasting.
According to the analysis of similar studies for STLF for households, we can say that our achieved
results are very promising compared to the state-of-the-art approaches. We also believe that our study
shows reliable results because the method was tested on a significantly large number of households
over 12 months using a 24 h forecasting horizon.

The proposed method, which predicts EE consumption on an individual household level, offers
great commercial potential because it is scalable and not dependent on the current number of households
in the system. In addition, predicting individual forecasts enables their aggregation, which yields
better forecasting for the aggregation level compared to the conventional strategy of direct forecast of
the aggregated load [25,84]. Our method also has significant value because it is not dependent on the
number of households included in the system. Implementation of the system does not suffer from
cold start; we addressed the cold start problem by introducing a new general model that does not use
household-specific historical load features. This model is intended to provide predictions for each
new household that appears in the system for the first week, until the required data for the HousEEC
model is collected. Another important detail that we considered in the system implementation is the
occurrence of missing data. We tackled this by using two techniques, interpolation and the use of
forecasted values to fill the missing data in the EE consumption of a particular household.

We expect that the final model could perform well on other datasets which contain EE consumption
data for households with similar economic status, located in places with similar weather conditions.
It was trained with data from a large number of households, which make it more general, robust and
able to adapt to many different EE consumption patterns. Additionally, if the HousEEC architecture
is used for model re-training with new data, we expect it to show equally good performance, since
it incorporates data from multiple relevant sources that affect the EE consumption of households.
However, further investigation of the model’s performance on other datasets is considered for
future work.

Another improvement would be to introduce additional features, such as EE price, number
of household members, age of users, daily schedule of users (working hours), size of household,
and means of heating and cooling. We believe that these attributes would improve the accuracy;
however, this requires additional private information about households, which might not be easy
to obtain.

Finally, we plan to introduce the clustering of households, because there are different trends and
patterns for each household in the dataset and there are large variations in the electricity consumption
patterns at the household level. A clustering algorithm would group similar households into clusters
and, in a way, define household profiles. This way, there will be several prediction models for different
clusters of households. We believe this can increase the forecasting performance, because there are
several types of users (active users who regularly go to work, older users who spend the biggest part
of the day at home, etc.), and it is more difficult for the model to acquire a knowledge about the EE
consumption characteristics of different users.
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Appendix A

Table A1. Related datasets.

# Dataset
User Type: Industrial

(I)/Household (H)
Collection

Period (Years)
Data Sampling

Resolution
No. of
Users

Weather
Data

Public
Access

1 Pecan Street [85] H 4 * 1 min 1000 * Yes Yes **
2 REFIT [86] H 2 8 s 20 Yes Yes
3 PLAID [87] H 0.5 1 s 56 No Yes
4 UK-DALE [88] H 2 1 s 5 No Yes
5 GREEND [89] H 1 1 s 8 No Yes
6 ECO [90] H 0.7 1 s 6 No Yes
7 REDD [91] H 0.3 1 s 10 No Yes
8 IHPEC [75] H 4 1 min 1 No Yes
9 HES [92] H 1 2 min 24 No No

10 CER [93] H 2 30 min 5000 No No
11 DOE [94] I 2 1 h 11 Yes Yes
12 EnerNOC [95] I 1 5 min 100 Yes Yes
13 GEFCom [96] I 4.5 1 h 1 Yes Yes

14 Industrial
Machines [97] I 0.3 1 s 1 No Yes

15 NREL RSF Measured
Data [98] I 1 1 h 1 No Yes

* Ongoing collection. ** Public access for research purposes by university members.

Appendix B

Table A2. Contextual features.

Weather Features Interaction Features Calendar Features

Tt Tt × H Day of week
Tt

2 Tt
2 × H Day of month

Tt
3 Tt

3 × H Month
Tt-24 Tt ×M Hour
Tt-25 Tt

2 ×M Holiday
Tt-26 Tt

3 ×M Working day
Tt-48 Tt × D
Tt-49 Tt

2 × D
Tt-50 Tt

3 × D
Tt-72 D × H
Tt-96 Tdavg × H
Tt-120 Tdavg

2 × H
Tt-144 Tdavg

3 × H
Tt-168 Tdavg ×M
Tdavg* Tdavg

2 ×M
Tdavg

2 Tdavg
3 ×M

Tdavg
3

humidity
wind speed
precipitation

apparent temperature

T, temperature; Tdavg, daily average temperature; H, hour; D, day of week; M, month.
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Appendix C

The Vanilla multiple regression benchmark model is a load forecasting model that uses multiple
sources of data to predict future load; in particular, polynomials of temperature and their interaction
with calendar features. The model can be defined as follows:

Lt = β0 + β1Trendt + β2Mt + β3Wt + β4Ht + β5WtHt + β6Tt + β7T2
t + β8T3

t
+ β9MtTt + β10MtT2

t + β11MtT3
t + β12HtTt + β13HtT2

t + β14HtT3
t

(A1)

where Lt is the load forecast for time t; βi are the coefficients calculated using the ordinary least square
method; Trendt is an increasing number which presents a linear trend at time t; Mt, Wt and Ht are
the month of the year, day of the week and hour of the day for time t, respectively; and Tt is the
temperature for time t.

The final benchmarking Vanilla model used in this work is defined as follows:

Lt = β0 + β1Mt +β2Wt + β3Ht + β4WtHt + β5Tt + β6T2
t + β7T3

t + β8MtTt

+ β9MtT2
t + β10MtT3

t + β11HtTt + β12HtT2
t + β13HtT3

t + β14Lt−26

+ β15Lt−25 + β16Lt−24 + β17Tt−26 + β18Tt−25 + β19Tt−24

+ β20TdavgH + β21T2
davgH + β22T3

davgH + β23TdavgM + β24T2
davgM

+β25T3
davgM + β26Tt−26H + β27T2

t−26H + β28T3
t−26H + β29Tt−25H

+β30T2
t−25H + β31T3

t−25H + β32Tt−24H + β33T2
t−24H + β34T3

t−24H
+β35Tt−26M + β36T2

t−26M + β37T3
t−26M + β38Tt−25M + β39T2

t−25M
+β40T3

t−25M + β41Tt−24M + β42T2
t−24M + β43T3

t−24M

(A2)

where Tdavg is the average daily temperature from two days before the forecasted day. This formula
represents the benchmark for obtaining the forecasts for the instances from the first interval, from
midnight to 09:00. Analogously, for the instances form the second interval (from 10:00 to midnight),
instead of using values referring to the time before 24, 25 and 26 h, we used values referring to the time
before 48, 49 and 50 h from the forecasted hour. Additionally, we removed the trend variable, since our
formulation of the forecasting problem does not meet the requirements for its calculation.

Autoregressive Integrated Moving Average (ARIMA) is one of the most commonly used methods
for time-series forecasting. In general, the ARIMA model is noted as ARIMA(p,d,q), where the p
parameter is an integer that confirms how many lagged series are going to be used to forecast periods
ahead; d parameter tells how many differencing orders are going to be used to make the series
stationary; and q is the number of lagged forecast error terms in the prediction equation. Seasonal
Autoregressive Integrated Moving Average (SARIMA) is seasonal ARIMA and it is used with time
series with seasonality. This model is generally termed as SARIMA(p,d,q) × (P,D,Q)S.

Appendix D

• Linear regression attempts to model the relationship between the features and the dependent
variable (in our case EE consumption) by fitting a linear equation to observed data. It learns a
model by fitting a linear equation to the training data. The model optimizes a function so that the
square of the errors is minimized.

• K-nearest neighbors (KNN) is an algorithm that uses feature-vector similarity to predict the value
of interest. This means that for each feature vector in the test data, it finds the K-nearest neighbors
in the training set and computes the average of the target class. This average value is then used as
a prediction of the model. In our experiments, we used the Euclidean and Manhattan metrics
for calculation of the distance between feature vectors. The empirical analysis showed that the
Manhattan distance is more appropriate, and it was therefore used in the experiments.

• Decision tree regressor is a machine learning model used to predict a target by learning decision
rules from features. Decision trees are constructed via an algorithmic approach that identifies
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ways to split a data set based on different conditions. After training the model, as a result we have
a tree with decision nodes with two or more branches representing values for the chosen feature,
and leaf nodes representing a numerical prediction of EE consumption.

• Random forest consists of a large number of individual decision trees that operate as an ensemble.
This method uses bagging to combine many decision trees as parallel estimators. The result is
based on the majority vote of the results received from each decision tree. Random forests reduce
the risk of overfitting and give higher accuracy than a single decision tree. The two concepts that
make it random are bootstrapping and feature randomness.

• Support vector machines (SVMs) are characterized by the use of kernel functions, which are used
to transform feature vectors into higher dimensional space, in which a separation hyperplane is
learned to best fit the training data. We tested several kernels, and empirically chose the linear
kernel function, which was used in the experiments.

• Gradient boosting is an algorithm which uses boosting method to combine individual decision
trees. Boosting means combining a learning algorithm in series to achieve a strong learner from
many sequentially connected weak learners.

• XGBoost is an implementation of gradient boosted decision trees designed for speed and
performance. It implements regularization and it offers possibilities for handling missing values.
It also uses parallelization of tree construction, which makes the training much faster.
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Abstract: Advanced metering infrastructure (AMI) is spreading to households in some countries,
and could be a source for forecasting the residential electric demand. However, load forecasting of a
single household is still a fairly challenging topic because of the high volatility and uncertainty of the
electric demand of households. Moreover, there is a limitation in the use of historical load data because
of a change in house ownership, change in lifestyle, integration of new electric devices, and so on.
The paper proposes a novel method to forecast the electricity loads of single residential households.
The proposed forecasting method is based on convolution neural networks (CNNs) combined with
a data-augmentation technique, which can artificially enlarge the training data. This method can
address issues caused by a lack of historical data and improve the accuracy of residential load
forecasting. Simulation results illustrate the validation and efficacy of the proposed method.

Keywords: data augmentation; convolution neural network; residential load forecasting

1. Introduction

Short-term load forecasting (STLF) is an important part of power system planning and operation [1].
The STLF, which has a prediction range of one hour to 168 h, is used for controlling and scheduling
of daily power system operations. Furthermore, forecasting customer-level energy consumption is
essential for many potential applications in the future power system, such as demand response (DR)
programs, home load scheduling with renewables, and optimal operation of energy storage systems
(ESS) [2].

Statistical methods, including multiple linear regression [3,4], exponential smoothing [5], and the
autoregressive integrated moving average (ARIMA) [6] are the most commonly used for the STLF.
Recently, deep-learning-based forecasting techniques are gaining attention in the STLF. Recursive
neural networks (RNNs) capable of learning long-term dependence are being applied to the assumption
of load prediction in [7]. However, the vanishing gradient problem of RNNs makes it hard to improve
forecasting accuracy. In [8,9], to overcome this problem in the RNN, the long short-term memory
(LSTM) has been proposed. Some studies show the capability of LSTM for more improved forecasting
performance at the system-level forecast when there is relatively long-term historical load data.
In addition to the above methods, many deep learning algorithms, such as deep feed forward [10,11],
deep belief network (DBN) [12], are being applied to load forecasting. In addition, some hybrid spectral
methods, including wavelet analysis [13] and empirical mode decomposition (EMD) [14] with neural
networks, have been proposed to remove the uncertainty of historical electrical load. However, all of
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these techniques were implemented in the substation- or system-level load forecasting with training
from sufficient historical load data.

In the STLF at the system-level, a lot of historical data are available because small electrical load
changes do not significantly affect the overall load pattern trend. However, at the household level,
STLF may not have enough data for some households to capture long-term dependencies and properly
train the learning network. For example, if a homeowner has recently changed, only a small amount of
electrical load data will help its load forecasting. In addition, even if homeowners have not changed
for a long time, the pattern of energy consumption can change with new electrical devices and lifestyle
changes [15]. Therefore, there is a limit to using the previous data to increase the training data size.
In [2,7], RNN and LSTM were applied to single household load prediction, but these studies did not
take into account the past data shortage issues.

To address the lack of historical data for training, the convolutional neural networks (CNNs) can be
an effective method for residential load forecasting, because CNN can capture short-term trends in load
data when the local data points are strongly related to each other [16]. In addition, data augmentation
can be one solution to handle the issues. Data augmentation can handle short-duration data collection
by enlarging the size of the training data in a way that adds extras copies of training examples in
training dataset and minimizes the overfitting in deep-learning techniques [17]. The overall training
cost of a deep network will be reduced when input data are large and contain more similar information.
With such enlarged training data, the accuracy of residential load forecasting can be improved.
Technical paper [7] tries to enlarge the input data using another household’s load series. However,
this approach has the potential to obtain data that have different characteristics of the load series
of the target household. Moreover, some target households have similar load profiles in their load
series, but others do not [2]. Because of load profile diversity within and between households, existing
forecasting benchmarks yield cons rather than pros. In fact, forecasting with only a single household’s
data may not often have sufficient information to fit a wide variety of the model capacity, particularly
in deep-learning techniques. Therefore, proper data augmentation is required, which can artificially
create new training data from the historical data of a single household.

Herein, the paper proposes a load-forecasting method for a single residential household based on
convolutional neural networks (CNNs). The CNN is a type of deep neural network where its structure
is formed by using convolution and pooling layers [18–20]. With the help of various filters, CNNs can
learn the inherent information of an electric load series. The proposed forecasting introduces a novel
data augmentation technique that concatenates the various residual load series generated from the
electrical load of a single household. The original load series is converted to another residual load
series containing uncertainty information of electrical load. Several residual load series are extracted
through multiple k-means clustering to collect sufficient training data [21,22]. Among the extracted
residual load series, the less uncertain and more homogeneous ones were fed to the CNNs as training
data. The proposed augmentation technique can provide enough homogeneous training data to CNNs
for more accurate forecasting. The proposed forecasting method was tested on ten single households
for a year and is compared with the results of pooling-based augmentation [7].

The rest of this paper is organized as follows. Section 2 discusses the implementation of the
proposed augmentation strategies and the context of residual load series. Similarly, Section 3 describes
the proposed algorithm. Section 4 talks about the implementation procedure and discusses the
simulation results. Section 5 concludes the paper.

2. Augmentation Implementation

2.1. CNN with Augmentation

Since an electric load series consists of many load profiles, the diversities between the load
profiles are a major concern for forecasting using CNN filter networks. In fact, CNNs can facilitate
more precisely given less diverse training load profiles rather than highly diverse ones [23]. Because
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of human actions, weather, and types of day, the differences between load profiles are uncertain,
non-linear, and complex [2,24]. On the other hand, the amount of training data is crucial for fitting all
the parameters of CNNs.

To address the issues of the uncertainty and necessities of huge training data, the state-of-the-art
papers used other households load series for data augmentation. Moreover, the existing approaches
do forecasting by hoping that load profiles will repeat and assume that the repetition of load profiles is
often similar among households during the same time interval [7,23]. As a consequence, the forecasting
accuracy is trivialized when the augmented data contains only correlated households’ load series.
However, the effects of human actions and the type of day are totally different in the electricity load of
a single household and are too difficult to predict. Thus, incorporating other households’ load series
into training data inevitably burdens the learning ability of the CNN rather than optimizing it.

The augmentation strategy can be applied with single households and is valid when each
deep-learning-based forecasting framework improved its performance [25,26]. To improve cognition,
augmentation techniques need to grasp all the potentially uncertain information about the electric
load series. Figure 1a,b describe the concept of enlarging data with the existing pooling and proposed
augmentation approach for deep-learning-based forecasting. To enlarge data, the proposed method
artificially generates several augmented load series, each of which needs to be extracted in a way that
facilitates the CNN learning strategies. To obtain a rationale, each series should have less uncertain and
more homogeneous information. The appropriate series are concatenated with each other to turn out a
huge amount of training data with homogeneous information. The more homogeneous information
there is, the more useful it is for a CNN network to address the granular-level load prediction.
Any dissimilar augmented load series in concatenation could destroy a CNN’s optimal cognition.
The procedure of extracting a homogeneous information load series is vital and depends totally upon
imagination [27]. The proposed augmentation strategies are described in the following section.

 
(a) 

Figure 1. Cont.
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(b) 

Figure 1. Comparison of data augmentation strategies: (a) pooling technique and (b) proposed
augmentation technique.

2.2. Extraction of Residual Load Series

The data structure of the historical electricity load of a target household can be expressed as the
following matrix:

P =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

p1,1, p2,1, . . . , p1,t, . . . , p1,T
p2,1, p2,2, . . . , p2,t, . . . , p2,T

...
pd,1, pd,2, . . . , pd,t, . . . , pd,T

...
pD,1, pD,2, . . . , pD,t, . . . , pD,T

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (1)

where pd,t represents historical electric load at time t in day d; D represents the number of days of
historical data, and the time period T is 24 h. This matrix of a historical load can be simplified as follows:

P = [p1, p2, p3, . . . , pd, . . . , pD], (2)

where vector pd are the hourly load profiles of a target household in day d. Figure 2 shows all daily
load profiles of a household for one month. In Figure 2, it can be found that the electrical load of
a single household fluctuates abruptly. Generally, a smaller electricity load tends to have a higher
variation, which makes it difficult to accurately forecast the residential electricity load. In CNN-based
forecasting, one way to achieve high performance is to reduce the variations of training data [21].

To improve the learning ability of CNNs, one must extract new features from a residential load
series, which has less volatility but still has inherent characteristics of a residential load. One way to
reduce the variation is to remove the regular pattern from the load series [28] so that CNNs use only its
residuals. With this approach, each load profile is decomposed into centroid and residual load profiles
as follows:

pd = c + rd , (3)

where vector c is the centroid load profile (average profile) of the historical load, and rd is a vector of
the residual load series which is the difference between a given centroid c and an actual load profile on
day d. The centroid load profile can be used as the baseline of a particular group of daily load profiles,
and the repetition of the centroid load profile yields an average load series for a certain duration.
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Figure 3 shows an average load series, and its residual load series of a residential household for a
month. In Figure 3, the average load series does not contain any uncertain information, but it shows
only a regular pattern. On the other hand, the residual load series contains all the uncertain and
complex information about the residential load. The residual load series is less volatile than is the
original load series but still has inherent characteristics of the residential load. With training from this
less volatile data, the CNNs can forecast the small residential load more accurately.

0 2 4 6 8 10 12 14 16 18 20 22 24
0.00

0.25

0.50

0.75

1.00

1.25

1.50

El
ec

tr
ic

ity
 L

oa
d 

(k
W

h)

Daily Hours  

Figure 2. Daily load profile of a single household for one month.
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Figure 3. Average and its residual load series of a single household.
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To ensure the appropriateness of the residual load series in learning networks, auto-correlation
(AC) or partial auto-correlation (PAC) coefficients [29] can be used. Higher AC or PAC coefficients,
out of the confidence interval, mean that the present residual load series is strongly coupled with the
historical residual load series. Figure 4 shows AC and PAC coefficients of the residual load series
of a selected single household with different time lagging. As shown in Figure 4, when the lags are
the multiple of 24 h, the AC coefficients would peak, so that some AC coefficients are out of the
confidence interval. Similarly, the PAC coefficient spikes also confirm that the residual load series has
vital information about the residential electricity load. The information is in a hidden state and can be
learned by using learning networks.

 

Figure 4. Auto-correlation of residual load series with different time lagging: (a) auto-correlation (AC)
coefficients, and (b) partial auto-correlation (PAC) coefficients.

With these residential load series, the paper proposes a CNN-based method for residential load
forecasting using data augmentation. The augmentation technique and overall forecasting procedure
are described in the following section.

3. Proposed Residential Load Forecasting Method

3.1. Generation of Centroid Load Profiles

To generate the different centroid load profiles from historical residential load P, multiple k-means
clustering [21,22] is used in the paper. The multiple k-means clustering to generate the centroid load
profiles of a residential load can be express as follows:

Minimize
k∑

i=1

∑
pd∈Sk,i

‖pd − ck,i‖2, k = 1, 2, . . . , K, (4)

where Sk,i is the i-th partition of the load profile set P, which is generated with a clustering number of k,
and ck,i is the centroid load profile of the corresponding partition of Sk, i. The clustering starts with a
clustering number 1 and ends with the clustering number K. Finally,

(
K2 + K

)
/2 centroid load profiles

are generated. The paper used all centroids generated with clustering numbers of one to k, and the l-th
generated centroid load profile is defined as c′l . The centroid load profiles (c′l ) are

(
K2 + K

)
/2 daily

load patterns, which are the mean values of load patterns of similar days. Figure 5 shows the centroid
load profiles of a single household for one month using the multiple k-means clustering algorithm.
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Figure 5. Centroid load profiles generated using multiple k-means clustering algorithm with different
clustering number k: (a) k = 1; (b) k = 2; (c) k = 3, and (d) k = 4.

3.2. Augmentation of Homogeneous Residual Load Profile

Using multiple k-means clustering and its corresponding centroid load profile, the residential
load profiles can be generated as follows:

rd, l = pd − c′l , (5)

where rd,l is the vector of residual load profiles of the target household on day d, which is generated
with the l-th centroid load profile. This residual load profile is expected to be less volatile and less
uncertain than was the original load profile. In addition, from Equation (5), the amount of training
data will be increased much more by using residual load profiles as training data. Namely, one time
series (pd) of a single household load can be transformed into several time series of residual load series
(rd,1, rd,2, . . . , rd,l).

For the CNN, the appropriate training data are concatenated with each other, and each training
data should have less uncertainty and more homogeneous information. The more homogenous
information there is, the more useful it will be for a CNN network to address the granular-level
load prediction. Any dissimilar augmented load series could destroy the CNN’s optimal cognition.
Therefore, one needs to select the more homogeneous residual load profiles from among the augmented
load profiles from Equation (5).

To select the more homogenous residual load profiles, the Frobenius norm [30] Φl of each residual
load profiles are calculated as follows:

Φl =

√∑D

d=1
‖rd,l‖2, (6)
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where each rd,l is sequentially observed with time. When residual load profiles (rd,l) have lower Φl,
most residuals generated with c′l are closed to its centroid, and these augmented residual load profiles
can be expected to be homogeneous. Finally, the paper used only the residual load series with lower
Φl as training set Rin,

Rin =
{

rd,l

∣∣∣∣ Φl ≤ 1
L

∑L

l=1
Φl

}
. (7)

In addition to the training set, the paper used the residual load profiles with the lowest Φl as
the test set for the CNN model. Figure 6 shows the structure of training and testing sets of
the proposed method. In Figure 6, the residual load profile is expressed with its elements as
rd,l =

{
r(1,d),l, r(2,d),l, . . . , r(t,d),l, . . . , r(24,d),l

}
. In the training set, several time series of residual load series

(rd,1, rd,2, . . . , rd,l) can be used instead of one original time series (pd) of a single household load.
With this enragement of training data, forecasting accuracy for individual residential households can
be improved.

3.3. CNN Model for Residential Load Forecasting

The training process is yielded by running a program with a given number of iterations. To optimize
the CNN model, in each iteration, a root mean square is used for the training process as follows:

argmin

√√√
1
L

.
1
D

.
L∑

l=1

D∑
d=1

(
r̂d,l,−rd,l

)2
, (8)

where r̂d,l is the predicted vector load profile obtained from the CNN, and L represents the number
of selected residual load profiles from Equation (6). A well-trained and converged CNN forecasting
network is used for testing the process for predicting the future load. Since the CNN network deals
with residual load profiles, the forecasting result can be generated in terms of a residual load profile.
In fact, the forecast load profile p̂D+1 can be obtained by adding both the centroid load profile and the
forecast residual load profile as follows:

p̂D+1 = ĉ + r̂D+1,p, (9)

where r̂D+1, p represents the day-ahead forecasted residual load profile, and ĉ represents the most
appropriate centroid load profile which has the lowest Frobenius norm Φl.

Figure 7 explains the entire load forecasting procedure for the proposed methodology. In the first
stage, centroid load profiles are generated using multiple k-means clustering, and different types of
residual load profiles are extracted with corresponding centroid load profiles. In the second stage,
only homogeneous residual load series are selected using the Frobenius norm for training the CNN.
In the final stage, the CNN forecasting framework is used to predict day-ahead residential load profiles.
The CNN implementation can be summarized into three parts: (1) initialization of the CNN parameters,
(2) training the CNN model with the help of input matrix Rin, and (3) predicting the day-ahead load
profile using the optimally trained CNN model. With the proposed forecasting method, it is expected
that the CNN can cognize the characteristics of historical load profiles more accurately, so that the
forecasting accuracy is improved interestingly.
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Figure 6. Structure of training and testing data for the proposed method.
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Figure 7. The overall procedure of the proposed load forecasting method for an individual household.

4. Simulation Results

4.1. Data Description and Hyper-Parameter Tuning

The proposed method was tested using hourly metering data gathered from 1181 residential
households in Seoul, Korea, for one year (August 2016 to July 2017). With this dataset, the results of
the proposed method are compared with the results of pooling-based augmentation [7] as well as with
the results of other deep-learning models [2,7,20]. For the day-ahead load forecasting, historical load
data for the last 30 days were used for the training process, and historical load data of the previous day
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were used for testing. To evaluate the accuracy of forecasting results, the paper employed the mean
absolute percentage error (MAPE) and root mean square error (RMSE) as follows:

MAPE =
1
T

T∑
t=1

∣∣∣p̂t, (D+1) − pt, (D+1)

∣∣∣
pt, (D+1)

× 100% , (10)

RMSE =

√√√
1
T

T∑
t=1

((
p̂t, (D+1) − pt, (D+1)

))2
. (11)

The proposed method is developed and tested through Python with the Keras library, whose backend
is Tensorflow [31,32]. To avoid over-fitting in the training process, the parameter settings in Table 1
were tested for the proposed method. The tuning process of hyper-parameters was based on [23].
The numbers of hidden layers were selected based on [33–38]. The common hyper-parameters, such as
activation function, optimizer, loss function, etc., are reported in Table 1. The additional more specific
parameters of CNN were settled with the size of filter 3 × 3, number of input filters 24, maximum
pooling size 3× 3, and size of strides 1. The convolution layers were followed by a fully connected layer
with the rectified linear unit (ReLU) activation functions. The final fully connected layer predicted
one-hour electric load at a time, which was matched with [36]. The dataset (30 days) was split into
validating set (3 days), testing set (1 day), and training set (26 days).

Table 1. Hyper parameters for selected deep learning models.

Parameters BPNN CNN LSTM

No. of hidden layers 2 or 3 2 or 3 2 or 3
No. of nodes per layer 32 24 20
Activation functions ReLU ReLU tanh and sigmoid

No. of Epochs (iteration) 150 150 300
Optimizer RMS-Prop RMS-prop RMS-prop

Loss Function MSE MSE MSE
Testing samples 24-h 24-h 24-h

To tackle the overfitting in CNNs, the proposed method was preliminarily tested with different
numbers of hidden layers in CNN architecture. Table 2 shows the forecasting results of ten households
with six different hidden layers. The ten single households in Table 2 were randomly selected, and the
results were monthly average values in July (peak season in Korea). In most households, the forecasting
results with two or three hidden layers were more accurate. With these results, the paper set the
number of hidden layers to be 2.

Table 2. Load Forecasting results (mean absolute percentage error (MAPE)) with a number of different
hidden layers.

Household
Hidden Hidden Hidden Hidden Hidden Hidden

Layer 0 Layer 1 Layer 2 Layer 3 Layer 4 Layer 5

1 23.75% 24.44% 19.26% 21.77% 23.43% 26.77%
2 11.96% 11.25% 11.17% 9.63% 11.51% 12.98%
3 32.10% 32.05% 30.08% 35.87% 38.09% 39.73%
4 9.86% 9.53% 9.65% 10.30% 11.05% 11.47%
5 13.13% 13.59% 11.72% 12.44% 15.47% 15.54%
6 12.88% 12.44% 11.77% 11.43% 12.32% 13.82%
7 11.76% 11.34% 9.77% 12.15% 11.68% 12.82%
8 14.78% 14.97% 13.53% 14.60% 15.12% 16.32%
9 22.19% 22.30% 22.06% 21.41% 22.46% 21.69%
10 37.24% 43.59% 34.72% 46.80% 47.12% 49.25%
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4.2. Effects of Proposed Augmentation Method

Tables 3 and 4 show the MAPE and RMSE results of day-ahead forecasting with and without the
proposed augmentation technique. The ten single households in tested Tables 3 and 4 were randomly
selected, and the results were monthly average values in July (peak season in Korea).

Table 3. Load Forecasting results (MAPE) with and without proposed augmentation.

Household
Without Augmentation With the Proposed Augmentation

BPNN (%) LSTM (%) CNN (%) LSTM (%) CNN (%)

1 32.17 33.49 43.40 31.36 19.26
2 20.54 21.62 24.77 16.60 9.63
3 39.52 38.15 48.48 37.41 30.08
4 15.56 14.61 18.42 15.47 9.53
5 17.36 16.50 20.85 17.15 11.72
6 17.46 16.85 20.77 16.99 11.77
7 14.61 14.85 17.01 13.36 9.77
8 20.38 20.31 24.08 18.17 13.53
9 42.40 43.11 46.03 28.89 21.41
10 53.71 57.02 66.64 51.28 34.72

Table 4. Load Forecasting results (root mean square error (RMSE)) with and without
proposed augmentation.

Household
Without Augmentation With the Proposed Augmentation

BPNN (kWh) LSTM (kWh) CNN (kWh) LSTM (kWh) CNN (kWh)

1 0.3601 0.3440 0.4092 0.3156 0.1666
2 0.2614 0.2864 0.3169 0.1253 0.1116
3 0.2382 0.2242 0.2570 0.2160 0.1313
4 0.0954 0.0907 0.1114 0.1397 0.0691
5 0.0790 0.0768 0.0882 0.0744 0.0506
6 0.0757 0.0728 0.0859 0.0769 0.0488
7 0.0663 0.0679 0.0743 0.0635 0.0389
8 0.1083 0.1028 0.1160 0.0960 0.0683
9 0.1423 0.1321 0.1638 0.1072 0.0661
10 0.3323 0.3074 0.3421 0.2984 0.1796

By using the proposed augmentation, the forecasting accuracy was improved by 5 percent, at least,
as shown in Table 3. It can be concluded that the proposed forecasting method can significantly
improve the forecasting accuracy more than can the other forecasting models without augmentation.
When comparing only the cases with the proposed augmentation, the CNN provided more accurate
forecasting than the LSTM. It is probably because the augmented data contain plenty of similar random
information with small variations. With this information, the CNN received the opportunity for
obtaining optimal convergence. On the other hand, as LSTM required more repetitive information for
training to improve its performance, this augmented data was comparatively ineffective for LSTM.

Figure 8a,b show the average MAPE and RMSE of ten households, calculated using the results of
daily forecasting in July. On most days, the proposed forecasting method significantly improved the
forecasting accuracy more than did the other forecasting model without augmentation.

Figure 9 shows the daily average of forecasting results for four higher uncertain households.
For most times, the proposed forecasting method significantly improved forecasting accuracy. This is
probably because the homogeneous information from the proposed augmentation provides the
opportunity for the CNN framework to obtain optimal convergence.
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Figure 8. Average mean absolute percentage error (MAPE) and root mean square error (RMSE) of ten
arbitrary selected households in July: (a) MAPE result, and (b) RMSE result.

Figure 9. Daily average of MAPE of higher uncertain households from Table 3: (a) household 10;
(b) household 8; (c) household 9 and (d) household 1.
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4.3. Forecasting Results in Peak Day

Figure 10a,b show the forecasting results of the peak day for two selected households. One was a
less uncertain household which showed the lowest monthly average MAPE in Table 2 (household 4).
The other household was a more uncertain household which showed the highest monthly average
MAPE in Table 2 (household 10). The peak loads of the two households in July were 1.062 kW
(23:00, July 17) and 2.033 kW (18:00, July 14), respectively. During a peak day, it is expected that the
residential load profiles will be highly uncertain so that the load forecasting is more challenge. To test
the forecasting accuracy, the results of the proposed forecasting method were compared to the results
of the forecasting models using pooling augmentation techniques [7].
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Figure 10. Day-ahead load forecasting for peak day: (a) lower uncertain household (household 4) and
(b) higher uncertain household (household 10).

For pooling augmentation, the simulation used historical load data of six neighbors as an additional
training set. In Figure 10a,b, the predicted load curves of the proposed method were much closer to
the actual load profile at most hours of the day, for both households. Especially at the peak time of
the day, the proposed forecasting model can provide significantly accurate forecasting results. On the
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other hand, the forecasting models using the other pooling techniques showed a worse performance
for load forecasting at the peak time.

An important day for a forecasting test is the day of maximum energy. During this day,
the residential load profiles would be highly uncertain at all hours of the day, so that the load
forecasting is more challenging. The daily maximum energy consumption of the selected two
households in July was 19.381 kWh (July 21) and 15.797 kWh (July 30), respectively. Figure 11a,b
demonstrate the target load profile and predicted load profile of the less uncertain household and
the highly uncertain household, respectively. For the less uncertain household, the predicted load
curves of the proposed method were much closer to the actual load profile at most hours of the day.
The proposed model reported 7.999% of MAPE for the less uncertain household, which was lower
than the 10.6566% of MAPE from the pooled LSTM. Similarly, for the highly uncertain household,
the proposed model reported 40.4058% of MAPE, which was lower than the 53.319% of MAPE from
the pooled LSTM. These results strongly validate the proposed methodology for load prediction in the
residential sector.
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Figure 11. Day-ahead hourly load forecasting for the day of maximum energy consumption: (a) less
uncertain household (household 4) and (b) highly uncertain household (household 10).
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4.4. Monthly Results of Day-Ahead Load Forecasting

To examine the efficacy of the proposed technique for one year, this section tested the performance
throughout eleven months by picking one of the best performer households and one of the worst
performer households.

Tables 5 and 6 show the monthly average MAPE and RMSE results of the less uncertain household
and the highly uncertain household. The test results are from September 2016 to July 2017. In Tables 5
and 6, the proposed method improved the forecasting accuracy by more than 6 percent throughout
the year.

Table 5. Monthly-average of MAPE for the lower uncertain household.

Forecasting Model Sept. Oct. Nov. Dec. Jan. Feb. Mar. Apr. May Jun. Jul.

Pooled BPNN
MAPE (%) 16.48 16.72 19.33 16.55 18.21 17.30 20.99 20.22 20.88 26.99 15.02

RMSE (kWh) 0.086 0.099 0.105 0.095 0.099 0.111 0.104 0.110 0.110 0.124 0.106

Pooled CNN
MAPE (%) 15.97 20.66 21.11 18.04 19.80 18.71 22.38 22.12 22.74 28.62 15.89

RMSE (kWh) 0.085 0.111 0.116 0.104 0.110 0.121 0.112 0.119 0.120 0.132 0.112

Pooled LSTM
MAPE (%) 14.46 16.33 18.23 15.31 17.31 16.70 23.30 18.76 19.90 26.82 14.03

RMSE (kWh) 0.080 0.099 0.101 0.091 0.096 0.069 0.107 0.106 0.110 0.123 0.100

Proposed
Method

MAPE (%) 9.662 11.65 10.53 9.50 9.91 10.34 11.25 10.95 12.07 12.25 9.65

RMSE (kWh) 0.062 0.061 0.060 0.060 0.061 0.105 0.067 0.075 0.072 0.068 0.070

Table 6. Monthly-average of MAPE for the higher uncertain household.

Forecasting Model Sept. Oct. Nov. Dec. Jan. Feb. Mar. Apr. May Jun. Jul.

Pooled BPNN
MAPE (%) 20.07 24.65 34.87 46.06 34.32 36.06 43.42 42.87 36.86 43.25 35.39

RMSE (kWh) 0.086 0.119 0.137 0.156 0.160 0.168 0.185 0.191 0.141 0.152 0.241

Pooled CNN
MAPE (%) 18.80 28.08 34.83 55.80 39.61 37.44 48.49 53.90 40.09 50.07 41.40

RMSE (kWh) 0.085 0.129 0.140 0.168 0.174 0.175 0.203 0.204 0.151 0.162 0.246

Pooled LSTM
MAPE (%) 16.998 24.81 32.13 46.47 34.02 33.10 43.09 47.59 33.81 45.15 35.99

RMSE (kWh) 0.080 0.116 0.135 0.156 0.164 0.161 0.176 0.198 0.140 0.153 0.228

Proposed
Method

MAPE (%) 13.83 12.79 22.26 30.47 23.51 22.09 26.21 30.89 23.05 29.53 29.12

RMSE (kWh) 0.062 0.075 0.085 0.101 0.092 0.105 0.106 0.119 0.099 0.084 0.131

4.5. Impact of Clustering Number K

Figure 12a,b show the average MAPE and RMSE results of ten households with different clustering
numbers K. In Figure 12, very accurate forecasting can be expected when the clustering number K
is increased for most households. However, for some households, the MAPE is increased when the
clustering number K is over 4. The higher clustering number K provides more training data to the
CNNs, so that the CNNs have more chance to learn the load characteristics. However, more training
data can increase the variations of the training set, which cause overfitting of the hyper-parameters of
CNNs, which degrades the optimal learning of CNNs. Therefore, the optimal clustering number must
be selected for each household.
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(a) 

(b) 

Figure 12. Effect of clustering number K on forecasting accuracy: (a) MAPE and (b) RMSE.

5. Conclusions

The paper proposed a forecasting method based on convolution neural networks (CNNs) combined
with a data augmentation technique with consideration of an insufficient period of training data.
The proposed data augmentation can enlarge the training data for CNNs using only a target household’s
own historical data, without the help of other households. The proposed forecasting method transforms
a time series of a single household load data into several time series of residual loads. With this
enragement of training data, forecasting accuracy for individual residential households can be improved.
The test results indicated that the proposed method can deliver a notable improvement by including
homogeneous information for an individual residential household’s load forecasting. The proposed
method can be used for energy management at the household level and evaluate the baseline of energy
consumption at the household level for demand-response programs.
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Abstract: An energy-management system requires accurate prediction of the electric load for
optimal energy management. However, if the amount of electric load data is insufficient, it is
challenging to perform an accurate prediction. To address this issue, we propose a novel electric
load forecasting scheme using the electric load data of diverse buildings. We first divide the electric
energy consumption data into training and test sets. Then, we construct multivariate random forest
(MRF)-based forecasting models according to each building except the target building in the training
set and a random forest (RF)-based forecasting model using the limited electric load data of the target
building in the test set. In the test set, we compare the electric load of the target building with that
of other buildings to select the MRF model that is the most similar to the target building. Then, we
predict the electric load of the target building using its input variables via the selected MRF model. We
combine the MRF and RF models by considering the different electric load patterns on weekdays and
holidays. Experimental results demonstrate that combining the two models can achieve satisfactory
prediction performance even if the electric data of only one day are available for the target building.

Keywords: short-term load forecasting; building electric energy consumption forecasting; cold-start
problem; transfer learning; multivariate random forests; random forest

1. Introduction

The continuing environmental problems caused by the enormous amount of carbon dioxide
produced by the burning of fossil fuels, such as coal and oil, for energy production has resulted in
considerable focus on smart grid technologies owing to their effective use of energy [1,2]. A smart
grid is an intelligent electric power grid that combines information and communication technology
with the existing electric power grid [3]. The smart grid can optimize energy use by sharing electric
energy production and consumption information with consumers and suppliers in both directions
and in real time [4]. The most fundamental approach for sustainable development of smart grids is
electric power generation using renewable energy sources, such as photovoltaic and wind energy [5,6].
Furthermore, an energy management system (EMS) in smart grids requires an optimization algorithm
for the advanced operation of an energy storage system (ESS) [7]; it also has to plan various strategies
by considering consumer-side decision making [8].

Artificial intelligence (AI) technology-based applications are a highly relevant area for smart grid
control and management [6–8]. In particular, short-term load forecasting (STLF) is a core technology of
the EMS [9]; moreover, accurate electric load forecasting is required for stable and efficient smart grid
operations [10]. From the perspective of a supplier, it is challenging to provide optimal benefits in a
cost-effective analysis while storing a large amount of electric energy in the ESS; however, the smart
grid can plan effectively by predicting future electric energy consumption and receiving the required
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energy from internal and external energy sources [11]. It is also possible to optimize the renewable
energy generation process [11,12]. From the perspective of a consumer, the EMS can quickly cope with
situations such as blackouts and can help to save energy costs because it confirms the electric energy
consumption and peak hours during the day [12].

Electric energy consumption patterns are complicated according to the types of buildings [13];
moreover, the electric energy consumption is frequently changed owing to uncertain external factors [14].
Therefore, it is challenging to predict the exact electric energy consumption in buildings [15]. Besides,
when forecasting electric energy consumption, the complex correlations associated with an electric
load between the current time and the previous time should be appropriately considered [7,11]. To
adequately reflect previously uncertain external factors and electric energy consumption, AI techniques
can be used to predict future building electric energy consumption based on diverse information,
such as historical electric loads, locations, populations, weather factors, and events [16]. Moreover,
the importance of multistep-ahead electric load forecasting has increased to quickly determine new
uncertainties in power systems [17].

Most AI techniques use large amounts of data to construct STLF models. However, as sufficient
electric load data of buildings connected to smart grids for a short time or new/renovated buildings are
not collected, it is challenging to construct STLF models using these data sets. We defined this problem
of lack of data as a cold-start problem. The cold-start problem [18] can occur in computer-based
information systems that require automated data modeling. In particular, this problem involves the
issue where the system cannot derive inferences from insufficient information regarding users or items.
In future, because of the expansion of the smart grid market, it is expected that new data sets will
be collected from newly constructed or renovated buildings. Hence, EMSs require a novel building
electric energy consumption forecasting model that can be applied to these buildings.

In this paper, we propose a novel STLF model that combines random forest (RF) models while
considering two cases (i.e., weekdays and holidays) to solve the cold-start problem. To achieve this,
we first collected sufficient electric energy consumption data sets from 15 buildings. The collected
data sets were divided into training and test sets; moreover, we developed a transfer learning-based
STLF model based on multivariate random forests (MRF) in the training set. We also constructed
a RF-based STLF model using the building electric energy consumption data of only 24 h and then
combined the two models by considering the schedule. Consequently, we assumed the building electric
energy consumption for only 24 h in the test set and performed multistep-ahead hourly electric load
forecasting (24 points) of the target building to prepare for uncertainty.

The rest of this paper is organized as follows: in Section 2, we review several STLF models based
on AI techniques using sufficient and insufficient data sets, respectively. In Section 3, we describe
the input variable configuration for STLF models. In Section 4, we describe the RF-based STLF
model construction in detail. Section 5 presents and discusses the experimental results to evaluate
the prediction performance of the proposed model. In Section 6, we provide a conclusion and future
research directions.

2. Related Works

In this section, we introduce the research on electric energy consumption forecasting for buildings
with and without sufficient data sets. Table 1 summarizes the information about the selected papers,
and these studies are described in detail subsequently.

Several studies have predicted electric energy consumption for buildings with sufficient data
sets based on traditional machine-learning and deep-learning (DL) methods. Candanedo et al. [19]
proposed data-driven prediction models for a low-energy house using the data from home appliances,
lighting, weather conditions, time factors, etc. They used multiple linear regression (MLR), support
vector regression (SVR), RF, and gradient boosting machine (GBM) to construct 10 minute-interval
electric energy consumption forecasting models. They confirmed that time factors were essential
variables to build the prediction models; moreover, the GBM model exhibited better prediction
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performance than other models. Wang et al. [20] presented an hourly electric energy consumption
forecasting model for two institutional buildings based on RF. They considered time factors, weather
conditions, and the number of occupants as the input variables of the RF model. They compared
the prediction performance of the RF model with that of the SVR model and confirmed that the RF
model presented better prediction performance than the SVR model. Li et al. [21] proposed an extreme
stacked autoencoder (SAE), which combined the SAE with an extreme learning machine (ELM) to
improve the prediction results of building energy consumption. The electric energy consumption data
were collected from one retail building in Fremont, CA. The authors predicted the building electric
energy consumption at 30 min and 60 min intervals and compared the prediction performance of
their proposed model with that of backward propagation neural network (BPNN), SVR, generalized
radial basis function neural network, and MLR. Their proposed model demonstrated better prediction
performance than other models. Almalaq et al. [22] presented a hybrid prediction model based on
a genetic algorithm (GA) and long short-term memory (LSTM). GA was employed to optimize the
window size and the number of hidden neurons for the LSTM model construction. Their proposed
model predicted two public data sets of residential and commercial buildings and compared the
prediction performance with autoregressive integrated moving average (ARIMA), decision tree (DT),
k-nearest neighbor, artificial neural network (ANN), GA-ANN, and LSTM models. They confirmed
that their proposed model exhibited better prediction performance than other models.

Several studies reported the construction of electric energy consumption forecasting models
for buildings with insufficient data sets based on pooling, transfer learning, and data generation.
Shi et al. [23] proposed a household electric load forecasting model using a pooling-based deep
recurrent neural network (PDRNN). The pooling method was used to overcome the limitation of
the complexity of household electric loads, such as volatility and uncertainty. Then, LSTM with five
layers and 30 hidden units in each layer was employed to build an electric load-forecasting model
using the pooling method. They compared the prediction performance of the PDRNN with that
of ARIMA, SVR, recurrent neural network (RNN), etc. and confirmed that their proposed method
outperformed ARIMA by 19.5%, SVR by 13.1%, and RNN by 6.5% in terms of the root mean square
error. Ribeiro et al. [24] proposed a transfer-learning method, called Hephaestus, for cross-building
electric energy consumption forecasting based on time-series multi-feature regression with seasonal
and trend adjustments. Hephaestus was applied in the pre- and post-processing phases; then, standard
machine learning algorithms such as ANN and SVR were used. This method adjusted the electric
energy consumption data from various buildings by removing the effects of time through time-series
adaptation. It also provided time-independent features through non-temporal domain adaptation. The
authors confirmed that Hephaestus can improve electric energy consumption forecasting for a building
by 11.2% by using additional electric energy consumption data from other buildings. Hooshmand
and Sharma [25] constructed a transfer learning-based electric energy consumption forecasting model
in small data set regimes. They collected publicly available electric energy consumption data and
classified different types of customers. Then, normalization was utilized for training the trends and
seasonality of time series efficiently. They built a convolutional neural network (CNN) architecture
through the pre-training step that learns from a public data set with the same type of buildings as the
target building. Subsequently, they retrained only the last fully connected layer using the data set of the
target building to predict the energy consumption data of the target building. They demonstrated that
their proposed model consistently demonstrated lower prediction performance error when compared
to seasonal ARIMA, fresh CNN, and pre-trained CNN models. Tian et al. [26] proposed parallel
building electric energy consumption forecasting models based on generative adversarial networks
(GANs). They initially generated the parallel data through GAN by using a small number of the
original data sets and then configured the mixed data set, which included the original data and the
parallel data. Finally, they utilized the mixed data set to train several machine learning algorithms
such as BPNN, ELM, and SVR. Experimental results exhibited that the parallel data consisted of
similar distributions of the original data, and the prediction models trained by the mixed data set
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demonstrated better prediction performance than those trained using the original data, information
diffusion technology, heuristic mega-trend-diffusion, and bootstrap methods.

The differences between the methods described above and our method are as follows:
The forecasting models in previous studies [19–22] presented excellent prediction performance

using a sufficient data set of target buildings. However, our forecasting model can exhibit a satisfactory
prediction performance even if the electric load data of the target building is insufficient.

The forecasting models in previous studies [19–24,26] could not predict the electric loads for
various buildings. However, our forecasting model predicts the electric loads for 15 buildings;
consequently, it can be considered as a generalized forecasting model.

The previous studies based on DL techniques [21–23,25,26] demonstrate a certain amount of
computational cost to optimize the various hyperparameters of DL models for the target building. We
use the RF with minimal tuning of hyperparameters to construct satisfactory forecasting models for
several buildings.

The previous studies based on transfer learning [24,25] considered the types of the building to
construct the forecasting models. However, we built a transfer learning-based forecasting model even
without knowledge of the type of buildings. Besides, even if the electric load of only 24 h for the target
building is known, our forecasting model can predict multistep electric load forecasting.

Table 1. Summary of several approaches for building electric energy consumption forecasting (MLR:
multiple linear regression, SVR: support vector regression, GBM: gradient boosting machine, RF:
random forest, SAE: stacked autoencoder, ELM: extreme learning machine, GA: genetic algorithm,
LSTM: long short-term memory, PDRNN: pooling-based deep recurrent neural network, ANN: artificial
neural network, CNN: convolutional neural network, GAN: generative adversarial network, BPNN:
backward propagation neural network).

Author (Year)
Type of Target

Buildings
Dataset for

Target Buildings
Time Granularity AI Techniques

Candanedo et al. [19] (2017) Residential Sufficient 10 min MLR, SVR, GBM, RF
Wang et al. [20] (2018) Educational Sufficient 1 h RF

Li et al. [21] (2017) Commercial Sufficient 30 min, 1 h SAE, ELM

Almalaq et al. [22] (2018) Residential, Commercial Sufficient Residential: 1 min,
Commercial: 5 min GA, LSTM

Shi et al. [23] (2018) Residential Insufficient 30 min PDRNN
Ribeiro et al. [24] (2018) Educational Insufficient Daily ANN, SVR

Hooshmand and Sharma [25]
(2019)

Commercial, Industrial,
Educational Insufficient 15 min CNN

Tian et al. [26] (2019) Commercial Insufficient 30 min, 1 h GAN, BPNN, ELM,
SVR

3. Input Variable Configuration

Our goal is to predict the electric energy consumption of buildings that were recently built. To
address this issue, we constructed two STLF models, one using the sufficient electric load data of
other buildings and the other using the limited electric load data of the target building. In this section,
we describe the construction of input variables for practical model training. Section 3.1 describes
the electric energy consumption data sets of the 15 buildings that we collected. Section 3.2 shows
the input variable configuration for the RF-based forecasting model using the small data set of the
target building. Section 3.3 exhibits the input variable configuration for the transfer learning-based
forecasting models using the sufficient data sets from different buildings.

3.1. Data Sets of Electric Energy Consumption from Buildings

We randomly received the hourly electric energy consumption data collected from smart meters
connected with 15 sites from the Korea Electric Power Corporation (KEPCO). One smart meter, which
is installed per site, usually represents one building or a couple of connected buildings. In this paper,
we defined a smart meter as a building. The period of data collection was from 1 January 2015 to
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31 July 2018. As the collected building data were provided under anonymity and because of the
de-identification owing to privacy, we could not determine the types, characteristics, and locations of
the buildings. The collected smart meter data had an average missing value rate of 0.6%; we imputed
these missing values using linear interpolation. The statistical analysis of the collected smart meter
data for each building is listed in Table 2.

Table 2. Statistics of electric energy consumption data from each building (Unit: kWh).

Building # Minimum 1st Quartile Median Mean 3rd Quartile Maximum

1 109.7 202.8 230.4 291.6 344.4 821.8
2 96.6 212.3 313.5 399.7 583.1 1148.7
3 51.6 163.0 240.9 251.5 313.0 870.0
4 27.8 429.5 547.3 572.5 694.3 1295.3
5 94.3 176.2 226.3 251.1 323.0 527.0
6 99.4 216.1 240.0 257.7 289.4 602.0
7 16.8 545.9 590.6 650.2 706.6 1453.6
8 26.8 113.2 128.8 185.0 247.7 532.4
9 187.1 423.7 492.4 518.8 593.3 1140.2
10 190.6 560.9 667.5 780.9 850.7 2478.1
11 105.8 237.8 291.7 301.7 348.2 614.2
12 570.2 973.4 1153.4 1193.7 1373.8 2464.2
13 884.6 1359.2 2222.4 2627.6 3626.5 6835.2
14 1408.0 1801.0 2161.0 2478.0 2984.0 5393.0
15 80.5 117.5 160.5 204.6 259.5 756.1

Herein, we made one assumption. Even though we have sufficient electric energy consumption
data sets for other buildings, we have the electric energy consumption data set of only 24 h for the
target building. Thus, as we know the electric load of the target building for only 24 h (24 points), we
predicted the electric energy consumption for the subsequent 24 h.

3.2. Case 1: Time Factor-Based Forecasting Modeling

As mentioned above, we assumed that the electric energy consumption data of only 24 h for the
target building was known. Hence, we explain the input variable configuration for the prediction
model utilizing the electric energy consumption data of only 24 h. Generally, while constructing a
STLF model, various factors, such as time factors, weather information, and historical electric loads,
are reflected as input variables [27,28]. However, we cannot utilize weather information as an input
variable because we do not know the location of the buildings. The historical electric load is used to
reflect recent trends and patterns [28,29]; moreover, it can be applied when it is composed of sufficient
data sets. However, as we assumed that the historical electric load is composed of data of only 24 h,
reflecting on the historical electric load is inappropriate. This implies that we do not know any recent
trends or patterns. In the case of time factors, there are various factors, namely month, day, hour, day
of the week, and holiday. However, the data set was too small to effectively reflect the characteristics
of months, days, days of the week, and holidays. Therefore, we considered only “hour” as an input
variable to construct the STLF model.

Hourx = sin
((360

24

)
×Hour

)
(1)

Houry = cos
((360

24

)
×Hour

)
(2)

However, in the case where 11 pm and 12 am of the subsequent day are adjacent, but the
difference is 23, it is challenging to train the input variable of the STLF model effectively. Thus, we use
Equations (1) and (2) to enhance the sequence data in the one-dimensional space to the continuous
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data in the two-dimensional space [11,30]. These variables can more adequately reflect the continuous
characteristic, similar to the shape of the clock, as shown in Figure 1.

Figure 1. Example of the enhancement of one-dimensional space to two-dimensional space.

Tables 3 and 4 lists the results of the statistical analysis of the building electric energy consumption
for one-dimensional and two-dimensional spaces. In Table 3, we can observe that the two-dimensional
space reflects the building electric energy consumption more effectively than the one-dimensional
space. In Table 4, we can see that almost of p-values of the F-statistic are < 2.2 × 10−16, which are
highly significant. This means that at least, one of the predictor variables is significantly related to the
outcome variable. We used 24-hour information to construct the STLF model and then applied the
same time information to predict the building electric energy consumption over the next 24 h.

Table 3. R-squared statistics and standard error for each building.

Building #
One-Dimensional Space Two-Dimensional Space

Multiple
R-Squared

Adjusted
R-Squared

Standard
Error

Multiple
R-Squared

Adjusted
R-Squared

Standard
Error

1 0.0062 0.0062 132.4 0.2785 0.2784 112.8
2 0.0314 0.0314 228.5 0.3395 0.3395 188.7
3 0.0378 0.0378 114.9 0.2542 0.2541 101.2
4 5.969× 10−7 −3.126× 10−5 206.7 0.0571 0.0570 200.7
5 0.0003 0.0003 88.4 0.0052 0.0052 88.2
6 0.3599 0.3599 45.0 0.2838 0.2838 47.6
7 0.0126 0.0126 179.9 0.1485 0.1485 167.1
8 0.0049 0.0048 110.6 0.2652 0.2651 95.0
9 0.3985 0.3985 91.7 0.2879 0.2879 99.8
10 0.0212 0.0211 361.5 0.2433 0.2432 317.9
11 0.0415 0.0415 81.9 0.3233 0.3232 68.8
12 0.1056 0.1055 280.3 0.2751 0.2750 252.3
13 0.0886 0.0886 1361.0 0.5962 0.5961 905.8
14 0.0899 0.0899 829.1 0.4772 0.4772 628.4
15 0.0321 0.0321 116.5 0.4514 0.4514 87.7
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Table 4. F-statistics and p-value for each building.

Building #
One-Dimensional Space Two-Dimensional Space

F-Statistics p-Value F-Statistics p-Value

1 197 < 2.2× 10−16 6057 < 2.2× 10−16

2 1018 < 2.2× 10−16 8067 < 2.2× 10−16

3 1234 < 2.2× 10−16 5348 < 2.2× 10−16

4 0.019 0.8911 950 < 2.2× 10−16

5 8.994 0.002711 82.410 < 2.2× 10−16

6 1.765× 104 < 2.2× 10−16 6220 < 2.2× 10−16

7 400 < 2.2× 10−16 2737 < 2.2× 10−16

8 153 < 2.2× 10−16 5664 < 2.2× 10−16

9 2.08× 104 < 2.2× 10−16 6345 < 2.2× 10−16

10 678 < 2.2× 10−16 5046 < 2.2× 10−16

11 1359 < 2.2× 10−16 7498 < 2.2× 10−16

12 3705 < 2.2× 10−16 5956 < 2.2× 10−16

13 3052 < 2.2× 10−16 2.317× 104 < 2.2× 10−16

14 3102 < 2.2× 10−16 1.433× 104 < 2.2× 10−16

15 1040 < 2.2× 10−16 1.291× 104 < 2.2× 10−16

3.3. Case 2: Transfer Learning-Based Forecasting Modeling

In addition to the electric energy consumption data set of the target building for only 24 h, we
also have sufficient electric energy consumption data sets of other buildings. Hence, we can reflect
on various characteristics to use as input variables for a transfer learning-based model construction.
Consequently, we used a time factor and historical electric load as input variables. We first divided the
electric energy consumption data of all buildings into training and test sets. In the training set, we used
the electric energy consumption data of different buildings to train the transfer learning-based STLF
models and these models were applied to the electric energy consumption data of the target building
when it was used in the test set. For time factors, we used the month, week, day, hour, day of the week,
and holiday information. In the case of months, weeks, days, and days of the week, we enhanced the
time factors from the one-dimensional space to two-dimensional space, as shown in Equations (3) to
(10) [30,31]. Here WN is the week number based on the ISO 8601 standard [32], and LDM represents
the last day of the month.

Dayx = sin
(( 360

LDM

)
×Day

)
(3)

Dayy = cos
(( 360

LDM

)
×Day

)
(4)

Weekx = sin
(( 360

WN

)
×Week

)
(5)

Weeky = cos
(( 360

WN

)
×Week

)
(6)

Monthx = sin
((360

12

)
×Month

)
(7)

Monthy = cos
((360

12

)
×Month

)
(8)

Day_o f _the_Weekx = sin
((360

7

)
×Day_o f _the_Week

)
(9)

Day_o f _the_Weeky = cos
((360

7

)
×Day_o f _the_Week

)
(10)

The holidays included Saturdays, Sundays, and national holidays and exhibited predominantly
low electric energy consumption during working hours, unlike working days [33]. In the case of
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holidays, we used one-hot encoding to reflect the property as “1” on the holiday and “0” otherwise.
Hence, we applied nine time factors as input variables at the prediction time point.

In addition, we applied not only the historical electric load data but also the day of the week and
holiday, which are a part of the data, to reflect both the historical electric load of the building and its
characteristics. Consequently, we configured 15 input variables at the prediction point time. Table 5
lists the information on these variables; where D represents the day.

Table 5. List of input variables for the transfer learning-based forecasting model.

No. Input Variable Variable Type

1 Hourx Continuous [−1, 1]
2 Houry Continuous [−1, 1]
3 Dayx Continuous [−1, 1]
4 Dayy Continuous [−1, 1]
5 Weekx Continuous [−1, 1]
6 Weeky Continuous [−1, 1]
7 Monthx Continuous [−1, 1]
8 Monthy Continuous [−1, 1]
9 Day_o f _the_Weekx Continuous [−1, 1]
10 Day_o f _the_Weeky Continuous [−1, 1]
11 Holiday Binary [1: Holiday, 0: Weekday]
12 Electric_LoadD−1 Continuous
13 Day_o f _the_Weekx,D−1 Continuous [−1, 1]
14 Day_o f _the_Weeky,D−1 Continuous [−1, 1]
15 HolidayDay−1 Binary [1: Holiday, 0: Weekday]

As our goal is to predict all-time points 24 h later, we constructed all the input variables by
utilizing each input variable for the prediction time point. Thus, we used a total of 360 input variables,
i.e., (15 (number of input variables) × 24 (prediction time points)) for the STLF model construction, as
shown in Figure 2.

 

T 

Figure 2. Input variable configuration for the transfer learning-based forecasting model.

4. Forecasting Model Construction

In this section, we describe the STLF model construction using the limited data set of the target
building and the data sets of other buildings; moreover, we also present the method to select the
prediction value derived from the transfer learning-based model. In addition, we combined the two
STLF models and thus present a total of 15 STLF models. Figure 3 illustrates a brief system architecture
of our proposed model.
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Figure 3. Overall system architecture.

4.1. Case 1: Time Factor-Based Forecasting Model

To construct an STLF model using only “hour” as an input (independent) variable, we used one
statistical technique and two machine learning algorithms. Even though SVM, DL, and boosting
methods exhibit excellent prediction performance in STLF [7–9,34–37], they require a significant
amount of time to optimize the various hyperparameters and also require sufficient data sets. We did
not consider these methods because we constructed an STLF model using a data set from the building
electric energy consumption data of only 24 h. Thus, we considered MLR, DT, and RF, which allow
simple model construction and exhibit satisfactory prediction performance [38,39]. We used two-time
factors, namely, Hourx and Houry, as independent variables and the electric energy consumption for
the target building as the dependent (output) variable. Therefore, we predicted multistep-ahead hourly
electric loads using the time factor-based forecasting model via a sliding window time series analysis,
as shown in Figure 4.

 
Figure 4. Example of multistep-ahead electric load forecasting via a sliding window method.

4.1.1. Multiple Linear Regression (MLR)

MLR is a common statistical technique that is widely used in many STLF models [39]. MLR [39]
analyzes the relationship between a continuous dependent variable and one or more independent
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variables. The value of the dependent variable can be predicted using a range of values of the
independent variables based on an identity function that describes, as closely as possible, the
relationship between these variables. In addition, MLR determines the overall fit of the prediction
model and the relative contribution of each independent variable to the total variance. Equation (11)
represents the method to construct the MLR-based STLF model. Yi is the forecast energy consumption
at time i and β0 is the intercept of population Y. β1 and β2 are population slope coefficients. By defining
the weights of the MLR model based on β1 and β2 at the prediction time, we can construct a more
sophisticated STLF model. Herein, β0, β1, and β2 are calculated when the prediction model is built by
using the electric loads at the previous one day from the prediction points. Because our model focuses
on the prediction of multistep electric loads using a sliding window method, the weights of β0, β1, and
β2 are adjusted every hour.

Yi = β0 + β1 ×Hourx + β2 ×Houry (11)

4.1.2. Decision Tree (DT)

A DT [40] is used to construct classification or regression models in the form of a tree structure. It
separates a data set into smaller subsets while an associated DT is being incrementally extended. The
final result is a tree with a decision node that has two or more branches and a leaf node that denotes
a classification or decision. The topmost decision node in a tree corresponds to the best predictor,
called root node. DTs can present a higher explanatory power because they determine the independent
variables that have a more powerful impact when predicting the values of the target variable [41].
However, continuous variables (i.e., building electric energy consumption) used in the prediction of
the time series are considered as discontinuous values. Hence, prediction errors are likely to occur
near the boundary of separation.

4.1.3. Random Forest (RF)

RF [41] is an ensemble learning method that combines different DTs that classify a new instance
by the majority vote. Each DT node utilizes a subset of attributes randomly selected from the original
set of characteristics. As RF can handle large amounts of data effectively, it exhibits a high prediction
performance in the field of STLF [14]. Besides, when compared to other AI techniques, such as DL
and gradient-boosting algorithms, RF requires less fine tuning of its hyperparameters [42]. The basic
hyperparameters of RF include the number of trees to grow (nTree) and the number of variables
randomly sampled as candidates at each split (mTry). The correct value for nTree is usually not of
much concern because increasing the number of trees in the RF raises the computational cost and does
not contribute significantly to prediction performance improvement [14,41]. However, it is interesting
to note that picking too small a value of mTry can lead to overfitting. We consider only two input
variables, mTry and nTree, which are set to 2 and 128 [43], respectively.

4.2. Case 2: Transfer Learning-Based Forecasting Model

Transfer learning [44] is a process that utilizes the knowledge gained while solving one issue to a
different but related issue. To achieve this, a base machine-learning method is first trained on a base
data set or task. Then, the method repurposes or transfers the learned features to the second target
data set or task. This process can operate if the features are general and the intentions are suitable for
both base and target tasks rather than being specific to the base task. We previously configured the
input variable for transfer learning-based STLF model construction. We first divided the training and
test sets. In the training set, we used electric energy consumption data of other buildings to train the
transfer learning-based forecasting model. Then, the model predicted the multistep electric load for
the target building using its input variables in the test set. Finally, we selected appropriate prediction
results for the target building from the other 14 forecasting models. We describe the details in the
subsections below.
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4.2.1. Multivariate Random Forests (MRF)

Neural network techniques have been used to predict multistep electric loads [45–47]. However,
they require scaling (e.g., robust normalization, standardization, and min-max normalization) before
building a prediction model [11]. Thus, when the transfer learning-based STLF model is applied to the
target building, the electric load of the target building can exhibit a different range than the electric
load of other buildings. Consequently, if STLF models that are trained by scaling are used to predict
future electric load for the target building, it is challenging to accurately apply them into the electric
load range of the target building.

Consequently, we used MRF (when the number of output features>one) for transfer learning-based
STLF model construction. MRF [48] can provide multivariate outcomes and can generate an ensemble of
multivariate regression trees through bootstrap resampling and predictors subsampling for univariate
RF. In MRF, node cost is measured as the sum of squares of the Mahalanobis distance, whereas in
univariate trees (i.e., RF), the node cost is measured as the Euclidean distance (ED) [49]. MRF can
provide excellent prediction performance without scaling for multiple output predictions [50,51].
Therefore, we used the input variables without scaling to train the MRF models and predicted the
electric load of the target building using the input variable of the target building without scaling.
To construct the MRF models, we set mTry and nTree as 120 (number of input variables/3) and 128,
respectively [14]. Thus, when a total of 14 prediction results are derived from each MRF model, we
did not use all of them and instead selected only one prediction result that exhibits the most similar
time series through the similarity analysis between the target building and the other buildings. Then,
we used the prediction result as the model that demonstrates the most similar time series to predict
the electric load of the target building. Here, we consider a total of three techniques and describe the
details in the subsections below.

4.2.2. Similarity Measures

We used three similarity measures, i.e., Pearson correlation coefficient (PCC), cosine similarity
(CS), and ED, to analyze the similarity of the time series between the target building and other buildings.
These methods are commonly used for similarity analysis [13].

PCC [52], which is a measure of the linear correlation between two variables, x and y, is the
covariance of these variables divided by the product of the standard deviations in the data of equal or
proportional scales. It has a value between +1 and −1, according to the Cauchy–Schwarz inequality,
where +1 is a perfect positive linear correlation, 0 indicates no linear correlation, and −1 is a perfect
negative linear correlation. For the paired data

{
(x1, y1), · · · , (xn, yn)

}
consisting of n pairs, rxy, which

is a substituting estimation of the covariances and variances based on a sample, is defined according to
Equation (12). Here, n is the sample size, xi and yi are the individual sample points indexed with time
i. x and y are the sample means of x and y, respectively. For our experiments, because we considered
hourly electric load for only 24 h, n is 24. xi and yi are the hourly electric loads indexed with i of the
target and different buildings, respectively. Herein, we apply the prediction model of the building
whose PCC is closest to one by comparing the target building with other buildings.

rxy =

∑n
i=1(xi − x) × (yi − y)√∑n

i=1(xi − x)2 ×∑n
i=1(yi − y)2

(12)

CS [53] indicates the similarity between vectors measured using the cosine of the angle between
two vectors in the inner space. The cosine when the angle is 0◦ is one, and the cosine of all other angles
is smaller than one. Therefore, this value is used to determine the similarity of the direction, not the
magnitude of the vector. The value is +1 when the two vectors are in exactly the same direction. The
value is 0 when the angle is 90◦, and the value is −1 when the vectors are in completely opposite
directions, i.e., an angle of 180◦. At this time, the size of the vector does not affect the value. The CS can
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be applied to any number of dimensions and is often used to measure similarity in a multidimensional
amniotic space. Given the vector values of the attributes A and B, CS (cos(θ)) can be expressed by
the scalar product and magnitude of the vector, as shown in Equation (13). For our experiments, as
mentioned earlier, n is 24. Ai and Bi are the hourly electric loads indexed with i of the target and
different buildings, respectively. Herein, we apply the prediction model of the building whose CS is
closest to one by comparing the target building with other buildings.

similarity = cos(θ) =
A·B
‖A‖‖B‖ =

∑n
i=1 Ai × Bi√∑n

i=1(Ai)
2 ×

√∑n
i=1(Bi)

2
(13)

ED [54,55] is a common method for calculating the distance between two points. This distance
can be used to define the Euclidean space, and the corresponding norm is called the Euclidean norm.
A generalized term for the Euclidean norm is the L2 norm or L2 distance [55]. In a Cartesian coordinate
system, where there are points p = (p1, p2, · · · , pn) and q = (q1, q2, · · · , qn) in Euclidean n space,
the distance between two points p and q is calculated using two Euclidean norms, which is defined
according to Equation (14). The distance between any two points on the real line is the absolute value
of the numerical difference of their coordinates. It is common to identify the name of a point with its
Cartesian coordinate. When the two points p and q are the same, the distance value is zero. For our
experiments, as mentioned earlier, n is 24. pi and qi are the hourly electric loads indexed with i of the
target and different buildings, respectively. Herein, we apply the prediction model of the building
whose ED is closest to zero by comparing the target building with other buildings.

d(p, q) = d(q, p) =
√
(q1 − p1)

2 + (q2 − p2)
2 + · · ·+ (qn − pn)

2 =

√√ n∑
i=1

(qi − pi)
2 (14)

4.3. Case 3: Combining Short-Term Load-Forecasting Models

We considered the following situations to apply more suitable forecasting models for each case.
As mentioned above, the electric load patterns vary significantly depending on the days of the week
and holidays [32]. For instance, in chronological sequence, the difference in electric loads between
Friday and Saturday is large. The difference in electric loads between Sunday and Monday is also
large. Therefore, if the time factor-based forecasting model predicts the electric load on the weekend
by using the electric load on a weekday, the forecast value presents multiple error rates because it
exhibits the weekday pattern. In addition, when constructing a time factor-based forecasting model by
using only a low electric load, such as that on Sunday or a national holiday, it can cause high error
rates because of a high electric load on Monday. To address these issues, we combined the time factor-
and transfer-learning-based forecasting models. We applied the prediction models by considering
two cases at the 24 prediction points and illustrated examples of the electric load forecasting using the
combined STLF model in Figure 5 and hence we constructed a total of 15 STLF models, as shown in
Table 6.

• Case 1: For each prediction point, we applied the time vector-based forecasting model when both
the prediction point and the day before the prediction point are weekdays.

• Case 2: For each prediction point, we applied the transfer learning-based forecasting model when
the prediction point and/or the day before the prediction point are holidays.
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(a) Using only Case 1 (weekdays). 

(b) Using both Case 1 and Case 2 (weekdays to holiday). 

(c) Using both Case 1 and Case 2 (holiday to weekdays). 

(d) Using only Case 2 (holidays). 

Figure 5. Examples of multistep-ahead electric load forecasting using the combined short-term load
forecasting (STLF) model by considering two cases.
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Table 6. Construction of various forecasting models (MLR: multiple linear regression, DT: decision tree,
RF: random forest, MRF: multivariate random forests, PCC: Pearson correlation coefficient, CS: cosine
similarity, ED: Euclidean distance).

Model # Methods Description

M01 MLR Time factor-based forecasting model using MLR
M02 DT Time factor-based forecasting model using DT
M03 RF Time factor-based forecasting model using RF

M04 MRF_PCC MRF-based transfer learning model by applying PCC
to analyze the time series similarity

M05 MRF_CS MRF-based transfer learning model by applying CS
to analyze the time series similarity

M06 MRF_ED MRF-based transfer learning model by applying ED
to analyze the time series similarity

M07 MLR +MRF_PCC Case 1: MLR Case 2: MRF_PCC
M08 MLR +MRF_CS Case 1: MLR Case 2: MRF_CS
M09 MLR +MRF_ED Case 1: MLR Case 2: MRF_ED
M10 DT +MRF_PCC Case 1: DT Case 2: MRF_PCC
M11 DT +MRF_CS Case 1: DT Case 2: MRF_CS
M12 DT +MRF_ED Case 1: DT Case 2: MRF_ED
M13 RF +MRF_PCC Case 1: RF Case 2: MRF_PCC
M14 RF +MRF_CS Case 1: RF Case 2: MRF_CS
M15 RF +MRF_ED Case 1: RF Case 2: MRF_ED

5. Experimental Results

5.1. Performance Evaluation Metric

To evaluate the prediction performance of the proposed model, we used the mean absolute
percentage error (MAPE), root mean square error (RMSE), and mean absolute error (MAE). The MAPE
value usually presents accuracy as a percentage of the error and can be easier to comprehend than the
other statistics because this number is a percentage [11,40]. The MAPE can be defined according to
Equation (15). The RMSE is used to aggregate the residuals into a single measure of predictive ability, as
shown in Equation (16). The RMSE is the square root of the variance, which denotes the standard error.
The MAE is used to evaluate how close forecast or prediction values are to the actual observed values,
as shown in Equation (17). The MAE is calculated by averaging the absolute differences between the
prediction values and the actual observed values. The MAE gives the average magnitude of forecast
error, while the RMSE gives more weight to the most significant errors. Lower values of MAPE, RMSE,
and MAE indicate better prediction performance of the forecasting model. Here, n is the number of
observations and At and Ft are the actual and forecast values, respectively.

MAPE =
1
n

n∑
t=1

∣∣∣∣∣At − Ft

At

∣∣∣∣∣× 100 (15)

RMSE =

√∑n
t=1(Ft −At)

2

n
(16)

MAE =
1
n

n∑
t=1

|Ft −At| (17)

5.2. Prediction Performance Evaluation

To evaluate the performance of the forecasting models, we conducted the experiments with an
Intel®Core™ i7-8700k CPU with 32GB DDR4 RAM and preprocessed the datasets in RStudio version
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1.1.453 with R version 3.5.1. We also carried out the construction of the forecasting models using ‘tree’
(DT), ‘randomForest’ (RF), and ‘MultivariateRandomForest’ (MRF) packages [49,56,57].

As we collected the electric energy consumption data from a total of 15 buildings, we used 15-fold
cross-validations to evaluate the prediction performance. In the collected data, the periods of the
training and test sets are from 1 January 2015 to 31 July 2017 and from 1 August 2017 to 31 July,
2018, respectively.

We reported training and testing times of the MRF models for each building in Table 7. The
training time represents the time to train the MRF model in each building, and the testing time indicates
the time for performing all predictions from the three transfer learning-based forecasting models (i.e.,
M04, M05, and M06).

Table 7. Running times of the multivariate random forest (MRF) model in each building (Unit: second).

Buildings # Training Time (s) Testing Time (s)

1 143.38 71.75
2 144.17 72.32
3 135.72 72.49
4 140.71 71.87
5 139.45 72.53
6 153.75 72.49
7 146.83 70.14
8 139.32 69.16
9 145.62 69.09
10 138.02 68.02
11 136.02 67.79
12 137.08 68.54
13 139.33 67.77
14 136.70 67.57
15 142.65 68.94

Because MAPE is a widely used error measurement metric in the electric load-forecasting literature,
we presented all the results of multistep-ahead hourly electric load forecasting accuracy using the
MAPE in Tables 8–23. We also exhibited the average forecasting accuracy of multistep electric loads
using RMSE and MAE results in Tables 24 and 25, respectively.

In Tables 8–25, a cooler color (blue) indicates lower MAPE, RMSE, and MAE values, while a
warmer color (red) indicates higher MAPE, RMSE, and MAE values. To confirm the overall prediction
performance of the forecasting models, we presented the average MAPE of different forecasting models
and indicated the best accuracy in bold. In addition, a box plot for each forecasting model is shown in
Figures 6–20 using MAPE values for each prediction point. This means that the box, which is located
below and exhibits the smaller range, is a more stable forecasting model.

As shown in Tables 8–25 and Figures 6–20, the RF demonstrated the best prediction performance in
the time factor-based forecasting models, and MRF_ED showed the best prediction performance in the
transfer learning-based forecasting models. The reason why ED demonstrated the best performance is
only because the distance of electric energy consumption between buildings was considered, unlike the
PCC or CS; thus, it can reflect a similar range of electric energy consumption adequately when training
the transfer learning-based forecasting model. Consequently, we can observe that M15 demonstrated
better prediction performances than other forecasting models in most experiments. M15 is appropriate
for solving the cold-start problem in STLF and used two tree-based methods; we called this model as
SPROUT (solving cold start problem in short-term load forecasting using tree-based methods).
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Table 8. Mean absolute percentage error (MAPE) comparison of forecasting models for Building 1 (a
cooler color indicates a lower MAPE value, while a warmer color indicates a higher MAPE value).

Point
Model #

M01 M02 M03 M04 M05 M06 M07 M08 M09 M10 M11 M12 M13 M14 M15

1 14.2 13.4 14.3 21.9 27.6 9.8 14.5 16.6 8.4 15.8 17.9 9.7 14.6 16.7 8.5
2 15.8 15.0 16.3 20.4 25.9 9.5 13.7 15.5 8.4 14.8 16.7 9.6 14.0 15.8 8.7
3 17.0 16.5 17.0 19.4 24.7 9.4 13.1 14.7 8.5 14.2 15.8 9.6 13.1 14.7 8.5
4 18.0 18.0 17.2 18.5 23.6 9.4 12.6 13.9 8.5 13.6 15.0 9.6 12.4 13.7 8.4
5 18.6 19.2 17.4 17.9 22.8 9.4 12.1 13.2 8.5 13.2 14.3 9.7 11.9 13.0 8.3
6 18.7 20.1 17.4 17.3 22.0 9.3 11.6 12.5 8.5 12.8 13.7 9.7 11.4 12.3 8.3
7 18.8 20.8 17.6 16.8 21.2 9.3 11.2 11.9 8.5 12.5 13.2 9.7 11.0 11.7 8.3
8 18.3 21.1 17.5 16.6 20.7 9.2 11.0 11.4 8.4 12.4 12.7 9.8 10.8 11.2 8.2
9 18.2 21.1 17.8 16.4 20.4 9.2 10.9 11.0 8.4 12.2 12.4 9.7 10.8 10.9 8.3
10 17.8 20.8 17.8 16.2 20.1 9.2 10.8 10.7 8.3 12.1 12.0 9.7 10.7 10.6 8.2
11 18.1 20.5 17.9 16.1 19.9 9.2 10.7 10.5 8.3 12.0 11.8 9.6 10.6 10.4 8.2
12 18.2 20.3 17.9 16.0 19.8 9.1 10.7 10.4 8.3 12.0 11.6 9.5 10.6 10.2 8.1
13 18.2 20.2 18.0 16.1 19.9 9.1 10.9 10.5 8.4 12.0 11.6 9.6 10.7 10.3 8.3
14 18.2 20.3 17.9 16.1 20.0 9.1 10.9 10.5 8.4 12.1 11.7 9.6 10.6 10.2 8.1
15 18.1 20.5 18.1 16.3 20.2 9.1 10.9 10.5 8.4 12.3 11.9 9.8 10.7 10.3 8.2
16 18.3 20.7 17.7 16.5 20.6 9.1 11.1 10.7 8.5 12.4 12.1 9.9 10.5 10.1 8.0
17 18.3 20.7 17.8 16.6 20.8 9.1 11.1 10.8 8.6 12.5 12.1 10.0 10.5 10.2 8.0
18 18.5 20.5 18.0 16.6 21.0 9.1 11.3 11.0 8.8 12.4 12.1 9.9 10.6 10.4 8.2
19 18.5 20.2 18.2 16.6 21.2 9.1 11.3 11.1 8.9 12.2 12.0 9.8 10.8 10.6 8.4
20 18.7 20.1 18.1 16.8 21.4 9.2 11.5 11.4 9.2 12.1 12.0 9.7 10.8 10.7 8.4
21 18.4 20.5 18.2 16.8 21.6 9.3 11.3 11.3 9.0 12.1 12.1 9.8 10.9 11.0 8.6
22 18.5 21.3 18.4 17.0 22.0 9.5 11.4 11.7 9.1 12.3 12.6 10.0 11.2 11.5 8.9
23 19.0 22.4 18.3 17.3 22.5 9.8 11.7 12.2 9.4 12.8 13.4 10.5 11.1 11.7 8.9
24 20.1 23.7 19.6 17.6 23.0 10.3 12.4 13.2 10.2 13.6 14.5 11.5 12.1 12.9 9.9

Avg. 18.1 19.9 17.7 17.2 21.8 9.3 11.6 12.0 8.7 12.8 13.1 9.8 11.4 11.7 8.4

Figure 6. Box plot of the mean absolute percentage error (MAPE) of forecasting models for Building 1.
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Table 9. MAPE comparison of forecasting models for Building 2 (a cooler color indicates a lower MAPE
value, while a warmer color indicates a higher MAPE value).

Point
Model #

M01 M02 M03 M04 M05 M06 M07 M08 M09 M10 M11 M12 M13 M14 M15

1 30.4 24.2 27.1 45.6 46.1 19.1 40.2 40.9 18.8 39.3 40.0 17.9 37.1 37.8 15.6
2 33.3 27.8 31.2 43.2 43.9 18.6 38.8 39.7 19.1 37.8 38.6 18.0 36.0 36.8 16.2
3 36.1 31.2 32.7 41.0 41.9 18.3 37.3 38.4 19.3 36.2 37.3 18.2 34.1 35.2 16.1
4 38.1 34.3 33.4 39.0 40.0 18.0 35.9 37.1 19.5 34.8 36.0 18.4 32.5 33.8 16.2
5 39.3 37.0 33.9 37.3 38.4 17.9 34.7 36.0 19.7 33.6 34.9 18.7 31.2 32.5 16.2
6 39.2 39.1 33.9 35.8 36.9 17.7 33.5 34.9 19.8 32.5 33.9 18.9 29.9 31.3 16.2
7 40.0 40.5 34.4 34.6 35.7 17.5 32.6 34.0 19.8 31.8 33.1 19.0 29.0 30.4 16.3
8 39.3 41.2 34.5 33.6 34.7 17.5 31.8 33.2 19.8 31.2 32.6 19.2 28.4 29.8 16.4
9 39.4 41.2 35.0 32.9 34.1 17.5 31.3 32.7 19.8 30.8 32.2 19.3 28.1 29.6 16.6

10 37.9 40.6 35.0 32.3 33.6 17.7 31.0 32.5 19.9 30.3 31.9 19.3 27.8 29.3 16.8
11 38.5 39.6 35.2 32.0 33.5 17.9 30.8 32.5 20.1 30.0 31.7 19.3 27.5 29.2 16.8
12 38.6 38.3 35.4 31.9 33.5 18.2 30.8 32.6 20.3 29.7 31.5 19.2 27.5 29.2 17.0
13 38.5 37.1 35.7 32.0 33.6 18.4 30.9 32.6 20.4 29.6 31.4 19.2 27.8 29.6 17.3
14 38.7 36.2 35.3 32.2 33.9 18.6 31.2 33.0 20.6 29.8 31.6 19.2 27.8 29.6 17.3
15 38.5 35.7 35.9 32.2 34.0 18.8 31.1 32.9 20.5 30.0 31.8 19.4 28.3 30.1 17.7
16 38.5 35.6 35.2 32.0 33.8 18.8 31.2 33.1 20.8 29.9 31.8 19.6 27.7 29.6 17.4
17 38.3 35.6 35.9 31.9 33.6 19.0 30.9 32.7 20.8 29.9 31.6 19.8 28.0 29.8 17.9
18 38.0 35.7 36.0 31.9 33.6 19.3 30.8 32.6 21.0 29.8 31.5 20.0 27.9 29.7 18.1
19 38.1 36.2 36.7 31.7 33.2 19.5 30.6 32.3 21.2 29.5 31.2 20.1 28.1 29.8 18.7
20 38.2 37.2 36.5 31.4 32.7 19.6 30.3 32.0 21.3 29.1 30.8 20.1 27.6 29.3 18.6
21 38.6 38.9 37.1 30.8 32.0 19.6 29.9 31.5 21.5 28.6 30.2 20.2 27.2 28.8 18.8
22 39.6 41.3 37.4 30.3 31.4 19.8 29.6 31.2 21.9 28.5 30.1 20.8 26.8 28.4 19.1
23 41.3 44.2 37.6 30.4 31.6 20.3 29.9 31.6 22.7 29.1 30.8 21.9 26.4 28.2 19.3
24 43.9 47.3 40.8 30.5 32.0 21.0 30.4 32.5 23.9 29.8 31.9 23.3 27.4 29.5 20.8

Avg. 38.3 37.3 35.1 34.0 35.3 18.7 32.3 33.8 20.5 31.3 32.8 19.5 29.2 30.7 17.4

Figure 7. Box plot of the MAPE of forecasting models for Building 2.
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Table 10. MAPE comparison of forecasting models for Building 3 (a cooler color indicates a lower
MAPE value, while a warmer color indicates a higher MAPE value).

Point
Model #

M01 M02 M03 M04 M05 M06 M07 M08 M09 M10 M11 M12 M13 M14 M15

1 15.0 15.7 12.5 30.3 31.0 17.7 21.8 22.0 16.0 22.3 22.5 16.5 20.4 20.7 14.6
2 16.0 16.4 13.9 29.3 29.7 17.4 21.7 21.8 16.2 22.1 22.2 16.6 20.6 20.7 15.1
3 16.5 17.0 14.0 28.2 28.5 17.2 21.4 21.4 16.2 21.8 21.8 16.6 20.2 20.1 15.0
4 16.7 17.4 14.1 27.5 27.8 17.0 21.1 21.1 16.1 21.6 21.5 16.6 19.8 19.7 14.8
5 16.8 17.8 14.2 26.8 27.0 16.7 20.8 20.6 16.0 21.4 21.2 16.5 19.4 19.3 14.6
6 16.8 18.0 14.2 26.2 26.4 16.5 20.6 20.2 15.8 21.2 20.9 16.5 19.3 18.9 14.5
7 16.9 18.2 14.3 25.7 25.7 16.2 20.4 20.0 15.7 21.1 20.7 16.4 19.1 18.6 14.3
8 16.8 18.3 14.3 25.2 25.2 15.9 20.2 19.8 15.5 20.9 20.5 16.2 18.9 18.5 14.2
9 16.9 18.3 14.4 25.1 25.1 15.7 20.1 19.8 15.4 20.8 20.5 16.1 18.8 18.5 14.1

10 16.9 18.2 14.4 25.1 25.2 15.6 20.2 19.9 15.3 20.9 20.6 16.0 19.0 18.7 14.1
11 16.9 18.2 14.2 25.1 25.2 15.6 20.2 19.9 15.3 20.9 20.6 16.0 18.9 18.6 13.9
12 16.9 18.1 14.2 24.8 24.9 15.5 20.1 19.8 15.3 20.8 20.5 16.0 18.8 18.5 14.0
13 16.9 18.1 14.4 24.6 24.7 15.5 20.0 19.7 15.3 20.7 20.4 16.0 18.8 18.5 14.2
14 16.9 18.1 14.3 24.3 24.6 15.4 19.9 19.7 15.4 20.5 20.3 16.0 18.6 18.4 14.1
15 16.9 18.1 14.6 24.0 24.4 15.5 19.6 19.5 15.4 20.3 20.2 16.1 18.5 18.4 14.3
16 16.9 18.1 14.0 24.2 24.6 15.4 19.7 19.6 15.4 20.4 20.3 16.1 18.3 18.2 14.0
17 16.9 18.1 14.1 24.5 24.9 15.5 19.8 19.8 15.5 20.5 20.5 16.2 18.4 18.4 14.1
18 16.8 18.1 14.2 24.6 25.0 15.6 19.8 19.8 15.5 20.5 20.5 16.2 18.5 18.5 14.1
19 16.8 18.0 14.5 24.9 25.3 15.7 20.0 20.0 15.6 20.6 20.7 16.2 18.8 18.8 14.4
20 16.7 18.0 14.3 25.3 25.7 15.9 20.1 20.3 15.6 20.8 20.9 16.3 18.8 18.9 14.3
21 16.8 18.0 14.5 25.6 26.1 16.0 20.2 20.4 15.7 20.9 21.0 16.4 19.0 19.2 14.5
22 16.8 18.1 14.6 25.8 26.1 16.1 20.2 20.4 15.7 20.9 21.1 16.4 19.1 19.3 14.6
23 16.9 18.2 14.0 25.7 26.0 15.9 20.1 20.4 15.7 20.9 21.1 16.5 18.6 18.9 14.3
24 17.1 18.4 14.5 25.3 25.6 15.8 20.0 20.3 15.8 20.8 21.1 16.6 18.7 19.0 14.5

Avg. 16.7 17.9 14.2 25.8 26.0 16.1 20.3 20.3 15.6 21.0 20.9 16.3 19.1 19.0 14.4

Figure 8. Box plot of the MAPE of forecasting models for Building 3.
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Table 11. MAPE comparison of forecasting models for Building 4 (a cooler color indicates a lower
MAPE value, while a warmer color indicates a higher MAPE value).

Point
Model #

M01 M02 M03 M04 M05 M06 M07 M08 M09 M10 M11 M12 M13 M14 M15

1 21.9 18.4 19.6 29.2 25.3 16.7 21.0 19.7 15.2 21.9 20.6 16.1 20.3 19.0 14.5
2 23.8 20.9 22.2 27.8 24.3 16.2 20.6 19.7 15.2 21.3 20.3 15.9 20.0 19.0 14.6
3 25.2 23.2 23.4 26.5 23.3 15.6 20.2 19.4 15.1 20.8 20.0 15.7 19.3 18.6 14.3
4 26.2 25.2 23.8 25.5 22.5 15.3 19.7 19.1 15.0 20.4 19.7 15.6 18.7 18.1 14.0
5 26.9 26.8 24.2 24.6 21.8 15.0 19.3 18.7 14.8 20.0 19.5 15.6 18.3 17.7 13.8
6 26.4 28.0 24.2 24.0 21.2 14.9 18.9 18.3 14.7 19.8 19.2 15.6 17.9 17.4 13.7
7 26.6 28.8 24.5 23.4 20.7 14.8 18.6 18.0 14.6 19.5 19.0 15.5 17.6 17.1 13.6
8 26.3 29.1 24.5 22.9 20.3 14.8 18.3 17.8 14.4 19.3 18.8 15.4 17.4 16.8 13.5
9 26.4 29.1 24.7 22.5 20.2 14.7 18.1 17.6 14.3 19.1 18.6 15.3 17.2 16.8 13.4

10 26.1 28.9 24.6 22.2 20.0 14.7 17.9 17.5 14.2 18.9 18.6 15.2 17.1 16.7 13.3
11 26.3 28.5 24.8 22.0 20.0 14.7 17.8 17.5 14.1 18.8 18.5 15.1 16.9 16.6 13.2
12 26.3 28.1 24.7 21.8 20.0 14.7 17.8 17.5 14.1 18.7 18.4 15.1 16.8 16.6 13.2
13 26.1 27.7 24.7 21.6 20.0 14.7 17.7 17.5 14.1 18.6 18.4 15.0 16.8 16.6 13.2
14 26.2 27.5 24.7 21.4 20.0 14.7 17.6 17.4 14.1 18.5 18.3 15.0 16.7 16.5 13.2
15 26.2 27.5 24.8 21.3 20.0 14.6 17.6 17.4 14.1 18.5 18.3 15.0 16.7 16.5 13.2
16 26.3 27.5 24.7 21.3 20.0 14.6 17.5 17.3 14.2 18.4 18.2 15.1 16.5 16.3 13.2
17 26.3 27.5 24.9 21.4 20.1 14.6 17.6 17.3 14.3 18.4 18.2 15.1 16.6 16.3 13.3
18 26.3 27.4 24.9 21.6 20.3 14.7 17.7 17.4 14.3 18.5 18.2 15.1 16.7 16.4 13.3
19 26.2 27.4 25.1 21.9 20.5 14.7 17.8 17.4 14.4 18.5 18.1 15.1 16.9 16.5 13.5
20 26.3 27.6 25.1 22.2 20.7 14.8 17.8 17.3 14.4 18.5 18.0 15.1 17.0 16.5 13.6
21 26.2 28.1 25.3 22.3 20.9 15.0 17.9 17.3 14.4 18.6 18.0 15.1 17.1 16.5 13.7
22 26.4 29.0 25.4 22.4 20.9 15.3 18.0 17.2 14.5 18.9 18.1 15.4 17.3 16.5 13.8
23 27.0 30.4 25.5 22.4 20.9 15.5 18.2 17.4 14.9 19.2 18.4 15.9 17.2 16.4 13.9
24 28.2 32.0 27.0 22.3 20.7 15.7 18.4 17.6 15.4 19.6 18.8 16.6 17.6 16.8 14.5

Avg. 26.1 27.3 24.5 23.1 21.0 15.0 18.4 17.9 14.5 19.3 18.8 15.4 17.5 17.0 13.6

Figure 9. Box plot of the MAPE of forecasting models for Building 4.
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Table 12. MAPE comparison of forecasting models for Building 5 (a cooler color indicates a lower
MAPE value, while a warmer color indicates a higher MAPE value).

Point
Model #

M01 M02 M03 M04 M05 M06 M07 M08 M09 M10 M11 M12 M13 M14 M15

1 4.5 3.9 4.4 77.3 81.0 25.4 39.9 36.4 12.5 39.6 36.1 12.3 39.9 36.4 12.5
2 5.0 4.4 5.0 76.9 80.6 25.2 40.1 36.6 12.7 39.8 36.3 12.4 40.1 36.6 12.7
3 5.3 4.9 5.2 76.4 80.2 25.0 40.2 36.7 12.8 40.0 36.5 12.6 40.2 36.7 12.8
4 5.6 5.3 5.3 76.0 79.9 24.7 40.2 36.8 12.8 40.0 36.6 12.7 40.0 36.6 12.7
5 5.8 5.7 5.4 75.5 79.5 24.5 40.1 36.8 12.8 40.0 36.7 12.7 39.8 36.6 12.6
6 5.7 5.9 5.4 75.1 79.2 24.4 39.9 36.7 12.7 39.9 36.8 12.7 39.7 36.5 12.5
7 5.8 6.1 5.4 74.7 78.8 24.2 39.7 36.6 12.6 39.8 36.7 12.7 39.5 36.4 12.4
8 5.7 6.1 5.4 74.4 78.5 24.0 39.4 36.5 12.4 39.6 36.7 12.6 39.3 36.3 12.3
9 5.8 6.1 5.5 74.2 78.3 23.9 39.3 36.5 12.4 39.5 36.6 12.5 39.2 36.3 12.2

10 5.7 6.1 5.5 74.0 78.1 23.9 39.2 36.4 12.3 39.4 36.5 12.5 39.1 36.2 12.1
11 5.7 6.0 5.5 73.8 77.9 23.9 39.1 36.3 12.2 39.2 36.4 12.4 39.0 36.2 12.1
12 5.7 5.9 5.5 73.6 77.6 23.9 39.0 36.3 12.2 39.1 36.3 12.3 38.9 36.1 12.1
13 5.7 5.8 5.5 73.4 77.3 23.9 38.9 36.2 12.2 38.9 36.2 12.2 38.8 36.1 12.0
14 5.7 5.7 5.5 73.1 76.9 23.8 38.7 36.1 12.2 38.7 36.1 12.1 38.6 36.0 12.0
15 5.8 5.7 5.5 72.9 76.6 23.8 38.6 36.0 12.2 38.5 36.0 12.1 38.4 35.9 12.1
16 5.7 5.7 5.5 72.7 76.4 23.8 38.5 36.0 12.2 38.4 35.9 12.2 38.3 35.8 12.1
17 5.7 5.7 5.6 72.7 76.4 23.9 38.4 36.0 12.3 38.3 36.0 12.3 38.2 35.9 12.2
18 5.7 5.7 5.6 72.7 76.3 23.9 38.3 36.2 12.4 38.2 36.2 12.4 38.2 36.1 12.3
19 5.7 5.7 5.6 72.7 76.3 24.0 38.3 36.5 12.5 38.3 36.5 12.5 38.2 36.4 12.4
20 5.7 5.8 5.6 72.8 76.4 24.0 38.3 36.8 12.6 38.3 36.8 12.6 38.2 36.7 12.5
21 5.8 5.9 5.6 72.8 76.4 24.1 38.3 37.0 12.7 38.3 37.1 12.7 38.2 36.9 12.6
22 5.8 6.0 5.6 72.9 76.4 24.1 38.3 37.3 12.8 38.4 37.4 12.9 38.2 37.2 12.7
23 6.0 6.2 5.7 72.9 76.5 24.2 38.4 37.7 13.0 38.5 37.8 13.1 38.2 37.5 12.8
24 6.2 6.4 5.8 72.8 76.3 24.3 38.5 38.0 13.3 38.6 38.1 13.4 38.3 37.8 13.1

Avg. 5.7 5.7 5.5 74.0 77.8 24.2 39.1 36.6 12.5 39.1 36.6 12.5 38.9 36.5 12.4

Figure 10. Box plot of the MAPE of forecasting models for Building 5.
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Table 13. MAPE comparison of forecasting models for Building 6 (a cooler color indicates a lower
MAPE value, while a warmer color indicates a higher MAPE value).

Point
Model #

M01 M02 M03 M04 M05 M06 M07 M08 M09 M10 M11 M12 M13 M14 M15

1 7.8 11.7 7.0 39.9 40.0 9.7 23.6 23.7 8.2 26.0 26.0 10.5 23.1 23.1 7.6
2 8.0 11.9 7.4 39.8 39.9 9.5 23.7 23.7 8.2 26.0 26.0 10.5 23.3 23.3 7.8
3 8.1 11.9 7.4 39.7 39.8 9.4 23.7 23.8 8.2 26.0 26.0 10.5 23.2 23.2 7.7
4 8.2 12.0 7.3 39.7 39.8 9.3 23.8 23.8 8.2 26.0 26.1 10.4 23.2 23.2 7.6
5 8.2 12.0 7.4 39.5 39.6 9.2 23.7 23.8 8.1 26.0 26.0 10.4 23.1 23.2 7.5
6 8.2 12.0 7.4 39.4 39.5 9.1 23.7 23.8 8.1 26.0 26.1 10.4 23.1 23.2 7.5
7 8.3 12.0 7.3 39.3 39.4 9.0 23.7 23.7 8.1 26.0 26.0 10.4 23.0 23.1 7.4
8 8.3 12.1 7.4 39.1 39.2 9.0 23.6 23.6 8.0 25.9 25.9 10.3 23.0 23.1 7.5
9 8.3 12.1 7.5 39.1 39.2 8.9 23.5 23.6 8.0 25.8 25.9 10.3 23.0 23.1 7.5

10 8.3 12.0 7.5 39.1 39.2 8.9 23.5 23.5 8.0 25.8 25.9 10.3 23.0 23.1 7.5
11 8.3 12.0 7.3 39.2 39.2 8.8 23.4 23.5 7.9 25.8 25.8 10.2 22.9 22.9 7.3
12 8.2 12.0 7.3 39.2 39.3 8.8 23.4 23.5 7.9 25.8 25.8 10.2 22.8 22.9 7.3
13 8.2 12.0 7.5 39.3 39.3 8.8 23.4 23.4 7.8 25.8 25.8 10.2 23.0 23.0 7.4
14 8.2 12.0 7.4 39.3 39.4 8.7 23.4 23.4 7.8 25.8 25.8 10.1 22.9 23.0 7.3
15 8.2 12.0 7.5 39.2 39.3 8.7 23.3 23.3 7.7 25.7 25.7 10.1 23.0 23.0 7.4
16 8.2 12.0 7.1 39.1 39.2 8.7 23.3 23.3 7.7 25.7 25.7 10.1 22.6 22.7 7.1
17 8.2 12.0 7.1 39.1 39.1 8.7 23.3 23.3 7.7 25.7 25.7 10.1 22.7 22.8 7.2
18 8.2 12.0 7.1 39.1 39.1 8.7 23.3 23.3 7.7 25.7 25.7 10.1 22.8 22.8 7.2
19 8.2 12.0 7.4 39.0 39.1 8.8 23.3 23.4 7.8 25.7 25.7 10.1 23.0 23.0 7.4
20 8.2 12.0 7.3 39.0 39.1 8.9 23.3 23.4 7.8 25.7 25.7 10.1 22.9 22.9 7.3
21 8.2 12.0 7.4 39.0 39.1 8.9 23.3 23.4 7.8 25.6 25.7 10.1 22.9 22.9 7.4
22 8.2 12.0 7.6 39.0 39.1 9.0 23.3 23.3 7.8 25.6 25.6 10.1 23.0 23.0 7.5
23 8.3 12.1 7.0 39.0 39.0 9.0 23.3 23.3 7.8 25.5 25.5 10.1 22.6 22.6 7.2
24 8.5 12.2 7.5 38.8 38.9 9.0 23.3 23.3 8.0 25.5 25.5 10.2 22.8 22.8 7.5

Avg. 8.2 12.0 7.3 39.3 39.3 9.0 23.5 23.5 7.9 25.8 25.8 10.2 22.9 23.0 7.4

Figure 11. Box plot of the MAPE of forecasting models for Building 6.
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Table 14. MAPE comparison of forecasting models for Building 7 (a cooler color indicates a lower
MAPE value, while a warmer color indicates a higher MAPE value).

Point
Model #

M01 M02 M03 M04 M05 M06 M07 M08 M09 M10 M11 M12 M13 M14 M15

1 10.8 9.5 9.8 26.6 23.2 7.9 17.1 16.2 7.3 17.5 16.6 7.7 16.5 15.7 6.7
2 11.7 10.6 11.1 26.0 22.5 7.8 17.1 16.2 7.5 17.4 16.5 7.8 16.7 15.7 7.0
3 12.4 11.6 11.5 25.3 21.8 7.7 17.1 16.0 7.5 17.4 16.3 7.9 16.4 15.4 6.9
4 12.9 12.5 11.7 24.6 21.2 7.7 17.0 15.8 7.6 17.3 16.1 7.9 16.3 15.1 6.9
5 13.3 13.3 11.9 23.8 20.5 7.7 16.8 15.6 7.6 17.1 15.9 8.0 16.0 14.8 6.9
6 13.1 13.9 11.9 23.1 19.8 7.6 16.6 15.3 7.7 17.0 15.7 8.1 15.8 14.5 6.9
7 13.2 14.3 12.0 22.5 19.2 7.7 16.4 15.1 7.7 16.9 15.6 8.2 15.7 14.3 6.9
8 13.0 14.5 11.9 21.9 18.7 7.7 16.3 14.8 7.7 16.8 15.4 8.2 15.5 14.1 6.9
9 13.1 14.5 12.1 21.4 18.4 7.7 16.2 14.7 7.7 16.7 15.3 8.2 15.5 14.0 7.0

10 12.9 14.3 12.1 20.9 18.0 7.7 16.0 14.6 7.7 16.5 15.1 8.2 15.4 13.9 7.0
11 13.0 14.1 12.1 20.5 17.6 7.8 16.0 14.5 7.8 16.4 15.0 8.2 15.2 13.8 7.0
12 13.0 13.9 12.1 20.1 17.3 7.8 16.0 14.5 7.8 16.4 14.9 8.2 15.2 13.8 7.0
13 13.0 13.8 12.2 19.9 17.2 7.9 16.0 14.5 7.9 16.4 14.9 8.3 15.3 13.8 7.2
14 13.0 13.9 12.1 19.7 17.1 8.0 16.0 14.5 7.9 16.4 14.9 8.4 15.2 13.7 7.1
15 12.9 14.0 12.2 19.7 17.2 8.1 15.9 14.4 7.9 16.5 15.0 8.5 15.2 13.7 7.2
16 13.0 14.1 12.0 19.6 17.2 8.1 15.9 14.5 8.0 16.5 15.0 8.5 15.0 13.5 7.0
17 12.9 14.1 12.1 19.5 17.2 8.2 15.9 14.4 7.9 16.4 15.0 8.5 15.0 13.5 7.0
18 13.0 14.0 12.1 19.5 17.4 8.2 15.9 14.4 8.0 16.3 14.9 8.4 14.9 13.5 7.1
19 13.0 13.8 12.2 19.5 17.6 8.2 15.9 14.5 8.0 16.2 14.8 8.3 15.0 13.6 7.1
20 13.2 13.7 12.2 19.6 17.8 8.1 16.0 14.7 8.1 16.0 14.7 8.1 15.0 13.6 7.0
21 13.0 13.8 12.3 19.6 18.2 8.0 15.7 14.5 7.8 15.9 14.7 8.0 14.9 13.7 7.0
22 13.0 14.2 12.3 19.6 18.4 8.0 15.5 14.5 7.8 15.7 14.7 8.1 14.8 13.8 7.1
23 13.2 14.9 12.2 19.2 18.3 8.1 15.2 14.5 8.0 15.6 14.9 8.4 14.3 13.6 7.1
24 13.8 15.7 13.0 18.8 18.1 8.3 15.2 14.8 8.4 15.7 15.3 8.9 14.4 14.0 7.7

Avg. 12.9 13.6 12.0 21.3 18.7 7.9 16.1 14.9 7.8 16.6 15.3 8.2 15.4 14.1 7.0

Figure 12. Box plot of the MAPE of forecasting models for Building 7.
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Table 15. MAPE comparison of forecasting models for Building 8 (a cooler color indicates a lower
MAPE value, while a warmer color indicates a higher MAPE value).

Point
Model #

M01 M02 M03 M04 M05 M06 M07 M08 M09 M10 M11 M12 M13 M14 M15

1 25.9 25.6 25.1 42.8 37.9 18.7 33.7 30.4 16.4 37.3 34.0 20.0 33.8 30.5 16.5
2 28.6 28.6 28.8 39.4 35.2 17.8 31.0 28.3 15.8 34.4 31.7 19.3 31.5 28.8 16.4
3 30.8 31.3 30.2 36.9 33.4 17.2 29.1 26.9 15.6 32.4 30.3 18.9 29.2 27.0 15.7
4 32.4 33.9 30.7 34.9 31.8 16.9 27.6 25.9 15.4 30.9 29.2 18.7 27.6 25.8 15.3
5 33.4 36.0 31.2 32.9 30.3 16.6 26.4 24.9 15.3 29.8 28.3 18.6 26.3 24.9 15.2
6 33.3 37.7 31.2 31.3 29.1 16.5 25.4 24.1 15.1 28.9 27.6 18.6 25.3 24.0 15.0
7 33.4 38.7 31.5 29.9 27.9 16.4 24.5 23.3 15.0 28.1 26.9 18.5 24.4 23.2 14.9
8 32.5 39.3 31.4 28.7 26.8 16.2 23.6 22.4 14.7 27.2 26.1 18.4 23.5 22.4 14.7
9 32.5 39.3 31.7 27.5 25.8 16.1 22.6 21.6 14.6 26.3 25.3 18.2 22.7 21.7 14.6

10 31.9 38.9 31.7 26.4 24.8 16.0 21.5 20.6 14.4 25.2 24.3 18.0 21.6 20.7 14.4
11 32.2 38.3 31.9 25.4 23.9 16.0 20.6 19.8 14.2 24.2 23.3 17.8 20.6 19.8 14.2
12 32.5 37.8 31.8 24.5 23.1 15.9 19.7 19.0 14.1 23.2 22.4 17.5 19.7 18.9 14.0
13 32.5 37.6 32.0 23.8 22.4 15.7 19.1 18.5 14.2 22.4 21.7 17.5 19.0 18.3 14.1
14 32.5 37.8 31.8 23.4 22.0 15.6 18.5 17.9 14.1 21.9 21.2 17.5 18.1 17.5 13.8
15 32.1 38.2 32.0 23.1 21.6 15.5 17.6 17.0 13.7 21.4 20.9 17.6 17.6 17.1 13.8
16 32.5 38.5 31.6 22.9 21.3 15.3 17.4 16.8 13.9 21.0 20.5 17.6 16.7 16.2 13.3
17 32.4 38.5 31.8 22.8 21.1 15.1 17.0 16.5 13.9 20.6 20.2 17.5 16.3 15.8 13.2
18 32.7 38.2 31.9 23.1 21.2 15.0 17.0 16.6 14.1 20.3 19.9 17.4 16.3 15.9 13.4
19 32.7 37.7 32.3 23.6 21.5 15.0 17.1 16.7 14.2 20.1 19.6 17.2 16.6 16.2 13.7
20 33.4 37.4 32.2 24.4 22.1 15.1 17.8 17.3 14.7 20.0 19.6 16.9 16.8 16.3 13.7
21 32.7 37.9 32.4 25.2 22.7 15.2 17.5 17.1 14.2 20.1 19.7 16.8 17.2 16.7 13.8
22 32.9 39.3 32.6 25.9 23.3 15.3 17.9 17.4 14.2 20.5 20.1 16.8 17.8 17.3 14.0
23 33.6 41.3 32.3 26.9 24.3 15.7 18.7 18.2 14.5 21.7 21.2 17.4 18.1 17.6 13.8
24 35.5 43.8 34.6 27.8 25.3 16.5 20.3 19.8 15.7 23.4 22.9 18.8 20.0 19.4 15.4

Avg. 32.3 37.1 31.4 28.1 25.8 16.1 21.7 20.7 14.7 25.1 24.0 18.0 21.5 20.5 14.5

Figure 13. Box plot of the MAPE of forecasting models for Building 8.
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Table 16. MAPE comparison of forecasting models for Building 9 (a cooler color indicates a lower
MAPE value, while a warmer color indicates a higher MAPE value).

Point
Model #

M01 M02 M03 M04 M05 M06 M07 M08 M09 M10 M11 M12 M13 M14 M15

1 8.3 13.0 8.1 12.2 12.2 10.8 10.0 10.0 8.7 13.1 13.1 11.8 9.9 9.9 8.6
2 8.5 13.2 8.7 11.9 11.9 10.7 9.8 9.9 8.8 12.9 12.9 11.8 10.0 10.0 8.9
3 8.7 13.3 8.6 11.7 11.8 10.7 9.7 9.8 8.8 12.8 12.8 11.9 9.7 9.8 8.8
4 8.7 13.3 8.5 11.6 11.6 10.7 9.6 9.7 8.9 12.7 12.7 12.0 9.6 9.6 8.9
5 8.9 13.3 8.5 11.5 11.6 10.7 9.6 9.6 9.0 12.6 12.7 12.0 9.5 9.6 8.9
6 8.9 13.3 8.5 11.5 11.6 10.6 9.5 9.6 9.0 12.6 12.6 12.0 9.5 9.5 8.9
7 9.0 13.3 8.5 11.5 11.5 10.6 9.5 9.5 9.0 12.5 12.6 12.0 9.4 9.4 8.9
8 9.0 13.3 8.6 11.5 11.5 10.6 9.4 9.4 9.0 12.5 12.5 12.0 9.4 9.4 8.9
9 9.0 13.3 8.7 11.4 11.4 10.5 9.3 9.3 8.9 12.4 12.4 12.0 9.4 9.4 9.0

10 9.0 13.3 8.7 11.4 11.4 10.4 9.2 9.3 8.8 12.4 12.4 11.9 9.4 9.4 8.9
11 9.0 13.3 8.4 11.3 11.3 10.3 9.2 9.2 8.7 12.3 12.3 11.8 9.2 9.2 8.7
12 9.0 13.3 8.4 11.3 11.3 10.2 9.2 9.2 8.7 12.3 12.3 11.8 9.2 9.2 8.7
13 9.0 13.3 8.7 11.2 11.2 10.2 9.2 9.2 8.7 12.3 12.3 11.7 9.3 9.4 8.8
14 9.0 13.3 8.5 11.2 11.2 10.1 9.2 9.2 8.6 12.2 12.2 11.7 9.2 9.2 8.7
15 9.0 13.3 8.7 11.1 11.1 10.1 9.2 9.2 8.6 12.2 12.2 11.6 9.4 9.4 8.8
16 9.0 13.3 8.2 11.1 11.1 10.1 9.1 9.2 8.6 12.2 12.2 11.6 9.0 9.0 8.4
17 9.0 13.3 8.2 11.0 11.1 10.1 9.1 9.2 8.6 12.2 12.2 11.6 9.1 9.1 8.5
18 9.0 13.3 8.3 11.0 11.0 10.1 9.2 9.2 8.6 12.2 12.2 11.6 9.1 9.1 8.6
19 9.0 13.3 8.6 10.9 10.9 10.0 9.2 9.2 8.6 12.1 12.1 11.6 9.3 9.3 8.8
20 9.0 13.3 8.5 10.9 10.9 10.0 9.1 9.2 8.7 12.1 12.1 11.6 9.2 9.2 8.7
21 9.0 13.3 8.6 10.9 10.9 10.1 9.1 9.1 8.7 12.1 12.1 11.6 9.2 9.2 8.8
22 9.0 13.3 8.8 10.8 10.9 10.1 9.1 9.2 8.7 12.1 12.1 11.6 9.3 9.4 8.9
23 9.0 13.4 8.2 10.8 10.8 10.2 9.2 9.2 8.7 12.1 12.1 11.6 8.9 8.9 8.5
24 9.2 13.5 8.7 10.7 10.7 10.2 9.3 9.3 8.9 12.2 12.2 11.8 9.3 9.4 8.9

Avg. 8.9 13.3 8.5 11.3 11.3 10.3 9.3 9.4 8.8 12.4 12.4 11.8 9.4 9.4 8.8

Figure 14. Box plot of the MAPE of forecasting models for Building 9.

280



Energies 2020, 13, 886

Table 17. MAPE comparison of forecasting models for Building 10 (a cooler color indicates a lower
MAPE value, while a warmer color indicates a higher MAPE value).

Point
Model #

M01 M02 M03 M04 M05 M06 M07 M08 M09 M10 M11 M12 M13 M14 M15

1 12.0 11.1 10.0 37.7 33.4 15.0 21.7 20.9 13.9 21.6 20.7 13.7 20.7 19.9 12.8
2 13.2 11.9 11.4 35.7 31.9 14.4 21.0 20.4 13.8 20.7 20.1 13.5 20.1 19.4 12.8
3 13.9 12.7 11.8 34.1 30.5 14.0 20.2 19.7 13.6 19.9 19.5 13.3 19.1 18.6 12.5
4 14.3 13.5 11.9 32.5 29.2 13.6 19.3 19.0 13.3 19.1 18.8 13.2 18.1 17.8 12.2
5 14.6 14.1 12.0 31.0 27.9 13.4 18.4 18.2 13.1 18.3 18.1 13.1 17.2 17.0 11.9
6 14.6 14.5 12.0 29.6 26.8 13.3 17.5 17.4 13.0 17.5 17.5 13.0 16.3 16.2 11.8
7 14.6 14.8 12.1 28.5 26.0 13.2 16.8 16.8 13.0 16.9 16.9 13.1 15.7 15.6 11.8
8 14.5 15.0 12.1 27.8 25.4 13.4 16.4 16.4 13.0 16.6 16.6 13.2 15.3 15.3 11.9
9 14.5 15.0 12.2 27.4 25.1 13.7 16.2 16.3 13.2 16.4 16.4 13.4 15.2 15.2 12.2

10 14.4 14.9 12.3 27.2 25.1 14.0 16.2 16.3 13.5 16.3 16.5 13.6 15.2 15.3 12.4
11 14.4 14.7 12.2 27.5 25.2 14.2 16.4 16.5 13.6 16.5 16.7 13.8 15.3 15.4 12.6
12 14.4 14.5 12.3 28.0 25.4 14.4 16.7 16.7 13.7 16.8 16.9 13.9 15.7 15.7 12.7
13 14.3 14.4 12.4 28.3 25.5 14.5 16.8 16.8 13.7 17.0 17.0 13.9 15.9 15.9 12.8
14 14.3 14.4 12.3 28.4 25.5 14.5 16.9 17.0 13.7 17.1 17.1 13.9 15.9 16.0 12.7
15 14.3 14.3 12.5 28.6 25.5 14.5 17.0 17.1 13.6 17.2 17.3 13.8 16.2 16.2 12.7
16 14.4 14.3 12.1 28.8 25.7 14.4 17.2 17.2 13.5 17.4 17.4 13.7 16.1 16.1 12.5
17 14.4 14.3 12.2 28.9 25.7 14.4 17.4 17.3 13.5 17.5 17.5 13.7 16.3 16.3 12.4
18 14.3 14.3 12.2 29.2 25.9 14.5 17.7 17.5 13.5 17.8 17.6 13.7 16.6 16.4 12.5
19 14.2 14.3 12.4 29.6 26.2 14.6 18.0 17.7 13.6 18.1 17.8 13.7 17.0 16.8 12.6
20 14.3 14.4 12.4 30.2 26.7 14.8 18.3 18.0 13.6 18.5 18.1 13.7 17.4 17.0 12.6
21 14.3 14.5 12.5 30.7 27.2 14.9 18.8 18.4 13.7 19.0 18.6 13.9 17.9 17.5 12.7
22 14.4 14.8 12.6 31.0 27.6 15.2 19.3 18.8 13.9 19.5 19.0 14.1 18.3 17.8 12.9
23 14.7 15.1 12.4 30.9 27.8 15.4 19.6 19.2 14.2 19.8 19.4 14.4 18.3 17.8 12.8
24 15.1 15.6 12.8 30.7 27.7 15.5 19.9 19.4 14.4 20.1 19.6 14.6 18.5 18.1 13.0

Avg. 14.3 14.2 12.1 30.1 27.0 14.3 18.1 17.9 13.6 18.2 18.0 13.7 17.0 16.8 12.5

Figure 15. Box plot of the MAPE of forecasting models for Building 10.
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Table 18. MAPE comparison of forecasting models for Building 11 (a cooler color indicates a lower
MAPE value, while a warmer color indicates a higher MAPE value).

Point
Model #

M01 M02 M03 M04 M05 M06 M07 M08 M09 M10 M11 M12 M13 M14 M15

1 9.4 7.6 8.5 18.5 21.4 8.4 13.6 14.3 8.2 12.8 13.5 7.4 12.8 13.6 7.5
2 10.3 8.5 9.6 18.2 21.1 8.4 13.7 14.4 8.4 12.8 13.5 7.6 13.0 13.8 7.8
3 10.9 9.3 10.0 17.9 20.7 8.3 13.6 14.3 8.6 12.8 13.5 7.7 12.9 13.6 7.8
4 11.4 10.0 10.1 17.5 20.3 8.2 13.5 14.2 8.6 12.7 13.4 7.8 12.7 13.4 7.8
5 11.7 10.5 10.2 17.2 19.9 8.2 13.4 14.0 8.6 12.7 13.3 7.9 12.5 13.1 7.8
6 11.9 10.9 10.2 16.9 19.5 8.1 13.2 13.8 8.7 12.6 13.1 8.0 12.4 12.9 7.8
7 12.0 11.2 10.3 16.6 19.1 8.1 13.1 13.7 8.7 12.4 13.0 8.0 12.1 12.7 7.8
8 11.9 11.3 10.3 16.3 18.8 8.1 12.9 13.5 8.7 12.3 12.9 8.1 12.0 12.6 7.8
9 11.9 11.3 10.4 16.1 18.5 8.1 12.7 13.3 8.7 12.1 12.7 8.1 11.9 12.5 7.8

10 11.6 11.2 10.4 15.8 18.3 8.1 12.6 13.2 8.7 12.0 12.6 8.1 11.7 12.3 7.8
11 11.7 11.1 10.3 15.6 18.0 8.2 12.4 13.1 8.7 11.8 12.4 8.0 11.5 12.2 7.8
12 11.7 11.0 10.4 15.3 17.8 8.2 12.3 13.0 8.7 11.6 12.3 8.0 11.4 12.1 7.8
13 11.7 10.9 10.5 15.2 17.6 8.2 12.2 12.9 8.7 11.5 12.2 8.0 11.4 12.1 7.9
14 11.8 11.0 10.3 15.0 17.4 8.2 12.2 12.8 8.7 11.5 12.1 8.0 11.3 11.9 7.8
15 11.6 11.0 10.4 14.9 17.3 8.3 12.1 12.7 8.6 11.4 12.1 8.0 11.3 12.0 7.9
16 11.7 11.0 10.2 14.8 17.2 8.3 12.1 12.8 8.7 11.4 12.1 8.0 11.1 11.8 7.7
17 11.7 11.0 10.3 14.7 17.1 8.3 11.9 12.7 8.7 11.3 12.1 8.0 11.0 11.8 7.8
18 11.6 11.0 10.2 14.6 17.1 8.3 11.8 12.7 8.7 11.2 12.1 8.0 11.0 11.8 7.8
19 11.6 10.9 10.4 14.5 17.0 8.3 11.7 12.6 8.6 11.1 12.0 8.0 11.0 11.9 7.9
20 11.5 10.7 10.3 14.5 16.9 8.4 11.7 12.6 8.6 11.1 12.0 8.1 11.0 11.9 7.9
21 11.5 10.7 10.3 14.4 16.8 8.5 11.7 12.6 8.7 11.1 12.0 8.1 11.0 11.9 8.0
22 11.7 10.6 10.4 14.4 16.7 8.6 11.8 12.7 8.8 11.2 12.1 8.2 11.1 12.0 8.1
23 11.7 10.7 10.2 14.4 16.6 8.7 12.0 12.9 9.0 11.4 12.3 8.5 11.0 11.9 8.0
24 11.9 10.8 10.4 14.4 16.6 8.8 12.2 13.1 9.3 11.6 12.6 8.8 11.3 12.3 8.5

Avg. 11.5 10.6 10.2 15.7 18.2 8.3 12.5 13.2 8.7 11.9 12.6 8.0 11.7 12.4 7.9

Figure 16. Box plot of the MAPE of forecasting models for Building 11.
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Table 19. MAPE comparison of forecasting models for Building 12 (a cooler color indicates a lower
MAPE value, while a warmer color indicates a higher MAPE value).

Point
Model #

M01 M02 M03 M04 M05 M06 M07 M08 M09 M10 M11 M12 M13 M14 M15

1 8.7 7.1 7.4 23.7 35.6 28.9 17.4 21.3 15.7 16.8 20.7 15.2 16.3 20.2 14.6
2 9.3 7.8 8.3 23.2 34.9 28.5 17.4 21.1 15.8 16.8 20.4 15.1 16.4 20.0 14.7
3 9.8 8.5 8.6 22.7 34.2 28.3 17.2 20.7 15.8 16.6 20.1 15.1 16.1 19.6 14.7
4 10.2 9.1 8.7 22.2 33.6 28.1 17.0 20.4 15.7 16.5 19.8 15.2 15.9 19.3 14.6
5 10.4 9.5 8.8 22.0 33.3 28.0 16.9 20.1 15.7 16.4 19.6 15.2 15.8 19.0 14.6
6 10.4 9.9 8.8 21.9 32.9 27.9 16.7 19.9 15.7 16.3 19.4 15.3 15.6 18.8 14.6
7 10.5 10.2 8.9 21.9 32.7 27.9 16.6 19.7 15.7 16.2 19.3 15.3 15.5 18.6 14.6
8 10.4 10.3 8.9 21.8 32.5 27.8 16.5 19.6 15.7 16.2 19.3 15.4 15.4 18.6 14.7
9 10.4 10.3 9.0 21.8 32.3 27.8 16.4 19.5 15.8 16.0 19.2 15.5 15.3 18.5 14.7

10 10.2 10.2 9.0 21.7 32.2 27.8 16.3 19.6 15.9 16.0 19.2 15.6 15.3 18.6 14.9
11 10.3 10.1 9.0 21.7 32.1 27.9 16.2 19.5 16.0 15.9 19.2 15.6 15.1 18.5 14.9
12 10.4 10.0 9.0 21.7 32.1 28.0 16.2 19.6 16.1 15.8 19.2 15.7 15.1 18.5 15.0
13 10.4 9.9 9.1 21.7 32.1 28.0 16.2 19.6 16.1 15.7 19.2 15.7 15.1 18.5 15.0
14 10.3 9.8 9.0 21.6 32.0 28.0 16.0 19.5 16.0 15.7 19.1 15.7 15.0 18.4 15.0
15 10.3 9.8 9.1 21.6 32.0 28.0 16.0 19.4 16.0 15.6 19.1 15.7 15.0 18.5 15.0
16 10.3 9.8 8.9 21.4 31.9 28.0 15.8 19.4 16.0 15.5 19.1 15.7 14.7 18.3 14.9
17 10.2 9.8 9.0 21.3 31.9 28.0 15.7 19.4 16.0 15.3 19.1 15.7 14.6 18.3 15.0
18 10.2 9.8 9.1 21.1 31.8 27.9 15.5 19.4 16.0 15.2 19.0 15.7 14.5 18.3 15.0
19 10.3 9.8 9.2 21.1 31.8 27.9 15.5 19.4 16.0 15.1 19.0 15.6 14.5 18.4 15.0
20 10.4 9.9 9.1 21.1 31.7 27.8 15.4 19.3 16.0 15.0 18.9 15.6 14.4 18.3 15.0
21 10.3 10.1 9.3 21.2 31.6 27.7 15.4 19.2 16.0 15.0 18.9 15.6 14.5 18.3 15.1
22 10.4 10.3 9.3 21.5 31.6 27.6 15.5 19.2 16.1 15.2 18.9 15.7 14.6 18.3 15.1
23 10.6 10.7 9.2 21.7 31.4 27.5 15.7 19.2 16.2 15.4 18.9 15.9 14.6 18.1 15.0
24 11.1 11.2 9.7 21.7 31.2 27.3 16.0 19.3 16.3 15.7 19.0 16.0 14.9 18.2 15.2

Avg. 10.2 9.7 8.9 21.8 32.5 27.9 16.2 19.7 15.9 15.8 19.3 15.5 15.2 18.7 14.9

Figure 17. Box plot of the MAPE of forecasting models for Building 12.
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Table 20. MAPE comparison of forecasting models for Building 13 (a cooler color indicates a lower
MAPE value, while a warmer color indicates a higher MAPE value).

Point
Model #

M01 M02 M03 M04 M05 M06 M07 M08 M09 M10 M11 M12 M13 M14 M15

1 19.5 14.4 19.4 18.5 20.8 16.3 17.0 17.1 16.5 14.2 14.3 13.7 16.3 16.4 15.7
2 20.9 16.0 21.7 18.0 19.9 16.0 16.9 17.0 16.4 14.2 14.2 13.6 16.6 16.7 16.1
3 22.1 17.6 22.0 17.5 19.1 15.6 16.9 16.9 16.3 14.1 14.1 13.5 16.2 16.2 15.7
4 23.1 19.1 22.2 17.1 18.4 15.2 16.8 16.8 16.2 14.1 14.0 13.5 15.9 15.9 15.4
5 23.7 20.5 22.4 16.6 17.8 14.9 16.6 16.6 16.0 14.1 14.1 13.5 15.7 15.7 15.1
6 24.1 21.6 22.5 16.2 17.1 14.6 16.5 16.5 15.9 14.1 14.1 13.5 15.6 15.6 15.0
7 24.1 22.3 22.5 15.9 16.6 14.4 16.3 16.3 15.8 14.1 14.1 13.6 15.3 15.2 14.7
8 23.8 22.7 22.5 15.7 16.0 14.4 16.3 16.1 15.9 14.2 14.0 13.8 15.3 15.1 14.9
9 23.7 22.7 22.8 15.5 15.5 14.6 16.3 16.0 16.0 14.2 13.9 13.9 15.3 15.1 15.1

10 23.3 22.4 23.0 15.5 15.1 14.8 16.3 16.0 16.2 14.1 13.7 14.0 15.4 15.1 15.3
11 23.5 21.9 22.9 15.5 14.9 15.0 16.4 15.9 16.4 14.0 13.5 14.0 15.3 14.8 15.3
12 23.5 21.5 22.9 15.6 14.9 15.2 16.4 15.9 16.4 14.0 13.4 14.0 15.3 14.7 15.2
13 23.6 21.3 23.4 15.7 15.1 15.3 16.4 15.9 16.4 14.0 13.5 14.0 15.6 15.1 15.6
14 23.4 21.4 23.0 15.9 15.4 15.4 16.5 16.0 16.4 14.1 13.6 14.1 15.4 14.9 15.4
15 23.3 21.6 23.3 16.0 15.6 15.5 16.3 15.8 16.2 14.3 13.8 14.2 15.6 15.2 15.6
16 23.3 21.8 22.3 16.1 15.9 15.6 16.3 16.0 16.4 14.4 14.0 14.4 14.8 14.4 14.8
17 23.1 21.8 22.5 16.2 16.1 15.7 16.2 15.8 16.3 14.3 14.0 14.4 14.8 14.5 14.9
18 22.8 21.6 22.7 16.4 16.3 15.9 16.1 15.7 16.2 14.3 13.9 14.4 15.0 14.6 15.2
19 22.9 21.3 23.2 16.7 16.5 16.2 16.1 15.7 16.3 14.1 13.7 14.3 15.3 14.9 15.6
20 23.0 21.1 23.1 16.9 16.7 16.4 16.2 15.7 16.5 14.0 13.5 14.3 15.2 14.8 15.6
21 23.2 21.2 23.4 17.2 17.0 16.6 16.4 15.8 16.7 14.0 13.4 14.4 15.6 15.0 16.0
22 23.5 21.6 23.7 17.4 17.3 16.8 16.7 16.0 17.1 14.3 13.6 14.7 16.0 15.3 16.4
23 24.1 22.4 22.8 17.7 17.4 17.0 17.1 16.3 17.6 14.9 14.1 15.4 15.5 14.7 16.0
24 25.1 23.4 24.3 17.8 17.4 17.2 17.8 16.8 18.3 15.7 14.7 16.3 16.5 15.6 17.1

Avg. 23.2 21.0 22.7 16.6 16.8 15.6 16.5 16.2 16.4 14.2 13.9 14.1 15.6 15.2 15.5

Figure 18. Box plot of the MAPE of forecasting models for Building 13.
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Table 21. MAPE comparison of forecasting models for Building 14 (a cooler color indicates a lower
MAPE value, while a warmer color indicates a higher MAPE value).

Point
Model #

M01 M02 M03 M04 M05 M06 M07 M08 M09 M10 M11 M12 M13 M14 M15

1 12.6 9.5 11.1 12.6 19.2 9.4 10.8 12.8 9.3 9.3 11.3 7.8 9.3 11.4 7.8
2 13.6 10.6 12.5 12.3 18.4 9.2 10.8 12.7 9.4 9.3 11.2 7.9 9.5 11.4 8.0
3 14.4 11.8 13.0 11.8 17.5 8.9 10.8 12.7 9.4 9.3 11.1 7.9 9.3 11.1 7.9
4 15.1 12.8 13.1 11.4 16.7 8.7 10.8 12.5 9.4 9.3 11.1 8.0 9.2 10.9 7.8
5 15.5 13.6 13.3 11.0 16.0 8.4 10.6 12.3 9.3 9.3 11.0 8.0 9.1 10.7 7.7
6 15.5 14.3 13.4 10.7 15.3 8.1 10.6 12.2 9.3 9.3 10.9 8.0 9.0 10.6 7.7
7 15.8 14.8 13.4 10.4 14.7 8.0 10.5 12.1 9.3 9.3 10.9 8.1 8.9 10.4 7.6
8 15.6 15.0 13.5 10.2 14.2 7.9 10.5 12.0 9.3 9.3 10.8 8.1 8.9 10.4 7.7
9 15.6 15.0 13.6 10.1 13.8 7.9 10.5 11.9 9.3 9.3 10.7 8.1 8.9 10.3 7.7

10 15.4 14.8 13.6 10.0 13.5 7.9 10.4 11.8 9.3 9.2 10.6 8.1 8.9 10.3 7.7
11 15.4 14.6 13.6 10.0 13.2 7.9 10.5 11.7 9.3 9.2 10.5 8.0 8.8 10.1 7.6
12 15.3 14.3 13.6 9.9 13.0 7.9 10.4 11.7 9.3 9.1 10.3 8.0 8.8 10.0 7.7
13 15.4 14.2 13.9 10.0 13.0 8.0 10.5 11.6 9.3 9.1 10.3 8.0 9.0 10.2 7.9
14 15.4 14.1 13.7 10.1 13.0 8.1 10.5 11.6 9.4 9.1 10.2 8.0 8.9 10.1 7.8
15 15.3 14.2 13.9 10.3 13.1 8.2 10.3 11.5 9.2 9.1 10.3 8.0 9.0 10.2 7.9
16 15.4 14.2 13.5 10.5 13.2 8.4 10.5 11.6 9.4 9.1 10.3 8.1 8.7 9.8 7.6
17 15.1 14.2 13.7 10.7 13.3 8.6 10.2 11.4 9.2 9.1 10.3 8.1 8.7 9.9 7.7
18 15.1 14.2 13.7 10.9 13.5 8.8 10.1 11.3 9.1 9.1 10.3 8.1 8.7 9.9 7.7
19 15.0 14.1 14.0 11.0 13.6 8.9 10.0 11.2 9.1 9.0 10.2 8.0 8.8 10.0 7.9
20 15.4 14.2 13.9 11.2 13.8 9.1 10.0 11.2 9.1 8.9 10.1 8.0 8.8 10.0 7.8
21 15.3 14.5 14.1 11.4 13.9 9.3 10.0 11.2 9.1 9.0 10.1 8.1 8.9 10.1 8.0
22 15.5 15.0 14.2 11.5 14.0 9.4 10.1 11.3 9.3 9.2 10.3 8.3 9.0 10.1 8.1
23 16.0 15.7 14.0 11.5 14.0 9.4 10.4 11.5 9.6 9.5 10.6 8.6 8.7 9.9 7.9
24 16.7 16.5 14.9 11.4 13.9 9.4 10.7 11.9 9.9 9.8 11.0 9.0 9.2 10.3 8.4

Avg. 15.2 14.0 13.6 10.9 14.5 8.6 10.4 11.8 9.3 9.2 10.6 8.1 8.9 10.3 7.8

Figure 19. Box plot of the MAPE of forecasting models for Building 14.
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Table 22. MAPE comparison of forecasting models for Building 15 (a cooler color indicates a lower
MAPE value, while a warmer color indicates a higher MAPE value).

Point
Model #

M01 M02 M03 M04 M05 M06 M07 M08 M09 M10 M11 M12 M13 M14 M15

1 18.1 16.3 17.5 55.9 58.0 12.5 40.1 40.3 13.8 39.8 40.0 13.4 39.1 39.3 12.7
2 19.6 17.8 19.7 53.1 55.3 12.2 37.8 38.0 13.8 37.4 37.6 13.4 37.2 37.4 13.1
3 20.7 19.3 20.0 50.3 52.5 12.0 35.4 35.6 13.8 35.0 35.3 13.4 34.4 34.6 12.8
4 21.5 20.6 20.2 47.5 49.8 11.9 32.9 33.2 13.8 32.6 32.9 13.5 31.8 32.2 12.8
5 22.0 21.8 20.4 44.5 46.9 11.8 30.2 30.7 13.8 30.0 30.5 13.6 29.1 29.5 12.6
6 22.5 22.8 20.5 41.7 44.0 11.8 27.8 28.4 13.9 27.6 28.2 13.7 26.6 27.2 12.7
7 22.5 23.5 20.6 39.5 41.8 11.8 25.7 26.4 13.9 25.6 26.3 13.8 24.5 25.1 12.7
8 21.9 23.9 20.6 38.0 40.2 11.8 24.1 24.8 13.9 24.2 24.9 13.9 22.9 23.6 12.6
9 22.0 23.9 20.9 36.8 38.8 12.0 23.0 23.7 14.0 23.0 23.7 14.0 21.9 22.6 12.9

10 21.7 23.6 21.1 36.4 38.2 12.1 22.4 23.0 14.1 22.3 22.9 14.0 21.3 21.9 13.0
11 22.0 23.2 21.0 36.7 38.5 12.2 22.3 22.9 14.1 22.2 22.7 14.0 21.1 21.7 12.9
12 22.0 22.8 21.0 36.9 38.6 12.3 22.5 23.0 14.2 22.2 22.7 13.9 21.2 21.8 13.0
13 21.9 22.5 21.4 37.3 39.1 12.3 22.6 23.2 14.2 22.3 22.8 13.9 21.7 22.2 13.3
14 22.0 22.5 21.0 37.7 39.6 12.3 22.7 23.3 14.3 22.4 23.0 14.0 21.5 22.1 13.1
15 21.6 22.7 21.4 38.4 40.3 12.3 22.7 23.3 14.0 22.8 23.4 14.1 21.9 22.5 13.2
16 21.8 22.8 20.5 38.9 40.9 12.4 23.1 23.8 14.2 23.2 23.9 14.3 21.5 22.2 12.7
17 21.6 22.9 20.9 39.3 41.5 12.5 23.0 23.8 14.0 23.4 24.2 14.3 21.8 22.6 12.8
18 21.7 22.7 21.0 39.4 41.7 12.7 23.3 24.2 14.1 23.6 24.4 14.3 22.2 23.0 12.9
19 21.6 22.5 21.6 39.9 42.2 12.9 23.8 24.6 14.1 23.9 24.7 14.2 23.0 23.8 13.3
20 21.8 22.5 21.3 39.8 42.2 13.1 24.0 24.9 14.3 23.8 24.7 14.1 22.9 23.9 13.2
21 22.2 22.7 21.6 39.4 41.7 13.3 24.0 24.9 14.6 23.5 24.4 14.1 22.9 23.8 13.5
22 22.5 23.3 21.8 39.0 41.3 13.4 24.2 25.1 14.9 23.6 24.5 14.2 23.2 24.2 13.9
23 22.7 24.1 21.0 39.0 41.3 13.5 24.3 25.3 15.1 23.9 24.9 14.7 22.6 23.6 13.4
24 23.4 25.1 22.4 38.5 40.8 13.7 24.5 25.6 15.5 24.2 25.3 15.3 23.2 24.3 14.2

Avg. 21.7 22.3 20.8 41.0 43.1 12.5 26.1 26.8 14.2 25.9 26.6 14.0 25.0 25.6 13.1

Figure 20. Box plot of the MAPE of forecasting models for Building 15.
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Table 23. Average MAPE comparison of forecasting models (a cooler color indicates a lower MAPE
value, while a warmer color indicates a higher MAPE value).

Building #
Model #

M01 M02 M03 M04 M05 M06 M07 M08 M09 M10 M11 M12 M13 M14 M15

1 18.1 19.9 17.7 17.2 21.8 9.3 11.6 12.0 8.7 12.8 13.1 9.8 11.4 11.7 8.4
2 38.3 37.3 35.1 34.0 35.3 18.7 32.3 33.8 20.5 31.3 32.8 19.5 29.2 30.7 17.4
3 16.7 17.9 14.2 25.8 26.0 16.1 20.3 20.3 15.6 21.0 20.9 16.3 19.1 19.0 14.4
4 26.1 27.3 24.5 23.1 21.0 15.0 18.4 17.9 14.5 19.3 18.8 15.4 17.5 17.0 13.6
5 5.7 5.7 5.5 74.0 77.8 24.2 39.1 36.6 12.5 39.1 36.6 12.5 38.9 36.5 12.4
6 8.2 12.0 7.3 39.3 39.3 9.0 23.5 23.5 7.9 25.8 25.8 10.2 22.9 23.0 7.4
7 12.9 13.6 12.0 21.3 18.7 7.9 16.1 14.9 7.8 16.6 15.3 8.2 15.4 14.1 7.0
8 32.3 37.1 31.4 28.1 25.8 16.1 21.7 20.7 14.7 25.1 24.0 18.0 21.5 20.5 14.5
9 8.9 13.3 8.5 11.3 11.3 10.3 9.3 9.4 8.8 12.4 12.4 11.8 9.4 9.4 8.8
10 14.3 14.2 12.1 30.1 27.0 14.3 18.1 17.9 13.6 18.2 18.0 13.7 17.0 16.8 12.5
11 11.5 10.6 10.2 15.7 18.2 8.3 12.5 13.2 8.7 11.9 12.6 8.0 11.7 12.4 7.9
12 10.2 9.7 8.9 21.8 32.5 27.9 16.2 19.7 15.9 15.8 19.3 15.5 15.2 18.7 14.9
13 23.2 21.0 22.7 16.6 16.8 15.6 16.5 16.2 16.4 14.2 13.9 14.1 15.6 15.2 15.5
14 15.2 14.0 13.6 10.9 14.5 8.6 10.4 11.8 9.3 9.2 10.6 8.1 8.9 10.3 7.8
15 21.7 22.3 20.8 41.0 43.1 12.5 26.1 26.8 14.2 25.9 26.6 14.0 25.0 25.6 13.1

Avg. 17.6 18.4 16.3 27.3 28.6 14.3 19.5 19.6 12.6 19.9 20.0 13.0 18.6 18.7 11.7

Table 24. Average root mean square error (RMSE) results of 15 forecasting models for each building (a
cooler color indicates a lower RMSE value, while a warmer color indicates a higher RMSE value).

Building #
Model #

M01 M02 M03 M04 M05 M06 M07 M08 M09 M10 M11 M12 M13 M14 M15

1 103.9 105.2 100.3 91.3 114.2 47.0 57.1 60.6 45.1 55.6 59.2 43.2 51.9 55.7 38.3
2 185.5 192.2 179.8 127.7 130.7 91.4 114.2 117.9 90.0 121.4 124.9 99.0 106.4 110.3 79.8
3 60.7 59.1 48.7 67.1 67.6 49.8 64.2 63.9 55.2 63.6 63.3 54.5 59.0 58.6 49.0
4 187.5 185.9 177.0 147.6 137.9 92.1 121.4 118.8 97.1 115.5 112.6 89.5 110.5 107.5 83.0
5 19.4 19.3 18.6 177.5 182.8 69.7 124.4 119.9 45.1 124.4 119.9 45.1 124.3 119.8 44.9
6 36.9 28.3 24.4 111.6 111.8 33.8 82.8 82.9 34.4 80.7 80.9 29.1 79.9 80.1 26.8
7 151.7 154.7 144.2 194.9 165.5 93.4 144.7 136.5 84.1 145.1 136.9 84.8 138.4 129.8 72.7
8 93.2 93.5 88.8 67.1 60.9 44.2 52.5 50.9 44.5 49.3 47.6 40.7 45.6 43.7 36.0
9 78.5 58.5 53.6 99.6 99.8 76.4 90.1 90.3 77.6 79.1 79.3 64.4 77.9 78.1 62.9
10 148.2 169.5 130.6 287.6 247.7 148.2 209.6 195.3 144.6 216.6 202.9 154.6 204.5 189.9 137.2
11 42.7 46.8 42.1 49.5 54.3 30.1 41.5 43.0 29.2 43.7 45.2 32.2 41.0 42.6 28.5
12 183.1 191.6 174.4 321.2 484.3 421.6 260.7 327.2 265.6 264.9 330.6 269.7 257.1 324.4 262.1
13 854.8 935.6 849.9 668.6 784.1 491.5 516.5 553.3 406.3 608.5 640.0 518.1 515.3 552.2 404.7
14 580.3 632.7 569.6 484.1 611.7 358.9 368.8 426.8 306.6 423.5 474.8 370.6 357.2 416.8 292.6
15 79.2 84.3 76.9 131.6 137.7 40.3 81.2 83.4 40.8 84.5 86.6 47.0 79.7 81.9 37.7

To demonstrate the superiority of the SPROUT model, we performed several statistical tests,
such as Wilcoxon signed-rank and Friedman tests [58,59]. The Wilcoxon signed-rank test [58] is used
to confirm the null hypothesis to determine whether there is a significant difference between two
models. If the p-value is less than the significance level, the null hypothesis is rejected, and the two
models are judged to have significant differences. The Friedman test [59] is a multiple comparison
test that aims to identify significant differences between the results of two or more forecasting models.
To verify the results of the two tests, we used all the MAPE values (15 (number of the buildings) ×
24 (prediction time points)) for each forecasting model. The results of the Wilcoxon test with the
significance level set to 0.05 and the Friedman test are listed in Table 26. We can observe that the
proposed SPROUT model significantly outperforms the other models because the p-value in all cases
is below the significance level.
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Table 25. Average mean absolute error (MAE) results of 15 forecasting models for each building (a
cooler color indicates a lower MAE value, while a warmer color indicates a higher MAE value).

Building #
Model #

M01 M02 M03 M04 M05 M06 M07 M08 M09 M10 M11 M12 M13 M14 M15

1 58.0 53.8 51.9 54.9 70.8 29.6 37.1 38.2 29.4 34.0 35.1 26.3 32.5 33.6 24.8
2 121.1 126.8 112.9 98.9 101.6 65.6 85.1 88.0 64.9 90.0 92.9 69.8 77.0 79.9 56.9
3 43.0 41.3 34.1 52.2 52.6 37.4 47.2 47.0 40.0 46.3 46.1 39.1 42.7 42.4 35.4
4 125.7 119.4 111.0 121.3 109.9 71.3 96.1 94.1 75.4 89.7 87.6 69.0 84.0 82.0 63.3
5 13.9 13.7 13.2 151.7 160.0 52.8 81.8 77.7 29.9 81.7 77.6 29.8 81.4 77.3 29.5
6 31.1 21.4 19.2 99.1 99.2 23.3 65.8 65.8 26.7 59.8 59.9 20.8 58.5 58.6 19.4
7 89.4 85.8 78.6 143.6 119.8 55.5 104.8 96.8 55.1 102.6 94.6 53.0 96.5 88.5 46.8
8 55.1 48.5 46.6 42.3 39.0 26.5 36.0 35.0 29.1 30.7 29.7 23.8 29.4 28.4 22.6
9 66.9 45.2 43.1 65.2 65.3 54.6 66.4 66.5 60.7 51.5 51.6 45.8 51.5 51.6 45.8
10 103.1 107.3 88.2 210.9 187.9 104.6 138.8 133.3 101.8 140.3 134.8 103.2 131.4 125.8 94.3
11 30.0 33.1 29.1 39.7 44.7 22.8 30.8 32.1 22.0 33.0 34.3 24.1 30.4 31.7 21.5
12 129.2 136.2 119.0 268.9 434.4 379.0 192.6 242.7 199.6 198.0 248.2 205.0 184.1 234.3 191.1
13 536.7 602.2 549.2 455.6 515.2 368.7 346.0 358.3 304.8 411.3 423.6 370.1 359.1 371.4 317.9
14 364.3 399.2 354.2 311.5 421.8 238.8 241.3 279.6 208.7 275.2 313.6 242.7 234.4 272.7 201.8
15 47.7 48.9 44.8 87.5 92.9 26.7 48.8 50.4 28.1 50.7 52.3 30.0 46.6 48.2 25.9

Table 26. Results of the Wilcoxon and Friedman tests with SPROUT (solving cold start problem in
short-term load forecasting using tree-based methods).

Compared Models
Wilcoxon Test

(p-Value < 0.05)
Friedman Test

M01 < 2.2× 10−16

Friedman chi-squared = 2547.7
p-value < 2.2× 10−16

M02 < 2.2× 10−16

M03 1.504× 10−8

M04 < 2.2× 10−16

M05 < 2.2× 10−16

M06 3.828× 10−12

M07 < 2.2× 10−16

M08 < 2.2× 10−16

M09 4.919× 10−6

M10 < 2.2× 10−16

M11 < 2.2× 10−16

M12 1.388× 10−7

M13 < 2.2× 10−16

M14 < 2.2× 10−16

5.3. Discussion

The SPROUT model demonstrated the best performance in the majority of experiments, excluding
certain buildings. Thus, we analyzed these cases in detail. In Figure 21, we can observe that Buildings
3, 5, 6, 9, and 10 illustrated no significant difference in weekday and weekend electric loads. As shown
in Table 2 and Figure 21f, Building 12 was unable to reflect similar electric load patterns owing to the
wide range of electric energy consumption data. Hence, the transfer learning-based forecasting models
demonstrated unsatisfactory prediction performance. Therefore, despite the differences in weekday
and weekend patterns, the time factor-based forecasting models showed better prediction performance.

Building 13 showed that M10 to M12 presented better prediction performance than other models
because MLR could predict the building electric energy consumptions better than DT and RF. In
addition, as listed in Table 20, Building 13 demonstrated a wide range of electric energy consumption
data and also showed the highest electric energy consumption. Therefore, even when the ED was close,
it was challenging to accurately derive the results of the transfer learning-based forecasting model.
The electric load patterns of Building 15 were considerably similar to those of Building 8, as shown in
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the F test in Table 27. Therefore, as M06 demonstrated accurate predictions on both weekdays and
weekends, it exhibited the lowest prediction error rate.

Table 27. F test between Building 8 and Building 15.

Statistical List Building 8 Building 15

Mean 185.03 204.63
Variance 12,292.48 14,017.42

F 0.88
P (F <= f) one-tail 0
F Critical one-tail 0.98

(a) Building 3 

(b) Building 5 

(c) Building 6 

Figure 21. Cont.
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(d) Building 9 

(e) Building 10 

(f) Building 12 

Figure 21. Box plot of electric loads according to each day of the week.

6. Conclusions

When sufficient building electric energy consumption data are not available as in newly constructed
or renovated buildings, it is difficult to train and construct superior STLF models. Nevertheless,
electric load-forecasting models are required for efficient power management, even by considering
such limited data sets. In this paper, we proposed a novel STLF model, called SPROUT, to predict
electric energy consumption for buildings with limited data sets by combining time factor- and transfer
learning-based forecasting models. We used MRF to construct transfer learning-based STLF models
for each building by using sufficient building electric energy data and selected the model, which
exhibited the most similar time-series pattern to predict the electric load of the target building. We also
constructed STLF models based on RF by using the building electric energy consumption data of only
24 h and then used the two models depending on weekdays and holidays. To verify the validity and
applicability of our model, we used MLR and DT to construct time factor-based forecasting models
and compared their prediction performance. The experimental results showed that the RF-based

290



Energies 2020, 13, 886

STLF model presented a better prediction performance in the time factor-based forecasting model,
and the MRF-based STLF model, by applying ED, exhibited a better prediction performance in the
transfer learning-based forecasting model. By combining these models, our model (SPROUT) presented
excellent prediction performances in MAPE, RMSE, and MAE results. The SPROUT showed an average
MAPE value of 11.2 in the experiments and exhibited more accurate prediction performances of
5.9%p (MLR), 6.7%p (DT), and 4.6%p (RF) than time factor-based STLF models. It also showed more
accurate prediction performances of 15.6%p (MRF_PCC), 16.9%p (MRF_CS), and 2.6%p (MRF_ED)
than transfer learning-based STLF models. We demonstrated that the SPROUT can achieve better
prediction performance than other forecasting models.

However, when electric load exhibited no significant difference in weekday and weekend electric
loads in the building, the time factor-based STLF models outperformed our model. In addition, the
transfer learning-based STLF models presented unsatisfactory prediction performance in the building
with the highest electric energy consumption and hence our model cannot perform accurate electric
load forecasting. To address these issues, we plan to consider additional electric load data over a
period of time for performing weekly electric load pattern analysis and data normalization.
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Abstract: We introduce the problem of load nowcasting to the energy forecasting literature. The recent
load of the objective area is predicted based on limited available metering data within this area. Thus,
slightly different from load forecasting, we are predicting the recent past using limited available
metering data from the supply side of the system. Next, to an industry benchmark model, we
introduce multiple high-dimensional models for providing more accurate predictions. They evaluate
metered interconnector and generation unit data of different types like wind and solar power,
storages, and nuclear and fossil power plants. Additionally, we augment the model by seasonal and
autoregressive components to improve the nowcasting performance. We consider multiple estimation
techniques based on the lassoand ridge and study the impact of the choice of the training/calibration
period. The methodology is applied to a European TSO dataset from 2014 to 2019. The overall results
show that in comparison to the industry benchmark, an accuracy improvement in terms of MAE
and RMSE of about 60% is achieved. The best model is based on the ridge estimator and uses a
specific non-standard shrinkage target. Due to the linear model structure, we can easily interpret the
model output.

Keywords: load forecasting; electricity consumption; lasso; Tikhonov regularization; load metering;
preliminary load

1. Introduction and Motivation

In electricity system management, there is a wide range of load forecasting literature [1]. On a
high hierarchy level, usually, the transmission system operator (TSO) and sometimes the distribution
system operator (DSO) are responsible for the metering and publishing of the load in the corresponding
electricity system. When it comes to the details, there exists a wide range of definitions for electrical
load; see, e.g., [2,3]. In many countries, there exist accounting rules for the system operator, which
define the metering process for billing and management purposes. Thus, from the economic point
of view, these load values are very important for the generation and consumption side such as the
system operator. However, in many countries, these values are finally published with a large delay
with respect to delivery. For instance, PJM published the final metered load values with a delay of up
to 90 day. Similarly, in Germany, the TSO published those final metered values in accordance with the
accounting rules with a similar delay of up to three months.

In practice, the system operators also publish electrical load real-time data just after delivery
with a very small time lag, usually less than an hour. Those load values are often referred to as
preliminary/actual/instantaneous/estimated load, depending on the considered market. Of course,
these preliminary load values should be as close as possible to the final metered load values that
are computed with respect to the accounting rules for the electricity system. Still, there are usually
deviations, which might deviate substantially in magnitude. For the computation of the preliminary
load, the system operator usually only has limited metering data available to deduce the load values
for the overall electricity system.
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In this paper, we address the problem of providing more accurate preliminary load values just after
delivery when there is only limited metering information in the system available. Those preliminary
load values should be as close as possible to the metered load, which is derived with respect to the
accounting and metering rules. The academic literature on this topic available is very limited; see [4].

We contribute to this topic and propose an efficient and robust method for nowcasting load using
machine learning and data science techniques. In the data science and forecasting literature, especially
in applications to economics and meteorology, the phrase nowcasting is used for predicting extremely
short-term forecast or predicting the very recent past [5–9]. As mentioned, in our electricity load
situation, we are exactly in the case of predicting the very recent past load values under limited data
availability. Hence, we propose the phrase load nowcasting for these situations.

In this manuscript, we first introduce the nowcasting problem in detail. Then, we propose
several nowcasting models that are oriented to the load forecasting literature. Afterwards, we proceed
with a nowcasting study to validate the models and discuss the corresponding results, including the
interpretation of the best performing model. We close with a summary and some conclusions.

2. The Nowcasting Problem

2.1. Formal Problem Description

Based on the accounting rules, the system operator has to compute the final load values of the
objective region for which he/she is responsible. We denote Yt the corresponding load values at time
point t. The detailed computation depends on the regulatory details and the mentioned accounting
rules of the considered electricity market. Still, independent of the market, all accounting rules that
determine the load Yt have in common that they specify the system balance, so the match of the supply
and demand, the interconnection with neighboring areas, and potential grid losses.

Under the assumption of no grid losses, we could state for each time point t that:

Yt =
∑

i

Consumption_of_uniti,t +
∑

i

Interconnector_balancei,t

where Consumption_of_uniti,t is the electricity consumption of unit i and Interconnector_balancei,t
the imbalance of interconnector i. Obviously, both sums are taken across all consumption units and
interconnectors. Of course, from the generation point of view, we can also state:

Yt =
∑

i

Generation_of_uniti,t +
∑

i

Interconnector_balancei,t

where Generation_of_uniti,t is the generated electricity of generation unit i and
Interconnector_balancei,t. In practice, the latter is easier to compute as we have usually less
production units (mainly large power plants) than consumers. Therefore, the latter is usually applied
for deriving the load. Moreover, the generation units are often divided into subgroups, dependent on
generation type, which could be nuclear, lignite, coal, natural gas, oil, pump storage, hydro, biomass,
wind, and solar, among others. In the formulas, the generation based equation above turns into:

Yt =
∑

i

XG,i,t +
∑

i

XI,i,t (1)

where XG,i,t is the generation of generation unit i and XI,i,t the interconnector balance i. Again, the sums
are taken across all units and interconnectors in the balancing area.
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As introduced above, the key problem is that there is only limited metering information at the
time of prediction. Therefore, some generation units or interconnectors are not metered (yet) and
reduce the number of available time series. Thus, we used:

Yt = Lt + εt (2)

=

JG∑
i=1

XG,i,t +

JI∑
i=1

XI,i,t + εt (3)

with Lt as the overall metered load across all JG metered generation units and all JI interconnectors
balance time series datasets. The error term εt absorbs the missing information of Yt, which is not
covered by Lt, including potential grid losses and contaminated data. In practice, this leads usually to
the fact that the sum of all available metered generation units plus the interconnector imbalance Lt is
well below the targeted load Yt. In the application example, we show below that this is about 80% of
the overall load. Remember that in a perfect metering environment where JG and JI cover all units, it
holds Lt = Yt or, equivalently, εt = 0; see (1).

Now, the prediction task is to nowcast (or forecast) Yt by Ŷt given the available information up to
time t, i.e., XG,i,t and XI,i,t. A specific restriction is that recent values Yt−k (e.g., Yt, Yt−1, Yt−2, or Yt−3)
are not available for predicting Yt. As mentioned in the Introduction, the last known values usually
have a huge delay, often up to 90 days. Thus, we assume that Yt−K is the last known value where K is
a relatively large number. In the situation of hourly data with 90 days of publication delay, this would
be K = 24 × 90 = 2160.

2.2. Data and Problem Illustration

We considered a dataset ranging from 31 December 2014 to 30 April 2019 for the region of a
European system operator. The data were metered in quarter-hourly resolution, and if not stated
otherwise, all load values are given in MW. There were JG = 92 generation time series and JI = 5
five interconnection balance time series available. The generation time series contained seven wind
power series and five solar series and a diverse collection of power plant productions of different types:
nuclear, lignite, coal, natural gas (NG), oil, pump storage, hydro, and biomass. Potential missing data
were replaced by the last known values. Moreover, we applied clock change adjustments to the data
due to daylight savings time. Hence, for the last Sunday in March, we interpolated the missing clock
change hour, and for the last Sunday in October, we averaged the doubling clock change hour.

In Figure 1, we illustrate an example of the considered dataset for the last week of April 2019. We
observed that the load process Yt exhibited the typical daily pattern with smaller values during night
than during day time, and smaller values on the weekend than on working days. Additionally, we
see that the process Lt (see Equation (3)) is the sum of all available meters series XG,i,t and XI,i,t. Note
that metering data exhibited negative values, and this held particularly for the transmission data of
the interconnectors and the storages. Thus, only if all metered data were positive, the process Lt was
visually that of all individual generation and interconnector data. Such a particular example period
can be spotted for the last hours of Sunday in Figure 1.

Further, we observed that during the illustrated period, the generation had a substantial infeed of
wind and solar power. Additionally, we see that nuclear power provided base load energy, but also
some coal power plants in the last two days of April 2019. The remaining power plant contributed
only little to the energy supply during this period. Finally, we want to highlight that Lt followed
the same pattern as Yt, but lied consistently below Yt. This also motivated the first simple model for
predicting Yt.
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Figure 1. Time series plot of the load Yt and the process Lt with its single components XG,i,t and XI,i,t

classified by generation type in the last week of April 2019.

3. Nowcasting Models

3.1. Benchmark Model

The industry benchmark from the system operator solves the problem stated above by a linear
regression on Lt motivated by Equation (2). Thus,

Yt = α0 + α1Lt + εt (4)

To estimate the unknown coefficients α0 and α1, the industry benchmark applies ordinary least
squares (OLS) to the past years data of the same month of the target time t. Thus, if we want to predict
Yt, which is in January, we take all January values for Yt and Lt of the previous year to estimate α0

and α1. As we had quarter-hourly data, this was 31 × 96 data points. By OLS, we used α̂0 and α̂1 and
computed nowcasts Yt by Ŷt = α̂0 + α̂1Lt.

The estimation principle is visualized in Figure 2. Here, α0 and α1 of Model (4) were estimated
using the input data from April 2018 for estimating Yt in April 2019. Note that we will generalize this
estimation method slightly and consider a broader range of training periods options in the application.
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Figure 2. (Left) Scatter plot of the process Lt (see (3)) and load Yt in April 2018 with the fitted line
of Model (4). (Right) Time series plot of Yt, Lt, and ̂Yt = α̂0 + α̂1Lt for the last week of April 2019 as
in Figure 1.

3.2. Proposed Nowcasting Model

The proposed model was motivated by Equation (3). First, we imposed a linear model on the
individual generation and interconnector components by:

Yt = β0 +

JG∑
i=1

βG,iXG,i,t +

JI∑
i=1

β I,iXI,i,t + εt (5)

= β0 + β′
GXG,t + β′

I X I,t + εt (6)

= β0 + β′
FXF,t + εt. (7)

with XF,t = (XG,t, X I,t). We regarded this as a fundamental linear load model, as the only linear
inputs were XF, which contained all fundamental information: the generated power data XG,t and
the interconnector imbalance X I,t. Note that (7) can be regarded as natural extension of (4) because
Model (7) turns into (4) by choosing βi = α1 for i > 0.

However, we extended Model (7) by two further terms: (i) a term that contains seasonal
information and (ii) a term that represents autoregressive information. In load forecasting, both terms
showed high relevance; see, e.g., [10–13]. Sometimes, models with many seasonal and autoregressive
components performed even very well in short-term forecasting; see, e.g., [14].

Formally, the extended model is given by:

Yt = β0 + β′
FXF,t + β′

SXS,t + β′
AX A,t + εt. (8)

= β0 + β′X t + εt (9)

where XS,t is a vector of seasonal regressors and X A,t is a vector of autoregressive components
of Yt. Of course, (8) turns into (7) by choosing βS = 0 and βA = 0. Note that we also defined
X t = (XF,t, XS,t, XX,t), which did not include the intercept. Hence, β = (βF, βS, βA)

′ did not include
β0.

It is widely known that in electricity demand, load and consumption modeling periodic features
play an important role. The most important seasonalities are daily, weekly, and annual cycles.
We suggested to model the three periodic components by periodic cubic by splines with periodicities SD,
SW , and SA, which represent a day, a week, and a (meteorologic) year, as in [15]. For out quarter-hourly
data, we had SD = 96, SW = 96 × 7 = 672, and SA = 96 × 365.24 = 35,063.04. In contrast to Fourier
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analysis, periodic B-splines have the advantage that the basis functions are local and allow for flexibility.
When applied to positive data with positivity constraints, they also benefit from the fact that they
are always positive. We chose equidistant basis functions for each period. Additionally, we specified
the number basis functions BD, BW , and BA for each period. For our application, we chose BD = 24,
BW = 12, and BA = 24. Thus, βS had a length of BD + BW + BA, which was 60 in our application.

Furthermore, we had to specify the autoregressive term in (8). We defined the
autoregressive components:

X A,t = ((Yt−k)k∈KK , (Yt−k)k∈KA)

with two sets of lags KK and KA. KK contained lags around the most recent available Yt−K, and KA

contained lags around a calendar year ago. The latter mimicked annual effects.
We specified for the most recent lags:

KK = {K + (0, 1, . . . , 8), K + SD + (−8,−7, . . . , 8), K + 2SD, K + 8SD}

which contains the nine most recent known values, the values eight hours around the day before Yt−K,
and the lags of the past eight days at the same hour as t. Remember that K = 90SD in our application;
thus, Yt−z with z = K + SD = 91SD = 13 × 7SD = 13SW had the same weekday as the target Yt.
For lag around a year ago, we specified:

KA = {50SW , 52SW + (−8,−7, . . . ,−1, 1, 2, . . . , 8)SD, 52SW + (−8,−7, . . . , 8), 54SW}

as 52SW = 364 is approximately one calendar year. In total, KK and KA contributed 54 parameters to
the model.

To summarize, the overall (8) had many parameters. In our application scenario, in total, there
were 5 + 12 + 80 + 60 + 54 = 211 parameters. As this might lead to overestimation issues when
applying plain OLS, we proposed the application of efficient regularization techniques to tackle the
nowcasting problem adequately.

3.3. Estimation of Proposed Nowcasting Model

We will see that the estimation procedure (or training method) played an important role in an
accurate nowcasting. Obviously, a natural estimation candidate for Model (8) is linear regression.
However, as we had many parameters and some of them might contain useless information, this might
be suboptimal. Regularization can help to address the problem. In the energy forecasting literature, the
lasso (least selection and shrinkage operator) seems to be a popular choice for shrinkage and feature
selection methods in linear models; see, e.g., [15–18]. An extension of the lasso is given by the elastic
net, which also has been applied [19–25].

For introducing the estimation procedure, we require some further notations. Let {1, . . . , T}
be the time points of available data for Yt. Thus, our objective was to predict the load Yt at time
point t = T + K, which corresponds to the actual time point. Let T ⊆ {1, . . . , T} be the training
period of size nT. Define Y(m0, s0) = ((Yt − m0)/s0)t∈T as the (m0, s0)-standardized response vector
and X(mp, sp) = (Xi(mi, si))i∈{1,...,p} = ((Xi,t − mi)/si)(i,t)∈{1,...,p}×T as the scaled input matrix with
scaling coefficients mp = (m1, . . . , mp) and sp = (s1, . . . , sp) and number of input parameters p. Denote
m = (m0, m1, . . . , mp) and s = (s0, s1, . . . , sp) the collections of all scaling coefficients.

Furthermore, denote c as a vector of the same size as β, which will be the shrinkage target. In the
vast majority of applications, this is c = 0. The intuition behind this choice is that a specific regressor
has zero impact if it contains useless information, to reduce the garbage in, garbage out problem.

With all the notations above, the elastic net estimator for β in Model (8) is given as:

β̂λ,α(m, s; c) = arg min
(β0,β)∈Rp+1

1
nT

∥∥Y(m0, s0)− β0 + β′
X(mp, sp)

∥∥2
2 + λα‖β − c‖1 + λ

1 − α

2
‖β − c‖2

2 (10)
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where λ, α ≥ 0 are tuning parameters, p is the number of parameters (length of β), and ‖ · ‖1 and
‖ · ‖2 as the standard �1 and �2 norm. The tuning parameters λ and α characterize the regularization
properties of the elastic net. For α = 1, we used the popular choice of the lasso (least absolute shrinkage
and selection operator), and for α = 0, we used the ridge regression, which is also known as Tikhonov
regularization. For λ = 0, we used the OLS solution, and for very large λ, we used a solution very
close to the shrinkage target c. In the non-ridge case α > 0, we even used exactly c as the solution if λ

was sufficiently large. For the case of the ridge regression, we had an explicit solution available. This
was:

β̂λ,0(m, s; c) =
(
X̃(mp, sp)

′
X̃(mp, sp) + Diag

(
λ̃
))−1

(X̃(mp, sp)Y(m0, s0) + λc̃)

with X̃(mp, sp) = (1,X(mp, sp)), λ̃ = (0, λ1)′, and c̃ = (0, c)′. In the elastic net or lasso case with
α > 0, we had efficient estimation techniques based on the coordinate descent or LARS (least angle
regression) available. Both options had the drawback that they could only handle the case c = 0.

However, also the scaling coefficients m and s impacted the estimation substantially. Usually,
the scaling coefficients m and s in (10) are standardized so that Y(m0, s0) remains unchanged by
m = 0 and s = 1, and Xi(mi, si) has mean zero and standard deviation of one, i.e., it holds that
Xi(mi, si)

′1 = 0 and ‖Xi(mi, si)‖2 = 1. The latter can be achieved by choosing mi = n−1
T

X
′
i1 and

si =
√

n−1
T

(Xi − mi1)′(Xi − mi1). This scaling procedure is standard in the literature and, e.g., the
default in the glmnet or lars packages in R for estimation of the elastic net and lasso estimation with
c = 0.

Still, it turned out that for our nowcasting problem, the scaling procedure for X was suboptimal
as we ignored historic observations. It is true that YT was the last known observation. However, for
Xt, we knew all observations up to T + K, the time point when the forecast was created. Thus, we
proposed to compute the scaling coefficients si and mi on the larger and more recent information
set TK = T ∪ {T + 1, . . . , T + K} for all Xi. Moreover, we suggested for reasons explained in the
next paragraph to scale the Y(m0, s0) by the corresponding sample mean and standard deviation

m0 = n−1
T

Y
′1 and s0 =

√
n−1
T

(Y− m01)′(Y− m01).
Now, we discuss the impact of the shrinkage target c in more detail. We mentioned already that

the standard choice c = 0 was motivated by the fact that by default, a regressor has no influence. Only
if a regressor contributes substantially to the explanation of the response Yt, the estimated coefficient
will deviate from zero and show a corresponding impact. If we have no further information about our
regressors, this is a reasonable approach. We will apply this approach to the ridge and lasso estimator
and denote them by 0-ridge and 0-lasso.

However, in our situation, we knew something about the fundamental relationship between our
response vector Yt and the fundamental regressors XF,t from Equations (1) and (7). This fundamental
relationship could help to impose a suitable regularization for our model. We explain this with the
following example: Suppose there is a situation where in the in-sample period or training period
{0, . . . , T}, a certain power plant or interconnector is offline; thus, all observations are zero. A reason
could be that it is a new unit that just started operating somewhere after the last observation known
YT . Then, the ridge or lasso estimators with c = 0 will give an estimated coefficient of zero for the
corresponding unit. Hence, the power plant will have no out-of-sample contribution to the overall
load even though it is operating now, at YT+K. Thus, from the fundamental point of view, it makes
sense to deviate from the shrinkage target of 0 for all generation units or interconnectors. If we assume
that the metered values are reasonable, eps. not contaminated by implausible data, then taking these
values into account should improve the forecasting accuracy. This holds at least for the situation just
explained. Hence, we proposed the choice:

cC = (cF, cA,S)
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with cF = 1 and cA,S = 0 corresponding to the impact as in the perfect fundamental situation from
Equation (1). Obviously, the vector cF had a length of βF, and cA,S had the aggregated length of βA
and βF. We applied this choice for the ridge regression only and denoted it by c-ridge. The reason
why this choice was not applied to lasso or elastic net estimators with α > 0 was the unavailability of
efficient estimation algorithms.

4. Nowcasting Study

We conducted a rolling window nowcasting study using the considered European dataset, and
the design was similar to a standard rolling window forecasting study, as illustrated in Figure 3. The
initial last known load value YT was on 29 January 2018 at 23:45. Based on historic data, we nowcast
the SD = 96 values YT+K+1, . . . , YT+K+SD . We considered a publication delay of K = 90 × 96 = 8640
(90 days), which resulted in the first nowcast being on 30 April 2018, approximately three months later.
Then, we shifted the last known load value by a day (SD = 96 time points) to YT+SD and nowcast
YT+K+SD+1, . . . , YT+K+2SD . This procedure was repeated N = 366 times, which gave an out-of-sample
time of about a year and around 96 × 366 = 35,136 observations for evaluation. For the in-sample
dataset, we considered for our application six choices:

(i) All available data from the past 37 months (three years plus one month):
(365 × 3 + 30 − 90)× 96 = 99,360 observations of Yt, denoted as 3years

(ii) All available data from the past 25 months (two years plus one month):
(365 × 2 + 30 − 90)× 96 = 64,320 observations of Yt, denoted as 2years

(iii) All available data from the past 13 months (one year plus one month):
(365 + 30 − 90)× 96 = 29,280 observations of Yt, denoted as 1year

(iv) Data of the past year, 120 days centered around the nowcasting day of the past year:
120 × 96 = 11,520 observations of Yt, denoted as 4months

(v) Data of the past year, 60 days centered around the nowcasting day of the past year:
60 × 96 = 5760 observations of Yt, denoted as 2months

(vi) Data of the past year, 30 days centered around the nowcasting day of the past year:
30 × 96 = 2880 observations of Yt, denoted as 1month

Option (i) used the maximum amount of data of (365 × 3 + 30 − 90) = 1035 days, which was
also used for illustration in Figure 3. Note that Option (vi) was very close to the industry benchmark
approach, which used the data of the month of the previous year for estimating the model parameters.

1035 days 90 days (=K) 1 day 365 days

Unused old
data

Rolling estimation window
all data available

Only metering
data available

Nowcasting period
metering data got just available

Remaining
data

1035 days 90 days (=K) 1 day 364 days

1035 days 90 days (=K) 1 day 363 days

1035 days 90 days (=K) 1 day

Time

. . . . . .

n = 1

n = 2

n = 3

. . .

n = N

Figure 3. Illustration of the nowcasting study design.

We considered the all competing models, benchm, 0-lasso (λ), 0-ridge (λ), and c-ridge(λ) in the
rolling window forecasting study. As emphasized, the lasso and ridge models depended on the tuning
parameter λ, which we had to specify. For all models, we considered exponential grids Λ for λ; in
detail: For the ridge models, we chose Λ = 2Lr with Lr as an equidistant grid from −10 to 20 of length
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100, and for the lasso models, Λ = 2Ll as an equidistant grid from −30 to 3 of length 100. Of course,
we did not know in advance the optimal λ. Therefore, we considered for the 0-lasso, 0-ridge, and
c-ridge models a version where λ was chosen on the past performance (cumulated loss) of the the
corresponding models, initializing with λ = 1 for the first prediction. We denoted the models by
0-lasso∗, 0-ridge∗, and c-ridge∗.

For measuring the nowcasting accuracy or measures for forecasting performance, we considered
the out-of-sample MAE (mean absolute error) and the out-of-sample RMSE (root mean square error).
To evaluate the forecasting accuracy also for each of the SD = 96 quarter-hours separately, we defined:

MAE =
1

SD

SD∑
s=1

MAEs with MAEs =
1
N

N∑
n=1

|Yi,s − Ŷi,s| (11)

RMSE =
1

SD

SD∑
s=1

RMSEs with RMSEs =

√√√√ 1
N

N∑
n=1

|Yi,s − Ŷi,s|2 (12)

Note that our models were regression based, and the forecasted value should coincide with the
the expected value. Thus, the RMSE should be preferred for evaluation as it identified the true mean
correctly. In contrast, the MAE was optimal for median forecasts. However, it is often used as a robust
alternative to the RMSE. For more details on the evaluation of point forecasts, we refer to [26].

5. Results

5.1. Nowcasting Performance

We first discuss the overall nowcasting performance of the considered models. The out-of-sample
MAE and RMSE values are given in Table 1 and 2. There, we also computed improvements in the MAE
and RMSE with respect to the benchmark model benchm estimated on the shorted training period
1month. Remember that ridge∗ and lasso∗ chose the tuning parameter based on the past performance,
whereas ridge and lasso represented the models that gave ex-post the best prediction accuracy on the
λ-grid Λ.

Table 1. Out-of-sample MAE in MW with relative improvement in % with respect to the benchmark
trained on the shortest training period for all models and training periods. A heat map is used to
indicate better (→ green) and worse (→ red) performing models.

Models → benchm c-ridge∗ 0-ridge∗ 0-lasso∗ c-ridge 0-ridge 0-lasso

Period ↓ MAE Imp. MAE Imp. MAE Imp. MAE Imp. MAE Imp. MAE Imp. MAE Imp.

3years 1302.7 −18.3 453.6 58.8 483.6 56.1 509.5 53.7 452.1 58.9 481.4 56.3 507.0 53.9
2years 1328.8 −20.7 430.0 60.9 474.1 56.9 487.8 55.7 428.7 61.1 469.0 57.4 484.7 56.0
1year 1290.5 −17.2 653.9 40.6 588.7 46.5 591.0 46.3 630.5 42.7 581.7 47.2 588.8 46.5

4months 1130.2 −2.7 934.3 15.1 549.5 50.1 583.8 47.0 923.2 16.1 538.3 51.1 578.6 47.4
2months 1097.9 0.3 944.5 14.2 602.4 45.3 626.6 43.1 919.6 16.5 593.8 46.1 617.2 43.9
1month 1100.9 0.0 918.0 16.6 607.1 44.9 635.0 42.3 913.1 17.1 604.1 45.1 629.3 42.8
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Table 2. Out-of-sample RMSE in MW with relative improvement in % with respect to the benchmark
trained on the shortest training period for all models and training periods. A heat map is used to
indicate better (→ green) and worse (→ red) performing models.

Models → benchm c-ridge∗ 0-ridge∗ 0-lasso∗ c-ridge 0-ridge 0-lasso

Period ↓ RMSE Imp. RMSE Imp. RMSE Imp. RMSE Imp. RMSE Imp. RMSE Imp. RMSE Imp.

3years 1556.0 −18.8 578.9 55.8 710.0 45.8 868.5 33.7 582.2 55.5 713.0 45.6 825.0 37.0
2years 1562.4 −19.3 560.4 57.2 705.1 46.2 759.5 42.0 556.8 57.5 699.5 46.6 721.9 44.9
1year 1460.6 −11.5 1051.3 19.7 858.9 34.4 940.9 28.2 919.9 29.8 817.2 37.6 923.3 29.5

4months 1332.9 −1.8 1185.3 9.5 776.6 40.7 960.9 26.6 1102.3 15.8 754.6 42.4 880.6 32.8
2months 1299.5 0.8 1274.3 2.7 877.1 33.0 975.9 25.5 1121.3 14.4 828.2 36.8 966.9 26.2
1month 1309.7 0.0 1147.9 12.4 850.3 35.1 917.6 29.9 1150.5 12.2 858.2 34.5 914.5 30.2

First, we observe that all ridge and lasso models showed clear improvements against the
benchmark. The largest improvement of around 60% in both measures was gained by the c-ridge

(or c-ridge∗) model calibrated on the training period of 2years. Second, we see that the ridge∗

and lasso∗ models showed almost the same performance as ridge and lasso, which indicated
that the ex-post selection of λ was not a big problem. Next, the benchmark model benchm with
short calibration periods of 1month and 2months showed the best prediction accuracy against the
benchmark model. In contrast, the ridge and lasso approaches showed that long training periods
of 2years and 3yearsperformed best. The reason was likely that the estimation of many parameters
required more data to receive stable parameter estimates. Figure 4 illustrates the solution path of the
ridge and lasso models for a calibration period 2years which uses about two years of data.

Here, the ‖ · ‖1-norm of β̂ as a typical measure for model complexity is plotted against the MAE
and RMSE score. Note that ‖β̂‖1 is the sum of all absolute parameters. The solution paths for different
λ values of a certain model e.g., c-ridge (λ) (red circle), are represented by the color intensity. The
darker the color of the symbol within the solution path, the smaller λ. Thus, black symbols correspond
to the OLS solution.

We observe that all three models c-ridge (λ), 0-ridge (λ), and 0-lasso (λ) converged to the the
OLS solution for small λ. The OLS solution had an MAE of around 500 MW and an RMSE of slightly
above 700 MW with an ‖ · ‖1-norm of β of around 5.5. We clearly see that for small λ values, 0-ridge

(λ) and 0-lasso (λ) obtained smaller β values and tended towards the 0 solution. In contrast, c-ridge

(λ) had always a similar range of the ‖ · ‖1-norm of β. The corresponding MAE and RMSE minima
has a ‖ · ‖1-norm around 5.2, which is a similar magnitude as the OLS solution. Thus, the parameter
complexity of both solutions was comparable, but the parameters were better selected by the c-ridge

approach due to the shrinkage towards a reasonable target, instead of 0.
Next, we wanted to look at the intraday structure of the nowcasting errors across the 96

quarter-hours. The forecasting accuracy in term of MAEs and RMSEs is visualized in Figure 5. There,
we observe that the benchmarks exhibited a relatively clear diurnal pattern. The nowcasting error was
largest during the working hours, esp. during the afternoon. For the lasso and ridge models, the daily
pattern was substantially reduced. For instance, the MAEs of c-ridge∗ varied between 383 MW and
484 MW, which was a variation of around 100 MW. The intraday MAE h variation of the MAE of the
benchmark model was around 300 MW and significantly larger. However, as the overall forecasting
error reduced by 60%, the relative variation of the of the MAE forecasting performance remained at a
similar level.
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Figure 4. Graph of ‖̂β‖1 against MAE (left) and RMSE (right) of the selected lasso and ridge models,
illustrating the solution paths for different λ values. The darker the color, the smaller the shrinkage
(black = OLS).
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Figure 5. Intraday prediction accuracy in MAEs and RMSEs of selected models.

We saw that the proposed models with an in-sample sample size of about two years performed
best. It was clear that the computational complexity increased with the amount of data used for
training and calibration. Still, in all cases, the models allowed the implementation and application
on a real-time basis due to the linear model structure. For instance, the estimation of the c-ridge,
0-ridge, and 0-lasso models on the full λ-grid with a training period of 2years took 3.0 s, 0.5 s, and,
2.3 s, respectively. These times were measured on a standard computer using a simple CPU. The ridge
models were estimated using the solve.QP function of the R package quadprog, and the lasso model
was trained and calibrated using glmnet function of the R package glmnet.

5.2. Model Interpretation

As our models were linear models, it was relatively easy to interpret the parameters. The easiest
way to get an understanding of the impact of each parameter in the model was to evaluate the absolute
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impact of parameter i with respect to the overall parameter contribution |β̂i|/‖β̂‖1. Those impacts of
the c-ridge∗ model with a training period of about two years such as the benchmark model benchm

with training period of about a month are illustrated in the bar chart in Figure 6. As the full model had
many parameters, we grouped the impacts |β̂i|/‖β̂‖1 by parameter type to maintain readable results.
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Figure 6. Bar chart of the absolute impact |̂βi|/‖̂β‖1 of Model c-ridge∗ for 2years and benchm for
1month grouped by parameter type.

Obviously, we saw that the only the c-ridgemodel had a contribution from external regressors and
autoregressive impacts (EXT_A, EXT_W, and EXT_D represent the annual, weekly, and daily seasonal
components; LAGS_A and LAGS_S represent the annual and short-term autoregressive lags), as the
benchmark model did not take those effects into account. Here, it seemed that the annual impacts
contributed substantially to the c-ridge∗ model, and this held for both types’ effects from deterministic
external regressors (EXT_A) and autoregressive effects (LAGS_A). Furthermore, the daily seasonal
component (EXT_D) showed about a 3.5% contribution to the overall solution. For the generation
units, we observed that all reduced their absolute impact in the c-ridge∗ model with respect to the
benchmark model. However, all parameters remained relevant.

The interpretation by the absolute impacts |β̂i|/‖β̂‖1 was suitable for evaluation of the impact
within the estimated model. However, the regressors Xi,t lived on completely different scales. To
obtain interpretable impacts with respect to the load Yt, we had to evaluate the time series of β̂iXi,t,
which represented the impact of each single component to the final model. Therefore, Figure 7 shows a
time series plot of the actual load Yt, the benchmark model benchm nowcasts, and the c-ridge∗ model
nowcasts, along with the estimated contributions β̂iXi,t for each regressor i.
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Figure 7. Time series plot of the actual load Yt (black), with the fitted model of the benchmark model
(red) and the c-ridge∗ approach (blue) on 6–12 August 2018. Additionally, the estimated impact of the
single components ̂βiXi,t for the c-ridge∗ model (bottom) and benchmark model (top) classified by
type with different colors is illustrated.

We observed that for both models, the interconnector, wind, and solar contributed substantially
to the final solution. For the c-ridge∗ nowcast, a very important contribution to Ŷt came from the
annual autoregressive impacts (LAG_A). It mainly had positive contributions, but also some negative
contributions. For the c-ridge∗ nowcast, some moderate impact could be seen from the nuclear power
and hydro. The latter contributed more to the negative side than to the positive, which was a bit
surprising, as the fundamental model would suggest a positive impact. Furthermore, the benchmark
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model had no negative contribution from hydro power. All other generation types had only a minor
impact for both considered models. Finally, we observed that the intercept contributed around
2000 MW to the final contribution of the c-ridge∗ model, which was about 10% of the overall load Yt.
Remember that about 80% of the load Yt was metered (by generation units and interconnectors). Thus,
from the missing 20% load, around a half (=10%) seemed to be base load.

6. Summary and Conclusions

We formally introduced the problem of load nowcasting to the energy forecasting literature.
In contrast to load forecasting, the recent load of a certain balancing area was predicted based on
limited available metering data within this area. Thus, we were predicting the recent past. We
introduced an industry benchmark model and multiple high-dimensional linear model to tackle the
nowcasting problem. The model design orientated from load forecasting problems. Next to the
impacts of metered generation and interconnector units, the models had seasonal and autoregressive
components to improve the prediction performance. We considered multiple estimation techniques
based on lasso and ridge and studied the impact of the choice of the training/calibration period.

The overall results showed that in comparison to the industry benchmark, an accuracy
improvement in terms of MAE and RMSE of about 60% was achieved. The best model was based
on the ridge estimator and used a specific non-standard shrinkage target. Moreover, we highlighted
that the model parameters could be interpreted. The overall results showed that the annual effects
(deterministic and autoregressive) contributed significantly to the proposed ridge model.

Future research could investigate more nowcasting models, especially non-linear ones,
like artificial neural networks or support vector machines. Obviously, the study could be extended
to probabilistic nowcasting. The considered nowcasting models could also serve a basis for the
construction of load forecasting models. Here, the generation and interconnector units Xi,t had to be
considered in a lagged manner (Xi,t−k), potentially for multiple lags. In general, many methodologies
can be transferred from energy forecasting, especially from short-term load forecasting.

Finally, the model accuracy might be enriched by the use of more external information. In load
forecasting, the (average) temperature of a objective area is often seen as highly relevant. Thus,
the incorporation into a nowcasting model could be beneficial as well. This information can be added
easily by adding the temperature (and potential non-linear transformations) as a new regressor to the
model. We can also add further dummy variables that characterize known structural breaks, e.g., for
changes in the regulation or reshaping of the balancing area. Furthermore, it was clear that additional
metering information would improve the nowcasting accuracy. With respect to renewable energy
information from wind and solar power, a finer geographical resolution might improve the forecasting
accuracy, as Figure 7 shows a high importance for a few individual time series of the c-ridge∗ model
with respect to the benchmark model.
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