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1. Introduction

This Special Issue provides the first literature collection focused on the development and
implementation of unmanned aircraft systems (UAS) and their integration with sensors for atmospheric
measurements on Earth. The research covered in the Special Issue combines chemical, physical,
and meteorological measurements performed in field campaigns as well as conceptual and laboratory
work. Useful examples for the development of platforms and autonomous systems for environmental
studies are provided, which demonstrate how careful the operation of sensors aboard UAS must be
to gather information for remote sensing in the atmosphere. The work serves as a key collection
of articles to introduce the topic to new researchers interested in the field, guide future studies,
and motivate measurements to improve our understanding of Earth’s complex atmosphere. The next
section summarizes the key information of individual contributions.

2. Summary of This Special Issue

The changing atmospheric composition by emitted greenhouse gases (GHGs) constitutes one of
the major challenges faced by societies, and the contribution of UAS to study this problem [1] is the
subject of the opening article of this Special Issue. The article revised the use of UAS to accurately
report sources and magnitudes of GHGs emission at low altitudes (<100 m) with spatiotemporal
resolution on the order of meters and seconds [1]. The most relevant classes of UAS were evaluated for
the operation of gas detectors such as laser-absorption techniques, and metal-oxide semiconductor
and catalytic sensors. Special emphasis was provided to explain the importance of calibration and
validation of lightweight analytical systems mounted on UAS for quantifying atmospheric gases [1]
and thermodynamic parameters [2]. Relevant limits of detection and range for measurements of ozone,
carbon monoxide, carbon dioxide, nitrogen dioxide, sulfur dioxide, methane, and volatile organic
compounds were provided [1].

As one of the most important and rapidly increasing GHGs, methane can leak to the atmosphere
from natural gas systems. Golston et al. and Yang et al. provided an innovative method and
algorithm for locating and quantifying continuous leaks as low as 2 standard cubic feet of methane
per hour with an UAS equipped with a methane sensor [3,4]. Careful considerations for sampling,
i.e., wind effects, variable leak magnitudes, etc., as well as validation of the method and errors were
discussed [3,4]. Cost considerations for the implementation of UAS with sensors for atmospheric
studies were evaluated together with the regulations to operate small UAS internationally to study
atmospheric composition [1].

Recent progress in sensor integration and location highlights the importance of sample aspiration
and solar shielding, calibration/validation, and vehicle operation for boundary layer profiling for large
collaborations [2]. Furthermore, Hemingway et al. discussed an effective strategy to sample vertical
profiles with UAS for collecting information on physical variables, i.e., temperature (3 m) and humidity
(2 m) in the atmospheric boundary layer (ABL) [5]. A recent field study by Zhou et al. compared

Atmosphere 2020, 11, 1208; doi:10.3390/atmos11111208 www.mdpi.com/journal/atmosphere1
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the results from UAS measurements to ground-based stations and satellite remote sensing platforms,
to assess the mechanisms for a pollution episode in the city of Nanjing, China [6]. Computational fluid
dynamics (CFD) simulations contributed to optimize the mounting location of sensors to minimize air
disturbance by propellers [6]. Meteorological conditions that favor the accumulation of particulate
matter with diameter ≤2.5 μm (PM2.5) were identified for long distance transport of pollutants from
the Beijing-Tianjin-Hebei region [6].

A challenge to study the ABL with UAS is determining the turbulent tridimensional (3D) wind
vector. An important article of the Special Issue by Witte et al. described the development of an UAS
for measuring turbulence in the ABL, which was capable of computing the time-dependent wind speed
while flying [7]. For this purpose, a five-hole probe velocity sensor was used to combine data from the
different sensors [7]. Rautenberg et al. compared commonly used wind speed and direction estimation
algorithms with the direct 3D wind vector measurement using a five-hole probe [8]. An exciting
research project for studying the ABL over the Arctic was introduced by Kral et al. [9]. Flight missions
with high vertical resolution combined the use of fixed and rotary wing UAS, which were supplemented
by ground-based observations of eddy covariance, automatic weather stations and remote sensing
instrumentation [9]. Bärfuss et al. introduced a flexible UAS for sampling the ABL with sensors for
temperature, humidity, 3D wind vector, position, black carbon, irradiance and atmospheric particles [10].
Finally, challenging the original conception of this Special Issue, an interesting consideration for the
use of a sounding rocket alternative platform with a satellite navigation system was provided [11].
Such a platform can enable fast and precise meteorological data acquisition of complete trajectories
from 20 to 60 km altitude [11].

3. Conclusions

The eleven contributions of this Special Issue discussed different atmospheric problems and
strategies to study them with small UAS. The articles should be of interest to the atmospheric sciences
community at large, both for instruction of graduate level courses, and to inspire new research that
will improve the current understanding of our atmosphere.
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Abstract: The emission of greenhouse gases (GHGs) has changed the composition of the atmosphere
during the Anthropocene. Accurately documenting the sources and magnitude of GHGs emission
is an important undertaking for discriminating the contributions of different processes to radiative
forcing. Currently there is no mobile platform that is able to quantify trace gases at altitudes <100 m
above ground level that can achieve spatiotemporal resolution on the order of meters and seconds.
Unmanned aerial systems (UASs) can be deployed on-site in minutes and can support the payloads
necessary to quantify trace gases. Therefore, current efforts combine the use of UASs available on the
civilian market with inexpensively designed analytical systems for monitoring atmospheric trace
gases. In this context, this perspective introduces the most relevant classes of UASs available and
evaluates their suitability to operate three kinds of detectors for atmospheric trace gases. The three
subsets of UASs discussed are: (1) micro aerial vehicles (MAVs); (2) vertical take-off and landing
(VTOL); and, (3) low-altitude short endurance (LASE) systems. The trace gas detectors evaluated
are first the vertical cavity surface emitting laser (VCSEL), which is an infrared laser-absorption
technique; second two types of metal-oxide semiconductor sensors; and, third a modified catalytic
type sensor. UASs with wingspans under 3 m that can carry up to 5 kg a few hundred meters
high for at least 30 min provide the best cost and convenience compromise for sensors deployment.
Future efforts should be focused on the calibration and validation of lightweight analytical systems
mounted on UASs for quantifying trace atmospheric gases. In conclusion, UASs offer new and
exciting opportunities to study atmospheric composition and its effect on weather patterns and
climate change.

Keywords: remote sensing; unmanned aerial vehicles; unmanned aerial systems; drones; atmospheric
composition; sensors

1. Introduction

The atmosphere is a mixture of numerous gases dominated by volume ratios of 78.1% N2(g),
20.9% O2(g), and 0.934% of the noble gas argon. The remaining 0.066% trace gases includes several
greenhouse gases (GHGs) of natural and/or anthropogenic origin, such as carbon dioxide (CO2),
methane (CH4), ozone (O3), nitrous oxide (N2O), and chlorofluorocarbons (CFCs) [1]. Trace gases
play a major role in maintaining a stable climate on Earth by absorbing infrared radiation during their
lifetimes on a direct proportion to their concentration [1]. Climate perturbations have been linked to
volcanic eruptions quickly injecting large quantities of CO2, sulfur dioxide (SO2), hydrogen sulfide
(H2S), nitrogen oxide(s) (N2O, NO, and NO2), etc. into the atmosphere [2–4]. In addition, trace gases
can also introduce new catalytic cycles that initiate atmospheric reactions that have never occurred
before [5]. For example, evidence of such undesired catalytic cycles has been observed over Antarctica,
where halogen radical species (e.g., Cl, Br, ClO2, ClO, BrO) from anthropogenic sources have led to
a hole in the ozone layer [6,7].

Atmosphere 2017, 8, 206; doi:10.3390/atmos8100206 www.mdpi.com/journal/atmosphere5
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The fast rate of burning fossil fuels; changes in land use caused by deforestation, domestication of
cattle, and oil mining; and the emission of industrial pollution have impacted the chemical composition
of the atmosphere [1,2] raising numerous health concerns [8,9]. The growing emission of GHGs
has been associated to a disrupting effect on radiative balance with long term consequences [1].
Thus, instruments mounted on satellites [10], which cannot provide altitude-resolved data, manned
aircraft [11,12], atmospheric balloons [13], and tall towers [14] have been deployed to measure
the changing concentrations of GHGs. However, as global emissions continue to rise, there is an
increased need for technology that could allow for accurate detection of trace gases near sources, and
particularly in the lower troposphere. Remarkably, this atmospheric boundary region remains poorly
characterized due to the lack of existing methods for monitoring trace gases. Therefore, unmanned
aerial systems (UASs) are an attractive alternative to traditional experimental techniques because they
can collect air quality information in this underrepresented atmospheric region (0–100 m above ground
level). UASs can be deployed within minutes at the source, have excellent horizontal and vertical
maneuverability, and can sample predetermined locations without the intervention of a remote pilot to
ensure systematic sampling. The implementation of UASs as a platform to detect trace gases results in
spatiotemporal data on the order of meters and seconds. Manned aircraft cannot achieve this level of
resolution, and entail more complex operations for deployment that are not as cost or time effective.
Balloons can be deployed near the source, but can be cumbersome and impractical when compared to
the low-cost and ease of use that UASs offer.

Moreover, UASs can also be used to gather information about how the emission of industrial
gases affects the particle size, composition, and concentration of aerosols in the lower troposphere.
For example, UASs have been a useful platform for data collection of (1) concentration and size
gradients of aerosol particles in the boundary layer over a coastal area [15]; (2) the size and nature of
atmospheric particles due to local pollution sources [16,17]; and, (3) the dispersion of aerosols and
gases in a plume [18]. The remarkable power of UASs to enable characterizing of the composition of
the lower atmosphere is also accompanied by progress in methods that attempt weather modification.
For instance, cloud-seeding technology that has been discussed for decades could now be advanced
with promising experiments employing UAS technologies [19].

UASs originated in the early 1900s, but their usefulness was not demonstrated until the Vietnam
War in the 1960s and 1970s, during reconnaissance missions that were too dangerous for a piloted
aircraft [20]. The diversification of UASs over the next few decades included capabilities for engaging
in battlefield warfare and cameras that were able to achieve centimeter-scale resolution [20]. Soon,
the advantages of remote imaging UASs were noticed by the public and introduced to the civilian
market [20]. Although a 98% of the production of UASs was for military use in 2004 [20], a significant
increment for the production of civilian UASs has recently taken place to satisfy the demand from
the general public. In fact, the sale of civilian UASs, often referred to as “drones”, has increased by
224% from April 2015 to April 2016 [21]. Drones have undeniably increased in popularity among
the general public, and thus have become a focal point of research and development. Although the
forefront of civilian uses resides in aerial photography, delivery of goods, and entertainment, many
environmental applications of UASs can be envisioned to help solve current limitations faced by
atmospheric chemistry technology [20,22].

The early development of UASs has faced many challenges, including the need for legislation
that has shown to be controversial in the United States [23]. The engineering problems that must
be addressed include the flight range and endurance of the UASs. This is generally a consequence
of aircraft size, energy storage, payload weight, and whether it is a fixed-wing or a rotary-wing
aircraft. UASs are currently limited by propulsion technologies [24], but research using solar energy
has shown promise to extend power storage for extended operation [25]. On the other hand, the
scientific challenge for the monitoring of trace gases is the development of sensors that are lightweight,
inexpensive, and accurate enough for daily data collection and analysis. In contrast, current detectors
employed in manned aircrafts are generally heavy, expensive, and complex techniques, such as
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mass spectrometry, which are neither size nor cost suitable to scale down for deployment with small
UASs [24–26]. Indeed, state of the art detection methods must be developed based on the principle of
keeping simplicity, low-costs, portability, and capacity for in-situ detection. This perspective presents
the current knowledge for recent developments with UASs and sensors technologies, and provides
guidance to apply this information to boundary layer problems, such as the detection of trace gases.

2. Classification of UASs

It is convenient to first introduce the five broad categories of UASs resulting from their military
origin in the United Sates [27]. The transition of a UAS from one category to the next occurs if anyone
of the limits to payload, altitude, or speed is surpassed. The first group has a maximum payload of
less than 9.1 kg, an operating altitude of less than 366 m, and an airspeed of less than 185 km h−1.
The second group has a payload between 9.2 and 25 kg, an operating altitude of less than 1067 m,
and an airspeed of less than 463 km h−1. The remaining three categories have takeoff loads greater
than 25 kg and a maximum of 599 kg. Their altitudes can reach up to 5.5 km (and above), with no limits
to the airspeed. The applications that can be carried out with a UAS are linked to the category that it
belongs to. Large UASs are capable of performing advanced tasks, flying long distances, and carrying
heavy payloads. However, these large UASs (for payloads ≥25 kg) are not practical for atmospheric
sampling at low altitudes. While the performance of small vehicles is relatively more limited than for
large UASs, the great availability of these inexpensive models makes them especially attractive for
research applications. The fact that UASs from the first two categories (with payloads ≤25 kg) are
battery operated (and combustion fee) makes them the preferred choice for trace gas detection.

Aside from the previous classification, there is a more recent and specific one that breaks down
UASs into seven groups [25]: (1) micro UAS (MUAS); (2) vertical take-off and landing (VTOL);
(3) low-altitude short endurance (LASE); (4) LASE close; (5) low-altitude long endurance (LALE);
(6) medium-altitude long endurance (MALE); and, (7) high altitude long endurance (HALE). The UASs
classified as LASE close, LALE, MALE, and HALE (groups 4 through 7) can reach altitudes up
to ca. 1.5 km and all require substantial runways for take-off and landing. Because there are no
battery-operated UASs that are capable of such tasks, these classes of UASs appear to be of low
relevance for trace gas detection [25]. The first three categories (MUAS, VTOL, and LASE) are all
viable options for trace gas monitoring. MUAS are defined by their miniature size (~15–20 cm) and
ultra-light weight, with payloads of less than 50 g and flight times of 8–10 min [25].

In addition, UASs are also divided into fixed-wing and rotary-wing aircrafts, which respectively
look like traditional airplanes and helicopters. Although fixed-wing aircrafts do not have the
maneuverability and take off and landing convenience of rotary aircraft, they are more stable in severe
weather conditions and tend to have more space for payload configurations [24,26]. Both fixed-wing
and rotary-wing UASs can be used for trace gas monitoring if they are not propelled by internal
combustion engines. Examples of fixed-wing UASs included in Figure 1 are the Bormatec Maja and
Explorer, the CyberEye II, and the Skywalker X8.

Both Bormatec UASs (Maja and Explorer) are closely related but differ by having single and dual
engine setups, respectively. The CyberEye II represents the style of a conventional fixed-wing UAS
that can be adapted for low-cost trace gas detection. The Skywalker X8 is a practical alternative that
provides useful payload capacity for small, light-weight trace gas sensors at a fraction of the cost of
the other three UASs in Figure 1.
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Figure 1. Examples of fixed-wing unmanned aerial systems (UAS) platforms for trace gas monitoring.

From the large variety of rotary-wing UASs available in the market, a few examples included in
Figure 2 are the T-REX 700E helicopter, the DJI Matrice 600, the AirRobot AR100B, and the AscTec
Falcon 8. The T-REX 700E represents the traditional helicopter with one central rotor, and a secondary
rotor on the tail of the aircraft. The DJI Matrice 600 is a lightweight hexacopter, with its rotors
distributed in a circular pattern. The AirRobot AR100B is a quadcopter, also with its rotors in a circular
array. The AscTec Falcon 8 is an octocopter with an alternative linear array of rotors. Because the
upward force of the UAS is proportional to the diameter and number of rotors, the primary reason for
adding extra rotors to the aircraft is to provide a greater lift [26].

 
Figure 2. Examples of rotary-wing UAS platforms for trace gas monitoring.

However, it must be noted that adding rotors increases battery consumption and results in shorter
flight times. Thus, a primary consideration for maximizing flight duration for a given payload is to
optimize the number of rotors needed.

VTOLs are typically rotary-wing UASs that have the obvious advantage of near-instant
deployment. Thus, VTOLs are versatile for field operations where runways are not an option.
Given that the flight time for this class is limited from 20 to 60 min, a VTOL is an ideal platform
to deploy sensors as close to the source as possible [25]. The maneuverability of VTOLs is also one
of its strengths; the ability to hover in one location and reverse is advantageous. However, there are
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numerous types of VTOLs (e.g., helicopter, quadcopter, hexacopter, octacopter), each of which creates
a unique downwash that can make gas detection and quantification complex [25].

LASEs are the most diverse class of UASs, and are characterized by simplicity and ease of use.
The wingspans are limited to 3 m, and offer payloads from 2 to 5 kg. These UASs can be hand-launched
or catapult-launched, and offer flight times from 45 to 120 min. This class of UASs can also be fit with
autopilot features that offer the advantage of pre-planned flight patterns to ensure systematic sampling.

In summary, selecting the most appropriate UAS for sampling in the lower atmosphere requires
consideration of the mission objectives, environmental conditions, and budget. The frame of the
selected UAS model requires alteration for carrying the trace gas detection system to be deployed.
Different sensor technologies for trace gas detection are discussed below.

3. Sensors for Trace Gases

There are many different types of sensors that can be mounted into a UAS for detecting trace gases
in the lower atmosphere. The most common methods are electrochemical, photoionization, infrared
(IR) laser-absorption, semiconductor, and catalytic detection. Although each method is fundamentally
different, all of the sensor types must be able to detect background atmospheric concentration levels
and also have a dynamic range that spans the range of gas concentrations expected in the field.
The useful detection limits and expect mixing ratio ranges for a number of trace atmospheric gases of
interest to the U.S. Environmental Protection Agency (EPA) are presented in Table 1 [28].

Table 1. Detection limits and expected ranges of selected trace atmospheric gases.

Trace Atmospheric Gas of Interest Useful Detection Limit Expected Range

Ozone 10 ppbv 0–150 ppbv
Carbon monoxide 100 ppbv 0–300 ppbv

Carbon dioxide 100 ppmv 350–600 ppmv
Nitrogen dioxide 10 ppbv 0–50 ppbv

Sulfur dioxide 10 ppbv 0–100 ppbv
Methane 500 ppbv 1500–2000 ppbv

VOCs 1 μg m–3 5–100 μg m–3 (total)

A bias and precision of ±30% is reasonable for hotspot identification and characterization
purposes; for supplementary network monitoring, a bias and precision of <20% is necessary for further
investigation [28]. Another aspect to consider with trace gas sensors is the response to rotor turbulence.
The impact of rotor turbulence with respect to detecting trace gas concentrations with sensors onboard
UASs is relatively unexplored. A handful of publications present some computational fluid dynamic
(CFD) analysis in a general context of mapping quadrotor downwash [29–31], but there are limited
publications that include a CFD analysis for sensor placement [32]. Furthermore, the computational
resources are not currently available to run detailed simulations that include the effect on local gas
concentrations, thus the analysis of how gas concentrations are affected by UAS rotor turbulence is
still something that needs to be studied. Even though the scope of these simulations is limited, they all
show a general consensus on the location of the maximum and minimum airflows around the aircraft
so some useful conclusions can be drawn from them. There are a few options when considering sensor
placement. The first is to place the sensors outside the range of the rotor turbulence entirely, but at the
cost of adding significant complexity, weight, and affecting the center of gravity. The second option is
to minimize the airflow around the sensor on the UAS. The center of the fuselage above and below the
aircraft appears to be the optimal placement to minimize air disturbances around the sensor, and thus
are ideal locations for sensor placement. If the sensors are not used to gather luminosity measurements
and/or are highly sensitive to UV light/temperature, locating them under the fuselage of the aircraft
appears to be an ideal solution. A third possible solution is to isolate the sensor from rotor downwash
entirely, and pump the air in with a sample inlet clear of the turbulence. The solution to be employed
depends on the payload capacity of the UAS and the dependence of the instrument on air turbulence.
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Electrochemical type sensors are commonly used for the detection of toxic gases as they pass
through a semi-permeable membrane and undergo a redox reaction at the working electrode [33].
The resulting electrical current between the working and reference electrodes can be calibrated to
provide the concentration of the desired gas. A typical problem associated to the use of electrochemical
sensors is its cross sensitivity to other gases if the choice of membrane has not been carefully considered.
Although, new and promising calibration methods are currently being developed to correct for sensor
dependences on variable environmental conditions (i.e., temperature and relative humidity) [34].
Photoionization detectors commonly incorporate a durable 10.6 eV UV lamp to ionize volatile organic
compounds (VOCs) [35]. The ejected electrons resulting from the photoionization of VOCs produce
an electrical current that is directly proportional to concentration of the volatile species. While the
sensitivity of this technique extents to low ppbv mixing ratios, the signal corresponds to the sum of all
gases with an ionization potential that lies below the threshold set by the lamp’s photon energy.

The principle of operation for IR laser-absorption sensors is not different from a bench-top
spectrometer [36,37]. As the laser beam passes through the atmosphere, a detector measures the loss in
radiation intensity as a function of wavenumber. The loss of radiation intensity relative to the reference
beam (or the same beam at a different wavelength) can provide the concentration of gases, while the
wavelength of light absorbed provides the identity of the gas. The advantage of this technique is to
sample large volumes for analysis because the sensor does not need to come in contact with the gas.

Semiconductor type sensors commonly use a tin or tungsten oxide film, which is saturated
with adsorbed oxygen species (O2

−, O−, O2−) in clean air [38]. The presence of oxygen on the film
creates a high potential between the sensor and air. However, the presence of reducing gases results
in the desorption of O2(g), which lowers the potential and allows for current to flow through the
sensor. This change in resistivity within the sensor is the principle that can be used to measure the
concentration of a gas. Lastly, catalytic sensors operate using two parts, known as beads, which are
connected in a Wheatstone bridge circuit [39]. One bead has a catalytic material that is reactive to
combustible gases and the other bead is not reactive because it is made of an inert material. The heat
produced as combustible gases react with the catalyst causes an increase in resistivity of the catalytic
bead. The circuit is designed to produce a voltage output (from the relative change in resistivity),
which can be measured and is proportional to the concentration of the gas of interest.

4. Implementation of Sensor Technology Onboard UASs

Several different categories and models of UASs have been introduced above and the significant
factors for selecting between them are size, range, payload, and whether it is a fixed-wing or
rotary-wing vehicle. These UASs can be modified to include sensors for monitoring trace tropospheric
gases at low altitudes, as demonstrated in recent experimental efforts that have been successfully
employed three different sensor technologies: (1) a portable IR laser-absorption spectrometer;
(2) two semiconductor sensors; and, (3) a catalytic type sensor.

The first technology implemented has used a robust optical setup for IR laser absorption
spectrometry to quantify GHGs using a photodetector [40,41]. This optical application includes
the low-power vertical cavity surface emitting laser (VCSEL), as displayed in Figure 3, which probes
the near-infrared region to identify GHGs such as CO2 and CH4 [40,41]. However, this method suffers
interference from absorption by water vapor (H2O). Thus, wavelength modulation spectroscopy
has been employed to further resolve the overlapping signals from different gases [40]. In addition,
a cylindrical multi-pass cell with gold-coated mirrors has been used for increasing the optical path of
the laser beam reaching the photodetector. This optical setup has been mounted into the T-REX 700E
helicopter (Figure 2) for low altitude flights with a total payload <0.5 kg that lasted 5 to 10 min for
measuring CO2 and CH4 at 4994.94 cm−1 and 4996.12 cm−1, respectively [40].
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Figure 3. Low-power vertical cavity surface emitting laser with multi-pass cell and photodetector.
Reproduced with permission from Khan, A. et al. [40], Remote Sensing; published by MDPI, 2012.

Measurements of CO2 and CH4 have been performed with the VSCEL technique, using wavelength
modulation onboard a T-REX 700E helicopter (a VTOL UAS) at an air speed of 15 m s−1 that provides higher
spatial resolution than possible by a conventional aircraft [40]. This temporal and spatial resolution data
for CO2 and CH4 obtained at 2000–2003 and 1654 nm, respectively, is displayed in Figure 4 [40].
The mixing ratio of CO2 at a very low altitude (<5 m) has varied between 350 and 450 ppmv.
For CH4, mixing ratio measurements in the range 1700–1900 ppbv have been detected from 10 to
40 m altitude. Importantly, knowing the humidity during these measurements enabled the correction
of filed measurements after laboratory calibration that also included instrument stability and drift.
The laboratory precision of the VSCEL sensor has been demonstrated to be ±0.06 ppmv for CO2 and
±0.9 ppbv for CH4. In the field, the precision of measurements is within ±0.1 ppmv and ±2 ppbv for
CO2 and CH4, respectively. Because many gases absorb in the infrared range, the application of this
technique to quantify other trace gases could be expanded.

Figure 4. Time series for the mixing ratios of (a) carbon dioxide (CO2) and (b) methane (CH4) vs. flying
altitude obtained by laser-absorption spectroscopy [40].
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The second technology that has been tested employs semiconductor sensors to quantify the
presence of GHGs and VOCs from changes in resistivity [26]. This technology has been demonstrated in
a micro electro mechanical system (MEMS) with metal oxide (MOX) gas sensors that were customized
with micromachining techniques for UASs. The advantages of using MEMS with MOX, e.g., made
of tungsten trioxide (WO3), such as that displayed in Figure 5, comprise a reduction in the payload
and power intake of the sensor, making it practical for mobile VOC detection. These sensor arrays can
potentially allow simultaneous monitoring of several different compounds, including CO2, NO2, and
SO2 [26]. For practical applications, the sensor has been integrated into a microcontroller and mounted
into a UAS [26], such as the DJI hexacopter in Figure 2, for carrying a payload of 0.3 kg during 15-min
flights when powered by two parallel 9 V batteries [26].

 
Figure 5. (a) Micro electro mechanical system bonded to a tungsten trioxide (WO3) metal oxide sensor.
(b) Detailed image of the nanoporous WO3 layer. Reproduced with permission from Rossi, M. et al. [26],
IEEE Sensors 2014 Proceedings; published by IEEE, 2014.

Among the trace gases that could be detected by the MEMS MOX sensors, a VTOL UAS has
facilitated monitoring the release of the VOC isopropyl alcohol over an open field [26]. Preliminary
results show that VOCs have an impact in sensor response, and that GHGs can be detected in the
turbulent flow of a VTOL UAS [26]. However, the registered change in the output of the sensor
corresponds to an absolute response to all VOC present, and no selectivity for different gases has been
demonstrated [26]. Indeed, the results suggest that further development and laboratory calibration
would be needed to identify and quantify trace gases in the atmosphere with this type of sensors.

In addition, the highly selective MQ-4 semiconductor sensor for CH4 detection (Figure 6) [42]
is a good candidate for deployment with UASs. Although the MQ-4 sensor has been designed to
monitor CH4, a lower selectivity for detecting the gases propane and butane is possible [42]. The cheap
and commercially available MQ-4 sensor can be easily paired to a microcontroller mounted to either
a fixed-wing or rotary-wing UAS. However, a challenge faced by this current technology is the need
to perform accurate calibrations under variable temperature and relative humidity. MUASs devices
appear to be an ideal platform for deploying the small and lightweight MQ-4 sensor. Employing
multiple MUASs in a swarm can potentially provide real-time tridimensional (3D) spatial resolution
of CH4 concentrations in a cost-effective manner. This technique could be also applied in a discrete
manner in urban settings, but with limitations such as for short flight times or the inability to fly
in strong winds [25]. In addition to CH4, the MQ-4 sensor can also detect propane, hydrogen (H2),
carbon monoxide (CO), ethanol, smoke, and air.
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Figure 6. MQ-4 sensor (top left) with serial ports attached to a microcontroller. Reproduced with
permission from Chen, M. et al., International Journal of Distributed Sensor Networks; published by
SAGE, 2015 [42].

For calibration purposes, the measured resistivity of the MQ-4 sensor (Rs) is expressed relative
to the reference signal for 1000 ppmv CH4 in air (Ro) [43]. Such information for the MQ-4 sensor
is available, e.g., at 20 ◦C, for 65% relative humidity, 21% O2 mixing ratio, and a load resistance of
2 × 104 Ω [43], and varies with humidity and temperature. Therefore, in order to obtain useful CH4

mixing ratios with this sensor, calibrations across several temperature and humidity conditions are
needed [43]. A general concern for employing this sensor in the presence of multiple gases is the lack
of specificity to differentiate and quantify several gases simultaneously. However, the MQ-4 sensor
can still provide useful information because of its much sharper response for CH4 than for other gases
that are certainly not in excess.

Interestingly, trace gas emissions of CH4 from a landfill have been successfully studied following
a racetrack pattern, which can be accomplished by flying the Skywalker X8 in Figure 1, a LASE UAS,
perpendicular to the direction of the wind [44]. Thus, the quantification of CH4 using this UAS should
be attempted in the future with a Skywalker X8 equipped with both the MQ-4 sensor for CH4 and the
MEMS MOX sensor for the detection of other GHGs and VOCs. However, the Skywalker X8 is not
robust enough for most laser absorption spectroscopy techniques, such as the VCSEL.

This section lastly covers a catalytic type sensor that has already been proved in commercially
handheld gas detectors. Catalytic type gas sensors have long been available on gas monitoring
devices developed for industry settings, where a small gas leak can be dangerous or even deadly.
Existing devices have evolved to measure up to six gases simultaneously but they need to be modified
to fit the needs for onboard sensing with UASs. An example of such adaptation has been attempted
with an AirRobot AR100B (Figure 2) that is capable of flying for 30 min with a payload of 0.2 kg to
measure mixing ratios of CO2 and SO2 over a volcanic crater in the Canary Islands [45]. The method
was laboratory validated only for CO2 using a test chamber filled with clean air [45]. Importantly,
the device provides the option to exchange the catalytic sensors for toxic gases by electrochemical type
sensors or even photoionization detectors (PIDs) for combustible gases.

There are further examples of sensors used for trace gas deployment that do not explicitly stick to
one type of detection mechanism, several examples of UAS deployments for atmospheric monitoring
can be found in the literature [46–54].
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5. Interface for Integration of Analytical Sensors into UASs and Initial Cost Considerations

The miniaturization of sensor packages can be enabled by printed circuit boards (PCBs). Software
such as Fritzing allows for the design and printing of unique circuit boards that can integrate several
gas sensors into a small, lightweight package [55]. These PCBs are generally battery powered,
although the development of radio frequency identification (RFID) tags provides a promising future
for wireless powering of these low-power consuming devices. These PCBs are programmed with
microcontrollers or microcomputers on single integrated circuits. Typical microcomputers employed
combine a processing core, RAM, and an operating system (e.g., Linux) to operate microcontrollers.
Programing of the microcomputer is enabled with software using a keyboard and monitor connected
to the device. Among the options for collecting data from the sensor package, there are two common
reliable practices: (1) to store data on a SD card for later retrieval and analysis; and, (2) to wirelessly
transmit data in real time to an online database or back to the users’ computer via Wi-Fi or Bluetooth.

The costs of UASs such as MAV, LASE, and VTOL can vary widely based on the airframe, the GPS
navigation system to be added, the autopilot and telemetry system, and motor/battery combination
chosen. Airframe costs can range from $250 to $5000 depending on the type and complexity of the
aircraft. Although the GPS navigation system can be costly (e.g., ~$4000), it is a significant component
to determine the quality of flight. The autopilot systems can vary significantly due to the quality of the
flight control with prices starting at $50 that for higher-end systems increases to $300. Batteries for
UASs range from $65 to $200, but the number of batteries required for operation could range from
1 to 6 depending on the number of rotors. Additionally, spare batteries are required to keep the UAS
in flight as much as possible, what impacts the total battery cost to range between $65 and $1200.
In addition, battery chargers cost $60–200. For those airframes that do not come equipped with a motor,
an additional investment of $30–120, depending on size and rating, is needed. Many users of UASs
also find it useful to have onboard digital-to-analog (DAC) converters, which cost between $200 and
$300. Thus, just for the total cost of a UAS, a figure of $5000 to $12,000 can be obtained.

The cost of sensor packages can also vary slightly based on the type of
microcontroller/microcomputer used, the number and type of analytical sensors deployed,
and how the device is powered. The microcontrollers/microcomputers cost $25–40, but it may require
multiple shields (or a PCB) to incorporate data transmission, as well as a memory card, which could
cost an additional $35. Batteries are approximately $20 each, and at least two batteries are required
per unit to run continuously all day. The price of analytical gas sensors certainly depends on the
detection method chosen. Many electrochemical, photoionization, catalytic, and semiconductor type
sensors are readily commercially available, but the price definitely reflects the quality of the sensor.
Many gas sensors are available for $5–10, however for the highest-quality gas sensors, the price range
can jump to $300–1000. There is a large variety of gas sensors priced in-between as well, but again the
price reflects the quality. It is recommended to verify the following information is available when
purchasing sensors: calibration, lifetime, sensitivity, response time, and size/weight. Lastly, there are
no commercially available IR laser-absorption instruments. This means that the instruments reviewed
above were custom built for that UAS, making cost estimates difficult. However, given the costs of
lasers, optical cables, gas chambers, and detectors, it is the most expensive method to deploy.

6. Restrictions and Regulations in the United States and European Countries

According to the U.S. Federal Aviation Administration (FAA), any model aircraft under 55 lbs
(25 kg) is considered as a small unmanned aerial system (sUAS) under the addition of Part 107 to
Title 14 Code of Federal Regulations. Part 107 states that the pilot in command (PIC) must have
a proper certification requirement if a sUAS is operated for non-hobby purposes. The FAA defines such
operations as: agricultural monitoring/inspection, research and development, educational/academic
uses, powerline/pipeline inspection in mountainous terrain, antenna inspections, bridge inspections,
aiding search and rescue, wildlife nesting area and evaluations, and aerial photography [56].
Flying a sUAS for any of these objectives requires that the pilot obtains a “Remote Pilot of Small
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Unmanned Aircraft System” license, and that the unmanned aircraft be registered with the FAA.
The license examination can be taken at any of the local certified testing stations listed on the FAA
website [57] and the aircraft can be registered at the FAA website [58]. Upon obtaining the part
107 license, the individual may now legally conduct research operations. However, there are some
considerations one must take to ensure that the provisions of part 107 are followed. When flying, there
must always be at least one PIC per aircraft. This person may not be the individual at the controls of the
aircraft, but they are in charge and responsible for that operation. The PIC must maintain line of sight
of their aircraft, unless a visual observer (VO) is used. The sole job of the VO is to watch the sUAS and
report any potential dangers back to the PIC. The PIC, VO, and individual at the controls must be able
to remain within eyesight and be able to communicate at all times with the sUAS. First person view
(FPV) style optics do not meet the line of sight requirements, but may be used in addition. Operations
are to begin and end at civil twilights (30 min before sunrise and 30 min after sunset) and shall not
exceed 121.9 m above ground level or 160.9 km h−1 groundspeed. Lastly, it is particularly important
to ensure that external load operations are attached firmly, and will not adversely affect the center
of gravity or flight time in such a way that will jeopardize flight operations. It is possible to conduct
operations outside of normal FAA guidelines through a Certificate of Waiver or Authorization (COA).
For example, a COA would be necessary to fly in the dark before sunrise to obtain a baseline before
atmospheric boundary layer inversion, or to fly above 121.9 m for vertical profiles. A COA is obtained
by application to the FAA. The applicant must demonstrate that the operation can safely be conducted
under the terms of the COA, and will be allowed to operate outside normal FAA guidelines.

The European Aviation Safety Agency (EASA) is in the process of creating their own unified
standard for UASs. As of 5 April 2017, the first official draft pertaining to UASs regulation has been
published [59]. By the end of 2017 the proposal will be brought to the commission, it will be finalized
by mid-2018, and implemented in 2019. The EASA categorizes operations based on the particular risk
associated, and the type/size/performance of unmanned aircraft used. The regulations are dependent
on both the class of the operation and the UAS.

There are three classes of operations defined by the EASA: open, specific, and certified.
Open operations are defined as not needing prior approval of competent authority, and have little to
no risk. Open operation regulations are aimed towards the general public, and apply to all member
states of the European Union (EU). Regulations of open operations will not be explained in detail,
but it is advised to become familiar with the different subclasses of open operations (flying over people,
flying near people, and flying far from people) and classes of UASs (C0, C1, C2, C3, C4, and privately
built) [59].

Specific operations, due to the risk involved, must obtain flight authorization from competent
authorities. The EASA will issue standard scenarios for specific operations that the member states of
the EU can choose to adopt or change. Either way, member states shall designate a governing body for
specific operations (similar to the way the United States of America designates the FAA). Permission
for specific operations can be granted from the competent authorities by submitting a risk-assessment
analysis before each flight. However, the operator can authorize their own operations if they possess
a Light UAS Operator Certificate (LUC). As mentioned above, regulations can vary between member
states, so it is advised to go to the corresponding EU member state (if applicable) and enquire about their
regulations for specific operations with the goal of obtaining a LUC to authorize the operations needed.
Table 2 summarizes the regulations for unmanned operations of selected European countries [60].
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Table 2. Summary of UASs Regulations for Selected European Countries.

Country MTOM a Limit Categories License Height Limit

Austria 150 kg 5 kg; 25 kg More risky categories with an
increase of pilot qualification 150 m AGL e

Belgium 150 kg
<1 kg recreational;
<5 kg class 2;
>5 kg class 1

Yes for Class 1 (including LAPL
medical); Class 2: practical
examination with certificate
(no medical)

91 m AGL e

Czech Republic 150 kg
0.91 kg;
7 kg;
20 kg

UAS for professional use needs
authorization. Pilot passes practical
and theoretical tests

300 m AGL e; in CTR 100
m AGL e

Denmark >25 kg need
authorization

1A: <1.5 kg
1B: <7 kg
2: 7–25 kg
3: BVLO c

For commercial use in populated
areas, permission is needed.
Applicants need have an operations
handbook and pass a practical test

100 m

Finland 25 kg 7 kg over densely
populated areas No 150 m

France 150 kg
Captive RPAS d

and RPAS <2 kg,
<25 kg; and >25 kg

RPAS d >25 kg need a remote-pilot
license. For scenario S1, S2, and S3:
theoretical certificate, and practical
test. For scenario S4: theoretical
certificate + manned aviation license.

150 m; (50 m in scenarios
S2, RPAS d >2 kg)

Germany 25 kg <25 kg;
>25 kg

Theoretical and practical
requirements above 5 kg. 100 m

Ireland 150 kg 1, 5, 7, and 20 kg No, but theoretical and practical
requirements 120 m for <20 kg

Italy As per basic
regulation

0.3 kg;
2 kg;
25 kg

Yes, pilot certificate for VLOS b and
<25 kg, otherwise license. Medical
class LAPL/3.

150 m

Lithuania >25 kg need
registration

1. <300 g;
2. >300–25 kg;
3. >25 kg

Yes, requirements set up in conditions
for conducting commercial flights 122 m

Malta 150 kg No Medical Declaration 122 m

Netherlands 150 kg No Yes 120 m

Poland 150 kg 25 kg Certificate of qualification, including
medical for commercial pilots

Portugal
>25 kg need

authorization; toy
<1 kg

Toy <1 kg;
>25 kg with
authorization

Case by case, >25 kg 120 m; toy 30 m outside
controlled airspace

Slovenia 150 kg No Yes

Spain 150 kg
<2 kg;
<25 kg;
and >25 kg

<25 kg theoretical knowledge +
practical course on RPAS d + LAPL;
>25 kg pilot license

120 m

Sweden 150 kg

1A: 0–1.5 kg/max
150 J/VLOS b

1B: 1.5–7 kg/max
1000 J/VLOS
2: 7–150
kg/VLOS b

3: BVLOS c

Yes >7 kg 120 m

Switzerland 150 kg

Open: <30 kg, 100
m outside crowds
VLOS b;
Specific: Anything
else

Pilot skills in the total hazard and risk
assessment (GALLO) No limit (with GALLO)

United Kingdom 150 kg <20 kg;
>20–150 kg

>20 kg or BVLOSc; <20 kg VLOS b:
pilot competency assessment required
if requesting permission.

122 m (>7–20 kg); <7 kg
VLOS

a: MTOM = Maximum Take Off Mass, b: VLOS = Visual Line of Sight, c: BVLOS = Beyond VLOS, d: RPAS = Remotely
Piloted Aircraft System, e: AGL = Above Ground Level.

Lastly, certified operations are considered high risk and include large or complex UAS operating
continuously over open assemblies of people, or operating beyond visual line of sight in high
density airspace. Certified operations also include UASs that are used for transporting dangerous
goods or people. These operations are more closely governed by the laws of manned aircraft, and
require the certification of the operator and the aircraft, as well as the licensing of the flight crew.
Certified operations are outside the scope of this perspective and will not be discussed further.

There are many other countries to consider all of the developing legislation in depth (i.e., China,
Australia, Canada, etc.) in this perspective. Thus, if more information is needed, there are resources
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developed by the International Civil Aviation Organization (ICAO) that provides links to aviation
authorities worldwide. Specifics on unmanned aircraft regulations can be found therein [61,62].

7. Conclusions

Monitoring trace tropospheric gases with UASs is a promising methodology for atmospheric
chemistry applications. MAVEs, VTOL, and LASE aircrafts are the most practical UASs for trace
gas monitoring. Specifically, those UASs with wingspans under 3 m for payloads <5 kg are the
best compromise between cost and convenience for deploying sensors. These UASs offer altitude
capabilities of a few hundred meters with flight times ranging from 30 min to 2 h. Examples of how
these UASs can carry lightweight, low-power, cheap trace gas sensors have been provided. However,
further progress is needed to achieve the accurate quantification of a mixture of gases under variable
environmental conditions. The most expensive part of integrating analytical sensors into UASs is
also the most difficult to quantify, because time and investment for research and development of
these new analytical methods of gas detection are needed. Numerous hours, days, and months of
innovation in the laboratory and application in the flying field will need to be invested, which is costly
and nearly impossible to put a dollar amount for comparison to the cost of the individual components.
Future progress in this area will be possible when new instruments that are integrated into UASs are
developed, calibrated, and validated.
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Abstract: This paper discusses results of the CLOUD-MAP (Collaboration Leading Operational
UAS Development for Meteorology and Atmospheric Physics) project dedicated to developing,
fielding, and evaluating integrated small unmanned aircraft systems (sUAS) for enhanced
atmospheric physics measurements. The project team includes atmospheric scientists, meteorologists,
engineers, computer scientists, geographers, and chemists necessary to evaluate the needs and
develop the advanced sensing and imaging, robust autonomous navigation, enhanced data
communication, and data management capabilities required to use sUAS in atmospheric physics.
Annual integrated evaluation of the systems in coordinated field tests are being used to validate sensor
performance while integrated into various sUAS platforms. This paper focuses on aspects related
to atmospheric sampling of thermodynamic parameters with sUAS, specifically sensor integration
and calibration/validation, particularly as it relates to boundary layer profiling. Validation of sensor
output is performed by comparing measurements with known values, including instrumented
towers, radiosondes, and other validated sUAS platforms. Experiments to determine the impact of
sensor location and vehicle operation have been performed, with sensor aspiration a major factor.
Measurements are robust provided that instrument packages are properly mounted in locations that
provide adequate air flow and proper solar shielding.

Keywords: atmospheric boundary layer; unmanned aircraft; meteorological observation

1. Introduction

The availability of high-quality atmospheric measurements over extended spatial and temporal
domains provides unquestionable value to meteorological studies. In recent reports from the National
Research Council and instrumentation workshops it was stated that observing systems capable of
providing detailed profiles of temperature, moisture, and winds within the atmospheric boundary
layer (ABL) are needed to monitor the lower atmosphere and help determine the potential for severe
weather development [1,2]. Despite the need for such data, these measurements are not necessarily
easy to acquire, especially in the ABL. Remote sensing instruments on satellites or in situ probes
carried by balloons or manned aircraft are typically relied upon to meet this need. Figure 1 shows an
altitude-time depiction of daily ABL evolution (after [3,4]), with the addition of twice-a-day weather
balloons to 30.5 km and Mesonet towers at 10 m. An alternative to these approaches is the acquisition
of atmospheric data through the use of highly capable unmanned aircraft systems (UAS), such as
multirotor vertical profiles to low or high altitudes in the ABL, and longer-flight fixed-wing UAS flights
following various trajectories. In addition to providing better understanding of physical processes,
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these systems can provide better initialization data for numerical weather prediction (NWP) models,
reducing the level of uncertainty and need for ensemble simulations [5,6]. However while promising,
these technologies need to be developed, matured, and validated [7].

A multidisciplinary team of researchers at four universities, Oklahoma State University (OSU),
the University of Oklahoma (OU), the University of Nebraska-Lincoln (UNL), and the University of
Kentucky (UK), were among those who recognized the emerging opportunity of deploying sUAS
for atmospheric boundary layer studies, along with the potential benefit of understanding severe
storm formation among other compelling problems in atmospheric science. Operating under the
project name of CLOUD-MAP (Collaboration Leading Operational UAS Development for Meteorology
and Atmospheric Physics), this team of researchers consists of atmospheric scientists, meteorologists,
engineers, computer scientists, geographers, and chemists, capable of developing the advanced sensing
and imaging, robust autonomous navigation, enhanced data communication, and data management
capabilities required to develop and demonstrate the potential role of sUAS in atmospheric research.

Figure 1. Time-height depiction of structure of the atmospheric boundary layer over one diurnal cycle.
Corresponding traces of various in situ sensor platforms are also shown, along with notations of typical
FAA operations authorizations.

CLOUD-MAP Multidisciplinary Collaborative Research

The primary technical goal is to develop highly reliable and robust platforms that can routinely
perform regular atmospheric measurements in a variety of weather conditions, including day or
night operation and during hazardous weather. Waivers or Certificates of Authorization (COAs)
are necessary for these operations as required by the FAA; all operations discussed in this study
were conducted in accordance with current FAA regulations. In particular, observations and data
collection will focus on the atmospheric boundary layer. The importance of accurate data in this region
is well understood (e.g., [8]). Due to the complex interactions with terrain and sources of energy,
the ABL region is a major factor in the development of many meteorological phenomena, not the
least of which include phenomena such as convection initiation and tornado-genesis. The project
leverages key expertise across the institutions, including unmanned aircraft systems, atmospheric
measurement, robotics and autonomous control, and weather analysis and modeling. Each of these
areas is critical for the research to succeed. Basic questions being addressed include: How can local
data acquired by sUAS be used to better understand larger weather phenomena? Can sUAS be
used to measure large-scale patterns and trends found in the atmosphere? What advancements in
operational requirements are necessary to provide routine capabilities and confidence to use sUAS as a
meteorological diagnostic tool? How are these measurements best integrated into current and future
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forecasting models? The interdisciplinary and inter-institutional team was assembled based on these
questions and project goals.

The nature of this research challenge necessitated integration across disciplines, so it was also
necessary to understand and incorporate approaches for successful cross-disciplinary collaborative
research, referred to as team science, to increase the team’s capacity to achieve its objectives [9].
With more than 10 researchers working together, the CLOUD-MAP team is considered to be a “larger
group” [10] so a framework for collaboration was established including annual team flight campaigns
and an intentional research task structure comprised of smaller CLOUD-MAP collaboration subgroups,
each involving researchers from multiple universities. Therefore, in addition to science and technology
outcomes, growth of team science capacity was envisioned and will be evaluated.

Table 2 summarizes the envisioned four-year progression of science, technology, community
interaction, annual flight campaigns, and researcher collaboration. Science, technology, and community
interaction growth can be seen in increasing numbers of archival publications and dissemination
presentations. Campaign collaboration goals for each year are analogous to the final stages of
Harden’s experiential educational model that presents growth of interdisciplinary mastery through
the combination of information with experience, and culminating with the following: understanding
complimentary ideas, multidisciplinary decision-making, recognizing interdisciplinary commonalities,
and ultimately creating trans-disciplinary meaning [11]. Collaboration can also be measured by
co-authored archival publications.

Table 1. Summary of Annual CLOUD-MAP Goals and Results.

CLOUD-MAP
Year 1
2015–2016

Year 2
2016–2017

Year 3
2017–2018

Year 4
2019–2019

Science Science tasks Science tasks, plus
2017 Total Eclipse

Science tasks, plus
science question

Science tasks, plus science
question

Technology Sensors/Platforms Sensors/platforms,
plus 3–5 formation

Sensors/platforms, plus
>10 formation

Sensors/platforms, plus
3–5 adaptive flight control

Community
Interaction

Perception focus
groups, plus outreach

Perception, plus
severe-weather risk,
outreach, PR

Perception, plus risk,
outreach, PR Workshop and outreach

Team-Science
Development Complimentary Multidisciplinary Interdisciplinary Transdisciplinary

Flights: 241
Flight hours: 25

Flights: >500
Flight hours: >70

Collaboration
Publications

Multidisciplinary
conference: 5

Multidisciplinary
conference: 6

Multi-university
conference: 1

Multi-university
conference: 2

Multi-university
conference: 2

Multidisciplinary,
multi-university journal: 3

Members of the CLOUD-MAP team had prior experience designing, building, and flight-testing
sUAS platforms, as well as in the development of sensors, algorithms, and communication systems.
These were matured and integrated into more complex systems and swarms. Different sensor suites
and multiple platform types including custom built and commercial off-the-shelf models of both
rotary-wing aircraft and fixed-wing platforms are seen in Figure 2, which depicts several of the sUAS
platforms. Details can be found on the CLOUD-MAP web-site (www.cloud-map.org). These systems
are equipped with high-precision and fast-response atmospheric sensors to focus on the observation of
boundary layer thermodynamic (viz., pressure, temperature, and humidity (PTH)) and kinematic (viz.,
wind speed, direction, and turbulence levels) parameters necessary for models. How to best utilize
data to determine atmospheric stability indices and the likelihood for development of severe weather
then becomes the next question. Atmospheric sensors adapted for use on sUAS rotary-wing platforms
that fly vertical profiling trajectories are often different than those used on fixed-wing aircraft. Both are
compared as to their suitability for carrying a variety of sensors for the study of ABL properties.
Because various properties of the atmosphere are being sensed, the UAS aircraft, its movements,
out-gassing, thermal profile, rotor down wash, wake, and other properties have the potential to affect
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sensor data. This study has objectives to determine the proper aircraft, sensor position, and sensor
suite to use in further research with the ultimate goal of being able to use a heterogeneous system of
autonomous vehicles to map critical features of the ABL through both space and time, allowing for a
better understanding of this critical set of related atmospheric phenomena.

Figure 2. Representative systems developed as part of the CLOUD-MAP project.

Four specific objectives are being addressed in CLOUD-MAP related to program governance,
atmospheric measurement and sensing, unmanned systems development and operations, and public
policy. In particular, they are listed as (1) Develop a strong mentoring program and intellectual center
of gravity in the area of UAS for weather, and develop joint efforts for future funding; (2) Create and
demonstrate UAS capabilities needed to support UAS operating in conditions that may be present
in atmospheric sensing , including the sensing, planning, asset management, learning, control and
communications technologies; (3) Develop and demonstrate coordinated control and collaboration
between autonomous air vehicles; and (4) Conduct UAS-themed outreach in support of NSF’s
technology education and workforce development. These objectives have been developed to flow
from one to another and are further broken down into targeted tasks. For the most part, each targeted
task is led by a researcher, who is responsible for successfully organizing and implementing the
research. An executive committee consisting of the lead investigator from each institution is facilitating
collaborations within and between institutional researchers. However, some tasks are overarching and
extend across all aspects of the CLOUD-MAP effort. This includes the issues discussed herein.

This paper focuses on aspects related to atmospheric sampling of thermodynamic parameters
with sUAS, boundary layer profiling, specifically sensor integration and calibration/validation.

2. CLOUD-MAP Flight Campaign

2.1. 2016 and 2017 CLOUD-MAP Flight Campaign Overview

Three Oklahoma campaign flight operational areas include the OSU Unmanned Aircraft Flight
Station (UAFS), the Marena Mesonet site, and the Department of Energy Southern Great Plains (SGP)
Atmospheric Radiation Measurement (ARM) site. At this initial stage of technology development,

24



Atmosphere 2018, 9, 252

comparison of flight measurements to “ground truth” is essential and is a primary objective of the 2017
sampling campaign. A sample of the UAVs and missions flown are shown in Figures 2 and 3,
respectively. In some cases, custom vehicle solutions, such as OU’s CopterSonde and OSU’s
MARIA, proved the best option [12]. However, COTS (commercial off-the-shelf) options with minor
modifications were the primary platform of choice.

The OSU UAFS allowed testing under controlled conditions and provided operators with network,
power, runway, and hangar access. This first stop in the campaign was used to evaluate platforms,
sensors, communication systems, and protocols prior to moving to the field sites. The Marena Mesonet,
in addition to providing a dedicated Mesonet tower, also houses in-ground agricultural sensors, viz.
the Marena Oklahoma In Situ Sensor Testbed (MOISST). MOISST was established in 2010 to evaluate
and compare existing and emerging in situ and proximal sensing technologies for soil moisture
monitoring [13]. The DOE ARM SGP site consists of in situ and remote-sensing instrument clusters
arrayed across approximately 143,000 km2 in north-central Oklahoma and is the largest and most
extensive climate research field site in the world, making it an invaluable resource for CLOUD-MAP
researchers [14]. This site has a unique suite of atmospheric measurements useful for comparison
with measurements from UAS platform sensors. In 2016, the CLOUD-MAP Year-1 campaign flight
objectives focused on operations to collect thermodynamic, air chemistry, and wind data to compare
with measurements from surface stations within the Oklahoma Mesonet and team-owned stationary
and mobile sensor towers; see Figure 4. Mesonet measurements are available in general with an update
time of 5 min [15,16].

Figure 3. Mission concepts of operations conducted as part of the joint field campaign.
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Figure 4. CLOUD-MAP Year 1 flight campaign operations.

The 2016 campaign group photo includes 58 participants (see Figure 5a). OSU operated fixed-wing
and vertical takeoff and landing (VTOL) platforms with a variety of sensors supporting multiple
CLOUD-MAP tasks. OU flew VTOL platforms acquiring frequent repeated atmospheric measurements
starting before dawn to capture the onset and development of the daily ABL cycle. UK flew
three fixed-wing aircraft for chemical and atmospheric turbulence sensing, along with various
rotorcraft supporting a focus on operations to measure soil conditions, to evaluate integration of
spatially distributed data from moving sensor platforms, and for multi-vehicle UAS operations.
Soil measurements were included to examine new remote sensing systems for early detection of
water stress. UNL flew prescribed rotorcraft flight patterns to evaluate novel identification algorithms
and dropsonde deployment and recovery systems, and also deployed a new tracker/scout vehicle
equipped as a mobile mesonet as a reference system. The overall campaign leveraged the infrastructure
of these sites to demonstrate the potential of extending the conventional surface Mesonet concept to
include vertical profiling.

(a)

(b)

Figure 5. CLOUD-MAP CLOUD-MAP flight campaign team participants and vehicles in (a) 2016 and
(b) 2017.
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Flight totals for the campaign indicated an unexpectedly successful first year. The 2016 3-day
total flight time exceeded 25 h for 241 total flights, comprised of 187 rotary and 54 fixed-wing flights.
Indicating the increased capabilities in a year’s span, the 2017 3-day flight numbers included more
than 500 individual flights of a dozen different systems for cumulative total coordinated flight hours
of approximately 70 h. The 2017 team with 71 participants is seen in Figure 5b.

Data evaluation, reduction and ABL characterization analyses are conducted by the various
sub-task contributors (See Figure 6). Witte, for example, developed a fixed-wing sUAS sensing
platform and data reduction to measure and characterize ABL turbulence and validated its performance
in comparison to measurements from vertical profiles of a rotary-wing platform, and a portable
tower-based sonic anemometer [17].

Temperature profile comparisons between fixed-wing and rotorcraft platforms were also possible.
Potential temperature profiles were determined at nineteen times throughout the boundary-layer
evolution on 28 June 2016. See Figure 6. Data from rotorcraft vertical profiles to 300 m and fixed-wing
profiling circular trajectories at 20 m altitude intervals from 40 to 120 m coincided for ten measurement
times [18]. Please note that the fixed wing aircraft observe a larger temperature variation but are also
orbiting around a fixed point rather than taking measurements at a given horizontal position. Due to
observed variations, questions may arise as the accuracy or “truth” of the data when compared to each
other. While this has not been fully addressed by this study, data comparisons have been provided
elsewhere in a first attempt to address this concern [19].

Figure 6. Comparison of potential temperature profiles measured by rotorcraft and fixed wing aircraft
up to 300 m and 133 m, respectively. Times listed on top of each figure indicate flight time for rotorcraft,
times below that indicate flight time of fixed wing aircraft. Points indicate measurement taken at a given
altitude while error bars provide corresponding range of temperature variation. Profiles measured on
June in Stillwater Oklahoma on 28 June 2016 from 05:43 a.m. to 17:20 p.m. [18].
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2.2. Operational Considerations and Barriers to Adoption

A significant portion of this research has focused on barriers to successful unmanned technology
adoption by weather services, meteorologists, and atmospheric scientists. This project addresses
several key barriers, including system selection, observational confidence, tactical deployment,
training, and dealing with the rapid evolution of technology and regulations. Recommendations
from previous efforts provide guidelines for field scientists to use as they consider adopting sUAS into
their operations [20], although the rapidly-changing technology and regulatory environment presents
a challenge to research groups that do not have UAS operations managers on staff.

While many scientists have already started using sUAS, current technology may not yet
be adequate for reliable scientific support. The limitations of current autonomous capabilities,
ease of control and interface effectiveness, and lack of useful information provided to the research
team in a timely manner all affect adoption [21]. Barriers to large-scale use of sUAS stem from
lack of sophistication, reliability, safety and flexibility as compared to currently fielded military
systems that require large investments in capital and training unavailable to most researchers.
Many emerging COTS systems have been developed from the hobbyist realm and do not have
robust and well-engineered subsystems, making them unsuitable for widespread field applications
and reliable, repeatable measurements. This is changing as the commercial sector expands, but as with
any evolving technology, potential users will need solid information from unbiased sources.

The vast number of systems on the market today and the frequently inflated claims for system
performance impact system selection and development of appropriate operations. It is imperative
that realistic operational evaluations be conducted and accurate system requirements be established.
By using simulations based on actual measurements of sUAS flight and sensor performance within
real environments of winds, temperatures, precipitation, terrain, etc., the resulting outcomes will be
reasonable representations of field performance. To ensure this, key outcomes have been tested in
field conditions in live scenario exercise experiments. Additional considerations include night-time
operation, precipitation effects, high- and low-temperature reliability, and deployment time.

Another barrier to sUAS adoption are the costs of purchasing systems and training personnel.
These may be more than many researchers can justify without strong supporting evidence. Two items
should be noted. The research discussed herein has been examining the range of existing (off-the-shelf)
aircraft and sensors, and assess the capabilities/costs of several systems, from lower to higher priced.
System prices are expected to fall over the coming years so more researchers should be able to afford
them. Regardless, logistical footprints and associated costs are still high for even simple measurements,
and higher if dedicated staff are required for operations management.

Finally, it is important to note the current issues with unmanned aircraft interfering with other
aircraft operations, particularly in severe weather and other emergency response operations such
as gas releases where airborne measurements may be of interest. The irresponsible flight of sUAS
is a challenge across the aviation community with pilots, air traffic controllers and others noting
close encounters on a frequent basis. While it is likely that there will be a collision in the near future,
it is hoped the consequences will not be catastrophic. There are multiple research and development
efforts underway to provide solutions for UAV operations in the National Airspace System (NAS),
particularly as related to routine weather observations with sUAS.

3. Sensor Integration, Calibration, and Validation

3.1. Determining Required Sensor Response

Calibration and validation of sensors mounted onboard sUAS is an important part of ensuring
the robustness of the observations collected. While the required accuracy specifications will depend
on the intended use of the observations, the methods adopted for calibration and validation (cal-val)
should be universal. The focus of the cal-val exercises conducted as part of the CLOUD-MAP field
campaigns was on in situ sensors. Observation accuracy on mobile platforms will depend on sensor
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performance, sensor siting, platform motion/attitude, and the environment within which observations
are collected. While several different sensors for a given measurement type (e.g., temperature) were
tested, the aim of CLOUD-MAP cal-val exercises was not to provide guidance across the spectrum of
sensors but was instead focused on evaluating accuracy as a function siting, platform motion/attitude,
and environment.

The importance of sensor response for characterizing the ABL is considered by addressing the
question, “what sensor response is required to represent key meteorological phenomena germane to
the accurate prediction of important atmospheric phenomena, such as convection initiation (CI)”?
Large-eddy simulations (LES) of a convective boundary layer and airmass boundary (Figure 7) were
developed using Cloud Model 1 (CM1) for the simulation of sUAS data collection [22]. CM1 is
a three-dimensional, non-hydrostatic, non-linear, time-dependent numerical model designed for
idealized studies of atmospheric phenomena and can be used to generate simulated data useful in
UAS sensor evaluation [23,24]. Specifically, thermodynamic state variables developed using LES serve
as the “nature run” for offline aircraft models that represent the flight of sUAS profiling the ABL and
transecting airmass boundaries and resulting horizontal and vertical inhomogeneities. This allows
experimenters to evaluate the surface inhomogeneity effects and resulting advection, as was done
in the BLLAST experiments, for example [25]. The experiment parameter space also includes air
speed (ascent/descent rates) for fixed-wing and rotary-wing aircraft since the large gradients that
characterize these phenomena might be better represented at lower air speed (ascent/descent rates).
However, when instantaneous representation of a rapidly evolving phenomenon is required, slower air
speeds may ultimately degrade the accuracy of in situ observations.

Figure 7. LES solution of a convective boundary layer (a) and airmass boundary (b).

Once data are available from UAS deployments, these data will be assimilated into NWP models
along with all other available weather data to determine the extent of improvement to the model
forecasts and the longevity of the impact with a focus on high impact weather events depending on the
season and location. These types of modeling studies are known as Observing Simulation Experiments
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(OSEs). Likewise, Observational System Simulation Experiments (OSSEs) are used to assess the impacts
of possible measurements on NWP forecasts before the measurements are available [26]. Using OSSEs,
forecasters will be able to investigate the optimal observational requirements and impact for a UAS
deployment. The design could include such parameters as number and spatial distribution of weather
UAS observations, cadence of the measurements, maximum height of operations, and vertical sampling
resolution, for example. Additionally, knowledge of the spatial scales over which a given phenomenon
is correlated can provide insight into coherent structures within the flow, which in turn can provide
insight into how we can most efficiently sample the environment. However, the forces influencing the
spatial variation of a particular atmospheric property combined with the non-linearity of the governing
equations coupled with the sensor response give erroneous results. Variogram analysis has shown to
provide insight into the distance over which spatial autocorrelation dissipates and coherence vanishes,
providing a measure of the optimal spatial separation between measurements and observations of
horizontal inhomogeneities. Results suggest that the multiple scale domains present in the ABL can be
resolved using sUAS [19].

3.2. Observed Sensor Response

ABL measurements and convection initiation (CI) forecasts depend on accurate characterization
of the thermodynamics and wind fields within the ABL. NWP model insight on ABL structure is
prone to well-documented errors that could theoretically be mitigated with supplemental observations.
UAS are well-suited to this task but large gradients in temperature and moisture associated with
preexisting airmass boundaries (which often serve as the loci for CI), near-surface sources of potential
energy (associated with spatially-variable surface fluxes), and top-of-the-ABL capping inversions, must
be faithfully represented. As such, UAS-mounted instruments need sufficiently fast sensor responses,
as shown in Table 2 [21].

Table 2. Desired meteorological sensor specifications for meteorological observations.

Meteorological Variables and Accuracies Sensor Response Time
Temperature ±0.2 ◦C Time <5 s (Preferably < 1 s)

Relative Humidity ±5.0% Operational Environmental Conditions
Pressure ±1.0 hPa Temperature −30–40 ◦C

Wind Speed ±0.5 m/s Relative Humidity 0–100%
Wind Direction ±5 Degrees Azimuth Wind Speed 0–45 m/s

One example of the impact of platform motion on measurement accuracy was exposed through
CLOUD-MAP cal-val activities, and is shown in Figure 8 where an early-morning boundary layer
profile is captured using a COTS sensor (iMet XQ) mounted on a 3DR Solo multi-rotor sUAS [27].
Note the variations in the observations are primarily due to sensor aspiration issues since the aspiration
changes upon ascent and descent and the sensor response time is not fast enough to pick up the
changing values in temperature and humidity. This illustrates issues related to not only sensor
integration and calibration but of operational deployment as well as calibration not only of the sensors
themselves but of the fully integrated sUAS as well. These results have informed changes to sensor
placement that were inspirations for the cal-val activities discussed below [28].
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Figure 8. Sample profile to 1000 m showing impact of sensor placement and vehicle ascent/descent
rate on observation confidence at the Marena mesonet on the morning of 18 April 2017.

As part of our efforts to establish guidance for the system capabilities required to maximize
the impact of UAS on modeling efforts, we developed a simple experiment for execution during the
summer 2017 CLOUD-MAP field deployment in Oklahoma. Specific aims of this experiment include
(i) evaluation of the sensor response characteristics of a broad suite of temperature and humidity
sensors; and (ii) evaluation of the robustness of several aspirating strategies on rotary-wing aircraft.
The experiments were conducted in the OSU Unmanned Systems Research Institute high bay in
Stillwater, OK. Pseudo-step-function changes in temperature and moisture were created by moving
instruments (both on and off parent platforms) from inside the climate-controlled bay to the ambient
environment outside. A similar experiment design has been adopted in the past but this is the first
time that UAS-borne instruments were to be tested in this manner.

Two sets of tests were conducted. The first set of tests (toward aim (i) listed above) involve the
placement of many sensors on a single cart that will be moved across the temperature/humidity change.
This test will enable valuable benchmark intercomparisons of all instruments involved. The second set
of tests involve full flight tests of rotary-wing sUAS across the step-change.

A particular focus of CLOUD-MAP cal-val activities was on errors resulting from the temporal
response of temperature and relative humidity sensors. These errors will depend on all three system
characteristics and become particularly significant when data collection is directed towards phenomena
characterized by rapid evolution of the measured quantity along the flow-relative trajectory of the
platform. For the mesoscale to micro-scale boundary-layer phenomena that are often targeted by sUAS
(e.g., convective thermals, well-mixed boundary layers, airmass boundaries), measurement response
times need to be on the order of 1 s or less. Sensors mounted where aspiration by environmental air
is insufficient may experience significant errors due to slow sensor response. Moreover, if siting to
maximize aspiration exposes sensors to external sources of radiation (e.g., insufficient solar shielding)
or heat (e.g., engines, electronics), biases may emerge.

Additional flights executed during CLOUD-MAP cal-val activities aimed to test the impact of
platform orientation on measurement accuracy. These experiments involved a temperature/RH sensor
housing mounted above the rotor of a University of Nebraska multi-rotor sUAS (shown in Figures 2).
Sensors within the housing are aspirated via flow generated by the pressure difference induced
between the inlet and exhaust of the housing. Vertical profiles across a well-mixed boundary layer
manifested a difference between observations from the sensor within the housing (upwash sensor) and
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a sensor mounted within the downwash and outside of a housing (direct downwash). This difference
depended on whether the housing inlet was pointed downwind (Figure 9a) or upwind (Figure 9b).
Differences for the downwind-pointing inlet are consistent with insufficient aspiration of the upwash
sensor (within the housing): temperatures at the top of ascending profiles are too warm and at the
bottom of descending profiles are too cold (Figure 9a)). In contrast, the upwind-directed inlet produced
no apparent aspiration issues, though the direct downwash sensor appeared to experience some solar
exposure (Figure 9b).

Figure 9. Difference between the test cases with (a) downwind and (b) upwind inlet orientations.

To afford more control of the environmental conditions that could expose errors resulting from
sensor response issues, CLOUD-MAP cal-val exercises also included the operation of sUAS systems
across a thermodynamic “shock” with known quantities on either side (Figure 10). In these experiments,
the shock was created by opening the overhead door of one of Oklahoma State University’s air
conditioned high bays in the middle of a summer day. The resulting shock was characterized
by a sudden change in temperature and moisture content over a small distance of less than 1 m,
which translated to less than 1 s of sensor measurement time. Calibrated and validated mobile mesonet
platforms were present on both sides of the shock to serve as references. In contrast to sensor oil baths
which can be used to evaluate sensor performance, the experiments enabled evaluation of the impact
of sensor siting and platform motion/attitude as well. The experiments were modeled off of those
used previously to evaluate sensor response characteristics associated with the u-tube sensor shield
for mobile mesonets [29].

Figure 10. Validation experiment (a) arrangement and (b) sample test. Upstream and downstream
conditions were carefully monitored and the thermodynamic shock created by rapidly opening the
door prior to system test.
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Multiple transits across the shock were performed during the exercise with the sUAS
approximately 1–2 m off of the ground. An example of temperature from a fast response sensor
(Figure 11a) along with temperature (Figure 11b) and relative humidity (Figure 11c) from an iMet
sensor package mounted on a multi-rotor sUAS flown across the shock illustrates the magnitude of
the pseudo discontinuity. The results also illustrate the impact of sensor response errors on relative
humidity: the spike in relative humidity (Figure 11c) is likely a consequence of the damped temperature
response relative to the more rapid response of the sensor to changes in moisture content [30]. Thus,
across a shock characterized by increasing temperature and increasing moisture but decreasing
relative humidity, the slower temperature response yields an anomalously cool temperature and thus
anomalously high relative humidity. Correcting the relative humidity following previous experiments
not only removes the spike (Figure 11d) but also brings the relative humidity on either side of the shock
into better agreement with the reference values [31]. Please note that the decrease in relative humidity
and increase in temperature between 21:31 p.m. and 21:32 p.m. is a consequence of rotor-driven mixing
of the initially stratified air within the bay.

Additionally, tests were conducted at the University of Oklahoma in a controlled chamber
to evaluate the optimal placement of temperature sensors on a rotary-wing aircraft, namely the
OU CopterSonde. Typically, thermistors require aspiration to make representative measurements of
the atmosphere. A collection of thermistors along with a wind probe were mounted to a linear actuator
arm. The actuator arm was configured such that the sensors would travel underneath the platform into
and out of the propeller wash. The actuator arm was displaced horizontally underneath the platform
while the motors were throttled to 50%, yielding a time series of temperature and wind speed which
could be compared to temperatures being collected in the ambient environment. Results indicate
that temperatures may be biased on the order of 0.5–1.0 ◦C and vary appreciably without aspiration,
sensors placed close to the tips of the rotors may experience biases due to frictional and compressional
heating, and sensors in proximity to motors may experience biases approaching 1 ◦C. From these trials,
it has been determined that sensor placement underneath a propeller on a rotary wing sUAS a distance
of one quarter the length of the propeller from the tip is most likely to be minimally impacted from
influences of motor, compressional, and frictional heating while still maintaining adequate airflow [28].
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Figure 11. Calibration-validation experiment results. Reference conditions are denoted in blue.

4. Conclusions

sUAS are quickly becoming a viable option for routine and accurate observations in the ABL,
albeit with caveats. The aim of flying robust, lightweight atmospheric sensors on UAS to monitor
atmospheric conditions including PTH and wind speed, air quality, investigate pollution sources,
and determine real-world exposures to gases of concern near or at ground level has been demonstrated
as a primary goal of the CLOUD-MAP flight campaigns. Measurements of this type can contribute a
detailed inventory for the profile level of thermodynamic and kinematic parameters, trace gases in the
lower troposphere. Data collected onboard UAS during all flights are paired with GPS data to build
up maps of conditions in the ABL.

A wide range of atmospheric science applications can benefit from sUAS. Several these applications
serve as the focus of the seven CLOUD-MAP science themes. Under each theme, end-to-end
research is being executed that advances basic understanding, identifies open questions and testable
hypotheses that emerge from this basic research, defines the sUAS design required to answer these open
questions, and begins to evaluate the concept of operations necessary to use sUAS to enable discovery.
One example of this end-to-end approach can be illustrated by the convection initiation (CI) component
of CLOUD-MAP. In this component, basic research is underway to understand the multi-scale
interactions that lead to the initiation of deep convection. For example, CLOUD-MAP-supported
research has revealed that, in the vicinity of airmass boundaries, meso-beta-scale diurnal modification
of the ABL can manifest in meso-gamma-scale regions that are thermodynamically favorable for
CI [32]. Moreover, even absent diurnal evolution to the ABL, the vertical profile of winds (even when
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exhibiting mesoscale homogeneity) can interact with airmass boundaries to produce micro-alpha- to
meso-gamma-scale heterogeneities that can be kinematically favorable for CI [33]. These results, along
with a growing body of primary research on CI highlight the need for high-fidelity observations of the
“rapidly” evolving thermodynamic and kinematic fields around airmass boundaries. The configuration
of sUAS required to realize these high-fidelity observations of ABL both with and without airmass
boundaries has been the focus of additional work supported by CLOUD-MAP [34]. Further work has
explored how sensor placement on multi-rotor aircraft impacts measurement accuracy [35]. With a
clearer picture of open questions and required system configuration, plans are underway to evaluate
the concept of operations for field research focused on CI, e.g., Lower Atmospheric Process Studies at
Elevation—a Remotely-piloted Aircraft Team Experiment—LAPSE-RATE – a field campaign scheduled
for July 2018 in Colorado coordinated by the International Society for Atmospheric Research Using
Remotely-Piloted Aircraft (ISARRA). ding of the environmental conditions that support or inhibit CI
along with optimized system configuration are leading to an improved concept of operations for the
distributed and targeted surveillance of the atmosphere for improved CI prediction.
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Abstract: We describe a set of methods for locating and quantifying natural gas leaks using a small
unmanned aerial system equipped with a path-integrated methane sensor. The algorithms are
developed as part of a system to enable the continuous monitoring of methane, supported by a
series of over 200 methane release trials covering 51 release location and flow rate combinations.
The system was found throughout the trials to reliably distinguish between cases with and without
a methane release down to 2 standard cubic feet per hour (0.011 g/s). Among several methods
evaluated for horizontal localization, the location corresponding to the maximum path-integrated
methane reading performed best with a mean absolute error of 1.2 m if the results from several flights
are spatially averaged. Additionally, a method of rotating the data around the estimated leak location
according to the wind is developed, with the leak magnitude calculated from the average crosswind
integrated flux in the region near the source location. The system is initially applied at the well pad
scale (100–1000 m2 area). Validation of these methods is presented including tests with unknown
leak locations. Sources of error, including GPS uncertainty, meteorological variables, data averaging,
and flight pattern coverage, are discussed. The techniques described here are important for surveys
of small facilities where the scales for dispersion-based approaches are not readily applicable.

Keywords: source estimation; methane emissions; natural gas; leak surveys; inverse emissions;
MONITOR; UAV; LDAR

1. Introduction

The oil and gas industry is one of the major methane source sectors, contributing an estimated
24% of global anthropogenic emissions [1]. The industry contains a wide network of pressurized
equipment which is inherently prone to the risk of leaks. Evidence points to growing U.S. oil and gas
methane emissions [2] driven by the significant increase in U.S. production in recent years. Natural gas
systems contain a range of leaks with magnitudes ranging from low levels to disproportionally high.
There is evidence that high-emitting sites have a stochastic nature [3], making it difficult to know where
to mitigate without continuous monitoring. Additionally, system-wide mitigation of the majority of
source emission levels is beneficial in addition to reducing super-emitters [4]. Both stochastic and more
persistent leaks point to the need for continuous monitoring systems to provide operators data they
can reliably act on as part of a leak detection and repair (LDAR) program.
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There is considerable awareness and interest in mitigating methane from natural gas, with U.S.
leak rates of 2.3% of total production [5]. In the past, the industry has been successful in accomplishing
voluntary reductions [6]. However, there is a significant technology gap in terms of monitoring systems
to effectively detect leaks when they occur, locate them autonomously with the accuracy needed for a
repair crew to find the leak, and quantify the leak rate to determine the priority for repair. The current
standard for detecting and locating leaks is to manually survey equipment at close-range using infrared
cameras with trained operators. If used farther away, the method’s sensitivity depends on distance,
temperature, thermal background, and wind velocity [7], which are variable in real-world conditions.
Screening individual components by measuring local concentration is also common for locating leaks
and ranking their severity. A more accurate measurement can be obtained by following up screening
using a Hi Flow sampler. Overall, the process is expensive, often insensitive, and slow to detect leaks.
Methods that do not require human intervention could help reduce cost considerably and provide
continuous measurements rather than being confined to individual campaigns.

Atmospheric sampling methods are capable of both quantifying and locating sources and
encompass a wide variety of techniques depending on the application [8], often using a fast laser
sensor and a wind measurement as the data source. Research methods so far have mainly focused on
use during field campaigns and have significant tradeoffs between accuracy, speed, and applicable
scale. Methods combining wind information with an inverse plume model have been demonstrated
on aircraft [9], vehicles [10,11], and unmanned aerial systems [12] with data often collected at some
distance downwind. Optical remote sensing is another demonstrated technique typically done at the
fenceline [13]. All of these methods have relatively high quantification uncertainties and have not been
used to localize at single meter scales. Small unmanned aerial systems (sUAS) are attractive both for
their automation capability and because they can generate high resolution measurements in the direct
vicinity of a source. One study shows infrared camera-equipped drones compare favorably in terms
of lowest cost expenditure [14]. However, methods need to be developed to handle the unique data
generated with a sUAS and then validate that the system works in a variety of conditions.

This paper is part of a study developing a sUAS-based methane monitoring system. An upcoming
work [15] describes the laser-based methane sensor, sUAS, and flight pattern development in more
detail. Here, we describe and validate methods for methane source localization and additional methods
besides mass balance [12] for quantification. We investigate steady, single leaks at the well pad scale,
and aim for an algorithm that locates to ~1 m, has few false positives in detecting leaks, and quantifies
leaks with reasonable accuracy. Our approach focuses on simple, data-driven algorithms that can be
used operationally and which leverage the dense measurements that a sUAS can obtain. For leak
localization, we test using simple wind back-trajectories and alternatively using the location of methane
maximum. For leak quantification, we test a correlation-based method and a modified mass balance
approach. Finally, a skewness algorithm is introduced for refined leak detection.

2. Datasets and Procedures

The measurement system used, in brief, was based on a new version of the Remote Methane
Leak Detector (RMLD) [16,17] with miniaturized optics and electronics. The RMLD is a sensitive and
gas-specific methane sensor based on infrared backscatter tunable diode laser absorption spectroscopy
(b-TDLAS). It measures path-integrated methane concentrations and was equipped facing downwards
on a small quadrotor, together forming the RMLD-UAV [15]. Data presented in this paper were
obtained during three controlled release field experiments. First, early testing was conducted on a
9.2 m diameter rotating boom platform over gravel (19 May 2016), at a site in Hitchcock, TX. Second,
a series of releases with randomly chosen leak rates and locations (05–19 June 2017) was conducted over
grass at the same site. Finally, preliminary testing (25–26 May 2017) and a blind test (24–28 July 2017)
were conducted at the Methane Emissions Technology Evaluation Center (METEC) near Fort Collins,
Colorado. Wind measurements were obtained with a Gill WindSonic 2D sonic anemometer mounted
on the ground at a height of 81 cm, typically near the corner of each site.
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At the Texas site, controlled releases used 99.5% pure methane (Airgas CP300). Flows were
allowed to stabilize and then metered using a Dwyer RMB-52 flow meter. To account for the gas
being methane instead of air, flow rates were corrected by a factor of

√
(1/S.G.) = 1.34, where S.G. is

a representative specific gravity of CH4 = 0.5537. At METEC, natural gas from a pipeline was used
with the methane fraction (0.84–0.86) measured by gas chromatography by the METEC operators.
Flow rates were controlled with a set of orifices. METEC contains three separate pads, designated here
as Pad 1, Pad 2, and Pad 3. Pads 1 and 2 both contain a wellhead, separator, and tank. Pad 3 was split
into three sub-pads, containing three wellheads, two separators, and two tanks, respectively.

An important aspect of the tests is how release locations were recorded along with how the
RMLD measurement was geolocated. For the rotating boom, the sensor location was calculated based
on the boom arm radius and speed of rotation. The release location was recorded relative to the
center of the boom platform. Both are expected to be accurate within ~0.3 m. For the RMLD-UAV
measurements, location was based on the quadrotor GPS. A low-cost GPS receiver was used, since a
high accuracy unit would be the dominant cost compared to the other components of the sUAS
platform [18]. While GPS often has errors <1 m, this depends on multiple factors and can be much
higher for individual measurements. Therefore, a grid system was used to record the release location
for both Texas site and METEC. The RMLD-UAV starting position was recorded relative to the corner
of the grid, which offsets any GPS bias during that flight. The uncertainty implications for each case
are described in more detail in Section 4.3.

An example of the data obtained during a controlled release trial at the Texas site is shown
in Figure 1, with the RMLD-UAV flying at a constant altitude of 6.5 m. There are several distinct
peaks of methane significantly above the background seen in the time series (Figure 1a). Takeoff and
landing are also visible, since the methane column increases with altitude above ground. Wind vectors
from the ground-based sensor, displayed at the RMLD-UAV location at the corresponding time,
show a southerly wind direction along with a typical level of wind variability (Figure 1b). Since the
spatial scale is small, these fluctuations in wind direction are important since they can cause significant
changes to the plume location. Methane data are treated spatially using both grid averaging (Figure 1c),
where the mean value is calculated within each grid cell and undefined where no data are available,
and interpolation using a natural neighbor technique (Figure 1d). Wind information is treated in
the same way, except using vector averaging to preserve the correct wind direction. The maps are
calculated using a 0.3 m by 0.3 m resolution grid encompassing the extent of the flight. In either of the
methane maps, a distinct plume structure in the vicinity of the leak location is visible.

Flight procedures consist of a programmed 12 m by 12 m flight pattern scanning the well pad
footprint followed by one or more finer—5 m by 5 m—flight patterns. The fine scans are centered on the
methane maximum from the initial flight, which is the initial guess of the leak location. There is some
randomness to the flight pattern due to wind while the sUAS is in the air and time spent searching for
waypoints [15]. Figure 2 illustrates this procedure, where the methane maximum was detected over
the tank guiding the follow up measurements with a second, finer scan. The image overlay can also
be seen, here for METEC, Pad 1. Data for these plots is based on synchronizing the RMLD-UAV and
wind sensor data to a common 3 Hz time basis.
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Figure 1. Sample data during a controlled release: (a) methane time series; (b) wind vectors shown
based on unmanned aerial system (UAS) location (downsampled for clarity); (c) methane concentrations
averaged on a regular grid; (d) interpolated methane data. The black ‘x’ indicates the actual leak
position. Vertical dashed lines in (a) represent takeoff and landing. Red lines indicate the Remote
Methane Leak Detector (RMLD)-unmanned aerial vehicle (UAV) flight tracks.

Figure 2. Case study at Methane Emissions Technology Evaluation Center (METEC) showing the flight
procedure and two flights superimposed on one another. The initial flight detected a leak over the tank,
which was followed by a second, more focused flight. Red lines indicate the RMLD-UAV flight tracks.

42



Atmosphere 2018, 9, 333

3. Algorithm Development

3.1. Localization Algorithms

Two localization algorithms were developed and are described here. Their performance,
sensitivity to parameter selection, and overall discussion are described in Sections 4.1, 4.3
and 5, respectively.

The first method is based on projecting lines upwind from measurement locations with elevated
methane concentrations according to the wind direction at that time. This approach uses variations
in wind, which influence plume shape, to help extract information about where the source is likely
located. Lines are discretized onto a grid using a ray tracing algorithm [19], and the grid cell with
the most intersections is the probable leak location. The physical basis was also well articulated by
Hashmonay and Yost [20] in the context of open-path FTIR measurements. Here, the RMLD-UAV
instead directly measures vertical columns and is free to travel horizontally and vertically. Therefore,
it allows a much higher vertical and horizontal resolution and does not require any reconstruction
across beam paths. We use here a 0.3 m grid spacing and 20 ppm-m concentration enhancement
(above the median in-flight reading) threshold set based on the maximum level of background sensor
noise and altitude-driven variation. A case is shown from the rotating boom data where there was
a southwesterly wind (Figure 3). The wind direction is apparent since the number of intersections
decreases quickly in the crosswind direction and more slowly in the along-wind direction. The lines
projected upwind from elevated methane points converged within 0.55 m of the actual leak.

Figure 3. Wind-based location method: Lines projected upwind from high methane points converge
on the leak source. The red circle represents the known actual leak location (here 1 m south and 1 m
east of center), and the black x shows the system-estimated leak location.

The second method was already introduced with the tank example in Figure 1; namely to
estimate the leak location based on where methane concentrations are highest. This is enabled by
the fact that the RMLD-UAV can directly fly over leaks, which is not the case with a typical fixed
sensor setup. Within this method, we compare taking the highest methane concentration directly,
after grid averaging, or after interpolation. The first is expected to be more sensitive while the
gridded or interpolated methods may indicate a more persistent hotspot since a leak is quickly,
though inconsistently, dispersed as one moves downstream of the source. From testing, the three
approaches could be significantly different for a given case, but each has similar performance on
average. Figure 4 shows a typical case at a well pad with two separators, with patches of enhanced
concentration driven by turbulent changes in wind. Here all three methane maxima produced different
estimates to the left of the rightmost separator. The real leak position is shown for comparison. For this
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application, as with most where the area of the equipment is sparse compared to the overall well
pad area, the location of the equipment in combination with the algorithmic methods points to the
observed location to be the southern portion of the separator on the right.

Figure 4. Maxima-based location method: The highest methane concentration is seen slightly southwest
of the rightmost separator, which is flagged as the probable leak location, where right corresponds
with east and up with north. Here, the location of the maximum methane on this interpolated grid
is shown with a triangle. This is shown in comparison to the real leak location designated with a
square. Red lines indicate the RMLD-UAV flight tracks. The dominant wind direction was measured
to be southeasterly.

3.2. Quantification Algorithms

As with the localization algorithms, two separate methods were developed for quantifying leak
rates, with the results and discussion given in the following sections.

The first quantification method is based on correlating wind speed and methane enhancements
against flow rate based on a set of test data, and verifying that the same relationship is relatively robust
to different sites or atmospheric conditions. These relationships are developed based on data from the
Texas site, including 33 controlled release trials spanning flow rates from 0 to 67 standard cubic feet
per hour (SCFH). For illustration, we show the relationship between flow rate and the peak methane
enhancement, defined as the highest grid-averaged methane reading obtained during a series of flights,
as well as the relationship between wind speed and peak methane (Figure 5). For flow rate versus
peak methane, a moderately correlated, linear, relationship is seen. Wind speed (WS) versus peak
methane shows a 1/WS relationship. Both of these relationships are consistent with the dispersion
literature, for instance, a reduced form of the Gaussian plume equation (Cp = SE

2πσyσzU
) [21]. Here,

the sensor measures a methane column, already integrating vertically and removing the effect of
σz. Additionally, it is in a situation measuring directly near leaks where the plume is very narrow,
instead of being some distance downwind. Therefore, we do not attempt to directly estimate horizontal
dispersion and instead assume the peak methane dominates the crosswind distribution to derive the
simple relationship

SE ∼ Cp · U (1)

where SE is the source estimate, Cp the peak methane concentration, and U the mean speed.
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Figure 5. Components of the correlation-based quantification method: flow rate is derived from
the combination of (a) peak methane (ppm-m) versus known flow rate (SCFH); (b) peak methane
versus wind speed, here shown separately for illustration and with the linear regression in (a) forced
through background. The combined relationship, with refinements described in the text, is shown in
Figure 9. For (a), regression yielded (±2 σ) a slope of 9.94 ± 4.78 ppm-m SCFH−1 and intercept of
35 ± 170 ppm-m. For (b), the coefficients were 615.6 ± 243.9 ppm-m m s−1 and 71.5 ± 144 ppm-m.

Several optimizations also helped to reduce the variance between the estimated and true leak rate.
First, Cp was replaced with the cumulative concentration for all clearly identifiable peaks (defined by a
prominence of at least 50 ppm-m) instead of using only the single highest point. Since the cumulative
concentration is expected to increase with longer or multiple flights, this was then divided by the
number of methane measurements to ensure that the estimate will not statistically decrease or increase
with measurement duration, as long as flight patterns are consistent. We also note that this is unlike Cp

in the Gaussian method, since it is taken directly from the data instead of a time-averaged Gaussian
fit. Secondly, U was calculated using a centered moving average with an averaging timescale of 15 s,
a rough estimate of the time needed for the plume to propagate over a well pad, since there is a variable
time lag from the wind sensor depending on the wind direction.

The second method was based on a variation of the mass balance method widely used in aircraft
studies. In that context, uncertainties are typically in the range 10–30% with suitable atmospheric
conditions and flight patterns [22,23]. Our approach was tailored to the sUAS application and inspired
in part by the work of Foster-Wittig et al. and Albertson et al. [21,24]. Instead of the standard
approach [12], we rotate the data around the estimated leak position derived from the maximum-based
localization algorithm, decomposing position into alongwind (x̂) and crosswind (ŷ) components
(Figure 6a). x̂ ≥ 0 is defined to be downwind, with x̂ < 0 upwind. The data are then discretized onto a
grid with 0.3 m spacing, again using natural neighbor interpolation (Figure 6b). Crosswind integrated
values are then derived according to

SE = ∑(ΔCdŷ )U (2)

where SE is the estimated leak rate, ΔC the gridded methane enhancement, dŷ the resolution, and,
U the mean wind direction. Background methane was calculated using a moving 50th percentile
methane concentration filter so that cases with no leak will average to zero. We empirically found
that the 95th percentile of the values over the domain was a suitable estimate of the final leak rate
(Figure 6c). Since the wind is turbulent, and there are location errors, we include some portion of what
is nominally ‘upwind’. Considering multiple crosswind values also helps account for variation in how
flights patterns are conducted.
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Figure 6. Crosswind-integration rate method: (a) individual measurements after rotation; (b) gridded
interpolation of a; and (c) crosswind integrated flux. The horizontal dashed line in (c) indicates the
estimated leak rate.

3.3. Detection Algorithm

While the quantification algorithms can provide an estimate of whether there is a leak or not,
a more sensitive metric was also investigated. Testing showed that visual interpretation of maps such
as Figure 4 could determine whether a leak is occurring based on the distribution of colors, even below
the detection limit of either quantification algorithm. Algorithmically, a similar effect can be analyzed
using the third standardized moment, or skewness. The RMLD-UAV flying at a constant altitude
should have concentrations that are roughly normally distributed around the background, while the
presence of a nearby leak will skew the distribution towards high values. This approach has also been
used for leak detection using fixed laser monitoring [25], with a skewness threshold separating leaks
from non-leaks. Here, data are filtered to where the RMLD-UAV is at least 2 m off the ground, and the
skewness threshold is obtained using the Texas development data.

4. Algorithm Performance

4.1. Leak Localization

The wind-based algorithm was developed originally on the basis of the rotating boom data,
with errors of ~1 m. For the RMLD-UAV flights at the Texas site, we found the errors to be too large
for our application, with a mean of 5.1 m and max of up to 14.3 m (Figure 7). Therefore, the algorithm
estimating location based on methane maximum was developed. Comparing results when calculating
the maximum from the 3 Hz, grid averaged, or interpolated methane data, each were within 10% of
one another. It was also found that performing a spatial average of the estimates from each individual
flight (typically 3 to 6 were conducted) provides a ~20% improvement compared to calculating the max
based on all data together, likely by helping to cancel position biases for individual flights. Figure 7
shows the result when using the 3 Hz method, with the test data showing errors were all less than 4.6 m
and with a mean of 1.8 m. Therefore, this was selected as the primary method for localization. This also
allows for a method that has no grid or interpolation parameters and can be calculated rapidly.

To validate the algorithm, the same analysis is applied to testing at METEC (Figure 8). Here,
the max-based algorithm had a mean absolute error of 1.2 m and a worst case of 2.22 m. Vertical lines
are drawn representing the fact that there can be errors in x and y; therefore, up to 1 m in each would
generate an absolute error of 1.41 m. We label values within this threshold as within ±1 m, referring to
the accuracy of the individual components x and y. It can also be seen that the max-based algorithm
was accurate to within ±2 m for all 17 cases. An additional estimate, calculated prior to revealing the
blind test, was made based on snapping the combination of wind-based and max-based to the nearest
grid cell containing equipment. This judgement was done manually using heatmap pictures like in
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Figure 4, including both location methods. The results of the blind test showed that this reduced the
mean error to 1.1 m, with 14 out of 17 test cases identified within ±1 m of the true location. One case
was made worse by the snapping procedure, since the wrong piece of equipment was identified.
If snapping had been applied directly to the maximum method without also weighing the wind-based
method, it would have produced a larger benefit. The wind-based algorithm by itself was again too
noisy for these purposes, with a mean error of 3.26 m (more than twice the max-based algorithm and
three times the estimate if snapping is used).

Figure 7. Performance in estimating leak position on the Texas controlled release dataset, using the
(a) wind back-projection and (b) maximum methane-based methods described in Section 3.1.
Absolute errors are shown for both methods.

Figure 8. Performance in estimating leak position evaluated at METEC using (a) the wind
back-projection and (b) maximum methane-based methods described in Section 3.1, and (c) estimates
snapped to the nearest grid cell containing equipment. The combined method was within ±1 m for 14
of 17 cases.
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4.2. Leak Detection and Quantification

Two leak rate quantification algorithms were also developed as described in Section 3.2.
Both algorithms require parameter choices, which were obtained using the Texas test data.
The correlation method’s relationship was specified to yield a result in terms of leak rate (SCFH)
with a slope of 1 and intercept of 0, sacrificing slightly on the correlation compared to an unforced
fit. For the rotated flux method, the free parameter is identifying which percentile of the crosswind
integrated leak rates to use. The 95th percentile was selected to yield a slope and intercept near
1:1. The performance on the test data is shown comparing metered leak rates to the estimates for
both algorithms (Figure 9). The correlation-based method has slightly less scatter around the 1:1 line,
but there is not a significant difference in performance on the development dataset.

Figure 9. Leak rate performance using the (left): correlation-based method and (right): rotated-flux
method for 33 scenarios. Dashed lines represent the 1:1 relationship and bounds for ±12 SCFH ±25%.
The correlation-based method is forced though 0 for the development dataset as described in the text.

The same algorithms and parameter choices were then applied to the METEC test site to help
determine if they are robust. The same style plots are shown (Figure 10). Both methods remained
well correlated, with r = 0.84 and 0.85 for the rotated flux and correlation-based methods, respectively.
In terms of flow rates, both had only one point outside the error bounds illustrated with dashed lines.
Besides being at a completely different site, the leak rates evaluated also tended to be lower than in the
development dataset. This may explain why both methods showed a small positive offset, since more
weight was placed on measurements near the detection limit of the algorithm, which was intended to
be near 6 SCFH. In terms of detection, our results had zero false negatives (all 17 leaks detected) and
zero false positives (all 13 zeros correctly identified based on the skewness statistic with a threshold of
1.5). The individual detection results are shown in Figure S4.
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Figure 10. Quantification results during a controlled release validation experiment. The colors reflect
the three different well pads (Pad 1: green, Pad 2: red, Pad 3: blue).

4.3. Component Sensitivity and Uncertainty Analyses

The sensitivity of the algorithms to uncertainty in the input data is now considered.
The components include sensor position, methane reading, and wind direction. Sensitivity to each is
simulated by individually adding bias and noise to the data shown previously. A fourth category is
also considered: namely the amount of flight data used to generate the estimate. Position uncertainty
arises from limitations in GPS when used at small scales due to a variety of factors [26,27]. We simulate
adding 0.9 m of additional location uncertainty in both x and y. Besides GPS error, position errors
can arise from tilt of the RMLD-UAV, causing the laser beam to deviate from pointing straight
downward. Concentration bias is modeled here as a multiplicative factor to simulate sensor slope
over- or -underestimation. The sensitivity to additive bias (e.g., offset drift) is not shown, since the
algorithms are robust against this kind of drift. Wind direction bias could arise if the sensor is not setup
to be aligned perfectly with north. Due to the location algorithm being based on the max methane
location, concentration errors can also propagate into position errors in other ways besides a bias or
normally distributed noise. These include any spurious peaks or if there is optical saturation directly
over a leak. There is evidence of the latter, in that for nearly all cases the highest methane reading
was obtained slightly downwind of the leak position (Figure S2). Atmospheric conditions can also
introduce noise; for instance, downdrafts from the quadcopter rotors or if the methane plume extends
above the height of the sensor. These dynamic effects are not directly modeled in this sensitivity
analysis, though they are captured in the performance observed in our field data.

Note that the data already contain noise, and so a direct uncertainty budget is not attempted. Still,
the sensitivity against reasonable levels of noise helps inform the contributions to the uncertainties in
the localization and quantification algorithms. The sensitivity of the max-based localization algorithm
is shown and was consistent for the development and METEC datasets (Figure 11). The most noticeable
sensitivity is to position bias, which increased the mean error by approximately 0.6 m. This is smaller
than the sensitivity expected if there were not already errors in the measurement, where adding 0.9 m
to both x and y would result in an error of 1.28 m based on Euclidian distance. Decreasing the amount
of data included also increased the error by around 0.2 m. Smaller sensitivities were seen to position
noise and concentration noise. The algorithm has no sensitivity to fixed concentration biases or any
wind speed or direction noise, since wind is not an input.
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Figure 11. Sensitivity analyses for the maximum-based localization method. The y-axis here represents
the difference in mean error between the data with and without added noise. Position bias: +/−0.9 m
offset to both x and y; position noise: added normally distributed noise (μ = 0 m, σ = 0.3 m);
concentration bias: ×/÷1.05x, concentration noise: added normally distributed noise (μ = 0 ppm-m,
σ = 5 ppm-m), wind direction bias: +/−25 degrees, wind direction noise: added normally distributed
noise (μ = 0 deg., σ = 5 deg.), amount of data: randomly exclude half of the data.

The same analysis is now shown for the rotated flux leak rate method (Figure 12). Here, all the data
inputs show some sensitivity and there was less consistency between the development and validation
datasets. The single largest sensitivity was to wind bias during the development test, which actually
showed an improvement compared to when bias was not added. Position bias, wind direction bias,
and amount of data all lead to both increases or decreases in mean error, depending on the sign of
the noise. This could be the result of compensating for real biases in the input data, or alternatively
correcting for unrelated errors. The tendency for positive errors in the validation dataset likely reflects
the algorithm not having been specifically optimized for that site. For that site, position noise and
wind direction bias were the biggest sensitivities.

The amount of data is now considered further, since it is related to the operation of the RMLD-UAV
system. There may be a tradeoff between the number of flights and accuracy obtained, with different
applications requiring different levels of accuracy and measurement speed. This is analyzed by using
the subset of cases where at least three flights had been conducted. The calculation was repeated
using only the first flight, the first two, the first three, and then all the available flights (Figure 13),
and without changing the algorithm parameters. The mean number of flights per case was 4. Also note
that, for zero leak cases, only one to two flights were conducted, and so the filter by necessity removes
these to keep the number of samples consistent. With just two flights included, the correlation method
performed comparably to with all flights, except skewing towards low estimates instead of towards
high estimates. For the rotated flux method, three flights had the same median as including all flights
but a larger spread. For the maximum based location method, there is a continuing trend towards
lower errors as the number of flights included increased.
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Figure 12. Sensitivity analyses for the rotated flux leak rate method. The same assumptions were
applied as in Figure 11.

Figure 13. Effect on the number of flights on leak estimation accuracy, including quantification
with the (a) correlation-based method and (b) rotated flux method, and localization with (c) the
methane maximum method. On the x-axis is the number of flights included (1, 2, 3, or all flights
available). The dataset includes all cases from Texas and METEC where at least 3 flights was available.
The red line indicates the median, blue box the 25th and 75 percentiles, and dashed lines the 10th and
90th percentiles.

5. Discussion

We return briefly to the two localization and two quantification algorithms presented.
The wind-based localization algorithm performed worse than the maxima-based method for the
RMLD-UAV flights; however, we noted that the former performed better on the ground-based rotating
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platform. This may be because the patterns flown were not optimal for the wind-based method since
they focused primarily on hovering nearby to the leak. In contrast, it is expected that data taken
at least some distance away has a better chance to converge on the leak location as long as peaks
can still be robustly distinguished from background. Comparing the two quantification algorithms,
the correlation-based algorithm as expected showed a slightly better correlation between metered and
estimated leak rates compared to the rotated flux method on the development dataset. Errors for both
methods were well distributed around the 1:1 line, with no outliers. However, both methods needed
to be tested to see how they perform at sites and wind conditions other than where the parameters
were derived. The correlation remained strong (r = 0.85) on the validation dataset, and, despite a
positive bias, results with both methods were generally within ±12 SCFH ± 25%. We expect the
rotated flux method is likely to be more robust over a wide range of wind conditions, since it uses
a mass balance formulation. It is also likely that some wind conditions (specifically, a more-or-less
steady, but not necessarily light, wind) will give better results (for both flux and localization) than the
light-and-variable winds in which most of our measurements were made.

A unique aspect of this system is that it operates so close to leak sources. Physically, the highest
concentration is expected very near to the leak point regardless of atmospheric conditions. This likely
reduces the effect of meteorological conditions and also provides an avenue for handling multiple
leak sources if they are spatially separated. The trials at METEC have already tested a relatively
dense site configuration with three pieces of equipment per 100 m2 pad. A typical well pad is larger
but often less dense, which can be accommodated by the RMLD-UAV since most time is spent only
near where there are leaks. Other benefits are the reduced sensor sensitivity requirements compared
to sensors that detect far downwind of the source and the built-in resistance to detecting off-site
leaks since enhancements strongly decrease with distance from source (correlation-based method) or
generate zero net flux (mass balance-based method). In remote locations, where wind measurements
may not be practical, leak detection and localization could still be achieved since the skewness
and maximum methods do not require this information. Quantification could use gridded wind
products, but with greater uncertainty than if on-site measurements are available. The most common
atmospheric approach for quantification in the literature is the application of plume or puff dispersion
models in analytical or Bayesian frameworks [28]. Many are tested primarily in simulations rather
than real-world experiments, where turbulence fully impacts measurements and there are additional
uncertainties (GPS, tilting, separation between the wind ground-based sensor and moving methane
sensor, etc.). Here we use instead correlation and mass balance methods. The key innovations were
(1) incorporating an algorithm to estimate leak location; (2) using a downwind-crosswind formulation,
which may converge more quickly than when not used in this near-source application; (3) and the use
of a custom sUAS enabling automated sampling and analysis.

Continuing research will work on refining algorithm performance and testing the system over
more leak scenarios and atmospheric conditions. For example, METEC included several tanks but in
general tall or densely spaced equipment could pose challenges for the algorithms and sUAS operation.
In a long-term deployment setting, knowledge of desirable wind conditions can be leveraged to choose
when to target RMLD-UAV measurements. The system will also have to contend with “by design”
emissions, such as from a tank or pneumatic controller. Therefore, testing will include multiple
or fluctuating sources and longer controlled release scenarios. These could add noise or require
longer flight times to accommodate. The algorithms are naturally suited to a probabilistic detection
framework, for instance by the gradient from the maximum concentration point or variations in the
crosswind integrated flux. More data will help determine if these features can accurately capture
periods of greater or lesser uncertainty, and if algorithms parameters can be more tightly optimized.

6. Conclusions

We have demonstrated a simple, data-driven approach for estimating leaks in the natural gas
sector using a small unmanned aerial vehicle system. The algorithms are based on flying directly
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over leaks, in contrast to many techniques which rely on downwind data and dispersion models.
After testing multiple algorithms, we find that using the maximum methane location gives a reasonable
estimate of leak location, and a downwind-crosswind transformed mass balance algorithm is most
consistent for leak quantification. On a blind test on real gas production equipment, localization was
achieved within ±1 m for 14 of 17 leak cases. Quantification was more difficult, but estimated leak
rates were generally within ±12 SCFH ± 25% of metered values and there were no false positives
or negatives, which is important for deployed systems. The greatest uncertainties were ascribed to
sensor position uncertainty, concentration noise, and wind direction based on a sensitivity analysis.
The algorithms described could form the basis of a continuous monitoring system helping to capture
a large fraction of emissions, allowing timely repair and reduction of atmospheric impact from
gas leakage.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4433/9/9/333/s1,
Figure S1: field test locations, Figure S2: all METEC location results, Figure S3: all METEC rotated flux results,
Figure S4: all METEC skewness results.
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Abstract: Natural gas is an abundant resource across the United States, of which methane (CH4) is
the main component. About 2% of extracted CH4 is lost through leaks. The Remote Methane Leak
Detector (RMLD)-Unmanned Aerial Vehicle (UAV) system was developed to investigate natural
gas fugitive leaks in this study. The system is composed of three major technologies: miniaturized
RMLD (mini-RMLD) based on Backscatter Tunable Diode Laser Absorption Spectroscopy (TDLAS),
an autonomous quadrotor UAV and simplified quantification and localization algorithms. With a
miniaturized, downward-facing RMLD on a small UAV, the system measures the column-integrated
CH4 mixing ratio and can semi-autonomously monitor CH4 leakage from sites associated with natural
gas production, providing an advanced capability in detecting leaks at hard-to-access sites compared
to traditional manual methods. Automated leak characterization algorithms combined with a
wireless data link implement real-time leak quantification and reporting. This study placed particular
emphasis on the RMLD-UAV system description and the quantification algorithm development
based on a mass balance approach. Early data were gathered to test the prototype system and to
evaluate the algorithm performance. The quantification algorithm derived in this study tended
to underestimate the gas leak rates and yielded unreliable estimations in detecting leaks under
7 × 10−6 m3/s (~1 Standard Cubic Feet per Hour (SCFH)). Zero-leak cases can be ascertained
via a skewness indicator, which is unique and promising. The influence of the systematic error
was investigated by introducing simulated noises, of which Global Positioning System (GPS) noise
presented the greatest impact on leak rate errors. The correlation between estimated leak rates and
wind conditions were investigated, and steady winds with higher wind speeds were preferred to
get better leak rate estimations, which was accurate to approximately 50% during several field trials.
High precision coordinate information from the GPS, accurate wind measurements and preferred
wind conditions, appropriate flight strategy and the relative steady survey height of the system are
the crucial factors to optimize the leak rate estimations.

Keywords: unmanned aerial vehicles; RMLD-UAV; natural gas; methane; mass flux; leak rate
quantification
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1. Introduction

Global energy demand will increase by 28% between 2015 and 2040 [1]. Natural gas is the world’s
fastest growing fossil fuel, with usage increasing by 1.4%/year [1]. Natural gas combustion produces
about half as much carbon dioxide (CO2) per unit of energy compared with coal [2]. Thus, natural
gas has been touted as an alternative to coal for producing electricity. Despite its efficiency, natural
gas leaks to the atmosphere from the extraction process to the consumption sectors tend to reduce
its climate benefits over coal [3] and produce significant environmental and economic consequences.
Methane (CH4) is the main constituent of processed natural gas, a powerful greenhouse gas that traps
32-times more heat than CO2 over a horizon of 100 years [4]. In addition to its global warming impact,
CH4 can reduce atmospheric cleansing capacity through interaction with hydroxyl radicals [5] and
can also lead to background tropospheric ozone production [6,7]. At sufficiently high mixing ratios,
natural gas leaks can create an explosion hazard and pose significant economic and safety threats.
A natural gas explosion in San Bruno, CA, in 2010 [8], and a blowout from a natural gas storage well in
Aliso Canyon, CA, in 2015 [9,10], for instance, led to catastrophic effects on the local communities.

The U.S. is now the world’s leading natural gas producer due to the development of horizontal
drilling and hydraulic fracturing. According to the U.S. EPA national Greenhouse Gas (GHG) inventory
released in 2017, CH4 total emissions were 26.23 Million Metric Tons (MMT) in 2015, of which about
25 percent of CH4 emissions were from natural gas systems (6.50 MMT) [11]. The distribution of CH4

emissions from gathering and processing facilities [12] and production sites [13] are skewed, of which a
small number of sites disproportionally contribute to overall emissions. For example, 30% of gathering
facilities contribute 80% of the total emissions [14].

To counteract the deleterious effects of natural gas leaks, gas utility companies have been actively
seeking efficient and low-cost leak detection technology. Considerable effort regarding voluntary
and regulatory programs has been invested during the last decade [15]. Multiple independent and
complementary gas leak detecting techniques have been designed and reported [16–18]. Several
criteria are considered for classifying the available leak detection techniques, including [19,20]:
(1) the amount of human intervention needed, (2) the physical quantity measured and (3) the technical
nature of the methods. Common platforms for detecting gas leaks and assessing air quality include
ground-based fixed monitoring sites [21], portable detectors, mobile laboratories equipped with
high-time resolution instruments [14,22], manned aircraft equipped with airborne instruments [23–25]
and satellites [10,26–28]. However, some shortcomings of these traditional platforms cannot be
overlooked. First, the use of these platforms is restricted to either continuous, but localized routine
monitoring (e.g., fixed monitoring sites) or “snapshot-in-time” sporadic regional measuring provided
by aircraft, satellite or mobile labs because of the high operating cost. Fugitive emissions from
natural gas facilities, which can be episodic and spatially variable [29], require quick, continual
and region-wide monitoring to be recognized. Traditional emission detection approaches for well
pads and compressor stations are normally done through infrequent surveys utilizing relatively
expensive instrumentation. Besides, most of the existing CH4 monitoring devices have limited ability
to cost-effectively and precisely locate and quantify the rate of fugitive leaks. Thus, there is a need for a
reduced-cost sampling system that could detect emissions and that can be deployed at every well pad,
compressor station and other unmanned facilities. Besides, some leak sources require site access and
safety considerations, such as inaccessible wellhead sites or flooded leaking areas after meteorological
disasters, which are hard or dangerous for manned detectors or roving vehicle surveyors to access
to realize accurate detections. Furthermore, the spatial and temporal resolutions of data from these
traditional measurements are relatively low and often inadequate for local and regional applications
due to the complexity of sites, moving sources or physical barriers [30]. Typically, increased spatial
resolution can be achieved at the cost of decreased spatial range. Small UAVs equipped with multiple
sensors have been developed and are able to hover with no minimum operating height requirement.
They can provide measurements with high spatial resolution at the expense of relatively small
monitoring coverage. Thus, the small UAV systems introduce new approaches to fill gaps of traditional
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platforms and offer research opportunities in studying ambient air quality compositions. Several
previous studies have applied UAVs in various aspects such as atmospheric aerosols sensing [31–33],
greenhouse gases measuring [34–37] and in situ air quality and atmosphere state analyzing [38–40].
One of the demonstrated applications of UAVs is to patrol around industrial areas to investigate
fugitive gas leakage in open-pit mines [41], interrogation of oil and gas transmission pipelines [42] and
around the compressor stations [43] and to monitor local gas emissions [44,45]. These UAV applications
allow for measurements on spatial scales complimentary to satellite-, aircraft- and tower-derived fluxes.
The measurements from UAVs will also help inform policymakers, researchers and industry, providing
information about some of the sources of CH4 emissions from the natural gas industry, and will better
inform and advance national and international scientific and policy discussions with respect to natural
gas development and usage [46].

While the application and the potential of the combined CH4 sensors and UAVs system have been
studied [33,37], there is a need for a fully-integrated system where the performance of RMLD and small
UAV are characterized in-flight and the resulting data tested for specific applications. The handheld
RMLD has been a commercial product since 2005 and is widely used for the surveys of natural gas
transmission and distribution networks [47]. In order to develop an advanced UAV-based sampling
system, the size of the traditional RMLD needed to be reduced to meet the payload limitation of a
small UAV. The details are described in Section 2 of this paper.

Regardless of the technique or platform used, revealing the presence of a gas leak is not sufficient
to define an efficient counteracting measure, and other information needs to be known to decide
on corrective actions, such as the location and the emission rate of the source. Corresponding to
the forward problem of atmospheric pollutant emissions, which refers to the process of determining
downwind gas concentrations given source leak rates and locations, this study tends to solve the
inverse problem in which the gas concentrations are sampled and known, and the goal is to obtain
the information about the location and leak rate of a particular source. In the ground-level gas
leak quantification cases [29,48–51], a combination approach of analytical and numerical methods
was normally implemented by consolidating the atmospheric dispersion models (e.g., Gaussian
plume model, American Meteorological Society-Environmental Protection Agency Regulatory Model
(AERMOD)) and the computational approaches (e.g., Bayesian inversion, statistical approach); while in
the top-down aircraft-based sampling systems, the basic mass balance approach is the prevalent gas
emission quantification method [24,52–54]. However, both of the two common approaches encounter
some limitations. The combination approach relies on consistent and favorable meteorological
conditions for transporting the plume to the detector; knowledge of leak locations is essential;
background gas concentrations need to be optimized to limit aliasing of background uncertainty
onto leak rate estimates. The aircraft-based mass balance approach needs to consider the boundary
layer height and the vertical turbulent dispersion of the plume along the high altitude. As a low
altitude (<10 m) path-integrated detecting system, RMLD-UAV needs a robust algorithm that is capable
of estimating emission sources and dealing with all the drawbacks. One focus of this study is to derive
a modified and simplified mass balance quantification algorithm based on the RMLD-UAV system
with a reasonable degree of accuracy.

This research is part of the Advanced Research Project Agency of the U.S. Department of
Energy (ARPA-E) Methane Observation Networks with Innovative Technology to Obtain Reductions
(MONITOR) program. The goal of the MONITOR program is to address the shortcomings of traditional
methods by introducing and developing innovative technologies that can estimate CH4 emission flow
rates, provide continuous monitoring, localize the leak source and improve the reliability of CH4

detection. This study is composed of two companion papers to investigate fully a system for monitoring
natural gas fugitive leaks using the advanced RMLD-UAV system. As the first part of the study, this
manuscript describes the system instrumentation and integration, the miniaturization of RMLD,
system establishment and configuration, derivation of the quantification algorithm and preliminary
results from several field tests. The main objectives of this paper are to identify the state-of-the-art gas
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leak detection techniques, assess the potential of the RMLD-UAV system to meet the measurement
need, present quantification capabilities, as well as other important features. The leak localization
investigation and alternative quantification algorithms are the subjects of a companion paper [55].

2. System Description and Quantification Algorithm

In this section, we describe the RMLD-UAV platform utilized, the sensor payloads, system
operating and data acquisition and derivation of the quantification algorithm.

2.1. RMLD-UAV

The RMLD-UAV system we developed is a complete measurement system that can realize
advanced CH4 fugitive leak monitoring. As a semi-autonomous system with a pilot in the loop,
as required by current FAA regulations, it initiates and terminates motors upon mission execution and
completion, respectively. The key components of the RMLD-UAV sampling system are fast response
CH4 laser sensors, a custom small UAV, which is shown in Figure 1a, Global Positioning System (GPS)
navigation, a semi-autonomous control unit and data acquisition and processing software. Table 1
shows the specifications of the RMLD-UAV system.

 
(a) 

 
(b) 

Figure 1. (a) The images of the RMLD-UAV; (b) diagram of the basic premise of RMLD operation.

Table 1. RMLD-UAV specifications.

Parameters Details

Purpose Natural gas leak survey and quantification
Size 61-cm diameter, 23-cm depth

Weight 1.5 kg with battery
Energy System 5 AH 4S LiPo battery
Flight Range Within visual sight (<600 m) of base station

Survey Altitude 10 m, typical
Endurance 30 min

Visual Detectability Gray/black color scheme
Max Speed 15 m/s

Max Wind Speed Resistance 13 m/s
Temperature Range +0–+40 ◦C
Inclement Weather Designed for all weather operation

Control Handheld mission controller
Ground Control Station (GCS)

Lost Recovery GCS locates after remote landing
CH4 and GPS Data Class 1 Bluetooth

Video Data 680 × 480, 5.8-GHz analog transmission
UAV Storage System stows in the 46 cm × 61 cm × 25 cm case

The RMLD-UAV system is centered on the RMLD technology, which is widely deployed
worldwide for natural gas leak surveying. This eye-safe laser-based CH4 detector that surveys
natural gas infrastructure complies with EN 60825-1 MPE for an eye-safe Class 1 laser at 1650 nm with
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a 0.01-W output. RMLD detects CH4 with 5-ppm-m sensitivity at a distance from 0–15 m compared
with the 200-ppm-m sensitivity of the Pergam Laser Methane Copter (LMC) [56]. The basic RMLD
operating principle is shown in Figure 1b [57,58]: An infrared laser beam exits a transceiver unit and is
projected to a surface. A fraction of the beam is scattered from the surface and is captured and focused
onto a photodetector. The received laser power is converted to an electronic signal. The wet mixing
ratio of CH4 is obtained by processing received signals. Scanning the laser beam across gas plumes
results in rapid gas analysis. The laser beam width is 1 cm at the transceiver and about 15 cm at 10 m.
Operating as an open path sensor, the RMLD-UAV laser beam aims at the ground from the UAV and
measures column-integrated wet CH4 mixing ratios that average the variations in the vertical CH4

distribution, as shown in Figure 2. The temperature and pressure over the laser path are assumed
constant due to the low survey altitude (<10 m). The CH4 readings are reported in parts per million
meters (ppm-m).

 
(a) 

 
(b) 

Figure 2. Conceptual schematic of RMLD measuring the same total amount of CH4 in the path of
the laser beam for two different scenarios: (a) a concentrated cloud of 50 ppm, 1 m in diameter, in a
background of 0 ppm, gives a reading of 50 ppm-m; (b) a uniform background concentration of 5 ppm
over 10 m also gives a reading of 50 ppm-m.

The system calibration includes two parts, zero calibration and span calibration, which are the
common routines in gas analyzers. The zero point is measured with the laser projected over a short
path length (~1 m). Span is measured by projecting the laser through a sealed glass cell containing
the equivalent of 900 ppm-m CH4. The slope of the line connecting the two points is the calibration
constant that converts measured raw signals to ppm-m. The calibration is conducted when the
sampling site is changed or under some other circumstances, which may result in the change of general
sampling elevation or meteorological conditions.

Sensor technology is a limitation for the use of small lightweight UAVs. Until recently,
there were few high precision CH4 instruments suitable for such a platform. Backscatter Tunable
Diode Laser Absorption Spectroscopy (TDLAS) is the main technology of the RMLD to deduce
column-integrated CH4 mixing ratios over the straight laser path. The measurement principle is
absorption spectroscopy. Most simple gas-phase molecules have a near-infrared to mid-infrared
absorption spectrum, which consists of a series of narrow, well-resolved, lines, each at a characteristic
wavelength. Because these “absorption lines” are well spaced and their wavelengths are well known,
the mixing ratio of any species can be determined by measuring the magnitude of this absorption as a
laser beam passes through a gas cloud. In the TDLAS system, a diode laser emits light at a well-defined,
but tunable wavelength corresponding to a specific absorption line of the target gas, which is free of
the spectral interferences from ambient gases. TDLAS has low cross-sensitivity and is able to detect
single gases [59]. The wavelength centers on 1.6 μm when CH4 is the targeted gas and other gases
in the ambient air are invisible. Active TDLAS sensor has several attractive features, such as reliable
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laser sources, low power consumption (<1 W), ambient temperature resistance (−20 ◦C~50 ◦C), highly
compact, continuously operating, minimal maintenance and acceptable cost [60]. There are also some
adverse conditions that may affect the leak detection, such as precipitation or other obstructions in the
line of the targeted sources.

The laser’s fast tuning capability is exploited by the sensor to rapidly modulate the wavelength.
The response to the wavelength modulation is an amplitude modulation at the detector. The amplitude
modulation arises from two sources: (1) the transmitted laser power sinusoidally modulating at
frequency ωm and (2) the absorption due to target gas occurring at precisely twice the modulation
frequency 2ωm since the target gas absorption line is swept twice in each modulation cycle. The average
values of the amplitude modulations at ωm and 2ωm are analyzed by the signal processor, which are
Signals 1 and 2, respectively. Signal 1 (F1) is proportional to the received laser power, while Signal 2 (F2)
is proportional to the combination of the received laser power and the path-integrated concentrations
of the target gas. Therefore, the ratio F2 over F1 can be taken to reflect the analyte abundance, which is
independent of the received laser power [61]. This feature enables the sensor to properly track mixing
ratios despite changes in laser power transmitted across the optical path. The laser power change can
appear, for instance, due to the variability in reflectance of illuminated backscatter surfaces or dust in
the optical path. This feature is critical in RMLD-UAV applications since the reflectance of the targeted
surface from which the backscatter signal is received changes continually in a mobile system. The phase
demodulation and lock-in amplification technique in the RMLD is called Wavelength Modulation
Spectroscopy (WMS). The laser is initially “tuned” to the center of the absorption line via temperature.
The laser wavelength is then scanned repeatedly across a portion of the spectral absorption line via
its injection current, thus producing an amplitude-modulated signal of the laser power received at
the detector. Radio receiver technology is used to process or demodulate the small signal to yield an
output indicating a molecular concentration in target gas. WMS measures the absorbance of 10−5 or
less with 1 s or faster response and has a highly sensitive and fast capability to realize spectroscopic gas
analysis. It can provide a sub-ppm chemical detection limit with sub-second or faster response time.

There are several limitations that constrain the application of the UAV system. Small UAVs are
subject to significant payload restrictions, short flight endurance, network communication limits and
FAA flight restrictions compared to larger manned aircraft. Despite these limitations, small UAVs have
distinct advantages over their manned counterparts in terms of relatively low platform cost, operation
flexibility and capability to perform autonomous flight operations from take-off to landing. The UAV
we used is a customized rotary wing drone with the electric quadcopter motor model propulsion
system, MT 2216-9 KV 1100. This miniaturized UAV has a relatively low operating speed, but it
allows hovering status for close proximity inspection. The composition of the UAV includes plastic,
carbon composite and aluminum frame elements and electronic circuit boards. The UAV is equipped
with a small size, lightweight visible-spectrum camera (NTSC RS-170, 5.8-GHz analog transmission),
providing a view of the area interrogated by the laser.

The commercial RMLD product is a two-component device comprising a 2.7-kg control unit
carried by a shoulder strap attached by an umbilical cable to a 1.4-kg handheld transceiver. Traditional
RMLD’s portable, battery-powered configuration is designed and developed for walking investigations,
which simplifies the work of surveyors compared to the traditional flame ionization detectors.
Traditional RMLD is a manually-operated gas analyzer without a positioning system and can only
detect the gas leak and measure the gas path-integrated mixing ratio in ppm-m without locating the
leak position. In order to develop the sensor to be mounted onboard a UAV and match the current
capabilities of the UAV while maintaining CH4 detection sensitivity, the decade-old technology
has been improved and the sensor has been scaled down to an appropriate Size, Weight and
Power (SWaP) with respect to the manageable payload. Some technical developments have been
achieved to realize the miniature integrated devices serving the RMLD-UAV, such as opto-mechanical
design, detailed electronics design, power consumption, integrated circuit electronics and wireless
transmitters. Specifically, the original near-IR Distributed Feedback (DFB) laser was replaced by a
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3.34-μm DFB-Interband Cascade Laser (ICL); the transceiver size was reduced while still allowing
flight up to a 10-m altitude; the circuit board was reduced to 77 cm2 from the previous 232 cm2 to fit
the miniature UAV footprint; and a 2.4-GHz encrypted radio link for wireless data exchange with
the ground control station was added. Mini-RMLD is a single compact unit weighing approximately
0.45 kg and shares its battery with the UAV. It includes GPS and Bluetooth, which can realize real-time
data acquisition and transmission. Coupled with the preprogrammed quantification and localization
software, the semi-autonomous RMLD-UAV system can provide estimations of leak rate and source
location, as will be described in the following sections.

2.2. System Operation and Data Acquisition

As a semi-autonomous system, on the one hand, a pilot initiates the launch of the UAV and
controls the recovery via the UAV-side mission controller. On the other hand, the drone can be flown
autonomously with preprogrammed electronic flight plans using the laptop-based custom Ground
Control Station (GCS).

The mission controller displays the flight information and status derived from flight
instrumentation. The UAV can be navigated visually using the controller unit and return to taking-off
and landing automatically. Recent advances in control have made unstable platforms such as small
UAVs more reliable and easier to operate, reducing the risk of payload damage and accidents in general.
RMLD-UAV has a redundant system, and emergency procedure commands are immediately available
to the UAV pilot. The pilot can take control at any time and manually pilot the UAV. Alternatively,
the UAV pilot can also select the “Return to Home” function on the remote, and the UAV will return to
its starting position. A built-in GPS supplies position information that is used by the UAV system to
realize waypoint navigation, as well as to synchronize the RMLD data. The waypoints describe the
three-Dimensional (3D) location of the drone at that point in the flight path, with a latitude, longitude
and altitude. In the field tests, the intended survey altitude is around 10 m, at which height the signal
of the background level CH4 is relatively stable and low, and RMLD-UAV endeavored to maintain
at the steady flight height during a sampling mission in order to subtract the background column
and offset the influence of the ambient signal. The influence of the background CH4 signal increases
notably with flight altitude above 10 m, which will be discussed in detail in Section 3. Flight plan
updates can be issued while in flight. The mission controller handles the receipt of target waypoints
and emits telemetry and mission status packets to the GCS.

The GCS is full-featured for the autopilot platform with a custom mission planner software.
It provides an intuitive and simple Graphical User Interface (GUI) and Google Maps Application
Program Interface (API) with which waypoint missions can be defined and autonomous flight paths
can be planned, saved and uploaded into the UAV. In addition, this GCS is deployed with software
that can process the collected data and analyze the leak rate and leak location in several seconds. In the
future, the system will continually and autonomously monitor targeted sources via the combination of
two approaches: fence area monitoring and daily routine detection.

However, the RMLD sensor cannot directly supply the information of source location and the leak
rate of gas emissions. Leak localization and quantification procedures and algorithms are required.
The RMLD-UAV system acquires data during a 15–20-min flight mission, and then, the measurements
are processed in near-real-time (several minutes within landing) by leak localization and quantification
algorithms to provide estimations.

2.3. Quantification Algorithm

Besides the RMLD-UAV technologies, an accurate quantification algorithm is also a crucial factor
to estimate the leak rates and guide the further investigation. The mass flux is broadly defined as the
flow rate of a species per unit area of a defined cross-sectional plane downwind of the source. For most
atmospheric calculation cases, the spatial gas density and wind are not homogeneous within a source
domain. Thus, the standard calculus approach needs to be applied to solve problems by dividing the
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cross-surface into pieces, finding the flux at each segmented surface and integrating the small units
to get the total flow rate. Therefore, in the mass balance approach, the flow rate (q) of gas through a
vertical plane downwind of a source domain is estimated as [62]:

q =
∫ H

0

∫ W/2

−W/2
u × (X − Xb)dx dz (1)

where H and W are the vertical and lateral dimensions of the gas plume, u is the wind component
perpendicular to the plane and (X − Xb) is the enhancement of the gas mixing ratio above the
background, and the full integration over the limits of the plane yields an emission rate. In the
current RMLD-UAV sampling system, the horizontal wind is measured at one fixed location supplying
an approximate uniform wind speed to each segment. The direction of the wind component of each
segment can be obtained according to the angle between the mean wind direction and the orientation
of the vertical plane deriving from the laser track.

In the common analytical and numerical quantification approaches, the atmospheric transport
model needs to be implemented due to the distance away from the source, and the background gas
concentration needs to be known. In the aircraft-based mass balance approach, the measurements
of the point gas analyzer (e.g., CRDS) at multiple altitudes need to be integrated. As an open path
monitor, RMLD-UAV measures the vertical total amount of a specific gas parcel in the path of the
laser beam, indicated as

∫ H
0 X dz in ppm-m. Besides, the RMLD-UAV system can be close to the

leak source (several meters), eliminating the atmospheric dispersion and buoyancy effects. Typically,
a fugitive plume emitted from a point source travels in the direction of the mean wind and disperses
vertically and horizontally due to the mixing of turbulent eddies. Furthermore, the sampling system is
designed to scan a surface that encloses the leak source, creating an arbitrarily-shaped laser curtain
(e.g., cylinder). By convention, positive flux leaves a closed area, and negative flux enters a closed
area. Therefore, the upwind gas plume entering the laser path yields negative flux, and the downwind
plume leaving the laser curtain yields positive flux. During the computational process, the positive or
negative flux is determined along with the geometry operation. Combining the mass conservation
principle, the integration of all the positive fluxes and negative fluxes can counteract the influence
of the ambient CH4 signal, and only CH4 emitted from within the enclosed area yields a non-zero
net flux. An imbalance between the positive and negative fluxes indicates the existence of a leak.
Furthermore, due to the mass balance, fluxes of a series of concentric shapes that encircle the leak
source should yield the same leak rate results. The error contributions of unsteady winds on the leak
rate estimations can be diminished by averaging the multiple results from each cycle. Figure 3 shows
the two sampling examples of the internal leak source and external leak source of a well pad. Multiple
concentric trajectories were conducted within the well pad area. By integrating the negative fluxes
(greenish arcs) and positive fluxes (reddish arcs) of each circle and averaging the net flux of each circle,
the leak rate (Q) of the targeted source can be estimated as:

Q =
∑n

i=1 qi

n
(2)

where n is the number of shapes that enclose the leak and q is the total flux of each enclosed path.
The flowchart of the basic calculation algorithm is shown in Figure 4.
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(a) (b) 

Figure 3. Examples of detection and quantification for a 10 m × 10 m well pad: (a) an internal leak
source results in positive flux estimation; (b) an external source results in zero flux. Red circles represent
the trajectories of the sampling system; colored arcs indicate segments of elevated CH4 (greenish arcs
are negative fluxes, and reddish arcs are positive fluxes); the blue arrow is the wind vector.

Figure 4. Flowchart of the mass balance quantification algorithm.

3. Sampling Strategy Attempts and Quantification Results

We conducted several field tests and iterated through several stages of sampling strategies
depending on the development progress of the system since May 2015. A series of field tests was
conducted at five test sites: (1) New Jersey site, PSE&G Edison Training facility; (2) Texas Site 1,
Blimp Base Interests in Hitchcock; (3) Plaistow site in New Hampshire; (4) Texas Site 2, Heath
consultants /Physical Sciences Inc. validation platform site in Houston; (5) Colorado site, Methane
Emission Technology Evaluation Center (METEC). At the New Jersey site, Plaistow site and Texas
sites, controlled emissions were from 99.5% pure CH4 and metered by a Dwyer RMB-52 flowmeter.
A specific gravity correction factor was used since the meter was calibrated for air. The correction
factor equation is:

Q2 = Q1 ×
√

1/S.G. (3)

where Q2 is the standard flow rate, Q1 is the observed reading of flow rate and S.G. is the specific
gravity of CH4, which is 0.5537. At the Colorado METEC site, the release was pipeline gas, and flow
rates were controlled by orifices.
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In the early stages, several trials were designed and implemented to test the feasibility
of the first-generation mini-RMLD to evaluate the performance of the calculation algorithm.
These introductory tests were conducted at the New Jersey site and Texas Site 1 during May 2015–May
2016. In these trials, the RMLD or mini-RMLD was fixed on two rotating devices aiming down to the
ground below. The conceptual sketch of both example systems is shown in Figure 5. The average
wind speed was obtained from a local anemometer. These preliminary tests have led to multiple
combinations of sampling strategies and flux calculation algorithms and provided valuable lessons.
It was found that the signal of elevated CH4 was more obvious in the larger leaks, and the influence of
background noise was more crucial in small leak cases. Besides, the largest errors were associated with
extremely small leak rates. Furthermore, multiple rotations improved final leak rate estimation under
the steady wind conditions. The initial measurements validated the performance of the quantification
algorithm and the practicability of using mini-RMLD in a rotating system.

 
(a) 

 
(b) 

Figure 5. (a) System configuration of a field test based on a spinner system. RMLD was fixed on
a small spinner 1.8 m from the ground on the side of a vehicle and generated a tilted cone-shaped
sampling path. (b) Conceptual schematic sketch of a trolley system. The first-generation mini-RMLD
was fixed on a trolley travelling along a rotating boom 1 m above the ground. Mini-RMLD moved at a
constant speed (5 rpm) aiming down to the ground below, and the sampling laser formed a cylindrical
sampling track (bounded by blue ellipses). Data were recorded at 10 Hz (i.e., each data point in a
rotation represents 100-ms average CH4 measurements).

After verifying the capability of traditional RMLD and mini-RMLD using several rotating devices,
the RMLD-UAV system was integrated, and the semi-autonomous system has been available for
measuring CH4 leaks since June 2016. Figure 6 shows the first test flight conducted in Plaistow, New
Hampshire. Several transparent CH4-filled plastic bags (30 cm × 30 cm, 100% CH4 with a thickness
of about 1 cm) were fixed on the ground as the simulated leak sources. Viewed from the on-board
camera with superimposed flight data, it was demonstrated that each pass over a leak source yielded a
large CH4 measurement spike. At low altitudes, passes over bags also increased F1 signals due to the
increased reflectance of the bag surface. From 18:59:05–19:01:25, the RMLD-UAV flew over a swamp
showing the largest background level CH4 signals due to both swamp gas CH4 and noise of rather
low laser power (low F1). In this test, multiple passes at various heights over source bags illustrated
the detecting capability of the RMLD-UAV system. CH4 and F1 signals vs. height demonstrated the
operating range and sensitivity of the system. One thing noted was that, under the designed survey
altitude (<10 m), the detected background CH4 signal by RMLD-UAV maintained at a steady lower
level; whereas the background level path-integrated CH4 mixing ratio increased markedly with a flight
altitude above 10 m. Compared with the signal of the simulated CH4 sources with extremely high
concentration, the background path-integrated CH4 mixing ratios seemed too high (the green line of
the CH4 signal was noisier and as high as around 100 ppm-m at an 18-m height). By checking the
raw signals of the mini-RMLD, an increase of mini-RMLD noise with the movement was discovered.
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The noise source was traced to an optical component that failed to meet specifications. The situation of
excess noise was improved for the next-generation mini-RMLD in the following field tests.

Figure 6. RMLD-UAV first flight test. The green line is the path-integrated CH4 mixing ratio (ppm-m);
the blue line is the F1 signal of the RMLD, which is the return signal strength; the red line indicates the
altitude of the RMLD-UAV. The flight statuses are labeled. The picture inset shows the location of the
methane-filled bags and of the swamp.

Some follow-up flight tests were deployed at Texas Site 1 to estimate the system performance and
to find the optimal flight pattern. The simulated leak point was set manually in the field. Due to the
restrictions of system manipulation (waypoint navigation) and data acquisition needs, some regular
geometric sampling shapes with relatively few waypoints were tested. The flight height was around
5–10 m. The particular flight patterns were preprogrammed, and the synchronized GPS data indicated
the exact data points and flight path of the RMLD-UAV. Flight cases of a series of boxes and octagons
are illustrated in Figure 7, with controlled CH4 flow rates of 1.59 ×10−4 standard cubic meters per
second (m3/s) and 2.12 ×10−4 m3/s, respectively. The calculated leak rate was 2.33 ×10−4 m3/s in the
octagon case, and the estimation of box case was 3.22 ×10−4 m3/s. It is easy to observe that the actual
flight path did not perfectly follow the preprogrammed path. In addition, there were roving behaviors
near waypoints in both flight patterns. The vehicle maneuvered typically up to several minutes until
it was within 1 m of a particular waypoint. The redundancy of data points near waypoints added
error to the result estimation due to the error in the surface integral calculation. This indicated that an
alternative flight pattern was needed to overcome the imperfect sampling system and to improve the
accuracy of the quantification results.

From March–July 2017, multiple further field tests were conducted at two Texas sites (Site 1
and Site 2) and the Colorado METEC site to optimize the flight strategy and evaluate the system
performance when surveying simulated natural gas infrastructure. RMLD-UAV flew at the maximum
design altitude (10 m). The anemometer was set near the sites. Table 2 shows the specific deployment
information for each test.
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Figure 7. Two examples of the flight test conducted at Texas Site 1. Red crosses indicate the leak
source. The color and size of the dots represent the magnitude of path-integrated CH4 mixing ratio.
(a) Concentric octagons flight path: colorized data points are the actual CH4 measurements from
RMLD-UAV. The red lines show the preprogrammed flight path. (b) Series of boxes flight path.

Table 2. Deployment of field tests from March–July 2017.

Timeline Site Duration Objective Flight Track Attempts

March 2017 Texas Site 1 6-day Preliminary test control and
data acquisition software

Series of boxes,
downwind screen

April 2017 Texas Site 2 8-day Walking test Series of boxes, random
full coverage

May 2017 METEC, CO 2-day Ad hoc test Zigzag, perimeter zigzag,
roving near leaks

June 2017 Texas Site 1 12-day Flight test Random hovering,
Perimeter zigzag, raster-scan

July 2017 METEC, CO 5-day R1 test Raster-scan

Several months of testing led to various flight track attempts and different iterations of flux
algorithms. Flight pattern and sampling strategies investigated included series of boxes (a series
of concentric squares of flight path formed around the leak source), downwind screen (a sampling
conducted in the downwind of the leak source), random full coverage (a random flight covering the
whole test field), zigzag (a jagged flight pattern, which is made up of small corners at variable angles
between the field boundaries), perimeter zigzag (a zigzag flight pattern plus a perimeter sampling
around the field boundary), roving near leaks, random hovering and raster scan (a pattern in which
the flight path sweeps horizontally left-to-right and then retraces vertically up-to-down). Some lessons
can be learned from the flights and data: simple flight patterns (e.g., series of boxes) were irregular
and imprecise under unsteady wind conditions; more data, especially near the leak source, were
better to enable an averaging process and convergence to an acceptable accuracy upon collecting
sufficient statistics. Based on these tests, the raster-scan flight track, which covered the whole test field,
was found to be the optimal strategy for operating the system and quantifying the emission leak rate,
as shown in Figure 8a. The field needed to be fully scanned, and no specific flight pattern was required,
which was easier to implement. After executing a coarse scan of the test field, measurements from
RMLD-UAV were processed via a MATLAB routine. The inputs included CH4 measurements, wind
information and 3D (latitude, longitude and altitude) locations of each data point. The program output
an array of uniformly-spaced pixels with interpolated values from the original randomly-spaced data
points. The interpolation method we used was the triangulation-based natural neighbor interpolation,
which was an efficient tradeoff between linear and cubic. The generated interpolated heat map is shown
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in Figure 8b. By conducting several tests, the leak localization method based on finding maximum
CH4 measurement pixel was proven to have the most reliable performance [55]. Thus, the max-CH4

measurement pixel was considered as the leak source position. In Figure 8c, multiple concentric boxes
are traced and developed around the max-CH4 pixel center to calculate the leak rate. The averaged
wind speed and wind direction during one particular case period were used to eliminate the influence
of wind variation. The final leak rate estimation was calculated by averaging the total flux of 10 boxes
in this case.

(a) 

(b) 

Figure 8. Cont.
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(c) 

Figure 8. An example of the field test in the well pad site: (a) The overlay picture shows the structure
of the 10 m × 10 m field site and raster scan trajectories (red line) with several waypoints (indicated
by the numbers in the small boxes) covering a field test area. (b) Interpolated map of path-integrated
CH4 mixing ratios; the color legend depicts the magnitude of the measurements. (c) The schematic of
the quantification algorithm implemented by encompassing concentric boxes around the maximum
path-integrated CH4 mixing ratios pixel to get the averaged leak rate estimation. The boxes’ numbers
are labeled.

The performance of this approach is illustrated in Figure 9. The estimations were obtained from
all the datasets shown in Table 2. It can be ascertained that this mass balance-based algorithm on
average tended to underestimate leak rate, as shown in Figure 9a. Theoretically, only the max-CH4 data
point located near the center of the interpolated map could generate multiple boxes and could ideally
supply a good estimation by averaging the results of multiple boxes. A secondary finer scan around
the possible source was needed to deal with the limitation of this approach. It is significant to remind
that wind condition was crucial to the leak rate estimation. Further analysis of the results and method
accuracy considering different wind conditions are discussed in the next section. This preliminary
algorithm was encouraging, but not optimal. A refined algorithm needed to be developed to improve
the quantification method upon the mass balance algorithm. The further development and the
investigation of several alternative algorithms are described in the companion paper of this work [55].

In order to calibrate the system and evaluate the performance of the quantification algorithm,
several zero leak tests were also conducted. The calculated leak rates are shown in Figure 9b. The mass
balance quantification algorithm yielded very small numbers of leak rate for the zero-leak cases (less
than 1 ×10−5 m3/s); however, some of the positive leak cases also had estimates below 1 ×10−5 m3/s.
The zero-leak cases were difficult to determine exactly using the quantification algorithm alone due
to the systematic errors, the noise of the mini-RMLD, the numerical principle of the algorithm and
variable atmospheric conditions. In addition, the experience of previous field test pointed out that the
mini-RMLD had unreliable performance in detecting leaks under 7 ×10−6 m3/s (~1 Standard Cubic
Feet per Hour (SCFH)). Taken all together, the zero leak cases were hard to clarify. Other parameters
that could constrain the zero-leak calculation needed to be considered. As a proposed indicator,
skewness was introduced and is discussed in detail in next section.
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(a) (b) 

Figure 9. Calculated leak rate versus metered leak rate using the datasets collected from March–July
2017: (a) Comparison of calculated leak rate versus the metered leak rate. (b) Calculated leak rates of
zero leak cases.

4. Uncertainty Analysis and Zero-Leak Investigation

4.1. Uncertainty Analysis

According to the quantification algorithm, there are three key quantities that influence the final
estimations: wind information from the in situ weather station, CH4 measurements from RMLD and
data position from GPS. It is important to understand the effect of different ambient circumstances
and the possible errors of particular measurements may have on emission estimations. As an ongoing
project, the instrumentations keep being improved and updated. In order to evaluate the influence
of these quantities and their associated uncertainties, the influence of wind condition was analyzed,
and random noise was added to the mixing ratio measurements and GPS position measurements.

The system performance under different wind conditions was analyzed to understand the
influence of wind and to find the optimal operating protocol. As a vector quantity, there are two
aspects of wind that need to be considered, wind speed and wind direction. From the intuition of gas
plume dispersion, the magnitude of wind speed and the variation of wind direction are two major
factors influencing the leak rate estimation. The leak rate resulting errors versus Wind Speed (WS) and
Standard Deviation of Wind Direction (STDV_WD) are plotted in Figure 10. Each corresponding WS is
the average value calculated from the ground-station measurements during each sampling (15–20 min),
and the STDV_WD is also obtained within each sampling duration. It turns out that there is a negative
correlation (r = −0.62) between the resulting error and WS, while the correlation between the resulting
error and the STDV_WD is moderate positive (r = 0.47). This partly confirms the intuitive expectation
that higher WS and steadier WD can lead to lower errors and better leak rate estimations. The results
suggest that wind speed plays a larger role in the quality control of the leak rate estimations regarding
wind conditions. It is also important to note that the cases with the extremely variable wind directions
(STDV_WD > 40 degree) have larger resultant errors and have a major influence on the stated positive
correlation. The calculated p-value was 3% (<5%) indicating a statistically-significant result.

Given the dependence on wind conditions found, the results of Figure 9 were interpreted
separately under preferred or bad wind conditions, as shown in Figure 11. The wind information of
all the field tests was investigated, and two criteria regarding WS and STDV_WD were determined
to define good or bad wind conditions. Two-point-three meters per second and 33.1 degrees are the
thresholds of WS and STDV_WD, respectively. A good wind condition is defined to have both a WS
that is larger than 2.3 m/s and steady WD, of which STDV_WD is smaller than 33.1 degrees, whereas a
bad wind condition does not meet one or both of the criteria. About half of the tests (24) had good
wind conditions, and 23 cases were under a bad wind condition. It can be seen that performance of the
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method has approximately 50% accuracy (highest density) in good wind cases, and the accuracy in
bad wind cases is around 100%, excluding some outliers.

 
(a) (b) 

Figure 10. (a) Resulting error of leak rate versus wind speed. (b) Resulting error versus standard
deviation of wind direction.

 
Figure 11. Distribution of resulting error under good wind condition (red shadow) and bad wind
condition (grey shadow).

The influence of raw CH4 measurement errors on the leak rate calculation needs to be clarified.
The effect of the atmospheric turbulence on RMLD-UAV can lead to GPS measurements errors,
which also need to be considered and investigated. A random number that followed the uniform
probability distribution was generated and added to each raw measurement. Specifically, 20% and
50% random noise were added to the original CH4 measurement, respectively, to simulate the sensor
uncertainty. One-meter and 2-m noise were added to the latitude and longitude data to consider the
GPS uncertainty. The newly calculated leak rate is compared with the original results to investigate
the influence of the added noise on the calculated leak rates. The leak rate deviation from the original
(relative leak rate error) is shown in Figure 12. The leak rate errors distributed within ±10% after
adding 20% noise to the mixing ratio measurements, and the errors distributed within ±25% after
adding 50% mixing ratio noise. These results are foregone conclusions in the sense that leak rate is
linearly related to CH4 measurements in the quantification algorithm. On the other hand, we can see
that the leak rate error increases with GPS noise. One-meter noise yields both positive and negative
errors in the leak rate estimations and generally results in errors within ±40%; while 2-m noise tends to
yield positive errors on leak rate estimations, which is due to a larger cross-section at a larger distance
from the source.
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(a) 

 
(b) 

Figure 12. (a) Distribution of leak rate errors after adding 20% (red shape) and 50% noise (grey shape)
to the CH4 mixing ratio measurements. (b) Distribution of leak rate errors after adding 1-m (red shape)
and 2-m noise (grey shape) to the GPS data.

4.2. Identification of Zero-Leak Cases

In order to clarify the zero-leak estimations, the raw CH4 measurements are analyzed. Figure 13
shows the example CH4 measurements’ probability distribution. The measurements are filtered,
and only the data collected during flight are considered. It can be seen that zero-leak case has a
near normal Gaussian distribution in the lower CH4 values, which indicates the signal from only
background CH4. The signals are generally less than 20 ppm-m. In comparison, the non-zero-leak
case has a skewed distribution with a long tail on the right. The left clustered CH4 signal is from the
background, and the signal of the long tail is from the elevated CH4 leaks.

 
(a) (b) 

Figure 13. (a) Distribution of CH4 measurements from a zero-leak case with a skewness of 0.13.
(b) Distribution of CH4 measurements from a non-zero-leak case (the leak rate is 2.82 ×10−4 m3/s)
with a skewness of 8.46.
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From the effect on the CH4 distribution, we introduced skewness as an indicator to clarify
zero-leak cases. Skewness is a moment coefficient indicating the degree of asymmetry of the
distribution about the mean, defined as:

s = ∑N
i=1 (xi − μ)3/N

σ3 , (4)

where N is the number of data points, xi is an individual CH4 measurement of RMLD-UAV, μ is the
mean of x and σ is the standard deviation of x. The skewness of all the testing cases was calculated,
and the correlation between metered leak rates and skewness was analyzed to find the characteristic
of zero-leak cases in Figure 14. The correlation coefficient is 0.79, which means that larger leaks tend
to have larger skewness. If we calculate the skewness of all the zero-leak cases, it is easy to find that
all the zero-leak cases have skewness values less than 0.5, and all of the positive leak cases have a
skewness value above 0.5. Thus, the parameter of skewness is treated as a distinct zero-leak indicator,
and 0.5 is taken as the empirical threshold to clarify the zero-leak cases at this stage.

 
(a) (b) 

Figure 14. (a) Skewness versus metered leak rate for all cases. (b) Skewness for zero-leak cases only.
The 20% error was calculated based on each skewness value.

5. Conclusions and Implications

RMLD-UAV is proven to have a reliable ability for monitoring fugitive CH4 leak rate through
a detailed suite of field tests. The configuration of the system can realize semi-autonomous
surveying missions, immediate data acquisition and visualization and near real-time localization
and quantification reporting. Several months of field testing contributed to optimizing the sampling
flight strategy and led to different iterations of flux algorithms. The mass balance flux calculation
algorithm incorporating a raster-scan flight pattern and interpolated concentration map tended to
underestimate the flow rates, and the detection limit of this method was around 7 ×10−6 m3/s (~1
Standard Cubic Feet per Hour (SCFH)). The wind condition plays a significant role in this method,
and the performance of the method is evaluated separately under good or bad wind conditions. Higher
wind speed and steadier winds are preferred to get better results. The accuracy of the method is
about 50% under preferred wind conditions (with higher wind speed and steadier wind direction) and
distributes around 100% under bad wind circumstances. Since a key motivation for characterizing flux
is to prioritize repairs, this magnitude of error is acceptable for practical use where real-world leak
rates may range over several orders of magnitude. The skewness is a promising indicator to clarify the
zero-leak cases and positive leak cases. The influences of some key parameters on the accuracy of the
quantification results are different. We found that GPS noise has the greatest impact on the leak rate
estimations. The up to 2-m noise of position measurements can add more than 100% error to the leak
rate results. However, the GPS device should have less than 1-m noise with the RMLD-UAV system.
In summary, better leak rate estimation requires high precision latitude and longitude data from the
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GPS; accurate wind measurements and favorable wind conditions; an appropriate flight pattern and a
relative steady flight height (~10 m) of the drone.

The RMLD-UAV system has advanced leak detection capabilities for monitoring and quantifying
CH4 fugitive leaks from the natural gas industry. RMLD-UAV is a preferred solution to complement
current methods that may have difficulty accessing wellhead sites and can help a wide range of
industries in emergency response situations. In the wake of Hurricane Harvey in late August 2017,
RMLD-UAV was deployed to inspect underwater pipelines around the Texas area for major leakage
areas that were inaccessible to vehicles and unsafe for walking due to flood water and hazardous debris.
Subsequent tests are about ready to be launched. The development and improvement of quantification
and localization algorithms are on-going and will be further executed in subsequent field tests. Other
related work is also under consideration to overcome the limit of the analytical method, such as the
development of a best algorithm selecting mechanism based on wind conditions; verification of the
system capability with multiple leak sources; and the establishment of vertical profiling. The lower
endurance and limited autonomy of small UAVs preclude them from use at larger sites, which need to
be addressed next. Additional effort is required to enjoy the benefits and overcome limitations and
other challenges to the use of this small robotic platform for air quality research.
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Abstract: The lowest portion of the Earth’s atmosphere, known as the atmospheric boundary
layer (ABL), plays an important role in the formation of weather events. Simple meteorological
measurements collected from within the ABL, such as temperature, pressure, humidity, and wind
velocity, are key to understanding the exchange of energy within this region, but conventional
surveillance techniques such as towers, radar, weather balloons, and satellites do not provide
adequate spatial and/or temporal coverage for monitoring weather events. Small unmanned aircraft,
or aerial, systems (sUAS) provide a versatile, dynamic platform for atmospheric sensing that can
provide higher spatio-temporal sampling frequencies than available through most satellite sensing
methods. They are also able to sense portions of the atmosphere that cannot be measured from
ground-based radar, weather stations, or weather balloons and have the potential to fill gaps in
atmospheric sampling. However, research on the vertical sampling scales for collecting atmospheric
measurements from sUAS and the variabilities of these scales across atmospheric phenomena
(e.g., temperature and humidity) is needed. The objective of this study is to use variogram analysis,
a common geostatistical technique, to determine optimal spatial sampling scales for two atmospheric
variables (temperature and relative humidity) captured from sUAS. Results show that vertical
sampling scales of approximately 3 m for temperature and 1.5–2 m for relative humidity were
sufficient to capture the spatial structure of these phenomena under the conditions tested. Future
work is needed to model these scales across the entire ABL as well as under variable conditions.

Keywords: unmanned aerial vehicles (UAV); drones; geostatistics; atmospheric physics; meteorology;
spatial sampling

1. Introduction

The atmospheric boundary layer (ABL) is the lowest portion of the Earth’s atmosphere and
plays an important role in the formation of weather phenomena [1,2]. The ABL is the approximately
1 km thick portion of the troposphere in direct contact with the surface of the Earth, and there
is a considerable exchange of energy between the two systems that can impact local weather
events on time scales as small as one hour [1]. Simple meteorological measurements collected
from within the ABL, including thermodynamic variables such as temperature, pressure, and
humidity, and kinematic variables such as wind velocity, are key to understanding this exchange
of energy [3] and the role it plays in the formation of severe weather events such as thunderstorms
and tornadoes. Low-altitude sampling would allow for measurement of surface-based convergence
and the intersection of airmass boundaries [4], both of which would aid in the understanding of
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tornadogenesis. With the possibility of rotation occurring in as few as 20 min from the first sign of
possible tornadic activity [5], rapidly-deployable, low-altitude platforms that can collect measurements
at fine spatial and temporal scales can lead to more timely and more precise tornado warnings [4,5].
However, these types of measurements are not always readily available from the existing suite of
meteorological surveillance tools.

Networks of ground weather stations (i.e., mesonets) were first constructed in the U.S. during
the mid-20th century to observe mesoscale meteorological phenomena. Ground stations typically
consist of a tower, commonly about 10 m high, equipped with various atmospheric sensors to capture
pressure, temperature, humidity, wind velocity, and other environmental data [6]. Towers are usually
spaced between 2 km and 40 km apart [7], which allows measurements to be interpolated over regional
extents, but sampling occurs at very low altitudes (lower than 10 m), and thus mesonet towers are
not able to capture the full dynamics of the ABL. Weather balloons (i.e., sounding balloons) allow for
sensing of the full vertical profile of variables in the ABL, but their sampling altitude is limited by the
length of their tethers, and non-tethered balloons make uncontrolled ascents that limit the derived
conclusions from their sampling [1]. Furthermore, the radiosondes that capture the data onboard the
balloon are often lost and cannot be controlled from the ground [8].

With the limitations of ground-based weather-monitoring technologies, investments in remote
weather-sensing satellites over the past several decades have led to considerable advancements
in weather forecasting and monitoring. However, satellite systems remain unable to provide the
spatial precision, temporal resolution, and/or specific types of data needed for local meteorological
observations in the ABL [5]. In particular, the Geostationary Operational Environmental Satellite
(GOES) system has been a centerpiece of weather forecasting in the U.S. [9]. Since the first launch in
1975, GOES has been deployed on various satellite platforms for weather forecasting, severe storm
tracking, and meteorology research. However, the 1 km spatial resolution of the imager is not sufficient
to observe phenomena at the micro scale—defined as less than 1 km [1]—which is the scale at which
atmospheric processes contributing to the formation of severe local storms occur [5].

Simultaneous to developments in weather satellite technology, weather services began incorporating
weather surveillance radar (WSR) technology into forecasting and storm tracking, beginning in the
1950s [10]. Weather radars work by sending directional pulses of microwave radiation from a radar
station and measure the reflectivity, or amount, of radiation scattered by water droplets or ice particles
back to the sensor [10]. While radar systems such as the current WSR-88D radar network (NEXRAD)
are able to fill the measurement gaps between ground-based tower measurements and satellite sensors
somewhat, they are limited in the type of meteorological information they can collect, particularly
thermodynamic data such as temperature and humidity. Additionally, weather radars have difficulty
sensing the ABL due to the curvature of the Earth and obstructions such as buildings or mountainous
terrain [4,11]. There can also be interference from other phenomena such as birds, insects, and ground
clutter [12–14].

Given the limitations of ground-based weather stations, satellite sensors, and ground radar for
capturing measurements in the ABL, alternative technologies are needed. Small unmanned aircraft
systems (sUAS) are a rapidly emerging technology that have the potential to fill the aforementioned
spatio-temporal gaps in atmospheric sampling [5,15]. In the U.S., a sUAS is defined as weighing
fewer than 25 kg (55 lbs) and may be either a fixed-wing or rotor-wing platform [16]. A plethora
of sensors and platforms is available (see [17] for a review). While sUAS have been increasingly
employed in ABL sampling over the last several years [3,5,18–21] their use dates back to at least
1970 when Konrad et al. [8] used a sUAS to capture temperature, humidity, pressure, and aircraft
velocity at altitudes up to 3048 m (10,000 ft). More recently, sUAS have been used successfully to
capture atmospheric measurements such as temperature profiles in Antarctica during various mixing
conditions [21], validate fine-scale atmospheric models in Iceland [3], and compare temperature and
relative humidity measurements to radiosondes in New Zealand [20]. Additionally, they have been
utilized in capturing data in supercell storms [19] and air masses [18].
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While the use of sUAS for sampling the ABL has increased in recent years, little research has
been conducted on the optimal vertical spatial scales for collecting measurements and whether these
scales vary across atmospheric phenomena (e.g., temperature and humidity). Most natural phenomena
display spatial autocorrelation, that is, samples collected near each other in space are more likely to be
similar than samples captured at further distances. Knowledge of the scales (temporal and/or spatial)
over which a given phenomenon is correlated provides insight into the coherent structures within
the flow, which in turn provides insight into how we can most efficiently sample the environment.
A “more is always better” approach may not be ideal, as there may become a point when no new
information is returned with increasing numbers of samples [22]. This type of collection efficiency is
particularly critical for sUAS because there are large variances in communication rates, link reliability,
mesh network connectivity, and bandwidth [23] with UAS data capture, and storage devices must be
miniaturized to fit payload requirements.

The objective of this paper is to use common geostatistical techniques to determine vertical spatial
sampling scales for two atmospheric variables (in this case temperature and relative humidity) captured
from sUAS. Specifically, variogram modeling, a geostatisitical technique that can quantify the spatial
autocorrelation of a given signal [24], is used to capture the spatial structure of these atmospheric
phenomena at different times of the day. Analysis of the variogram provides guidance on the distance
over which the given data become incoherent (i.e., spatial autocorrelation dissipates), providing a
measure of the optimal spatial separation to allow between measurements collected from sensors
onboard sUAS. Ultimately, this type of information will aid in mission planning, address data storage
limitations, and allow for more advanced geostatistical analyses of these atmospheric phenomena.

2. Theory and Calculations

The processes that shape the atmosphere, much like Earth processes, are governed by physical
laws, and are thus deterministic in nature. However, the many forces influencing the spatial variation
of a particular atmospheric property combined with the nonlinearity of the governing equations
make the behavior of this property appear random [25,26]. This makes deterministic mathematical
models for describing the spatial relationship between two sample points impractical. Consequently,
a probabilistic approach is required for modeling this behavior. Such a variable is known as a
regionalized variable and is best described using a random function. Although the spatial variation in
the regionalized variable may appear to be the result of a stochastic process, there is still an inherent
structure to that variable, and the values may have a statistical relationship relative to their location in
space [25]. The random function can be modeled by:

Z(x) = μ + ε(x) (1)

where Z(x) is the observation, μ is the mean of the process that is assumed spatially uniform, and ε(x)
is a random quantity with a mean of zero [26]. The expected difference in values between the variable
at two locations is:

E[Z(x)− Z(x + h)] = 0 (2)

where Z(x) is the value of the variable at location x, Z(x + h) is the value at location x + h, and h is
a lag or separation distance [26]. The variation between the two locations can be assumed to be a
function of their spatial separation. The variance of the difference can then be used to measure the
spatial relationship using:

E[{Z(h)− Z(x + h)}2] = 2γ(h) (3)

where 2γ(h) is the semivariance. The semivariance can be plotted against the lag distance in a
geostatisical measure known as the variogram.

The equation to compute the experimental variogram from sample data is:
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γ̂(h) =
1

2n(h)

n(h)

∑
i=1

{z(xi)− z(xi + h)}2 (4)

where z(xi) is the observed value of z at location xi separated by distance h, and n is the number
of sample pairs [26]. Values of the semivariance, γ̂(h), plotted against h result in what is called the
variogram. From the variogram, the distance at which spatial dependence of the regionalized variable
is no longer present can be determined through analysis of three properties: the range, sill, and nugget
(Figure 1). The upper boundary of semivariance values is referred to as the sill, which occurs when the
measured values between samples are invariant at larger lag distances, and the curve of the variogram
levels off. The lag distance at which the sill occurs is known as the range, so called because this is the
range at which the measured attributes have spatial dependency. In certain instances, the variogram
model may not pass through the origin but instead intersect the ordinate at ŷ(h) greater than zero.
While it is reasonable to expect that the semivariance would be zero at a lag distance of zero, there still
is uncertainty in the data, and this phenomenon is known as the nugget effect.

Figure 1. Example of a typical variogram produced from plotting semivariance versus lag distance.
Locations of nugget, range, and sill are shown.

There are certain considerations to be made prior to modeling the variogram. A large sample
is needed to ensure reliability. Oliver and Webster [26] suggest a sample size of no less than
100 observations. Additionally, careful consideration should be used when selecting a lag distance.
A lag spacing that is too large will likely result in a variogram that is flat or does not capture the
true spatial structure of the phenomenon. Lag intervals that are too small for the given sample size
can result in a noisy variogram [26], which can obscure observation of the physical process under
investigation. For non-systematic sampling schemes, such as in this study, the average sample spacing
can serve as a good starting point for selecting lag intervals [24]. While a normal distribution is not
required for variogram modeling, outliers may negatively impact variogram reliability and should
be considered for removal. The maximum lag distance should not exceed one third to one half the
maximum spatial extent of the data sampled [26].
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3. Experiments

3.1. Study Site and Data Collection

Flights took place over two days in June 2016 at two sites in central Oklahoma, USA. On 29 June
2016, data were collected at the Marena Mesonet site located near Coyle, OK (36◦3′51′ ′ N, 97◦12′45′ ′ W,
327 m above mean sea level (MSL)). Rural grasslands with small patches of forest surround the site.
On 30 June 2016, data were collected at Oklahoma State University’s Unmanned Aircraft Flight Station
(UAFS) near Ripley, OK (36◦9′44′ ′ N, 96◦50′9′ ′ W, at an elevation of 319 m MSL). The UAFS is also
located in a rural area surrounded by farmland, grassland, and small forest patches. Central Oklahoma
is characterized by a humid subtropical climate, and experiences hot, humid summers and cool winters.
On both flight days, conditions were clear with minimal cloud cover.

3.2. Platform and Sensors

3.2.1. Platform

The sUAS platform used for data collection was a 3DR Iris+ (3D Robotics, Inc., Berkeley, CA,
USA) multirotor aircraft (Figure 2). The Iris+ weighs 1282 g and is 550 mm in diameter from rotor
tip-to-tip. It has a payload of 400 g, and the lithium polymer battery provides up to 22 min of
flight time under favorable conditions. The Iris+ sUAS is controlled by an onboard autopilot and is
capable of autonomous flight through control via a ground control station through radio frequency
communication at 915 MHz.

3.2.2. Sensors

The iMet XQ sensor (International Met Systems, Grand Rapids, MI, USA) was used to collect
atmospheric measurements. It is a self-contained unit with temperature, humidity, and pressure
sensors as well as a GPS receiver. Weighing 15 g, it has a 120-min e battery life and a 16-megabyte
storage capacity. The sampling rate is 1–3 Hz. The temperature sensor is of the bead thermistor type
with a response time of 2 s. It has an accuracy of ±0.3 ◦C and a resolution of 0.01 ◦C. The humidity
sensor is the capacitive type with a 5-s response time. It has an accuracy of ±5% relative humidity, and
a resolution of 0.07%. The sensor was mounted underneath the rotor arm of the platform and placed
near the body of the aircraft to minimize the effects of rotor downwash (Figure 2).

 

Figure 2. Location of iMet XQ sensor mounted on underside of 3DR Iris+ multirotor platform.

3.3. Surface Weather Observations

Observations from nearby ground weather stations that are part of the Oklahoma Mesonet
were used in the analysis to document meteorological conditions at the time of the sUAS flights and
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provide surface weather observations to supplement the sUAS-derived data. The Oklahoma Mesonet
consists of 121 weather stations distributed across the state, with at least one station in every county.
The stations consist of a 10 m-tall tower with various sensors that measure more than 20 environmental
variables including temperature, relative humidity, pressure, and wind speed [6]. The two Mesonet
sites used in this analysis are the Marena site, which is located 11.3 km (7 miles north) of Coyle, OK
(36◦3′51′ ′ N, 97◦12′45′ ′ W) and corresponds to the location of the June 29 data collection event; and the
Stillwater site, located 2 miles west of Stillwater, OK (36◦7′15′ ′ N, 97◦5′42′ ′ W), which corresponds to
the June 30 data collection event.

3.4. Variograms

3.4.1. Sample Variograms

Variogram analysis was completed using the gstat package [27] for the R statistical computing
language [28]. Only measurements from the ascent of each profile were used in the analysis, since
averaging data from both ascent and descent would skew variations due to a larger time difference,
hence variation, from the measurements at lower altitudes. Also, it has been shown that during descent,
rotor downwash may introduce updrafts that would impact measurements due to the placement
of the sensor on the aircraft [29,30]. As boundary layer turbulence is highly skewed inherently, no
observations were removed prior to analysis. For each dataset, the initial lag distance was set to the
average point spacing following [24]; however, this resulted in a sparse sample variogram that did not
fully represent the structure of the data. Therefore, lag distances were set to one-half the average point
spacing, and maximum lag distances were capped at one-half of the sampling extent (maximum above
ground altitude) following [26]. However, these suggested parameterizations are based on terrestrial
data, which does not exhibit the same scales of variability as atmospheric data. The classical view
of high Reynolds number boundary layers, such as the ABL, is that the turbulent flow field can be
considered as the superposition of eddies varying in size. The largest eddies would scale with the
boundary layer thickness (~1 km) while the smallest are inversely related to the Reynolds number.
Here, turbulent energy is supplied from the largest scale motion, and that energy “cascades” down
to smaller and smaller eddies until the eddies become sufficiently small that viscosity dissipates the
turbulent energy.

Variograms carry information about all of these scales. In fact, the autocorrelation is commonly
used to determine the largest turbulent scales (integral scale) as well as the Taylor microscale.
The integral scale is determined from integration of the autocorrelation, and the Taylor microscale
(an intermediate-length scale at which turbulent motions are significantly impacted by viscosity)
is related to the shape of the autocorrelation near zero lag. Since variograms are a modified form
of an autocorrelation function, they carry information about these turbulent structures. Given this
information, we expect there to be a certain degree of spatial autocorrelation for all atmospheric
samples within the ABL (i.e., we do not expect to see the typical plateau structure of the sample
variogram [as shown in Figure 1] until the sampling extent extends beyond the ABL, which could
be in the order of 1 km or more). Thus, instead of a single plateau indicating the range of spatial
autocorrelation as is typical for terrestrial measurements, we expect the absolute semivariance will
exhibit multiple peaks corresponding to the various scales of dominant turbulent structures within
the ABL (Figure 3). Since we are interested in identifying the finest spatial scale needed to capture
the structure of atmospheric measurements in vertical profiles, our goal is to identify the lag distance
where the semivariance first peaks, which is expected to correspond to the finest scale domain, and use
this as the maximum lag distance for semivariogram modeling (Figure 3). Other studies have noted
similar structures in vertical samples of geological measurements and refer to this phenomena as the
hole or periodicity effect [24].
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Figure 3. Sample variogram displaying increasing scales of variability (scale domains) with distance.

3.4.2. Fitting Model Variograms

Noise and limited sample size can result in some fluctuations within the semivariance estimates,
even within each scale domain (Figure 3). Consequently, the data are typically modeled to mitigate the
influence of scatter in the variogram and accurately identify the range, sill, and nugget [26]. There are
many commonly used model variograms including Gaussian, spherical, and exponential; and proper
model selection depends on the spatial continuity of the variable [24]. The chosen model variogram is
often eventually used to select ideal weights for further geostatistical analyses, such as kriging [24–26],
and selecting an incorrect model at this stage can adversely affect the accuracy of subsequent estimates.

Most often, visual inspection is performed on the sample variogram to select the most appropriate
model. The sample variograms most closely matched a Gaussian variogram model, and Gaussian
models typically work well when there is a small nugget and the curve appears smooth [25]. Following
visual assessment, Gaussian model variograms were fitted to all sample variograms.

The Gaussian model is defined as:

γ(h) = 1 − exp
(
−(

a
h
)

2
)

(5)

where h is the lag and a is the sill. Models were fitted in gstat by minimizing least squares using the
Levenberg–Marquardt algorithm [27].

3.4.3. Monin–Obukhov Length Scale Calculations

The Monin–Obukhov length scale

L =
−ρCpTu3

τ

κgH
(6)

is widely used within micrometeorology to characterize the ABL. It represents a nominal height
at which the turbulent production from wind shear is comparable to that from buoyancy. Here,
ρ is the density of air at temperature T, Cp is the specific heat capacity at constant pressure, uτ is
the friction velocity, κ is the von Kármán constant, and H is the sensible heat flux. Like most ABL
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measurements, the current study lacks accurate measurements of uτ and H. However, our work
follows the work of Dyer [31] and Essa [32] to estimate L given nearby measurements of the surface
gradients of wind speed and temperature. Measurements from either the Marena (June 29) or Stillwater
(June 30) Mesonet sites were used to record temperature (1.5 m and 9 m above ground), wind speed
(2 m and 9 m above ground), and local pressure. These measurements were used to determine
potential temperatures (θ1 and θ2), potential temperature difference (Δθ), and wind speed differences
(Δu = u2 − u1), which were then used to estimate the gradient Richardson number:

Ri =
gΔzΔθ

θ1Δu2 (7)

where g is gravitational acceleration and Δz is the difference in heights in the AGL (above ground
altitudes) where measurements are acquired. Then, following Businger et al. [33]

ζ =
φ2

m
φh

Ri (8)

where ζ = z/L, z is the geometric mean height of the measurements used in Ri, φm is an assumed
universal function for momentum, and φh is an assumed universal function for heat exchange.
The universality of these functions is debated, but for the current work they were estimated using
constants from Dyer [31],

φm =

{
(1 − 16ζ)−0.25 ζ < 0
(1 + 5ζ) ζ ≥ 0

φh =

{
(1 − 16ζ)−0.5 ζ < 0
(1 + 5ζ) ζ ≥ 0

(9)

allowing for an iterative process to solve for ζ, which provides an estimate for L. The functional
forms of the universal function as well as the constant values are questionable, but even under
ideal conditions their accuracy within the Monin–Obukhov similarity theory is only 10–20% [34].
Estimating the Monin–Obukhov scale length (L) provides information about the boundary layer
stability and the dominant mechanism responsible for turbulent production at the measurement
location, which suggests it would be a useful measure for scaling the current measurements.

4. Results

4.1. Flight Summaries

Summary statistics for the 12 flights show similar flight conditions within and between the two
flight dates (Table 1). Flights occurred during early morning (pre-sunrise) and late morning/early
afternoon to capture temperature inversions from radiative heating during the early part of the day.
Each flight lasted between 3 min and 5 min and reached maximum above ground altitudes (AGL)
between 100 m and 120 m. On average, 240 measurements were collected for each variable during
each flight. Ascents averaged speeds of 1.96 m/s, resulting in an average point spacing of 0.55 points
per meter. Mean temperatures ranged from 21.0 ◦C to 30.6 ◦C, and mean relative humidity (RH)
measurements ranged from 54.7% to 64.3%. Plots of potential temperature and RH for each flight show
the profile inversions over the course of each day (Figure 4). Data have been grouped into bins for
display purposes, with bin sizes determined by dividing the range of altitude measurements for each
flight into deciles. Mean temperature and RH values for each bin were differenced from the overall
mean and plotted against the mean altitude of each bin. Standard deviations for each bin are plotted
as error bars.
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Table 1. Flight information and summary statistics. Temperature (Temp) is reported in degrees Celsius
and relative humidity (RH) is reported in percentages. Start times note the start of each ascent and
end times are the time at which the flight reached its maximum altitude. Flight times are in Central
Daylight Time (UTC-5).

Flight
ID

Date
Start
Time

End
Time

Max Alt.
AGL (m)

No.
Obs.

Min
Temp

Mean
Temp

Max
Temp

Min
RH

Mean
RH

Max
RH

A1 29-Jun 5:47:30 5:52:06 107.87 277 18.11 21.02 24.94 46.6 62.98 76.1
A2 29-Jun 6:26:06 6:29:41 110.95 216 19.06 22.13 26.47 41.0 58.8 70.6
A3 29-Jun 9:23:45 9:27:23 111.21 219 23.77 24.58 26.33 51.3 57.85 67.1
A4 29-Jun 12:05:23 12:09:55 111.39 273 27.51 28.92 33.39 47.6 55.28 59.9
A5 29-Jun 13:30:48 13:37:42 111.97 415 29.35 30.6 36.09 47.7 54.71 60.5
B1 30-Jun 6:02:10 6:05:56 130.06 227 21.09 23.46 25.07 54.9 64.26 76.3
B2 30-Jun 6:18:54 6:22:22 130.48 210 21.27 23.71 25.17 54.5 62.74 74.5
B3 30-Jun 6:34:31 6:37:59 133.30 213 21.75 23.6 24.84 56 63.01 72.6
B4 30-Jun 6:52:45 6:56:05 135.40 202 22.13 23.55 24.63 56.6 62.32 69
B5 30-Jun 7:33:31 7:38:06 132.44 278 22.64 23.52 24.55 58 63.98 68.9
B6 30-Jun 8:41:57 8:44:32 137.10 156 25.02 25.61 26.19 55.2 57.15 59.4
B7 30-Jun 9:06:49 9:10:00 141.99 193 25.39 26.05 28.17 49.6 55.08 57.3

Figure 4. Profile plots for (a) June 29 potential temperature, (b) June 29 relative humidity, (c) June 30
potential temperature, and (d) June 30 relative humidity. Flight start times are in Central Daylight
Time (UTC-5).
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The two earliest flights on June 29 (A1 and A2) show gradually increasing potential temperature
and decreasing RH as altitude increases (blue plots in Figure 4a,b). For the later flights (red plots),
potential temperature and RH are more homogenous across altitude with slight inversions occurring
for RH between the surface and 40 m. For the later flights, both variables exhibit relative stability above
40 m, indicative of a classic stable boundary layer [1]. The homogeneity in temperature and RH above
40 m results from the atmospheric mixing that occurs as the sun warms the Earth and heat begins to
radiate upward. The same general trends were observed the following day with flights occurring prior
to 08:00 showing an increasing (Temp) or decreasing (RH) relationship with altitude, while flights
occurring after 08:00 show less variability and do not exhibit inversions (Figure 4c,d). Overall, there
was greater variability in the observations captured on June 29 compared to June 30, both in terms of
the overall spread of measurements in the profile as well as the standard deviations for each bin.

4.2. Variogram Modeling

Semivariances were computed for each pair of samples satisfying the maximum lag distance
(distance between samples), and Gaussian semivariogram models were fit to the sample points
(Figure 5). Two examples (Figure 5) illustrate how the Gaussian model plateaus at the range distance
where the sample measurements are no longer spatially autocorrelated within the first scale domain
(as determined by the maximum lag distance). The temperature data (Figure 5a) show the nugget being
located at approximately 0.015 on the semivariance (y) axis, the sill being located at approximately
0.09, and the range being located at approximately 6 m on the distance (x) axis. The RH data for the
same flight show a similar structure, but the semivariance values for the nugget and sill are much
higher while the lag distance for the range is only about 3 m. Despite their differences, it is clear from
these plots where the semivariance plateaus or levels off, indicating the range distance at which the
spatially autocorrelated structure of the data can be captured.

Figure 5. Sample variograms with Gaussian variogram models fitted to (a) temperature and (b) relative
humidity data from flight A3 on June 29.
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The variogram models for the remaining flights exhibited similar spatial structures to those in
Figure 5 but with varying values for nuggets, sills, and ranges. Table 2 presents the computed results
while Figure 6 shows the actual model variograms. In general, nugget values did not vary much
between the two days for either temperature or RH. Nugget values ranged from 0.002 to 0.101 for
temperature and were slightly higher for RH, ranging from 0.111 to 1.402. Small nugget values indicate
that at very small sampling lag distances (0.5 m) there is not much variation between measurements.
Large nugget values are common for terrestrial, geographic phenomena (e.g., geology), where there
can be large differences in a measured variable such as mineral content at small distances (e.g., gold
nuggets). Large nuggets (e.g., >1/2 the sill) are not expected when capturing atmospheric data and
were not observed during this sampling campaign.

Table 2. Variogram results and fit diagnostics (RMSE) for all flights showing sill, range, and nugget
values for temperature (Temp) and relative humidity (RH) and estimates of the Monin–Obukhov length
scale [L(m)].

Flight
ID

Temp
Sill

Temp
Range

Temp
Nugget

Temp
RMSE

RH
Sill

RH
Range

RH
Nugget

RH
RMSE

L (m)

A1 1.214 7.258 0.101 0.300 16.623 7.239 1.178 1.121 69
A2 0.584 9.150 0.022 0.031 12.594 8.410 0.509 2.065 1200
A3 0.095 3.423 0.015 0.024 3.627 1.831 0.622 1.031 −3700
A4 0.928 2.280 0.094 0.354 6.961 1.397 1.402 1.601 −4300

A5 * - - - - - - - - −4500
B1 0.518 5.513 0.004 0.060 3.920 4.295 0.147 0.572 4500
B2 0.160 4.676 0.011 0.058 2.364 2.511 0.362 1.979 5600
B3 0.200 15.131 0.003 0.017 1.327 5.071 0.111 0.222 4100
B4 0.020 4.028 0.003 0.007 0.248 0.496 0.146 0.200 11000
B5 0.063 5.592 0.009 0.014 0.508 2.058 0.174 0.078 −26000
B6 0.023 19.934 0.002 0.001 0.490 13.597 0.207 0.053 −7900
B7 0.064 7.463 0.002 0.020 0.610 2.655 0.130 0.111 −5400

* Variogram model could not be fitted to measurements from flight A5.

Sill values for temperature also showed little variability across both days, ranging between 0.095
and 1.214 on June 29 and between 0.020 and 0.518 on June 30. Sill values for RH were more variable,
ranging from 3.627 to 12.594 on June 29 and from 0.248 to 3.920 on June 30. For both temperature and
RH, there was greater variation in sill position for the June 29 flights compared to the June 30 flights.
The sill value quantifies the maximum semivariance at the range distance identified by the variogram
model (Figure 3). Larger sill values indicate larger variances between samples at the distance where
spatial autocorrelation begins to plateau. In general, sills were larger for both variables on both days
for the early morning flights compared to the later flights because the atmosphere had not mixed at
that point, so there is greater variance in measurements between lag distances.

It should be noted that the sills for RH on June 29 were several times larger than those captured on
June 30. These differences may be due to the more variable weather conditions on June 30 as observed
from the Mesonet towers (Figure 7). In particular, wind speeds were greater on the morning of June
30 indicating increased frictional mixing within the lower portion of the boundary layer (100–150 m).
As seen in the profile plots (Figure 4), the range of RH values is much greater on June 29 compared to
June 30, and the maximum altitude of the June 29 flights is about 20–30 m less than June 30 (Table 1).
Together, these results indicate the atmosphere was likely less mixed, and therefore more variable,
during the morning flights on June 29 compared to June 30. As a result, the RH measurements at
each distance lag were more dissimilar on June 29 than they were on June 30, manifesting in greater
sill values.
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Figure 6. Fitted Gaussian variogram models for (a) June 29 temperature, (b) June 29 relative humidity,
(c) June 30 temperature, and (d) June 30 relative humidity.

Range values show several interesting trends (Figure 6). On June 29, the ranges for temperature
and RH are quite similar across each flight, with larger ranges computed for the early morning flights
and comparably smaller ranges for the later flights. For the June 30 flights, with the exception of
Flight B6, and an outlying value for temperature during Flight B3, range values were relatively stable,
ranging from about 2–5 m. These results indicate that during the early morning when the lower
atmosphere is not yet mixed, samples can be collected at larger lag distances while still capturing
the spatial structure of the profile. Meanwhile, when the atmosphere is mixed, particularly during
later times of the day, more frequent sampling is needed to capture changes in the vertical profile.
These findings are consistent with the expectation that the ABL is at a lower Reynolds number in the
morning when it is forming, which results in the finest scales being larger (i.e., smallest turbulent
length scales are inversely related to the Reynolds number). Thus, fewer measurements spaced further
apart are needed to capture the structure of the atmosphere before the Earth’s surface warms and
mixing occurs.
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Figure 7. Weather conditions at corresponding Mesonet stations for (a) temperature, (b) relative
humidity, (c) pressure, and (d) wind speed. Dots indicate start time of each ascent.

Lastly, the computed Monin–Obukhov length scales (L) (Table 2) show that there does appear to
be some correlation with scatter as L increases between the ranges for both temperature and relative
humidity. Given the uncertainty in L and relatively small sample size, the current results were not
scaled with L, but further investigation with a larger sample size is needed.

Standardized variograms allow for comparison of range values irrespective of the varying sill
values, which can aid in interpretation. Variograms were standardized to a semivariance of one by
plotting the semivariance minus the nugget divided by the partial sill (sill-nugget) against the lag
distance (Figure 8). For the June 29 flights, there is a clear distinction between the early morning
(red lines) and late morning/early afternoon flights (blue lines). Range values in the late morning
are smaller than those in the early morning, again suggesting that more frequent sampling is needed
to capture the atmospheric profile prior to mixing. On June 30, where there was less change in
the atmosphere between the early-morning and late-morning/early-afternoon flights, there is less
distinction in range values. Values were relatively stable across all flights, although range values
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appear to decrease slightly as the morning progresses. Flights B3 and B6 also appear as outliers,
particularly in the temperature plot (Figure 8c).

Figure 8. Standardized variogram models for (a) June 29 temperature, (b) June 29 relative humidity,
(c) June 30 temperature, and (d) and June 30 relative humidity.

5. Discussion

While turbulent flow fields such as an ABL obey governing equations, their signals are not
repeatable, which forces the results to be reported as statistics for comparison. Spatial autocorrelation
functions provide fundamental insights about the size and distribution of coherent structures within a
turbulent flow (e.g., [35–37]). Variograms generated for atmospheric measurements in the ABL capture
the distribution of scales via multiple peaks or plateaus at which autocorrelation dissipates over a range
of length scales, with the smallest structures having the highest correlation (i.e., smallest semivariance).
Thus, the largest sample separation distance that can still capture the smallest scale structures should be
related to the range observed for the first peak/plateau from the semivariance plot (Figure 3). Following
this assumption, we found that optimal sampling scales for vertical measurements of temperature
taken from sUAS were about 5 m for early morning flights prior to atmospheric mixing. Once mixing
had occurred, more frequent sampling was needed (~3 m) to capture the data structure. If researchers
are unsure of the status of the atmosphere at the time of data collection, we recommend using smaller
sampling distances to ensure that small scale structures are not missed. The optimal sampling scales
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for RH were slightly smaller than those for temperature, with range values of approximately 1.5–2 m
after mixing had occurred. Again, these scales were found to be sufficient for capturing the first
scale domain for temperature and RH within the lower portion of the ABL for this study; further
research is needed to identify the periodicity of additional scale domains within the ABL. Additionally,
researchers looking to capture micro fluctuations may require smaller sampling scales.

Flight A5 could not be modeled with a semivariogram and, therefore, results were not reported or
included in our analysis. The likely reason that A5 could not be modeled is because as the process of
boundary layer mixing unfolds, the portion of the atmosphere in direct contact with the Earth becomes
homogenized. With homogenization, the first scale domain becomes ever smaller and eventually is
undetectable in the sample variogram. This phenomenon is known as the pure nugget effect [24],
and makes model fitting difficult because there is no identifiable plateau within the maximum lag
distance (Figure 9). While the absence of a peak/plateau within the maximum lag distance signals
that the first scale domain is located at a larger scale, it does not change the minimum sampling scales
that should be used in the absence of knowledge about the structure of the atmosphere. For Flight
B6, which exhibited a similar pattern (Figure 9b), even though a variogram could be fitted to the data,
the associated range distances for temperature (19.934) and RH (13.597) are likely more representative
of the second scale domain. While we were limited in the altitudes we could fly for these missions,
we intend to profile the entire ABL (up to 1000 m) in future campaigns in order to identify the full set
of scale domains and inform future data collection via sUAS.

Figure 9. Sample variograms of flight A5 on June 29 (a) and B6 on June 30 (b).

Several limitations of this study should be noted. First, our findings are based on a relatively
small sample size in an effort to control for seasonality and geographic location as well as platform and
sensor calibration. The flights described in this paper were performed on consecutive days with similar
weather patterns in locations near Oklahoma Mesonet sites in order to validate the sensors used in
the study. We were limited to flying at altitudes of no more than 304 m (1000 ft) above ground, so in
this study we were unable to capture the entire profile of the ABL. However, in future campaigns and
with adequate permissions, we aim to survey the entire ABL. Additionally, UAS flights are currently
limited to daylight hours, so our analyses do not capture diurnal differences in profile structure.
In terms of location, these flights represent atmospheric conditions in a primarily rural area, and
atmospheric structures in urban areas are likely to vary. Our samples were captured under relatively
normal atmospheric conditions in order to determine baseline standards for vertical sampling from
sUAS. Next steps will also include capturing comparable measurements during atmospheric events
such as storm formation. Lastly, we limited our analysis to vertical sampling events, and our next
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steps will include characterizing both the vertical and horizontal dimensions simultaneously to begin
determining the optimal horizontal scales to measure changing atmospheric phenomena.

6. Conclusions

This study used variogram modeling, a common geostatistical technique in the geographical
sciences, to determine vertical spatial sampling scales for two atmospheric variables (temperature and
relative humidity) captured from a small, unmanned aircraft system (sUAS). The key findings from
our analysis show that variogram modeling can serve as a useful methodology for identifying the
finest scale domain of atmospheric vertical profiles. Future work will focus on capturing the entire
extent of the ABL, as well as integrating optimal spatial sampling scales in the horizontal direction
with those in the vertical dimension, as a basis for collecting measurements from sUAS.
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Abstract: Unmanned aerial vehicle (UAV) experiments, multiple datasets from ground-based stations
and satellite remote sensing platforms, and backward trajectory models were combined to investigate
the characteristics and influential mechanisms of the air pollution episode that occurred in Nanjing
during 3–4 December 2017. Before the experiments, the position of the detector mounted on a UAV
that was minimally disturbed by the rotation of the rotors was analyzed based on computational
fluid dynamics (CFD) simulations. The combined analysis indicated that the surface meteorological
conditions—high relative humidity, low wind speed, and low temperature—were conducive to the
accumulation of PM2.5. Strongly intense temperature inversion layers and the low thickness of the
atmospheric mixed layer could have resulted in elevated PM2.5 mass concentrations. In the early
stage, air pollution was affected by the synoptic circulation of the homogenous pressure field and
low wind speeds, and the pollutants mainly originated from emissions from surrounding areas. The
aggravated pollution was mainly attributed to the cold front and strong northwesterly winds above
850 hPa, and the pollutants mostly originated from the long-distance transport of emissions with
northwesterly winds, mainly from the Beijing-Tianjin-Hebei (BTH) region and its surrounding areas.
This long-distance transport predominated during this event. The air pollution level and aerosol
optical depth (AOD) were positively correlated with respect to their spatial distributions; they could
reflect shifts in areas of serious pollution. Pollution was concentrated in Anhui Province when it
was alleviated in Nanjing. Polluted dust, polluted continental and smoke aerosols were primarily
observed during this process. In particular, polluted dust aerosols accounted for a major part of
the transport stage, and existed between the surface and 4 km. Moreover, the average extinction
coefficient at lower altitudes (<1 km) was higher for aerosol deposition.

Keywords: air pollution; unmanned aerial vehicle (UAV); PM2.5; meteorological condition;
long-distance transport; satellite data

1. Introduction

With the recent social modernization and industrialization coincident with the rapid increase in
energy consumption and the intense emissions of air pollutants, major cities throughout China have
frequently suffered from serious regional air pollution. Air pollution, which is characterized by the
deterioration of the air quality and the degradation of visibility [1–3], not only significantly influences
the urban environment and traffic safety but also poses a substantial threat to human health by causing
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diseases such as pneumonia, bronchitis, and cardiovascular disease [4–7]. In the long run, air pollution
leads to changes in aerosol optical properties and the radiation budget of the earth-atmosphere system,
thereby influencing the climate [8,9]. Therefore, the frequent occurrence of air pollution episodes in
China has become a scientific issue and aroused great public concern.

Air pollution events are essentially subject to the impacts of emission sources and regional
transport characteristics in addition to the atmospheric diffusion capacity [10], which is primarily
related to meteorological conditions and synoptic situations. The characteristics and causes of
air pollution episodes, such as haze pollution, have been widely analyzed in many studies based
on observations, measurements, and numerical calculations, the results of which could provide a
theoretical basis for the prevention and effective emergency warning of pollution events and the
reduction in emissions. Research suggests that the accumulation, transport, and dissipation of
pollutants are affected by meteorological elements, including wind speed, temperature, relative
humidity, and precipitation [11,12]. However, the primary elements may affect the evolution
and intensity of pollution in a variable way due to geographical differences [13]. Furthermore,
the presence of stable atmospheric stratification and the evolution of proper circulations are also
important influencing factors on the variation in pollutants with respect to their spatial and
temporal distributions [14–16]. In addition, long-term strong temperature inversion layers and lower
atmospheric mixed layer height could contribute to the inhibition of diffusion conditions, resulting in
continuous accumulation of pollutants [17].

Real-time monitoring of the vertical spatial distribution of meteorological elements in the
atmospheric boundary layer is another important factor that should be taken into consideration.
Although many studies have been performed to investigate the effects of the meteorological conditions
within the atmospheric boundary layer on the formation, maintenance and dissipation of air
pollution episodes, the results were generally based on conventional methods using manned aircraft,
sounding balloons, and tethered airships. These methods are characterized by high cost and poor
maneuverability. In contrast, the use of unmanned aerial vehicles (UAVs) carrying sensors or other
detection equipment to sample data in the atmospheric boundary layer presents numerous distinct
advantages and has rapidly increased in the field of atmospheric research [18]. First, it can greatly
reduce operational costs and perform measurements at any time due to the portability of UAVs.
Second, it can increase the density of sampling data and collect more substantial data than fixed-point
observation techniques, providing a more effective determination of the characteristics of pollutant
transport and the key factors during the pollution process [19–21]. Based on these advantages, the
positions of detectors mounted on UAVs have been discussed with regard to the disturbances generated
by the rotation of rotors. In addition, some researchers have also focused on barriers to successful
unmanned technology adoption, including system selection, tactical deployment, training, and dealing
with the rapid evolution of technology and regulations [22].

Due to the limitations on the spatial coverage and frequency of observations for sampling data,
measurements by satellite remote sensing technology have achieved impressive progress in weather
monitoring. Many studies have been performed to investigate aerosol optical properties with the
convenient acquisition of aerosol parameters. At present, there are two main analysis methods for air
pollution processes: analyzing the regional aerosol optical properties [23] and analyzing the vertical
distribution characteristics of aerosols [24,25]. Moreover, because the observations from remote sensing
platforms are closely related to shifts in the regions of air pollution, these investigations could also
provide evidence to support the prevention of air pollution.

Nanjing, the capital city of Jiangsu Province, is an important central city in eastern China, and it
has suffered from frequent air pollution events in recent years. A pollution episode was observed in
Nanjing during 3–4 December 2017. Accordingly, this study aims to analyze the characteristics and
contributing factors of air pollution, including the meteorological conditions, potential mechanisms for
increases in pollutants, and aerosol properties. In addition, the use of UAVs to conduct measurements
for this work could provide a reference for the development of UAVs in monitoring and forecasting air
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pollution episodes. Various data from ground-based stations and satellite remote sensing platforms
were introduced to analyze this event. Section 2 presents the proper positions for detection equipment
mounted on UAVs that are disturbed relatively little by the flow field. Section 3 introduces the UAV
experiment and the adopted data and methods for the analysis. The results are analyzed in Section 4.
The discussion and conclusions are given in Section 5.

2. UAV Platform and Flow Field Simulation

The vertical measurement for distribution of meteorological elements and pollutant concentration
in the atmospheric boundary layer has the important scientific significance, including fully recognizing
the comprehensive characteristics of air pollution process and providing the optimal strategy for
the prevention and control of air pollution. Conventional methods (i.e., meteorological observation
tower, sounding balloons, and tethered airships) for monitoring the vertical spatial distribution of
meteorological and pollutant elements present many shortcomings. Among them, lack of obtaining the
three-dimensional synchronous data in the atmospheric boundary layer cannot fully meet the needs of
current theoretical research and business application. The use of UAV carrying detection equipment
could obtain data at different spatial locations flexibly according to the characteristics of air pollution
process. In addition, it has the advantages of low cost, fix-point hovering, and low requirement for
take-off and landing techniques, which could remedy the lack of conventional measuring. Obviously,
this detection method is an important supplement to existing detection technology.

With the use of UAV platform, the position of detectors mounted on UAV should be discussed.
The disturbance of the air flow field caused by the rotors of the UAV could lead to obvious deviations
in the measurements, particularly because some elements in the detection equipment could be affected
by the flow field in the aspect of heat dissipation and particle sampling. Consequently, the positions
of detection equipment on UAVs at which they are scarcely disturbed by disturbances in the air flow
field should be taken into consideration.

2.1. Platform

The UAV platform applied for the data acquisition is the CEEWA X8 (Nanjing CEEWA
Intelligent Technology Co., Ltd., Nanjing, China), a six-rotor industrial UAV carrying highly reliable,
triple-redundant FC-IU3 flight control system. This platform can work with portable ground stations,
being easy to use and operationally flexible. The CEEWA X8 weighs 13.5 kg, the payload is 5.5 kg,
and the rotor radius is 266 mm. Its relatively heavy airframe and long rotors result in a smooth flight,
which offers good resistance to wind shear. The battery provides 55 min for flight under certain
weather conditions. The CEEWA X8 receives control signals from a ground station through wireless
communication and achieves automatic flight with its own self-driving instrument.

2.2. Flow Field Simulation of UAV

The computational fluid dynamics (CFD) simulation technique, which can effectively simulate
the flow field, is adopted to determine the most reliable position for the placement of a detector.

In general, the laws of the conservation of mass, momentum, and energy are used to calculate
the flow field through CFD simulation. In addition, the turbulence model should be added because
the unknown quantity known as the Reynolds strain item produced in the momentum equations
results in unclosed equations. To close the equations, the standard k-ε turbulence model is applied
to the numerical calculation to simulate the flow field because of its extensive use, high efficiency,
and reasonable precision [26,27]. The equation for the turbulent kinetic energy dissipation ratio (ε) is
introduced on the basis of the turbulent kinetic energy (k) equation, forming the k-ε equations [28]:
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where Gk and Gb are the turbulent kinetic energy components produced by the average velocity
gradient and buoyancy, respectively, and Ym is the influence of compressible turbulence on the total
dissipative rate. C1ε, C2ε and C3ε are the empirical constants, the values of which are 1.44, 1.92 and
0.09, respectively. σk and σε are the Prandlt numbers corresponding to k and ε, respectively, the default
values of which are 1.0 and 1.3. Sk and Sε are the source terms.

Based on the model selected above, the flow field simulation of a UAV in a hover state is as
follows. (1) Model the six-rotor UAV (Figure 1a). The airframe and the brackets are simplified because
the model is mainly used to analyze the influence of the airflow generated by the rotors. (2) Select
the calculation region and generate the grid. The grids around the rotor are refined, while the rest of
the grids are relatively sparse considering the accuracy and efficiency of the calculation. (3) Set the
boundary conditions. The fan boundary condition is applied to approximately describe the rotors by
defining the pressure difference above and below the rotors during high-speed rotation of the UAV. (4)
Obtain the calculation result.

Note that the UAV is used to sample data at each altitude in a hover state. Thus, the flow field
of the six-rotor UAV in a hover state is shown in Figure 1b. The velocity below the UAV is distinctly
strong. In contrast, the velocity above the airframe is relatively weak and thus represents the position
less influenced by the airflow generated by the rotation of the rotors. Therefore, in consideration of a
greater measurement accuracy and less interference, the detector can be placed above the airframe,
and its position is indicated by the red arrow in Figure 1b.

  

Figure 1. The simulation model of the six-rotor UAV (a) and the flow field in a hover state (b).

3. Methodology

3.1. Experiment Overview

The experiment was performed on the Xianlin campus of Nanjing University in the eastern suburb
of Nanjing (32◦06’ N, 118◦57’ E), the capital of Jiangsu Province, which is surrounded by farmland,
residential areas, and small patches of forest and chemical plants (Figure 2). The site was located on a
playground, a flat location that was not surrounded by tall structures.
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Figure 2. Location of the experiment site in Nanjing.

Figure 3a shows the detection equipment mounted on the UAV used to monitor the meteorological
variables and PM2.5 levels. PM2.5 refers to fine particulate matter, which contributes greatly to air
pollution, such as haze pollution. The UAV was equipped with a multiparameter atmospheric
environment detector developed by Shenzhen TENGWEI Measurement and Control Technology Co.,
Ltd., Shenzhen, China. The detector weighs 350 g, and the battery life reaches up to 360 min. The
detector integrates temperature, relative humidity, height and PM2.5 mass concentration sensors, a
main control board, a rechargeable battery and a data storage module. The main control board collects
data in coordination with the sensors, and the data, which can be downloaded through a USB port,
are stored in the storage module every 5 s. The temperature sensor is a thermistor-type probe, and its
measurement accuracy is ±0.3 ◦C. The relative humidity sensor is a hygristor with an accuracy of ±3%.
The PM2.5 mass concentration sensor acquires data by analyzing the photoelectric characteristics of the
samples on the basis of the laser principle. Air intake and outlet are included in this sensor to sample
the air. During the sampling process, the light scattering occurs when the laser is used to irradiate the
particulate matters suspended in the sampled air. The scattered light is collected at a certain angle, and
thus, we can obtain the temporal variation of the scattering intensity. Then, the algorithm based on
scattering theory is combined in the microprocessor to calculate the mass of the particulate matters per
unit volume in the sampled air. Its accuracy is ±10 μg/m3. The detector is installed above the airframe
of the UAV platform (Figure 3b) to minimize the interference from the airflow caused by the rotation of
the rotors, as discussed above, and Appendix A also presents the experiment results about the validity
of detector’s position on UAV. Combined with the detection equipment and batteries that provide
power to the UAV during the flight, the total weight for the flight experiment is approximately 16.5 kg.
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Figure 3. The detector mounted on the UAV (a) and the UAV platform (b).

The flights took place over two days during 3–4 December 2017 at the above experiment site,
and were carried out every three hours beginning at approximately 09:00 local standard time (LST)
on 3 December, as outlined in Table 1. The three groups, i.e., A, B, and C, represented the daytime of
3 December, from the evening of 3 December to the early morning of 4 December, and the daytime of
4 December, respectively. Each flight lasted approximately 20 min, and data were collected between
the surface and 1000 m above ground level (AGL). During flight, the UAV climbed directly to the
altitude of 1000 m AGL and hovered at altitudes of 1000, 900, 800, 700, 600, 500, 250 and 100 m
AGL in the same vertical direction for approximately 2 min to acquire data on the above altitudes
with greater reliability during its falling stage. The method of data sampled in the falling stage was
adopted mostly because the sufficient voltage is needed to support for the UAV during the rising stage.
However, the voltage of lithium battery would gradually decrease under working conditions, and
the lower voltage would not support the UAV to continue rising. So, it is more appropriate to carry
out measurements at each altitude in the UAV hover state during the falling stage. In addition, after
some test flights, we compared the data sampled in UAV hover state during rising and falling stages,
and the difference at each altitude between the two types was very small after eliminating outliers,
which proved the feasibility of the scheme. Among the measurements, outliers could be generated by
the unstable airflow when the UAV changed from a descending state to hovering state. In addition,
the measurement deviations may also come from the detector itself. Therefore, to improve precision,
outliers were eliminated, and the average values of continuous reliable measurements at each altitude
in a hover state were calculated. We also obtained the vertical profiles of each parameter (i.e., the air
temperature, relative humidity, and PM2.5 mass concentration).

Table 1. Flight information. The takeoff time refers to the local standard time (UTC+8).

Flight ID Takeoff Time Flight ID Take off Time Flight ID Takeoff Time

A1 09:00 LST 3 December B1 21:00 LST 3 December C1 09:00 LST 4 December
A2 12:00 LST 3 December B2 00:00 LST 4 December C2 12:00 LST 4 December
A3 15:00 LST 3 December B3 03:00 LST 4 December C3 15:00 LST 4 December
A4 18:00 LST 3 December B4 06:00 LST 4 December C4 18:00 LST 4 December

3.2. Data Collection and Methods

(1) The air quality index (AQI) and surface concentrations of particulate matter (PM2.5 and
PM10) were recorded every hour at the Xianlin University Town monitoring site in Nanjing (32◦06’ N,
118◦54’ E), which is one of the China National Environmental Monitoring Center stations in Nanjing.
Based on the National Ambient Air Quality Standards of China (NAAQS-2012), the air quality levels
are divided into six levels according to the AQI such that the pollution level increases with an increase
in the AQI. AQI values falling in the ranges of 0–50, 51–100, 101–150, 151–200, 201–300 and larger than
300 correspond to air quality levels of excellent, good, lightly polluted, moderately polluted, heavily
polluted, and severely polluted levels, respectively [13,29].
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(2) To reveal the evolution of the synoptic situation during the pollution episode, the National
Centers for Environmental Prediction (NCEP) Final (FNL) operational global analysis data with a
resolution of 1◦ × 1◦ and the European Center for Medium-Range Weather Forecasts (ECMWF)
reanalysis data with a resolution of 0.125◦ × 0.125◦ were obtained. In addition, surface meteorological
data, including the temperature, relative humidity, wind speed, and direction, were obtained from the
regional automatic weather station in the Xianlin area of Nanjing.

(3) For the analysis of the potential source areas and transport paths of the pollutants, the
Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT) model was used to calculate the
backward trajectories of air masses [23]. In addition, the model developed by the National Oceanic
and Atmospheric Administration (NOAA) was run in combination with meteorological data from the
Global Data Assimilation System (GADS).

(4) The thickness of the atmospheric mixed layer is an important parameter for expressing the
thermodynamic and dynamic characteristics of the atmospheric boundary layer; it characterizes the
heights that pollutants can reach in the vertical direction through thermal convection and dynamic
turbulent transport, thereby reflecting the extent of pollutant dissipation. In this work, the method
proposed by Nozaki [30] in 1973 was applied to calculate the mixed layer thickness as follows:

H =

(
121

6

)
(6 − P)(T − Td) +

0.169P(Uz + 0.257)
12 f ln(Z/Z0)

, (3)

where P is the Pasquill stability level, which is divided into six levels ranging from A to F corresponding
to the values from one to six. T − Td is the dew-point deficit (◦C). Uz is the average wind speed at 10 m
AGL (m/s). f is the geostrophic parameter (s−1). Z refers to an altitude of 10 m AGL. Z0 is the surface
roughness, the value of which is one in this work [13].

(5) The aerosol optical depth (AOD) product from the Moderate Resolution Imaging
Spectroradiometer (MODIS) mounted on the Aqua satellite was used for the analysis of the evolution
and characteristics of the spatial distribution of aerosols during the pollution episode. The AOD data
at 550 nm were obtained from the MYD04_3K product with a resolution of 3 km × 3 km.

To analyze the vertical distribution characteristics of aerosols, aerosol products from
the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) instrument mounted on the
Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) satellite were applied.
We used the Level 2 products of the aerosol types and extinction coefficient at 532 nm. The aerosol
types were divided into six categories: clean marine, dust, polluted continental, clean continental,
polluted dust, and smoke aerosols. In addition, the extinction coefficient in Level 2 profile products
is acquired based on the Level 1 products. Due to the errors resulting in the inaccuracy of Level 2
products in the algorithm, the data quality control method should be adopted [31–33].

4. Results

4.1. Pollution Episode Summary and Meteorological Factors

Figure 4 shows the temporal variation in the hourly surface PM (PM2.5 and PM10) mass
concentration and visibility during the pollution episode. The mass concentration of PM2.5 was
in good accordance with that of PM10. The PM mass concentration exhibited stable low levels from
12:00 LST on 2 December to 08:00 LST on 3 December and gradually increased with slight fluctuations
after 09:00 LST. At 22:00 on 3 December, the PM10 concentration reached a peak of 327 μg/m3. In
addition, the mass concentrations of both PM2.5 and PM10 increased largely during 03:00–08:00 LST
on 4 December and reached peaks of 169 and 265 μg/m3, respectively, at 08:00 LST, indicating
the continuous accumulation of pollutants and serious pollution. Thereafter, the PM2.5 and PM10

mass concentrations decreased gradually, falling to 50 and 84 μg/m3, respectively, at 00:00 LST on
5 December. These values subsequently maintained low levels, reflecting the dissipation process of
the pollutants. A relatively opposite variation in the visibility was observed compared with that of
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the PM mass concentration. With the gradual increase in the PM mass concentration after 14:00 LST
on 3 December, the visibility fell from 6.5 km to 1–2 km. When the PM mass concentration decreased
during the nighttime on 4 December, the visibility returned to 4 km and exceeded 10 km after 10:00
LST on 5 December. Furthermore, PM2.5 was regarded as the primary pollutant during this process,
and the daily PM2.5 mass concentration on 3 and 4 December was 89 and 101 μg/m3, respectively,
which exceeded the Grade II standard concentration (75 μg/m3 per 24 h). In addition, to demonstrate
the spatial-temporal variation in the surface PM2.5 mass concentration, Figure 5 shows the PM2.5

distribution at three-hour intervals in Jiangsu Province during the pollution episode based on the
PM2.5 measurements from China National Environmental Monitoring Center stations. A higher PM2.5

mass concentration was observed in the northwestern region, which exceeded 250 μg/m3 at some sites.
With the occurrence of high values moving southward, Nanjing and its surrounding areas suffered
from varying levels of pollution. In addition, the PM2.5 mass concentration decreased significantly
from north to south, and the concentration over Nanjing dropped below 75 μg/m3 at 18:00 LST on
4 December, providing an initial indication for the transport path of the pollutants.

Figure 4. Temporal variation in the hourly surface PM (PM2.5 and PM10) mass concentration, and
visibility from 12:00 LST on 2 December to 12:00 LST on 5 December 2017.

Figure 5. The spatial and temporal distribution of the surface PM2.5 mass concentration in Jiangsu
Province from 06:00 LST on 3 December to 18:00 LST on 4 December 2017. The black symbol
represents Nanjing.
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To demonstrate the effects of the surface meteorological elements on the accumulation and
dissipation of PM2.5, the hourly evolutions of the variables (temperature, relative humidity and wind
speed) provided by automatic weather stations are depicted in Figure 6. At 09:00 LST on 3 December,
the PM2.5 mass concentration increased gradually and exceeded 75 μg/m3. The visibility peak at noon
was lower than that at noon on the previous day. After 14:00 LST on 3 December, with an increase
in the relative humidity and reductions in the wind speed and temperature, the dissipation of PM2.5

was impeded, and the visibility decreased. After nightfall on 3 December, strong radiative cooling
near the ground resulted in the fast condensation of water vapor and a substantial increase in the
relative humidity. With a high relative humidity (>90%), low temperature (5–6 ◦C) and low wind speed
(<2 m/s), the PM2.5 mass concentration continued to increase significantly, reaching a peak at 08:00
LST on 4 December. The highest temperature of 10.6 ◦C was observed at 14:00 LST on 4 December,
indicating an apparent temperature increase after noon due to solar radiation. Simultaneously, the
relative humidity was reduced to less than 60%, and the wind speed increased to 2–4 m/s. Under this
circumstance, the pollution became gradually relieved; the PM2.5 mass concentration fell to less than
75 μg/m3 after 16:00 LST. In addition, as the invasion of cold air enhanced the dispersion potential of
PM2.5, the concentration remained at low levels (<60 μg/m3), and the visibility became better after
nightfall on 4 December. Overall, the surface meteorological condition exerted a significant influence
on the pollutant concentration in the atmosphere. Specifically, the high relative humidity, low wind
speed, and low temperature were not conducive to pollutant dissipation.

Figure 6. The temporal evolution of the surface meteorological variables (temperature, relative
humidity, and wind speed) provided by automatic weather stations in Nanjing during the
pollution episode.

4.2. Flight Measurement Features

The vertical profiles of the PM2.5 mass concentration, temperature and relative humidity were
acquired through UAV experiments. On average, the PM2.5 mass concentration at the surface (0 m
AGL) sampled by the UAV was slightly higher than that of the surface measurement at the Xianlin
University Town monitoring site. Through analysis, it may be affected by not only differences in the
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detection equipment and measurement principle but also the ambient conditions. In addition, the
variations in the two measurements had the same trend.

The first four flights were carried out during the daytime from 09:00 to 18:00 LST on 3 December.
The profiles of the variables are presented in Figure 7. Each flight showed a high PM2.5 mass
concentration on the ground ranging from 93 to 131 μg/m3 (Figure 7a). For flight A1, the PM2.5

mass concentration decreased significantly as the altitude increased with a slight inversion between
500 and 700 m AGL. For flight A2, a high PM2.5 mass concentration was observed with little notable
change between the surface and 600 m AGL, and the highest concentration reached 130 μg/m3 at
500 m AGL. Combined with the vertical profiles of the temperature (Figure 7b), it could be inferred that
the temperature inversion layer formed between 500 and 600 m AGL. In most cases, the temperature
inversion layers formed during a pollution event could restrain convection and favor the accumulation
of particulate matter, thereby inhibiting the vertical diffusion of PM2.5 [34]. Flights A3 and A4 also
exhibited relative homogeneity in the PM2.5 mass concentration as the altitude increased below 600 m
AGL, and the intensity of the temperature inversion layer remained stable and strong. For flight A3,
an increase in the PM2.5 mass concentration at 1000 m AGL was found. Through analysis, it may not
be caused directly by the temperature inversion layer formed from 900 to 1000 m AGL, because the
concentration decreased distinctly as altitude increased between 700 and 900 m AGL. This phenomenon
may be related to the horizontal transport at high altitudes. For flight A4, the concentration rapidly
decreased as the altitude increased above 600 m AGL, indicative of the remission of pollution at high
altitudes. The altitude dependency of the measured relative humidity during flights A1, A2 and A4
presented similar variations, which decayed in a fluctuating trend with the altitude, and the values
were approximately <80% at each altitude (Figure 7c). For flight A3, the relative humidity became
uniform and was approximately 65%, which extended throughout the sampling altitudes. Overall,
the temperature inversion layer contributed more to the increasing PM2.5 mass concentration during
the daytime because of its impact on inhibiting the vertical diffusion of particles. In addition, the
concentration was relatively low between 800 and 1000 m AGL and high between the surface and
700 m AGL, which may be related to local pollution.
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Figure 7. Vertical profiles of the PM2.5 concentration (a), temperature (b), and relative humidity (c) of
four flights (A1, A2, A3, and A4). Symbols represent the variables of the sampling altitudes above
ground level, and colors represent different flights.

Fights B1, B2, B3 and B4 occurred during the evening of 3 December and the early morning of
4 December. The profiles of the variables are illustrated in Figure 8. The PM2.5 mass concentration
at the surface was significantly higher than that in the daytime, ranging from 135 to 176 μg/m3

(Figure 8a). In addition, the temperature decreased successively over time at each altitude. For fights
B1 and B2, the vertical variation in the PM2.5 mass concentration and temperature (Figure 8b) exhibited
good consistency respectively. Furthermore, high values of the relative humidity during the two flights
were observed at 800 m AGL, as shown in Figure 8c. For flights B3 and B4, the vertical profiles of the
PM2.5 mass concentrations, temperature and relative humidity showed consistent trends, respectively.
Figure 8c shows that the relative humidity during flights B3 and B4 reached approximately 90%
and 95%, respectively, at each altitude except 600 m AGL. In addition, the PM2.5 mass concentration
exceeded 110 μg/m3, and the highest value reached 204 μg/m3 between the surface and 700 m AGL
for both flights. In general, the relative humidity was also a significant factor for the accumulation
of PM2.5. Research has shown that a higher relative humidity is conducive to an increase in the
PM2.5 mass concentration because it can not only change the optical properties of particulate matter
and help trigger hygroscopic growth, but also promote the transformation of pollutants to PM2.5

through physical and chemical processes [35]. Overall, the higher relative humidity helped facilitate
the accumulation of PM2.5, especially at midnight and during the early morning, which indirectly
indicated that the level of pollution and relative humidity were positively correlated. In addition,
during this period the increasing amount of water vapor could accelerate the formation of particulate
matter, and the lower temperature was not conducive to the convection in the atmosphere, which
was detrimental to the dissipation of pollutants. These factors contributed mutually to the increase
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in PM2.5. Furthermore, the PM2.5 mass concentration between 700 and 1000 m AGL during the four
flights was higher than that during the daytime, which was likely related to the continuous transport
of pollutants at high altitudes. Simultaneously, the pollutants at low altitudes accumulated when the
horizontal transport of those at high altitudes sank down.

Figure 8. Vertical profiles of the PM2.5 concentration (a), temperature (b), and relative humidity (c) of
four flights (B1, B2, B3, and B4). Symbols represent the variables of the sampling altitudes above
ground level, and colors represent different flights.

The last four flights (C1, C2, C3, and C4) occurred during the daytime on 4 December. The
altitude dependence of each variable is depicted in Figure 9. The PM2.5 mass concentration decreased
successively over time at each altitude between the surface and 700 m AGL (Figure 9a). In particular,
the concentration at the surface was reduced from 193 to 69 μg/m3 as time progressed, indicating
gradual pollutant dissipation. However, the concentration of the four flights at 900 and 1000 m AGL
respectively exhibited small variations and exceeded 100 μg/m3. Figure 9b shows that the formed
temperature inversion layers still existed, and the intensity of the inversion layer from 500 to 600 m
AGL gradually decreased, while the inversion layer from 900 to 1000 m AGL was still strong. Figure 9c
reveals that the relative humidity during the four flights generally increased with the altitude between
the surface and 700 m AGL and decreased above 700 m AGL. For flight C1, the relative humidity
remained higher throughout the sampling flight profile, as the increase in the temperature from
radiative heating was not distinct. Overall, although the pollution was generally alleviated over time
as a whole, a high PM2.5 mass concentration was observed at 900–1000 m AGL. Through analysis, the
formed temperature inversion layer between 900 and 1000 m AGL may not be the major reason, as the
PM2.5 concentration was relatively low at lower altitudes. This phenomenon may mainly come from
the persistent regional transmission of pollutants at higher altitudes.
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Figure 9. Vertical profiles of the PM2.5 concentration (a), temperature (b), and relative humidity (c) of
four flights (C1, C2, C3, and C4). Symbols represent the variables of the sampling altitudes above
ground level, and colors represent different flights.

Figure 10 shows the temporal variation in the thickness of the atmospheric mixed layer according
to Equation (3) at three-hour intervals based on the sampled variables during the flight sampling.
The thickness depicted was below 1200 m during this event with the diurnal variation characteristics
of high values in the daytime and low values at night. The thickness of the mixed layer showed an
evident declining trend after 15:00 LST on 3 December, and it fell to 200 m at 06:00 LST on 4 December
corresponding to the period of aggravated pollution. This indicates that the lower mixed layer
thickness was closely correlated with the pollution levels, as it could inhibit convective transport in the
vertical direction and simultaneously weaken the vertical diffusion potential of atmospheric pollutants
with small horizontal wind speeds (Figure 6), leading to the retention and accumulation of PM2.5.
Apparently, after 12:00 LST on 4 December, the thickness of the mixed layer was higher, which could
have strengthened the capacity of atmospheric diffusion in this region.
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Figure 10. The temporal variation in the thickness of the atmospheric mixed layer at three-hour
intervals during the flight sampling.

4.3. Synoptic Situation

An analysis of the synoptic situation could provide an indication for the variation and
characteristics of the pollution episode as a whole. The observed distributions of the sea level pressure
field and the horizontal wind field at 850 hPa based on the NCEP FNL 1◦ × 1◦ grid data during this
event are correspondingly depicted in Figure 11.

At 500 hPa on 1 December, two troughs (one located to the east of the Ural Mountains and the
other over the southern part of Lake Baikal) and one ridge (located between the two troughs) were
depicted at the mid-high latitudes of Eurasia, and a westward flat flow occupied the dominant position
in the absence of distinct troughs and ridges over the central and eastern parts of China, which was
detrimental to the cold air outbreak. At 08:00 LST on 2 December (Figure 11a), the Siberian high
pressure system was located to the north of China, coincident with the formation of strong, cold air
masses. The Beijing-Tianjin-Hebei (BTH) region (113–120◦ E, 36–43◦ N) was under the control of the
homogeneous pressure field distribution, which maintained a stable circulation. The southwesterly
winds passing over the southern part of the BTH region at 850 hPa led to enhanced pollutant transport.
Coupled with local emissions and the lower boundary layer, this condition resulted in a sharp increase
in the PM2.5 mass concentration and a rapid expansion of the extent of pollution in the BTH region
and its surrounding areas according to the monitoring sites. At 08:00 LST on 3 December (Figure 11b),
the cold front and the stronger northwesterly wind passed over the BTH region, which improved the
air quality in the region. Simultaneously, the haze ahead of the cold air masses also moved toward the
south and gradually influenced Jiangsu Province, where the synoptic situation was stable at this point.
At 20:00 on 3 December (Figure 11c), the northwesterly wind was observed strong from the BTH region
to the northern parts of Jiangsu Province at 850 hPa, which transported pollutants and would lead to the
distinct accumulation of PM2.5 mass concentration in Nanjing. Nanjing and its surrounding areas were
still under a condition of weak and homogeneous pressure, and the small pressure gradient resulted
in small wind speeds, which were indicative of the poor diffusion of PM2.5. At 14:00 on 4 December,
as the strong cold air masses continued to move southward, the wind speeds in Nanjing at 850 hPa
increased rapidly. Up to 20:00 on 4 December (Figure 11d), the surface PM2.5 mass concentration
decreased sharply with the dispersion and transference of the pollutants. Therefore, appropriate
synoptic circulation (i.e., a homogenous pressure field and low wind speed) could have led to the
formation of regional pollution and the accumulation of pollutants in the early stage. The transport of
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pollutants from the BTH region and its surrounding areas with strong northwesterly winds may have
contributed more to the PM2.5 increase in Nanjing during the period of pollution aggravation.

  
(a) (b) 

  
(c) (d) 

Figure 11. Sea level pressure field (color map, unit: hPa) and the horizontal wind field at 850 hPa (blue
wind shaft) at 08:00 LST on 2 December (a), 08:00 LST on 3 December (b), 20:00 LST on 3 December
(c) and 20:00 LST on 4 December 2017 (d) based on the NECP FNL 1◦ × 1◦ grid data. The green dot
represents the location of Nanjing city.

Higher-precision ECMWF grid reanalysis data were referenced for this analysis. The vertical
distributions of the horizontal wind field and relative humidity throughout the grid (32.125◦ N, 119◦ E)
are depicted from 02:00 LST on 3 December to 02:00 LST on 5 December (Figure 12). The low-level
wind speed was small and the wind direction was unstable during 02:00–14:00 LST on 3 December
due to the homogenous pressure field, which obstructed the diffusion of pollution emissions. After
20:00 LST on 3 December, the primary northerly and northwesterly winds occupied the levels between
1000 and 700 hPa, and they became strengthened above 850 hPa, indicative of the southward transport
of strong, cold air with pollutants. In addition, the relative humidity increased and exceeded 90%
at approximately 900 hPa coincident with the temperature inversion during the night, leading to a
rapid increase in the PM2.5 mass concentration. After 14:00 LST on 4 December, the relative humidity
under 850 hPa was obviously reduced. Meanwhile, the strong northwesterly wind above 850 hPa
persisted and continuously transported pollutants, while the northeasterly wind appeared near the
surface, which would dissipate pollutants. The statistics for the surface wind and direction during
3–4 December, as depicted in Figure 13, indicated that the dominant wind directions were north,
north-northwest and north-northeast, accounting for 18.75%, 16.66%, and 16.66%, respectively. In
addition, the wind speed mainly ranged from 1 to 3 m/s, and the average was 2.11 m/s during
this event.
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Figure 12. Vertical distribution of the horizontal wind field and relative humidity throughout the grid
(32.125◦ N, 119◦ E) from 02:00 LST on 3 December to 02:00 LST on 5 December 2017.

Figure 13. The statistics for the surface wind and direction during 3–4 December.

4.4. Major Contributions and Transport Pathways in the Pollution Episode

An analysis of the distribution of the PM2.5 mass concentration and the synoptic situation
described above suggests that the elevated local pollutants might be attributed to pollutants from the
north, such as the BTH region and its surrounding areas. Furthermore, the backward trajectory model
adopted has significant implications for determining the potential source areas that contributed to the
pollution episode and the transport pathways of the pollutants.

Figure 14 depicts the calculated 48-h backward trajectories during the pollution episode. The
experiment site mentioned above served as the starting point for simulating the trajectories. For the
same simulation time, the longer the trajectory is, the faster the transport process [36]. Figure 14a
presents the calculation results at 18:00 LST on 3 December. Because the high PM2.5 mass concentration
was mainly between the surface and 700 m at that time, the lower layers (100 m and 500 m) were chosen
as the initial altitudes for the calculation. The trajectories were from the south, passing over the areas to
the south of Nanjing, and the lengths were relatively shorter, suggesting that pollution emissions such
as combustion products (e.g., coal or straw burning in the winter) from the local or surrounding areas
could contribute more to increases in the PM2.5 mass concentration in combination with the stable
synoptic situation [37] (Figure 11c). Due to the propagation of cold air and the development of winds
at higher altitudes, the higher layers (1000 m and 1500 m) were regarded as the initial altitudes to
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explore the trajectories at 08:00 and 18:00 LST on 4 December. The trajectories at 08:00 LST were from
the northwest, and they passed over central-eastern China (Shanxi, Hebei and Shandong Province at
1000 m; Shanxi, Henan, and Anhui Province at 1500 m) (Figure 14b). The trajectories as well as the
elevated PM2.5 indicated that long-range or regional transport pathways provided more contributions.
At 18:00 LST (Figure 14c), the trajectory at 1500 m was consistent with that at 08:00 LST. The trajectory
at 1000 m moved from Henan Province toward Nanjing in an anticyclonic fashion. With the relatively
high PM2.5 mass concentration observed by the UAV at 900–1000 m, the long-range transport of
pollutants was more likely to persist.

 
(a) (b) 

 
(c) 

Figure 14. HYSPLIT 48-h backward trajectories at (a) 18:00 LST on 3 December (the red and purple
lines represent the trajectories at 500 and 1000 m, respectively), (b) 08:00 LST on 4 December, and
(c) 18:00 LST on 4 December (the red and purple lines represent the trajectories at 1000 and 1500 m,
respectively).

Compared with the pollution emissions from the local or surrounding areas, long-range transport
from the north, such as the southern BTH region and its surrounding areas, which were characterized
by high emissions of particulate matters caused mainly by central heating during the wintertime,
occupied the dominant factor in the increasing mass concentration of PM2.5. The cities around the
trajectories, including Taiyuan (Shanxi Province), Shijiazhuang (Hebei Province), Zhengzhou (Henan
Province), Jinan (Shandong Province), and Bengbu (Anhui Province), during 1–5 December suffered
from different levels of pollution (Table 2). Among these cities, Taiyuan was moderately polluted on
2 December and was relieved subsequently. Shijiazhuang and Zhengzhou were heavily polluted on
2–3 December, where the circumstances were more serious, and the pollution was gradually reduced
after that. The pollution became worse in Jinan on 3 December and in Bengbu after 3 December,
indicative of the pollution zones moving south during that period.
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Table 2. The air quality index in Taiyuan, Shijiazhuang, Zhengzhou, Jinan, and Bengbu.

Date

Taiyuan (Shanxi) Shijiazhuang (Hebei) Zhengzhou (Henan) Jinan (Shandong) Bengbu (Anhui)

AQI
Air Quality

Level
AQI

Air Quality
Level

AQI
Air Quality

Level
AQI

Air Quality
Level

AQI
Air Quality

Level

01 Dec 110 Lightly
Polluted 152 Moderately

Polluted 168 Moderately
Polluted 112 Lightly

Polluted 92 Good

02 Dec 172 Moderately
Polluted 248 Heavily

Polluted 216 Heavily
Polluted 130 Lightly

Polluted 109 Lightly
Polluted

03 Dec 109 Lightly
Polluted 254 Heavily

Polluted 286 Heavily
Polluted 166 Moderately

Polluted 144 Lightly
Polluted

04 Dec 58 Good 89 Good 190 Moderately
Polluted 56 Good 155 Moderately

Polluted

05 Dec 72 Good 68 Good 73 Good 75 Good 158 Moderately
Polluted

4.5. The Analysis of Satellite Remote Sensing Data

4.5.1. Analysis of the Distribution of the MODIS Aqua Satellite Retrieval AOD Product

The AOD is the integral of the aerosol extinction coefficient in the vertical direction, indicating the
light attenuation resulting from columnar aerosols in the atmosphere. Higher AOD values illustrate
greater attenuation and more severe pollution. Satellite remote sensing can provide the regional
distribution of aerosol pollutants with a good spatial coverage. To demonstrate the features of aerosol
pollutants during this episode, Figure 15 shows the AOD distribution in the eastern areas of China
(113–115◦ E, 30–43◦ N) during 2–5 December. It is important to note that the Aqua satellite transited
the above areas at approximately 14:00 LST, and the AOD is not displayed over some parts due to
cloud cover and missing data, leading to an ineffective spatial interpolation. At approximately 14:00
LST on 2 December, the AOD in Nanjing and southern Jiangsu Province was low, while in parts of
the BTH region and Shandong Province, it was high. At approximately 14:00 LST on 3 December,
ranges of higher AOD (>1.0) were expanded mainly in Shandong, Henan and northern Jiangsu
Province. Simultaneously, aerosol deposition began to appear gradually in Nanjing, and the AOD
increased up to approximately 0.7. The AOD in Nanjing exceeded 0.9 at approximately 14:00 LST
on 4 December, indicating the aggravation of pollution. Until 14:00 LST on 5 December, the AOD
in most areas, including Nanjing, fell to less than 0.5, indicating the dissipation of pollutants. There
was a close correlation between the monitored air quality and AOD. Based on the AQI data from the
China National Environmental Monitoring Center stations, zones that were more seriously polluted
(≥moderately polluted) moved toward the south with time, and the pollution was subsequently
concentrated in Anhui Province, which is on the west of Jiangsu Province, on 5 December, as depicted
in Figure 16. At 14:00 LST on 2, 3, 4, and 5 December, the air quality in Nanjing suggested good,
lightly polluted, moderately polluted and good levels, respectively. Therefore, combined with the
AOD and air quality with respect to the spatial distributions, a positive correlation between the
accumulation of aerosol pollutants and the aggravation of pollution could provide an indication for the
long-distance transport characteristics of pollutants, which is in good agreement with the northwest
backward trajectory depicted in Figure 14b,c. Overall, the AOD and air pollution level were positively
correlated, and they were obviously characterized by high-value (>1.0) AOD zones and zones of more
serious pollution (≥moderate pollution) moving toward the south. The AOD increased (>0.9) with the
aggravation of pollution while the AOD decreased (<0.5) with the reduction of pollution in Nanjing
during the episode.
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Figure 15. The distribution of the MODIS Aqua satellite retrieval aerosol optical depth (AOD) product
on 2 (a), 3 (b), 4 (c) and 5 (d) December 2017. The Aqua satellite transited the areas in the picture at
approximately 14:00 LST. The red dot represents Nanjing.

Figure 16. The distribution of air quality at 14:00 LST on 2 (a), 3(b), 4 (c) and 5 (d) December 2017. The
red dot represents Nanjing.

4.5.2. Analysis of the Vertical Distribution Characteristics of Aerosols

It is an issue worth exploring to analyze the characteristics of the vertical distribution of aerosols
during this pollution episode. At approximately 13:00 LST on 3 December and 02:00 on 5 December
2017, the CALIPSO satellite transited the regions in and close to Jiangsu Province (approximately
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117–120 ◦E, 30–36 ◦N); the orbit tracks were 2017-12-03T04-46-16ZD and 2017-12-04T17-54-16ZN,
respectively, as depicted in Figure 17. The former corresponded to the gradual accumulation of
pollutants, and pollution emissions from local or surrounding areas contributed more to Nanjing at
this time. The latter corresponded to the dissipation of pollutants in Nanjing, and the pollution was
concentrated in Anhui Province at this time with the transport of pollutants, which could also provide
an indication for the vertical distribution characteristics of aerosols during the event.

Figure 17. The CALIPSO satellite orbit tracks. The blue and red lines represent tracks
2017-12-03T04-46-16ZD and 2017-12-04T17-54-16ZN, respectively. The red dot represents Nanjing.

Figure 18 shows the vertical distribution of aerosol types and the vertical profiles of the average
extinction coefficient at 532 nm over the region depicted as lines in Figure 17. At approximately 13:00
LST on 3 December, polluted continental aerosols and polluted dust aerosols primarily existed from
the surface to 1 km in the region (118.91–119.32◦ E, 31.47–32.99◦ N) near Nanjing (Figure 18a). In
addition, higher values of the average extinction coefficient were concentrated in the layer below 0.5 km
ranging from 0.4 to 0.6 km−1, and they decreased with increasing altitude below 1.2 km (Figure 18c),
indicating that the pollutants were mainly concentrated at lower altitudes and that they were affected
by emissions from the local or surrounding areas, which is consistent with the above discussion. In
addition, the average extinction coefficient in the layer at 3.3–4 km was mostly related to the observed
clean continental aerosols. At approximately 02:00 LST on 5 December, the polluted dust aerosols
accounted for the major part and existed from the surface to 3 km, and they even exceeded 4 km in the
region (117.58–118.41◦ E, 31.55–34.59◦ N), which represents northwestern Jiangsu and the central part
of Anhui Province (Figure 18b). It is worth mentioning that polluted dust aerosols mainly consisted of
aerosols formed by man-made emissions and dust particles that were most likely originated from the
sand source region to the west of the BTH region, and they were likely transported toward the south
with strong northwesterly winds. Simultaneously, polluted continental aerosols still existed below
1 km, and smoke aerosols primarily existed at approximately 2–3 km and 4 km. The profiles (Figure 18c)
show that the average extinction coefficient decreased as the altitude increased with slight inversions
in the layer at 0–4.2 km, and the values varied from 0.02 to 0.39 km−1, indicating that the accumulation
of aerosols occurred at each altitude affected by the cold air masses moving toward the south and that
the values were higher at lower altitudes due to aerosol deposition. Correspondingly, the places over
which the orbit track passed suffered from relatively serious pollution with the transport of pollutants,
which is consistent with the above discussion of the AOD and air quality.
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Figure 18. Vertical distributions of the aerosol types at approximately 13:00 LST on 3 December (a) and
at approximately 02:00 LST on 5 December 2017 (b). The vertical profiles of the average extinction
coefficient at 532 nm (km−1) over the region in and near Jiangsu Province (c). And the blue and red
lines represent the tracks 2017-12-03T04-46-16ZD and 2017-12-04T17-54-16ZN, respectively.

5. Discussion and Conclusions

To analyze the characteristics and contributing factors of an air pollution episode in Nanjing,
mainly including the spatial-temporal distributions of pollution, meteorological conditions, synoptic
situations, major contributions and transport pathways, and aerosol properties, this study conducted
UAV experiments to collect measurements and combined various data and methods. The conclusions
are as follows:

(1) Correlations were found between the meteorological variables and PM2.5 mass concentration.
Surface meteorological conditions consisting of a high relative humidity, low wind speed and low
temperature were conductive to the accumulation of PM2.5. Vertical profiles of the meteorological
variables and PM2.5 mass concentration revealed the impacts of temperature inversion layers with a
strong intensity and a high relative humidity on the high mass concentration of PM2.5. In addition,
the low thickness of the atmospheric mixed layer inhibited the pollution dissipation potential in the
vertical direction.

(2) The synoptic circulation of the homogenous pressure field and the low wind speed led to the
circumstance in which the dissipation of pollutants was impeded in the early stage. The aggravation
of pollution was mainly attributed to the cold front and strong northwesterly winds above 850 hPa
moving toward the south with accumulated pollutants. Simultaneously, backward trajectory analysis
results further confirmed that the contributions to the increasing PM2.5 mass concentration originated
from not only the pollution emissions from local or surrounding areas but also from long-distance
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transport of pollutants from the northwest, mainly from the BTH region and its surrounding areas
where central heating is utilized in the winter. The long-distance transport was predominant during
this event. In addition, the cities around the northwest long-distance trajectories suffered from different
levels of pollution. Therefore, this pollution episode was mainly derived from transported pollutants
affected by the strong northwesterly winds.

(3) The spatial-temporal distributions of the air quality and PM2.5 mass concentration could
reflect shifts in areas of serious pollution. The air pollution level and AOD were positively correlated.
They were obviously characterized by high-value (>1.0) zones of the AOD and zones of more serious
pollution (≥moderate pollution) shifted southward. While the pollution was alleviated in Nanjing,
the pollutants shifted westward and became concentrated in Anhui Province. Additionally, vertical
observations indicated that polluted dust in addition to polluted continental and smoke aerosols were
primarily observed during this process. In the early stage, aerosols that could affect pollution were
mainly concentrated below 1 km. In the transport stage, polluted dust aerosols accounted for the
major part and existed between the surface and 4 km, and the average extinction coefficient at lower
altitudes (<1 km) was higher for aerosol deposition. This study combined UAV experiments with
previous investigations to monitor air pollution, thereby enabling a relatively comprehensive analysis
of air pollution in Nanjing. The UAV experiments were conducted at a fixed position at the Xianlin
Campus of Nanjing University in the same vertical direction. In future work, experiments will be
conducted at multiple points with both vertical and horizontal flight observations to reach additional
conclusions for preventing and forecasting air pollution events. In consideration of the reliability of
data sampled, the accuracy of the data collected from detection equipment should also be improved.
In addition, to obtain the distribution characteristics of multiple pollutants in the atmosphere more
comprehensively, other detection equipment for measuring PM10 and gaseous pollutants will be added
to the UAV platform.
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Appendix A

To prove the results of the position based on the CFD simulation, Figure A1 depicts the variations
of the variables (PM2.5 mass concentration, temperature, and relative humidity) from the detector
mounted above the airframe of the UAV based on the CFD simulation when the UAV was working
and not working near the surface. The changes in the above variables were relatively small after the
UAV was launched, indicating that this position is disturbed only slightly by the rotation of the rotors.
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Figure A1. Measurements for PM2.5 mass concentration, temperature, and relative humidity.
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Abstract: This paper describes the components and usage of an unmanned aerial vehicle developed
for measuring turbulence in the atmospheric boundary layer. A method of computing the
time-dependent wind speed from a moving velocity sensor data is provided. The physical system
built to implement this method using a five-hole probe velocity sensor is described along with the
approach used to combine data from the different on-board sensors to allow for extraction of the
wind speed as a function of time and position. The approach is demonstrated using data from three
flights of two unmanned aerial vehicles (UAVs) measuring the lower atmospheric boundary layer
during transition from a stable to convective state. Several quantities are presented and show the
potential for extracting a range of atmospheric boundary layer statistics.

Keywords: unmanned aerial vehicles; unmanned aerial systems; turbulence; atmospheric boundary layer

1. Introduction

By acting as the boundary to the atmosphere, the earth’s surface introduces forcing into it through
frictional drag, evaporation and transpiration, heat transfer, pollutant emission and surface geometry.
These interactions produce the highly turbulent atmospheric boundary layer, the lowest 200 to 2000 m
of the atmosphere, separated from the free atmosphere above it by the capping inversion, which
prevents mixing and dampens turbulence. Turbulence production in the atmospheric boundary layer
occurs through a balance of shear stress introduced by the mechanical friction between the surface and
air, as well as by buoyancy effects introduced by surface heat flux through temperature and humidity
gradients. These buoyancy effects, subject to the diurnal cycle, produce stable, neutral, and unstable
conditions within the atmospheric boundary layer, which typically evolve with time scales in the order
of 1 h [1].

The efficiency of the turbulence produced within the atmospheric boundary layer for transporting
heat, mass and momentum drives its response to surface forcing and accelerates the exchange of
these quantities between the surface and atmosphere. Turbulence is therefore a crucial component
of atmospheric boundary layer physics and it is the complexity of turbulence, its dynamics, and its
internal interactions that limit our understanding of the important transport processes that occur
within it.

The governing equations for turbulent flow in the atmospheric boundary layer can be derived
from the conservation of mass and momentum. Assuming that density changes are negligible
(the incompressibility assumption), the conservation of mass simplifies to

∂Ui
∂xi

= 0 (1)
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where Ui are the components of the wind velocity vector, and the quantity xi represents the components
of the position vector. Here we adopt summation notation such that the components of the vector are
indicated by i = 1, 2, 3. Generally, the vector components in geodetic coordinates have index 1 positive
to the East, 2 positive to the North, and 3 normal outward from the surface. The corresponding
expression for the conservation of momentum is

∂Ui
∂t

+ Uj
∂Ui
∂xj

= −δi3

[
g −

(
θ′v
〈θv〉

)
g
]
− 1

〈ρ〉
∂P
∂xi

+ ν
∂2Ui

∂x2
j

(2)

where t is time, δij is the Kronecker delta, g is the magnitude of the gravitational acceleration, and
θ′v is the local perturbation of the virtual potential temperature from its mean value given by 〈θv〉.
Furthermore, ρ is the density of the air, ν is its kinematic viscosity, and P is the local static pressure.
We note that, for the scales of interest within the atmospheric boundary layer, the Coriolis effects are
small and can be neglected. The brackets 〈·〉 represent an averaged quantity. Equations (1) and (2)
represent a closed system of equations, provided that the properties of air and its temperature can be
determined from an equation of state and an energy conservation equation.

As turbulence is an unsteady, three-dimensional process, a statistical approach to its modeling is
frequently taken. Commonly, this is through Reynolds averaging, whereby the instantaneous velocity
Ui(t) is decomposed into fluctuating u′

i(t) and average 〈Ui〉 components such that Ui(t) = 〈Ui〉+ u′
i(t).

By substitution of this decomposition into the conservation of mass and momentum equations and
averaging the results, the Reynolds-averaged form of the governing equations

∂〈Ui〉
∂xi

= 0 (3)

and
∂〈Ui〉

∂t
+ 〈Uj〉∂〈Ui〉

∂xj
= −δi3g − 1

〈ρ〉
∂〈P〉
∂xi

+ ν
∂2〈Ui〉

∂x2
j

+
∂〈u′

iu
′
j〉

∂xj
(4)

can be found. We note that this process results in the introduction of the Reynolds stress tensor, which
is defined as −〈ρ〉〈u′

iu
′
j〉 although it is often simplified to 〈u′

iu
′
j〉 in incompressible flows. The Reynolds

stress tensor represents the modification of the mean flow due to the presence of turbulence. Through
the introduction of the additional unknowns encompassed in the Reynolds stress tensor, the governing
equations are no longer closed, and hence the Reynolds stress tensor must be modeled in order to
produce a solvable system of equations.

Obtaining a spatial description of the components of the Reynolds stress tensor is therefore
valuable for gaining an understanding of turbulent phenomena, and for testing and validating
numerical models of turbulence. To accurately measure turbulence, one has to resolve the entirety
of turbulent scales, which can range from the smallest dynamically important scales (in the order of
millimeters) to the largest turbulent scales (in the order of the atmospheric boundary layer thickness).
Turbulence data is frequently obtained in the form of temporal information through cup and sonic
anemometers, which have a temporal response of 1–2 [2] and 20 Hz respectively and a spatial resolution
of 10 s of centimeters.

As most sensors are mounted on fixed towers, to translate this temporal information into spatial
information, Taylor’s frozen flow hypothesis [3] is commonly invoked using some suitably selected
convection velocity (typically the local mean velocity). Taylor’s hypothesis has been found to work
reasonably well for the smallest scales of turbulence, but it is generally accepted to be in error for the
larger-scale, long-wavelength motions [4]. Nevertheless, because of a lack of suitable alternatives,
Taylor’s hypothesis is still commonly applied under the general assumption that such an application
has non-negligible errors. However, recent evidence suggests that the actual convection velocity
could be wavenumber-dependent [5–7]. A recent analysis of numerical simulations [6] suggests
that low-wavenumber (long-wavelength) signatures in experimental energy spectra characteristic
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of coherent structures could be an artifact of aliasing introduced by Taylor’s hypothesis. It has also
been suggested that this aliasing could increase with Reynolds number as highlighted in recent
high-Reynolds number measurements in the atmospheric surface layer [8], where interactions between
the outer-layer coherent structures and near-wall turbulence were found to be obscured by Taylor’s
hypothesis. Compounding these challenges diagnostically is the difficulty when working with a
flow that is non-stationary, slow to transport past the tower, and subject to the diurnal stability
cycle, as selection of the convective velocity can be subjective when the mean flow is poorly defined
[8–10]. Therefore, there is a clear need for a measurement technique capable of spatially sampling the
atmospheric boundary layer turbulence over its entire range of scales and to capture enough of the
largest scales within a sufficiently short time period to obtain statistical convergence.

The use of unmanned aerial vehicles (UAVs) to conduct measurements in the atmospheric
boundary layer has the potential to address this need to obtain a spatial description of the structure
and organization of turbulence. The ability of a UAV to use a high-temporal response sensor to
spatially sample the flow field translates into a spatially sampled flow field with reduced reliance
on Taylor’s flow hypothesis. In addition, within the 30 min period of quasi-stationarity within
the atmospheric boundary layer [1], an UAV will be able to collect substantially more data than
a fixed-point measurement, which requires the turbulence to convect past the measurement point.
Finally, an UAV also has an advantage over fixed towers in terms of portability and the potential to
measure in locations and altitudes where the construction of a tower is prohibitive.

Manned aircraft have been used to conduct atmospheric research for decades, conducting weather
reconnaissance; measuring mean wind, temperature and humidity profiles; measuring atmospheric
turbulence; and tracking pollutant concentrations (e.g., [11–27]). UAVs offer distinct advantages over
manned aircraft, however, in their ability to safely perform measurements within meters of the surface
and through greatly reduced operational costs [28].

The use of UAVs for atmospheric turbulence research is still in its infancy; although initially
focusing on remotely piloted measurements of temperature, wind and humidity profiles [29,30],
autopilot-guided measurements are now becoming increasingly common [31–38]. Typically, these
measurements employ wind velocity probes with a temporal response that is little better than that
of sonic anemometers. For example, Mayer et al. [39] have developed an UAV with meteorological
equipment that estimates the wind vector by applying a constant throttle and measuring the ground
speed. Data are sampled at 2 Hz, for a wavenumber of 0.11 m−1 at the maximum speed of 18 m/s.
Increasingly, UAVs are utilizing five-hole pressure probes [32,33,40], which can resolve to 40 Hz while
flying at approximately 20 m/s.

In this paper, we describe the development of a fixed-wing UAV for conducting turbulence
measurements of turbulence statistics in the atmospheric boundary layer. We also present sample
data acquired by this system taken in as part of a large-scale CLOUDMAP (Collaboration Leading
Operational UAS Development for Meteorology and Atmospheric Physics) test campaign.
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2. Experimental Design and Methods

2.1. Data Reduction Approach

The use of aircraft as a research platform introduces an additional level of complexity and
difficulty in measuring and analyzing atmospheric data, as a result of the highly dynamic properties
and ever-changing state of the airborne platform. For turbulence measurements, this means
that the wind velocity has to be extracted from the net air velocity signal measured by a sensor
(e.g., a multi-hole pressure probe or hot-wire sensor) that has been mounted on a vehicle experiencing
6 degree-of-freedom rotation and translation. As a result, much work has been carried out over the
previous decades to develop a suitable data reduction scheme [41–43], and the general approach is
described here.

We assign the configuration of the body-fixed coordinate system on the aircraft whose origin is
at its center of gravity and whose axes are aligned such that [x1]B is directed toward the front of the
aircraft, [x2]B is directed outward in the starboard direction, and [x3]B is directed toward the bottom of
the aircraft. It is noted that [·]I denotes a vector in an earth-fixed inertial frame (with [x1]I directed
to the north, [x2]I directed to the east and [x3]I directed down), and [·]B is used to denote a vector in
the vehicle-fixed body frame. The vehicle is assumed to be equipped with a velocity sensor aligned
with the vehicle axis but mounted at a distance from the center of gravity of the vehicle, where rS−CG
denotes the vector that points from the center of gravity to the measurement volume of the respective
wind sensor. We also assume that the vehicle is equipped with an inertial navigation system (INS) or
sensors, located at, or near, the center of gravity, which can determine the translational position and
velocity, rUAV and UUAV , respectively. In addition, we assume that the rotational position, indicated
through the Euler angles of pitch, roll and yaw (θ, φ and ψ, respectively) and the angular velocity
ΩUAV are also provided by this system. Thus, the time-varying position and orientation of the vehicle
are known.

To isolate the wind vector from the sensor measurements, we first note that the traveling probes
will also sense the velocity of the plane relative to the velocity of the air in the atmosphere. Therefore,
we define the recorded relative velocity as

[Ur]B = [US]B − [U]B (5)

where US is the velocity vector of the sensing volume (i.e., the probe tip) and U = [U1 U2 U3]
T

is the velocity vector of the atmosphere (i.e., the wind) in the body-fixed coordinate system. The
components of the inertial frame are taken as x1 oriented north, x2 oriented east and x3 oriented down.
Assuming the air velocity sensor faces forward, it follows that Ur = [Ur1 Ur2 Ur3]

T are the measured
components of the relative velocity tangential, normal, and bi-normal to the sensor axis, and are thus
the components of velocity measured by the respective sensor.

We consider the general case in which the applied sensor is capable of resolving these three
components of velocity, such as with a multi-hole pressure probe or a three- or four-wire hot-wire
probe in which a suitable data reduction scheme (i.e., such as provided by Wittmer et al. [44] or
Döbbeling et al. [45]) has been used to convert the voltage measured by the anemometer into the
velocity magnitude and direction.

We let [UUAV ]I denote the translational velocity of the vehicle and Ω = [dθ/dt dφ/dt dψ/dt]T

denote the vector of rotation rates, given by the vehicle’s INS, and we assume that this measurement is
taken at the center of gravity. The velocity of the sensor in the body frame is given by

[US]B = [UUAV ]B + [Ω × rS−CG]B (6)

Next, we recall that a vector in the inertial frame is transformed into the body frame by
[·]B = LBI [·]I , where
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LBI =

⎡
⎢⎣ C11 C12 C13

C21 C22 C23

C31 C32 C33

⎤
⎥⎦ (7)

C11 = cos θ cos ψ

C12 = cos φ sin ψ

C13 =− sin θ

C21 = sin φ sin θ cos ψ − cos φ sin ψ

C22 = sin φ sin θ sin ψ + cos φ cos ψ

C23 = sin φ cos θ

C31 = cos φ sin θ cos ψ + sin φ sin ψ

C32 = cos φ sin θ sin ψ − sin φ cos ψ

C33 = cos φ cos θ

and φ, θ, and ψ are the roll, pitch, and yaw angles, respectively [46]. Similarly, a vector in the body
frame is transformed into the inertial frame by [·]I = LIB[·]B, where LIB = L−1

BI = LT
BI .

This is a standard transformation matrix between the body fixed and inertial frames used in flight
dynamics, with the inertial coordinate system having component [x1]I along the north axis, component
[x2]I along the east axis and component [x3]I directed into the earth. The wind velocity in the body
frame is then

[U]B = LBI [U]I (8)

=

⎡
⎢⎣ C11U1 + C12U2 + C13U3

C21U1 + C22U2 + C23U3

C31U1 + C32U2 + C33U3

⎤
⎥⎦

Combining Equations (6) and (8) with Equation (5) leads to

[U]I = [UUAV ]I + [Ω]I × rS−CG − LIB[Ur]B (9)

Thus, the desired quantity [U]I can be determined from the measured velocities [Ur]B, [UUAV ]I ,
and [Ω]I ; the measured angles θ, φ and ψ; and the known vector rS−CG.

In the case for which the applied sensor is a multi-hole pressure probe, an additional
transformation step in the reduction scheme is necessary. Typical calibration procedures for these
probes result in the sensor reporting the relative air velocity along with the aircraft’s angle of attack,
α, and sideslip angle, β, allowing for the calculation of all three components of velocity. The angle of
attack and sideslip angle are used to transform the recorded relative velocity, [Ur ]A, into Cartesian
components using the transformation LBA according to [42,47,48], defined as

LBA = D−1

⎡
⎢⎣ 1

tan β

tan α

⎤
⎥⎦ (10)

where D is the normalization factor defined as

D =
√
(1 + tan2 α + tan2 β) (11)

The updated equation used to find the desired quantity [U]I when using the multi-hole pressure
probe is thus

[U]I = [UUAV ]I + [Ω]I × rs−CG − LIBLBA[Ur]A (12)
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where [·]A denotes the additional aerodynamic coordinate system recorded by the multi-hole
pressure probe.

Finally, an additional coordinate transformation is applied to transform the measured wind
velocity from the north-east-down inertial system used in flight dynamics to the east-north-up inertial
system used in meteorology.

2.2. Physical Components

This section describes an UAV developed for measurements of atmospheric turbulence and the
instrumentation package developed for the aircraft with the capability of implementing the data
reduction approach described in the previous section. This vehicle, referred to as BLUECAT5, was
used in a series of flight experiments conducted as part of the first CLOUDMAP test campaign in
Oklahoma, USA. The specific aircraft components presented here are those used for the Tuesday,
29 June 2016 flights conducted as part of this campaign. Further details of the measurement site are
provided later.

The commercially available flying wing Skywalker X8 (manufactured by Skywalker Techology,
China) is the airframe that was used as the foundation for BLUECAT5. This airframe was selected as
the foundation as it features a wingspan of 2.1 m and a total payload of ≈0.5 kg without battery or
other modifications, leading to a total weight of 5 kg. The removable wings and carbon fiber wing
spars allow for sufficient portability of the system and minimal setup time. The aircraft is designed to
be hand-launched and belly landed, eliminating its reliance on prepared runways. The fuselage of the
Skywalker X8 also provides ample room and access for the avionics and measurement instrumentation
systems. BLUECAT5 is fitted with its propulsion system at the rear of the fuselage, making use of an
electric motor coupled with a carbon fiber folding propeller. The electric propulsion system provides
greater simplicity when compared with gasoline and nitromethane engines, leading to higher reliability
but resulting in reduced endurance. The Axi Model Motors (Czech Republic) 4120/14 brushless electric
motor used on BLUECAT5 requires a 4S 8000 mAh battery utilizing a Castle Creations, USA Phoenix
Edge Lite 75 electric speed controller. This combination, combined with the relatively lightweight
airframe and the large wing area of the aircraft, results in efficient power usage and flight times of
close to 45 min at 17 m/s cruise speeds. With this motor and battery combination, the final payload
capacity for meteorology equipment is approximately 0.5 kg.

Because the Skywalker X8’s fuselage provided sufficient space for excess payload and because
of the sufficient aerodynamic properties of the aircraft, no significant modifications to the airframe
were necessary, aside from changes required to mount the sensors in the nose and to fix the avionics
and instrumentation packages within the payload bay. A BLUECAT5 aircraft and associated launcher
system are displayed in Figure 1.

Figure 1. BLUECAT5 takeoff with launcher.
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Pixhawk commercial autopilots (3DRobotics, USA) running the open-source ArduPilot
software were used to convert the airframes for waypoint following flight. The Pixhawk is a
high-performance autopilot suitable for both fixed-wing and multi-rotor configurations. By measuring
the 6 degree-of-freedom attitude and rate information, the Pixhawk is able to provide the necessary
outputs to the airframe control surfaces and propulsion motor(s) to control the aircraft’s flight.

The autopilot unit was mounted near the center of gravity and along the centerline of the
BLUECAT5 airframe facing forward through the nose. The pulse-width modulated control surface
outputs were wired out of the rear of the autopilot to the respective servo in the wings as well as
to the electric propulsion motor. The Pixhawk was integrated with a 3DR uBlox global positioning
system (GPS) with a compass to provide the position and ground velocity information of the aircraft.
This unit was mounted on top of the aircraft along the centerline, which provided a clear view of the
sky for the GPS and distanced the sensor from the electric propulsion motor causing interference to
the magnetic compass. In addition, a Pitot-static tube mounted in the nose of the aircraft was used to
provide airspeed information to the autopilot.

The autopilot is designed to fly in a pattern described using predetermined waypoints defined by
altitude, latitude and longitude. These waypoints are designated within the ground station software
(Mission Planner) installed on a laptop and used to control the aircraft’s flight path. While in flight,
the ground station is used to monitor the aircraft behavior and flight properties, such as the heading,
attitude, velocity, and altitude. In addition to observing the aircraft, the ground control station is used
to alter flight paths, change flight modes, and adjust certain control parameters used for waypoint
tracking flight. The communications between the aircraft and ground control station are accomplished
via a 900 MHz radio telemetry link between an on-board 3DR, a USA telemetry radio and an identical
radio connected to the ground station computer. While the parameters and waypoints are adjusted
via the ground station, the information is stored on-board the Pixhawk hardware in the aircraft.
This means that if the connection was lost between the ground station and the UAV, the UAV is able
to continue its flight between waypoints. Upon completion of the flight plan, the UAV will enter a
failsafe mode if a connection has not yet been established in which the UAV will return to a home
waypoint, determined by the position at which the Pixhawk was armed, and loiter until a connection
is re-established. This link is always connected prior to takeoff using the Mission Planner software.

In addition to supporting waypoint tracking, the open-source autopilot records the
6 degree-of-freedom position, velocity, and GPS information needed for the data reduction at 50,
10, and 5 Hz, respectively. This information is recorded by both the ground control station via
telemetry and at the increased frequencies listed above to the micro SD card supported by the Pixhawk.
This log file can then be recovered and transferred after landing by the SD card. Initially, the data
reduction described in Section 2.1 was intended to be conducted using this information. However,
numerous preliminary flight tests revealed that bias was introduced in the resolved wind vector by
small inconsistencies in the reported attitude and attitude rate vectors. It was determined that the
greatest source of this bias was the magnetometer, used to determine aircraft yaw in the inertial frame.
Thus, a more accurate INS was required, which did not rely on magnetometer data.

The VN-300 manufactured by VectorNav, USA was selected, as it is an extremely small INS that
utilizes dual GPS antennas to provide highly accurate heading measurements without the reliance on
the magnetic sensors that are typically used. With the aid of advanced Kalman filtering techniques, the
VN-300 provides a heading accuracy of 0.3◦ and a pitch/roll accuracy of 0.1◦ with a ground velocity
accuracy of ±0.05 ms−1. The INS also provides an increased sample rate of up to 400 Hz for all the
variables; however, a 200 Hz sample rate was used for the experiments. The VN-300 outputs a custom
binary file that is programmable within the software provided with the system. The outputs from the
INS for this experiment were attitude angles θ, φ, and ψ; rates [Ω]I ; and velocities [UUAV ]I ; along with
temperature, pressure, latitude, longitude and altitude. The provided software was required to run the
VN-300 and was installed on the on-board personal computer.
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The UAV was equipped with a 30 cm long, 3.175 mm diameter brass rcats-120 Pitot-static tube
produced by RCAT Systems, USA to provide the autopilot with an accurate true airspeed reading
needed to maintain controlled flight. In addition, the Pitot-static tube was used to provide a reference
static pressure for the turbulence measurement system. The true airspeed information was also used
in the data reduction as a reference velocity signal for cross-correlating the autopilot telemetry signal
with the turbulence measurement system velocity signal. This Pitot tube was mounted 25 cm in front
of the nose of the aircraft away from the fuselage, 3 cm below the five-hole probe. The transducer used
with the Pitot-static tube and autopilot was acquired using a Freescale Semiconductor MPXV7002DP
differential pressure transducer with a 2 kPa range.

To increase the safety and reliability of takeoffs, a launching system was developed in order to
propel BLUECAT5 into flight. The designed launcher consisted of a bungee system to pull the aircraft
along a pair of rails providing the required angle of attack and airspeed for liftoff. The launcher base
was created from 25.4 mm polyvinyl chloride (PVC) pipe to provide a low-friction rail system for the
aircraft. The launcher was 2 m long and set at a 13◦ angle ideal for takeoff.

To measure turbulence in the atmospheric boundary layer for each BLUECAT5 UAV, the on-board
instrumentation included a five-hole probe, pressure transducers, a data acquisition unit (DAQ),
and an on-board personal computer (PC). The geometry of the five-hole probe produced a different
pressure at each of the five ports on its surface, relative to the static pressure measured by the Pitot-static
tube used by the autopilot. The pressure transducers converted these pressure readings to a voltage,
with their high-level inputs connected to the different ports of the five-hole probe and the reference
ports connected to the static line from the Pitot-static tube. The voltages from the pressure transducers
were digitized by the data acquisition system, which was controlled by the on-board computer that
also stored all the information produced by the INS and the DAQ. These components are discussed in
further detail below, and the connectivity of this system is summarized in Figure 2.

Five-hole Probe 
(Custom Built)

Pitot-static tube
(rcats-120)

Temperature, 
Humidity, Pressure 
w/ supplemental 

GPS (iMet-XQ)

Inertial Navigation System 
(VectorNav VN-300)

Autopilot
(Pixhawk)

1 Pressure Transducer
(mpxv7002dp)

5 Pressure Transducers 
(4515-DS5A002DP)

Data Acquisition
(MCC USB-1608FS-

Plus)

On-Board PC
(Kangaroo)

Data Storage and
Post Processing

Static Pressure
Total Pressure

Analog Voltage

Total Pressure

Analog Voltage

USB

Ground Station 
(Laptop PC)

5V 
supply

4S 8000mAh 
flight battery

Telemetry

5V 
Regulated

ESC / Motor

Control Surface 
Servos

PWM

5V 

PWM

Pressure, temperature, 
humidity and position data 

at 1 Hz

Five hole probe voltage data at 1 kHz 
and 6-DOF position data at 200 Hz

6-DOF position Data at 50 Hz
TAS and Pressure Data at 10 Hz

GPS data at 5 Hz

Figure 2. Diagram illustrating BLUECAT5 instrumentation connections. Red indicates supplied power;
dashed lines indicate manual transfer of data post flight, rather than a hard-wired connection.

Multi-hole probes are designed to determine the magnitude and direction of the local air velocity
vector. Specifically, on aircraft, they provide the angle of attack and side-slip angles typically denoted
by α and β, respectively. The five-hole probe is made up of a cylindrical body with one hole along the
centerline and four holes evenly spaced cylindrically around an angled tip. Therefore, if the flow of the
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fluid is not aligned with the center of the probe, each hole reads a different pressure, which, through
calibration, can be used to estimate α, β and the velocity magnitude.

The five-hole probe used for the present work was manufactured using a Formlabs, USA Form1+
Desktop Stereolithography 3D Printer. The five holes on the sensors are 1.2 mm in diameter and the tip
of the probe has a 30◦ tip angle. Each hole is connected to a differential pressure transducer through
1.75 mm diameter Tygon tubing protected by a 25 cm aluminum tube. The probe was mounted along
the [x1]B-axis, 25 cm in front of the fuselage and 60 cm away from the autopilot to minimize flow
disturbances caused by the airframe. The five-hole probe pressure measurements were acquired
using TE Connectivity, Switzerland 4515-DS5A002DP differential pressure transducers with a 0.5 kPa
range. A custom circuit board was designed and constructed, providing a compact layout for all five
transducers with optional inputs for first order resistor-capacitor low-pass filters. A 100 Hz anti-aliasing
low-pass filter was designed and implemented prior to the signal being sent to the data acquisition
system. These transducers were powered by the 5 V output from the DAQ. Before flight, each five-hole
probe was calibrated using a 0.3 m × 0.3 m wind tunnel. In order to complete the calibration, a custom
traverse using Vexta stepping motors was designed and mounted to the wind tunnel, allowing the
probe to both pitch and yaw in with a step accuracy of 0.36◦. The calibration followed a standard
calibration technique outlined by Treaster and Yocum [49] on the basis of the Wildmann et al. [50]
study, which showed better results in comparison to the Bohn et al. method [51]. For the calibration,
the wind tunnel was set to a constant velocity, in this case 17 m/s, as this was the cruise speed for the
experiments, and the five-hole probe was stepped by 1◦ intervals between predetermined pitch and
yaw angles of −15◦ and 15◦ for the pitch and −18◦ and 18◦ for the yaw. At each angle, the current
pressure values at each hole were measured and averaged over 5 s. Additionally, a fixed Pitot-static
tube was mounted into the wind tunnel to measure the dynamic pressure throughout the calibration,
as well as to provide a static reference for the five-hole probe transducers. After the data was acquired
from the calibration, the required coefficients were determined a posteriori so that the wind direction
and magnitude could accurately be calculated from the pressure at each of the five holes of the probe.

Two identical BLUECAT5 aircraft were used for these experiments and consequently two different
five-hole probes were utilized, each requiring separate calibration. The two five-hole probes were
identified by the monikers Kirk and Spock; for both α and β, the root-mean-square error (RMSE) was
under 0.15◦ and the RMSE for the measured velocity Ur was well under 0.1 ms−1, as shown in Table
1. A coarse uncertainty propagation analysis [52] of Equation (9) was conducted using these values
in concert with the stated uncertainties of the dual-GPS INS system. The result provides an estimate
of the extracted wind vector error at 0.07 m/s, driven largely by the uncertainties in the dual-GPS
INS and in the five-hole probe velocity magnitude. However, such analysis is unable to account for
unknown biases, particularly in orientation, which could increase the uncertainty further.

Table 1. Root-mean-square error (RMSE) of calibration results.

Coefficient Kirk RMSE Spock RMSE

α 0.0984◦ 0.1250◦
β 0.0976◦ 0.1248◦

Cq 0.0056 0.0099
|Ur| 0.05 ms−1 0.09 ms−1

An additional calibration was conducted to determine the frequency response of the five-hole
probe. This was performed by subjecting the measurement tip of the probe to a step change in pressure
and measuring the voltage output of the transducers. The results showed a slightly underdamped
response, with a corresponding frequency response of 60 Hz. At the typical cruise speed of BLUECAT5,
this frequency response translates to a spatial measurement resolution of approximately 0.28 m.

Interference effects between the airframe and five-hole probe were mitigated by placing the probe
measurement volume 18 cm in front of the nose of the aircraft. This location was selected following
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scale-model tests of the aircraft, in which dye was injected into a water tunnel containing a model of
the Skywalker X8 airframe and the deflection of the dye around the airframe was examined. This water
tunnel flow visualization, shown in Figure 3a, was coupled with a full-scale wind tunnel test, in which
a Pitot-static tube was positioned at various streamwise positions upstream from the aircraft nose and
was used to measure the local velocity magnitude. For the wind tunnel tests, two vertical positions
were tested, corresponding to the position of the Pitot-static tube (position 1) and five-hole probe
(position 2). Vertical position 1 was located at the leading edge of the aircraft and vertical position
2 was 1.5 cm above it. The difference between the velocity measured at these locations and the true
wind tunnel velocity are presented in Figure 3b. From Figure 3a, the streamline deflection was limited
to a region very near (less than 5 cm) to the airframe, and the flow deceleration was limited to 16 cm
upstream from the nose of the aircraft.

Figure 3. Results of investigation of airframe influence on flow field: (a) scale-model flow visualization,
and (b) full-scale wind tunnel comparison of measured velocity to true velocity. Red dots in
(a) correspond to streamwise measurement locations in (b).

To measure the temperature and humidity during flight, an InterMet Systems, USA iMet-XQ UAV
sensor was used, which provided a standalone solution for temperature and humidity measurements.
The sensor includes a GPS receiver, and pressure, temperature and humidity sensors all powered by a
rechargeable battery. Up to 16 MB of data from the sensors can be stored on board and downloaded
post-flight for analysis via USB connection. The iMet humidity sensor supports a full 0–100% relative
humidity (RH) range at a ±5% RH accuracy with a resolution of 0.7% RH. The on-board temperature
sensor provides a ±0.3 ◦C accuracy with a resolution of 0.01 ◦C up to a maximum of 50 ◦C. The response
times of these sensors are in the order of 5 and 2 s respectively in still air with the iMet-XQ UAV system
sampling these sensors at 1 Hz.

The data acquisition system used to digitize the voltage output from the five pressure transducers
as well as the voltage input to the transducers, was a Measurement Computing, USA MCC
USB-1608FS-Plus DAQ. This particular unit is capable of recording eight single-ended analog inputs
simultaneously at 16 bit resolution with rates of up to 400 kS/s. The DAQ also provides a 5 V
signal to power the pressure transducers. During the experiments, the DAQ recorded six channels
simultaneously at 1 kHz for each channel (corresponding to 6 kS/s).
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The DAQ was connected via USB to an InFocus, USA Kangaroo Mobile Desktop Computer
KJ2B#001-NA with an Intel Atom X5-Z8500 (1.44 GHz) processor, 2 GB LPDDR3 RAM and 32 GB
eMMC storage running the Windows 10 home operating system. A custom Matlab script was written
to control the acquisition, compiled as a standalone executable. This script allowed for the selection
of the channels to be recorded, the duration of the acquisition, and the voltage range at which each
channel was recorded. The Kangaroo PC was also used to simultaneously run the VN-300 INS system
by using the manufacturer-provided software. The on-board PC stored all the recorded data on its
32 GB hard drive from both the DAQ and the additional INS. Data from both systems were stored on
the PC and then transferred off the aircraft post-flight for archiving and further analysis.

2.3. Sonic Anemometer

To provide a ground reference for the wind velocity vector and temperature during flights, an
R.M. Young, USA Model 81000 ultrasonic anemometer was used. The sonic anemometer is a three-axis
wind sensor that provides the three components of velocity in the inertial reference frame, as well
as a sonic temperature measurement. The Young 81000 can measure wind speeds of up to 40 m/s
at a resolution of 0.01 m/s with an accuracy of ±0.05 m/s. From the three components of velocity,
the direction of the wind can be provided in 360◦ at a resolution of 0.1◦ with an accuracy of ±2◦.
The temperature provided by the sonic anemometer is calculated on the basis of the speed of sound,
leading to a temperature measurement accuracy of ±2 ◦C. For the data reported here, the anemometer
was set to output four analog voltages, corresponding to U1, U2, U3 and the temperature.

The sonic anemometer was mounted onto a 7.62 m tower and the voltage data output from the
anemometer was recorded by a stand-alone high-speed Measurement Computing, USA LGR-5329
multifunction data logger, logging at 100 Hz. Both the anemometer and logger were powered by a
single 4S 3300 mAh lithium/polymer battery.

2.4. Measurement Procedures

The primary data sets acquired for this work were taken with two BLUECAT5 UAVs flying
simultaneously with varying flight paths. Each UAV was equipped with identical five-hole probe
sensor packages. Before each flight, the instrumentation was started manually through the on-board
Kangaroo PC, and the autopilot was connected to its respective ground station. At the start of the data
acquisition, zero reference voltages were taken by applying a cover to both the five-hole probe and
the Pitot-static tube in order to mitigate any wind velocity the sensors might have been reading at
ground level. The aircraft were then launched sequentially via the use of the custom-made launcher
under manual control. Once positive flight characteristics were confirmed through manual flight, the
aircraft were switched to a waypoint tracking flight mode, at which point the autopilot began flying its
flight path, defined using predetermined waypoints. Following approximately 30 min of flight time,
the aircraft were returned to manual mode and recovered via belly landing. Immediately after each
flight, all relevant flight data, including the five-hole probe voltage readings, autopilot logs, VectorNav
information and iMet-XQ UAV files, were transferred to a laptop for validation checks and archiving
on an external hard drive. The Kangaroo PCs and iMET-XQ UAV sensors and flight batteries were
then replaced with counterparts containing full charge, making the aircraft ready for the next flight
following an approximately 15 min turnaround time.

All the flights were flown under the University of Kentucky’s FAA Blanket Area Public Agency
Certificate of Authorization number 2016-ESA-32-COA.

2.5. Implementation of Data Reduction

In order to implement the data reduction scheme described in Section 2.1, the inertial data from
the VectorNav INS consisting of the UAV’s velocity, Euler angles, and Euler angle rates were needed in
conjunction with the airspeed and direction given by the five-hole probe. The five-hole probe data
were sampled by the on-board data acquisition system at 1 kHz, whereas the VN-300 INS sampled
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the inertial data at 200 Hz. In fact, between the four separate data systems that were described
earlier in this section, including the five-hole probe data acquisition system, the Pixhawk autopilot,
the VectorNav VN-300 INS, and the iMet-XQ UAV temperature and humidity sensor, each system was
established with varying acquisition rates and start times during the experiments. The acquisition
rates for each system can be found in Table 2. Because of this, the first step to the data reduction was to
align the respective data systems’ time series and re-sample the data at a consistent rate.

Table 2. Acquisition rates for on-board instrumentation systems.

System (Component) Acquisition Rate

Pixhawk (6-DoF attitude) 50 Hz
Pixhawk (Airspeed and barometric pressure) 10 Hz

Pixhawk (GPS data) 5 Hz
iMet-XQ 1 Hz

USB-1608FS-Plus data acquisition unit 1000 Hz
VectorNav VN-300 INS 200 Hz

To complete the alignment between the VN-300 INS and the five-hole probe data, the Pixhawk
autopilot was used as a reference signal to which the other data systems were aligned. The Pixhawk’s
GPS velocity, measured at 5 Hz, was used to align the VN-300 INS, and the Pixhawk’s air velocity
data, measured at 10 Hz, was used to align the five-hole probe measurements. This was done firstly by
assuming that the UAV position and orientation smoothly transitioned between sample points in the
data log, allowing for interpolation of the relevant Pixhawk data to 200 Hz using a cubic interpolation
scheme. Similarly, the five-hole probe data was re-sampled from 1 kHz to 200 Hz, as the filter used for
the pressure transducers was set to a 100 Hz cut-off frequency. With the data set to identical sample
rates, the relative time difference between the start of each set of time series data was then determined
by cross-correlating the Pixhawk data with the respective data from the sensors recorded by the DAQ
and VN-300 INS. Before correlation between the five-hole probe data and the Pixhawk’s airspeed
data, the voltage output from the central hole on the five-hole probe was converted to velocity so that
the information being correlated represented the same measurement. Identification of the location
of the maximum in the cross-correlation allowed for determination of the relative shift between the
initiation of sampling between the INS and five-hole probe and the Pixhawk data, consequently
aligning the two INS and five-hole probe data streams. As a result, [rUAV(ti)]I , [UUAV(ti)]I , [Ω(ti)]I
and the transformations LIB(ti) and LBA(ti) became known, where ti is the time corresponding to
each discrete sample of the five-hole probe velocity, [Ur(ti)]B, and directions, α(ti) and β(ti). From
this information, the wind vector [U]I was calculated using Equation (12).

3. Results and Discussion

3.1. Measurement Site Overview

The results presented in this work are from flight experiments conducted on 29 June 2016, which
began at approximately 07:40 CDT and were concluded at 13:30 CDT, in close proximity to the Marena
Mesonet site in Marena, Oklahoma, USA. The Marena Mesonet site is part of the Oklahoma Mesonet,
a network of 121 environmental monitoring stations spread across the state. The Mesonet consists of
a 10 m tall tower containing multiple instruments to measure the environment every five minutes.
The measurements provide parameters such as barometric pressure, RH, air temperature, wind speed,
and wind direction between 0.75 and 10 m. The sonic anemometer tower was placed close to the
Mesonet tower and was used to provide a reference wind and temperature measurement at 7.62 m.
The objective of the flights was to demonstrate the use of two UAVs to simultaneously measure profiles
of the atmospheric boundary layer properties by flying concentric flight paths at different radii and
altitudes. The two aircraft are referred to as BC5A and BC5B. These two aircraft were identical in both
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hardware and capabilities. This technique allowed for the measurement of atmospheric properties
at two altitudes within approximately the same vertical profile at the same time. With two altitudes
being measured simultaneously, the impact of time evolution on the measured atmospheric properties
could be somewhat mitigated.

A total of three flights were conducted, each acquiring data between 40 and 120 m above ground
level, and the latter two were multi-UAV flights, as outlined in Table 3. For the multi-UAV flights, the
BC5A airframe began its 80 m radius loiter flight trajectory at a 40 m altitude and at increased altitudes
at 20 m steps every two minutes until it reached 120 m, before stepping back down to its starting
altitude. BC5B mirrored BC5A’s profile pattern at a 100 m loiter radius, beginning at a 120 m altitude
and descending to 20 m before ascending again up to 120 m. For each profile, the aircraft would loiter
at an 80 m altitude, simultaneously providing an opportunity to compare data points at that position.

A graphical overview of the Marena measurement site using topography and imagery obtained
from ArcGIS and Google Earth is shown in Figure 4, as well as a top-down view of the flight patterns for
each UAV. The flight area elevation varied by ±2 m throughout the flight paths. The site is 327 m above
sea level, located approximately 7 mi north of Coyle, OK, USA at 36.064◦ N and −97.213◦ W. The terrain
is largely rural grassland with small patches of trees and slightly rolling elevation. The flights took
place near the N3250 gravel road (thick line running nearly North/South in Figure 4b) with the
ground station located off of the Mesonet access road (thinner, S-shaped road running approximately
East/West in Figure 4b), near the takeoff location marked by a green arrow on the map. The blue
circles in Figure 4 represent BC5A’s programmed flight path, the red circles depict BC5B programmed
flight path, the blue diamond represents the location of the sonic anemometer, and the green marker
shows the location and direction of takeoff for each UAV.

Table 3. Wednesday, 29 June 2016 flights overview.

Flight # BC5A Takeoff BC5B Takeoff Radius (m) A/B Altitudes (m Above Ground)

Flight 1 07:41 CDT (UTC-5) N/A 80/100 (40, 60, 80, 100, 120)
Flight 2 09:57 CDT (UTC-5) 09:58 CDT (UTC-5) 80/100 (40, 60, 80, 100, 120)
Flight 3 13:09 CDT (UTC-5) 13:05 CDT (UTC-5) 80/100 (40, 60, 80, 100, 120)

(a) (b)

Figure 4. Graphical overview of Marena Mesonet location showing flight paths of BC5A and BC5B.
The green arrow indicates takeoff location, the diamond indicates sonic anemometer location and the
square indicates Mesonet station location. Locations and sizes on map are approximate. (a) Topographic
map of region surrounding Marena Mesonet site. Data from ArcGIS. (b) Aerial image of terrain in close
proximity to Marena Mesonet site. Data from Google Earth.

The weather on the day of measurement was clear and partly cloudy. The corresponding
temperature, RH and wind speed reported from 00:00 to 19:00 CDT on 29 June 2016 by the Mesonet
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station are presented in Figure 5a–c, respectively. The approximate times of the flights are indicated in
these figures for reference. It can be observed from Figure 5a that for all three flights, the temperature
gradient near the ground suggested convective conditions, and the first flight just followed a period
of neutral stability. As the temperature increased, from the first to last flight, the RH on the ground
dropped from approximately 70% to 50%, as shown in Figure 5b. Over the same period of time, as
shown in Figure 5c, the wind speed near the ground remained relatively constant between 2 and 3 m/s.

Figure 5. Data extracted from Marena Mesonet site for 29 June 2016 showing (a) temperature, (b)
relative humidity, and (c) wind speed evolution during the day. Grey boxes show approximate times at
which measurement flights occurred.

3.2. Temperature and Humidity

The time traces of temperature measured by the UAVs over the three flights are shown in Figure 6
and reveal the combined altitude above ground level, z, and time dependence of temperature over
the three flights. For flight 1, which was performed with a single UAV and is shown in Figure 6a,
the profile shows an inversion of temperature at 40 m, decreasing slightly with z below 40 m and
increasing at a much higher rate above it. Thus, flight 1 took place within a developing convective
layer with a thickness of approximately 40 m, with the residual stable layer above it. Figure 6a also
shows the time dependence of the temperature, indicated by the color of the symbol used. Groups of
symbols indicate periods of time during which the aircraft loitered at a single altitude. Over the course
of the 30 min flight, the temperature increased by approximately 2 ◦C.

Figure 6. Profiles of altitude dependence of temperature measured by the two aircraft during (a)
flight 1, (b) flight 2, and (c) flight 3. The symbols are spaced 5 s apart with the color of the symbols
representing the position in time series (dark blue indicates the start of flight transitioning to red
towards the end of flight). The blue lines indicate measurements made by BC5A and the red lines
indicate measurements made by BC5B.

For the two later flights, shown in Figure 6b,c, the temperature decreased with z for the entire
range of altitudes measured. Between flights 2 and 3, it can be observed that there was both a decrease
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in the temperature change over the course of the flight and a corresponding increase in variability of
temperature measured during a loiter at constant altitude.

The stability conditions and temperature variability are better reflected in the profiles of mean
and variance of virtual potential temperature. The virtual potential temperature θv was calculated
from the measured temperature T and the relative humidity RH, as follows:

θv = (1 + 0.61r)θe (13)

where r is the vapor mixing ratio and

θe = T
(

100000
P

)0.286
(14)

is the potential temperature in kelvin, found from the measured temperature T and the measured
static pressure P (in pascals). The vapor mixing ratio was found from the measured RH using

r = 0.622
Pv

P − Pv
(15)

where Pv is the partial pressure of the water vapor found from the RH and temperature, as follows:

Pv =
RH
100

exp
[
77.345 + 0.0057T − 7235

T
]

T8.2 (16)

The profiles of the mean virtual potential temperature 〈θv〉 and the variance of the virtual potential
temperature 〈θ2

v〉 measured by BC5A and BC5B for all three flights are shown in Figures 7 and 8.
These statistics were calculated by subdividing the time series into subsets consisting of measurements
taken while the aircraft loitered at a prescribed altitude. As each aircraft loitered at a prescribed altitude
twice during the same flight, there are two values of 〈θv〉 and 〈θ2

v〉 for each z for a single flight trajectory.
The separation in time of these values is altitude-dependent, as reflected in Figure 6. Also shown in
these figures is the trend produced by averaging all the 〈θv〉 and 〈θ2

v〉 values taken at the same altitude.

Figure 7. Vertical profiles of mean virtual potential temperature measured during (a) flight 1, (b) flight 2,
and (c) flight 3. The blue symbols indicate measurements made by BC5A, the red symbols indicate
measurements made by BC5B, the olive symbols indicate measurements made by the sonic anemometer,
and the green symbols indicate measurements made by the Mesonet tower. The dashed line indicates
the trend produced by averaging measurements at each altitude.
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Figure 8. Vertical profiles of potential temperature variance measured during (a) flight 1, (b) flight 2,
and (c) flight 3. The blue symbols indicate measurements made by BC5A, the red symbols indicate
measurements made by BC5B and the olive symbols indicate measurements made by the sonic
anemometer. The dashed line indicates the trend produced by averaging measurements at each altitude.

For comparison, the mean values measured by the sonic anemometer and the Mesonet are
also shown in Figure 7, and the variance measured by the sonic anemometer is shown in Figure 8.
To maintain similar statistical convergence, the sonic anemometer data measured during each flight has
been divided into 5 min intervals, and statistics have been calculated for each of those 5 min intervals.

The mean virtual potential temperature profiles provided in Figure 7 show stability conditions
consistent with the observations made from the temperature profiles that are consistent with a mixed
layer. For flight 1, stable conditions persisted above the mixed layer, which reached only to 40 m.
However for flights 2 and 3, the stability conditions were consistent with that of a mixed layer for
the full range of altitudes measured. Interestingly, for flight 2, the UAV measurements show better
agreement with the Mesonet station than the sonic anemometer.

These conditions are reflected in the profiles of the temperature variance, shown in Figure 8.
For flight 1, which captured both stable and unstable conditions, the entrainment zone at the interface
between the stable and mixed layers contained higher temperature fluctuations, most likely caused by
the higher gradients of θv at this location. Even moderate vertical transport and intermittency cause
higher fluctuations at this altitude, undoubtedly with some contribution from the ±5 m variability in
the aircraft altitude that occurred during a loiter. For the two later flights, the convective conditions
resulted in more constant temperature fluctuations with altitude. Interestingly, during flight 3, the
sonic anemometer temperature fluctuations varied significantly during the flight, which suggested
some strong temperature variability near the surface over the course of the measurement. This did not
appear to be a measurement anomaly, as some of this variability was captured in the time traces of
temperature taken by the UAVs near the ground, as shown in Figure 6c. It is not known what caused
this variability near the surface.

Time traces showing the altitude and time dependency of the measured RH are shown in Figure 9
for each of the three flights. For flight 1, shown in Figure 9a, the RH near the surface was near 70%,
decaying with altitude to approximately 55% at z = 120 m. For the two later flights, shown in Figure
9b,c, the RH became more uniform, at approximately 60% and 50% respectively, extending throughout
the measured altitudes. These values are consistent with those reported by the Mesonet site during the
times the flights were conducted. We note that the effect of the slower time response of the humidity
probe was evident during flight 1, appearing in the two far-left lines, which represent descents from a
120 to a 40 m loiter altitude. These two traces have a lower RH than other measurements made at the
same altitude and reflect the lag in the instrument, as the slow response of the instrument caused its
output to bias towards the RH at higher altitudes rather than the RH at the altitude of measurement.
This bias should not have impacted the mean statistics measured at a constant altitude, although the
humidity fluctuations would be severely filtered by this slow response.
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Figure 9. Altitude dependence of relative humidity measured by the two aircraft during (a) flight 1, (b)
flight 2, and (c) flight 3. Symbols represent a 5 s separation in time and the color of symbols represents
position in time (blue at start of flight transitioning to red with increasing time). Blue lines indicate
measurements made by BC5A and red lines indicate measurements made by BC5B.

To obtain a better impression of the moisture content, profiles of the mean vapor mixing ratio
are provided in Figure 10. As for the profiles of the mean temperature, the vapor mixing ratio has
been averaged over the period of time each UAV spent loitering at a constant altitude. The profiles
show that while within the stable residual layer above 40 m in flight 1, the moisture content decreased
with altitude, the flights within the mixed layer displayed a much more uniform moisture content,
consistent with the more constant temperatures observed during these flights. No humidity data was
available from the sonic anemometer tower, but the vapor mixing ratios measured by the UAVs were
slightly lower than the values reported by the Mesonet station.

Figure 10. Vertical profiles of mixing ratio measured during (a) flight 1, (b) flight 2, and (c) flight 3.
The blue symbols indicate measurements made by BC5A, the red symbols indicate measurements
made by BC5B and the green symbols indicate measurements made by the Mesonet tower. The dashed
line indicates the trend produced by averaging measurements at each altitude.

In general, for the two later flights, in which two UAVs were flying simultaneously,
the measurements can be used as a form of self-validation of the UAV data systems, at least for
precision errors. Most notably, this validation occurs in the altitudes around 80 m, as this was when
both UAVs were simultaneously at the same altitude. As evidenced by Figures 7–10, the measurements
are in very good agreement and validate the instrumentation system and data reduction operation for
the scalar quantities. We note, however, that because the airframes and instrumentation were identical,
bias errors introduced by the airframe or instrumentation would not be detected by this comparison.
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3.3. Wind Velocity

The time traces of the velocity magnitude measured by the UAVs over the three flights are
shown in Figure 11, showing the combined altitude and time dependence of the wind velocity
measured during the three flights. For flight 1, shown in Figure 11a, the velocity magnitude profile
is consistent with a shear-driven boundary layer, as the velocity magnitude increases monotonically
with z throughout the measured flight profile. This is consistent with flight 1 taking place within a
developing convective layer that had a residual stable layer above it, as observed from the temperature
profiles. The two later flights, shown in Figure 11b,c, are also consistent with the mixed layer conditions
indicated by the temperature profiles. For flights 2 and 3, the wind velocity showed little variation with
altitude but much greater variation in time, reflecting increasingly turbulent conditions. The variations
in time also increased between flights 1, 2 and 3, suggesting that the turbulence intensity increased
between all three flights.

Figure 11. Profiles of wind velocity magnitude measured by the two aircraft during (a) flight 1,
(b) flight 2, and (c) flight 3. Symbols represent a 5 s separation in time and color of symbols represents
position in time (dark blue indicates the start of flight transitioning to red towards the end of flight).
The blue lines indicate measurements made by BC5A and the red lines indicate measurements made
by BC5B.

These measurements of the three time-varying components of the wind velocity vector Ui(t)
allowed for the determination of the mean velocity components 〈Ui〉 as well as all the components
of the Reynolds stress tensor 〈u′

iu
′
j〉 at each flight level, by averaging the measurements taken while

the aircraft loitered at each altitude. To aid with connecting the Reynolds stress components to the
mean wind velocity, the coordinate system has been rotated to a coordinate system aligned with
the mean wind vector, such that 〈U1〉∗ is in the direction of the mean wind at each flight level, and
thus 〈U2〉∗ = 0. Here, we use a superscripted ∗ to indicate statistics taken in this mean-wind-fixed
coordinate system. The corresponding profiles of the mean velocity are shown in Figure 12.

For the latter two flights with two UAVs flying simultaneously, the agreement of the measurements
of both the mean wind speed and direction between them was good, with exceptional agreement when
the UAVs were simultaneously at similar altitudes (i.e., in the range between 60 and 100 m). The greatest
differences between the measured mean velocities occurred at the maximum and minimum altitudes,
when the time difference between the measurements was greatest. The larger variation in the mean
wind velocity measured during each loiter and the overall mean velocity at these altitudes therefore
suggested that long-wavelength motions existed within the boundary layer during flight 3 and were
not resolved within the time spent loitering at a fixed altitude. Although difficult to compare directly
because of the 30 m difference in the measurement position, the wind velocities measured appeared to
be consistent with the results reported by the Mesonet site. The time traces of the velocity magnitude
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shown in Figure 11, which extend down to the surface, show very good agreement with the Mesonet
site values, however.

Figure 12. Vertical profiles of mean wind velocity measured during (a) flight 1, (b) flight 2, and (c) flight
3. The blue symbols indicate measurements made by BC5A, the red symbols indicate measurements
made by BC5B, the olive symbols indicate measurements made by the sonic anemometer and the
green symbols indicate measurements made by the Mesonet tower. The dashed line indicates the trend
produced by averaging measurements at each altitude.

The changes in the boundary conditions are reflected in the scattering of the measured Reynolds
stresses. This is conveniently summarized in the turbulent kinetic energy, defined as k ≡ 1

2 〈u′
iu

′
i〉,

which describes the magnitude of the turbulent fluctuations. The measured profiles of k are provided in
Figure 13. For the combined convective and stable boundary layer measured during flight 1, the overall
turbulent kinetic energy was lower than that measured during later flights, despite the mean wind
velocity being much higher. There was an increase in k within the entrainment layer, as also observed
in the temperature fluctuations shown in Figure 8. However, this region of increased variability in the
wind velocity magnitude is much broader than that observed in the variance of temperature. Once the
boundary layer transitioned to a mixed layer, for flights 2 and 3, there was a corresponding increase
in k, and the profiles exhibit increased scattering in the measured values of k, most likely due to an
increase in long-wavelength motions. We note that although these long-wavelength motions increase
the data scattering, when the aircraft were close to, or at the same flight level (between 60 and 100 m)
there was very good agreement in the measured k. Furthermore, these long wavelengths were at least
partially resolved by the trendline formed by averaging the measurements taken at a fixed altitude.
This trendline shows an approximately constant k with altitude for the mixed layer conditions of
flights 2 and 3.

Figure 13. Vertical profiles of turbulent kinetic energy measured during (a) flight 1, (b) flight 2,
and (c) flight 3. The blue symbols indicate measurements made by BC5A, the red symbols indicate
measurements made by BC5B, and the olive symbols indicate measurements by the sonic anemometer.
The dashed line indicates the trend produced by averaging measurements at each altitude.
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As noted, a potential source of the scattering in k for later flights, particularly flight 3, was
incomplete resolution of long-wavelength turbulent motions. The circular flight profile was designed
to produce vertical profiles of mean quantities and Reynolds stresses, and was not well suited to
extract information about the integral scales of turbulence or spatial spectra. However, a coarse
estimate of the Kolmogorov scale, η, could be estimated following the homogeneous isotropic
turbulence approximation:

η =

(
ν2

15(∂U1/∂x1)2

)1/4

(17)

where ν is the viscosity. This quantity was approximated by finite differencing of the wind velocity
in the direction of the flight path, and η was found to be in the order of 2 mm, consistent with that
expected in the atmospheric boundary layer [1]. We note that this is only a coarse estimate, as the
frequency response of the five-hole probe was not sufficient to resolve scales of less than approximately
30 cm. Through the application of Taylor’s hypothesis, spatial cross-correlations were also calculated.
These cross-correlations are not included here because of the imprecision of the calculation approach
used. However, these correlations suggested the integral length scales were in the order of the flight
altitude (50 to 100 m). Thus, at the measured mean wind speed, only approximately 5 to 10 integral
length scales were captured during each loiter, which may have contributed to the data scattering
observed in k and the Reynolds stresses.

To assess the scale dependence of the turbulence further, the frequency spectra calculated from
the time series of U1, U2 and U3 are presented in Figure 14a–c, respectively. These figures represent
an amalgamation of the measurements from the different altitudes as, to improve the statistical
convergence of the spectra, no attempt was made to segregate the different altitudes. The frequency
spectra do show that the aircraft were able to resolve at least three decades of the inertial subrange,
which is characterized by a −5/3 slope in the spectrum. Although not descriptive of the turbulence at
each flight level (which would also require the wavenumber rather than frequency spectra), this result
provides confidence that the measured k and Reynolds stresses reflect turbulence statistics, rather than
system noise.

Figure 14. Frequency spectra measured during flight 3 for (a) U1 component of velocity, (b) U2

component of velocity, and (c) U3 component of velocity. The blue lines correspond to spectra measured
by BC5A and the red lines correspond to spectra measured by BC5B. The solid black line indicates
a −5/3 power law decay and the vertical dashed line indicates the measured frequency response of
the probe.

The contributions to the turbulent kinetic energy can be divided into the different normal
components of the Reynolds stress tensor 〈u2

i 〉∗, which are presented in Figure 15. We note that
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to simplify the presentation, only the average values from all the flights at each flight level are shown
and that, as with the mean wind velocity, the coordinate system has been rotated such that x1 is in
the direction of the mean wind, as indicated by the superscripted ∗. Consistent with shear-driven
turbulent production (e.g., [53]), for all three flights, the streamwise component 〈u2

1〉∗ was the greatest
near the surface, as the kinetic energy of the mean flow was in this direction. For flight 1, there was a
mean shear across the entire measurement domain, and hence the region of higher 〈u2

1〉∗ was larger.
However, for the later flights, the mean velocity shear was confined near the surface. Interestingly,
the mean velocity gradient near the surface, as measured by the Mesonet station, remained largely
unchanged during the three flights, suggesting that the shear-driven turbulence production also
remained largely unchanged. Hence, the increase in the Reynolds stresses between flights 1, 2 and 3
could be attributed to the increased turbulence production by buoyancy-driven convection. At higher
altitudes (generally above 80 m), the turbulence approached isotropy, particularly for the later flights,
for which the boundary layer had transitioned to a mixed layer.

The remaining three components of the Reynolds stress tensor, specifically the shear stresses
〈u1u2〉∗, 〈u1u3〉∗, and 〈u2u3〉∗, are shown in Figure 16. As can be expected, the values of the shear
stresses were much lower than the normal stresses, although they did increase in general as the
boundary layer evolved. There was also much less organization evident in the shear stresses.
It should be noted however, that the streamwise/surface normal component 〈u1u3〉∗ was consistently
negative, as has commonly been observed in turbulent boundary layers (e.g., [53,54]) as a result of the
prominence of sweeps and ejections, the motions responsible for the transfer of high-momentum fluid
towards the surface and low-momentum fluid away from the surface.

Figure 15. Vertical profiles of the normal components of the Reynolds stress tensor measured during
(a) flight 1, (b) flight 2, and (c) flight 3.

Figure 16. Vertical profiles of the shear components of the Reynolds stress tensor measured during
(a) flight 1, (b) flight 2, and (c) flight 3.

143



Atmosphere 2017, 8, 195

4. Conclusions

An atmospheric sensing system consisting of an UAV paired with pressure, temperature,
humidity and wind velocity vector sensors was developed for measuring turbulence in the lower
atmospheric boundary layer. The capabilities of the system were demonstrated through three
measurement flights taken over the course of a morning; the latter two flights were performed with
two identical UAVs flying simultaneous, complimentary flight profiles. By comparison with a nearby
ground-based meteorological measurement station, the results from the experiments suggest that the
approach successfully extracts the wind vector alongside scalar statistics of temperature and humidity.
A comparison between the statistics measured by the two aircraft flying simultaneously found them to
be in good agreement, providing confidence in the repeatability of the measurements made by the
UAVs. Frequency spectra calculated for the different components of the wind vector were consistent
with expected turbulent frequency spectra behavior, providing confidence in the extracted Reynolds
stresses and turbulent kinetic energy. A high level of data scattering for the last flight suggested that
long-wavelength motions, which were present during that flight, were not well resolved by the flight
profile chosen, as the aircraft did not loiter at a fixed altitude long enough to capture these motions.

The temperature profiles indicated that during the first flight, the boundary layer consisted of a
shallow mixed layer, with a residual stable layer above it. The mean wind velocity within this boundary
layer was in almost constant shear from the surface to the highest altitude measured. Conversely, the
moisture content was observed to decrease with distance from the surface. The interface between
the mixed layer and residual stable layer, at the lowest measurement locations, was characterized
by locally high temperature fluctuations, with a much broader distribution of increased turbulent
kinetic energy of the wind, and by highly anisotropic Reynolds stresses. For the second and third
flights, the boundary layer characteristics were consistent with a mixed layer throughout the altitude
range measured. The mean velocity, temperature and moisture content showed little variation with
altitude, and the turbulent kinetic energy of the wind was significantly higher than for the first flight.
The Reynolds stresses indicated that the turbulence was largely isotropic, except for the measurement
location nearest to the surface, where the shear-driven turbulence production was the highest.
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Abbreviations

The following abbreviations are used in this manuscript:

BLUECAT5 Boundary Layer Unmanned vehicle for Experimentally Characterizing Atmospheric
Turbulence, version 5

CLOUDMAP Collaboration Leading Operational UAS Development for Meteorology and
Atmospheric Physics

DAQ Data acquisition
FAA Federal Aviation Authority
GPS Global positioning system
INS Inertial navigation system
PC Personal computer
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PVC Polyvinyl chloride
RH Relative humidity
RMSE Root-mean-square error
SD Secure Digital
UAS Unmanned aerial system
UAV Unmanned aerial vehicle
USB Universal Serial Bus
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Abstract: One of the biggest challenges in probing the atmospheric boundary layer with small
unmanned aerial vehicles is the turbulent 3D wind vector measurement. Several approaches have
been developed to estimate the wind vector without using multi-hole flow probes. This study
compares commonly used wind speed and direction estimation algorithms with the direct 3D wind
vector measurement using multi-hole probes. This was done using the data of a fully equipped
system and by applying several algorithms to the same data set. To cover as many aspects as possible,
a wide range of meteorological conditions and common flight patterns were considered in this
comparison. The results from the five-hole probe measurements were compared to the pitot tube
algorithm, which only requires a pitot-static tube and a standard inertial navigation system measuring
aircraft attitude (Euler angles), while the position is measured with global navigation satellite systems.
Even less complex is the so-called no-flow-sensor algorithm, which only requires a global navigation
satellite system to estimate wind speed and wind direction. These algorithms require temporal
averaging. Two averaging periods were applied in order to see the influence and show the limitations
of each algorithm. For a window of 4 min, both simplifications work well, especially with the
pitot-static tube measurement. When reducing the averaging period to 1 min and thereby increasing
the temporal resolution, it becomes evident that only circular flight patterns with full racetracks
inside the averaging window are applicable for the no-flow-sensor algorithm and that the additional
flow information from the pitot-static tube improves precision significantly.

Keywords: wind speed and direction estimation algorithms; flow probes; airspeed measurement;
small unmanned aircraft systems (sUAS); unmanned aerial vehicles (UAV); remotely piloted aircraft
systems (RPAS)

1. Introduction

Atmospheric boundary layer (ABL) studies are increasingly complemented by in situ measurements
using small unmanned aircraft systems (sUAS) [1–8]. Atmospheric sampling using sUAS dates back
to 1961 [9] and has since been applied to atmospheric physics and chemistry [10–13], boundary-layer
meteorology [14–25], and, more recently, also to wind-energy meteorology [26–28]. The capabilities
of sUAS for meteorological sampling range from mean values for wind, thermodynamics, species
concentration, etc., to highly resolved turbulence measurements, and from an accurate and diverse but
larger sensor payload, down to small aircraft that can be operated from almost anywhere, with minimal
logistical overhead. Elston et al. [29] provide details on the airframe parameters, estimation algorithms,
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sensors, and calibration methods, examining previous and current efforts for meteorological sampling
with sUAS.

Usually, at least mean values, and often highly resolved measurements of an in situ wind vector,
are crucial for the investigation or necessary for a deeper understanding of the turbulent atmosphere
and turbulent atmospheric transport. The common method for measuring the 3D wind vector from
research aircraft is a multi-hole probe in combination with the measured attitude, position, and
velocity of the aircraft. In the following, this method is referred to as the multi-hole-probe algorithm
(MHPA). The attitude is measured with an inertial measurement unit (IMU), position, and velocity
of the aircraft using a global navigation satellite system (GNSS). The combination of both systems,
usually supplemented by an extended Kalman filter (EKF), is called an inertial navigation system (INS).
The wind vector is defined in the Earth coordinate system and equals the vector difference between
the inertial velocity of the aircraft and the true airspeed of the aircraft. The MHPA is used in manned
aircraft, as published by Lenschow [30], among others, and was adapted for sUAS by researchers, such
as Van den Kroonenberg et al. [31], with the Mini Aerial Vehicle (M2AV) and by Wildmann et al. [32]
using the Multi-purpose Airborne Sensor Carrier (MASC). The achievable high resolution and accuracy
of this method demand a precise and fast INS, as well as pressure measurement with multi-hole probes.
The study by de Jong et al. [33] introduced an algorithm (PTA, pitot tube algorithm) that does not
require a multi-hole probe but only a pitot-static tube for dynamic pressure measurement, which
makes it less complex and less expensive. Many common autopilot systems already use pitot-static
tubes for airspeed measurement and are, without further instrumentation, capable of estimating the
wind speed and direction. The study by Niedzielski et al. [34] also used this kind of approach with
a consumer-grade sUAS. Unfortunately, there are no details on the algorithm documented. Even
without a flow sensor aboard, the wind speed can be estimated using the ’no-flow-sensor’ algorithm
(NFSA), as published by Mayer et al. [35]. With the sUAS SUMO (Small Unmanned Meteorological
Observer, [36]), extensive measurements (e.g., [37]) were performed using this method. The NFSA uses
only ground speed and flight path azimuth information from GNSS and is the least complex and least
expensive method in this comparison. Bonin et al. [38] introduced variants of the NFSA and compared
them with SODAR measurements, among others. Shuqing et al. [39] introduced the sUAS RPMSS
(robotic plane meteorological sounding system) and uses a close variation of the NFSA to estimate the
wind speed in their work.

This study provides an overview and review of the three methods and highlights the capabilities
and limitations of these types of wind estimation methods that use sUAS. All introduced methods can
be applied with the fully equipped sensor system which was used in this investigation. It includes
a five-hole probe [40] and the INS IG500-N from SBG-Systems. The PTA can be examined using
the INS data and only the tip hole of the five-hole probe for true airspeed measurement, and the
NFSA can be investigated using only the GNSS data. Data sets from several measurement campaigns
provide a variety of conditions for this comparison. The main factors of influence are the atmospheric
conditions and the choice of flight paths. A representative selection with wind speeds between 2 and
15 m s−1, as well as various flight patterns, including horizontal straight and level segments (legs),
circles, lying eights, and ascending racetracks for height profiles, were analyzed. Section 2 describes
the measurement technology and the wind algorithms. Section 3 gives an overview of the experiments,
Section 4 shows the results and discusses them, and Section 5 is the conclusion.

2. Methods and Measurement Techniques

For atmospheric research, boundary-layer meteorology, and wind-energy studies, the environment-
physics group at the Centre for Applied Geo-Science (ZAG), University of Tübingen, Germany,
designed and built the research unmanned aerial vehicle (UAV) MASC (Figure 1). The MASC [32]
is an electrically propulsed single engine (pusher) aircraft with a 3.5 m wing span. The total weight
of the aircraft is 6 kg, including a 1 kg scientific payload. This sUAS is operated at an airspeed of 22
m s−1, as a trade-off between high spatial resolution of the measured data and gathering a snapshot
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of the atmosphere in a short time frame. The MASC operates fully automatically (except for landing
and take-off). Height, flight path, and all other parameters of flight guidance are controlled by the
autopilot system ROCS (Research Onboard Computer System) developed at the Institute of Flight
Mechanics and Control (IFR) at the University of Stuttgart. The overall endurance of the MASC is 60
min or 80 km.

Figure 1. Research unmanned aerial vehicle (UAV) Multi-purpose Airborne Sensor Carrier (MASC)
during take-off with a bungee.

The scientific payload (Figure 2) for this investigation consists of several subsystems for measuring
the 3D wind vector, air temperature, and water vapor. This includes a fast thermometer (fine wires,
see [41]), a capacitive humidity sensor [32], a five-hole flow probe [31,40], and an INS. All sensors
sample at 100 Hz and measure atmospheric turbulence. Considering the individual sensor inertia,
a resolution of about 30 Hz (i.e., sub-meter resolution at 22 m s−1 airspeed, except for humidity, which
is 3 Hz) is achieved. Thus, small turbulent fluctuations are resolved and the Nyquist theorem is fulfilled.
The sensors and the data stream are controlled by the onboard measurement computer AMOC and
stored at a 100 Hz rate. In order to watch the measurements online during flight, a data abstract
is broadcasted to the ground station (standard laptop computer) at 1 Hz. The ground station also
communicates with the autopilot. Changes in the flight plan are possible when the MASC is within a
5 km reach. Typical flight patterns with the MASC (these are common flight strategies for any research
aircraft) are horizontal straight and level flights (so-called legs) both at constant height or stacked
at various flight levels. These flight legs are used to calculate turbulence statistics, turbulent fluxes
(e.g., [12,17]), spectra, and mean values, but they also measure the influence of surface heterogeneity
and orography (complex terrain, e.g., [28]) on the lower atmosphere. The horizontal flights are usually
supported by slanting flights that give data on the vertical profile of various atmospheric quantities,
including the thermal stability (e.g., [42]). A combination of both (named the saw-tooth profile) returns
both horizontal and vertical structures of the flow. For the sake of completeness, the star pattern or
lying eights are commonly used to calibrate the MHPA method.
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Figure 2. MASC measurement system with five-hole probe, capacitive humidity sensor and temperature
sensor, pressure transducers, inertial navigation system (INS), and the measurement computer AMOC.

The standard sensor system developed for the MASC is self-sufficient and can be mounted on
other airframes. To cover circular flight patterns, which are often used by flying wings like SUMO,
or the return glider radiosonde (RGR, see [5]), data from a measurement campaign at the Boulder
Atmospheric Observatory (BAO) were included: A commercially available flying wing (Skywalker X8)
with a span of 2.1 m and a take-off weight of about 3.5 kg was equipped with the MASC sensor system
and flown at the BAO. Figure 3 shows the Skywalker X8 flying wing with the sensor nose as used with
the MASC. This sUAS is equipped with a Black Swift Technologies LLC (Boulder, CO , USA) autopilot
system which maintains the airspeed, using a pitot-static tube, at 22 m s−1.

Figure 3. Research UAV Skywalker X8 with the MASC measurement system.
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2.1. Coordinate Systems

For the meteorological wind estimation, three Cartesian coordinate systems according to
Boiffier [43] were used in the following, as shown in Figure 4. The first one is the Earth coordinate
system or geodetic coordinate system with the index g. For example, the wind vector �wg in the geodetic
coordinate system is defined by the vector components wx being positive northward, wy being positive
eastward, and wz positive when facing downward. Furthermore, the body-fixed coordinate system
of the aircraft with the index b was used. The origin is at the center of gravity of the aircraft; x faces
forward, y faces starboard, and z faces downward. Besides that, the aerodynamic coordinate system,
with the index a oriented by the aerodynamic velocity of the aircraft, was used. The aerodynamic
coordinate system has the same origin as the body-fixed coordinate system and, with the angle of attack
α (positive for air flow from below) and side slip β (positive for flow from starboard), the aerodynamic
coordinate system can be transformed into the aircraft coordinate system using the transformation Tba.
Often, the wind vector �wm in meteorological coordinates (index m) instead of geodetic coordinates is
used. The difference is a change in sign for the vertical component and a swapped first and second
vector component. The meteorological wind vector �wm can be calculated using the transformation
Tmg with

�wm = Tmg�wg =

⎛
⎜⎝ 0 1 0

1 0 0
0 0 −1

⎞
⎟⎠

⎛
⎜⎝ wx

wy

wz

⎞
⎟⎠ (1)

However, in this study, only the wind vector �wg in the geodetic coordinate system was used.

airflow 

North

East

Figure 4. Top view of the wind measurement with the indices a, b, and g representing, respectively, the
aerodynamic, body, and geodetic coordinate systems. Ψ is the yaw angle or true heading of the sUAV
and β is the side slip angle between the aerodynamic and body-fixed coordinate system.

2.2. Wind Vector Estimation

The wind vector �w is the orientation and magnitude of the airflow. A nonstationary observer (e.g.,
an sUAS) sees the relative velocity �u only, and from a fixed point of view (e.g., the Earth coordinate
system), the observer is moving with a resulting velocity�v that is the sum of �u and �w. This fundamental
relation is the basis of all wind measurement techniques with fixed-wing aircraft. The wind vector
�wg in the geodetic coordinate system is the difference between �vg and �ug. The velocity vector �vg

of the sUAS is generally estimated with GNSS data and can be measured at a good accuracy with
consumer-grade GNSS receivers, whereas the true airspeed vector �ug relative to the sUAS represents a
more challenging parameter to obtain for any wind measurement technique of a fixed-wing sUAS, as
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well as the attitude (Eulerian angles) of the aircraft. The wind vector �wg has to be calculated (according
to, e.g., Bange [44]) using

�wg = �vg + Tgb

(
�ub + �Ωb ×�L

)
(2)

with the true airspeed vector �ub in the body-fixed coordinate system of the aircraft, and the
transformation matrix Tgb in the geodetic coordinate system. The vector of angular body rates
�Ωb and its lever arm�L describe the effect due to the spatial separation between INS and the multi-hole
probe and can be (according to [45]) neglected since the lever arm�L is only a few centimeters in our
sUAS. Two fundamental approaches to measuring the true airspeed vector are possible. Either the
true airspeed vector �ua of the sUAS in the aerodynamic coordinate system can be measured and
transformed into geodetic coordinates, or the true airspeed vector �ug in the geodetic coordinate system
is derived from the changes in�vg under the assumption of constant wind speed and direction. The first
approach can be seen as the direct measurement, given that the relative wind vector and the position
and attitude of the aircraft need to be measured. If these quantities are measured quickly and precisely,
small wind vector fluctuations are resolved in time and space and turbulent fluxes, among other
factors, can be calculated. If one of the quantities for the direct measurement is missing, assumptions
have to be made to compensate for that, and averaging along the flight path is necessary. Summarizing,
the MHPA method is the direct approach to solving Equation (2), with expected uncertainties that
can be calculated through the propagation of sensor uncertainties [31], while both the PTA and NFSA
methods estimate the wind vector, which is also averaging over a certain period. Averaged data do
not allow for turbulent flux calculations, in general. Furthermore, the tuning of the autopilot and the
aerodynamic design of the aircraft can influence the wind measurement, but this cannot be analyzed
in the scope of this study.

2.2.1. Multi-Hole-Probe Wind Algorithm (MHPA)

Through measurements of a multi-hole probe, the true airspeed, side slip angle, and angle of
attack are retrieved, which can be used to rotate the airspeed vector to the body-fixed coordinate
system and, with the transformation Tba, it can be written as

�wg = �vg + TgbTba�ua (3)

The true airspeed vector �ua in the aerodynamic coordinate system cannot be measured directly
and requires intensive calibration of the multi-hole probes in the wind tunnel. The norm |�ua| is
calculated with the total air temperature Ttot, which is assumed to be adiabatically stagnated on the
probe’s tip, and the static pressure p, as well as the dynamic pressure increment q. These quantities are
the outcome of normalized pressure differences between the pressure holes on the multi-hole probe
and the wind tunnel calibration.

|�ua|2 = 2cpTtot

[
1 −

(
p

p + q

)κ]
(4)

The Poisson number is defined by κ = R cp
−1, with R = 287 J kg−1 K−1 being the gas constant

for dry air and cp = 1004 J kg−1 K−1 the specific heat of dry air. In our study, this was done for a
five-hole probe according to Bange [44]. The true airspeed vector �ua must be transformed from the
aerodynamic coordinate system into the body-fixed coordinate system using Tba with the angle of
attack α (positive for air flow from below) and side slip β (positive for flow from starboard). Since
α and β are determined by the calibration procedure in the wind tunnel, there is a small difference
between the body-fixed coordinate system of the sUAS and the experimental coordinate system in the
wind tunnel due to the calibration procedure. According to Bange [44], this can be neglected for small
angles. The true airspeed vector in the body-fixed coordinate system is:
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�ub = − |�ua|√
1 + tan2 α + tan2 β

⎛
⎜⎝ 1

tan β

tan α

⎞
⎟⎠ , (5)

With Tgb, which consists of three sequential turnings, the coordinate system is transformed from
body-fixed into geodetic (index g) coordinates. T1(Φ) defines rolling about xb, T2(Θ) defines pitching
about yb, and T3(Ψ) defines yawing about zb. Then,

Tgb = T1(Φ)T2(Θ)T3(Ψ)

=

⎛
⎜⎝ 1 0 0

0 cos Φ − sin Φ
0 sin Φ cos Φ

⎞
⎟⎠

⎛
⎜⎝ cos Θ 0 sin Θ

0 1 0
− sin Θ 0 cos Θ

⎞
⎟⎠

⎛
⎜⎝ cos Ψ − sin Ψ 0

sin Ψ cos Ψ 0
0 0 1

⎞
⎟⎠ (6)

In accordance with methods previously described in [44], among other authors, and with
the Euler angles measured by the INS, the wind vector �wg can be calculated. Together with

D =
√

1 + tan2 β + tan2 α and the Euler angles Φ (roll), Θ (pitch), and Ψ (yaw or heading), Equation (2)
can be written with the wind vector in the geodetic coordinate system:

�wg = �vg

− |�ua|
D

⎛
⎜⎝

cos Ψ cos Θ + tan α(sin Φ sin Ψ + cos Φ cos Ψ sin Θ) + tan β(cos Ψ sin Φ sin Θ − cos Φ sin Ψ)

cos Θ sin Ψ + tan α(cos Φ sin Ψ sin Θ − cos Ψ sin Φ) + tan β(cos Φ cos Ψ + sin Φ sin Ψ sin Θ)

− sin Θ + cos Φ cos Θ tan α + cos Θ sin Φ tan β

⎞
⎟⎠ (7)

Lenschow and Spyers-Duran [46] introduced a simplified version of Equation (7), using
small-angle approximations for the measurement taken with manned aircraft during straight level
flights. Calmer et al. [47] also applied this formulation to their vertical wind velocity measurements
with sUAS. Since there is no benefit when applying these simplifications, other than a shorter
formulation of the equation and a lower computational effort, the authors do not recommend using
these simplifications for sUAS. For a manned aircraft, the inertia of mass is several orders of magnitude
higher and, therefore, the movement of the aircraft in turbulence is less. Especially because there is no
substantial benefit of such simplifications and because an investigation would need different methods
from those in this study, simplifications were not considered.

2.2.2. The Pitot Tube Algorithm (PTA)

The PTA uses INS data and highly reduced flow information compared to the MHPA described
in Section 2.2.1. A singular pitot-static tube in the nose of the aircraft is used. The PTA has a
similar approach to that of the MHPA but needs temporal averaging to compensate for the missing
information concerning the perpendicular vector components of the airspeed on the aircraft. Starting
from Equation (2), the wind vector equals the vector difference between the ground speed of the sUAS
and the true airspeed vector, whereas, when dissociated from the direct measurement, the airspeed
of the sUAS can only be approximated with the pitot-static tube. The calculation of �uq is done in the
simplest way by using the stagnation pressure and Bernoulli’s principle for incompressible flows. For
example, with a pitot-static tube, the first vector component of uqx =

√
2dp0/ρ is calculated. The other

components remain as unknowns in the algorithm of de Jong et al. [33].

�uq =

⎛
⎜⎝

√
2dp0/ρ

uqy

uqz

⎞
⎟⎠ (8)
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The pitot-static tube is mounted so it is aligned with xb in the aircraft coordinate system (see
also Figure 4). In opposition to the formulation in Section 2.2.1 for the MHPA and to highlight
the differences, the nomenclature for the estimated true airspeed vector used for the PTA is �uq.
Only the lateral component of the true airspeed vector �uq is estimated, and misalignments between the
aerodynamic and the aircraft coordinate systems cannot be considered. The estimated true airspeed
vector �uq is assumed to be aligned with xb and the transformation Tba in Equation (3) is therefore
neglected, and only the coordinate transformation Tgb from body-fixed to geodetic coordinates is
performed.

�wg = �vg + Tgb�uq (9)

Since the misalignment between the aerodynamic and the aircraft coordinate system cannot
be considered, the true airspeed vector �uq in Equation (8) is referenced in body-fixed coordinates
(see also Figure 4), with the origin at the center of gravity; x is along the fuselage and is positive
when facing forward, y is positive when facing starboard, and z is positive when facing upward.
Comparing Equation (8) for the PTA with Equation (5) for the MHPA, the differences in the true
airspeed measurement are obvious. The PTA can give a precise estimate of the true airspeed only if
α = β = 0 and, therefore, the norm |�uq| is generally underestimated by the PTA. For this comparison,
we simulated a pitot-static tube with our five-hole probe by using the pressure reading between the
central hole of the five-hole probe and the static port just behind the probe tip. This represents a rather
simple implementation of a standard pitot-static tube, which is reasonable for estimating the wind
speed with the PTA and its expected precision. To calculate a solution using these measurements,
the PTA needs reordering of the variables in Equations (8) and (9) and an averaging over a certain
number of time steps. The measured quantities �vg and uqx are separated from the unknowns, which
are the wind vector �wg and the other vector components uqy and uqz of the true airspeed. The emerging
system of equations becomes overdetermined when adjoining further measurements, defined by i, and
the solution is calculated by solving, over one time step, a window of size M. To be able to separate
the knowns and unknowns, Equation (9) is written in vector notation, using the vector components
�vg = (vx, vy, vz) and �wg = (wx, wy, wz). The transformation matrix Tgb (see also Equation (6)) is split
up into its elements by

Tgb =

⎡
⎢⎣T1x T1y T1z

T2x T2y T2z
T3x T3y T3z

⎤
⎥⎦

=

⎡
⎢⎣cos Θ cos Ψ sin Φ sin Θ cos Ψ − cos Φ sin Ψ cos Φ sin Θ cos Ψ + sin Φ sin Ψ

cos Θ sin Ψ sin Φ sin Θ sin Ψ + cos Φ cos Ψ cos Φ sin Θ sin Ψ − sin Φ cos Ψ
− sin Θ sin Φ cos Θ cos Φ cos Θ

⎤
⎥⎦

(10)

and Equations (8) and (9) become

⎡
⎢⎢⎣

wx

wy

wz

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

vx

vy

vz

⎤
⎥⎥⎦+

⎡
⎢⎢⎣

T1x uqx + T1y uqy + T1z uqz

T2x uqx + T2y uqy + T2z uqz

T3x uqx + T3y uqy + T3z uqz

⎤
⎥⎥⎦ (11)

The equation is rewritten to separate the knowns from the unknowns,

vx + T1x uqx = wx − T1y uqy − T1z uqz

vy + T2x uqx = wy − T2y uqy − T2z uqz

vz + T3x uqx = wz − T3y uqy − T3z uqz

(12)
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and the knowns can be aggregated in ηk. For every directional component k ∈ {x, y, z}, the three
equations are:

ηk = vk + T1k uqx = wk − T2k uqy − T3k uqz (13)

Assuming that �wg is temporally and spatially constant along the window of size M, the
k Equation (13) can be combined with a linear independent system of equations. With every
measurement point i, two new unknowns (u(i)

qy and u(i)
qz ) accrue to the system.

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

η
(1)
x

η
(1)
y

η
(1)
z

η
(2)
x

η
(2)
y

η
(2)
z
...

η
(N)
x

η
(N)
y

η
(N)
z

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 −T(1)
1y −T(1)

1z 0 0 · · · 0 0

0 1 0 −T(1)
2y −T(1)

2z 0 0 · · · 0 0

0 0 1 −T(1)
3y −T(1)

3z 0 0 · · · 0 0

1 0 0 0 0 −T(2)
1y −T(2)

1z · · · 0 0
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⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(14)

The unknowns n and the number of equations m have the relation n = 3 + 2
3 m and, therefore,

starting from a window size of M = 3, the system of equations is solvable. In practice, the system
of equations needs to be explicitly overdetermined to average over small-scale fluctuations in the
wind field and obtain a solid mean wind. If the difference between vg and ug remains unchanged
during the averaging period, the matrix is close to singular. For this reason, some variation in flight
direction is essential for the algorithm. Equation (14) is solved numerically for wx, wy, and wz with
the least square method. The obtained wind vector �wg in the geodetic coordinate system is the best
fit for the i measurements inside the averaging window M. It must be noted that the PTA cannot
provide a vertical wind component wz with reasonable uncertainty, at least for the presented flight
pattern. Given that pitch angles θ are generally small in the presented flights, the vertical component of
the airspeed measurements (T3x uqx in Equation (12)) will be small, which leads to high uncertainties
if errors are propagated through the PTA for the vertical wind component. Additionally, the long
averaging periods that are necessary for the PTA will average over the most significant small-scale
vertical motions.

2.2.3. The No-Flow-Sensor Algorithm (NFSA)

Imagining an aircraft flying horizontal circles in a constant wind field, it is evident that the ground
speed is dependent on the angle between the wind direction and the flight path. Figure 5 shows the
vector sum of the horizontal ground speed �v(h)g , the horizontal true airspeed �u(h)

g , and the horizontal

wind speed �w(h)
g , which are used for the NFSA. The ground speed of the aircraft is minimal when flying

directly against the wind and is maximal vice versa. It is presumed that the airspeed of the aircraft is
constant; for the MASC and the Skywalker X8, this is assured by the autopilot systems. Applying a
constant throttle and/or pitch rate to keep a constant airspeed makes the application of the NFSA even
easier since the autopilot does not even require a pitot-static tube. This approach is followed with the
SUMO, among other systems. Differences between these flight guidance approaches (constant throttle
and/or pitch rate setting of the autopilot or an autopilot with pitot-static tube) to keep a constant
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airspeed can be neglected for this comparison since they are insignificant when averaging over the
window M.

Starting from Equation (2), according to Mayer et al. [35], the mean norm of the horizontal true
airspeed �u(h)

g inside the window M is related to the difference in the horizontal ground speed �v(h)g and

the horizontal wind speed �w(h)
g , using the geodetic coordinate system as a reference.

|�u(h)
g | = 1

M

M

∑
i
|�v(h)gi − �w(h)

g | (15)

where M is the number of measurement points in the averaging window, and the method presumes
that the aircraft is flying at constant airspeed and assumes that the wind speed is constant. Therefore,
the components on each side of Equation (15) must level each other out for every measurement i.
To deal with fluctuations in the wind field and to solve for the horizontal wind speed, Equation (15) is
reordered and the variance σ2 of the measurements in the window M is introduced:

σ2 =
1
M

M

∑
i

(
|�v(h)gi − �w(h)

g | − |�u(h)
g |

)2
(16)

To calculate the horizontal wind speed from Equation (16), the smallest possible value for the
variance is approximated numerically using the downhill-simplex method according to McKinnon [48].
More details can be found in Mayer et al. [35].

Figure 5. Vector sum of the no-flow-sensor algorithm (NFSA) with the horizontal ground speed �v(h)g ,

the horizontal true airspeed �u(h)
g , and the horizontal wind speed �w(h)

g .

3. Experiments

The wind field and turbulence of the atmospheric boundary layer and the choice of flight paths
are the main factors to argue the potential differences between these wind estimation algorithms.
A representative pick from four measurement campaigns with wind speeds between 2 and 15 m
s−1, as well as various flight patterns, including horizontal straight flight legs, circles, lying eights,
and ascending racetracks for height profiles, were selected. A brief description of the prevailing
atmospheric conditions is also gathered in Table 1.

Table 1. Flight sections with location, date, and duration in local time, pattern, and brief atmospheric
condition.

Location Date From Until Flight Path Condition

Boulder (BAO) 8 August 2014 3:12 p.m. 3:35 p.m. circular weakly convective
Schnittlingen (SNT) 7 May 2015 11:23 a.m. 11:51 a.m. horizontal racetracks sheared flow

Helgoland (HEL) 10 October 2014 9:20 a.m. 9:51 a.m. ascending racetracks strong wind
Pforzheim (PFR) 11 July 2013 9:50 a.m. 10:08 a.m. lying eight, long straights convective
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To compare the performance of the three methods MHPA, PTA, and NFSA and to highlight
limitations, two averaging periods M were chosen in this study and applied to all experiments.
The long averaging period is M = 240 s and acts in accordance with the experiment in Pforzheim
(PFR), where the longest racetracks were performed. M = 240 s comprised two racetracks in PFR. The
short averaging period is M = 60 s and comprises two circles for the shortest racetracks at the BAO.

3.1. Boulder Atmospheric Observatory (BAO)

The Boulder Atmospheric Observatory (BAO) was a test facility of the National Oceanic and
Atmospheric Administration (NOAA) in the USA. It was located in the state of Colorado at around
1580 m above sea level. The flight took place on 8 August in 2014 and the presented data fraction was
measured between 3:12 and 3:35 p.m. local time. The wind was ≈2 m s−1 from the east. This data
was measured with the Skywalker X8 flying wing (see also Section 2) performing fixed-radius circles
(Figure 6) at a constant height of 100 m above ground level (AGL) and with an airspeed of 22 m s−1.
A full circle takes about half a minute. This is a typical pattern [35] when using the NFSA for wind
speed and direction estimation. To ensure a sufficient quantity of data, a period of 43 consecutive
circles was chosen.

Figure 6. Flight path in red at the Boulder Atmospheric Observatory (BAO) on 8 August 2014 with
the meteorological tower in the northwest. During the measurement, low wind speeds from eastern
directions with weak convection prevailed.

For this flight, data from a meteorological tower with a resolution of 1 min, located northeast of
the circular flight path, was available for comparison. The tower is visible in Figure 6, and the data
measured by the aircraft and the tower is shown in Table 2.

The comparison of the mean wind speed and direction, as well as the standard deviation measured
by the tower (Table 2), agree well with the 1 min averages of the tower data. During the last period,
the mean wind speed measured by the tower is lower and the standard deviation is higher than the
measurement of the Skywalker X8 with the MHPA. The convective situation with thermal blooms may
have caused this. The wind speed was constant and low during the whole period of investigation, and
the wind direction turned from ≈90◦ to ≈ 60◦ during the first 450 s.

159



Atmosphere 2018, 9, 422

Table 2. Horizontal wind speed and wind direction at Boulder Atmospheric Observatory meteorological
tower. Data at 100 m above ground level (AGL) in comparison with the multi-hole-probe algorithm
(MHPA) for the flight on 8 August 2014 between 3:12:06 p.m. and 3:34:36 p.m. local time. Additionally,
the data is divided into three intervals of 450 s each.

3:12:06 p.m. Until 3:34:36 p.m. First 450 s Second 450 s Last 450 s

Tower BAO 2.02 ± 0.26 m s−1 2.18 ± 0.31 m s−1 2.01 ± 0.16 m s−1 1.87 ± 0.19 m s−1

68 ± 21◦ 93 ± 8◦ 57 ± 11◦ 52 ± 7◦

MHPA BAO 2.25 ± 0.24 m s−1 2.39 ± 0.06 m s−1 2.16 ± 0.14 m s−1 2.20 ± 0.34 m s−1

68 ± 17◦ 89 ± 10◦ 57 ± 5◦ 59 ± 8◦

3.2. Schnittlingen (SNT)

The Schnittlingen (SNT) test site is located in southern Germany on the border of the Swabian
Alp. The flight was performed just over the crest, which rises from the valley at about 500 m above
mean sea level (AMSL) up to the plateau at 650 m. With westerly wind, the flow was hitting the crest
perpendicularly, forming up-drafts and strongly sheared flow in the vicinity. Many flights and other
measurement systems, such as LiDAR, have been used to investigate the site. Results from intensive
measurements on several days were published by Wildmann et al. [28], and a comparison between
sUAV measurements and a numerical simulation of the area was reported by Knaus et al. [49]. For this
comparison, a flight on 7 May 2015 was chosen, with overcast and neutral stratification showing the
typical phenomena described in these publications. With wind on the ground from the west-northwest
direction and an average wind speed of about 6 m s−1, up-drafts over the crest and sheared flow were
pronounced. As shown in Figure 7, rectangular so-called racetracks with long legs forth and back over
the crest in vertical steps of 25 m were performed. One racetrack comprises two legs including turns
or one full round. For every height, two rectangles were flown between 75 and 200 m AGL, summing
up to 12 racetracks for the selected data fraction.

Figure 7. Flight path (so-called racetracks) in red in Schnittlingen (SNT) on 7 May 2015, with the
meteorological tower east of the flight path. During the measurement, moderate westerly winds
prevailed. The crest forms partial up-drafts and strongly sheared flow.

A meteorological tower located in the east of the rectangular flight path is available for comparison
(Figure 7 and Table 3).
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Table 3. Horizontal wind speed and wind direction at Schnittlingen meteorological tower. Data at
98 m AGL in comparison with the MHPA for the flight on 7 May 2015 between 11:23:16 p.m. and
11:50:46 p.m. local time. Additionally, the data is divided into three intervals of 550 s each.

11:23:16 a.m. Until 11:50:46 a.m. First 550 s Second 550 s Last 550 s

Tower SNT 6.02 ± 1.50 m s−1 5.28 ± 1.08 m s−1 5.47 ± 1.21 m s−1 7.30 ± 1.29 m s−1

283 ± 14◦ 282 ± 16◦ 285 ± 13◦ 283 ± 12◦

MHPA SNT 6.05 ± 1.28 m s−1 5.04 ± 0.87 m s−1 5.51 ± 0.47 m s−1 7.59 ± 0.48 m s−1

286 ± 6◦ 286 ± 7◦ 290 ± 5◦ 281 ± 2◦

In this complex terrain, the comparison between the meteorological tower and the flight data
is not straightforward since surface heterogeneities influence the wind field strongly and the spatial
separation between the measurement systems can cause large deviations for the mean flow and the
statistics. Nevertheless, the mean values agree very well (Table 3), while the standard deviation in
the tower data appears to be larger up to a factor of almost 3 compared to the aircraft data. The
higher standard deviation of the tower measurement is caused by the downstream location. As
shown by Wildmann et al. [28], the wind field attenuates in this area after the deviation caused by the
crest about 1000 m upstream. This causes increased fluctuations and nonstationary behavior. Due
to the spatial separation, the data in Table 3 cannot be used for a close comparison, but it shows the
development of the wind speed at the site during the experiment. The first period of 550 s represents
the four racetracks of the MASC at 75 m and 100 m AGL. During the almost half-hour-long flight, the
wind speed varies between approximately 5 m s−1 and 7 m s−1, making the selection interesting when
looking at the performance of different wind measurement algorithms.

3.3. Pforzheim (PFR)

The main reason for this flight was the research of turbulent fluxes in the lower ABL. The test site
is located in south Germany close to Pforzheim and near the Rhine rift. The area is flat and extensively
used for agriculture. With light winds from the northeast and clear sky conditions, lying eights
with long, crossing straights at 150 m AGL (Figure 8) were flown on 11 July in 2013 to investigate the
turbulent fluxes above heterogeneous terrain with various agricultural land use. The latent and sensible
heat fluxes were significantly large between 9:50:09 a.m. and 10:08:29 a.m. local time, indicating strong
convective conditions. The data consists of nine racetracks of about 120 s each.
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Figure 8. Flight path in red near Pforzheim (PFR) on 11 July 2013. During the measurement, low wind
speed from northeast directions and pronounced convection prevailed.

3.4. Helgoland (HEL)

The selected flight from the Helgoland campaign was conducted on 10 October in 2014, during
strong wind conditions from the southeast. Helgoland is Germany’s only island in the North Sea
with offshore conditions. The undisturbed marine boundary layer with a fetch of several hundred
kilometers was measured upstream from the take-off site on the west shore. The data used in this
study was gathered during an ascending maneuver from 100 m to 550 m in vertical steps of 50 m. The
take-off and landing site, as well as the flight path, are shown in Figure 9. During the long north-south
legs, the MASC was climbing 50 m, and the short east-west passages were flown at a constant height.
This flight strategy produces data on the vertical profile of various atmospheric quantities. The flight
took place between 9:20 a.m. and 9:51 a.m. local time.
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Figure 9. Flight path in red on Helgoland (HEL) on 10 October 2014. The figure shows the flight path
on the west coast of Helgoland. The undisturbed marine boundary layer with strong winds from the
southeast was measured.

4. Results

The set of graphs in the Figures 10–13 show scatterplots of the horizontal wind speed and wind
direction. Sections 2.2.2 and 2.2.3 state the importance of the averaging window for the applied
simplification of the wind measurement with the NFSA and the PTA. Figures 10 and 11 show the
results for an averaging window of M = 240 s. This timescale comprises at least two full racetracks for
all experiments (see Section 3.3). Therefore, this timescale of 4 min is the choice for the comparison
and is on the high end of reasonable averaging windows, pledging a robust performance. Longer
periods would weaken the studies’ distinctions and not add further comprehension. In comparison, a
1 min averaging time is analyzed, where approximately one racetrack in HEL and two circles at the
BAO are inside the averaging window. This is a typical value for averaging in meteorology, where,
on the one hand, full racetracks are included and, on the other hand, the performance resulting from
data only having fractions of racetracks is addressed. Figures 12 and 13 show these results for an
averaging window of M = 60 s. Preliminary studies showed that significantly shorter periods become
unusable for this study since the deviations of the NFSA and the PTA from the MHPA become very
large. For quantifying the differences between the algorithms and averaging windows, histograms
of the deviation from the MHPA are plotted in Figures 14–17. The difference in the horizontal wind
speed between the MHPA and the NFSA or the PTA is used. The normalized distribution is presented
and the probability density function, together with the fitted normal distribution, is plotted for every
experiment and algorithm. The mean μ of the fitted normal distribution can be interpreted as the bias
between the algorithms, and the standard deviation σ can be taken as the precision. Each plot contains
the results for both averaging periods, M = 240 s and M = 60 s, enabling a quantified comparison for
each experiment (BAO in Figure 14, SNT in Figure 15, HEL in Figure 16, and PFR in Figure 17) between
the averaging windows as well as between the algorithms. It must be noted that the results are also
influenced by the tuning of the autopilot and by the aerodynamic design of the sUAS. However, that
cannot be analyzed in this study. Furthermore, the airframe and the autopilot for the experiment
at the BAO (Skywalker X8 with a Black Swift Technologies LLC autopilot system) and for the other
experiments (MASC with the ROCS autopilot) differ and, therefore, the quantified intercomparison
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between these experiments is influenced by this difference. On the other hand, all experiments were
conducted with the same sensor system, and the analysis of the performance of the algorithms when
flying different flight patterns is not affected.

4.1. Long Averaging Periods for Robust Performance (M = 240 s)

The long period with at least two full racetracks inside the averaging window in Figures 10 and 11
generally shows a good agreement between the different algorithms. Nevertheless, significant
differences between the NFSA and the PTA are found. Limitations arise for the NFSA in Figure 10
where large differences for the high wind speeds in HEL occur. The main reason for these is the
rapid and inconsistent changes in the heading of the aircraft during the sharp turns caused by the
high wind speed and turbulence. This also becomes apparent when looking at Figure 16 where the
standard deviation of the fitted normal distribution is the highest for the long averaging period by
a factor of 2 (σ = 0.72). Larger differences in the wind speed and especially for the wind direction
can also be observed during the very long straights performed in PFR. This is explainable by drifts
in the calculated wind speed, which occur because the change rates of the heading during the long
straights are too low and the fact that only two racetracks are included. Figure 17 underlines that. The
wind direction estimation is generally rather unfavorable with the NFSA. Although long straights
lower the confidence, the NFSA is capable of estimating the wind speed and, with reservations, the
direction for flight patterns other than circles. The histograms indicate which flight patterns are
beneficial when using the NFSA. For two main reasons, the circles at the BAO, but also the horizontal
racetracks in SNT, perform best with M = 240 s. Considerably more than two racetracks comprise the
averaging window, and the flight was oriented horizontally. Especially for the experiment in HEL,
which has the least favorable conditions for the NFSA, the neglected vertical vector components in
Equation (16) become significant. For the HEL experiment, when applying the long averaging period,
the NFSA is not capable of estimating the wind speed and direction reliably. On the other hand,
for all other experiments, the NFSA yields acceptable results with at least two full racetracks inside the
averaging window.

Figure 10. Comparison of the horizontal wind speed (left) and the wind direction (right) on a
window of 4 min for the flights at the Boulder Atmospheric Observatory (BAO), Schnittlingen (SNT),
Helgoland (HEL), and Pforzheim (PFR). The black dashed line shows the bisecting line where the
multi-hole-probe algorithm (MHPA) equals the no-flow-sensor algorithm (NFSA). The data is calculated
on a window with M = 240 s. The results from the MHPA are plotted against the results from
the NFSA.

The PTA in Figure 11 shows a very good agreement in its ability to measure the horizontal wind
speed precisely in all conditions and for all flight patterns. Taking a closer look at the high wind speeds
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measured in HEL, the PTA reveals its limitations when used during ascents. The vertical component of
the airspeed during ascension results in an underestimation of the horizontal wind speed that is caused
directly by the formulation. The same phenomenon is observable during the convective conditions in
PFR. The histograms in Figure 16 with a mean of μ = 0.51 in HEL and in Figure 17 with a mean of
μ = 0.56 for the flight in PFR support this and show the limitations for cases with nonzero vertical wind
(e.g., flights during convective conditions) or the constant ascent or descent of the sUAS. The effect can
be also seen in the NFSA results. For example, this is explainable for the PTA with Equation (8) and
the NFSA with Equation (15), where the vertical wind causes an underestimation of the airspeed �uq of

the PTA, or of the horizontal airspeed �u(h)
g of the NFSA. This error propagates through the algorithms

and causes an underestimation of the horizontal wind speed. The wind direction estimation with the
PTA is robust and reliable in a range of ≈ ±10◦, and the wind speed estimation is very good for the
long averaging period, with some differences for the strong prevailing vertical motion of either the
wind field or the sUAS. Generally, the histograms in Figures 14–17 show that the PTA is more precise
than the NFSA throughout all the comparisons. Even for the circular flight pattern at the BAO, the
PTA performs significantly better since the standard deviation is lower.

Figure 11. Comparison of the horizontal wind speed (left) and the wind direction (right) on a
window of 4 min for the flights at the Boulder Atmospheric Observatory (BAO), Schnittlingen (SNT),
Helgoland (HEL), and Pforzheim (PFR). The black dashed line shows the bisecting line where the
multi-hole-probe algorithm (MHPA) equals the pitot tube algorithm (PTA). The data is calculated on a
window with M = 240 s. The results from the MHPA are plotted against the results from the PTA.

4.2. Short Averaging Periods for Enhanced Temporal Resolution (M = 60 s)

Since 4 min is quite a long averaging time, a 1 min window is presented in Figures 12 and 13
to argue which limitations arise when increasing the temporal resolution. A flight time of 1 min
corresponds to only about one leg (half a racetrack) in PFR and in SNT, almost one racetrack in HEL,
and two circles or full racetracks at the BAO. To begin with the NFSA in Figure 12, it is evident that
the results are quite bad since the scatter is high for a significant portion of the values and for all
maneuvers which are not circular. For the BAO flight, the scatter is also significantly higher than
for the big averaging window, especially for the wind direction. The standard deviation of the fitted
normal distribution in Figure 14 increases from σ = 0.22 to σ = 0.41. This significant decrease in
precision appears although there are still two full circles in the averaging window. An explanation is
that changes in wind speed and direction at scales smaller than a circle are inadequately represented
by the algorithm. These small structures in the wind field cause the aircraft to bear away, leading to a
false emphasis on the calculation of mean values when averaging too short a period. In other words, if
strong and sudden turbulence causes the autopilot to steer the sUAS with a rather strong movement,
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this section of the flight path is not representative for the mean flow. This is also critical when taking
into account that the boundary layer during the experiment at the BAO was relatively calm, and it
suggests that the two circles inside the averaging window could perform even worse under more
turbulent conditions. The window M can be decreased from 240 s in some conditions but only when
having several full racetracks in the averaging window. For the data at the BAO with M = 60 s, the
result varies within a range of ≈2 m s−1 around the MHPA. For the generally low wind speeds during
this measurement, this is already a quite large difference, leading to the conclusion that two full circles
are not enough for reliable results.

Figure 12. Comparison of the horizontal wind speed (left) and the wind direction (right) on a
window of 1 min for the flights at the Boulder Atmospheric Observatory (BAO), Schnittlingen (SNT),
Helgoland (HEL), and Pforzheim (PFR). The black dashed line shows the bisecting line where the
multi-hole-probe algorithm (MHPA) equals the no-flow-sensor algorithm (NFSA). The data is calculated
on a window with M = 60 s. The results from the MHPA are plotted against the results from the NFSA.

The PTA in Figure 13 shows good agreement, although the scatter of the MHPA data is greater
compared to the long averaging period. The standard deviations σ of the histograms in Figures 14–16
for the BAO, SNT, and HEL experiment increase from M = 240 s to M = 60 s by a factor of 2–4, and the
deviation stays within a range of ≈2 m s−1 and ≈20◦. Challenges become visible for the long straights
in PFR. The convection is not the biggest contribution to the increased scatter anymore; instead, the fact
that the flow information cannot compensate for excessively low change rates in the heading along the
averaging window leads to the differences. The solution of the overdetermined matrix in Equation (14)
cannot compensate for the occurrence of small-scale fluctuations if the ground speed and heading
become almost constant inside the averaging window M. The results for the SNT flight over complex
terrain are, on the other hand, remarkably good for these harsh conditions. Here, the benefit of the
algorithm compared to the NFSA is shown for situations when there is less than a full racetrack inside
the averaging window and, therefore, a quite high temporal resolution. The mean of the fitted normal
distribution in Figure 16 for the HEL flight is μ = 0.55, which is in the same range as that for the long
averaging period. Except for the underestimation of the wind speed described in Section 4.1, the PTA
performs well in this strong and turbulent wind field. Even in high wind speeds, turbulence, shear,
and strong up-drafts, the PTA is capable of giving a good estimation of wind speed and direction with
reasonable resolution. In comparison to the NFSA, the PTA has considerable benefits when using
the additional flow information. The limitations are the resolution of the small scales and turbulent
features, which only the MHPA can resolve.
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Figure 13. Comparison of the horizontal wind speed (left) and the wind direction (right) on a
window of 1 min for the flights at the Boulder Atmospheric Observatory (BAO), Schnittlingen (SNT),
Helgoland (HEL), and Pforzheim (PFR). The black dashed line shows the bisecting line where the
multi-hole-probe algorithm (MHPA) equals the pitot tube algorithm (PTA). The data is calculated on a
window with M = 60 s. The results from the MHPA are plotted against the results from the PTA.

4.3. Intercomparison of the Algorithms and Quantification of the Results

The histograms in Figures 14–17 show the quantified differences between the algorithms and
highlight the advantages of the PTA over the NFSA, as well as the influence of the averaging period
on the performance of both algorithms. The intercomparison of the histograms of the four flight
experiments also reveals the limitations. The NFSA must comprise at least two full racetracks, and
the PTA can cope with fractions of one racetrack as long as there are not exclusively straight flight
paths available. The wind speed estimation is better for all experiments and for all averaging periods
with the PTA than with the NFSA, as expected. However, the capabilities of the NFSA are surprisingly
good not only for circular flight pattern, as long as the averaging window is long enough. For example,
this can be seen when looking at the normal distribution with M = 240 s for the SNT experiment,
which is good for both algorithms. The mean of μ = −0.21 for the NFSA is only slightly worse than
the μ = −0.16 for the PTA, with the standard deviations being the same. On the other hand, it is also
evident that the temporal resolution of the NFSA is very limited, since the results are not usable for
M = 60 s in SNT and in general, except for the circular flight at the BAO.

Summarizing the results for the long averaging period of M = 240 s, the following was found:

• The NFSA is capable of estimating the wind speed, and not only for a circular flight pattern, if at
least two full racetracks are inside the averaging window. Limitations arise for non-horizontal
flight paths and high turbulence.

• The wind direction estimation is subject to large uncertainties with the NFSA.
• The PTA shows a very good agreement with the MHPA and is capable of measuring the horizontal

wind speed and direction in all conditions with good accuracy.
• Fast ascent or descent of the sUAS or strong vertical wind components leads to an underestimation

of the horizontal wind speed when using the PTA.

For the short averaging period of M = 60 s, the following was found:

• The NFSA performs better when more than two racetracks are inside the averaging window, as
well as for circular flight pattern. This reveals the very limited resolution.

• The PTA still performs well when only fractions of a racetrack are included in the algorithm.
Limits arise when exclusively straight flight sections remain inside the averaging window.
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• The PTA is capable of estimating reliably the mean wind speed and direction with a
reasonable resolution.

A summary of the intercomparison between the two estimation algorithms for mean wind speed
and direction is:

• The PTA is more accurate than the NFSA throughout all comparisons, even for the circular flight
pattern.

• The PTA needs an additional sensor to estimate the true airspeed, but it achieves significantly
higher accuracy and temporal resolution.

Figure 14. Normalized distribution and probability density function with the fitted normal distribution
for the flight at the Boulder Atmospheric Observatory (BAO). The plots show the deviation between
the MHPA and the NFSA (left) and the MHPA and the PTA (right) for M = 240 s and for M = 60 s.

Figure 15. Normalized distribution and probability density function with the fitted normal distribution
for the flight over complex terrain near Schnittlingen (SNT). The plots show the deviation between the
MHPA and the NFSA (left) and the MHPA and the PTA (right) for M = 240 s and for M = 60 s.
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Figure 16. Normalized distribution and probability density function with the fitted normal distribution
for the flight in Helgoland (HEL). The plots show the deviation between the MHPA and the NFSA (left)
and the MHPA and the PTA (right) for M = 240 s and for M = 60 s.

Figure 17. Normalized distribution and probability density function with the fitted normal distribution
for the flight near Pforzheim (PFR). The plots show the deviation between the MHPA and the
NFSA (left) and the MHPA and the PTA (right) for M = 240 s and for M = 60 s.

5. Conclusions

This study shows the capabilities and limitations of the commonly used methods for wind
vector estimation. The no-flow-sensor algorithm and the more sophisticated pitot tube algorithm are
compared with the direct measurement using the multi-hole-probe algorithm on a small UAV. The
sensor system used in this work is capable of applying all three methods by neglecting parameters
during post-processing. By choosing a variety of flight patterns which are used for meteorological
sampling and substantially different weather conditions, the comparison covers a broad band of
scenarios. The NFSA is generally not limited to circular patterns, but it performs best when having
a continuous and rather constant change in the heading of the aircraft. In these cases, the temporal
resolution can be increased, and an averaging window which comprises two full racetracks still
generates good results, but the increased temporal resolution comes with lower precision. It is shown
that strong turbulence decreases the accuracy. Autopilot systems well tuned to perform regular circles
at constant airspeed are crucial for the NFSA. The method is limited in cases with long straights. Using
one more piece of information, namely, the vector component of the true airspeed in the flight direction,
the wind speed and direction estimation can be strongly enhanced. The PTA allows for generally
better results than the NFSA and, in particular, provides additional benefit during flight patterns with
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long straight legs. Furthermore, the temporal resolution is much better without the need for a full
racetrack inside the averaging window, although at least some change in the heading is still needed.
Another influencing factor is a nonzero vertical vector component, as seen during ascents in Helgoland
and in convective conditions in Pforzheim. The horizontal wind speed is slightly underestimated for
these conditions. In conclusion, both estimation algorithms achieve good results when applied within
their limitations. The simplicity of the NFSA is attractive for very small platforms, and the sUAS
can be designed to be cheap, efficient, and robust enough to withstand miscellaneous environmental
conditions. The PTA depends on the dynamic pressure measurement, which adds complexity to
the sUAV. However, the enhancement of the wind speed and direction estimation is significant. The
MHPA is the most sophisticated method and needs a set of differential pressure sensors in combination
with extensive calibration. It is deduced that, of the presented algorithms, the temporal resolution
to measure at turbulent scales and the ability to measure the vertical wind component can only be
achieved using the MHPA.
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Abstract: The aim of the research project “Innovative Strategies for Observations in the Arctic
Atmospheric Boundary Layer (ISOBAR)” is to substantially increase the understanding of the
stable atmospheric boundary layer (SBL) through a combination of well-established and innovative
observation methods as well as by models of different complexity. During three weeks in
February 2017, a first field campaign was carried out over the sea ice of the Bothnian Bay in the
vicinity of the Finnish island of Hailuoto. Observations were based on ground-based eddy-covariance
(EC), automatic weather stations (AWS) and remote-sensing instrumentation as well as more than
150 flight missions by several different Unmanned Aerial Vehicles (UAVs) during mostly stable
and very stable boundary layer conditions. The structure of the atmospheric boundary layer (ABL)
and above could be resolved at a very high vertical resolution, especially close to the ground,
by combining surface-based measurements with UAV observations, i.e., multicopter and fixed-wing
profiles up to 200 m agl and 1800 m agl, respectively. Repeated multicopter profiles provided detailed
information on the evolution of the SBL, in addition to the continuous SODAR and LIDAR wind

Atmosphere 2018, 9, 268; doi:10.3390/atmos9070268 www.mdpi.com/journal/atmosphere173



Atmosphere 2018, 9, 268

measurements. The paper describes the campaign and the potential of the collected data set for future
SBL research and focuses on both the UAV operations and the benefits of complementing established
measurement methods by UAV measurements to enable SBL observations at an unprecedented
spatial and temporal resolution.

Keywords: stable atmospheric boundary layer; turbulence; unmanned aerial vehicles (UAV); remotely
piloted aircraft systems (RPAS); ground-based in-situ observations; boundary layer remote sensing;
Arctic; polar; sea ice

1. Introduction

The atmospheric boundary layer (ABL) is the lowest part of the atmosphere where the Earth’s
surface strongly influences the wind, temperature, and humidity through turbulent transport of air
mass. Due to its superior importance for the atmosphere system, an appropriate representation of
the ABL is essential for both operational numerical weather prediction (NWP) and climate models
as well as for a wide range of practical applications, such as air pollution forecast and wind energy
yield estimates. In contrast to the ABL, the stable boundary layer (SBL) is typically one order of
magnitude shallower and can reach a vertical extent as low as 10 m. Turbulence in the SBL is typically
much weaker or intermittent and is mainly produced by vertical wind shear, whereas buoyancy
inhibits vertical motion. Furthermore, a number of nonturbulent motions, such as wave-like motions,
solitary modes, microfronts or drainage flows, become important [1]. The principal problem in
representing turbulence in those models correctly is that the length scales of the turbulent processes are
typically far below model resolution and therefore need to be parameterized. While the corresponding
parameterization schemes, e.g., reference [2], generally work very well for near-neutral and unstable
conditions, they show significant shortcomings for the SBL, e.g., by systematically overestimating
turbulent mixing rates and the height of the ABL (hABL) [3–6]. In the context of weather forecasting,
this leads to, amongst others, significant errors in the prediction of near surface parameters, such
as the 2-m temperature and 10-m wind speed for situations with clear skies and low wind typically
occurring at night or during winter [6]. Errors in hABL might also induce considerable uncertainties
in the forecast of wind profiles and the location of low-level jets (LLJ), which are crucial parameters
for applications such as wind energy. Furthermore, this also leads to a typical warm bias for SBL
conditions in NWP models [4,7,8], which is also of importance under the aspects of climate and climate
change. One of the most dominant signals in climate records is the accelerated warming of the polar
regions during wintertime and the increase in nighttime temperatures at lower latitudes [9]. This
observed polar amplification may be partly related to the shallow SBL with a corresponding small heat
capacity. Hence, a certain heat gain results in a relatively large temperature increase [10]. In addition,
this dampens the temperature inversion infrared cooling to space [11,12]. A systematic overestimation
of turbulent mixing and the ABL height thus complicates the proper attribution of the mechanisms of
Arctic climate change [12–14].

Monin–Obukhov similarity theory (MOST) provides dimensionless relationships between the
surface fluxes of heat and momentum, the variance and the mean gradients of temperature, moisture,
and wind in the atmospheric surface layer (SL). These dimensionless relationships are a function
of the height (z) above the surface, which is made dimensionless with the Monin–Obukhov length
scale (L). Strictly speaking, these relationships apply only for stationary and homogeneous surface
conditions. In practice, however, there is a strong need for wider application, and as such, field
observations in a variety of circumstances are needed to evaluate the dimensionless relationships.
Most of the surface parameterization schemes in NWP and climate models are based on the traditional
MOST, which is known for its shortcomings in characterizing the SBL [15–21]. Under such conditions,
continuous turbulence may break down and become intermittent e.g., [22], so that non-local features,
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such as the stability at higher levels and the Coriolis effect, gain relative importance [23,24]. This may
imply the occurrence of upside-down events, in which turbulence is mainly generated by the vertical
wind shear associated with LLJ [23,25]. Additional processes, such as inertial oscillations and gravity
waves [26] can then contribute significantly to the turbulent kinetic energy (TKE) budget. Zilitinkevich
and Calanca [15] and Zilitinkevich [27] presented an attempt for a non-local theory for the SBL,
taking into account the effect of internal gravity waves in the free atmosphere. In addition, other
small-scale processes and phenomena, such as drainage flow, radiation divergence [1,6,28], fog,
and close interactions with the surface as well as potential snow feedback [29] further increase the
complexity of the SBL. The effects of all those phenomena are neither well understood, nor sufficiently
captured by MOST or its extensions [15,30–32].

SBL conditions also impose challenges with respect to observations, as the typically weak
turbulent fluxes close to the surface become difficult to measure precisely under very stable conditions.
Gradient-based scaling schemes, as proposed by [20,33,34] and formally equivalent to the MOST
approach, might overcome some of the observational issues of weak turbulent fluxes, since the vertical
gradients within the SBL are usually strong and relatively easy to measure. From a modeling point of
view, recent high-resolution large-eddy simulation (LES) studies have shown a lack of grid convergence
under stable conditions [35–37] which might be attributed to the fact that MOST is usually applied
between the surface and the first grid level in the atmosphere (i.e., typically at heights between 1 m to
10 m). This might violate basic assumptions for MOST, e.g., that the measurement level or the first grid
level in LES cases must lie inside the inertial sublayer, in which the flow is spatially homogeneous and
dissipation follows Kolmogorov’s 5/3 law. Errors can be induced by the fact that turbulence is not
properly resolved at the first couple of grid points adjacent to the surface. In such cases, turbulence is
not fully resolved and the flow is dominated by the subgrid-scale model in use. It is often observed
that this general deficiency of LES models to resolve turbulence near the surface leads to near-surface
gradients that are too strong and inherently lead to an underestimation of the surface friction [38].

Field campaigns addressing the SBL generally face logistical challenges in taking measurements
at remote sites that are difficult to reach and are often characterized by harsh weather conditions,
especially in regard to low temperatures. In particular, observations over sea ice involve additional
risks for equipment and people, e.g., due to sea ice motion and melt. Major campaigns with focus on the
SBL over sea ice have included the Weddell ice station in the Austral autumn and winter of 1992 [39–42],
the Surface Heat Budget over the Arctic Ocean (SHEBA) in the Beaufort Sea in 1997–1998 [23,43,44],
the drifting ice station, Tara, in the central Arctic in the spring and summer of 2007 [45–47], and the
drifting station, N-ICE2015, north of Svalbard in the winter and spring of 2015 [48]. Other land-based
campaigns, e.g., ARTIST [49], CASES-99 [50], GABLS [51,52], FLOSS-II [53], the measurements at
Summit Station in central Greenland [54], and recently, MATERHORN [55] have also contributed
considerably to the current state of knowledge on SBLs. The typical observation methods applied in
such campaigns are profile measurements using weather masts, tethersondes, and radiosondes, as well
as eddy covariance (EC) measurements at one or multiple levels. Several SBL studies have also been
based on manned research aircraft observations, mainly over sea ice in the Arctic [56–60] and the Baltic
Sea [61,62]. Manned research aircraft may also release dropsondes and apply airborne LIDARs [63].
Over the last decade, the use of Unmanned Aerial Vehicles (UAVs) has also rapidly increased in the
field of atmospheric research [64,65] and corresponding systems have been applied in ABL campaigns,
both in the Arctic [66–68] and Antarctic [69–73].

The different methods for observing the SBL are generally complementary. Continuous time series
of basic meteorological parameters at different temporal resolutions can be obtained in-situ by weather
masts, tethersondes, or radiosonde ascents, or they can be remotely sensed by e.g., with LIDAR (Light
Detection and Ranging), SODAR (Sound Detection and Ranging), RADAR (Radio Detection and
Ranging), RASS (Radar-Acoustic Sounding System) or microwave radiometer observations. All these
measurement methods and devices have certain shortcomings that may be at least partially overcome
by proper UAV missions. Weather masts are limited in height and are rather inflexible with respect to
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changes in location. Tethersondes require considerable infrastructure and their operation is limited
to wind speeds below 12 m s−1 [47]. Continuous data are only available if the balloon is kept at
a fixed altitude, which limits the vertical resolution [74]. In addition, sometimes the temperature
inversions can be so strong that the buoyancy of the tethered balloon is not sufficient to penetrate
it [67]. Rawinsonde soundings reach high altitudes, but pass very quickly through the interesting
layers for SBL research. They only provide snapshots of vertical profiles in relatively poor temporal
resolution, and are comparatively expensive for long-term use. Observations by large manned research
aircraft are even more expensive. An additional drawback of those platforms for SBL research is the
limitation in the lowermost possible flight altitude for safe operations and the fact that the pure size
and velocity of the aircraft might massively disturb the local structure and dynamics of a shallow SBL.
Doppler LIDARs and SODARs provide wind information with a vertical resolution in the order of
5 m to 20 m, typically in the lowest few hundred meters above the ground, depending on wind speed
and stability, and, in the case of LIDAR, also on other parameters, such as the aerosol content [75],
water vapor, ozone or temperature. So far, the use of remote-sensing systems for dedicated SBL
campaigns in polar regions has been rather limited, [49,76,77]. Furthermore, the minimum altitude for
wind information from pulsed non-scanning LIDAR systems is in the order of 40 m. Higher vertical
resolution and lower minimum altitudes can be achieved by operating scanning Doppler LIDARs at
low-elevation angles. However, the achieved data originates from a much larger area than for high
elevation scans. Scintillometers are capable of measuring spatially-averaged turbulent fluxes and
cross-winds close to the ground along horizontal paths of approximately 1 km to 10 km. In previous
years, SBLs have also been addressed by satellite-based remote-sensing, e.g., [78].

The main motivation for the ISOBAR project is to develop and apply a new and innovative
observation strategy for the SBL that is based on meteorological UAVs, ground-based in-situ, and
remote-sensing profiling systems. The main idea is to combine the reliability and continuity of
well-established ground-based observations with the flexibility of small UAV systems. This strategy is
to be applied during several campaigns in polar regions to provide extensive data sets on the turbulent
structure of the SBL with unique and unprecedented spatial and temporal resolution. This will form the
basis for intensive analysis of small-scale turbulent processes in the SBL and corresponding multi-scale
modeling studies.

To optimize the collection of ABL data over a period of three weeks, the Hailuoto-I campaign
was based on the combined use of a weather mast, equipped for gradient and flux observations;
a scanning Doppler LIDAR; a vertically pointing SODAR; and several fixed-wing and multicopter
UAVs equipped with different sensors. To the authors’ knowledge, the Hailuoto-I campaign is the
first field campaign to combine ground-based in-situ and remote-sensing instrumentation with the
intensive use of multiple UAVs for systematic SBL research.

The manuscript is structured in the following way. In Section 2 we describe the experiment site,
the instrumentation used, and some details on the operation of our UAVs. Data processing methods
and data availability are summarized in Section 3. Section 4 describes the general synoptic situation
and the sea ice conditions during Hailuoto-I. The first results are presented in Section 5 together with
a brief discussion, before summarizing the main outcomes of the Hailuoto-I campaign and giving a
short outlook on our future plans for specific analysis and modeling studies in Section 6.

2. Experiment Description

The Hailuoto-I campaign took place between 11 and 27 February 2017 over the sea ice of the
Bothnian Bay, close to the Finnish island of Hailuoto, as part of the ISOBAR project. Hailuoto island is
located roughly 20 km west of the city of Oulu and has a size of about 200 km2 (Figure 1). Its landscape
is mainly flat heath terrain, with the highest point reaching only about 20 m asl. The field site was
located at 65.0384◦ N and 24.5549◦ E, just off-shore of Hailuoto Marjaniemi, the westernmost point of
the island (Figure 1), where the Finnish Meteorological Institute operates a permanent weather station.
Bothnian Bay, the northernmost part of the Baltic Sea, is typically entirely frozen every winter with the
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exception of the winters of 2014/2015 [79] and 2015/2016 with land-fast ice up to 0.8 m on the coast
of Hailuoto.

During the observation period, the apparent sunrise changed from 6:35 to 5:39 UTC and the
apparent sunset from 14:38 to 15:31 UTC, calculated with [80]. The noontime solar elevation angle
ranged from 11.15° to 16.83° [81]. The apparent solar and sea ice conditions favored the formation of a
SBL [61,62], underlying a weak diurnal cycle.

The instrumentation operated on site during the campaign included an eddy covariance (EC)
system; a 4 m meteorological mast with three levels of slow-response sensors for temperature, humidity,
and wind; a four component radiometer; and two ground flux sensors. The ground-based in-situ
measurements were complemented by a scanning wind LIDAR, a vertically profiling SODAR, and
several types of fixed and rotary-wing UAVs.

Figure 1. Overview maps showing the Hailuoto-I campaign site, the location of the ground-based
instrumentation and typical locations and paths of the Unmanned Aerial Vehicle (UAV) flights.

2.1. Instrumentation

2.1.1. Basic Instrumentation

Close to the selected field site, the Finnish Meteorological Institute (FMI) operates the World
Meteorological Organization (WMO) automatic weather station (AWS) Hailuoto Marjaniemi (ID 02873),
henceforth referred to as AWS-FMI. The Western and Northern sectors of this station represent open
water conditions during summer and typically, sea ice during winter, which was also the case during
this campaign, as will be later seen in Section 4. East of the station (about 45° to 165°), the measurements
are affected by the island and by some buildings at a distance of about 50 m to 100 m from the station,
including a lighthouse and an ice radar tower. The measured parameters, installed instrumentation,

177



Atmosphere 2018, 9, 268

and their heights are listed in Table 1. All measurements, except wind, are collected at the station; the
wind speed and direction are observed at the top of the ice radar tower. The anemometer is supported
by a 2 m high mast attached to the railing of the tower platform, the measurement height being about
29 m asl.

Table 1. Specifications of the operational automatic weather station (WMO station ID 02873) at Hailuoto.

Parameters Sensor Acq. Period Meas. Height

Cloud base height, hCB Vaisala CT25K Laser Ceilometer 10 min

50 SYNOP codes Vaisala FD12P Weather Sensor 10 min

Temperature, T; Vaisala HMP155 Humidity and 10 min 2.0 m aglrelative humidity RH Temperature Probe

Pressure, p Vaisala PTB 201A Digital Barometer 10 min 7.3 m asl

Temperature, T Pentronic AB Pt100 Platinum Resistance 10 min 2.0 m aglThermometer

Wind speed, U; direction, Adolf Thies GmbH & Co. KG 2D Ultrasonic 10 min, 3 s 29 m aglDir; gust Umax Anemometer (UA2D)

The Finnish Transport Agency operates a network of coastal ice radars used for ice monitoring for
navigation along the Finnish coast. One of the radars is located at Marjaniemi, at the top of a 30-m
high tower next to the AWS-FMI and the light house. The ice radar is a 9.375 GHz (λ ≈ 3 cm), 25 kW
magnetron radar manufactured by Terma A/S, Denmark. The range resolution (the pulse length) can
be chosen operationally by Vessel Traffic Services depending on ice conditions and can vary from
50 ns to 1000 ns (pulse repetition frequency from about 0.7 kHz to 3.5 kHz). Rasterized images are
provided with a temporal median filtering of 15 s to 20 s. However, due to the limited means of mobile
data communication, preprocessed images can only be transmitted at 2-min intervals. More detailed
information on the radar and image processing is provided in reference [82].

A 4 m mast, from here on referred to as AWS-ice, equipped with instrumentation for observations
of wind speed, direction, temperature and relative humidity (all at 1 m agl, 2 m agl and 4 m agl,
radiation balance, and ground heat flux (snow and ice), was installed on the sea ice (Figure 1).
For observations of SL turbulence, the mast was additionally equipped with an EC system, consisting
of a 3-dimensional sonic anemometer and an open-path gas-analyzer for H2O and CO2, both mounted
at 2.7 m agl. The EC system faced towards 238° (true direction) in order to have an undisturbed fetch
over the sea ice sector. The sensor specifications are summarized in Table 2.

Table 2. Specifications of the automatic weather station (AWS)-ice.

Parameters Sensor Acq. Period Meas. Height

Temperature, T Campbell ASPTC (aspirated) 1 min 1, 2 and 4 m agl
Temperature, T PT100 (aspirated) 1 min 1, 2 and 4 m agl
Relative humidity, RH Rotronic HC2-S (aspirated) 1 min 1, 2 and 4 m agl
Wind speed, U Vector A100LK 1 min 1, 2 and 4 m agl
Wind direction, Dir Vector W200P 1 min 1, 2 and 4 m agl
Up and downwelling short and Kipp & Zonen CNR1 1 min 1 m agllongwave radiation, SW ↑↓, LW ↑↓
Ground flux, GF Hukseflux HFP01-SC 1 min snow and ice
Wind components, u, v, w; sonic Campbell CSAT-3 0.05 s 2.7 m agltemperature, Ts
Concentrations of H2O, CO2; pressure, p LI-COR LI7500 0.05 s 2.7 m agl
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2.1.2. UAV Platforms

In order to obtain detailed information on the atmospheric state across the entire ABL and parts
of the free atmosphere, a number of different UAV (Figure 2), both fixed and rotary-wing systems,
were operated in the area around the main field site. A short description of the systems used during
the campaign and their capabilities are given below.

Figure 2. UAV systems used during the Hailuoto-I campaign.

The Small Unmanned Meteorological Observer (SUMO) [83,84] is a small fixed-wing UAV,
equipped with the Paparazzi autopilot system and a set of basic meteorological sensors. The data
acquisition system of the SUMO also records the aircraft’s position and attitude, provided by an
on-board Global Navigation Satellite System (GNSS) and an Inertial Measurement Unit (IMU).
The SUMO is designed to take atmospheric profiles up to 5000 m and can be operated in wind
speeds of more than 15 m s−1. Under cold environmental conditions, the flight time is typically 45 min.
The most important sensor specifications are summarized in Table 3. The meteorological sensors
for T and RH are placed a fair distance from the battery and motor on top of the wings to assure
good ventilation during flight. In addition to the directly-measured meteorological parameters, like
temperature, relative humidity, and pressure, the horizontal wind speed and direction can be estimated
by applying the “no-flow-sensor” wind estimation algorithm described in reference [68].

Table 3. Specifications for the paparazzi-based UAVs: Small Unmanned Meteorological Observer
(SUMO), miniTalon, and Bebop2Met.

Parameter Sensor Acq. Frequency Aircraft Type

Temperature, T; relative Sensirion SHT75 2 Hz SUMO, miniTalon, Bebop2MetHumidity, RH
Temperature, T Pt1000 Heraeus M222 8.5 Hz SUMO, miniTalon
Pressure, p MS 5611 4 Hz SUMO, miniTalon
Infra-red temperature, TIR MLX90614 8.5 Hz SUMO, miniTalon,
Wind components, u, v, w Aeroprobe 5-hole probe 100 Hz miniTalon
Position, lat, lon, alt GNSS 4 Hz SUMO, miniTalon, Bebop2Met
Attitude angles, θ, φ, ψ IMU 4 Hz SUMO, miniTalon, Bebop2Met
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The Multi-purpose Airborne Sensor Carrier (MASC-2) is an electrically-powered, single engine,
pusher aircraft of 3.5 m wing span and a total weight of 6 kg, including a scientific payload of
1.0 kg [85]. This UAV is equipped with the ROCS (Research Onboard Computer System) autopilot
system developed at the University of Stuttgart. Its endurance under polar conditions is up to 90 min
at a cruise speed of 22 m s−1. For the measurement of turbulence along horizontal straight flight legs
and other atmospheric parameters, MASC-2 carries a scientific payload, as summarized in Table 4 and
described in detail in [86–88]. The sensors are placed in a special sensor holding unit which is attached
to the aircraft directly above the nose to face air that is as undisturbed as possible. The 3D-wind
vector and the temperature measurements are capable of resolving turbulence up to frequencies of
approximately 30 Hz, allowing turbulent fluctuations to be resolved in the sub-meter range. The data
from these sensors is oversampled with an acquisition frequency of 100 Hz. Each component of the
measurement system aboard MASC-2 was tested in the lab and during flight. The sensors were
calibrated and airborne gathered data were validated by comparison to both other measurement
systems and theoretical expectations [85–87].

Table 4. Specifications for the Multi-purpose Airborne Sensor Carrier (MASC-2) UAV.

Parameter Sensor Acq. Frequency

Temperature, T PT100-fine-wire 100 Hz
Temperature, T TCE-fine-wire 100 Hz

Relative humidity, RH P14-Rapid 100 Hz
Pressure, p HCA-BARO 100 Hz

Wind components, u, v, w 5-hole probe 100 Hz
Position, lat, lon, alt GNSS 100 Hz

Attitude angles, θ, φ, ψ IMU 100 Hz

A new UAV based on the the miniTalon produced by X-UAV with an EPP airframe of 120 cm
wingspan and 83 cm length that was designed to carry a higher payload (up to 1000 g) was tested
during the campaign. The system is a further development of the SUMO by Lindenberg und Müller
GmbH & Co. KG and GFI, with increased dimensions. It allows for the integration of an additional
turbulence sensor package (Aerosonde five-hole probe), significantly higher air speeds (up to 25 m s−1),
and longer endurance (ca. 90 min). The turbulence sensors are placed in the nose facing forward,
whereas the temperature and humidity sensors are mounted on top of the fuselage, well separated
from the battery and motor. Aside from these differences, the miniTalon is equipped with the same
Paparazzi autopilot system and the same basic sensor package as described above (Table 3).

The Bebop2Met is based on Bebop2 by Parrot, a small, commercially-available multicopter with a
weight of about 500 g and a diameter of roughly 50 cm. The system was modified for our purposes
by adding meteorological sensors (Table 3) integrated into a 3D-printed frame attached on top of the
battery, as well as by running the Paparazzi autopilot software on the original processor. The sensors
for T and RH are placed a few centimeters above one of the propellers on a thin side arm. Tests have
shown that the sensors are well ventilated and that the flow at this location is fairly horizontal.
The flight time under cold environmental conditions is typically in the range of 20 min, and it can only
be operated safely in weak and moderate wind conditions below 10 m s−1. Typical flight operations
include maneuvers such as hovering at a fixed position and altitude and vertical profiles at a fixed
location with a constant vertical speed.

The Advanced Mission and Operation Research (AMOR) multicopter UAV was designed to fly
in environmental monitoring missions [89], including meteorological campaigns in polar regions.
The central airframe, the side arms, the landing gear, and the 15 inch propellers are made of
carbon-reinforced plastic. The empty weight of the UAV is 1.5 kg, and the maximum takeoff weight
is 4.9 kg. Depending on the environmental conditions, the battery, and the payload, the maximum
flight time is approximately 60 min, and the UAV can be operated in winds of up to 15 m s−1. Due to
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the cold conditions and the relatively short profiling missions during Hailuoto-I, AMOR flights took
typically about 5 min. The Advanced Meteorological Onboard Computer (AMOC) receives the sensor
data, fuses the data sets with the IMU and GNSS data sets, and stores them on a μSD card. A fast
temperature sensor based on a 25 μm thermocouple wire, a factory calibrated HYT 271 RH sensor,
and a Digi Pico P14 Rapid RH sensor provide the meteorological standard data sets. A pressure
sensor provides the altitude above ground level, and a Melexis thermopile sensor provides the surface
temperature data, as shown in Table 5. The sensors are mounted on a horizontal tube well outside the
downwash of the propellers.

Table 5. Specifications of the sensors mounted on the Advanced Mission and Operation Research
(AMOR) UAV.

Parameter Sensor Acq. Frequency

Temperature, T; relative humidity, RH HYT 271 10 Hz
Temperature, T; relative humidity, RH P14 Rapid 10 Hz

Temperature, T K-type thermocouple 10 Hz
Pressure, p BMP 180 10 Hz

Infra-red temperature, TIR MLX90614 10 Hz
Position, lat, lon, alt μBlox GNSS 5 Hz

Attitude angle θ, φ, ψ autopilot IMU 5 Hz

2.1.3. Remote-Sensing

For observations of the 3D-wind field over our study area, we deployed a scanning wind LIDAR
(Leosphere Windcube 100s) on the shoreline (Figure 1). The Windcube 100s is a pulsed wind LIDAR
system operating at a wavelength of 1.54 μm and a pulse energy of about 10 μJ. It has a maximum
range for wind measurements of 3.5 km at a range gate resolution of 50 m. The LIDAR was operated
in PPI (plan position indicator) mode, i.e., performing azimuth scans over 360° alternating between
two elevation angles of 1° and 75°. Further details on the chosen settings are summarized in Table 6.

Table 6. Settings for the alternating PPI (plan position indicator) modes for the operation of the
Windcube 100s scanning LIDAR (Light Detection and Ranging).

Parameter Value (Low-Elevation Scan) Value (High-Elevation Scan)

Elevation angle 1° 75°
Mode PPI PPI

Minimum range 50 m 50 m
Maximum range 3300 m 3300 m

Display resolution 25 m 25 m
Number of range gates 131 131
Starting azimuth angle 0° 0°

Final azimuth angle 359.9° 359.9°
Scan duration 120 s 72 s

Accumulation time 0.5 s 0.5 s

A vertically-pointing, single-antenna version of the LATAN-3M SODAR system [90] was installed
on the sea ice at a distance of about 50 m from the coastline (Figure 1) on 8 February. The SODAR has a
frequency-coded sounding signal which allows several measurements per range gate, thus providing
higher data availability and quality compared to single-frequency signals. The frequency-coded signal
includes eight consecutive 50 ms pulses with frequencies of 3.32, 3.46, 3.58, 3.66, 3.76, 3.9, 4.02 and
4.13 kHz. The vertical measurement range is from 10 m to 340 m, even though the lowest and highest
levels typically suffer from poor data availability. At the lowest 3 to 4 levels, the data availability
is reduced, since measurements are only based on the first few frequencies as the sampling starts
immediately after the transmission of the last frequency. On the other hand, the data availability from
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the upper levels is often limited by atmospheric conditions because of the lack of thermal turbulence
from which the acoustic echoes originate. The measured parameters are the intensity within the main
spectral peak of the return signal and the adjacent band and the Doppler shift of the peak, expressed in
terms of radial velocity. The parameters are estimated for each range gate with 3 s-resolution (0.33 Hz).
From the data, it is possible to derive, for example, profiles of mean vertical velocity and its variance.
Previously, this SODAR has been used to detect wind shear driven turbulence, convective turbulence,
strong katabatic flows, and moist air advection with wave structures in the stably stratified ABL [91].

2.2. UAV Operations

Flights taking place at altitudes of less than 150 m agl and with visual contact to the aircraft can
be carried out without any restrictions. Since parts of our operations exceeded these limitations,
specifically, the maximum allowed altitude, an application was made for the establishment of a
temporary danger area (D-Area), which was granted by the Finnish Aviation Agency for the core
period of our campaign. The D-Area (Figure 3) extended from our field site 3 km to 4 km along the
coast in Southern and Northeastern directions and about 5 km off-coast to the west and northwest.
The vertical extent was from the surface up to flight level 65 (6500 ft or 1981.2 m), but we limited
our operations to a maximum target altitude of 1800 m to ensure a good safety margin. The D-Area
had to be reserved on a daily basis on the last working day preceding the activities by sending a
corresponding request to the airspace management and control (AMC) unit. Before the actual start of
UAV operations, we had to contact the responsible AMC unit at Oulu airport to activate the D-Area.
If aircraft were passing through or other operations compromised flight safety, the AMC unit could
contact us and all operations had to be cancelled immediately. The end of the UAV activities was again
reported from our side to AMC to deactivate the D-Area.

The different aircraft types were used for specific missions in the vicinity of our ground-based
measurement systems. The typical locations of these flight missions are indicated in Figure 1. All UAVs
applied could be operated with a few minutes delay between landing and the next launch, since this
usually only requires the installation of new batteries and the start of a new flight mission in the
GCS. Apart from MASC-2, which was started with the help of a bungee, all other UAVs could be
launched without any technical support, i.e., from ground or hand launch for the multicopters and
fixed-wing aircraft, respectively. However, only the multicopter systems, which were mainly used for
ABL profiles, were operated at high repetition frequencies during intense observation periods.

The SUMO system can climb very efficiently and was mainly used to obtain vertical profiles
up to an altitude of roughly 1800 m. These profiles were achieved by a helical flight pattern with a
radius of 120 m and an ascent and descent rate of roughly 2 m s−1. The main purpose of these missions
was to obtain several atmospheric profiles per day, covering the ABL and the lower part of the free
atmosphere, reflecting larger scale variations in the atmospheric background state. In total, SUMO
performed 39 scientific flights during the campaign.

The flight patterns of the MASC-2 and the miniTalon, which were both designed for airborne
turbulence measurements, consisted of horizontal race tracks at different altitudes between 20 m agl
to 400 m agl. The race tracks, two parallel straight legs of about 600 m to 1500 m length connected
by half circles for turning the aircraft, were typically aligned in the main wind direction. The data
observed with the high-resolution wind and temperature sensors on these legs were used to provide
turbulent parameters at higher levels. MASC-2 flights were typically carried out several times per
day and partially repeated after 2 h. During the campaign, the miniTalon was only used for one day
(three measurement flights) for testing and validation against the MASC-2 system, which was operated
simultaneously. The data from these three miniTalon flights are not the subject of this article, since
sophisticated data processing algorithms must be developed for the further analysis. The analysis of
the 14 scientific MASC-2 flights is also beyond the scope of this article.

Two multicopter systems were utilized to obtain profiles at a very high vertical resolution within
the ABL. In order to gain detailed information on the evolution of the ABL, these profiles were
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repeated almost continuously during intensive operation periods. Due to the more sophisticated
sensor package with partially very short response times, the AMOR system is capable of probing the
ABL with higher accuracy, whereas the Bebop2Met profiles are comparably smooth. However, this was
partially compensated by operating the Bebop2Met at a slower ascent rate. Due to technical problems,
the AMOR system could only be operated during the very end of our campaign.

Figure 3. Aviation map of the area around Oulu airport. The danger area reserved for our UAV
operations is outlined in bold and labeled as TEMPO EFD406 (Source: ANS Finland Aeronautical
Information Services AIP Supplement Map).

The Bebop2Met UAV was operated on vertical profiles, ranging from 0 m agl and typically
200 m agl or even higher (400 m agl) when the atmospheric conditions allowed for it. The atmospheric
profiles were performed at a fixed location at a distance of about 10 m to 20 m from the meteorological
mast. In order to optimize the vertical resolution of these surface and boundary layer profiles,
the vertical climb rate was set to 0.5 m s−1 below 10 m agl and 1 m s−1 above. The flights took
typically 15 min to 20 min and could be repeated after a ground time of approximately 5 min. For
comparison to the mast observations and the calibration of the (experimental) wind estimation
algorithm, the Bebop2Met was held at a fixed altitude of 2 m agl to 4 m agl for 1 min to 2 min.

The maximum height of the AMOR multicopter profiles was typically 200 m agl. In order to
operate the AMOR UAV safely in the vicinity of the other UAV and the meteorological mast on the
sea ice, the start and landing site was chosen to be closer to the shore side. After the takeoff to 5 m agl,
the flight was continued at the final location of the profile, approximately 20 m further towards the
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seaside. The lowest part of the ABL was sampled with a vertical climb speed of 1 m s−1, resulting in a
very high temperature resolution of approximately 0.1 m.

3. Data and Methods

3.1. Data Processing

The data from the land-based AWS-FMI is routinely checked and processed by the Finnish
Meteorological Institute and can thus be used as is. All other data were visually inspected for obvious
errors. Furthermore, system specific data processing procedures were applied.

The slow-response AWS-ice data were checked for their physical range, and obviously erroneous
data were removed. The directional offsets of the wind vanes were corrected to face true north,
and all three wind vanes were aligned to result in the same wind direction under conditions with
neutral stratification. Due to the distance and large difference in measurement height, no such
correction was applied in order to align our wind direction observations with the ones taken over land
at AWS-FMI. The short-wave radiation (I) showed small negative values during the night, which were
used to apply an offset correction to the entire data set by forcing the minimum value to equal zero.

The EC data was processed using the TK3.11 EC software package [92] producing 30-min, 10-min,
and 1-min averaged turbulence quantities, like variance, turbulent fluxes of sensible and latent heat,
and momentum. The following settings and corrections were applied: de-spiking by applying a 7-SD
threshold; 10% maximum allowed number of missing/bad values; double rotation; Moore, Schotanus,
and WPL density corrections; cross-correlation to maximize covariance; stationarity tests; and integral
tests on developed turbulence. The resulting data was quality flagged using a three-level flagging
system, ranging from 0 to 2. In accordance with the Spoleto agreement, a flag of 0 indicated data of
high quality, 1 indicated intermediate quality and 2 indicated poor quality [92]. For the following
analyses, we included all EC data with a flag of 0 or 1.

In addition to the directly measured parameters, like T, RH, and p, obtained by the SUMO,
the horizontal wind speed (U) and direction (Dir) were estimated by applying the “no-flow-sensor”
wind estimation algorithm described by [68]. All SUMO data were interpolated to a common frequency
of 4 Hz in order to provide a consistent data set.

The Bebop2Met also provides direct profile measurements of T, RH and p, of which only data
during ascent was used due to possible downwash contamination during decent. The pressure data
at the time of takeoff and landing were used to remove linear trends in the surface pressure which
have commonly been observed to cause altitude errors of a few meters towards the end of a flight.
Getting reliable altitude information is crucial, especially for observations of the lowermost layers if,
e.g., surface-based inversions are to be resolved correctly. Like for the SUMO system, all data were
interpolated to a common frequency of 4 Hz. In addition, attempts were made to retrieve wind speed
and direction estimates from the aircraft pitch and roll information, following the method of [93].
Due to the design of the Bebop2 with a long but slim body, this method can only be applied reliably
if the cross-wind component affecting the aircraft is much smaller than the front-wind component.
Since an autopilot algorithm for turning the aircraft into the wind was not implemented during the
campaign, the wind speed and direction data from the Bebop2Met have to be considered experimental
with corresponding larger uncertainties.

The AMOR pressure data, used to compute the height above ground level of the UAV, was
smoothed by applying a moving average. The data of the humidity sensors were recomputed, taking
into account the response time and thereby, mapping the correct values to the corresponding heights.

All SODAR data with a signal-to-noise ratio (SNR) below 2 dB were removed from the further
analyses. From the filtered SODAR data, we computed 10-min averaged profiles of the vertical velocity
and its variance. The attenuated backscatter signal, measured directly by the SODAR, was used to
estimate the ABL height. When the top of a thermally-stratified ABL fell within the sounding range,
the pattern of echo-signal was used to determine the ABL height. The latter was determined by
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visual inspection of echograms and return-signal profiles, as the height where the echo intensity of
a pronounced echoing layer sharply decreases. This method was chosen as the echo-intensity is a
reliable indicator for mixing, in contrast to the standard deviation of the vertical velocity, σw, that is
often wave-dominated in the SBL and therefore, is not a proper indicator for turbulence.

The LIDAR data obtained from the Windcube 100s were already filtered for acceptable
carrier-to-noise, ratio, i.e., CNR > −23 dB. An additional check was made for the low elevation
data, since this also contains clutter from hard targets such as buildings, the shore, etc. A clutter
map was used to remove hard targets, which have a very high SNR and a radial velocity of zero.
Furthermore, all points with an instrumental wind speed error greater than 0.5 m s−1 and unphysical
wind speed values exceeding 30 m s−1 were removed. The radial wind speed measurements were
used to compute time series of horizontal wind profiles from both PPI scanning patterns, applying the
velocity-azimuth-display (VAD) technique [94]. The VAD technique assumes horizontal homogeneity,
and the applied method checks this assumption by testing the collinearity. Profile time series of
w′2 from the SODAR and U from the LIDAR are available as Supplementary Materials (Section 6).
Furthermore, deviations from the mean state over one entire scan were used to compute turbulent
statistics of the flow.

3.2. Data Availability

The data availability for the different measurement systems is shown in Figure 4. The FMI
permanent weather station close to the lighthouse is part of the official Finnish weather observation
network and is operational year-round. Data from this station was therefore available without major
quality issues for the entire observation period. The automatic weather station, installed on the sea ice,
was operated between 11 and 27 February. Due to a damaged backup battery, which was causing a
drop in voltage, some data was lost. In particular, the slow-response data seemed to be affected by
this issue. The EC system, running on the same data logger, stopped recording on 13 February due to a
broken data cable from the sonic anemometer, which was replaced on 15 February. Furthermore, some
of the EC data was of poor (flag 2, see Section 3) or intermediate quality (flag 1). Good and intermediate
quality data are marked in green and orange in Figure 4 and were both used for further analysis,
whereas poor quality data were removed. The optical lens of the LIDAR was subject to significant icing
from the inside, especially at the beginning of the campaign. After defrosting the lens several times, this
was not an issue any longer, but probably, due to very low aerosol concentration, the carrier-to-noise
ratio (CNR) was rather poor for most observed levels for almost the entire campaign. The SODAR
system was subject to flooding due to snow melt and water pushing up through the ice, causing some
loss of data in the middle of our campaign. Green and orange colors in Figure 4 refer to the availability
of instantaneous observations used to compute a 10-min average. For the good quality data, the lower
threshold was 66.7% and for limited quality data, it was 33.3%.

The operation of the different UAVs requires significant manpower, typically involving one safety
pilot and one ground control station operator. These systems were therefore mainly operated during
intensive observational periods, when the atmospheric conditions were most interesting, i.e., strong
static stability and weak winds in the SL. Smaller technical problems and human endurance during
rough environmental conditions prevented higher numbers of flights. A fair amount of flights were
also carried out during conditions when the stability was relatively weak. In total, 139 scientific
flight missions were carried out during the campaign and were distributed as follows: 53 Bebop2Met;
39 SUMO; 30 AMOR; 14 MASC-2; and 3 miniTalon flights. Around one third of the flights (39%) were
carried out during conditions with strong atmospheric stability (RiB > 0.2). For 12% of the cases,
the 2-m wind speed was, in addition, below 0.5 m s−1. The irregular flight times, with a focus on stable
conditions and rather moderate and low wind speeds, as well as the maximum flight altitudes of the
different UAV systems, may have caused a significant sampling bias. It is therefore not recommended
for general conclusions to be drawn based on the UAV data alone. These data should primarily be
used for the analysis of case studies.
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Figure 4. Data availability and corresponding altitude (only for profiling systems) for the different
observation systems during the campaign period. Green indicates the availability of good quality data
where applicable; orange corresponds to available data of limited quality; and the white gaps indicate
poor quality or missing data.

4. Synoptic Situation and Sea Ice Conditions

The analysis of the synoptic situation, including the passages of fronts and sea ice conditions was
based on the daily FMI operational weather analysis and ice charts. Until recently, the Bothnian Bay has
been entirely frozen every winter. However, the ice thickness, the maximum annual ice extent, and the
length of the ice season have shown decreasing trends in recent decades [95]. Winters 2014/2015
(Uotila2015) and 2015/2016 were the first for which we can be certain that parts of the Bothnian Bay
remained ice-free. The maximum ice extent is typically reached in March. In the shallow waters close
to the coast, land-fast ice prevails and can grow up to a thickness of 0.8 m. Even in mild winters, the
level ice thickness reaches 0.3 m to 0.5 m. The land-fast ice is typically free of leads, and the compact
sea ice field with snow pack on top effectively insulates the atmosphere from the relatively warm sea.

The sea ice season 2016/2017 was mild in the Baltic Sea. Its length in the Bothnian Bay was,
however, close to the average of 1965–1986 (reference period used in FMI ice service). The ice growth
started during the first half of November 2016 and was fast during a cold period in early January,
leading to an overall ice extent of 44,000 km2 in Bothnian Bay. Shortly thereafter, temperatures
increased and for the rest of the month, mild southwesterlies prevailed, preventing new ice formation
and packing the ice densely towards the coast within Bothnian Bay. By the end of January, the Baltic
Sea ice extent had reduced to only 28,000 km2.
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In the beginning of February, a large high pressure system strengthened over Finland, causing
fair weather and occasional extremely cold temperatures. Especially from 6 to 9 February, there were
very cold temperatures in most of the country. The ice extent increased then rapidly, and a maximum
ice extent in the Baltic Sea of 88,000 km2 was observed on 12 February. At this time, Bothnian Bay was
almost completely ice-covered by 10 cm to 25 cm thick drift ice, and the thickness of the land-fast ice
was between 5 cm to 55 cm, as shown in Figure 5 (left panel). In the middle of February, a westerly to
northwesterly flow pattern strengthened over the region, causing dry and warm Föhn wind from the
Scandinavian Mountains. Over Bothnian Bay, the ice field was packed against the Northeastern coast,
and a large ice-free area in the center of the Bay formed (Figure 5, right panel). Almost all ships to
Oulu, Kemi, and Tornio had to be assisted by ice breakers. In the end of February, ice extent of the
Baltic Sea was 77,000 km2.

Ice free

New ice

Nilas, grey ice

Fast ice

Rotten fast ice

Open water

Very open ice

Open ice

Close ice

Very close ice

Consolidated ice
20.02.201712.02.2017

Figure 5. Examples of sea ice charts: maximum extent during the campaign on 12 February 2017
(left panel) and minimum on 20 February 2017 (right panel). The ice type is color coded; the numbers in
the white boxes indicate the ice thickness in cm. The charts were provided by the Finnish Meteorological
Institute on an operational basis (http://en.ilmatieteenlaitos.fi/ice-conditions). The location of the
experiment site is indicated by the yellow arrow.

On Hailuoto, the 2-m air temperature was 2 °C higher and the 10-m wind speed was 0.5 m s−1

lower than the climatological mean values for February during 1981–2010. In the first week of the
ISOBAR campaign Hailuoto-I, from 11 to 18 February, the synoptic-scale conditions were characterized
by a high-pressure center, first located over Southern Scandinavia and then moving over Central
and Eastern Europe. Low pressure systems were passing over the North Atlantic, Norwegian Sea,
and Barents Sea from southwest to northeast, resulting in variable winds, occasionally approaching
20 m s−1 in Hailuoto (Figure 6). Depending on the air-mass origin, wind speed, and cloud cover, the
2-m air temperature in Hailuoto varied between −17 °C to 4 °C (Figure 6). By 19 February, the high
pressure center had moved north of the Azores, and a small low pressure system passed over Europe
during 19 to 24 February. A passage of a warm front resulted in snow fall (8 mm water equivalent) on
23 February. From 24 to 27 February, the synoptic situation was dominated by two large low pressure
systems, one first centered over Southern Finland, moving towards the northeast, and another one
moving from the Denmark Strait to the Faroe Islands. In the saddle region between the lows, clear skies
and weak winds allowed the 2-m air temperature, observed at the official weather station, to drop
down to −19.1 °C during the night of 27 February.
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Figure 6. Overview of the meteorological conditions: (a) temperature, T, and surface pressure, p;
(b) relative, RH, and specific humidity, q; (c) wind speed, U; and direction, Dir; (d) short-wave, K,
long-wave, I, and net radiation balance, Net; (e) total cloud fraction and cloud base height. Gray shading
indicates times of UAV operation. Note that the wind measurements over land were performed at 29 m
above ground.

5. Potential of the Data and First Results

The deeper analysis of the comprehensive data set collected during the Hailuoto-I campaign is far
beyond the scope of this overview article. Here, we aim to give a general overview of the campaign
conditions, mainly based on the SL observations with the eddy covariance technique (Section 5.1).
We shortly present the potential to combine the different ground-based in-situ and remote-sensing
observations for a detailed characterization of the ABL structure (Section 5.2), and finally, present the
results of a case study in a situation where the temperature suddenly decreased by 6 °C close to the
ground (Section 5.3).

5.1. Surface Layer Observations

The conditions in the SL, observed over the sea ice, are presented in Figure 7, from top to bottom

as follows: (a) the turbulent friction velocity, u∗ = (u′w′2 + v′w′2)1/4; (b) the turbulent kinetic energy
per unit mass, TKE = 1/2 · (u′2 + v′2 + w′2); (c) the turbulent sensible heat flux, HS = cp · ρ · w′T′;
and (d) the turbulent latent heat flux, LE = λ · w′a′. u∗ and TKE were both highly correlated with
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the horizontal wind speed, ranging from values close to zero up to roughly 0.75 m s−1 and 3 m2 s−2,
respectively. Both parameters did not show any obvious dependency on the wind direction (see
Figure 6). However, when directional aspects were considered, it has to be taken into account that the
sonic anemometer was facing off-shore and that a fair amount of data with flow over the island was
flagged by the post-processing software due to potential flow distortion errors from the mast [92].
HS was mostly negative, ranging from −73.6 W m−2 to 27.5 W m−2. The strongest negative values of
HS, associated with rapid cooling of the ABL, were reached under conditions with strong negative
radiation balance (dominated by the outgoing long-wave radiation, I, see also Figure 6d), resulting in
moderate values of u∗ or TKE. Such situations are typically associated with large positive temperature
gradients (not shown in detail here). However, the turbulent flux of the latent heat, LE, showed very
different values, ranging from −16.3 W m−2 to 37.0 W m−2. More than half of the observed values of LE
were positive. This is not surprising, as sea ice and snow are saturated surfaces. Hence, if the air relative
humidity is below saturation, an upward latent heat flux may occur simultaneously with a downward
sensible heat flux. Over Polar oceans, the air relative humidity is at, or very close to, saturation [43],
and dry air masses are often advected over the sea ice, allowing sublimation (upward latent heat flux)
even if the sensible heat flux is directed downwards. For example, during a Foehn event over the
Bothnian Bay in March 2004, [96] observed a relative humidity of 40 % with an upward latent heat flux
simultaneous to a downward sensible heat flux. In our case, the largest upward latent heat flux was
observed on 17 to 18 February 2017 (Figure 7), when the relative humidity was 70% to 80% and wind
was coming from the west (Figure 6). Calculation of a three-day backward trajectory applying the
Meteorological Data Explorer [97] indeed suggested a Foehn event with adiabatic subsidence heating
when the air mass descended down the mountain slopes in Northern Sweden.

Figure 7. Time series of (a) 30-min averaged friction velocity, u∗; (b) turbulent kinetic energy per unit mass,
TKE; (c) turbulent sensible heat flux, HS; and (d) latent heat flux, LE, observed with the EC system, 2.7 m
above the sea ice. The quality of the data is indicated by blue and red markers for high and intermediate
quality, respectively. Poor quality data is not shown. Gray shading indicates times of UAV operation.
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Figure 8 shows the time series of the stability parameters: (a) Monin–Obukhov (MO) stability
parameter, ζ = z/L with z being the measurement height and L the Obukhov length, defined
as L = −(θv · u3∗)/(κ · g · w′θ′v); (b) the flux Richardson Number, R f = (g · w′θ′v)/(θv · u′w′ · ∂U/∂z);
(c) the bulk Richardson Number, RiB = (g · Δθv · Δz)/(θv · (ΔU)2); (d) the difference in potential
temperature, Δθ, between the 4 m and 1 m levels, as observed over the sea ice; and (e) the atmospheric
boundary layer (ABL) height (hABL), estimated from the SODAR observations. The gray vertical lines
indicate events with U < 0.5 m s−1, the threshold for the near-calm stable boundary layer (SBL), when,
according to [98], the relationship between the fluxes and the weak mean flow breaks down and the
use of the traditional stability parameters, e.g., ζ, RiB, R f , becomes difficult. The dynamic stability,
ζ, covers a wide range of different stabilities from weakly unstable (4%), ζ < −0.1, to stable or very
stable (29%), ζ ≥ 0.05, with most observations in the near-neutral range (66%), −0.1 ≤ ζ < 0.05.

Figure 8. Time series of the stability parameters: (a) MO stabilty, ζ; (b) flux Richardson Number, R f ;
(c) bulk Richardson Number, RiB; (d) the difference in potential temperature between the 4 m and 1 m
levels, observed over the sea ice; and (e) the ABL height, hABL, estimated from the SODAR (Sound
Detection and Ranging) observations. The quality of the underlying eddy covariance (EC) data for ζ

and R f is indicated by blue and red markers. The horizontal dashed lines for ζ = −0.1 and ζ = 0.05 in
(a) and Ricr = 0.2 in (c) mark the thresholds for different stability classes. The gray vertical lines mark
near-calm events with U < 0.5 m s−1.
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However, a fair number of cases (27%) with very stable stratification (RiB > Ricr = 0.2) were
found. All such cases were related to weak wind conditions, when u∗ or u′w′ approach zero, resulting
in high stability values. During the observation period, 34 cases (30-min averages) of a near-calm SBL
were observed, which frequently resulted in very sharp surface inversions with potential temperature
differences between the 4 m and 1 m levels reaching up to 6 °C and greater. hABL was typically below
100 m during these cases and reached values as low as 20 m. It has to be noted that no absolutely
reliable algorithm for determining hABL from SODAR observations exists and that our estimates are
partially based on human judgment and therefore, are somewhat subjective. Furthermore, no reliable
estimates could be provided when the data quality of the SODAR observations was too poor or when
hABL exceeded the vertical range of the instrument, i.e., hABL > 340 m.

5.2. Profiles

5.2.1. Composite Profiles from Multiple Systems

Figure 9 shows an example of atmospheric profile measurements for temperature, T, and wind
speed, U, from different systems, i.e., AWS-ice at 1 m agl, 2 m agl and 4 m agl; AWS-FMI (only U) at
29 m asl; Bebop2Met (only T) from 0 m agl to 350 m agl; SUMO from 40 m agl to 1800 m agl; and LIDAR
from roughly 200 m agl to 450 m agl. The displayed AWS and LIDAR data represent time-averaged
data for the time period indicated in the legend, whereas the UAV data correspond to one single ascent.
The Bebop2Met T data is bin-averaged with 10 m increments, while for the SUMO data, the bins are
25 m, and the LIDAR data points are separated by roughly 24 m. It also has to be noted that we used
three different scales for the y-axis to increase the level of detail in the SL towards the surface.

Figure 9. Combined temperature (a) and wind speed (b) profiles based on AWS-ice AWS-Finnish
Meteorological Institute (FMI) (only U), Bebop2Met (T), Small Unmanned Meteorological Observer
(SUMO) and LIDAR (U) observations from 26 February between 05:20 and 06:20 UTC. The AWS and
LIDAR data represent averaged profiles for the periods indicated in the legend.

During the morning of 26 February, the ABL was stably stratified with a surface-based inversion
reaching up to about 300 m, as well as several smaller, but also sharp inversions further above. All three
systems matched very well with temperature differences in the range of 0.5 °C, which could have
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been caused by differences in the sampling times and differences in the time and spatial averaging
procedures applied to the data.

The profile of the horizontal wind speed has a gap from 4 m agl to 40 m agl, since no reliable
estimates from the Bebop2Met UAV could be computed due to a significant cross-wind component
acting on the multicopter and the lack of LIDAR data with sufficient CNR. The SUMO data, however,
indicated the existence of an LLJ with a peak velocity of about 7.5 m s−1, located just below 100 m,
which also corresponds well to the notable decrease in the vertical temperature gradient observed
at this level. At the levels between the 200 m to 500 m, where LIDAR data was available, and in the
vicinity of the 29-m wind measurement at AWS-FMI, the agreement between the observations within
1 m s−1 was fairly good, given the differences in the observation and data processing principles.

5.2.2. Evolution of Temperature Profile

The evolution of the thermal structure of the ABL during the night from 26 to 27 February is
shown in Figure 10. The observations were taken by the small multicopter UAV Bebop2Met in a
distance of roughly 20 m from the meteorological mast installed on the sea ice (Figure 1), and cover the
time period from 17:38 UTC to 01:26 UTC (mean time of the ascent profiles). All profiles indicated a
sharp, surface-based inversion reaching up to about 50 m. Above this level, the vertical temperature
gradient decreased and eventually approached an isothermal gradient. The temperature above 150 m
remained at roughly −9 °C to −8 °C for the entire 8 h period, with weak signs of warm air advection
between 18:42 UTC and 19:50 UTC. The lowermost 50 m or so were, however, subject to rapid cooling,
with temperatures at the surface decreasing from −14 °C to −22 °C after 23:04 UTC. During this event,
the vertical temperature difference in the lowermost 20 m increased from values of around 2 °C to 6 °C,
causing a very strong static stability and inhibiting almost any vertical movement (see Section 5.3).
The same behavior was also detected in the time series of profiles from the AMOR system which was
operated roughly at the same time period (not shown here).

Figure 10. Evolution of the temperature profile during the night of 26 to 27 February, observed
by the Bebop2Met UAV during ascent. The times in the legend refer to the mean times of each
individual profile.
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5.3. Case Study on Very Stable Conditions—26 to 27 February

During the last night of the campaign, 26 to 27 February, we observed a very stable case, which
was characterized by strong, rapid temperature changes observed at AWS-ice. Almost the entire
night was cloud-free without any indications of fog or other significant weather, according to the
official weather observations from AWS-FMI. The radiation balance was strongly negative, especially
until 0:00 UTC, and radiative cooling was the dominant term in the surface energy balance (compare
Figure 6). Figure 11 shows the corresponding time series of (a) T; (b) U; (c) Dir; (d) RH; and (e) w′2
from the two locations over land (except for w′2) and sea ice for the period between 16:00 and 8:00 UTC.
All data are based on a 1-min averaging period, except for the data from the land-based AWS-FMI,
which was only available at a resolution of 10 min.

Figure 11. Time series of temperature, wind speed, wind direction, relative humidity, and vertical
velocity variance (from top to bottom) during the night of 26 to 27 February. The displayed data
represents 10-min and 1-min averaged data of (a) T; (b) U; (c) Dir; (d) q; and (e) w′2 from the permanent
AWS-FMI on land and the three levels and EC of the AWS-ice, respectively. Gray shading indicates
times of UAV operation.
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Until around 23:00 UTC, the conditions were relatively stationary, with temperatures between
−15 °C to −12 °C and wind speeds between 1 m s−1 to 3 m s−1 close to the ice surface and 5 m s−1

to 7 m s−1 at 29 m asl. The vertical gradients and local differences between land and sea ice were
generally small. The 29-m wind speed decreased from 6.5 m s−1 to 1.5 m s−1, before it started increasing
again at about 4:20 UTC.

At about 23:10, a drop in temperature from approximately −13 °C to −18 °C was observed at
the 1 m level over the sea ice (Figure 11a), accompanied by a calming of the near surface winds over
the ice (Figure 11b). This initial drop happened within 1 min to 2 min, but the cooling continued and
temperatures of −20 °C were reached. The same kind of changes, albeit slightly weaker and slower,
were observed at the 2 m and 4 m levels, whereas the observations over the slightly elevated land
remained fairly constant. The near-surface temperature and wind speed stayed at low values for about
20 min and returned to their previous states at a slower rate within approximately 5 min, starting at
the top and penetrating further down. The following warmer phase with a weak flow also lasted for
about 20 min. During this first cold episode, the static stability in the SL was much stronger compared
to the conditions before and after the episode, with temperature differences of up to 5 °C and roughly
0.5 °C between the 4 m and 1 m levels, respectively. The vertical gradient of U occasionally became
negative during the near-calm events, indicating a decoupling of the near-surface layers. After the
first cycle of rapid temperature changes, several similar events followed, which were, however, not
as clearly structured as the first one, since the 1 m level and partially, the 2 m level remained at low
temperatures with very weak or calm winds. Furthermore, these following events were significantly
shorter and occurred with a higher frequency. At about 6:00 UTC—just after sunrise—temperatures
at all observation levels started to rise again; the vertical temperature gradient decreased and the
oscillations in temperature and wind became much weaker.

During the evening and throughout the night until about 2:00 UTC, the general wind direction
at 29 m asl was from north (Figure 11c). During the rest of the night and the morning, the direction
shifted to northeast (from about 3:00 to 4:00) and finally, to southwest (from 06:00). Over the sea ice,
the wind direction deviated by a few degrees toward the east in the beginning, which might have
partially been caused by a small error in the azimuthal sensor alignment. Due to the weak wind
speeds below the detection range of our wind vanes, i.e., 0.6 m s−1, a fair amount of wind direction
observations over the sea ice had to be neglected during the calm and cold periods. The available data
from these events revealed frequent direction shifts of more than 90° to the east and southeast, with
relatively large deviations between the three observation levels. The relative humidity (Figure 11d) and
specific humidity (not shown) closely followed the pattern of the temperatures at the corresponding
levels, observed at the AWS-ice. The vertical velocity variance, observed with our EC system at
2.7 m asl (lowermost panel in Figure 11), indicated very weak vertical turbulent motion in the order
of w′2 = 0.001 m2 s−2 during cold episodes. The values were about one order of magnitude higher
during the warmer phases. This supports the argument that vertical mixing, or its absence, is causing
the observed oscillations. The values of w′2 were typically up to two orders of magnitude higher before
the first event.

The last multicopter profile from this night taken with the AMOR originated from 1:40 to 1:43
UTC during one of the cold and calm events. The corresponding temperature profile is shown in
Figure 12a) from ground level to 200 m, together with the AWS-ice data. The AMOR’s downward
facing infra-red sensor confirmed the low temperatures of the ice-covered surface (TIR = −23 °C).
The temperature gradient within the lowermost 20 m was extremely strong with a total gradient
of ΔT = 10 °C. Right above, in the layer from roughly 20 m agl to 60 m agl, there was a remarkably
strong variation in temperature, with a superadiabatic lapse rate from about 20 m agl to 40 m agl.
The air parcel at about 30 m agl to 40 m agl had the potential to penetrate further down to a level of
approximately 5 m agl to 10 m agl, assuming a dry adiabatic descent. This can be interpreted as the
signature of a strong, most likely, Kelvin–Helmholtz instability, causing local mixing, which then
penetrated further down, causing the SL to switch back from the cold and calm state.
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Figure 12. The structure of the ABL during 26 to 27 February: (a) vertical temperature profile taken
by an AMOR multicopter (blue dots) and compared to the Automatic Weather Station (AWS-ice, red
circles) from 1:40 UTC to 1:43 UTC, and (b) attenuated backscatter from the LATAN-3M SODAR
between 0:00 UTC and 4:00 UTC. The black triangle marks the start time of the AMOR profile.

The time series of the attenuated backscatter from the LATAN-3M SODAR (Figure 12b) at the
moment of the multicopter profile acquisition was characterized by two echoing layers: one layer
within the lowest 20 m and the second one within 60 m to 100 m. The layers nicely correspond to the
temperature inversion observed by the multicopter. The evolution of the attenuated backscatter profile
clearly shows variability in the vertical structure of the ABL and allows for the estimation of temporal
validity frame for multicopter profiles. Furthermore, the elevated inversion layer oscillated with a
period of 1 h to 2 h, which could be an indication of gravity-wave activity during this night.

6. Summary and Outlook

The ISOBAR field campaign, Hailuoto-I, in February 2017 resulted in an extensive data set from
several different observation systems, including ground-based in-situ and remote-sensing, in addition
to airborne observations by various UAVs. The meteorological and sea ice conditions during the
campaign did not represent the climatological means in the area with 2 °C higher temperatures and
significantly less sea ice during most of February, compared to climatological references. Despite the
relatively mild conditions, accompanied by a below average sea ice cover and the already significant
diurnal cycle with notable short-wave radiation, a valuable data set on the SBL was sampled.

The stability of the SL was mostly near-neutral, but also, a fair amount of very-stable cases
(RiB > Ricr) occurred during the campaign, typically related to clear sky and weak wind or near-calm
conditions. Under very stable conditions, the ABL height, hABL, estimated from the SODAR data
reached values as low as 20 m. In general, wind shear seems to be a very important mechanism for
creating turbulence. The long-wave upwelling radiation usually dominated over the other radiation
terms and the turbulent fluxes of latent and sensible heat, with the latter also being significant.

A unique approach was made in which data was combined from different profiling systems to
create composite profiles, probing the atmospheric column from the surface to an altitude of 1800 m agl
with very high resolution in the lowermost layers. The agreement between the different systems was
very good, given the systematic differences in the measurement principle, as well as in the vertical
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and temporal resolutions. Sampling the lowermost 200 m or so repeatedly over several hours gave
detailed information on the evolution of the SBL structure, such as a rapid cooling of the lowermost
20 m and other relevant processes like warm air advection. The sampled data also contained at least
one longer period of an SBL with very stable stratification and calm winds, which was characterized by
a series of turbulent events leading to a rapid warming of the layers close to the ice surface. The UAV
and SODAR profiling systems gave additional insight into the nature of these events, suggesting the
existence of an elevated source of turbulence which could contribute to the occasional mixing events
observed close to the surface.

The experience from this campaign motivated us to conduct a second, even more extensive
field experiment. The ISOBAR campaign Hailuoto-II took place at the same site from 1 to 28 February 2018.
The collected data from both ISOBAR field campaigns will be the basis for future SBL research studies.
A particular focus will be on the combination of the observational data set with modeling approaches
on different scales (NWP and LES) and with different levels of complexity (e.g., 3D and single column).
The Weather Research and Forecasting (WRF) model [2], run with different surface and boundary layer
parameterization schemes, will be evaluated against the observations to better understand the physics
and dynamics behind the observed events. For that purpose, we will also perform a series of experiments
with the WRF model’s single-column mode, in which the atmospheric column above a single grid point
from the 1 km WRF domain is resolved with very high vertical resolution. This will give a deeper insight
into the sensitivity of the SBL to changes in the prescribed surface conditions and model physics.

Accompanying the LES runs will be performed with the Parallelized Large-Eddy Simulation
Model (PALM) [99] to reveal SBL structure and dynamics, and virtual UAV measurements will
be conducted on-the-fly during the simulation in order evaluate the representativeness of these
measurements. The advantage in the LES is that the true state of the ABL is known, and errors induced
by the measurement strategy can be directly evaluated. Based on the findings from this investigation,
improved UAV flight strategies might be developed. Second, the problem of lacking grid convergence
when simulating the SBL with LES will be addressed by applying a modified MOST-based surface
boundary condition. Unlike existing boundary conditions, this will not lead to violations of the basic
assumptions of MOST and inherent issues in LES modeling as outlined in the introduction. Finally, a
series of LES runs shall be employed to evaluate both flux and alternative gradient-based similarity
functions [33,34] in the SBL. This work will follow the methodology of the recent work for convective
conditions by [100] and will elucidate whether gradient-based similarity functions might be superior
to the established flux-based MOST formulation, particularly under very stable conditions.
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Abstract: The unmanned research aircraft ALADINA (Application of Light-weight Aircraft for
Detecting in situ Aerosols) has been established as an important tool for boundary layer research.
For simplified integration of additional sensor payload, a flexible and reliable data acquisition
system was developed at the Institute of Flight Guidance, Technische Universität (TU) Braunschweig.
The instrumentation consists of sensors for temperature, humidity, three-dimensional wind vector,
position, black carbon, irradiance and atmospheric particles in the diameter range of ultra-fine
particles up to the accumulation mode. The modular concept allows for straightforward integration
and exchange of sensors. So far, more than 200 measurement flights have been performed with
the robustly-engineered system ALADINA at different locations. The obtained datasets are unique
in the field of atmospheric boundary layer research. In this study, a new data processing method
for deriving parameters with fast resolution and to provide reliable accuracies is presented. Based
on tests in the field and in the laboratory, the limitations and verifiability of integrated sensors
are discussed.

Keywords: UAS; RPAS; ALADINA; atmospheric boundary layer; airborne turbulence; radiation
measurements; aerosol measurements; field experiments; validation methods

1. Introduction

The use of unmanned aerial systems (UAS), often also called remotely-piloted aircraft systems
(RPAS), for atmospheric research has increased significantly over the last few decades. The new setup
of ALADINA (Application of Light-weight Aircraft for Detecting in situ Aerosols) in the context of the
ongoing development is provided as an introduction to the current modifications. The first applications
date back to several decades ago [1]; later, some UAS applications of atmospheric research groups
were reported in the 1990s [2]. Compared to these first meteorological applications, there has been a
revolution concerning the functionality, size and complexity of even commercially available airborne
systems, autopilots and the corresponding hardware and software. Nowadays, UAS are deployed in a
broad range of meteorological research fields. The smallest systems with a weight below or slightly
exceeding 5 kg are mainly equipped with basic meteorological sensors for measuring humidity and
temperature [3]. They can be used comparable to a recoverable radiosonde [4], but have the advantage
of performing specific flight patterns, as demonstrated by Hemingway et al. [5], which shows the
repeated sampling and analysis of the small-scale atmospheric boundary layer (ABL) phenomena
with a multicopter system. Some systems provide measurements of additional parameters, e.g., ozone
concentration [6] or the concentration of the greenhouse gases methane and carbon dioxide [7].
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There have been significant improvements in the sensors for estimating the basic meteorological
parameters. For determining the three-dimensional wind vector in high temporal and high spatial
resolution, a miniaturized multi-hole probe (MHP) along with the Global Navigation Satellite System
(GNSS) and inertial measurement unit (IMU) has been implemented [8–10]. Using these systems,
turbulence parameters can be studied [11] and turbulent fluxes of sensible heat are derived [12].
Other systems use specific flight patterns and assumptions of the influences of wind on UAS to provide
an estimate of the wind speed and wind direction in order to derive turbulent fluxes of sensible and
latent heat [13,14].

In addition to basic meteorological parameters at high resolution, several systems with a
payload weight between 5 and 25 kg rely on miniaturized sensors for measuring aerosol properties.
A condensation particle counter in combination with a three-wavelength absorption photometer and
chemical sampling has been used by Bates et al. [15]. Another research work includes measurements
of longwave and shortwave broadband radiation, total aerosol particle number concentration and size
distribution, as well as a video camera [16].

Applications of UAS and meteorological payload are manifold. Various systems have been
deployed to study atmospheric particles at different locations. Bates et al. [15] reported measurements
at Ny-Ålesund, Svalbard, for studying long-range transport of particles into the Arctic, especially black
carbon (BC). The system of de Boer et al. [16] has been developed to study Arctic haze properties in the
Alaskan Arctic. Furthermore, applications to perform measurements in thunderstorms and tornadic
supercells have been reported [17].

Besides typical short-term missions of meteorologically-equipped systems, other UAS with
combustion engines provide the capability of long-range flights, as far as permitted by the authorities.
Therefore, they mostly are operated in sparsely-inhabited areas. Such systems have been used for up
to 30 h per flight in the Arctic [18], Antarctic [19] and above the Indian Ocean [20]. In addition to the
meteorological sensors, remote sensors are employed for monitoring surface properties like ice cover,
sea ice type and surface temperature [18].

The next step in the complexity of operations is the simultaneous use of more than one UAS,
reported in Ramanathan et al. [20], who coordinated three aircraft measuring total aerosol particle
number concentration, soot and radiation related to clouds. UAS operation with two aircraft following
different flight patterns was performed as well in the study of Platis et al. [21]. For some meteorological
experiments, the advantages of UAS and manned aircraft were combined to complete the overall
picture (e.g., Neininger and Hacker [22], Lothon et al. [23]). A recent overview of UAS application for
meteorological research and their instrumentation is provided by Elston et al. [24] and Villa et al. [25].

Compared to other platforms, UAS fill a gap between stationary in situ and remote sensing
measurement systems like ground-based LiDAR and radar or tethered balloon observations, on the
one hand, and on the other hand, manned aircraft, which cover larger distances at higher cruising
speed. For repeatedly probing the development of the atmospheric boundary layer on small scales
of a few kilometers, UAS are the most cost-efficient and easy to operate devices available. With the
ongoing miniaturization of meteorological sensors and electronic components, they achieve the same
temporal resolution as in situ observations onboard manned aircraft, and complex light-weight
instruments can be included. Additionally, UAS provide the possibility to probe areas too hazardous
for manned measurement flights, e.g., in volcanic ash conditions or over sites contaminated by ionizing
radiation. Since they fly generally at lower cruising speed (typical 10–30 m s−1), the spatial resolution
is higher compared with manned aircraft (typical cruising speed 50–200 m s−1) assuming the identical
measurement rate.

The UAS ALADINA (Application of Light-weight Aircraft for Detecting in situ Aerosols;
the principal shape of the aircraft can be seen in [26]) operated at the Institute of Flight Guidance
at TU Braunschweig (Technische Universität Braunschweig) corresponds to the weight class up to
25 kg with a wing span of 3.6 m. The pusher aircraft of type Carolo P360 was designed with the
purpose to carry large sensors (sensor volume up to 0.02 m3) in a specifically-designed payload
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bay. To avoid contamination, influence on aerosol measurements and to reduce vibrations, it is
electrically powered. The first setup of the UAS ALADINA has already been described in detail [26].
As the measurement system has undergone significant changes and improvements after several
extended field experiments [21,26], the current system with additional instrumentation, the new
data acquisition system deployed in the project Dynamics-aerosol-chemistry-cloud interaction in
West Africa (DACCIWA) [27,28] and careful sensor characterization are presented here.

The overall advantage of the UAS ALADINA is the broad range of sensors installed. Since the
research group developing and operating ALADINA has its background in the operation of the
Meteorological Mini Aerial Vehicle (M2AV, [11,12,29,30]) and the operation of the manned research
aircraft D-IBUF [31] and its measurement systems and works closely together with the researchers
developing and using the Multi-purpose Airborne Sensor Carrier (MASC, [32–34], ALADINA takes
advantage of many experiences with those systems and subsystems.

For ALADINA, a preview of the resulting parameters and uncertainties can be found in Table 1,
which will be discussed below.

Table 1. Resulting parameters of the UAS(unmanned aerial systems) ALADINA (Application of
Light-weight Aircraft for Detecting in situ Aerosols).

Parameter Symbol Unit Uncertainty

position
−→
P m 2.5 m CEP 1

altitude Hcombined m ±0.05 m
static pressure Pstat Pa ±220 Pa
static temperature Tstat, compl.

◦C ±0.1 K
static humidity mRH, compl. % RH ±1.5% RH
dry air density ρdry kg m−3 ±0.01 kg m−3

horizontal wind direction dd ◦ ±3◦
horizontal wind speed ff m s−1 ±0.2 m s−1

vertical wind speed w m s−1 ±0.15 m s−1

total aerosol number concentration 7 nm<..< 2μm N7 cm−3 ±20% cm−3

total aerosol number concentration 12 nm<..< 2μm N12 cm−3 ±20% cm−3

size distribution of particles 0.39μm<..< 10μm N390, 723, 1499, 5000 cm−3 ±15% cm−3

black carbon mass concentration NBC μg m−3 ±30% μg m−3

shortwave downwelling irradiance Q↓ W m−2 ±50 W m−2

shortwave upwelling irradiance Q↑ W m−2 ±50 W m−2

1 Circular error probable.

2. Flight Operation for Atmospheric Research

The operation of the UAS ALADINA in the field requires flat terrain of approximately 50× 5 m for
takeoff and landing (grass, gravel, concrete) and two operators. One acts as a pilot for remotely-piloted
takeoff and landing and supervising the flight guided by the autopilot. The second operator
supervises the mission at a mobile ground station computer, checking the functionality of the autopilot,
the sensors and the plausibility of data using a downlink, which provides preliminary real-time
data with a transmission rate of currently 1 Hz to ensure a robust connection. It is limited by
transmission bandwidth and signal power considering the power consumption, module weight
and local transmission regulations. Access to electricity on site is not mandatory, but recommended
in order to recharge the batteries of the aircraft and ground station. The limitation of the overall
weight up to 25 kg is intended to minimize the administrative effort for flight permissions, since 25 kg
currently states a threshold in operating rules (at least in European countries [7]). The handling of
ALADINA is done according to appropriate checklists adopted from professional manned-aircraft
operation, to ensure that both the instrumentation and the aircraft functionality are checked and
the system is ready for takeoff. After switching on the measurement electronics, the alignment of
the magnetic sensor is performed. Through wireless communication, the onboard computer can
be connected to the ground station, and the measurements can be remotely started by sending the
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appropriate command. Shortly after the manually-piloted takeoff, the autopilot is enabled, flying
precisely along the uploaded waypoint list. The autopilot flight control is configured for more precise
measurements rather than precise path following. That means constant speed control and altitude
control are more important than the horizontal navigation control. Furthermore, there is no additional
yaw control to provide continuous air flow on the sensors of the aircraft supported by the directional
stability of ALADINA itself. Waypoints can be sent during flight to maintain maximal flexibility and
to adopt the flight mission to the scientific task. The typical flight time is around 45 min, limited by the
batteries for propulsion (2 × 10 s lithium polymer cells, each 10 Ah, overall capacity 740 Wh) and air
temperature. After the manually-piloted landing, the typical turn-around time between two flights
(including changing the batteries for propulsion, autopilot and payload, as well as copying the data)
needs around 20 min. By recharging batteries in parallel with the flights, more than eight consecutive
full duration flights on one day can be performed. In comparison with the original system [26], position
lights, which allow the determination of the aircraft attitude to fly safely in weak sunlight conditions
or even at night, were newly installed. In addition, removable landing lights can support pilots in
estimating height over ground while landing.

3. Validation Methods for UAS Measurements

Since measured and post-processed data have to be validated, it is of importance to discuss and
improve validation methods critically due to continuous improvements of sensors and algorithms.
Validation methods used by the ALADINA research team and other authors, e.g., [9,21,26,35–37],
are summarized in this section regarding their usefulness before being applied on the dataset.

Error propagation calculations:

When calculating error propagation for real systems, the sensor errors and cross-sensitivities
have to be known for each flying system. Normally, these values are not constant, but depend on
the flight state. The needed sensor values are not given in manuals and datasheets in this detail,
as manufacturers often do not know the special conditions of each applicant and provide error values
derived from standardized laboratory tests. Error propagation calculation is therefore limited to
deepen the knowledge about the system and to obtain total system uncertainty estimates based on
sensor errors provided by manufacturers.

Laboratory tests:

Laboratory tests can be used for identifying sensor errors and cross-sensitivities that are not given
by the manufacturer. Laboratory calibrations, however, normally do not cover the complete sensor
environment during flight. Results are therefore not directly applicable to inflight measurements.
As an example, wind tunnel calibrations of pressure probes do not include the flow field around the
UAS. Even with the complete UAS installed in a wind tunnel, blockage and wall effects distort the
result by a relevant magnitude. Investigating transient maneuvers like turns or the flight in free air
turbulence in the laboratory is very expensive.

Numerical simulations:

Simulations can be used to get knowledge of principal sensor behavior, but it is important
to include all relevant influences on the sensors in the model. There may remain some unknown
influences (cross-correlations and error terms), which can possibly be identified by laboratory tests.
Transient simulations of complex systems often require remarkable computational effort.

Comparison of independent sensors:

The comparison of sensors is used to determine the relative differences of the measurements.
This comparison must take into account the degree of interdependency between the measurements,
considering for instance the measurement task, the sensing principles and the spatial difference.
Proclaiming one sensor as the reference requires an assured uncertainty about one magnitude below
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the expected uncertainty of the sensor that shall be assessed. Comparisons of inflight measurements
with ground-based measurements are affected by the time- and position-dependent environment
parameters; e.g., for three-dimensional LiDAR wind measurements, beam velocities of different beam
directions are combined to obtain wind vectors and therefore only represent mean velocities over a
certain volume (change in time), e.g., Weitkamp [38].

Intrinsic plausibility tests:

Intrinsic plausibility tests rely on the inflight dataset itself examining the theoretically zero
correlation between physical independent values, e.g., static air temperature must be uncorrelated
to the aircraft attitude, and the vertical wind component in the Earth-fixed reference frame must
be uncorrelated to the aircraft phugoid (slow natural oscillation around the transverse aircraft axis
resulting in a pitch oscillation) in straight flight. Other common flight maneuvers are repeated wind
squares to demonstrate that the horizontal wind determination does not correlate with flight direction
and flight speed. Furthermore, ascents, descents and general attitude changes can be used to show
uncorrelated measurements. When using such plausibility tests, assumptions have to be made such as
nearly constant wind fields or slowly-varying temperatures at identical heights. Furthermore, statistic
methods could be used to prove significant independence of, e.g., flight maneuvers on measurements.

Model-based validation (e.g., Kolmogorov’s law):

The most favorite model for validating airborne meteorological data is the Kolmogorov law
for the power of local isotropic turbulence in the inertial subrange [39]. When using model-based
validations, one should make sure that boundary conditions are given. As shown in several papers
(e.g., Lampert et al. [11]), the conditions (steady-state, locally isotropic) for the Kolmogorov law may
not be given in daytime transition. This causal problem can be moderated by using data obtained in
appropriate meteorological conditions. Finally, the compliance of measured turbulent values with the
Kolmogorov law is a necessary, but not sufficient criterion.

4. Devices on the UAS ALADINA for Precise Monitoring of Boundary Layer Properties

The new setup of the UAS ALADINA is shown in Figure 1, where sensors and systems are marked
and named.

Figure 1. Payload bay of ALADINA with measurement equipment. 1 MHP: multi-hole probe, α: angle
of attack, β: angle of sideslip.
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A complete meteorological sensor package to determine turbulence data is installed in the nose of
ALADINA. This sensor package was re-engineered taking advantage of experiences with the manned
aircraft D-IBUF [31], the UAS M2AV [29], MASC [10] and the sensor package installed in ALADINA
before [26]. Compared to the previous setup [26], all sensor interfaces (circuit boards) were redesigned,
special housings were added to temperature and humidity sensing elements to make them total air
temperature probes known from manned aviation (cf. Section 4.3.1 for more details), MHP tubing was
changed, data acquisition changed completely and data processing was redesigned. Only airframe
and particle counters remained identical; therefore, no comparison to the setup shown in [26] is done.

In the following, the system to acquire data, the different sensors and the algorithms and
procedures used to calculate the final parameters out of the raw data are presented.

To validate measured and derived data, validation methods presented in Section 3 are applied.
Temperature and humidity measurements are validated by comparing ascents with descents (intrinsic
validation) and by regarding power densities in comparison with theoretical power density slopes
(model-based validation). Wind vector plausibility is shown by a wind square, where no correlation
between flight direction and wind direction and wind magnitude should be present (intrinsic test),
whereas turbulence data plausibility is shown by comparing actual power density slopes with
theoretical power density slopes (model-based validation). Total aerosol particle concentration is
compared against ground-based measurements (comparison of independent sensors), whereas a
profile of black carbon mass concentration measurements is shown (weak intrinsic validation). At the
end, pyranometer data are improved by correcting the angle of sun incidence on the sensor caused by
attitude (mostly roll) motion (weak intrinsic validation).

4.1. Data Acquisition and Data Bus System

The data acquisition is realized with a bus system consisting of several microcontroller boards
with a direct sensor connection and one single-board computer (SBC). A 168-MHz clocked 32-bit
microcontroller, based on the ARM Cortex M4 (ARM Limited, Cambridge, UK) architecture is
the central part of the boards closely situated to the sensors. The hard real-time programmed
microcontrollers capture the digital sensor data at a rate of 100 Hz. An analog sensor signal is
acquired by the 24-bit sigma-delta analog-digital converters AD7190 (Analog Devices, Norwood,
MA, USA) with a modulator frequency of 64 kHz. By use of its internal analog front-end and noise
shaping downsampling filter set to an output data rate of 100 Hz, a noise free resolution of 18 bit
can be achieved in the used configuration. The time stamping of the time critical data acquisition
is provided by a GNSS-receiver. By signalizing the beginning of a second with a highly precise
PPS-signal (pulse-per-second), the bus client microcontrollers are synchronized. The PPS-signal comes
directly out of the GNSS-receiver (uBlox, Thalwil, Switzerland) with an accuracy of better than 10 μs.
Therefore, the influence of the temperature and the manufacturing of the oscillators on the different
boards can be compensated. This allows one to timestamp the data with the precision of a fraction of
1 ms. The sensor data are transferred using a central bus system with a time division multiple access
(TDMA) bus arbitration. The use of the EIA-485-A-1998 (Electronic Industries Alliance) standard
for serial communication allows data rates of about 3.2 MBits and ensures a fail-safe transmission
in an environment where electromagnetic interference cannot be excluded. The SBC reads the data
on the bus lines and sequentially writes them on an SD-card. At the end of a flight, the data can be
downloaded via an ftp-client over a wireless LAN connection, or the SD-card can be removed and read
out on any computer. Online transcoding of the data stream on the SBC allows transmitting relevant
data using an XBEE-module to the ground station with a rate of currently 1 Hz.
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4.2. Positioning

Inflight position of ALADINA is measured using a miniature MEMS (micro electromechanical
system)-based IMU (inertial measurement unit) with INS/GNSS (integrated navigation system/global
navigation satellite system) data fusion iμVRU (iMAR, St. Ingbert, Germany). Data are provided via
serial transmission.

4.3. Temperature and Humidity

4.3.1. Sensors Installed for Temperature Measurements

Three different sensors are installed in the nose of the aircraft to measure temperature:
the widely-used sensor of the type HMP110 (Vaisala, Vantaa, Finland), which is a Pt1000 element, a
digital factory-calibrated-sensor of the type TSYS01 (Measurement Specialties, Hampton, VA, USA)
and a fine wire sensor fabricated at the Institute of Flight Guidance, TU Braunschweig, completely
redesigned based on experiences in [32], are installed. The sensor consists of two measurement channels
using 0.0125-mm platinum wires with one wire setup parallel and one wire setup perpendicular to the
flow. As a result of the re-engineering of the fine wire sensor, it is well protected by a housing and was
used reliably for the whole campaign of DACCIWA (Dynamics-aerosol-chemistry-cloud interaction in
West Africa, Knippertz et al. [27]) during more than 30 h of flight time without any break, despite the
harsh dusty environment.

To achieve a well-defined sensor environment, housings acting as nozzles have been installed
around the temperature and humidity sensing elements. This leads to total pressure conditions
granting enough through-flow by an aspect ratio between inflow and outflow area of 1:5. The aspect
ratio in combination with the roughness of the sensor circuit board was shown to result in nearly
total pressure conditions (more than 90% of total pressure) and flow speeds inside the nozzle of about
20% of the undisturbed flow speed to allow fast measurements by the sensors. This technique is very
common for temperature probes mounted on manned aircraft, e.g., the temperature sensor Rosemount
Model 101 F. As an example, the nozzle of a temperature sensor can be seen in Figure 2.

Figure 2. Sensor nozzle for a well-defined environment (total pressure conditions with a well-defined
flow rate) for a fine wire temperature sensor. Inside the tube (not visible), the PCB (printed circuit
board) to execute raw measurements and carry sensors is installed.

4.3.2. Sensor Fusion of Temperature Measurements

To characterize the ABL, static temperatures are needed, which are temperatures corrected for the
warming effect of increased pressure at the sensor’s site. Taking into account the dynamic pressure,
static values (e.g., static temperature) can be derived accurately from the measured total values.
The data of these three sensors can be fused to get both reliable absolute temperature measurements
and fast fluctuations.

209



Atmosphere 2018, 9, 28

The relation between total air temperature and static air temperature (both in Kelvin) is given by
Equation (1):

Ttotal
Tstatic

= 1 +
γ − 1

2
Ma2 (1)

where γ (=1.4) denotes the ratio of the heat capacity at constant pressure to the heat capacity at constant
volume and Ma denotes the Mach number (both dimensionless quantities).

Complementary filtering is used for fine wire and the factory calibrated readings of the TSYS01
after removing the phase lag. HMP110 sensor readings are only available every second; they were not
used for the complementary filtering. Analog output is also available, but the response time is expected
to be in the range of the capacitive humidity sensor to allow dew point estimation. Nevertheless,
HMP110 temperature measurements can be used as a redundant source. Complementary filtering is
done by combining high- and low-pass (Butterworth type, both of first order) filtered measurements.
To remove the heat capacity-caused phase lag before on the TSYS01 data, a system with a transfer
function of first order is assumed, and readings are filtered with the inverse transfer function. The cutoff
frequency of the complementary filters should be lower than the cutoff frequency of the assumed first
order system for the reconstruction filter; otherwise, noise may be amplified. The whole process is
illustrated by Figure 3.

Figure 3. Signal flowchart of the algorithm to recover the total air temperature.

The cutoff frequencies and time constants to filter complementarily and remove phase lag can be
derived by taking into account sensor response times (dynamic behavior), which can be determined
by comparing ascents and descents or by using more sophisticated techniques, e.g., presented
by Tagawa et al. [40].

When two systems with a transfer function of first order and differing time constants can be
assumed, every transfer function Tmeasi /Tairi = 1/(1 + τi · s), where s denotes the complex frequency
domain parameter, only contains one configuration parameter: the time constant τi. Since the
air temperature is unknown and has to be recovered, these equations cannot be solved directly.
The technique presented in [40] solves these two dynamic equations by assuming the same Tairi for

both sensors and hence minimizes the mean square difference
(
Tair1 − Tair2

)2 of the retrieved air
temperature in the frequency domain.

The sensors used showed broad overlap in reliable spectral bands; extracted air temperature
therefore consists of the low frequencies measured by the factory-calibrated temperature sensor TSYS01
and the fluctuations recorded by the fast responding fine wire sensor. Errors propagated through the
algorithm are attenuated by the applied filters.

4.3.3. Sensors Installed for Humidity Measurements

For humidity measurements, different sensors of the same measuring principle (capacitive)
were used, each carefully integrated in a well-defined environment (total pressure conditions with
a sufficient flow rate; Figure 2). One is of the type HMP110 (Vaisala, Vantaa, Finland), which is
commonly used [41] and often referred to, and a sensing element Rapid P14 (Innovative Sensor
Technology, Ebnat-Kappel, Switzerland).
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In very humid conditions (RH > 90%), it was shown to be mandatory to seal sensors and
electronics close to sensors (e.g., capacitance to digital converters (CDC)) with conformal coating
against condensation and water droplets. This allows measuring relative humidity up to 95% at
temperatures of about 20 ◦C without losing accuracy or temporal response. Without sealing, water
may influence the overall capacity of the sensor electronics. In more humid conditions, the capacitive
measuring principle will not work properly.

4.3.4. Post-Processing of Humidity Measurements

The sensor P14 has been well investigated in Wildmann et al. [42], where a technique has been
shown to reconstruct water vapor on the sensor surface by taking advantage of physical modeling.
Furthermore, the limitations of this technique have been shown in Wildmann et al. [42]. Because
of these limitations, again a first order transfer function for humidity measurements is assumed,
and ascents and descents were compared to determine time constants. Since the datasheet describes
longer response times for decreasing humidity, one could take into account two time constants: time
constant τinc for increasing humidity and time constant τdec for decreasing humidity. Complementary
filtering (cf. Section 4.3.2) with the long-term stable HMP110 readings and the Rapid P14 data for
fluctuations has been performed.

4.3.5. Validation of Temperature and Humidity Results

To check for reliability, Figure 4 shows the power spectra of the sensors used (on the left side
temperature, on the right side humidity as the mixing ratio). The power spectra were calculated using
the method of Welch [43]. Complementary combined sensor data fit well to the k−5/3 power law up
to 25 Hz for temperature readings. Since calculation of the mixing ratio depends on temperature, it
is shown that relative humidity readings at least do not compromise the spectrum slope. Spectra of
relative humidity do not have to follow the k−5/3 power law in locally isotropic turbulence in the
inertial subrange [39]; therefore, the mixing ratio is used for the spectral roll-off.

To prove reliability, ascents can be compared with descents in the same area, assuming that ABL
properties do not change significantly during the time needed for consecutive vertical profiles. Figure 5
(left) shows vertical profiles (ascent with following descent) to prove that no drift and no lag occurs in
the retrieved “best guess” temperature after complementary filtering. The phase lag of both HMP110
and TSYS01 can be seen in the top region of the profile around 800 m, where raw measurements describe
a smooth curvature around the sharp switch between ascent and descent. Fine wire measurements
are not affected by this: indeed, minimal drift can be observed over hours (less than 0.5 K per hour).
Therefore, the complementary combined total temperature can be easily converted into a static air
temperature with an accuracy of better than 0.1 K. The offset between measurements of the HMP110
and the TSYS01 of 0.2 K has its origin in a pending calibration implementation in the data processing.
Figure 5 (right) shows vertical profiles to check data qualitatively against accuracy and phase lag for
humidity measurements. Since time constants of the HMP110 and the Rapid P14 sensor only differ
minimally and humidity fluctuated fast due to cloud fractions, a phase lag can not be observed in the
plot. In both subfigures, it can be seen that raw measurements of slowly-responding sensors depend
on the flight pattern, since the ascents and descents were flown by doing turns at constant altitudes
followed by straight ascent/descent legs. Complementary filtered values and fast-responding sensors
do not inherit these errors.
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Figure 4. Power spectra of complementary filtered temperature (left) and mixing ratio (right) using
the method of Welch [43] compared to the power law for the inertial subrange of locally isotropic
turbulence developed by Kolmogorov [39]. The data were gathered on 2, 10 and 11 July 2016
in Savè (Collines, Benin) during the project Dynamics-aerosol-chemistry-cloud interaction in West
Africa (DACCIWA) [27]. Spectra of different straight legs on different days were averaged according
to Welch [43].

Figure 5. Vertical profiles of temperature (left) and humidity (right), measured during the project
DACCIWA [27] on 15 July 2016 at 06:30 UTC in Savè (Collines, Benin).
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4.4. Wind and Turbulence Measurements

4.4.1. MHP to Determine Static Pressure, Dynamic Pressure, Angle of Attack and Angle of Sideslip

A multi-hole probe is installed to determine sideslip angle and angle of attack, airspeed and
barometric height. The MHP is calibrated in the wind tunnel with the complete front part of the
fuselage of ALADINA (cf. Figure 1), and errors induced by the fuselage are therefore already included
in the calibration.

In ALADINA, a miniaturized conical multi-hole probe (MHP) deployed for other different UAS
(e.g., Wildmann et al. [10] and Martin et al. [30]) is used to derive dynamic pressure, static pressure,
sideslip angle and angle of attack to be able to determine the wind vector. This MHP and its pressure
ports are shown in Figure 6. In very humid conditions, small droplets may corrupt measurements of
the MHP.

Figure 6. Multi-hole probe with a diameter of 6 mm and its pressure ports designed and manufactured
by the Institute of Fluid Dynamics (TU Braunschweig, Germany). Around the central hole P0 on the
tip, pairs of holes in the vertical (P1, P3) and horizontal (P2, P4) axis are visible. In front of the ring,
the four small circumferential holes of the static pressure port Ps can be seen. Picture taken from [8].

4.4.2. Vector Difference Wind Determination

Raw measurements of the multi-hole probe can be transformed to angle of attack, angle of sideslip,
static and dynamic pressure using wind tunnel calibration. Combined with the measured angles of
the installed INS/GNSS system, the wind vector with an accuracy of 0.5 m s−1 in components at a
data rate of 25 Hz is derived according to the formulation shown by Lenschow [44]. The fundamental
vector difference equation is:

Vwg = VKg − Vg (2)

where Vwg denotes the wind vector, VKg the flight path velocity and Vg the velocity vector of the
aircraft with respect to the air, all three vectors in geodetic coordinates.

Different from the pressure wiring in [8,33], for the new setup of ALADINA, pressure differences
from oppositely located holes in the cone of the MHP (ΔPα = P3 − P1, ΔPβ = P2 − P4) are
measured directly. The same setup was used by Reineman et al. [45] and other airborne systems [31].
To determine true airspeed, the total pressure at the front hole is measured against the static pressure
port (ΔP0 = P0 − Ps). Short pressure tubes (length < 200 mm) shift resonance effects towards higher,
extraneous frequencies ( fresonance > 100 Hz). Using this setup, only three difference pressure sensors
and one absolute pressure sensor (for the static pressure) are needed.
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4.4.3. Enhanced Wind Determination Using Complete Flow Angle Calibration

Small MHP often show discontinuities and non-linear behavior. Normalization to dimensionless
pressure coefficients therefore reduces accuracy, since calibration field dependencies on dynamic
pressure are neglected. An example of such a calibration field where normalization is not valid
is shown in Figure 7. In this figure, vector gradients of the calibration fields for two different calibration
TAS (true air speed), 25 m s−1 (Figure 7a) and 30 m s−1 (Figure 7b), are shown. Since normalization
does only affect gradient vectors in value, gradient vector directions have to be identical to allow
normalization; this is not the case for the installed probe regarding gradient direction arrows and
emphasized isoline curvature in the first quadrant of Figure 7a,b; therefore, normalization would lead
to degraded wind vector results.

Figure 7. Comparison of calibration field gradients for ΔP0 at different calibrations Pdyn measured in
the wind tunnel of Technische Universität (TU) Braunschweig on 20 December 2016. Arrows show the
gradients of pressure measurements represented by isolines, depending on sideslip angle β and angle
of attack α. (a) shows the calibration field for 25 m s−1 wind speed, (b) for 30 m s−1.

Normalization reduces the three dimensions of a volumetric measurement field,
e.g., ΔPα = f

(
α, β, Pdyn

)
, into a two-dimensional field kα = f (α, β) to improve the comprehension

of angle measurements. Instead of deriving polynomials only dependent on two (normalized)
measurements, one can also derive polynomials in a three-dimensional field. It is not mandatory to use
algebraic expression over the whole definition area; a local projection between calibrated values (also
known as interpolation) is adequate with respect to other uncertainties in wind vector measurements
(e.g., pressure transducers, aircraft attitude). When the measured calibration volume to define the
projection between angles and measured pressures (Equation (3)):

f : R3 → R3,

⎡
⎢⎣ ΔPα

ΔPβ

ΔP0

⎤
⎥⎦ = f

⎛
⎜⎝
⎡
⎢⎣ α

β

Pdyn

⎤
⎥⎦
⎞
⎟⎠ (3)

is bijective (each element of the left-hand set is paired with exactly one element of the right-hand set
and vice versa), which is satisfied by any appropriate design of a calibratable MHP (strong continuous
gradients for α, β and Pdyn), it is possible to build the inverse function g = f−1. This can also be done
using algebraic expressions, but much more simply by gridding data in order to generate a directly
interpolatable volumetric data field as shown in Equation (4).
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⎡
⎢⎣ α

β

Pdyn

⎤
⎥⎦ = g

⎛
⎜⎝
⎡
⎢⎣ ΔPα

ΔPβ

ΔP0

⎤
⎥⎦
⎞
⎟⎠ (4)

The resulting subsets gi : R3 → R1, e.g., α = g1

([
ΔPα, ΔPβ, ΔP0

]T
)

can be interpolated directly.
Maximal sensitivity of this interpolation can be obtained by the gradient in each of the three directions.
Thus, the maximum gradient is a representative of the maximum amplification of differential pressure
measurements. The mentioned subset volume (represented by slices) to determine α is shown in
Figure 8 as one given example. It shows the dependency of the resulting angle of attack α on measured
pressure differences ΔPα, ΔPβ and ΔP0.

Figure 8. One of the three inverted volumetric calibration data fields (hyper-surfaces) to retrieve
dynamic pressure and flow angles out of MHP pressure measurements. Here, slices through the
hyper-surface for the angle of attack depending on the three pressure measurements ΔPα, ΔPβ and ΔP0

are shown. Dark colors represent negative angles of attack, whereas light colors represent positive
angles of attack. Color coding is shown through the color bar below the hyper-surface.

4.4.4. Validation of Wind Vectors Retrieved

The measurement strategy implicated square patterns to validate wind determination.
An example of such a pattern and its retrieved wind vectors in the horizontal plane is shown in
Figure 9. Measurements during turns are excluded as the rotating flow field around the UAS does
influence the calibration significantly compared to straight flight. In addition, the flight state in turn has
a significant impact on the pressure field of the MHP; this effect cannot be addressed by a calibration
in a wind-tunnel. Further, the retrieval of correct flight attitude out of INS/GNSS data may be subject
to large errors during high dynamic maneuvers, as the navigation filter calculating the data fusion
is attenuated. In [46], it can be seen that attitude angle deviations between an INS/GNSS system of
the same type as used in ALADINA compared to a reference system increase when motion changes
from low dynamic to high dynamic. In addition, it is stated in [46] that significantly varying sideslip
angles will lead to deviations in roll. This is caused by the algorithm assumption, that there is no
lateral velocity with respect to flight track.

Recent data analysis showed that the bottle-neck for wind uncertainty is the accuracy of the
IMU [24]. With a more precise and accurate IMU than the current MEMS-IMU (microelectromechanical
systems-inertial measurement unit) in addition with more advanced strapdown calculation, wind
determination would be improved noticeably.

215



Atmosphere 2018, 9, 28

Figure 9. Two examples of wind squares flown and their determined wind vectors (only every 100th
vector is shown for readability), measured on 2 July, at 17:51 and 18:09 UTC in Savè (Collines, Benin),
during the DACCIWA [27] project at 100 m above the ground. For the wind square in (a), mean wind
direction was 128◦ and wind magnitude 2.6 m s−1. For the wind square in (b), mean wind direction was
132◦ and wind magnitude 2.7 m s−1. In each subfigure, the averaged wind vector is shown in dark grey.

4.4.5. Validation of Turbulence Measurements

The ability to measure turbulence data is often shown by a spectral roll-off of calculated wind
components. Figure 10 shows the power spectra of the determined wind components. The power
spectra were calculated using the method of Welch [43] over three flights with a total data length
of 1650 s. Data fit well to the k−5/3 power law up to 7 Hz. At higher frequencies, the low-pass filter
used for wind calculations attenuates the signal. In the data processing of the pressure sensors used,
the authors use at least 10-times oversampling to ensure that amplitude and frequency information is
not corrupted by aliasing filter effects.

Figure 10. Power spectra of wind components using the method of Welch [43] compared to the power
law for the inertial subrange of locally isotropic turbulence developed by Kolmogorov [39]. The data
were gathered on 2, 10 and 11 of July 2016 in Savè (Collines, Benin) during the project DACCIWA [27].
Spectra of different straight legs on different days were averaged according to Welch [43].
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4.5. Aerosol Characterization and Black Carbon Measurements

4.5.1. Sensors Installed

As presented in Altstädter et al. [26] and Platis et al. [21], ALADINA carries two condensation
particles counters (CPCs, Model 3007, TSI Inc., St. Paul, MN, USA) and one optical particle counter
(OPC, Model GT-526, Met One Instruments Inc., Washington, DC, USA) in order to classify the total
aerosol particle number concentration and size distribution from ultra-fine particles up to particles
belonging to the accumulation mode. The inlet is installed at the nose of ALADINA, close to the
meteorological instrumentation. Two condensation particle counters of the same type with different
threshold diameters are used as indicators for the total aerosol number concentration of freshly-formed
particles. The hand-held instruments were miniaturized, tested and calibrated by the project partners
of the Leibniz Institute for Tropospheric Research (TROPOS) in Leipzig, Germany. The lowest cut-off
sizes were set during the last operation of 7 nm (N7) and 12 nm (N12), respectively, by a fast resolution
of 1.3 s. The OPC operates within six channels from 0.39μm–10μm in the particle diameter.

In addition, an aethalometer of the type MicroAeth® Model AE51 (AethLabs, San Francisco, CA,
USA) has been installed in ALADINA to measure the BC (black carbon) mass concentration in the range
of 0–1 mg m−3 with a given resolution of 1 ng m−3. As the instrument is sensitive to vibrations, readings
have to be low-pass filtered during post-processing. The accuracy was estimated as ±0.2μg m−3.

4.5.2. Validation of Aerosol Concentration and BC Measurements

In order to show the reliability of the system to measure new particle formation, Figure 11 is
displayed. The total aerosol particle number concentration in the particle diameter between 7 and 12μm
(N7−12) measured by ALADINA is compared with a ground-based instrument (Twin Scan Mobility
Particle Sizer (TSMPS) [47]) that was mounted at the same time during a field study in Melpitz, Germany.
During the time period from 10:30–11:55 UTC, four scanning intervals were performed with TSMPS
(20 min average) and two measurement episodes with ALADINA from 10:41–11:09 UTC and between
11:12 and 11:30 UTC (1-min interval). During the measurement period, new particle formation occurred
and can be seen in the enhanced total aerosol particle number concentration in the small diameter size
between 7 and 12 nm. The total maximum of N7−12 = 2.8×104 was taken from the TSMPS at 10:50 UTC.
The shapes are consistent; however, the CPCs underestimated the peak given by the difference on
average. In total, the uncertainties are within 20%, as stated earlier from laboratory characterization.

Figure 11. Comparison of the total aerosol particle number concentration in the diameter between 7
and 12 nm measured at the same aerosol inlet with the two condensation particles counters (CPCs) in
ALADINA (solid line, 1-min interval) and ground based instrumentation TSMPS (dashed line, 20 min
interval) sampling the same air on 21 June 2015 between 10:40 and 11:30 UTC in Melpitz.
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Figure 12 shows an example of the significant vertical variability of BC mass concentration,
measured during the field campaign in Savè (Collines, Benin) of the DACCIWA project [27]. BC mass
concentrations are increasing to a total maximum of 4000 ng m−3 between the height of 100 and 300 m.
Above and up to the height of 600 m, a significant decline of BC mass concentrations was observed.
However, a second enhanced load was measured between the height of 610 and 800 m. The overall
investigation was that enhanced BC loads were connected to nocturnal low-level jets and affected by
low-level clouds. Further, BC studies influenced by different atmospheric boundary layer properties
are still in process. Therefore, the intrinsic validation of BC mass concentration measurements through
this likely possible profile is still weak.

During the field experiment in West Africa, harsh environmental conditions (dust, moisture of
more than 90% RH, air temperatures higher than 40 ◦C) showed strong influences on the reliability of
the aerosol instrumentation, so that in future perspectives, the sensor package will be insulated in a
properly-defined environment.

Figure 12. An example of a retrieved vertical profile of BC (black carbon) mass concentration, measured
on 15 July, at 06:30 UTC in Savè (Collines, Benin) during the DACCIWA [27] project. An enhanced BC
concentration was observed in the lowermost 400 m that was affected by the existence of a nocturnal
low-level jet.

4.6. Up- and Down-Welling Irradiance

4.6.1. Pyranometer for Estimating Solar Radiation

In addition to the meteorological and aerosol sensor package, silicium-based pyranometers of the
type ML-01 (EKO Instruments, Tokyo, Japan) were installed on the UAS ALADINA: one downward
looking and one upward looking with respect to the body-fixed coordinates. The pyranometers show
the strong influence of sun incident angle (cf. datasheet) following a cosine law. The pyranometers
are mainly used to identify if clouds were present, which is of importance for the interpretation of
ABL conditions and aerosol properties. To retrieve shortwave downwelling irradiance, it is possible to
calculate the sun incident angle on the sensor and provide a suitable estimation of irradiance values
by assuming the cosine law. Since the sun is the only major directional irradiance source in clear
sky, restoration of the pyranometer is more complicated on cloudy days. Partly sampled soil and
scattering on aerosol particles could also be taken into account, despite their comparably low impact
on the sensors.
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4.6.2. Basic Correction of Sun Incident Angles on the Pyranometers

Irradiance measurements can be corrected by the angle of incidence γinc between the pyranometer
normal axis and a vector pointing from the Sun to the pyranometers. Using such a correction,
attenuated measured irradiance Qraw caused by UAS attitude movements can be recovered to a
corrected irradiance Qsun in the direction of the Sun assuming clear skies. The correction applied
follows the cosine law for a simple point source of irradiance (Sun on clear skies):

Qsun =
Qraw

cos (γinc)
(5)

in addition to a factory calibration curve. The influence of incident angle errors increases with higher
incident angles with respect to the sensor axis. The aim of the sun angle of incidence and attitude
correction is a transformation of this measurement to an Earth-fixed coordinate system. With another
trigonometric transformation using the solar zenith angle Θs, the shortwave downwelling irradiance:

Q↓ = Qsun · cos (Θs) (6)

can now be computed out of Qsun.

4.6.3. Validation of Basic Irradiance Correction

Figure 13 shows the influence of aircraft attitude in pyranometer readings and its correction
through the cosine law over the incident angle of the sun with respect to the sensor axis. Figure 13a
shows the associated aircraft roll angles, the sun incident angles on the pyranometer sensor axis and the
solar zenith angle. The correction of this influence was possible, since this example of measurements
took place under almost clear skies. The data were obtained in Savè (Collines, Benin) during the
campaign DACCIWA [27] on 11 July 2016. In Figure 13b. one can see a correction of approximately
400 Wm−2. Residual correction errors are mainly caused by degraded attitude measurements during
dynamic maneuvers (cf. Section 4.4.4), but the tendency shows that the correlation between irradiance
and aircraft attitude (mainly roll angle) can be reduced. Detailed sensor characteristics mentioned in
the sensor datasheet were verified by laboratory tests. Secondary sources of errors could be partly
sampled soil and scattering on aerosol particles.

Figure 13. Correction of the sun incident angle on the upward looking pyranometer sensor and
shortwave downwelling irradiance, raw data measured on 11 July at 12:10 UTC in Savè (Collines, Benin)
during the project DACCIWA [27].
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4.7. Overview of the Sensor Package for Measuring ABL Properties

The sensors used on ALADINA are listed in Table 2. Values for response time and accuracy are
taken from the manuals of the manufacturers, calibrations and calculations presented in previous
articles [8,10,26,32,33].

Table 2. Table of sensors installed in the UAS ALADINA. OPC, optical particle counter.

Parameter Sensor Principle t63 Uncertainty Source

p, q, r 1) iμVRU IMU n/a bias(OTR 2)) < 0.2◦ s−1 manual
Φ, Θ, Ψ 3) iμVRU INS/GNSS n/a <0.5 deg manual−→v 4) iμVRU INS/GNSS n/a n/a n/a
TTSYS TSYS01 digital 3 s ±0.1 K manual
TFW Fine wire resistance <25 ms 1σ < 0.01 K [32]
THMP HMP110 resistance <5 s ±0.2 K manual
RHHMP HMP110 capacity <7 s ±1.5% RH manual
RHP14 Rapid P14 capacity <1.5 s ±1.5% RH manual
ΔP0,α,β

5) AMS 5812-0001-D-B transd. 6), MHP n/a ±15 Pa manual
Ps AMS 5812-0150-B transd. 7), MHP n/a e.g., Table 1 manual
N7 CPC 1 absorption n/a e.g., Table 1 [26]
N12 CPC 2 absorption n/a e.g., Table 1 [26]
N390, 734, 1500, 5000 OPC absorption n/a e.g., Table 1 [26]
NBC AE51 absorption n/a e.g., Table 1 manual
Q↓ Pyr. 8) EKO ML-01 semicond. 9) diode <1 ms e.g., Table 1 manual
Q↑ Pyr.8) EKO ML-01 semicond.9) diode <1 ms e.g., Table 1 manual

1 angular rates; 2 operating temperature range; 3 attitude; 4 geodetic velocity; 5 used to determine angle of attack α, angle of
sideslip β and dynamic pressure; 6 difference pressure transducer; 7 pressure transducer; 8 Pyranometer; 9 semiconductor.

5. Discussion and Future Perspectives

ALADINA with the new data acquisition system proved to be a reliable system during an intense
field campaign. The retrieval of data with acceptable errors was demonstrated for a variety of sensors
and with different methods. In the near future, the implementation and protection of the vital system
components of the particle counters are redesigned to improve handling and calibration during the
next campaigns. This resulted in a hermetic and temperature-stabilized enclosure in order to realize
reliable operation in extreme conditions, e.g., the Arctic. An active heating system will be added around
delicate measurement units. In the near future, wheel brakes in the landing gear to enable operation
on even shorter runways will be integrated. To take advantage of a big community, the autopilot
system is changed onto a system widely used in the UAS community. Interchangeable telemetry
allows ensuring data linkage even at sites with restrictions for high frequencies due to interference
with other measurement systems like sensitive telescopes.
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Abstract: This article gives an in-depth analysis of the experimental data of the TK-1G sounding
rocket installed with the satellite navigation system. It turns out that the data acquisition rate of the
rocket sonde is high, making the collection of complete trajectory and meteorological data possible.
By comparing the rocket sonde measurements with those obtained by virtue of other methods,
we find that the rocket sonde can be relatively precise in measuring atmospheric parameters within
the scope of 20–60 km above the ground. This establishes the fact that the TK-1G sounding rocket
system is effective in detecting near-space atmospheric environment.

Keywords: TK-1G sounding rocket; near space; data analysis

1. Introduction

The study of near space atmosphere is one of the frontiers of scientific research. The near
space atmosphere is the exact path through which some aircrafts lift off and fly. In particular,
the stratosphere and mesosphere region serve as the active area for airplanes, airships, and aerostats;
also, the meteorological conditions of this region will exert a great impact on the flight safety of the
aircrafts. Therefore, the detection of the near space atmosphere promises accurate and effective data on
weather forecasts in the region and is of vital importance to the study of the near space atmosphere and
flying safety of the aircrafts. A variety of ways have been tried like sounding balloons, radars, rockets,
and occultation techniques in an attempt to study the characteristics of the near space atmosphere [1–4].
Although meteorological elements below 30 km can be detected by using sounding balloons, it is out
of their reach when that height is between 30 km to 100 km, and occultation or radars are incapable
of in-situ detection [5–7]. In that sense, sounding rockets serve as the main tool for accurate in-situ
measurement of the atmosphere of that height.

Since 1945 when the first one was launched, various kinds of sounding rockets have appeared,
such as America’s famous SCIFER-2 (Sounding of the Cleft Ion Fountain Energization Region) sounding
rocket [8], Japan’s S-310, S-520, and SS-520 series of sounding rockets [9], Europe’s REXUS (Rocket
Experiments for University Students) series of sounding rocket, and so on [10]. In order to acquire
various sounding data, the sounding rocket tends to carry different sondes, such as TOTAL (stands
for total number density), CONE (Combined sensor for Neutrals and Electrons), and the recently
used LITOS (Leibniz-Institute Turbulence Observations in the Stratosphere) [11–14]. Through the
processing of the rocket sounding data, numerous studies can be done. For example, with the use
of the sounding data, Hall et al. [15] analyzed the plasma’s density; Abe et al. [16] did research
on the dynamics and energetics of the lower thermosphere; and Eberhart et al. [17] measured the
concentration of the atomic oxygen in the atmosphere. In addition, the rocket sounding data has often
been synthesized and compared with the data acquired by other means. Strelnikov et al. [18] compared

Atmosphere 2017, 8, 199; doi:10.3390/atmos8100199 www.mdpi.com/journal/atmosphere227



Atmosphere 2017, 8, 199

the radar-measured result of the middle atmospheric turbulence with rocketsonde-measured result
separately; Fan et al. [19] compared the sounding rocket data with the experience prediction model
and estimated the accuracy of the rocket sounding data.

However, China lags far behind the developed countries like the United States in the use of
rockets for near-space detection due to its technological and financial constraints [19,20]. Thus, studies
in this field are relatively scarce and defective. In the study of Sheng et al. [3], they analyzed the data
garnered by China’s sounding rockets launched in 2004, but the rockets used to employ a traditional
method of weather radar positioning to locate sondes. The wind speed obtained in this way thus
differs sharply from that of the reference model (average about 6–8 m/s). The differences doubled in
the upper stratosphere. As part of our efforts to bridge the gap in this regard, an flight experiment has
been carried out on the latest model TK-1G sounding rocket with the satellite navigation system, and
the accurate measurement of the meteorological elements has been realized at a height of 20–60 km
(the height involved in this article refers to the height from the ground, unless otherwise specified),
which is a step forward towards the improvement of the meteorological detection of near space.

The organization of the rest of this paper is as follows. The overview of the test is described in
Section 2. The description of the data validity rate in the detection is given in Section 3. The data
processing and analysis are presented in Section 4, and the conclusions are given in Section 5.

2. Overview

On 3 July 2015, a flight experiment on the rocket sonde installed with new satellite navigation
system was conducted in Alxa Left Banner, China. As a director in charge of the data processing,
the author had first-hand experience of the experiment and thus gained access to relevant data. Figure 1
shows the state of the rocket before launching.

 

Figure 1. Pre-launch preparation.

The meteorological rocket detection system consists of four sub-systems: the meteorological
rocket, the rocket sonde, the ground launch system (as well as the ground signal receiving station),
and the data processing software with the rocket sonde at its core. After the launch, the rocket will take
the rocket sonde near the top of the trajectory, and then the rocket ejection separation system will ignite,
separating it from the main body of the rocket. Under air dynamic pressure, the parachute will be
inflated to provide lift within a few seconds, carrying the sonde slowly and stably. During the process,
atmospheric temperature will be measured by the temperature sensor and atmospheric pressure by the
pressure sensor. All such figures will then be transmitted to ground receiving stations via transmitters
and processed by data processing systems before the data related to atmospheric temperature, pressure,
and density can be finally obtained. In addition, records of the falling trajectory of the parachute
collected by means of the COMPASS (stands for Chinese Compass (BeiDou) Navigation Satellite
System)/GPS positioning module can offer relevant readings of the wind direction and speed.
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The rocket was launched at 6:30 a.m. During its flight, the rocket presented a smooth trajectory
and the rocket sonde worked well. The COMPASS/GPS positioning module did not lose lock in
condition of large acceleration during take-off or separation stage. The receiving system on the ground
was able to gather the whole data during the entire process of rocket exploration. The experiment
achieved the intended purpose and the rocket sonde with satellite-navigation system successfully
realized 60–20 km positioning.

The coordinates of the launch site are 105◦36′27′ ′ E, 38◦45′28′ ′ N, with a height of 1429.8 m above
sea level; the specified launch direction is 299◦, and standardized theoretical launching elevation of
the trajectory is 81.5◦.

Three receiving stations are set up in this experiment. Station 1, equipped with portable ground
automatic weather station to monitor real-time surface wind, locates at 150 m to the left of the launch
site. Station 2 and 3 are situated approximately 6 km and 12 km, respectively, to the rear side of the
launch site.

A balloon (750 g) was released one hour before launching, carrying a GPS sonde to detect the
atmospheric condition between the ground and a height of 16 km. The wind data of the ground, 6 km
and 11 km was used for correction of the rocket’s flight trajectory. The trajectory angle of elevation was
adjusted to 82.3◦, and the azimuth angle was adjusted to 296◦ after the wind correction. The rocket
sonde was started to load the ephemeris 17 min before launching.

3. The Data Validity Rate in the Detection

The data validity rate in the detection is defined by the following formula: (the number of valid
data packet/the number of receivable data packet) × 100%. It is employed to evaluate the reliability of
the data acquisition system.

The data sampling frequency of the rocket sonde is 1 Hz. The rocket sonde reached the trajectory
vertex at 6:32:21 a.m. and fell to the height of 20 km at 7:05:02 a.m. The duration of total detection
lasted 1961s with 1961 data packets to be collected. After eliminating the error code spot and
measurement-missing spot, the mean data validity rate in Station 1 was 89.65% and amounted to
95.7% after the supplement data from Station 2 and 3. The data validity rates at different heights of
measurement are displayed in Table 1.

Table 1. The list of the date validity rate.

Height (km)
Receivable
Data Packet

Number

Actual Valid Data
Packet Number
from Station 1

Actual Data
Validity Rate
of Station 1

Supplementary Data
Packet Number from

Station 2 and 3

The Data Validity
Rate of Station 1

after Data Addition

60~50 103 87 84.5% 9 93.2%
50~40 199 176 88.4% 13 94.9%
40~30 455 415 91.2% 31 98.0%
30~20 1205 1139 94.5% 26 96.7%

As shown in Table 1, the data validity rate of this test met the required criteria for a successful
test (≥85%) in General Technical Requirements for the New Rocket Radiosonde, and the quality of data
garnered by the satellite navigation system is better than that garnered by radar system. If more
receiving stations were put into use to provide supplementary data, such validity rate should be
further improved.

4. Data Processing and Analysis

The data transferred from the rocket sonde mainly include time, latitude and longitude, height,
three-dimensional velocity vectors (north direction, east direction and vertical direction), star number,
star location, star carrier-to-noise ratio, three-dimensional position dilution of precision (PDOP),
atmospheric pressure, and atmospheric temperature.
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4.1. Original Data Analysis

As shown in Table 2, the temperature value and the atmospheric pressure value measured by
the prelaunch rocket sonde are consistent with those of the balloon sonde and the surface automatic
weather station.

Table 2. Prelaunch comparison (atmospheric pressure and temperature).

Sensor Surface Weather Station Balloon Sonde Rocketsonde

Temperature (◦C) 19.7 19.6 19.3
Air pressure (hPa) 854.3 854.0 854.1

The temperature readings from the ground meteorological station and balloon sonde register
ambient temperature, while those from the rocket sonde indicate the temperature in the fairing.
As such, it is quite reasonable that there exist some differences in the measurements recorded by the
rocket sonde and the meteorological station, as well as by the balloon sonde.

Figure 2 gives the comparison between the temperature measured by rocket sonde and balloon
sonde in their coincident height range. From the figure, we can find out roughly similar trend between
the two groups of temperature data below 12 km. In the range of 12–15 km above the ground,
the temperature measured by rocket sonde is little higher than that gauged by the conventional
sounding system. According to the previous studies made by Shi et al. [21], this is mainly because the
sounding balloon is released one hour before that of the rocket, and the atmospheric state may change
during this period of time, resulting in a difference in the temperature data measured by both.

Figure 2. The temperature profiles (0–20 km) obtained from the rocket sonde (red) and the balloon
sonde (blue).

Figure 3 gives the comparison between the atmospheric pressure measured by rocket sonde
and by balloon sonde in the coincident stage. It is noted that the two curves basically coincide with
one another.

Figure 3. The atmospheric pressure profiles (0–20 km) obtained from the rocket sonde (red) and the
balloon sonde (blue).
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4.2. Result Analysis

4.2.1. Analysis of Body-Parachute System’s Fall Velocity

There is no comparability of the fall velocities in the range of 56.8 km to 59.6 km, due to the
fact that the flight trajectory vertex could only reach 59.6 km and the body-parachute system got its
balanced fall velocity at the height of 56.8 km during this test. The fall velocities below 56.8 km are
smaller than the statistical data of the TK-1 sounding rockets because the weight of the body-parachute
system is reduced from 3.4 kg to 3.0 kg. TK-1G dovetails with TY-4B sounding rocket system in the
magnitude of fall velocity. The comparison of the fall velocities of different sounding rockets at major
heights is listed in Table 3.

Table 3. Comparison of the fall velocities of different sounding rockets.

Altitude (km) 60 50 40 30 20

TK-1 average fall velocity * 136.0 82.9 36.0 15.9 6.2
TK-1G (20150703) 34.0 (59.6 km) 73.8 31.5 14.3 5.6
TY-4B (20140316) 157.6 71.6 34.4 13.5 5.7

* Mean value of five qualification tests of TK-1 in November 2004.

4.2.2. Analysis of the Meteorological Data

To further gauge the detection precision of the rocket, this paper draws a comparison between
China’s reference atmospheric data, ECMWF-T799 (European Centre for Medium-Range Weather
Forecasts) model data and satellite remote sensing data, and rocket sounding data. The rocket sonde
data has been smoothed before comparison.

The reference atmosphere used in this paper refers to China’s GJB5601-2006 reference atmosphere.
With ranges of 15◦ N–50◦ N, 75◦ E–130◦ E, it displays the atmospheric parameters up to 80 km above
the ground. The horizontal resolution is 5◦ × 5◦. Vertical intervals: 0.5 km, within 10 km above the
ground; 1 km, 10 km to 30 km and 2 km, and 30 km to 80 km. Readings of monthly and annual
average atmospheric temperature, pressure, humidity, density, and wind field are given through a
comprehensive analysis of the distribution features of the atmospheric parameters [22].

The ECMWF-T799 (hereafter referred to as T799) analyses are derived from global
four-dimensional assimilation of various atmospheric observations into the ECMWF model. Six-hourly
output products have Δh of 0.25◦ and 91 vertical levels from the surface to 0.01 hPa. The vertical
resolution Δz is ~0.4 km in the lower stratosphere and ~1–2 km in the stratosphere, respectively. It can
offer meteorological parameters such as temperature, pressure, wind direction, wind speed, and so
on [23]. Due to the limitations of spatial resolution, we have used the T799 forecasting data of the grid
point (105.50◦ E, 38.75◦ N), which is nearest to the launch site and the rocket detection data, to draw
a comparison.

TIMED (Thermosphere-Ionosphere-Mesosphere Energetics and Dynamics) satellite, whose orbital
period is 97 min, operates at a height of 625 km above the ground with inclination of about 74.1◦ from
the equator. Being one of the four instruments placed onboard the TIMED satellite, SABER (Sounding
of the Atmosphere using Broadband Emission Radiometry) serves as a radiometer that measures
infrared emissions from 1.27 mm to 15.2 mm from lower stratosphere to lower thermosphere [24].
SABER has the ability to measure temperature, pressure, density, and other parameters by dint of
satellite infrared limb sounding technique with ten channels [25].

The comparison of the wind speed and direction obtained from the rocket sonde with the reference
atmospheric data is shown, respectively, in Figures 4 and 5. As shown in the figures, their tendency
is consistent.
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Figure 4. The wind speed profiles (10–60 km) obtained from the rocket sonde (red) and the reference
atmosphere (blue).

 

Figure 5. The wind direction profiles (10–60 km) obtained from the rocket sonde (red) and the reference
atmosphere (blue).

The comparison of the wind speed and direction measured by the rocket sonde and T799 is shown
in Figures 6 and 7. It is found that their tendency is coincident.

Figure 6. The wind speed profiles (10–60 km) obtained from the rocket sonde (red) and the T799 (blue).
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Figure 7. The wind direction profiles (10–60 km) obtained from the rocket sonde (red) and the
T799 (blue).

The comparison between the temperature data collected from the rocket sonde and the reference
atmospheric data is shown in Figure 8, from which we can see the temperature curve of the rocket
sonde shares similar tendency with that of the reference atmosphere. Also, the temperature curve of
the rocket sonde mainly locates in the 3σ variance envelope curves of the reference atmosphere.

 

Figure 8. The temperature profiles (10–60 km) obtained from the rocket sonde (red) and the reference
atmosphere (black). The blue dotted line represents the 3σ variance of reference atmosphere.

The temperature profiles obtained from the rocket sonde and the SABER are shown in Figure 9.
From the figure, we can see consistency between the two curves, which dovetail nicely in terms of
their detailed features.

Figure 9. The temperature profiles (10–60 km) obtained from the rocket sonde (red) and the
SABER (blue).
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The temperature profiles obtained from the rocket sonde and the T799 is shown in Figure 10.
In the figure, the result of rocket sonde shares coincident tendency with the result of T799, but large
deviation appears in the height range of 42–50 km.

Figure 10. The temperature profiles (10–60 km) obtained from the rocket sonde (red) and the
T799 (blue).

Differences between the atmospheric pressure and density obtained by the rocket sonde and
those collected in other ways are displayed in Figures 11 and 12. From Figure 11, it is found that the
atmospheric pressure measurements differ a little bit from the reference atmosphere and SABER data,
and their relative deviation are both within ±2.4%. (deviation percentage = (rocket probe value − the
value of the data used for comparison)/rocket probe value × 100%).

Figure 11. The deviation between the atmospheric pressure that was obtained from the rocket sonde
and the reference atmosphere (left, 10–60 km). Also, the deviation between the atmospheric pressure
that was obtained from the rocket sonde and the SABER (right, 20–60 km).

From Figure 12, we can see that the difference between the density measured by the rocket sonde
and that of either the reference atmosphere or that gauged by SABER remains small; their relative
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deviations are both within ±4%. However, large disparities exist between the density measured by the
rocket sonde and the density obtained from the T799; their relative deviations are within ±10%.

Figure 12. The deviation between the atmospheric density that was obtained from the rocket
sonde and the reference atmosphere (left, 10–60 km), the SABER (middle, 20–60 km), and the T799
(right, 20–60 km).

5. Conclusions

The following conclusions can be drawn from the analysis of the experiment of the TK-1G
sounding rocket flight test. Firstly, the rocket sonde installed with the satellite navigation system has
a high data acquisition rate (>95%) during the whole process, which can obtain the comparatively
complete trajectory data and meteorological data. Secondly, by comparing the measurements gained
by the rocket sonde with those collected by several other means, we found they largely bear good
agreements, which indicates that the TK-1G sounding rocket system and the data processing methods
are viable and reliable. Thus, the flight test proves that the TK-1G sounding rocket system can
accurately measure the atmospheric elements in the height range of 20–60 km, which is of significance
for making up for the shortcomings of the meteorological detection of near space.
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