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Preface to ”Carbon Emission Reduction—Carbon Tax,

Carbon Trading, and Carbon Offset”

The World Bank stated that there are some incentives which have been created to encourage

carbon emission reduction, such as the removal of fossil fuels subsidies, the introduction of

carbon pricing, the increase in energy efficiency standards, and the implementation of auctions

for the lowest-cost renewable energy. Among these, carbon pricing refers to charges for those

who emit carbon dioxide (CO2) from their emissions, including carbon taxes, emissions trading

systems (ETSs), offset mechanisms, and results-based climate finance (RBCF). This Special Issue

collects 19 carbon emissions-related papers (including five that are carbon tax-related) and five

energy-related papers using various methods or models, such as the LMDI (Logarithmic Mean

Divisia Index) decomposition method, panel data model, ordered weighted regression (OWA),

geographically-and-temporally-weighted regression (GTWR), and the expanded stirpat* model.

The research studies come from China, Taiwan, Thailand, Czech Republic, Pakistan, Sweden,

Norway, and United States. These studies involved various industries such as agricultural industry,

transportation industry, electric-power industry, electronic industry, paper industry, iron and steel

industry, and the oil and gas industry. Although this Special Issue does not fully solve our concerns,

it still provides abundant material for implementing energy conservation and carbon emissions

reduction. However, there are still many issues regarding the problems caused by global warming

that require research. Finally, I am grateful to MDPI for the invitation to act as the Guest Editor of

this Special Issue and I am indebted to the editorial office of Energies for their kind cooperation,

patience, and committed engagement. I would like to thank the authors for submitting their excellent

contributions to this Special Issue. My thanks are extended to the reviewers for evaluating the

manuscripts and providing helpful suggestions. Sincere thanks also go to the editorial team of MDPI

and Energies for providing the opportunity to publish this book and helping in all possible ways.

Wen-Hsien Tsai

Editor
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1. Introduction

The Paris Agreement was signed by 195 nations in December 2015 to strengthen the global
response to the threat of climate change following the 1992 United Nations Framework Convention
on Climate Change (UNFCC) and the 1997 Kyoto Protocol. In Article 2 of the Paris Agreement,
the increase in the global average temperature is anticipated to be held to well below 2 ◦C above
pre-industrial levels, and efforts are being employed to limit the temperature increase to 1.5 ◦C.
The United States Environmental Protection Agency (EPA) provides information on emissions of
the main greenhouse gases. It shows that about 81% of the totally emitted greenhouse gases were
carbon dioxide (CO2), 10% methane, and 7% nitrous oxide in 2018. Therefore, carbon dioxide (CO2)
emissions (or carbon emissions) are the most important cause of global warming. The United Nations
has made efforts to reduce greenhouse gas emissions or mitigate their effect. In Article 6 of the Paris
Agreement, three cooperative approaches that countries can take in attaining the goal of their carbon
emission reduction are described, including direct bilateral cooperation, new sustainable development
mechanisms, and non-market-based approaches.

The World Bank stated that there are some incentives that have been created to encourage carbon
emission reduction, such as the removal of fossil fuels subsidies, the introduction of carbon pricing,
the increase of energy efficiency standards, and the implementation of auctions for the lowest-cost
renewable energy. Among these, carbon pricing refers to charging those who emit carbon dioxide
(CO2) for their emissions, including carbon taxes, emissions trading systems (ETSs), offset mechanisms,
results-based climate finance (RBCF), and so on. In view of the urgent need for carbon emission
reduction, this special issue collects 19 related papers concerning carbon emission reduction by using
various models and methods.

2. Summary Information of 19 Papers in the Special Issue

Table 1 shows the summary information of 19 papers in this special issue, including Research
Topic, Papers’ Author, Method/Model, Research Object, and Industry/Field. From Table 1, we can
see that this special issue has 5 papers for investigating the influencing factors of carbon emissions;
2 papers for exploring the relationship among carbon emissions, economic growth, and agricultural
production; and 6 papers for discussing various tools of carbon emission reduction such as carbon tax,
carbon trading, carbon offset, carbon storage, and carbon footprint. In additions, there are 6 papers
involving the related issues for carbon emission reduction.

Energies 2020, 13, 6128; doi:10.3390/en13226128 www.mdpi.com/journal/energies1



Energies 2020, 13, 6128

Table 1. Summary information of 19 papers in this special issue.

Topic Paper/Author Method/Model Research Object Industry/Field

1. Influencing
Factors of
Carbon Emissions

1.1 Transportation
Carbon Emissions

Zhu, Gao [1] Panel Data Model
57 ‘the Belt and
Road Initiative’
(BIT) countries

Transportation

Zhu, Du [2]
LMDI (Logarithmic Mean

Divisia Index)
Decomposition Method

Six Asia-Pacific
countries Transportation

Zhu, Wang, Yang [3]
LMDI (Logarithmic Mean

Divisia Index)
Decomposition Method

Regions in China Transportation

1.2 Agricultural
Carbon Emissions Chen, Li, Su, Li [4]

Ordered Weighted
Regression (OWA);

Geographically-and-
Temporally-Weighted
Regression (GTWR)

Fujian, China Agricultural
Industry

1.3 Carbon Emissions
from
Energy Consumption

Li, Li, Shao [5] Expanded
STIRPAT * Model China National level

2. Relationship among Carbon Emissions,
Economic Growth, and Agricultural Production

Ali, Ying, Shah, Tariq,
Chandio, Ali [6]

Autoregressive
Distributed Lag

(ARDL) Model; Pairwise
Granger Causality Test

Pakistan Agricultural
Industry

Ali, Gucheng, Ying,
Ishaq, Shah [7]

Autoregressive
Distributed Lag (ARDL)

Model;
Kwiatkowski–Phillips–

Schmidt–Shin (KPSS) Test

Pakistan Agricultural
Industry

3. Carbon Tax

Che, Zhang, Lang [8] Mixed Integer Nonlinear
Programming Model

Numerical
Experiments

Electric-power
Industry

Hsieh, Tsai, Chang [9]
Mixed Integer Linear
Programming (MILP)

Model
Taiwan Paper Industry

4. Carbon Trading Duan, Han, Mu, Yang,
Li [10]

Two-stage Game Theory
Model China Iron and Steel

Industry

5. Carbon Offset
Krasovskii, Khabarov,

Lubowski, Obersteiner
[11]

Two-stage Stochastic
Technological Portfolio

Optimization Model
Not specified Power Industry

6. Carbon Storage
Cao, Liu, Hou,

Mehmood, Liao, Feng
[12]

Literature Review Review Paper Not specified

7. Carbon Footprint
Quintana-Pedraza,

Viera-Agudelo,
Muñoz-Galeano [13]

Cradle-to-Grave
Multi-Pronged
Methodology

Sweden and China Electronic
Industry

8. Others

Carbon Leakage Fan, Zhang, Gao, Chen,
Li, Miao [14]

Single-Region
Input–Output Model China Industrial

Sector

Gas Leaks Log, Pedersen [15] Differential Absorption
Lidar (DIAL) Technique Norway Oil and Gas

Industry

CO2 Efficiency Break Point Bat’a, Fuka, Lešáková,
Heckenbergerová [16]

Modified Life Cycle
Assessment (LCA) Czech Republic Transportation

Efficiency of Sustainable
Development Policy

Sutthichaimethee,
Naluang [17] SEM-VARIMAX ** Model Thailand National Level

Optimization in the
Stripping Process of

CO2 Gas
Chen, Lai [18] Taguchi Method Not specified Not specified

Low Emission Taxiing
Path Optimization

Li, Sun, Yu, Li, Zhang,
Tsai [19] Path Optimization Model China Airport

<Note> * STIRPAT: Stochastic Impacts by Regression on Population, Affluence, and Technology. ** SEM-VARIMAX:
Structural Equation Modeling/Vector Autoregressive Model with Exogenous Variables.

3. Review of the Special Issue

3.1. Influencing Factors of Carbon Emissions

3.1.1. Transportation Carbon Emissions

Zhu and Gao [1] used the Panel Data Model to investigate the factors affecting the carbon emissions
of the transportation industry in 57 of ‘the Belt and Road Initiative’ (BRI) countries. The research results
indicate that the positive factors influencing carbon emissions of the transportation industry are capita
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GDP, urbanization level, and energy consumption structure, while the negative factors are technology
level and trade openness. Zhu and Du [2] applied the Logarithmic Mean Divisia Index (LMDI)
decomposition method to research the driving factors for carbon emissions of the road transportation
industry in six Asia-Pacific countries from 1990 to 2016. This research found that the economic output
and the population size have positive driving influences on carbon emissions for the road transportation
industry; the energy intensity and the transportation intensity have different influences on driving
carbon emissions for the road transportation industry for these six Asia-Pacific Countries. In addition,
the carbon emissions coefficient has a relatively small influence. Based on data from 1997 to 2017,
Zhu, Wang, and Yang [3] adopted the Logarithmic Mean Divisia Index (LMDI) decomposition method
to analyze the influencing degree of several major factors on the carbon emissions of transportation
industry in different regions, and they put forward some suggestions according to local conditions
and provided references for the carbon reduction of Chinese transportation industry. Their results
showed that economic output effect is the most important factor to promote the carbon emissions of
transportation industry in various regions. The regional energy intensity effect in most stages inhibited
carbon emissions of the transportation industry.

3.1.2. Agricultural Carbon Emissions

Based on the carbon emission sources of five main aspects in agricultural production, Chen, Li,
Su, and Li [4] applied the latest carbon emission coefficients released by Intergovernmental Panel on
Climate Change of the UN (IPCC) and World Resources Institute (WRI), and then used the ordered
weighted aggregation (OWA) operator to remeasure agricultural carbon emissions in Fujian from
2008–2017. The research results showed that the regression coefficients of each selected factor in the
cities were positive or negative, which indicated that the impacts on agricultural carbon emission had
the characteristics of geospatial nonstationarity.

3.1.3. Carbon Emissions from Energy Consumption

Li, Li, and Shao [5] used the IPCC (The Intergovernmental Panel on Climate Change) method
to calculate the carbon emissions of energy consumption in China from 1996 to 2016, and used it
as a dependent variable to analyze the influencing factors. Their results showed that the order of
impact on carbon emissions from high to low is total population, per capita GDP, technology level,
industrial structure, primary energy consumption structure, and urbanization level.

3.2. Relationship among Carbon Emissions, Economic Growth, and Agricultural Production

Ali, Ying, Shah, Tariq, Chandio, and Ali [6] employed augmented Dickey–Fuller (ADF) and
Phillips–Perron (PP) tests to check the stationarity of the variables. The results of the analysis revealed
that there is both a short- and long-run association between agricultural production, economic growth,
and carbon dioxide emissions in the country.

Ali, Gucheng, Ying, Ishaq, and Shah [7] aimed to explore the casual relationship between
agricultural production, economic growth, and carbon dioxide emissions in Pakistan. An autoregressive
distributed lag (ARDL) model was applied to examine the relationship between agricultural production,
economic growth, and carbon dioxide emissions using time series data from 1960 to 2014. The results
showed both short-run and long-run relationships between agricultural production, gross domestic
product (GDP), and carbon dioxide emissions in Pakistan.

3.3. Carbon Tax

Carbon tax is a tax on energy sources that emit carbon dioxide. It is a pollution tax and a form of
carbon pricing. The objective of a carbon tax is to reduce the harmful and unfavorable levels of carbon
dioxide emissions, thereby decelerating climate change and its negative effects on the environment and
human health. A Carbon tax also can prompt companies to find more efficient ways to manufacture
their products or deliver their services. Generally, a carbon tax is determined by the carbon tax rate and

3
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the quantity of carbon emissions that a company processes in its manufacturing, and it is represented
as the amount paid for every ton of greenhouse gas released into the atmosphere. However, carbon tax
also will have some disadvantages, such as imposing expensive administration costs for businesses,
prompting them to move their operations to “pollution havens,” and so on.

Che, Zhang, and Lang [8] formulated the generation self-scheduling problem under the proposed
carbon-tax policy as a mixed integer nonlinear programming model. Numerical results demonstrated
that the proposed decomposition algorithm can solve the considered problem in a reasonable time and
indicated that the proposed carbon-tax policy can enhance the incentive for generation companies to
invest in a low-carbon generation capacity.

Using mathematical programming with activity-based costing (ABC) and based on the theory of
constraints (TOC), Hsieh, Tsai, and Chang [9] proposed a green production model for the traditional
paper industry to achieve the purpose of energy saving and carbon emission reduction. A numerical
example was used to demonstrate how to apply the model presented in their paper.

3.4. Carbon Trading

Carbon trading is another form of carbon pricing under cap-and-trade systems. Cap-and-trade is
one method for regulating and ultimately reducing the amount of carbon emissions. The government
sets a cap on carbon emissions for the whole country, and then limits the amount of carbon dioxide that
companies are allowed to release. A company that can more efficiently reduce carbon emissions can
sell any extra permits in the emission market to companies that cannot easily afford to reduce carbon
emission. Thus, carbon trading markets are set up. The number of emissions trading systems around the
world is increasing. In addition to the EU emissions trading system (EU ETS), national or subnational
systems are already in operation or under development in Canada, China, Japan, New Zealand,
South Korea, Switzerland, and the United States.

To study the emission reduction policies’ impact on the production and economic level of the steel
industry, Duan, Han, Mu, Yang, and Li [10] constructed a two-stage dynamic game model and analyzed
various emission reduction policies’ impact on the steel industry and enterprises. The research results
indicated that with the increasing emission reduction target (15–30%) and carbon quota trading price
(12.65–137.59 Yuan), social welfare and producer surplus show an increasing trend and emission macro
losses show a decreasing trend.

3.5. Carbon Offset

A carbon offset is a reduction in emissions of carbon dioxide or greenhouse gases made in order
to compensate for or to offset an emission made elsewhere. One ton of carbon offset represents the
reduction of one ton of carbon dioxide or its equivalent in other greenhouse gases. There are two markets
for carbon offsets: (1) The larger compliance market, where companies, governments, or other entities
buy carbon offsets in order to comply with caps on the total amount of carbon dioxide they are allowed
to emit; and (2) the smaller voluntary market, where individuals, companies, or governments purchase
carbon offsets to mitigate their own greenhouse gas emissions from transportation, electricity use,
and other sources. Carbon offset usually supports projects that reduce the emission of greenhouse
gases in the short- or long-term. A common project type is renewable energy, such as wind farms,
biomass energy, or hydroelectric dams. Others include energy efficiency projects, the destruction of
industrial pollutants or agricultural byproducts, the destruction of landfill methane, LULUCF (land use,
land-use change, and forestry), REDD (reducing emissions from deforestation and forest degradation),
and so on.

Krasovskii, Khabarov, Lubowski, and Obersteiner [11] were motivated by the risks associated with
the future CO2 price uncertainty in the context of the offsetting of carbon emissions by regulated entities.
They asked whether it is possible to reduce these financial risks. In this study, authors considered the
bilateral interaction of a REDD supplier and a greenhouse gas (GHG)-emitting energy producer in an
incomplete emission offsets market. Their results showed that flobsion’s flexibility had advantages
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compared to a standard option, which can help GHG-emitting energy producers with managing their
compliance risks, while at the same time facilitating the development of REDD programs.

3.6. Carbon Storage

Cao, Liu, Hou, Mehmood, Liao, and Feng [12] aim to provide the latest developments of CO2

storage from the perspective of improving safety and economics. This review demonstrates that CO2

storage in depleted oil and gas reservoirs could play an important role in reducing CO2 emission in
the near future and CO2 storage in saline aquifers may make the biggest contribution due to its huge
storage capacity. Comparing the various available strategies, CO2—enhanced oil recovery (CO2—EOR)
operations are supposed to play the most important role for CO2 mitigation in the next few years,
followed by CO2—enhanced gas recovery (CO2—EGR).

3.7. Carbon Footprint

Quintana-Pedraza, Viera-Agudelo, and Muñoz-Galeano [13] propose the application of a
cradle-to-grave multi-pronged methodology to obtain a more realistic carbon footprint (CF) estimation
of electro-intensive power electronic (EIPE) products. The proposed methodology is applied in a
cradle-to-grave scenario, being composed of two approaches of LCA. Results show that D-STATCOM
considerably decreases the CF and saves emissions taken place during the usage stage. A comparison
was made between Sweden and China to establish the environmental impact of D-STATCOM in
electrical networks, showing that saved emissions in the life cycle of D-STATCOM were 5.88 and
391.04 ton CO2eq in Sweden and China, respectively.

3.8. Others

3.8.1. Carbon Leakage

On the basis of trade data for China’s 20 industrial sectors, Fan, Zhang, Gao, Chen, Li, and Miao [14]
built a panel data model to test the effect of trade on carbon dioxide emissions and the presence of
carbon leakage for all industrial sectors. They derived a single-region input–output model for open
economies based on the industrial sectors’ diversity and carbon dioxide emissions, and performed an
empirical test. The results show that higher trade openness leads to a reduction in the intensity of CO2

emissions and gross emissions and that there are obvious structural differences in different sectors
with different carbon emission intensity. The coefficient of trade openness for LCSs is −0.073 and is
statistically significant at the 1% level, so higher trade openness for LCSs leads to a reduction in the
CO2 emissions intensity.

3.8.2. Gas Leaks

Log and Pedersen [15] developed a simple logarithmic table based on an existing consequence
matrix for safety related incidents extended to include non-safety related fugitive emissions.
An evaluation sheet was also developed as a guide for immediate risk evaluations when new
leaks are identified. The leak rate table and evaluation guide were tested in the field at five land-based
oil and gas facilities during Optical Gas Inspection (OGI) campaigns. It is demonstrated how the
suggested concept can be used for presenting and analyzing detected leaks to assist in Leak Detection
and Repair (LDAR) programs.

3.8.3. CO2 Efficiency Break Point

Bat’a, Fuka, Lešáková, and Heckenbergerová [16] aim to deal with CO2 emissions in energy
production process in an original way, based on calculations of total specific CO2 emission and,
depending on the type of fuel and the transport distance. It is based on a modified life cycle assessment
(LCA), supplemented with a system of equations. Their key finding is the break point for associated
processes at a distance of 1779.64 km, since it is better to burn brown coal than wood in terms of
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total CO2 emissions. The research can conclude that, in some cases, it is more efficient to use coal
instead of wood as fuel in terms of CO2 emissions, particularly in regard to transport distance and
type of transport.

3.8.4. Efficiency of Sustainable Development Policy

Sutthichaimethee and Naluang [17] aim to predict the efficiency of the Sustainable Development
Policy for Energy Consumption under Environmental Law in Thailand for the next 17 years
(2020–2036), and aim to analyze the relationships among causal factors by applying a structural
equation modeling/vector autoregressive model with exogenous variables (SEM-VARIMAX Model).
With the implementation of the Sustainable Development Policy for Energy Consumption under
Environmental Law (S.D.EL), the forecast results derived from the SEM-VARIMAX Model indicate a
continuously high change in energy consumption from 2020 to 2036, and the change exceeds the rate
determined by the government.

3.8.5. Optimization in the Stripping Process of CO2 Gas

Chen and Lai [18] aimed to explore the effects of variables on the heat of regeneration, the stripping
efficiency, the stripping rate, the steam generation rate, and the stripping factor. The results showed
that the stripping efficiency was in the range of 20.98–55.69%, the stripping rate was in the range of
5.57 × 10−5–4.03 × 10−4 kg/s, and heat of regeneration was in the range of 5.52–18.94 GJ/t.

3.8.6. Low Emission Taxiing Path Optimization

Li, Sun, Yu, Li, Zhang, and Tsai [19] considered the aircraft’s taxiing distance, the number of
large steering times, and collision avoidance in the taxi, and established a path optimization model
for aircraft taxiing at airport surface with the shortest total taxi time as the target. The experimental
results show that the total fuel consumption and emissions of the aircraft are reduced by 35% and 46%,
respectively, before optimization, and the taxi time is greatly reduced, which effectively avoids the
taxiing conflict and reduces the pollutant emissions during the taxiing phase.

4. Concluding Remarks

The World Bank stated that there are some incentives that have been created to encourage carbon
emission reduction, such as the removal of fossil fuels subsidies, the introduction of carbon pricing,
the increase of energy efficiency standards, and the implementation of auctions for the lowest-cost
renewable energy. Among these, carbon pricing refers to charging those who emit carbon dioxide
(CO2) for their emissions, including carbon taxes, emissions trading systems (ETSs), offset mechanisms,
results-based climate finance (RBCF), and so on. This Special Issue collects 19 carbon emissions-related
papers (including 5 that are carbon tax-related) and 5 energy-related papers using various methods or
models. Although this special issue did not fully satisfy our needs, it still provides abundant related
material for energy conservation and carbon emissions reduction. However, there still are many
research topics waiting our efforts to study to solve the problems of global warming.
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Abstract: Carbon emissions in countries in the “Belt and Road Initiative (BRI)” account for more
than half of the world’s total volume. According to the international energy agency report, the
world transportation industry carbon emissions in 2015 came second on the list for the proportion
of global carbon emissions across all industries, accounting for 23.96% of the total. Along with the
advancement of the BRI construction, transportation industry carbon emissions will continue their
rapid growth. Therefore, studying the factors affecting the carbon emissions of the transportation
industry in countries in the BRI is conducive to the formulation of policies to control carbon emissions.
In this paper, the CO2 emissions of the transportation industry in countries in the BRI line from 2005
to 2015 were measured, and then the influencing factors of 57 countries in the BRI were analyzed by
using the panel data model. The results show that per capita GDP, urbanization level, and energy
consumption structure have positive effects on the carbon emissions of transportation industry, while
technology level and trade openness have negative effects on carbon emissions of the transportation
industry. Therefore, in order to effectively control the carbon emissions of the transportation industry
in the BRI countries, it is necessary to reasonably control the transportation industry carbon emissions
caused by urbanization, optimize the energy consumption structure of the transportation industry,
optimize the structure of the transportation industry, and improve the openness of trade and the
technical level of the BRI countries.

Keywords: carbon emissions; transportation industry; influencing factors; the “Belt and
Road Initiative”

1. Introduction

As an important part of modern service industry, the transportation industry is a high energy
consumption industry and a large carbon emitter in the national economic system. According to the
international standard industry classification (ISIC Rev 4.0), the transportation industry is divided into
road transportation, railway transportation, navigation transportation, aviation transportation, and
pipeline transportation, and the transportation industry studied in this paper is specified as follows:
road transportation, railway transportation, domestic aviation transportation, pipeline transport, and
domestic navigation transportation. According to the “carbon dioxide emissions from fuel combustion”
report released by the International Energy Agency (IEA) in 2017, the world’s transportation industry
accounted for the second largest share of global carbon emissions in 2017, accounting for 23.96% of the
total [1]. Therefore, the development of low-carbon transportation is not only the requirement of the
transportation industry to save energy and to reduce emissions and the impact on the environment,
but also the requirement of the era for a low-carbon economy. It is the most effective direction of
transportation development to deal with the serious energy consumption in society and prevent
global warming.
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The phrase the “Belt and Road Initiative”(BRI), which stands for the “silk road economic belt”
and “marine silk road in the 21st century”, was successively put forward by Chinese President Xi
Jinping during his visit to Central Asia and Southeast Asian countries in September and October
2013. Then China’s national development and reform commission, ministries of foreign affairs, and
commerce jointly issued the report called “the vision and action of pushing to build the silk road
economic belt and the maritime silk road into the 21st century”. BRI involves 66 countries in Asia,
Europe, and Africa. An in-depth study of the factors affecting the carbon emissions of the transport
industry for these countries will help formulate relevant policies to control their carbon emissions of
the transport industry and make contributions to the control of global warming.

At present, research on the carbon emission of the transportation industry in the BRI countries
mainly focuses on the factors influencing the carbon emission and the low-carbon transportation
development measures of specific countries and regions.

Regarding the research on influencing factors, Danish et al. studied the relationship between
transport energy consumption, economic growth, foreign direct investment, and carbon dioxide
emissions in urban transport sector in Pakistan [2]. Liang et al. analyzed the influence of energy
structure, energy efficiency, transportation mode, transportation development, economic development,
and population size on the CO2 emissions of China’s transportation sector from 2001 to 2014 [3].
Xu et al. analyzed the driving force of carbon dioxide emissions in China’s transportation industry by
vector autoregressive model and found that energy efficiency plays a leading role in reducing carbon
dioxide emissions [4]. Song et al. built super-efficiency non-expected models, made evaluation analysis
on transportation energy efficiency among 30 provinces of the China’s eastern, central, and western
parts, and found that the Chinese transportation industry’s overall energy efficiency presents the anti-N
type market decline, and the large discreteness maintains in the eastern and western provinces, and
the strong consistency while the overall level is low in the northeast provinces [5]. Li et al. discussed
the influencing factors of CO2 emissions from road freight in China from 1985 to 2007, and concluded
that economic growth is the most important factor for the increase of CO2 emissions, while industrial
added value and market concentration levels have a significant impact on the reduction of CO2

emissions [6]. Wang et al. analyzed the driving factors of carbon emissions in China’s transportation
industry from 2000 to 2015 by using the generalized partition index method, and found that the added
value, energy consumption and per capita carbon emissions of the transportation industry were the
main factors leading to the increase of carbon emissions, and energy carbon emission intensity was the
key factor to reduce carbon emissions [7]. Lin et al. used quantile analysis to investigate the impact
of China’s GDP, energy intensity, carbon intensity and urbanization on the carbon emissions of the
transportation industry from 1980 to 2010, and found that GDP, energy intensity and carbon intensity
had a greater impact on carbon emissions than urbanization [8]. Liu et al. investigated the impact
of urbanization on road traffic energy use by using the data of 386 cities in Norway from 2006 to
2009, and found that the urban density level had a significant negative impact on per capita road
energy use [9]. Fameli et al., after calculating the traffic carbon emissions in Attica, Greece, concluded
that vehicle composition, popularity of diesel cars, urban speed, and vehicle renewal are the most
effective parameters for formulating carbon emissions reduction policies [10]. Hassan et al. empirically
analyzed the influence of aircraft technology, operational improvement, and sustainable biofuels on
future carbon dioxide emissions from the perspective of aviation transportation industry [11]. Wu et al.
used data from the years from 1949 to 2012, and applied vector autoregressive model to discuss
the dynamic relationship among the interaction among China’s transportation, economic growth
and carbon emissions [12]. Xiao et al. introduced factors such as the proportion of added value of
transportation industry, energy structure, and development level of transportation to analyze the direct
and indirect impacts of various factors on carbon emissions of the transportation industry [13]. Lu et al.
calculated the regional differences in CO2 emissions of the transportation industry in nine provinces
and two cities in the Yangtze river economic belt from three aspects: per capita carbon emissions,
carbon emissions per unit of added value, and carbon emissions per unit of converted turnover [14].
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Du et al., based on the panel data of carbon emissions of China’s transportation industry in the past 20
years, concluded that economic level, transportation intensity, and energy intensity are the main factors
affecting carbon emissions of the transportation industry [15]. Ou et al. analyzed the impact path of
transportation technology progress on carbon dioxide emissions based on the multiple equilibrium
theory and Stochastic Impacts by Regression on Population, Affluence, and Technology model [16].
Li et al. selected carbon emissions, per capita carbon emissions, and carbon intensity indexes from the
spatial–temporal perspective to analyze the spatial agglomeration characteristics of carbon emission of
China’s transportation industry and the convergence characteristics with the change of time axis [17].

Regarding low-carbon transport development measures, Bakker et al. made a comparative analysis
of the approaches and status quo of sustainable and low-carbon transport policies in Association of
Southeast Asian Nations (ASEAN) countries based on the strategy component developed by Howlett
and Cashore [18]. Selvakkumaran et al. adopted a recursive dynamic optimization model based on
bottom-up modeling principle to analyze the energy utilization potential and emission reduction
potential of Thailand’s transportation sector under two scenarios of low-carbon social measures and
emission tax clusters [19]. Fungtammasan et al. found that Thailand could achieve the national
autonomous contribution (INDC) target by improving energy efficiency (especially in the transportation
sector) and deploying the renewable energy and de-carbonization of power sectors [20]. Lah et al.
believe that in order to minimize the rebound effect, a balanced and integrated policy approach is
needed to significantly curb greenhouse gas emissions from the transportation industry by combining
vehicle efficiency standards, fuel tax and differentiated vehicle tax with mode selection and compact
urban design [21]. Shukla et al. showed that carbon dioxide emission reduction in transportation
system can be achieved more effectively by combining emission reduction policies with measures to
change traffic structure [22]. Rashidi et al. selected three low-carbon investment cases of environmental
protection departments and transportation departments in Nairobi (Kenya), Balikpapan (Indonesia),
and Colombo (Sri Lanka) to illustrate how to promote low-carbon investment in transportation and
waste treatment in developing countries [23]. Lu et al. analyzed and calculated the total factor
productivity and carbon emission efficiency of the transportation industry in Eastern China, and
believed that the transportation industry in most provinces and cities still has a large space for energy
conservation and emission reduction [24]. Wang et al. discussed the carbon emission characteristics of
Beijing’s commuting from different perspectives (macro and micro) and believed that reducing carbon
dioxide emissions related to transfer is of great significance and necessity for the low-carbon emission of
China’s urban transportation development. In order to avoid the increasing carbon dioxide emissions
related to commuting, the use of cars should be restricted and public transportation is a priority [25].
Dong et al. adopted life cycle assessment method to quantitatively analyze the environmental impact
of Shenzhen urban public transport system (including buses and subways) from 2005 to 2015, in order
to realize the low-carbon transformation of Shenzhen’s urban transportation sector [26]. Gambhir
et al. found that passenger cars and heavy trucks would constitute the majority of the carbon
dioxide emission saving potential between 2010 and 2050 [27]. Diaz-ruiz-Navamuel et al. empirically
analyzed the values of the reduction in emissions obtained and the advantages of installing Automatic
Mooring Systems and operating RoRo/Pax terminals in commercial ports [28]. Wu et al. compared
the environmental impact of the use of electric vehicles in developing and developed countries by
taking Bric countries as an example and found that the electric car’s impact on the environment is
closely related to the power structure and transmission efficiency in the involved countries and regions
because of the high proportion of thermal power in developing countries. Therefore, considered
that in a sense, the development of the electric car industry in developing countries is transferring
environmental pollutant emissions from vehicles to process of electricity production [29]. Shi et al.
analyzed the emission reduction factors affecting electric vehicles, and also believed that the power
generation energy structure and the power supply route of coal power technology play a decisive role
in the carbon emission reduction space of the fuel life cycle of electric vehicles [30].
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As for the research on country’s development and carbon emissions of BRI, scholars outside China
pay little attention to it, while Chinese scholars have conducted research from the fields of economy
and culture. Lei et al. believed that in order to avoid repeating the mistake of sharp growth of carbon
emissions after China’s accession to the WTO, China must balance the relationship between economic
growth and carbon emission reduction. Therefore, the relationship between China’s economic growth
and carbon emission reduction was studied from the perspective of synergy [31]. Xu et al. empirically
investigated the influence of cultural dimensions on carbon emissions of 42 sample countries in the
BRI from 2000 to 2013 under the framework of environmental Kuznets curve [32]. In the context of
BRI, Zhang et al. studied the threshold effect of economic growth on carbon emissions by using panel
data of 30 provinces (regions) in China from 2006 to 2015 and non-dynamic threshold panel estimation
method [33]. Chen et al. discussed how the trade opening, green investment and energy cooperation
under BRI would contribute to the low-carbon development of the countries in the BRI based on the
current reality and the academic research results [34]. Xiao et al. selected the inter-provincial panel
data of China from 2004 to 2015, and investigated the influence of the carbon emissions on provinces
in the BRI by constructing the simultaneous equation model [35].

A comprehensive review of the existing studies shows that countries in the BRI pay great attention
to low-carbon development, and study the relationship between relevant factors and carbon emissions
from different time spans, regional scope, and professional fields, providing many references and
ideas for the realization of global carbon emission reduction. However, most scholars study carbon
emission from one country or region. Since BRI was proposed by the Chinese government, Chinese
scholars pay more attention to BRI. However, Chinese scholars mainly study national economic pattern
and strategic development issues from the perspective of theoretical framework and strategy, lacking
quantitative research. A small number of studies are conducted from the economic and cultural fields.
With the advance of the BRI construction, the carbon emission in the field of transportation will grow
rapidly, and how to realize the carbon emission reduction in the field of transportation is extremely
urgent. This paper intends to use the transnational panel data to calculate the carbon emissions of
the transportation industry of the countries in the BRI, and use the econometric model to analyze
the influencing factors of the carbon emissions of the countries in the BRI, and finally put forward
suggestions to control the carbon emissions of the transportation industry.

2. Research Methods and Data Sources

2.1. Model Assumption

Panel Data is the data combining time series and cross section, in which time series data can
reflect the dynamic changes of individuals, while cross section data can better reflect the differences
between individuals. The panel data model combines the advantages of time series and cross-sectional
data, and the application of panel data model for empirical research can provide more information,
more changes, less collinearity, more degrees of freedom and efficiency, making up for the deficiency
of two-dimensional data information in the classical linear econometric model. Panel data models
allow for the construction and validation of more complex behavioral models than cross-sectional data
or time series.

The general form of the panel data model is as follows:

yit =
k∑

k=1

βkixkit + μit, (1)

where, i = 1, 2, · · ·N, N is the number of individuals; t = 1, 2, · · · , T, T is the number of known time
points. yit is the observed value of the explained variable to the individual i at the time t; xkit is the
observation value of the kth non-random explanatory variable for the individual i at the time t, βki is
the parameter to be estimated; μit is the random error term.
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2.2. Data Source and Data Processing

BRI includes 66 countries. In Asia, except Japan, South Korea, and North Korea, the remaining
46 countries have all joined BRI, including 19 countries in Europe, and Egypt in Africa. Through
consulting the World Bank database and the International Energy Agency database, this paper obtained
relevant data. Variable data in Laos, Syria, Palestine, Oman, Afghanistan, Iraq, Maldives, Bhutan, and
Serbia was excluded for its overmuch missing. In this paper, after a small amount of missing data
were processed by interpolation method, the variable data of 57 countries (see Table 1) in the BRI were
obtained from 2005 to 2015.

Table 1. Countries in the “Belt and Road Initiative (BRI)”.

Category Region Member Countries

High-income countries
19

Asia 8 Singapore, Brunei, Israel, Saudi Arabia, UAE, Qatar,
Kuwait, Bahrain

Europe 11 Greece, Cyprus, Poland, Lithuania, Estonia, Latvia,
Czech Republic, Slovakia, Hungary, Slovenia, Croatia

Middle- and high-income
countries

19

Asia 9 China, Malaysia, Thailand, Iran, Turkey, Jordan,
Lebanon, Kazakhstan, Turkmenistan

Europe 10
Russia, Belarus, Georgia, Azerbaijan, Bosnia and

Herzegovina, Montenegro, Albania, Romania,
Bulgaria, Macedonia

Low- and middle-income
countries

19

Asia 16

Indonesia, Vietnam, Myanmar, Cambodia,
Philippines, Mongolia, Yemen, Egypt, India,

Pakistan, Bangladesh, Sri Lanka, Nepal, Uzbekistan,
Tajikistan, Kyrgyzstan

Europe 3 Ukraine, Armenia, Moldova

Note: data were obtained from the World Bank database in 2015.

2.2.1. Explained Variables and Their Data Sources

Carbon emissions is the general term of greenhouse gas emissions, expressed in carbon dioxide
equivalent (CO2eq), including carbon dioxide, nitrous oxide, freon, and methane, of which carbon
dioxide emissions account for 60% of the total greenhouse gas emissions, so it is the main greenhouse
gas causing global warming, therefore having been studied by most scholars. In this paper, total carbon
dioxide emissions are used to measure the carbon emissions level of the transportation industry of
the BRI countries. Due to the incompleteness of global carbon emissions data, most scholars collect
energy consumptions and calculate formulas to obtain carbon emissions data. Therefore, the specific
expression formula of carbon emissions adopted in this paper is as follows:

CE =
∑n

i
CO2i =

∑n

i
Ei × δi =

∑n

i
Ei ×NCVi ×CEFi ×COFi × 44

12
. (2)

In which, CE stands for carbon dioxide emissions from transportation industry; i is the type
of fossil fuel, The IEA database classifies fuels consumed by the transportation industry into five
categories: coal, petroleum products, biomass energy, natural gas and electricity. Ei refers to energy
consumption of fossil fuel i; δi is the carbon dioxide emission coefficient of carbon energy i; NCVi is the
average low calorific value of energy i; CEFi is the carbon emission coefficient of energy i, namely, the
carbon content per unit of heat; COFi is the carbon oxidation factor, that is, the carbon oxidation rate
during energy combustion. 44 and 12 are the molecular weights of carbon dioxide and carbon.

According to the national greenhouse gas inventory guidelines of Intergovernmental Panel on
Climate Change (IPCC), the carbon emission coefficients of various energy sources are shown in
Table 2.
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Table 2. Carbon emission coefficient of transportation and energy.

Types of Energy
Average Low

Calorific Value
(KJ/kg, m3)

Carbon
Oxidation Rate

CO2 Emission
Factor (kgCO2/GJ)

Carbon Emission
Factor (kg C/GJ)

Coal 20,908 1 94.6 25.8
Oil products 43,070 1 72.35 19.7

Biomass energy 42,338 1 75.18 20.5
Natural gas 38,931 1 56.1 15.3

Electric power — — — —

Note: data source: Intergovernmental Panel on Climate Change (IPCC) 2006 edition.

Description: since electricity belongs to secondary energy, the method to calculate the carbon
emission of electricity in this paper is to convert the energy consumption of electricity into equivalent
standard coal, and then use the carbon emission of standard coal to represent the carbon emission
of electricity.

According to the date from Organization for Economic Co-operation and Development (OECD)
database, the carbon emission changes of the 57 countries in the BRI from 2005 to 2015 is shown in
Figure 1, the 57 countries accounted for about 50.06% of the world’s carbon emissions in 2015, and
China alone accounted for 28.01%, far more than the sum of the carbon emissions of the other 56
countries. Therefore, reducing the carbon emissions of the BRI countries is of great significance to the
global carbon emission reduction.

0
2,000
4,000
6,000
8,000

10,000
12,000
14,000
16,000
18,000

2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015

5358 5912 6468 6608 7026 7707 8466 8621 8996 9036 9041 

4948 5186 5507 5737 5878 6165 6348 6569 6699 7001 7147 

C
O

2 
em

is
si

on
s 

[1
06 

t]

Year

China Other countries

Figure 1. 2005–2015 BRI national carbon emissions.

Figure 2 shows the changes in the top 20 carbon emissions of the BRI countries from 2005 to 2015.
In terms of growth rate, China and India, the two countries in the BRI, saw the largest growth rate
of carbon emissions in their transportation industry, doubling in 11 years, which was related to their
rapid economic growth. In other countries, the changing trend of the transportation industry carbon
emission is stable. In terms of total carbon emission, China, Russia, and India are significantly higher
than other countries. China’s total carbon emission of the transportation industry in 2015 was 871.56
million tons, roughly equivalent to the total carbon emission of the transportation industry of the
second to fourth countries. Russia’s carbon emissions from its transportation industry has remained at
around 3.3 million tons over the years, while India, a fast-growing economy, has seen a significant
increase in its total carbon emissions.
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Figure 2. 2005–2015 BRI national transportation carbon emission.

2.2.2. Explanatory Variables and Their Data Sources

According to the above literatures, the explanatory variables selected in the carbon emission
research of the transportation industry are usually as follows: energy indicators like energy
consumption, energy structure, energy efficiency, energy carbon emission intensity, per capita carbon
emission, carbon intensity, and energy intensity; economic indicators such as: economic growth,
economic development, GDP, economic level, foreign direct investment; indicators of the transportation
industry include transportation mode, transportation intensity, transportation development, added
value of transportation industry, transportation development level, and technological progress of
transportation; Macro indicators such as population size and urbanization.

Some explanatory variables share some certain similarities, such as economic indicators: economic
growth, economic development, GDP, economic level; energy indexes: energy and carbon intensity,
per capita carbon emissions, carbon intensity, energy intensity and traffic development level index:
transportation development, added value of transportation industry, and traffic development level,
while it is so microcosmic for modes of transportation, the intensity of transportation with indicators
of technological progress in transportation that they are not suitable for the macroscopical study of
carbon emissions of BRI transportation industry.

Therefore, for the research on the influencing factors of carbon emissions of the BRI national
transportation industry, this paper preliminarily selected per capita GDP, urbanization level, technology
level, energy consumption structure, net inflow of foreign capital, industry proportion, and trade
openness as explanatory variables, the explanatory variables selected cover most of the explanatory
variables used in the references, and the technical level and energy consumption structure were
newly-added as explanatory variables.

Since there would likely be multicollinearity problems among model variables, stepwise
regression was conducted to determine the optimal explanatory variables before data processing.
The specific method was to gradually introduce other explanatory variables under the initial model.
After introducing variables, the determination coefficient R2 of the model was gradually improved on
the basis of 0.963. However, t test and p values of foreign capital inflow (FDI) and carbon emissions
proportion of the transportation industry did not pass the test at the significance level of 10%, so they
were excluded.

Therefore, per capita GDP, urbanization level, technological level, energy consumption structure
and trade openness are selected as explanatory variables in this paper. All data are from the World
Bank database.
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Per capita GDP is the ratio of GDP to the total population, which is used to reflect the size of the
economy. Due to the different economic sizes of countries in the world, it is not scientific to simply
consider GDP, therefore, per capita GDP (2010 constant dollar) was selected as the explanatory variable
in this paper. Figure 3 shows the per capita GDP of the BRI countries in 2015. It can be seen from
the figure that the countries with higher per capita GDP are mainly distributed: the oil producing
countries in West Asia, Brunei and Singapore in Asia, and the EU members in Eastern Europe, while
countries with low per capita GDP mainly distributed in Southeast Asia, South Asia, and Central Asia.
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Figure 3. Per capita GDP of some countries in the BRI in 2015.

The urbanization level is represented by the proportion of urban population in the total population.
Figure 4 shows the urbanization level of regions in the BRI in 2015, which reflects strong regional
characteristics: the urbanization level of West Asia was close to 80%, then Central and Eastern Europe,
East Asia, and cis countries (the national league built up by several Former Soviet Republics consists of
9 countries such as Russia and Belarus), and general South Asia, with the lowest urbanization level
less than 30%.
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Figure 4. Urbanization rate in the BRI in 2015.

The technical level is represented by the percentage of high-tech export in the export of
manufactured goods. High-technology exports are products with high research and development
intensity, such as in aerospace, computers, pharmaceuticals, scientific instruments, and motors,
reflecting the manufacturing level of a country’s high-tech products. Figure 5 shows the technical level
ranking of the BRI countries in 2015. The high-ranking countries were mainly concentrated in two
regions: one in South Asia and Southeast Asia, and the other in Eastern Europe. The Philippines in
Southeast Asia ranked the highest, followed by Singapore and Malaysia. The reason is that with superior
geographical conditions, these countries have developed export processing industries. While the
Eastern European region is located in the economic circle of the EU with its own high scientific and
technological level and strong high-tech R&D and production capacity, so high-tech exported products
account for a high proportion.
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Figure 5. High-tech exports rank of the BRI countries in 2015

The energy consumption structure is expressed as the percentage of fossil energy consumed by
the transportation industry in the total energy consumption. Figure 6 is the change trend of energy
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consumption structure of the transportation industry in the BRI countries. From 2005 to 2015, the
proportion of fossil energy consumption of the BRI national transportation industry showed a slight
decline trend, but the average proportion of fossil energy consumption was still as high as 97%, and
the use of clean energy was very low.
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Figure 6. Changing trend of the BRI national transportation industry energy consumption structure
from 2005 to 2015.

Trade openness is expressed as the ratio of trade volume to GDP. The trade volume is the sum
of imports and exports of goods and services. Figure 7 is a part of the BRI national trade openness,
containing the countries whose import and export trades are more than 100% and less than 50% of
the total. It can be seen from the figure, countries with high trade openness are mainly distributed
within two economic circles of the ASEAN and the European Union, which show that the facilitation
of regional trade can promote the growth of trade. The top countries in terms of GDP, such as China,
India, Russia, Indonesia, and Turkey, are relatively low in terms of trade as a share of GDP.
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Figure 7. BRI countries’ trade openness in 2015.

3. Model specification

Introduce the following notations, CE represents carbon emissions, PGDP represents per
capita GDP, UL represents urbanization level, HE represents technical level, ECS represents energy
consumption structure, TO represents trade openness.

3.1. Descriptive Statistics

Based on the statistics, we list the descriptive statistics of variables in Table 3.
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Table 3. Descriptive statistics of variables.

Statistics CE PGDP UL HE ECS TO

Mean 37.8998 11,546.1500 58.3852 9.0348 98.0092 99.5843
Median 8.1200 6029.3970 55.5370 4.3997 99.0553 94.0826

Maximum 871.5600 72,670.9600 100.0000 98.7291 100.0000 441.6038
Minimum 0.1500 502.2394 15.1830 0.0000 87.7193 0.1674
Std. Dev. 97.0310 13,769.6000 20.9816 13.2503 2.3993 54.5934
Kurtosis 34.2811 7.3023 2.2997 12.7772 3.4220 14.8253

Note: all data are based on the World Bank database. CE: carbon emissions; PGDP: per capita GDP; UL: urbanization
level; HE: technical level; ECS: energy consumption structure; TO: trade openness.

3.2. Panel Data Unit Root Test Results

In order to ensure the effectiveness of parameter estimation and avoid the occurrence of
“pseudo-regression”, the stationarity of data should be tested before establishing the model. In order
to ensure the reliability of the test results, this paper applies the Levin–Lin–Chu (LLC) in the same root
case and the Fisher-ADF and Fisher-PP methods in the different root cases to conduct the unit root test.
The co-integration test can only be carried out when the variables are single integrals of the same order.

Multiple test results show that the horizontal value of 6 variables cannot reject the null hypothesis,
that is, the horizontal value of variables has unit root and is a non-stationary sequence. However, the
first-order difference of the six variables all rejected the null hypothesis at the significance level of 1%.
Therefore, the variables were all first-order single integral sequences, and the co-integration analysis
could be continued.

3.3. Co-Integration Test Results of Panel Data

In order to test whether there is a long-term stable relationship between variables and carbon
emissions, the co-integration test of panel data is required. Using Kao test [36], the null hypothesis is
that there is no co-integration relationship. The results are shown in Table 4. The test results reject the
null hypothesis at the significance level of 5%, and there is a long-term stable relationship between
carbon emission and all variables.

Table 4. Kao Test.

Test Method Testing Hypothesis Statistic Name t-Statistic Prob.

Kao test H0: no co-integration
relationship ADF 3.0521 0.0011

3.4. Panel Model Setting

Because of the panel data’s dimensionality, if the model set is not correct, and the resulting
parameter estimation method is undeserved. This article examines the types of models in two steps.
Firstly, we carried out a Redundant test of Fixed Effect-likelihood ratio [37], which is also called Fixed
effect redundancy test (constraint test), to determine whether there is an effect and the number of
effects. The test results are shown in Table 5:
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Table 5. Redundant Fixed Effects-likelihood ratio test.

Effects Test Statistic Prob.

Cross-section F 208.5271 *** 0.0000

Cross-section chi-square 1939.2385 *** 0.0000

Period F 0.1091 0.9997

Period Chi-square 1.2318 0.9996

Cross-Section/Period F 177.5094 *** 0.0000

Cross-Section/Period Chi-square 1941.1888 *** 0.0000

Note: p value in brackets; *, ** and *** represent the significance levels of 10%, 5%, and 1% respectively.

From the test results, the p value of time fixed effects regression model test was >0.05, therefore, we
accept the null hypothesis—there was no fixed effect at the time point. The individual test p < 0.05, so,
reject the null hypothesis that the individual has a fixed effect; therefore, the model exists an individual
single factor effect.

According to the different ways of the individual influence, models can be divided into two
kinds: fixed effect model and random effect model. This paper uses the Hausman test method [38]
to determine the model affect the form, and the null hypothesis of the model is that a random effect
model should be established. Table 6 indicates the result the p value is less than 0.01, therefore, reject
the null hypothesis and adopted fixed effect model.

Table 6. Hausman test of panel data.

Test Summary Chi-Sq. Statistic Chi-Sq. d.f. Prob.

Cross-section random 93.6754 5 0.0000

Based on the comprehensive analysis, the regression model of fixed individual (i.e., variable
intercept) should be established between the explanatory variable and the explained variable of the BRI
national transportation industry carbon emission from 2005 to 2015. In addition, from the perspective of
actual research needs, the research object is the transportation carbon emissions and other variables of
57 countries, and there is no problem with random sampling from the population. Therefore, compared
with the random effect model, it is appropriate to establish the individual fixed effect model too.

3.5. Panel Model Regression Result

According to the test results above, the individual fixed effect model should be established in this
paper. The model and parameter estimation results are as Table 7:

Table 7. Regression result.

Variable Coefficient Std. Error t-Statistic Prob.

C −535.3166 83.1595 −6.4372 0.0000
PGDP 0.0011 0.0002 4.7791 0.0000

UL 7.7284 0.3067 25.1961 0.0000
HE −0.2182 0.0795 −2.7467 0.0062
ECS 1.1906 0.6861 1.7345 0.0334
TO −0.0481 0.0099 −4.8707 0.0000

R-squared 0.9636 Log likelihood −2719.2810
Adjusted R-squared 0.9596 F-statistic 244.9956

S.E. of regression 19.4938 Prob(F-statistic) 0.0000
Sum squared residuals 214,703.6000
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The regression result shows that what the adjusted R2 very close to 1 indicates a good regression
fitting effect. F value is greater than the critical value of 5% significance level, indicating that the
linear relationship of the model is significant. T value of each parameter was greater than the critical
value at significance level = 0.05, indicating that each explanatory variable had significant influence on
the equation.

4. Empirical Analysis

According to the regression results, every 1% is increased in per capita GDP, the carbon emissions
of the transportation industry increased by 0.0011%. For every 1% increase in urbanization level,
the carbon emission of the transportation industry will rise by 7.7284%. For every 1% increase in
the proportion of fossil energy consumption in the transportation industry, the carbon emissions of
the transportation industry will grow by 1.1901%. For every 1% increase in technology level, carbon
emissions of the transportation industry will be reduced by 0.2182%. Trade openness was increased by
1%, and carbon emissions from transportation industry were reduced by 0.0481%.

The change of urbanization level has a great influence on the carbon emissions of the transportation
industry in the countries in the BRI. According to the analysis results in Figure 4, by 2015, the average
urbanization rate of the countries in the BRI is 59.13%, among which half of the countries are lower
than 50%, and one-third of the countries are lower than 35%, while in the same period, the urbanization
level of major developed countries has reached over 80%. Most of the BRI countries are at the initial
stage of urbanization, and the urbanization level will continue to increase, which will lead to the
continuous increase of carbon emissions of the transportation industry in these countries.

The energy consumption structure of the transportation industry is an important driving factor of
transportation carbon emission in countries in the BRI. According to the analysis results in Figure 6,
by 2015, the fossil energy consumption of the transportation industry in countries in the BRI was as high
as 97.69%, and the use of clean energy was very low. In some major developed countries, for example,
in 2015 the United States, 93.98% of the total energy consumption is from the transportation industry,
Germany (93.53%), and France (91.59%), so there still exists a large space for optimizing transportation
energy consumption structure in the BRI countries, which makes the energy structure optimization of
the transportation industry become an important driving factor of reducing carbon emissions.

It cannot be underestimated that per capita GDP holds a lot of weight for carbon emissions
of the transportation industry in the BRI countries. BRI countries account for 62.2% of the world’s
population and 30.9% of the world’s GDP. Per capita GDP is 1/2 of the world average and about 1/3 of
that of the European Union. In recent years, per capita GDP of 47 countries in the BRI has shown an
upward trend, and the growth of per capita GDP has become an important factor driving the growth
of carbon emissions.

Improving the technical level has an obviously inhibitory effect on the carbon emissions of
the transportation industry in the BRI countries. From the development trend in recent years, only
individual countries such as Vietnam, Israel, and Kazakhstan, with high-tech exports accounting for
the obvious rising trend in the proportion of manufactured goods exported, while most countries
witnessed a volatile downward trend. Therefore, the BRI countries should increase the R&D of
high-tech products, promoting the industry from low-end to high-end. Impulse optimization and
upgrading of industrial structure transformation will make it become a significant driving factor of
reducing carbon emissions.

The improvement of trade openness has an inhibitory effect on the carbon emissions of the
transportation industry in the BRI countries. According to the data collected, the overall level of trade
openness of the BRI countries is greatly affected by the world political and economic situation. In 2008,
with the acceleration of the globalization of the world economy, the trade openness level of the BRI
countries witnessed a steady rise, however, because of the influence of the U.S. financial crisis, their
trade openness plunged by 13.28% in 2009. From 2009 to 2012, the world economic situation improved,
and trade openness level increased year by year, while from 2013 to 2015, trade openness level showed
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a downward trend again for the rise of trade protectionism, but the globalization trend is irreversible,
and improving trade openness will still be an important factor to curb carbon emissions.

The individual effects intercept items of the model are shown in Table 8. The meaning of the term
“intercept” is the level of carbon emission when all explanatory variables are equal to zero.

Table 8. Fixed effects (cross) intercept item.

Country Intercept Country Intercept Country Intercept

China 665.7295 Qatar −402.8491 Georgia 17.1848
Singapore −359.1432 Kuwait −370.7331 Azerbaijan 11.9394
Malaysia −72.8431 Bahrain −280.0096 Armenia −70.2872
Indonesia 134.9449 Greece −172.5202 Moldova 76.8339
Myanmar 176.4387 Cyprus −123.5516 Poland −6.8274
Thailand 146.9235 Egypt 128.0329 Lithuania −94.7458

Cambodia 270.8803 India 380.5904 Estonia −114.0947
Vietnam 217.3133 Pakistan 167.9745 Latvia −106.6167
Brunei −195.1263 Bangladesh 189.0075 Czech −134.5726

Philippines 107.6275 Sri Lanka 281.5551 Slovakia 0.6559
Mongolia −99.1237 Nepal 289.5090 Hungary −97.9231

Iran −11.0146 Kazakhstan 24.7058 Slovenia 21.1239
Turkey −87.0962 Uzbekistan 151.4763 Croatia −29.0579
Jordan −212.3560 Turkmenistan 56.7199 Bosnia and Herzegovina 116.1757

Lebanon −255.3461 Tajikistan 218.1378 Montenegro −71.3814
Israel −303.1303 Kyrgyzstan 152.0016 Algeria 16.3055

Saudi Arabia −125.9317 Russia 176.2817 Armenia 18.1747
Yemen 179.3969 Ukraine −62.2023 Bulgaria −130.3784

United Arab Emirates −239.8403 Belarus −142.6494 Macedonia −22.2893

This reflects the influence of the neglected variables representing the difference of cross section in
the model. According to the cross-sectional data in Table 8, the value of 29 countries including China,
India, Nepal, Bangladesh, Indonesia, Thailand, and Vietnam, is positive: it indicates that the neglected
variables in the model have a greater impact on the carbon emission of the transportation industry in
these countries. While 28 countries, including Singapore, Israel, Turkey, and Brunei, have negative
values, it indicates that the neglected variables in the model have little impact on the carbon emission
of the transportation industry in these countries.

5. Conclusions and Suggestions

5.1. Conclusions

Based on the 2005–2015 data of 57 BRI countries, this paper, using panel data model, coming
to the following main conclusions: there exists a long-term and stable relationship among transport
carbon emissions, the level of urbanization, transportation energy consumption structure, per capita
GDP, technical level, and trade openness in the BRI countries. For every 1% increase in per capita
GDP, 0.0011% of the transportation industry carbon emissions are added. For every 1% increase
in urbanization level, the carbon emissions of the transportation industry will increase by 7.728%.
For every 1% increase in the proportion of fossil energy consumption in the transportation industry,
the carbon emissions of which will increase by 1.1901%. For every 1% increase in technology level,
carbon emissions of the transportation industry will be reduced by 0.2182%. Trade openness was
increased by 1%, and carbon emissions from transportation industry were reduced by 0.0481%.

Therefore, for West Asia and Eastern Europe with their high urbanization level and per capita
GDP, the main way to reduce the carbon emissions of the transportation industry is to enrich the
energy consumption structure, such as the use of biomass energy, natural gas, solar energy, and other
clean energy, and gradually reduce the proportion of fossil energy in the energy consumption of the
transportation industry. For South Asia, with its low urbanization level, special attention should
be paid to the negative impact of urban development on traffic carbon emissions in the process of
urbanization; not only should the energy consumption structure be optimized, but also the excessive
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growth of carbon emissions be reasonably controlled, which is caused by fossil energy consumption
in the process of urbanization. East Asia and Southeast Asia, which have developed rapidly, should
further promote the reduction of carbon emissions by improving the level of foreign trade. On the
whole, countries in the BRI are different in resource endowment, economic, and technological level.
In the process of BRI development, increasing the proportion of clean energy consumption, expanding
trade openness, and improving the level of science and technology will curb the carbon emissions of
the BRI transportation industry.

5.2. Policy Suggestions

First, traffic carbon emissions caused by urbanization should be properly controlled. From the
research conclusion, urbanization has a great impact on carbon emissions. For countries in the BRI,
urbanization is an irreversible process, so reasonable measures should be taken to control the increase
of carbon emissions caused by the increase of urbanization level. The strategies include vigorously
developing public transport, establishing a low-carbon transport mode dominated by public transport,
and building a comprehensive public transport system with rail transit as the skeleton, conventional
transport as the meridian, taxi as the supplement, and slow traffic as the extension, guiding citizens
to choose “walk + public transport” and “bike + public transport” travel modes, reducing the use
frequency of cars.

Second, the share of fossil energy consumption in the transportation industry should be reduced.
At present, the average proportion of fossil energy consumption in the transportation industry of the
BRI countries is about 97%. In the past 10 years, the proportion of fossil energy in the transportation
industry has not decreased much, the transportation industry need optimizing energy consumption
structure, reducing carbon emissions. Therefore, BRI countries need to promote new energy vehicles
such as hybrid, pure electric, and fuel cells, to improve the electrification rate of railway construction,
to encourage the use of green ships based on new technologies and new energy sources, to actively
promote the use of aviation biofuels.

Third, trade openness should be increased. Trade protectionism is on the rise in the modern
international community. From the perspective of reducing carbon emissions of the transportation
industry, trade openness needs to be enhanced. Countries in the BRI should further reduce tariffs and
non-tariff barriers through bilateral or multilateral economic cooperation mechanisms, and reduce
market access barriers to commodity flows, carry out cooperation in customs clearance, and actively
promote the integration of regions and customs clearance. Making full use of modern information,
network, and communication technologies should improve the efficiency of customs clearance from the
perspectives of optimizing the process of customs clearance and improving the efficiency of key links.

Fourth, the technical level of the BRI countries should be improved. In today’s world, a new
round of scientific and technological revolution and industrial transformation is looming, becoming a
new driving force for world economic growth. Driving the optimization and upgrading of industrial
structure with high-tech industry as the driving force and modern service industry and modern
manufacturing industry should be the direction of development.
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Abstract: The transportation industry is the second largest industry of carbon emissions in the world,
and the road transportation industry accounts for a large proportion of this in the global transportation
industry. The carbon emissions of the road transportation industry in six Asia-Pacific countries
(Australia, Canada, China, India, Russia, and the United States) accounts for more than 50% of this
in the global transportation industry. Therefore, it is of great significance to study driving factors
of carbon emissions of the road transportation industry in six Asia-Pacific countries for controlling
global carbon emissions. In this paper, the Logarithmic Mean Divisia Index (LMDI) decomposition
method is adopted to analyze driving factors on carbon emissions of the road transportation industry
in six Asia-Pacific countries from 1990 to 2016. The results show that carbon emissions of the road
transportation industry in these six Asia-Pacific countries was 2961.37 million tons in 2016, with an
increase of 84.43% compared with those in 1990. The economic output effect and the population
size effect have positive driving influences on carbon emissions of the road transportation industry,
in which the economic output effect is still the most important driving factor. The energy intensity
effect and the transportation intensity effect have different influences on driving carbon emissions
of the road transportation industry for these six Asia-Pacific Countries. Furthermore, the carbon
emissions coefficient effect has a relatively small influence. Hence, in order to effectively control
carbon emissions of the road transportation industry in these six Asia-Pacific countries, it is necessary
to control the impact of economic developments on the environment, to reduce energy intensity by
promoting the conversion of road transportation to rail and water transportation, and to lower the
carbon emissions coefficient by continuously improving vehicle emission standards and fuel quality.

Keywords: logarithmic mean Divisia index; road transportation industry; carbon emissions;
driving factors

1. Introduction

Global warming has become one of the most important challenges for human beings, and the
essential cause is excess emissions of greenhouse gases such as carbon dioxide, etc. According to the
statistics of International Energy Agency Data (IEA Data), the transportation industry accounted for
23.96% of the 32.5804 billion tons of global carbon dioxide emissions in 2017, making it the second
largest industry of carbon emissions. Among them, carbon emissions in sub-industries of road
transportation accounted for the highest proportion of the transportation industry, with more than
70%. Furthermore, according to a rough calculation in this paper, the carbon emissions of the road
transportation industry in six Asia-Pacific countries (Australia, Canada, China, India, Russia, and the
United States) are about 50.81% of the global total volumes of that industry. Therefore, it is of great
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significance to study the driving factors of carbon emissions of the road transportation industry in
these six Asia-Pacific countries for controlling global carbon emissions.

Currently, relevant researches on carbon emissions of the road transportation industry mainly
involve two aspects: One is the relationship between carbon emissions and economic growth, and the
other is the influence factors of carbon emissions. In terms of the relationship between carbon
emissions and economic growth, Grossman et al. [1] firstly proposed an inverted U-shaped relationship
between environmental quality and economic development based on Kuznets Curve (Kuznets [2]).
Panayotou [3] called it the Environmental Kuznets Curve (EKC). Based on the EKC theory, Kwon [4]
proposed, for the first time, that whether British road transportation was fit for the turning point
of EKC should be verified. Abdallah et al. [5] verified, for the first time, that carbon emissions of
road transportation in Tunisia conform to the law of EKC. With the same method, Kharbach et al. [6],
Alshehry et al. [7], and Azlina et al. [8], respectively, verified the applicability of EKC in the road
transportation industry in the United States, Saudi Arabia, and Malaysia. However, some scholars
believe that some countries cannot verify that there is an EKC relationship between environment and
carbon emission (Huang [9]).

In addition, some scholars have also verified the relationship between economy and environment
through Decoupling Theory. The Organization for Economic Cooperation and Development (OECD)
introduced “Decoupling Theory” and created the decoupling model. Lu [10] used this model to
verify the decoupling relationship between the economic development and carbon emissions of the
road transportation industry for Taiwan, Germany, Japan, and South Korea. The study revealed that
Taiwan shows a decoupling relationship, while Korea, Germany, and Japan show a relative decoupling
relationship. Tapio [11] optimized the basic decoupling model by introducing the elastic concept of
economics and established the Tapio Decoupling Model to study the decoupling state of dynamic
data. With this method, Sorrell et al. [12] analyzed the energy consumption of the road freight industry
for Britain from 1989 to 2004 with the decoupling analysis method. The research results showed
that the United Kingdom (UK) has been more successful than most European Union (EU) countries
in decoupling the environmental influences of road freight transportation from GDP. Tapio [11]
created a theoretical framework of decoupling to analyze carbon emissions of road transportation
for the European Union from 1970 to 2001. The result indicated that the freight of the European
Union transforms the relations from weak decoupling to expansive negative decoupling. In the 1990s,
there existed a weak decoupling relation between freight transportation and carbon dioxide emissions
in the UK, Sweden, and Finland, while a strong decoupling relation between road traffic volume
and carbon dioxide emissions from the road transportation industry in Finland from 1990 to 2001.
Kveiborg et al. [13] combined the Divisia Index Decomposition Method and Tapio Decoupling Model
to analyze the carbon emissions of road freight from 1981 to 1997. The research results presented an
obvious decoupling relationship in road freight from 1989 to 1997.

The decoupling model mainly calculates the decoupling index and the decoupling factor (OECD
reference) to determine whether there is decoupling relationship between the environment and the
economy; however, it cannot explain the specific reasons of decoupling. Therefore, some scholars
have begun to study which factors have an influence on carbon emissions. At present, the research
mainly focuses on using the factor decomposition method or the econometric model to analyze the
influencing factors of carbon emissions. The factor decomposition method is mainly divided into the
Laspeyres Index Decomposition method and the Divisia Index Decomposition method. (The Laspeyres
Index Decomposition method follows the Laspeyres price and quantity indices in economics
analysis.) Hankinson et al. [14], Reitler et al. [15], Howarth et al. [16], Howarth et al. [17], Park [18],
Park et al. [19], and Lin [20] all used this method to analyze carbon emissions of different countries
and regions. Due to the defect that the Factor-Reversal Test and the Time-Reversal Test cannot pass
the tests in the Laspeyres Index method, Sobrino et al. [21] adopted the improved Laspeyres Index
method to analyze driving factors for carbon emissions of the road transportation industry in Spain
from 1990 to 2010. The conclusion showed that economic growth reveals a close relationship with
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the rise of carbon emissions, and improved energy efficiency has been a powerful contributor to the
carbon emissions decrease.

Because relatively large residual errors in the calculated results in the Divisia Index Decomposition
method exist, and it cannot solve the problem of zero value, Ang et al. [22] proposed the Logarithmic
Mean Divisia Index (LMDI) in 1998. It effectively solves the above problems and acquires a wide
range of applications. M’raihi et al. [23] adopted this method to study the influencing factors of carbon
emissions of the road transportation industry in Tunisia. The research results showed that economic
growth is the main reason for the increase of carbon dioxide emissions. Effects of fossil fuel share,
fossil fuel intensity, and road freight transport intensity are all found as secondary factors responsible
for CO2 emission changes, while Timilsina et al. [24] considered that the economic activity effect and
the transportation energy intensity effect are found to be the main driver of CO2 emissions of road
transportation in Latin American and Caribbean countries. Liu et al. [25], Howarthetal et al. [16],
Paul et al. [26], and Lise [27] all used this method to analyze the relationship between energy
consumption and carbon emissions.

Econometric models can effectively analyze time series data. Wei [28] used the impulse response
function and the factor decomposition method to study the carbon emissions of China’s road
transportation industry. The research results showed that traffic structure and carbon emissions
had long-term influences and that dynamic interactive mechanisms exited in China from 1989 to 2009.
Wang et al. [29] used a combined research model, including co-integration analysis, the error correction
model, and the dynamic model, to study the influences of different factors on energy consumptions
in China and OECD countries. However, the paper only showed the strong and weak relationship
of each factor—it did not quantify their influence degrees. Liimatainen et al. [30] firstly proposed
the "road freight–economy" relationship analysis framework (McKinnon et al. [31]) for McKinnon’s
improvement, and introduced three indexes of CO2 intensity, transport intensity, and energy efficiency.
He used a joint analysis method for comparison to analyze carbon dioxide emissions and energy
efficiencies of the road transportation industry for the four countries of Denmark, Finland, Norway,
and Sweden in northern Europe in 2010. It indicated that transportation intensity and energy efficiency
have significant influences on carbon dioxide emissions. Puliafito et al. [32] calculated the carbon
emissions data of Argentina’s road transportation industry from 1960 to 2010 and predicted the data
from 2011 to 2050, and Monte Carlo sensitivity analysis and scenario analysis methods were applied
to analyze the relations between energy demand and greenhouse gas emissions. Melo [33] applied
both the spatial and non-spatial panel data models and introduced ten influence factors, such as
urbanization, vehicle ownership, and income levels, etc., to analyze the causal relationship between
demand-led, as well as supply-led, factors and carbon emissions of the road transportation industry.
The multi-factor and multi-angle analysis strategy provided in the paper can provide a basis for
future researches on causality and influence factors. Hasan et al. [34] used a multiple regression
model to determine the main driving factors of transportation emissions of passenger vehicles in New
Zealand. The results showed that there is a significant causal relationship between fuel economy and
transportation emissions. The present study can provide reference values for future studies in different
effect factors, and might offer further policy implications for other countries. Sundo [35], adopting a new
mathematical original-destination (O-D) approach of estimating CO2 emissions, made a comparison
among five different low-carbon scenarios. The results showed that increasing the proportion of clean
energy can effectively reduce the carbon emissions of the road transportation industry.

Seen from the above references, scholars at home and abroad have conducted in-depth researches
on the carbon emissions of the road transportation industry, but several problems also exist, as follows:
(1) The expansion of Kaya identity is a little simpler when the factor decomposition method is used to
analyze carbon emissions of transportation industry; and (2) currently, only a few scholars conduct
comparative studies among countries, while other scholars take only one country as the research
object, failing to fully explain the differences of carbon emissions among countries. This paper takes six
Asia-Pacific countries as the research object, and expands Kaya identity by introducing transportation
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turnover and other indexes, so as to analyze the influence of more factors on the carbon emissions of
the road transportation industry. The LMDI decomposition method is used to emphatically discuss
the driving factors of carbon emissions of road transportation, and comparative studies among the
six countries are conducted to analyze the influence mode and degree of various factors on carbon
emissions of the road transportation industry in these six countries.

2. Research Method

2.1. Expansion of Kaya Identity

Kaya identity, firstly proposed by Japanese professor Yoichi Kaya at the seminar of
Intergovernmental Panel on Climate Change (IPCC) in 1989 [36], establishes a relationship between
carbon dioxide emissions and economic, policy, as well as population factors, etc. It can decompose
driving factors for carbon dioxide emissions and quantify the contribution rate of each influencing
factor accurately. Its expression is as follow:

C =
GDP
POP

× PE
GDP

× C
PE
× POP (1)

In Formula (1), C, POP, GDP, and PE respectively represent the volume of carbon dioxide emissions,
the whole population of a country, gross domestic product, and total energy consumption.

Kaya identity has been widely used in the fields of energy, environment, and economy.
However, due to the limited numbers of examined variables, the results obtained are basically
confined to the quantitative relationships between carbon dioxide emissions and energy, economy,
and population at the macro level. In recent years, when studying influencing factors for carbon
emissions of road transportation, most scholars have mainly selected population size, GDP per capita,
and the carbon emissions coefficient of energy [37–39]. However, since carbon emissions are not only
connected to these factors, but also relatively closely related to factors of transportation intensity and
energy intensity, etc., the index of road transportation turnover is added in this paper, and the Kaya
identity is extended. The expression of the expanded Kaya identity is as follows:

C =
GDP
POP

× TRS
GDP

× PE
TRS

× C
PE
× POP (2)

In Formula (2), GDP and POP have the same meaning as Formula (1); C represents total carbon
emissions of a country’s road transportation industry; TRS says road transportation turnover of a
country; and PE indicates energy consumptions of a country’s road transportation industry.

Let:
G =

GDP
POP

; R =
TRS
GDP

; P =
PE

TRS
; S =

C
PE

; O = POP (3)

Formula (2) can be simplified into Formula (4) by applying Formula (3):

C = G×R× P× S×O (4)

In Formula (4), G, R, P, S, and O respectively represent economic output, transportation intensity,
energy intensity, and the carbon emissions coefficient of energy, as well as population size.

2.2. The LMDI Decomposition Method Based on Extended Kaya Identity

The factor decomposition method is a further extension of Kaya identity, mainly including the
Laspeyres Index decomposition method, the Logarithmic Mean Divisia Index (LMDI) decomposition
method, and the Fisher’s Ideal Index method, etc. Among them, the LMDI decomposition method,
proposed by Ang. B.W. etc. in 1998, solved the problems of inherent salvage value and zero value
for the index decomposition method. It witnesses an advantage of complete decomposition and the
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results’ uniqueness [22,40]. Therefore, the LMDI decomposition method has become a mainstream
research tool in the field of energy and environment.

The LMDI decomposition method includes the two specific methods of additive decomposition
and multiplication decomposition [41]. Because decomposition results of the two methods can be
converted to each other, and their converted results are consistent, this paper adopts the additive
decomposition method to decompose the model shown in Formula (4). The specific formula is shown
in Formula (5).

ΔC = DG + DR + DP + DS + DO (5)

In Formula (5), DG represents economic output effect, DR represents transportation intensity
effect, DP represents energy intensity effect [42], DS represents carbon emissions coefficient effect
of energy, and DO represents population size effect. Hence, the formulas for calculating the effects
of various factors influencing carbon emissions are shown in Formulas (6)–(10), and the detailed
calculation process is included in the Appendix A.

DG =
Ct −C0

ln Ct − ln C0 · ln
(

Gt

G0

)
(6)

DR =
Ct −C0

ln Ct − ln C0 · ln
(

Tt

T0

)
(7)

DP =
Ct −C0

ln Ct − ln C0 · ln
(

Pt

P0

)
(8)

DS =
Ct −C0

ln Ct − ln C0 · ln
(

St

S0

)
. (9)

DO =
Ct −C0

ln Ct − ln C0 · ln
(

Ot

O0

)
(10)

Here, among Formulas (6)–(10), C0 indicates the baseline year value of carbon emissions for
one country’s road transportation industry; Ct represents carbon emissions of a country’s road
transportation industry in year T; Gt, Rt, Pt, St, and Ot respectively show the economic output,
transport intensity, energy intensity, the carbon emissions coefficient of energy, and population size in
the Tth year of a country’s road transportation industry; and G0, R0, P0, S0, and O0 respectively show
a baseline year’s economic output, transport intensity, energy intensity, energy coefficient of carbon
emissions, and population size of a country’s road transportation industry.

3. Description of Variables and Data

This paper selects China and India in Asia, and the United States, Canada, Australia, and Russia in
the Pacific Rim, with a total of six countries. The selected countries are characterized by the following
commonalities: That all of the six countries respectively have a large territory area, and their carbon
emissions from the road transportation industry account for a large proportion of that from the
transportation industry. In addition, all of them, being members of the World Trade Organization
(WTO), have a sound multilateral trading system and all of their total economic aggregates rank among
the top in the world. Therefore, meaningful research conclusions can be obtained by comparing and
analyzing the factors influencing carbon emissions of the road transportation industry in these six
countries. The research interval of this paper is from 1990 to 2016, and the data in this paper come from
the International Energy Agency database (IEA database), the United Nations database (UN database),
and the World Bank database.
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3.1. Decomposed Variables and Their Database Sources

Carbon emissions refer to the general term of greenhouse gases, expressed by carbon dioxide
equivalent (CO2eq). It mainly includes carbon dioxide, methane, nitrous oxide, and other carbon
oxides, among which carbon dioxide emissions account for more than 60% of greenhouse gas emissions.
Due to a lack of comprehensive statistics of global carbon emissions at present, most scholars adopt
methods provided by IPCC national guidelines for inventory calculations of greenhouse gas [42],
and use energy consumption data to calculate carbon emissions. Therefore, the specific expression
formula of carbon emissions adopted in this paper is as follows:

C =
n∑
i

CO2i =
n∑
i

Ei × δi =
n∑
i

Ei ×NCVi ×CEFi ×COFi × 44
12

(11)

where CE stands for carbon dioxide emissions from road transportation industry; i is the type of fossil
fuel (the IEA database classifies fuels consumed by the road transportation industry into five categories:
Coal, petroleum products, biomass energy, natural gas, and electricity); Ei refers to energy consumption
of fossil fuel I; δi is the carbon dioxide emission coefficient of carbon energy i; NCVi is the average
low calorific value of energy i; CEFi is the carbon emissions coefficient of energy i, namely, the carbon
content per unit of heat; COFi is the carbon oxidation factor, that is, the carbon oxidation rate during
energy combustion; and 44 and 12 are the molecular weights of carbon dioxide and carbon [43].

According to the glosses of International Energy Agency database [44], the unit for all energy
consumption is oil equivalent, and the carbon emissions coefficients of various energies are shown in
Table 1.

Table 1. Carbon emissions coefficients of transportation and energy.

Types of Energy
Conversion Factor

(KJ/toe)
Carbon Oxidation Rate

CO2 Emission
Factor (kgCO2/GJ)

Coal 41,868 1 94.6
Oil products 41,868 1 72.35

Biomass energy 41,868 1 75.18
Natural gas 41,868 1 56.1

Electric power - - -

Note: Data source: Intergovernmental Panel on Climate Change (IPCC) 2006 edition.

Since electricity is a secondary energy, and carbon emissions from electricity of the road
transportation industry in the six Asia-Pacific countries in 2016 only account for 1.50% of total
carbon emissions of all energy consumptions, the method to calculate carbon emissions of electricity in
this paper is to convert the energy consumption of electricity into equivalent standard coal, and then
use the carbon emissions of standard coal to represent the carbon emissions of electricity.

3.2. Decomposition Variables and Their Data Sources

The driving factors of the decomposition model for carbon emissions based on LMDI mainly
include economic output, transportation intensity, energy intensity, the carbon emissions coefficient,
and population size. The data of the six countries’ GDP and population are derived from the UN
database, in which the GDP of the six countries is calculated by constant 2010 prices in US Dollars.
Road transportation turnover comes from the World Bank database. Energy consumptions of road
transportation based on the energy consumptions of the IEA database are converted to standard coal
by the method of “oil equivalent–calorific value–standard coal”. The detailed forms are shown in
Tables 2 and 3.
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Table 2. The element’s description and data sources.

Elements Description Data Resource

GDP Gross Domestic Production at constant 2010 prices in US Dollars UN database
POP Population UN database
TRS Total road turnover World Bank database
PE Total energy consumption of road transportation IEA database
C Total CO2 emissions of road transportation Estimate by Formula (11)

Table 3. The driving factors of the decomposition model.

Driving Factors Description Symbols

G Economic output G = GDP/POP
R Transportation intensity R = TRS/GDP
P Energy intensity P = PE/TRS
S Carbon emissions coefficient S = C/PE
O Population size O = POP

3.2.1. Economic Output

According to Figure 1, China’s per capita GDP in 2016 increased by 857.20% compared with that in
1990, ranking first among the six countries. The per capita GDP of Russia in 2016 increased by 19.00%
compared with 1990, being last among the six countries. In 2016, China’s per capita GDP reached
$6,770 per person, Russia’s $11,500 per person, while the per capita GDP of Australia, Canada, and the
United States exceeded $50,000 per person.
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Figure 1. Per capita GDP of six Asia-Pacific countries from 1990 to 2016. Note: Data source: United
Nations (UN) database.

3.2.2. Transportation Intensity

The transportation intensity of the six countries is shown in Figure 2. Indian transportation intensity
of the road transportation industry is highest in 2016, reaching 1620.96 million tonne-kilometer/$billions,
secondary in China at 653.77 million tonne-kilometer/$billions, and lowest in Canada at 121.96 million
tonne-kilometer/$billions. In addition, India’s road transportation industry presents the largest increase
in transport intensity, with 269.04% growth in 2016 compared with 1990, ranked first among all
countries, followed by Canada with an increase of 28.94%. In the study range, the transportation
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intensity of the United States and Russia show a decreasing trend. The transportation intensity of the
United States decreased by 23.01% in 2016 compared with 1990, while that of Russia decreased by
35.04%. The reason for the high transportation intensity of India lies in its relatively high proportion
of manufacturing and agriculture, and relatively high proportion of road transportation in the five
transportation modes. China witnessed a high transportation intensity, which is also due to its relatively
high proportion of manufacturing industry in its national economic industry.
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Figure 2. Transportation intensities of six Asia-Pacific countries from 1990 to 2016. Note: Data source:
Organization for Economic Cooperation and Development (OECD) Database.

3.2.3. Energy Intensity

The changes of energy intensity for the road transportation industry in the six Asia-Pacific countries
are shown in Figure 3. While energy intensities of the road transportation industry in Australia, Canada,
United States, and India show decreasing trends within the research range, energy intensities of China
and Russia increase by 45.26% and 20.78% respectively. In 2016, Canada’s road transportation industry
showed the highest energy intensity, reaching 3.09 tons per million tonne-kilometers; Russia’s was
second at 2.88 tons per million tonne-kilometers; and the United States’ third, with 1.81 tons per
million tonne-kilometers. The reason for India’s low energy intensity is that motorcycles account for
nearly 80% of all motor vehicles in India, while trucks and lorries account for only 5.3%. The energy
consumption of motorcycles is far less than that of vehicles with four wheels or above. The reason for
China’s low energy intensity is that the statistics of China’s road transport industry cover operating
vehicles, excluding private cars, while the statistics of the other five countries cover private cars.
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Figure 3. Energy intensities of the six Asia-Pacific countries from 1990 to 2016. Note: Data source:
International Energy Agency (IEA) database.

3.2.4. Population Size

The population sizes of the six Asia-Pacific countries are shown in Figure 4. In the study range,
the population sizes of the countries, except Russia, have increased to some extent. Among them,
India’s population in 2016 increased by 52.18% compared with 1990, ranking first among the six
countries, while Russia’s decreased by 2.44% year-on-year, ranking last of countries. In 2016, China
and India, respectively, had a population of 1.403 billion and 1.324 billion, accounting for 43.13% and
40.69% of the total population of the six Asia-Pacific countries.
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Figure 4. Population sizes of the six Asia-Pacific countries from 1990 to 2016. Note: Data source: United
Nations (UN) database.
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3.2.5. Carbon Emissions Coefficient

The carbon emissions coefficients of the six Asia-Pacific countries are shown in Figure 5. Within the
research range, the carbon emissions coefficients of the six Asia-Pacific countries show downward
trends, but the decline is relatively small.
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Figure 5. Carbon emissions coefficients of the six Asia-Pacific countries from 1990 to 2016. Note: Data
source: International Energy Agency (IEA) database.

4. Results and Discussions

4.1. Analysis on Total Carbon Emissions

The results of the calculation for carbon emissions of the road transportation industry in the six
Asia-Pacific countries from 1990 to 2016 are shown in Figure 6 and Table 4. The total carbon emissions
from the road transportation industry of the six countries increased from 1605.73 million tons in 1990
to 2961.37 million tons in 2016. Among them, in 2016, the combined carbon emissions from the road
transportation industry of the United States and China accounted for 53.73% of the total volume of the
six countries. On the whole, carbon emissions of the road transportation industry in the six countries
in the study range increased rapidly, among which the average annual growth rate of China’s carbon
emissions is 9.65%, far higher than those of other countries; India ranks second with 6.36%, and Russia
last with a rate of −0.17%.

On the other hand, in the United States and Canada, appeared turning points appeared in carbon
emissions in 2007 and 2011, respectively. In 2016, the per capita carbon emissions of China and
the United States far exceeded those of the other countries, reaching 4.04 tons and 4.99 tons per
capita, respectively.
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Figure 6. Carbon emissions of road transportation in the six Asia-Pacific countries from 1990 to 2016.

Table 4. Carbon emissions from road transportation in the six Asia-Pacific countries.

Country

Average
Annual
Growth
Rate (%)

Carbon
Emissions

in 1990
(million

tons)

Carbon
Emissions

in 2016
(million

tons)

1990–2016
Increasing

Multiples of
Carbon

Emissions

Turning
Points’ Year
for Carbon
Emissions

Per capita
Carbon

Emissions
in 2016

(ton/person)

Australia 1.46% 56.68 82.29 0.45 - 3.41
Canada 1.49% 100.36 146.60 0.46 2011 4.04
China 10.67% 60.58 728.49 11.03 - 0.52
India 6.76% 46.95 247.94 4.28 - 0.19

Russia 0.78% 156.77 177.94 0.14 - 1.24
United states 1.20% 1184.39 1606.24 0.36 2007 4.99

Total 22.36% 1605.73 2989.51 16.71 - 14.38

Note: Data source: The International Energy Agency database.

4.2. Analysis on Main Driving Effect

While calculated with Formulas (5)–(10), the years from 1990 to 2016 are divided into nine time
periods at intervals of three years. The effect value and contribution rate of every factor driving carbon
emissions of road transportation industry are calculated separately in each time period. This paper uses
the LMDI decomposition method to decompose carbon emissions of the road transportation industry in
the six Asia-Pacific countries. They are mainly decomposed into economic output effect, transportation
intensity effect, energy intensity effect, energy carbon emissions coefficient effect, and population size
effect, and the calculated effect value and contribution rate of each factor. The contribution rate of each
influence factor is the ratio of effect value of the influencing factor to the total effect value of carbon
emissions, e.g., BDG = DG/ΔC, whose results are shown in Tables 5 and 6. Seen from the decomposition
results, the economic output effect presents the largest contribution rate, the population size effect is
the second, and the carbon emissions coefficient the smallest. Therefore, the economic output and
population size effects are the main driving factors for the growth of carbon emissions from the road
transportation industry in the six Asia-Pacific countries.
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4.2.1. Economic Output Effect

As can be seen from Table 5, most of the economic output effect values of the six countries in the
research interval are positive, and only a few years witness small negative values of absolute values.
This indicates that the economic output effect plays a positive driving role in the carbon emissions of
the road transportation industry.

Seen from Figure 7, the values of the economic output effect for the United States, Canada, Russia,
and Australia present an overall inverted "U" pattern, which conforms to the development law of the
environmental Kuznets curve. China and India are both developing countries; their national economy
and industrialization are in a stage of rapid development, and they are still at the left end of the
environmental Kuznets curve, having no turning points yet. Therefore, the influence of economic
output on carbon emissions of the road transportation industry continues to increase.

Figure 7. Effect values of the economic output effective for the six Asia-Pacific countries.

From the overall results, the value of the economic output effect (DG, Table 5) and its contribution
rate (BGD, Table 6) in each period of the six countries from 1990 to 2016 are greater than the other effects.
This indicates that the economic output effect is the main influencing factor for the growth of the road
transportation industry’s carbon emissions. According to the calculation, the values of the economic
output effect for China, Australia, and the United States from 1990 to 2016 are 606.64, 31.96, and 540.90,
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respectively, whose respective contribution rates are 90.83%, 127.76%, and 128.22%. The results indicate
that the economic output effects of China, Australia, and the United States have greater influences
on carbon emissions of the road transportation industry than other countries. This reveals that the
economic output effects of the three countries still have a relatively large space to decline.

4.2.2. Transportation Intensity Effect

Most of the effect values (DR, Table 5) are negative in the transportation intensity effects from
China, Russia, and the United States to carbon emissions of road transportation industry in each stage.
This indicates that the transportation intensity effects of the three countries present negative driving
forces of carbon emissions of the road transportation industry. India’s has a positive driving effect.
The reason is that the development of India’s manufacturing industry and the improvement of people’s
living standard leads to increasing traffic. Thus, the growth rate of road freight volume and passenger
volume exceeds that of GDP, bringing an increase of transportation intensity. However, Australia’s and
Canada’s have no significant influence, which shows that for China, Russia, and the United States,
the transportation intensity effect is an important factor to curb the growth of carbon emissions,
while for India, measures need to be taken to reduce the transportation intensity and the influences of
transportation intensity effect on the growth of carbon emissions.

4.2.3. Energy Intensity Effect

There are some differences in the influences of energy intensity effect (DP, Table 5) on carbon
emissions of the road transportation industry in the six countries. Overall, Australia, the United States,
India, and Canada play negative roles in their energy intensity effects driving carbon emissions of the
road transportation industry, while China and Russia act as positive driving roles. Since the 1990s,
the slow promotion of Chinese vehicle energy saving technology and the increasing requirements
of enterprises on the speed, as well as efficiency of transportation, make a gradual rise in energy
consumption intensity of Chinese operating road transportation vehicles. Hence, this finally leads to
the rise of energy intensity for China’s road transportation industry. Therefore, it shows that China’s
energy intensity effect has a positive influence on carbon emissions of the road transportation industry.

During the study period, the contribution rates in 1990–2016 (BDP, Table 6) of the energy intensity
effect in Canada and Russia are, respectively, −122.83% and −512.81%. This indicates that the energy
intensity effect of the two countries is the main influencing factor in reducing carbon emissions of the
road transportation industry. China’s contributes at a rate of 24.23% to carbon emissions of the road
transportation industry, ranking first among all countries. This indicates that the energy intensity effect
on carbon emissions has a positive effect.

4.2.4. Carbon Emissions Coefficient Effect

It can be seen from Tables 5 and 6 that the values of the carbon emissions coefficient effect
(BDS, Table 5) for the six countries are all less than 4, and the contribution rates of the carbon emissions
coefficient effect are less than 9%. So, the carbon emissions coefficient effect has a relatively small
influence on the carbon emissions of the road transportation industry for the six countries.

4.2.5. Population Size Effect

It can be seen from Table 6 that, except for Russia, most values of the population size effect
(DO, Table 5) for the other five countries in each period are positive. This indicates that the population
size effect plays a positive driving role in the carbon emissions of the road transportation industry.
The effect value of the Russian population size effect is negative, mainly due to the decline of their
population in the research period—and the decline is obvious in that their population decreased by
2.44% in 2016 compared with that in 1990, with a total of 3.59 million people.
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5. Conclusions and Suggestions

5.1. Conclusions

This paper uses the LMDI decomposition model to analyze the carbon emissions and driving
factors of the road transportation industry for six Asia-Pacific countries. It comes to the following
main conclusion that an overall rise is seen in the carbon emissions of the road transportation industry
of the six Asia-Pacific countries from 1990 to 2016. In 2016, the total carbon emissions of the road
transportation industry in the six Asia-Pacific countries reached 2961.37 million tons compared with
that in 1990, with a growth of 84.42%. Among them, the carbon emissions of the road transportation
industry for the United States accounted for 54.24% of the total volume of that in the six Asia-Pacific
countries in 2016, ranking highest among them; China was second with 24.60%, and Australia came in
last with only 2.78%. Among the driving factors, the economic output and population size effects play
positive driving roles in the road transportation industry; the economic output effect is the main factor
for their increasing carbon emissions. However, the transportation intensity effect and the energy
intensity effect, being divergent to some degree in different countries, have negative driving effects on
the carbon emissions of the road transportation industry in most countries. Where the transportation
intensity effect of India plays a positive driving role in the carbon emissions of the road transportation
industry, contributing with a rate of 78.47%, the energy intensity effects of China and Russia also play
positive driving roles in the carbon emissions. The carbon emission coefficient effect has a relatively
small influence on the carbon emissions of the road transportation industry in the six countries—and,
except Russia, the population size effect of the other five countries plays a positive role in driving the
carbon emissions of the road transportation industry.

5.2. Policy Suggestions

The United States, which accounts for more than half of the total carbon emissions from the
six Asia-Pacific countries, withdrew from Paris Agreement in 2017. This signaled that the United
States did not want to fulfill its international obligations to reduce carbon emissions. The international
community should exert pressure on them to change their attitude towards carbon emissions control.
China is second only to the United States in carbon emissions of the road transportation industry,
and has made some progress in carbon emissions in recent years. However, the rising energy intensity
restricts its achievement of carbon emissions control. China should make policies, such as accelerating
the promotion of new energy vehicles and improving vehicle emissions standards, etc., to reduce the
energy intensity of road transportation industry. The carbon emissions of the Indian road transportation
industry are growing relatively fast. Therefore, India should reduce its transportation intensity and
control its carbon emissions growth by controlling the carbon emissions of transportation in the process
of developing manufacturing industry.

Compared with 1990, Russia is the only one of the six Asia-Pacific countries whose carbon
emissions from the road transportation industry decreased in 2016. However, the age of Russian road
operating vehicles is generally older, which leads to its rising energy intensity in the road transportation
industry since 1990. Russia should reduce this energy intensity and promote its carbon emissions to fall
faster by formulating policies such as accelerating the elimination of old cars. Since 2005, the carbon
emissions of the road transportation industry in Canada have begun to slow down, and since 2014,
its carbon emissions have shown a negative growth. So, Canada can lower its carbon emissions
by reducing its transportation intensity. Australia witnesses a relatively slow growth in its carbon
emissions of the road transportation industry, and a relatively good result in its carbon emissions
control. Therefore, it can be improved from the aspect of reducing transportation intensity next.
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Appendix A

In this section, we give the calculation process of the LMDI method. To this end, it follows from
Formula (4) that:

ln C = ln G + ln R + ln P + ln S + ln O

Therefore:

ln Ct − ln C0 = ln
Gt

G0 + ln
Rt

R0 + ln
Pt

P0 + ln
St

S0 + ln
Ot

O0 (A1)

Let ΔC = Ct −C0.
Then, we can rewrite ΔC as follows:

ΔC =
Ct −C0

ln Ct − ln C0

(
ln Ct − ln C0

)
Furthermore, by Formula (A1), we have:

ΔC =
Ct −C0

ln Ct − ln C0 ·
[
ln

Gt

G0 + ln
Rt

R0 + ln
Pt

P0 + ln
St

S0 + ln
Ot

O0

]

Let:
DG = Ct−C0

ln Ct−ln C0 · ln Gt

G0 ; DR = Ct−C0

ln Ct−ln C0 · ln Rt

R0 ;

DP = Ct−C0

ln Ct−ln C0 · ln Pt

P0 ; DS = Ct−C0

ln Ct−ln C0 · ln St

S0 ;

DO = Ct−C0

ln Ct−ln C0 · ln Ot

O0

Then:
ΔC = Ct −C0 = DG + DR + DP + DS + DO
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Abstract: Global warming caused by excessive emissions of CO2 and other greenhouse gases is
one of the greatest challenges for mankind in the 21st century. China is the world’s largest carbon
emitter and its transportation industry is one of the fastest growing sectors for carbon emissions.
However, China is a vast country with different levels of carbon emissions in the transportation
industry. Therefore, it is helpful for the Chinese government to formulate a reasonable policy of
regional carbon emissions control by studying the factors influencing the carbon emissions of the
Chinese transportation industry at the regional level. Based on data from 1997 to 2017, this paper
adopts the logarithmic mean divisia index (LMDI) decomposition method to analyze the influencing
degree of several major factors on the carbon emissions of transportation industry in different regions,
puts forward some suggestions according to local conditions, and provides references for the carbon
reduction of Chinese transportation industry. The results show that (1) in 2017, the total carbon
emissions of the Chinese transportation industry were 714.58 million tons, being 5.59 times of those
in 1997, with an average annual growth rate of 9.89%. Among them, the carbon emissions on the
Eastern Coast were rising linearly and higher than those in other regions. The carbon emissions in
the Great Northwest were always lower than those in other regions, with only 38.75 million tons
in 2017. (2) Economic output effect is the most important factor to promote the carbon emissions
of transportation industry in various regions. Among them, the contribution values of economic
output effect to carbon emissions on the Eastern Coast, the Southern Coast and the Great Northwest
continued to rise, while the contribution values of economic output effect to carbon emissions in
the other five regions decreased in the fourth stage. (3) The population size effect promoted the
carbon emissions of the transportation industry in various regions, but the population size effect
of the Northeast had a significant inhibitory influence on the carbon emissions in the fourth stage.
(4) The regional energy intensity effect in most stages inhibited carbon emissions of the transportation
industry. Among them, the energy intensity effects of the North Coast and the Southern Coast in
the two stages had obvious inhibitory influences on carbon emissions of the transportation industry,
but the contribution values of the energy intensity effect in the Great Northwest and the Northeast
were positive in the fourth stage. (5) Except for the Great Southwest, the industry-scale effects of
other regions had inhibited the carbon emissions of transportation industry in all regions. (6) The
influences of the carbon emissions coefficient effect on carbon emissions in different regions were not
significant and their inhibitory effects were relatively small.

Keywords: transportation industry; carbon emissions; regional; influencing factor; LMDI
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1. Introduction

Global climate change is a major challenge in the field of sustainable development for the world.
Global CO2 emissions, influenced by rising energy demand, rose 1.7% in 2018 to a record 33.1 billion
tons, according to the research report of “carbon emissions from fuel combustion” released by the
International Energy Agency (IEA) [1]. In 2017, the carbon emissions of the transportation sector
accounted for nearly a quarter of the global total, reaching 8.04 billion tons. According to IEA data,
in 2007, Chinese CO2 emissions surpassed those of the United States and China became the world’s
largest CO2 emitter [2]. The rapid growth of Chinese carbon emissions has attracted global attention.
Based on IEA data, this paper calculates that Chinese carbon emissions reached 9.302 billion tons
in 2017, accounting for 28.33% of the total in the world. Among them, the transportation industry
accounts for 9.5% of Chinese total carbon emissions, becoming one of the industries with the fastest
growth of carbon emissions in China [3].

In recent years, Chinese carbon reduction has also received extensive attention [4]. Furthermore,
as one of the important sources of Chinese energy consumption and carbon emissions, still in a stage
of rapid growth, the transportation industry is bound to become a key industry to achieve targets of
carbon reduction in the future [5]. China is a vast country with different industrial structures between
provinces and regions [6], as well as different levels of carbon emissions in the transportation sector.
Therefore, it is of positive guiding significance for the Chinese government to scientifically identify the
influence degree of major factors on the carbon emissions of Chinese regional transportation industry
to formulate the policies of total carbon emissions control and distribution as well as carbon reduction.

Schipper of Lawrence Berkeley national laboratory was the first scholar to study the carbon
emissions of the transportation industry [7]. Later, Chinese scholars Zhu et al. and Su et al. also
carried out relevant studies [8,9]. At present, studies at home and abroad mainly focus on applying the
STIRPAT (Stochastic Impacts by Regression on Population, Affluence, and Technology) model, Kaya
identity and its extension model, etc., applying the Laspeyres index method or the logarithmic mean
divisia index (LMDI) method to analyze the degree of key factors influencing on carbon emissions and
using econometric analysis and other methods to study the influencing factors of carbon emissions.
Timilsina and Shrestha (2009) used the LMDI method to study CO2 emissions of transportation sector in
some Asian countries. The results showed that the change of GDP (gross domestic product) per capita,
population growth and transport energy intensity were the main factors for the growth of carbon
emissions; fiscal policy, fuel economy policy, and the policy of encouraging transferring into clean
energy and energy-saving vehicles also played positive roles to curb carbon emissions [10,11]. Based
on the Laspeyres index decomposition method, Zhang et al. (2017) selected China and other 6 countries
as the research objects and constructed a secondary decomposition model for CO2 emissions of the
roads and railways. The study found that the growth of GDP per capita is the most important reason
for the growth of road and railway turnover; the improvement of energy intensity and energy structure
can slow down the growth of CO2 emissions [12]. Du et al. (2017) analyzed the influencing factors
of carbon emissions in the Chinese transportation industry and proposed a path analysis method
based on multiple regression analysis. The results showed that economic level, transportation intensity,
and energy intensity were the main factors influencing the carbon emissions of the transportation
industry [13]. Talbi (2017) used the vector autoregressive model to study the relationship between CO2

emissions and energy consumption, energy intensity, economic growth and fuel efficiency in the road
transportation sector in Tunisia [14]. Based on the panel data of nine provinces and two cities in the
Yangtze River economic belt from 2005 to 2014 and combined with the extended Kaya identity, Lu et al.
(2017) analyzed the influencing factors of CO2 emissions in the transportation industry through the
LMDI decomposition method. The results showed that energy structure, energy consumption of per
unit added value and turnover of per unit GDP inhibited CO2 emissions, while added value of per
unit turnover, per capita GDP and population promoted CO2 emissions [15]. Based on the improved
STIRPAT model, Fan et al. (2019) used ridge regression to explore the influences of passenger-freight
turnover, per capita GDP, energy intensity, urbanization rate and private car ownership on traffic
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carbon emissions in the five Great Northwestern provinces. The result of ridge regression analysis
showed that, except for Gansu Province, the contribution degrees of influence factors in the Great
Northwest were all energy intensity > per capita GDP > urbanization rate > private car ownership
> passenger-freight turnover [16]. In addition, in order to analyze the carbon emissions features of
different regions, some scholars have also conducted studies on specific provinces and cities, such as
Henan Province [17], Jiangsu Province [18] and Beijing [19].

To sum up, scholars at home and abroad further studied the influencing factors of carbon emissions
in the transportation industry combining with different models from different perspectives. However,
there are also the following problems: (1) the vast majority of scholars only focused on the national
level [10–14], specific regions or provinces [15–19], ignoring the differences of CO2 emissions in the
transportation industry between regions of a country [20]; (2) few scholars pay attention to the degree
of the same factor influencing carbon emissions in transportation industry in different regions of a
country. This paper divides 30 Chinese provinces into 8 regions, calculates and analyzes the current
situation of carbon emissions of different regions in the transportation industry from 1997 to 2017, and
uses the LMDI decomposition method to analyze the influencing factors on carbon emissions in the
transportation industry of different regions. Finally, the paper puts forward some suggestions according
to local conditions to provide references for the carbon reduction of the Chinese transportation industry.

2. Methods

2.1. Carbon Emissions Calculation Method

Carbon emissions indicate “the general term of greenhouse gases, which is presented by CO2

equivalent (CO2 eq)”, mainly including carbon dioxide, methane, nitrous oxide, and other carbon
oxides. Among them, the proportion of CO2 emissions is more than 60% of that of greenhouse gas
emissions [21]. For lacking comprehensive statistics of the latest global carbon emissions, most scholars
apply the methods, provided by IPCC (Intergovernmental Panel on Climate Change) Guidelines on
National Greenhouse Gas Inventories, and adopt the data of energy consumption to calculate carbon
emissions. In the aspect of carbon emissions measurement of transportation industry, the common
methods are “top-down” and “bottom-up” methods. The “top-down” method is based on the
conversion factors of energy consumptions and energy carbon emissions coefficient of vehicles to
calculate the carbon emissions of the transportation industry. The “bottom-up” method is to calculate
the energy consumption of the transportation industry based on the data of different types of vehicles
and fuel consumptions of traveled mileage and per unit of traveled mileage, etc., thus calculating the
carbon emissions. Yang et al. (2014) and Ma et al. (2017) both used the “top-down” method to calculate
the carbon emissions of the transportation industry in China and the Chinese Beijing-Tianjin-Hebei
Region [22,23]. As for the “bottom-up” measurement method, Zhang et al. (2009) calculated CO2

emissions of different transportation modes for residents in Shanghai from 2002 to 2006 [24]. Wang et
al. (2019) divided the Chinese comprehensive transportation system into four modes—road, railway,
domestic water transportation and domestic civil aviation—and analyzed the factors of influencing
carbon emissions change from 2003 to 2015 [25]. However, the “bottom-up” method needs to take into
account such factors as the types of vehicles, influencing distance, energy consumption of per unit
mileage, etc. At present, the relevant provincial and regional statistics in China are not yet perfect
and moreover, the uncertainty is relatively large in the calculation [26]. Therefore, this paper adopts a
“top-down” calculation method.

This paper, based on the data of terminal energy consumptions of industry, calculates the carbon
emissions of the transportation industry in 30 provinces of China and selects 12 main types of energies
according to the energy classification of IPCC. The energies include raw coal, cleaned coal, briquette
coal, carbon coke, crude oil, gasoline, kerosene, diesel, fuel oil, liquefied petroleum gas and natural gas.
The calculation formula of carbon emissions of fuel combustion recommended by IPCC is as follows:
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C =
∑

i j

Cij =
∑

i j

Eij × fi =
∑

i j

(Eij ×NCVi ×CCi ×COFi × 44
12

) (1)

In the formula, C represents the total CO2 emissions of the transportation industry in China or its
certain region; Cij represents CO2 emissions of energy i in province j; i is the type of the fossil fuels
(i = 1, 2, 3,· · · ,12); Eij stands for the terminal consumption of fossil fuel i in province j; fi indicates for
the CO2 emissions coefficient of carbon energy i; NCVi shows the mean low calorific value of energy i;
CCi refers to the carbon per calorific value of energy i, that is, the carbon content per unit of heat; COFi
is the carbon oxidation factor, namely, the carbon oxidation rate during energy combustion; and 44 and
12 are the molecular weights of CO2 and carbon [27].

The specific folding standard coal coefficients and carbon emissions coefficients for all energies
are shown in Table 1.

Table 1. Carbon emissions coefficient of transportation and energy.

Names of Energies

Mean Low
Calorific Value

[NCVi]
(KJ/kg or KJ/m3)

Carbon Per
Calorific Value

[CCi]
(kg-C/GJ)

Carbon Oxidation
Rate [COFi]

(%)

Carbon Dioxide
Emission

Coefficients [fi]
(kg-CO2/kg or

kg-CO2/m
3)

Raw coal 20,908 26.37 0.94 1.9003
Cleaned coal 26,344 25.41 0.93 2.2829
Briquette coal 15,910 33.56 0.90 1.7622
Carbon coke 28,435 29.42 0.93 2.8604

Coke oven gas 17,354 13.58 0.98 0.8469
Crude oil 41,816 20.08 0.98 3.0202
Gasoline 43,070 18.90 0.98 2.9251
Kerosene 43,070 19.60 0.98 3.0179

Diesel 42,652 20.20 0.98 3.0959
Fuel oil 41,816 21.10 0.98 3.1705

Liquefied
petroleum gas 50,179 17.20 0.98 3.1013

Natural gas 38,931 15.32 0.99 2.1622

Note: data are from the General Principles for Calculating Comprehensive Energy Consumption (GB/T 2589-2008)
and the Guide to National Greenhouse Gas Emission Inventory.

2.2. Kaya Identity Extension

Firstly proposed by Yoichi Kaya in 1989 [28], the Kaya identity establishes the relationship between
economic and demographic factors and CO2 emissions, decomposes the influencing factors of CO2

emissions and accurately quantifies the contribution degree of various influencing factors.
Kaya identity is simple in structure and easy to operate. Although it has been widely used in

such fields as energy, environment and economy, etc., the identity is limited in the number of focused
variables. In recent years, when studying influencing factors on carbon emissions of transportation
industry, some scholars have found that the change of carbon emissions is also related to energy
intensity, energy structure, added value of the transportation industry, etc. In view of this, this paper
extends the Kaya identity to introduce the scale and energy intensity of the transportation industry.
The specific expression is:

C =
C
E
× E

ADV
× ADV

GDP
× GDP

POP
× POP (2)

In the formula, C represents carbon emissions of transportation industry, E represents energy
consumption of transportation industry, ADV represents added value of transportation industry, GDP
represents gross regional product, and POP represents regional population size. Among them, C

E is the
energy carbon emissions coefficients of the transportation industry, represented by G; E

ADV is the factor
of energy intensity, namely, the energy consumption of per unit added value for the transportation
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industry, represented by S; ADV
GDP is the industry scale, that is, the proportion of the added value of the

transportation industry in the gross regional product, represented by A; GDP
POP is the factor of economic

output, that is, regional GDP per capita, expressed by R;POP represents the factor of population size,
expressed by P.

Thus, Equation (2) can be expressed as Equation (3):

C = G× S×A×R× P (3)

In Equation (3), C, G, S, A, R, and P indicate the relationships between carbon emissions in
transportation and factors of energy carbon emissions coefficients, energy intensity, industry size,
economic output, and population size, etc.

2.3. Logarithmic Mean Divisia Index (LMDI) Decomposition Method Based on Extended Kaya Identity

In recent years, scholars have made great achievements in studying the relationships between
energy consumptions and carbon emissions by means of decomposition analysis. Currently, the two
relatively popular methods of decomposition are structural decomposition analysis (SDA) and index
decomposition analysis (IDA). Based on the input-output table, SDA conducts a detailed analysis on
various influencing factors [29]. In 1991, IDA expanded from the field of energy consumption to the
study of carbon emissions related to energy consumption for the first time. Based on the aggregate
data of departments and its time series analysis, IDA can make a meaningful decomposition for the
industry and find out the deep factors that indirectly affect the total index [29,30].

Based on the comprehensive comparison of SDA and IDA methods, Ang et al. (1998) suggested
that the Laspeyres index and Divisia index of the IDA method should be adopted when studying
the decomposition analyses on factors of energy consumption and gas emissions [31]. However, the
Laspeyres decomposition method will produce relatively large residuals during the decomposition
process, which will have an influence on the results of decomposition analyses. On the contrary,
LMDI in the Divisia index decomposition method solves the residual value and zero value problems
inherent in the index decomposition method, which has the advantage of complete decomposition
and a unique result, making the results more convincing [32,33]. Therefore, the LMDI decomposition
method is finally adopted in this paper to analyze the carbon emissions of the Chinese regional
transportation industry.

The LMDI decomposition method includes two forms, addition and multiplication.
Their decomposition results can be inter-converted and are consistent for the two methods [32].
Therefore, this paper applies the method of “additive decomposition” to decompose the model in
Equation (3). The specific formula is presented in Equation (4):

ΔC = DG + DS + DA + DR + DP (4)

In Equation (4), DG indicates for the carbon emissions coefficient effect of energy, DS indicates for
the energy intensity effect, DA indicates for the industry scale effect, DR indicates for the economic
output effect, and DP indicates for the population size effect. Then, the expressions of each factor,
which influences on carbon emissions, are respectively Equations (5)–(9). Similarly with those in
reference [34], they are used for the detailed derivation process.

DG =
CT −C0

ln CT − ln C0 · ln(
GT

G0 ) (5)

DS =
CT −C0

ln CT − ln C0 · ln(
ST

S0 ) (6)

DA =
CT −C0

ln CT − ln C0 · ln(
AT

A0 ) (7)
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DR =
CT −C0

ln CT − ln C0 · ln(
RT

R0 ) (8)

DP =
CT −C0

ln CT − ln C0 · ln(
PT

P0 ) (9)

In Equations (5)–(9), C0 represents the base year’s carbon emissions of the transportation industry
in China or its certain region; CT indicates for the carbon emissions of the transportation industry in
year T in China or its certain region. G0, S0, A0, R0 and P0 respectively denote the base year’s carbon
emissions coefficient of energy, energy intensity, industry scale, economic output and population size
of the transportation industry; GT, ST, AT, RT and PT respectively indicate the energy carbon emissions
coefficient, energy intensity, industry scale, economic output and population size of the transportation
industry in year T.

2.4. Data Sources

The data range of this paper is from 1997 to 2017. Considering the completeness and availability
of data, this study covers 30 provinces (autonomous regions and municipalities) in China, excluding
Taiwan, Hong Kong, Macao and Tibet. Among them, the reference coefficients of conversion standard
coal for energy and the energy consumption data of terminal transportation industry in each year
of Chinese each province was derived from the China Energy Statistical Yearbook from 1998 to 2018.
The factors of carbon emissions for the energies were derived from the General Principles for Calculation
of Comprehensive Energy Consumption (GB/T 2589-2008) and the 2006 edition of the IPCC Guidelines for
National Greenhouse Gas Emission Inventory. Population, GDP and ADV (added value of transportation
industry) are all from the China Statistical Yearbook from 1998 to 2018. GDP and the added value of the
transportation industry are constant price based on the base year 1997. In addition, individual missing
data are obtained by interpolation, assuming the same annual growth rate.

In order to facilitate the research, this paper divides China into eight comprehensive regions
according to the concept of regional division of comprehensive economy, proposed by the development
research center of the state council of China [35]. They are respectively the Northeast (i.e., Liaoning, Jilin
and Heilongjiang Provinces), the North Coast (i.e., Beijing, Tianjin, Hebei and Shandong), the Eastern
Coast (i.e., Shanghai, Jiangsu and Zhejiang), the Southern Coast (i.e., Fujian, Guangdong and Hainan),
the middle reaches of the Yellow River (i.e., Shaanxi, Shanxi, Henan, Inner Mongolia), the middle reaches
of the Yangtze River (i.e., Hubei, Hunan, Jiangxi, Anhui), the Great Southwest (i.e., Yunnan, Guizhou,
Sichuan, Chongqing, Guangxi), and the Great Northwest (i.e., Gansu, Qinghai, Ningxia, Xinjiang).

3. Variable Description and Analysis

3.1. Carbon Emissions Status of Chinese Transportation Industry

The “top-down” calculation method is used to calculate the total carbon emissions of Chinese
transportation industry from 1997 to 2017 by using Equation (1), as shown in Figure 1.

From Figure 1, the total CO2 emissions in the Chinese transportation industry are on the rise year
by year, that is, from 108.43 million tons in 1997 to 714.58 million tons in 2017, increasing 5.59 times,
with an average annual growth rate of 9.89%. From 1997 to 2012, the average annual growth rate was
as high as 12.39%, and then from 2012 to 2017, the growth rate slowed down to only 2.71%. This is
mainly because the economic development of China grew rapidly from 1997 to 2012, with the average
annual GDP growth rate of 11.61%. As a result, the rigid demand for transportation continued to
increase and the total carbon emissions of transportation continued to grow at a high speed. After
2012, Chinese economic development turned into the new normal, from the pursuit of speedy growth
to quality growth. Therefore, economic growth was slowing down. From 2012 to 2017, GDP grew by
an average of 8.03% a year. The demand for transportation decreased due to the optimization of the
Chinese industrial structure, the decline of traditional manufacturing, and the increasing proportions
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of the dominating service industry of financial, information, etc. Therefore, carbon emissions growth
slowed down for the Chinese transportation industry from 2012 to 2017.
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Figure 1. Carbon emissions of Chinese transportation industry from 1997 to 2017.

CO2 emissions from transportation industry in the eight regions of China are shown in Figure 2
and Table 2. Overall, carbon emissions in all the regions were on the rising trend. Among them,
the carbon emissions on the Eastern Coast rose sharply and were higher than that in other regions.
Its carbon emissions increased from 19.56 million tons in 1997 to 123.36 million tons in 2017, with
an average annual growth rate of 9.64%. The Eastern Coast is located in a favorable geographical
position. Its economic development has always been at a high level and its demand for transportation
continues to increase, so its carbon emissions are the highest. The emissions of the Great Northwest
were always lower than those of other regions, with only 38.75 million tons in 2017. The reason is that
the Great Northwest of China has always been an economically underdeveloped region. Its agriculture
and animal husbandry have been in relatively high proportions for a long time, compared with
other regions; while its industry and commerce account for relatively low proportions. Therefore,
the capital attraction is relatively weak, resulting in insufficient demand for freight. In addition, the
Great Northwest has a small population and relatively less demand for transportation, so it is low for
the carbon emissions of the transportation industry. Carbon emissions in the Great Southwest grew
the fastest during the study period, with an average annual growth rate of 12.18% and an 8.96-fold
increase from 1997 to 2017. Although the economic development level of the Great Southwest is
not as high as that of the Southeastern Coast, it is geographically close to the southeast, carrying on
the industrial transfer of the Southeastern Coast; therefore, the demand for freight is large. At the
same time, the Great Southwest is a place where the population gathers, with a total population of
246 million, accounting for 17.7% of the total population of China, therefore, it shows a large demand
for passenger transportation. The Great Southwest has a more favorable traffic condition. Compared
with the Great Northwest, although the railway mileage of the Great Southwest is comparable, its
road transportation is more developed. Its traffic mileage is more than 94.37% of the Great Northwest,
especially with the convenience of shipping in the Yangtze River of Sichuan and ports in Guangxi,
the inland waterway navigation mileage being 16.7 times that of the Great Northwest. Therefore,
with the rapid growth of the transportation industry, the carbon emissions in the Great Southwest
increase rapidly.
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Figure 2. CO2 emissions in the transportation industry in the eight regions of China from 1997 to 2017.

Table 2. Carbon emissions of the transportation industry in eight Chinese regions.

Region
Average Annual
Growth Rate (%)

Carbon Emissions
in 1997

(Million Tons)

Carbon Emissions
in 2017

(Million Tons)

1997–2017
Increasing

Multiples of
Carbon Emissions

The Northeast 8.56 14.07 72.73 4.17
The North Coast 9.83 14.57 95.00 5.52

The Eastern Coast 9.64 19.56 123.36 5.31
The middle reaches of the Yangtze River 10.69 13.53 103.11 6.62

The Southern Coast 9.51 15.71 96.63 5.15
The middle reaches of the Yellow River 9.37 13.04 78.29 5.00

The Great Southwest 12.18 10.71 106.72 8.96
The Great Northwest 8.75 7.24 38.75 4.35

Total 9.89 108.43 714.58 5.59

3.2. Decomposition Variables

3.2.1. Carbon Emissions Coefficients

The carbon emissions coefficients of energy in eight regions of China are shown in Figure 3. Within
the study range, the carbon emissions coefficients show a slow downward trend, with a relatively small
decline. This is because in 2017, compared with 1997, the proportion of clean energy such as natural
gas increased. In addition, the improvements of oil quality and fuel efficiency of vehicles reduced the
CO2 emissions under the same energy consumption, which lowered the carbon emissions coefficients
of energy. However, most of the vehicles in China still rely on traditional petroleum energy, so the
carbon emissions coefficients of energies in each region are relatively small.

3.2.2. Energy Intensity

In this paper, the energy intensity is the ratio between the energy consumption of transportation
and the added value of transportation industry (at the constant price in 1997) and its unit is 10,000 tons
of standard coal per 100 million yuan. The change of energy intensities of the transportation industry
in the Chinese regions are shown in Figure 4. In general, the energy intensities of the transportation
industry in most regions present an “inverted U-shaped” trend within the research range, that is, it rises
first and then slowly declines. Among them, the middle reaches of the Yangtze River presented the
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fastest growth in energy intensity, rising 51.07% in 2017 compared with that in 1997, with an average
annual growth rate of 2.08%. In 2017, the energy intensity in the Great Northwest was the highest,
with 23,200 tons of standard coal/100 million yuan. Because the proportion of road transportation in
the region continued to increase, its energy consumption was higher than those of the other regions.
The energy intensity of the North Coast is the lowest, which was only 8500 tons of standard coal/100
million yuan in 2017. The energy intensity of the region decreased rapidly after 2012. It is mainly
because the relatively strict energy conservation policies for vehicles have been adopted to reduce
energy consumption. Thus, its energy intensity is the lowest.
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Figure 3. Carbon emissions coefficients of different regions in China from 1997 to 2017.

3.2.3. Industry Scale

Industry scale is the proportion of added value of transportation industry in gross regional
product. The change of industry scale in each region is shown in Figure 5. During the study range, all
regions show an “inverted U-shaped” trend, which is first in a slow rise and then a fluctuating decrease.
After 20 years of reform and opening up, the Chinese market economy has realized great development
and domestic manufacturing industry has begun to make progress. At the same time, due to the
cheap labor and various preferential policies, large numbers of processing and manufacturing were
shifted to China, resulting in growing demands for transportation. Therefore, the scale of the regional
industry from 1997 to 2002 had different degrees of increase. After 2002, the proportion of services
represented by finance, tourism and information in each region increased, while the proportion of
traditional industries, mainly manufacturing, decreased and the demand for transportation slowed
down, thus slowing down the growth rate of added value of transportation industry.

Among them, the decline rates of the scale of industry in the Southern and the Eastern Coast are
relatively fast, with an average annual decline rate of 2.91% and 2.18% respectively. This is because
the Southern and Eastern Coast are forefronts of reform and opening-up in China. Their industrial
transformation and upgrading paces are faster. Whether information technology or the services
industry, like financial, are all at the advanced level. In addition, while a variety of emerging industries
are influencing regional economic level, they slow down the transportation demand, making industry
scale reduce quickly. In contrast, the industrial scale in the Great Southwest did not decline, but grew
at an average annual rate of 0.08%. This is because, firstly, the industrial transformation and upgrading
in the Great Southwest is relatively slow and the proportion of the traditional secondary industry is not

55



Energies 2020, 13, 1100

substantially optimized. Secondly, there are many basins and plateaus in the Great Southwest, with
rugged terrain and inconvenient transportation, which makes it difficult to reduce transportation costs.
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Figure 4. Regional energy intensities in China from 1997 to 2017.

 

0

10

20

30

40

50

60

70

19
97

19
98

19
99

20
00

20
01

20
02

20
03

20
04

20
05

20
06

20
07

20
08

20
09

20
10

20
11

20
12

20
13

20
14

20
15

20
16

20
17

In
du

st
ri

al
 s

ca
le

 [%
]

Year
The Northeast The North Coast
The Eastern Coast The middle reaches of the Yangtze River
The Southern Coast The middle reaches of the Yellow River
The Great Southwest The Great Northwest

Figure 5. Industry scale in various regions of China from 1997 to 2017.

3.2.4. Economic Output

Economic output is all expressed by GDP per capita in this paper. From 1997 to 2017, Chinese
economic output continued to grow at an average annual rate of 10.01%. GDP per capita in 2017 was
42,407.71 yuan, 5.73 times higher than that in 1997. As shown in Figure 6, the economic output of
each region continued to rise during the study range. Among them, the GDP per capita of the Eastern
Coast has always been higher than that of other regions, with an average annual growth rate of 9.60%,
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reaching 70,347.40 yuan by 2017. Due to the superior geographical location, the Eastern Coast is the
earliest to implement the reform and opening up in China and supported by national policies, so its
economic output keeps rising. The economic output of the Southern Coast ranking second in 2017
was mainly because that the Southern Coast has had a strong business atmosphere and is also an area
that firstly implemented the reform and open policy. With the locative advantage of being adjacent to
Hong Kong, Macao and Taiwan and with the help of the good shipping conditions, it attracted the
inflow of large amounts of foreign capital, making the change in industrial structure, proportional
increase in manufacturing industry and rapid development of foreign trade, so it reached a relatively
higher economic development level. The economic output in the Great Northwest in 2017 was the
lowest in all the regions. The reason is that the Great Northwest has poor natural conditions, with wide
distribution of desert, Gobi, plateaus and mountains. It makes relatively high proportions of farming
and animal husbandry, with relatively low proportions of commerce and industry. In addition, the
development pattern of the priority given to the marine trade since modern times also causes the
decline of inland commercial. Moreover, the factor of social instability in the Great Northwest also has
a certain influence on the development of its economy.
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Figure 6. Regional economic output of China from 1997 to 2017.

3.2.5. Population Size

Compared with 1997, the Chinese population increased by 153.82 million at the end of 2017,
reaching 1390.08 million. The population sizes of the eight regions are shown in Figure 7. On the
whole, the population sizes of each region increased slowly to varying degrees. Among them, the
Southern Coast was witnessed the highest growth rate, with an average annual growth rate of 1.86%
from 1997 to 2017. It is followed by the Eastern Coast, with an average annual growth rate of 1.06%.
The two regions with the slowest growth rates were the Northeast and the Great Southwest, both with
average annual growth rates of 0.17%. The population of the Northeast decreased 0.31% annually from
2015 to 2017. It is mainly because the Northeast is an old industrial base with unbalanced industrial
structure and slow economic growth, resulting in a large population outflow.
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Figure 7. Regional population sizes of China from 1997 to 2017.

4. Results and Discussion

4.1. Decomposition Results of Total Carbon Emissions in the Chinese Transportation Industry

In this paper, the research range is from 1997 to 2017. Because the research range experienced
financial volatilities of Asian financial crisis and the world financial crisis, etc., Chinese economic
growth has begun to slow markedly since 2012. So this paper divides the research range into four
stages: the first stage (1997–2002), the second stage (2002–2007), the third stage (2007–2012) and the
fourth stage (2012–2017).

By using the LMDI decomposition method, this paper decomposes the factors, which influence
on the carbon emissions of Chinese transportation industry, into economic output, industry scale,
energy intensity, population size, and carbon emissions coefficients. Equations (5)–(9) are used to
calculate the contribution values (D) and contribution rates (R) of each influencing factor. The results
are shown in Table 3. Among them, the contribution rate is the ratio between the contribution value
of each influencing factor and the sum of contribution values of the five influencing factors, e.g.,
RG = DG/ΔC.

From 1997 to 2017, the contribution value and contribution rate of energy carbon emissions
coefficients effect were −16.14 and −2.65%, respectively, to the carbon emissions of transportation
industry. It can be seen that the carbon emissions coefficients effect is conducive to the suppression of
the industry’s carbon emissions, but the influence is relatively small. This is because the improvements
of vehicle fuel efficiency and oil quality reduced the carbon emissions coefficients of energy, thus
promoting carbon reduction in the transportation industry.

Energy intensity effect has different influences on carbon emissions of Chinese transportation
industry in different stages. It has a specific and significant effect on curbing carbon emissions of
Chinese transportation industry in the third and fourth stages. The main reasons are as follows:
(1) since 2007 and 2012, the Chinese government has proposed and implemented standards for the
national pollutant emissions of motor vehicles, standardized air pollution emissions from the policy
perspective and improved the quality of oil products for motor vehicles. These measures are conducive
to reducing carbon emissions. (2) The proportion of clean energy consumption has increased. The
proportion of clean energy consumption in Chinese transportation industry has increased from 0.02% in
1997 to 4.76% in 2017. (3) The continuous improvement of Chinese informatization level has promoted
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the information technology development of platforms of online ride-hailing, taxi dispatching, freight
dispatching, etc., effectively improved the motor vehicles’ operation efficiencies of trucks, passenger
cars, taxis and etc., and reduced empty influencing rate, thus lowering carbon emissions.

Table 3. Decomposed contribution value (unit: million tons) and contribution rate (unit: %) of
influencing factors on carbon emissions of Chinese transportation.

Effect 1997–2002 2002–2007 2007–2012 2012–2017 1997–2017

Energy Carbon Emission Factor DG −4.06 −2.55 −0.34 −8.95 −16.14
RG −4.63 −1.09 −0.18 −10.03 −2.65

Energy Intensity DS −2.27 132.84 −38.01 −64.12 85.07
RS −2.59 56.85 −19.38 −71.80 13.95

Industrial Scale
DA 25.72 −83.88 −56.31 −95.89 −116.71
RA 29.33 −35.89 −28.71 −107.37 −19.14

Economic Output DR 62.35 180.22 273.56 238.58 616.80
RR 71.10 77.12 139.47 267.15 101.14

Population size DP 5.95 7.06 17.24 19.68 40.82
RP 6.78 3.02 8.79 22.04 6.69

Total Effect
�C 87.69 233.68 196.15 89.31 609.84
RC 100 100 100 100 100

The industry scale effect has a relatively obvious influence on the inhibition of carbon emissions in
Chinese transportation industry, with the overall contribution value and contribution rate of −116.71%
and −19.14%, respectively, in the study range. From different stages, except the first stage to promote
the increase of carbon emissions, the last three stages all act as inhibitory effects. This is mainly because
China has begun to actively seek the transformation and upgrading for industrial structure. The
proportion of secondary industry in the national economy has declined, while that of the tertiary
industry has been rising. As the transportation volume for per unit output value of the secondary
industry is higher than that of the tertiary industry, the demand for transportation is gradually reduced
and the industry scale is also continuously reduced, thus restraining the increase of carbon emissions.

As shown in Table 3, the contribution value of economic output effect to the carbon emissions
of the transportation industry increased year by year. The contribution rate increased from 71.10%
in the first stage to 267.15% in the fourth stage. It can be seen that economic output is the key factor
for the rise of the total carbon emissions of Chinese transportation industry. Therefore, if China
wants to reduce the carbon emissions of the transportation industry, it should slow down its speed of
economic development.

The contribution value of the population size effect to the carbon emissions of the transportation
industry continued to rise from 1997 to 2017, but the total contribution value was only 40.82. This
shows that the population size effect has a certain promoting influence on the carbon emissions of the
Chinese transportation industry, but its overall influence is limited. It is because Chinese population
control policy made the population growth rate begin to slow down. Although the continuing growth
of population promoted the increase of the demand for transportation, its increase rate is not large, so
the carbon emissions of transportation do not increase much.

4.2. Analyses of the Key Influencing Factors for Regional Carbon Emissions

In this paper, the LMDI decomposition method is used to decompose the factors affecting the
carbon emissions of transportation in eight regions of China. Their contribution values and contribution
rates of each factor are calculated. The results are shown in Tables 4 and 5.
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Table 4. Results of LMDI decomposition for carbon emissions from transportation industry in the 8
regions (unit: million tons).

Year Factor
The

Northeast

The
North
Coast

The
Eastern
Coast

The Middle
Reaches of the
Yangtze River

The
Southern

Coast

The Middle
Reaches of the
Yellow River

The Great
Southwest

The Great
Northwest

19
97

–2
00

2

DG −1.43 −0.03 −0.05 −0.47 −0.07 −0.43 −0.55 −0.43

DS −1.41 −3.86 −0.91 4.40 0.08 −6.72 5.32 −0.86

DA 2.88 1.59 4.04 3.82 2.66 3.12 7.80 1.64

DR 7.12 7.86 12.04 8.72 6.82 5.95 7.65 3.25

DP 0.33 0.73 1.72 0.05 3.66 0.55 0.09 0.51

�C 7.49 6.28 16.84 16.51 13.15 2.48 20.31 4.11

20
02

–2
00

7

DG −0.13 −1.23 −0.10 −0.36 −0.23 −1.05 0.28 −0.37

DS 15.49 32.12 25.77 8.04 25.32 18.29 12.33 0.50

DA −9.31 −3.44 −20.89 −9.38 −25.16 −4.01 −12.42 −0.80

DR 18.97 25.78 31.56 23.13 23.70 19.57 24.90 7.28

DP 0.41 1.95 3.93 −0.22 2.98 −0.10 −0.10 0.70

�C 25.44 55.18 40.26 21.20 26.61 32.71 24.98 7.31

20
07

–2
01

2

DG 0.32 −0.31 −1.15 0.75 0.35 0.24 −0.35 −0.28

DS −7.01 −9.19 −15.61 −6.02 −5.75 14.72 −5.87 −3.92

DA −7.88 −7.10 −5.31 −10.41 −4.38 −12.15 −9.56 −0.60

DR 32.00 43.30 38.44 37.30 29.51 37.71 43.54 11.01

DP 0.62 6.27 4.72 1.01 5.09 1.30 −0.03 0.84

�C 18.04 32.97 21.08 22.63 24.82 41.82 27.73 7.05

20
12

–2
01

7

DG −0.05 −1.21 −0.64 −1.27 −0.39 −3.39 −1.37 −0.55

DS 3.94 −25.71 −0.13 8.30 −15.60 −25.98 −21.10 7.52

DA −13.76 −25.67 −15.71 −15.58 −2.78 −13.83 3.87 −6.85

DR 18.18 34.70 39.83 35.03 30.71 30.02 38.47 11.27

DP −0.62 3.90 2.26 2.75 4.39 1.58 3.12 1.64

�C 7.69 −13.99 25.61 29.24 16.33 −11.60 22.99 13.03

19
97

–2
01

7

DG −2.88 −1.98 −1.29 −1.51 −0.36 −3.89 −1.75 −1.91

DS 11.61 7.70 14.78 18.20 16.17 4.02 10.95 −0.03

DA −16.53 −13.71 −24.88 −17.55 −26.34 −10.71 0.71 −2.21

DR 65.26 80.10 103.29 88.48 75.05 76.38 84.66 32.04

DP 1.20 8.33 11.90 1.95 16.40 2.71 1.44 3.62

�C 58.66 80.44 103.79 89.58 80.92 68.52 96.00 31.51

4.2.1. Carbon Emissions Coefficient Effect of Energy

From Table 4 (DG), the contribution values of carbon emissions coefficient effect of energy in the
eight regions to the carbon emissions of the transportation industry are all nearly negative and their
absolute values are small. It can be seen that the carbon emissions coefficient effect inhibits the carbon
emissions of the transportation industry in different regions. However, the inhibition effect is small
and the regional differences are not large. This is due to the fact that the fuel sources and the quality of
oil products for vehicles in different regions of China are similar, with a low proportion of clean energy
and a low degree of improvement in the quality of oil products.

4.2.2. Energy Intensity Effect

The energy intensity effect (DS, Table 4) has certain differences in influencing carbon emissions
of the transportation industry in different regions. In general, except for the Great Northwest, the
contribution values of the energy intensity effect to carbon emissions in the other seven regions were
positive from 1997 to 2017.

Within the study range, the energy intensity effects of each region inhibited the carbon emissions
of the transportation industry in most stages. Among them, the energy intensity effects of the Southern
and the North Coast have significant inhibitory influences on the carbon emissions of the transportation
industry in the third and fourth stages. This is mainly because these two regions adopted relatively
strict energy-saving policies for transportation vehicles, which reduced energy consumption in the
transportation process and restrained the increase of carbon emissions. In the fourth stage, the energy
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intensity effects in the Great Northwest and the Northeast regions became positive, and their energy
intensities were still rising. This is because the two regions have relatively weak control over the
energy saving of vehicles, and clean energy consumption accounts for a low proportion.

Table 5. Contribution rate of LMDI decomposition of carbon emissions in transportation industry in
the 8 regions (unit: %).

Year Factor
The

Northeast

The
North
Coast

The
Eastern
Coast

The Middle
Reaches of the
Yangtze River

The
Southern

Coast

The Middle
Reaches of the
Yellow River

The Great
Southwest

The Great
Northwest

19
97

–2
00

2

RG −19.15 −0.52 −0.33 −2.87 −0.54 −17.33 −2.73 −10.40

RS −18.83 −61.51 −5.38 26.68 0.62 −271.14 26.19 −20.94

RA 38.49 25.26 23.99 23.11 20.26 126.06 38.43 39.93

RR 95.12 125.17 71.49 52.79 51.81 240.32 37.67 79.07

RP 4.37 11.61 10.23 0.29 27.85 22.10 0.44 12.34

RC 100 100 100 100 100 100 100 100

20
02

–2
00

7

RG −0.49 −2.24 −0.24 −1.68 −0.88 −3.20 1.11 −5.01

RS 60.89 58.21 64.00 37.91 95.17 55.90 49.35 6.85

RA −36.60 −6.23 −51.90 −44.26 −94.55 −12.25 −49.73 −10.89

RR 74.57 46.73 78.39 109.08 89.06 59.84 99.69 99.55

RP 1.63 3.54 9.76 −1.05 11.20 −0.29 −0.42 9.50

RC 100 100 100 100 100 100 100 100

20
07

–2
01

2

RG 1.77 −0.95 −5.45 3.32 1.42 0.58 −1.26 −4.01

RS −38.87 −27.88 −74.04 −26.59 −23.16 35.21 −21.18 −55.55

RA −43.67 −21.54 −25.21 −45.99 −17.66 −29.06 −34.49 −8.58

RR 177.35 131.35 182.32 164.81 118.90 90.17 157.04 156.23

RP 3.41 19.01 22.38 4.45 20.50 3.10 −0.11 11.92

RC 100 100 100 100 100 100 100 100

20
12

–2
01

7

RG −0.66 8.67 −2.49 −4.34 −2.37 29.25 −5.97 −4.23

RS 51.22 183.80 −0.50 28.39 −95.54 223.91 −91.76 57.71

RA −179.01 183.54 −61.32 −53.28 −17.01 119.19 16.84 −52.57

RR 236.47 −248.12 155.49 119.83 188.05 −258.77 167.34 86.48

RP −8.03 −27.90 8.81 9.39 26.87 −13.58 13.55 12.61

RC 100 100 100 100 100 100 100 100

19
97

–2
01

7

RG −4.90 −2.46 −1.24 −1.68 −0.45 −5.68 −1.83 −6.07

RS 19.79 9.58 14.24 20.32 19.98 5.86 11.40 −0.09

RA −28.17 −17.05 −23.97 −19.59 −32.55 −15.63 0.73 −7.01

RR 111.25 99.58 99.52 98.78 92.75 111.48 88.18 101.69

RP 2.04 10.35 11.46 2.18 20.27 3.96 1.51 11.48

RC 100 100 100 100 100 100 100 100

4.2.3. Industry Scale Effect

From Table 4 (DA), except for the Great Southwest, the contribution values of industry scale
effects in the other 7 regions were negative from 1997 to 2017, indicating that the industrial scale effect
inhibited the carbon emissions of the transportation industry on the whole.

Among them, the absolute values of the contribution values of industry scale effects in the
Southern and the Eastern Coast were relatively large, which played a great role in restraining the
carbon emissions from the transportation industry. This is mainly caused by the change of regional
industrial structure. The proportion of the secondary industry in the Southern Coast decreased from
47% in 1997 to 37% in 2017, but the tertiary industry increased from 37% in 1997 to 52% in 2017. On the
Eastern Coast, the proportion of secondary industry decreased from 52% in 1997 to 39% in 2017, but the
tertiary industry increased from 36% to 58%. The decreased proportion of secondary industry leads
to a gradual decrease in the demand for transportation and the scale of the transportation industry,
thus restraining the increase of carbon emissions. However, the industrial structure of the Great
Southwest has not changed significantly. In 1997, its secondary industry accounted for 41%, and in
2017, it still accounted for 39%. The demand for transportation was still high, so the carbon emissions
of transportation industry in this region were still rising.
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4.2.4. Economic Output Effect

It can be seen that the contribution values of the economic output effect in each region within
the research range (DR, Table 4) are always positive. Their contribution rates to the carbon emissions
of the transportation industry are greater than other effects in the same period (RR, Table 5). This
indicates that economic output effect is the most important factor influencing on the growth of the
carbon emissions of transportation industry in each region.

Overall, the contribution values of the economic output effects of the Eastern Coast and the
Southern Coast and the Great Northwest to the carbon emissions of the transportation industry
continued to rise. This is mainly due to the fact that the Eastern and the Southern Coast are the first
regions to implement reform and opening up in China, with strong state policy support, a high degree
of foreign trade, superior geographical location and convenient land and sea transportation, resulting
in its rapid economic development. The sustained and rapid economic growth increases the demand
for transportation, so the economic output effect plays a great role in promoting the carbon emissions
of the transportation industry in these two regions. For the Great Northwest, since China officially
implemented the “western development strategy” in 2000, the state council has issued four five-year
plans for the development of the western regions, focusing on the top-level design of industrial
development, ecological and environmental protection, infrastructure construction and opening to the
outside world, etc. The continuous progress of the “western development strategy” made the Great
Northwest realize the transformation and upgrading of partly traditional industries, develop a series
of characteristic industries, promoting the transformation from the resource advantage to economic
advantage. Moreover, because of the low base of economic output in the Great Northwest, its economic
output has grown rapidly, which in turn has increased the speed of demand for transportation, thus
objectively bringing about the increase in carbon emissions.

The contribution values of economic output effect to carbon emissions in the Northeast, the
North Coast, the middle reaches of Yangtze River, Yellow River and the Great Southwest increased
continuously in the first three stages but decreased in the fourth stage. This is mainly due to the
continuous growth of economic output in various regions since the reform and opening up, and these
five regions are no exception. Therefore, the rigid demand for transportation keeps rising, which
promotes the growth of carbon emissions. Consequently, the contribution values of economic output
effect to the carbon emissions of the transportation industry in the first three stages continue to increase.
Since 2012, Chinese economic development has slowed down and turned from high-speed growth
to high-quality development. Due to the slow industrial transformation in these five regions, the
economic growth slowed down, so that the contribution value of economic output effect to the carbon
emissions of the transportation industry declined in the fourth stage.

4.2.5. Population Size Effect

From Tables 4 and 5, the contribution values of population size effects (DP, Table 4) of the eight
regions in each stage are mostly positive, indicating that population size effect can promote the increase
of carbon emissions in the transportation industry.

In general, from 1997 to 2017, the contribution values of population size effects to the carbon
emissions of the transportation industry in the Southern and Eastern Coast were relatively large, 16.40
and 11.90, respectively, with contribution rates of 20.27% and 11.46%, respectively. This is mainly
due to the fact that the Southern and Eastern Coast are the two regions with the most developed
economy in China. The large population inflow resulted in the soaring demand for transportation,
which promoted the increase of carbon emissions.

The contribution degree of population size effect to carbon emissions in the Northeast was
relatively small in the first three stages. Even the contribution value and contribution rate were
negative in the fourth stage. This is mainly because the population of the Northeast has continually
decreased for three consecutive years. The population in 2017 was 0.92% lower than that in 2014.
There are three main reasons for the decline. Firstly, the birth rate in the Northeast is far below that of
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Chinese average and the population is ageing severely. Secondly, the government in the Northeast is
less efficient than those of other economically developed regions, which makes it difficult to attract
investment and thus absorbs less employment. Finally, as the traditional heavy industry in the
Northeast has weakened over the years and light industry has not developed, it attracts fewer talents.

5. Conclusions and Suggestions

5.1. Conclusions

In this paper, 30 provinces of China are divided into 8 regions to calculate and analyze the current
situation of regional carbon emissions in the transportation industry from 1997 to 2017. Based on the
LMDI decomposition method, the contribution values and contribution rates of each influencing factor
are analyzed, and the following main conclusions are drawn as follows.

(1) The total CO2 emissions in the Chinese transportation industry show a ladder-type annual
growth, from 108.43 million tons in 1997 to 714.58 million tons in 2017, with an average annual growth
rate of 9.89%. Among them, the carbon emissions on the Eastern Coast are rising steeply and are higher
than those in other regions as a whole. In 2017, the carbon emissions of the transportation industry in
the Eastern Coast accounted for 17.27% of the Chinese total, but the total area only accounted for 2.28%
of Chinese total. The emissions of the Great Northwest were always lower than those of other regions,
with only 38.75 million tons in 2017. Carbon emissions in the Great Southwest grew the fastest during
the study range, with an average annual growth rate of 12.18% from 1997 to 2017, an 8.96-fold increase.

(2) Based on the results of LMDI decomposition, the economic output effect is the most important
factor to promote the carbon emissions of the transportation industry in various regions. Among
them, the contribution values of economic output effect to carbon emissions of the Eastern Coast,
the Southern Coast and the Great Northwest continued to rise, while the contribution values of the
economic output effect to carbon emissions of the other five regions decreased to some degree in the
fourth stage. The population size effect promoted the carbon emissions of the transportation industry
in various regions, but the population size effect of the Northeast had a significant restraining effect
on the carbon emissions in the fourth stage. Energy intensity effects of each region in most stages
suppressed the carbon emissions of the transportation industry. Among them, the energy intensity
effects of the North Coast and the Southern Coast in the two stages had obvious inhibitory influences
on transportation carbon emissions, while the energy intensity effects of the Great Northwest and
the Northeast still had positive contribution values in the fourth stage. Except the Great Southwest,
the industry scale effects have inhibited the carbon emissions of the transportation industry in other
regions. The carbon emissions coefficient effect to carbon emissions in different regions is not significant
and the inhibitory effect is relatively small.

5.2. Policy Recommendations

In general, there are some differences in the factors influencing carbon emissions of the
transportation industry in different regions of China. Therefore, based on the above research results,
the following suggestions are proposed for policy makers.

(1) Change the pattern of economic growth and appropriately lower the speed of economic
development. The results of this paper show that the economic output effect is the main factor leading
to the increase of carbon emissions in the Chinese transportation industry. China should gradually
change the pattern of economic growth, appropriately reduce the speed of economic development, and
strive to achieve a coordinated development of economic growth and environmental protection. In the
process of carbon reduction in the transportation industry, China should set differentiated emissions
reduction targets. Economically developed regions such as the Eastern Coast and the Southern Coast
regions can consider setting more stringent standards for industrial carbon reduction so as to realize the
first transformation of the low-carbon economic growth mode. In the process of economic development,
regions such as the Great Northwest, the Northeast and the middle reaches of the Yellow River can
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gradually increase their responsibilities of carbon reduction and promote the steady transformation of
economic growth pattern.

(2) Reduce the energy intensity of regional transportation industry. Energy intensity effect should
have been an important factor for reducing carbon emissions of the transportation industry, but the
research results show that energy intensity effect promotes carbon emissions of transportation industry
on the whole. So China should actively promote the usages of new energy, clean energy vehicles and
ships, increase the application of new energy and clean energy vehicles in the fields of city bus, taxi,
express delivery, airports, railway freight yard, etc., and reduce the unit consumption of transportation
industry and regional energy intensity to control the carbon emissions of the transportation industry.
The regions of the Great Northwest and the Northeast, etc. with high energy intensities should
formulate more reasonable policies of emissions reduction, vigorously promote the use of clean energy,
and improve the efficiency of clean energy.

(3) Optimize the regional industrial structure. As a whole, the industry scale effect has a restraining
influence on the carbon emissions of the Chinese transportation industry. Therefore, China can promote
the optimization and upgrading of its industrial structure, develop strategic emerging industries
and a modern service industry, and promote the industries to move towards the medium-high
end and achieve high-quality development. The rapid transformation of the industrial structure in
the Eastern Coast and Southern Coast regions has played a significant role in curbing the carbon
emissions of the transportation industry. Therefore, China should continue to optimize the industrial
structure, accelerate the expansion of tertiary industry, and encourage the development of new
high-tech industries. For economically underdeveloped regions such as the Great Southwest, the Great
Northwest and the middle reaches of the Yellow River, appropriate industrial transformation policies
should be formulated to encourage them to constantly optimize their industrial structures, improve
their capacities for scientific and technological innovation, and shift them from low-end traditional
manufacturing to medium- and high-end manufacturing so as to reduce the demand for transportation
and lower carbon emissions.
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Abstract: With the development of agricultural modernization, the carbon emissions caused by
the agricultural sector have attracted academic and practitioners’ circles’ attention. This research
selected the typical agricultural development province in China, Fujian, as the research object. Based
on the carbon emission sources of five main aspects in agricultural production, this paper applied
the latest carbon emission coefficients released by Intergovernmental Panel on Climate Change of
the UN (IPCC) and World Resources Institute (WRI), then used the ordered weighted aggregation
(OWA) operator to remeasure agricultural carbon emissions in Fujian from 2008–2017. The results
showed that the amount of agricultural carbon emissions in Fujian was 5541.95 × 103 tonnes by 2017,
which means the average amount of agricultural carbon emissions in 2017 was 615.78 × 103 tonnes,
with a decrease of 13.13% compared with that in 2008. In terms of spatial distribution, agricultural
carbon emissions in the eastern coastal areas were less than those in the inland regions. Among them,
the highest agricultural carbon emissions were in Zhangzhou, Nanping, and Sanming, while the
lowest were in Xiamen, Putian, and Ningde. In addition, this paper selected six influencing variables,
the research and development intensity, the proportion of agricultural labor force, the added value of
agriculture, the agricultural industrial structure, the per capita disposable income of rural residents,
and per capita arable land area, to clarify further the impacts on agricultural carbon emissions. Finally,
geographically- and temporally-weighted regression (GTWR) was used to measure the direction and
degree of the influences of factors on agricultural carbon emission. The conclusion showed that the
regression coefficients of each selected factor in cities were positive or negative, which indicated that
the impacts on agricultural carbon emission had the characteristics of geospatial nonstationarity.

Keywords: carbon emissions; agricultural sector; OWA aggregation operator; GTWR

1. Introduction

Since the 21st Century, global warming, which is mainly caused by the increase of the carbon
dioxide concentration in the atmosphere, has attracted widespread attention. Although the total carbon
emissions are mainly from the industrial and service sectors, agricultural carbon emissions cannot
be underestimated. The main reason for this is that although the agricultural sector provides food
for all mankind, it also needs a large number of inputs of agricultural machinery and equipment,
fertilizers, pesticides, agricultural film, and other means of production, which may ultimately lead to
high carbon dioxide emissions. In addition, according to the statistics, the agriculture, forestry, and
other land use sectors are responsible for about 24% of anthropogenic carbon emissions worldwide
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and have become the second largest source of global greenhouse gas emissions, and the emissions are
also increasing at a fast speed of approximately 1% per annum [1,2]. Therefore, under the background
of increasingly severe global warming, carbon emission reduction in the agricultural sector is an
indispensable link to improve the capability of agriculture to cope with climate change and also an
inevitable choice to achieve economic growth, ecological environmental development, and sustainable
agricultural development. In other words, it is necessary to pay attention to the research on agricultural
carbon emissions.

As a large traditional agricultural country in the world, China’s carbon emissions in the agricultural
sector have a more noteworthy role in increasing global climate warming. Since 1978 and the progress of
the reform and opening-up policy, China’s agriculture has developed rapidly and become an important
factor to promote economic development and social progress. However, these rapid developments are
largely at the expense of high carbon emissions. According to the statistics, the agricultural sector in
China accounts for approximately 17% of national carbon emissions [3,4]. Among them, the emissions
of methane and nitrogen dioxide caused by agriculture account for 50% and 92% of the national total,
respectively. Thus, under the circumstances that China pledged to peak its carbon dioxide emissions
by around 2030 and make best efforts to peak early, reducing carbon emissions in the agricultural
sector has become a hot issue of academics and the government. In order to reduce carbon emission in
the agricultural sector, first of all, it is necessary to clarify the carbon emission sources, carbon emission
quantities, and influencing factors on carbon emissions. To this end, it is necessary to measure carbon
emissions in the agricultural sector and identify the factors driving these carbon emissions.

As a coastal province in southeastern China, Fujian has some special features that are different
from other provinces. Fujian has many mountains and few farmland, while the cultivated land
resources are scarce, even less than half of the national average level, which seriously restricts the
development of agriculture. Therefore, in order to promote the development of agricultural production,
this can only be done by adding the inputs of chemical fertilizers, pesticides, and agricultural film for
Fujian to increase the outputs of grain and other cash crops. However, these measures have resulted
in a large amount of carbon emissions, causing serious environmental pollution. Besides, in 2014,
Fujian became the first national ecological civilization pilot zone in China, which was announced by
the State Council. That is, low-carbon agricultural development will become an important way to
realize ecological civilization in Fujian Province, so as to realize finally the coordinated development of
agriculture, resources, and the environment. Hence, in order to effectively promote the reduction of
carbon emissions in the agricultural sector and complete the construction of the ecological civilization
pilot zone, it is of great significance to carry out research on Fujian’s agricultural carbon emissions.
Thus, this research takes the prefecture-level cities as the basic units to analyze the spatial and temporal
pattern and the evolution process of agricultural carbon emissions in Fujian and then explores the
influencing factors affecting agricultural carbon emissions, so as to provide scientific evidence for
formulating agricultural carbon emission reduction policies and realizing low-carbon agriculture
in Fujian.

Compared with the existing research, the innovative work of this research is mainly manifested in
the following three aspects. Firstly, the study area of this paper is specific. More concretely, although
some scholars’ research involves the issue of agricultural carbon emissions, most of them stay at the
macro level, that is the literature specific to a certain area is less [5]. Therefore, based on the data of
nine prefecture-level cities in Fujian, this research remeasured the agricultural carbon emissions by
using the latest emission coefficients released by the Intergovernmental Panel on Climate Change of
UN (IPCC, Geneva, Switzerland) and World Resources Institute (WRI, Washington, DC, USA), so as
to achieve more accurate calculation of carbon emissions in the agricultural sector. Secondly, a more
scientific method was used to evaluate the agricultural carbon emissions of each prefecture-level city
in the sample period. Different from other existing research using the simple arithmetic averaging
method, this paper uses the ordered weighted averaging (OWA) aggregation operator to distribute
weights in different years, so as to solve the problem of weighting the same indicators in different
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periods ignored in the calculation of carbon emissions, so as to realize the dynamic comprehensive
evaluation of panel data. Moreover, agricultural carbon emissions are mainly the result of multivariate
interaction, such as economic level, the infrastructure, and resource endowment. The mechanism of the
above action is complex. Therefore, the magnitude and direction of the influencing factors are different
under different in their temporal and spatial distributions. That is, traditional spatial econometric
models will no longer meet the research requirements. The geographically- and temporally-weighted
regression (GTWR) applied in this research is a local linear regression model that considers both
geographical and temporal non-stationarity. On the whole, this study measures carbon emissions in
the agricultural sector and uses the OWA aggregation operator to solve the problem of the dynamic
comprehensive evaluation of panel data. Then, by adopting the GTWR model, this paper analyzes
the spatial-temporal heterogeneity of the impact of factors on agricultural carbon emissions, aiming
to establish an effective agricultural carbon emission reduction mechanism, and finally, aiding local
sustainable development decision-making.

2. Literature Review

2.1. Measurement of Agricultural Carbon Emissions

At present, many existing research works have focused on the measurement of carbon emissions
in the agricultural sector. It should be noted that different methods used to estimate carbon emissions
will produce different results. For instance, Wang et al. followed the IPCC guidelines [6] released in
2006 to estimate the greenhouse gas emission intensity of rice, wheat, and maize yields in China from
1985–2010 [7]. According to the IPCC guidelines, Xiong et al. and Tian et al. estimated the carbon
emissions of agricultural production in Hunan and Xinjiang, respectively [8,9]. In addition, Han et al.
measured carbon emissions from the entire agricultural sector as a whole in China during the period
from 1997–2015 [10]. However, the IPCC guidelines ignored soil emissions during agricultural land
use change in its agricultural inventory [11,12] and are no longer fully suitable for current emissions.
Therefore, some scholars have proposed novel methods to measure agricultural carbon emissions.
For instance, Bell et al. used the Scottish Government’s new method to calculate agricultural carbon
emissions and compared it with the IPCC guidelines and national communications [12]. Wisniewski
and Kistowski proposed a solution that enables local governments to estimate independently the
carbon footprints and monitor the impacts of actions taken to reduce emissions [13]. Moreover, based
on the national statistics, Yue et al. evaluated the carbon footprints of a range of 26 crop products
and six livestock types [14]. Based on the above background, this paper applied the carbon emission
coefficients released by IPCC and WRI to calculate the agricultural carbon emissions in Fujian from
2008–2017, which makes the measurement results more specific and accurate.

2.2. Influencing Factors of Agricultural Carbon Emissions

The driving and inhibiting factors of agricultural carbon emissions can be identified by studying
the influencing factors of agricultural carbon emissions. Existing research on the influencing factors of
agricultural carbon emissions mainly involves many aspects, including agricultural economic growth,
technological progress, population size, income, and agricultural energy consumption. ACIL Tasman
measured agricultural carbon emissions in the United States, Canada, India, the European Union,
and New Zealand and demonstrated that the proportion of agricultural carbon emissions in total
carbon emissions varies greatly, possibly due to different modes of agricultural production [5]. Ismael
et al. also confirmed that agricultural production had a significant impact on carbon emissions [15].
For instance, the organic agricultural production mode had the function of restraining agricultural
carbon emissions [16]. In addition, agricultural economic growth and the increase of the agricultural
population has positive impacts on agricultural carbon emissions [11,17]. Moreover, the agricultural
technology progress is also one of the important factors affecting agricultural carbon emissions. Gerlagh
applied the endogenous technological progress model to study the influence of technological progress
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on carbon emission reduction [18] and confirmed that technological progress significantly reduced the
cost of carbon emission reduction through the learning effect and increased the social benefits at the
same time. Furthermore, agricultural land also affects the agricultural carbon emissions, such as per
capita land use area [19], agricultural land use [20] and farmland conversion [21,22]. Besides, there
also exists a close relationship between agricultural income and carbon emissions [23].

However, it should be noted that there is still no consensus on the causal relationship, direction,
and extent between influencing factors and agricultural carbon emissions. Hence, when selecting the
influencing factors, we should combine the relevant literature with the outstanding characteristics
of Fujian in the process of agricultural development, so as to ensure that the factors are reasonable
and scientific.

2.3. Methodologies of Agricultural Carbon Emissions

There exist many methodologies to explore the relationship between carbon emissions and
their influencing factors in the agricultural sector. Among them, the autoregressive distribution lag
model [24], the Granger causality test [25,26], and the vector error correction model [27] have been
approved and applied by most scholars. Moreover, the logarithmic mean Divisia index [28,29] and the
variance decomposition approach [15] mainly apply the exponential decomposition method to study
the main factors causing the change of agricultural carbon emissions. Furthermore, other scholars have
applied some other novel methodologies, including the denitrification-decomposition models [30], the
spatial econometric models [25] and the fully-modified ordinary least squares [31,32].

However, when examining the degree and direction of the impact factors on agricultural carbon
emissions, most of the literature only considers the time perspective, but ignores the spatial perspective.
It should be noted that there exist great differences in the level of economic development, agricultural
structure, resource endowment, and the agricultural production mode in each region, which will also
lead to different degrees and directions of influencing factors at different times and in different regions.
Hence, in this paper, the GTWR model is used to study the influences of factors affecting agricultural
carbon emissions on each prefecture-level city from the perspective of time and space, so as to remedy
the shortcomings of this research field.

3. Materials and Methodologies

3.1. Study Area

The study area covers Fujian on the southeast coast of China. As an important estuary for the Min
River and also an important window for China’s contacts with the world, Fujian encompasses a total land
area of approximately 124,000 km2 and a total maritime area of approximately 136,000 km2. From the
geographical perspective, Fujian is located approximately between longitudes 115◦50′ E and 120◦43′ E
and between the latitudes 23◦32′ N and 28◦22′ N. As one of the provincial administrative regions in
China, Fujian includes 9 prefectural-level cities: Fuzhou, Xiamen, Quanzhou, Zhangzhou, Sanming,
Putian, Longyan, Nanping, and Ningde. According to the Fujian Statistical Yearbook, from 2010–2018,
the gross output value of agriculture in Fujian increased from 136.367–237.982 billion Yuan at a rapid
rate. Similarly, per capita disposable income of rural residents increased from 7426.86–17,821 Yuan.
However, the rapid development of agriculture is at the expense of the environment. That is, at present,
the agricultural development in Fujian is a typical chemical agriculture type, which relies heavily on
high-carbon means of production such as chemical fertilizers and pesticides, which seriously affects
the sustainable development of agriculture in the future. Thus, it is of great practical significance to
study agricultural carbon emissions and their influencing factors in Fujian and to explore the way to
realize the development of low-carbon agriculture. The location, the latitude and the longitude rage of
the study area can be seen in Figure 1.
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Figure 1. The location of the study area.

3.2. Selection of Measurement Indicators

In agriculture, there exist three main sources of carbon emissions, which can also be considered as
sources of greenhouse gas emissions: agricultural land use, rice paddies and crop production, and
livestock enteric fermentation and manure storage. In the United States, agricultural land use is the
largest source of agricultural carbon emissions, mainly due to the large inputs of fertilizers, pesticides,
and other agricultural materials and the loss of organic carbon caused by soil tillage; livestock enteric
fermentation is the second largest source, and livestock manure storage is the third. Furthermore, the
rice paddies produce fewer greenhouse gases than other agricultural productions because of the lesser
rice planting area. Although Fujian’s agricultural production situation differs from that of the United
States, the composition of agricultural carbon emissions is consistent. Therefore, combining the above
research with other references [17,23], this paper mainly calculates the agricultural carbon emissions
according to the five types of carbon emission sources: (1) CO2 emissions produced from agricultural
land use; (2) CH4 emissions caused by rice paddies; (3) CH4 emissions caused by livestock breeding;
(4) N2O emissions triggered by crop production; (5) N2O emissions triggered by livestock breeding.
All carbon emission sources and their coefficients in agricultural sector in Fujian are listed in Table 1.

Table 1. Carbon emission sources and coefficients in the agricultural sector.

Sources Detailed Sources Units
Greenhouse Gases

References
CO2 CH4 N2O

agricultural
land use chemical fertilizer kg/kg 3.28 n/a n/a IPCC

pesticide kg/kg 18.09 n/a n/a IPCC
plastic sheeting kg/kg 19.00 n/a n/a IPCC

diesel kg/kg 3.17 n/a n/a IPCC
tillage kg/km2 1146.31 n/a n/a IPCC

irrigation kg/ha 977.19 n/a n/a IPCC
rice paddies early rice kg/ha n/a 77.39 n/a IPCC

late rice kg/ha n/a 525.95 n/a IPCC
in-season rice kg/ha n/a 434.66 n/a IPCC
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Table 1. Cont.

Sources Detailed Sources Units
Greenhouse Gases

References
CO2 CH4 N2O

crop
production paddy rice kg/ha n/a n/a 0.24 IPCC

winter wheat kg/ha n/a n/a 2.05 IPCC
soybean kg/ha n/a n/a 0.77 IPCC

vegetable kg/ha n/a n/a 4.21 IPCC
maize kg/ha n/a n/a 2.53 IPCC

other dry crops kg/ha n/a n/a 0.95 IPCC
livestock:
manure
storage

dairy kg/head/year n/a 8.33 2.07 WRI

non-dairy kg/head/year n/a 3.31 0.85 WRI
goat kg/head/year n/a 0.28 0.11 WRI
pig kg/head/year n/a 5.08 0.18 WRI

poultry kg/head/year n/a 0.02 0.01 WRI
rabbit kg/head/year n/a 0.08 0.02 IPCC

livestock:
enteric

fermentation
dairy kg/head/year n/a 89.3 n/a WRI

non-dairy kg/head/year n/a 67.9 n/a WRI
goat kg/head/year n/a 9.4 n/a WRI
pig kg/head/year n/a 1 n/a WRI

poultry kg/head/year n/a n/a n/a WRI
rabbit kg/head/year n/a 0.25 n/a IPCC

Note: Data of IPCC and WRI in the column of the “References” are from [6] and [33], respectively.

3.3. Selection of Influencing Factors

3.3.1. Research and Development Intensity

Agricultural technological progress is an important factor to promote the development of
low-carbon agriculture and has the role of agricultural carbon emission reduction [34]. Hence,
the absence of agricultural technology has become an important factor restricting the sustainable
development of agriculture [35]. Therefore, it is necessary and effective for governments to increase
the input intensity of research and development and promote the progress of agricultural technology
to further improve the technical system of energy saving and emission reduction in agriculture [10,36].
It is noteworthy that the current role of science and technology input is not necessarily reflected in
the current period, such as R & D investment [37]. R & D investment will take effect only after a
later period of time. Thus, it is necessary to consider the lagged rank of R & D investment affecting
agricultural carbon emissions in a certain period of time. The proportion of R & D investment to GDP
is adopted in this research to measure the science and technology intensity and denoted as research
and development intensity (RDI).

3.3.2. Proportion of Agricultural Labor Force

Agricultural labor force (ALF) can affect the carbon emissions from crop production [9], which in
turn affects agricultural carbon emissions. Based on the Kaya model, Zhang and Fang decomposed
factors affecting agricultural carbon emissions and found that reducing the proportion of agricultural
labor can significantly limit the growth of carbon emissions [38]. According to the logarithmic mean
Divisia index (LMDI) method, Yao et al. confirmed that the increase of agricultural labor force is an
important factor for the sustained growth of carbon emissions produced from animal husbandry [39].
Similarly, Satterthwaite [40] and Al-Mulali et al. [41] analyzed the relationship between agricultural
labor force and agricultural carbon emissions from the perspective of urbanization and confirmed that
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with the acceleration of urbanization, the proportion of agricultural labor force continued to decline
and then had a positive impact on the reduction of carbon emissions. The proportion of agricultural
labor force in Fujian decreased from 31.15–21.71% during the time period from 2008–2017, which
inevitably had an influence on agricultural carbon emissions.

3.3.3. Added Value of Agriculture

This paper applies the proportion of added value of agriculture (AVA), forestry, animal husbandry,
and fishery production to measure the level of agricultural economic development. By and large, the
influence of agricultural added value on agricultural carbon emissions has regional characteristics. Tian
et al. combined multiple linear regression with decoupling analysis to evaluate the influencing factors
of agricultural carbon emission and found that there was a weak and unstable decoupling relationship
between agricultural carbon emissions and the added value [9]. Murad also confirmed that there
existed no Granger causality between agricultural output and carbon emissions in Bangladesh [42].
However, Jebli et al. [43] and Rafiq [44] confirmed that there was a two-way causal relationship between
agricultural added value and carbon dioxide emissions. Besides, by using data from provinces from
2001–2013 in Iran, Alamdarlo demonstrated that there existed an inverted “U” relationship between
agricultural value added and agricultural carbon emissions; however, the above conclusion was not
suitable for all provinces, because of the heterogeneity of agricultural development in provinces, such
as the disunity of agricultural infrastructure [45]. Hence, it is necessary to analyze the impact of the
influencing factor based on the specific situation of agricultural development in Fujian.

3.3.4. Agricultural Industrial Structure

The percentage of the output value of the plant products industry to total agricultural output
value is applied in this paper to measure the structure of agricultural industry. The plant products
industry mainly relies on the input of agricultural materials such as pesticides and fertilizers to increase
output, resulting in an increase in agricultural carbon emissions. Hence, with the optimization of
the agricultural industrial structure (AIS), the decline of the proportion of plant products industry
can reduce agricultural carbon emissions [29]. Nevertheless, Yao et al. obtained slightly different
conclusions by studying the influencing factors of the agricultural carbon emission change in animal
husbandry [39]. They found that the impact of the optimization of agricultural industrial structure on
carbon emissions from animal husbandry changed from positive to negative, which is particularly
evident in central and Eastern China. Therefore, empirical research is needed to analyze the direction
and magnitude of the impacts of agricultural industrial structure on agricultural carbon emissions
in Fujian.

3.3.5. Per Capita Disposable Income of Rural Residents

In 1993, Panayotou first introduced and named the relationship between economic growth and
environmental conditions as the environmental Kuznets curve (EKC), indicating that per capita income
had a strong inverted “U” curve relationship with the level of environmental pollution [46]. However,
Liu and Xin confirmed that the evolutionary trend between economic growth and agricultural carbon
emissions showed an “N” curve, indicating that agricultural carbon pollution becomes more serious
than before as the economy continues to expand [47]. In addition, Tian et al. also demonstrated
that when per capita income of agriculture increased by 1 unit, agricultural carbon emissions would
increase by 0.354 units [9]. One explanation could be that while vigorously increasing the per capita
income of agriculture, the extensive use of chemical fertilizers and pesticides into agriculture promoted
the increase of carbon emissions [48]. Therefore, the increase of rural residents’ income at this stage
may lead to an increase in agricultural carbon emissions.
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3.3.6. Per Capita Arable Land Area

Reducing per capita arable land area (ALA) will reduce the total agricultural energy demand per
capita, such as chemical fertilizers, pesticides, and plastic film, thus restraining agricultural carbon
emissions [19]. However, if the per capita arable land area were reduced through the transformation of
cultivated land to industrial land, the greenhouse effect would be aggravated [49]. Thus, the degraded
land can be restored by returning cultivated land to grassland. That is, reducing arable land area is
conducive to reducing greenhouse gas emissions from agricultural activities. In brief, the land use and
land use change in the agricultural sector are two important factors influencing agricultural carbon
emissions [50].

3.4. Research Methodologies and Data Sources

3.4.1. Estimation of Agricultural Carbon Emissions

According to the IPCC guidelines, on the basis of the existing research about the carbon emission
equation [20,28,29,36], in view of the current situation of agricultural development in Fujian Province,
this paper chooses carbon emission sources and corresponding carbon emission coefficients to build a
model for calculating agricultural carbon emissions. The specific formula is as follows:

E =
n∑

i=1

Ei =
n∑

i=1

Ti·μi (1)

where E represents total agricultural carbon emissions; Ei denotes the carbon emission of the specific
source i; Ti represents the amount of the specific source i; and μi denotes carbon emission coefficient of
the specific source i. In accordance with the usual practice, it is necessary to convert CO2, CH4, and
N2O to standard carbon. By and large, the greenhouse effects caused by 1 tonne of CO2, CH4, and N2O
are equivalent to that produced by 0.2727, 6.8182, and 81.2727 tonnes of standard carbon, respectively.

3.4.2. Ordered Weighted Averaging Aggregation Operator

The ordered weighted averaging (OWA) aggregation operator, first proposed by Yager in 1988,
is a novel time empowerment method. The basic idea of OWA is to reorder the data according to
the numerical value and then determine the weight by the position of the data in the ranking [51].
In addition, the OWA aggregation operator determines the weights based on the data themselves;
therefore, since it was introduced into the application, the fairness of its empowerment has been
controversial. Scholars in various countries have constantly improved it. Hence, in this paper, an
improved OWA aggregation operator proposed by Xu [52], that is a smooth and continuous normal
distribution density function, is applied to determine the time weights of the panel data of agricultural
carbon emissions in Fujian. The specific steps of the OWA aggregation operator are as follows:

(1) Assume that there exist m regions and n years; besides, Eij denotes total carbon emissions in
the agricultural sector in specific region i in specific year j. After summing up the value of Eij in each
year, the average value is as follows:

Ej =
1
m

m∑
i=1

Eij (2)

(2) Assume that the initial weights of total carbon emissions in each year is 1/n, then the average
value and standard deviation of Eij are as follows:

E =
1
n

n∑
j=1

Ej (3)
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σ =

√√√√√ n∑
j=1

(Ej − E)
2

n
(4)

(3) Standardize the total carbon emissions based on the above average value and standard
deviation, and the calculation equation is as follows:

β j =
Ej − E
σ

(5)

(4) Using the standard normal distribution density function, the corresponding values of αj under
the specific βj are as follows:

α j = ϕ(β j) =
1√
2π

e−
β2j
2 (6)

(5) Normalize the obtained value of αj to calculate the time weights, and the formula is as follows:

ω j =
α j

n∑
j=1
α j

(7)

3.4.3. Geographically- and Temporally-Weighted Regression

When exploring the relationship between agricultural carbon emissions and influencing factors
in the past, the ordinary least squares method and the spatial econometric model were usually used.
Normal panel models usually only represent the correlation between dependent and independent
variables in the mean sense, but cannot effectively reflect the spatial heterogeneity of the regression.
Therefore, the model estimates are biased and lack an explanation. Besides, in the study of spatial
heterogeneity, the geographically-weighted regression model (GWR) has been widely used because it
can describe the variability of different geographic locations [53,54]; however, the GWR model does not
consider the influence of the time factor [55]. Therefore, as an extension of the geographically-weighted
regression model, the geographically- and temporally-weighted regression incorporates the time
dimension in the geographic space, effectively expanding the multiple linear regression model and
GWR model [56,57]. In this paper, both temporal and spatial effects are included in the model to
analyze the characteristics of the regression relationship changing with space and time. That is, this
paper uses the GTWR model to analyze the data of agricultural carbon emission and its influencing
factors in Fujian from 2008–2017, as well as to explore the direction and degree of influencing factors on
agricultural carbon emission in each region in each year. The specific model of GTWR is as follows [55]:

yi = β0(ui, vi, ti) +
d∑

k=1

βk(ui, vi, ti)xik+εi (8)

where yi denotes the observations of agricultural carbon emissions, while xik represents the influencing
factors at the specific point (ui,vi,ti). In addition, β0 represents the constant coefficients. (ui,vi,ti)
denotes the longitude coordinate ui and the latitude coordinate vi, and the time point ti of the specific
location. βk(ui,vi,ti) represents the unknown parameter at the specific location (ui,vi,ti), while it is also
the arbitrary function of (ui,vi,ti). εi denotes an independently and identically distributed (iid) error
and is assumed to obey the N(0,σ2) distribution. The cross-validation method is applied in this paper
to determine the optimal bandwidth. Ultimately, this paper chooses agricultural carbon emissions yi
as the dependent variable, selects RDI, ALF, AVA, AIS, disposable income of rural residents (DIR), and
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ALA as the independent variables, denoted as x1, x2, x3, x4, x5, and x6, then constructs the model as
follows:

yi = β0(ui, vi, ti) + β1(ui, vi, ti)xi1 + β2(ui, vi, ti)xi2 + β3(ui, vi, ti)xi3+

β4(ui, vi, ti)xi4 + β5(ui, vi, ti)xi5 + β6(ui, vi, ti)xi6 + εi
(9)

where i equals the interval of natural numbers from 1–9 and β1(ui,vi,ti) denotes the change range in
which agricultural carbon emissions follow RDI. Similarly, β2(ui,vi,ti), β3(ui,vi,ti), β4(ui,vi,ti), β5(ui,vi,ti),
and β6(ui,vi,ti) represent the change range in which agricultural carbon emissions follow ALF, AVA,
AIS, DIR, and ALA, respectively.

3.4.4. Data Sources

The agricultural carbon emissions from the agricultural land use, rice paddies and crop production,
and livestock enteric fermentation and manure storage, as well as their emission coefficients are used
in this paper. The applied emission coefficients were mainly released by IPCC in 2006 and WRI in
2015. Besides, the original data of the agricultural carbon emissions from 2008–2017 were from the
Fujian Statistical Yearbook and the statistical yearbooks of all prefecture-level cities without any other
processing. In the end, the original data covering 9 prefectural-level cities for 10 years were obtained.

Furthermore, this paper adopts the formula of agricultural carbon emissions and the OWA
operator to measure the agricultural carbon emissions of 9 prefecture-level cities in Fujian Province
from 2008–2017 and analyzes the spatial and temporal characteristics of agricultural carbon emissions
in the past 10 years. In order to further clarify the influences of the 6 driving factors selected above on
agricultural carbon emissions in Fujian, this paper will also use GTWR to measure the direction and
degree of impacts of driving factors in each prefecture-level city. According to the results, this paper
puts forward countermeasures and suggestions to promote effectively agricultural carbon emission
reduction and the development of low-carbon agriculture in Fujian in the next stages.

4. Results

4.1. Evolution Trends of Agricultural Carbon Emissions

According to the calculation process of Formula (1), agricultural carbon emissions in Fujian
from 2008–2017are shown in Table 2. In order to consider fully the dynamic evaluation of the panel
data, the weights of each year based on OWA are listed in the last row of Table 2, while the average
agricultural carbon emissions of each region calculated based on OWA are listed in the last column.
As shown in Table 2, agricultural carbon emissions in Fujian showed a fluctuating downward trend
from 2008–2017. That is, agricultural carbon emissions decreased from 708.88 thousand tonnes in 2008
to 615.78 thousand tonnes in 2017. The fluctuating evolution with the basic spatial pattern of “M”
can be divided into four stages: fluctuating increase, low speed reduction, rapid increase, and finally,
rapid reduction. The result shows that in the process of agricultural development, Fujian has taken
some measures to control agricultural carbon emissions and strengthen the awareness of ecological
agriculture. Besides, the composition of carbon emissions in the agricultural sector varied from year
to year. Moreover, as shown in Table 3, agricultural land use was the main source of agricultural
carbon emissions, exceeding 40% in each year. Rice paddies also accounted for more than 30% of
carbon emissions in each year. The proportion of crop production and livestock enteric fermentation in
agricultural carbon emissions was relatively small. One explanation might be that with the increase of
population, Fujian increased the utilization rate of agricultural land and relied heavily on chemical
fertilizers and pesticides, so as to ensure food supply, which ultimately contributed to the increase of
agricultural carbon emissions.
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Table 2. Average agricultural carbon emissions (ACE) in Fujian (units: 103 tonnes of carbon).

Cities 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 ACE

Fuzhou 752.01 749.26 748.13 761.97 754.29 748.75 741.54 728.36 658.57 645.79 740.87
Xiamen 96.19 93.27 87.28 86.33 86.19 82.60 66.00 62.09 61.48 63.72 80.38
Putian 337.20 334.26 328.08 322.95 311.75 299.66 278.62 278.43 267.48 228.45 307.12

Sanming 944.54 925.30 914.94 921.81 907.74 906.69 901.55 903.80 770.21 779.90 904.92
Quanzhou 700.73 698.66 705.85 691.92 677.60 663.43 640.98 633.50 628.09 655.61 672.45
Zhangzhou 1151.33 1158.86 1175.91 1181.57 1181.36 1165.64 1155.07 1143.35 1131.38 1043.93 1160.47
Nanping 1044.41 1047.00 1053.41 1065.75 1065.76 1299.81 1088.80 1086.94 1145.93 933.96 1087.33
Longyan 835.92 838.23 844.88 847.72 844.65 844.59 835.18 769.20 716.58 715.98 822.82
Ningde 517.60 513.59 513.09 515.18 511.42 505.39 497.19 489.83 478.49 474.64 505.35
Average 708.88 706.49 707.95 710.58 704.53 724.06 689.44 677.28 650.91 615.78 n/a
Weights

(%) 11.44 11.95 11.65 11.06 12.33 7.59 13.80 12.79 6.50 0.89 n/a

Table 3. The proportion of sources of agricultural carbon emissions in Fujian (units: %).

Sources 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017

agricultural
land use 46.65 45.97 44.09 43.08 40.66 41.71 41.25 41.08 41.07 40.92

rice paddies 31.49 30.70 32.77 32.68 34.93 32.88 33.45 34.01 34.09 34.48
crop

production 3.92 4.16 4.61 4.40 4.09 4.12 4.05 3.99 3.96 3.90

livestock:
manure
storage

12.23 12.84 11.65 12.48 13.03 13.83 13.78 13.40 13.38 13.26

livestock:
enteric

fermentation
5.71 6.33 6.88 7.36 7.29 7.46 7.47 7.52 7.50 7.44

CO2 46.65 45.97 44.09 43.08 40.66 41.71 41.25 41.08 41.07 40.92
CH4 43.64 44.21 46.08 47.08 49.72 48.43 48.95 49.37 49.47 49.78
N2O 9.71 9.82 9.83 9.84 9.62 9.86 9.80 9.55 9.46 9.30

4.2. Regional Differences of Agricultural Carbon Emissions

As can be seen in Table 2, agricultural carbon emissions of prefectural-level cities showed different
trends. According to the variation of agricultural carbon emissions, the trend can be roughly divided
into four types: (1) a rise-drop feature; (2) a slow decline feature; (3) a drop-rise-drop-rise feature; (4) a
drop-rise-drop feature. The representative cities of the first type are Fuzhou, Zhangzhou, Nanping,
and Longyan. However, in 2017, Zhangzhou and Nanping were still the cities with the highest carbon
emissions in Fujian, with the agricultural carbon emissions of these two cities reaching over 35.6% of
the total. In addition, the second type of agricultural carbon emissions showed a downward trend over
time. Putian and Xiamen are the representative cities of the second type. Besides, agricultural carbon
emissions in Xiamen increased slightly in 2017. The third type of carbon emissions presents a typical
“W” trend, mainly represented by Sanming and Quanzhou. The fourth type shows a typical inverted
“N” trend, mainly represented by Ningde. It should be noted that there were also significant differences
in agricultural carbon emissions among cities. For instance, the average agricultural carbon emission
of Zhangzhou based on OWA was about 14.44-times as much as that of Xiamen. Zhangzhou is famous
for its flowers and fruits. In 2018, Zhangzhou’s total agricultural output value accounted for 20.89%
of the whole province, becoming the largest prefectural-level city of agricultural carbon emissions in
Fujian. By comparison, Xiamen, which is dominated by services, is in the rapid-developing economic
circle on the west side of the Taiwan Strait. Thus, Xiamen’s agricultural output value accounted for
only 0.47% of the regional gross product and 1.37% of Fujian’s agricultural output value in 2018. In
addition, the continuous reduction of agricultural land use in Xiamen in recent years has further led to
the lowest agricultural carbon emissions.
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Although agricultural carbon emissions in Fujian showed a trend of fluctuating downward
during the investigation period, there are still some problems to be solved, such as an unreasonable
agricultural structure, extensive management, and unreasonable allocation of resources. Accordingly,
vigorously developing low-carbon agriculture will be the main measure of agricultural carbon emission
reduction in Fujian in the future. This paper analyses the influencing factors of agricultural carbon
emissions and clarifies the reasons for the growth of agricultural carbon emissions. Then, according
to the direction and force of the influencing factors, this paper puts forward differentiated measures
for agricultural emission reduction, which is of great significance to promote the development of
low-carbon agriculture.

4.3. Analysis Results of Influencing Factors

The descriptive statistics of all variables used in the GTWR model, including agricultural carbon
emissions and the influencing factors, can be seen in Table 4. The standard deviation of some variables
reflects the great difference among cities. For instance, the maximum value of AVA was 24.68-times
the minimum, while the maximum values of RDI and ALA were 13.52- and 9.00-times the minimum,
respectively. In addition, in order to overcome the shortcomings of heteroscedasticity, all the original
data used in GTWR were adopted in logarithmic form without changing the nature and relevance. That
is, the coefficients calculated by GTWR measure the elasticity of the dependent variable with respect
to the independent variable, i.e., the percentage of the dependent variable when the independent
variable changes by 1%. In addition, this paper mainly adopts ArcGIS 10.4 to realize the regression
coefficient estimation based on the properties of time and space. Moreover, the descriptive statistics
and geographical distribution of the regression coefficients calculated by the GTWR model can be seen
in Table 5 and Figure 2.

   
(a)-RDI-2008 (a)-RDI-2012 (a)-RDI-2017 

Figure 2. Cont.
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(b)-ALF-2008 (b)-ALF-2012 (b)-ALF-2017 

   
(c)-AVA-2008 (c)-AVA-2012 (c)-AVA-2017 

   
(d)-AIS-2008 (d)-AIS-2012 (d)-AIS-2017 

   
(e)-DIR-2008 (e)-DIR-2012 (e)-DIR-2017 

Figure 2. Cont.
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(f)-ALA-2008 (f)-ALA-2012 (f)-ALA-2017 

Figure 2. Spatial distribution of regression coefficients calculated by GTWR in 2008, 2012, and 2017.

Table 4. The descriptive statistics of the original data of the variables used in GTWR. RDI, research and
development intensity; ALF, agricultural labor force; AVA, added value of agriculture; AIS, agricultural
industrial structure; DIR, disposable income of rural residents; ALA, arable land area.

Variables Units Mean SD Minimum Q1 Median Q3 Maximum

ACE 103

tonnes
689.59 335.51 61.48 486.99 734.95 922.68 1299.81

RDI % 1.13 0.65 0.23 0.76 1.02 1.27 3.11
ALF % 28.47 13.62 0.26 17.83 32.57 38.55 49.53
AVA 108 CNY 85.87 45.92 7.81 50.27 85.82 119.49 192.74
AIS % 40.84 8.81 22.72 36.40 43.30 46.36 56.28
DIR 103 CNY 11.24 3.68 5.40 7.95 11.28 13.94 20.46
ALA ha/person 0.05 0.02 0.01 0.03 0.04 0.05 0.09
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In this paper, the ordinary least squares method (OLS) and the GWR and GTWR models are
used for regression analysis and comparison. The comparisons of the regression analyses are shown
in Table 5. As shown in Table 5, the goodness of fit of the GTWR model was superior to OLS and
GWR. For instance, the adjusted R2 of the GTWR model was 0.9960, which was larger than that of
GWR and OLS, which equaled 0.9950 and 0.9321, respectively. The residual sum of squares (RSS) and
F-value of GTWR were also better than those of the other models. Moreover, the smaller the AIC
value is, the higher the precision of the model is [58]. Furthermore, if the difference of the AIC values
between two models is more than three, this shows that there is a significant difference between the
two models. As can be seen in Table 5, the AIC value of GTWR was the smallest, and the difference
between the AIC of GTWR and that of GWR or OLS exceeded three, which indicates that the GTWR
estimation was much better than the GWR and OLS estimation. Because GWR and GTWR have a set
of corresponding coefficients at each point, only the maximum, minimum, and mean coefficients of
each independent variable are listed in Table 5. By comparing the coefficients estimated by GWR and
GTWR, it was found that the coefficients varied greatly, which indicates that the direction and degree
of the impacts of influencing factors on agricultural carbon emissions were different in both the time
and space dimensions, which shows significant spatial and temporal non-stationarity characteristics.
The regression coefficients estimated by GTWR are analyzed in detail with the spatial and temporal
distribution of the coefficients.

4.3.1. The Influence of RDI on Agricultural Carbon Emissions

Considering the time lag effect of RDI on agricultural carbon emissions, this paper measures the
influences of the one and two lag stages of RDI on agricultural carbon emissions. When the time lag
stage was one year, the average impact of RDI on agricultural carbon emissions was −0.0524%, but the
impact did not prove to be statistically significant (p > 0.05). When the time lag stage was two years, the
average impact of RDI on agricultural carbon emissions was−0.1829%, and it was significantly negative
under the 1% significant level. It should be noted that the influence of RDI in inhibiting agricultural
carbon emissions requires a process that usually takes two years. Therefore, the RDI data used in this
paper refer to the two-year lag stage. As shown in Table 5, RDI significantly inhibited agricultural
carbon emissions in Fujian. That is, when RDI increased by 1%, agricultural carbon emissions decreased
by an average of 0.1829%. One explanation might be that the inputs of agricultural technical research
and development promote the progress of agricultural technology, reduce the dependence on pesticides,
chemical fertilizers, and other energy consumptions in agricultural production, and finally, play a role
in reducing agricultural carbon emissions. However, the influence of RDI showed strong temporal
and spatial differences. For instance, as demonstrated in Figure 2a, RDI in Xiamen, Quanzhou, and
Zhangzhou in 2008 inhibited agricultural carbon emissions. Except Sanming, RDI in other cities in
both 2012 and 2017 significantly inhibited agricultural carbon emissions. Although the RDI of Sanming
was relatively low and the effect on agricultural carbon emission reduction had not been reflected yet,
with the continuous enhancement of agricultural technological innovation, the promoting influence
of RDI in Sanming on agricultural carbon emissions gradually decreased from 2008–2017. Moreover,
from the spatial perspective, the restraint impact of RDI on agricultural carbon emissions in eastern
Fujian was significantly stronger than that in western Fujian, because the economic development level
in eastern Fujian was much higher than that in the west, which can support the increasing intensity of
agricultural R & D investment.

R & D investment in technology can significantly reduce agricultural carbon emissions, so the
governments should continue to increase R & D investment in technology in the agricultural field and
develop new technologies that are low carbon and have higher efficiency. Moreover, the governments
should also promote new production models, i.e., organic agriculture and ecological agriculture, and
finally, give full play to the role of agricultural technology in low-carbon agriculture [58]. In addition,
there is a time lag effect of R & D investment on agricultural carbon emissions. When the time lag
period was two years, the impact of R & D investment reached the maximum. It should be noted that
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the restraining effect of RDI on agricultural carbon emissions in Sanming was not reflected, so the
government should strengthen the education of agricultural technicians and farmers, cultivate their
long-term strategic thinking, and avoid short-term behavior.

4.3.2. The Influence of ALF on Agricultural Carbon Emissions

The results listed in Table 5 show that ALF significantly promoted the increase of agricultural
carbon emissions. That is, when ALF increased by 1%, agricultural carbon emissions increased by
an average of 0.0512%. One possible explanation is that the disorderly increase of ALF enlarged
the scale of agricultural production to a certain extent, which was not conducive to reducing the
agricultural carbon emissions. As shown in Figure 2b, the increase of ALF in all prefectural-level
cities promoted the increase of agricultural carbon emissions, and the positive influence of ALF
on agricultural carbon emissions in Nanping was the strongest. Nanping’s agricultural labor force
accounted for nearly 50% of the total labor force, which had a strong role in promoting agricultural
carbon emissions. Moreover, the ALF in Quanzhou in 2012 and in Fuzhou, Quanzhou, and Xiamen in
2017 demonstrated negative correlations with agricultural carbon emissions, which was inconsistent
with the significant positive correlation results of other relevant literature. The possible reason is
that ALF showed obvious spatial heterogeneity. That is, Fuzhou, Quanzhou, and Xiamen have been
facing a rapid development of economic and agricultural modernization in recent years. With the
vigorous support of human resources and financial policies, the increase of ALF has brought advanced
technology and professionals, improved the level of agricultural technology, and thus, to a certain
extent, restrained the large growth of carbon emissions. However, the relationship between ALF and
agricultural carbon emissions in other cities is significantly positive, which makes it more important
to think about how to train the labor force in other regions and formulate corresponding policies to
attract talents in the progress of agricultural technological innovation, so as to restrain agricultural
carbon emissions.

The increase of the agricultural labor force in Fujian has promoted agricultural carbon emissions
as a whole. However, in Fuzhou, Quanzhou, and Xiamen, the increase of technical personnel and the
improvement of the quality of the agricultural labor force can reduce agricultural carbon emissions.
Therefore, on the one hand, the government needs to guide actively the transfer of rural surplus labor
to manufacturing and service industries, so as to reduce the agricultural labor force. On the other hand,
the government needs to improve the education level of rural residents and strengthen their low carbon
awareness, so that farmers can rationally use advanced agricultural technology. At the same time, the
government needs to establish, improve, and strengthen the training and introduction of high-quality
agricultural technological talents and provide human support for agricultural modernization.

4.3.3. The Influence of AVA on Agricultural Carbon Emissions

AVA significantly promoted the increase of agricultural carbon emissions and mainly promoted
the average increases of agricultural carbon emissions by 0.6955% when AVA increased by 1%. That is,
AVA is the main driving factor for the increase of agricultural carbon emissions. Besides, Fujian is a
populous province, but the land resources are limited, so agriculture depends on chemical fertilizer
and pesticides to meet people’s demand for agricultural products and agricultural by-products, which
also leads to the increase of AVA and the sharp increase of agricultural carbon emissions. As shown
in Figure 2c, in 2008, 2012, and 2017, the regression coefficients of AVA in all prefectural-level cities
in Fujian were all positive, and there was no obvious downward trend. Besides, AVA in Putian,
Quanzhou, and Zhangzhou had a stronger impact on agricultural carbon emissions. For instance, in
2017, AVA in Putian, Quanzhou, and Zhangzhou accounted for nearly 2.9322%, 9.9831%, and 19.9504%
of Fujian’s total AVA, respectively, while chemical fertilizer use accounted for 5.0622%, 12.4713%, and
32.2809% of Fujian’s total chemical fertilizer use, respectively. However, it should be noted that there
existed a tendency of diminishing marginal utility in the use of chemical fertilizers, pesticides, plastic
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sheeting, and other products. It is obviously unsustainable for AVA to depend too much on the inputs
of pesticides and fertilizers, nor can it enhance the comprehensive production capacity of agriculture.

Although AVA promotes agricultural carbon emissions, it cannot reduce agricultural carbon
emissions by directly reducing the added value of agriculture. Thus, the increase of AVA mainly
depends on the progress of agricultural technology and the promotion of production efficiency, so as
to achieve the dual objectives of increasing AVA and controlling agricultural carbon emissions, and
this can also fundamentally reduce the positive impact of AVA on agricultural carbon emissions.

4.3.4. The Influence of AIS on Agricultural Carbon Emissions

According to Table 5, AIS significantly promoted the increase of agricultural carbon emissions.
That is, when AIS increased by 1%, agricultural carbon emissions increased by 0.4426% on average
in the same direction. This shows that the plant products industry is the main source of agricultural
carbon emissions, and the increase of its proportion will correspondingly increase the total carbon
emissions. According to Figure 2d, AIS in Fuzhou had less influence on agricultural carbon emissions.
This is mainly due to the high proportion of the fishery industry in Fuzhou’s agricultural structure.
In 2017, the proportion of the fishery industry output in Fuzhou’s agricultural sector output reached
58%. Moreover, although the proportion of the plant products industry in Zhangzhou is inferior to
Sanming, nearly 50%, the influence of AIS on agricultural carbon emissions was less. The results in
Figure 2d also show that the coefficient of AIS in Zhangzhou was 0.3665 in 2008, 0.2055 in 2012, and
0.0903 in 2017, which shows a large downward trend. The possible reason is that the cultivated land in
Zhangzhou is relatively concentrated and flat, which is suitable for large-scale mechanized farming.
That is, the mechanized level of the plant products industry in Zhangzhou has reached the leading
level. Thus, the development of the plant products industry would promote the increase of agricultural
carbon emissions, but the influence was less, which is closely related to the production mode of its
own planting industry.

AIS was second only to AVA in promoting agricultural carbon emissions. Thus, on the premise of
food security, the government should actively optimize the structure of agriculture, guide farmers
to reduce the planting of crops with high resource input and energy consumption, then increase
the proportion of low-carbon productions such as fruits, flowers, and vegetables. This can not only
improve the economic benefits, but also have a certain carbon-sink function. Besides, AIS played the
most important role in promoting agricultural carbon emissions in Xiamen and Sanming. Thus, Xiamen
and Sanming should further reduce the proportion of the planting industry. For instance, Xiamen can
take advantage of its coastal location to develop fisheries and flowers, while Sanming can continue to
develop special forestry industries such as Camellia oleifera, bamboo shoots, and forest tourism.

4.3.5. The Influence of DIR on Agricultural Carbon Emissions

DIR significantly inhibited the increase of agricultural carbon emissions. When DIR increased
by 1%, agricultural carbon emissions decreased by 0.0711% on average. As a whole, the relationship
between per capita disposable income of rural residents and environmental pollution in Fujian has
jumped over the turning point of the inverted “U” shape and reached the right side. It has entered the
stage that the more the agricultural economy develops, the smaller the agricultural carbon emissions.
Under these circumstances, on the one hand, the increase of disposable income of rural residents can
promote farmers to adopt modern machinery in agricultural production, improve the mechanization
level and agricultural production efficiency, and then achieve the effect of increasing production and
reducing carbon emissions. On the other hand, the increase of rural residents’ disposable income
can encourage farmers to choose less polluting products, such as organic fertilizer and bio-fertilizer,
so as to reduce agricultural carbon emissions. As shown in Figure 2e, in 2008, only Xiamen’s DIR
was negatively correlated with agricultural carbon emissions. In 2012, the relationship between DIR
and environmental pollution in Fuzhou, Quanzhou, and Zhangzhou also surpassed the turning point
of the inverted “U” shape, and DIR was negatively correlated with agricultural carbon emissions.
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In 2017, except Sanming, the increase of DIR in the other eight prefectural-level cities all reduced
agricultural carbon emissions, indicating that DIR of Sanming had not reached the inflection point
of the environmental Kuznets curve, and the increase of DIR at this stage increased agricultural
carbon emissions.

The increase of DIR can significantly inhibit agricultural carbon emissions. The governments can
adopt diversified policies to increase rural residents’ disposable income. For areas with rural economic
underdevelopment, such as Longyan, Ningde, Sanming, and Nanping, the governments can reduce the
cost of agricultural production through fiscal policies and the promotion of agricultural mechanization.
The governments can also help these areas establish and develop leading industries through planning
guidance and technical services. For cities with large plains, i.e., Putian, Quanzhou, Zhangzhou,
and Fuzhou, the governments can guide the transfer of agricultural labor forces to non-agricultural
industries, make the agricultural labor force employ more agricultural production materials, and
expand the scale of agricultural operation, increasing the income of agricultural workers. In addition,
Xiamen has a relatively high degree of industrialization and urbanization. The government can
vigorously develop the processing industry of agricultural products and promote the integration of the
industries. In addition, in 2017, except Sanming, the relationship between DIR and agricultural carbon
emissions has jumped the turning point of the inverted “U” shape. Therefore, Sanming should transfer
its environmental Kuznets curve to the decline stage of the inverted “U” shape, that is to take into
account the dual responsibilities of income growth and agricultural carbon emission reduction.

4.3.6. The Influence of ALA on Agricultural Carbon Emissions

According to Table 5, ALA significantly promoted the increase of agricultural carbon emissions.
ALA mainly promoted the average increases of agricultural carbon emissions by 0.2873% when ALA
increased by 1%. As shown in Figure 2f, the positive impact of ALA on agricultural carbon emissions
mainly existed in the northern cities, especially in Ningde and Nanping. In comparison, Xiamen
and Quanzhou, which are located in the southern part, became the cities where arable land area
had a negative influence on agricultural carbon emissions in 2017. A possible explanation for this
is due to the high level of industrialization and urbanization in Quanzhou and Xiamen. In these
two cities, agricultural land has been gradually transformed into industrial land, and the arable land
area has been seriously insufficient. However, economic development and residents’ demand for
agricultural products have led to the high investment and intensive use of arable land, which leads
to the increase of agricultural carbon emissions beyond the land carrying threshold. Besides, the
ALA of Putian and Longyan had little impact on agricultural carbon emissions, which is related to
the policy of “returning farmland to forestry” in the two cities. Farmland with serious pollution and
declining soil biological activity stopped being tilled and gradually turned into woodland. Meanwhile,
reclamation of exploitable barren hills could reduce the promotion of arable land area on agricultural
carbon emissions.

There exists a positive correlation between ALA and agricultural carbon emissions, but if the
government blindly returns farmland to forestry or converts agricultural land into industrial land, it
may also increase agricultural carbon emissions. Thus, the governments should develop and utilize
the land rationally and optimize the land use structure. For instance, the governments of Quanzhou
and Xiamen should control the total amount of industrial land to avoid the serious shortage of arable
land threatening food security and bringing about the large use of energy products. Similarly, Ningde
and Fuzhou can implement cultivated land protection measures to improve the ecological carrying
capacity of agricultural land, that is to stop cultivating land with serious pollution and the decline of
soil biological activity, and gradually turn it into woodland or grassland.

85



Energies 2019, 12, 3102

5. Conclusions

This paper measured agricultural carbon emissions in Fujian Province based on carbon emission
coefficients released by IPCC and WRI, then applied GTWR to test empirically the influencing factors
on agricultural carbon emissions. As a whole, the main conclusions can be listed as follows:

(1) Average agricultural carbon emissions in Fujian decreased from 708.88 × 103 tonnes of carbon
in 2008 to 615.78 × 103 tonnes of carbon in 2017, and total agricultural carbon emissions showed a
fluctuating downward trend. The fluctuating evolution with the basic spatial pattern of “M” can
be divided into four stages: fluctuating increase, low speed reduction, rapid increase, and finally,
rapid reduction. In addition, among all kinds of carbon sources, agricultural land use had the largest
agricultural carbon emissions, followed by rice paddies and livestock manure storage, accounting for
40.92%, 34.48%, and 13.26% of the total agricultural carbon emissions in Fujian in 2017, respectively.

(2) From the perspective of direction, among factors affecting agricultural carbon emissions in
Fujian, RDI and DIR mainly had inhibitory effects, while ALF, AVA, AIS, and ALA had promoting
effects. From the perspective of degree, AVA had the greatest influence, followed by AIS and ALA.
When these three factors changed by 1%, agricultural carbon emissions would change by 0.6955%,
0.4426%, and 0.2873% on average, respectively.

(3) According to the GTWR regression results, the six factors selected in this paper had different
directions and different degrees of effects on the nine prefectural-level cities in Fujian Province. For
instance, ALF mainly inhibited agricultural carbon emissions in Fuzhou and Xiamen, but promoted
agricultural carbon emissions in other cities. Moreover, the effect of RDI and DIR on agricultural carbon
emissions in eastern Fujian was stronger than that in western Fujian. Besides, for Xiamen, the main
factor affecting agricultural carbon emissions was AIS, but for other cities of Fujian, the main factor
was AVA. Therefore, it is necessary to adopt different means to reduce carbon emissions according to
the actual situation.

(4) Combining the total amount of agricultural carbon emissions and the spatial and temporal
characteristics of the influencing factors in Fujian, some policy recommendations can be put forward
to achieve the ultimate goal of reducing agricultural carbon emissions.
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Abstract: With the convening of the annual global climate conference, the issue of global climate
change has gradually become the focus of attention of the international community. As the largest
carbon emitter in the world, China is facing a serious situation of carbon emission reduction. This
paper uses the IPCC (The Intergovernmental Panel on Climate Change) method to calculate the
carbon emissions of energy consumption in China from 1996 to 2016, and uses it as a dependent
variable to analyze the influencing factors. In this paper, five factors, total population, per capita GDP
(Gross Domestic Product), urbanization level, primary energy consumption structure, technology
level, and industrial structure are selected as the influencing factors of carbon emissions. Based on
the expanded STIRPAT (Stochastic Impacts by Regression on Population, Affluence, and Technology)
model, the influencing degree of different factors on carbon emissions of energy consumption is
analyzed. The results show that the order of impact on carbon emissions from high to low is total
population, per capita GDP, technology level, industrial structure, primary energy consumption
structure, and urbanization level. On the basis of the above research, the carbon emissions of China′s
energy consumption in the future are predicted under eight different scenarios. The results show that,
when the population and economy keep a low growth rate, while improving the technology level
can effectively control carbon emissions from energy consumption, China′s carbon emissions from
energy consumption will reach 302.82 million tons in 2020.

Keywords: energy consumption; carbon emission; IPCC method; factor analysis; trend forecast

1. Introduction

According to the fourth IPCC assessment report, the average surface temperature has risen by
about 0.74 ◦C in the past 100 years [1]. Global climate change is mainly caused by greenhouse gases
such as carbon dioxide and methane emitted by human activities. The warming effect of carbon
dioxide is the most clear. In order to reduce carbon dioxide emissions and the negative impact
of human activities on the environment, the international community has made many efforts in
this century. China is the largest developing country whose science and technology are inferior to
developed countries. Additionally, its economic development largely relies on traditional energy, so
the environmental problems and energy crisis need to be solved urgently in China [2]. China is also a
big energy-consuming country. Under the background of global low carbon emission reduction, China
has an obligation to contribute to the development of environmental friendliness.

As for the influencing factors of carbon emissions, scholars at home and abroad have made fruitful
research. The representative research results are driving force analysis based on the IPAT equation
and driving factor analysis based on the Kaya model. Ehrlich et al. put forward the IPAT equation,
believing that the driving force of carbon emissions is the comprehensive effect of population size,
the economic development level, and scientific and technological progress [3]. Dietz et al. combined
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stochastic theory with the IPAT model and established the STIRPAT model. He introduced the index
into the model so that the model could be used to analyze the non-proportional impact of human
factors on the environment [4]. Kaya, who is a Japanese scholar, established a mathematical model
to reflect the quantitative relationship between population, economy, energy, and carbon dioxide
produced by human activities. He believed that the total amount of carbon dioxide produced by
social and economic activities in a region was equal to the product of factors such as total population,
per capita GDP, energy intensity, and carbon emissions per unit energy consumption [5]. Wang et al.
decomposed the influencing factors of carbon emissions by logarithmic mean Dirichlet decomposition
(LMDI). The results showed that energy intensity was the most important factor to reduce carbon
emission [6]. Wang Feng and others used the logarithmic average Divisia index decomposition method
to study the growth rate of carbon dioxide emissions from China′s energy consumption. He thought
that per capita GDP growth was the greatest factor affecting the increase of carbon emissions, and that
the decrease of energy intensity in the production sector was the most important factor to restrain the
increase of carbon emissions [7].

 

Figure 1. The research structure of the article.
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Research shows that different factors have different effects on carbon emissions, so it is necessary to
further explore the factors affecting carbon emissions. In view of the shortcomings of previous studies,
this paper uses the expanded STIRPAT model to analyze the impact of population size, affluence,
primary energy consumption structure, technology level, industrial structure, and urbanization level
on total carbon emissions. On the basis of factor analysis, the three most influential factors are taken
as variables to set different scenarios. In addition, the carbon emissions of China′s future energy
consumption under different scenarios are predicted and analyzed. The research structure of the article
is shown in Figure 1. Within the figure, b, k, c, h, f, and g are elastic coefficients. Descriptions of other
symbols are shown in following article.

2. Establishment of Influencing Factors Regression Model

2.1. Sources of Data

Energy consumption data are from the China Energy Statistics Yearbook (1996–2016) [8].
Population, GDP, urban population, and output value of secondary industry all come from the
“China Statistical Yearbook” (1996–2016) [9].

2.2. Introduction of the Modeling Method

2.2.1. Introduction of the Carbon Emission Calculating Method

This paper analyzes carbon emissions from energy consumption in China. Considering the
availability of data and the purpose of research, the IPCC method is adopted in this paper. The selected
energy consumption categories are raw coal, washed coal, coke, coke oven gas, other gas, crude oil,
gasoline, kerosene, diesel oil, fuel oil, liquefied petroleum gas, refinery dry gas, and natural gas. The
calculation formula is shown below.

CF =
n∑

i=1

Fi × si × ei × u (1)

Fi is the total energy consumption per ton. si is the standard coal coefficient for energy conversion,
as shown in Table 1. ei is the carbon emission factor of each energy source. The energy carbon emission
coefficients used in this paper refer to the various energy carbon emission coefficients in the 2006 IPCC
National Greenhouse Gas Emission Inventory Guidelines, as shown in Table 2. Since the statistical
unit of each energy consumption is not meaningful, u is the unit conversion coefficient.

Table 1. Standard coal coefficient for 13 energy conversions.

Standard Coal
Coefficient

Energy Types
Standard Coal

Coefficient

raw coal 0.7143 kerosene 1.4714
washed coal 0.9000 diesel oil 1.4571

coke 0.9714 fuel oil 1.4286
coke oven gas 0.5926 liquefied petroleum gas 1.7143

other gas 0.3214 refinery dry gas 1.5714
crude oil 1.4286 natural gas 1.2128
gasoline 1.4714
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Table 2. Carbon emission coefficient for 13 energy types.

Energy Types
Carbon Emission

Coefficient
Energy Types

Carbon Emission
Coefficient

raw coal 0.7559 kerosene 0.5714
washed coal 0.7559 diesel oil 0.5921

coke 0.855 fuel oil 0.6185
coke oven gas 0.3548 liquefied petroleum gas 0. 5042

other gas 0.3548 refinery dry gas 0.4602
crude oil 0.5857 natural gas 0.4483
gasoline 0.5538

2.2.2. Introduction of Influencing Factors Analysis Method

The IPAT (I =Human Impact, P = Population, A = Affluence, T = Technology) model is widely
used in the research of carbon emission related issues. The IPAT model was first proposed by American
ecologists Ehrlich and Commoner to study the relationship between human activities and the natural
environment. The major variables are population size (P), affluence (A), technology level (T), and
environment (I) [10]. It has been widely used by scholars to analyze the influencing factors of
environmental change since it is simple and easy to understand. However, the factors leading to
environmental problems are complex. The IPAT model only involves three influencing factors, which
cannot fully reflect the actual problems. The model can only analyze the problem by changing one
factor while keeping other factors fixed, so that the influence of independent variables on dependent
variables is proportional. However, this is not in line with the actual situation. In order to make up for
the deficiency of the IPAT model, York and other scholars put forward the STIRPAT model on the basis
of this model [11], which is expressed as follows.

I = aPb ×Ac × Tde (2)

In the formula, a is the coefficient of the model, b, c, and d are the index of population size, affluence
degree, and technology level, respectively, and e is the random error term. In practical application,
according to the STIRPAT model, the elasticity of influence factors on the environment is obtained by
taking a natural logarithm on both sides of the equation. The logarithmic form is as follows.

ln I = ln a + b ln P + c ln A + d ln T + e (3)

Among them, b, c, and d are the elasticity coefficients of the population, affluence, and the level of
technology, and ln a is a constant term.

In order to analyze the influencing factors of carbon emission intensity in China, this paper
introduces six indicators: total population, urbanization level, per capita GDP, technology level,
industrial structure, and primary energy consumption structure to extend the original STIRPAT model.
The expanded STIRPAT model is expressed below.

ln I = ln a + b ln P + k ln U + c ln A + h ln T + f ln S + g ln F + ln e (4)

Among them, I represents the total carbon emissions from China′s energy consumption, P
represents the total population, U represents the urbanization level, A represents the per capita GDP, T
represents the level of technology, S represents the industrial structure, and F represents the primary
energy consumption structure. b, k, c, h, f, and g are elastic coefficients, which indicate that, when P, U,
A, T, S and F change by 1%, the carbon emissions will change b%, k%, c%, h%, f %, and g%, respectively.

The explanations of each variable are given in Table 3.

94



Energies 2019, 12, 3054

Table 3. The explanations of variables.

Variable Symbol Variable Description Unit

carbon emission I total carbon dioxide emissions ten thousand tons
population size P total population ten thousand

affluence A per capita GDP yuan
technology level T energy intensity –

urbanization level U urbanization rate %

industrial structure S the proportion of the output value of
the secondary industry %

primary energy
consumption structure F the proportion of coal consumption in

primary energy consumption %

Technology level refer to energy intensity. Energy intensity is energy consumption per unit of
GDP, which reflects the input-output characteristics of the energy system, and reflects the overall
efficiency of energy economic activities.

The urbanization level is expressed by the urbanization rate, that is, the proportion of urban
population to the permanent population. The urbanization level is one of the important factors affecting
carbon emissions. Cities are the concentration areas of population, transportation, industry, and other
resources, as well as energy consumption and carbon emissions [12].

The industrial structure is explained by the proportion of the output value of the second industry
in the total output value of that year. Among the three major industries, the secondary industry
consumes the largest energy, especially the heavy industry.

The structure of the primary energy consumption is the proportion of coal consumption in primary
energy consumption in that year. China′s energy consumption structure is still dominated by coal, and
coal and other fossil energy consumption is the main reason for carbon dioxide production.

In order to test whether there is an inverted U-shaped curve between economic growth and carbon
emissions, the ln A in model (4) is decomposed into ln A and (ln A) 2 [13]. The model is adjusted below.

ln I = ln a + b ln P + k ln U + c1 ln A + c2(ln A)2 + h ln T + f ln S + g ln F + ln e (5)

c1 and c2 are coefficients of the logarithm of per capita GDP and logarithm quadratic of per capita
GDP, respectively.

From Equation (5), the elasticity coefficient EEIA of per capita GDP to carbon emissions from
energy consumption can be obtained as follows.

EEIA = c1 + 2c2 ln A (6)

If c2 is negative, there is an inverted U-shaped curve between per capita GDP and carbon emissions.
In data regression, because the nature and unit of each variable are different, if the original data

is directly used for regression, it will result in unfair regression. Therefore, before using principal
component analysis, the data should be standardized. The standard processing method adopted in
this paper is the Z-score processing method [14].

2.3. Regression Model Results

2.3.1. Results of China′s Energy Consumption Carbon Emissions

According to the China Energy Statistics Yearbook (1996–2016) and Formula (1), China′s energy
consumption and carbon emissions from 1996 to 2016 are calculated as shown in Figure 2.
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Figure 2. China′s energy consumption and carbon emissions from 1996 to 2016.

As can be seen from the figure, since 1996, China′s total energy consumption has maintained a
growing trend. China′s total energy consumption in 1996 was 138.948 million tons, while, in 2016,
it was 435.819 million tons, which reached an increase of 213.66%. Similarly, carbon emissions from
China′s energy consumption were increasing. Before 2003, the growth rate was low and stable at 2%.
However, the growth rate in the three years from 2003 to 2005 exceeded 15%, of which the growth rate
in 2004 reached 26.25%. After 2005, the growth rate has decreased slightly, but the carbon emissions
are still increasing. From 111.263 million tons in 1996 to 410.052 million tons in 2016, it increased by
268.54% in 20 years.

2.3.2. Results of the Regression Model

The least squares regression is performed on the variables lnP, lnU, lnA, (lnA)2, lnT, lnS, and lnF.
The model test results include the adjustable coefficient R2 = 0.71505, the F value is 43.31292, and the
p value is 0.00000 < 0.05. The multivariate regression parameters are estimated as shown in Table 4,
and the value p of the variables ln A, ln T, and ln S are all greater than the significance level of 0.05.
The Variance Inflation Factor (VIF) is calculated on the basis of multiple explanatory variables to assist
the regression equation, and reflects the severity of multicollinearity between explanatory variables.
It is generally believed that there is a serious multiple collinearity between explanatory variables and
residual explanatory variables when VIF is greater than 10. Additionally, the multiple collinearity
between explanatory variables will affect the results of least squares regression [15]. In this study, the
variable VIF values for each indicator are shown in Table 4. There are multiple collinearity between
variables. The main methods to eliminate multicollinearity are partial least squares [16], principal
component regression [17], and ridge regression [18]. In this study, principal component regression
is used.

Before eliminating multiple collinearity by principal component regression, the independent
variables ln P, ln U, ln A, (ln A) 2, ln T, ln S, and ln F should be tested by KMO (Kaiser-Meyer-Olkin)
test and Bartlett sphericity test. The two tests can confirm whether the above variables are suitable for
principal component regression [19]. This can be seen from Table 5. The result shows that KMO = 0.747.
The Bartlett sphericity test has a significant value less than 0.05, so we should reject the zero hypothesis.
Additionally, consider that the correlation coefficient matrix cannot be a unit matrix. Therefore, there is
correlation between the original variables. This indicates that these seven independent variables are
suitable for principal component analysis.

96



Energies 2019, 12, 3054

Table 4. Estimation of multivariate regression parameters.

Variable Coefficient Standard Error t-Statistic Probability VIF

C 8.07×10−8 0.0131 6.17×10−6 1.0000 −
lnP 1.8444 0.7040 2.6199 0.0212 2759.3270
lnU −1.8825 0.7706 −2.4430 0.0296 2951.6632
lnA −0.7634 3.5876 −0.2128 0.8348 1754.8335

(lnA) 2 2.5871 3.3737 0.7669 0.4569 109.1082
lnT −0.7992 0.1163 −6.8732 0.0000 75.0465
lnS 0.0170 0.0668 0.2549 0.8028 24.1146
lnF 0.0163 0.0841 0.1943 0.8489 19.7655

Table 5. KMO test and Bartlett sphericity test.

Kaiser-Meyer-Olkin Measure of Sampling Adequacy 0.747

Bartlett′s Test of Sphericity Approx. Chi-Square 502.132
df 21
sig 0.000

This paper uses SPSS22.0 software to carry out principal component analysis. The eigenvalues of
each factor must be greater than 1. The contribution rate of cumulative variance is shown in Table 6
and the principal component load matrix is shown in Table 7. The contribution rate of variance of
the first principal component extracted is 75.336% and, of the first two, is 97.787%, which means it
meets the requirement of principal component extraction. Therefore, this study extracts two principal
components Z1 and Z2 after seven independent variables of principal component analysis.

Table 6. The cumulative variance contribution rate.

Component Eigenvalue
Percentage of

Variance of Initial
Eigenvalue

Cumulative
Percentage

Total
Percentage of Square

Sum Loading Variance
Extracted

Cumulative
Percentage

1 5.273 75.336 75.336 5.273 75.336 75.336
2 1.572 22.451 97.787 1.572 22.451 97.787
3 0.137 1.958 99.745
4 0.011 0.152 99.897
5 0.007 0.100 99.997
6 0.000 0.003 100
7 7.378×10−6 0.000 100

Extraction method: Principal component analysis.

Table 7. Principal component load matrix.

Variable 1 2

lnP 0.989 0.124
lnU 0.987 0.146
lnA 0.989 0.096

(lnA)2 0.990 0.072
lnT 0.991 −0.057
lnS −0.611 0.750
lnF 0.084 0.977

According to Table 7, we can get the principal component coefficient, as shown in Table 8. With
the result of principal component analysis, the regression equations of Z1 and Z2 can be established.

Z1 = 0.187 ln P∗ + 0.187 ln U∗ + 0.188 ln A∗ + 0.188(ln A∗)2 + 0.188 ln T∗ − 0.188 ln S∗ + 0.016 ln F∗
Z1 = 0.079 ln P∗ + 0.093 ln U∗ + 0.061 ln A∗ + 0.046(ln A∗)2 − 0.036 ln T∗ + 0.477 ln S∗ + 0.622 ln F∗
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Establishing regression equation as follows,

ln I∗ = β0 + β1Z1 + β2Z2 (7)

β0 is a constant term. β1 and β2 are coefficients.

Table 8. Principal component coefficient.

Variable 1 2

lnP 0.187 0.079
lnU 0.187 0.093
lnA 0.188 0.061

(lnA)2 0.188 0.046
lnT 0.188 −0.036
lnS −0.116 0.477
lnF 0.016 0.622

The regression result is shown in Table 9. From Table 9, we can see that VIF is 1.000, so there is no
multiple collinearity between the extracted two principal components. After calculating the score, we
make a regression analysis with a standardized dependent variable ln I* and the adjusted R-squared is
0.823. The P value of the T-test of the constant term (β0) is not significant, but the coefficient is very
small and can be neglected. Therefore, it has no influence on this study. The T-test of Z1 and Z2
showed a significant difference.

Table 9. Component coefficient.

Coefficient
Non-Standardized
Coefficient

Standard
Error

Standardized
Coefficient

t Significant VIF

β0 − 0.046 − 0 1.000 −
Z1 0.769 0.047 0.793 20.450 0.000 1.000
Z2 0.316 0.047 0.325 2.961 0.008 1.000

* means at 0.1 level. Therefore, the regression result is as follows.

ln I∗ = 0.793Z1 + 0.325Z2
= 0.412 ln P∗ + 0.711 ln U∗ + 1.656 ln A∗ + 1.826(ln A∗)2

+2.266 ln T∗ + 0.752 ln S∗ − 0.205 ln F∗

The above formula is a regression equation for standardized variables. According to the principle
of standardization, the final regression equation can be obtained by restoring the data.

ln I = 8.011 ln P + 0.505 ln U+1.314 ln A + 0.106(ln A)2

+1.184 ln T + 1.026 ln S + 0.816 ln F− 20.513

The regression results show that the order of impact on carbon emissions from high to low is
population, per capita GDP, level of science and technology, proportion of secondary industry, primary
energy consumption structure, and urbanization level. Their elasticity coefficients are 8. 011, (1.314 +
0.212ln A), 1.184, 1.026, 0.816, and 0.505, respectively. Among them, A is per capita GDP.

The coefficient of (ln A)2 is positive, which indicates that there is no inverted U-shaped relationship
between China′s economic growth and carbon emissions. With the economic growth, environmental
pressures are increasing day by day, and there is no equilibrium inflection point yet.
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3. Prediction of Carbon Emission Trend under Different Scenarios

3.1. Introduction of Prediction Model

Based on the simulation results of the STIRPAT model, the future carbon emissions of China are
predicted. The prediction formulas are shown below.

I = exp(8.011 ln P + 0.505 ln U + 1.134 ln A + 0.106(ln A)2 + 1.184 ln T
+1.026 ln S + 0.816 ln F− 20.513)

(8)

According to the historical population, per capita GDP, primary energy consumption, energy
intensity, the proportion of secondary industry, and urbanization rate, this paper uses the above model
to simulate the carbon emissions of China′s historical energy consumption, and makes regression
between the simulated and historical values. The comparison chart is shown in Figure 3. The results
show that the simulated R2 reaches 0.9984. Therefore, it is feasible to use the above model to forecast
the carbon emissions of energy consumption in China in the future.

Figure 3. Historical and forecast values of China′s energy consumption carbon emissions.

3.2. Scenarios Setting

In the factor analysis above, population, per capita GDP, and the technological level are the three
factors that have the greatest impact, respectively. Therefore, taking these three indicators as variables
in the scenario and growth rate as scenario conditions, the specific scenario settings are shown in
Table 10.

Table 10. Scenario settings.

Scenario Population Per Capita GDP Technological Level

scenario 1 low growth low growth high growth
scenario 2 low growth low growth low growth
scenario 3 high growth low growth high growth
scenario 4 high growth low growth low growth
scenario 5 low growth high growth low growth
scenario 6 low growth high growth high growth
scenario 7 high growth high growth low growth
scenario 8 high growth high growth high growth
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3.3. Prediction of Carbon Emission Trend

According to the Development Strategy of the Development Research Center of the State Council
and the Report of the Ministry of Regional Economic Research on the Forecast and Analysis of the
Speed of Urbanization in China [No. 99 of 2017], the growth rate of urbanization in China slowed down
from 2016 to 2050. The urbanization rates in 2020, 2030, 2040, and 2050 were 60.34%, 68.38%, 75.37%,
and 81.63%, respectively [20]. In this way, we can deduce that the growth rate of the urbanization rate
in each stage is 0.793%, and then calculate the urbanization rate of China in the coming years.

According to the national energy strategic action plan and related research, the slowdown of coal
demand growth will become a new normal for the development of the coal industry. By 2020, 2030,
2040, and 2050, the proportion of coal in China′s primary energy structure will remain 62%, 55%, 53%,
and 50% [21]. Similarly, it can deduce the primary energy consumption structure in different stages,
and calculate the primary energy consumption structure in future years in China.

According to the Long-term Forecast of China′s Economy in the 21st Century, the proportion
of the secondary industry output value to GDP in 2020, 2030, 2040, and 2050 is 50.2%, 48%, 45.3%,
and 42.1%, respectively [22]. According to the same method mentioned above, we can predict the
proportion of secondary industry output value in China in the coming years.

Based on the historical data of China from 1996 to 2016, the population growth rate and per
capita GDP growth rate of each year are calculated. The maximum and minimum growth rates of
population growth rate (1.13% vs 0.39%)and per capita GDP growth rate (13.64% vs. 6.12%) are used
as their respective high and low growth rates, respectively, to estimate China′s future population and
per capita GDP. The maximum and minimum of the energy intensity decline rate (14.26% vs. 1.75%)
are selected as the high and low growth rates of technology, respectively. Additionally, the future
technological level of China is estimated.

Based on the above scenarios, the carbon emissions from China′s energy consumption are
predicted by using Formula (8). The calculation results are shown in Figure 4. Table 11 provides a
forecast of carbon emissions from China′s energy consumption in 2020, 2030, 2040, and 2050.

 
S means scenario 

Figure 4. Prediction trends of carbon emissions in different scenarios.
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Table 11. Prediction of China′s energy consumption carbon emissions in different scenarios.

Scenario 2020 2030 2040 2050

S1 302.81 359.96 362.27 692.05
S2 337.72 552.06 704.77 835.34
S3 341.82 429.13 663.62 1123.48
S4 354.29 579.03 1285.48 1963.68
S5 355.61 562.59 1188.6 2103.72
S6 327.33 437.52 770.38 1351.39
S7 316.47 603.37 1547.23 3527.45
S8 368.43 733.56 2003.69 5532.06

Unit: million tons.

4. Discussion

4.1. Discussion on Influencing Factors

Population size has the highest impact on carbon emissions, and the elasticity coefficient is as
high as 8.011. It shows that if the population increases by 1%, the total carbon emissions will increase
by 8.011%. China has a large population base, and its lifestyle and production activities depend on
traditional energy. Population size has the most direct impact on carbon emissions. China is the largest
manufacturing concentration country in the world. Developed countries have set up high-pollution
and high-energy-consuming manufacturing links in China. Labor-intensive and high-carbon industries
make the environmental pressure worse.

Per capita GDP is another important factor affecting China′s energy consumption carbon
emissions. For every 1% increase in per capita GDP, energy consumption carbon emissions will
increase (1.314 + 0.212l n A). It is the second important factor affecting China′s energy consumption
carbon emissions. This shows that China′s economic development and social life are highly dependent
on energy consumption.

The elasticity coefficient of the impact of technology level on carbon emissions from energy
consumption is 1.184. For every 1% increase in energy intensity, carbon emissions from China′s
energy consumption will grow by 1.184%. China′s energy consumption structure is dominated by
coal, which leads to a large consumption of fossil energy and a large amount of carbon emissions when
GDP increases.

Similarly, the industrial structure also plays an important role in China′s energy consumption
carbon emissions. Regression results show that every 1% increase in the proportion of secondary
industry output value will generate 1.026% carbon emissions. In China′s industrial structure, heavy
industry and manufacturing industry occupy the main position. This kind of industrial structure with
high energy consumption and emission has a negative impact on reducing carbon emissions from
energy consumption in China.

The impact coefficient of primary energy consumption structure, especially coal consumption, on
China′s carbon emissions is 0.816%. The current situation of energy consumption in China is that coal
accounts for 60% of primary energy. China is one of the few countries in the world where coal is the
most important energy resource. It is also one of the most polluted areas in the world because of coal
combustion. The long-term high proportion of coal resources in energy consumption is also one of
the main reasons for China′s high carbon emissions. Therefore, China needs to optimize its energy
structure and vigorously develop low-carbon energy.

The level of urbanization is also a factor contributing to the increase of carbon emissions from
energy consumption in China. The regression results show that an increase of 1% in the urbanization
level will result in an increase of 0.505% in carbon emissions. From 29.37% urbanization in 1996 to
57. 37% in 2016, China′s urbanization level has developed rapidly in the past 20 years. Yet, with
the advancement of urbanization, the demand for energy in urban buildings, transportation, and
residential buildings is also increasing, which increases China′s carbon emissions.
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4.2. Discussion on Trend Prediction

As can be seen from Figure 4, in scenario 1, when China maintains low population growth rate,
low per capita GDP growth rate, and high-tech growth rate in the future, the growth rate of carbon
emissions from energy consumption in China is the slowest. By 2050, the carbon emissions will be
692.05 million tons. In scenario 8, when the population and per capita GDP keep a high growth,
and the technological progress rate keeps low growth, the growth of carbon emissions from energy
consumption will be the fastest. There will be 5532.06 million tons of carbon emissions by 2050. It is
also eight times higher than the result in scenario 1. By comparing Scenario 2, Scenario 3, and Scenario
6 with Scenario 1, we can find that, when the population keeps low growth, the per capita technological
level keeps high growth, and the per capita GDP keeps high growth, while the growth rate of carbon
emissions from energy consumption is the fastest. While, when the population and per capita GDP
keep a low growth, the growth rate of energy consumption is the slowest when the technological level
keeps a low growth. Therefore, reducing carbon emissions from China′s energy consumption should
enhance the technological level and reduce energy intensity.

Comparing Scenario 4 with Scenario 8, when the population keeps a high growth and the
technological level keeps a low growth rate, the carbon emissions of energy consumption can be
effectively reduced by reducing the growth rate of per capita GDP. Therefore, in order to control
China′s future carbon emissions, it is necessary not only to improve energy utilization technology and
control the population, but also to reduce the growth rate of per capita GDP. This means that China
should slow down its economic development in the future, change its mode of economic growth, and
make its economic growth tend to a new normal.

5. Conclusions

First, this paper calculates the carbon emissions of energy consumption in China from 1996 to
2016, and then uses the STIRPAT model to decompose the influencing factors of carbon emissions of
energy consumption and analyze the influence degree of different factors. This combines different
scenarios to predict the future trend of carbon emissions from energy consumption in China.

(1) During the two decades from 1996 to 2016, China′s energy consumption and carbon emissions of
energy consumption showed an increasing trend. Among them, energy consumption increased
by 213.66% and carbon emissions of energy consumption increased by 268.54%.

(2) Among the factors affecting carbon emissions from energy consumption in China, population
factors have the highest impact on carbon emissions, with an elasticity coefficient of 8.011.
The impact of per capita GDP on carbon emissions is second only to that of the population.
The high demand for energy in China′s economic development has greatly increased China′s
carbon emissions from energy consumption. The order of impact degree is population quantity >
per capita GDP > technology level > industrial structure > primary energy consumption structure
> urbanization level.

(3) There is no inverted U-shaped relationship between China′s economic growth and carbon
emissions. Therefore, with economic growth, environmental pressures are increasing, and there
is no equilibrium inflection point.

(4) By forecasting the carbon emissions of China′s future energy consumption in different scenarios,
we can see that the growth rate of China′s energy consumption carbon emissions is the slowest
while maintaining low population growth rate, low per capita GDP growth rate, and a high-tech
growth rate. When in the scenarios of high population growth rate, high per capita GDP growth
rate, and a low-tech growth rate, the carbon emissions are the highest. Therefore, in order to reduce
China′s energy consumption carbon emissions, we should not only control the population size
and control the speed of economic development, but also improve energy utilization technology
and reduce the dependence of economic development on energy.
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Abstract: The present study attempts to explore the correlation between carbon dioxide emissions
(CO2 e), gross domestic product (GDP), land under cereal crops (LCC) and agriculture value-added
(AVA) in Pakistan. The study exploits time-series data from 1961 to 2014 and further applies descriptive
statistical analysis, unit root test, Johansen co-integration test, autoregressive distributed lag (ARDL)
model and pairwise Granger causality test. The study employes augmented Dickey–Fuller (ADF)
and Phillips–Perron (PP) tests to check the stationarity of the variables. The results of the analysis
reveal that there is both short- and long-run association between agricultural production, economic
growth and carbon dioxide emissions in the country. The long-run results estimate that there is
a positive and insignificant association between carbon dioxide emissions, land under cereal crops,
and agriculture value-added. The results of the short-run analysis point out that there is a negative and
statistically insignificant association between carbon dioxide emissions and gross domestic product.
It is very important for the Government of Pakistan’s policymakers to build up agricultural policies,
strategies and planning in order to reduce carbon dioxide emissions. Consequently, the country
should promote environmentally friendly agricultural practices in order to strengthen its efforts to
achieve sustainable agriculture.

Keywords: carbon dioxide emissions; cereal crops; gross domestic product; ARDL model; granger
causality; Pakistan

1. Introduction

The changes in climate affect the productivity of the agriculture sector through a variation in
global temperatures, the variability of precipitation and other related factors. It is estimated that
about 15%–30% of the output of agriculture would be affected negatively by 2080–2100 [1]. A further
decline in crop yield may occur in Africa, Latin America and Asia because adaptive measures are
overlooked. The Fourth Assessment Report of the Intergovernmental Panel on Climate Change stated
that it would cost about 5%–10% of GDP for Africa to take adaptation measures to combat climate
change [2]. Moreover, they predicted that about a 50% drop in agricultural crops would be observed by
2020 and the crop revenue may further decrease even up to 90% by 2100. The variation in the pattern of
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rainfall has also affected more than one billion people in South Asia [3]. Researchers including [4–15]
and many others have shown that climate change poses threats to agriculture, food and water supplies,
especially in the developing economies. Most of the models indicate that climate variation would
adversely affect the yield of wheat in South Asia. The Intergovernmental Panel on Climate Change
(IPCC) 4th Assessment Report put forth that in South Asia the crop yield would reduce proportionately
from 1820 m3 to 1140 m3 from 2001 to 2050.

The increasing population of Pakistan and non-assurance of food security for its society is
a challenge, since the residents are expected to double by 2050 [16]. Climate change and adaptation
strategies are increasingly becoming the main focus of scientific research these days, for instance, the
effect on the production of crops such as wheat, rice and maize [17]. The vulnerability index of the
fluctuation of climate in Pakistan is remarkably rising in comparison to numerous countries around
the globe, due to variable climatic conditions. Of late, Pakistan has been confronted with a lot of
climatic variations, for instance; a rise in temperature, changes in the pattern of precipitation, floods,
earthquakes and weather shifts. The development of the agriculture sector in developing countries
is hampered by increasing climatic risk and projected changes in climate over the 21st century [18].
Pakistan is affected the most by climate change owing to inadequate and substandard infrastructure and
limited adaptive capacity [19]. It is projected that by 2050, there would be a 2%–3% rise in temperature
causing a significant variation in the pattern of rainfall [20]. The country is ranked 8 among the
most negatively affected countries by adverse weather conditions and climate change over the period
1995–2014 as reported by the Global Climate Risk Index (GCRI) [21]. The productivity of the main
crops including wheat, rice, cotton and sugarcane and rural livelihoods has been affected significantly
due to climate variability and extreme events over the last two decades [22]. The vulnerability of
rural livelihood to climate change can be seen from the historic floods during 2010–2014 and severe
droughts from 1999 to 2003 [22]. Greenhouse gas emissions may cause an unproductive effect on the
environment up to a great extent and this issue becomes substantially critical for all countries in the
world. Recently, many researchers have been paying attention to the carbon dioxide emissions as
one of the essential causes of global warming [23–26]. There has been an unprecedented increase in
population, agricultural production, energy demand and economic growth to achieve food security,
and carbon dioxide emissions have also increased over the decades [27–30].

In this study, we conducted an in-depth investigation of the entire country (Pakistan) which
explores the variety of responses of the carbon dioxide emissions (CO2 e), gross domestic product
(GDP), land under cereal crops (LCC) and agriculture value-added (AVA) based on historical data
during 1961 to 2014. The autoregressive distributed lag (ARDL) model is employed simultaneously to
observe the effect of the CO2 e, GDP, LCC and AVA in order to identify a certain correlation between
them. This enabled us to determine the long-run relationships among several variables [31]. Johansen
and Juseliu’s estimation to carefully investigate this subject in-depth. In addition, we also conducted
generalized impulse response functions and variance decomposition methods to find out the effects of
shocks on the adjustment path of the variables.

The rest of the study is structured as follows: the second section entails a brief part of the literature
review. The third section is about the research methodology refers to the processing for the data
collection. The fourth section is the results and discussion part and the final section is the conclusion
and policy recommendations of the study in hand.

2. Literature Review

A wide range of literature is accessible on determining the factor of economic growth, agricultural
production and the emissions of carbon dioxide. The long-run equilibrium relationship between
carbon dioxide emissions, income growth, energy consumption and agriculture for Pakistan from 1971
to 2014 have been verified and tested. The results confirmed that there were bidirectional causalities
between GDP, agriculture, energy use and CO2 emissions. They also found that AVA had a positive
inelastic effect on CO2 emissions and that GDP had a positive elastic impact on CO2 emissions [32].
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The previous study investigated the impact of AVA and per capita renewable energy consumption
on carbon dioxide emissions in Asian countries. They found that agricultural and renewable energy
had negative impacts on CO2 emissions [33]. Evidence from the study revealed long-run equilibrium
association flowing from consumption of electricity industrialization, gross domestic product and
carbon dioxide emissions [34]. The study employed the vector error correction model (VECM) and
ordinary least squares (OLS) regression revealed the effect of population progression, energy intensity
and GDP on carbon dioxide emissions in Ghana. The study provided evidence of the existence of
long-run equilibrium association flowing from population growth, energy intensity and gross domestic
product to carbon dioxide emissions. The study also revealed that there was a bi-directional causality
among energy consumption and carbon dioxide emissions [35]. Another study in Ghana investigated
the association between population growth, use of energy, gross domestic product and carbon dioxide
emissions by using both ARDL regression analysis and VECM. The study found that there will be
fluctuation in carbon dioxide emissions due to the use of energy in the future. Evidence from the
study showed a unidirectional causality running from carbon dioxide emissions to the use of energy
and population [29]. Another study in China employed the ARDL model, the Granger causality test
based on VECM, and impulse response and variance decomposition to test the relationship between
CO2 emissions, energy consumption and economic growth in the agricultural sector. The estimated
results illustrated that there is bidirectional causality between agricultural carbon emissions and
agricultural economic growth in both the short run and long run and there exist unidirectional causality
from agricultural energy consumption to agricultural carbon emissions and agricultural economic
growth [36]. The empirical results derived from the study confirmed the validty of the environmental
Kuznets curve (EKC) hypothesis for three countries namely France, Portugal and Spain during the
period under the study in the long-run as well as in short-run with exception the case of Portugal [37].

It is evident that a rise in temperature can have a devastating effect on the productivity of the
agriculture sector, food security and farmers’ incomes. This phenomenon varies in tropical and
temperate zones. In the middle- and the high-latitude zones, the output of crops is anticipated to
increase and spread northwards and vice versa for several other countries in tropical regions [38].
It has been found that high latitudes can cause an expansion in the production by nearly 10% due
to a 2 ◦C rise in temperature, whereas it reduced production just by the same percent in the low
latitude. Considering the inevitable effect of contemporary technology, it is projected that an increase
in temperature would increase the productivity of yield by 37% and 101% by 2050s for the Russian
Federation [39].

As compared to other developing countries, the effects of escalating temperature on agriculture
are harsher in Sub-Saharan Africa [40]. It has been observed that some important climatic conditions
such as temperatures and rainfall had persisted at their pre-1960 status, then the gap of agricultural
production between different developing countries and Sub- Saharan Africa at the end of the 20th
century would have remained only 32% of the existing shortfall. A study for the period of 1980–2005
in Nigeria indicated that temperature exerts a negative effect while rainfall has a positive effect on
agricultural production [41].

Another study developed a two-chain logarithmic mean divisia index (LMDI) decomposition
method and derived the results that technology, distribution and population effects could not
suppress China’s agricultural carbon dioxide emissions simultaneously in most years [42]. Developed
countries have the ability to maintain a minimum level of technology for the improvement of living
standards and increasing agricultural productivity [43]. Generally, developed countries are capable of
counterbalancing the negative consequences of climate change. Developed states usually have a low
level of susceptibility but a high level of adaptive ability, which itself has a role of technological expertise,
dissemination and supply of assets, and human social and political capital [44]. The developed world
has very standard levels of water filtration and sanitation; on the other hand, developing countries
have insecure and unreliable water supplies and often the sanitation system is non-satisfactory and
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below the margin. The concept of crop insurance is utterly missing in developing countries to protect
their farmers from the negative consequences of climate change which may destroy their livelihoods.

Since the last decade, the country’s (Pakistan) per capita GDP has observed a diverse or unlike
trend and lack of equilibrium. During the period from 2005 to 2014 the per capita GDP increased
from 974.5$ to 1111.2$ respectively. In 2011, the government gave great importance ton upgrading
the country’s economy and can be witnessed that per capita GDP has consistently increased during
the period 2011 to 2014. During the period of 2011 to 2014, even though there were several types of
socio-economic challenges such as energy crises, a war against terrorism and poverty, still there was
a rise of 64.71$ in per capita GDP (Pakistan Economic Survey 2017). In consequence, it is evident that
the Government of Pakistan has taken actions to raise economic growth and enriched living conditions.

3. Methodology and Data Collection

3.1. Data Sources and Description

The fundamental purpose of the aforementioned study is to find out the relationship between
CO2 e, GDP, LCC and AVA in Pakistan. The study adopted the time series data spanning from
1961 to 2014 using the ARDL method to test the relationship between study variables. To fulfill the
study objectives, the data sets of the selected variable in the study were procured from the Food
and Agriculture Organization Corporate Statistical Database FAOSTATS (www.fao.org) and World
Development Indicators (http://data.worldbank.org).

Four variables were considered throughout the analysis where carbon dioxide emissions CO2 e
(kt) was taken as a dependent variable and explanatory variables include GDP (current US$), LCC
(hectares) and AVA (percentage of GDP). This study employed the actual CO2 emissions instead of
potential CO2 (i.e., CO2 eq.). Previous studies [29,45,46] put into practice the actual CO2 emissions
which show that the use of actual CO2 emissions improves the efficiency of the model. Table 1 shows
the source of data and variable description. The trend analysis of the study variables are given Figure 1.

Table 1. Detail of variables.

Variable Name Abbreviation Unit of Measurement Source

Carbon dioxide emission CO2 e Kilotons (kt) FAOSTAT (2018)
Gross domestic product GDP Current US $ WDI (2018)
Land under cereal crop LCC Hectares WDI (2018)

Agriculture value added AVA Percentage of GDP WDI (2018)

Figure 1. Cont.
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Figure 1. Trend of the study variables.

3.2. Econometric Model

The current study entails the co-integration and autoregressive distributed lag model to find out
the association between carbon dioxide emissions, gross domestic product, land under cereal crop
and agriculture value-added in Pakistan. The following steps show our study analysis. In the first
step, we have to find out the stationarity in the time series data. For this objective, we conducted the
augmented Dickey-Fuller (ADF) test [47] and Phillips and Perron (PP) unit root tests [48]. The step
second was to find out the optimal lag length of the study variables. To determine the lag lengths we
used the Akaike information criterion (AIC) [49] or Schwarz information criterion (SIC) [50]. In the
third step, we estimated the Johansen co-integration test to seek the long-run relationship between
the study variables. Were there a co-integration, then we moved to the next step. In the last step,
were a co-integration to exist then we estimated an ARDL model. Furthermore, we also estimated the
pairwise Granger causality test to establish causal links between variables. The econometric model
used in this study is given as:

CO2 et = f (GDPt, LCCt, AVAt) (1)

where in the above equation (1), CO2 e is the carbon dioxide emissions, GDP is the gross domestic
product, LCC is the land under cereal crop, AVA is the agriculture value-added and t is the time period.
We then applied the Cobb Douglas production function in its stochastic form as:

CO2 et = α0α1GDPt,α2LCCt,α3AVAt (2)

Then we employed the log-linear model, for this purpose, we log-transform the above model to
get the linear regression model which is given as:

loge(CO2 et) = α0 +
∑

loge(α1GDPt,α2LCCt,α3AVAt) (3)

Then we transformed the variable’s value into their natural logarithm form to find out the long-run
association between the study variables. This transformation of the data into their natural logarithm is
to ensure the results were efficient, reliable and consistent. Equation (4) shows the logarithm form for
the study variables.

lnCO2 et = α0 + α1lnGDPt + α2lnLCCt + α3lnAVAt + εt (4)

where lnCO2 et lnGDPt, lnLCCt and lnAVAt expressed the natural logarithm of carbon dioxide emissions,
gross domestic product, crop production index, land under cereal crop and agriculture value-added,
respectively. In the above equation (4), t =1, . . . . . . .N represents the time period and εt is the error
term. The parameters α0,α1, α2, and α3 measure the long-run elasticity of carbon dioxide emissions
with respect to the real GDP, land under cereal crop and agriculture value-added respectively.
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4. Results and Discussions

4.1. Descriptive Analysis and Correlation Matrix

The descriptive analysis shows mean, coefficient of variation, skewness, kurtosis and normality of
distribution over the study variables. Table 2 provides the descriptive analysis and the kurtosis results
display that all the variables exhibit platykurtic distribution. The results of the skewness indicate that
both carbon dioxide emissions and agriculture value-added have long right-tail distribution while the
remaining variables indicate long left-tail distribution. The outcome from the Jarque–Bera test shows
that we accept the null hypothesis of normal distribution at the 5% level of significance for all variables
except agriculture value-added. The mean results show that the gross domestic product generate
a high value of 24.21. The standard deviation analysis show that the gross domestic product is also the
most explosive variable with the highest deviation of 1.19 followed by carbon dioxide emissions.

Table 2. Descriptive statistics and correlation matrix of all the variables.

Variables LnCO2 e LnGDP LnLCC LnAVA

Mean 10.88533 24.21358 16.22058 3.290421
Median 10.92998 24.30179 16.24839 3.222102

Maximum 12.02154 26.22191 16.45170 3.746831
EMinimum 9.592673 22.12312 15.87711 3.006656

Std. Dev. 0.801811 1.193248 0.152553 0.196416
Skewness 0.002686 −0.087221 −0.548516 0.734181
Kurtosis 1.510778 1.953711 2.226820 2.385217

Jarque-Bera 4.990073 2.531587 4.052896 5.701605
Probability 0.082493 0.282015 0.131803 0.057798

Correlation

LnCO2 e 1.000000
LnGDP 0.978197 1.000000
LnLCC 0.956098 0.973567 1.000000
LnAVA −0.884455 −0.897413 −0.930411 1.000000

4.2. Lag Selection for Vector Error Correction Model

After the unit root test, in the next step we need to find out the optimum lag length for co-integration
analysis by using the AIC criteria [49] or SIC [50] criteria. The AIC results in Table 3 indicate that the
most suitable lag value is lag 2 for the model.

Table 3. Selection of lag length.

Lag LogL LR FPE AIC SC HQ

0 112.9309 NA 1.51e–07 −4.357238 −4.204276 −4.298989
1 346.9699 421.2700 2.46e–11 −13.07879 −12.31398* −12.78755*
2 366.4259 31.90793* 2.17e–11* −13.21704* −11.84038 −12.69280
3 380.8168 21.29858 2.39e–11 −13.15267 −11.16417 −12.39544
4 395.6585 19.59104 2.67e–11 −13.10634 −10.50599 −12.11611

* indicates lag order selected by the criterion; e: stands for exponential constant; LR: sequential modified LR
test statistic (each test at 5% level); FPE: Final prediction error; AIC: Akaike information criterion; SC: Schwarz
information criterion; HQ: Hannan-Quinn information criterion.

It is important to find out how many lags to be used in ARDL model. Therefore, to figure out
the optimal number of lags for the model, the unrestricted vector autoregression (VAR) lag selection
criteria is tested. Table 3 formulates the lag selection criteria for the model but the most commonly
employed criteria are AIC and SIC. The previous study used AIC for a small sample size [51].
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4.3. Unit Root Test

Before estimating the co-integration analysis, it is important to determine where the study variables
are stationary at first difference i.e., I(1). The stationarity of the variables is tested using the ADF
test [47] and PP test [48] in order to have a robust result and avoid spurious regression results. Table 4
shows the unit root test results. Our findings in Table 4 indicate that all the study variables are
non-stationary at a level. However, the variables became stationary at their first difference and rejected
the null hypothesis that unit root exists at first difference. The results show that all the study variables
are stationary at first difference which means that variables are integrated at I(1). Since the variables
entailed in the study are I(1), so this indicates the spurious regression problem occurs here. Hence it is
important to find out the co-integration test among the time series variables.

Table 4. Unit root test (Augmented Dickey–Fuller).

Variables

Akaike Info Criterion Philips–Perron

LEVEL 1ST DIFFERENCE LEVEL 1ST DIFFERENCE

Intercept
Trend
and

Intercept
Intercept

Trend
and

Intercept
Intercept

Trend
and

Intercept
Intercept

Trend
and

Intercept

LnCO2 e
−0.63771

0.8528
−2.107644

0.5292
−5.915923

0.0000
−2.908476

0.1689
−0.809440

0.8082
−1.554595

0.7974
−5.928838

0.0000
−5.897317

0.0001

LnGDP
−0.512237

0.8803
−3.102790

0.1165
−6.128411

0.0000
−6.074545

0.0000
−0.501008

0.8825
−2.682416

0.2478
−6.117041

0.0000
−6.043380

0.0000

LnLCC
−1.845078

0.3552
−3.097552

0.1175
−7.310103

0.0000
−5.882637

0.0001
−2.177064

0.2168
−3.058810

0.1268
−7.399540

0.0000
−7.703130

0.0000

LnAVA
−2.617304

0.0959
−1.487037

0.8218
−6.708506

0.0000
−4.529780

0.0039
−2.720270

0.0773
−1.506937

0.8148
−6.708506

0.0000
−7.242419

0.0000

Conclusion Non-stationary Stationary Non-stationary Stationary

4.4. Johansen Co-Integration Test

A summary of the Johansen co-integration [52] test is presented in Table 5. The purpose of
the Johansen co-integration test is to find out the long-run relationship between the study variables
in the model. Maximum eigenvalue and trace statistic tests [53] were conducted to determine the
co-integration among the study variables. The results of the maximum eigenvalue and trace statistic
showed 4 co-integrating equations at the 5 percent level. Here, the results of co-integration would
determine whether we have to apply a VAR model or VECM model.

Table 5. Results of Johansen co-integration test.

Hypothesized
No. of CE(s)

Rank Test (Trace) Rank Test (Maximum Eigenvalue)

Eigenvalue
Trace

Statistic
0.05

Critical Value
Prob.

Max-Eigen
Statistic

0.05
Critical Value

Prob.

None 0.423351 52.89693 47.85613 0.0156 28.07661 27.58434 0.0432
At most 1 0.300607 24.82032 29.79707 0.1679 18.23469 21.13162 0.1213
At most 2 0.121100 6.585634 15.49471 0.6263 6.583293 14.26460 0.5395
At most 3 0.0000459 0.002341 3.841466 0.9593 0.002341 3.841466 0.9593

4.5. Autoregressive Distributed Lag (ARDL) Bound Testing of Co-Integration

The current study uses an ARDL bound testing approach suggested by [54] to find out both
short-run and long-run association of the CO2 e, GDP, LCC and AVA. The ARDL bound testing
method is appropriate for those models in which there is a mixture of I(0) and I(1) variables. Another
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characteristic of this model is that it is appropriate for a small sample size as our sample size is only
52 [54].

After the estimation of unit root testing which shows that all variables are integrated at I(1),
now we carried out the ARDL method of co-integration (bounds testing) to estimate the relationship
between the selected variables in this study. The results of the ARDL bound testing are reported
in Table 6. The results indicate that the f-statistic value (5.805114) is greater than the 10% and 5% upper
critical values of I(0) bound. The results of the bounds testing validate significant long-run relationships
among variables and showing the rejection of null hypothesis of no co-integration association among
LnCO2 e, LnGDP, LnLCC and LnAVA.

Furthermore, the study estimates the AIC to prefer the optimal model by employing long-run and
short-run association among variables. Employing the Akaike information criterion shows the top 20
possible ARDL models in Figure 2. Based on the model specification in equation (4), the short-run
and long-run equilibrium relation LnCO2 e, LnGDP, LnLCC and LnAVA is estimated using the ARDL
regression analysis shown in equation (5) where

α0 = 19.2356, α1 = 0.3246, α2 = −0.2867 and α3 = −3.3902. (5)

Table 6. ARDL bound testing.

Test Statistic Value k

F-statistic 5.805114 3

Critical Value Bounds

Significance I(0) Bound I(1) Bound

10% 2.37 3.2
5% 2.79 3.67

2.5% 3.15 4,08
1% 3.65 4.66

Figure 2. ARDL model selection criterion. Source. Authors’ calculation.
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4.6. Short-Run and Long-Run Equation Models

Table 7 summarizes the results of short-run equation of the ARDL model. The results show that
the speed of adjustment (error correction term ECT(−1)) value is –0.077780 which shows that there
are a long run and short-run equilibrium relationships running from LnGDP, LnLCC and LnAVA to
LnCO2 e. The speed of adjustment is approximately 7.7 % in one period of long-run equilibrium.

Table 7. Short-run and long-run relationship estimates selected model for autoregressive distributed
lag (ARDL) (1,3,2,0).

Short Run Coefficients

Variable Coefficient Std. Error t-Statistic Prob.

D(LnGDP) 0.033643 0.056658 0.593784 0.5559
D(LnGDP(−1)) 0.014904 0.055969 0.266287 0.7914
D(LnGDP(−2)) −0.173688 0.058569 −2.965542 0.0050

D(LnLCC) 0.863260 0.241211 3.578864 0.0009
D(LnLCC(−1)) 0.716364 0.243073 2.947112 0.0053

ECT(−1) −0.077780 0.013781 −5.644230 0.0000

Long Run Coefficients

Variable Coefficient Std. Error t-Statistic Prob.

C 1.496155 4.774608 0.313357 0.7556
Ln CO2 e(−1) −0.077780 0.038989 −1.994952 0.0527
LnGDP(−1) 0.025249 0.042403 0.595470 0.5548
LnLCC(−1) −0.022297 0.326479 −0.068295 0.9459

LnAVA −0.263688 0.097057 −2.716831 0.0096
D(LnGDP) 0.033643 0.063982 0.525816 0.6018

D(LnGDP(−1)) 0.014904 0.065642 0.227049 0.8215
D(LnGDP(−2)) −0.173688 0.066271 −2.620874 0.0122

D(LnLCC) 0.863260 0.298943 2.887709 0.0062
D(LnLCC(−1)) 0.716364 0.289813 2.471814 0.0177

EC = LnCO2 e − (0.3246(LnGDP) − 0.2867(LnLCC) − 3.3902(LnAVA) + 19.2356))

Table 5 also shows the results of long-run equation results of the ARDL approach. The results of
long-run equilibrium relationship show that a 1% increase in LnGDP will increase LnCO2 e by 2%,
a 1% increase in LnLCC will decrease LnCO2 e by 0.02% and a 1% increase in LnAVA will decrease
LnCO2 e by 26% in long-run estimates.

The evidence of the following studies reveals that carbon dioxide emissions increase in the early
phases of economic growth and then decline after a threshold point. The findings of these studies such
as [10,55–62] examined the relationship between carbon dioxide emissions and GDP growth.

The findings of previous studies such as [63] for China, [59] for Tunisia, [64] for Iran, [65] for
Pakistan, [66] for Malaysia, [57] for Turkey and [55] for India examined a unidirectional causality
running from GDP income to carbon dioxide emissions without response which suggests that emission
reduction plans will not restrain trade and industry growth and which seems to be a feasible policy
instrument in the aforementioned studied countries to accomplish its long-run sustainable growth.

Furthermore, we applied generalized impulse response functions for the verification of the results.
The generalized impulse response results show an in-depth understanding of shocks to gross domestic
product, land under cereal crop, agriculture value-added affected carbon dioxide emissions. The results
of generalized impulse responses for carbon dioxide emissions, gross domestic product, land under
cereal crop and agriculture value-added are provided in Figure 3.
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Figure 3. Results of generalized impulse response functions.

4.7. Diagnostic Test

As suggested by [67], both the cumulative sum of the recursive residuals (CUSUM) and the
cumulative sum of the square of the recursive residuals (CUSUMsq) tests were implemented to
run the ARDL model in a befitting manner. Figure 4 reveals that both the graphs of CUSUM and
CUSUMsq tests lie between the critical bounds indicated with red colored lines at a 5% confidence
interval. The blue color lines in the middle represent the measurements for the cumulative sum of the
recursive residuals and the cumulative sum of the squares of the recursive residuals. Both CUSUM
and CUSUMsq graphs show that the model of our study is well stable.

Figure 4. Stability test based on (a) cumulative sum of the recursive residuals (CUSUM) and (b)
CUSUM of squares. Source. Authors’ calculation.
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Several diagnostic tests were operated to check the good fit of the ARDL model. Table 8 shows that
estimation is fine regarding the serial correlation Lagrange Multiplier (LM) test, where the F-statistics
(0.237056) have insignificant probability. The heteroskedasticity test under Breusch–Pagan–Godfrey
also signifies that there is no sign of serial correlation. The value of F-statistics (1.190498) shows an
insignificant probability, which means there is no heteroskedasticity issue in the model estimation.

Table 8. Diagnostic tests results.

Breusch-Godfrey Serial Correlation LM Test:

F-statistic 0.237056
Obs R-squared 0.936929
Prob. F(3,38) 0.8700

Prob. Chi-Square(3) 0.8165

Heteroskedasticity Test: Breusch–Pagan–Godfrey

F-statistic 1.190498
Obs R-squared 10.56646

Scaled explained SS 10.87174
Prob. F(9,41) 0.3268

Furthermore, the inverse root of AR polynomial graph displaying the stability of the model where
are blue dots is within the circle. Figure 5 shows the inverse root of AR polynomial estimation.

Figure 5. Checking the stability of vector autoregression (VAR).

4.8. Pairwise Granger Causality Tests

The pairwise Granger causality test is estimated to find out the robustness of the model, which
elaborates the directional linkages between the two variables at a time. The results of the pairwise
Granger causality is exhibited in Table 9. The estimations of the pairwise Granger causality shows
unidirectional causality between LnGDP to LnCO2 e, LnLCC to LnGDP and LnAVA to LnLCC.
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Table 9. Pairwise Granger causality test.

Null Hypothesis: Obs F-Statistic Prob.

LnGDP does not Granger Cause LnCO2 e 52 0.34510 0.7099
LnCO2 e does not Granger Cause LnGDP 8.51829 0.0007

LnLCC does not Granger Cause LnCO2 e 52 1.91090 0.1593
LnCO2 e does not Granger Cause LnLCC 1.81672 0.1738

LnAVA does not Granger Cause LnCO2 e 52 2.63228 0.0825
LnCO2 e does not Granger Cause LnAVA 0.42783 0.6544

LnLCC does not Granger Cause LnGDP 52 1.78823 0.1784
LnGDP does not Granger Cause LnLCC 6.22181 0.0040

LnAVA does not Granger Cause LnGDP 52 1.03562 0.3630
LnGDP does not Granger Cause LnAVA 0.13864 0.8709

LnAVA does not Granger Cause LnLCC 52 3.95660 0.0258
LnLCC does not Granger Cause LnAVA 1.43426 0.2485

4.9. Impulse Response and Variance Decomposition Analysis

Finally, the study employed impulse response analysis between LnCO2 e, LnGDP, LnLCC and
LnAVA to describe random innovations among them. As the pairwise Granger causality test does not
indicate any random response, so in this case, we have to run the impulse response analysis. Figure 6
displays that the response of carbon dioxide emissions to a gross domestic product, land under cereal
crops and agriculture value-added are insignificant within 10-period horizons. On the other hand, the
initial response of carbon dioxide emissions to land under cereal crop is significant in the beginning.
A one standard deviation shock to land under cereal crop first increases carbon dioxide emissions
to 1-period horizon and then starts decreasing to the 10-periods horizon. Figure 7 illustrates the
response of gross domestic product, land under cereal crop and agricultural value-added to carbon
dioxide emissions.

Table 10 estimates Cholesky’s method of variance decomposition to random innovation affecting
the variables in the VAR [68]. The results indicate that almost 4.3% of the future fluctuations in LnCO2

e is due to shocks in the LnGDP, 0.27% of future fluctuations in the LnCO2 e is due to shocks in LnLCC
and 0.27% of future fluctuations in the LnCO2 e is due to shocks in LnAVA, respectively. Evidence
from the table shows that almost 25% of future fluctuations in LnGDP is due to shocks in LnCO2 e, 10%
of future fluctuations in LnGDP is due to shocks in LnAVA and 2.9% of future fluctuations in LnGDP
is due to shocks in LnLCC. Moreover, evidence from the results shows that almost 37% of future
fluctuations in LnLCC is due to shocks in LnCO2 e, 24% of future fluctuations in LnLCC is due to shocks
in LnAVA and 10% of future fluctuations in LnLCC is due to shocks in LnGDP. Finally, the evidence
from Table 9 shows that almost 6.2% of the future fluctuations in LnAVA is due to shocks in LnLCC,
1.9% of future fluctuations in LnAVA is due to shocks in LnGDP and 0.4% of future fluctuations in
LnAVA is due to shocks in LnCO2 e, respectively.
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Figure 6. Impulse response of LnCO2 e to Cholesky one standard deviation (S.D.).

Figure 7. Impulse-response of other variables to Cholesky one S.D. Innovations in LnCO2 e.
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Table 10. Variance decomposition Cholesky ordering; LnCO2 e_EMISSIONS LnGDP LnLCC LnAVA.

Variance Decomposition of LnCO2 e:

Period S.E. LNCO2 e LnGDP LnLCC LnAVA

1 0.052387 100.0000 0.000000 0.000000 0.000000
2 0.082091 98.71976 0.013097 1.256378 0.010761
3 0.110017 97.05350 2.074796 0.812947 0.058761
4 0.131880 96.72981 2.427748 0.658399 0.184048
5 0.151464 96.20375 2.913165 0.557815 0.325269
6 0.168350 95.78747 3.397230 0.461823 0.353472
7 0.183532 95.44742 3.816423 0.404535 0.331620
8 0.197549 95.30147 4.032265 0.356521 0.309743
9 0.210862 95.20442 4.188896 0.313796 0.292891
10 0.223536 95.10645 4.340165 0.279285 0.274097

Variance Decomposition of LnGDP:

Period S.E. LnCO2 e LnGDP LnLCC LnAVA

1 0.090540 1.714846 98.28515 0.000000 0.000000
2 0.147440 18.08957 79.94849 0.319798 1.642142
3 0.180273 24.58352 71.58001 0.872488 2.963985
4 0.202225 27.94786 67.03118 1.197606 3.823346
5 0.227024 28.07898 64.92696 1.894400 5.099661
6 0.250104 27.76311 63.32763 2.031381 6.877877
7 0.268642 27.36151 62.39127 2.146152 8.101068
8 0.285511 26.69581 62.00309 2.495791 8.805307
9 0.302657 25.87071 61.89515 2.792302 9.441847
10 0.319132 25.16367 61.79875 2.942672 10.09490

Variance Decomposition of LnLCC:

Period S.E. LnCO2 e LnGDP LnLCC LnAVA

1 0.019616 12.45762 0.679255 86.86313 0.000000
2 0.022818 17.21273 0.890578 78.32556 3.571125
3 0.025397 29.76056 3.976938 63.25735 3.005150
4 0.029421 37.65852 8.366014 47.75381 6.221656
5 0.032195 41.56618 7.848681 40.22046 10.36468
6 0.033756 42.90460 7.661578 36.78005 12.65377
7 0.035466 42.15718 8.493156 34.06056 15.28910
8 0.037344 40.54667 9.617245 31.05127 18.78481
9 0.038945 39.10538 10.27839 28.82381 21.79242
10 0.040393 37.68193 10.95538 27.30356 24.05913

Variance Decomposition of LnAVA:

Period S.E. LnCO2 e LnGDP LnLCC LnAVA

1 0.040325 0.255478 3.255885 4.319678 92.16896
2 0.060142 0.952231 1.551848 2.327764 95.16816
3 0.071323 1.153774 2.165245 2.590248 94.09073
4 0.081077 0.902385 2.715711 4.100540 92.28136
5 0.091163 0.718266 2.498629 5.149917 91.63319
6 0.100451 0.597671 2.267443 5.312943 91.82194
7 0.108566 0.532349 2.227840 5.480631 91.75918
8 0.116045 0.503706 2.175351 5.836543 91.48440
9 0.123284 0.479624 2.061993 6.111924 91.34646
10 0.130224 0.457998 1.967759 6.249748 91.32449

5. Conclusions and Policy Recommendations

The purpose of the study was to determine the relationships between CO2 e as a dependent variable
and GDP, LCC and AVA as independent variables in Pakistan. These independent variables have
been tested to determine their effect on Pakistan’s carbon dioxide emissions. Therefore, an empirical
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study was necessary to notify the policymakers and place Pakistan properly in efforts directed to
mitigate the consequences of global warming. The study uses time-series data from 1961 to 2014. In
the study, we run a descriptive analysis, Johansen co-integration test, pairwise Granger causality test
and autoregressive distributed lag model.

The ARDL bounds test co-integration analysis displayed evidence of both short-run and long-run
equilibrium relationship between the study variables. The speed of adjustment (ECT) is approximately
7.7 percent in one period of long-run equilibrium. Furthermore, the outcome of CUSUM and CUSUMsq
showed that the model used in the study is stable. The pairwise Granger causality test was applied to
find out the robustness of the model.

Our study findings have few policy implications for promoting agricultural development. To
maintain economic growth and to reduce carbon dioxide emissions, it is very important to adjust and
optimize the industrial structure. Pakistan’s industrial sectors are generating heavy and high emissions
of carbon dioxide. Therefore, the policymakers need to promote zero and light emissions industries
for the development of the country. The results of the study show unidirectional Granger causality
from gross domestic product to carbon dioxide emissions which indicates that ensuring a continuous
increase in economic growth is a necessary condition for achieving high carbon dioxide emissions.
Therefore, the government of Pakistan should take necessary actions to achieve high economic growth
with less carbon dioxide emissions. As Pakistan predominantly is an agricultural country, thus, it
is summarized that variations in climate change might have negative consequences for agricultural
production and industrial growth, poverty reduction and job creation. As a South Asian country,
Pakistan is not an exception, and the vulnerability index of climate change in the country is quite
high. The country is listed among the countries severely affected by climate change [69] despite being
a low producer of CO2 gases [70] because of its increasing dependence on agriculture for food and
fiber needs [71]. In addition, the agriculture sector of Pakistan consists of a majority of small resource,
poor farmers with less adaption capacity. For the major crop production of mainly cereals, fruits and
vegetables in Pakistan, the policymakers or government need to develop new crop farming methods,
introducing new crop varieties, and an extension services role is also very important for spreading the
updated science-based information.

Author Contributions: Conceptualization, S.A.; Data curation, T.S. and Abbas A.A.C.; Formal analysis, S.A. and
I.A.; Methodology, S.A., L.Y. and A.T.; Supervision, L.Y.; Writing-original draft, S.A.; Writing-review and editing,
L.Y.

Funding: This research received no external funding.

Acknowledgments: The authors are thankful to the Chinese Scholarship Council (CSC) for providing financial
assistance to carry out this research as part of his PhD studies in China. In addition, the authors would also like to
extend gratitude to anonymous reviewers for providing helpful suggestions on an earlier draft of this paper.

Conflicts of Interest: The authors declare no conflict of interest in this manuscript.

References

1. FAO. The State of Food Insecurity in the World the Multiple Dimensions of Food Security; Food and Agriculture
Organization of the United Nations: Rome, Italy, 2013.

2. Boko, M.; Niang, I.; Nyong, A.; Vogel, A.; Githeko, A.; Medany, M.; Osman-Elasha, B.; Tabo, R.; Yanda Pius, Z.
Africa, Climate Change 2007: Impacts, Adaptation and Vulnerability: Contribution of Working Group II to the Fourth
Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge,
UK, 2007; pp. 433–467.

3. Turner, A.G.; Annamalai, H. Climate change and the South Asian summer monsoon. Nat. Clim. Chang. 2012,
2, 587–595. [CrossRef]

4. Deressa, T.T.; Hassan, R.M.; Ringler, C. Perception of and adaptation to climate change by farmers in the Nile
basin of Ethiopia. J. Agric. Sci. 2011, 149, 23–31. [CrossRef]

5. Fatuase, A.; Ajibefun, I. Perception and Adaptation to Climate Change among Farmers in Selected
Communities of Ekiti State, Nigeria. Gaziosmanpasa Univ. Ziraat Fak. Derg. 2014, 31, 101–114.

119



Energies 2019, 12, 4590

6. Gömann, H. How Much did Extreme Weather Events Impact Wheat Yields in Germany?—A Regionally
Differentiated Analysis on the Farm Level. Procedia Environ. Sci. 2015, 29, 119–120. [CrossRef]

7. Kurukulasuriya, P.; Mendelsohn, R.; Hassan, R.; Benhin, J.; Deressa, T.; Diop, M.; Eid, H.M.; Fosu, K.Y.;
Gbetibouo, G.; Jain, S.; et al. Will African agriculture survive climate change? World Bank Econ. Rev. 2006, 20,
367–388. [CrossRef]
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Abstract: This study aims to explore the casual relationship between agricultural production, economic
growth and carbon dioxide emissions in Pakistan. An autoregressive distributed lag (ARDL) model
is applied to examine the relationship between agricultural production, economic growth and carbon
dioxide emissions using time series data from 1960 to 2014. The Augmented Dickey–Fuller (ADF),
Phillips–Perron (PP) and Kwiatkowski–Phillips–Schmidt–Shin (KPSS) tests are used to check the
stationarity of variables. The results show both short-run and long-run relationships between
agricultural production, gross domestic product (GDP) and carbon dioxide emissions in Pakistan.
From the short-run estimates, it is found that a 1% increase in barley and sorghum production will
decrease carbon dioxide emissions by 3% and 4%, respectively. The pairwise Granger causality
test shows unidirectional causality of cotton, milled rice, and sorghum production with carbon
dioxide emissions. Due to the aforementioned cause, it is essential to manage the effects of carbon
dioxide emissions on agricultural production. Appropriate steps are needed to develop agricultural
adaptation policies, improve irrigation facilities and introduce high-yielding and disease-resistant
varieties of crops to ensure food security in the country.

Keywords: carbon dioxide emissions; agricultural production; GDP; ARDL bounds test; Granger
causality; Pakistan

1. Introduction

The issue of climate change is now a global challenge and has attracted attention of world leaders
for proactive and expedited planning for low carbon industrial growth, clean and renewable energy
sources, agricultural sustainability and low-level energy-intensive economic growth [1–7]. To ensure
food safety and food security, dedicated actions are needed on climate change and its impacts on food
production [3,8,9].

Climate change can affect agriculture productivity through a change in global temperatures,
variability in precipitation and other related factors. It is estimated that about 15–30% of the output of
agriculture would be affected globally by 2080–2100 [10]. If timely and adequate adaptive measures are
not taken, a decline in crop yield may occur in Africa, Latin America and Asia. Further, it would cost
about 5–10% of gross domestic product (GDP) for Africa to take adaptation measures to combat climate
change. Moreover, the results of the study predicted that about 50% of the decline in agricultural crops
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would be observed by 2020 and the crop revenue may further decrease, even up to 90% by 2100 [11].
Changes in the pattern of rainfall may also affect more than one billion people in South Asia [12]. Most
of the studies envisage that climate variation would adversely affect the yield of wheat crops in South
Asia. According to the Intergovernmental Panel on Climate Change (IPCC) 4th Assessment Report,
crop yield in South Asia would reduce proportionately from 1820 m3 to 1140 m3 from 2001 to 2050.

For estimating the effects of climate change on yield and growth, there are usually two approaches
that are being followed: (1) discovering the effects of long-term variation via crop simulation
models [13,14] and (2) implementation of experiments related to artificial climate change [15–17].
Crop simulation modeling in combination with simulation models and climate change scenarios is
the most frequently used approach. Modeling depends upon several factors, such as nutrition, soil,
evapotranspiration, rainfall, temperature, carbon circulation, economic environment and atmospheric
circulation. Climate change and adaptation strategies are increasingly becoming the main focus of
current scientific research; for instance, the effect on the production of crops such as wheat, rice and
maize [18]. The vulnerability index of the changing climate in Pakistan is relatively high in comparison
to numerous countries around the globe, due to variable climatic conditions. Recently, Pakistan has
faced numerous climatic variations, for instance, increased temperature, changes in the pattern of
precipitation, floods, earthquakes and weather shifts. The development of the agriculture sector in
developing countries is hampered by increasing climatic risk and projected changes in climate over
the 21st century [19]. Pakistan is affected the most by climate change due to poor infrastructure
and limited adaptive capacity [20]. It is projected that by 2050, there would be a 2–3% increase in
temperature causing a significant variation in the pattern of rainfall [21]. Pakistan is ranked eighth
among the countries most negatively affected by adverse weather conditions and climate change over
the period 1995–2014 as reported by the Global Climate Risk Index (GCRI) [22]. The productivity of
major crops, including wheat, rice, cotton and sugarcane, and rural livelihoods, has been affected
greatly due to climate variability and extreme events over the last two decades [23]. The vulnerability
of rural livelihoods to climate change can be seen from the historic floods during 2010–2014 and severe
droughts from 1999 to 2003 [23].

Several conceptual works of literature have been established which show different ways in which
climate change affects economic growth. The negative consequences of climate change are proved
both theoretically and empirically. First, the devastation of the ecosystem by numerous intensive
weather conditions, such as flood, drought, erosion, leading to the extinction of endangered species,
has resulted in perpetual harm to economic growth. Secondly, the necessary resources to oppose the
warming impact reduce investment in the economy, as well as the physical framework, research and
development, and human capital, thus minimizing growth [24,25].

Climate change has resulted in crop reduction in many regions; for example, it was estimated that
global maize production reduced by 12 Mt from 1981 to 2002 [26]. Recently, this methodology has
been used in various regions, such as Europe [27], Pakistan [28], India [29] and Ghana [30], for the
identification of the relationship between climate change and various factors on agriculture. Even
the effect of a single weather variable can harm the long-term benefits of economic development [31].
In South Asia, the production of cereal crops has been already under heat stress. Consequently,
in Central and South Asia, the crop yields will decline by up to 30% by 2050 [32]. The production of
these crops is an important factor in food security around the Asian region.

For decades, researchers globally have struggled to address the problem of endogeneity.
A researcher briefly stated that there is no way to empirically test whether a variable is correlated
with the regression error terms because the error term is unobservable [33]. This is why exogenous
latent variables, and the disturbance term, in particular, as the most common case, is the cause of so
much difficulty for empirical researchers. Because many key exogenous variables of concern are not
measured, “there is no way to statistically ensure that an endogeneity problem has been solved” [33].
This means that the problem of endogeneity is not so much a problem as it is a dilemma, hence, the title
of this paper. Dilemmas do not call for solutions, they call for choices. In the statistical sense, the
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dilemma boils down to a trading one set of untestable assumptions for another. There are no direct
tests of endogeneity, and the consequences of this must be understood. However, there are many
indirect tests that give the researcher useful information to guide their decisions and conclusions.
Therefore, this paper echoes the call for reasonable endogeneity standards found in the recent method
literature [34–36].

Many environmental factors, such as floods, wind speed, sunshine, monsoon patterns and relative
humidity, can affect agriculture production. We only include CO2 emissions in our model, so the
endogeneity problem arises here, which can affect the results. Not only environmental variables but
also other factors, such as agricultural land use, fertilizer used, agriculture inputs and population,
are included as control variables. Endogeneity is a problematic situation in which explanatory variables
correlate with the error term. In this case, when there is an endogeneity problem in our model or
variables, we need to remove it with the help of an included instrumental variable. Technically,
a Two-Stage Least Square (2SLS) model is applied when there is endogeneity in time series data. Ideally,
it is only applied to cross-sectional data, as if you apply 2SLS to time series, it will not be able to ensure
co-integration, and results may be spurious. Secondly, if we apply 2SLS to panel data, it might not
incorporate the cross-sectional heterogeneity. Thus, in the case of panel data, most researchers have
used a Generalized Method of Moments (GMM) model as an advanced version of 2SLS. It is very
rare to see endogeneity in time series data because co-integration solves that issue. Some previous
researchers have used the 2SLS model in their studies [37,38].

This study explores the responses of carbon dioxide emissions to gross domestic product (GDP)
and agricultural production based on historical data in Pakistan. An autoregressive distributed lag
(ARDL) model is employed to examine the effect of agricultural production, gross domestic product
and carbon dioxide emissions to determine the long-run relationships among several variables [39].
The remainder of this study is structured as follows: Section 2 consists of a literature review. Section 3
briefly describes the materials and methods, including the study area, data sources and description,
model specification, and econometric model. Section 4 describes the results and discussions, which
consist of descriptive statistics, unit root tests, lag order selection criteria, ARDL bounds tests, analysis
of long-run and short-run estimates, and ARDL diagnostic tests and normality plots. Section 5 contains
the conclusion and policy implications of the study.

2. Literature Review

Many previous studies have employed modern econometric techniques to determine the
association between environmental greenhouse gasses, energy consumption and socio-economic
variables in various nations globally [5,40–47]. A previous study investigated the relationship between
the consumption of electricity, industrialization, GDP and carbon dioxide emissions in Benin using
an autoregressive distributed lag (ARDL) model [42]. Evidence from the study revealed a long-run
equilibrium association flowing from consumption of electricity industrialization, GDP and carbon
dioxide emissions [42]. Another study employed the vector error correction model (VECM) and
ordinary least squares (OLS) regression to reveal the impact of population progression, energy intensity
and GDP on carbon dioxide emissions in Ghana [48]. The study found evidence of the existence of
a long-run equilibrium association flowing from population growth, energy intensity and GDP to
carbon dioxide emissions. The study also revealed that there was a bi-directional causality among
energy consumption and carbon dioxide emissions [48]. Another study in Ghana investigated the
association between population growth, use of energy, GDP and carbon dioxide emissions using both
autoregressive distributed lag (ARDL) regression analysis and a vector error correction model (VECM).
The study found that there will be fluctuation in carbon dioxide emissions due to the use of energy in
the future. Furthermore, evidence from the study showed a unidirectional causality running from
carbon dioxide emissions to use the energy and population [49].

Theoretically, an association could be established through microeconomic and macroeconomic
dimensions. From the view of the macroeconomic dimension, the two important areas which are
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stressed include the impact on the output level, such as yields and the ability of the economy to
grow [50]. On the microeconomic side, we have factors such as physical productivity of labor, health
and conflict. These factors have economy-wide implications [51–53]. Moreover, climate change can
have such effects as political inconstancy, which may obstruct factor accumulation and growth in
productivity [54].

It has been reported that a rise in temperature can have a profound influence on the productivity
of the agriculture sector, food security and farmer’s income. This effect varies in tropical and temperate
areas. In middle and high latitudes, the aptness and output of crops are anticipated to increase and
spread northwards, and vice versa is true for several countries in tropical regions [55]. It is found that
in high latitudes, production can be increased by nearly 10% due to a 2 ◦C rise in temperature, while
it reduces production by the same percentage in low latitudes. By taking into account the effect of
technology, it is projected that an increase in temperature would increase the productivity of yields by
between 37% and 101% by the 2050s in the Russian Federation [54].

In comparison to other developing countries, the effects of escalating temperature on agriculture
are harsher in sub-Saharan Africa [56]. It has been observed that if some important climatic conditions,
such as temperature and rainfall, had persisted at their pre-1960 status, then the gap of agricultural
production between different developing countries and sub-Saharan Africa at the end of the 20th
century would have remained only 32% of the existing shortfall. A study of the period of 1980–2005 in
Nigeria indicated that temperature exerts a negative influence while rainfall has a positive effect on
agricultural production [57].

Some illumination of the effects of climate change on African development was provided in
the 4th assessment report of the IPCC. For instance, it was estimated that yield could be reduced by
50% by 2020 in some countries, and the revenue generated from crops could fall nearly 90% by 2100.
Smallholder farmers would be affected the most. This will also provoke water problems, as almost 25%
of the population in Africa has recently encountered high water stress. Because of increasing water
stress in Africa, the population at risk is projected to be between 350 and 600 million by 2050 and about
25–40% of mammals may become endangered in national parks in sub-Saharan Africa [11].

Developed countries have the ability to maintain a minimum level of technology for the
improvement of living standards and increasing agricultural productivity [58]. These countries
are generally also capable of offsetting the negative consequences of climate change. Developed
states usually have a low level of susceptibility but a high level of adaptive ability, which itself is a
function of technological expertise, dissemination and supply of assets, and human social and political
capital [59]. The developed world has good levels of water filtration and sanitation. On the other hand,
developing countries have insecure and unreliable water supplies, and often sanitation systems are
non-satisfactory. The notion of crop insurance to protect farmers from the negative consequences of
climate change, which may destroy their livelihoods, is missing in developing countries.

During the past decade, Pakistan’s per capita gross domestic product (GDP) has experienced a
diverse trend. During the period from 2005 to 2014, per capita GDP increased from USD 974.5 to USD
1111.2. In 2011, the government placed significant emphasis on upgrading the country’s economy,
resulting in a consistent increase of per capita GDP during the period 2011 to 2014. During this period,
despite several types of socio-economic challenges, such as energy crises, a war against terrorism, and
poverty, per capita GDP (Pakistan Economic Survey 2017) increased by USD 64.71, providing evidence
that the Government of Pakistan has taken actions to raise economic growth and enriched the living
conditions of the hinterlands.

3. Materials and Methods

3.1. Data Sources and Description

The key purpose of this study is to answer the question: is there any causal effect between carbon
dioxide emissions, gross domestic product and agricultural production in Pakistan? The study used
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time series data from 1960 to 2014. The data for different variables of this study was acquired from
Index Mundi and World Development Indicators of the World Bank. Based on the review of literature,
the current study uses nine variables: carbon dioxide emissions CO2 (kt), gross domestic product
(GDP) (constant 2010 US$), barley production (1000 Mt), corn production (1000 Mt), cotton production
(1000 Mt), milled rice production (1000 Mt), millet production (1000 Mt), sorghum production (1000 Mt)
and wheat production (1000 Mt). The trends of the study variables are given in Figure 1.

  

   

   

Figure 1. Trend of study variables.

3.2. Econometric Model

Descriptive statistics are estimated to determine the features of the study variables. To find
out the integration order of the study variables, in the first step, we have to identify stationarity
in the time series data. For this purpose, we employed the Augmented Dickey–Fuller (ADF) [60],
Kwiatkowski–Phillips–Schmidt–Shin (KPSS) and Phillips–Perron (PP) unit root tests [61], and the
ARDL bounds test was then estimated. Furthermore, the pairwise Granger causality test and variance
decomposition analysis were carried out to examine the direction of causality and improve the study
variables in the future. Figure 2 presents the schematic diagram of the study.

The econometric specification of the study variables can be written as:

CO2t = f (GDPt, BARLEYt, CORNt, COTTONt, MILLED RICEt, MILLETt, SORGHUMt, WHEATt)

(1)
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The empirical specification of the proposed model is written as:

LnCO2t

= α0 + α1LnGDPt + α2LnBARLEYt + α3LnCORNt + α4LnCOTTONt + α5LnMILLED RICEt

+α6LnMILLETt + α7LnSORGHUMt + α8LnWHEATt

+εt)

(2)

In Equation (2), LnCO2t is the logarithmic form of carbon dioxide emissions, LnGDPt is the
gross domestic product (GDP), LnBARLEYt is the barley production, LnCORNt is the corn production,
LnCOTTONt is the cotton production, LnMILLED RICEt is the milled rice production, LnMILLETt

is the millet production, LnSORGHUMt is the sorghum production and LnWHEATt is the wheat
production in year t, εt is the error term, and α0,α1, α2, α3, α4, α5, α6, α7 and α8 are the elasticities to
be estimated in Equation (2).

 

Figure 2. A schematic presentation of the study.

4. Results and Discussion

4.1. Descriptive Analysis

The descriptive analysis shows the mean, coefficient of variation, skewness, kurtosis and normality
of distribution of the study variables. The results of descriptive statistics of the study variables are
estimated in Table 1. Evidence shows that CO2, gross domestic product (GDP), barley, corn, cotton,
milled rice, millet and wheat exhibit positive skewness, while sorghum exhibits a negative skewness.
The result of the kurtosis test shows that the CO2, gross domestic product (GDP), barley, cotton, milled
rice, millet and wheat exhibit a platykurtic distribution, while corn and sorghum exhibit a leptokurtic
distribution. The outcome from the Jarque–Bera test shows that we accept the null hypothesis of normal
distribution at the 5% level of significance for barley, milled rice, millet, sorghum and wheat crops.
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Table 1. Descriptive statistics analysis.

Statistic
CO2

Emissions
(kt)

GDP
(M USD)

Barley
(1000
Mt)

Corn
(1000
Mt)

Cotton
(1000
Mt)

Milled-Rice
(1000 Mt)

Millet
(1000
Mt)

Sorghum
(1000
Mt)

Wheat
(1000 Mt)

Mean 70,590.69 8,140,000 118.4182 1567.873 5618.964 3575.291 269.3455 230.3636 13,477.24
Median 53,535.00 6,770,000 118.0000 1100.000 6250.000 3272.000 274.0000 231.0000 12,675.00

Maximum 166,299.0 2,060,000 185.0000 4944.000 11,138.00 7003.000 446.0000 378.0000 25,979.00
Minimum 14,155.00 1,370,000 66.00000 439.0000 1398.000 1030.000 115.0000 115.0000 3814.000
Std. Dev. 52,092.32 5,740,000 29.42013 1213.157 3070.710 1601.680 74.69896 53.63780 6683.929
Skewness 0.627348 0.616588 0.116649 1.464809 0.106986 0.411594 0.226418 −0.102608 0.169114
Kurtosis 1.960562 2.149885 2.372942 3.998844 1.527590 2.529724 2.451225 3.302701 1.841895

Jarque–Bera 6.083672 5.141172 1.025816 21.95496 5.073237 2.059748 1.160074 0.306490 3.335760
Probability 0.047747 0.076491 0.598752 0.000017 0.079134 0.357052 0.559878 0.857919 0.188647

Source “Authors’ calculation”.

4.2. Unit Root Tests

Before estimating the ARDL bounds test co-integration, it is necessary to determine the
stationarity of the variables. To meet the stationarity requirement, the study estimates the unit
root using the Augmented Dickey–Fuller (ADF) [62], Phillips–Perron (PP) [61] and Kwiatkowski–
Phillips–Schmidt–Shin (KPSS) tests in order to have a robust result. The results of the unit root tests are
reported in Table 2. The result of the ADF test shows that the null hypothesis of the unit root cannot be
rejected at a 5% significance level. The results of the KPSS test show the null hypothesis of stationarity
is rejected at a 5% significance level. Evidence from the results of ADF, PP and KPSS unit root tests
shows that the series are integrated at I(1).

Table 2. Unit root test.

Model
ADF Level ADF 1st Diff KPSS Level KPSS 1st Diff PP Level PP 1st Diff

t-Stat
(p-Vale)

t-Stat
(p-Vale)

t-Stat
(5% Critical

Level)

t-Stat
(5% Critical

Level)

t-stat
(p-Vale)

t-Stat
(p-Vale)

Intercept

LnCO2
−0.806182
(0.8092)

−5.953051
(0.0000)

0.882144
(0.463000)

0.121843
(0.463000)

−0.761270
(0.8218)

−5.991025
(0.0000)

LnGDP −3.144898
(0.0291)

−5.525176
(0.0000)

0.893568
(0.463000)

0.482889
(0.463000)

−2.886320
(0.0536)

−5.623884
(0.0000)

LnBarley −1.278657
(0.6332)

−8.855400
(0.0000)

0.304102
(0.463000)

0.177851
(0.463000)

−1.278657
(0.6332)

−8.825782
(0.0000)

LnCorn 0.467842
(0.9840)

−8.517140
(0.0000)

0.861313
(0.463000)

0.147426
(0.463000)

0.631484
(0.9894)

−8.526955
(0.0000)

LnCotton −1.423831
(0.5638)

−9.945326
(0.0000)

0.853528
(0.463000)

0.170778
(0.463000)

−1.450853
(0.5506)

−11.39586
(0.0000)

LnMilled rice −1.631603
(0.4597)

−9.582429
(0.0000)

0.954980
(0.463000)

0.204843
(0.463000)

−1.988090
(0.2911)

−10.16939
(0.0000)

LnMillet −1.647754
(0.4515)

−11.71139
(0.0000)

0.453031
(0.463000)

0.056429
(0.463000)

−2.143656
(0.2290)

−13.01371
(0.0000)

LnSorghum 0.550452
(0.9869)

−11.35154
(0.0000)

0.775917
(0.463000)

0.187032
(0.463000)

0.052072
(0.9589)

−11.65376
(0.0000)

LnWheat −2.155233
(0.2248)

−7.468655
(0.0000)

0.867938
(0.463000)

0.286169
(0.463000)

−1.991421
(0.2897)

−11.88184
(0.0000)
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Table 2. Cont.

Model
ADF Level ADF 1st Diff KPSS Level KPSS 1st Diff PP Level PP 1st Diff

t-Stat
(p-Vale)

t-Stat
(p-Vale)

t-Stat
(5% Critical

Level)

t-Stat
(5% Critical

Level)

t-stat
(p-Vale)

t-Stat
(p-Vale)

Intercept and Trend

LnCO2
−1.146817
(0.9110)

−5.943842
(0.0000)

0.109365
(0.146000)

0.109589
(0.146000)

−1.573362
(0.7905)

−6.031511
(0.0000)

LnGDP −0.822407
(0.9569)

−6.292270
(0.0000)

0.229191
(0.146000)

0.056925
(0.146000)

−0.994228
(0.9362)

−6.301469
(0.0000)

LnBarley −1.549158
(0.7997)

−8.936464
(0.0000)

0.211863
(0.146000)

0.101501
(0.146000)

−1.549158
(0.7997)

−9.066157
(0.0000)

LnCorn −1.541615
(0.8025)

−8.669357
(0.0000)

0.207887
(0.146000)

0.062252
(0.146000)

−1.328646
(0.8700)

−8.690926
(0.0000)

LnCotton −3.418161
(0.0596)

−9.913682
(0.0000)

0.129370
(0.146000)

0.108013
(0.146000)

−3.338073
(0.0711)

−12.56710
(0.0000)

LnMilled rice −3.199369
(0.0954)

−9.593674
(0.0000)

0.156707
(0.146000)

0.124665
(0.146000)

−3.079200
(0.1216)

−10.85739
(0.0000)

LnMillet −1.342745
(0.8660)

−8.664871
(0.0000)

0.217252
(0.146000)

0.032753
(0.146000)

−2.391047
(0.3799)

−14.16708
(0.0000)

LnSorghum −1.812902
(0.6845)

−8.306334
(0.0000)

0.154413
(0.146000)

0.093016
(0.146000)

−2.956875
(0.1538)

−13.87512
(0.0000)

LnWheat −1.569448
(0.7912)

−7.764154
(0.0000)

0.239256
(0.146000)

0.126430
(0.146000)

−2.593371
(0.2849)

−23.15530
(0.0001)

4.3. ARDL Bounds Testing of Co-Integration and Regression Analysis

The current study uses an autoregressive distributed lag (ARDL) bounds testing approach
suggested by [63] to determine both short-run and long-run associations of carbon dioxide emissions,
gross domestic product and agricultural production. The ARDL bounds testing method is appropriate
for those models in which there is a mixture of I(0) and I(1) variables. Another characteristic of this
model is that it is appropriate for small sample size, as our sample size is only 54 [63].

It is important to determine how many lags are to be used in an ARDL model. Therefore, to find
the optimal number of lags for the model, the unrestricted vector autoregression (VAR) lag selection
criteria are tested. Table 3 formulates the lag selection criteria for the model, but the most commonly
employed criteria are the Akaike information criterion (AIC) and the Schwarz information criterion
(SIC). A previous study used AIC for small sample size [64]. In this study, we employed the Akaike
information criterion, which revealed that the most suitable lag value for the model is lag 3.

Table 3. Optimal lags selection.

Lag LogL LR FPE AIC SC HQ

0 223.6244 NA 2.10 × 10−15 −8.254784 −7.917069 −8.125312
1 599.5208 607.2173 2.61 × 10−20 * −19.59696 −16.21980 * −18.30223 *
2 660.1237 76.91906 7.52 × 10−20 −18.81245 −12.39586 −16.35248
3 772.8762 104.0792 * 5.06 × 10−20 −20.03370 * −10.57767 −16.40848

* indicates lag order selected by the criterion; Likelihood Ratio LR: sequential modified LR test statistic (each test at
5% level); FPE: Final prediction error; AIC: Akaike information criterion; SC: Schwarz information criterion; HQ:
Hannan–Quinn information criterion. Source” Authors’ calculation”.

After unit root testing, which showed all variables are integrated at I(1), we carried out the ARDL
method of co-integration (bounds testing) to estimate the relationship between the selected variables
in this study. The results of the ARDL bounds testing are reported in Table 4. The results indicate
that the f-statistic value (4.954551) is greater than the 10% and 5% upper critical values of I(0) bound.
The results of the bounds testing validate significant long-run relationships among variables and show
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the rejection of the null hypothesis of no co-integration association among LnCO2, LnGDP, Lnbarley,
Lncorn, Lncotton, Lnmilled rice, Lnmillet, Lnsorghum and Lnwheat.

Table 4. ARDL Bound Test.

Test Statistic Value k

F-statistic 4.954551 8

Critical value bounds

Significance I(0) Bound I(1) Bound
10% 1.85 2.85
5% 2.11 3.15

2.5% 2.33 3.42
1% 2.62 3.77

Furthermore, the study uses the Akaike information criterion (AIC) to select the optimal model by
employing long-run and short-run associations among variables. Employing the Akaike information
criterion shows the top twenty possible ARDL models in Figure 3. Based on the model specification
in Equation (2), the short-run and long-run equilibrium relationships of LnCO2, LnGDP, Lnbarley,
Lncorn, Lncotton, Lnmilledrice, Lnmillet, Lnsorghum and Lnwheat are estimated using the ARDL regression
analysis shown in Equation (3).

Cointeq = LnCO2_EMISSIONS − (2.0507 × LnGDP + 0.3425 × LnBARLEY_P + 0.2393
× LnCORN_P − 0.3300 × LnCOTTON_P − 0.4678 × LnMILLED_RICE_P − 0.2392 ×
LnMILLET_P − 0.0549 × LnSORGHUM_P − 0.9790 × LnWHEAT_P − 26.2134)

(3)

where α0 = −26.2134, α1 = 2.0507, α2 = 0.3425, α3 = 0.2393, α4 = −0.3300, α5 = −0.4678, α6 = −0.2393,
α7 = −0.0549 and α8 = −0.9790.

  

Figure 3. ARDL model selection criterion. Source “Authors’ calculation”.

4.4. Short-Run and Long-Run Equation Model

Table 5 summarizes the results of the short-run equation of the ARDL model. The results show
that the speed of adjustment Error Correction Term ECT(−1) value is −0.30225 which shows that
there is a long-run and short-run equilibrium relationship running from LnGDP, LnBARLEY, LnCORN,
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LnCOTTON, LnMILLED RICE, LnMILLET, LnSORGHUM and LnWHEAT to LnCO2. The speed of
adjustment is approximately 30.2% in one period of the long-run equilibrium.

Table 5. Short-run and long-run relationship estimates for the selected model ARDL(1,1,3,0,0,0,2,3,3).

Short Run Coefficients

Variable Coefficient Std. Error t-Statistic Prob.

D(LnGDP) 1.603111 0.134533 11.91612 0.0000
D(LnBARLEY_P) −0.033465 0.044624 −0.749932 0.4591

D(LnBARLEY_P(−1)) −0.028035 0.045818 −0.611888 0.5452
D(LnBARLEY_P(−2)) −0.182478 0.047232 −3.863424 0.0006

D(LnMILLET_P) −0.003291 0.030180 −0.109053 0.9139
D(LnMILLET_P(−1)) 0.120510 0.030014 4.015104 0.0004
D(LnSORGHUM_P) −0.044541 0.041888 −1.063337 0.2961
D(LnSORGHUM_P(−1)) 0.031559 0.047437 0.665288 0.5109
D(LnSORGHUM_P(−2)) 0.156119 0.046536 3.354824 0.0022

D(LnWHEAT_P) 0.160592 0.066146 2.427827 0.0214
D(LnWHEAT_P(−1)) 0.254506 0.068919 3.692827 0.0009
D(LnWHEAT_P(−2)) 0.198675 0.070262 2.827628 0.0083

ECT(−1) −0.302533 0.037696 −8.025532 0.0000

Long Run Coefficients

Variable Coefficient Std. Error t-Statistic Prob.

LnGDP 2.050716 0.354124 5.790953 0.0000
LnBARLEY_P 0.342550 0.211505 1.619578 0.1158
LnCORN_P 0.239295 0.236151 1.013316 0.3190

LnCOTTON_P −0.330019 0.148359 −2.224459 0.0338
LnMILLED_RICE_P −0.467837 0.214080 −2.185334 0.0368

LnMILLET_P −0.239205 0.298329 −0.801816 0.4290
LnSORGHAM_P −0.054855 0.227681 −0.240930 0.8112

LnWHEAT_P −0.978995 0.346072 −2.828881 0.0082
C −26.21344 7.839747 −3.343659 0.0022

EC = LnCO2_EMISSIONS − (2.0507 × LnGDP + 0.3425 × LnBARLEY_P + 0.2393 ×
LnCORN_P − 0.3300 × LnCOTTON_P − 0.4678 × LnMILLED_RICE_P − 0.2392 ×

LnMILLET_P − 0.0549 × LnSORGHUM_P − 0.9790 × LnWHEAT_P − 26.2134)

Source “Authors’ calculation”.

Table 5 also shows the results of long-run equation results of the ARDL approach. The results of
the long-run equilibrium relationship show that a 1% increase in LnBARLEY will decrease LnCO2 by
3%, a 1% increase in LnMILLET will decrease LnCO2 by 0.03%, and a 1% increase in LnSORGHUM
will decrease LnCO2 by 3% in short-run estimates. The evidence of the following studies reveals that
carbon dioxide emissions increase in the early phases of economic growth and then decline after a
threshold point. The findings of these studies (such as [10,48–55]) show the relationship between carbon
dioxide emissions and GDP growth. The findings of previous studies, such as [65] for China, [66] for
Tunisia, [67] for Iran, [68] for Pakistan, [69] for Malaysia, [70] for Turkey and [71] for India, indicate
that there is a unidirectional causality running from GDP income to carbon dioxide emissions without
response, suggesting that emission reduction plans will not restrain trade and industry growth and
that the implementation of such plans seems to be a feasible policy strategy in the aforementioned
studied countries to accomplish their long-run sustainable growth.

4.5. Diagnostic Test

Once the cointegration relationship was confirmed for the different variables, the cumulative sum
(CUSUM) and the cumulative sum of the square of the recursive residuals (CUSUM2) were implemented
to run the ARDL model in a befitting manner. The CUSUM and CUSUM2 tests were employed based
on the recursive regression residuals as suggested by [72]. Evidence from the cumulative sum (CUSUM)
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and cumulative sum of squares (CUSUM2) tests show that the plots lie within the 5% significance level.
The two straight lines (red color) show the critical bounds at the 5% significant level. The lines (blue
color) in the middle represent the measurements for the cumulative sum of the recursive residuals and
the cumulative sum of the square of the recursive residuals. The above statements mean that the ARDL
model is constant and stable for estimation of the parameters of the ARDL co-integration bounds test,
and the long-run and short-run causality relationship. Figure 4 presents the diagnostic and stability
tests for the ARDL model and validates the model.

(a) (b) 

Figure 4. Stability test based on (a) CUSUM and (b) CUSUM of squares. Source “Authors’ calculation”.

Several diagnostic tests were undertaken to check for a good fit of the ARDL model. Table 6
shows that the estimation was suitable with regard to serial correlation and heteroskedasticity, and the
inverse root of the AR graph shows the stability of the model.

Table 6. Diagnostic test results.

Breusch–Godfrey Serial Correlation Lagrange Multiplier LM Test:

F-statistic 2.958497
Obs R-squared 12.86465
Prob. F(3,27) 0.0501

Prob. Chi-Square(3) 0.0049

Heteroskedasticity Test: Breusch–Pagan–Godfrey

F-statistic 1.858453
Obs R-squared 29.40032

Scaled explained sum of square SS 9.473970
Prob. F(21,30) 0.0588
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4.6. Pairwise Granger-Causality Tests

In this study, we applied an ARDL testing model to determine the short-run and long-run
relationship between variables. To find out the causality between LnCO2, LnGDP, LnBARLEY,
LnCORN, LnCOTTON, LnMILLEDRICE, LnMILLET, LnSORGHUM and LnWHEAT, we used pairwise
Granger causality [73] estimations. The results of the pairwise Granger causality test are presented
in Table 7. The null hypothesis that LnCO2_EMISSIONS does not Granger cause LnCOTTON_P,
LnCO2_EMISSIONS does not Granger cause LnMILLED_RICE_P, LnCO2_EMISSIONS does not
Granger cause LnSORGHUM_P, LnGDP does not Granger cause LnCOTTON_P, LnGDP does
not Granger cause LnMILLED RICE_P, LnGDP does not Granger cause LnSORGHUM_P, LnGDP
does not Granger cause LnWHEAT_P, LnSORGHUM_P does not Granger cause LnBARLEY_P,
LnCORN_P does not Granger cause LnMILLED_RICE_P, LnCOTTON_P does not Granger cause
LnSORGHUM_P, LnWHEAT_P does not Granger cause LnCOTTON_P, LnCOTTON_P does not Granger
cause LnWHEAT_P, LnMILLED_RICE_P does not Granger cause LnSORGHUM_P, LnWHEAT_P does
not Granger cause LnMILLED_RICE_P, LnMILLED_RICE_P does not Granger cause LnWHEAT_P,
and LnWHEAT_P does not Granger cause LnSORGHUM_P is rejected at the 5% significance
level. The results of Granger causality shows unidirectional causality between: LnCOTTON_P
→ LnCO2, LnMILLED RICE_P → LnCO2, LnSORGHUM_P → LnCO2, LnCOTTON_P → LnGDP,
LnMILLED RICE_P→ LnGDP, LnSORGHUM_P→ LnGDP, LnWHEAT_P→ LnGDP, LnSORGHUM_P→
LnBARLEY_P, LnMILLED_RICE_P→ LnCORN_P, LnSORGHUM_P→ LnCOTTON_P, LnSORGHUM_P
→ LnMILLED_RICE_P, and LnWHEAT_P→ LnSORGHUM_P, and bidirectional causality between:
LnWHEAT_P↔ LnCOTTON_P and LnWHEAT_P↔ LnMILLED_RICE_P.
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Table 7. Pairwise Granger causality test.

Pairwise Granger Causality Tests

Null Hypothesis: Obs F-Statistic Prob.

LnGDP does not Granger cause LnCO2_EMISSIONS 54 1.65000 0.2048
LnCO2_EMISSIONS does not Granger cause LnGDP 0.00268 0.9589

LnBARLEY_P does not Granger cause LnCO2_EMISSIONS 54 3.66357 0.0612
LnCO2_EMISSIONS does not Granger cause LnBARLEY_P 1.63838 0.2063

LnCORN_P does not Granger cause LnCO2_EMISSIONS 54 0.41262 0.5235
LnCO2_EMISSIONS does not Granger cause LnCORN_P 2.10540 0.1529

LnCOTTON_P does not Granger cause LnCO2_EMISSIONS 54 0.57836 0.4505
LnCO2_EMISSIONS does not Granger cause LnCOTTON_P 13.3746 0.0006

LnMILLED_RICE_P does not Granger cause LnCO2_EMISSIONS 54 0.00024 0.9877
LnCO2_EMISSIONS does not Granger cause LnMILLED_RICE_P 4.64682 0.0359
LnMILLET_P does not Granger cause LnCO2_EMISSIONS 54 1.58702 0.2135

LnCO2_EMISSIONS does not Granger cause LnMILLET_P 0.85293 0.3601
LnSORGHUM_P does not Granger cause LnCO2_EMISSIONS 54 0.07604 0.7839

LnCO2_EMISSIONS does not Granger cause LnSORGHUM_P 8.42960 0.0054
LnWHEAT_P does not Granger cause LnCO2_EMISSIONS 54 0.66557 0.4184

LnCO2_EMISSIONS does not Granger cause LnWHEAT_P 2.66479 0.1088
LnBARLEY_P does not Granger cause LnGDP 54 1.4 × 10−05 0.9970

LnGDP does not Granger cause LnBARLEY_P 0.82411 0.3683
LnCORN_P does not Granger cause LnGDP 54 0.08792 0.7680

LnGDP does not Granger cause LnCORN_P 1.06664 0.3066
LnCOTTON_P does not Granger cause LnGDP 54 1.78409 0.1876

LnGDP does not Granger cause LnCOTTON_P 13.9597 0.0005
LnMILLED_RICE_P does not Granger cause LnGDP 54 0.17989 0.6733

LnGDP does not Granger cause LnMILLED_RICE_P 7.41034 0.0089
LnMILLET_P does not Granger cause LnGDP 54 0.39985 0.5300

LnGDP does not Granger cause LnMILLET_P 1.45823 0.2328
LnSORGHUM_P does not Granger cause LnGDP 54 1.45676 0.2330

LnGDP does not Granger cause LnSORGHUM_P 9.16817 0.0039
LnWHEAT_P does not Granger cause LnGDP 54 4.3 × 10−07 0.9995

LnGDP does not Granger cause LnWHEAT_P 11.3023 0.0015
LnCORN_P does not Granger cause LnBARLEY_P 54 1.82014 0.1833

LnBARLEY_P does not Granger cause LnCORN_P 0.83645 0.3647
LnCOTTON_P does not Granger cause LnBARLEY_P 54 0.16781 0.6838

LnBARLEY_P does not Granger cause LnCOTTON_P 0.01421 0.9056
LnMILLED_RICE_P does not Granger cause LnBARLEY_P 54 0.72632 0.3981

LnBARLEY_P does not Granger cause LnMILLED_RICE_P 1.33097 0.2540
LnMILLET_P does not Granger cause LnBARLEY_P 54 0.19762 0.6585

LnBARLEY_P does not Granger cause LnMILLET_P 1.73499 0.1937
LnSORGHUM_P does not Granger cause LnBARLEY_P 54 6.36879 0.0148

LnBARLEY_P does not Granger cause LnSORGHUM_P 1.78782 0.1871
LnWHEAT_P does not Granger cause LnBARLEY_P 54 0.76246 0.3867

LnBARLEY_P does not Granger cause LnWHEAT_P 2.48626 0.1210
LnCOTTON_P does not Granger cause LnCORN_P 54 0.02533 0.8742

LnCORN_P does not Granger cause LnCOTTON_P 2.74956 0.1034
LnMILLED_RICE_P does not Granger cause LnCORN_P 54 0.03956 0.8431

LnCORN_P does not Granger cause LnMILLED_RICE_P 7.44094 0.0087
LnMILLET_P does not Granger cause LnCORN_P 54 0.11889 0.7317

LnCORN_P does not Granger cause LnMILLET_P 0.19930 0.6572
LnSORGHUM_P does not Granger cause LnCORN_P 54 1.09323 0.3007

LnCORN_P does not Granger cause LnSORGHUM_P 21.4589 3 × 10−05

LnWHEAT_P does not Granger cause LnCORN_P 54 0.13426 0.7156
LnCORN_P does not Granger cause LnWHEAT_P 3.26729 0.0766

LnMILLED_RICE_P does not Granger cause LnCOTTON_P 54 3.47557 0.0680
LnCOTTON_P does not Granger cause LnMILLED_RICE_P 1.58936 0.2132
LnMILLET_P does not Granger cause LnCOTTON_P 54 0.48885 0.4876
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Table 7. Cont.

Pairwise Granger Causality Tests

Null Hypothesis: Obs F-Statistic Prob.

LnCOTTON_P does not Granger cause LnMILLET_P 1.61906 0.2090
LnSORGHUM_P does not Granger cause LnCOTTON_P 54 0.78492 0.3798

LnCOTTON_P does not Granger cause LSORGHUM_P 5.29439 0.0255
LnWHEAT_P does not Granger cause LnCOTTON_P 54 8.20250 0.0061

LnCOTTON_P does not Granger cause LnWHEAT_P 5.52918 0.0226
LnMILLET_P does not Granger cause LnMILLED_RICE_P 54 0.17433 0.6780

LnMILLED_RICE_P does not Granger cause LnMILLET_P 1.31917 0.2561
LnSORGHUM_P does not Granger cause LnMILLED_RICE_P 54 1.37066 0.2471

LnMILLED_RICE_P does not Granger cause LnSORGHUM_P 8.25064 0.0059
LnWHEAT_P does not Granger cause LnMILLED_RICE_P 54 4.53110 0.0381

LnMILLED_RICE_P does not Granger cause LnWHEAT_P 5.60364 0.0218
LnSORGHUM_P does not Granger cause LnMILLET_P 54 0.99540 0.3231

LnMILLET_P does not Granger cause LnSORGHUM_P 0.19501 0.6606
LnWHEAT_P does not Granger cause LnMILLET_P 54 2.35497 0.1311

LnMILLET_P does not Granger cause LnWHEAT_P 0.09127 0.7638
LnWHEAT_P does not Granger cause LnSORGHAM_P 54 8.43335 0.0054

LnSORGHUM_P does not Granger cause LnWHEAT_P 0.17899 0.6740

Source “Authors’ calculation”.

4.7. Two-Stage Least Square (2SLS) Method for Endogeneity Problem

Endogeneity is a problem when the explanatory variables correlate with the error term. When
an endogeneity problem is found in a model or variables, it is resolved by including an instrumental
variable. To identify if an endogeneity problem exists, we applied the 2SLS method to the time series
data. In the case of endogeneity in the model, there is a need for instrumental variables. We added
agriculture value-added (AVA) as an instrumental variable in our model. Table 8 shows the two-stage
least square method for the study variables. The model also shows the Durbin–Watson, J-statistic and
second-stage results (SSR) for the study variables.

Table 8. Two-stage least square (2SLS) method.

Dependent Variable: LNCO2_EMISSIONS
Method: Two-Stage Least Squares

Instrument specification: LnBARLEY LnCORN LnCOTTON LnMILLED_RICE
LnMILLET LnSORGHUM LnWHEAT LnAVA C

Variable Coefficient Std. Error t-Statistic Prob.

LnGDP 0.057291 0.635302 0.090178 0.9285
LnBARLEY 0.167707 0.171722 0.976616 0.3340
LnCORN 0.738820 0.355009 2.081133 0.0431

LnCOTTON 0.359947 0.199564 1.803670 0.0780
LnMILLED_RICE −0.518871 0.215862 −2.403720 0.0204

LnMILLET −0.059969 0.192319 −0.311823 0.7566
LnSORGHUM 0.028461 0.182736 0.155750 0.8769

LnWHEAT 0.559824 0.525935 1.064437 0.2928
C −0.535170 9.044380 −0.059172 0.9531

R-squared 0.972394 Mean dependent var 10.88533
Adjusted R-squared 0.967486 S.D. dependent var 0.801814

S.E. of regression 0.144579 Sum squared resid 0.940644
F-statistic 197.8743 Durbin-Watson stat 0.873537

Prob(F-statistic) 0.000000 Second-Stage SSR 0.984332
J-statistic 2.41 × 10−32 Instrument rank 9
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4.8. Impulse Response and Variance Decomposition Analysis

Finally, we employed impulse response analysis in which we employ the response of LnCO2,
LnGDP, LnBARLEY, LnCORN, LnCOTTON, LnMILLED RICE, LnMILLET, LnSORGHUM, and LnWHEAT
to explain random innovations among them. The random response is not described by the pairwise
Granger causality test. The impulse-response of carbon dioxide emissions to Cholesky One S.D.
innovations in other variables are displayed in Figure 5.

     

      

     

Figure 5. Impulse response of LCO2 to Cholesky One S.D.

This study employed the variance decomposition method, which estimates the percentage of
influence of each independent variable on the error variance of the dependent variable [39]. Figure 5
shows that the response of carbon dioxide emissions to corn production, millet production, milled rice
production, sorghum production, and wheat production are insignificant within 10-period horizons.
On the other hand, the initial response of carbon dioxide emissions to all other variables, for example,
GDP, barley production and cotton production, is significant. On the other hand, a one standard
deviation shock to GDP causes carbon dioxide emissions to steadily increase within a 10-period horizon.
Similarly, a one standard deviation shock to barley production causes carbon dioxide emissions to
gradually increase within a 10-period horizon, while corn production first increases carbon dioxide
emissions over a 2-period horizon, and then starts decreasing over a 10-period horizon. A one standard
deviation shock to cotton production causes carbon dioxide emissions to exhibit and up-and-down
motion within a 10-period horizon.

Figure 6 shows the response of GDP, barley production, corn production, cotton production,
milled rice production, millet production, sorghum production and wheat production to carbon
dioxide emissions.
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Figure 6. Impulse response of other variables to Cholesky One S.D. Innovations in LCO2.

Table 9 shows the variance decomposition of LCO2, LnGDP, LnBARLEY, LnCORN, LnCOTTON,
LnMILLED RICE, LnMILLET, LnSORGHUM and LnWHEAT within a 10-period horizon. The variance
decomposition provides evidence of the relative importance of each random innovation in affecting
LnCO2, LnGDP, LnBARLEY, LnCORN, LnCOTTON, LnMILLED RICE, LnMILLET, LnSORGHUM and
LnWHEAT in the VAR model.
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5. Conclusions and Policy Implications

This study explored the causal relationship between carbon dioxide emissions, economic growth
and agricultural production in Pakistan for the time period from 1960 to 2014. By employing the ARDL
optimal model, there was evidence of short-run and long-run associations between gross domestic
product, barley, corn, cotton, milled rice, millet, sorghum and wheat to carbon dioxide emissions. The
evidence from the unit root tests (ADF, PP and KPSS) showed that all study variables are integrated at
I(1). The results of the ARDL bounds test showed that there is a co-integration relationship between all
the study variables.

The results of the Granger causality test indicated that there is both unidirectional and bidirectional
causality between the study variables. The study also applied the two-stage least square method to
describe the endogeneity problem in our variables or model. The paper aimed to employ variance
decomposition and Cholesky ordering to investigate the future effect of variables on carbon dioxide
emissions in the VAR model.

Agriculture plays a very important role and is considered a backbone in a nation’s growth.
The government of Pakistan is trying to achieve a healthy living style and increase its economic
growth. There is a need to improve agricultural productivity through advanced agriculture production
techniques. The country is listed among the countries severely affected by climate change [74] despite
being a low producer of CO2 gasses [75] because of its increasing dependence on agriculture for food
and fiber needs [76]. The role of extension services is also very important for spreading updated
scientific information to farmers.
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Abstract: We propose an emission-intensity-based carbon-tax policy for the electric-power industry
and investigate the impact of the policy on thermal generation self-scheduling in a deregulated
electricity market. The carbon-tax policy is designed to take a variable tax rate that increases stepwise
with the increase of generation emission intensity. By introducing a step function to express the
variable tax rate, we formulate the generation self-scheduling problem under the proposed carbon-tax
policy as a mixed integer nonlinear programming model. The objective function is to maximize total
generation profits, which are determined by generation revenue and the levied carbon tax over the
scheduling horizon. To solve the problem, a decomposition algorithm is developed where the variable
tax rate is transformed into a pure integer linear formulation and the resulting problem is decomposed
into multiple generation self-scheduling problems with a constant tax rate and emission-intensity
constraints. Numerical results demonstrate that the proposed decomposition algorithm can solve
the considered problem in a reasonable time and indicate that the proposed carbon-tax policy can
enhance the incentive for generation companies to invest in low-carbon generation capacity.

Keywords: generation self-scheduling; emission intensity; carbon tax; mixed integer linear programming

1. Introduction

Thermal-power generation is one of the main sources of carbon dioxide emissions. About
41 percent of global carbon dioxide emissions come from thermal-power generation. Since excessive
emission of carbon dioxide leads to global warming and environmental deterioration, it is important
to set up a reasonable policy to reduce carbon dioxide emissions from thermal-power generation for
the sustainable development of the electric-power industry.

1.1. Literature Review

Three policies are generally implemented to reduce emissions from the electric power industry.
The first policy is the emissions-cap policy that specifies a limit or cap on the total quantity
of emissions over a certain time period. Related studies include an emission-constrained typical
unit commitment problem [1], a tabu search and Benders decomposition based short term unit
commitment solution approach [2], emission-constrained generation self-scheduling problems [3,4],
the emission-constrained robust self-scheduling of a hydro-thermal generation company [5], a stochastic
long-term security-constrained unit commitment formulation [6], and the stochastic self-scheduling of
thermal units with emission constraints [7]. The second policy is the emissions-trading scheme (ETS)
that allocates each emission entity a specified emission allowance, and allows emission entities to
purchase or sell allocated allowances in the emissions-trading market. The ETS was first introduced
in European Union [8] and then developed in many other countries. The effects of the ETS on
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generation scheduling were studied in [9]. Emissions-trading planning for a combined heat and
power producer was investigated in [10]. The impacts of the ETS on the Nordic electricity market and
electricity consumers were assessed in [11]. An agent-based model was established in [12] to study
the potential impact of carbon-emissions trading on the power sector in China. Fuel switching in
electricity production under the ETS was discussed in [13]. A computable general equilibrium model
was established in [14] to analyze the impact of carbon-allowance allocation on the electric-power
industry in China. A review of the carbon-trading market in China was presented in [15]. The third
policy is the carbon-tax policy, under which generation companies are obliged to pay for their carbon
dioxide emissions according to the carbon-tax rate and the quantity of their emissions. The carbon-tax
policy was first implemented in Finland and gradually spread in many other countries, such as Sweden,
Denmark, and Germany. A revenue and distributionally neutral approach was described in [16] to
design a carbon tax to reduce greenhouse-gas emissions. The mitigation effects of carbon tax on carbon
dioxide emissions are comprehensively estimated in [17]. A carbon tax generation self-scheduling
model was presented and the effects of generation profits and emissions profiles under different
carbon-tax scenarios are analyzed in [18]. Different evolutions of carbon dioxide taxes that might
be applied to the national electricity sector in Portugal were studied in [19]. A choice experiment
study of Chinese companies was summarized in [20] to measure the choice preferences of Chinese
companies to carbon-tax policy. A bibliometric analysis of the carbon-tax literature from 1989 to 2014
was provided in [21].

The emissions-cap policy has the advantage of regulating the total quantity of emissions, but lacks
impetus from market forces. The ETS has the advantages of broad participation, international equity,
and controlling the total quantity of emissions [22], but has to face the impact of large uncertainties
from emissions-trading platforms on policy efficiency [16]. Compared with the emissions-cap policy
and the ETS, the carbon-tax policy not only provides a price signal to impel emitters to develop
low-carbon technologies or cleaner energy sources [23], but can also be implemented without trading
platforms; consequently, it is highly recommended by economists and organizations [17].

1.2. Work and Contribution of the Paper

A challenge of carbon-tax policy is how to determine the tax rate, which is the levied charge per
unit quantity of emissions. If the tax rate is low, emissions cannot be effectively reduced. If the tax
rate is high, both production and economic profits are badly hurt. In the previous literature, the tax
rate is usually a designated constant [18,24,25]. However, the use of a constant tax rate does not take
into account the difference in pollution levels between generation companies, and lacks flexibility in
incentives to reduce emissions. It was indicated in [26] that changing the tax rate based on energy
efficiency is more effective than applying the same tax rate to all manufacturers. It was suggested
in [27] to allow the tax rate to vary among generation units.

Inspired by the idea in [26,27], we propose in this paper an emission intensity-based carbon tax
policy in the context of the electric-power industry. Emission intensity is the quantity of emissions per
unit power generation. It is an index to measure the pollution level of power generation. The higher
emission intensity is, the more serious the pollution in power generation is. In order to improve
controlling power-generation pollution, and impel generation companies to invest in low-carbon
power generation, we provide different carbon-price signals for different power-generation levels.
That is, we adjust the tax rate according to the pollution level of power generation. The more serious
the pollution in power generation is, the higher the assigned tax rate is. Therefore, the tax rate is
designed to stepwise increase as emission intensity of power generation increases. By introducing
emission intensity, the proposed carbon-tax policy increases taxation on high pollution production
while balancing generation contribution and environmental pollution in determining the tax rate.

To analyze the effect of the proposed carbon-tax policy, we investigate the impact of the policy
on generation self-scheduling decisions. The generation self-scheduling problem plays an important
role in the daily-operation planning of generation companies in the deregulated electricity market.
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A typical generation self-scheduling problem is deciding the operation of generation units according to
electricity prices and the physical characteristics of generation units, with the objective of maximizing
total profits [28,29]. Effective generation self-scheduling can promote the economic operation of
generation companies. Under the proposed carbon-tax policy, generation companies need to not only
adjust power output according to price signal, but also reduce emissions according to the carbon-tax
policy, which brings a new challenge for generation self-scheduling decisions.

Our work is different from [26,27] in the following two aspects. First, the mechanisms for
designing the tax rate are different. The tax rate was designed based on game theory in both [26]
and [27], while it is designed by explicitly formulating the relation function between tax rate and
emission intensity in our work. Second, the involved models are different. A simple numerical
example was considered in [26], a simplified economic dispatch model omitting time-coupled
unit-operation constraints was considered in [27], while an explicit generation self-scheduling model
that includes conventional unit-operation constraints and decides not only economic dispatch but also
unit commitment is considered in our work. A tax rate that varies based on the quantity of emissions
was presented in [30]. Our work is different from [30] in that tax-rate variation in our work is emission
intensity-based. Compared with [30], our work in determining tax rate takes into account not only
generation emissions but also generation contribution. The major contributions of the paper can be
summarized as follows:

(1) A carbon-tax policy with variable tax rate is proposed with regard to the electric-power industry.
Tax rate is designed to increase stepwise with the increase of power-generation emission intensity,
which can strengthen tax collection from high-pollution generation companies and balance
electricity supply and environmental pollution in determining tax rate.

(2) The impact of the proposed carbon-tax policy is investigated by formulating the generation
self-scheduling problem under the proposed carbon-tax policy as a mixed integer nonlinear
programming (MINLP) model and developing a decomposition algorithm to solve the problem.

(3) Numerical experiments are carried out to test the performance of the proposed algorithm and
discuss the effectiveness of the proposed carbon tax policy.

The remainder of this paper is organized as follows: Formulation of the generation self-scheduling
problem under the proposed carbon-tax policy is described in Section 2. The solution approach to
solving this problem is developed in Section 3. Numerical experiments and results are presented in
Section 4. The conclusions of the paper are provided in Section 5.

2. Problem Description and Formulation

2.1. Parameteres and Decision Variables

The parameters and decision variables used in the formulation are defined as follows:

Parameters
n Number of generation units.
T Scheduling horizon.
M Number of carbon-tax rate values.
τD

i /τU
i Minimum down-time/up-time of generation unit i.

RD
i /RU

i Ramp-down/ramp-up rate of generation unit i.
SD

i /SU
i Shutdown/startup ramp rate of generation unit i.

PL
i /PU

i Minimum/maximum power output of generation unit i.
αih/βih Slope/intercept of the h-th segment line for the fuel-cost curve of generation unit i.
Bi Startup cost of generation unit i.
ri Emission coefficient of generation unit i.
μ Emission intensity.
ρ Carbon-tax rate.
wm The m-th carbon-tax rate value.
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Qm Upper bound of emission intensity corresponding to the m-th carbon-tax rate value.
λt Expected electricity price in hour t.
ui0 Binary parameter to indicate the initial on/off status of generation unit i.
pi0 Generation output of generation unit i in hour 0.
σi Last hour of the periods during which the on/off status of generation unit i is determined by

the initial status of the generation unit.

Decision Variables
uit Binary decision variable to indicate on/off status of generation unit i in hour t.
vit Binary decision variable to indicate if generation unit i is started up in hour t.
pit Generation output of generation unit i in hour t.
φit Fuel cost of generation unit i in hour t.
δm Binary decision variable to indicate whether carbon-tax rate equals m-th carbon-tax rate value.

2.2. Description and Formulation of Carbon-Tax Policy

For the carbon tax policy, we consider M levels for the tax rate as illustrated in Figure 1. Each level
corresponds to a tax-rate value and a range of emission intensity. Each tax rate value provides
a carbon-tax signal for the corresponding emission-intensity range.

 

Figure 1. Tax rate with M levels.

Tax rate is variable and equals a tax-rate value according to the range to which emission intensity
belongs. The relationship between tax rate and emission intensity can be formulated by a step-up
function as follows:

ρ =

⎧⎪⎨
⎪⎩

w1, μ ≤ Q1

wm, Qm−1 < μ ≤ Qm, m = 2, . . . , M − 1
wM, μ > QM−1

(1)

where 0 ≤ w1 ≤ w2 ≤ · · · ≤ wM, and emission intensity μ over the scheduling horizon is determined
by the ratio of the quantity of total emissions [1,9] to the total generation level as follows:

μ =

⎧⎨
⎩

n
∑

i=1

T
∑

t=1
riφit/

n
∑

i=1

T
∑

t=1
pit, if

n
∑

i=1

T
∑

t=1
pit > 0

0, otherwise
, (2)

0 < Q1 < Q2 < · · · < QM−1 < QM, and QM is the upper bound of possible emission intensity.
Expression (1) shows that tax rate increases stepwise as emission intensity increases. Particularly,
when M = 1, the tax rate is constant. Therefore, the proposed carbon tax policy is a generalization of
the typical carbon tax policy with a constant tax rate.
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2.3. Generation Self-Scheduling Model under the Proposed Carbon-Tax Policy

To investigate the effect of the proposed carbon tax policy, we consider the generation
self-scheduling problem under the proposed carbon-tax policy, which is described as follows.
A generation company schedules a certain number of thermal generation units and sells the produced
electricity at the market price. The objective is to maximize generation profits. The generation
company is obliged to pay for generation emissions in accordance with the proposed carbon-tax
policy. The scheduling of generation units needs to satisfy operating constraints such as minimum
up-time and down-time constraints, generation-capacity constraints, and ramp-rate constraints.

Based on the above description, the generation self-scheduling problem under consideration can
be formulated as follows:
(P)

max
T

∑
t=1

λt

n

∑
i=1

pit −
n

∑
i=1

T

∑
t=1

(φit + Bivit)− ρ
n

∑
i=1

T

∑
t=1

riφit (3)

subject to (1), (2), and:
uit = ui0, ∀i, t = 1, . . . , σi (4)

vit = 0, ∀i, t = 1, . . . , σi (5)

uit − ui,t−1 ≤ uik, ∀i, k = t + 1, . . . , min
{

T, τU
i + t − 1

}
, t = σi + 1, . . . , T (6)

ui,t−1 − uit ≤ 1 − uik, ∀i, k = t + 1, . . . , min
{

T, τD
i + t − 1

}
, t = σi + 1, . . . , T (7)

uit − ui,t−1 ≤ vit, ∀i, t = σi + 1, . . . , T (8)

uitPL
i ≤ pit ≤ uitPU

i , ∀i, ∀t (9)

−RD
i ui,t+1 − SD

i (1 − ui,t+1) ≤ pi,t+1 − pit ≤ RU
i uit + SU

i (1 − uit), ∀i, t = 0, . . . , T − 1 (10)

φit ≥ αih pit + βihuit, ∀h, ∀i, ∀t (11)

φit, pit ≥ 0, ∀i, ∀t (12)

uit, vit ∈ {0, 1}, ∀i, ∀t. (13)

In formulation (P), function (3) represents generation profits, which consist of generation revenue,
generation cost, and paid tax for generation emissions. Constraints (4) and (5) represent the impact of
the initial statuses of generation units on the on/off statuses, and the start-up actions of generation
units over the scheduling horizon, respectively [31,32]. Constraints (6) and (7) represent the minimum
up-time and down-time requirements of generation units, respectively. Constraints (8) represent the
relationship between the on/off statuses and the start-up actions of generation units. Constraints (9)
represent the range of output power for the committed generation units. Constraints (10) define the
ramp-rate limits to represent the relationship between output levels in adjacent hours. Constraints (11)
represent the piecewise linear approximation of the quadratic fuel cost function. Constraints (12) and
(13) provide the value fields of the decision variables.

3. Solution Methodology

Formulation (P) includes continuous variables, integer variables, a piecewise expression in the
function (1), and a bilinear term in the objective function (3), which corresponds to an MINLP model
and makes it impossible to directly solve the problem by using a commercial solver such as CPLEX.
Therefore, it is necessary to develop an efficient algorithm to solve the problem. According to the
characteristics of (P), we develop the following decomposition algorithm to solve the problem.
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3.1. Reformulation of the Problem

First, by introducing binary variables δm, m = 1, . . . , M, to indicate whether the tax rate equals
the m-th value or not, we can obtain the integer linear formulation of the tax rate as follows:

ρ =
M

∑
m=1

δmwm (14)

where:
M

∑
m=1

δm = 1 (15)

δm

n

∑
i=1

T

∑
t=1

riφit ≤ δmQm

n

∑
i=1

T

∑
t=1

pit, m = 1, . . . , M − 1 (16a)

δm

n

∑
i=1

T

∑
t=1

riφit > δmQm−1

n

∑
i=1

T

∑
t=1

pit, m = 2, . . . , M (16b)

δm ∈ {0, 1}, ∀m. (17)

Then, based on the above expressions, we can reformulate the considered generation
self-scheduling problem as:
(P1)

max
T

∑
t=1

λt

n

∑
i=1

pit −
n

∑
i=1

T

∑
t=1

(φit + Bivit)−
M

∑
m=1

δmwm

n

∑
i=1

T

∑
t=1

riφit (18)

subject to (4)–(13), and (15)–(17).
Finally, according to the formulation of the objective function (18), we replace constraints

(16b) with:

δm

n

∑
i=1

T

∑
t=1

riφit ≥ δmQm−1

n

∑
i=1

T

∑
t=1

pit, m = 2, . . . , M (19)

without changing the optimal solution of (P1).

3.2. Decomposition Algorithm

For an arbitrary m, we can obtain the following formulation by fixing δm = 1 and δm′ = 0, m′ �= m,
in (P1):
(Pm)

max
T

∑
t=1

λt

n

∑
i=1

pit −
n

∑
i=1

T

∑
t=1

(φit + Bivit)− wm

n

∑
i=1

T

∑
t=1

riφit (20)

subject to constraints (4)–(13), and:

n

∑
i=1

T

∑
t=1

riφit ≤ Qm

n

∑
i=1

T

∑
t=1

pit, if 1 ≤ m ≤ M − 1 (21a)

Qm−1

n

∑
i=1

T

∑
t=1

pit ≤
n

∑
i=1

T

∑
t=1

riφit, if 2 ≤ m ≤ M. (21b)

Formulation (Pm) corresponds to a generation self-scheduling problem with a constant tax rate
wm and emission-intensity constraints (21a) and (21b). It is a mixed integer linear programming (MILP)
model and can be solved optimally by a commercial solver if the feasible domain determined by
(4)–(13), (21a), and (21b) is not empty.

The above observation motivates us to enumerate all feasible δm to decompose (P1) into M
subproblems (Pm) and develop the following algorithm:

152



Energies 2019, 12, 777

Step 0 Initialization: set u_bestit = p_bestit = 0 for all i and all t, m = 1, m_best = 1, and f _best = Mf
where Mf is a large-enough positive number.

Step 1 Solve (Pm) by calling an MILP solver. If (Pm) can be optimally solved, denote the optimally
objective function value as fm. If fm < f _best, update f _best, m_best, and {u_bestit,p_bestit,
i = 1, . . . , n, t = 1, . . . , T} with fm, m, and the optimal unit commitment and economic dispatch
decisions of (Pm), respectively.

Step 2 If m = M, set

δm =

{
1, if m = m_best

0, otherwise

and stop. Otherwise, set m = m + 1 and go to Step 1.

Using the above algorithm, we can obtain optimal objective function value f _best, and optimal
unit commitment and economic dispatch decisions {u_bestit, p_bestit, i = 1, . . . , n, t = 1, . . . , T} for (P1).

4. Numerical Results

In this section, we present the numerical experiments in four parts. In the first part, we use test
cases of different sizes to test the performance of the proposed algorithm. In the second part, we test the
impact of tax-rate values on generation self-scheduling and provide a method to choose appropriate
tax-rate values. In the third part, we test the effect of the proposed carbon-tax policy on emission
reduction. In the fourth part, we compare the proposed carbon-tax policy with carbon-tax policy with
a constant tax rate. The test cases are described as follows:

(1) In the first part of the experiments, the scheduling horizon is set to 24, 72, 120, and
168 h, respectively, and the number of generation units is set to 10, 40, 70, and 100, respectively.
The combination of the two configurations forms 16 problem sizes. Under each problem size, ten test
cases are randomly generated. For each test case, parameters for startup costs and emission coefficients
are uniformly generated from the ranges provided in Table 1, in which ranges for startup costs are
based on those for cool-start fuel costs in [33] and ranges for emission coefficients are based on data
in [9]. Other unit parameters are uniformly generated from ranges provided in [33].

Table 1. Value ranges for startup costs and emission coefficients.

Parameter (Unit) Value Range

Bi ($)
If PU

i < 600 (4PU
i , 6PU

i )
If PU

i ≥ 600 (2PU
i , 4PU

i )
ri (t/$)

If PU
i < 600 (0.05, 0.09)

If PU
i ≥ 600 (0.005, 0.04)

(2) In the remaining three parts of the experiments, the test is performed by using the ten sets of
generation-unit data corresponding to the problem size of 10 generation units and 24 h in the first part
of the experiments. To clearly show the impact of the proposed carbon-tax policy on generation
self-scheduling, the initial status of each generation unit is modified so that the on/off statuses of the
generation unit during the scheduling horizon are not affected by the initial status of the generation unit.
For each set of generation-unit data, the scheduling horizon is set to 24, 72, 120, and 168 h, respectively.
The combination of the generation-unit data and the scheduling horizon forms 40 test cases.

(3) The number of tax rate values can be set according to the actual requirement. If the number
of tax rate values is too small, pollution levels cannot be well-distinguished. If the number of tax
rate values is too large, it is inconvenient to implement carbon-tax policy. As a tradeoff between the
two aspects, the number of tax rate values is set as five in the experiments. Based on the range of
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emission intensity, Qm is set to 0.1m and wm is set to mΔ, in which tax-rate increment Δ is set to 15
without loss of generality in the first part of the experiments; its value is discussed in the second part of
the experiments. In practice, tax-rate value wm can be set in other form according to the requirements.
We use Pennsylvania–New Jersey–Maryland (PJM) Interconnection Real Time data from 2005 to
2006 [34] to estimate electricity prices. The estimated price data for 168 h are presented in Figure 2.
A ten-piece piecewise linear function is used to approximate each fuel cost function.

×

Figure 2. Estimated electricity price data for 168 hours ($/MWh).

The solution algorithm is tested under the computing environment of 3.40 GHz Intel Core i7 CPU
and 16.0 GB memory. The MILP involved is solved by calling CPLEX 12.5.

4.1. Performance of Proposed Algorithm

To test the performance of the proposed algorithm, the MILP approach in which (P1) is
transformed into an MILP model by using the method in [35] is also used to solve the test cases.
The computation time and the number of cases that can be solved optimally are reported in Table 2,
in which each computation time is the average of solvable test cases in the same problem size. If no
test cases in a problem size can be solved optimally, the average computation time is not reported
for that problem size. The number of cases that can be solved optimally in the same problem size is
denoted by N. From Table 2, we can obtain the following observations:

(1) For the MILP approach, the computation time increases exponentially as the problem size
increases. All cases can be solved optimally for the problem in small sizes corresponding to 10 × 24,
40 × 24, 10 × 72, 10 × 120 and 10 × 168. Only partial cases can be solved optimally for the problem
in medium sizes corresponding to 70 × 24, 100 × 24, 40 × 72, 70 × 72, 100 × 72, 40 × 120, 70 × 120,
and 40 × 168. CPLEX is out of memory for all cases for the problem in large sizes corresponding to
100 × 120, 70 × 168, and 100 × 168. The average number of cases that can be solved optimally in the
same problem size is 5.

(2) Compared with the MILP approach, the proposed algorithm requires a shorter computation
time. All the cases in all problem sizes can be solved optimally by the proposed algorithm. The average
computation time is 55.77 s, and the longest computation time is 288.06 s.

The above observations indicate that the proposed algorithm is more effective than the
MILP approach for solving the considered problem and can solve the considered test cases in
a reasonable time.
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Table 2. The computation time and the number of cases that can be solved optimally for the MILP
approach and the proposed algorithm.

No. Size (n × T)
MILP Proposed

Time (s) N a Time (s) N a

1 10 × 24 1.40 10 1.04 10
2 40 × 24 23.56 10 4.42 10
3 70 × 24 131.35 8 8.76 10
4 100 × 24 136.17 7 14.07 10
5 10 × 72 8.79 10 3.19 10
6 40 × 72 101.60 4 18.03 10
7 70 × 72 149.65 1 38.45 10
8 100 × 72 468.42 3 68.39 10
9 10 × 120 30.47 10 5.97 10
10 40 × 120 365.90 2 42.42 10
11 70 × 120 284.56 2 77.52 10
12 100 × 120 - 0 131.72 10
13 10 × 168 116.63 10 9.74 10
14 40 × 168 363.93 6 64.14 10
15 70 × 168 - 0 116.33 10
16 100 × 168 - 0 288.06 10

Average - 5 55.77 10
a The number of cases that can be solved optimally.

4.2. Impact of Tax-Rate Values on Generation Self-Scheduling

To analyze the impact of the tax-rate values, wm, m = 1, . . . , 5, on generation self-scheduling,
we test the model under different wm settings by allowing tax-rate increment Δ to vary within
{0, 5, 10, 15, . . . , 75}. For each tax-rate increment, test cases are solved and four indices are obtained
in the optimal solution of each test case, including total profits, total generation level, the quantity of
total emissions, and emission intensity over the scheduling horizon. The variations of the four indices,
along with the increase of the tax-rate increment, are shown in Figure 3, in which each point depicts
the average of the ten test cases in the same problem size. From Figure 3, it can be observed that the
four indices show different sensitivity to the change of tax-rate increment as follows:

(1) As tax-rate increment increases, total profits decrease and the sensitivity of the total profits to
the tax-rate-increment change gradually decreases.

(2) As tax-rate increment increases, total generation level, the quantity of total emissions, and
emission intensity decrease. The decrease rates of the three indices present oscillating behavior when
tax-rate increment increases from 0 to 25, and relatively stable behavior when the tax rate increment
increases from 25 to 75.

(3) Because emission intensity is the ratio of total emissions quantity to total generation level, the
decrease of emission intensity with the increase of tax-rate increment indicates that the quantity of
total emissions is more sensitive to the increase of tax-rate increment than total generation level.
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(a) Variation of total generation profits with the increase of tax-rate increment. 

 
(b) Variation of total generation level with the increase of tax-rate increment. 

(c) Variation of the quantity of total emissions with the increase of tax-rate increment.

(d) Variation of emission intensity with the increase of tax-rate increment.

Figure 3. Variations of total generation profits, total generation level, the quantity of total emissions,
and emission intensity with the increase of tax-rate increment.
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Based on the above observations, we design the following method to choose an appropriate
tax-rate increment. Note that a reduction in emission intensity is at the expense of generation profits.
To evaluate profit loss in reducing unit emission intensity, we define the ratio of profits-reduction
percentage to emission intensity reduction percentage as follows:

θΔ =
(Pro f0 − Pro fΔ)/Pro f0

(μ0 − μΔ)/μ0
,

in which Pro f0 and μ0 are total profits and emission intensity under no carbon-tax policy
(corresponding to Δ = 0), respectively, and Pro fΔ and μΔ are total profits and emission intensity
corresponding to a nonzero tax-rate increment Δ, respectively, in which Δ ∈ {5, 10, 15, . . . , 75}.
The variation of θΔ with the increase of tax-rate increment Δ is presented in Figure 4, in which each
point depicts the average of all test cases. From Figure 4, it can be observed that θΔ presents obvious
decline behavior when tax-rate increment increases from 5 to 15, reaches the first local minimum
value at Δ = 15, presents oscillating behavior when tax-rate increment is larger than 15, and reaches
the minimum at Δ = 25. The difference between θ15 and θ25 is small. To balance between emission
intensity and generation profits, tax-rate increment is set to 15 for the test cases. Correspondingly,
tax-rate value wm is set to 15m, m = 1, . . . , 5, which is used in the following experiments.

Figure 4. Variation of θΔ with the increase of tax-rate increment.

4.3. Effect of Proposed Carbon Tax Policy on Emission Reduction

To test the effect of the proposed carbon-tax policy on emission reduction, we compare the
quantity of total emissions and emission intensity under the proposed carbon-tax policy with those
under no carbon-tax policy, respectively. The quantity of total emissions and emission intensity under
the proposed carbon-tax policy are reported in columns 4 and 5 of Table 3, respectively, and those under
no carbon-tax policy are reported in Table 4. From the results, we can make the following observations:

(1) For the quantity of total emissions, the average value under the proposed carbon-tax policy is
170,037.51 t, whereas the average value under no carbon-tax policy is 230,946.30 t. The ratio between
the two quantities is 0.74. The results show that the quantity of total emissions is reduced by 26% by
adopting the proposed carbon-tax policy.

(2) For emission intensity, the average value under the proposed carbon-tax policy is 0.26, whereas
the average value under no carbon-tax policy is 0.31. The ratio between the two emission intensities is
0.84. The results show that the quantity of emissions per unit power generation is reduced by 16% by
adopting the proposed carbon-tax policy.

The above observations indicate the effectiveness of the proposed carbon-tax policy in reducing
total generation emissions and the pollution level of power generation.
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Table 3. Total generation profits, total generation level, the quantity of total emissions, and emission
intensity under the proposed carbon-tax policy.

T (h)
Generation Profits

($)
Generation Level

(MW)
Quantity of

Emissions (t)
Emission

Intensity (t/MW)

24 5,423,040.63 156,285.49 40,663.25 0.26
72 17,369,095.36 491,025.77 131,917.18 0.27
120 27,175,633.46 807,196.34 211,287.38 0.26
168 37,811,819.12 1,131,651.47 296,282.21 0.26

Average 21,944,897.14 646,539.77 170,037.51 0.26

Table 4. The quantity of total emissions and emission intensity under no carbon-tax policy.

T (h) Quantity of Emissions (t) Emission Intensity (t/MW)

24 56,966.69 0.31
72 172,953.10 0.31

120 288,939.50 0.31
168 404,925.90 0.31

Average 230,946.30 0.31

4.4. Comparison between Proposed Carbon-Tax Policy and Carbon-Tax Policy with a Constant Tax Rate

To show the difference between the proposed carbon-tax policy and carbon-tax policy with
a constant tax rate, we make the following comparisons. First, we compare the optimal solutions under
the two carbon-tax policies without changing the test-case parameter setting. Second, we adjust value
ranges for emission coefficients and compare the sensitivities of the optimal solutions to the change of
emission coefficients under the two carbon-tax policies. For the carbon-tax policy with a constant tax
rate, five constant tax rates are considered, with values set from w1 to w5, respectively.

4.4.1. Comparison between Two Carbon-Tax Policies without Changing Parameter Setting

The optimal solution under each carbon-tax policy is presented by the same indices used in
Section 4.2. The results under the proposed carbon-tax policy are reported in Table 3, and those under
the carbon-tax policy with a constant tax rate corresponding to different settings of the constant tax
rate are reported in Table 5.

From Tables 3 and 5, we can make the following observations:
(1) Average emission intensity under the proposed carbon-tax policy is 0.26, which indicates

that the average tax rate corresponding to the proposed carbon-tax policy is equal to w3. Compared
with the carbon-tax policy with a constant tax rate of no more than w3 (w1, w2, or w3), the proposed
carbon-tax policy corresponds to lower generation profits and generation level, but much-reduced
emission quantity and intensity.

(2) Compared with the carbon-tax policy with relatively large constant tax rate w4, the proposed
carbon-tax policy corresponds to a lower generation level, and emission quantity and intensity, but
higher generation profits.

(3) Compared with the carbon-tax policy with the largest constant tax rate w5, the proposed
carbon-tax policy is corresponding to higher generation level and quantity of emissions, but an equal
emission intensity and much-increased generation profits.

The above comparison indicates the superiority of the proposed carbon-tax policy over the
carbon-tax policy with a constant tax rate in comprehensive consideration of generation profits,
generation level, emission quantity, and emission intensity.
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Table 5. Total generation profits, total generation level, the quantity of total emissions, and emission
intensity under the carbon-tax policy with a constant tax rate.

T (h)
Tax Rate

($/t)
Generation
Profits ($)

Generation
Level (MW)

Quantity of
Emissions (t)

Emission Intensity
(t/MW)

24 w1 7,042,972.81 183,806.99 56,954.39 0.31
w2 6,212,003.63 178,441.98 53,104.73 0.30
w3 5,453,691.95 168,627.56 47,995.38 0.29
w4 4,776,296.57 156,731.18 42,564.42 0.28
w5 4,181,646.67 144,142.39 36,981.80 0.26

72 w1 22,473,333.53 558,384.99 172,915.76 0.31
w2 19,923,699.57 547,249.87 164,666.40 0.30
w3 17,556,184.34 522,160.40 150,658.46 0.29
w4 15,414,841.59 490,051.75 135,105.06 0.28
w5 13,513,722.19 453,420.58 117,811.99 0.26

120 w1 35,631,936.10 932,979.61 288,892.02 0.31
w2 31,363,452.90 915,292.42 275,542.84 0.30
w3 27,399,348.57 873,602.74 251,806.51 0.29
w4 23,827,289.19 816,426.34 222,986.41 0.28
w5 20,710,184.75 751,676.87 191,643.08 0.26

168 w1 49,660,909.40 1,307,523.04 404,822.36 0.31
w2 43,680,701.04 1,282,775.65 386,336.73 0.30
w3 38,123,525.06 1,224,525.39 353,144.53 0.29
w4 33,109,787.72 1,145,776.37 313,255.36 0.28
w5 28,739,390.04 1,053,084.53 268,178.16 0.26

Average w1 28,702,287.96 745,673.66 230,896.13 0.31
w2 25,294,964.28 730,939.98 219,912.68 0.30
w3 22,133,187.48 697,229.02 200,901.22 0.29
w4 19,282,053.77 652,246.41 178,477.81 0.28
w5 16,786,235.91 600,581.09 153,653.76 0.26

4.4.2. Comparison between Two Carbon-Tax Policies under Different Emission-Coefficient Settings

Emission coefficients are important parameters that determine the pollution level of power
generation. To show how significantly the optimal solution changes as emission coefficients increase,
we test the generation self-scheduling model corresponding to each carbon-tax policy under different
value range settings for emission coefficients. In the test, eight sets of value ranges for emission
coefficients are considered and provided in Table 6 in increasing order, in which each set of value ranges
is denoted by Rj, j = 1, . . . , 8. Results for tax-rate value, emission intensity, and total generation profits
in the optimal solution corresponding to different carbon-tax policies under different value-range
settings for emission coefficients are depicted in Figure 5, in which each point depicts the average over
all test cases. From Figure 5, we can make the following observations:

(1) Compared with the carbon-tax policy with a constant tax rate, the proposed carbon-tax policy
provides a tax rate that can be adaptively adjusted according to the change of emission coefficients and
increases in a stepwise manner as emission coefficients increase. The result indicates that the proposed
carbon-tax policy provides more flexibility than the carbon-tax policy with a constant tax rate.

(2) For each carbon-tax policy, emission intensity increases as emission coefficients increase.
Compared with each carbon-tax policy with a constant tax rate, the proposed carbon-tax policy
corresponds to the smallest average increase of emission intensity. The results indicate that the
proposed carbon-tax policy can slow down the rise of emission intensity caused by the increase of
emission coefficients.

(3) For each carbon-tax policy, total generation profits increase with the decrease of emission
coefficients. As emission coefficients decrease, the proposed carbon-tax policy corresponds to a
larger increase in total generation profits compared with the carbon-tax policy with a constant tax
rate that is equal to the tax rate value of the proposed carbon-tax policy. The results indicate that
the proposed carbon-tax policy can provide more economic incentives for generation companies to
develop emission-reduction technologies or cleaner energy sources, compared with a carbon-tax policy
with a constant tax rate.
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Table 6. Value ranges for emission coefficients.

Situation R1 R2 R3 R4

If PU
i < 600 (0.05, 0.055) (0.055, 0.06) (0.06, 0.065) (0.065, 0.07)

If PU
i ≥ 600 (0, 0.005) (0.005, 0.01) (0.01, 0.015) (0.015, 0.02)

Situation R5 R6 R7 R8

If PU
i < 600 (0.07, 0.075) (0.075, 0.08) (0.08, 0.085) (0.085, 0.09)

If PU
i ≥ 600 (0.02, 0.025) (0.025, 0.03) (0.03, 0.035) (0.035, 0.04)

(a) Variation of tax-rate value with the increase of emission coefficients  
 

(b) Variation of emission intensity with the increase of emission coefficients.

(c) Variation of total generation profits with the increase of emission coefficients. 

Figure 5. Variations of tax-rate value, emission intensity, and total generation profits with the increase
of emission coefficients. Curves 1, 2, 3, 4, and 5 depict the results corresponding to the carbon-tax policy
with constant tax rate w1, w2, w3, w4, and w5, respectively; Curve 6 depicts the results corresponding
to the proposed carbon-tax policy.
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5. Conclusions

In this paper, we propose a rate-variable carbon-tax policy and analyze the impact of the policy
on generation self-scheduling of a generation company. The tax rate is designed to change along
with emission-intensity variation, which is more flexible for emission reduction and distinguishes the
proposed carbon-tax policy from existing carbon-tax policies. The variable tax rate is expressed
by a step function, and the generation self-scheduling problem under the proposed carbon-tax
policy is formulated as an MINLP model. A decomposition algorithm where multiple MILP
procedures are implemented is developed to solve the problem. Computational results indicate
that the decomposition algorithm is more effective than the MILP approach. It is also observed from
numerical results that the proposed carbon-tax policy is effective in emission reduction and has more
advantages than a carbon-tax policy with a constant tax rate in: (1) comprehensive consideration
of generation profits, generation output, emission quantity s, and emission intensity; (2) slowing
down the rise of emission intensity; and (3) stimulating generation companies to invest in low-carbon
electricity-generation methods.

Our research provides new advice for policy makers to establish an effective emission-reduction
mechanism for the electric-power industry. Modeling the generation self-scheduling problem under
the proposed carbon-tax policy provides a theoretical framework for the implementation of carbon-tax
policy. However, no uncertainties on electricity market are considered in the model, which is still
a practical limitation of our research.

Besides addressing this limitation, future research can focus on: (1) analyzing the proposed policy
under a generation-expansion planning framework to assess the impact of the proposed policy on
investment in renewable energies and clean-generation techniques, and (2) studying environmental
policies in other energy-intensive industries.
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Abstract: Using mathematical programming with activity-based costing (ABC) and based on the
theory of constraints (TOC), this study proposed a green production model for the traditional paper
industry to achieve the purpose of energy saving and carbon emission reduction. The mathematical
programming model presented in this paper considers (1) revenue of main products and byproducts,
(2) unit-level, batch-level, and product-level activity costs in ABC, (3) labor cost with overtime
available, (4) machine cost with capacity expansion, (5) saved electric power and steam costs by using
the coal as the main fuel in conjunction with Refuse Derived Fuel (RDF). This model also considers the
constraint of the quantity of carbon equivalent of various gases that are allowed to be emitted from the
mill paper-making process to conform to the environmental protection policy. A numerical example is
used to demonstrate how to apply the model presented in this paper. In addition, sensitivity analysis
on the key parameters of the model are used to provide further insights for this research.

Keywords: green production; Activity-Based Costing (ABC); Theory of Constraints (TOC); green
supply chain; energy saving; carbon emission reduction

1. Introduction

A total of 195 nations signed the Paris Agreement in December 2015 in order to solve the problem
of environmental climate change [1]. Green issues have received considerable attentions in many
industries worldwide in recent decades [2]. Enterprises have also tried to recover renewable raw
materials to achieve profit, as well as to protect the environment [3,4], to actively reduce energy and
resource consumption, waste output and virgin material consumption [5].

When implementing environmental strategies, the government should formulate and promote
laws and regulations that all industries should comply with, and draw up plans to promote the
entire industry, and provide sufficient funds and resources for enterprises [6]. However, when the
government faces pressure on limited natural resources and waste disposal, they formulate resource
recovery policies [3], and as the public continue to increase pressure on the government in terms
of environmental pollution, it forces the government to develop stricter environment regulations
and fines for environmental pollution, aiming to reduce the pollution caused by enterprises by
adopting environmental management regulations [7]. The purpose of environmental management
is to solve the problem of ecological environment pollution during the growth of enterprises [8],
and to promote the production efficiency and effective use of raw materials of enterprises, including
the use of alternative raw materials, and recycling and reusing raw materials, in order to effectively
use raw materials and reduce resource waste [9]. Environmental problems can be considered and
solved in the engineering or product development stage, especially through the life cycle assessment
(LCA) method [10], where product designers can make a more environmentally friendly design [11].
The solution to environmental pollution largely depends on a combination of pollution prevention
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technologies and environmental management, which are keys to achieve the goals of environmental
protection and pollution reduction. Through process innovations, enterprises can achieve both cost
reduction and environment protection [7].

Early paper mills used wood, straw, sugarcane bagasse, and waste paper as raw materials to
make pulp, which was used to make paper products. Concern for the environment has forced
many enterprises to develop local policies for environment protection. Regarding the paper industry,
practicing paper recycling is a cost-reducing choice, as compared to using wood as the raw material [12].
Some paper mills use a variety of waste paper to produce recycled paper, purchase pulp and paper
equipment to improve efficiency and reduce the consumption of water and coal by using cogeneration
equipment (also known as combined heat and power) in order to efficiently use energy. Then, paper
mills can sell excess heat and electricity to recover costs. Coal, given its advantage of low cost, is
the main fuel used to power the generator units of the paper industry; however, it greatly influences
the environment, for example, the emitted pollutants of Carbon Dioxide (CO2), Sulphur Oxides
(SOx), Nitrogen oxides (NOx), and suspended matter, which brings severe harm to the environment.
The paper-making process consists of pulping, papermaking, coating, and packing. The waste paper
recycling rate in high-income countries is higher than that in less developed countries, meaning
that countries with higher economic development need more attention on the problems of waste
management and environmental protection [13].

This paper describes the acts related to the environmental management of enterprises, takes the
paper industry as an example, and provides feasible pollution prevention and control technologies
for the production processes of traditional paper mills. This paper is organized as follows: Section 1
introduces the research background and purposes; Section 2 explores the sustainable management
under green paper industry; Section 3 describes the problem statement and model formulation;
Section 4 presents a numerical example to demonstrate how to apply the model explored in this paper;
Section 5 explains the managerial implications and limitations; and Section 6 offers the conclusions.
This study found that enterprises can make full use of production capacity and waste through precise
environmentally-friendly production processes to increase profit.

2. Sustainable Management under Green Paper Industry

The consumers and the government have requested companies to achieve a balance between
profitability and environmental protection. The demand for integrating environmental awareness
and product recycling into supply chain management has become a hot topic [14–16]. Sustainable
management under green paper industry is described as follows.

2.1. Green Innovation in Paper Industry

Green innovation brings competitive advantages to the paper industry; since it helps enterprises
reduce costs and increase income, some analysts have put forward that improving a company’s
environmental performance can result in better economic and financial results, instead of increasing
costs [17–19]. The green innovation modes are described as green manufacturing and contamination
control. Green manufacturing helps to reduce waste, control pollution [20], and improve energy
efficiency and production processes through the integration of the production value chain, in order to
elevate the efficiency of greenhouse gas reduction. Pollution prevention helps enterprises to reduce,
transform, and prevent pollutants and wastewater by improving their internal processes, including
changing production modes and means of transport [9], redesigning products and manufacturing
modes, as well as recycling to prevent enterprise pollution [21]. More and more manufacturing
companies are taking the environment into consideration before conducting their activities, a trend that
is gaining support from the management level [22]. In fact, enterprise efforts in green manufacturing
and pollution prevention will pave their way to a greener economy [23]. As the digital wave has
swept across the world in recent years, it has indirectly impacted the traditional papermaking industry.
This study analyzes successful cases where green manufacturing and pollution prevention are adopted
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prior to providing methods for increasing the utilization level of raw materials and effective waste
recycling for the traditional paper industry, where coal-fired boilers still prevail.

2.2. MIP Model for Green Paper Industry

A Mix-Integer Programming (MIP) model is used to solve problems in the allocation and
disposition of limited resource [24], which can effectively handle the multi-item inventory problem
in the periodic replenishment plan (replenishment cycles are scheduled) [25], in order to optimize
inventory distribution and production plans [26], solve the multilevel capacitated lot-sizing and
scheduling problem [27], and provide enterprises with simultaneous multiple decision-making
schemes [28]. Therefore, this model can be used for decision-making evaluations for enterprises to
estimate operating costs and maximize profit [29,30]. In order to save costs, while the traditional
paper industry still widely uses coal to power its boilers, coal is a major source of environmental
pollution. The ideal mode of production for this industry is to make full use of raw materials in the
production process and to recycle the waste. Using mixed integer linear programming models to
optimize the production plan of the paper industry and reduce inventory is an issue recently discussed
by the paper industry; it concludes that the application of activity-based costing (ABC) and theory
of constraints (TOC) can solve the above problems [31,32]. The paper industry has used the ABC
model for cost modeling, as well as analysis of the production flow [33]. The TOC could reduce the
inventory and costs of mills [34], and overcome the bottleneck of resource limitation in the production
process, thereby enhancing production efficiency [35]. Enterprises can use the ABC and TOC in their
decision-making [36], as well as the linear programming (LP) model, to solve product mix decision
problems [37,38]. As their complementary nature has gradually formed a trend, this model is expected
to become a future trend; thus, this study adopts ABC and TOC to build an environmentally-friendly
process model for the paper industry, and for discussion.

2.3. ABC and TOC

ABC is based on two stages, and is an extension of modern cost accounting in order to increase
the accuracy of cost calculations. The common expenditures (e.g., management fees) of a business
are assigned to activities, and then activity costs are traced to products [39]. On the other hand,
TOC enhances scientific decision-making in production plans. According to the principles of TOC,
enterprises can analyze manufacturing obstacles, increase their upper limit profits [40], and deal with
the interactions of supply constraints through an improved product-mix [41]. Therefore, prominent
business corporations will apply ABC and TOC to production planning in order to increase their total
profits [42] and enhance the operational efficiency and immediateness of distribution centers [43].
Hence, ABC, TOC, and MIP can be adopted by enterprises during their decision-making processes on
product portfolios [2,37,44,45].

Based on ABC and TOC, a model presented in this paper can be applied to the green supply
chain [46] by using the Mathematical Programming Approach. In terms of the green nature of resources,
it can also be applied to building municipal waste recycling systems, regional sewage streams [47],
as well as solid waste collection and transportation systems [48]. The optimal process of waste collection
and transportation to an incinerator can thus be planned [49]. In this study, the raw materials for
green recycled paper are pulp substitutes, clean waste paper, and ordinary waste paper. The products
of recycling paper mills are discussed according to the direct combinations of the aforesaid three
materials, while ABC, TOC, and the Mathematical Programming Approach are used to plan new types
of energy saving and carbon emission reduction activities for enterprises, in order to maximize profit.

3. Problem Statement and Model Formulation

This section takes the paper industry as an example. The green production flow for recycled
paper is shown in Figure 1.
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Figure 1. The papermaking process.

The recycled paper company of this case uses purchased pulp and waste paper as raw materials
to produce paper products. The manufacturing process consists of pulping, papermaking, coating, and
packing. In consideration of costs, in addition to saving water, coal and RDF-5 are used as the main
fuels, and the cogeneration equipment integrates steam and electric energy for efficient energy use.
The efficient application of waste could increase the profit for enterprises. The optimum mathematical
programming decision model, as employed by the recycled paper mill, combines its processes with ABC
to meet environmental protection requirements, while considering the maximization of corporate profit.

3.1. The Objective Function

The objective of this model is to maximize the total profit; the total corporate profit function is
as follows:

Z = [(main paper products revenue) + (relevant byproducts revenue) + (saved electric power

cost) + (saved steam cost)] − [(unit− level activity cost : total material cost + total expense

+total direct labor cost + total machine cost) + (batch− level activity cost) + (product− level

activity cost) + (total facility− level activity cost) + environmental management cost]

= (
n∑

i=1
piXi +

n∑
i=1

t∑
s=1

csbisXi +
m∑

p=0
SSCpφp +

n∑
q=0

SECqϕq) −
[

n∑
i=1

s∑
m=1

cmaimXi +
n∑

i=1

∑
j∈U

djλi jXi

+(LC1θ1 + LC2θ2)+
n∑

i=1

∑
j∈B

djαi jBi j +
n∑

i=1

∑
j∈P

djρi jRi +
r∑

k=0
MCkσk + CE

⎤⎥⎥⎥⎥⎦

(1)

In Equation (1), the total corporate profit is calculated by subtracting various costs/expenses
from main products revenue, relevant byproducts revenue, and electric power and steam costs
saved. The revenues and costs/expenses and their associated constraints will be described in the
following subsections.

3.2. Revenue of Main Products and Byproducts

In the product manufacturing process, the mill uses an Electrostatic Precipitator (ESP) and a
Flue-Gas Desulfurization (FGD) to reduce the environmental pollution of the production processes,
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and to recover any waste byproducts for resale. If the price of the main products and relevant
byproducts are represented by pi and cs, respectively, and the quantity of byproduct s of product i

is bisXi, then the revenue of main products and relevant byproducts are expressed as
n∑

i=1
piXi and

n∑
i=1

t∑
s=1

csbisXi, respectively.

3.3. Direct Material and Expense

In the preparation phase of papermaking, the purchase unit preliminarily sets the prices of various
raw materials (aim) for each product (Xi) after investigating the market prices. There are one to n
products and one to s raw materials. The total direct material cost is the fifth term of Equation (1),

n∑
i=1

s∑
m=1

cmaimXi. The decision-maker decides the maximum resources (Qm) available for each raw

material according to the actual cost information previously provided by the accounting division,
expressed as Equation (2).

n∑
i=1

aimXi ≤Qm, m = 1, 2, . . . , s, (2)

3.4. Unit-Level Activity Cost

Unit-level activity is executed one time for each unit of a product. Thus, the total unit-level activity

cost is the sixth term of Equation (1),
n∑

i=1

∑
j∈U

djλi jXi, where λi j is the activity driver demand of unit-level

activity j (j ∈ U) of one unit product i and dj is the running activity cost per activity driver for activity j.

3.5. Direct Labor Cost

In mill operation, employee operation modes are divided into normal work and overtime work,
as shown in Figure 2. The labor hours of normal work are in the range of [0, LH1], and the cost is LC1

at LH1. When the mill receives a large order, and must complete the work quickly, the employees
may work overtime. At this point, labor hours are in the range of [LH1, LH2], and the cost increases
from LC1 to LC2. The total labor cost is the seventh term of Equation (1), (LC1θ1+ LC2θ2), and the
associated constraints are expressed as Equations (3) to (8), where TL in Equation (3) is the total labor
hours needed for the company.

TL =LH1θ1+LH2θ2 (3)

θ0 − γ1 ≤ 0 (4)

θ1 − γ1 − γ2 ≤ 0 (5)

θ2 − γ2 ≤ 0 (6)

θ0 + θ1 + θ2 = 1 (7)

γ1 + γ2 = 1 (8)

(γ1,γ2) is a SOS1 set of 0–1 variables, within which exactly one variable must be non-zero;
(θ0,θ1,θ2) is a SOS2 set of non-negative variables, within which at most two adjacent variables, in the
order given to the set, can be non-zero. When the papermaking activities are completed by normal
work, then γ1 = 1 and γ2 = 0 (from Equation (9), and it is in the first segment of Figure 2; 0 ≤ θ0,θ1 ≤ 1
(from Equations (4) and (5)) and θ2 = 0 (from Equation (6)); and θ0 + θ1 = 1 (from Equation (7)).
Thus, the total direct labor hours required is TL = LH1θ1 (from Equation (3)), and TL is the linear
combination of 0 and LH1. Similarly, when the papermaking activities need overtime work, then
γ2 = 1, γ1 = 0, 0 ≤ θ1,θ2 ≤ 1, θ0 = 0, θ1 + θ2 = 1, and the total direct labor hours (TL) required will
be the linear combination of LH1 and LH2.
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LC1

LC2

LH1 LH2

Figure 2. Piecewise direct labor cost.

3.6. Batch-Level Activity Cost

In ABC, batch-level activity is executed one time for each batch of a product. The total batch-level

activity cost is the eighth term of Equation (1),
n∑

i=1

∑
j∈B

djμi jBi j, and the associated constraints are

Equations (9) and (10):
Xi ≤ μi jBi j, i = 1, 2, . . . , n; j ∈ B (9)

n∑
i=1

αi jBij ≤ Tj, Bij ≥ 0, j ∈ B (10)

Equation (9) is the constraint of the quantity of product i, and Equation (10) is the constraint
of resource available for batch-level activity j. If the batch-level activity is the activity “Setup”,
then Equation (10) may mean that the setup hour available for the batch-level activity “Setup” is Tj.

3.7. Product-Level Activity Cost

In ABC, the product-level activity is the activity consumed by a specific product. The total

product-level activity cost is the ninth term of Equation (1),
n∑

i=1

∑
j∈P

djρi jRi, and the associated constraints

are expressed in Equations (11) and (12).

Xi ≤ ViRi, i = 1, 2, . . . , n (11)

n∑
i=1

ρi jRi ≤ DjXi ≥ 0, i = 1, 2, . . . , n (12)

Equation (11) is the constraint of the quantity of product i, and Equation (12) is the constraint
of resource available for product-level activity j. If the product-level activity is the activity “Product
Design”, then Equation (12) may mean that the Computer-Aided Design (CAD) hour available for the
product-level activity “Product Design” is Dj.

3.8. Machine Cost

In this paper, it is assumed that machine capacity can be expanded to various levels, as shown in
Figure 3 [50]. Assume that the current machine hours available for use are MH0, and the machine cost
is MC0, i.e., the depreciation of machines. If the machine hours increase to MH1, the machine cost will
be MC1 after buying or renting additional machines. When the machine hours exceed the upper limit
of MH1 and reach the range of MH1,MH2, the machine cost will increase to MC2.
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Machine hour (hr) 
MH0 MH1 MH2 

MC2 

MC1 

MC0 

0 

Cost 
($) 

Figure 3. Stepwise machine cost.

Total machine cost is the tenth term of Equation (1),
r∑

k=0
MCkσk, and the associated constraints are

expressed as Equations (13) and (14).

q∑
i=1

δiXi ≤
r∑

k=0

MHkσk (13)

r∑
k=0

σk = 1 (14)

n∑
i=1
δiXi is the total machine hours needed for all products; (σ0, σ1, σ2, . . . , σk) is a special ordered

set of type 1 (SOS1) of 0–1 variables, within which exactly one variable must be non-zero. If σ0 = 1, then

it is within the current level of machine capacity, i.e., MH0. Then,
n∑

i=1
δiXi ≤MH0 (from Equation (13))

and total machine cost is MC0 (from Equation (1)). If σ1 = 1, then the machine hours increase to the

interval MH0, MH1; it is in the first expansion level of machine capacity, i.e., MH1. Then,
n∑

i=1
δiXi ≤

MH1 (from Equation (13)) and total machine cost is MC1 (from Equation (1)). Similarly, if σk = 1, then
the machine hours increase to the interval MHk−1,MHk, within the kth expansion level of machine

capacity, i.e., MHk. Then,
n∑

i=1
δiXi ≤ MHk (from Equation (13)) and total machine cost is MCk (from

Equation (1)).

3.9. Benefit of Using RDF-5

The mill uses cogeneration equipment to take advantage of steam and electric energies; therefore,
when the consumption of coal and RDF-5 reaches a certain level, per unit steam energy and electric
energy costs decrease. Given the power supply, steam supply, and heat supply benefits, RDF-5 can be
used in mechanical bed boilers and fluidized bed furnaces as the main or auxiliary fuel for multifuel
combustion. Therefore, the electric power and steam costs saved by using RDF-5 are considered in
this paper.

First, the saved electric power cost is the sum of saved steam costs (SSCp) at m power rates, i.e.,

the third term of Equation (1),
m∑

p=0
SSCpφp. In the paper-making process, the steam cost saved by using

RDF has different conversion benefits due to different degrees of saving electric costs, expressed as
Equation (15). The mill adopts the appropriate type of the aforesaid m rates according to the actual
state of saving, or allocates according to appropriate proportions in two adjacent schemes, where the
sum of the allocation proportions is 1, expressed as Equation (16).
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Constraints:
n∑

i=1

βi jXi ≤
m∑

p=0

SSHpφp (15)

m∑
p=0

φp = 1 (16)

The steam cost saved is the sum of the saved electric costs (SECq) at t power rates, i.e., the

fourth term of Equation (1),
t∑

q=0
SECqϕq. In the paper-making process, the steam cost saved by using

RDF has different conversion benefits due to different degrees of electric costs savings, expressed as
Equation (17). The mill adopts an appropriate type of the aforesaid n rates according to the actual state
of saving, or allocates according to appropriate proportions in two adjacent schemes, where the sum of
allocation proportions is 1, expressed as Equation (18).

n∑
i=1

γi jXi ≤
t∑

q=0

SGHqϕq (17)

t∑
q=0

ϕq = 1 (18)

The quantity of carbon equivalent of various gases allowed to be emitted from the mill
paper-making process is G in order to conform to the environmental protection policy, as shown in
Equation (19).

n∑
i=1

q∑
p=1

cpgipXi ≤ G (19)

4. Numerical Example

This section provides an example that describes how to apply ABC and TOC to the Mathematical
Programming Approach, in order to determine the optimal product mix.

4.1. Description of the Case Problem

In response to environmental protection, Company A of the paper industry has recently used
recycled pulp substitutes, clean waste paper, and ordinary waste paper, as the raw materials for
paper products. The mixture of the three raw materials can be used to make three kinds of products.
Considering the cost, coal remains in use for power generation, and the cogeneration coal-fired
machine is used to take full advantage of electric energy and heat energy. The sewage and waste in the
production process are properly treated, and a part of the waste is made into RDF-5, which is used
together with the coal for cogeneration in the coal-fired machine. In order to take full advantage of
resources and exploit financial resources, Company A sells the surplus electric energy of the process
to the power company, while the heat energy is sold to nearby residential buildings. In response
to environmental protection, the sludge treated from sewage is made into organic compost, while
the ash from the incineration treatment is made into cement products. The residual fly ash from the
power generation of the coal-fired machine is made into construction materials, the bottom ash is made
into structural building materials, and the FGD gypsum is made into fire plate materials. In order to
simplify the computing model, the machine costs and labor costs in this section are equally allocated to
the unit-level activity of the main products. The costs in the production process include: (1) unit-level
activity: including the costs of the three direct materials, direct expenses, required machine hours, and
labor hours in the production process; (2) batch-level activity: including pulping costs, papermaking
costs, coating costs, and packing costs of the general paper making process; (3) product-level activity:
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i.e., product design cost; (4) facility-level cost: the environmental management cost refers to the costs
related to routine inspections, effluence, and ensuring the process conforms to the environmental
standard assessment specifications as regulated by local government; and the benefit of using RDF-5
is provided.

This paper uses Company A to describe that the present productive capacity determines the
maximum profit of products. The aforesaid data are listed in Table 1, and the manufacturing process of
Company A is shown in Figure 4. Company A sells three kinds of paper products. In terms of selling
price, (Product1, Product2, Product3) = (320, 280, 250), where each product has its allocated cost during
the production run. Under ABC, reasonable operating activity analysis and cost driver allocation can
increase the correctness of cost information; and the electric energy and heat energy costs, as saved
by using RDF-5, are included in the analysis. In order to meet the practical situation, the overtime
problem in the production process is considered. The machine hours have three stepwise costs: mill
works on demand, general activity, and frequent overtime. The electric and heat energy benefits saved
by using RDF-5 are processed piecewise, and the maximum demand for the product is shown at the
bottom of Table 1.

Company A uses three raw materials effectively: recycled pulp substitute (X1), clean waste paper
(X2) and ordinary waste paper (X3), and generates revenue from seven byproducts of the production
process: electricity, steam heat, sludge organic compost, ash cement products, fly ash building materials,
bottom ash reinforced structural building materials, and FGD gypsum fire plates. After the optimum
production (Bi1), preparation (Bi2), treatment (Bi3), and cutting (Bi4) of the batch-level activities, the
emissions meet the environmental policy, that CO2 should not exceed 80,000 units, and the numerical
values of NOx, CO2, SO2, CO, COD, BOD, SS, AOX, and product-level constraints (Ri) are obtained.
The most important cost is calculated using LINGO software, based on the machine, labor, electricity,
and steam costs. The left part of Figure 4 shows the process of paper-making; the middle part shows
the required water, coal, electricity, and steam for the paper-making process, as well as the sewage and
waste remaining from the production process; the right part shows the utilization of waste from the
paper-making process, which can be used as byproducts. The excess electric and heat energies are sold,
thereby turning waste into resources, and creating extra profit for the company. Based on Equations (1)
to (19), the aforesaid green product mix decision model is described in Appendix A.
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4.2. Analysis

This MIP model uses LINGO 15.0 [51] software to obtain the optimal solution to the variables of
the proposed decision-making model, as shown in Table 2. While decision-makers intend to determine
the optimal solutions with limited resources, such optimal solutions are conditional and depend
on the preset target structure. This paper suggests using the LINGO model to determine the final
target structure and solutions, as LINGO is fast, easy to use, and more effective in establishing linear,
nonlinear, quadratic, quadratic constraint, second-order cone, half-definite, stochastic, and integral
optimization models.

Table 2. The optimal solution of numerical example *.

Symbol Value Symbol Value Symbol Value Symbol Value

Z $643,193.80 B21 1250 batches CO2 65,620.8 t σ2 0
X1 1940 t B31 480 batches SO2 0.291648 t θ0 0
X2 2500 t B12 243 batches CO 14.5824 t θ1 0.577217
X3 480 t B22 417 batches COD 109.368 t θ2 0.422783
P1 $22,448.00 B32 160 batches BOD 7.2912 t γ1 0
P2 $4190.00 B13 388 batches SS 9.114 t γ2 1
P3 $1981.00 B23 625 batches AOX 0.109368 t φ0 0
P4 $1132.00 B33 160 batches R1 1 φ1 0
P5 $24,304.00 B14 647 batches R2 1 φ2 1
P6 $6076.00 B24 1250 batches R3 1 ϕ0 0
P7 $85,064.00 B34 480 batches σ0 1 ϕ1 0
B11 647 batches NOx 72.912 t σ1 0 ϕ2 1

* Z: Total profit (thousand dollars). Ps: Revenue of byproduct s (thousand dollars).

According to the results, the optimal profit of the product mix of the recycled paper mill is (X1,
X2, X3) = (1940, 2500, 480), which requires 11,300 units of the first raw material (=3 × 1940 + 2 × 2500 +
1 × 480), 16,220 units of the second raw material (=4 × 1940 + 3 × 2500 + 2 × 480), 17,240 units of the
third raw material (=2 × 1940 + 4 × 2500 + 7 × 480), 56,600 units of water (=10 × 1940 + 12 × 2500 +
15 × 480), 121,520 units of coal (=23 × 1940 + 25 × 2500 + 305 × 480), 32,980 machine hours (=6 × 1940 +
7 × 2500 + 8 × 480), and 23,140 direct labor hours (=4 × 1940 + 5 × 2500 + 6 × 480). The total profit
Z is $643,193.80. In terms of byproducts: (1) revenue from selling electricity is $22,448; (2) revenue
from selling steam (heat) is $4190; (3) revenue from organic compost is $1981; (4) revenue from cement
products is $1132; (5) revenue from building materials is $24,304; (6) revenue from reinforced structural
building materials is $6076; (7) revenue from fire plates is $85,064. The total revenue from the aforesaid
byproducts is $145,195.

As seen from the above table, through the combination of mathematical programming and accurate
cost analysis, cost apportionments of the terminal products, as well as the analytic results of basic
operation system, business managers can reference the data for optimal operational decision-making,
leading the enterprise towards maximized operating profit before conducting production and business
activities. Through the application of this model, enterprises can make decisions regarding whether
to continue processing. Moreover, in the decision-making process, enterprises can find the best way
to obtain the optimal solution, even under the unfavorable situation of limited resources. Due to its
convenience and understandability, calculation tools are based on ABC and TOC, provide a practical
method for rendering decisions of a product portfolio which can assist enterprises to use raw materials
efficiently in the product mix decisions of GMTs, thereby meeting environmental goals and increasing
corporate profit.

4.3. Sensitivity Analysis

Sensitivity analysis on the key parameters of the model provide further insights for this study.
This study conducts sensitivity analysis on the cost and available capacity of 3 raw materials: pulp
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substitute, clean waste paper, and ordinary waste paper, with the unit being 5%. Regarding the
unit costs of raw materials (pulp substitute, clean waste paper, and ordinary waste paper = $20, $15,
$5 respectively); when all the purchase costs of the three are items decreased by 5%, the increase in
the company profit will be (pulp substitute, cleanable waste paper, ordinary waste paper = 1.76%,
1.89%, 0.67%, respectively). When the costs are further decreased by 5%, namely, the decreasing rate
changes from 5% to 10% (5% + 5% = 10%), the increase in the company profit will be (pulp substitute,
cleanable waste paper, and ordinary waste paper = 3.51%, 3.78%, 1.34%, respectively). As the test
results show, when all the purchase costs of the three items are decreased by 5%, the increase in the
company profit will be (pulp substitute, cleanable waste paper, and ordinary waste paper = 1.76%,
1.89%, 0.67%, respectively).

Additionally, this study conducts an in-depth exploration into the influence of cost increase on
enterprise profit. In terms of the unit cost of raw material, when the three purchase costs are increased
by 5%, the reduction in the profit of enterprises will be (pulp substitute, cleanable waste paper, and
ordinary waste paper = −1.76%, −1.89%, −0.67%, respectively); when the three purchase costs are
increased by another 5% or 10%, the reduction in the profit of enterprises will be (pulp substitute,
cleanable waste paper, and ordinary waste paper = −3.51%, −3.78%, −1.34%, respectively). As the
test shows, when all the purchase costs of the three items are decreased by 5%, the increase in the
profit of enterprises will be (pulp substitute, cleanable waste paper, and ordinary waste paper = 1.76%,
1.89%, 0.67%, respectively). Tables 3–5 show the relationship between the purchase costs and profits
of pulp substitute, cleanable waste paper, and ordinary waste paper. The contents of Tables 3–5 are
illustrated in Figure 5, which displays the cost decrease and capacity increase over profit increase.
As shown in Figure 5, as the cost of the raw materials procured by enterprises gradually decreases, the
quantity of the raw materials that can be procured will gradually increase, and enterprises will make
more profit. Specifically, cleanable waste paper and ordinary waste paper have a great influence on
enterprises, with the former having the greater influence; while the pulp substitute has less influence
on the revenue of enterprises.

In terms of available capacity, (pulp substitute, cleanable waste paper, and ordinary waste paper =
11,310, 17,020, 24,750, respectively). The sensitivity analysis showed that when the available capacities
of pulp substitute and clean waste paper increased by 5%, respectively, the profit increased by 1.76%.
However, when the available capacities further increased by 5%, the profit ceased to increase beyond
the 1.76%. Tables 6 and 7 show the relationships between pulp substitute, clean waste paper, and the
company profit. When the available capacity of ordinary waste paper increased by 5%, the profit of
the company did not increase. If it further increased by 5%, the profit still did not change. Table 8
shows the relationship between cleanable waste paper and the company profit. The sensitivity analysis
indicated that the company can further increase its current 5% available capacity of cleanable waste
paper to gain more profit.

 

Figure 5. The impacts of cost decrease and capacity increase on profit (unit: thousand dollars).
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Table 3. Sensitivity analysis on the cost of pulp substitute.

Cost
Decrease/Increase

Ratio (%)
Profit

Increase/Decrease
(Compared with
the Initial Value)

Increase Profit

pulp substitute −30% 710,993.8 10.54% 67,800.0
pulp substitute −25% 699,693.8 8.78% 56,500.0
pulp substitute −20% 688,393.8 7.03% 45,200.0
pulp substitute −15% 677,093.8 5.27% 33,900.0
pulp substitute −10% 665,793.8 3.51% 22,600.0
pulp substitute −5% 654,493.8 1.76% 11,300.0
pulp substitute 0% 643,193.8 0.00% 0.0
pulp substitute 5% 631,893.8 −1.76% −11,300.0
pulp substitute 10% 620,593.8 −3.51% −22,600.0
pulp substitute 15% 609,293.8 −5.27% −33,900.0
pulp substitute 20% 597,993.8 −7.03% −45,200.0
pulp substitute 25% 586,693.8 −8.78% −56,500.0
pulp substitute 30% 575,393.8 −10.54% −67,800.0

Table 4. Sensitivity analysis on the cost of clean waste paper.

Cost
Decrease/Increase

Ratio (%)
Profit

Increase/Decrease
(Compared with
the Initial Value)

Increase Profit

Cleanable waste paper −30% 716,183.8 11.35% 72,990.0
Cleanable waste paper −25% 704,018.8 9.46% 60,825.0
Cleanable waste paper −20% 691,853.8 7.57% 48,660.0
Cleanable waste paper −15% 679,688.8 5.67% 36,495.0
Cleanable waste paper −10% 667,523.8 3.78% 24,330.0
Cleanable waste paper −5% 655,358.8 1.89% 12,165.0
Cleanable waste paper 0% 643,193.8 0.00% 0.0
Cleanable waste paper 5% 631,028.8 −1.89% −12,165.0
Cleanable waste paper 10% 618,863.8 −3.78% −24,330.0
Cleanable waste paper 15% 606,698.8 −5.67% −36,495.0
Cleanable waste paper 20% 594,533.8 −7.57% −48,660.0
Cleanable waste paper 25% 582,368.8 −9.46% −60,825.0
Cleanable waste paper 30% 570,203.8 −11.35% −72,990.0

Table 5. Sensitivity analysis on the cost of ordinary waste paper.

Cost
Decrease/Increase

Ratio (%)
Profit

Increase/Decrease
(Compared with
the Initial Value)

Increase Profit

Ordinary waste paper −30% 669,252.8 4.05% 26,059.0
Ordinary waste paper −25% 664,882.8 3.37% 21,689.0
Ordinary waste paper −20% 660,512.8 2.69% 17,319.0
Ordinary waste paper −15% 656,142.8 2.01% 12,949.0
Ordinary waste paper −10% 651,813.8 1.34% 8620.0
Ordinary waste paper −5% 647,503.8 0.67% 4310.0
Ordinary waste paper 0% 643,193.8 0.00% 0.0
Ordinary waste paper 5% 638,883.8 −0.67% −4310.0
Ordinary waste paper 10% 634,573.8 −1.34% −8620.0
Ordinary waste paper 15% 630,263.8 −2.01% −12,930.0
Ordinary waste paper 20% 625,953.8 −2.68% −17,240.0
Ordinary waste paper 25% 621,643.8 −3.35% −21,550.0
Ordinary waste paper 30% 617,333.8 −4.02% −25,860.0
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Table 6. Sensitivity analysis on the available capacity of pulp substitute.

Increasing
Ratio

Profit
Increase/Decrease
(Compared with
the Initial Value)

Increase Profit

Pulp substitute 0% 643,193.8 0.00% 0.0
Pulp substitute 5% 654,512.8 1.76% 11,319.0
Pulp substitute 10% 654,512.8 1.76% 11,319.0
Pulp substitute 15% 654,512.8 1.76% 11,319.0
Pulp substitute 20% 654,512.8 1.76% 11,319.0
Pulp substitute 25% 654,512.8 1.76% 11,319.0
Pulp substitute 30% 654,512.8 1.76% 11,319.0

Table 7. Sensitivity analysis on the available capacity of clean waste paper.

Increasing
Ratio

Profit
Increase/Decrease
(Compared with
the Initial Value)

Increase Profit

Clean waste paper 0% 643,193.8 0.00% 0.0
Clean waste paper 5% 654,512.8 1.76% 11,319.0
Clean waste paper 10% 654,512.8 1.76% 11,319.0
Clean waste paper 15% 654,512.8 1.76% 11,319.0
Clean waste paper 20% 654,512.8 1.76% 11,319.0
Clean waste paper 25% 654,512.8 1.76% 11,319.0
Clean waste paper 30% 654,512.8 1.76% 11,319.0

Table 8. Sensitivity analysis on the available capacity of ordinary waste paper.

Increasing
Ratio

Profit
Increase/Decrease
(Compared with
the Initial Value)

Increase Profit

Ordinary waste
paper 0% 643,193.8 0.00% 0.0

Ordinary waste
paper 5% 643,193.8 0.00% 0.0

Ordinary waste
paper 10% 643,193.8 0.00% 0.0

Ordinary waste
paper 15% 643,193.8 0.00% 0.0

Ordinary waste
paper 20% 643,193.8 0.00% 0.0

Ordinary waste
paper 25% 643,193.8 0.00% 0.0

Ordinary waste
paper 30% 643,193.8 0.00% 0.0

5. Discussion

Recent literature regarding the costs and processes of manufacturing applied ABC and TOC to the
allocation of resources [17], and combined ABC and sensitivity analysis [52]; however, few studies have
combined all three approaches; thus, this study can serve as reference for future studies regarding costs
and resource allocation. The sensitivity analysis of this study implies that although the purchase cost
of cleanable waste paper is ranked second among the three raw materials, it has the highest influence
on company profit as it accounts for the highest percentage of production costs. The test on available
capacity indicates that if the current 5% available capacity of cleanable waste paper can be further
increased, the factory will produce more products, thereby obtaining more profit. After providing
the findings to the case factory, the Purchasing Department of the case company discovered that
the purchase cost of cleanable waste paper has the greatest influence on company profit. As the
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international price of paper is reduced in the future, the case company can negotiate with their suppliers
to reduce their price. Previously, the case company thought that it had already taken full advantage of
the available capacity of the raw material; however, after being informed of the findings, it plans to
increase its application of cleanable waste paper.

5.1. Managerial Implications

Preliminary research has found that the adoption of ABC can help management to identify purchase
behaviors [53] while greatly improving organizational performance, productivity, and profitability; hence,
this technique has been widely promoted to enhance enterprise profitability [54,55]. However, as many
industries continue to use old production technologies, which consume resources and energy at a rate
of more than triple that of new environmental technologies, enterprise pollution cannot be effectively
controlled, quality of life is affected, and environmental damage is continuously aggravated [6].
Therefore, when internal environmental technologies of enterprises are enhanced by internal
environmental management, pollution is effectively controlled. When new training schemes can be
imported into environmental management systems to strengthen employees’ environmental awareness
and environmental problem-handling modes, the performance of environmental management systems
will be significantly influenced [56].

An environmental management system also uses the internal innovations of process innovation,
technology innovation, and product innovation for improvement [9]. With the rise of environmental
awareness, enterprises actively conduct internal green innovation, which has a significantly positive
influence on increasing enterprises’ competitive advantages. When the innovation ability of competitors
is low, applied innovation can double the competitive advantage of an enterprise [16]. With increased
consumer environmental considerations, retailers and manufacturers will benefit by providing
extraordinary green business practices [57]. Numerical application and sensitivity analysis demonstrate
the applicability of the proposed model and emphasize management insights [58]. The main purpose
of business operations is to obtain profit for a company; decreased production costs and increased
available capacity are the two most common approaches. Sensitivity analysis shows the proportion of
each raw material against production costs. On the basis of changing the procurement environment,
a company can negotiate with raw material suppliers to reduce the price of raw materials in order to
save purchase costs. During reproduction, the available capacity of raw materials with production
potential can be increased to facilitate the company’s production of more products, and thereby, create
more profits.

5.2. Limitations

This study provides a reference model for energy conservation and carbon emission reduction
through a case study, based on the operational procedures of the traditional paper-making industry.
The values in the case are all represented by virtual numbers. Paper mills can apply this model to make
effective use of their wastes, as based on a power generation method that uses its own fuel and raw
materials after obtaining the data of discharged wastes through the testing process. Generalizability to
other industries is problematic.

6. Conclusions

Using sustainable operations research to enhance the innovation of environmental technology can
help enterprises to improve their environmental problems by reducing environmental pollution [6]
within a short time by classifying pollutants and waste; thus, the performance of enterprises in
solving environmental problems can be effectively improved [59]. Corporate competitiveness and the
usability of managerial accounting information have significant correlation [60]. Therefore, this study
combines ABC with TOC, and uses the Mathematical Programming Approach to provide paper-making
enterprises with a production mode that includes environmental protection, while taking full advantage
of the byproducts of process wastes. This study explores the cost of the production process with ABC.
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The TOC is adopted to help managers note the restricted resources of production processing and
remove any bottlenecks.

In order to be practical, regarding the situation of occasional overtime work hours, this study
handles it with stepwise machine costs and piecewise direct labor costs. The former considers the
different rates of plants according to the different electricity consumption rates during production;
while the latter considers overtime work in production. In addition to the saved costs of electric
and thermal energies of several plants, through the implementation of energy-saving operations, the
company expressed their saved costs due to the energy conservation nature of the model. When
simultaneously considering a winning corporate image and profit, if recycled paper is used as a raw
material for production, products with higher value are created according to the characteristics of
the different recycled papers, which may be the future direction for enterprises that have not used
recycled resources as raw materials. While coal firing pollutes ambient air, many mills continue to use
it to generate power in order to save costs; water, as the industrial blood, is usually wasted without
proper recycling. Therefore, this study especially introduces the application of coal and wastewater,
and suggests the combination of a boiler and cogeneration for the construction of most resources.
Subsequent mills can effectively take full advantage of the waste from boilers, meaning enterprises
can become excellent benchmarking enterprises, and find a balance between profitability and energy
efficiency through their gradual growing awareness of environmental protection.
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Notations

The main symbols of variables and parameters used in this model are defined as follows:
Z Corporate profit;
Xi Quantity of product i;
pi Unit price of product i;
cs Unit price of byproduct s
bis The quantity of byproduct s of one unit of product i
SSCp Saved pth steam costs, when p = 1, the preferential rate is applicable; when p = 2, the basic preferential

rate is applicable; when p = 3, the excess rate is applicable;
SSHp Saved pth steam machine hours, when p = 1, the preferential rate is applicable; when p = 2, the basic

preferential rate is applicable; when p = 3, the excess rate is applicable;
SECq Saved qth electric power costs, when q = 1, the preferential rate is applicable; when q = 2, the basic

preferential rate is applicable; when q = 3, the excess rate is applicable;
SGHq Saved qth generating machine hours, when q = 1, the preferential rate is applicable; when q = 2, the

basic preferential rate is applicable; when q = 3, the excess rate is applicable;
βi j Saved activity driver demands of unit-level activity j (j ∈ U) for steam machine hours of one-unit

product i;
γi j Saved activity driver demand of unit-level activity j (j ∈ U) for generating machine hours of one-unit

product i;
cm Unit cost of mth raw material;
aim Unit cost of mth raw material; mth raw material demand of one-unit product I;
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Qm Available quantity of raw material Q.
dj Running activity cost per activity driver for activity j;
λi j Activity driver demand of unit-level activity j (j ∈ U) of one-unit product i;
LC1 Total direct labor cost in LH1 (see Figure 2);
LC2 Total direct labor cost in LH2 (see Figure 2);
TL Total labor hours needed for the company;
LH1 Upper limit of total direct labor hours of normal work (see Figure 2);
LH2 Upper limit of total direct labor hours including overtime work (see Figure 2);
αi j The quantity of resource used by each batch-level activity j (j ∈ B) for product i;
Bi j The number of batches for batch-level activity j (j ∈ B) used by product i;
μi j The quantity of product i for each batch-level activity j (j ∈ B);
Tj The quantity available for the activity driver of batch-level activity j (j ∈ B).
ρi j Demand of activity driver needed by product-level activity j (j ∈ P) for product i;
Ri Production indicator of product i; If (Ri = 1), then product i will be produced. Otherwise, (Ri = 0);
Vi Maximum demand for product i;
Dj The quantity available for the activity driver of activity j (j ∈ P).
MCk Total machine cost in MHk (see Figure 3);
MHk Machine hours of kth level capacity (see Figure 3);
σk SOS1 set of 0–1 variables (special order of the first kind), where one and only one variable must be

nonzero; σk = 1 means that machine hour is expanded to MHk.
δi Machine hour demand for one unit of product i;
CE Environmental management cost;
cp Processed gas p;
gip The total quantity of gas p from product i.;
G The quantity of carbon equivalent of various gases allowed to be emitted from the mill paper-making process.
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Abstract: To study the emission reduction policies’ impact on the production and economic level
of the steel industry, this paper constructs a two-stage dynamic game model and analyzes various
emission reduction policies’ impact on the steel industry and enterprises. New results are observed in
the study: (1) With the increasing emission reduction target (15%–30%) and carbon quota trading price
(12.65–137.59 Yuan), social welfare and producer surplus show an increasing trend and emission macro
losses show a decreasing trend. (2) Enterprises’ reduction ranges in northwestern and southwestern
regions are much higher than that of the other regions; the northeastern enterprise has the smallest
reductions range. (3) When the market is balanced (0.8543–0.9320 billion tons), the steel output has
decreased and the polarization in various regions has been alleviated to some extent. The model is
the abstraction and assumption of reality, which makes the results have some deviations. However,
these will provide references to formulate reasonable emissions reduction and production targets.
In addition, the government needs to consider the whole and regional balance and carbon trading
benchmark value when deciding the implementation of a single or mixed policy. Future research will
be more closely linked to national policies and gradually extended to other high-energy industries.

Keywords: carbon trading mechanism; emission reduction policy; China’s iron and steel industry;
a two-stage dynamic game

1. Introduction

The iron and steel industry (hereafter referred to as the steel industry) is an important fundamental
industry of China’s economy. After the founding of New China, the development of steel industry
has gone through three stages. The first stage was from 1949 to 1960. The steel industry achieved
rapid development under the influence of a “steel-oriented” mindset and the large-scale steelmaking
movement, and steel output rose sharply. In the second stage, from 1960 to 1980, the development of
the steel industry during this period was in a sluggish state. Many factors had brought about a huge
negative impact on the development of the steel industry, causing the steel industry to stagnate. In the
third stage, after the 1980s, the steel industry developed rapidly. The rank of annual output jumped
to the top in the world in 1996. In recent years, the annual steel output has ranked first in the world,
achieving a leap in the development of the steel industry.
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For a long time, the steel industry has provided important raw material guarantees for national
construction, which has strongly supported the development of related industries, promoted the
process of industrialization and modernization in China, and promoted the improvement of people’s
livelihood and social development.

Though the iron and steel industry has achieved remarkable achievements, it also faces many
problems. The national steel industry equipment level is uneven, especially in terms of energy
conservation and emission mitigation; a lot of debts of energy conservation and environmental
protection investment were left over. Many enterprises have not achieved the comprehensive and
stable discharge of pollutants; energy conservation and environmental protection facilities need to be
further upgraded. Though the energy consumption and pollutant emissions of steel, per ton, have
decreased in recent years, it cannot offset the increase in total energy consumption and pollutants
caused by the increasing production. With the booming advancement of national industrialization and
urbanization and the continuous upgrading of the consumption structure, the energy conservation
and emission reduction work will become increasingly serious to the steel industry. At the same
time, social development, ecological civilization construction, people’s living needs, public opinion
concerns, and more will impose new and more stringent requirements on energy conservation and
emission reduction.

Obviously, for future development prospects, the steel industry still needs to make great efforts to
adhere to green development, in addition to adhering to structural adjustment and innovation drive.
It should aim to reduce energy consumption and pollutant emissions and to fully implement energy
conservation and emission reduction. The government should keep on renovating, continuously
optimizing the original fuel structure, vigorously developing the circular economy, actively researching
and promoting green steel throughout the life cycle, and building a new pattern of steel manufacturing
and social harmonious development.

At present, emission reduction policies such as the carbon trading mechanism or the carbon
taxation mechanism have not been fully implemented. What are their impacts on the production
level and economic profit of enterprises and the steel industry? Whether or not it is suitable for the
actual situation of the steel industry is still unclear. Therefore, it is an urgent and difficult task for the
steel industry to figure out the way to achieve green development in order to complete increasingly
stringent emission reduction tasks.

In China, on 18th December, 2017, the National Development and Reform Commission announced
the “National Carbon Emissions Trading Market Construction Plan (Power Generation Industry),”
setting the threshold for China’s power generation industry to be included in the carbon market:
Annual emissions of 26,000 tons of carbon dioxide or above. It provides a reference for other industrial
sectors, so this paper will study the carbon trading mechanism’s impact on production level based on
this program.

The remainder of this paper is organized as follows: In Section 2, a literature review focusing
on the distribution mode and policy influence of carbon trading system is provided; in Section 3,
a two-stage game theory modeling is constructed, and policy assumptions and data sources are
provided; in Section 4, results and discussions are presented based on accounting data and statistical
analysis; and in Section 5, conclusions and policy recommendations for China’s iron and steel industry
are drawn.

2. Literature Review of Distribution Mode and Policy Influence of Carbon Trading System

Dales [1] first proposed the concept of emissions trading, which aims to apply Coase’s theorem
of “efficiency in resource allocation through clear definition of rights” to water pollution control.
In 2005, the European Union established the Emission Trading Scheme (ETS), covering more than
11,000 companies including manufacturing. The United States, the United Kingdom, and Australia
have also established emission trading systems and exchanges. In China, although the “National
Carbon Emissions Trading Market Construction Plan (Power Generation Industry)” was announced
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and the threshold for China’s power generation industry to be included in the carbon market was
set, the quota allocation method has not yet been announced. Moreover, the carbon market was only
included in the power, cement, and electrolytic aluminum industries at the beginning, leaving the steel
industry unincluded.

Scholars have studied the carbon trading mechanism from the perspectives of applicable industries,
allocation, and influences. In the applicable industry research, most of the studies have been focused
on the power industry where data and methods are relatively mature. Li and Colombier [2] analyzed
the effects of different energy conservation and emission reduction policies on reducing carbon dioxide
in the construction industry based on energy demand, population growth, and economic development
trends. The results showed that the carbon emission trading mechanism has played a prominent role
in improving the buildings’ energy efficiency and energy-saving technologies’ promotion. Anger [3],
Chen and Tseng [4], and Alberola [5] discussed the application of carbon trading mechanisms in
electricity, the manufacturing industry, and aviation. Considine and Larson [6] examined fuel switching
in electricity production following the introduction of the European Union’s Emissions Trading System
(EU ETS) for greenhouse gas emissions. Shen et al. [7] used structural modeling methods to determine
the factors affecting the carbon trading mechanisms’ implementation in construction industry and
explained the complex relationship between factors. In combination with the carbon footprint and the
classic transportation model, Su [8] added carbon trading mechanism to the traditional three-level
transportation network model and comprehensively analyzed the impact of carbon quotas and trading
mechanisms on operating costs and transportation networks. Based on the Computable General
Equilibrium (CGE) model, Zhang [9] studied the impact of China’s establishment of carbon trading
system on the construction industry.

Policy makers, economists, and researchers have different opinions on the issue of the allocation
of quotas, due to their own situations. Ahman and Zetterberg [10] believed that, according to the
different basic calculation data, the free distribution method can be divided into two distribution
methods: Carbon emissions and production. However, the latter has higher data requirements than
the former. Goeree et al. [11] believed that the free distribution method based on historical emissions
as the basis for allocating quotas will lead to high carbon emission enterprises obtaining large quotas
of carbon emission quotas due to historical data accounting, as well as raising quota prices in quota
trading in the carbon market. Zetterberg et al. [12] suggested that the government should reward
companies that have adopted emission reduction actions at the beginning of the carbon trading system,
which will incentivize companies to obtain more quotas by increasing output. Grimm and Ilieva [13]
believed that the allocation baseline for carbon emission rights will change over time and technology,
so they cannot be allocated with reference to historical emissions data. For this reason, they proposed
a scalable free allocation model. Wang and Wang [14] studied the carbon emission rights allocation
in Beijing. They believed that distribution model combining free and auction is more suitable for
China’s national conditions. In the Emission Trading Scheme in Korea, Lee and Yu [15] observed the
actual CO2 emission levels in the first compliance year and estimated the maximum and minimum
emission levels by conducting a sensitivity analysis. They also estimated the surplus or deficit of
emission permits during the first phase by comparing the estimated emission levels and the permit
supply. Finally, they explored the supply and future prospects of offset credits, as well as the allocated
permits. Guo, Chen, and Long [16] studied the initial quota allocation of the consuming government
(based on the perspective of government and family evolutionary game) and found that when the
government’s evolutionary stability strategy is “strict policy,” the family’s evolutionary stabilization
strategy will be affected by carbon reduction costs and purchasing carbon emission rights costs. Zhang,
Li and Jia [17] established a Computable General Equilibrium (CGE) model to analyze the impact of
different ETS quota allocation schemes on the electricity industry and determined the best choice of a
quota allocation scheme for the electricity industry in China. The research on China’s carbon trading
market may provide an important case for the global carbon trading market. In the European Union’s
Emissions Trading System (EU ETS), Duscha [18] analyzed the demand for certificates from a reserve
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of about 400 million allowances under different assumptions on production development as well as
different design options for Phase IV. The analysis was built on freely available allocation data from
Phase III along with projections of production trends from different time periods in the past.

The impact of implementing carbon emission trading policies is mainly reflected by the impact on
macroeconomic factors such as government welfare, emission reduction effects, and prices. Chen and
Wu [19] constructed a model for the free allocation and sale of carbon allowances. The results showed
that China’s implementation of carbon emission trading can reduce the economic losses caused by CO2

emission reduction. Ellerman et al. [20] believed that developing countries can take full use of the new
export chances brought about by carbon trading mechanisms to reap the benefits, while the countries
with rich energy can have the largest revenues. Babiker M, Reilly J, and Viguier L [21] used CGE model
to find that carbon emissions trading plays a negative role on social welfare. Wang, Chen, and Zou [22]
found that carbon emission trading has a strong impact on prices. CO2 emission reduction policies
can stimulate energy efficiency in the energy sector to reduce carbon emissions effectively. However,
China’s GDP growth and labor efficiency will be negatively affected. Jamasb and Kohler [23] used
learning curve theory to find that carbon emission trading could play a role in updating and promoting
energy-saving and emission-reducing technologies; they also found that the continuous popularization
of energy-saving and emission-reducing technologies would, in turn, reduce carbon emission reduction
costs. Aviyonah and Uhlmann [24] believed that environmental externalities could be measured by
carbon trading prices, and carbon trading mechanisms can generate profits for companies that reduce
CO2 emissions costs. Cong and Wei [25] studied the impact of power companies under different carbon
trading allocation criteria and found that different allocations would also change carbon prices and
electricity prices. Wu et al. [26] found that after the establishment of the carbon trading system, net
exports of high-energy-consuming industries such as steel and electricity were greatly affected, and the
power industry was even more affected. Li and Zhu [27] obtained the carbon emission trading’s impact
on high energy industries by constructing a partial equilibrium model of the three commodities in two
countries and an emission reduction cost curve based on the micro level of technology. The results
showed that in the carbon market with free quota allocation, carbon emission trading may cause
distortion effects of non-backward capacity and backward production capacity. Wu, Fan, and Xia [28]
used a multi-regional computable general equilibrium (CGE) model to analyze the economic impacts
of ETS policy when combined with renewable energy sources (RES) policies in China. Dai, Xie, and
Liu [29] used the CGE model to assess the carbon emissions trading’s impact and renewable energy
policies on economic contribution and to explore the influence of carbon trading volume, carbon price,
and emission limits on the GDP in different sectors. Using the real trading data from the EU carbon
market, Liu, Gao, and Guo [30] constructed a network model by integrating time windows with the
network model; three types of network features were examined. The growth pattern of the carbon
trading network was analyzed. Fernández et al. [31] analyzed the effectiveness of the carbon market as
a basic tool in the reduction of emissions. The analysis also included other overlapping policies aimed
at fighting climate change—the promotion of renewables, for example.

On the study of the comparison and selection of carbon tax and carbon trading, it could be
found that domestic and foreign scholars have not reached a consensus. Aviyonah and Uhlmann [24]
argued that the carbon tax mechanism is easier to implement than the carbon trading mechanism
because carbon trading mechanisms face the challenge of setting emission reduction targets. Mann [32]
contended that a carbon tax policy is more important because carbon tax has the advantages of a
simple implementation, a favorable emission reduction path for enterprises, and a small space for
local governments to implement local protectionism. Wang et al. [33] believed that in the short term,
the carbon trading mechanism is more cost-effective because of the higher cost in CO2 emission
reduction technology.

For ease of reference, the references and summary information involved in this section are shown
in Table 1.
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Table 1. References and summary information about the carbon trading mechanism involved in
this section.

Applicable industries

Year Researcher Industrial sector

2009 Li and Colombier construction
2010 Anger electricity
2008 Chen and Tseng manufacturing industry
2009 Alberola aviation
2012 Considine and Larson electricity
2016 Shen et al. construction
2017 Su transportation
2017 Zhang construction

Allocation

Year Researcher Main ideas

2007 Ahman and Zetterberg Free distribution method can be divided into two distribution methods:
Carbon emissions and production.

2010 Goeree et al.
Free distribution method based on historical emissions will lead to high

carbon emission enterprises to obtain large quotas of carbon emission quotas
and raise quota prices.

2012 Zetterberg et al. The government should reward companies that have adopted emission
reduction actions at the beginning of the carbon trading system.

2013 Grimm and Ilieva Allocation baseline will change over time and technology, cannot be allocated
with reference to historical emissions data.

2014 Wang Distribution model combining free and auction is more suitable for China’s
national conditions.

2017 Lee and Yu Permits were either in surplus or insufficient, depending on the sub-sector.

2018 Guo, Chen, and Long
When the government’s evolutionary stability strategy is “strict policy,” the

family’s evolutionary stabilization strategy will be affected by the cost of
carbon reduction.

2018 Zhang, Li and Jia Different quota allocation schemes have impacts on electricity price, and
there are some spillover effects to other industries.

2018 Duscha Amount of allowances foreseen for dynamic allocation is sufficient for Phase
IV in the European Union’s Emissions Trading System (EU ETS).

Impact of implementing carbon emission trading policies

Year Researcher Main effect

1998 Chen and Wu Reduce the economic losses caused by CO2 emission reduction.

1998 Ellerman et al. Gain new export opportunities to reap the benefits.

2004 Babiker M, Reilly J, and
Viguier L Negative impact on the social welfare.

2005 Wang, Chen, and Zou A strong impact on production and prices. However, China’s GDP growth
and labor efficiency will be negatively affected.

2007 Jamasb and Kohler Update and promote energy-saving and emission-reducing technologies.

2009 Aviyonah and
Uhlmann Generate profits for companies that reduce CO2 emissions costs.

2010 Cong and Wei Change carbon prices and electricity prices.

2015 Wu, Fan, and Xia et al. Net exports of high-energy-consuming industries were greatly affected.

2017 Li and Zhu Cause distortion effects of non-backward capacity and backward
production capacity.

2017 Wu, Fan and Xia The combination of an ETS and a feed-in tariff (FIT) results in greater GDP
cost and welfare loss in all Chinese regions

2018 Dai, Xie, and Liu et al. Contributes to the achievement of emission reduction targets with less
economic cost

2018 Liu, Gao and Guo As the market grows, the geodesic distances become shorter and the
clustering coefficients become larger.

2018 Fernández. et al. EU-ETS is effective to reduce emissions, and each phase has a greater impact
on the reduction.
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Through the literature review of emission reduction policies, especially carbon trading mechanisms,
we can find that the macroeconomic energy and economic model can be used to calculate carbon
trading quotas, carbon prices, and other values, which can better analyze the impact on the economy,
environment, and emission reduction. However, most of this research was conducted from a macro
perspective, and there is less literature on using game theory to study the mutual decision-making
and emission reduction mechanism between the industry and enterprises from both microscopic and
macroscopic perspective. There is also relatively less research literature on the integration of policies
such as mechanisms into the emission reduction model and the comparison of single and mixed
emission reduction policies. With the continuous economy development and the constant attention of
environmental concerns, emission mitigation pressure will increase continuously. An individual carbon
emission reduction policy cannot meet the needs of national economic development and emission
mitigation. Carbon capture and storage (CCS), carbon sinks, and other significant reductions methods
are possible to be integrated into the overall mitigation system. There are few papers on relevant game
theory, and, as such, more research needs to be introduced. In addition, China has not yet started the
carbon tax mechanism, and the official has not formulated detailed implementation plans. Therefore,
this paper uses the carbon trading mechanism as the background of emission reduction policies to
conduct corresponding policy research and analysis.

Secondly, we find that researchers have usually focused on national level and entire sectors
(industry, service industry, agriculture). Research on a provincial level or a single industry department
are few. The iron and steel industry is a basic industry and one of the most CO2-emitting heavy
industrial sectors, which needs to do some further important emission reduction tasks research.

Thirdly, the model gives priority to the literature while giving less focus to empirical analysis
in the previous research, and the parameters usually derive from the existing data of developed
countries. The study of two typical enterprises is the most classic. In China, there are significant
regional differences and economic development imbalances, and these areas’ steel industry information
and parameters need to be supplemented.

Above all, the reasonable CO2 emission reduction policy will be the core issue in this paper.
Therefore, this paper organizes the six main areas’ steel industry’s energy, environment, and
economic data. Integrated with the government corresponding long-term plan, the carbon trading
mechanism—including production subsidies, CCS, and CO2 external losses—is included in this
research; then, a two-stage dynamic game model is constructed. Using the background of different
carbon emissions’ decreased demand, we discuss game behavior in different regions under different
reduction targets; and, finally, we investigate different emissions reduction scenarios’ effect and
economic impact.

3. Methods

3.1. Notations and Explanations

As shown in Figure 1, according to the regional division of China, China is divided into six regions:
North China (i.e., 1� Beijing, 2� Tianjin, 3� Hebei, 4� Shanxi, and 5� Inner Mongolia), Northeast China
(i.e., 6� Liaoning, 7� Jilin, and 8�Heilongjiang), East China (i.e., 9� Shanghai, 10� Jiangsu, 11� Zhejiang,
12� Anhui, 13� Fujian, 14� Jiangxi, 15� Shandong, and 32� Taiwan), South Central China (i.e., 16� Henan,
17� Hubei, 18� Hunan, 19� Guangdong, 20� Guangxi, 21� Hainan, 33� Hong Kong, and 34�Macau), Southwest
China (i.e., 22� Chongqing, 23� Sichuan, 24� Guizhou, 25� Yunnan, and 31� Tibet), Northwest China
(i.e., 26� Shaanxi, 27�Gansu, 28�Qinghai, 29�Ningxia, and 30� Xinjiang). For data reasons, Tibet, Hong Kong,
Macau, and Taiwan are not included. In this paper, regions are presented by subscripts: 1 represents
North China, 2 represents Northeast China, and so on.
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Figure 1. Regional division of China in this paper.

Consistent with the game sequence described in the literature of Duan et al. [34], the main
research focus of this paper includes the government and the above six regions, and the regional steel
industry data is regarded as a steel enterprise entity. The government emissions reduction policy
is a double game problem. Firstly, there is a decomposition game between the government and
regional enterprises: The government stipulates the emissions reduction target for a certain period,
after which the regional enterprises should determine their respective reduction ranges according
to their own cost curves. Secondly, there is a game of product output between the six regions, and
the different targets of the regional enterprises will affect their respective output levels and market
competitiveness. Therefore, the resultant game order is as follows: In the first stage, the government
sets corresponding reduction targets and reduction policies (e.g., emissions allowances, product
subsidies, CCS, independent or mixed); in the second stage, on the premise of guaranteeing profit
maximization, the regional enterprises choose their respective reduction targets and output levels
simultaneously. Based on this idea, this paper adopts the inverse method to solve the two-stage game
problem. The notations used in this paper and their explanations are presented in Table 2. The main
hypothesis of this paper is basically consistent with the hypothesis of Duan et al. [34].

Table 2. Notations and explanations used in this paper.

Notations Explanations

Q Steel production
P The price of steel
α The constant of the market inverse demand curve
β The primary coefficient of the market inverse demand curve
qi Steel production of region i

e2015,i The region i CO2 emission intensity of per ton steel in 2015
ei The region i CO2 emission intensity of per ton steel at some stage
ri The decline range of CO2 emission intensity of per ton steel in region i at some stage
R The decline target of national CO2 emission intensity of per ton steel at some stage

MAC Marginal abatement cost curve in iron and steel industry
ai The quadratic coefficient of steel industry’s MAC in region i
bi The primary coefficient of steel industry’s MAC in region i
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Table 2. Cont.

Notations Explanations

Ci The cost function of steel industry in region i
C0,i The production cost of steel industry in region i
ci The cost of base period emission reduction in region i
e0 Carbon trading benchmarks
PP Purchase price of carbon quota
SP Selling price of carbon quota

CQi Carbon quota of region i
W Social welfare function
CS Consumer surplus
PS Producer surplus

D(E) Total macro external environment loss of CO2 emission
θ The external loss parameter of CO2
η The production subsidies
m The CO2 emission reduced by CCS demonstration project
A The primary coefficient of CCS demonstration project cost curve
B The constant of CCS demonstration project cost curve
πi The profit function of steel industry in region i
E The total CO2 emissions in iron and steel industry
S The total subsidy
M The total cost of CCS demonstration project

3.2. Scenario Assumptions

For future development direction of steel industry and CO2 emission reduction targets, the relevant
development plans are mostly based on textual qualitative language, and the description of clear
emission reduction policies is rather vague. Due to the uncertainty of the policy and the combing of
the literature, this paper establishes a model of enterprise output selection under the carbon trading
mechanism, studies the impact of future government (steel industry) emission reduction policies on
the economic, environmental, and other factors of enterprises and the steel industry, and focuses on
the trends of various economic and environmental indicators.

3.2.1. Case 1: Only Carbon Trading Scenarios

Recently, due to policy and technology constraints, the carbon trading mechanism is the only
policy-based emission reduction measure to achieve emission reduction targets. The government
(steel industry) sets CO2 emission allowances for production enterprises, and enterprises buy or sell
their quotas in the market. To prevent corporate speculation, this paper stipulates that the subsidy
value is not greater than the enterprise purchase quota expenditure, and the time is set to 2020.

3.2.2. Case 2: Mixed Policy Scenario, Carbon Trading and Subsidy

When emission reduction targets continue to increase, steel companies that purchase carbon
emission allowances will face increasing pressure to reduce emissions and purchase quotas, which
will severely compress producers’ profit margins. At this time, the rebate subsidy based on product
output for enterprises purchasing carbon emission quota can improve their production enthusiasm
and capacity. To prevent corporate speculation, this paper stipulates that the subsidy value is not
greater than the enterprise purchase quota expenditure, and the time is set to 2025.
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3.2.3. Case 3: Mixed Policy Scenario, Carbon Trading, Subsidy, and CCS

When the emission reduction targets gradually increase, the implementation of carbon trading and
subsidies may not fully meet the CO2 emission reduction target. CCS, which will play as a large-scale
CO2 emission reduction role, will be put into operation in the medium and long term. This research
assumes that all subsidies are provided by the government (steel industry). To prevent corporate
speculation, this paper stipulates that the subsidy value is not greater than the enterprise purchase
quota expenditure, and the time is set to 2030. The government invests in the construction of one or
two demonstration projects that can absorb millions of tons of CO2.

3.3. The Two-Stage Dynamic Game Solving Process

Regional enterprises will face the given government emission mitigation targets and corresponding
policies in the second stage, and select the decline in production output and emission intensity. The profit
function in different situations is as follows:

πcase1,i = P(Q)qi −Ciqi = (α− βQ)qi − qiC0,i − qiλ
(
ci +

∫ ri
0 MACi(r)dr

)
+ CTi

= (α− βQ)qi − qiC0,casel,i − qiλ
(
ci +

∫ ri
0 MACi(r)dr

)
+ CTi

(1)

Among them, CTi =

⎧⎪⎪⎨⎪⎪⎩ SP · [e0 − e2015,i(1− ri)] · qi, when e0 ≥ e2015,i(1− ri)

PP · [e0 − e2015,i(1− ri)] · qi, when e0 < e2015,i(1− ri)
.

πcase2,i = P(Q)qi −Ciqi = (α− βQ)qi − qiC0,i − qiλ
(
ci +

∫ ri
0 MACi(r)dr

)
+ CTi + ηkiqi

= (α− βQ)qi − qiC0,case2,i − qiλ
(
ci +

∫ ri
0 MACi(r)dr

)
+ CTi + ηkiqi

(2)

which, CTi =

⎧⎪⎪⎨⎪⎪⎩ SP · [e0 − e2015,i(1− ri)] · qi, when e0 ≥ e2015,i(1− ri)

PP · [e0 − e2015,i(1− ri)] · qi, when e0 < e2015,i(1− ri)
, ki =

⎧⎪⎪⎨⎪⎪⎩ 0, when e0 ≥ e2015,i(1− ri)

1, when e0 < e2015,i(1− ri)
.

πcase3,i = P(Q)qi −Ciqi = (α− βQ)qi − qiC0,i − qiλ
(
ci +

∫ ri
0 MACi(r)dr

)
+ CTi + ηkiqi

= (α− βQ)qi − qiC0,case3,i − qiλ
(
ci +

∫ ri
0 MACi(r)dr

)
+ CTi + ηkiqi

(3)

which, CTi =

⎧⎪⎪⎨⎪⎪⎩ SP · [e0 − e2015,i(1− ri)] · qi, when e0 ≥ e2015,i(1− ri)

PP · [e0 − e2015,i(1− ri)] · qi, when e0 < e2015,i(1− ri)
, ki =⎧⎪⎪⎨⎪⎪⎩ 0, when e0 ≥ e2015,i(1− ri)

1, when e0 < e2015,i(1− ri)
.

Each enterprise faces different profit functions because of different emission levels. In case 2 and
case 3, the government subsidizes enterprises that purchase carbon quotas and does not subsidize
enterprises which sell carbon quotas. When solving, it is necessary to comprehensively consider
the relationship between the emission intensity and the reference value to determine whether the
enterprise enjoys subsidies, and then determines the profit function of the enterprise.

Let
∂πi
∂qi

= 0 and
∂πi
∂ri

= 0, the corresponding reduction range of emission intensity ri and output

qi of iron and steel enterprises in each region can be obtained.
In different cases, the social welfare function has been expanded, the specific form is as follows:

WCase1 = CS + PS−D(E) =
∫ Q

0 P(q)dq− P(Q)Q +
6∑

i=1
πcase1,i − θE

=
∫ Q

0 (α− βq)dq− (α− β 6∑
i=1

qi)
6∑

i=1
qi +

6∑
i=1
πcase1,i − θ

6∑
i=1

e2015,i(1− ri)qi

(4)
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WCase2 = CS + PS− S−D(E) =
∫ Q

0 P(q)dq− P(Q)Q +
6∑

i=1
πcase2,i−η

6∑
i=1

kiqi − θE

=
∫ Q

0 (α− βq)dq− (α− β 6∑
i=1

qi)
6∑

i=1
qi +

6∑
i=1
πcase2,i − η

6∑
i=1

kiqi − θ
6∑

i=1
e2015,i(1− ri)qi

(5)

WCase3 = CS + PS− S−D(E) −M =
∫ Q

0 P(q)dq− P(Q)Q +
6∑

i=1
πcase3,i − η

6∑
i=1

kiqi − θE− (Am + B)

=
∫ Q

0 (α− βq)dq− (α− β 6∑
i=1

qi)
6∑

i=1
qi +

6∑
i=1
πcase3,i − η

6∑
i=1

kiqi − θ
6∑

i=1
e2015,i(1− ri)qi − (Am + B)

(6)

In the first stage, 6 regions’ enterprises obtain the corporate profit function by selecting the
decline in their respective product output and emission intensity as a response to the government’s
corresponding emission reduction policy and emission reduction target R. The following relationship
of government’s decision can be obtained and expressed as:

Case 1
max W

s.t.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

6∑
i=1

e2015,i(1− ri)qi

6∑
i=1

qi

= e2010(1−R)

0 < ri < 1
ei > 0
qi > 0
0 ≤ SP ≤ PP
i = 1, 2, 3, 4, 5, 6

(7)

Case 2
max W

s.t.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

6∑
i=1

e2015,i(1− ri)qi

6∑
i=1

qi

= e2010(1−R)

0 < ri < 1
ei > 0
qi > 0
0 ≤ SP ≤ PP
η ≥ 0

0 ≤
η

6∑
i=1

kiqi

− 6∑
i=1

ki · PP · [e0 − e2015,i(1− ri)]qi

≤ 1

k = 0, 1
i = 1, 2, 3, 4, 5, 6

(8)
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Case 3
max W

s.t.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

6∑
i=1

e2015,i(1− ri)qi −m

6∑
i=1

qi

= e2010(1−R)

0 < ri < 1
ei > 0
qi > 0
0 ≤ SP ≤ PP
η ≥ 0

0 ≤
η

6∑
i=1

kiqi

− 6∑
i=1

ki · PP · [e0 − e2015,i(1− ri)]qi

≤ 1

k = 0, 1
1× 106 ≤ m ≤ 2× 106

i = 1, 2, 3, 4, 5, 6

(9)

The equilibrium of production and emissions mitigation can be described by SP, PP, and η.
Then, we put the production and emission reduction results determined by SP, PP, and η into the
first stage to get the expression formula of social economic welfare (W). In the game’s first stage,
the government maximizes social economic welfare determined by SP, PP, and η. Finally, we get W
and other corresponding conclusions.

3.4. Data Sources

The statistics are from China Statistical Yearbook [35], China Industrial Statistical Yearbook [36],
China Energy Statistical Yearbook [37], China Steel Yearbook [38], and the statistical yearbooks of
various provinces. Relevant economic data are equivalent to comparable prices in 2010. The time span
is from 2005 to 2016. In addition, CO2 emissions in industrial production (IPPU CO2), which also
produces large amounts of CO2, are included in this paper.

Because of the data availability, the steel industry’s relevant energy consumption and economic
data are derived from the ferrous metal smelting and calendaring processing industry in the China
Statistical Yearbook. The CO2 accounts of fossil energy consumption and IPPU refers to IPCC2006 [39]
and Duan et al. [40].

4. Results and Discussions

4.1. The Parameter Fitting’s Results

In this paper, referring to the research of Ma and Li [41], the market demand for steel industry is
expressed by the apparent consumption, and the product price was obtained by dividing the industrial
output value by the output. In the selection of the curve form, the inverse demand curve can be
approximated as a straight line inclined to the lower right. The inverse demand curve fitting equation
is as follows:

P = α− βQ = 15769.56− 1.13× 10−5Q (10)

In 2010, CO2 emissions average level in steel industry was 3.1710 tons CO2 per ton of steel
(the same below, omitted). In the calculation below, the base period data of each region is the basic
data for 2015 unless otherwise specified. According to the collection and calculation, the average level
of CO2 emission in 2015 was 2.8210. Correspondingly, the CO2 emission levels of the six regions in
2015 were e1 = 2.3344, e2 = 3.5698, e3 = 2.9040, e4 = 2.8779, e5 = 3.2202, and e6 = 4.5864.
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In this paper, China’s steel industry CO2 emissions from 2005 to 2016 were calculated by a
non-parametric method, the CO2 marginal abatement cost was estimated by shadow price, and then
the marginal abatement cost curve (MACC) was obtained. The calculation method reference was
made to the relevant literature of Duan et al. [42–44] (the data was updated to 2016 and the function
form was slightly changed), and the quadratic form was selected as the regression equation of MACC.
The relationship between the emission intensity reduction in each region and the CO2 MACC is shown
in Table 3. It should be pointed out that due to the estimation of shadow price, the error and uncertainty
of the CO2 marginal abatement cost curve are increased, which leads to a certain distance between
the calculated abatement cost and the real abatement cost. This paper uses λ

(
ci +

∫ ri
0 MACi(r)dr

)
to

represent the actual emission reduction cost; λ is 0.5, in order to reduce the error.

Table 3. Some parameter values.

Notations Unit i = 1 i = 2 i = 3 i = 4 i = 5 i = 6

e2015,i t CO2/t 2.3344 3.5698 2.9040 2.8779 3.2202 4.5864
ai - 11661 17208 16932 12952 6397.2 3485
bi - −169.76 8876.7 −166.92 1483.6 502.52 421.13
ci Yuan 2168.2 3511.1 2165.4 3325.1 2368.7 3814.3

C0,2015,i Yuan

2015 2833.15 4898.47 3453.53 4153.15 3799.03 3832.38
2020 2124.86 3918.77 2590.15 2491.89 3609.08 3640.76
2025 1699.89 2743.14 2072.12 1868.92 3067.72 3094.64
2030 1444.91 2194.51 1761.30 1588.58 2454.17 2475.71

Through the combing of relevant policy documents, the future economic development goals
of China’s iron and steel industry and target of energy conservation and CO2 emission mitigation
have been designated as mostly textual narratives, and there are basically no quantitative indicators
of data. Accurately predicting future steel industry emission reduction targets, product yields, and
development levels is impractical. Based on this, the focus of this paper is to explore the influence of
implementation of different emission mitigation policies combination in China’s steel industry’s social
welfare (W), consumer surplus (CS), producer surplus (PS), output, and total CO2 emissions, as well as
the enterprise’s output, profits, CO2 emissions, and other economic and environmental factors.

In the setting of the CO2 emission intensity reduction target, this paper refers to target of reducing
the comprehensive energy consumption of ton steel by 12 kgce in 2020 (Steel Industry Adjustment
and Upgrade Plan (2016–2020)). The target of 2020 is about 85% of the energy consumption level in
2010. Therefore, this paper sets the CO2 emission intensity in 2020 to be 15% lower than that in 2010.
We will observe the reaction of output, profit, and emission intensity of iron and steel enterprises
and industries when the emission reduction target under the condition of 15%–20%. We set the CO2

emission intensity in 2025 to be 20% lower than that in 2010 and observed the reaction of output, profit,
and emission intensity of iron and steel enterprises and industries when the emission reduction targe
under the condition of 20%–25%. We set the CO2 emission intensity in 2030 to be 25% lower than that
in 2010 and observed the reaction of output, profit, and emission intensity of iron and steel enterprises
and industries when the emission reduction target under the condition of 25%–30%.

Referring to Li’s research [45], the average production cost of the base period can be obtained
by calculating the business (regional) operating costs and steel production. This paper assumes that
by 2020, the production costs in North China, East China, and South Central China will decrease
significantly, and the production costs in Northeast China, Southwest China, and Northwest China will
decrease less. Then, the gap will be gradually narrowed. By 2030, North China, East China, and South
Central China will be basically in the same cost range, and the Northeast, Southwest, and Northwest
regions will be located in another cost range. The external macro-environmental loss parameters refer
to the study of Guenno and Tiezzi [46], θ = 14.55 Yuan/ton CO2. In 2030, it is assumed that the steel
industry will plan to build 1–2 million tons of government-funded demonstration projects. The cost
curve refers to [47–50], and the linear curve is M = 204.96m + 11.53× 106, m ∈

[
1 × 106, 2 × 106

]
ton.
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The unit is RMB. Since the relationship between PP and SP is not easy to determine, let PP = SP in
order to facilitate calculation; that is, when carbon trading is conducted between enterprises, the price
used to purchase or sell unit quota is the same.

In the selection of the benchmark value of the carbon trading mechanism e0, considering that
China has just started to pilot the carbon trading mechanism, the steel industry emission benchmark
value should not be set too high. After the system is mature, the benchmark value should be set
strictly. Assume that the benchmark value for 2020 is 2.8210 tons of CO2/per ton steel (the average
CO2 emission intensity in 2015). The benchmark value for 2025 is 2.3782 (25% lower than the national
emission level in 2010). For 2030, it will be 2.2197 (30% lower than the national emissions level in 2010).

The specific data simulation parameter settings are shown in Table 3.

4.2. Empirical Analysis

4.2.1. Case 1, in 2020 Scenario

The carbon trading policy is the only emission mitigation policy. Detailed results are shown in
Figures 2 and 3, Tables 4 and 5. When the emission reduction targets gradually increase from 15%
to 20%, the transaction price of carbon emission allowance increases from 12.65 yuan/ton to 34.81
yuan/ton, which increases by 2.75 times. Total output, total social welfare (W), consumer surplus (CS),
and producer surplus (PS) all show an upward trend, and the macro environmental damage caused by
CO2 emissions shows a decreasing trend. The total output maintains at around 854 million tons, which
is a drop of nearly 25% compared to the 1.135 billion tons of steel production in 2016. This means that
demands in the steel market declined significantly in 2020. As the emission reduction target gradually
increases from 15% to 20%, total output, W, CS, PS, and emission loss increase by 0.05%, 0.21%, 0.10%,
0.34%, and −5.84%, respectively.

 
Figure 2. The rate of change of output, social welfare, and producer surplus under the carbon trading
mechanism; take 15% as the baseline.
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Figure 3. The change of regional emission intensity with the overall emission reduction target (15%–20%,
carbon trade scenario only).

Table 4. The changes of the overall industry indicators under the carbon trade mechanism; the emission
reduction target is 15%–20%.

Emission Reduction Target 15% 16% 17% 18% 19% 20%

Carbon quota transaction price (Yuan) 12.65 16.28 20.30 24.74 29.57 34.81
Production (100 million tons) 8.5427 8.5432 8.5439 8.5447 8.5457 8.5471

Rate of change, production (with 15% as the base) - 0.01% 0.01% 0.02% 0.04% 0.05%
Rate of change, social welfare (with 15% as the base) - 0.03% 0.07% 0.11% 0.16% 0.21%

Rate of change, producer surplus (with 15% as the base) - 0.06% 0.12% 0.19% 0.26% 0.34%

Table 5. The changes of the various region enterprise indicators under the carbon trade mechanism;
the emission reduction target is 15%–20%.

Emission Reduction Target 15% 16% 17% 18% 19% 20%

Production (100
million tons)

North China 2.5841 2.5854 2.5869 2.5884 2.5900 2.5916
Northeast China 0.3872 0.3864 0.3856 0.3847 0.3837 0.3827

East China 2.1673 2.1678 2.1684 2.1690 2.1696 2.1702
South Central China 1.7405 1.7409 1.7413 1.7417 1.7422 1.7427

Southwest China 1.1722 1.1723 1.1725 1.1726 1.1728 1.1730
Northwest China 0.4915 0.4901 0.4886 0.4871 0.4856 0.4841

Rate of change,
production (with 15%

as the base)

North China - 0.11% 0.23% 0.36% 0.50% 0.65%
Northeast China - −0.42% −0.91% −1.47% −2.11% −2.82%

East China - 0.05% 0.10% 0.16% 0.22% 0.29%
South Central China - 0.05% 0.10% 0.15% 0.21% 0.27%

Southwest China - 0.02% 0.05% 0.09% 0.13% 0.18%
Northwest China - −0.59% −1.19% −1.80% −2.40% −2.98%

The decline range of
emission intensity

(with data in 2015 as
the base)

North China −7.88% −8.83% −9.77% −10.71% −11.63% −12.55%
Northeast China −1.00% −1.28% −1.58% −1.92% −2.28% −2.66%

East China −7.10% −7.98% −8.85% −9.72% −10.58% −11.43%
South Central China −3.71% −4.53% −5.36% −6.22% −7.09% −7.97%

Southwest China −8.02% −9.46% −10.90% −12.34% −13.77% −15.20%
Northwest China −13.18% −15.52% −17.85% −20.18% −22.50% −24.82%
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To achieve the 15%–20% emission reduction target, enterprises in each region choose the emission
intensity and output. As the emission reduction target increases, the emission intensity of Southwest
China and Northwest China decreases more. When the industry emission reduction target is 20%,
the Northwest region’s emission reduction rate reaches its maximum, which is 24.82%; the East
China and North China range is moderate, with a range of 7%–13%; the emission reductions in the
Northeast and South Central regions are small, and the Northeast is the smallest. For production, due
to the different production costs and the impact of emission mitigation intensity, coupled with the
implementation of the carbon trading policy, when the emission reduction targets grow, output of most
regions has increased significantly, and only the steel production in Northeast China and Northwest
China has declined. The output of the two regions has dropped significantly, which is approaching 3%.

Under the premise emission reduction target of 15%–20% and 2.8210 tons CO2/ton steel as the
benchmark value, the CO2 emission intensity of North China, East China, and South Central China in
the carbon trading market are lower than the benchmark value; they can choose to sell their carbon
quota. The Northeast and Northwest regions have exceeded the benchmark value and need to purchase
carbon quotas. For the Southwest region, when the emission reduction target is low (15%–18%), CO2

emission intensity is more than the benchmark and the enterprise needs to be purchased for the quotas;
when the emission reduction target is high (18%–20%) and CO2 emission intensity is lower than the
benchmark value, the enterprise can choose to sell its own carbon quotas.

4.2.2. Case 2, in 2025 Scenario

The mixed emission mitigation policy includes carbon trading and subsidy policies. Detailed
results are shown in Figures 4 and 5, Tables 6 and 7. Due to the strict emission benchmark values,
the CO2 emission intensity of some regional enterprises cannot meet or fall below the benchmark
value. The government needs to provide subsidies for enterprises with higher emission intensity.
When the emission reduction targets gradually increase from 20% to 25%, the transaction price of
carbon emission allowance increases from 47.21 yuan/ton to 84.43 yuan/ton, an increase of 1.79 times.
The value is maintained at around 15.5 yuan to 17 yuan.

 

Figure 4. The rate of change of output, social welfare, and producer surplus under the carbon trading
mechanism; take 20% as the baseline.
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Figure 5. The change of regional emission intensity with the overall emission reduction target (20%–25%,
carbon trade+ subsidy).

Table 6. The changes of the overall industry indicators under the carbon trade mechanism; the emission
reduction target is 20%–25%.

Emission Reduction Target 20% 21% 22% 23% 24% 25%

Carbon quota transaction price (Yuan) 47.21 53.86 60.91 68.37 76.21 84.43
Carbon quota transaction price (Yuan) 9.0173 9.0159 9.0143 9.0129 9.0113 9.0093

Unit value of subsidy (Yuan) 17 17.5 17.5 17.5 17 15.5
Rate of change, production (with 20% as the base) - −0.02% −0.03% −0.05% −0.07% −0.09%

Rate of change, social welfare (with 20% as the base) - 0.01% 0.02% 0.03% 0.05% 0.07%
Rate of change, producer surplus (with 20% as the base) - 0.09% 0.19% 0.29% 0.39% 0.50%

Table 7. The changes of the various region enterprise indicators under the carbon trade mechanism;
the emission reduction target is 20%–25%.

Emission Reduction Target 20% 21% 22% 23% 24% 25%

Production (100
million tons)

North China 2.4863 2.4883 2.4900 2.4921 2.4942 2.4963
Northeast China 0.9253 0.9231 0.9209 0.9185 0.9160 0.9134

East China 2.1506 2.1511 2.1517 2.1521 2.1526 2.1531
South Central China 1.8143 1.8145 1.8149 1.8152 1.8154 1.8156

Southwest China 1.1706 1.1707 1.1710 1.1712 1.1715 1.1717
Northwest China 0.4702 0.4686 0.4673 0.4659 0.4646 0.4634

Rate of change,
production (with 20%

as the base)

North China - 0.15% 0.32% 0.49% 0.68% 0.90%
Northeast China - −0.48% −1.01% −1.58% −2.21% −2.91%

East China - 0.05% 0.09% 0.14% 0.17% 0.19%
South Central China - 0.03% 0.06% 0.09% 0.10% 0.10%

Southwest China - 0.04% 0.08% 0.12% 0.17% 0.20%
Northwest China - −0.60% −1.17% −1.67% −2.11% −2.52%

The decline range of
emission intensity

(with data in 2015 as
the base)

North China −14.49% −15.43% −16.36% −17.29% −18.21% −19.13%
Northeast China −3.55% −4.02% −4.51% −5.01% −5.54% −6.08%

East China −13.23% −14.09% −14.96% −15.81% −16.67% −17.52%
South Central China −9.85% −10.77% −11.69% −12.62% −13.55% −14.47%

Southwest China −18.22% −19.69% −21.14% −22.60% −24.05% −25.49%
Northwest China −29.72% −32.09% −34.45% −36.81% −39.15% −41.48%

The total output, consumer surplus, and macro environmental damage caused by CO2 emissions
have decreased, and the overall social welfare and producer surplus have shown an upward trend.
This shows that, although the emission reduction target has become increasingly severe, the behavior
of returning subsidies to enterprises has increased the production enthusiasm of producers and helps
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to increase corporate profits. The total output has remained at around 900 million tons. Though the
emission reduction target has increased, the total output has increased slightly compared to the 2020
emission reduction targets case. When emission reduction targets increase from 20% to 25%, total
output, W, CS, PS, and emission loss decrease by 0.09%, −0.07%, 0.18%, −0.50%, and 6.33%, respectively.

For the sub-region, to achieve the emission mitigation target of 20%–25%, enterprises in each
region choose the emission intensity and output. When the emission reduction targets gradually
increased, the rate of decline in emission reduction intensity in various regions has gradually increased.
In Southwest and Northwest China, the emission reduction rate has exceeded 20% in most cases. When
the industry emission reduction target is 25%, the emission reduction rate in the northwest region has
reaches the maximum, which is 41.48%, in East China and North China. When the emission range is in
the middle, the decline range is about 13%–19%. The emission reduction range in the Northeast and
South Central regions is small, and, in the Northeast, it is the smallest. Along with the effects of carbon
trading policies and subsidies, the output changes show great regional differences. The output of North
China, East China, South Central, and Southwest China present an upward trend; steel production in
Northeast China and Northwest China show a downward trend, with a drop of 2.5%–3%.

Under the premise emission reduction target of 20%–25% and 2.3782 tons CO2/ton steel as the carbon
trading benchmark value, only the North China CO2 emission intensity is lower than the benchmark value,
and the enterprise can choose to sell its own carbon quotas; CO2 emission intensity in other regions cannot
be lower than the benchmark level, and carbon quotas need to be purchased. In addition, the government
(steel industry) needs to return subsidies based on production to these regions.

4.2.3. Case 3, in 2030 Scenario

The mixed emission mitigation policies cover carbon trading policy, subsidies, and government-funded
CCS demonstration projects. The results are shown in Figures 6 and 7, Tables 8 and 9. Due to the strict
emission benchmark values, the CO2 emission intensity of some regional enterprises cannot meet or fall
below the benchmark value. The government needs to provide subsidies for enterprises with higher
emission intensity. As the emission reduction target increases from 25% to 30%, the transaction price of
carbon emission allowance increases from 91.70 yuan/ton to 137.59 yuan/ton—an increase of 1.79 times.
The unit subsidy value is maintained at around 30–36 yuan; the CO2 processed by the government-funded
CCS demonstration project are always at the lowest value, m = 1,000,000 ton.

 
Figure 6. The rate of change of output, social welfare and producer surplus under the carbon trading
mechanism; take 25% as the baseline.
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Figure 7. The change of regional emission intensity with the overall emission reduction target (25%–30%,
carbon trade + subsidy + carbon capture and storage (CCS)).

Table 8. The changes of the overall industry indicators under the carbon trade mechanism; the emission
reduction target is 25%–30%.

Emission Reduction Target 25% 26% 27% 28% 29% 30%

Carbon quota transaction price (Yuan) 91.70 100.24 108.95 117.98 127.83 137.59
Carbon quota transaction price (Yuan) 9.3391 9.3368 9.3348 9.3323 9.3283 9.3274

Unit value of subsidy (Yuan) 30.5 29.5 28.5 26.5 36.5 36
Rate of change, production (with 25% as the base) - −0.02% −0.05% −0.07% −0.12% −0.13%

Rate of change, social welfare (with 25% as the base) - 0.00% 0.00% 0.01% 0.05% 0.07%
Rate of change, producer surplus (with 25% as the base) - 0.06% 0.12% 0.19% 0.53% 0.59%

Table 9. The changes of the various region enterprise indicators under the carbon trade mechanism;
the emission reduction target is 25%–30%.

Emission Reduction Target 25% 26% 27% 28% 29% 30%

Production (100
million tons)

North China 2.3949 2.3974 2.3999 2.4024 2.4049 2.4078
Northeast China 1.0483 1.0449 1.0413 1.0377 1.0341 1.0302

East China 2.1003 2.1005 2.1007 2.1008 2.1009 2.1009
South Central China 1.7343 1.7342 1.7342 1.7341 1.7339 1.7337

Southwest China 1.3864 1.3866 1.3869 1.3872 1.3875 1.3877
Northwest China 0.6749 0.6743 0.6739 0.6736 0.6734 0.6732

Rate of change,
production (with 25%

as the base)

North China - 0.21% 0.42% 0.66% 0.97% 1.17%
Northeast China - −0.66% −1.35% −2.10% −1.75% −2.54%

East China - 0.02% 0.03% 0.03% 0.60% 0.61%
South Central China - −0.01% −0.02% −0.05% 0.62% 0.60%

Southwest China - 0.04% 0.08% 0.11% −1.28% −1.18%
Northwest China - −0.15% −0.23% −0.27% −3.18% −2.94%

The decline range of
emission intensity

(with data in 2015 as
the base)

North China −19.90% −20.77% −21.62% −22.47% −23.36% −24.21%
Northeast China −6.55% −7.09% −7.63% −8.19% −8.79% −9.37%

East China −18.24% −19.04% −19.83% −20.62% −21.44% −22.22%
South Central China −15.26% −16.14% −17.01% −17.88% −18.79% −19.66%

Southwest China −26.71% −28.08% −29.42% −30.76% −32.16% −33.50%
Northwest China −43.45% −45.68% −47.85% −50.01% −52.27% −54.44%
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When the emission reduction targets gradually increase from 25% to 30%, the total output,
consumer surplus, and macro-environmental losses caused by CO2 emissions have decreased, and the
overall social welfare and producer surplus have shown an upward trend. This suggests that, although
the emission reduction target becomes increasingly severe, the behavior of returning subsidies to
enterprises has increased the production enthusiasm of producers and helps to increase corporate
profits. The total output has remained at around 933 million tons. Though the emission reduction
target has increased, the total output has increased slightly compared to the 2025 emission reduction
targets case. Total output, W, CS, PS, and emission loss decreased by 0.13%, −0.07%, 0.25%, −0.59%,
and 6.81%, respectively.

For the sub-region, as the emission reduction target increases, and the rate of decline in emission
reduction intensity in various regions has gradually increased. In most cases in Southwest China and
Northwest China, the emission intensity decrease exceeded 30%. When the overall emission reduction
target is 30%, the Northwest region’s reduction rate reaches the maximum, which is 54.43%. In North
China, East China, and South Central China, the emission reduction rate is in the middle; the rate in the
Northeast is the smallest. Along with the effects of mixed carbon trading policies, the output changes
show great regional differences. In North China, East China, and South Central China, it showed an
upward trend; the output of steel in Northeast China, Southwest China, and Northwest China show a
downward trend.

Under the premise emission reduction target of 25%–30% and 2.2197 tons CO2/ton steel as the
carbon trading benchmark value, only the North China CO2 emission intensity is lower than the
benchmark value, and the enterprise can choose to sell its own carbon quotas. CO2 emission intensity
in other regions cannot be lower than the benchmark value under most emission reduction targets;
they need to purchase carbon quotas, and the government (steel industry) needs to return subsidies
based on production. When the target is high (29%–30%), the CO2 emission intensity in Southwest
China and Northwest China is slightly lower than the benchmark value, so they can choose to sell their
carbon quotas.

4.2.4. Comparison of Single Emission Reduction Policies and Mixed Emission Reduction Policies

Sections 4.2.2 and 4.2.3 discuss the impact of the implementation of the mixed emission reduction
policy on the changes in the economic and environmental factors of steel companies and industries
under the carbon trading mechanism. This section calculates the changes in the output and emission
reduction intensity of enterprises and other economic factors in the implementation of the single policy
under the same emission reduction targets, then compares and analyzes the single and mixed emission
reduction policy.

(1) Comparison of only carbon trading policies and mixed policies in 2025.
After calculation and as shown in Table 10, Figures 8–10, the social welfare, total output, producer

surplus, consumer surplus, carbon allowance transaction price, and the macro environmental damage
caused by CO2 emissions and the decline in CO2 emission intensity under the mixed policy mechanism
in various regions have increased more than that under the situation of the single policy. Under the
mixed policy mechanism, the carbon price trading price and the regional emission intensity decrease
than that in the single policy mechanism, but the gap is negligibly small.

Table 10. The indicators change under the carbon trade mechanism; the target in single policy is 20% to 25%.

Emission Reduction Target 20% 21% 22% 23% 24% 25%

Carbon quota transaction price (Yuan) 46.91 53.54 60.59 68.03 75.88 84.12
Production (100 million tons) 9.0066 9.0049 9.0033 9.0019 9.0006 8.9995

Rate of change, production (with 20% as the base) - −0.02% −0.04% −0.05% −0.07% −0.08%
Rate of change, social welfare (with 20% as the base) - 0.01% 0.02% 0.03% 0.05% 0.07%

Rate of change, producer surplus (with 20% as the base) - 0.09% 0.19% 0.29% 0.40% 0.50%
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Figure 8. The output change rate compared under the single policy and the mixed policy in the carbon
trade mechanism; take 20% as the baseline.

 
Figure 9. The social welfare change rate compared under the single policy and the mixed policy in the
carbon trade mechanism; take 20% as the baseline.

 
Figure 10. The producer surplus change rate compared under the single policy and the mixed policy in
the carbon trade mechanism; take 20% as the baseline.
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The rate of change reflects the intensity of changes in various indicators as the emission reduction
target increases (compared to 20% reduction in 2010). From the figures, it can be found that in
production change rates when emission reduction targets are low (20%–24%), steel production under a
single policy changes significantly. When emission reduction targets are high (24%–25%), the change
of steel production under the mixed policy is more obvious. In the change rate of producer surplus and
social welfare, the two policy conditions are basically flat, and the single policy changes slightly larger.

(2) Comparison of only carbon trading policies and mixed policies in 2030.
Calculations have found that in the case of emission reduction targets of 25%–30%, the CO2

emissions processed by CCS demonstration projects are at the lowest value; that is, under each emission
reduction target, the CCS demonstration project is only at the lowest maintenance stage.

Similarly, after calculation and as shown in Table 11, Figures 11–13, the social welfare, total output,
producer surplus, consumer surplus, carbon allowance transaction price, and the macro environmental
damage caused by CO2 emissions and the decline in CO2 emission intensity under the mixed policy
mechanism in various regions have increased more than that under the situation of the single policy.
Under the mixed policy mechanism, the carbon price trading price and the regional emission intensity
decrease more than that in the single policy mechanism, but the gap is so small that they can be ignored.

Table 11. The indicators change under the carbon trade mechanism; the target in single policy is 25% to 30%.

Emission Reduction Target 25% 26% 27% 28% 29% 30%

Carbon quota transaction price (Yuan) 91.17 99.72 108.45 117.51 126.89 136.59
Production (100 million tons) 9.3200 9.3183 9.3168 9.3156 9.3146 9.3138

Rate of change, production (with 25% as the base) - −0.02% −0.03% −0.05% −0.06% −0.07%
Rate of change, social welfare (with 25% as the base) - 0.00% 0.00% 0.01% 0.02% 0.03%

Rate of change, producer surplus (with 25% as the base) - 0.07% 0.13% 0.20% 0.27% 0.34%

The rate of change reflects the intensity of changes in various indicators as the emission reduction
target increases (compared to 25% reduction in 2010). From the figures, it can be found that in
production change rate, the effect of implementing a single policy on output change is significantly
less than the impact of the implementation of the mixed policy. In the change rate of W and PS, when
emission reduction targets are low (26%–28%), change rates are basically flat under the two policy
conditions and slightly larger under a single policy. When emission reduction targets are higher
(28%–30%), changes under mixed policies are more pronounced.

 
Figure 11. The output change rate compared under the single policy and the mixed policy in the carbon
trade mechanism; take 25% as the baseline.
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Figure 12. The social welfare change rate compared under the single policy and the mixed policy in the
carbon trade mechanism; take 25% as the baseline.

 
Figure 13. The producer surplus change rate compared under the single policy and the mixed policy in
the carbon trade mechanism; take 25% as the baseline.

4.3. Discussions

Current research on the emissions mitigation targets is scarce. Therefore, this paper does not
discuss optimal emissions intensity and methods. Only the above three scenarios (2020, 2025, 2030)
have been analyzed. For China’s industrial sector, the results of parameters and numerical calculations
are few and lack certain references. Since the country has not announced the relevant details and trading
methods of the carbon trading market, the carbon trading benchmark value is set based on the historical
data. Moreover, due to these certain assumptions, there are some gaps between the calculations results
and the actual situation, but some trends and rules can still be found and determined.

Since the carbon trading mechanism is based on the government’s provision of a free carbon quota
for each company, the benchmarks are set differently, and the results will vary. Under the conditions set
in this paper, whether under the single carbon trading policy or the mixed policy, when the reduction
target increases from 15% to 30%, the quota trading price steadily increases from 12.65 Yuan to about
137 Yuan (nearly 11 times), and the social welfare and producer surplus of the steel industry show an
increasing trend—nearly 14% and 4%, respectively. While the macro-loss of CO2 emissions shows
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a decreasing trend (decrease by more than 10%), other indicators increase or decrease. This shows
that from the perspective of the implementation of the policy, the carbon trading policy and the mix
with other emission reduction policies are conducive to the improvement of the economic level and
emission reduction level of the steel industry.

For the sub-region, when the CO2 emission reduction target gradually increases, the regional
emission reduction pressure gradually increases as well. However, there are differences between
regions. The decline range in emission reductions in Northwest China and Southwest China is much
bigger than other four regions, and the range in the northeast region is the smallest.

Under the mixed policy mechanism, compared with the single carbon trading policy, the social
welfare function, total output, producer surplus, consumer surplus, carbon quota trading price,
macro-loss caused by CO2 emissions, and emission reductions of the entire steel industry improve.
Though under the same emission reduction target, the carbon allowance trading price in the single
policy is less than that in the mixed policy, and the decline range in regional emissions reduction in the
single policy is also lower than that under the mixed policies (though it is almost negligible—no more
than 1 Yuan and 0.01 ton CO2/ton). Therefore, under the carbon trading mechanism, it is necessary to
comprehensively consider the balance between the whole industry and regions and to consider whether
to use a single carbon trading mechanism or a mixed mechanism under the comprehensive evaluation.

Through numerical simulation, when the benchmark values in 2020, 2025, and 2030 are 2.8210 tons
of CO2/ton steel, 2.3782 tons of CO2/ton steel, and 2.2197 tons of CO2/ton steel, respectively, China’s
future steel output will be in the range of 854–934 million tons under the mixed policy mechanism.
The carbon price trading price range is between 12.65–137.59 yuan. The subsidy unit value ranges
from 15.5–36.5 yuan. The CCS demonstration projects are only in the minimum maintenance stage and
have not played a significant role in social emission reduction. Under the single carbon trading policy,
the future steel output will be in the range of 854–932 million tons, and the price of carbon trading
quotas will be between 12.65 and 136.59 yuan.

Obviously, whether it is a single carbon trading policy or a mixed policy, when the market is
balanced, the output is reduced by more than 200 million tons from the peak in 2016 (1.1346 billion
tons). North China and East China have decreased a lot, while the northeast, southwest, and northwest
regions have increased in production. This shows that the implementation of carbon trading policies
and mixed policies have alleviated the polarization of production in various regions to some extent,
which is conducive to optimizing the distribution of production between regions and enterprises so
that enterprises can better achieve the best profit.

5. Conclusions

Through the introduction of carbon trading policy, subsidy policy, CCS, and other emission
reduction policies, a two-stage multi-oligopoly enterprise production selection model including
emission reduction policies is established. This paper makes a preliminary study on the changes of
total production and social welfare indexes, which are under the restriction of the industry emission
reduction target and emission reduction policy, and carries on the quantitative research with the
operation data of iron and steel industry. The model is an abstraction and hypothesis of a practical
problem, which causes the calculation results in this paper to potentially deviate a little from the actual
situation. This paper emphasizes the change trends of corresponding indicators with the increase of
governmental pressure on emissions reduction.

The main conclusions are as follows:
Under the carbon trading policy mechanism, the carbon quota trading price increases as the

reduction targets increase, and the steel industry social welfare and producer surplus show an increasing
trend. The CO2 emission macro loss shows a decreasing trend, and the other indexes increase or
decrease. When the emission reduction targets gradually increase, the pressure on emission reduction
among regional oligarchic enterprises also gradually increases. The emission reduction rate of oligarchs
in Northwest and Southwest China is much bigger than that in other regions. Oligarchy enterprises in
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North China, East China and South Central China are second. Oligopolistic enterprises in Northeast
China are the lowest. Since the benchmark values are set differently, the numerical results will be
different, but the trends are basically similar.

Compared with the single carbon trading policy, the indicators under the mixed policy have
increased. In the view of change rate in production, social welfare, and producer surplus, when under
the lower emission reduction target, the change under a single policy is greater; when under the higher
target, change caused by the mixed policy is more obvious.

Based on the above results and conclusions, the Chinese steel industry should focus on the following
two aspects when formulating emission mitigation targets and auxiliary emission mitigation policies:

Firstly, the Chinese iron and steel industry at present is in the stage of excess production capacity,
which means that the output capacity is far greater than the actual consumption level. Through the
calculation of this paper, when the market reaches the equilibrium, the production and consumption
are less than the present level, especially in 2016. As a result, for China’s iron and steel industry
(government) should alleviate the contradiction of excess production capacity and bring relief to the
industry. It is immediate and necessary for the government to ban new production and push obsolete
and backward-producing enterprises out of the market as soon as possible.

Secondly, at present, there is no clear-text regulation of the use conditions and industry scope of
carbon trading policies in China. This paper uses the benchmark method to conduct a preliminary
study on the carbon trading mechanism of the steel industry. In combination with the actual situation,
we propose that in the use of single and mixed emission reduction policies under the carbon trading
mechanism, the government should consider the whole industry sector, regional balance, and carbon
trading benchmarks to determine the implementation of a single or mixed carbon trading policy. In the
selection of the carbon trading benchmark value, it is necessary to carefully select according to the
emission reduction target and the requirements for economic indicators.

This paper conducted a preliminary study on the carbon trade mechanism. With the gradual
improvement of relevant national policies, laws, and regulations, this study will continue to explore the
details of the carbon trading market of the steel industry and the game behavior between enterprises.
Future research will be more closely linked to national policies and will be gradually extended to other
high-energy industries such as cement industry and chemical industry.
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Abstract: The reduction of emissions from deforestation and forest degradation (REDD) constitutes
part of the international climate agreements and contributes to the Sustainable Development Goals.
This research is motivated by the risks associated with the future CO2 price uncertainty in the context
of the offsetting of carbon emissions by regulated entities. The research asked whether it is possible
to reduce these financial risks. In this study, we consider the bilateral interaction of a REDD supplier
and a greenhouse gas (GHG)-emitting energy producer in an incomplete emission offsets market.
Within this setting, we explore an innovative financial instrument—flobsion—a flexible option with
benefit-sharing. For the quantitative assessment, we used a research method based on a two-stage
stochastic technological portfolio optimization model established in earlier studies. First, we obtain
an important result that the availability of REDD offsets does not increase the optimal emissions of
the electricity producer under any future CO2 price realization. Moreover, addressing concerns about
a possible “crowding–out” effect of REDD-based offsets, we demonstrate that the emissions and
offsetting cost will decrease and increase, respectively. Second, we demonstrate the flexibility of the
proposed instrument by analyzing flobsion contracts with respect to the benefit-sharing ratio and
strike price within the risk-adjusted supply and demand framework. Finally, we perform a sensitivity
analysis with respect to CO2 price distributions and the opportunity costs of the forest owner
supplying REDD offsets. Our results show that flobsion’s flexibility has advantages compared to
a standard option, which can help GHG-emitting energy producers with managing their compliance
risks, while at the same time facilitating the development of REDD programs. In this study we limited
our analysis to the case of the same CO2 price distributions foreseen by both parties; the flobsion
pricing under asymmetric information could be considered in the future.

Keywords: optimal energy mix; CO2 emissions; REDD offsets; risk-adjusted utility

1. Introduction

The 2015 Paris Climate Agreement encourages implementation and support of activities related
to the reduction of emissions from deforestation and forest degradation (REDD+) [1], a climate change
mitigation strategy based on the idea to reward countries for reducing their deforestation and forest
degradation through financial benefits generated by carbon credits. However, the implementation
of REDD+ is a complex international problem [2–4] despite it is considered as a relatively low-cost
mitigation option [5,6], and its integration into the global mitigation strategy has the potential for larger
emissions reductions to be made [7]. This integration can be done by linking REDD as an emission
reduction credit program to major cap-and-trade programs [8]. In this context, credits that could be
supplied by REDD projects are an attractive mitigation option; a range of literature is devoted to that
topic, for example, References [9–11].
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REDD principles, as part of the SDG 15 are contributing directly to the Sustainable Development
Goals (SDG) [12]. However, there is an ongoing discussion related to uncertainties and risks in
REDD implementation [13–15]. A substantial problem for a potential REDD investor is the missing
legal background [16], which may mean that the future acceptance of emission credits generated by
REDD projects (to be funded today) is not guaranteed. This uncertainty regarding acceptance and
related conditions creates unacceptable risks for those potentially interested in funding/investing in
REDD projects (e.g., energy companies in potential need for offsetting their emissions). To overcome
this problem, establishment of the intermediaries such as the REDD Acceleration Fund [17] was
recently suggested, along with approaches based on optionality in purchasing REDD-based offsets [10].
There are promising pioneering steps being made in California, heading towards a law on REDD
acceptance for compliance purposes. The state of California has a placeholder in the suggested
California Tropical Forest Standard allowing international credits of up to 2% of an entity’s annual
compliance obligation; however, it has not yet issued a detailed standard or introduced regulations to
operationalize REDD application [18].

Accepting existing uncertainties, we explore bilateral interaction between a REDD supplier and
a greenhouse gas (GHG)-emitting energy producer in the context of an incomplete REDD offsets
market. We develop the FI-REDD model established in a series of publications [19,20]. FI-REDD is
a two-stage stochastic technological portfolio optimization model describing an interaction between
the REDD-offsets supplier, electricity producer and consumers. In this study, in order to contract REDD
offsets in the model, we employ a novel financial instrument—a flexible option with a benefit-sharing
mechanism called “flobsion” [21]. This instrument is different from the REDD offset contracts modeled
in previous studies. In essence, a flobsion complements an option with a benefit-sharing mechanism.
While the general idea of benefit-sharing is important within the REDD context [22], in our approach
benefit-sharing stands for possible sharing of the profits stemming from flobsions. The FI-REDD
model with exponential utility functions [23] allows the risk-averse behavior to be combined with
benefit-sharing so that their impact on contracted amounts of flobsions can be analyzed.

Another modification consists of expanding the FI-REDD model by introducing the opportunity
costs of the forest owner. Opportunity cost is the economic benefit forgone from the alternative
land/forest use [24]. It sets a minimum amount to be paid to keep the land in forest. Thus, opportunity
cost forms the basis for economic analyses of REDD [25]. In our model, the REDD supplier takes into
account the opportunity cost curve, when making the decision about supplying REDD offsets.

The key driver of this research is the high uncertainty in future CO2 prices and associated risks
in the context of REDD offsetting. The research question is about the possible reduction of these
risks using flobsion [21] and comparison of flobsion with the standard option in the REDD context.
The elaboration of this instrument is an important step in the field of modeling financial instruments
supporting REDD programs [6,10].

The structure of the paper is as follows. First, we analytically investigate the construction of
flobsion in FI-REDD model. This allows the important result to be demonstrated, namely, that energy
producers would not increase their emissions if they had acquired flobsions. Second, we present
modeling results and sensitivity analysis with respect to CO2 price distributions and opportunity costs.
Finally, we discuss analytical and numerical results, as well as policy implications and possible future
research directions.

2. Methodology

In this paper we further develop the FI-REDD model established in our previous work [19,20].
The model takes into account the potential market power of energy producers, which gives them
flexibility in their decision-making under uncertain emission costs. The scheme of the model is
shown in Figure 1. The model deals with optimization of the technological mix under market power,
related to optimal scheduling of power systems [26] and market pricing in the power industry [27].
We propose an idea for setting a fair price of the REDD offsets, based on the indifference principle in
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two-stage problem setting. Utility-indifference pricing is a well-established approach to the valuation
of derivative securities in incomplete markets [28]. The indifference price is defined as the price of the
derivative toward which the investor is indifferent whether to use the derivative to maximize their
expected utility or not to use it [29]. We use fair prices to evaluate REDD offsets [19] under future CO2

price uncertainty. In the first stage (period), where details about the future REDD offsets market are
uncertain, the parties (supplier and consumer of REDD offsets) assign their offset prices (buying and
selling) in such a way that their profits or, generally, their utilities, stay the same in the second period
(in which the REDD offsets price is revealed) no matter whether they have contracted REDD offsets in
the first period or not.

FI-REDD model

Model inputs
- Installed capacity
- Fixed and variable costs

Decision variables
- Electricity supply 

covering hourly demand 
pro

- Technological por olio 
op za

- Emission o se ng

Exogenous
- Elas city of demand
- CO2 price uncertainty
- REDD o sets

Output
- Op  technological por olio
- Op  pro t/cost
- Risk pro  (u
- Ra nal o se ng

Endogenous
- Electricity demand
- Electricity price

Figure 1. Scheme of the FI-REDD model.

We implement flobsion as the REDD offset in the model. Flobsion complements the standard
option with a benefit-sharing mechanism. Methodologically, the idea is close to revenue-sharing
contracts in supply chain coordination, under which a supplier receives a percentage of revenue
generated by retailer [30]. Here we specifically consider a situation where benefits are shared between
the REDD supplier and consumer. Therefore, we prefer the term “benefit-sharing” to distinguish our
study from “revenue-sharing” in supply chain coordination, for example, Reference [31].

In this study we also advance the decision-making of the forest owner by implementing
an opportunity costs curve in the model. Opportunity costs are foregone economic benefits from
forest-uses, which are alternative to REDD. These include social-cultural costs and indirect costs [24].
In this study we use non-linearly increasing opportunity cost with respect to the amount of offsets
supplied. We also perform sensitivity analysis with respect to the opportunity costs.

In summary, our methodology combines the following approaches:

1. Two-period technological portfolio optimization
2. Exponential risk-preferences
3. Utility-indifference pricing
4. Optionality of purchasing emission offsets
5. Benefit-sharing mechanism

In this section we provide the theoretical framework accompanied by some analytical results.
In particular, we derive formulas for indifference prices, which form the basis of our analysis. These will
allow us to construct the risk-adjusted fair prices of a seller and a buyer of REDD flobsions for all
admissible benefit-sharing ratios and strike prices. The prices will, in turn, help in identifying the
amounts and prices of contracted flobsions.

2.1. Decision-Making of the Electricity Producer

We consider two optimization problems of the electricity producer in the “second” period, which
is when REDD offsets are traded on a market (as opposed to the “first” period when there is no such
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market). The first optimization problem is decision-making under the realized CO2 price without
REDD offsets, that is, flobsions in this study. The electricity producer can modify its technological
mix to reduce emissions or raise the electricity price, thus making the consumer bear some of the
costs [19]. The second problem is complemented by REDD-offsets flobsions. The electricity producer
can use flobsions either to offset emissions or to sell on the market at the CO2 price. In the latter
case, the income from selling REDD offsets should be shared with the forest owner. The use of the
flobsion also depends on the level of the strike price compared to the CO2 price. Let us start with the
first problem.

2.1.1. Optimization without Flobsions

For every CO2 price realization, pC, the electricity producer chooses technological mix, x,
to maximize its profit ΠEP:

maximize
x(pC)∈X

{ΠEP(x(pC)) = Πe(x(pC))− pCE(x(pC))}, (1)

where x = x(pC)—technological mix, X—feasibility domain (all admissible technological
portfolios), pC—CO2 price realization, Πe—profit component without emission cost and E—emissions
corresponding to technological mix x. In the problem formulation: profit is the objective function,
technological mix is the control variable and emission prices are exogenous variables.

Let us denote optimal technological mix by x̂(pC) and corresponding profit and emissions as

Π̂EP(pC) = ΠEP(x̂(pC)), (2)

Ê(pC) = E(x̂(pC)). (3)

The solution of the problem (1) delivers an optimal response of the electricity producer in terms
of profits and emissions to CO2 prices.

2.1.2. Definition of Flobsion

A common “call” option for an asset (e.g., for an emission offset) or simply an option, implies that
a buyer pays an amount p to the seller of the option for the future possibility of purchasing the asset at
an agreed “strike” price pmin. The owner of the option decides in the future whether to make such
a purchase or not, so that for them it is a possibility but not an obligation.

A flobsion is a generalized form of option. A buyer pays the amount pδ to the seller of a flobsion
for the future possibility of purchasing the asset at the agreed “strike” price pmin plus the discounted
difference between the asset’s market price pC and pmin, if that difference is positive (or just pmin

otherwise). If the flobsion holder decides to purchase an asset within the period of validity of a flobsion,
they would pay the amount:

aδ =

{
pmin + (1 − δ)× (pC − pmin), if pC > pmin

pC, if pC ≤ pmin
, (4)

meaning that an asset is being purchased at a market price pC and the flobsion is not being executed
if pC ≤ pmin, where 0 ≤ δ ≤ 1 is a discount to the market price using pmin as a base. In the case of
a flobsion, a future asset purchase is still optional for the buyer as in the case of a standard option.
The price for the future purchase of an asset in the case of a flobsion, though not fixed, is still tied to
the market price. For δ = 1, meaning a 100% discount to the market price (retaining the strike price),
a flobsion turns into an option.
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2.1.3. Optimization with Flobsions

Let us consider the profit of the electricity producer ΠR
EP(x) with flobsion at a CO2 price realization

in the second period:

ΠR
EP(x) =

⎧⎪⎪⎨
⎪⎪⎩

Πe(x)− pCE(x)− pEE , if pC ≤ pmin

Πe(x)− (
pmin + (1 − δ)(pC − pmin)

)E+
+pC[E − E(x)]+ − pC[E(x)− E ]+ − pEE , if pC > pmin

(5)

where E ∈ [0, Emax] is the volume of offsets covered by flobsions and contracted in the first period,
Emax—maximum amount of flobsions supplied by forest owner, δ ∈ [0, 1]—benefit-sharing ratio,
pmin—flobsion strike price, pE—the price the electricity producer pays for flobsion in the first
period, and

[Y]+ =

{
Y, if Y > 0

0, otherwise.
(6)

Equation (5) can be interpreted as follows. When the CO2 price realization is lower than the strike
price, the electricity producer does not use flobsion. In the case where the price realization exceeds
the strike price, the electricity producer pays the price pmin for flobsions to the forest owner and also
shares their profit from the price difference (between the CO2 price and the strike price) with the forest
owner. The sharing is determined by ratio δ ∈ [0, 1], such that the electricity producer gets a share
of δ and share (1 − δ) goes to the forest owner. Moreover, the electricity producer has two options:
either to emit more CO2 than the amount contracted through flobsions and pay the CO2 price for the
non-offset emissions or to emit less than the amount contracted through flobsions and sell the unused
offsets on the market at respective CO2 price. Additionally the price pE is paid to the forest owner for
flobsions in the first period, that is, that is the sunk cost.

Let us expand Equation (5) for the case pC > pmin with respect to emissions in the second period.
Case 1. If E − E(x) > 0, then

ΠR
EP(x) = Πe(x)− (

pmin + (1 − δ)(pC − pmin)
)E + pC(E − E(x))− pEE =

Πe(x)− pCE(x) + δ(pC − pmin)E − pEE . (7)

Case 2. If E − E(x) ≤ 0, then

ΠR
EP(x) = Πe(x)− (

pmin + (1 − δ)(pC − pmin)
)E − pC(E(x)− E)− peE =

Πe(x)− pCE(x) + δ(pC − pmin)E − pEE . (8)

Equations (7) and (8) are the same, showing the equivalence between offsetting emissions and
selling offsets on the market for CO2 price pC. We can simplify Equation (5) as follows:

ΠR
EP(x) =

{
Πe(x)− pCE(x)− pEE , if pC ≤ pmin

Πe(x)− pCE(x)− pEE + δ(pC − pmin)E , if pC > pmin
(9)

Let us formulate the optimization problem with REDD flobsions in the second period.
Given the flobsion strike price pmin, benefit-sharing ratio δ ∈ [0, 1], amount of REDD offsets E

contracted in the first period at price pE, the electricity producer maximizes their profit at every CO2

price realization pC:
maximize

x(pC)∈X
{ΠR

EP(x(pC))}, (10)

where ΠR
EP(x(pC)) is defined in Equation (9). Let us denote optimal technological mix by x̂R(pC) and

corresponding profit by Π̂R
EP(pC) = ΠR

EP(x̂R(pC)).
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Lemma 1. For any amount E , price pE, benefit-sharing ratio δ and strike price pmin, technological mix x̂R(pC)

solving the problem with flobsions (10) coincides with the optimal technological mix solving the problem without
flobsions (1) at every CO2 price realization, pC.

Proof. As terms pEE , δ(pC − pmin)E in Equation (9) are independent of x(pC), then they are not part of
the optimization problem with flobsions (Equation (5)) and are used only for calculating the resulting
optimal profits. Therefore, the optimal mix x̂R(pC) solving problem (9) and (10) coincides with the mix
x̂(pC) solving problem (1).

Corollary 1. Optimal profit with REDD flobsions, Π̂R
EP(pC), at every CO2 price realization is calculated

as follows:

Π̂R
EP(pC) =

{
Π̂EP(pC)− pEE , if pC ≤ pmin

Π̂EP(pC)− pEE + δ(pC − pmin)E , if pC > pmin
(11)

Corollary 2. Optimal emissions Ê(pC) in the problem with REDD flobsions are the same as in the problem
without REDD flobsions:

Ê(pC) = E(x̂R(pC)) = E(x̂(pC)).

Remark 1. Corollary 2 shows that the optimal emissions of the electricity producer with REDD flobsion stay
the same as in the case without REDD flobsion. This indicates that there is no risk that energy producers will
change their production and emit more as compared to the case without offsets. This is explained by the fact that
offsets can be sold at the CO2 market price and that this opportunity is the highest profit, the energy producers
can get from the offsets they possess.

2.2. Decision-Making of the Forest Owner

We consider a forest owner, who decided to allocate part of their forest to REDD+ offsets and who
assesses the value of the forest covering the offsets in amount E ∈ (0, Emax], where Emax is the maximum
available volume. There are two possibilities in the second period: the forest owner meets the CO2

price either without participating in REDD or with an obligation corresponding to flobsions sold to the
electricity producer.

Forest owner’s profit without selling flobsions in the first period is calculated as follows:

ΠFO = E · max{pop(E), pC}, (12)

where pop = pop(E) is opportunity cost associated with forest values alternative to REDD+. If the
forest owner did not engage in contracting flobsions in the first period, they still can sell the amount in
the second period at the market CO2 price or can take advantage of other opportunities (e.g., selling
wood), whichever delivers a greater profit.

When forest owner engages in contracting flobsion in the first period, their profit at CO2 price
realization in the second period is calculated the following way:

ΠR
FO(pC) =

{
E pF + E · max{pop(E), pC}, if pC ≤ pmin

E pF +
(

pmin + (1 − δ)(pC − pmin)
)E , if pC > pmin

(13)

where pF is the price paid to the forest owner for flobsions in the first period by the electricity producer.
When CO2 price realization is below strike price pmin, the forest owner has the income from selling
flobsions in the first period, E pF. Moreover, as the electricity producer does not exercise flobsions in
this case, the forest owner decides whether to sell that amount of flobsions on the market by comparing
market price pC with opportunity cost. When CO2 price realization is higher than the strike price,
the first term in Equation (13), the case pC > pmin, stands for the income from selling the flobsion in
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the first period and the second term is the profit coming from the electricity producer (cf. Equation (9))
including the strike price pmin and shared benefits with parameter δ.

Let us note that we consider deterministic opportunity costs of the forest owner. This is based on
the assumption that forest value is rather stable over time as compared to the offsets price.

2.3. Indifference Prices of the Forest Owner and Electricity Producer

To calculate indifference prices, we consider discrete distribution of CO2 prices with probabilities
wi, ∑N

i=1 wi = 1, corresponding to price realizations pi
C, i = 1, . . . , N, where N is the number of

realizations and assume the growing sequence pi
C > pi−1

C . Let us consider expected utilities of the
electricity producer U(Π̂EP) and U(Π̂R

EP) without and with flobsion, respectively. Now we consider
prices pF and pE as unknowns and find them from indifference equations. The fair price of the
electricity producer is determined by the utility-indifference equation:

pE = pE(E , pmin, δ, pi
C, wi) :

U(Π̂EP(pi
C), wi) = U(Π̂R

EP(E , pE, pmin, δ, pi
C), wi), i = 1, . . . , N,

meaning that the expected utility stays the same, no matter if the electricity producer contracts
flobsions in the first period or not. Where Π̂EP(pi

C) is the solution to problem without flobsions (1)
and Π̂R

EP(E , pE, pmin, δ, pi
C)—with flobsions (10) at i-th CO2 price realization.

Similarly, if we denote utilities of the forest owner by U(Π̂FO) and U(Π̂R
FO), then their fair price is

determined by equity:

pF = pF(E , pop, pmin, δ, pi
C, wi) :

U(ΠFO(E , pop, pi
C), wi) = U(ΠR

FO(E , pF, pmin, δ, pi
C), wi), i = 1, . . . , N,

where ΠFO(E , pop, pi
C) and ΠR

FO(E , pF, pmin, δ, pi
C) are profits (12) and (13), respectively, at i-th CO2

price realization.
Indifference prices can be derived numerically for any distribution and utility. However, analytical

derivation is not always possible [19]. Below we consider risk-neutral and exponential utilities, which
allow for analytical derivation and modeling risk-preferences. When the indifference curves are
constructed for a range of flobsions’ amounts, we can check whether the amount can be contracted
by comparing the prices of the electricity producer and forest owner. Namely, the amount E can be
contracted if the buyer’s price is not less than the seller’s price: pE(E) ≥ pF(E).

2.3.1. Risk-Neutral Utilities

In the case of risk-neutral (r.-n.) utilities the indifference prices are calculated according to
equations (see Appendix A.1):

pr.−n.
E = pr.−n.

E (E , δ, pmin, pi
C, wi) = δ ·

N

∑
i=i∗+1

(pi
C − pmin)wi, (14)

pr.−n.
F = pr.−n.

F (E , δ, pmin, pop, pi
C, wi) =

N

∑
i=i∗+1

(
max{pop(E), pi

C} − pmin − (1 − δ)(pi
C − pmin)

)
wi, (15)

where i∗ is the largest number when pi
C ≤ pmin. In this case the price of the electricity producer does

not depend on the flobsions’ amount. The price of the forest owner depends on the quantity only via
the opportunity cost pop(E).
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Lemma 2. In the risk-neutral case for δ > 0, the volume of flobsions E can be contracted if the following
inequality holds:

N

∑
i=i∗+1

max{pop(E), pi
C}wi ≤

N

∑
i=i∗+1

pi
Cwi. (16)

Proof. Let us calculate the difference between pE (14) and pF (15), when δ > 0:

pr.−n.
F (E)− pr.−n.

E =
N

∑
i=i∗+1

(
max{pop(E), pi

C} − pi
C
)
wi.

Therefore, Equation (16) guarantees that seller’s price exceeds buyer’s price for amount E , that
is, pr.−n.

E ≥ pr.−n.
F (E).

Remark 2. Lemma 2 shows that in the risk neutral case, whether the amount of flobsions is contracted or not,
depends on the relationship between the opportunity costs of the forest owner and the CO2 price distribution
above the strike price pmin and it is independent of the benefit-sharing ratio δ.

2.3.2. Exponential Utilities

In the case of exponential utilities (risk preferences, r.-p.) the indifference prices are calculated
according to equations (see Appendix A.2):

pr.−p.
E = pr.−p.

E (E , α, δ, pmin, pi
C, wi) =

1
αE · (ln

(
N

∑
i=1

e−αΠ̂EP(pi
C)wi

)
−

ln

(
i∗
∑
i=1

e−αΠ̂EP(pi
C)wi +

N

∑
i=i∗+1

e−α(Π̂EP(pi
C)+δ(pi

C−pmin)E)wi

)
), (17)

pr.−p.
F = pr.−p.

F (E , α, δ, pop, pmin, pi
C, wi) =

1
αE · (ln

(
i∗
∑
i=1

e−αE·max{pop(E),pi
C}wi +

N

∑
i=i∗+1

e−αE(pmin+(1−δ)(pi
C−pmin))wi

)
−

ln

(
N

∑
i=1

e−α·E ·max{pop(E),pi
C}wi

)
), (18)

where α �= 0 is the parameter of risk preferences [23]. When α → 0 the risk-adjusted prices converge to
the risk-neutral ones.

Remark 3. When δ = 0 the price pr.−p.
E (Equation (17)) equals to zero—the same as in the risk neutral

case (Equation (14)). This means that when there is no benefit-sharing (i.e., no discount to a market price),
the electricity producer is indifferent to contracting the offsets at zero price.

3. Modeling Results

In this section we present modeling results making use of the methodology described above.
We employ the FI-REDD model calibrated in previous studies. Basically, to calculate the indifference
prices, we need information only about optimal profits of the electricity producer (see Corollary 1).
In the example we take the following distribution:

pi
C = 10 · (i − 1), wi = 1/9, i = 1, . . . , 9, (19)

where CO2 price varies from 0 US$/tCO2 to 80 US$/tCO2 with the step 10 US$/tCO2. Here we
consider the uniform distribution, that is, each price realization has the same probability equal to 1/9.
Profits of the electricity producer at each price realization are shown in Figure 2.
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Figure 2. Annual profit of the electricity producer in the FI-REDD model with respect to growing CO2

price, adapted from Reference [19].

In our experiments we vary offsets’ amount in the range from 1 to 100 MtCO2. For the forest
owner we assume the following opportunity cost function:

pop(E) = K · (0.4 · E + 0.005 · E2), (20)

where E is measured in tons of CO2 and K is a scaling coefficient. Opportunity costs increase with the
amount of flobsions, equivalent to the forest area allocated for offsets. The more forest is allocated to
flobsion, the higher is the opportunity cost. We choose the price range consistent with the CO2 price
distribution. Below we consider the case, K = 0.9, when opportunity cost varies between 0 US$/tCO2

(for zero offsets) and 81 US$/tCO2 (for 100 MtCO2). This range is consistent with some empirical
studies (e.g., Reference [32]).

3.1. Impacts of Risk-Aversion on Contracted Amounts and Equilibrium Prices

In our experiments we compare risk-neutral case with risk-averse cases. In Figure 3 we show
risk-neutral indifference curves (dashed) lines based on Equations (14) and (15) and risk-averse
(solid curves) based on Equations (17) and (18), corresponding to coefficient α = 0.001 for the strike
price pmin = 20 US$/tCO2 and benefit-sharing ratio δ = 0.5. We also show curves for two intermediate
values of the risk-preference parameter α = 0.0001 and α = 0.0005.

In the study we use the following notations for the cases with considered risk-preferences:

• N—risk-neutral (α = 0);
• A1—risk-aversion parameter α = 0.0001;
• A2—risk-aversion parameter α = 0.0005;
• A3—risk-aversion parameter α = 0.001.
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Figure 3. Indifference prices in the FI-REDD model with flobsions. Comparison of risk-neutral
case (N) with risk-averse cases: A1, A2 and A3, for benefit-sharing parameter δ = 0.5, strike price
pmin = 20 US$/MtCO2, CO2 distribution (19) and opportunity cost (20) with K = 0.9. Blue curves
correspond to indifference prices of the electricity producer and red curves of the forest owner.

Blue curves correspond to indifference prices of the electricity producer and red curves—of the
forest owner. In the risk neutral case the price of the electricity producer is constant. The price of
the forest owner (15) stays the same until the amount of offsets 50.9 MtCO2 and increases afterwards.
Therefore, for the fixed parameter δ = 0.5 and strike price pmin = 20 US$/tCO2, the contracted amount
is 50.9 MtCO2 at the price 11.67 US$/tCO2 contracted via flobsion (and assuming an additional future
payment). For small values of parameter α (case A1) the indifference curves are close to the risk-neutral
lines. The figure shows how the risk-aversion (cases A1, A2 and A3) transforms the indifference
curves of the parties. The price of the electricity producer is a monotonically declining with respect to
amount of flobsions, while the price of the forest owner becomes rather U-shaped as demonstrated in
the figure. This shape can be explained by relatively low opportunity costs for the smaller amounts
of flobsions and, therefore, the risk-averse forest owner prefers to sell those via flobsion to have
a “guaranteed” higher income. However, when opportunity costs are high, a rational forest owner
would avoid entering into a REDD-offsetting contract. In the particular case indicated in Figure 3,
risk-aversion increases the contracted amount of flobsions, that is, the maximum amount 65.3 MtCO2

can be contracted at the intersection of solid lines (A3) at the equilibrium price 11.09 US$/tCO2.

3.2. Contracted Amounts and Equilibrium Prices with Respect to Benefit-Sharing Ratio

Let us fix the strike price as in Figure 3, pmin = 20 US$/tCO2 and calculate the contracted
amounts for all possible benefit-sharing ratios. According to Remark 3, we consider the case of zero
discount (and hence zero-purchase price) as degraded and, therefore, stick to the range of δ ∈ [0.05, 1].
Contracted amounts are shown in Figure 4a. In the risk-neutral case (dashed blue line) the contracted
amount is constant and equals 50.95 MtCO2. As the plots show risk-aversion increases the contracted
amounts for this strike price. An interesting feature is that there is a nonlinear dependence of the
contracted amount with respect to benefit-sharing ratio δ in the risk-averse case. Red curves are concave
with respect to benefit-sharing ratio, meaning that there is a maximum amount of contracted flobsions
for every risk-aversion parameter. Here for A1 the maximum contracted amount is 57.1 MtCO2, that is
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reached at the benefit-sharing ratio, δ = 0.5. For A2 the maximum amount is 64.4 MtCO2 at δ = 0.4
and for A3—65.65 MtCO2 at δ = 0.4. Note, that here we considered discrete values of δ with the
step 0.05.
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Figure 4. Contracted amounts (a) and equilibrium prices (b) of flobsion with respect to benefit-sharing
parameter δ ∈ [0.05, 1] for the fixed strike price pmin = 20 US$/tCO2, CO2 distribution (19)
and opportunity cost (20) with K = 0.9. Comparison of risk-neutral case N (blue line) with risk-averse
cases A1, A2 and A3 (red curves).

In Figure 4b we show the equilibrium prices corresponding to contracted amounts in Figure 4a.
The prices are increasing with respect to growing benefit-sharing ratio. Note, that the maximum
price is achieved when δ = 1. This case corresponds to standard option. Thus, flobsion decreases the
equilibrium price compared to option due to additional flexibility in choosing the benefit-sharing ratio.
We also find out that for lower benefit-sharing ratios the equilibrium prices in the risk-averse case
(red curves) are higher as compared to the prices in the risk-neutral case (blue line) but it is opposite
for higher benefit-sharing ratios. This can be explained by the risk-aversion of the electricity producers,
who are more comfortable with higher ratios. However, together with the price increasing at higher
ratios, the amounts of contracts decline as shown in Figure 4a.

3.3. Impacts of Strike Prices on Contracted Amounts and Equilibrium Prices

To be consistent with CO2 price distribution (19), we consider 8 strike prices varying in the range
from 0 to 70 US$/tCO2 with the step 10 US$/tCO2. In Figure 5a we show how contracted amounts
of flobsions change with respect to pmin for the fixed benefit-sharing ratio δ = 0.7. One can see that
contracted volumes increase with the growing strike price in all cases. The smallest amounts in all
cases can be contracted at zero strike price: 21.85 MtCO2 (N), 33.75 MtCO2 (A1), 46.45 MtCO2 (A2),
50.05 MtCO2 (A3).

Moreover, risk aversion increases the contracted amounts for small values of the strike price.
This can be explained by the relatively high opportunity costs of the forest owner compared to the
low strike price and at the same time by higher CO2 prices expected by the electricity producer.
This situation changes when the strike price is relatively high; for larger values of the strike price
the risk-averse amounts start to converge to risk-neutral case. At final rather extreme strike price,
pmin = 70 US$/tCO2, which is close to maximum CO2 price, the amount contracted in risk-neutral case
exceeds the amount in risk-averse cases. This can be explained by the high value of the benifit-sharing
ratio, δ = 0.7 considered in this case.

Figure 5a shows that maximum contracted amounts for δ = 0.7 take place at maximum strike
price pmin = 70 US$/tCO2: 99.25 MtCO2 (N), 96.85 MtCO2 (A1), 96.65 MtCO2 (A2), 96.45 MtCO2 (A3).
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Figure 5. Contracted amounts (a) and equilibrium prices (b) of flobsions with respect to strike price
pmin for benefit-sharing ratio δ = 0.7, CO2 distribution (19) and opportunity cost (20) with K = 0.9.
Comparison of risk-neutral case N with risk-averse cases A1, A2 and A3.

The equilibrium prices with respect to pmin are shown in Figure 5b for δ = 0.7. The case A1 is very
close to N in terms of prices. All equilibrium prices decrease with respect to growing pmin, as a higher
strike price implies less possibilities for the energy producer to “earn” on a discount as compared
to the market price. In the risk-neutral case the price varies from 0.78 to 28 US$/tCO2, while in the
risk-averse case A3—from 0.79 to 26.12 US$/tCO2.

3.4. Full Flexibility Of Flobsion

Let us now consider all combinations of benefit-sharing ratios and strike prices and their impacts
on contracted amounts of flobsions and their prices. Figure 6a shows the contracted amount with
respect to δ ∈ [0.05, 1] and pmin ∈ [0, 70] in the risk-neutral case N. We see that the surface has
a concave shape, increasing with respect to growing pmin. We also note, that the surface levels are
constant with respect to δ. However, looking at the corresponding equilibrium prices in Figure 7a we
observe an evident decrease of the prices with respect to declining δ. Thus, even in the risk-neutral
case benefit-sharing has a positive effect of decreasing the equilibrium price. Figure 7a shows that
highest prices at every pmin correspond to largest δ = 1, that is, the case of standard option.
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Figure 6. Contracted amounts of flobsions with respect to benefit-sharing ratio, δ ∈ [0.05, 1] and
strike price pmin ∈ [0, 70]: (a) risk-neutral case N, (b) risk-averse case A3. CO2 distribution (19)
and opportunity cost (20) with K = 0.9.
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Figure 7. Equilibrium prices of flobsions with respect to benefit-sharing ratio, δ ∈ [0.05, 1] and strike
price, pmin ∈ [0, 70]: (a) risk-neutral case N, (b) risk-averse case A3. CO2 distribution in Equation (19)
and opportunity cost in Equation (20), where K = 0.9.

Figure 6b shows how the risk-aversion case A3 transforms the risk-neutral surface (cf. Figure 6a).
The minimum value in case A3, 30.45 MtCO2, corresponds to δ = 0.05 and pmin = 0, while
the maximum is 99.45 MtCO2 corresponds to δ = 0.15 and pmin = 70. Both minimum and
maximum values in case A3 are larger than in case N, where the values are 21.85 MtCO2 and
99.25 MtCO2, respectively.

Equilibrium prices in case A3 are depicted in Figure 7b. Although the shape of the surface is
similar to case N (cf. Figure 7a), we observe lower prices in case A3, particularly, for lower strike
prices and higher benefit-sharing ratios.

3.5. Sensitivity Analysis

In this section we perform sensitivity analysis of modeling results with respect to opportunity cost
of the forest owner and CO2 price distribution envisioned by both decision-makers. For illustration
we take the risk-averse case A3 and compare the contracted amount of flobsions to those depicted in
Figure 6b.

3.5.1. Non-Uniform CO2 Price Distributions

The analysis above was performed for the uniform distribution. However, analytical formulas
are valid for arbitrary distribution. In order to check how modeling results change with respect to
distributions, we analyze two non-uniform cases. In the first case, CO2 prices are the same as in (19)
but the probabilities are shifted to lower price realizations, meaning that decision-makers envision
smaller CO2 prices more likely to happen. We consider the following distribution:

pi
C = 10 · (i − 1), i = 1, . . . , 9,

w1 = 0.11, w2 = 0.22, w3 = 0.33, w4 = 0.22, w5 = 0.11, wj = 0, j = 6, . . . , 9. (21)

The mean CO2 price in this case is 20 US$/tCO2, which is half less than 40 US$/tCO2 in (19).
The contracted amounts are shown in Figure 8a. We see that they are becoming zero after the strike
price reaches the highest CO2 price with positive weight p5

C = 40 US$/tCO2, as the electricity producer
would not buy any offsets. For pmin ≥ 40 the surface stays at zero level for all benefit-sharing ratios.
Before this threshold, determined by distribution (21) the surface is qualitatively similar to the one
with uniform distribution (cf. Figure 6b) but the values are lower due to lower expected values in the
right side of the distribution. The value at δ = 0.05 and pmin = 0 is 23.5 MtCO2, which is 30.45 MtCO2

in Figure 6b. The largest contracted amount, 62.95 MtCO2, is achieved when δ = 0.25 and pmin = 30,
that is the maximum feasible strike price in this case. Qualitatively the outcomes stay similar to the
case with uniform distribution.
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Figure 8. Contracted amounts of flobsions with respect to benefit-sharing ratio, δ ∈ [0.05, 1] and strike
price, pmin ∈ [0, 70]. We consider risk-averse case A3 with opportunity cost in Equation (20), where
K = 0.9 and CO2 distributions in: (a) Equation (21), (b) Equation (22).

The second alternative distribution is opposite to the previous one as it assumes more weight put
on higher CO2 price realizations. We consider the following distribution:

pi
C = 10 · (i − 1), i = 1, . . . , 9,

wj = 0, w5 = 0.11, w6 = 0.22, w7 = 0.33, w8 = 0.22, w9 = 0.11, j = 1, . . . , 4. (22)

The mean CO2 price in this case is 60 US$/tCO2. The results are depicted in Figure 8b.
For pmin ≤ 30, which correspond to the range of CO2 prices with zero probability in the distribution,
the surface has steady shape. For this range the contracted amounts does not change with respect
to strike price but still have concave shape with respect to δ. Note that the contracted amounts are
larger compared to the case with uniform distribution (cf. Figure 6b). This is explained by the fact that
parties put more value on flobsions in the situation of the foreseen higher CO2 prices. The minimum
value in Figure 8b is 63.95 MtCO2. For strike prices higher than pmin = 40, we see the increase in
contracted amounts. Comparing the figure to Figure 6b, we observe a sharper incline towards smaller
benefit-sharing ratios. This can be interpreted as the risk-averse electricity producer is ready to pay
higher prices in the face of high CO2 price realizations and forest owner is fine with providing a larger
discount. The maximum 99.25 MtCO2 is achieved at pmin = 70 and δ = 0.05. Let us note that this
maximum does not coincide with the one in the case of uniform distribution 99.45 MtCO2 although the
expected prices p9

C = 80 and probability w9 = 1/9 coincide. This is due to the fact that a risk-averse
decision maker takes into account the entire CO2 price distribution while calculating indifference
prices as stated in Equations (17) and (18).

3.5.2. Sensitivity to Opportunity Costs

For illustration, we are not changing the shape of the opportunity cost curve but vary the scaling
parameter K in Equation (20) that was set to K = 0.9 above. We consider lower opportunity cost
curve by setting K = 0.5, meaning that the maximum cost is pop(100) = 45 US$/tCO2. The case of
lower opportunity cost curve is shown in Figure 9a for the uniform distribution. In this case flobsions
are very attractive to forest owner and they are willing to contract larger amounts compared to the
case of higher opportunity costs (cf. Figure 6b). When the strike price is high, the maximum amount
of flobsions 100 MtCO2 is contracted. This happens when pmin = 30 and pmin = 40 for a set of
benefit-sharing ratios and when pmin ≥ 50 for all δ. For pmin ≤ 30 surface conserves the concavity
properties with respect to pmin and δ. The lower opportunity costs increase the minimum contracted
amount, which constitutes 47.3 MtCO2 in this case.

In Figure 9b we show the case of higher opportunity cost curve with parameter K = 1.3 in
Equation (16), meaning that the highest cost is pop(100) = 117 US$/tCO2. In this case the shape
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of the surface is similar to the one in Figure 6b but quantitatively the contracted amounts decrease.
The minimum contracted amount is 22.55 MtCO2, while the maximum—is 78.15 MtCO2. This is due
to the fact that for each flobsions’ amount the opportunity cost curve becomes higher, while CO2 price
distribution stays the same. Here the maximum value is achieved at the highest strike price for the
range of benefit-sharing ratios δ ∈ [0.15, 0.30], indicating that at that highest strike price, the contracted
amounts start to reach some saturation level similar to Figure 9a.
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Figure 9. Contracted amounts of flobsions with respect to benefit-sharing ratio, δ ∈ [0.05, 1] and strike
price, pmin ∈ [0, 70]. We consider risk-averse case A3 with CO2 distribution (19) and opportunity cost
in Equation (20), where: (a) K = 0.5, (b) K = 1.3.

4. Discussion

In this paper the FI-REDD model was elaborated by implementing a flobsion and an opportunity
cost of the forest owner (REDD supplier). The results showed (Lemma 1) that REDD offsets provided
to the energy producer would not change the optimal emissions compared to the case of no offsets.
This delivers an important signal to policy makers. Even if the offsets are provided to the electricity
producer at no cost, it is not rational to change the technological portfolio from the optimal one
(determined solely by the carbon price) and emit more. When the market for offsets is established, it is
more profitable to sell the offsets on the market. Moreover, in the situation of higher emission costs,
the optimal emissions will decrease compared to the situation with zero emissions costs as shown in
Reference [19].

The impact of risk-preferences on the volume of contracted flobsions was analyzed. In the
risk-neutral case, the contracted amounts at every strike price are the same for both the flobsion and
the standard option. However, the price in the case of the standard option coincides with flobsion’s
price only at the largest benefit-sharing ratio, which is equal to one. For lower benefit-sharing ratios,
the equilibrium prices of the flobsion are lower compared to the standard option. They decrease
together with decreasing benefit-sharing ratio. This price decrease is more vivid for lower strike prices.

In the risk-averse case, the situation is similar in terms of prices and,moreover, the benefit-sharing
ratio allows the maximum contracted amount of flobsions to be found for every strike price.
In particular, for relatively small strike prices compared to the maximum range of CO2 prices, the choice
of benefit-sharing ratio allows for a considerable increase in the contracted amounts. That fact is of
a potential interest in the REDD context, larger contracted volumes mean more forest being allocated for
the generation of carbon offset sand that it is hence protected under the REDD umbrella. The contracted
amounts also increase when there is stronger risk-aversion.

The findings show that contracted amounts increase as the strike price grows. This is quite
a natural result, as the higher strike prices are advantageous for both parties—forest owner and
electricity producer. Thereafter, the equilibrium prices also decrease with growing strike prices.
The full set of benefit-sharing ratios and strike prices and how they impact the contracted amount
and the equilibrium prices is illustrated in Figures 6 and 7. Interestingly, the risk-averse case shows
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that at every strike price, there are values of the benefit-sharing ratio that deliver the maximum of
contracted amounts.

As the research was based on the FI-REDD model, a similar range of offset amounts and CO2

prices was used. The opportunity cost curve was chosen to be consistent with these data for illustrative
purposes. Nevertheless, to check how the results react to a different setup a sensitivity analysis was
performed. The analysis shows that qualitative features remain valid. The contracted amounts are
higher when higher CO2 prices are more likely and lower when lower CO2 prices are more likely,
in both cases compared to uniform distribution. We also show that lower opportunity costs facilitate
the contracting of more offsets, while higher ones decrease the contracted amounts. The results of the
sensitivity analysis did not provide any irregularities, as the situation of symmetric information of
a buyer and a seller with respect to future CO2 price distribution was considered.

5. Conclusions

While the flobsion construct apparently has more universal applications, we see how good
its fit is in the REDD-offsetting context. This is because it supports the provision of up-front
financing for the development of offset-generating projects, while at the same time providing enough
flexibility for a balance of interest to be found between the offsets buyer and seller in the face of
uncertainties associated with future terms of offsetting. The problem of the acceptance and fungibility
of REDD-based offsets with emission allowances is still open at both national and international
level [33,34]. This situation leads to necessity to alleviate corresponding risks, and flobsion might be
helpful in this regard.

Despite technical details of potential policies remaining uncertain, there is progress towards
inclusion of REDD-based offsetting for compliance at a legal level (e.g., California). Although
policy changes create opportunities, at the same time they can create risks for certain market players.
The flobsion’s properties prove it to be a potential candidate to accommodate and alleviate those risks,
and, therefore, accelerate the implementation of new policies.

The numerical results on the flobsion’s properties presented in this paper cover a rich set of cases
with respect to the varied parameters—the strike price and the benefit-sharing ratio (discount)— and
therefore make this work complete for practical applications. Such instruments could be considered in
terms of providing flexibility in the future through the benefit-sharing mechanism, thereby reducing
the initial investment. However, it is important for decision-makers to clearly formulate their policies
and in particular to formalize the legal aspects of the acceptance of the flobsion (issued today) in the
future, as well as the sharing agreements. Although it is beyond the scope of this paper, we would like
to draw attention to the legal aspects of community-based human rights [35] and consideration of the
needs of indigenous peoples [36], in the implementation of REDD.

Further research could be directed towards exploration of flobsion applications beyond REDD.
The asymmetric information of a buyer and seller in terms of future uncertainties would also be
an interesting analysis.
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Abbreviations

The following abbreviations are used in this manuscript:

GHG Greenhouse Gas
REDD Reducing emissions from deforestation and forest degradation
SDGs Sustainable Development Goals
FI-REDD Financial instruments for REDD (model)

Appendix A. Derivation of Indifference Prices for Flobsions

Appendix A.1. Indifference Prices for Risk-Neutral Utilities

For the utility of the electricity producer without REDD we have:

U(Π̂EP) =
N

∑
i=1

Π̂EP(pi
C)wi =

i∗
∑
i=1

Π̂EP(pi
C)wi +

N

∑
i=i∗+1

Π̂EP(pi
C)wi,

where i∗ is the largest index when pi
C ≤ pmin.

Using Equation (11), we get the expected mean utility with REDD flobsions:

U(Π̂R
EP) =

i∗
∑
i=1

(Π̂EP(pi
C)− pEE)wi +

N

∑
i=i∗+1

(Π̂EP(pi
C) + δ(pi

C − pmin)E − pEE)wi =

i∗
∑
i=1

Π̂EP(pi
C)wi +

N

∑
i=i∗+1

Π̂EP(pi
C)wi + E ·

N

∑
i=i∗+1

δ(pi
C − pmin)wi − pEE .

By applying indifference principle U(Π̂EP) = U(Π̂R
EP) we get the price:

pr.−n.
E = pr.−n.

E (E , δ, pmin, pi
C, wi) = δ ·

N

∑
i=i∗+1

(pi
C − pmin)wi.

Utility of the forest owner without flobsion (12):

U(ΠFO) = E ·
N

∑
i=1

max{pop(E), pi
C}wi.

Using Equation (13), we can calculate utility of the forest owner with flobsion:

U(ΠR
FO) =

i∗
∑
i=1

(E pF + E · max{pop(E), pi
C})wi +

N

∑
i=i∗+1

(
(pmin + (1 − δ)(pi

C − pmin))E + E pF + pop(E) · E
)
wi =

E · (pF +
i∗
∑
i=1

max{pop(E), pi
C}wi +

N

∑
i=i∗+1

(
pmin + (1 − δ)(pi

C − pmin)
)
wi

)
.
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By applying the indifference condition U(Π̂FO) = U(Π̂R
FO), we derive the following indifference

price of the forest owner:

pr.−n.
F = pr.−n.

F (E , δ, pmin, pop, pi
C, wi) =

N

∑
i=i∗+1

(
max{pop(E), pi

C} − pmin − (1 − δ)(pi
C − pmin)

)
wi.

Appendix A.2. Indifference Prices for Exponential Utilities

For the electricity producer without REDD flobsions we get the following utility:

U(Π̂EP) =
1
α
· (1 −

N

∑
i=1

e−αΠ̂EP(pi
C)wi), (A1)

where α is the parameter of risk preferences. Expected utility of the electricity producer with REDD
flobsions is calculated as follows:

U(Π̂R
EP) =

1
α
− 1

α
·

i∗
∑
i=1

e−α(Π̂EP(pi
C)−pEE))wi − (A2)

1
α
·

N

∑
i=i∗+1

e−α(Π̂EP(pi
C)+δ(pi

C−pmin)E−pEE))wi =

1
α
− 1

α
· eαpEE ·

(
i∗
∑
i=1

e−αΠ̂EP(pi
C)wi +

N

∑
i=i∗+1

e−α(Π̂EP(pi
C)+δ(pi

C−pmin)E)wi

)
.

Using Equations (A1) and (A2) we derive the indifference price:

pr.−p.
E =

1
αE · (ln

(
N

∑
i=1

e−αΠ̂EP(pi
C)wi

)
−

ln

(
i∗
∑
i=1

e−αΠ̂EP(pi
C)wi +

N

∑
i=i∗+1

e−α(Π̂EP(pi
C)+δ(pi

C−pmin)E)wi

)
).

For the forest owner without flobsion we have:

U(Π̂FO) =
1
α
· (1 −

N

∑
i=1

e−α·E ·max{pop(E),pi
C}wi),

and with flobsion:

U(Π̂R
FO) =

1
α
− 1

α
·

i∗
∑
i=1

e−α(E pF+E·max{pop(E),pi
C})wi −

1
α
·

N

∑
i=i∗+1

e−α((pmin+(1−δ)(pi
C−pmin))E+E pF)wi =

1
α
− 1

α
· e−α·E pF ·

(
i∗
∑
i=1

e−αE·max{pop(E),pC}wi +
N

∑
i=i∗+1

e−αE(pmin+(1−δ)(pi
C−pmin))wi

)
.

We get the following indifference price:

pr.−p.
F =

1
αE · ln

(
∑i∗

i=1 e−αE·max{pop(E),pi
C}wi + ∑N

i=i∗+1 e−αE(pmin+(1−δ)(pi
C−pmin))wi

∑N
i=1 e−α·E ·max{pop(E),pi

C}wi

)
.
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Abstract: The emissions of greenhouse gases, especially CO2, have been identified as the main
contributor for global warming and climate change. Carbon capture and storage (CCS) is considered
to be the most promising strategy to mitigate the anthropogenic CO2 emissions. This review aims
to provide the latest developments of CO2 storage from the perspective of improving safety and
economics. The mechanisms and strategies of CO2 storage, focusing on their characteristics and
current status, are discussed firstly. In the second section, the strategies for assessing and ensuring
the security of CO2 storage operations, including the risks assessment approach and monitoring
technology associated with CO2 storage, are outlined. In addition, the engineering methods to
accelerate CO2 dissolution and mineral carbonation for fixing the mobile CO2 are also compared
within the second section. The third part focuses on the strategies for improving economics of CO2

storage operations, namely enhanced industrial production with CO2 storage to generate additional
profit, and co-injection of CO2 with impurities to reduce the cost. Moreover, the role of multiple CCS
technologies and their distribution on the mitigation of CO2 emissions in the future are summarized.
This review demonstrates that CO2 storage in depleted oil and gas reservoirs could play an important
role in reducing CO2 emission in the near future and CO2 storage in saline aquifers may make the
biggest contribution due to its huge storage capacity. Comparing the various available strategies,
CO2-enhanced oil recovery (CO2-EOR) operations are supposed to play the most important role
for CO2 mitigation in the next few years, followed by CO2-enhanced gas recovery (CO2-EGR).
The direct mineralization of flue gas by coal fly ash and the pH swing mineralization would be the
most promising technology for the mineral sequestration of CO2. Furthermore, by accelerating the
deployment of CCS projects on large scale, the government can also play its role in reducing the
CO2 emissions.

Keywords: CO2 storage; CO2 utilization; security assessment; cost-effectiveness; CO2 storage projects

1. Introduction

In the last few centuries, the CO2 concentration in the atmosphere has already risen above 410 ppm
from a level of below 300 ppm in pre-industrial times [1,2]. As shown in Figure 1, the continuous rise
in the Earth’s surface temperature appears to be strongly linked with atmospheric concentration of
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CO2, which suggests that CO2 may be the main contributor to global warming and climate change.
In addition, it makes up an estimated 77% of greenhouse gases [3,4].

Figure 1. Correlation between atmospheric concentration of CO2 and the global temperature since
1850s (Data from [1,2]).

In addition, the CO2 emission may increase the frequency of extreme extratropical cyclones.
Unless the greenhouse gas emissions are efficiently mitigated, the extratropical cyclones are projected
to more than triple in number by the end of this century in both Europe and North America [5].
In response to such intense global climate change, the Intergovernmental Panel on Climate Change’s
(IPCC) assessment suggested that the average global warming should be limited less than 2 ◦C within
this century on the basis of estimated results from integrated assessment models (IAMs) [6].

To achieve this goal, carbon capture and storage (CCS) needs to be promoted, as it is currently the
most effective technology for slowing down atmospheric CO2 enrichment and extenuating associated
potential climate problems [7]. According to the estimation by the IEA [8], CCS alone could undertake
almost a 19% reduction in global CO2 emissions by 2050 (Figure 2). Furthermore, the overall cost of
achieving the same emission reduction targets will increase by 70% without CCS [9], which highlights
the importance of CCS on the mitigation of CO2 emission from the economic point of view as well.

There are 51 CCS engineering projects across the world, mainly scheduled in North America,
Australia, China, and Western Europe, although only 19 CCS projects are currently in operation
(Figure 3) [10]. Although CCS has been proven to be technically feasible, the risks and economics
associated with CCS challenges its large-scale application. Consequently, the contribution of CCS is
still very limited in attenuating climate change because of the high cost and safety risk associated with
CO2 leakage [11,12]. More efforts on improving the safety and economics are required to develop the
CCS technology, gaining support from government, and improving public acceptance to accelerate the
application of large-scale CCS.
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Figure 2. International Energy Agency (IEA) forecasts of key technologies for CO2 emission reductions
(modified from [8]).

 

Figure 3. Commercial-scale integrated carbon capture and storage (CCS) projects around the world.
Circle size is proportional to the CO2 capture capacity, and the color indicates different stages of the
lifecycle of the project (data from [10]).

In the last decade, nearly every aspect of CCS has been discussed extensively [13–44], see Table 1.
However, the strategies for improving the safety and economics have not been reviewed in detail.
In addition, the CCS technology is developing rapidly, and the recent progress needs to be reviewed
and analyzed.

This review attempts to discuss the most recent developments on addressing challenges associated
with assessing and decreasing the risks of leakage, cutting the cost of CO2 storage and promoting the
developments of commercial-scale CCS projects. Firstly, different mechanisms and strategies of CO2

storage are summarized and discussed. Then, the risk assessment of CO2 storage and strategies for
accelerating CO2 dissolution and mineral carbonation are reviewed. Finally, the strategies for improving
cost-effectiveness, including enhanced industrial production with CO2 storage and co-injection of CO2

with impurities, are examined.
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Table 1. Summary of review literature on CCS technology.

Research Fields Ref. Review Scope

CO2 capture and
utilization

[13] Review of the application of CO2 for enhanced oil and gas recovery

[14] Review of CO2 capture and reuse technologies, highlighting the strategies of CO2 capture in
variety of scenarios, and the state of the art for CO2 utilization

[15] Review of CO2 capture, utilization, and storage (CCUS) in Chinese Academy of Sciences,
highlighting the strategies for CCUS in China

[16] Review of the property impacts of CCS, highlighting the effect of uncertainties in
thermal–physical properties on the design of components and processes in CCS

[17] Review of CCS highlighting the CO2 capture technologies, the pilot plants, and the economic
and legal aspects of CCS

[18] Review of CO2 enhanced coal bed methane recovery, highlighting the CO2 storage trials in the
San Juan Basin in USA, and the estimation of CO2 storage capacity in coal seams

[19] Review of CCUS technologies highlighting the engineering projects and their developments
in China

[20] Review of CCS highlighting the findings obtained in CCS operational projects including the
technologies of CO2 capture, separation, transport, and storage

Options for CO2
storage and CCS

projects

[21] Review of CCS highlighting the options for CO2 storage, the evaluation criteria for CO2 storage
sites, and the major CO2 storage projects

[22] Review of biomass with CCS (Bio-CCS), highlighting the economics and global status of
Bio-CCS, and the role of Bio-CCS in the food–water–energy–climate nexus

[23] Review of CO2 storage in saline aquifers, highlighting the geological and operation parameters,
and the monitoring technologies for existing saline aquifers storage operations

[24] Review of the CCS in a coal-fired plant in Malaysia, highlighting the choices of coal plants and
the capture technologies

[25] Review of CO2 storage in saline formations, highlighting the modeling of solubility trapping

[26] Review of mineral carbonation (MC) technologies for CO2 sequestration, highlighting the
mechanisms of MC technologies and their contribution in decreasing the cost of CCS

[27] Review of CCS projects and future opportunities, highlighting the technical details and business
plan for CCS projects

[28] Review of CO2 storage projects in China, highlighting the CO2 source, and CO2 storage
strategies in China

[29] Review of CO2 mineralization product forms, highlighting the mineralization process for
CO2 storage

[30] Review of CCS by using coal fly ash, highlighting the feasibility and prospects of CCS using coal
fly ash

CO2-brine-rock
systems

[31] Review of the relative permeability and residual trapping in CO2 storage systems, highlighting
the estimating and measuring methods

[32] Review of the geochemical aspects of CO2 storage in saline aquifers, highlighting the advantages
of CO2 storage in saline aquifers, and the CO2–brine–rock interactions in the aquifers

[33] Review of geomechanical modeling of CO2 storage, highlighting the numerical methods and
their application in the modeling of ground deformation, faults, and fracture propagation

[34] Review of CO2 sequestration highlighting the trapping mechanisms and the flow of CO2 brine
in porous media system

Well integrity and
risk assessment

[35] Review of the cement degradation in CO2-rich conditions of CCS projects, highlighting the
degradation of Portland cement

[36] Review of the risk assessment of CO2 storage, highlighting the regulations and strategies of risk
assessment for CO2 storage

[37] Review of the isotopic composition of CO2 for leakage monitoring in CCS project, highlighting
the stable isotopes as a tracer for injected CO2

[38] Review of the integrity of existing wells for CCS, highlighting the mechanical well failure and
chemical issue due to cement carbonation

[39] Review of well integrity of CCS, highlighting the corrosion of metallic and cement, and the
remedial measures

[40] Review of caprock sealing mechanisms for CO2 storage, highlighting the problems associated
with CO2 leakage, the leakage paths, and the factors that affect leakage

[41] Review of CO2 storage highlighting the capacity estimation of storage sites, the monitoring
technologies, and the simulation tools for CCS

[42] Review of CO2 storage and caprock integrity, highlighting the major CCS project in operation
and CO2 migration in the reservoirs

Storage efficiency
and environmental

considerations

[43] Review of CO2 storage efficiency in saline aquifers, highlighting the factors that affect CO2
plume migration and the methods to estimate the storage capacity

[44] Review of environmental considerations for CO2 storage in a sub-seabed, highlighting the
potential ecological impacts

238



Energies 2020, 13, 600

2. Mechanisms and Strategies of CO2 Storage

2.1. Mechanisms of CO2 Storage

As shown in Figure 4a, there are four main trapping mechanisms of CO2 storage involving
(1) structural and stratigraphic, (2) residual, (3) solubility, and (4) mineral trapping [42]. With structural
and stratigraphic trapping, which is the most dominant trapping mechanism, once CO2 is injected
subsurface, it will rise to the top of geological structures due to the buoyancy effect but stay below
the impermeable caprock. In residual trapping, the injected CO2 displaces formation fluid when
it flows through the formation rock. The displaced fluid disconnects and traps the remaining CO2

within the pores of rocks due to the capillary force [45]. In the residual trapping mechanism, the
saturation of trapped CO2 is at least 10% and can reach more than 30% of the pore volume in some
reservoir rocks [46,47]. In solubility trapping, CO2 dissolves in formation fluids and becomes immobile,
thereby decreasing the volume of free CO2 [48]. This dissolved CO2 will slightly increase the density of
formation fluid by around 1%. It is sufficient to promote the convection flow with such a small density
difference [49], which is also in favor of the trapping of CO2. The solubility of CO2 in groundwater
ranges from 2% to 6%, and it decreases with the rising temperature and salinity [47]. For the mineral
trapping mechanism, CO2 is trapped by geochemical reactions in reservoir, usually precipitating as
carbonate, which can trap the CO2 in immobile secondary phases effectively [50].

  
(a) (b) 

Figure 4. (a) The four main CO2 trapping mechanisms [51]; (b) the contribution of four CO2 trapping
mechanisms with time (modified from [52]).

As shown in Figure 4b, these trapping mechanisms play different roles on CO2 storage in the
time scale from 1 to 10,000 years. Clearly, structural trapping plays a vital role in the initial stage of
CO2 storage, and its effect weakens gradually. The residual trapping and solubility trapping show
a significant impact in tens of years and lock up a certain amount of CO2 for thousands of years.
With respect to mineral trapping, it begins to show a significant effect almost around a hundred years
and plays a key role at a geological timescale.

2.2. Strategies of CO2 Storage

2.2.1. CO2 Storage in Saline Aquifers

CO2 storage in saline aquifers is one of the most important options due to the huge amount of
storage capacity, which is estimated to be sufficient for the sequestration of 10,000 Gt of CO2, namely
the emissions from large stationary sources for more than 100 years [32,53,54]. Compared with the
other storage sites, the saline aquifers usually possess more wide distribution and greater regional
coverage. Therefore, it has a better chance to be located near the CO2 emission sources, which could
reduce the cost of CO2 transportation [47,55]. The most crucial issue brought by the sequestration
of CO2 in saline aquifers is pressure build up and CO2 plume migration in formation, which has
the potential to lead to the fracturing of formation and reactivation of faults and leakage of CO2,
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which should receive more attention [56]. Birkholzer et al. [57] conducted a numerical simulation to
determine the influence of large-scale CO2 storage with an injection rate of 1.52 million tons per year
(Mtpa) in an open saline aquifer. Their results indicated that there is significant pressure build up in
the formation more than 100 km away from the injection zone, but the CO2 plume migration is rather
small—that is, around 2 km—and is concentrated on the top of saline aquifer due to the buoyancy
effect. They also showed that the pressure perturbation may reach shallow groundwater formation
when there is a caprock with relatively high permeability (higher than 10−18 m2) between the saline
aquifer and the shallow layers. However, the migration of reservoir fluids into groundwater formation
is extremely unlikely. This demonstrates the safety of large-scale CO2 storage in saline aquifers.

There are mainly five commercial-scale CCS projects in saline aquifers, including the Sleipner
project [58–60], the Snøhvit project [61], the In Salah project [62,63], the Gorgon project [64], and the
Quest project [65]. Detailed geological and engineering data are shown in Table 2.

Table 2. Large-scale CCS project in saline aquifers.

Num. Project
Injection
Rate (t/d)

Permeability
(mD)

Depth
(m)

Thickness of
Reservoir (m)

Thickness
of Caprock

(m)

Reservoir
Temperature

(◦C)

Reservoir
Pressure

(MPa)
Ref.

1 Snøhvit 2000 450 2550 60 30 95 28.5 [23,61]

2 Sleipner 2700 3000 1000 250 75 37 10.3 [23,58,
66]

3 In Salah 3500 13 1800 20 900 90 17.9 [23,63]
4 Gorgon 10,410 25 2300 280 250 100 22 [23,64]
5 Quest 2960 100 2000 40 70 55 18.9 [65–68]

Regarding the Sleipner project, CO2 was separated from the methane produced at the Sleipner
field in the North Sea. Then, the CO2 was injected into a regional saline aquifer within the Utsira Sand
formation, and a total of 18 million tons were injected by 2018 since its initiation in 1996 [60]. Based on
the engineering experiences from the Sleipner project, the CO2 separated from the liquefied natural
gas (LNG) project was injected to the deeper Tubåen Formation at a rate of 2000 tons per day in the
Snøhvit CCS project, which is located in the Barents Sea. The project was launched in 2008 with a total
amount of 1600 ktons of CO2 injected until August 2012, and it is expected that about 23 million tons
of CO2 will be stored there based on the projected lifetime of the Snøhvit LNG project [61,69].

The CCS project at In Salah, Algeria, is one of the world’s pioneering CCS projects. More than
3.8 million tons of CO2 have been injected to the Carboniferous sandstone at the Krechba field since
2004 [62]. This CCS project is unique due to the diversity of monitoring methods, including satellite
monitoring and 4D seismic data, which have been used to monitor the response of formation to CO2

injection. Meanwhile, the accessibility of these monitoring data to the public is very high [62,63,70–77],
so it could be a commendable case to study the CCS in saline aquifers.

The Gorgon CCS project located in the northwest of Australia, and it owns a Jurassic saline
reservoir in the Dupuy Formation. In the lifetime of the Gorgon project, more than 120 million tons of
CO2 is planned to be injected at a rate of approximately 3.8 Mtpa [64].

The Quest CCS project began in 2015 and is designed to store the CO2 from an existing facility for
upgrading heavy oil in Scotford of Alberta, Canada. It is expected that approximately 27 million tons
of CO2 can be injected to the Basal Cambrian Sands formation at an injection rate of 1.08 Mtpa through
three to eight vertical wells [65].

Aside from the previously mentioned large-scale CCS projects, there are some small-scale projects
as well. These include the Ketzin pilot site [78,79], the Illinois Basin-Decatur Project [80], and the
Shenhua CCS demonstration project [81]. These projects have been conducted with detailed modeling
and monitoring during operation, which demonstrates the safety of this technology and helps increase
the public acceptance.

Although the storage capacity of saline aquifers is huge, the overall progress of CO2 storage in
such aquifers throughout the world is still slow due to the lack of financial incentives. Therefore, some
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policies related to the taxes on carbon emission with a higher price might need to be formulated, which
highlights the important role of the government on the application of CCS at a large scale.

2.2.2. CO2 Storage in Depleted Oil and Gas Reservoirs

There are many advantages of CO2 storage in depleted oil and gas reservoirs. Firstly, oil and
gas reservoirs have a large amount of existing equipment installed on the surface and underground,
which could be reused for CO2 storage with only minor modification. Secondly, the seal quality and
integrity of the caprock are guaranteed and have been comprehensively characterized during the
exploration and production process [56]. Thirdly, the extent of pressure perturbations and induced
stress changes is much smaller in depleted oil and gas reservoirs compared with aquifers because
of the long-term extraction of oil and gas [56]. Compared with depleted oil reservoirs, the depleted
gas reservoirs are more favorable for CCS due to higher ultimate recovery and compressibility of gas,
a larger storage capacity per pore volume is available [82–84]. Comparing the types of reservoirs
used in this form of storage, condensate gas reservoirs are more advantageous over wet and dry gas
reservoirs resulting from the little remaining gas, the phase behavior of the mixture of condensate
gas and CO2, as well as the good injectivity of it [85]. Furthermore, the sequestrated CO2 per pore
volume in depleted condensate reservoirs is very high: approximately 13 times higher than that of the
equivalent aquifer [82]. However, attention should be paid as the phase change may occur in depleted
condensate reservoirs, while not in dry and wet gas reservoirs.

There are some traits associated with the long-term trapping mechanisms of CO2 in natural gas
fields. The noble gas and carbon isotope traces results show that solubility trapping in formation
water is dominant, while mineral trapping is limited in the natural gas reservoirs with siliciclastic or
carbonate lithologies [86]. It should be mentioned that the residual gas in the depleted reservoirs has
an effect on the CO2 sequestration. Generally, capillary trapping capacity exhibits a positive relation
with the remaining gas, while structural trapping capacity, dissolution trapping capacity, and the total
storage capacity are inversely related with it [87].

The most important issue related to CO2 storage in depleted gas reservoirs is the low reservoir
pressure, it’s sometimes below 20 bar at the initial stage of injection, which may lead to a strong
Joule–Thomson cooling effect, probably reducing the reservoir temperature, further forming hydrate,
freezing the residual water, and even compromising the well injectivity, especially when cold CO2

is injected [88–90]. When the temperature of the reservoir is over 40 ◦C, the Joule–Thomson cooling
effect is not noticeable in permeable reservoirs, even though the initial formation pressure is as low
as 2 MPa. However, the Joule–Thomson cooling may lead to the formation of hydrate, as the initial
formation pressure is 6 MPa and the reservoir temperature is less than 20 ◦C [88]. In order to avoid the
Joule–Thomson cooling and ensure a relatively high temperature at a low reservoir pressure, a high
temperature of injected CO2 or a high mass flow rate should be applied. It should be noted that
the high mass flow rate may lead to other problems at the beginning and shut-in of the injection.
The system in the ROAD project connects a CO2 capture system at the Masvlakte Power Plant with an
offshore depleted gas field that has a depletion pressure below 2 MPa [91]. It is a single source and sink
system that allows pressure and temperature control at the shoreline inlet of the offshore pipeline by
adjusting the level of after cooling at the compressor. It is used to ensure a high downhole temperature
and ease the Joule–Thomson cooling effect. That is, a high temperature of injected CO2 is applied
in the reservoir with low pressure, whereas a low temperature of injected fluids can be acceptable
in the reservoir with higher pressure, to keep the injection pressure requirement at a low level [90].
Furthermore, the co-injection of SO2 and CO2 is an alternative method to suppress Joule–Thomson
cooling and shows a beneficial thermal consequence [92]. In addition, the presence of methane can
potentially reduce the Joule–Thomson cooling effect [93].

A few projects dedicated to CO2 storage have been implemented in depleted gas reservoirs.
The first demonstration project in Australia named the CO2CRC Otway Project is well-known [94],
in which the CO2 was injected into the Waarre C Formation at a depth of about 2050 m. This project
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commenced in March 2008 and ended on August 2009, with a total storage capacity of 65,445 tons [95].
It is worth mentioning that a community led “stakeholder reference group” has been set up in this
project to communicate with the public and help increase their acceptance about CCS technology, which
could be a demonstration for other CCS projects. Overall, the CO2CRC Otway Project demonstrates
that the sequestration of CO2 in depleted gas fields can be achieved safely [95], and it provides a basis
for the large-scale CO2 sequestration in depleted oil and gas fields. According to the experience gained
in this project, the suitability and storage capacity of similar depleted gas reservoirs has been evaluated.
For example, the depleted P18-4 gas field on the offshore of Netherlands [96] and the DF-1 South China
Sea Gas field [97], owning a potential capacity of 1 Gt and 8 Mt respectively, are identified as suitable
sites for the sequestration of CO2.

Generally, due to the advantages of low risk and cost-effectiveness, CCS in depleted reservoirs can
play an important role in the mitigation of global warming, before the wide application of large-scale
CCS in saline aquifers [98].

2.2.3. CO2 Storage in Coal Beds

CO2 injection into coal beds is another attractive strategy for CO2 storage. Most of the suitable
coal beds for CO2 storage are located at a depth ranging from 300 to 900 m [99]. The sequestration of
CO2 in coal beds possesses the major advantage that the potential coal beds are usually located nearby
the existing or planned coal-fired power plants. Therefore, the transportation cost could be reduced
significantly. However, CO2 storage in coal beds is still an immature technology, and only some pilot
studies have been conducted on its suitability and storage capacity. The evaluated effective storage
capacity of Cretaceous–Tertiary coal beds in Alberta, Canada is 6.4 Gt [99], and the potential storage
capacity for the coal beds in China is about 142.67 Gt [100], which signifies the potential contribution
of coal beds on the mitigation of CO2 emissions.

2.2.4. CO2 Storage in Deep Ocean

The CO2 can also be directly injected into the deep ocean at water depth of more than
2700 m [101,102], where the liquid CO2 can sink downward to the seafloor, because the CO2 is
denser than seawater under high pressure and low temperature [102,103]. The storage capacity is
extremely large due to the enormous volume of the ocean. However, this CCS technology cannot be
applied widely because it may affect the marine environment.

2.2.5. CO2 Storage in Deep-Sea Sediments

The option of CO2 storage in deep-sea sediments not only combines the merits of geologic storage
and ocean storage, but it also avoids many shortcomings [104–107]. For example, it is free from the
potential harm to the ocean ecosystems as the CO2 is injected into the sediment deep beneath the ocean
rather than directly into ocean. The storage mechanisms in terrestrial sequestration such as dissolution
trapping, residual trapping, and mineral trapping still play a positive role. In addition, new storage
mechanisms, including gravitational trapping and hydrate trapping, also work in the sequestration.
The gravitational trapping comes from the fact that the higher density drives the CO2 into the deep
sea [103] to the so-called negative buoyancy zone (NBZ). The depth at which the density of CO2 is
identical to the salinity and temperature-dependent density of seawater is approximately 2700 m [52].
The hydrate trapping works because of the formation of CO2 hydrate under the condition of high
pressure and low temperature [104]. Figure 5 shows the long-term evolution of injected CO2 in the
deep-sea sediments. At the initial stage of injection, a little of hydrates form at the bottom of hydrate
formation zone (HFZ), which is beneficial to reduce the permeability of the caprock. The area of hydrate
caprock expands along with more CO2, reaching the bottom of the HFZ and limiting the CO2 below it.
Meanwhile, the aqueous saturated with CO2 will sink downward because of the buoyancy-driven
advection. Finally, the hydrate CO2 and liquid CO2 will dissolve in seawater and change into CO2

aqueous solution through diffusion, and permanent storage occurs.
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Figure 5. The long-term evolution of the injected CO2 in deep-sea sediments (modified from [104]).

Despite the enormous capacity and feasibility this technology shares, it is still in the formulation
technology readiness level. In addition, CO2 storage in deep-sea sediments is far more expensive
than onshore methods. In addition, it may take a long time to increase the public acceptance of this
method [106,108].

In a summary of this part, there are several options for the underground CO2 storage, including
the saline aquifers, depleted oil and gas reservoirs, coal beds, deep ocean, and the deep-sea sediments.
The pros and cons of these storage strategies are summarized in Table 3.

Table 3. The pros and cons of a variety of storage strategies.

Option Pros Cons

Saline aquifers
Huge amount of storage capacity, wide
distribution, commercial technology
readiness level

No economic benefit

Depleted oil and
gas reservoirs

Existing installed equipment, guaranteed
caprock integrity, characterized geological
conditions, small pressure perturbations
and induced stress changes, additional oil
and gas recovery

Demonstration technology
readiness level

Coal beds

Low transportation cost due to its
potential location near the coal-fired
power plants, additional coal bed
methane recovery

Pilot plant technology readiness level

Deep ocean Large storage capacity
Formulation technology readiness
level, no economic benefit, may affect
the marine environment

Deep-sea sediments Enormous storage capacity, free from the
potential harm to the ocean ecosystems

Formulation technology readiness
level, no economic benefit, far more
expensive than onshore methods
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3. Security Assessment of Underground CO2 Storage

3.1. Numerical Methods for the Security Assessment of CO2 Storage

The brine migration caused by CO2 injection may affect the ground water resources [57]. In addition,
the chemical reaction between CO2 with the cement and well string [79,109,110], and the formation
response such as the reactivation of faults and the shear failure of caprock, may lead to the failure
of well integrity and caprock integrity, resulting in the leakage of CO2 [11,42]. Therefore, before
the implementation of a CCS project, it is very important to assess risks through predicting the
CO2 injection-induced formation responses, including the formation pressure change, formation
deformation, and migration of CO2 plume, etc. Generally, such temporal and spatial responses of
formation can be predicted both analytically and numerically. However, due to the physical and
geological complexities in CCS projects, only a few semi-analytical models have been developed to
estimate risks related with the migration of CO2 plume and leakage along abandoned wells [111–115].
For example, Nordbotten et al. [112] derived the solution for CO2 plume evolution during injection in
dimensionless form as follows:(

Qwell (p(rwell , t) − pinit ) + ΔEp
)(

2πλwkB
Q2

well

)
= −∫ 1

0
(λ−1) ln r′(b′)
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∫ 1
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2
λ−1
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(
πBϕ
V(t)
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where Qwell presents the volumetric injection rate; p(rwell,t) denotes the fluid pressure at the injection
well; pinit is the initial pressure; ΔEp presents the potential energy required to submerge the CO2 into
the denser water; λw presents the mobility of water; k is the permeability; B is the reservoir thickness;
λ denotes the total mobility; ϕ is the porosity; V(t) denotes the total injected volume; and b presents
the thickness in the CO2 plume profile, which is a function of radial distance from the injection well (r)
and time (t).

The numerical simulation methods are more popular in assessment of the risks associated
with CO2 storage. Many thermal–hydraulic (TH) coupled simulators have been developed
for multi-component and multi-phase flow in CO2 storage, such as TOUGH [57,116,117],
ECLIPSE [118,119], CMG-GEM [120–123], STOMP [124,125], MRST [126], COMET3 [127], IPARS [128],
MUFTE-UG [129], FLUENT [130], and Tempest [131,132]. The hydro–thermal–mechanical (THM)
coupled simulators are mostly constructed based on the coupling framework of fluid flow
simulator (TH) and mechanical simulator (M). Specifically, the THM simulators used in CCS mainly
include TOUGH-FLAC3D [63,133,134], TOUGH2-RDCA [135], TOUGH-RBSN [136], Sierra Arpeggio
(Aria-Adagio) [73], OpenGeoSys-ECLIPSE [137], ABAQUS-ECLIPSE [138], and ECLIPSE-VISAGE [76].
Among them, the TOUGH-FLAC has been well tested and applied in many simulations of CCS [63,139],
and it was developed by the Lawrence Berkeley National Laboratory [140,141].

In recent years, some software has been developed for the risk assessment in CCS, such as the
National Risk Assessment Partnership (NRAP) Toolset and Leakage Assessment and Cost Estimation
(PyLACE). The NRAP is designed to evaluate the environmental risks associated with CCS operation by
the U.S. Department of Energy’s National Energy Technology Laboratory [142]. In NARP, the geological
system of CCS is divided into several subsystems firstly, and each subsystem is characterized by a
reduced-order model [143]. Then, the reduced-order models are linked by an integrated assessment
model based on the system modeling approach [142]. Finally, the whole system model can be used to
evaluate the risk performance. The framework of the NARP is shown in Figure 6.
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Figure 6. The framework of the National Risk Assessment Partnership (NARP) [144].

By using NARP, two major types of risk, including CO2 leakage and induced seismicity, can
be simulated. Additionally, the behavior of several important components in the CCS systems,
including reservoirs, seals, wells, and ground water aquifers, could be modeled using corresponding
tools. For example, the Wellbore Leakage Analysis Tool (WLAT) could be used for the assessment
of the leakage potential of existing wells [145], and the Design for Risk Evaluation and Monitoring
(DREAM) is developed for the evaluation and optimization of monitoring designs for long-term CO2

storage operation.
The Python-based web application PyLACE is designed to quantify the financial risks associated

with potential CO2 leakage in a CCS system [146]. There are two major functional blocks in PyLACE:
one of them is metamodel development, and the other one is metamodel-based decision support. It can
convert the process-level risk assessment models into high-fidelity metamodels for the purpose of
online assessment by using the high-performance computing and cloud computing infrastructures.

Recently, a deep neural network inversion was applied on 4D seismic data for estimating saturation
and pressure [147], proving the availability of deep neutral network on the application of data-based
inversion. To make the assessment of CCS more efficient and effective, the machine learning technology
is encouraged to be used. It can be forecasted that the evaluation of CCS will be more and more
intelligent with the development of machine learning technology.

3.2. Monitoring Technologies in the Assessment of the CCS Risks

The injected CO2 will be retained in underground for a long period, and the CO2 plume may
affect the surrounding environment and the groundwater in particular [148]. Since it is difficult to
predict with reasonable accuracy the key issues or risks in CCS by utilizing only simulation tools [149],
the monitoring and history matching is very important in CCS assessment. The monitoring is used in
most of the field development plans and routine field operations [62]. The most common monitoring
technology used in CCS includes 3D seismic, 4D seismic, microseismic, vertical seismic profiling,
gravimetry, cross-hole electromagnetic, pressure and temperature monitoring, geochemical sampling,
soil and gas sampling analysis, tracers, atmospheric monitoring, microbiology, core analysis, satellite
monitoring, and distributed temperature sensing technology.

The 3D seismic can provide a tri-dimensional image of the formation structures and the CO2

plume. The quality of the 3D seismic is affected by the medium. In off-shore monitoring, the 3D seismic
monitoring data with high quality could be obtained, and the CO2 bodies above 106 kg at the depth of
1–2 km could identified due to the enhanced penetration of seismic waves in water [148].

The 4D seismic involves repeating 3D seismic in time-lapse mode to image the CO2 plume in the
reservoir over time, which is beneficial for the monitoring of the migration process of CO2. A major
challenge for the 4D signal to reflect the field data with high accuracy is the non-repeatable noise level
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in the data. This is on account of that the seismic imaging experiment is difficult to be repeated from
one survey to the next due to the variations in the sources’ receiver positioning and geometry, the soil
moisture content, and the formation water properties [150].

The microseismic activity levels show a correlation with the CO2 injection periods. Thus, it
is beneficial for the understanding of the subsurface CO2 injection and migration process. In this
procedure, the one-dimensional array that consists of several three-component downhole geophones
will be deployed in the vertical well. Afterwards, the waveform data will be detected by the geophones
and then transferred to the digitizers for recording [151].

Apart from conventional surface seismic acquisition, the hydrophone arrays, buried geophone,
and the fiber optic cables are permanently installed in the vertical seismic profiling systems to achieve
long-term monitoring and obtain the geological structure details [152]. This monitoring technology
has been successfully used in the Ketzin pilot site and the MRCSP project.

Gravimetry testing can detect the variations of fluid density due to CO2 injection and thus provide
the information of the location of CO2. The limit of this method is that the testing result is affected by
the shape of the CO2 plume [148,153].

Cross-hole electromagnetic is a non-invasive method on the determination of the subsurface
physical and chemical properties. It can also provide the information for the detection and monitoring
of the location of CO2. In this domain, the electrical conductivity before and after the CO2 injection is
obtained firstly. Then, it can be converted to the CO2 saturation with the help of inversion algorithms
and appropriate rock-physics models [154,155]. It should be mentioned that this monitoring technology
is only suitable for small-scale areas such as the area between wells [154].

Monitoring the formation fluid pressure and the variation of temperature can help in evaluating
the risks associated with the failure of the caprock integrity and identifying the flow path of the injected
CO2, respectively. It is important to point out that the wellhead pressure and temperature cannot
provide enough information for the CO2 injection process, which has been certified at the Ketzin pilot
site [156]. Therefore, the downhole pressure and temperature monitoring are recommended in the
CO2 storage operation.

The geochemical sampling analysis could reveal the chemical variations, such as the drop of
pH and natural variations in water chemistry, which is crucial for establishing a useful baseline for
groundwater hydrology [157]. In addition, it can provide the information of the variation of the
concentration of minerals that may be induced by the dissolution of carbonates and precipitation
of anhydrite. It should be mentioned that the chemical reaction is a slow process in the sandstone
formation [158], which is difficult to be detected in a short-term CO2 storage process.

Soil and gas monitoring can provide the data of CO2 concentration, which is beneficial for the
definition of the baseline before the injection [148]. In addition, it can provide more data on natural
CO2 variations in different environments and associated seasonal fluctuations.

Tracers monitoring is a cost-effective method for monitoring the origin of CO2 observations at
wells and in the storage complex. The mechanism involves the co-injection of some specific compounds
that can be detected in a very small concentration such as SF6, SF5CF3, and the isotope 14C together
with CO2 [95,159]. Thus, the trail of the injected CO2 could be reflected by the traces.

Atmospheric monitoring means detecting the atmospheric concentration of CO2 that may be
changed by the leakage of CO2 from the underground, which is beneficial for the identification of
the anomalies above the natural base line [160]. The reliability of this technology may be affected by
the significant natural variation of atmospheric concentration of CO2 induced by the organic matter
decomposition and the soil respiration [148].

Microbiology monitoring can be conducted on the samples of reservoir fluids and minerals
before and after the CO2 injection, which could be defined as a baseline and the modification caused
by the presence of CO2, respectively [161]. Specifically, the biocenosis such as the sulfate-reducing
bacteria (SRB) in the rock substrate and fluid samples could be analyzed by the molecular biological
method, polymerase chain reaction–single strand conformation polymorphism (PCR-SSCP) method,
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and fluorescent in situ hybridization method [162]. This information related to the microbiology is
valuable for the identification of biogeochemical process that affect the diffusion of CO2 in the reservoirs.

Core analysis is essential for the acquisition of the petrophysical and rock mechanical properties.
Some measuring methods including the SEM imaging, XRD, and X-ray elemental analysis are usually
included to obtain the micro morphological and mineralogical properties of the core [62].

The satellite-borne synthetic aperture radar (SAR) monitoring can provide the information related
to the change of the ground surface caused by CO2 injection operation, which can be used to modify
the model of CO2 distribution in the underground. By using SAR, the amplitude and the phase
can be obtained firstly. Then, the phase difference between two observations can be converted into
the displacement of the surface through the platform altitude and look angle [163]. Comparing the
geophysical surveys methods, the satellite-borne SAR monitoring is considered as a cost-effective
monitoring tool, and it has been successfully used in the In Salah project [163].

The distributed temperature sensing (DTS) technology is developed to overcome the limitations
of conventional temperature monitoring that cannot provide the high vertical spatial resolution and
real-time data. The fiber optic cable is used as a distributed sensor in DTS, which offers the possibility to
measure the temperature from the surface to the bottomhole along the extension of the fiber [164,165].

The advantages and applications of the monitoring technologies in the CCS demonstration projects
are summarized in Tables 4 and 5, respectively. It shows that the geochemical sampling analyses, 3D
seismic, microseismic, and pressure and temperature logs have gained the most popularity among the
monitoring technologies due to their high performance in acquiring the characteristics of geological
structures and formation fluids.

Table 4. Main monitoring technologies in CCS.

Monitoring
Technology

Advantages Ref.

3D seismic Provides a tridimensional image of geological structures and the plume
migration of CO2. [62]

4D seismic Significant benefits for overburden imaging and time-lapse responses
with improved acquisition plan. [62]

Microseismic It is very useful for monitoring geomechanical response to injection. [151]
Vertical seismic
profiling Valuable information on the geological structure details. [152]

Gravimetry Beneficial for the evaluation of formation fluids density and CO2 plume. [153]
Cross-hole
electromagnetic Advantageous for the detection and monitoring of the location of CO2. [155]

Pressure and
temperature
monitoring

Direct information for the evaluation of the stability of the reservoir. [156]

Geochemical sampling Natural variations in water chemistry are crucial for establishing a
useful baseline for groundwater hydrology. [157]

Soil and gas sampling More data on natural CO2 variations in different environments and
associated seasonal fluctuations is needed. [62]

Tracers Valuable and cost-effective method for monitoring the origin of CO2
observations at wells and in the storage complex. [62]

Atmospheric
monitoring Useful data to identity the anomalies above the natural baseline. [160]

Microbiology Valuable data to identify biogeochemical process that affect the
diffusion of CO2 in the reservoirs. [161]

Core analysis Good petrophysical data and rock mechanical properties are essential. [62]

Satellite monitoring Valuable and cost-effective monitoring data for onshore
CO2 injection operation. [163]

Distributed
temperature sensing
technology

It can provide high-resolution information on the migration of CO2 in
the reservoir. [164]
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Table 5. Application of the main monitoring technologies in some CCS demonstration projects (modified
from [148]).

Monitoring Technology Sleipner Frio Nagaoka Ketzin In-Salah Otway Weyburn MRCSP

3D seismic × × × × ×
4D seismic × ×
Microseismic × × × × ×
Vertical seismic profiling × ×
Gravimetry × × × ×
Cross-hole electromagnetic × × ×
Pressure and temperature logs × × × × ×
Geochemical sampling × × × × × ×
Soil and gas sampling × × ×
Tracers × × ×
Atmospheric monitoring ×
Microbiology ×
Core analysis × ×
Satellite monitoring × ×
Distributed temperature sensing technology ×

3.3. Generating CO2-in-Water Foams

The injected CO2 exhibits much lower viscosity and density compared with oil and brine in
the reservoir conditions and leads to a poor displacement efficiency. Generating high viscosity
CO2-in-water foams with large gas volume fraction would be an effective strategy to address this
issue [166], which has some advantages for both oil reservoirs and saline aquifers. For oil reservoirs,
CO2-in-water foams can improve oil recovery and the economics of CCUS in petroleum systems [167].
Guo and Aryana [168] used a glass microfluidic device to investigate the flow behavior of foam in
oil-saturated heterogeneous porous medium, and it resulted that the foam injection can improve the
oil recovery through the improvement of the sweep efficiency. A field test of CO2 foam flooding
was conducted in the North Ward-Estes field in Texas, demonstrating that the foam can notably
improve the sweep efficiency and be economically successful [169]. For saline aquifers, CO2-in-water
foams can also improve the sweep efficiency, storage capacity, and economics. Guo et al. [170] used
a glass-fabricated microfluidic device to investigate the effect of various factors on the CO2 storage
capacity in aquifers. Their results showed that the CO2 storage capacity would be increased by over
30% with the foam injection compared with CO2 injection cases, demonstrating the superiority of
CO2 foam on the improvement of CO2 storage capacity. It should be mentioned that the foam can
also reduce the risk of leakage in the underground CO2 storage unit result from the reduction of fluid
mobility. For instance, due to the significant shear rates differences between the flowing in the reservoir
rock and leakage pathway, the foam may become gel inside the leak and reduce the leakage through
the shear-induced gelation, i.e., the particles break the interaction barrier of forming clusters in high
shear stress condition [171].

To achieve stable CO2 foams, the surfactants are used traditionally. The hydrophilic/CO2-philic
balance (HCB) is considered as the principle for the designing of surfactants for CO2 foams, which can
characterize the balance of surfactant and solvent interactions [172]. In recent years, the nanoparticles
have been used combining with the surfactant solutions to improve the stability of CO2 foams, and
Worthen et al. developed the concept of HCB to be nanoparticle HCB [173]. Worthen et al. [174]
generated viscous and stable CO2-in-water foams with the mixture of nanoparticles (bare colloidal
silica) and surfactant (caprylamidopropyl betaine). They suggested that the formation of foams was
caused by the reduction of interfacial tension through the surfactant, while the stability of foams may
be improved by the adsorption of nanoparticles at the CO2–water interface. The behavior of silica
nanoparticles on the reduction of carbon footprint was also demonstrated by Rognmo et al. [167].
In addition, some other nanoparticles such as nano lauramidopropyl betaine with alpha-olefin sulfonate
also have been demonstrated to perform well in maintaining a high foam quality [170], showing the
superiority of nanoparticles on the stabilizing of CO2 foams. Overall, the generating of CO2-in-water
foams especially combining with the nanoparticles are supposed to be a candidate in the designing of
CO2 storage, while the overall cost should be considered.
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3.4. Accelerating CO2 Dissolution Process

As mentioned in above sections, the free CO2 can remain more than 1000 years underneath the
caprock, which increases the uncertainties in the long-term fate of injected CO2 and increases the
cost of long-term monitoring operation. To address this issue, accelerating the dissolution process
of CO2 and minimizing the free CO2 in the underground is an effective strategy [175]. Cameron
and Durlofsky [176] used the Hooke–Jeeves direct search algorithm to optimize the locations of
CO2 injection wells and the injection rate to minimize the mobile CO2 in the CCS system within
1000 years, and the results showed that the fraction of mobile CO2 would decrease from 0.220 to
0.072 in the optimal case, highlighting the importance of well location optimization. Anchliya et
al. [175] proposed an engineered injection method to promote the dissolution and trapping of CO2.
Figure 7 shows the schematic of the engineered injection process. Compared with conventional
CO2 injection scenarios, there is another brine injection well located exactly over the horizontal CO2

injection well and near the top of reservoir. In the engineered injection system, another two brine
production wells are placed at either side of the CO2 injection well. The brine injection well is used to
limit the upward movement and impel the horizontal flows of CO2 under a lateral pressure gradient
provided by brine injection, which increases the sweep efficiency and enhances the CO2 dissolution
and trapping [175]. Numerical simulation studies show that about 90% of the injected CO2 could
be immobilized within 20 years after CO2 injection ceases due to the fast dissolution trapping and
residual trapping. It should be pointed out that the potential risk of pressurization due to CO2 injection
could also be addressed by the engineered injection method through controlling the brine injection
and production rates. In addition, it can enhance the storage capacity of CO2 in a bounded aquifer
formation. Additional drilled wells are needed for the engineered injection system, which increases the
cost of this CCS operation. Consequently, the adaptability of the engineered injection method should
be quantified and site specific.

 

Figure 7. Engineered injection method to accelerate CO2 dissolution and trapping (adapted from [175]).

Another injection scheme called water-alternating-gas (WAG) injection was firstly proposed in
the petroleum industry in the late 1950s to improve the sweep efficiency of reservoirs. The different
types of WAG injection are illustrated in Figure 8. Zhang and Agarwal investigated the potential of the
WAG injection scheme with the goal of improving the efficiency of CO2 storage [177,178]. The results
showed that the optimized WAG scheme could accelerate CO2 dissolution and decrease the impact
zone up to 14% comparing with that of the constant gas injection scheme. However, the WAG injection
scheme may decrease the total storage capacity of the reservoirs due to the large amount of injected
water. In addition, it may increase the cost in the injection process, thus it has not been applied widely
in the CCS operation.
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Figure 8. Schematic of various schemes of water-alternating-gas (WAG) injection [179].

To eliminate the adverse effects of WAG injection schemes on storage capacity, an injection scheme
combining the intermittent injection method and brine production was proposed by Tanaka et al. [180].
The schematic diagram of intermittent injection is shown in Figure 9, which suggests that a diagonal
pair of wells were used for CO2 injection alternately. In this injection scheme, a diagonal pair of wells
(Well 1 and Well 3) are used for CO2 injection, while another pair of wells (Well 2 and Well 4) are used
for producing brine, which will be re-injected to the reservoir through Well 1 and Well 3. Numerical
simulation results show that both the dissolved and residual CO2 are increased. Specifically, the ratio
of the trapped CO2 increases by 20% compared with the base case, which has only one well with
continuous injection. Another advantage of this injection scheme is that it could mitigate the pressure
buildup through intermittent injection and water production, which highlights the importance of the
CO2 injection design and brine management.

 

Figure 9. Schematic of the intermittent injection method (modified from [180]).

In terms of the above methods for accelerating the dissolution of CO2, they may increase the cost in
the injection process due to water injection. In addition, additional wells are needed for the engineered
injection and intermittent injection with four wells, which results high costs on the operation. However,
the cost on the monitoring would be reduced due to the relative low leakage risk caused by the rapid
dissolution of CO2. The overall economic costs of the CCS unit and the storage capacity are supposed
to be taken into account for optimization when considering the utilization of these technologies.

3.5. Accelerating Mineral Carbonation Process

The mineralization of CO2 is an effective way to fix the injected CO2 and guarantee its security
permanently. However, for conventional CCS in saline aquifers, it takes tens of thousands of years
for the mineral trapping because of the low reactivity of silicate minerals in sedimentary rocks with
CO2 [52]. To accelerate the mineral trapping of CO2, some novel methods have been developed,
such as CO2 storage in basalt rock formation [12], CO2 storage in peridotite formation [181], direct
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mineralization of flue gas by coal fly ash [182], direct aqueous mineral carbonation [29], and pH swing
mineralization [183].

3.5.1. CO2 Storage in Basalt Rock Formation

Applying the sequestration of CO2 in basalt formations is proposed by Gislason and Oelkers [12].
Basalt contains approximately 25% of magnesium, calcium, and iron oxides, and it is far more reactive
with carbonic water compared with sedimentary silicate rock [184]. Another merit of this method is
that abounding basaltic rocks exist on the Earth’s surface [185], which offers the possibility of large
application of CCS in basalt formation. The field test of CCS in basalt was conducted in the CarbFix
pilot project in Iceland in 2012 [159]. In this project, 175 tons of pure CO2 were injected with water
firstly. Then, 73 tons of CO2–H2S mixture (55 tons CO2) were fully dissolved in water and injected.
The measured dissolved inorganic carbon of 14C and the monitoring well shows that more than 95% of
injected CO2 was mineralized to carbonate minerals within two years, demonstrating the efficiency
of mineral trapping of CO2 in basalt. However, large-scale application of this technology requires
substantial quantities of water during the CO2 injection process. In addition, the cost of storing and
transporting CO2 for the CarbFix project is about twice that of storage in typical sedimentary basins.
Therefore, the application prospect of this technology is not very promising in the near future.

3.5.2. CO2 Storage in Peridotite Formation

The mantle peridotite is mainly composed of olivine and pyroxene, which can react with CO2

and H2O to form hydrous silicate, Fe-oxides, and carbonates. Isotope analysis and reconnaissance
mapping indicate that about 104 to 105 tons of CO2 per year are trapped to solid minerals via peridotite
weathering effect in Oman [181]. The main reaction can be formulated as:

2Mg2SiO4 + Mg2Si2O6 + 4H2O = 2Mg3Si2O5(OH)4 (2)

Mg2SiO4 + 2CO2 = 2MgCO3 + SiO2 (3)

Mg2SiO4 + CaMgSi2O6 + 2CO2 + 2H2O = Mg3Si2O5(OH)4 + CaCO3 + MgCO3. (4)

As shown in Figure 10, the carbonation rate could be enhanced more than 1 million times compared
with the natural rate with the three-step operation process, beginning with drilling and fracturing,
followed by injection of hot CO2 (approximately 185 ◦C) at a rapid rate to heat the fractured peridotite,
and then injecting CO2 with normal temperature. In this case, the system maintains a temperature
of 185 ◦C and high carbonation rate due to the exothermic carbonation of peridotites. It is estimated
that the peridotite in Oman alone could trap more than 1 billion tons of CO2 per year into carbonate
minerals, showing a huge amount of capacity.

However, except for the peridotite exposing through large thrust faults, the mantle peridotite
is generally more than 6 km below the seafloor and 40 km below the land surface [181], making it
difficult for the sequestration of CO2 in these formations. Thus, the peridotite in shallow areas could
be used effectively for the sequestration of CO2.
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Figure 10. Calculated temperature and the carbonation rate relative to the rate for CO2 in surface water
at 25 ◦C and 0.1 MPa in the three-step injection operation (adapted from [181]).

3.5.3. Direct Mineralization of Flue Gas by Coal Fly Ash

Reddy et al. [182] conducted a preliminary experiment to study the reaction between flue gas
and coal fly ash in a fluidized bed reactor. This experimental setup is shown in Figure 11. The results
show that the concentrations of CO2 and SO2 in flue gas dropped from 13.0% to 9.6%, from 107.8
to 15.1 ppmv, respectively in 2 min. In addition, the Hg in flue gas was also mineralized by fly ash
particles. Reddy et al. [182] conducted a pilot-scale study with a fly ash content of 100–300 kg to
investigate the feasibility of this technology. In the pilot studies, the fly ash particles were fluidized
by the flowing of flue gas in a fluidized bed reactor to ensure sufficient mixing and contact between
them, and the reaction occurred under a fixed pressure of 115.1 kPa. Experimental results show that
the content of CaCO3 produced by the reaction of flue gas and fly ash ranged from 2.5% to 4% in
10 min. Meanwhile, the contents of S and Hg in the fly ash increased from non-detectable to 0.45
and 0.5 mg/kg, respectively. This confirmed that the flue gas components can be captured without
separation and mineralized by fly ash particles using an accelerated mineral carbonation process.
However, the treatment of the carbonated fly ash produced by using this method is still an important
problem that needs be addressed [30].

Figure 11. Preliminary experimental setup for CO2 capture and mineralization (modified from [182]).
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3.5.4. Direct Aqueous Mineral Carbonation

Direct aqueous mineral carbonation is a process that uses a bicarbonate-bearing solution mixed
with reactant minerals such as magnesium and calcium silicate rocks to convert gaseous CO2 into solid
form [186]. The magnesium and calcium silicate rocks are distributed all over the world. For instance,
the magnesium silicate rock in Eastern Finland has the ability to store 10 million tons of CO2 per year
for 200 to 300 years [187].

The overall chemical reaction of the carbonation of serpentine can be described as:

Mg3Si2O5(OH)4 + 3CO2= 3MgCO3 + 2SiO2 + 2H2O. (5)

In the process, the serpentine was treated at 630 ◦C to attain an active mineral. Then, the stoichiometric
conversion of 78% of the silicate to carbonate was observed by using the bicarbonate-bearing solution
at the conditions of 150 ◦C and 18.5 MPa, with 15% solids. This occurred within 30 min, showing
an extremely high reaction rate for the carbon mineralization. To reduce the energy consumption on
the heat reactivation and increase the effective reaction area, mechanical activation was proposed by
adding an attrition grinding step. In this case, the reaction condition was optimized to 25 ◦C and
1 MPa, which still led to up to 65% carbonation within 1 h [186]. For instance, the combination of
grinding and heat activation was used to attain a better carbonation mineralization performance, as
shown in Figure 12 [29]. Based on this concept, the feasibility of this technology in the mineralization
of flue gas was investigated by Verduyn et al. [29]. As shown in Figure 12, the relative high pH due
to the lower solubility of flue gas makes it difficult for the leaching of cations. To eliminate this, the
contact of the mineral and flue gas is done in a slurry mill and a leaching basin.

 

Figure 12. Mineralization process concept for (a). pure CO2, (b). flue gas (modified from [29]).

3.5.5. pH Swing Mineralization

To increase the conversion efficiency in the CO2 mineral trapping process, the pH swing approach
was proposed by Park and Fan [188]. They combined the internal grinding in acidic solvent for a rapid
dissolution of a serpentine sample. Three solid products including SiO2-rich solids, iron oxide, and
magnesium carbonate were produced by controlling the pH. Teir et al. [187] used HCl and HNO3 to
dissolute serpentinite and then transformed the serpentinite to hydromagnesite with the help of CO2.
In their results, the pure hydromagnesite, which is thermally stable at 300 ◦C, was produced. However,
the additional amount of chemicals used in this work increase the costs and make it infeasible for CCS
operations. To reduce the cost, a pH swing CO2 mineralization method with a recyclable reaction
solution was proposed by Kodama et al. [189]. They selectively extracted the alkaline-earth metal
from steelmaking slag in an ammonium chloride solution. The reacted solution was used for CO2

absorbent and produced ammonium carbonate. Then, the calcium carbonate was precipitated in
another reactor with the recovery of ammonium chloride. The results showed that the selectivity of the
calcium extraction reaction reached 60%, and pure CaCO3 was produced with an energy consumption
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of 300 kWh/t-CO2. Wang and Maroto-Valer [183] proposed a modified carbon mineralization process as
shown in Figure 13. Through experimental studies, they concluded that (NH4)2CO3 is more beneficial
for increasing the efficiency of carbon fixation compared with NH4HCO3, and the optimal efficiency of
CO2 mineralization reaches 46.6%. Furthermore, the pH swing mineralization process was optimized
by Sanna et al. [190] under different temperature conditions. The results showed that the total CO2

trapping efficiency was 62.6% at the condition of 80 ◦C, with the molar ratio of 1:4:3 for Mg:NH4

salts:NH3. However, the energy consumption and overall economic cost need to be lowered before
any large-scale application.

Figure 13. The schematic of carbon mineralization process using recyclable ammonium salts (modified
from [183]).

To summarize this section, CO2 storage in basalt rock formation and peridotite formation is limited
by the distribution of the particular rock. In addition, the substantial quantities of water and energy
consumption for heating increase the cost a lot. The direct mineralization of flue gas by coal fly ash
would be a promising technology result since the gas could be mineralized without separation, which
decreases the overall cost a lot. The pH swing mineralization may be another promising technology
for the sequestration of CO2 due to the sustainability. The recyclable and cheap chemical reagents
ought to be introduced into the mineralization process to make this technology more cost-effective.

4. Strategies for Improving the Cost-Effectiveness of CO2 Storage

4.1. Enhanced Industrial Production with CO2 Storage

Resources production during CO2 storage is an effective method to partly cover the cost of
CCS and obtain additional economic benefits, which is called CO2 capture, utilization, and storage
(CCUS) [19]. In the process of CCUS, CO2 usually works as a working fluid to enhance the recovery of
underground resources through displacement, dissolution, thermal conductivity, and reactive transport.
The potential geological formations for CCUS include oil reservoirs, gas reservoirs, saline aquifers, shale
formation, un-mineable coal seams, hot dry rock, uranium deposit formation, and natural gas hydrate
reservoirs [191]. The corresponding CCUS technologies are CO2-enhanced oil recovery (CO2-EOR),
CO2-enhanced gas recovery (CO2-EGR), CO2-enhanced water recovery (CO2-EWR), CO2-enhanced
shale gas recovery (CO2-ESGR), CO2-enhanced coal bed methane recovery (CO2-ECBM), CO2-enhanced
geothermal systems (CO2-EGS), CO2-enhanced in situ uranium leaching (CO2-IUL), and CH4–CO2

replacement from natural gas hydrates, respectively [191,192].

4.1.1. CO2-EOR

In CO2-EOR technology, the CO2 is injected into oil reservoirs to enhance the recovery of
crude oil, which is the most successful and promising technology combining the utilization and
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sequestration of CO2 [27,193,194]. The displacement of oil by CO2 can be classified as multicontact
miscible and immiscible processes, depending on the properties of CO2 and the reservoir fluids at the
condition of reservoir pressure and temperature [195,196]. In the multicontact miscible displacement
procedure, the minimum miscibility pressure (MMP) is required for multicontact miscible displacement.
The immiscible displacement occurs when the pressure is lower than the MMP, with less components
exchange between CO2 and oil in the reservoir [197].

There are three CO2 injection schemes for the operation of CO2-EOR, including continuous
injection, water-alternating-gas (WAG) injection, and cyclic injection. In the continuous injection
scheme, CO2 injection and oil production are running continuously, which has been applied in the North
Cross Devonian Unit for enhanced oil recovery [198]. The multicontact process can be achieved through
vaporizing and condensing [199]. However, this injection scheme has not gained much popularity in
the field application compared with the WAG injection and cyclic injection. WAG injection is the widely
used form, because it can decrease the mobility ratio between the injection fluids with oil and lead to
late gas breakthrough and high oil recovery. In the design of WAG injection, the optimization algorithm
such as the Lagrangian and stochastic simplex approximate gradient algorithm could be used to obtain
the maximum net present value [200]. Although the WAG injection is beneficial for improving the oil
recovery, it may cause the gas to flow upward, while the water and oil flow downward due to the
large density differences, resulting in early gas breakthrough, especially in the reservoirs with highly
permeable channels and large vertical heterogeneity [199]. To address this issue, the cyclic injection
process, i.e., gas huff-n-puff process was proposed, which is composed of three stages, including the
gas injection stage, well shutting state, and the oil production stage.

For conventional oil reservoirs, CO2 flow dominated throng the rock matrix. The mechanism
of CO2-EOR is due to the solubility of CO2 in oil under the supercritical phase condition, which
can decrease the oil density and viscosity, leading to enhancing the oil recovery [199]. For the
unconventional tight oil reservoirs such as shale oil reservoirs, fracturing is an essential technic for
the exploitation. In this scenario, CO2 flowing is dominated by fracture flow instead of rock matrix
flow. The process of the CO2-EOR in fractured oil reservoirs can be divided into four steps, as shown
in Figure 14. In the initial stage (Step 1), the injected CO2 flows rapidly through the fracture. Then,
the CO2 starts to permeate into the rock matrix under the displacement effect (Step 2). During this
stage, the permeating CO2 may carry oil into the rock and decrease the oil production. Simultaneously,
the permeated CO2 would lead to the swelling of oil and then mitigating out of the matrix, which is
beneficial for the oil production. The oil continues to swell and lower viscosity by the permeated CO2,
and moves to the fracture in the follow stage (Step 3), which corresponds to the well shutting stage in
the huff-n-puff process. Finally, the pressure equilibrium inside of the matrix is approached, thus the
migrating of the miscible or immiscible oil from the matrix to the fracture is dominated by diffusion
effects. The oil in the bulk CO2 is swept through the fractures to the production well by the production
pressure [201]. The cyclic injection scheme can also promote the propagating of reservoir pressure
due to CO2 injection near the injection well, especially for the reservoir with ultralow permeability.
Specifically, the CO2 huff-n-puff performs better on the oil recovery when the reservoir permeability is
lower than 0.03 mD [202]. Characterization of the flow behavior of CO2 and oil in the low permeability
formation with complex natural and hydraulically created fractures under the in situ conditions are
supposed to be emphasized, which is beneficial for improving the efficiency of CO2-EOR.

Apart from increasing oil recovery, CO2-EOR provides an additional advantage of CO2

sequestration, which could be an important economic incentive for early CO2 storage projects [203].
Typically, 3 tons of CO2 injection can produce approximately 1 bbl of incremental oil. It is shown
that about a 5% to 15% enhancement in oil production can be achieved by using CO2-EOR [204].
In the largest discovered fields over the world, it is estimated that approximately 470 billion barrels of
incremental oil could be produced simultaneously with 140 billion metric tons of stored CO2 by using
CO2-EOR [205].
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Figure 14. Conceptual steps of CO2-enhanced oil recovery (CO2-EOR) in fractured tight oil reservoirs ([201]).

The first CO2-EOR pilot project was implemented at the SACROC oil field in 1972 [206], in
which CO2 foam was implemented to alter the mobility and improve the sweep efficiency [207,208].
At present, CO2-EOR is a relatively mature technology that has been widely used in the petroleum
industry to enhance oil recovery for tens of years, with the capacity of more than 1000 million tons of
CO2 stored subsurface [209,210]. This technology has gained great success in North America. In the
USA, more than 260,000 bb/d are produced due to the application of CO2-EOR technology [211]. In the
Weyburn oilfield in Canada, the CO2-EOR project was conducted to extend the life of an oilfield.
About 20 million tons of CO2 is planned to be sequestrated in the oil reservoir [212,213]. In recent
years, the feasibility of CO2-EOR in China has been massively studied. The first CO2-EOR project in
China, i.e., the Jilin Oilfield, injected nearly 217,000 tons of CO2 with a storage efficiency of 96% by
April 2013 [214], and the CO2 capacity is about 600,000 tons [10]. The technology of CO2-EOR has
application prospects in the Shengli Oilfield and Bohai Bay Basin, with 6.7% incremental oil recovery
and 683 million tons of incremental oil production, respectively [215,216]. CO2-EOR also attracted
much attention in Europe. In Poland, the potential utilization of anthropogenic CO2 for CO2-EOR was
studied in the B8 oilfields in Baltic Sea and Brage on the Norwegian Continental Shelf [217], which is a
part of the ongoing PRO_CCS project funded by Norway Grants. The simulation results showed that
the total storage capacity of Brage and B8 oilfields are 33 and 4.8 million tons in 17 years of injection,
with an expected incremental oil production of 98 and 14.6 million bbls, respectively.

To co-optimize the CO2 storage and enhanced oil recovery, Ampomah et al. [218] proposed an
objective function (Equation (6)) considering both CO2 storage and oil production, which can be
optimized by the neural network and genetic algorithm. In the optimal case of the Farnsworth field
unit, more than 94% of CO2 could be sequestrated with approximately 80% of the oil produced, which
provides a guideline for the co-optimization of CO2 storage and EOR.

f = w1 × FOPT + w2 × FGIT (6)

where w is weight assigned to vector, FOPT is the cumulative produced gas, and FGIT is the cumulative
injected gas.
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Similarly, a framework to co-optimize the oil production and CO2 storage was developed by
Jahangiri and Zhang [219]. In the framework, the net present value (NPV) is treated as the optimization
objection function, which was solved by the ensemble-based optimization algorithm.

NPV =
T∑

t=1

C

(1 + r)t −C0 (7)

where t is the time step, T is the operation period, r is the periodic discount rate, C is the cash flow in
the time step that is determined by the price, injection, and production volume of CO2 and oil, and C0

is initial investment.
By using this method, the well injection patterns and injection rates for the maximum NPV can be

determined. In addition, the discrete time optimization model could be used for maximizing the total
profit in CO2-EOR operations, with consideration of both enhanced oil recovery and geological CO2

sequestration [220].
Artificial neural network models can be used to predict and optimize the performances of

CO2-EOR, as shown in Figure 15 during the multi-cycled water-alternating-gas process [221]. There are
four neurons in the input layer corresponding to water-to-gas injection time ratios (WAG), temperature,
permeability ratio, and initial water saturation, respectively. Subsequently, the oil recovery, oil production
rate, gas and oil ratio (GOR), and net CO2 storage amounts are set as the targets, which correspond with
four neurons in the output layer and with 10 neurons in the hidden layer. The oil recovery and net CO2

storage can be accurately predicted in this framework. For instance, the optimal injection scheme could be
obtained for a maximum economic profit in various reservoir conditions by using this method.

 

Figure 15. Artificial neural network structure of the models, Y represents oil recovery, oil production
rate, gas and oil ratio (GOR), and net CO2 storage amount [221].

The machine learning approach can also be applied to optimize oil recovery as well as CO2

storage [222]. As shown in Figure 16, a history matching model was developed based on production
history data in the CO2-EOR process under this optimization framework. Then, the hybridized
multi-layer and radial basis function neural network method were utilized to train a proxy model,
which is beneficial for increasing computational effectiveness in the optimization process. After a proxy
model with reliable accuracy was realized, the machine learning optimization algorithm was used
to obtain the optimal solution of the objective function that incorporates the role of parameters such
as oil recovery and CO2 storage. This work highlights the adaptability of a robust machine learning
approach for optimizing the CO2-EOR process. Considering the mature technology and huge market
demand, it can be concluded that CO2-EOR may play a more important role on the mitigation of CO2

than other strategies of CO2 utilization in the next few years.
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Figure 16. Flowchart of the optimization framework (modified from [222]).

4.1.2. CO2-EGR

The technology of CO2-EGR means that it enhances the gas recovery by CO2 injection. Enhanced
gas recovery is realized by both the displacement and re-pressurization of the remaining gas in a
depleting or depleted reservoir [223], especially for sour gas reservoirs in which CO2 is produced
mixed with the natural gas. The separated CO2 from the produced gas could be injected back into the
reservoir to enhance gas recovery. Additionally, CO2 has the potential to reduce the dew point pressure
of reservoir fluids in wet gas reservoirs, which is favorable for eliminating condensate blockage and
improving CH4 production [224,225]. It is estimated that up to 11% incremental gas recovery can be
achieved by CO2 displacement [223].

The feasibility of CO2-EGR has been investigated by many experimental and numerical
simulation studies [83,131,132,211,224,226–230]. Some typical displacement experiments in a variety
of temperature and pressure conditions, revealing the mechanism of CO2-EGR and providing a guide
line for the application of this technology, are summarized in Table 6.

Table 6. Typical displacement experiments on the CO2-enhanced gas recovery (CO2-EGR) process.

Rock Type Saturated Fluids T (◦C) P (MPa) Key Observations Ref.

Carbonate core CH4 20–60 3.55–20.79
Whether CO2 is in the gas, liquid, or
supercritical phase, it could enhance the
recovery of CH4.

[83]

Carbonate core Saturated with methane
with or without water 20–80 3.55–20.79 The coefficient of CO2 increases with

temperature and decreases with pressure. [231]

Berea
sandstone core

Dry core, initial saturation
of 10% water, and initial
saturation of 10% brine
(20 wt %), respectively

40 8.96 The salinity of connate water will decrease
the dispersion of CO2 in CH4. [232]

Sandstone and
carbonate core CH4 60–80 10–12

The residual water narrows the pore and
consequently increases the dispersion of
supercritical CO2 and CH4.

[233]

Sandstone core
CH4 and simulate natural
gas (90% CH4 + 10% CO2)

respectively
40–55 10–14

The dispersion coefficient of CO2 in the
simulate natural gas is larger
than that of CH4.

[234]

Sandstone core Formation water and N2 50 21

The gravity segregation effect is notable in
the porous and permeable core, while the
heterogeneity effect becomes dominant in
the low permeability of the core.

[235]

Bandera
sandstone core CH4 50 8.96 The gravity has significant effects on the

flow behavior of SCO2 at lower flow rates. [236]
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The most critical hurdle in CO2-EGR is the breakthrough of CO2 in the reservoir producing
CO2-contaminated gas [131,237]. Actually, the preferential pathway has a significant impact on CO2

breakthrough and ultimate CH4 recovery [238], so the geological formations for CO2-EGR, especially
the microstructures, are supposed to be characterized in detail. Irreducible water in reservoirs also
has an impact on the mixing of CO2 and CH4 [239]. The dispersion increases with irreducible water,
because the pores occupied by irreducible water lead to much narrower pores and more tortuous
flow paths.

In addition to the above-mentioned geological parameters, engineering parameters also have a
significant influence on gas mixing and CO2-EGR performance [131,240,241]. CO2 injection with a
horizontal well in the lower parts and CH4 production in the upper parts of reservoirs could mitigate
the breakthrough of CO2 at the production well [131,242]. CO2 injection during the early decline
phase of natural gas production is beneficial for ensuring the displacement in supercritical phase and
achieving a high CH4 recovery [131]. On the contrary, it may cause the trapping of CH4 in unswept
areas under high pressure. CO2 injection in the late phase could avert this shortcoming and improve
the performance of CCS, which is more attractive when the CO2 sequestration is considered [131,243].
On the whole, it can be concluded that the time of CO2 injection to obtain a maximum incremental
recovery is highly affected by the allowable produced CO2 concentration at the production well, which
is determined by the economics of CCS projects [244].

Whether the CO2 is injected in the early or later stage, it is recommended to inject CO2 at a
relatively high pressure to ensure the supercritical phase in the displacement process. In this case, the
distribution of CO2 is dominated by gravity forces [245]. As the CO2 is much more dense than CH4,
CO2 will occupy the smaller space and spread at a slower rate, which could mitigate CO2 breakthrough.
However, if the injected CO2 is in gas phase in the reservoir, the CO2 will occupy a large volume and
mix with the CH4 more easily, which can lead to an early CO2 breakthrough [245].

Regarding the injection rate, of course, a high injection rate can increase the gas recovery [241].
However, a high injection rate also brings excessive gas mixing, which is harmful for methane
production. It is suggested that the injection rate should be lower than the production rate to avoid an
early breakthrough of CO2 [237]. In Al-Hasami’s study [223], 9% incremental methane recovery can
be achieved when the CO2 injection rate is only 13% of the production rate. Instead of the constant
injection rate, a constant pressure injection scheme was proposed to avoid potential risks related to
high pressure [246]. The optimal injection strategy could be achieved by an optimization code based
on genetic algorithm and multi-phase simulator TOUGH2 (GA-TOUGH2).

Geological parameters also greatly affect the performance of CO2-EGR. The viscous and gravity
force affecting parameters e.g., permeability, formation dip, and thickness, play a vital role in the
stability of displacement. The fluid properties such as the diffusion coefficient and water salinity take
second place on affecting the CO2 breakthrough [244]. Specifically, the connate water in reservoirs has
a positive impact on CO2-EGR performance. As a result, the dissolution of CO2 in reservoir fluids is
favorable for enhancing the storage capacity and mitigating the CO2 breakthrough in the production
well [223,237,247].

There are several CO2-EGR projects around the world, including the Alberta gas field project,
the K12-B field project, and the CLEAN project. The Alberta gas field project is located in Canada.
In this project, impure CO2 with less than 2% of H2S has been injected into the depleted Long Coulee
Glauconite F gas Pool in southeastern Alberta since 2002, but the operation was terminated in 2005
because of the breakthrough of acid gas [245]. The K12-B gas field is located in the Dutch continental
shelf in the North Sea, with a reservoir depth of about 3800 m below the sea level. The reservoir
pressure has dropped from 40 MPa to 4 MPa with a production of 90% of the initial gas in place.
The initial reservoir temperature is 128 ◦C [248]. Over 0.1 million tons of CO2, which is separated from
the produced gas directly at the offshore platform, has been injected over a period of 13 years since
2004. Monitoring data shows that the well integrity has remained stable [249]. Furthermore, no major
complications occurred in the lifetime of this project, which proves that the safety of CO2-EGR can
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be ensured [250]. The CLEAN project was conducted between 2008 and 2011 to inject CO2 into the
Altmark natural gas field in Germany. The risk assessment of this project has been conducted based
on digital databases. The results showed that the safety and efficiency of EGR technology based on
CO2 injection could be achieved. Meanwhile, the borehole integrity could be achieved without any
intervention, providing a guideline on CO2-EGR [251].

Generally, the technology of CO2-EGR is still immature and needs more efforts to address the
problems, such as mitigating the CO2 breakthrough and achieving a favorable performance in both
enhancing CH4 recovery and CO2 sequestration. The economic success is largely dependent on the
political developments in the next years and decades [251].

4.1.3. CO2-EWR

Similar to CO2-EOR and CO2-EGR, CO2-EWR is a methodology combining CO2 sequestration
and saline water production [252–254], which is developed from the technology of CCS in saline
aquifers. Figure 17 shows a diagram of CO2-EWR technology. The operation of CO2-EWR could
decrease formation pressure and avoid potential leakage through extracting formation water, thus it
could further improve the storage efficiency and achieve higher security and stability of large-scale
geological CO2 sequestration [255]. Besides, the produced saline water could be used for drinking,
industrial, and agricultural utilization after desalination treatment such as using a high-efficiency
reverse osmosis system [252]. Meanwhile, the deep brine resources obtained through the cascade
extraction may create economic profit and fill the cap of cost in the operation of CCS technology [253].
Kobos et al. [252] proposed a numerical simulation model to investigate the feasibility of CO2-EWR
based on a hypothetical case study from a representative power plant and saline formation in the
southwestern part of the United States. In their work, the extracted saline water was treated with
a high-efficiency reverse osmosis system and then used as power plant cooling water. The results
showed that the coupled technology of CO2 storage and saline water extraction and treatment is
feasible for tens to hundreds of years.

 

Figure 17. Depiction of the CO2-enhanced water recovery (CO2-EWR) technology [253].

Unfortunately, the added cost of extraction wells is considered a shortcoming of CO2-EWR [252].
Furthermore, the production of brine must be ceased once the breakthrough of CO2 occurs [256].
In general, under effective engineering design, the CO2-EWR technology has application prospects.

4.1.4. CO2-ESGR

In regard to CO2-ESGR technology, the CO2 is injected into shale gas reservoirs to replace and
displace shale gas, for the ultimate goal of enhancing the shale gas recovery, with a side benefit of
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CO2 sequestration synchronously [257]. The dominate mechanism of CO2-ESGR is the competitive
absorption of CO2 by shale matrix [199], such as with a CO2 sorption capacity up to 1 mmol per gram
for the Muderong Shale [258]. In addition, the pressure gradient displacement plays an important
role [259]. Liu et al. [259] conducted a numerical simulation to evaluate the feasibility of CO2-ESGR, and
results showed that over 95% of the injected CO2 was instantaneously adsorbed and sequestrated in the
reservoirs. However, only limited ESGR performance was detected due to the limited communication
between the wells in this study. The feasibility of CO2-ESGR on the Devonian Gas Shale Play of
eastern Kentucky was investigated by Schepers et al. [127]. They found that the huff-n-puff scenario
was not suitable, while the full-field continuous CO2 injection was a good option. About 300 tons of
CO2 were injected within one and half months. A significantly increased recovery was attained, and
approximately half of the injected CO2 was sequestrated. Therefore, it can be concluded that there
remains a long way before the application of CO2-ESGR, and the contribution to the mitigation of CO2

emission is still limited.

4.1.5. CO2-ECBM

In CO2-ECBM, the CO2 is injected into un-mineable coal seams to displace and replace coal bed
methane, simultaneously achieving CO2 sequestration in the coal seams. Similar to the CO2-ESGR,
CO2 works as displacing fluid and is competitive in the process of CO2-ECBM [260,261]. The potential
ECBM recovery in China is estimated to be over 3.751 Tm3 [100], highlighting the superiority of this
technology. However, the injected CO2 in CO2-ECBM projects is usually less than 1 million tons per
year, and many coal seams usually with low permeability such as those in Western Europe are not
suitable for the application of this technology [148]. Herein, the role of CO2-ECBM on mitigating the
emission of CO2 is limited.

4.1.6. CO2-EGS

Geothermal energy is regarded as a clean, renewable, and reliable energy for its advantages of
sustainability and environment-friendly characteristics [262]. It is extracted through water traditionally.
Brown [263] firstly proposed the concept of using supercritical CO2 instead of water as the heat exchange
fluid in an EGS. It has been proven that the heat extraction efficiency of CO2-based systems is superior
to water-based systems. If this concept is popularized, more regions worldwide with relatively low
temperature can be used for electricity production in an economically beneficial manner [254,262,264].
In addition, the mobility of CO2 is better than that of water, which is beneficial for the production of
fluids and the extraction of geothermal energy.

In recent years, the technology combining geothermal extraction and CO2 storage has gained more
attention [264,265], which can achieve an efficient geothermal energy extraction as well as mitigating
CO2 emission. For example, the regional energy deficit could decrease by 22.1% and the CO2 emissions
could decrease by 31.3% in the Latium Region in Central Italy if the CO2-EGS was applied [266].
However, the technology of the CO2 plume geothermal system is still at the conceptual stage and
pre-feasibility studies phase, and many efforts need be devoted toward its study before its application.

4.1.7. CO2-IUL

CO2-IUL is a technology that injects CO2 and leaches uranium ore out of geological formation
through reaction with ore and minerals in the ore deposits [191]. CO2-IUL could increase the recovery
of uranium and simultaneously be favorable for CO2 storage, especially for sandstone-type uranium
mining [191]. However, the global annual demand of natural uranium is only around 0.1 million
tons [267], thus it may be difficult for CO2-IUL to reduce CO2 emission significantly due to its limits
and demands.
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4.1.8. CH4-CO2 Replacement from Natural Gas Hydrates

The technology of CH4-CO2 replacement from natural gas hydrates (NGH) is regarded as a
win–win method for exploring NGH and simultaneously storing CO2 in the form of CO2 hydrates
formation [268–271]. As shown in Figure 18, the mechanisms of this technology can be divided into
four steps. Firstly, the CO2 molecule diffuses into the surface of CH4 hydrate and decreases the stability
of CH4 hydrate structure (Figure 18a). Secondly, due to CH4 hydrate dissociation, the CH4 molecule
escapes from the hydrate cage (Figure 18b). In the next stage, the hydrate is re-formed. As shown in
Figure 18c, the CO2 molecules mainly occupy the large cage, while CH4 molecules occupy the small
cage. Finally, the CH4 molecules diffuse from the surface of hydrate and change into gas, while the CO2

molecule diffuse into deeper hydrate layer to continue replacing the CH4 in hydrate (Figure 18d) [270].
To improve the performance of CH4–CO2 replacement from natural gas hydrates, a thermal stimulation
approach was proposed [271]. By using this approach, the CH4 replacement exhibits an upper limit of
64.63%, and the maximum CO2 storage efficiency can reach up to 78.40%–96.73% [271].

 

Figure 18. Schematic diagram for CH4–CO2 replacement in hydrates [270].

Based on the concept of thermal stimulation to CH4–CO2 replacement, a geothermal-assisted CO2

replacement method (GACR) was proposed by Liu et al. [272]. As described in Figure 19, the CO2 with
ambient temperature was injected into geothermal reservoir for heating, then the heated CO2 flows
upward into the hydrate-bearing layer (HBL) to enhance the NGH dissociation. Numerical simulation
results showed that the GACR method can significantly accelerate NGH dissociation and increase CH4

recovery. However, the application of this method is limited by a strict precondition that a thermal
reservoir exists below the methane hydrate reservoir.

 

Figure 19. Schematic well group configuration diagram of the geothermal-assisted CO2 replacement
method (GACR) [272].
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The research on CH4–CO2 replacement from natural gas hydrates is still in the preliminary
experimental and numerical study phase [271,273,274]. However, it is expected that great progress will
be made in the near future under the stimulation of methane hydrate production and CO2 sequestration.

In a short summary of this part, the utilization of CO2 for resources production and CO2 storage are
encouraged to be designed for the whole process of engineering operation to optimize its performance.
To achieve this goal, artificial intelligence may play an important role. Although CO2-EOR has
been used commercially, the other technologies are in the pilot plant phase in terms of technology
readiness level [204]. CO2-EOR would be the most promising technology combining the utilization
and sequestration of CO2 in the next few years. CO2-EGR is another promising technology, whose
application is limited by the mixing of CO2 and CH4 in the reservoir. Considering that the mixing
behavior is affected by the geological parameters, i.e., porosity, permeability, residual water saturation,
and engineering parameters, i.e., injection rate, injection pressure, production rate, a site selection
system for CO2-EGR project is encouraged to be developed.

4.2. Co-Injection of CO2 with Impurities

The biggest obstacle for large-scale CO2 storage is the lack of financial incentives [12].
Most strategies of CO2 storage could not generate profit, so the measures to decrease the cost
of CO2 storage is very important and beneficial for the large-scale application of this technology. It is
estimated that the cost of carbon capture and storage is dominated by the process of capture and gas
separation, which costs $55 to $112 per ton of CO2 [12]. Therefore, co-injection of CO2 with impurities
can be a cost-effective option for CO2 sequestration [275].

The impurities may be co-injected with CO2 including CH4, H2S, SO2, N2, and O2. Among them,
H2S and CH4 are usually mixed with CO2 in produced acid gas, which can be used in CO2 storage.
Other gases are the main components of flue gas, which is captured from the major CO2 emission
sources such as power plants [276].

The impure CO2 can also be used for CCUS especially for CO2-EOR with multicontact miscible
CO2 flooding [195]. In the multicontact miscible displacement procedure, the MMP is a key control
variable due to it having a notable impact on the design and development of assets and being closely
related to the economically feasibility, which is affected by the impurities in CO2 a lot. In general, the
presence of H2S and SO2 in CO2 can reduce the MMP [195,277], while the presence of CH4, N2, and O2

can increase the MMP of CO2 [278,279], which is disadvantageous for the CO2-EOR operation and
may increase the risks for the fracturing of the formation due to the higher injection pressure required.

The presence of impurities may change the other CO2 thermophysical properties and phase
behavior [280], and affect the performance of CCS. N2 would lead to a delay for CO2 breakthrough
when it is co-injected, because the solubility of CO2 in irreducible water is much higher than that
of N2 [281]. However, the N2 would decrease the density of the dissolved phase and increase the
risk in the long term [282]. Generally, the storage capacity of reservoirs decreases proportionally to
the concentration and the compressibility factor of impurities when N2 is co-injected with CO2 [82].
For instance, the reduced storage capacity may be even higher than the volume fraction of impurities
when O2 is included. However, the negative impact of impurities on capacity could be alleviated by
storing the impure CO2 in a reservoir with high temperature [276].

There is no significant effect of H2S, with a fraction of less than 30%, as impurity on the dissolution
of CO2 [275]. However, when it was co-injected with CO2 under the condition of 20 MPa and 45 ◦C,
the H2S with a concentration over 20% has a potential to decrease the interfacial tension and increase
the contact angle, leading to a low capillary force [283]. This means that H2S may increase the risks of
gas leakage, which should receive attention. The impure CO2 with H2S can be trapped by hematite
even in a dry system driven by the reduction of ferric iron in hematite by sulfide species, verifying the
feasibility of co-injection of CO2 with H2S [284].
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CH4 produced from an acid gas reservoir may also serve as impure gas and be used in CCS
projects. There is no significant negative influence of CH4 on the interfacial tension and wettability
even with the concentration of up to 20% [283]. The storage capacity of reservoirs also decreases
proportionally to the concentration and compressibility factor of CH4 [82]. As the concentration of
CH4 in injected CO2 is very low, its effect on the CCS is minor and can be neglected.

The presence of SO2 usually controls the acid-induced reactions with calcium-rich minerals when
it is co-injected into reservoirs as an impurity, but the quantitative effect is very minor and could be
negligible based on the German Bunter Sandstone [285]. Generally, the porosity in sandstone increases
under the impact of SO2, while the porosity of the intermediate shale layer decreases because of
the conversion of dominant calcite to anhydrite [286]. For instance, the conversion of Ca2+ bearing
carbonate to anhydrite is observed when the SO2 was co-injected with CO2 into the German Bunter
Sandstone [287]. A field study was conducted to investigate the geochemical impacts of SO2 and O2 as
impurities on the reactions of minerals and fluids in a siliciclastic reservoir [288]. The CO2-saturated
water with impurities was injected into reservoirs and allowed to interact with minerals for three weeks.
The results showed that the pyrite dissolved due to the O2 acting as an oxidizing agent. However, the
concentrations of SO2 and O2 are 67 ppm and 6150 ppm respectively, which is too low to lead to a
significant effect on fluid–rock interaction. It could be inferred that the impact of impurities on the
interaction with formation rock is highly dependent on the composition of minerals, which should be
analyzed site specifically. It should be mentioned that the co-injection of SO2 and CO2 could suppress
Joule–Thomson cooling, which is a beneficial thermal consequence for CCS [92].

In short, co-injection of CO2 with impurities is an effective strategy to reduce the cost of CO2

storage. However, the interaction of the impurities with formation rock, and the effect of impurities on
thermophysical properties of reservoir fluids need to be further studied to reduce the uncertainties in
CO2 storage process.

4.3. Prospects of CCS/CCUS Technologies

The economic factor for the CCS projects is believed to be one of the most important incentives
for the industry. The price for CO2 emissions at the first major carbon market and also the biggest
one, i.e., the European Union Emission Trading System, is approximately $7 per ton of CO2, which is
much lower than the cost of CCS [12]. Therefore, there are no financial incentives of CCS for industries
unless a higher price of carbon emission is set, demonstrating the important role that should be played
by the government in the mitigation of CO2 emission.

Table 7 shows the large-scale CCS projects (more than 0.4 Mtpa) throughout the world from 1972
until the end of the 2020s. It can be seen that the CCUS for EOR and CCS in saline formations have
made major contributions toward CO2 storage, which is in accordance with the prediction model
formulated by Mac Dowell et al. [203]. Nearly half of 51 large-scale CCS projects scheduled by the end
of the 2020s are designed for EOR, which shows its economic viability in EOR operations. In addition,
21 projects of CCS in saline formations are also planned, since its CO2 storage capacity may up to
4 Mtpa. Moreover, the average CO2 capture capacity of CCS in depleted gas fields is much greater
than that of EOR and may reach to 2.8 Mtpa, showing the potential of the mitigating of CO2 emissions.
However, on account of the great extent of the mixing between CO2 and CH4, which is an obstacle for
enhancing additional recovery of CH4, there are only three large-scale CCS projects in depleted gas
fields in the near future. With the development of technology to address this issue, CCS in depleted
gas fields can play a more important role in CO2 storage.
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Table 7. Large-scale CCS projects (more than 0.4 Mtpa) from 1972 to the end of the 2020s (data
from [10]).

Strategy Under
Evaluation

EOR

CCS

TotalSaline
Formation

Depleted
Gas Fields

Quality of project 24 3 21 3 51
Capture capacity (Mtpa) 42.11–43.41 8.1–8.6 40.35–85.1 7.5–8.5 98.06–145.61
Average capture capacity

(Mtpa) 1.75–1.81 2.7–2.87 1.92–4.05 2.5–2.83 1.92–2.86

5. Conclusions

The status of the strategies for CO2 storage has been discussed in view of assessing the security as
well as improving the cost-effectiveness. In addition, the role of CCS technologies and their potential
contribution on the mitigation of CO2 emissions in future are summarized. Based on the studies
carried out in this review, the following conclusions have been obtained.

Firstly, the sequestration of CO2 in depleted oil and gas reservoirs could play an important
role in reducing CO2 emissions in the near future, because the existing installed equipment and
comprehensively characterized reservoir integrity will significantly reduce the cost of CCS. The leakage
of CO2 through abandoned wells is an obstacle for the application of this technology. To address this
issue, the long-term experiments and molecular dynamic simulations are needed to figure out the
kinetics between CO2 with the well string, cement, as well as formation minerals under the relevant
conditions. Secondly, if implemented on a large scale, CO2 storage in saline aquifers may make
the biggest contribution in reducing CO2 emissions due to its huge storage capacity. Moreover, the
scientifically proven technologies such as CO2 storage in coal beds, deep ocean, and deep-sea sediments
are still immature technologies and do not appear to be capable of making a great contribution to the
mitigation of CO2 emissions in the foreseeable future.

Another point is the need to investigate accurate risk assessment associated with CO2 storage and
provide a guideline for the design of CCS projects. Attempting to make the CCS assessment more
intelligential, the machine learning technology ought to be used.

It has also been demonstrated that the direct mineralization of flue gas by coal fly ash would be
a promising technology result since the gas could be mineralized without separation. In addition,
the pH swing mineralization may be another promising technology for the sequestration of CO2 due
to the sustainability. The recyclable and cheap chemical reagents ought to be introduced into the
mineralization process to make this technology more cost-effective.

Among the variety of CCUS strategies, CO2-EOR followed by CO2-EGR is supposed to play
the most important role in the mitigation of CO2 in the next few years. The utilization of other
strategies seems to be negligible in the near future. The co-injection of impurities with CO2 is an
effective methodology to decrease the overall cost of CO2 storage. The physical and chemical effects of
the impurities on reservoir fluids and formation rock should be studied site specific, to reduce the
uncertainties in CO2 storage.

The government is supposed to play a major role in mitigating CO2 emission, a higher tax on CO2

emissions and financial subsidy on CO2 storage is encouraged to accelerate the deployment of CCS
projects at a large-scale.
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Abstract: This paper proposes the application of a cradle-to-grave multi-pronged methodology to
obtain a more realistic carbon footprint (CF) estimation of electro-intensive power electronic (EIPE)
products. The literature review shows that methodologies for establishing CF have limitations in
calculation or are not applied from the conception (cradle) to death (grave) of the product; therefore,
this paper provides an extended methodology to overcome some limitations that can be applied
in each stage during the life cycle assessment (LCA). The proposed methodology is applied in
a cradle-to-grave scenario, being composed of two approaches of LCA: (1) an integrated hybrid
approach based on an economic balance and (2) a standard approach based on ISO 14067 and PAS
2050 standards. The methodology is based on a multi-pronged assessment to combine conventional
with hybrid techniques. The methodology was applied to a D-STATCOM prototype which contributes
to the improvement of the efficiency. Results show that D-STATCOM considerably decreases CF and
saves emissions taken place during the usage stage. A comparison was made between Sweden and
China to establish the environmental impact of D-STATCOM in electrical networks, showing that
saved emissions in the life cycle of D-STATCOM were 5.88 and 391.04 ton CO2eq in Sweden and
China, respectively.

Keywords: carbon footprint (CF); life cycle assessment (LCA); hybrid life cycle assessment;
electro-intensive power electronic (EIPE) products; energy efficiency

1. Introduction

In recent decades, the electronic industry has grown as well as its greenhouse gas (GHG) emissions,
generating emissions comparable with the airline industry. On the other hand, governments and
organizations have created standards such as the Kyoto protocol [1] and Cop 21 [2], in which countries
that are involved should follow the guidelines to reduce GHG emissions in the short, medium, and
long terms. However, a concrete method to estimate carbon footprint (CF) in the electronic industry
that is comparable with other CF industry estimations has not yet been developed [3].

At the present time, there is no standardized legislation to control GHG emissions of the electronic
industry. However, governments and organizations around the world have created policies to
regulate GHG emissions of industries. In the United States, the environmental protection agency
(EPA) promulgated the “Mandatory reporting of greenhouse gases” (74 FR 56260) in 2009, requiring
facilities that emit more than 25,000 metric tons of greenhouse gases per year to report annually on
their emissions [4]. EPA mandatory reporting of GHG data collected by the Congressional Budget
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Office in 2010 helped to develop a study titled “Effects of the carbon tax on the economy and the
environment” [5–7]. South Korea approved a law to establish a commercial system of GHG emissions
in 2015 and other laws to obtain 11% of the electricity from renewable sources in order to reduce its CF.
China also approved laws to use renewable energy to supply electricity and to install electro-intensive
power electronic (EIPE) products to improve efficiency [8,9].

One of the COP 21 objectives is to shift the energy sector onto a low-carbon path that supports
economic growth and energy access, making the energy sector more resilient to climate change [10].
EIPE products are devices that can contribute to the improvement of energy efficiency and consequently
to CF reduction. Therefore, researchers around the world have focused their efforts on the measurement
and reduction of CF when EIPE products are used: Mostert et al. [11] compared several electrical
energy storage technologies regarding their material and CF when renewable energy technologies
are used. Due to renewable energy sources being intermittent, batteries were sized in order to obtain
the minimum CF and, at the same time, to guarantee the electricity service. Siraganyan et al. [12]
designed a tool to evaluate the environmental feasibility of solar photovoltaics, solar thermal panels,
and energy storage technologies using CO2eq estimation. Xie et al. [13] performed a planning exercise
of an electric power system management with carbon emission constraints, concluding that the use of
wind power and hydropower would be the best choices in terms of CF reduction.

In this paragraph are the techniques or methodologies that are conventionally used for CF
estimation. There are three scopes that define the quality of CF estimation: scope 1 considers direct
emissions from operations controlled by manufacturers, scope 2 considers indirect emissions associated
with energy consumption, and scope 3 considers other indirect emissions detailed in downstream
transportation and distribution of the product. After calculating emissions associated with scope 1, 2,
and 3, the sum of these is divided by the total production to get the emission factor (EF) [14]. Life cycle
assessment (LCA) is the guide to estimate CF of any product due to LCA-defined stages that are
consecutive and interlinked. The LCA stages are raw material extraction, manufacturing, distribution,
usage, and final disposal. There are different LCA techniques to estimate CF [15]. Conventional
LCA approaches are process-based (PA) LCA and input–output-based (IOA) LCA, which allow for
estimating the environmental impact. PA LCA uses a bottom-up approach to address CF during the
entire life cycle of a process or a product; nevertheless it defines boundary selection per activity of
a stage that can be ambiguous or can generate a truncation error, which can be as high as 50% [16].
IOA LCA considers an economic assessment to estimate CF using high-level aggregations per economic
sector. Moreover, it underestimates the emissions of the involved sectors in the supply chain [17].
The PA and IOA approaches only cover scopes 1 and 2, generating a CF estimation that only includes
25% of the emissions. Standards used to estimate CF are based on these approaches [18]. For example,
PAS 2050 [19] specifies the requirements for LCA of GHG emissions for goods and services, covering
all activities from the acquisition of raw materials until its management as waste. ISO 14067 [20]
developed an analysis for CF, providing requirements and guidance to quantify and report an inventory
of GHG emissions associated with a specific product.

There are hybrid LCA techniques that combine PA and IOA approaches to generate a more
accurate CF estimation because they take into account all the scopes. These type of approaches search
for reduction in ambiguities in the estimations, integrating the largest amount of information from the
supply chain. There are three types of hybrid analysis: (1) tiered hybrid analysis, (2) input–output
hybrid analysis, and (3) integrated hybrid analysis [3]. In the following paragraph, the first two will be
described, while the third one is part of our approach and will be described in the methodology section.

Tiered hybrid analysis is a detailed process-based analysis, which is carried out when
environmental impact data is available for processes associated with the development of a product.
If part of the data related to the development processes is unavailable, it can be covered by other
hybrid approaches. Krishnan et al. [21] estimate the environmental impacts of the high-purity
specialty chemicals and materials used in semiconductor manufacturing through this hybrid approach.
LCA data on such specialty is private because chemical producers are reserved with the processes
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and materials used in the development of their product. In this case, processes that are not available
are studied using an input–output hybrid analysis. Input–output hybrid analysis depends on the
information available by each sector. In this analysis, it is advisable to have detailed input–output
data of the processes and to discompose the information by sectors to increase the precision of the
estimation. Nakamura et al. [22] applied an input–output hybrid approach to study environmental
impacts from scraps and byproducts during the production processes of metallic elements for electronic
products such as fuel cells, LEDs, and solar cells. The production of metals such as gold, silver, bismuth,
and indium generates metal subproducts such as copper, lead, and zinc.

In this study, the application of an extended methodology is proposed, which is based on existing
techniques used to estimate CF. This methodology includes raw material extraction, manufacturing,
distribution, usage, and final disposal stages. For the raw material extraction and manufacturing
stages, the proposed methodology implements an integrated hybrid analysis for the cradle-to-gate
scenario. For posterior stages, to complete the cradle-to-grave scenario, the application of ISO 14067
and PAS 2050 standards is proposed. Due to EIPE products being used to improve the efficiency of the
system, a usage stage is proposed that involves the environmental implications of the incorporation
of an EIPE device in an electrical grid. Last, in the final disposal stage, three end-of-life methods are
presented that depend on the level of the technology and the capacity of the solid waste management
center. The contribution of this study is to propose a detailed and clear methodology to estimate CF,
to propose a methodology that can be applied to the life cycle of the product under the cradle to grave
scenario, and to include the usage stage of the product in the estimation of CF. This paper is organized
as follows: Section 2 includes the details of the proposed methodology, Section 3 presents the results
applied to a D-STATCOM of 30 kvar, and Section 4 highlights the main aspects and conclusions of
the paper.

2. Proposed Methodology: Cradle-to-Grave Multi-Pronged Methodology

CF estimation of an EIPE product requires a comprehensive multi-pronged approach that includes
the use of product group-oriented standards, hybrid LCA techniques, and integration of CF into the
supply chain considering GHG emissions from cradle-to-grave. Commonly, methodologies to estimate
CF are based on PA or IOA LCA. However, these LCA approaches only cover scopes 1 and 2. Hybrid
LCA considers the three scopes and uses high-level aggregation of the product or the data that is
available. In this paper, an integrated hybrid analysis is used to estimate CF in the cradle-to-gate
scenario because there is data available from the producers. The later stages are analyzed based on
PAS 2050 [19] and ISO 14067 [20] standards because there is no control over these stages and they are
subject to assumptions depending on where the device is installed. Figure 1 shows a scheme of the
methodology applied to perform the CF estimation.

Figure 1 shows the entire methodology to estimate CF using an LCA approach per stage.
Estimation in (a) is based on the hybrid LCA method from cradle to gate. Estimations in (b), (c),
and (d) are based on standards ISO 14067 [20] and PAS 2050 [19], allowing the estimation of CF in the
distribution, usage, and end-of-life stages. Finally, in the final step (e), the CF estimations from previous
stages are added up to generate an approximate estimate of CF in the life cycle of an EIPE product.

Stage (a) takes into account processes related to raw extraction material and to manufacturing of
an LCA. In this stage, an economic balance model is used to estimate CF similar to the estimation of CF
for electronic products proposed by References [3,23]. In stage (a), it is required to divide the analysis
into two sections. The first section has inputs as the bill of components, the emission factor related
with extraction per material used in the product, and the emission factor related with the assembly of
components. The next step considers the disassembly of the EIPE product which comprises material
content data and information about the processes involved. Then, with the weight of the materials,
CO2eq emissions are estimated using the corresponding EF.
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Figure 1. Methodology diagram for electro-intensive power electronic (EIPE) carbon footprint (CF)
estimation: The stages considered for CF estimation are (a) manufacturing, (b) distribution, (c) usage,
(d) end of life, and (e) total cycle life emissions. Processes considered for each stage are also shown.

In stage (a), the second section takes into account CO2eq emissions that are not considered in the bill
of components using an economic balance. This method uses economic data which is processed in the
Economic Input-Output Life Cycle Assessment (EIOLCA) model [24]. This model estimates two economic
correction factors: remaining value and additive input–output (IO). After, these correction values are
extrapolated to CO2eq emissions. Finally, results from the economic data and the material data are added
up in order to get manufacturing CO2eq emissions [3,23].

Stage (b) estimates CO2eq emissions related to the distribution of a product. It starts collecting
shipment data related to the product as weight, volume, and packaging. In the next step, a route should
be defined from the factory to the customer, specifying the type of transport. All this information feeds
a carbon calculator [25], which gives the emissions associated with the distribution stage.

Stage (c) estimates the CO2eq emissions related to usage of the product. EIPE products have a direct
impact on the electrical grid. Thus, the analysis requires definition of the electrical grid where the device
will be used. After this definition, the impact of the product on the electrical grid is analyzed in terms of the
energy consumed during its useful life. It is important to highlight that a calculation of saved energy (SE)
must be included for a more realistic CF estimation. Many EIPE products are installed in power networks
to improve processes or to solve some limitations. In general terms, they are directly or indirectly used to
increase the electric power system efficiency so that EIPE products facilitate the reduction of the energy
consumption; thus CF emissions are significantly reduced in most cases.
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Stage (d) estimates the CO2eq emissions related to end-of-life of the product. This stage is different
from the previous ones because it takes into account three methods of disposal: reuse, recycle, and disposal.
Each one has its own implications with a direct relationship with the location of the product [26]. Estimation
of CO2eq emissions uses an EF factor per material per method of disposal in a specific place.

Finally, the results of manufacturing, distribution, usage, and end-of-life stages are added up to
obtain total life cycle CO2eq emissions.

2.1. Hybrid LCA to Estimate CF in Cradle-to-Gate Scenario

The integrated hybrid analysis, described in stage (a) of Figure 1, is the most appropriated method
to estimate CF of an EIPE product. This method uses the computational mathematical structure of
LCA, along with input–output analysis and an economic balance. It collects data on materials and
components directly from the dismantling of the product rather than relying on general databases
or published material data. In addition, it collects data on energy consumption at the process level
through industrial reports and literature review for stages of extraction and production of bulk
materials, production and assembly of the components of the product, and its final manufacture.
To assure the minimum cut-off error, this approach adds an Economic Input–Output (EIO) correction
to check inputs in the supply chain that are not involved in the process-sum inventory. The EIO
correction is composed of two factors: additive and remaining value (RV) [27]. The additive factor
accounts for product components with specific economic data on requirements per product, omitting
involved processes. The RV estimates the contribution from all the remaining, unaccounted sectors
based on the available economic value of the product [23]. Equation (1) depicts a simplification of
the model:

E = EProcess + EAdditive + ERV (1)

where EProcess represents energy used in processes considered in the analysis (for example,
semiconductor fabrication and board circuits assembly). EAdditive represents the involved portion of
other industries that are not directly considered in the EProcess because the process data are restricted
(for example, using the price of the chemicals used in the assembly due to the lack of knowledge
of the process of its manufacture). Also, economic input–output models are formulated in terms of
the producer or purchase prices. The production cost is the price of the product when it leaves the
factory, while the customer price considers the cost of manufacturing, transportation, distribution,
and sales margins [28].

Finally, ERV estimates the contributions of the processes using an EIO model to generate the
economic contribution of the sectors involved. This approach considers the RV in the manufacturing
process that is not covered in the additive or process analysis [29].

2.2. Distribution Stage

In the shipment of merchandise, CF refers to direct consumption of energy and/or fuel. Companies
move their merchandises by air, land, and sea transport. Because of this diversity, a simplified equation
based on ISO 14067 [20], PAS 2050 [19], and the GHG Protocol [30] is implemented. Stage (b) of Figure 1
describes in detail how to estimate the CF related to distribution. This estimation considers measurements
of different types of transport to ship the merchandise until its final destination.

TE = ∑ M × D × EF (2)

where TE is the total GHG emissions in kg CO2eq related to the shipment and M refers to the mass
(kg) of the merchandise when it is transported by air or land. When considering sea transportation, M
refers to the occupation volume (m3). D is the distance traveled during transport, and EF is a specific
emission factor (g CO2eq/km) that considers relevant load factors to allocate CO2eq emissions.

285



Energies 2019, 12, 3347

2.3. Usage Stage

The estimation of CF in the usage stage of an EIPE device starts as an estimate for an electronic
device based on PAS 2050 [19] and ISO 14067 [20]. The equation proposed in these standards estimates
the annual average of energy emission factors for specific countries, considering the average energy
consumption of the device in the country. Equation (3) shows the expression for the estimation:

TE = T × C × EF (3)

where TE is the total GHG emissions during their useful life (g CO2eq); T is the average time the
device is working (h); C is the average electric power consumption (kWh), which depends strictly on
the designer; and EF is the specific emission factor that depends on how electricity is generated in the
country where the device is located (g CO2eq/kWh).

However, to determine the impact of using the EIPE device on the electric grid, it is necessary to
account for generated emissions with and without the device in the electric network. This estimation
is performed by means of Equation (3) as described in stage (c) of Figure 1. Thus, ΔTE is proposed,
which allows for the consideration of the difference between the CF of the electrical network with or
without EIPE throughout its useful life. The result can be positive, negative, or zero. If it is negative,
the results represent the saved emissions during the useful life of the device. If it is positive, the results
show the total emissions generated during the useful life of the device. If it is zero, the electricity grid
does not suffer changes in its emissions with or without a device.

2.4. End-of-Life Stage

When a product reaches the end-of-life, it can be recycled, reused, or disposed of. Methods that
consider emissions in this stage are based on PAS 2050 [19] and depend on the final treatment given
to the EIPE product or any other electrical product. When an electrical product reaches end of life,
it cannot be used to produce energy through combustion because of its properties. Section (d) of
Figure 1 shows the options to dispose of EIPE products. If the EIPE product is disposed of like waste
in a landfill, it will not generate considerable GHG emissions because it is not composed of organic
matter. The remaining disposal methods, reuse and recycling, generate considerable emissions.

2.4.1. Treatment of Emissions Associated with Reuse

Reuse refers to giving new use to some part of the product instead of discarding it. PAS 2050 [19]
considers the next expression to simplify the calculation of GHG emissions through Equation (4):

GHG emissions =
a + f

b
+ c + d + e (4)

where a is the total life cycle GHG emissions of the product, excluding use-phase emissions; b is the
anticipated number of reuse instances for a given product; c refers to emissions arising from an instance
of the refurbishment of the product to make it suitable for reuse; d refers to emissions arising from
the use stage; e is emissions arising from transport returning the product for reuse; and f is emissions
arising from disposal [19].

2.4.2. Treatment of Emissions Associated with Recycling

Recycling transforms matter using energy demand to execute it. PAS 2050 [19] presents different
options to assess emissions related with this process, depending on the transformation that suffers
the product. One method considers that the recycled material does not maintain the same inherent
properties as the virgin material input; for this case, emissions are estimated using Equation (5).
The other method considers that recycled material maintains the same inherent properties as the virgin

286



Energies 2019, 12, 3347

material input; for this case, emissions are estimated using Equation (6). Selection of the method
depends on the knowledge of the material and its capacity to be recycled.

E = (1 − R1)EV + R1ER + (1 − R2)ED (5)

E = (1 − R2)EV + R2ER + (1 − R2)ED (6)

where R1 is the proportion of recycled material input; R2 is the proportion of material in the product
that is recycled at end-of-life; ER are emissions and removals arising from recycled material input per
unit of material; EV are emissions and removals arising from virgin material input per unit of material;
and ED are emissions and removals arising from disposal of waste material per unit of material.

As mentioned before, in these stages, the location of the product is important to estimate the CF.
When considering the recycling process, data availability of EF per material in each location limits
the estimation of GHG emissions. Moreover, comparison of GHG emissions is complex because of
the differences encountered in the collection and recycling methods of materials according to the
technological level applied [31] for different locations. However, different methods to obtain recycling
EF per material are based on ISO 14067 and PAS 2050 standards, which is why emission factors are
directly applied in the proposed methodology.

2.5. Total Life Cycle Carbon Equivalent Emission

LCA stages are consecutive and interlinked and represent a portion of the total CF of the product.
Therefore, to obtain the total CF for the EIPE product using a life cycle assessment, CF estimations for
stages (a), (b), (c), and (d) are added up to get the total CF (stage (e)).

3. Results

In this section, the multi-pronged approach discussed above to estimate CF in a cradle-to-grave
scenario is applied to a Distribution-Static Var Compensator (D-STATCOM) prototype of 30 kvar.
The D-STATCOM analyzed is shown in Figure 2.

Figure 2. Distribution-Static Var Compensator (D-STATCOM) prototype of 30 kvar.
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The D-STATCOM has more than 100 components. Most of the components were analyzed
through data sheets provided by the producer of the components. Parts without available data were
weighted using a microbalance. Also, to perform the estimation of stage (a), components of material
were identified and version 2.2 of the database provided by the association EcoInvent in Zurich
(Switzerland) [32] was used to obtain information on CO2eq emitted during materials extraction.
GHG emissions involved in the manufacturing stage were estimated during the development of
the D-STATCOM. However, CF estimation does not correspond strictly to an integration of the
supply chain of the product due to CF estimations depending on data available or a correlation with
similar products.

Emissions related to manufacturing, assembly of the D-STATCOM, and its functional tests are
measured as direct emissions with control of the operator in the laboratory.

3.1. CF through Economic-Balance Hybrid LCA

In this section, we use the hybrid LCA method by Deng et al. [23] and Vasan et al. [3], described
in Equation (1), which considers two correction factors. EAdditive takes into account emissions resulting
from relevant industries. These emissions are obtained using the EIOLCA model [24] in which specific
economic data on requirements per product are available. ERV estimates the emission contributions
from processes for which neither materials nor economic data are publicly available.

3.1.1. Process Data Analysis

The D-STATCOM contains four circuit boards, four electrolytic capacitors, one power transistors
module, four inductors, one box support, and more than 100 micro-components and support pieces as
shown in Figure 2. The production-related emissions of materials were obtained from measurements
of weight, material composition, and data available from the EcoInvent databases [32]. Table 1 lists the
main materials found in the D-STATCOM with the highest associated emissions, considering material
composition and the energy consumption during the component production (see stage (a) in Figure 1).
CO2eq from the D-STATCOM bulk materials is estimated to be around 0.91735 ton CO2eq.

Table 1. Embodied CO2eq in materials.

Material
Amount per Converter

(kg)
CO2eq Intensity
(kg CO2eq/kg)

CO2eq per Converter
(ton)

Aluminum 32.78 8.24 0.270114
Arsenic 0.04 4 0.000145

Brass 0.03 4.39 0.000153
Cadmium 0.00 5.8 0.000002

Carbon 0.10 6.5 0.000648
Ceramic 0.15 5.5 0.000841
Copper 8.63 3.5 0.032747
Epoxy 0.70 9 0.006321

Fiber glass 0.0002 8.1 0.000002
Glass 0.002 0.85 0.000001
Gold 0.02 3000 0.048786
Iron 0.19 1.91 0.000368
Lead 0.00 20 0.000026

Manganese 0.10 2.6 0.000289
Nickel 0.19 12.4 0.002323
Nylon 0.06 6.5 0.000420

Phosphor 0.02 3.39 0.000081
PVC 0.08 2.2 0.000343
PBT 0.08 7.9 0.000647

Silicon 0.29 10 0.002880
Silver 0.20 754 0.150227
Steel 13.85 5.9 0.081720

Tantalum 1.21 260 0.313812
Tin 0.28 13.7 0.003888

Zinc 0.07 9 0.000596

Total 59.07 - 0.917350
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Table 2 summarizes the associated assembly process emission data, estimated as energy
consumption per hour in the factory (the laboratory where the prototype was developed) located in
Medellín (Colombia). This estimation corresponds to the “Components assembly CO2eq emissions”
shown in stage (a) of Figure 2. Other processes involved in the production of pieces are considered
in Section 3.1.2. The total life cycle CO2eq emissions for this section is around 0.00279 ton
CO2eq. However, the chemicals used in bulk materials production, D-STATCOM manufacturing,
and functional tests were not taken into consideration in the process-sum analysis.

Table 2. Embodied CO2eq in manufacturing and assembly processes.

Process
Time

(h)
Avg. Energy Consumption

(kWh)
CO2eq Intensity
(g CO2eq/kWh)

CO2eq per Converter
(ton)

Assembly D-STATCOM 1.5 0.22 182 0.000060
Functional tests 1 15 182 0.002730

Total 2.5 - - 0.002790

Finally, total CO2eq emissions associated with the process section are 0.92014 ton CO2eq and
correspond to the EProcess contribution in Equation (1).

3.1.2. Economic Input–Output Correction

The economic value of the electronic chemicals used to manufacture the D-STATCOM is obtained
based on the expenses involved in the processes mentioned in Table 2, corresponding to EAdditive.
The estimation considers the amount of electronic chemicals used per device. The value obtained is
approximately $5.5 in 2018 per device. This value has to be adjusted to the 2002 US dollar monetary
unit in order to use the US 2002 Benchmark model purchaser price from the EIOLCA model. This value
corresponds to $4 in 2002.

ERV estimates the contribution of processes that are not included in either process-sum analysis or
additive IO. The producer price in 2018 of the D-STATCOM was $1775 in 2018, which was adjusted to
the dollar value in 2002, that is $1268. Table 3 shows the values estimated with the EIOLCA model [24].
The results show that $620 account for the process-sum analysis and the additive estimation. Then, RV
is approximately $652 in 2002. In this estimation, the fraction accounted for the sum of processes was
determined by selecting the related economic sectors of the 2002 model Benchmark purchaser price
from the EIOLCA. The model has 247 economic sectors; then, the related sectors of each component
manufacture are selected. However, the economic sectors involved in the previous steps must be
omitted to estimate the RV. The top 39 selected sectors represent 99.9% of RV shares, but around 7–12
sectors per each component were removed in order to avoid double counting.

Then, it was only considered 82% of EAdditive and ERV with a value of $652 in 2002. According to The
Bank Group analysis, CO2 emissions per USD depend on the GDP [33]; this quantity corresponds to 0.321
ton CO2eq.

Finally, the previous results are added up following Equation (1) to obtain CO2eq emissions associated
with stage (a) in Figure 1. The total CO2eq emissions in the manufacturing stage are 1.24107 ton CO2eq.
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Table 3. Remaining Value (RV) input–output (IO) correction calculation and embodied CO2eq
per D-STATCOM.

Value per Converter
($)

Fraction Accounted
(%)

Value Accounted for Analysis
($)

Process-sum
1. Breakers $155 38 $59
2. Electrolytic capacitor $262 38 $100
3. Circuits boards $17 40 $7
4. Transistor $76 38 $29
5. Bulk materials $396 45 $178
6. Manufacturing $357 41 $146
7. Support box $114 88 $101

Additive IO
8. Electronic chemicals $4 $4
Total value accounted in process-sum and addition IO $620
Producer price in 2002 USD $1268
Producer price in 2018 USD $1775
Remaining Value (RV) $652

Total RV per D-STATCOM (ton CO2eq) 0.321

3.2. CF Estimation Using Standards After the Product Leaves the Factory

In this section, the final location of the D-STATCOM has to be taken into account. However, there is
no control in the stages of distribution, usage, and final disposal. To estimate CF, it is considered that
the device will be distributed, used, and disposed of in two different countries: Stockholm (Sweden)
and Macau (China). These countries are selected because Sweden is the country with the cleanest
energy matrix and China has an energy matrix that generates significant GHG emissions [34,35].

3.2.1. Exporting a New Reactive Power Compensation D-STATCOM

This section shows how to obtain CO2eq emissions related to stage (b) in Figure 1, which considers
the distribution of the device. The D-STATCOM will be sent from Medellín (Colombia) to Buenaventura
(Colombia) by road and continue their trips by sea to the final destination (either China or Sweden).
GHG emissions were estimated through Equation (2) using a carbon calculator [25]. The calculator
allowed using data to simulate in real time the shipping route and corresponding CF estimation.
This tool is used because it is based on the guidelines outlined in the GHG Protocol [30] and follows
the requirements by European Emissions Trading System (EU-ETS) [36], EN 16258 [37] (based on
PAS 2050 [19]), and ISO 14067 [20]. In Equation (2), weight and volume of the D-STATCOM are 68.4 kg
and 0.4 m3, respectively. These values were considered for different types of transport involved in the
route to reach the final destination. Emissions factors were also obtained from the carbon calculator [25].
The CFs associated with the shipment of the device to Sweden and China are 0.0176 and 0.0226 ton
CO2eq, respectively. Values used to estimate CF for the distribution stage are described in Table 4.

Table 4. EIPE product distribution stage.

Destination
Distance Road

(km)
EF by Road

(kg CO2eq/kgkm)
Distance Sea

(km)
EF by Sea

(kg CO2eq/kgm3)
TE

CO2eq (ton)

Stockholm (Sweden) 471.61 0.0000837 11671.21 0.0031959 0.017620
Macau (China) 471.61 0.0000837 18327.30 0.00271453 0.022600

3.2.2. D-STATCOM in a New Location

D-STATCOM was chosen as the case to be analyzed due to the fact that it is an EIPE device that
significantly contributes to the improvement of the efficiency. Figure 3 shows a power system that is
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composed of (1) power generators in charge of energy generation; (2) transmission lines, distribution
lines, and transformers in charge of energy transportation; (3) an electric load that demands the
electricity, transforming it in other forms of energy; and, of course, (4) a D-STATCOM in charge of
reactive power compensation. When the D-STATCOM is not connected, power generators must deliver
active and reactive power flows in order to satisfy the requirements of the electric load. Active and
reactive power flows cause losses in transmission lines, distribution lines, and transformers.

Active power is a useful power, while reactive power is an inefficient power and must be
compensated to obtain high standards of power quality and efficiency. For this reason, D-STATCOMs
are connected in parallel near to the electric load for compensating the reactive power flow and
avoiding its circulation through the power system; thus, power generators can supply an equivalent
quantity of active power (useful power) to other loads. After the compensation, reactive power
bidirectionally flows between the D-STATCOM and the load; however, a small quantity of active
power is required to satisfy D-STATCOM internal losses.

Figure 3. Hypothetical power system with a D-STATCOM.

CF of the usage stage, as depicted in stage (d) in Figure 1, is estimated using Equation (3). The ΔTE,
which allows assessing the impact of the incorporation of the device, is determined considering the
difference of emissions between a power grid with and without the application of an EIPE product.
For this, it was estimated that the D-STATCOM has a useful life of 15 years and its efficiency is 95%,
while efficiency of transmission systems is typically 80%. It is estimated that the energy expenditure
on the power system without the device is 788.4 MWh and with the device is 236.5 MWh throughout
its useful life. The EF used for each of the two countries is taken from the Organization for Economic
Cooperation and Development [38]. ΔTE obtained for Sweden is −7.2 ton CO2eq and for China is
−392.4 ton CO2eq. The negative sign means that the incorporation of the device results in saved
emissions in both countries. Results are shown in Table 5.

Table 5. CO2eq emissions for the usage stage per location.

Location
EF 2013

(g CO2eq/kWh)
TE Case without Device

(ton CO2eq)
TE Case with Device

ton CO2eq)
ΔTE

(ton CO2eq)

Stockholm (Sweden) 13 10.2 3.0 −7.2
Macau (China) 711 560.6 168.2 −392.4

In Table 5, ΔTE values for Sweden and China vary considerably although the electrical network
where they are applied is the same. Therefore, the energy EF per country is what causes the difference
in the results. Even though the D-statcom saves the same amount of kW in both countries, the device
application in China saves more emissions than in Sweden because the Chinese EF per kW is one of the
largest in the world. Consequently, the environmental benefit of our D-statcom is directly proportional
to the energetic emission factor.
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3.2.3. End-of-Life of the Product

The electronic industry generates scraps which are not degradable. Moreover, reuse of some
parts or components is limited because producers prefer to use a new component for its products
even if it is possible to utilize a used part. Electronic products are difficult to recycle due to its size.
Also, the recycling processes of the unions of electronic components are expensive. Then, it is cheaper
to make new electronic components than to try to recycle them. However, metal components and
cabling in the electronic devices are recycled because they are considered metallic waste [39].

For the reasons mentioned above, it is considered that only metal parts and cabling of the device
are totally recycled. The prototype has 3 metal parts that represent about 80% of the total weight:
the support box, craft coils, and cabling. The other 20% are components considered electronic waste
with low CO2 emissions.

Equation (6) was used to estimate emissions related to the recycling process of the D-STATCOM,
which is considered in stage (d) in Figure 1. It is supposed that the device will be separated by
macro-components and that these will be divided by metals if possible. In addition, it is considered
that the parts that are totally metallic are recycled at the end of their useful life. Based on Equation (6),
in Sweden, ER associated to aluminum and steel recycling was estimated by Hillman et al. [40] and
ER associated with copper recycling was approximated by Agency [41]. In China, ER associated to
aluminum and steel recycling was estimated by Reference [26] and ER associated with copper recycling
was estimated by Reference [42]. The results are shown in Table 6.

Table 6. Embodied CO2eq in recycling materials.

Material Weight (kg)
CO2eq Intensity (kg CO2eq/kg) CO2eq per Converter (ton)

Sweden China Sweden China

Aluminium 31.8 0.4 1.26 0.01272 0.040068
Copper 8.9 1.5 2.94 0.01338 0.026231

Steel 12.7 0.3 1.02 0.00381 0.012942

Total - - - 0.02991 0.079240

The estimates of the end of life stage for this scenario were simplified because there was not
enough data available on the level of technology and the capacity of the factories for each metal in
the countries where the product is located. CO2eq emissions for aluminum, copper, and steel were
respectively 0.01272, 0.01338, and 0.00381 ton CO2eq for Sweden and 0.04007, 0.02623, and 0.01294 for
China. Then, total emissions associated with stage (d) in Figure 2 are obtained, adding up emissions
generated by the recycling of each metal. The total emissions for this stage are 0.02991 and 0.07924 ton
CO2eq for Sweden and China, respectively.

3.3. Total Life Cycle CF of an EIPE Product

As stated in Section 2.5, the sum of all stages described in Figure 1 results in the CF of the entire life
cycle of the product; this corresponds to stage (e). Hence, emissions related to the EIPE manufacturing
using an integrated hybrid LCA approach are 1.241 ton CO2eq (see Tables 1–3). The next stages were
estimated based on PAS 2050 and ISO 14607 standards considering Sweden and China as reference
countries. The distribution emissions were 0.020 ton CO2eq in Sweden and 0.024 ton CO2eq in China.
Usage stage emissions consider the difference in emissions generated in an electric system with and
without the EIPE device. Saved emissions are 7.2 ton CO2eq in Sweden and 392.4 ton CO2eq in China.
End-of-life emissions through metal recycling are 0.029 and 0.079 ton CO2eq in Sweden and China,
respectively. Finally, according to Table 7, the total life cycle CO2 emissions are −5.88 ton CO2eq in
Sweden and −391.04 ton CO2eq in China. The results show that the incorporation of an EIPE device in
a power system allows saving CO2 emissions in both countries.
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Table 7. Embodied CO2eq in recycling materials.

Country
Manufacturing

(ton CO2eq)
Distribution
(ton CO2eq)

Usage
(ton CO2eq)

End-of-Life
(ton CO2eq)

Total LCA Emissions
(ton CO2eq)

Sweden 1.24107 0.017620 −7.2 0.02991 −5.88
China 1.24107 0.022600 −392.4 0.07924 −391.04

In general terms, emissions are mainly produced in the manufacturing stage; in this stage, most
of the emission is generated in the process of raw extraction material. Producers could improve
their designs by trying to use alternative materials to aluminum and silver where emissions are
concentrated. Additionally, economic input–output correction is necessary due to RV corresponding to
nearly 25% of emissions produced in the manufacturing stage. Compared with the manufacturing stage,
the distribution and end-of-life stages do not significantly produce CO2 emissions; however, the highest
emissions in an LCA were presented at the usage stage, but when considering the electrical implications
of the device on the network, it results in saved emissions. This implies that CF is decreased and,
at the same time, contributes to the energy efficiency of the system even though the energy comes
from the same generator. The results show that the usage stage has a positive environmental impact
which is consistent with a negative CF and contributes to getting a CF overcompensation in the total
estimation. Because emissions saved due to the reduction of energy consumption are greater than
the sum of the emissions of all the other stages, it is recommended to install D-STATCOMs or EIPE
products as long as they contribute to the improvement of energy efficiency. In conclusion, EIPE
products generate environmental benefits superior to the impacts generated throughout the life cycle
of the product. Therefore, it is considered that EIPE products can help to comply with energy efficiency
policies stipulated in international agreements like the Kyoto protocol or COP 21. In particular, EIPE
products help to reduce energy, which is in line with energy efficiency resource standard policies or
strategic energy management plans. In this regard, governments can implement in their strategic
plans the incorporation of reactive power compensation devices at transmission line strategic points to
improve their energy efficiency and to thus decrease their CF.

4. Conclusions

The proposed methodology for estimating CF of EIPE products considers a multi-pronged
assessment that was achieved using three scopes: (1) direct emissions (owned operations), (2) indirect
emissions (energy consumption), and (3) indirect emissions (downstream transportation and
distribution). Also, the methodology was designed to be applied to a cradle-to-grave scenario which is
composed of an integrated hybrid approach and a standard based approach (ISO 14067 and PAS 2050).
The methodology was explained in detail and is presented as a complete methodology to estimate CF
during the life cycle of the product. Schematic diagrams to link all stages of the methodology were
included to provide a better understanding. EIPE products are designed to contribute to efficiency
improvement, so an energy calculation is presented in the usage stage in order to refine CF estimation.

The proposed methodology allows for the estimatation of CF for the distribution stage, considering
different scenarios for the transportation. This feature is useful when considering the application
of these estimations to propose mitigation actions that seek to reduce GHG emissions. Another
highlight of the methodology applied to EIPE products is the estimation of the usage stage, which is
not considered in other approaches. This estimation allows for the consideration of environmental
implications of the incorporation of an EIPE device in an electrical grid.

The methodology was applied to a 30 kvar D-STATCOM manufactured in Colombia.
A comparative analysis was made in two countries with very different energy matrices, Sweden
and China. The difference between the possible emissions in the electrical grid with and without the
device was estimated. Taking into account the useful life, it was found that CF for both countries is
totally compensated, and furthermore, a negative CF (overcompensation) occurs, which is considered
as a beneficial environmental impact. It can be concluded that the emissions saved due to the reduction
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of energy consumption in the usage stage are greater than the sum of the emissions of all the other
stages of its life cycle, so a calculation of the energy saved during the operation of EIPE products is
absolutely essential for a more realistic CF estimation.

The results exhibit a great difference between the Swedish and Chinese environmental impacts.
The ton CO2eq saved for Sweden was 5.88 while for China was 391.04. The reason for this is that
the energy matrix for Sweden is mainly composed of renewable or clean sources while China has
a diversified energy matrix (based on coal, oil, solar PV, and wind, among others). Therefore,
it is recommended to prioritize the installation of EIPE products in countries where the energy
matrix includes fossil fuels to significantly reduce/compensate CF. This feature of an EIPE device
would facilitate nations to reduce their CF related to the energy sector, as it is stated in the COP 21
international agreement.

Finally, there is a limitation in the end-of-life stage since the values of the EF are not estimated
under the same parameters because, in each country, the collection methods and the technological
level in the transformation of materials vary according to waste recycling plants. However, emission
factors which are estimated based on ISO 14067 and/or PAS 2050 were considered comparable for the
proposed methodology. To solve this limitation, it is recommended that the governments be obligated
to report the GHG emissions per material emitted by waste recycling plants as is mentioned in the
COP 21 agreements.
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OECD Organization for economic cooperation and development
MDPI Multidisciplinary Digital Publishing Institute
EIOLCA Economic Input–Output Life Cycle Assessment
EIPE Electro-intensive power electronic
DOAJ Directory of open access journals
LCA Life cycle assessment
TLA Three letter acronym
IOA Input–output based
GHG Greenhouses gases
LD Linear dichroism
CF Carbon footprint
EU European Union
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Abstract: China is a large import and export economy in global terms, and the carbon dioxide
emissions and carbon leakage arising from trade have great significance for China’s foreign trade and
its economy. On the basis of trade data for China’s 20 industrial sectors, we first built a panel data
model to test the effect of trade on carbon dioxide emissions and the presence of carbon leakage for
all industrial sectors. Second, we derived a single-region input–output model for open economies
based on the industrial sectors’ diversity and carbon dioxide emissions, and performed an empirical
test. We estimated the net carbon intensity embodied in export, which is 0.237tCO2/ten thousand
RMB, to divide all sectors (ACSs) into high-carbon sectors (HCSs) and low-carbon sectors (LCSs).
The results show that higher trade openness leads to a reduction in the intensity of CO2 emissions
and gross emissions and that there are obvious structural differences in different sectors with different
carbon emission intensity. The coefficient of trade openness for LCSs is −0.073 and is statistically
significant at the 1% level, so higher trade openness for LCSs leads to a reduction in the CO2

emissions intensity. However, the coefficient for HCSs is 0.117 and is statistically significant at the
10% level, indicating that higher trade openness increases the CO2 emissions’ intensity for HCSs.
The difference is that higher trade openness in LCSs can help reduce the CO2 emissions’ intensity
without the problem of carbon leakage and with the existence of the environmental Kuznets curve
(EKC), whereas there is no EKC for HCSs and carbon leakage may happen. We introduced dummy
variables and found that a “pollution haven” effect exists in HCSs. The test results in HCSs and
LCSs are exactly the opposite of each other, which shows that the carbon leakage of ACSs cannot
be determined. The message that can be drawn for policy makers is that China does not need to
worry about the adverse impact on the environment of trade opening up and should, in fact, increase
the opening up of trade, while becoming acclimatized to environmental regulation of a new trade
mode and new standards. This will help amplify the favorable impact of trade opening up on the
environment and improve China’s international reputation. The policies related to trade should
encourage structural adjustment between the sectors via the formulation of differential policies and
impose a restraint on sectors that have high levels of CO2 emissions embodied in export.

Keywords: CO2 emissions embodied in trade; trade openness; carbon leakage; EKC; industrial sector
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1. Introduction

The Paris conference on climate change in December 2015 set up the global climate governance
mechanism from 2020 to 2030, and China restated that it would peak carbon dioxide emissions around
2030. The China–US Joint Announcement on Climate Change was released in November 2014. It is
expected that total CO2 emissions in China will peak around 2030, and the Chinese government
has announced that it will make efforts to reach this peak sooner. Before the Joint Announcement,
China’s target for reducing CO2 emissions was a 40–45% decline of CO2 emissions per unit of GDP
by 2020 as compared to 2005. This was a relative goal with no upper limit imposed. However, in this
Announcement, China promised that the peak of CO2 emissions will be reached before 2030, which
sets a ceiling on CO2 emissions associated with China’s industrialization and urbanization. China is
the world’s largest trading nation, and trade openness is closely related to a transition to a low-carbon
economy, energy saving, and emissions reduction. Opening up of foreign trade is very likely to cause
the transfer of polluting sectors and carbon leakage (Figure 1). This fact has considerable bearing on
policy-making related to trade openness and achieving the CO2 emissions reduction commitment
under the context of the new Chinese economic normality, and it even affects the responsibility
definition of CO2 emissions and climate negotiation results.

Figure 1. Carbon leakage affects emission reduction commitments.

2. Literature Review

The relationship between trade and environment is an important academic research topic.
Since the 1990s, the positive and negative effects of trade opening on the environment have aroused
heated discussion, which has brought forth several theories, including the environmental Kuznets
curve (EKC), the pollution haven hypothesis, and the race-to-the-bottom corollary. Despite theoretical
advancement, the empirical studies tend to come to inconsistent conclusions. Some propose that
the pollution haven hypothesis and the factor endowment effect exist side-by-side but play opposite
roles [1–3]. The pollution haven hypothesis posits that low-income developing countries have poor
environmental regulation intensity and enjoy comparative advantages in pollution-intensive sectors
seeking low external costs. The factor endowment effect posits that developed countries enjoy
comparative advantages in capital-intensive polluting sectors. Unfortunately, the fact is that a country
may feature either high income and capital abundance or low income and low capital, so the two traits
always go hand in hand. Thus, the structural effect induced by trade cannot be used for theoretical
prediction but serves as a question to be tested empirically [4].

As China is experiencing drastic growth of foreign trade, the connection between trade and
CO2 emissions has become a hot topic. Most of the existing literature deals with either of two topics.
One is the CO2 emissions embodied in China’s foreign trade. Shui and Harriss (2006) examined the
influence of US–China trade on national and global emissions of carbon dioxide during 1997–2003
and found about 7–14% of China’s current CO2 emissions were a result of producing exports for US
consumers [5]. Weber et al. (2008) found that around one-third of Chinese emissions (1700 Mt CO2)
were due to production of exports in 2005, and this proportion rose from 12% (230 Mt) in 1987 and only
21% (760 Mt) as recently as 2002 [6]. Su and Ang (2013) finished empirical studies using five Chinese
input–output (IO) tables, 1997, 2000, 2002, 2005, and 2007 and showed that the transitions of China’s
emissions embodied in imports to those in the exports account for around 4.6–13.3% of total emissions

298



Energies 2019, 12, 1101

if the competitive imports assumption is used [7]. Wu et al. (2018) used input–output analysis to
measure CO2 emissions (CEs) embodied in Chinese provinces’ exports and imports and explore the
interprovincial spillover of CEs induced by exports through the domestic supply chains [8]. Besides
this, Ahmad and Wyckoff (2003), Yan and Yang (2010), Lin and Sun (2010), Du et al. (2011), Chen et
al. (2011), Chen and Yu (2012), and Lin et al. (2014) have done similar research and estimation from
a unilateral, bilateral, or multilateral perspective [9–15]. Most studies agree that the CO2 emissions
embodied in China’s export are huge. It is thus inferred that China has become a pollution haven for
the transfer of CO2 emissions from developed countries and that carbon leakage does exist due to
trading between China and the developed countries.

The second topic is testing for the existence of EKC. Tao et al. (2008) found that there was a
long-run cointegrating relationship between the per capita emission of three pollutants and the per
capita GDP, and all three pollutants are inverse U-shaped [16]. Song et al. (2013) tested the existence
of EKC for thirty provinces and cities in Mainland China through Copeland model, and empirical
analysis indicates that EKC does not exist for Liaoning, Anhui, Fujian, Hainan, and Qinghai, while
EKC of Shanghai, Guizhou, Tibet, Jilin, and Beijing have reached inflection point [17]. Liu et al. (2018)
introduced two subdivisions of trade diversification–export product diversification and export market
diversification as proxy variables for economic development in rectification of the EKC, and found
the evidence that GDP per capita and export diversification had a robust relationship with ecological
footprint and, therefore, the EKC hypothesis holds in Korea, Japan, and China in the long run [18].
Empirical study conclusions diverge greatly. Some researchers have even derived the curves of a
non-inverted U-shape. Shen (2006) used Chinese provincial data from 1993 to 2002 to examine the
existence of EKC and found an EKC relationship was found in COD (Chemical Oxygen Demand),
Arsenic, and Cadmium emissions in China, but SO2 showed a U-shaped curve and Dust Fall indicates
no relationship with income level [19]. Other researchers, such as Jalil and Mahmud (2009), Diao et al.
(2009), He and Wang (2012), Liu (2012), Ho et al. (2013), and Yin et al. (2015), have also done relevant
empirical research [20–25]. The absolute CO2 emissions embodied in export depend on the volume
of exported goods, and the effect of export volume may play a decisive role in the growth of CO2

emissions embodied in export. Moreover, the test for EKC is affected by indicator variables and data
availability, especially the choice of time periods under investigation.

According to the pollution haven hypothesis and the race-to-the-bottom corollary, there will be a
transfer of high-pollution and high-emission industries from developed countries to developing
countries; this gives rise to the problem of carbon leakage. If a developed country raises its
environmental standards, its production activities will inevitably decrease, while the output of a
developing country with lower environmental standards will increase. The net result is an overall
increase in global CO2 emissions. Some representative studies on carbon leakage have come to diverse
conclusions. Barker et al. (2007) investigated potential carbon leakage from six EU Member States
(MSs) that implemented Environmental Tax Reform (ETRs) unilaterally over the period of 1995–2005
and constructed a counterfactual Reference case, assuming that the six countries did not introduce
ETRs, and then alternative scenarios were developed to assess the effects of the ETRs, including effects
on CO2 emissions for the EU25 economies [26]. Most MSs recorded a reduction in CO2 emissions
when comparing the Baseline case to the Reference case, and the results show that carbon leakage
is very small and in some cases negative, due to technological spillover effects. Kuik and Hofkes
(2010) explored some implications of border adjustment measures in the EU ETS, for sectors that
might be subject to carbon leakage and found that border adjustment might reduce the sectoral rate
of leakage of the iron and steel industry rather forcefully, but that the reduction would be less for
the mineral products sector, including cement, and the reduction of the overall or macro rate of
leakage would be modest [27]. Elliott et al. (2014) used a full CGE model with many countries and
many goods to measure effects and varied elasticity of substitution and confirmed the analytical
model’s prediction that negative leakage depends on the ability of consumers to substitute into the
untaxed good and the ability of firms to substitute from carbon emissions into labor or capital [28].
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BöHringer et al. (2017) showed that the combination of output-based rebating and a consumption tax
for emission-intensive and trade exposed goods can be equivalent with border carbon adjustment,
and supplementing output-based rebating with consumption tax constituted robust policies to mitigate
carbon leakage [29]. Felder and Rutherford (1993), Smith (1998), Paltsev (2001), Aukland et al. (2003),
Gerlagh and Kuik (2007), Rosendahl and Strand (2009), Eichner and Pethig (2011), Baylis et al. (2013),
and Carbone (2013) have also done relevant research [30–38]. Surprisingly, some researchers argue that
carbon leakage can be negative by model or analysis based on assumptions. One country, typically a
developed country, will reduce production activities to meet higher environmental standards, whereas
a developing country with lower environmental standards will increase its output; in this process,
the intensity of CO2 emissions in developing countries is lessened through the flow of technological
innovation and production factors, ultimately leading to a reduction of global CO2 emissions. Fullerton
et al. (2011) used a general equilibrium model to solve for effects of a small increase in carbon tax on
leakage, and reported that the taxed sector substitutes away from carbon into capital so it may absorb
capital, which shrinks the other sector, causing negative leakage [39]. Winchester and Rausch (2013)
investigated leakage in computable general equilibrium models under alternative fossil fuel supply
elasticity values and factor mobility assumptions, and found that fossil fuel supply elasticity must be
either equal or close to infinity to generate net negative leakage [40].

In summary, existing research has carried out a creative theoretical design and obtained different
conclusions, which means that the structural effect induced by trade cannot be used for theoretical
prediction but serves as a question to be tested empirically. There have been many results in empirical
research. Although the amount of CO2 emissions embodied in China’s trade is huge, it does not
indicate that there must be carbon leakage, especially as the results of the EKC test are inconsistent.
We believe that, considering these dynamics, CO2 emissions embodied in trade, EKC, and carbon
leakage can be integrated into one framework so that the logistic connections between them can be
analyzed. Carbon leakage is the result of transferring high-carbon sectors (HCSs) from developed
countries to developing countries and the developed countries needing to import large volumes of
goods from the developing countries—the huge level of CO2 emissions embodied in the export directly
lead to carbon leakage. However, this is only a necessary condition, not a sufficient condition. If the
developing countries are indeed a pollution haven, there will be no inverted U-shaped EKC; if there is
an inverted U-shaped EKC, persistent carbon leakage will not occur. CO2 emissions embodied in trade
and EKC are mostly studied empirically, whereas carbon leakage is estimated using theoretical models.
We built our panel data model based on the trade data of China’s industrial sectors. Through empirical
analysis, the existence of carbon leakage due to China’s opening up of trade was proven. Then,
the existence of EKC was examined by introducing the linear term and the quadratic term of per capita
GDP of the sector. The reliability of the regression was enhanced by adding a control variable, such
as the number of employees in the sector. The innovations of this study are summarized as follows:
(1) The effect of foreign investments in China on CO2 emissions shows large variation across the
sectors (Lin and Yang, 2013) [41]. Therefore, this article takes China’s industrial sector sub-sector as the
research object, which is different from most previous studies, and a single-region input–output model
(SRIO model) is derived for open economies. The low-carbon sectors (LCSs) and HCSs are divided
based on the intensity of CO2 emissions embodied in net export for each sector. This method fully
considers the distinct features of foreign trade, as compared with the classification by CO2 emissions’
intensity for each sector. The research design is also more in line with the characteristics of developing
countries and can more effectively test the trade and economic development of developing countries.
(2) The cross term of trade openness and the sector’s development level are added into the regression
equation to test carbon leakage. Moreover, the dummy variable is designed to capture the pollution
haven hypothesis. (3) In terms of policy recommendations, we analyzed the policies with 2030 emission
reduction commitments latest proposed by the Chinese government, which is also the significance of
the research.
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3. Empirical Model and SRIO Model Derivation

3.1. Empirical Modeling

Grossman and Krueger (1991) laid the foundation for the analytical framework of the relationship
between trade and environment [42]. Antweiler et al. (2001) also proceeded from this framework.
We built our panel data model using the sector-based data of China’s industrial sectors from 2000 to
2014 [1]. Usually, trade openness of a country can be measured in two ways: One is by measuring the
trade barrier directly—the lower the nominal trade barrier, the higher the trade openness; the other is
by measuring the trade flow, from which the trade openness is estimated indirectly. The closer the
trade flow to the estimate corresponding to completely free trade, the higher the trade openness (Li
and Huang, 2006) [43]. Referring to the existing literature, such as Zhao and Ding (2012) and Ma and
Li et al. (2012) [44,45], we measured trade openness by the ratio of the sum of imports and exports
to the output for the sector. Bao et al. (2003) estimated China’s trade openness using five indicators:
degree of dependence on foreign trade, effective tariff rate, cost of black market transaction, Dollars’
index, and corrected degree of dependence on foreign trade [46]. It is now recognized that only the
degree of dependence on foreign trade (namely the ratio of the sum of imports and exports to GDP) is
a better reflection of the connections between China’s trade openness and economic growth.

Many empirical analyses have been done concerning EKC hypothesis. De Bruyn et al. (1998)
were the first to study the dynamics of one country’s EKC using time series [47]. In recent years,
Dinda and Coondoo (2006) and Soytas and Saria et al. (2009) have argued that analysis based on the
cause-and-effect relationship was more fruitful [48,49]. The most common approach is analysis based
on panel data (Dinda, 2004) [50], and most studies use per capita GDP as an indicator of economic
growth when it comes to the question of how economic growth is related to environmental pollution.
The effect of trade openness on CO2 emissions of different sectors and the existence of EKC were
tested by regression analysis. However, this direct effect cannot explain the structural effect of trade
openness. That is, the effect of trade openness on China’s industrial structure cannot be determined
under the constraint of comparative advantage. We introduce the cross term about trade openness
proposed by Richard and Piergiuseppe et al. (2012) [51] and test the existence of carbon leakage via
trade with China at the industry level. The cross term is the product of trade openness and the sector’s
development level. The analysis model is constructed as follows:

ln CEMi,t = α0 + α1 ln Yi,t + α2(ln Yi,t)
2 + α3 ln IDLi,t + α4TOIi,t · IDLi,t + βXi,t + εi,t

where subscript i denotes the sector; subscript t denotes time (unit: year); CEMi,t is the CO2 emissions’
intensity in sector i in the t-th year (or total CO2 emissions); Yi,t is the per capita GDP in sector i in
the t-th year; TOIi,t is trade openness in sector i in the t-th year; TOIi,t · IDLi,t is the cross term of
trade openness and the sector’s development level IDLi,t; Xi,t is other control variable, e.g., number
of employees in the sector POPi,t, intensity of research and development TORi,t, and intensity of
economic activities ACTi,t. εi,t is a random error term. To eliminate the influence of heteroscedasticity,
the indicator data are expressed in the form of natural logarithm.

3.2. Variable Explanation and Data Source

The data used came from the China Statistical Yearbook, the China Industry Economy Statistical
Yearbook, the China Population & Employment Statistics Yearbook, the China Statistical Yearbook on
Environment, and the China Energy Statistical Yearbook. Part of the data has been downloaded from
the OECD database, DRCnet, and the CEInet Statistics Database [52–56]. The variables are explained
as follows:

(1) CO2 emissions’ intensity (or total CO2 emissions): CEMi,t. Two indicators are used to measure
China’s CO2 emissions, namely, total CO2 emissions and CO2 emissions’ intensity. Total CO2 emissions
are a scale indicator that depends on the output scale, output structure, and production conditions of
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the sector. It is obtained by calculating the product of energy consumption and the carbon emission
coefficient. CO2 emissions’ intensity is a relative indicator that highlights the effect of output structure
and production conditions. It is calculated as the CO2 emissions per unit output of the sector.

(2) Per capita GDP: Yi,t. According to the EKC hypothesis, income level is an important control
variable that affects pollutant emissions. As mentioned above, per capita GDP reflects how increases of
output and income affect scale effect and technology effect of CO2 emissions. Here we use actual per
capita GDP as the variable related to economic growth to test the EKC hypothesis in China’s industrial
sectors. If the coefficient α1 of the linear term of per capita GDP is positive and the coefficient α2 of the
quadratic term of per capita GDP is negative, then the relationship between environmental pollution
and the income level can be described by an inverted U-shaped curve. Thus, EKC exists.

(3) Trade openness: TOIi,t. As in most studies, the ratio of the sum of imports and exports to the
output of a sector is calculated as the indicator of trade openness. Trade openness is associated with
the structural effect caused by import and export. The trade data of the sectors come from the OECD
database. All data from International Standard Industrial Classification (ISIC) are classified into 20
sectors’ data compared with the industry classification of input–output (IO) and are then expressed
in Renminbi (RMB) using the annual average exchange rate. If the estimated coefficient α3 of trade
openness is positive, it means that higher trade openness aggravates environmental pollution; if α3 is
negative, it means that higher trade openness alleviates environmental pollution and contributes to
emission reduction.

(4) Cross term: TOIi,t · IDLi,t. The cross term is constructed between trade openness and a sector’s
development level to examine carbon leakage. If the coefficient α4 of the cross term is negative, it can be
confirmed that there is not a transfer of high-emission sectors from developed countries to developing
countries and carbon leakage does not exist. The sector’s development level is measured by the added
value of the industrial sector IVAi,t and the per capita output GPCi,t of the sector. The data came from
the China Statistical Yearbook and the China Industry Economy Statistical Yearbook. Adjustments
were made if necessary.

(5) Control variable: Xi,t. The control variables used are the number of employees in the sector
POPi,t, the intensity of research and development TORi,t and the intensity of economic activities ACTi,t.
To some extent POPi,t influences per capita CO2 emissions of the sector and is also an important factor
influencing per capita income and per capita GDP. This indicator is usually considered when evaluating
the damage done by CO2 emissions and making policies on emission reduction. TORi,t has an impact
on the technology effect of emission reduction. This indicator is expressed as the ratio of research and
development expenditures to the output. The data on research and development expenditures come
from the China Statistical Yearbook on Science and Technology. A higher ACTi,t usually indicates
greater CO2 emissions of the sector. The intensity of economic activities is expressed in terms of electric
power consumption, according to Peng et al. (2013) [57].

3.3. Derivation of SRIO Model for Embodied Emissions Measurement

Based on the overall test of all industries in China’s industrial sector, we attempt to conduct a
classification test in order to obtain the results of different industries. It is common to divide HCSs
and LCSs by the CO2 emissions’ intensity of sectors. Fu and Zhang (2014) directly estimated the CO2

emissions’ intensity as a criterion to divide HCSs and LCSs [58]. Although the cross-sector differences
in CO2 emissions can be directly determined, this method provides no differentiation between CO2

emissions due to domestic or foreign production activities in the context of international trade effect.
Different from their studies, we tried to calculate the CO2 emissions embodied in imports and exports
and net embodied emissions, respectively, to divide the sectors into HCSs and LCSs. Pertinently,
this method contains the effect of trade openness on CO2 emissions.

The most common method for estimating CO2 emissions embodied in trade is the IO. This model
was first proposed by US economist Leontief for national economic accounting. Through constant
extension and integration with other economic accounting techniques and optimal control theory,
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the IO model has found wide application. Based on research by Ahmad and Wyckoff (2003) and Lin
and Sun (2010) [9,11], we derived the SRIO model based on open economic operation logic. According
to classical IO theory, the total output was calculated:

X = AX + Y, i.e., X = (I − A)−1 · Y

where X is the column vector of total output; A is the direct consumption coefficient matrix; Y is final
consumption, namely final demand; and (I − A)−1 is the Leontief inverse matrix, or the complete
demand coefficient matrix.

The above formula represents the operation of a completely closed economy. In contrast, for open
economies, parts of the imported goods (including services) are consumed by final users, and the
remains become intermediate input, which enters domestic production link. The direct consumption
coefficient matrix A for an open economy is A = Ad + Aim. For the part of the imported goods used as
intermediate input, the direct consumption coefficient matrix is Aim = MA, where M is the diagonal
matrix of the proportion of imported goods in the direct consumption coefficient; for the domestic
products used as intermediate input, the direct consumption coefficient matrix is Ad = (I − M)A.
In the diagonal matrix M, element mii is calculated by mii = xim

i /(xi + xim
i − yex

i ), where xim
i

is
imported goods, xi is total output, and yex

i is exported goods. Total import Xim is divided into two
parts based on the flow of production and the consumption link, including the imported goods as
intermediate input, AimX, and the imported goods consumed domestically, Yim. The intermediate
input is transformed into final product, Aim(I − A)−1Y, after domestic production, and, therefore, the
total import is expressed as Xim = Aim(I − A)−1Y + Yim.

The intermediate input for an open economy is from the products of domestic or foreign industrial
sectors. However, CO2 emissions are generated throughout the production chain, ranging from
production to transportation, to consumption; these emissions are referred to as the embodied CO2

emissions. The CO2 emission coefficient for sector j is divided into the direct emission coefficient ed
j

and the embodied emission coefficient Ed
j ; and the embodied emission coefficient Ed = ed(I − A)−1.

The goods produced and consumed by an open economy are divided as either imported or exported
goods. Based on where the goods are produced and consumed, the embodied CO2 emissions are
divided into four categories (Lin and Sun, 2010; Yan and Zhao, 2012) [11,59]. Yex indicates the goods
that are domestically produced and intended for export. The four categories of embodied CO2

emissions are represented by I, II, III, and IV, respectively, as shown in Table 1.

Table 1. Four categories of embodied CO2 emissions.

Classification Domestically Consumed Consumed in Foreign Countries

Domestically produced I II
Produced in foreign countries III IV

Category I is the CO2 emissions embodied in goods that are domestically produced and consumed:
Ed(Y − Yex);

Category II is the CO2 emissions embodied in goods that are domestically produced and consumed
in foreign countries: EdYex;

Category III is the CO2 emissions embodied both in imported goods that are domestically
consumed and in the domestically consumed goods transformed from the imported goods as
intermediate input in domestic production: EdYim+Ed Aim(I − A)−1(Y − Yex);

Category IV is the CO2 emissions embodied in the exported goods that are produced domestically
using the imported goods as intermediate input: Ed Aim(I − A)−1Yex.

The sum of category II and IV is the CO2 emissions embodied in the exported goods, and the sum
of category III and IV is the CO2 emissions embodied in the imported goods. The net CO2 emissions
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embodied in export Qnet are calculated by deducting the CO2 emissions embodied in the imported
goods from the CO2 emissions embodied in the exported goods:

Qnet = EdYex − EdYim−Ed Aim(I − A)−1(Y − Yex)

4. Test Based on Industrial Sector Classification

4.1. Empirical Test of China’s Industrial Sector as a Whole

We conducted our empirical analysis using Eviews 6.0 and Matlab. EViews is the abbreviation of
Econometrics Views, which is developed by economists and mainly used in the field of economics,
and MATLAB is a commercial mathematics software produced by MathWorks Company in the United
States. Firstly, we performed a data stationary test. An LLC test and a Fisher-ADF test indicated that the
data of each indicator were non-stationary panel data under the 1% significance level. The first-order
differential data were stationary. Then, the variable combinations were subjected to a co-integration
test. Here, we used the Hausman test to determine whether the fixed effects model or the random
effects model fit under the 5% significance level. The data of the cross term were subjected to centering
to reduce the errors in regression caused by collinearity [60].

The results of empirical analysis using panel data of China’s 20 sectors are shown in Table 2.
The first four columns (1)–(4) are the results of regression of the intensity of CO2 emissions in each
sector; the last four columns (5)–(8) are the results of regression on total CO2 emissions. The regression
of the control variables in (1) and (5) indicates that the coefficient is statistically significant at the 1%
level. After introducing TOIi,t into (2) and (6), the regression fitting degree was improved, indicating
the significance of trade openness in influencing CO2 emissions. Moreover, high trade openness
leads to a reduction in both CO2 emissions’ intensity and total CO2 emissions. As to the effect of the
control variable on CO2 emissions in each sector, the coefficient for intensity, ACTi,t, is always positive,
hence, the more active the economic activities, the higher the CO2 emissions’ intensity and total CO2

emissions. The coefficient for the number of employees in the sector POPi,t is positive in the regression
of carbon emission intensity and negative in the regression of total CO2 emissions, which indicates that
higher POPi,t will reduce the CO2 emissions’ intensity in the sector but increase total CO2 emissions.
Higher intensity of research and development will reduce the CO2 emissions of the sector, but,
when considering other influencing factors, the coefficient becomes positive and insignificant.

Carbon leakage via international trade was tested. If the regression coefficient of the sector’s
development level is positive and the regression coefficient of the cross term of trade openness is
negative, this means there is no carbon leakage, and China is not a pollution haven for HCSs. According
to the regression, the coefficient of the added value of the industrial sector is positive, as might
have been expected. Thus, higher added value of the industrial sector increases CO2 emissions.
The coefficient of the cross term between trade openness and the added value of the industrial sector
is negative but insignificant, which means that, when either the CO2 emissions intensity or the total
CO2 emissions is used, carbon leakage result cannot be proven. Testing of the EKC hypothesis by
regression indicates that the coefficient of the linear term is negative and that of the quadratic term is
positive. This is inconsistent with the EKC hypothesis, and the regression coefficient is not statistically
significant. From this we can infer that the variations of CO2 emissions in China’s 20 sectors are
characterized by uncertainty. China has greatly diverse sectors, with huge cross-sector differences.
Lin (2013) found that the influence of foreign investment on China’s CO2 emissions varies greatly
and has very different characteristics in different sectors [61]. So, to further analyze the effect of trade
openness on CO2 emissions in different sectors, we carried out our empirical analysis by dividing the
sectors into HCSs and LCSs.
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Table 2. Results of regression for all sectors.

Variable
Carbon Emission Intensity in the Sector Total CO2 Emissions in the Sector

(1) (2) (3) (4) (5) (6) (7) (8)

Constant 4.614 ***
(16.767)

4.704 ***
(17.456)

5.075 ***
(20.664)

4.944 ***
(2.679)

4.614 ***
(16.768)

4.703 ***
(17.457)

5.075 ***
(20.665)

4.942 **
(2.678)

lnPOP −0.375 ***
(−5.916)

−0.399 ***
(−6.422)

−0.666 ***
(−9.777)

−0.482 ***
(−8.593)

0.624 ***
(9.858)

0.600 ***
(9.650)

0.333 ***
(4.885)

0.517 ***
(9.218)

lnTOR −0.080 ***
(−3.697)

−0.045 **
(−1.902)

0.002
(0.130)

0.002
(0.094)

−0.080 ***
(−3.697)

−0.045 **
(−1.903)

0.002
(0.129)

0.002
(0.093)

lnACT 0.267 ***
(7.124)

0.228 ***
(−3.106)

0.158 ***
(4.412)

0.158 ***
(4.527)

0.267 ***
(7.127)

0.228 ***
(5.931)

0.158 ***
(4.414)

0.158 ***
(4.529)

lnTOI −0.115 ***
(−3.106)

−0.027
(−0.788)

−0.115 ***
(−3.106)

0.158
(4.414)

lnIVA 0.180 ***
(6.570)

0.180 ***
(6.570)

lnTOI·IVA −0.001
(−1.069)

−0.001
(−1.069)

lnY −0.105
(−0.362)

−0.104
(−0.361)

(lnY)2 0.011
(1.029)

0.011
(1.028)

Adjusted
R-squared 0.9969 0.9971 0.9977 0.9977 0.9970 0.9972 0.9978 0.9978

Mode Type Fixed
Effect

Fixed
Effect

Fixed
Effect

Fixed
Effect

Fixed
Effect

Fixed
Effect

Fixed
Effect

Fixed
Effect

Note: (1) The symbol in parentheses is the t value; (2) *, **, and *** indicate either that the data are statistically
significant or that the null hypothesis is rejected at the 10%, 5%, and 1% significance levels, respectively.

4.2. Embodied Emissions Estimation and Industrial Sector Classification

China’s 2010 Input–Output Table and the China Energy Statistical Yearbook 2011 were used as
the data sources. Combining the output and export data of 20 sectors from the DRCnet database,
the diagonal matrix of export coefficient M was calculated. To reduce the errors in CO2 emissions’
calculation that appeared during the conversion into either standard coal or solid–liquid–gas energy,
we estimated CO2 emissions using 18 physical quantities of energy consumption and the corresponding
emission coefficients in the China Energy Statistical Yearbook 2011. IPCC (2006) provided the
formula of CO2 emission coefficient of energy unit identification: θi = NCVi × CCi × COFi × (44/12),
where NCVi is the average low heating value; CCi is the CO2 emission factor; and COFi is the carbon
oxidation factor. The default value is 1 according to IPCC, and 44 and 12 are the molecular weights of
carbon dioxide and carbon, respectively. The CO2 emissions of 20 sectors were estimated to calculate
the intensity of direct CO2 emissions, and then the CO2 emissions embodied in the exported goods
and the imported goods were calculated for each sector to finally obtain the intensity of CO2 emissions
embodied in net export.

The average intensity of CO2 emissions is usually used to divide HCSs and LCSs. The average
intensity of net CO2 emissions embodied in export is 0.237tCO2/ten thousand RMB. Using this
criterion, seven sectors were classified as HCSs, namely, production and supply of electric power
and thermal power, coal mining and dressing, non-metallic mineral products, metal smelting and
calendaring, petroleum processing, coking and nuclear fuel processing, the chemical industry, paper
making, printing and stationery, and sporting goods. The remaining 13 sectors are LCSs. Fu and Zhang
(2015) used the intensity of direct CO2 emissions as the criterion [58], and, as the average intensity in
China’s sectors is 0.3718 tCO2/ten thousand RMB, classified six sectors as sectors with high intensity
of direct CO2 emissions; these are coal mining and dressing, non-metallic mineral products, metal
smelting and calendaring, petroleum processing, coking and nuclear fuel processing, the chemical
industry, paper making, printing and stationery, and sporting goods.

Although both the gas production and supply industry and the oil and gas exploration industry
are also sectors with high intensity of direct CO2 emissions, they are not classified as HCSs. This is
probably because the direct CO2 emissions in these two sectors are not caused by trade. We calculated
the net CO2 emissions embodied in export, aiming to reveal the relationship between trade openness
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and CO2 emissions. The scatter plot showing the relationship between trade openness and CO2

emissions’ intensity was drawn for HCSs and LCSs (Figure 2). It is obvious that the trade openness is
positively correlated with the CO2 emissions’ intensity for HCSs, with a mild linear increasing trend;
however, for LCSs, the trade openness is negatively correlated with the CO2 emissions’ intensity. Thus,
the relationship between trade openness and intensity of carbon emissions varies for different sectors,
which shows that the empirical results of industrial industry as a whole are inadequate and need
to be classified and tested. Meanwhile, it is proven from another perspective that the effect of trade
openness on CO2 emissions is uncertain for China’s industrial sectors on the whole.

 
Figure 2. Scatter plot of trade openness vs. CO2 emissions’ intensity for high-carbon sectors (HCSs)
and low-carbon sectors (LCSs).

4.3. Empirical Analysis for HCSs and LCSs

In Table 3, columns (1)–(4) and (5)–(8) are the regression results of CO2 emissions’ intensity
for 7 HCSs and 13 LCSs. After introducing TOIi,t into the two equations, the fitting degree was
improved, indicating the significance of trade openness to CO2 emissions, which is consistent with
the regression result of all sectors (ACSs). For LCSs, higher trade openness leads to a reduction in the
CO2 emissions intensity; however, for HCSs, the coefficient is positive and statistically significant at
the 10% level for TOIi,t, indicating that higher trade openness increases the CO2 emissions’ intensity
for HCSs. The regression results of control variables are basically consistent with the regression for
ACSs. The economic activities’ intensity varies in the same direction as the CO2 emissions’ intensity
for the sector. However, the situation is the opposite for the number of employees in the sector, and
the intensity of research and development has no significant impact on the CO2 emissions’ intensity.
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Table 3. Regression analysis of CO2 emissions’ intensity in HCSs and LCSs.

Variable
HCSs LCSs

(1) (2) (3) (4) (5) (6) (7) (8)

Constant 4.155 ***
(6.113)

4.411 ***
(6.541)

6.374 ***
(10.784)

7.646 ***
(3.753)

4.009 ***
(12.627)

4.110 ***
(12.767)

4.245 ***
(13.603)

0.213
(0.054)

lnPOP −0.331 **
(−2.055)

−0.383 **
(−2.405)

−0.870 ***
(−6.206)

−0.686 ***
(−5.853)

−0.356 ***
(−5.360)

−0.372 ***
(−5.570)

−0.548 ***
(−6.498)

−0.424 ***
(−6.405)

lnTOR −0.061 *
(−1.980)

−0.027
(−0.787)

0.006
(0.228)

0.018
(0.758)

−0.046
(−1.512)

−0.029
(−0.907)

0.010
(0.321)

−0.009
(−0.303)

lnACT 0.428 ***
(5.010)

0.373 ***
(4.261)

0.203 ***
(2.851)

0.158 ***
(4.527)

0.236 ***
(5.897)

0.213 ***
(5.023)

0.147 ***
(3.388)

0.183 ***
(4.347)

lnTOI 0.117 *
(1.975)

0.043
(0.814)

0.161 **
(2.301)

−0.073 ***
(−1.55)

−0.028
(−0.624)

lnIVA 0.265 ***
(6.497)

0.134 ***
(3.530)

lnTOI·IVA 0.001
(0.095)

−0.031 **
(−2.250)

lnY −0.284
(−1.004)

0.565 *
(1.908)

(lnY)2 0.021 *
(1.909)

−0.017 **
(−3.702)

Adjusted
R-squared 0.9922 0.9955 0.9975 0.7605 0.9903 0.9963 0.9967 0.3207

Mode Type Fixed
Effect

Fixed
Effect

Fixed
Effect

Random
Effect

Fixed
Effect

Fixed
Effect

Fixed
Effect

Random
Effect

Note: (1) The symbol in parentheses is the t value; (2) *, **, and *** indicate either that the data are statistically
significant or that the null hypothesis is rejected at the 10%, 5%, and 1% significance levels, respectively.

As to the testing of carbon leakage, the regression coefficient is positive for the added value of
both types of sectors, which is consistent with ACSs. This means that the higher added value of the
industrial sectors causes the increase in the CO2 emissions’ intensity. The coefficient of the cross term
between trade openness and added value of LCSs is negative and statistically significant at the 5%
level, indicating the absence of carbon leakage. However, the coefficient of the cross term is positive
and statistically insignificant for HCSs, indicating the possible existence of carbon leakage (albeit
uncertain). The results again demonstrate the above uncertainty of carbon leakage. The coefficient is
positive for the linear term of per capita income and negative for the quadratic term in the regression
for LCSs—significant at the 10% level—so the EKC hypothesis is confirmed for LCSs. However, for
HCSs, the coefficient of the linear term is negative, and that of the quadratic term is positive, which
does not agree with the EKC hypothesis. Moreover, the coefficient of the linear term is statistically
insignificant. The testing of EKC hypothesis for the two types of sectors also proves the uncertainty of
the existence of the EKC. In other words, higher trade openness leads to a reduction in CO2 emissions’
intensity for both LCSs and HCSs, but the existence of carbon leakage and EKC is uncertain for both
LCSs and HCSs, which provides valuable information for making decisions on trade openness and
industrial policies with the purpose of energy saving and emission reduction.

5. Robustness Test

5.1. Cross Term Between Trade Openness and Per Capita Output

A robustness test was performed subsequently. The sector’s development level was measured by
per capita output GPCi,t of the sector, and then we tested the existence of carbon leakage for ACSs,
HCSs, and LCSs using the cross term TOIi,t · GPCi,t between trade openness and per capita output.

The regression results are shown in Table 4. Due to limited space, the coefficients of constant
term and control variables are not reported. We can see that the regression coefficient is positive and
statistically significant for per capita output of the sector. Hence, higher per capita output increases
the CO2 emissions’ intensity. The coefficient of the cross term between trade openness and per capita
output is negative and statistically insignificant for ACSs, demonstrating the uncertainty of carbon
leakage. The coefficient of the cross term between trade openness and per capita output is positive and
statistically insignificant for HCSs, indicating the possible existence of carbon leakage in HCSs (albeit
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uncertain). The coefficient of the cross term is negative and statistically significant for LCSs, indicating
non-existence of carbon leakage for LCSs. These regression results are the same as that of the cross
term between trade openness and added value, which proves good robustness.

Table 4. Regression analysis of cross term between trade openness and per capita output.

Variable ACSs HCSs LCSs

lnTOI −0.008 **
(−0.237)

0.094 **
(1.963)

−0.023
(−0.503)

lnGPC 0.187 ***
(6.685)

0.278 ***
(7.362)

0.141 ***
(3.478)

lnTOI·GPC −0.001
(−1.379)

0.029
(0.170)

−0.038 *
(−1.812)

Adjusted R-squared 0.9977 0.9980 0.9967

Mode Type Fixed
Effect

Fixed
Effect

Fixed
Effect

Note: (1) The symbol in parentheses is the t value; (2) *, **, and *** indicate either that the data are statistically
significant or that the null hypothesis is rejected at the 10%, 5%, and 1% significance levels, respectively.

5.2. Testing of the Pollution Haven Hypothesis

There is no carbon leakage in LCSs, but there is probably carbon leakage in HCSs. For ACSs,
carbon leakage is more likely to be absent. To further test this conclusion, we tried to use the method by
Halkos (2003) and Peng et al. (2013) by introducing the dummy variables [57,62]. As a result of higher
trade openness, the countries (regions) or sectors implementing lower environmental regulations tend
to be pollution havens for HCSs. Therefore, the CO2 emissions’ intensity can reflect the intensity of
implementation of the environmental regulations. Pollution havens will be those countries with lower
intensity of implementation of environmental regulations.

ln CEMi,t = λZi,t + φ1 ln TOIi,t + φ2 ln TOIi,t · CEMi,tDUMi,t + μi,t

where CEMi,t is total CO2 emissions (or emission intensity) of the sector; Zi,t are the variables, except
for ln TOIi,t; the cross term is the product of the dummy variable CEMi,tDUMi,t of the CO2 emission
intensity and trade openness. For HCSs, the value of the dummy variable is 1; otherwise, it is 0. Thus,
for LCSs and HCSs, the effect of trade openness on CO2 emissions is φ1 and φ1 + φ2, respectively.
If φ1 ≺ 0, φ1 + φ2 � 0, then higher trade openness leads to environmental improvement for sectors
implementing higher environmental regulations and having lower CO2 emissions’ intensity, but it is not
conducive to environmental improvement for sectors implementing lower environmental regulations
and having higher CO2 emissions’ intensity. According to our results, φ1 = −0.155, φ1 + φ2 = 0.030.
Thus, higher trade openness leads to reduction in CO2 emissions’ intensity for LCSs, but increases
CO2 emissions’ intensity for HCSs. The pollution haven hypothesis is confirmed for China’s HCSs,
which are the destination for the transfer of higher-carbon sectors from the developed countries.

6. Conclusions and Policy Suggestions

We carried out an empirical analysis of the effect of trade openness on CO2 emissions and tested
the existence of carbon leakage for all and classified industrial sectors in China, by building a panel
data model and deriving a single-region input–output model for the classification of high-carbon
sectors (HCSs) and low-carbon sectors (LCSs). Firstly, the empirical test results of the industry as
a whole and the classification industry in China’s industrial sectors have confirmed that higher
trade openness leads to reduction of both CO2 emissions’ intensity and gross CO2 emissions in the
industrial sectors. So, China’s policy makers do not need to worry too much about the adverse impact
of trade openness on the environment. Instead, the environmental standards should be raised to
further benefit the process of environmental improvement in an open economy. Some countries have
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discussed new standards and a new trade mode with greater emphasis on environmental cooperation,
which represents both a challenge and an opportunity. As China is faced with an urgent need for energy
saving and environmental protection, raising the environmental standards is not only a pathway to
achieving economic transition, but also a means of strengthening the long-term competitiveness of
China’s exports. This will also reduce the pressure on China, as the world’s largest CO2 emitter,
in climate negotiation.

Secondly, analysis based on industrial sector classification indicates dramatic cross-sector
difference in CO2 emissions’ intensity. Higher trade openness can help reduce the CO2 emissions’
intensity. For China’s industrial sectors on the whole, no carbon leakage exists, whereas EKC does.
For HCSs, there is no EKC, but carbon leakage probably occurs. The pollution haven hypothesis
was confirmed by introducing the dummy variable. However, the divergent conclusions reached
for LCSs and HCSs point to the uncertainty of carbon leakage. China should encourage structural
adjustment through relevant policies during green low-carbon development, as well as the transition
and upgrading of exports. Since net CO2 emissions embodied in export tend to vary from one sector
to another, differential policies with structural features should be adopted to perform structural
adjustment, and government can place tighter restraint on HCSs to appropriate to achieve low carbon
development of industrial structure. This is in accord with the economic transition taking place under
the new normality of the Chinese economy.

Thirdly, the regression analysis of the control variables also provides some clues. The Chinese
government has announced that China’s CO2 emissions will peak around 2030 and efforts will be made
to reach this peak sooner. Reducing the CO2 emissions embodied in export is favorable to acquire the
CO2 emission space for Chinese economic development. From the empirical results, China’s industrial
sector has an optimized space for improving the structure of human capital, as the reduction effect of
China’s human resources is not obvious and higher population density will enhance the response of
environmental policies to the income level [63]. As a country with a large population, China needs
to further optimize its human resource structure and play its role in reducing emissions. In addition,
the impact of R&D investment in China’s industrial sector on reducing carbon intensity has not yet
emerged clearly. Therefore, enhancing the emission reduction techniques is an important pathway to
optimizing not only energy efficiency and the carbon production rate, which are a qualitative index,
but also optimizing the number of high- and low-carbon industries, which is a quantitative index.
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Abstract: Gas leaks in the oil and gas industry represent a safety risk as they, if ignited, may result
in severe fires and/or explosions. Unignited, they have environmental impacts. This is particularly
the case for methane leaks due to a significant Global Warming Potential (GWP). Since gas leak
rates may span several orders of magnitude, that is, from leaks associated with potential major
accidents to fugitive emissions on the order of 10−6 kg/s, it has been difficult to organize the leaks in an
all-inclusive leak categorization model. The motivation for the present study was to develop a simple
logarithmic table based on an existing consequence matrix for safety related incidents extended to
include non-safety related fugitive emissions. An evaluation sheet was also developed as a guide for
immediate risk evaluations when new leaks are identified. The leak rate table and evaluation guide
were tested in the field at five land-based oil and gas facilities during Optical Gas Inspection (OGI)
campaigns. It is demonstrated how the suggested concept can be used for presenting and analysing
detected leaks to assist in Leak Detection and Repair (LDAR) programs. The novel categorization table
was proven valuable in prioritizing repair of “super-emitter” components rather than the numerous
minor fugitive emissions detected by OGI cameras, which contribute little to the accumulated
emissions. The study was limited to five land based oil and gas facilities in Norway. However, as the
results regarding leak rate distribution and “super-emitter” contributions mirror studies from other
regions, the methodology should be generally applicable. To emphasize environmental impact, it is
suggested to include leaking gas GWP in future research on the categorization model, that is, not
base prioritization solely on leak rates. Research on OGI campaign frequency is recommended since
frequent coarse campaigns may give an improved cost benefit ratio.

Keywords: fugitive emissions; hydrocarbon leaks; optical Gas Imaging (OGI); leak detection and
repair (LDAR)

1. Introduction

Natural gas is currently the third largest source of energy, covering about 20% of the world’s
primary energy demand. Unlike other fossil fuels, the global demand of natural gas is expected
to increase over the next few decades. In the International Environment Agency (IEA) Sustainable
Development Scenario in the World Energy Outlook 2018, designed to be fully aligned with the Paris
Agreement goal of keeping the global average temperature rise below 2 ◦C, natural gas is expected
to supply one quarter of the world’s primary energy demand by 2040 [1]. The increasing demand is
driven by the development in Asia, governmental policies of carbon-taxing and coal-to-gas switch in
industries and buildings. The increasing supply is primarily met by the US shale gas revolution.

Energies 2019, 12, 4063; doi:10.3390/en12214063 www.mdpi.com/journal/energies313



Energies 2019, 12, 4063

Methane is the most prominent gas in natural gas mixtures. During processing, the natural gas is
dried, CO2 and traces of inorganic materials—for example, sulphur and mercury—are removed as
required by the customer specifications. Wet gas and rich gas are typically separated from the oil before
the gas is treated in a gas processing facility. The wet gas or NGL (Natural Gas Liquids), contains a
mixture of heavier gases (ethane, propane, butanes and naphtha), which may be further separated to
produce clean gas components or gas mixtures of varying properties. Rich gas has a lower content of
ethane and other heavier hydrocarbons. Dry gas consists mainly of methane with some ethane and
only minor fractions of heavier hydrocarbons. In some facilities, gas containing only methane and
some ethane is compressed and cooled to LNG (liquefied natural gas), while in other facilities the gas
is used to produce other products, for example, methanol.

Natural gas and in particular its primary gas component methane, represents the lowest emitting
fossil fuel when combusted. Natural gas therefore has many environmental advantages over coal and
oil. The flexibility provided by the natural gas when converted to LNG also makes the transition to
less CO2 release from the energy consumers easier. It may therefore be concluded that natural gas will
play a major role in the global energy transition towards a low-carbon future.

In all engineered systems, there is unfortunately a loss of energy. In for example, the electrical
power grid system, 5% of the transmitted power is typically lost [2]. Processing and transporting
natural gas, as well as compression and cooling of natural gas to produce LNG, require operations at
high pressures. Transport pipelines may operate at pressures above 100 bar while production of LNG
prior to cooling typically involves pressures in the range of 20–60 bar. Leaks therefore occur both in the
processing and transport of gas to the markets. Unfortunately, methane is a potent greenhouse gas
(GHG) with a global warming potential (GWP) of 28–36 times CO2 in a 100-year time frame. Having
both a shorter atmospheric lifetime and higher energy absorption potential than CO2, methane’s
short-term global GWP is estimated to 84–87 [3,4]. The way the greenhouse gas emissions are assessed is
not straight forward, as many factors are part of the picture [5,6]. It is, however, clear that uncontrolled
methane leaks and emissions along the natural gas value chain may drastically reduce the climate
benefits of natural gas over other fossil fuels, especially in the short term.

When studying fugitive emissions from the UK high-pressure pipeline transport system, that
is, up to 85 bar pressure, Boothroyd et al. [7] detected both soil and air emissions. They concluded
that the loss to the air accumulated to as much as 627 tonnes CH4/km/yr (241–1123 tonnes CH4/km/yr
interquartile range). The estimated natural gas loss to the soil was 62.6 kt/year. For one particular
pipeline, the average distance between leaks indicated that nearly all pipe welding joints were leaking.
By investigating the Bangladesh Titas Gas distribution network by means of soap screening and
a Gasurveyor 500 series instrument (Gas Measurement Instruments Ltd, Renfrew, Scotland, UK),
Mandal and Morshed [8] found several leak sources. Scrubber dump valves and pressure relief valves
were identified as the most severe leak sources with respectively average leak rates of 217 L/min and
438 L/min. Average leak rates of respectively 4.0, 8.0 and 1.6 L/min were found for insulation points,
tube fittings and connectors. These examples indicate that the methane losses may be significant
and may thereby reduce the environmental benefit of natural gas as a fuel compared to more carbon
rich fuels.

According to Miller and Michalak [9], the current emission measurement and estimation
methodologies are associated with high degrees of uncertainty. Results from top-down (e.g., remote
atmospheric measurements) and bottom-up (e.g., direct component measurements) studies show
significant differences and much research on this topic is initiated by environmental agencies and oil
and gas operator consortiums. According to the IEA, the methane emissions must be lower than 3%
for natural gas to represent a cleaner energy provider in the short-term than coal [10]. The general
consensus is, however, that the global methane losses along the value chain are lower than 3%. Recent
studies estimate that the methane emission from US oil and gas supply chain is close to 2.3% of the
gross US gas production [11].
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National environmental protection agencies (EPAs) are increasingly concerned about the
accumulated leak rates in the oil and gas industry. In several countries, for example, Norway
and USA, the EPAs want to quantify the leak rates as a basis for issuing environmental taxes. There
are indications of methane leak rates being higher than the respective EPAs estimates [12,13]. Loss of
methane gas to the atmosphere must be prevented as these losses counteract an improvement in GWP
relative to carbon rich fuels.

Leak rates and greenhouse gas (GHG) footprint of both the Norwegian LNG and pipeline
gas exported to Europe have been found to be well below recently reported EU averages [14].
The estimated CH4 emissions were 0.01–0.04% of the production rate. But there are leaks and the
Norwegian Environmental Agency (NEA) requires Differential Absorption Lidar (DIAL) recordings,
which is also frequently used to record methane gas emissions from industry areas [15] and landfills [16].
In some special cases, the DIAL technique can also be used to record leaks from for example, large
process units and storage tanks. However, to search for leaks on a component level, close-up methods
are required.

It is well known internationally that a minor fraction of the emission sources dominates the
accumulated methane emissions [3,17]. Rather than searching for numerous marginal small leaks on
the order of 1 × 10−6 kg/s, to start looking for the “super-emitters” may be worthwhile. If the average
period a few “super-emitters” are active is half a year, that is, before detected in a yearly OGI campaign,
they may dominate the accumulated leak rate. Searching more frequently for “super-emitters and not
devote so much time to the marginal leaks, could be very beneficial with respect to environmental
impacts, safety and plant economy.

Methods that can be used near the leak sources may reveal exactly where the leaks occur and
which leaks contribute most to the accumulated emissions, making it easier to prioritize repair of
the “super-emitters” [3,17]. On the component level, since such “super-emitters” may emit orders of
magnitude more gas than minor fugitive emissions, one may question whether a high accuracy is
necessary, that is, over-engineering may be an issue [3]. Since the “super-emitters” contribute so much
to the accumulated leak rates, it is important to locate and repair these.

In the present study, we have developed and tested a concept for improving the focus on the
leaks contributing most to the accumulated emissions. An incident consequence matrix used by the
Petroleum Safety Authority of Norway, as well as oil and gas companies operating on- and offshore in
Norwegian territories, has been extended and tested as a tool also for categorizing fugitive emissions.
It was also tested for communicating the importance of addressing “super-emitters” with less focus on
a high number of minor leaks significantly smaller than these “super-emitters.” A leak risk evaluation
guide is presented and a discussion regarding too high focus on quantifying all detected leaks, rather
than focusing on the major contributors, is included. Some comments are included regarding safety
risk versus fugitive emissions and possible benefits of a common gas leak categorization system.
The novelty of the paper is the concept presented and the way it can be implemented by operators
and managers.

2. Gas Leak Detection in Processing Facilities

2.1. Fire Safety Related Properties of Natural Gas

Natural gas typically consists of 90–95 vol% methane (CH4), 3–6 vol% ethane (C2H6), with some
minor amounts of longer chain alkanes, for example, propane (C3H8), butane (C4H10) and so forth, as
well as varying amounts of N2, CO2 and H2S, which is generally removed when processing the gas.
The molar mass of methane and ethane are 16.04 g/mol and 30.07 g/mol, respectively. A representative
molar mass for natural gas may typically be 19 g/mol, while dry air has molar mass 28.97 g/mol.
At 20 ◦C, the density of natural gas is about 0.79 kg/m3 while the density of air is 1.21 kg/m3. Unless
very cold due to the expansion from a high-pressure source, that is, the Joule Thompson effect or
resulting from for example, an evaporating LNG leak, a gas leak will be lighter than the ambient air.
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Natural gas is flammable, with a heat of combustion of about 50 kJ/g. It has a minimum ignition energy
(MIE) of 0.25 mJ, that is, it is easily ignited when mixed with air. The lower flammability limit in air,
which is also denoted as the lower explosion limit (LEL), is 5 vol% and the upper flammability limit of
15 vol% [18].

Due to the high pressures associated with natural gas processing and pipeline transport, even
small leak openings may give substantial leak rates. Ignited large leaks have given many major
accidents worldwide. Early detection of gas leaks is therefore given high priority to prevent fires
and/or explosions.

2.2. Fixed Gas Detectors for Safety Related Leak Detection

Gas processing plants, compression facilities for gas transport and LNG plants are equipped with
fixed gas detectors to detect safety related leaks. These gas detectors usually come in two principle
categories, that is, point detectors and line-of-sight detectors. There are many different types of point
gas detectors. Previously, combustion-based gas detectors were used. These detectors relied on
recording the oxidation of gas on a heated catalyst and had quite long response times. Today, infra-red
(IR) light absorption detectors dominate, at least in Norwegian on- and offshore facilities. These are
based on recording the IR absorption of the C-H bonds in the gas at about 3.4 μm wavelength. Readings
from point detectors are usually reported in % LEL. For new equipment, the detection limit for high
alarm (H) is typically 10% LEL with high-high alarm (HH) at 20% LEL. Line of sight detectors work
similarly, however with a sender and a receiver, where any absorption of wavelengths corresponding
to the C-H bond IR signature between these, is recorded. Line of sight detectors typically report the
values in LELm (LEL meter), with set values for H alarm and HH alarm typically at 1 LELm and 2
LELm, respectively. At H alarm, the plant operators are warned and non-essential electrical equipment
is automatically disengaged. Even stronger actions are taken at HH alarm or when more than one gas
detector H alarm is activated.

2.3. Investigation of Gas Release Incidents

In a number of cases in the world-wide oil and gas industry, large gas releases have been ignited
and thereby caused major accidents. Containment is therefore generally accepted as the most important
barrier against severe incidents. Diluting gas leaks to below the LEL is also a possible safety measure.
In other industries, such as the coal mining, where methane is continually released, ventilation is
critical for ensuring safe conditions [19].

Major oil and gas companies relentlessly investigate situations that have resulted in safety related
gas leaks, regardless of the release being ignited or not. Investigation of such leak incidents is indeed
required by the Norwegian regulations, stating that “Situations that occur frequently or that have great
actual or potential consequences, shall be investigated” [20]. The motivation for investigating gas leaks
is to learn from the incidents and enable the companies to prevent future accidents and near misses.

Since loss of containment is a severe risk, most companies have developed criteria for leak severity
categorization represented by the leak rate for lasting leaks and accumulated leak for brief leak bursts.
A representative general incident and near miss consequence matrix is presented in Figure 1, where
also other incidents such as for example, personnel injury, uncontrolled discharge/emissions to the
environment and loss of reputation are included. In Norway, such matrixes have been used for more
than three decades, with only minor adjustments. For flammable oil and gas leaks, the consequence
matrix is organized from the most severe to the less severe leak rates in the following order: leak rate >
10 kg/s→ Red 1; 10 kg/s > leak rate > 1 kg/s→ Red 2; 1 kg/s > leak rate > 0.1 kg/s→ Yellow 3; leak
rate < 0.1 kg/s→ Green 4; leak rate << 0.1 kg/s→ Green 5. It is interesting to notice that the leak rate
categories are organized logarithmically based of the leak rates, both for actual leaks and for potential
consequences under slightly altered circumstances.
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Figure 1. Representative consequence matrix for incidents and near misses in the Norwegian oil and
gas industry.

2.4. Previous Detection of Fugitive Emissions from Production Facilities

In recent years, campaigns for detecting methane leaks at land-based hydrocarbon processing
facilities in Norway were mostly based on the Differential Absorption Lidar (DIAL) technique, since that
method was considered as best available technology (BAT). Leak detection programs were mandatory
and enforced by the NEA due to the methane greenhouse gas potential. Leak rates recorded by
third-parties were used to issue taxes. The measurements were typically performed by a DIAL truck
visiting the site [15,16] to record methane gas in the atmosphere upwind and downwind of the facility.
Usually, the truck had to be positioned within the “hot plant,” that is, where there should be no
ignition sources. As a non-Ex safe unit, there was a need for work permits for this operation. The truck
was at each site for 2–3 weeks and the recordings could be severely affected by surrounding nature,
for example, mire habitats releasing methane at changing rates when for example, heated by sun
radiation. Only in a few cases, the DIAL technique could reveal which equipment was indeed leaking.
Besides these issues, the DIAL technology can get a fair representation of the total fugitive emissions,
however, generally without providing details about any individual “super-emitters.”

For single leak identification, close-up methods are required. Until recently, the preferred solution
at Norwegian facilities was sniffing with handheld gas detectors held 10 cm from potential leak sources
and the readings were either in ppm (parts per million) or in %LEL. The measurements at 10 cm
distance were done on a regular basis, for example, weekly, as detection at this distance was recognized
as important for detecting safety related leaks. Measurement campaigns using 1 cm distance were
done less frequently, for example, once a year, to detect the smallest fugitive emissions.

2.5. Detecting Minor Gas Leaks and Seepages

Unless directly exposing a point gas detector, a natural gas seepage of for example, 5 cm3/s
(3.5 × 10−6 kg/s, 125 kg/y) will not result in a H alarm of neither point gas detectors nor line-of-sight gas
detectors. The released gas will be too diluted to result in alarm activation. Such small leak rates in an
open area or in an indoor ventilated area, do not represent a safety issue. However, when undetected
by the fixed gas detectors, these leaks may release gas for several years. When accumulating the

317



Energies 2019, 12, 4063

contribution from numerous non-safety related leaks, it is apparent that they contribute to a significant
environmental impact, as well as a loss of valuable products.

Handheld infrared (IR) based optical gas imaging (OGI) cameras have now been introduced for
leak detection. Ravikumar et al. [21] recently investigated whether the OGI technology could represent
an effective method for methane leak detection. This was done based on the U.S. EPA proposed
regulations requiring use of OGI passive IR technologies in LDAR programs. It was concluded that
80% of the emissions could be detected at 10 m distance. This work was followed up with a study
where an OGI camera was used for blind tests at mock-ups resembling flange leaks [17]. At 6 m
imaging distance, a 50% likelihood detection limit was about 20 g CH4/h (0.0056 g/s), corresponding to
a volumetric rate of 7.0 cm3/s. The 90% detection likelihood limit followed a power-law relationship
with distance.

There are several benefits when being able to walk into the field and visually see gas leaks.
One can see exactly which point the leak originates as well as getting an estimate of the leak rate by the
gas plume character. In a recent OGI study, several methane leaks of about 1 cm3/s (0.0008 g/s) were
identified in an LNG plant [22].

2.6. Leak Rate Quantification

Leak rates may be estimated by a variety of methods. Test campaigns have been performed at Total’s
Lacq Platform in France using gas spectral imaging systems, that is, multispectral Long-Wavelength
InfraRed (LWIR) band (7–9 μm) camera, mobile hyperspectral cameras in the LWIR band (7.7–12 μm)
and Light Detection and Ranging (LIDAR) multi gas system. Teams from France, Spain, USA and
Norway were invited to assess remote-sensing systems for methane leak quantification [23]. The testing
showed that methane leaks in the range from 0.7 g/s to 140 g/s could be visualized and quantified in
real time using mobile Telops Hyper-Cam, while also confirming the performance of several remote
sensing technologies. Open path laser systems have been used [24] for gas leak detection at rates of
about 1 L/min. Low-cost, off-the-shelf, metal oxide-based methane (CH4) gas sensors have also been
tested for monitoring methane leaks. They gave quite reliable data in laboratory conditions when
properly correcting for the influence of air temperature and relative humidity [25], as well as in the
field for recording ambient concentrations [26]. Dyakowska and Pęgielska [27] tested trained operators
using the EN 15446 and the Hi Flow sampler technique and found that the Hi Flow sampler gave
the best results. By carefully following the measurement procedures, the best operator was able to
quantify the leak rates to within 3.5% in blind tests.

For an LDAR program, it may however not be necessary to identify leak rates to within this
accuracy, that is, when the main goal is to prioritize leaks for repair to reduce emissions. As identified
leak rates are of varying orders of magnitude, a less refined mesh may be sufficient for identifying the
“super-emitters,” which, according to Brandt et al. [3] should be focused.

In the present study, OGI cameras were used for identifying leaks. For quick estimates of leak
rate, a very simple guide was developed to support the operators in doing soap bubble tests using
spray (CRC Leak Finder Spray). The guide, as shown in Figure 2, presents the volume of a sphere as a
function of diameter to assist in volume rate estimates of the bubbles generated by leaks. The operators
were instructed to count to for example, 10 s (1001, 1002, 1003, . . . ), record the dimension of the
individual bubbles or bubble groups, using a ruler, note the total bubble volume, correct for the shape
of the bubbles (e.g., half sphere) and divide by the bubble development time. This gives a fair leak
rate estimate in cm3/s. Blind tests were also conducted in a lab, where 90% of the estimates were
within ±30% of the correct value. In the field it may be expected that volume estimates are slightly
less accurate. Leaks that generate bubbles so fast that the operators were unable to quantify these
leaks were simply identified as “super-emitters.” Such leaks could then, if needed and considered safe,
be quantified by for example, Hi Flow sampling.
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Figure 2. Guide for estimating volume rate of minor gas leaks.

3. Proposed Leak Categorization Concept and Risk Evaluation Guide

3.1. Leak Categorization Concept

All gas leaks represent environmental challenges, while in outdoor conditions, the smallest
leaks do not represent a safety risk, that is, fire or explosion risk. Since all leaks are relevant to
the environment, it would be beneficial to have a common consequence classification concept, that
is, ranging from more than 10 kg/s to less than for example, 10−6 kg/s. This span would include
release rates associated with potential major accidents and the smallest detectable fugitive emissions.
Assuming natural gas, that is, with at a density not that much short of 1 kg/m3, a leak rate of 10−6 kg/s
corresponds to a volume rate of about 1 cm3/s at ambient conditions. In open areas, this leak rate
obviously does not represent a significant safety risk. A leak rate three orders of magnitude larger
(10−3 kg/s, that is, about 1.0 L/s, corresponding to a heat release rate of 50 kW if ignited) may, however,
be considered a safety related leak, at least when it comes to potential personnel exposure. To be
somewhat conservative, one may define all leaks >10−4 kg/s as safety related leaks when considering
for example, burns risk for field operators.

With leak rates spanning several orders of magnitude, the logarithmic based safety related incident
categorization matrix, which is familiar to managers and operators in Norway, represents an interesting
concept. By extending it to smaller leak rates, fugitive emissions may then be included. It may be
discussed where the cut between the safety related leaks and purely environmental risk should be
drawn. In the suggested categorization table, a new category “Green 6,” that is, with leak rates in the
range 1 × 10−4–1 × 10−3 kg/s, is introduced and the cut between the safety related risk and purely
environmental risk is proposed at 1 × 10−4 kg/s, as indicated in Figure 3.

Figure 3. Suggested leak rate categories including safety related leaks and fugitive emissions.
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The heat release rates of the potentially ignited gas leaks, assuming a heat of combustion of about
50 kJ/g [18] and 100% combustion efficiency, are also included in Figure 3. This was done to increase
the understanding of the dimensions of a fire if a leak should become ignited. The last lines of Figure 3
include leak rates in units of hours and years, as that is relevant for evaluating and reporting fugitive
emissions for environmental impact.

It should be noted that whether a hydrocarbon gas leak may represent a fire and explosion hazard
is very dependent on the ventilation conditions. In unventilated enclosures even minor leaks, when
undetected, may result in hazardous concentrations in hours, days or weeks depending on the size of
the enclosure. It is in the present work assumed that such leaks will be discovered by fixed point gas
or line-of-sight detectors as the concentration reaches the H alarm level, for example, 10% LEL or 1
LELm, respectively.

3.2. Risk Evaluation Guide

In order to repair a leak of for example, 5 cm3/s, depressurization of a process module may
be necessary. This would normally include flaring, which also releases hydrocarbons due to partly
incomplete combustion. Depressurization to repair a leak and pressurization again after the repair
and start-up of the involved module, may also result in new leaks. It is therefore necessary to
evaluate whether the processes involved when repairing a leak could result in any associated
negative consequences.

Leak rates may not be constant but may develop with time. Under certain circumstances, the leak
rates may develop very fast. The risk associated with a leak should therefore not be assessed only
based on the observed leak rate, as such. In a high-pressure system, a minor leak of for example,
1 cm3/s originating from a corrosion attacked pipe should get much more attention than a similar leak
from for example, a valve stem cage gasket. An immediate depressurization would be a proper action
when a situation involving a sudden loss of containment may be anticipated. The risk evaluation
and proper actions regarding an identified leak should therefore include issues relevant to potential
immediate or long-term leak rate development, negative consequences if a repair is undertaken and
so forth. A guide for instant risk evaluation was therefore developed and tested in the present work,
as presented in Figure 4.
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Figure 4. Sheet for simple minor leaks risk evaluation for prioritizing leak repairs.

4. Experience with the Leak Categorization Concept and the Risk Evaluation Guide

4.1. Leak Detection Campaign

The extended safety related leak rate concept was tested during leak detection campaigns at five
onshore production facilities in Norway, that is, an oil refinery, a gas processing plant, a compressor
plant, a methanol production plant and an oil terminal. None of these facilities had previously been
screened by OGI campaigns. The screening was done by a third-party (The Sniffers, Balen, Belgium)
using OGI cameras (FLIR GFx320, FLIR, Wilsonville, OR, USA) for identifying leaks and a HI Flow
Sampler (Bacharach, Inc., New Kensington, PA, USA) technique for measuring leak rates. It should be
noted that only about 40% of the identified leaks were quantified. This was partly due to for example,
inaccessibility, weather conditions or general time constraints. Five leaks were immediately reported
as potential safety related to the plant operators who took the proper actions for handling these leaks,
either the actions were to cordon off, to depressurize and repair or to stay “hands-off” for a period
based on a risk evaluation as presented in Figure 4.

The facilities varied substantially in size, from the large refinery and gas plant to the medium
size compressor plant and the methanol production plant and to the minor size oil terminal. All the
facilities had been regularly surveyed by plant operators using hand-held sniffers. No extra sniffing
campaigns were done prior to the OGI campaigns. The number of leaks identified was quite consistent
with the size of the facilities, that is, 124, 73, 29, 14 and 11 respectively. The number of quantified leaks,
arranged in accordance with the suggested categorization system, is presented in Figure 5.
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Figure 5. The number of leaks for each facility arranged per leak level.

The total accumulated leak rate from these 251 leaks was 0.73 g/s (2.6 kg/h). If unattended for one
year, this would result in loss of 49 tons to the atmosphere. It is seen from Figure 5 that leaks in Level 8
dominated the total number of leaks identified at all the facilities. However, when studying the leak
rates in each category, as presented in Figure 6, a conspicuous single Level 6 leak at the gas production
plant stands out as a major contributor. It is also seen that the leaks in Level 7 contribute much to the
accumulated leak rate.

Figure 6. Leak rate for each facility arranged per leak level.

The distribution of quantified leaks from all the facilities combined, is presented in Figure 7.
Though the Level 8 leaks dominate in numbers in Figure 7a, the leaks in Level 7 contributed most
to the emission of hydrocarbons, as seen in Figure 7b, while the single leak in Level 6 contributed
12% to the accumulated leak rate. For both the gas processing plant and the gas compression facility,
the leaking gas was mostly methane.
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(a) (b)

Figure 7. Number of leaks (a) and leak rate distribution (b) arranged according to the suggested
categorization system.

The leak rates, arranged from the largest to the smallest leak, are presented in Figure 8a and the
accumulated leak contribution is presented in Figure 8b. The largest of these 251 leaks. accounting for
12% of the total release rate, may then qualify for the label “super-emitter.” The 21 largest leaks, that is,
8% of the leaks, accounted for 50% of the total release rate. The combined Level 6 and Level 7 leaks,
that is, 39 leaks (15% of the leaks), accounted for 63% of the total emissions, as indicated in Figure 8b.

(a) (b)

Figure 8. Leak rate (a) and accumulated leak rate (b) for the 251 quantified leaks arranged according to
decreasing leak rate.

To be able to study the leak distribution for each plant in the same diagram, the leaks were
arranged based on the leak rates, from large to small leaks. The leak number was normalized by the
total number of leaks for each facility, as shown in Figure 9. For three of the facilities, that is, the
gas compressor facility, the methanol plant and the oil terminal, a quite small number of leaks were
identified and quantified. The results may, however, still indicate that there are some differences
between the results from these facilities. The leaks detected for the methanol plant generally seem
to be smaller than the leaks detected from the two other facilities. There also seem to be similar
differences between the gas processing plant and the refinery. Except for 2–3 possible “super-emitters,”
the former generally exhibits lower leak rates than the latter. Since the same third-party surveyors
did the leak search and leak quantification, this could possibly indicate some differences between the
studied facilities.
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Figure 9. Leak rate for each individual quantified leak for the facilities, arranged per normalized
number of leaks at each facility. The suggested leak categorization levels are indicated on the figure.
The notion “All” refers to all the 251 quantified leaks, normalized accordingly.

It is generally known that the gas processing plant for several years has had a quite detailed
fugitive emission leak detection program and has followed up their fugitive emissions in site maps
and markings in the field. Historically, this facility had a higher number of known fugitive emission
(FE) leaks on their FE map. The explanation for this could either be that this facility was leaking more
than the other facilities or that it had a better leak detection program. This was also the case for the
methanol production facility. An OGI campaign in more windy conditions could, however, mask the
minor leaks and therefore skew the results in a diagram such as presented in Figure 9 towards higher
emission rates since only the higher leak rates could then be detected. To draw any conclusion on this
issue based on the OGI campaigns would therefore require information about the weather conditions
during the OGI campaigns.

Very few of the detected leaks were in Level 10. This may to a large extent be explained by
the difficulty to detect leaks at this level, that is, <10−7 kg/s (<0.1 cm3/s). Their contribution to the
accumulated leak rate is also very small. Leaks in Level 9 are also generally quite difficult to detect.
They do, as well, only to a minor extent contribute to the accumulated leak rate, as seen in Figure 7b.
Since leaks in Level 9 and Level 10 are both difficult to detect and are observed to contribute little to
the accumulated leak rate, it is suggested to combine these in the smallest practical level of leaks rates,
that is, <10−6 kg/s. In accordance to Figure 3, all leaks <10−6 kg/s are therefore suggested to be labelled
as Level 9 leaks.

4.2. Some Comments on the Obtained Results

Rather than consuming much time for quantifying leaks in Level 9 (and Level 10), it may be
worthwhile focusing more on the leaks that contribute most regarding environmental impact and
safety related risk. Repair of leaks with rates in Level 7, Level 6 and so forth, should therefore be
prioritized. When presenting the results from the leak detection campaign in figures like Figures 7
and 8, it became quite clear that repairing the “super-emitters” should be focused. It therefore turned
out to be an efficient way of communicating the OGI campaign results.
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4.3. Leak Rate Diagram Guide

For a few leaks, it was decided to monitor the possible development in leak rate over time using
the bubble technique (CRC Leak Finder spray) and the diagram presented in Figure 2. This was based
on an uncertainty whether the leak could gradually develop, that is, needed attention as suggested in
the risk evaluation guide presented in Figure 4. It was then needed to give some information about the
expected accuracy of such monitoring. It was, however, apparent that Figures 3 and 4 represented an
aid in such risk evaluation processes.

4.4. Benefits of OGI Campaigns Versus Regular Sniffing Campaigns

The previous aspiration (sniffing) detection campaigns at the respective facilities were generally
done at areas of the plant with easy access for the operators. Equipment associated with potentially
leaking components had been given attention, while for example, possible leaks surfacing from
cladding distant from a leaking component were not investigated. An important benefit of having an
OGI camera survey was the possibility of detecting previously undetected leaks at places with limited
or no access or where leaks were not expected.

Several of the detected leaks were at locations where quantification could not be done without
erecting scaffolding. This limited the possibility for leak quantification by the Hi Flow sampler
technique. However, from both an environmental and a technical safety point of view, detecting the
gas leaks that required immediate action was important. Since some of these leaks could represent a
hazard to the Hi Flow sampler operators, any work to quantify these leaks was off course deemed
inappropriate. It may very well be that one or more of these leaks were larger than the accumulated
rate found for the 251 leaks quantified.

4.5. Leak Rate Risk Evaluations in the Field

A plant operator always followed the third-party OGI inspector and the Hi Flow Sampler operator.
The plant operators at the investigated facilities were well trained and knew the gases and liquids,
as well as the process conditions (pressures and temperatures), in different modules at the facilities.
Until now, the plant operators have, however, had little experience with the risks involved with leaks
other than on an overarching level, for example, combustible gas or liquid products, liquids flashing
when exposed to atmospheric pressure or self-ignition of hot oils when exposed to air, to name a few
risks. When suggesting that plant operators should evaluate the risk related to a fugitive emission, for
example, 5 cm3/s leak rate, they could not give any description of the associated risk beyond general
terms, for example, it may ignite and cause a fire or an explosion. To relate the risk to something
familiar seemed farfetched.

The presented risk evaluation guide, that is, as shown in Figure 4, was intended to assist in
understanding the fire and explosion risk associated with a hydrocarbon gas leak. In Norway, most
plant operators are familiar with the heat release rates of for example, a camping stove (2–4 kW)
and that a burning candlelight represents about 50–80 W. Using such familiar examples represented
knowledge anchors for understanding that an ignited release rate in for example, Level 8 is between
these two familiar heat release rates and that a release in for example, Level 5 is far more. Some
operators even knew that a fully involved passenger car fire [28] would typically be representative for
the heat release rates associated with level Green 4. Adding the row of estimated heat release rate
(HRR) of an ignited leak in the leak category table (Figure 3) clearly helped them to comprehend the
risk associated with a potentially ignited hydrocarbon gas leak.

5. Discussion

In the present study, a simple guide for estimating volumetric leak rate for minor gas leaks was
presented in Figure 2. The guide worked well when tested by plant operators. The results from such
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quantifications were intended for further risk evaluation, for example, monitoring development in the
leak rate and so forth.

The consequence matrix for incidents and accidents in the Norwegian oil and gas industry was
used as a template for categorizing safety related gas leaks and fugitive emissions. In line with the
incident and accident consequence matrix, the suggested leak categories were arranged based on the
leak rate in kg/s, in orders of magnitude in leak rate, descending to <1 × 10−6 kg/s. The suggested
leak categories were used to analyse and present the results from third party OGI campaigns at five
land-based facilities in Norway. The facilities comprised an oil refinery, a gas processing plant, a gas
compression plant, a methanol production plant and an oil terminal. A total of 630 leaks were identified
by the OGI campaigns. About 40% of these leaks, that is, 251 leaks, could be quantified by the HI Flow
sampler technique. The number of quantified leaks at the mentioned facilities was respectively 124, 73,
29, 14 and 11 with an accumulated leak rate of 0.73 g/s (2.6 kg/h).

The reasons for 60% of the leaks identified by the OGI campaigns not being quantified were
associated with limited access to the leaking components and weather conditions. It should be noted
that five leaks were not quantified as it was considered unsafe for the HI Flow Sampler operator to
approach these leaks, which were cordoned off for subsequent leak repair.

Leaks in Level 8 (10−5 kg/s, 10−6 kg/s] dominated the number of quantified leaks. The single leak
in Level 6 (10−3 kg/s, 10−4 kg/s], that is, the largest leak quantified, contributed 12% to the accumulated
leak rate. The leaks in Level 7 (10−4 kg/s, 10−5 kg/s] together with the one leak in Level 6, contributed
to 64% of the accumulated leak rate. The 21 largest leaks, that is, the 8% of the leaks, accounted for 50%
of the accumulated leak rate.

Leaks not quantified were probably associated with leak rates similar to those quantified.
The exceptions were the five leaks that could not be quantified due to safety reasons. These may have
been much larger than the largest quantified leak. Some of these may therefore have been in Level 5.
If so, they would have dominated the accumulated leak rate. These leaks had not been detected by the
regular sniffing campaigns at the facilities. Nor were they large enough or close enough, to be detected
by the 10 % (or 20 %) LEL H-alarm on point gas detectors or the 1 LELm H-alarm on the line of sight
gas detectors. Without an OGI campaign at the facilities, these leaks could have continued leaking for
years, with negative impacts on the environment and safety, as well as representing loss of valuable
products. Getting these large leaks repaired was probably more important than all the rest of the leaks
identified both regarding safety as well as environmental impact.

In the present study, it may be concluded that the OGI technology is a great tool for field use, as also
concluded by Ravikumar et al. [21]. The best available OGI cameras are, however, quite expensive.
When looking for “super-emitters,” less expensive OGI technologies may be “good enough.” Less costly
cameras may also allow for using such equipment in organized training sessions and for demonstrating
how the gases spread after larger or smaller releases [29,30].

The present study is limited to presenting the leaks according to their mass loss rates. Since
the hydrocarbon gases have different GWP, the leak rates in kg/s cannot be directly transformed to
environmental impact. This could, however, in principle be done as each quantified leak originates
from an equipment with known approximate gas composition. Rather than using resources for getting
these details sorted for all the 251 leaks, one could introduce the approximate gas composition as a
criterion for prioritizing repairs. A suggestion could be to multiply the leak rates with representative
GWPs versus CO2 for the leaking gas mixture and prioritize according the respective leak’s GWP. This
would lead to a discussion of what factor to use [5] but would ensure that methane rich leaks got
increased attention due to the high environmental impact of this gas.

The experience with the suggested classification system for fugitive emissions was quite good.
It helped in getting the attention away from the large number of minor leak sources identified and
focus on leak rates. This resulted in focus on the “super-emitters” contribution to the accumulated
emissions. Acknowledging that a limited number of leaks accounted for a large proportion of the
accumulated leaks may help addressing the “super-emitters” more frequently in the future.
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To directly view a leak in the OGI camera or subsequently on a recorded video, reveals much
information about the leak. Since the plant operators know the leaking hydrocarbon gas from a given
equipment, including, for example, the approximate average mole mass, operational pressure and
temperature, the way the gas plume behaves can give much information even without any leak rate
quantification. By occasional leak quantification by for example, soap screening (Leak Finder Spray) as
a calibration of the visual information, the plant operators might be able to classify most leaks in the
correct level in the suggested categorization table. Or, if the leak is large, classify it as a “super-emitter”
for immediate attention. It is suggested that this is further investigated since and if this works, the focus
can be shifted to early identify any “super-emitters” and thereby significantly reduce the accumulated
leak rates, that is, reduce the environmental impacts and loss of valuable products.

The international focus on greenhouse gas emissions from the oil and gas industry is expected
to be intensified to limit the global warming. This is especially important for production, transport
as well as end consumers of products that may result in methane emissions [31–34]. The present
study contributes to reduce the emissions at land based mid-stream facilities, where it is shown that
identifying and repairing “super-emitters” would give a high benefit cost ratio. It seems quite clear to
the authors that there must be good economy in identifying and repairing the “super-emitters.”

6. Conclusions

The suggested system based on orders of magnitude in leak rates, from safety related leaks to
the smallest fugitive emissions detectable by OGI camera, worked quite well. The simple risk guide
sheet also worked well in assisting the operators during the risk evaluation process. The suggested
categorization table was used for presenting and analysing detected leaks to help prioritizing repair of
“super-emitters,” which contributed most to the accumulated leak rates. A change in LDAR programs
to coarser and more frequent OGI campaigns to earlier detect any new “super-emitter” is suggested.
This would also improve the search for safety related leaks as well as prevent loss of valuable products.
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Abstract: This paper aims to deal with CO2 emissions in energy production process in an original
way, based on calculations of total specific CO2 emissions, depending on the type of fuel and the
transport distance. This paper has ambition to set a break point from where it is not worthwhile
to use wood as an energy carrier as the alternative to coal. The reason for our study is the social
urgency of selected problem. For example, in the area of public sector decision-making, wood heating
is promoted regardless of the availability within the reasonable distance. From the current state of the
research, it is also clear that none of the studies compare coal and biomass fuel transportation from
the point of view of CO2 production. For this purpose, an original methodology has been proposed.
It is based on a modified life cycle assessment (LCA), supplemented with a system of equations. The
proposed methodology has a generalizable nature, and therefore, it can be applied to different regions.
However, calculation inputs and modelling are based on specific site data. Based on the presented
numerical analysis, the key finding is the break point for associated processes at a distance of 1779.64
km, since when that it is better to burn brown coal than wood in terms of total CO2 emissions. We
can conclude that, in some cases, it is more efficient to use coal instead of wood as fuel in terms of
CO2 emissions, particularly in regard to transport distance and type of transport.

Keywords: biomass; efficiency; heating system; renewable energy; decision making process; transport;
LCA; break point

1. Introduction

In past decades, the issues of nature’s conservation, sustainability, energy intensity, and greenhouse
gas emissions reduction have been not only problems for practitioners and scholars, but it also,
increasingly, are becoming political problems. An example might be the upward discussions on this
subject, which in some cases present hugely different opinions of the regional but also national political
leaders. There is the question of how much importance is attached to individual opinion streams.
When searching for the objective attitude, it is important to rely on quantifiable data and high-quality
research. Even though the aforementioned areas have been relatively well researched, some gaps still
might be identified. The political decision-making process and related presentation of key theses and
strategies might be ideologically burdened. The correctness and relevance of the proposed policies
should not be relativized, particularly because of the gravity of this issue. In this case, a science based
on empirical and quantifiable findings is the only fair and verifiable tool. The challenge of this article is
to look at the selected issues using the optics of quantifiable and measurable variables. In the context of
the urgency of the open topic, the total specific CO2 emissions from the transport and burning processes
of coal and wood, depending on the transport distances, were selected as indicators of environmental
burden and energy intensities. How effective is the replacement of fossil fuels with biofuels (wood in
our case) in relation to transport distance for the reduction of CO2 emissions? This question will be
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answered in the following text. Many authors have dealt with the issue of CO2 emissions, transport,
and solid fuels. Therefore, we would like to mention the most important work that has been published
in this area. Describing current state of the art will help us to create a broader theoretical basis for our
practical part, and at the same time to find a research gap that has not been explored so far.

The introductory part of this work will be opened by a global perspective of the problem, from
the point of view of the international authorities, because energy efficiency is directly related to climate
change issues, primarily in terms of searching for new, more efficient, and sustainable technologies. The
United Nations (UN) initiated the establishment of the International Panel on Climate Change (IPCC).
This UN body, among other agenda, has been publishing reports on climate change, in particular,
the current Fifth Assessment Report (AR5). The report takes into account the impact of human
activities on climate change. Factors that can amplify the effects of adaptation and mitigation can be
considered good-quality public administration, such as the use of green technologies or a sustainable
way of life [1]. Key documents with global impact are the United Nations Framework Convention on
Climate Change and the Kyoto Protocol and the Paris Agreement. The United Nations Framework
Convention on Climate Change (the convention) has been the initial platform for international climate
negotiations from 1992. Its objective is to stabilize the concentration of greenhouse gases in the
atmosphere in order to prevent dangerous changes in the climate system [2]. The 1998 Kyoto Protocol
(UN) obliges the countries involved to reduce their greenhouse gas emissions. The Czech Republic
signed and ratified this document in 1998 and 2001 [3]. In 2015, the Paris Agreement defining a
long-term perspective on climate protection was adopted by the stakeholders of the Convention.
EU countries agreed to reduce greenhouse gas emissions by at least 40% by 2030 compared to 1990
and they ratified the agreement in October 2017 [4]. At European Union level, a few documents
with significant impact on energy and efficiency needed to be mentioned. Firstly, the Covenant of
Mayors for Climate and Energy whose participants declare to act according to Paris Agreement [5].
Currently, there are 11 signatories to this initiative from the total of approximately 6250 municipalities
and towns in the Czech Republic [6]. Directive 2010/31/EU of the European Parliament and of the
Council on the energy performance building is a document from 2010, according to which buildings
account for 40% of total energy consumption in the Union [7]. Directive 2012/27/EU of the European
Parliament and of the Council on energy efficiency, amending Directives 2009/125/EU and 2010/30/EU
and repealing Directives 2004/8/EC and 2006/32/EU from 2012 states that the energy efficiency is a
tool to fight the dependence on energy imports, energy shortages, economic difficulties, and climate
change [8]. The Czech Republic as a member state of the European Union, and therefore, coordinates
and harmonizes the priorities and objectives of its policies. An important state body is the Government
Council for Sustainable Development of the Czech Republic, which is administered by the Office
of the Government of the Czech Republic. The importance of this office is underlined by the fact
that the chairman is the Prime Minister, and other significant members include the Minister of the
Environment, the Minister of Finance, the Minister of Industry and Trade, the Minister of Labour and
Social Affairs [9]. It consists of nine Committees, such as the Sustainable Energy Committee, which
deals with possibilities of implementing international sustainable development documents and other
energy documents into Czech environment [10]. The Advisory and Working Body, whose activities
are provided by the Ministry of Industry and Trade, is the Government Council for energy and raw
materials strategy of the Czech Republic [11]. In case of legislation, it is necessary to mention Act
number 165/2012 Coll., on supported energy sources and on amendments to certain acts that regulates
the field of renewable sources, secondary energy sources, and high-efficiency combined heat and power
generation, including adjustments of stakeholders’ behaviour (state administration, natural persons,
and legal entities) [12]. The state energy policy from 2004 (updated in 2010 and 2015) acknowledges
clearly formulated priorities and strategic objectives of the Czech Republic for future decades; e.g.,
principles of sustainable development [13,14]. The Ministry of the Environment of the Czech Republic,
in cooperation with other institutions, created The Strategy on Adaptation to Climate Change in the
Czech Republic, which was approved by the Government of the Czech Republic in 2015. The document
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assesses the impacts of climate change [15]. In 2010, the Government of the Czech Republic approved
The Strategic Framework for Sustainable Development of the Czech Republic, defining the concepts
of sustainable development in the Czech Republic, defining basic principles, objectives, priorities,
and economic, social, and environmental indicators [16]. In 2017, this document was followed by the
strategic framework called The Czech Republic 2030. Sustainable development should be measured,
according to the document, by improving quality of life of individuals and society, taking into account
the legacy to future generations [17].

2. Literature Review

There are many authors studying impact of fossil fuel combustion emissions on human health
and the air quality; therefore, the aforementioned issues are reflected in both academic and scientific
circles [18–20]. There are no doubts that coal use results in environmental degradation and causes
negative health consequences [20,21]. According to [22], where the human health and ecotoxicological
impacts of electricity production from wood to coal fuel were compared, ”Improvements in power
plant efficiency, silviculture management, and reduced transport distance have the potential to reduce
the respiratory effects of bioenergy systems.“ In terms of emissions, studies mainly deal with pollutant
emissions produced by the combustion of solid fuels by households or industrial activities [23–26].
Other types of studies deal with the reduction of emissions of CO2, NOx, and other pollutants in the
atmosphere caused by burning fossil fuels [27,28]. As [29] claims, bioenergy represents a sustainable
greenhouse gas (GHG) reduction option. In their work, they raise concerns about the climate change
impacts of bioenergy and uncertainties within the bioenergy supply chains, and that evaluation
methods generate large variations in emission profiles. However, as [29–31] claim, biomass in terms of
forest residues is supposed to have large global availability and might achieve large GHG emissions
savings. In the study of Thakur et al. [32] it is concluded that “Forest residues can provide an almost
carbon neutral energy source that has lower GHG emissions than fossil fuels and requires very little
energy for processing and growth compared to what is produced.“ However, those authors deal with
an issue of chipping options when preparing forest residues for power plant processing. In their
work, the transportation distance seems to be crucial in terms of reduction of energy consumption and
emissions. The general view has been that carbon emitted from biomass combustion is assumed to
be low-level or carbon neutral—as supported by IPCC [33]. The explanation is that amount of CO2

released from biomass fuel (e.g., wood as the major biomass resource) combustion equals the amount
of CO2 trees absorb during their growth. However, this opinion about biomass carbon neutrality has
been questioned in recent years. Scientists have been arguing that biomass energy produces emissions,
and therefore, is unlike other renewables. Sedjo and Cherubini at al. explain in their works, that
sustainable foresting may be carbon neutral. However, in the short term, using wood biomass energy
can generate increases in atmospheric carbon. “The issue arising from the violation of the temporal
boundary is the waiting time needed to achieve carbon neutrality” [34,35]. Nian and Johnson state,
that in some cases, biomass fuels can be far more carbon positive than fossil fuels [36,37].

Even the Environmental Protection Agency (EPA) is considering regulations against biomass
energy’s carbon emissions [34].

However, it should not be overlooked that the carbon contained in wood was absorbed from the
atmosphere, unlike that of fossil fuels, a relatively short time ago, usually in tens or hundreds of years,
when it was grown. By returning it back to the atmosphere, it is not possible to change the balance of
its concentration if the area of forest land is maintained, where the growth of new tree species absorbs
this carbon dioxide again, thus it is sustainable. Since this study assumes this kind of sustainability, we
consider CO2 emissions from biomass to be CO2-neutral. Let us add that, of course, extensive clearing
or burning of forest stands does not represent sustainability.

However, at the same time European Commission, and Joint Research Centre on Directorate
Energy, Transport, and Climate states, that the European Union’s CO2 emissions increased again,
by 1.3%, in 2015 [38]. This was caused by an increase of 4.6% in natural gas consumption, mainly
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utilized in power generation and space heating, and by an increase of 4% in diesel consumption in
transport [38]. Additional emissions from the combustion of gas could be offset by the employment
of local biomass sources, especially wood as fuel, but additional emissions due to transport are not
obvious for this solution. The International Energy Agency compares the CO2 emissions of fossil
fuels in a broad way, but does not compare them with neutral biofuels [39]. In terms of biomass
trade, there are several studies that have been investigating trade in biomass for energy purposes. In
study [40], an initial overview of the global status of the production and biomass trade for energy
is presented. Proskurina, Junginger, and Heinino [41] investigated emerging energy biomass trade
streams, in other words, biomass producing and consuming countries regarding liquid and solid
biofuels (including roundwood).

Nevertheless, environmental risks caused by coal energy includes, besides direct emissions
from the coal burning process, indirect emissions, such as coal mining emissions and transportation
emissions. The carbon emission factor of the coal-to-energy chain is calculated based on the life-cycle
assessment that is provided in [42]. Based on his conclusions, CO2 is the most direct GHG emission
and mainly results from coal combustion, which accounts for 93.8% of the total GHG emissions. The
remaining 6.2% of total GHG indirect emissions are from the energy consumption in the mining,
transportation, and washing processes. Different authors have introduced their LCA (life cycle
assessment) studies on the carbon emissions of coal-fired electricity generation in different countries;
for example, in the UK [43], Japan [44], Canada [18], and Germany [45]. Only very few works focus on
coal and biomass together; for example, Morrison and Golde [46] analysed the environmental impacts
associated with producing electricity from wood pellets and coal. According to their conclusions,
“Utilizing wood pellets in lieu of coal results in a GWP reduction of 90–92% per kWh of electricity
generation.” One of the most current papers of Sterman, Siegel, and Rooney-Varga [47] solves a very
similar problem, whether replacing coal with wood lowers CO2 emissions. However, it does not
include the transport effect, which can change the whole emission reduction effect, since the wood is
significantly less dense, so its transportation with a growing distance may be significantly less efficient
than the transportation of coal. The work of Zhang et al. [18] proves that there is huge advantage
for electricity-generating companies to substitute biomass fuel for coal (reducing emissions by 91%
and 78% relative to a coal and natural gas combined cycle). A study on the Chinese environment
investigated a life-cycle comparison of the energy, environmental, and economic impacts of coal versus
wood pellets for generating heat. In that work, the authors presented the conclusion on wood pellets
system significantly reduces various emissions in comparison to coal [18]. In the following chapters,
the data collection, evaluation, and processing; the methods used; the methods of calculations; and the
modelling, will be described. Subsequently, on the basis of the proposed methodology and modelling
results, the overall environmental burden (the indicator was CO2) monitored will be described. Then,
the results will be discussed and conclusions and recommendations will be provided. In the last
chapter, the results of the theoretical and practical part of the research will be summarized; we will
try to formulate the weaknesses, and the possibilities of further research. The aim of this paper is to
examine how the total volume of CO2 produced in connection with the transport and combustion of
selected solid fuels develops. Therefore, the following working hypothesis can be defined: the break
point at which the total CO2 emissions from the coal and wood transport and combustion process
equals is less than 1500 km. From the above, a possible range of methods follows.

Based on the provided facts in the analyses of LCA, transportation of solid fuel is one of the
biggest indirect sources of GHG emissions. It is also clear that none of those studies compares coal and
biomass fuels’ transportations from the point of view of CO2 production. In addition, the LCA method
is quite problematic where it comes to its practical application. Among the most common LCA issues
in practice are, first, the high demands on time and input data; second, the uncertainty regarding the
content of some particles of the analysed LCA chain; and third, that in practice, it is not necessary
to analyse the complete LCA chain, which may be debatable with respect to the abovementioned
point. That last statement is supported by several works [48–51]. That logic brings us, for practical
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purposes, unambiguously to a deeper analysis of the selected part of the LCA chain. The analysis is
presented in this paper for two parts of the LCA, the first of which is represented by the transport
process and its output streams, and the second is represented by the energy utilization of the conveyed
fuel and its output streams. The latter is represented by the total calculated CO2 emissions. The first
reason is that transport is an integral part of both processes in terms of emissions associated with the
use of these fuels, and therefore, forms one whole with the combustion process. Solid fuels cannot
be used energetically without being transported to the final consumer. Alternatively, other means
of transport may also be used; other results would be obtained when using an alternative mode of
transport (train, ship, etc.). The second reason is that it was possible to obtain unambiguous data for
both partial processes, and in that connection, to obtain clear outputs with respect to the nature of
the phenomenon under investigation. The overall view would probably be changed by taking into
account other parts of the LCA chain. However, this article, based on the above-mentioned arguments,
prefers accurate and practically useful calculations of the defined part of the LCA. The third reason is
that during the solution, it became clear that the model was easily transferable to other conditions. An
example may be the fact that the originally intended application of the model in the Czech environment
has been limited to a certain extent, due to the relatively short transport distances (see chapter 3).
While under conditions of longer transport distances, the model clearly demonstrates the expectedly
significant increase in inefficiency for shipping, including the so-called break point: the point from
which coal is more efficient than wood in terms of CO2 emissions (see chapter 3). Nevertheless, our
study emphasizes issue of CO2 emissions that are generated by transportation of coal and wood,
depending on transport distance. In other words, our study solves the question of coal and wood
transportation effectiveness in terms of CO2 production by the break point determination.

3. Materials and Methods

After detailed literature research, which deals with CO2 emissions from wood combustion and
transportation, we have come up with following findings.

1. Studies dealt with the partial aspects of CO2 production, without dependence on the transport of
individual raw materials. CO2 emissions are comparable in both processes under review and
represent at the same time energy consumption.

2. Previous studies were concerned with setting specific LCA values for the ratio of direct and indirect
emissions in specific regions. In this study, we deal with general but significant connections of
the transport of solid fuels and direct emissions from their combustion.

3. The output of this study is the determination of the unique relationship between the selected, and
some of the most widely used types of solid fuels, and the transport distance and total specific
CO2 emissions from these processes.

The main output of the work is the analysis of CO2 emissions’ development from transport
depending on the type of solid fuel considered, while direct emissions from the combustion of these
solid fuels are taken into account also. In the analysis, a break point was defined. In other words,
a break point where is the maximum meaningful distance for timber transport. This point clearly
quantifies the distance in which the total CO2 production from transport and wood burning process
equals total CO2 production from transport and coal burning process. The analysis was divided
into two sub-processes; namely, the determination of the CO2 emissions from the combustion of the
considered fuels and CO2 emissions from transport.

3.1. Fuel

For auxiliary calculations of different fuels, the energy contents, volumes, and CO2 emissions of
selected fossil fuels’ combustions need to be determined. Those are average values of efficiency and
corresponding emissions for commonly utilized types of boilers and stoves fired by coal and wood.
The energy content parameters of the combustion process for coal were determined from two sources.
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In general, the parameters for coal combustion may vary; however, in this work, brown coal was
analysed. It may vary in parameters such as ash content, sulphur, water, and so on, but CO2 emissions
should be comparable regardless of the specific source. The value for the CO2 emissions produced is,
therefore, calculated from two independent sources for different types of lignite.

The first source was the coal-fired process from Umberto’s software tool library, which predicts a
70% efficiency of the burning stove. The second one was the information on the website of the Czech
coal producer called Severočeské doly, a.s. According to Umberto library, 80.80 kg of coal produces
1,000,000 kJ of heat. This corresponds to 12.376 MJ/kg by taking into account the 70% efficiency of the
heating system.

The primary energy input is calculated according to the formula:

Enp = En/η (1)

where Enp represents primary energy consumption, En represents energy obtained by burning a certain
volume of coal in kg, and η represents efficiency of the process.

The CO2 emissions from the combustion of 1 MJ of primary energy, ep, is evaluated as

ep = em × η (2)

where em represents specific emissions and η represents efficiency of the process.
For the assessment of transport effects, it is important to take into account the amount of energy

that can be transported, in each particular form of fuel, in one shipment. This requires data on the
density and energy contents of the transported fuels. For coal, this data is directly available [52].

For wood, it is necessary to employ the following formula:

ρw =Mn × vff (3)

where ρw represents density of 1 m3 of cut and chopped loose wood, Mn is the average mass of wood
calculated from a combination of different tree species in 1 m3, and vff represents the percentage
volume of clean wood in free-flowing 1 m3 of cut and chipped wood.

The following option is considered for wood. For calculating itself, it is necessary to set additional
values, especially the energy contained in the wood Ep. The precise type of wood, its proportion,
or wood moisture is unknown both in short-term and in long-term; therefore, the value of Ep was
determined in accordance with the average calorific value of the wood and in accordance with expected
moisture content based on [53]. CO2 emissions from the biomass burning process itself are herein
considered as neutral, so they cannot be counted as total additional CO2 emissions.

The value of the wood mass, mw, corresponding to this volume, is calculated for the bulk space
meters according to the relationship:

mw = Vw × ρw (4)

where the mass of wood is in kg and the volume of wood Vw is in m3. Analogically mc and mb for coal
are evaluated from volume Vc of coal respectively.

The determination of the calorific value for wood is a little bit problematic in Central European
conditions. A relatively wide range of different tree species can be used, which differ both in calorific
value and in density. Another problem is that the calorific value of the same wood type varies according
to the volume of moisture contained. The information portal TZB info, which focuses on the issue of
energy in the long term, provides data from which these typical calorific values can be derived [54], and
subsequently, adjusted for real conditions. When determining the average energy content of firewood,
items that are not meaningfully usable from an economic, environmental or physical point of view
have been omitted. In Table 1 there are expected values of wood with 40–50% moisture contained,
which is not possible to burn in common types of boilers, and wood with 0% moisture contained, that
does not exist in normal conditions.
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Table 1. Wood types and characteristics.

Wood Type Moisture [%] Calorific Value [MJ/kg]

Deciduous wood (oak, beech 50/50%) 15 14.605
Coniferous wood (spruce, pine 50/50%) 15 15.584
Logs (spruce, pine 50/50%) 20 14.28
Logs (spruce, pine 50/50%) 30 12.18
Wood chips (oak, beech, spruce, pine each 25%) 10 16.4
Wood chips (oak, beech, spruce, pine each 25%) 20 14.28
Wood chips (oak, beech, spruce, pine) 30 12.18

Source: own processing according to [54].

Let us assume in this study that wood is cultivated in the Czech Republic and it is commonly
dried for a year in roofed areas; exceptionally wet wood stays there for 2 years. Let us, therefore,
assume that the wood has a total calorific value of 14.215 MJ/kg, which is the average calculated from
the values given in Table 1. The selected wood types represent the most commonly used species in the
Czech Republic. The final value is, therefore, average, and at the same time corresponds to a water
content of 20%.

The total amount of energy included in one load was calculated based on this calculation of energy
content from values shown in Table 1 as follows:

Ew1l = Ew × mw (5)

where Ew is the energy included in 1 m3 of wood. Alternatively, from energies Ec in coal, the total
amount of energy included in one load Ec1l coal was evaluated.

For brown coal, it was also necessary to determine the corresponding CO2 emissions from the
combustion process. Due to the neutrality of biomass emissions, CO2 emissions for wood were set to
zero (Sw = 0). The emissions for coal are determined according to the formula:

Sb = Eb1l × ep (6)

3.2. Transportation

In addition to emissions from energy consumed by transport, the associated processes, such as
transport, are examined in this case also. As the means of transport were considered truck, train
and ship. Data for a train is specific to the conditions of the Czech Republic, as it is based on the
structure of the electric energy mix and is, therefore, not transferable. However, the data for shipping
are transferable, since the propulsion of river cargo ships is similar and most of the ships in Europe
that use diesel fuel.

When considering a truck with an average transport capacity of 8–10 m3 (in our study, the Tatra
815 S3 was selected with parameters according to Table 2. This type of truck is commonly utilized
not only in the Czech Republic, but also in other countries. It has an average transport capacity of
8–10 m3.), the increase in total transport emissions of fossil fuel and renewable energy in the form of
wood is caused due to the increasing consumption of fossil fuel consumed by transporting the wood to
its customer. For analysis, a truck with the parameters listed in Table 2 was selected.
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Table 2. Technical specifications of selected vehicle.

Type of Vehicle T-815 S3 6 × 6

Curb weight 11,300 kg
Payload 10,700 kg

Total vehicle weight 22,000 kg
Engine type T-3−929 −11

Engine displacement 15,825 cm3

Highest engine power 280/2200 kW/Nm
Basic fuel consumption 32.5/63l/100 km

Volume of the hull 8 m3

Source: [55–57].

As the mass of transported fuels differs considerably, it is obvious that this effect will be reflected
in the fuels’ consumption during transport. Therefore, it was necessary to establish a function that
describes the relationship between the weight of the transported cargo and the fuel consumption.
Let us assume for simplicity that the consumption depends on the additional mass linearly. The
dependency function for selected Tatra 815 S3 vehicle is in the form:

y = 32.5 + (x/350.8197) (7)

where y represents the total consumption in l/100 km and x represents the weight of the load in kg.
Based on knowledge of fuel consumption in l/100 km, CO2 emissions can also be determined. For

CO2 emissions produced by transport, Ekoblog.cz reports the calculation of the specific emissions of
diesel fuels [58]: “Specific emissions of CO2 per kilometre driven by diesel combustion = 10,084/3.7584
× Specific consumption (l/100 km)/100 = Specific consumption × 26.83 (g CO2/km)”.

Transport-related emissions from transport by truck as the second component of the total CO2

emissions St(truck), can thus be evaluated based on formula:

St(truck) = qt × y (8)

where qt is the coefficient of diesel fuel CO2 emission (26.83 in this case) and y represents the
consumption in litres per 100 km. Last but not least, the total number of trips to transport the same
amount of energy, Nt, should be evaluated. This number can be determined as the ratio of the amount
of energy transported per carriage relative to the brown coal according to the formula:

Ntw = Ec1l/Ew1l (9)

where Ntw represents the number of trips needed to transport the same amount of energy in the form
of wood, which corresponds to one fully loaded car with a coal. The value Ntc is less than always 1,
because it is given by relation Ntc = Ec1l/Ec1l. Consumers will primarily demand a certain amount of
energy, not fuel; however, when a specific fuel volume is demanded in the order, estimation of the
amount of energy is required.

The data are available in a different form for train and ship transport. According to the original
study, which was conducted in 2004 under the conditions of the Czech Republic [59].

The following values were researched for rail transport. It is true that the study may not be
perceived to be completely up-to-date, but given the developments in the field of automobile transport,
significant changes in energy consumption cannot be expected, since the measures being considered,
especially recovery, have not yet been implemented. In addition, these are average values.

Since similar studies are rare in this field and the data structure exactly matches the purpose of
the research, we consider these data to be sufficient.
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Shipping transports according to Table 3. 410,000,000 t of cargo over a distance of 1 km,
consumes 128,000 GJ. It uses 0.312 MJ for the transport of one ton of cargo per km. Emissions were
calculated analogously.

Table 3. Outputs, energy consumption and number of ton-kilometers (tkm) per 1 TJ of energy consumed
by transport type.

Outputs, Corrected Energy Consumption, and Number of Ton-Kilometers (tkm) per 1 TJ of Energy
Consumed in the Czech Republic in 2004.

Type of transport Transport volume (106 tkm) Energy consumption (TJ) Number of tkm/TJ
Truck transport 46,010 58,116 791,693

Railway motor transport 1690 2272 743,908
Railway electric

transport 13,040 2761 4,723,200

Shipping 410 128 3,203,125

Source: [59].

Railway motor transport transports 1,690,000,000 tons of cargo per km and consumes 2,272,000 GJ.
It therefore consumes 2,272,000 GJ/1,690,000,000 tkm for the transport of one ton of cargo per km,
which is 1.344 MJ.

Therefore, we need 1.344 MJ of diesel to transport one ton of cargo over a distance of 1 km using
diesel railways.

In case of electric railway transport, we calculated the outputs according to the same formula.
Railway electric transport transports 13,040,000,000 t of cargo per 1 km and consumes 2,761,000 GJ. It
therefore consumes 2,761,000 GJ/13,040,000,000 tkm for the transport of one ton of cargo per km, which
is 0.212 MJ.

Therefore, we need 0.212 MJ of electricity to transport one ton of cargo over a distance of 1 km
using an electrified railway.

The cargo volume according the Table 3 for electric and motor railway transport is a ratio of
88.53/11.47%. Therefore, the resulting emissions calculated for rail transport were combined from
those two items, which together constitute the weighting for the weighted average calculation.

Specific CO2 emissions can be calculated in a similar way as for truck by substituting into the
Formula (there).

Under the conditions of the current electric energy mix, according to a decree of the Ministry of
Trade and Industry [60], 1 kWh (3600 kJ) of electricity is produced with 1.17 kg of CO2 in case of the
Czech Republic.

Total emissions from river transport (shipping) are also calculated by substituting for Equation (8).
The auxiliary calculation that had to be performed here is to convert the tonne/kilometre data according
to Table 3 and to specific CO2 emissions according to the formula.

St(ship) = (Etkm/Ed) × 2.683 (10)

where Etkm represents the energy consumption for transport of 1 t cargo for distance 1 km by ship, Ed

represents the amount of energy included in 1 L of diesel fuel, and the number 2.683 is the weight of
CO2 emitted by combustion of 1 L of diesel in kg.

Total rail transport emissions can be also calculated from ton-kilometers, but according to
Formula (8) CO2 emissions can only be calculated for that part of rail transport which is realized using
diesel locomotives. Under the conditions of the Czech Republic, this represents 11.47% of freight rail
transport, while the remaining 88.53% is transport on electrified lines. To calculate CO2 emissions, it is
therefore, necessary to use data from the Ministry of Industry and Trade, which states an emission
coefficient of 1.17 CO2 per kJ [60].
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Emissions for freight transport on electrified lines were calculated by multiplying the amount
of energy per ton transported over a kilometer by an electrified railway by the amount of emissions
determined by the Ministry of Industry and Trade. The formula used was:

St(train-e) = ((Etkm × Ef)/3600) * 1000 (11)

where Etkm represents amount of energy for transport of 1 ton cargo over distance 1 km on an electrified
line, and Ef is the emission coefficient according the directive 425/2004 Coll. of the Ministry of Industry
and Trade ČR. The 3600 is the conversion factor from kWh to J, and multiplication by 1000 was
necessary to express the result in grams.

The following three relationships are original and key results of proposed methodology. These
functions define the relationship between CO2 emissions and monitored process parts. The total
amount of wood CO2 emissions, yw, for transport and combustion together is given by:

yw = (x × St(L=0) + x × St(L =w)) × Ntw (12)

yc = ((x × St(L=0) + x × St(L=c)) × Ntc) + Sc (13)

Equations (12) and (13) characterize the total CO2 emission of wood and the total CO2 emission of
brown coal yc. Analogously2, CO2 emissions for other modes of transport are calculated.

The whole methodology can be illustrated as depicted in Figure 1. The first arrow symbolises
transportation and the second one corresponds to the combustion process. The variable Sw is not
considered in the Equation (11), because of its zero value. But for the completeness and better clarity of
proposed procedure, it is shown in Figure 1 and distinguished by the grey text colour. This model can
then be further extended to other transport types.

 
Figure 1. Illustration of process of the total CO2 emission evaluation for transport and combustion
together. Source: own processing.

4. Results

As we recognized the knowledge gap during the literature review, the previous chapter proposed
an original methodology for calculating inefficiency in terms of CO2 emission and transport distance.
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This inefficiency relates to the nature of the material being transported. In the following paragraphs,
the case study with specific empirical values (valid for the Czech Republic) is provided and the break
point for wood is revealed.

4.1. Calculations

In the following chapters are the results of calculations based on formulae defined in the
methodology section, first, for the CO2 from the combustion of fuels used for heating, and second for
fuels and energy types used for transport of fuels used for heating.

The following formulas show the process of the evaluation of the specific CO2 emissions per
unit of energy (MJ) when coal is assumed as the fuel. The emission data obtained from the Umberto
software environment library [61] and the Bílina mine website were used for the calculation [62].

In line with the proposed methodology, the primary energy consumption, Enp, was determined
at first by substitution into Equation (1).

Enp = En/η =12.376/0.7 = 17.68 MJ/kg (14)

The result, giving the calorific value of the coal itself, without taking into account the efficiency of
the equipment, is equal to 17.68 MJ/kg. This is in correspondence with calorific value for Ledvice coal,
that is equal to 17.6 MJ/kg, as listed on the site of the mining company [62].

For this coal, Biom suggests emissions of 102.9 g CO2/MJ for combusted brown coal with a
humidity of 39.5% [63]. The Umberto software-based calculation gave 151.27g CO2/MJ, which is 70%
relative to the efficiency of the combustion plant. By substituting into Equation (2), we calculated the
emission value for the fuel itself:

ep2 = em × η = 151.27 × 0.7 = 105.889 g CO2/MJ (15)

For the evaluation of total CO2 emissions from coal, the average value of these two values
was used:

ep = (102.9 + 105.889)/2 = 104.3945 g CO2/MJ (16)

Substituting the empirical data from the above-mentioned sources [61,62], quite similar values
were obtained. From those partial results, which are presented in the Equations (15) and (16), the
average value was calculated. This is a substantial sub-result, since it has been found that the specific
CO2 emissions converted to energy in MJ do not differ significantly for different coal types. This fact
makes it possible to assume that the resulting value can be utilized with little error for other types.

Wood as a Fuel no Number if There Is only One Subsection

The average energy value of firewood used most often in the Czech Republic for the following
calculations was set in methodology chapter as 14.215 MJ/kg. In case of applying this procedure to
another area with a different composition of used tree species, it is possible to update the calorific value
and recalculate the results for any conditions.

Within the following relationship (Equation (17)), the weight of 1 m3 of pure wood mass was
calculated after processing to a length of 33 cm. The value ρw indicates the specific value of the wood
processed to 33 cm and loose to the body of the transport device. The weight was calculated for this
blend of wood as 582 kg/m3 of pure wood; the expected volume of bulk timber was 0.41 m3 of pure
wood volume per 1m3 of the loading area. A value of 0.41 m3 is the diameter for a non-irrigated field
of 33 cm, which is the most commonly used one [64].

ρw =Mn × vff = 582 × 0.41 = 238.62 kg/m3 (17)
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In the case of fuel transport, it is necessary to work with data that can be compared for further
actions. Therefore, Table 4 provides a summary and supplementation of the data and weights of the
fuels compared to their volume.

Table 4. Bulk density of the fuel.

Type of Fuel Bulk Density of Fuel ρw [kg/m3]

Wood 238.62
Brown coal 1100–1500

Source: own processing from [52].

Another important limiting factor is the mode of transport. The reason for this is the possibility of
using different types of transport, and therefore, different specific CO2 emissions can be expected, due
to variable energy consumption per kilometre and variable transport capacity.

In Sections 4.2 and 4.3, the amount of energy contained in the transported solid fuels is described
with full utilization of the capacity of the means of transport considered.

It is also necessary to take into account maximum weight of the load to be transported with respect
to the weighed means of transport. The reason for this is to verify the possibility of using the full
transport volume potential for the considered fuel and type of vehicle. The article considered that
Tatra 815 S3 truck has two important limits: the weight limit of 10,700 kg and the volume limit of 8 m3

of transported cargo.

4.2. Calculation for Wood

Based on the aforementioned calculations and data in Table 4, the bulk density of wood was taken
to be 238.62 kg/m3. The weight of transported wood was evaluated by substituting into Equation (4):

mw = Vw × ρw = 8 × 238.62 = 1909 kg (18)

A fully loaded truck brings 8 m3 of wood that weighs 1909 kg. Even if there the maximal load, the
weight capacity of 10,700 kg will not be exceeded. Therefore, wood transport is limited by the volume
of the hull.

To express the total CO2 emissions from the monitored processes, it is necessary to express the
total transported volumes of energy. This is necessary in order to determine the number of trips
corresponding to the transport of the same amount of energy in the form of different types of fuels
(wood and coal).

Therefore, it would be possible to transport 1.9 t of wood in one trip. Substituting into Equation (5)
we got the energy content of that mass of wood:

Ew1l = Ew × mw = 14.23 MJ/kg × 1909 kg = 27,165 MJ (19)

The resulting value represents the amount of energy in wood that can be transported by fully
loaded transport vehicle.

4.3. Calculation for Brown Coal

Analogous calculations were done and results for brown coal were obtained. Those values were
already calculated for bulk material.

Substituting into Equation (4):

mc = 8 × 1300 = 10,400 kg (20)

8 m3 of brown coal would weigh 10,400 kg. Even of there were maximum load capacity, the
weight limit would not be exceeded.
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Substituting into Equation (5):

Ec1l = 17.6 MJ/kg × 10,400 kg = 183,040 MJ (21)

The resulting value of Ec1l represents the amount of energy that can be transported in the case of a
fully loaded transport vehicle and brown coal. Again, unlike wood, it was necessary to calculate the
amount of CO2 emissions generated by burning this brown coal.

Substituting into Equation (6):

Sc = 183,040 MJ × 104.3945 g = 19.108 t CO2 (22)

The corresponding CO2 emissions contained in 8 m3 of brown coal are 19.108 t of CO2.
The results in Sections 4.2 and 4.3 present the first part of both combined processes to monitor

CO2 emissions. The next section opens the second part of the combined process calculations, focusing
on the emissions from the transport process.

4.4. Calculation for Transport

The Tatra 815 S3 with an average transport capacity of 8–10 m3, has fuel consumption for any
load weight within the load interval shown in Figure 2. That dependency is given by Equation (7).

Expected consumption will differ because the weight will vary considerably in the cases considered.
The basic fuel consumption of 32.5/63 L/100 km represents the range for an empty and fully loaded
truck. Consumption, however, is given above all by the weight of the load, not its size (considering the
air resistance does not make sense to include). The graph of Tatra 815′s diesel fuel consumption is
shown in Figure 2.

 

Figure 2. The result of the function describing the consumption of Tatra T815 S3, depending on the
weight of the load. Source: own processing.

By substituting into Equation (7), consumption for the transport of the material concerned was
obtained. Then, with the help of determined functional dependency, the fuel consumption of the
selected vehicle was able to be calculated for any weight of the load being carried.
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The results for the distribution of individual types of fuels are given in Table 5. The table also
summarizes the results for the combustion process of transported fuels, which is the summary of the
previous parts of the calculations. The values in Table 5 were converted to 8 m3, representing the fully
loaded Tatra 815 S3. The first column shows the weight of a fully loaded vehicle with a particular
solid fuel; the second column shows the CO2 emissions of selected solid fuels; and the third column
summarizes the fuel consumption per 100 km of the right fuels selected by the vehicle.

Table 5. Summary table.

Fuel
Weight of Load Carried

by 1 Ride (mw,c) [kg]

CO2 Emissions from Combustion
of Fuel by Weight According to

Column 2 (Sc (Sw = 0)) [t]

Corresponding Consumption of
Fuel with the Load According to

the Column 2 (y) [L/100 km]

Without load 0 0 32.5
Wood 1909 0 37.94

Brown coal 10,400 19.108 62.14

Source: own processing.

Specific consumption and specific CO2 emissions are included in Table 6. Because CO2 emissions
were the chosen identifier of the reviewed (analysed) processes, the emissions of CO2 per 1 km were
determined (Table 6). The results were calculated based on [58] by substituting the values of the third
column of Table 5 as a variable x in Equation (7). The results were further converted to g/km and
presented in Table 6. The reason is to compare the emissions related to transport of each type of solid
fuel (mentioned in 1st column of Table 5). In general, is also possible to use this data for comparisons
with other types of trucks or even different transport means.

Table 6. Specific consumption of l/100 km and specific CO2 emissions.

Specific Consumption of L/100 km (y) Specific CO2 Emissions (St) [g/km]

32.5 871.975
37.94 1017.9302
50.74 1361.3542
62.14 1667.2162

Source: own processing.

Table 6, therefore, summarizes the emissions per kilogram of a given load. The order of rows
is identical as in Table 5. The value of 871.975 g/km, contained in the second column of Table 6,
corresponds to emissions per kilometre without a load; the value of 1017.9302 g/km corresponds to
emissions per kilometre of a fully wood-loaded truck; the following values apply accordingly for
driving a fully loaded car carrying brown coal. Since energy is being demanded in the form of energy
volume, it is then necessary to express how much energy is transported in a fully loaded truck. That
could be expressed by how many times the path must be taken to transport the same amount of energy
relative to the chosen fuel variant. That is shown in Table 7, where Nt(w,c) are calculated according to
Equation (9).

The first column of Table 7 describes the solid fuel types; the second column contains the amount
of energy contained in the solid fuel per trip considering the type of transport. The third column
shows the recalculated number of trips to be performed in order to carry the same amount of energy in
all cases. Trips are recalculated according to the volume of solid fuel transported. The initial values
and the results after substitution into Equation (5) are given in the second column. As a reference, the
value for brown coal was used.
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Table 7. Transported energy and number of rides for selected fuels.

Fuel
Transported Energy on a Fully Loaded

T815 (Ew1l) [MJ], Train and Ship
Number of Trips (Nt(w,c))

Wood (w) 27.165 6.738
Brown coal (cc) 183.040 1
Brown coal (ct) 183.040 x
Brown coal (cs) 183.040 x

Source: own processing.

The number of trips were left in decimal form, because research’s subject was the specific emissions
of CO2 for the whole process. They are average values, not specific numbers of trips and specific
deliveries. These values apply when carriers use their transmission capacities optimally. The actual
condition is likely to exhibit worse parameters, since the used vehicle is not always loaded at 100%.

As can be seen from the data in Table 7, the smallest amount of transported energy is represented
by transport of wood. For transporting the same amount of energy (that falls on one fully loaded
carriage of brown coal) an average of 6.738 rides is needed.

Break Point Determination

The key finding of this article was the determination of CO2 efficiency break point for different
kinds of transport that can be evaluated directly from Figure 3.

 

Figure 3. Total CO2 emissions of associated processes of selected fuels and related break points. Source:
own processing.

The evaluation of the CO2-efficiency break point for associated processes has not been explored so
far, so it was confirmed as a research gap. This was already demonstrated in the introduction, where
a detailed overview of current state of the art and review of previous works with similar topic can
be found. There are many studies with comparable topics, but neither of them examined the overall
fossil CO2 emissions by combining several processes within the supply chain as we have proposed.
Studies [29–31] addressed biofuel reduction of CO2 emissions; however, they did not address the
problem of combining those factors. Contribution [32] dealt with the combined process of biomass
combustion and transport; nevertheless, in terms of total energy involving the woodworking process.
Environmental break points were not established for the efficiency of these processes, as we proposed,
and a comparison with the combined process for fossil fuel was not included. Many other sources
have been found, e.g., [38–42], addressing either the combination of transport and biofuels, or the
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determination of fossil fuel emissions. However, they examine the problem from a different point of
view, with a different range and context. In studies [43–45], authors applied the LCA methodology,
but none of them combined the LCA methodology together with the associated processes involving
transport and combustion, and the comparison of biofuels with fossil fuels. Contributions [46,47] dealt
with emissions from biomass and coal combustion together, but only for electricity generation. As
was explained in detail earlier, all of those studies addressed selected issues from different points of
view and with different scopes and contexts. Moreover, none of them had the ambition to set a specific
breakpoint for the combination of transport and post-combustion of fossil fuels and biofuels in the
CO2 emissions context.

From a theoretical point of view, it has been shown that such points actually exist. Based on
the solution of the system of defined equations, its value was calculated for the selected conditions:
ca. 1780 km for transport by truck, ca. 1500 km by train, and ca. 1400 km by ship. As can be seen
from Figure 3, according to various fuel parameters, break points for different fuel and transport
combinations can be also determined. In the case of Figure 3, it shows a combination of wood and
brown coal truck, train, and ship transport. On a practical level, a break point can be used to assess the
effectiveness, sustainability, and environmental impact of any associated process. This coupled process
is bounded by fuel transport and combustion.

From our results, it is obvious that, for normal distances in the order of kilometres or tens of
kilometres, the difference in total specific CO2 emissions is not significant. However, the overall
emission curve for the wood transport process is considerably larger due to its lower weight curves
than those for brown coal. This points to the fact that the combined process of burning wood and
its transport is prone to a rapid increase in total CO2 emissions over longer distances. As the model
neglects CO2 emissions associated with logging, the results for wood will be even more unfavourable
than the ones show in Figure 2.

For distances of 1780, 1500, and 1400 km for trucks, trains, and ships, respectively (points where the
blue curve crosses the others), it is better to burn brown coal than wood in terms of total CO2 emissions.

5. Discussion and Conclusions

At the beginning of the discussion and before stating final conclusion, it is necessary to be aware
of following facts, which underline the originality of the approach of researched in this paper, and at
the same time, illustrate its benefits.

First, the aim of this paper was to deal with CO2 emissions in energy production process based
on calculation of the total specific CO2 emissions of a combined process and setting the break point
according to chosen factors. The outcomes are evident from the graphical interpretation of the results
in Figure 3. Key factors were the type of fuel and the transport distance. The break point, where it is
not worthwhile to use wood as an energy carrier as the alternative to coal, has been found. As can
be seen in the search section, such an approach has not yet been applied in this context. Also, the
dependence of specific CO2 emissions from transport on the type of transported solid fuel was also
revealed. Results were achieved within the original methodology, applied within the LCA framework.
The general novelty of this paper is, with reference to the literature search, in the original view of
analysing CO2 emissions in the case of associated processes and with reference to the political level.
Novel benefits are outlined in the following paragraphs. An example could be the discussed fuel
transport in terms of energy volume or the interconnection of transport, cargo carried, and specific
CO2 emissions.

Second, the proposed methodology opens two issues to be discussed. First issue concerns its
practical use. The second issue is about its general use of the methodology. In case of the practical
use, it should be taken into account that, although the process and the associate input parameters
were designed for the Central European environment (namely, the Czech Republic), the calculations
facilitate its use in other regions of the world. This is mainly due to the conditions in Central Europe.
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Original results show an unusually large transport distance for which the total specific CO2 emissions
are lower for one fuel (the calculated break-point).

Limitations of Study

While working on this study, we came across limitations that we consider necessary to state in
order to broaden the perspective of the researched issue. What matters is the locality, because the
choice of locality and its specifics determines other input parameters. Those are mainly the type of
wood, type of transport, and transport distances. In case of the locality we chose, it is the environment
of the Czech Republic, which in many aspects can be extended to the Central European region. This
implies the specifics for the selected type of transport, also the means of transport, as well as certain
above-mentioned parameters in case of rail transport and related CO2 emission factors. Selected
types of wood and their parameters are connected with the choice of the locality, which of course
significantly contribute to the final results. At the same time, the selected location determines the
transport distances common to the region. It should be noted, however, that when developing the
methodology, the emphasis was placed on the possibility of its universality in terms of transferability to
other environments and related, different input parameters. We believe that due to careful construction
and a detailed description of the methodology, non-local application should be feasible without
major obstacles.

Practical Use of the Methodology

Since the aim was to determine a theoretical break-point, it was necessary to think about the
practical application of this result. In Europe, the usual fuel transport distance when using trucks is
within range of tens to hundreds of kilometres. The break-points calculated in this study were 1779.64,
1500, and 1400 km, showing the fact that in Europe, transport efficiency is not a major problem in
terms of specific CO2 emissions. On the other hand, this distance limits the usability of the breakpoints
itself and the circumstances resulting from it, even though the model shows the increasing inefficiency
expressed by specific CO2 emissions from traffic for any distance. But there are regions in the world
where truck transport is realized for hundreds to thousands of kilometres. An example might be
South America or some regions in Asia, where, due to insufficient rail networks trucks are used for
long-distance transport. Thus, even though the original intention was to concentrate on the practical
application of the model in Central Europe, the calculations in practice appear to be inappropriate for
this region; but possibly worth considering for other regions. Because we did not consider it essential
to change the input parameters typical of Central Europe (namely, the Czech Republic) for the purposes
of this article, we used the Tatra 815 S3, which is a truck typical of the Czech Republic. In addition,
parameters typical for coal and wood extracted in the Czech Republic were also used. However, the
strength of this model lies in its easy generalization by the alteration of several input parameters to
match the specific conditions of particular regions. For application in other regions, it is necessary
to perform a parameter correction for a particular means of transport used. That could be related to
another mode of transport as well. As far as trucks are concerned, the consumption and transport
capacity of a particular vehicle needs to be known. For more accurate calculations, it is also appropriate
to take into account the weight and average calorific value for the usual composition by species of
burned wood, in regions where there is a completely different composition of trees (e.g., tropical). For
coal, it is recommended to verify the parameters, especially in terms of its weight per unit volume and
calorific value of a specific type of coal. For example, in South America, the practical application of this
model gains it merit. For Europe’s conditions, the meaning of the results can be seen not directly in
determining the breakpoint itself, but in determining the rate of increasing inefficiency of wood use as
a fuel with growing distance (in terms of total specific CO2 emissions).

General Use of the Methodology

At the theoretical level, it has been shown that CO2 is a suitable indicator for conjoined processes’
analyses, even though the use of CO2 for such applications has been underestimated. This was
underlined by the works in the literature review; e.g., [18,46,47,65] compared to the results of
this article.
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Generally speaking, the intent that we opened at the beginning of the study was to deal with
transport and combustion as a combined process. Parts of this process cannot be separated in practice,
and we believe that it is not possible to deal only with emissions issues in the combustion process as
a determinant that will represent the induced environmental burden. Calculations of total specific
CO2 emissions from the combustion and transport of wood can be considered only as a partial result.
On this basis, it was possible to establish a functional relationship between the distance and overall
emissions. This functional relationship was expressed by three equations and it was considered the
basis of the original methodology. The break point, which was the final outcome of this work, was
then, the final result of the above-mentioned equations.

Overall Conclusions and Discussion

The proposed methodology can also be evaluated in terms of overall conclusions, in terms of some
partial results, and finally, in terms of the possibilities of generalization. The structure of the two parts
of the work provide both a relatively complex view of, and some partial conclusions for the process of
determination of total specific-emissions of CO2 from the combustion of solid fuels and the emissions
from the transportation of those fuels. The part which deals with the determination of CO2 emissions
from the combustion processes of selected solid fuels shows one of multiple possible views on the
relatively accurate determination of some parameters of the combustion process’s outputs. The values
for wood were based on knowledge of the average composition of harvested trees corresponding to the
conditions of Central Europe. The portability of the model to other regions is, of course, also possible,
as already mentioned. However, a possible correction of parameters for the composition of local
tree species is appropriate. Values for coal can usually be found on suppliers’ or mining companies’
websites. For these fuels, it is also possible to recommend validation and eventual value correction
when applying the model to other regions. The energy content of the coal can shift the proposed
breakpoint either to a greater distance, or alternatively, shorten the distance.

Increasing the amount of energy in wood will move the breakpoint closer to the beginning of the
graph. Reducing the amount of energy will move the breakpoint to greater distances. For transport
parameters, a simple model was designed to determine the change in consumption in relation to
the freight load. In practice, the course of the function is not entirely linear. Most likely, it will be
exponential, as the rolling resistance of the tires will also appear. As the straight line is not used at
the speeds considered therein, such influences are not very significant; therefore, the linear function
y = 32.5 + (x/350.8196721) was constructed as is depicted on Figure 2. It can be said that the analysis has
demonstrated the sensitivity of the timber supply process to transport when the process is considered in
terms of CO2 emissions. The results show that the total specific emissions of CO2 from the comparison
processes equalize only at the distance of 1779.64 km. With the reference to practical utilization, this
problem should be seen in the fact that, already, at a distance of 355 km, the amount of CO2 corresponds
to 1/5 of the emissions that would be produced by heating with brown coal. Such a quantity of
emissions largely limits the positive effects resulting from the neutrality of CO2 emissions from the
energy use of biomass. Besides the practical application, it raises questions about the results of the
policies aiming to meet the requirement of the Paris Climate Conference. The final summary of this
transmits this simple message: We have shown that there is a point that represents a turning point in
which it is more efficient to burn coal than wood. Efficiency refers to the total CO2 emissions of the
combined process. Therefore, it can be stated that wood is not always a more environmentally friendly
alternative, because, as we have shown, under certain circumstances it is more environmentally friendly
to use coal.
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Abstract: This research aims to predict the efficiency of the Sustainable Development Policy for Energy
Consumption under Environmental Law in Thailand for the next 17 years (2020–2036) and analyze the
relationships among causal factors by applying a structural equation modeling/vector autoregressive
model with exogenous variables (SEM-VARIMAX Model). This model is effective for analyzing
relationships among causal factors and optimizing future forecasting. It can be applied to contexts
in different sectors, which distinguishes it from other previous models. Furthermore, this model
ensures the absence of heteroskedasticity, multicollinearity, and autocorrelation. In fact, it meets all
the standards of goodness of fit. Therefore, it is suitable for use as a tool for decision-making and
planning long-term national strategies. With the implementation of the Sustainable Development
Policy for Energy Consumption under Environmental Law (S.D.EL), the forecast results derived from
the SEM-VARIMAX Model indicate a continuously high change in energy consumption from 2020 to
2036the change exceeds the rate determined by the government. In addition, energy consumption is
predicted to have an increased growth rate of up to 185.66% (2036/2020), which is about 397.08 ktoe
(2036). The change is primarily influenced by a causal relationship that contains latent variables,
namely, the economic factor (ECON), social factor (SOCI), and environmental factor (ENVI).
The performance of the SEM-VARIMAX Model was tested, and the model produced a mean absolute
percentage error (MAPE) of 1.06% and a root-mean-square error (RMSE) of 1.19%. A comparison
of these results with those of other models, including the multiple linear regression model (MLR),
back-propagation neural network (BP model), grey model, artificial neural natural model (ANN
model), and the autoregressive integrated moving average model (ARIMA model), indicates that
the SEM-VARIMAX model fits and is appropriate for long-term national policy formulation in
various contexts in Thailand. This study’s results further indicate the low efficiency of Sustainable
Development Policy for Energy Consumption under Environmental Law in Thailand. The predicted
result for energy consumption in 2036 is greater than the government-established goal for consumption
of no greater than 251.05 ktoe.

Keywords: environmental law; latent variables; structural equation modelling; sustainable development
policy; energy consumption; vector autoregressive model

1. Introduction

Sustainable development policy has been given increasingly serious attention around the world.
It is used side by side to define national strategies of various countries for different time scales; short-term,
medium-term and long-term [1–3]. In the area of Environmental Law specifically, it is part of the
driving mechanisms to run such a policy for economic, social and environmental sustainability [4–6].
In order to make national development more sustainable, mutual coordination between the national

Energies 2019, 12, 3092; doi:10.3390/en12163092 www.mdpi.com/journal/energies353



Energies 2019, 12, 3092

management policy and legislation is required, especially integrating and incorporating environmental
law in order to achieve long-run sustainability [6–8].

For Thailand, the main goal of sustainable development policy is to play a core role in creating
sustainability, as stated in the constitution of the Kingdom of Thailand B.E. 2560, with the say of
government policy under Article 72. In addition, the government is given the role of managing
the environment under Article 57, and protecting it under Article 58. Furthermore, this version
of the constitution provides a new provision to guarantee the rights of the people and community
toward the environment under Article 43, as well as grant the right to charge the government or
government agencies with the responsibility for protecting the environment under Article 41. While the
National Environmental Quality Promotion and Preservation Act (Version 2) B.E. 2561 [9] comes with
a significant focus on the formulation of environmental protection policies, as follows: (1) promoting
the participation of people and NGOs in protecting the environment, particularly Articles 6 to 8;
(2) establishing an Environmental Committee under Articles 12 to 21; (3) establishing a Pollution Control
Committee under Articles 52 to 54 as the main organization to determine pollution control policy;
(4) establishing the Environment Fund under Articles 22 to 31; (5) overseeing the environmental quality
management short-term plans of 5 and 20 years under Articles 35 to 41, which is deemed significant,
especially the Sustainable Development Policy for Energy Consumption under Environmental Law;
(6) establishing environmental standards under Articles 32 to 34; (7) establishing environmental
protection zones under Articles 42 to 45; (8) establishing pollution control zones under Articles 59 to 63;
(9) assessing environmental impact under Articles 46 to 51/7 and 101/1 to 101/2; and (10) determining
the civil responsibility of polluters under Articles 96 to 111.

In fact, from 1995 to 2018, Thailand has tremendously improved its economic development,
when Gross Domestic Product (GDP) of Thailand improves with an increasing growth rate [10].
The Thai government has continuously established policies to increase in national revenues. The main
revenue-generated bases the government has attended to are the continuation of export activities
to major trading partners, while increasing the diversification of exported goods with good quality
and strong marketability. This is done together with establishing various measures to broadening
market shares [9,10]. In addition, it can be observed that the government has adopted certain
strategies by allowing others countries engaging in local investments in various industrial projects.
Besides, the government allows joint investments together with other foreign countries within the
main industries of Thailand, as well as promotes Thailand as a strategically important production
base. These strategies are from both proactive and receptive approaches, including tax exemption
for foreigners to land production bases in Thailand, and the promotion of international tourism,
for instance [11]. Besides, the government seeks to promote and implement social policies at the same
time. This has resulted in development and an increased growth rate. In general, the government
has played a significant role in formulating different policies, such as the promotion in Employment
Opportunities, Health and Illness, Social Security, Consumer Protection, as well as monitoring and
follow-up programs [12,13]. However, with robust development in economic and social development,
it has simultaneously led to the environmental change as well. By noting from the past (1995) until
today (2018), the greenhouse gas rate has increased continuously, especially the increment of CO2

emission from the energy-based sector. This cause of energy consumption tends to rise continuously
in all sectors. The most sectors are the electronic sector, transportation sector and industrial sector,
generating greenhouse gas up to 90.05 percent (2018) [13,14]. From the above discussion, it can be
noticed that Thailand has succeeded with economic and social policy, yet environmental policy is not
much given serious attention in development; resulting in the reduction of carrying capacity in the
ecosystem. One of major reasons is that the inefficiency and weak enforcement of Environmental
Law [9]. Moreover, there is still a lack of tools in the implementation of the Sustainable Development
Policy in Energy Consumption under Environmental Law in Thailand to drive the nation towards
the sustainability.
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Establishing a sustainable development policy for Thailand is considered to be an important
strategy for driving the country toward sustainability. This requires a powerful tool for ensuring that the
outcomes of national policies and plans have the highest possible efficiency and effectiveness over short-
and long-term periods. Meanwhile, the government can aim to mitigate or solve problems, particularly
during the formulation process of the Sustainable Development Policy in Energy Consumption under
Environmental Law. This is also seen as a necessity for national development under the national
strategic plan because of its effects on economic, social, and environmental dimensions, which constitute
part of a holistic approach to developing the nation. Any country that is able to strategize such an
approach and turn it into reality will benefit by attaining sustainability in both the short term and
long term. In the long run, there is a high possibility that problems and hurdles will occur within
and outside the nation, and these challenges are usually difficult to control or even monitor. Thus,
strategic planning must evolve from strong knowledge, capacities, and resources, since the output
of this action will determine the future of the nation. To date, the implementation of Thailand’s
Sustainable Development Policy in Energy Consumption under Environmental Law is still weak
and poorly planned. Moreover, there is still no single tool to facilitate a solution to this matter,
which affects economic, social, and environmental systems. Therefore, determining the relationship
among factors by developing a causal model that integrates economic, social, and environmental
aspects, as well as enforcing the environmental law, has become crucial. In addition, studying the
relevant research (discussed in the literature reviews section) reveals a gap that no other studies have
focused on when proposing models for different contexts in various sectors. In fact, the previous
studies have applied the same research methodologies, leading to insufficient analysis in different
contexts and sectors. Therefore, the paper has understood the gap and problem, and starts introducing
the SEM-VARIMAX model as a tool for national policy formulation and in all short-term, medium and
long-term future planning.

2. Literature Review

Upon reviewing the relevant literature from available resources, many streamlined studies
have highlighted the evolving concept of sustainable development, which has made significant
progress in different areas worldwide. Zhou et al. [15] investigated the evolution of sustainable
development-related politics and laws in China, and they found that ecological civilization tends
to broadly tackle problems, focus on public participation, as well as fill the gap in environmental
legislation. In their review of the historical experience of successful development in the Su-style
furniture industry in the Ming Dynasty using a diamond model, Fan and Feng [16] found that style,
material, skill, and government contributions, as well as consumer demand, had significant roles
in gaining competitive advantages during that period. In fact, Boyd et al. [17] reviewed 10 Clean
Development Mechanism (CDM) projects according to their sustainability privileges. The study
later illustrated that sustainable development concerns have been marginalized in some countries.
Joseph [18] has observed that, most Malaysian local authorities’ personnel do not understand the
concept of sustainable development and sustainability reporting. In Bangladesh, Bahauddin [19]
revisited the environmental protection history and other relevant interests. This visit has made a new
initiative possible by paving core best practices. Strengthening and restructuring key environmental
organizations are of few guidelines that must be done. As of understanding the concept of sustainable
development, Rivera [20] studied Sustainable Development Goals (SDGs), and investigated whether
any work has been done between science and policy. The study pointed out the failure to fulfill some
set criterion. Ali et al. [21] have investigated the connection between environmental degradation and
economic growth in Pakistan through a test of Environmental Kuznets Curve along with Autoregressive
Distributed Lag (ARDL) model. There comes the result of which inverted U-shaped relationship exists
between those two spaces, implying the positive impact of population density on per capita carbon
emission. In addition, the rise of energy consumption tends to degrade the environmental aspect.
However, the role of multi-stakeholder partnerships dealing with climate change and sustainable
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development for developing countries was examined by Pinkse and Kolk [22]. Upon analysis,
it revealed the participation of all parties in the creation of linkage between issues. To Choi and Ng [23],
they attempted to understand consumers’ responses on two sustainability concepts in terms of
environmental and economic aspects, along with price. The study explained a positive consumer
behavior on two-sustainability-focused companies, while there was no in favor of low price reaction
when the consumers are aware of the firm with poor environmental sustainability. Amesheva [24]
touched upon the environmental impact on development and social inequality along with recent
legislative measures. As of a result, it revealed the need of reformation due to governance challenge.
In the meanwhile, Bakari [25] shad some highlights on the challenges of sustainable development
implementation in term of global governance, confirming less impact on the whole global governance
system. While the need of economy and environment was found by Martin [26] with the affirmation of
the assessment of environmental and welfare policies. The main aim of all the relevant studies in the
review was to address the concept of sustainability in economic, social, and environmental aspects.

However, the UN Secretariat [27] reported the possible continuation of Urban development,
and this aspect can be further improved by adopting the New Urban Agenda at the United Nations
Conference on Housing and Sustainable Urban Development (Habitat III). Khalifa and Connelly [28]
has found advantages to decision makers after the introduction of sustainable development indicators
along with an index appropriate as compared to the current method of locally calculated Human
Development Indices (HDI). In addition, Wuelser et al. [29] proposed an analytical framework assisting
research on sustainable development by using theoretical conceptions and in-depth analysis by
paving the setting of joint learning in policy making, shared visions and knowledge creation which
in line with sustainable development’s objectives. While Mueller et al. [30] discussed four different
standards (ISO 14001, SA 8000, FSC and FLA), and revealed basic conditions for stakeholders to
uphold, like CSR in supply chains, for instance. Based on other existing studies, Zhang et al. [31]
evaluated the overall robustness of Ecological Footprint (EF) for decision-making on sustainability,
while seeking ways to improve the EF. The new three methods were proposed, a correction factor
for bio-capacity measurement, three-dimensional ecological footprint model and modified carbon
footprint measurement. To add on, Wang et al. [32] introduced the ecological carrying capacity intensity
(EC Intensity) according to the revised version of three-dimensional ecological footprint (3DEF) model.
The findings of the study disclosed that EC Intensity has raised slowly with stronger capacity for
regional development. Singh and Debnath [33] did a study to comprehend the Clean Development
Mechanism (CDM). The finding gave them the fact that sustainable development is reachable if there
is an emphasis on strategic goals and mission.

On the other hand, Giddings et al. [34] integrated environment, economy, and society to sustainable
development and this required more than technical changes and a shift in human worldview. With the
investigation of Sapukotanage et al. [35] on the sustainable practices of the manufacturing firms
in a developing nation in South Asia, there was evidence of such sustainable practices leading
towards sustainable performance. Sutthichaimethee [36] predicted the sustainable development policy
implementation in the sanitary and service sectors of Thailand by 2045 with the result of potential
growth of Thai economy system by 25.76% along with changes. Gradually, the Greenhouse gas
emissions are found to increase by 49.65%. To Greaker et al. [37], they established a benchmark for
climate policy at a national level. The greenhouse gas mitigation projects at certain cost and acquisitions
of emission permits were part of the benchmark, as discussed in the study. It is also worth noting that
many studies have shown the significance of why the concept comes into existence. Cetindamar and
Husoy [38] understood why companies act environmentally responsible and that came with more than
one reason, while ethical and economic reasons are found to be among the reasons. Bedore [39] further
investigated the impact of new Canadian legislation, Federal Sustainable Development Act in 2008 on
sustainable development. The result of this investigation pointed out the improvement of Canadian
sustainable development planning systems due to this Act. Lee et al. [40] looked at Korea’s official
development assistance (ODA) projects in Sri Lanka as the basis of identifying policy issues on the
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sustainable development of developing countries, and the observation has shown the improvement
made by the projects in term of environmental policy enhancement, public awareness, increased
communication and cooperation between participating countries and follow-up management. While
Aguilera-Caracuel et al. [41] sought to see the impact of institutional distance between the home and
the host country, and the headquarters’ financial performance on the environmental standardization
decision among multinational companies. The finding showed that when an environmental institutional
distance is high, it would slow down the standardization of environmental practices, while high-profit
headquarters are ready to take part. Pires, Fidelis and Ramos [42] measured and compared local
sustainable development based on common indicators by seeing through some constraints and
achievements. As of their finding, it revealed that the communication, limited political support,
and application of such indicators are the main issues, and these limit indicators’ capacity towards
sustainable development.

Giannetti, Demetrio, Bonilla, Agostinho and Almeida [43] later diagnosed an environmental
energy of Brazil compared to Russia, India, China, South Africa and United States. The study concluded
what actions may be put in place; reducing total energy use in developed economies and decreasing
exportation of indigenous resources in developing economies. Wysokinska [44] analyzed the impact
of eight UN Millennium Development Goals implementation, drawing a further implication that
triggers the fight against poverty, hunger, disease, and environmental destruction, rather than mitigate
the risk of climate change, global hunger, and the economic fallout. Panzaru and Dragomir [45]
firmly stood with high importance of managers’ involvement in predicting economic growth for
sustainable and economic development. Byrch et al. [46] have found the participant maps in promoting
business, and accommodating economic growth and development, as the key player in the sustainable
development after they revisited the meaning of sustainable development held by New Zealand.
In addition, Casey and Galor [47] examined the carbon emissions in terms of their effect of lower
fertility. Regardless of its complexity, population policies were found to be part of the approach to
tackling global climate change. Also, Ramakrishnan et al. [48] have established an environmental
model for economic growth by integrating sustainability principles. The model produced a number of
outcomes, showing the energy demand would decrease when the regional agricultural share rises.

However, another exploration on the engagement of sustainable development with legislation
gives a better understanding of how such development can be enforced. Ladan [49] tried to establish a
significant nexus between the SDGs, human rights and climate change. This study has concluded that
national law must come into play in order to archive the above objective. Craig et al. [50] sought to
study the flexibility and stability in governance. They came into a conclusion of which an attention to
process and procedure along with increased use of substantive standards would improve and better
the substantive flexibility level to operate with legitimacy and fairness. Whereas, Wang [51] reviewed
ongoing debates pertaining to environmental regulation in developing countries and other aspects.
During this exploration, China has been found to face environmental problems, yet China has made a
serious long-term campaign to confront these issues. Furthermore, Bartel and Barclay [52] have applied
Motivational Posture Theory to examine motivational attitudes on relevant areas, including government,
environmental problems, environmental laws and regulations and farm management behaviors in
the context of Australian agriculture and environmental regulation. Here, the compliance was found
and supported both government and regulations. At the same arena, Kim and Mackey [53] exhibited
the international environmental law and found it to be a complex network of treaties and institutions.
Huber [54] visited the recurrent political challenge for environmental policymakers, and has found the
matter of regulatory cost and change-resistant legal and institutional policy arrangements becomes
the main challenge. Alongside, Tecklin et al. [55] explored the environmental policymaking process
while examining the character and impact of the environmental governance. Here, the study was
evident of the strongly market-enabling quality for the governance instead of the market-regulating
one. In addition, Zeben [56] managed to introduce additional criteria for competence allocation,
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and this further expanded its application in the regulatory process, be it norm setting, implementation
or enforcement.

If other studies are put further into the discussion, Bodansky [57] clarified the nature of the
legitimacy challenge on environmental problem with the claim of decision-making deficit for both
individual states and international institutions. With his study of the European Union, it demonstrated
that the magnitude of legitimacy positively depends on the strength of the institution. Heinzerling [58]
encouraged the lawyers furthering their efforts to attain proper laws and institutions that can reduce the
effect of the polluting state. In China, Chang and Wang [59] began to tap on climate change, including
most environmental governance system. However, the results showed that pollution discharge permit
system is built upon insufficient resources, leading to differing standards for different places in China.
Nonetheless, Periconi and Jokajtys [60] pointed out the importance of modern environmental laws
in New York restricting on certain harmful practices for the environment, and those laws shall be
continued for the current applications. Latham, Schwartz and Appel [61] investigated the intersection
of tort and environmental law, and later found that such intersection should be narrowed in order
to harmonize both statutory and common law. To this extent, Wood [62] addressed the failure of
environmental law in the United States as all juristic agencies allowed so. In order to reduce such failure,
the study suggested that all government institutions shall be held accountable for their discretions.
While Gibson [63] put 10 basic design principles as part of environmental assessment consideration in
Canada, triggering a new trend of global attention for the future version of environmental assessment.
In particular, Fast and Fitzpatrick [64] explored the Environmental Rights Act of the Government of
Manitoba in Bill 20, indicating the importance of the Environmental Bill of Rights in the legislation,
and it must be placed in the on-going efforts to restructure the provincial environmental protection
system. De Moerloose [65] has further compiled papers for the “2016 Law and Development Conference:
From the Global South Perspectives.” This compilation exhibited the disconnection between law and
development, and that leads to further action on reconnecting law with development.

Nevertheless, Tania [66] has reviewed the trade–sustainable development debate in the view of
Rio+20 and its relevant green economic policy. Here, the market access barriers for least developed
country (LDC) is turned out to be the main concern for developed countries towards the sustainable
development. Whereas Chepaitis and Panagakis [67] engaged legal philosophy in bridging individual
capacity and environmental degradation, and this justified the return of greenhouse gases in the
atmosphere with the absence of individual responsibility. Miao [68] analyzed the situations of the right
to justice in environmental matters in China from a legal perspective. The study’s findings have shown
three main focuses in order to protect such right; engaging, effectiveness, and efficiency. To a broader
aspect, Pourhashemi et al. [69] examined the international treaties and the United Nations Framework
on Climate Change Convention in particular, as well as to evaluate the existing forms of legal and
operational protection in relation with climate change. From this study, they have found many issues,
and a failure to protect the rights of refugees and immigrants comes before hand. By tackling the
above issues, it could actually result in efficient management of this crisis and stop the possible chaos
across the globe. While Ruhl [70] investigated the context and policy dynamics of climate change
and its trends while exploring normative and structural impacts on how environmental law fits
in. The study has illustrated three main areas that environmental law plays: pollution control and
ecological conservation, climate change mitigation, and its adaptation.

The structural equation model is a forecasting method commonly used in studies in a variety of
contexts and for various objectives. Moreno et al. [71] applied a Structural Equation Model (SEM) and
Confirmatory Factor Analysis (CFA) to understand the nature of classroom conflict in schools in Spain.
Boccia and Sarnacchiaro [72] examined consumer attitudes pertaining to companies’ corporate social
responsibility initiatives by applying a structural equation model. Baumgartner and Homburg [73]
assessed the applications of structural equation modeling in marketing and consumer research in
three aspects, examining problematic issues and suggesting ways to improve them. Furthermore,
Mai et al. [74] analyzed latent variables by comparing exploratory structural equation modeling
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(ESEM) with structural equation modeling (SEM) and manifest regression analysis (MRA). In their
study, ESEM was determined to provide the least biased estimation of regression coefficient. Ryu and
Mehta [75] examined multilevel factorial invariance in n-level structural equation modeling (nSEM)
by optimizing a multigroup multilevel confirmatory factor analysis. Lei and Lomax [76] examined
structural equation modeling under nonnormality conditions using two different estimation methods.
Significantly, the study showed no effect of estimation methods and nonnormality conditions on the
standards errors of parameter estimates. Cugnata et al. [77] used Bayesian Networks (BN) to investigate
factors regarding overall customer satisfaction to determine appropriate actions to improve customer
satisfaction. Nylund et al. [78] simulated a study on the performance of latent class analysis (LCA), factor
mixture model (FMA) and growth mixture model (GMM) to identify the number of classes in different
sample sizes. In Japan, Saito et al. [79] estimated the effects of daily CO2 exchange on environmental
variables by using a path analysis, which showed soil temperature having a significant impact on
ecosystem CO2 exchange throughout the year. Yang and Yuan [80] proposed ridge generalized least
squares (RGLS) as part of a structural equation modeling procedure for the development of formulas.
Here, RGLS were found beneficial for enhancing parameter estimate efficiency.

A number of studies in various countries have attempted to optimize different forecasting models.
In China, Chang et al. [81] deployed a fuzzy-based grey modeling (GM) procedure in the estimation
of sulfur dioxide emissions. The study showed the effectiveness of the model and the forecasting
indicated a decline in such emissions. Wang et al. [82] predicted air temperature by introducing
a new integrated model, the Variational Mode Decomposition-Autoregressive Integrated Moving
Average (VMD-ARIMA), which was found to be effective in providing accurate temperature forecasting.
Ma et al. [83] predicted provincial vehicle ownership utilizing the Gompertz model, estimating a
rapid growth in vehicle ownership in each province by 2050. Zhao et al. [84] used a giant information
history simulation to estimate the value-at-risk (VaR) of oil prices, analyzing how various VaR factors
from online news sources can most accurately measure crude oil VaR. Xiong et al. [85] incorporated
a novel linear time-varying grey model (1,N) to predict haze while comparing it with the original
GM model, finding that the novellinear time-varying GM model outperformed the original model.
In New Zealand, Zhao et al. [86] explored the connection between household energy use and residential
building costs by using time series methods, the exponential smoothing method, the autoregressive
integrated moving average (ARIMA) model and the artificial neutral networks (ANNs) model. In the
study, the ANNs model was proven to be the most accurate for cost forecasting. In the U.S., Barari and
Kundu [87] revisited the role of the U.S. Federal Reserve in triggering the recent housing crisis by
using a VAR model and found that federal funds rate did not lead to house price increases. Looking at
the European Union, Tucki et al. [88] proposed a new method to investigate the development of the
electromobility sector in Poland and the EU states. Their study concluded that Poland and the EU states
require new approaches in terms of energy management and vehicle operation management. In Africa,
Ahmed et al. [89] applied the ANNs model to forecast GRACE data of African watersheds and found
that the model provided the most accurate forecast. Ramsauer et al. [90] adapted a Factor-Augmented
Vector Autoregression Model (FAVAR) with an extension of a Kalman Filter for Factors to measure the
impact of monetary policy in a case study.

From the review of the relevant literature, it was found that the research patterns and methodologies
varied in terms of the research process and the statistics used to create forecasting models. This study
is distinct from others; it addresses a gap in the research while also developing the research process
and pattern and applying advanced statistics. In addition to this, the authors conducted other studies
to support the forecasting models with different indicators. Those studies are titled “The efficiency of
long-term forecasting model on final energy consumption in Thailand’s petroleum industries sector:
enriching the LT-ARIMAXS Model under a sustainability policy” [91] and “A relational analysis
model of the causal factors influencing CO2 in Thailand’s industrial sector under a sustainability
policy adapting the VARIMAX-ECM Model” [92]. The mentioned studies used a stationary process,
while adapting the concept of a co-integration and error correction mechanism in order to analyze
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the real impact of the indicators on the dependent variable. This research extends and develops the
above studies in depth using a model with improved accuracy by optimizing the advantages of those
studies. From those advantages, this study analyzes direct and indirect effects, and it adjusts each
latent variable toward equilibrium. The output can be used as a tool to formulate future national
policies and plans. Furthermore, this study aims to create new knowledge and act as a guide for
research and education. Importantly, this study features a model that is applicable to various sectors
and contexts, and it was developed with the aim of producing efficient and effective study outcomes.
As mentioned earlier, this study applied advanced statistics in a proper context to make the model
applicable to different sectors. As a whole, this construct is called “Structural Equation Modeling-Vector
Autoregressive with Exogeneous Variables Model” (SEM-VARIMAX Model). The research also utilizes
Linear Structural Relations (LISREL) [93] software along with Econometric Views (EVIEWS) [94,95].
The above-mentioned model is assessed in term of its Model Validity and Best Modelling, as well as
“Best Linear Unbiased Estimated (BLUE) assessment. This is to ensure that there will be no issues of
Heteroskedasticity, Multicollinearity, and Autocorrelation. Once the complete model is obtained, it is
then deployed to analyze the future trend together with qualitative analysis. The Model Validity Test
is done through Triangulation. The research flow is explained below, as shown in Figure 1.

 

Figure 1. The flowchart of the structural equation modeling/vector autoregressive model with
exogenous variables (SEM-VARIMAX) model.
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1. Determine a variable framework based on the SEM-VARIMAX model, which contains both
latent variables of Sustainable development policy under environmental law (S.D.EL), economic
(ECON), social (SOCI), and environmental (ENVI), and observed variables of Sustainable
development policy under environmental law indicators, Error Correction Mechanism (ECMt−1)

and energy consumption (EC). As of the economic indicators, there are per capita GDP (GDP),
urbanization rate (UR), industrial structure (IS), net exports (E−M), indirect foreign investment
(IF), foreign tourists (FT). The social indicators are employment (EM), health and illness (HI),
social security (SS), consumer protection (CP). The environmental indicators include Carbon
Dioxide Emissions (CO2) and energy intensity (EI).

2. Examine and check the stationarity of observed variables with a unit root test based on the
concept of the Augmented Dickey–Fuller [96].

3. Test the co-integration of observed variables at the same level [97–99].
4. Construct a causal factor relationship model and estimate its relationship with the SEM-VARIMAX

model along with other test of BLUE characteristic and its Goodness of Fit [36,100].
5. Compare the effectiveness of the SEM-VARIMAX model with other models, including with MLR

model, BP model, Grey model, ANN model, ANFIS model, and ARIMA model. through a
performance measure of MAPE and RMSE [101,102].

6. Forecast the future Sustainable Development policy for energy consumption under Environmental
Law with the use of a sample indicator, which is energy consumption (EC), by deploying the
SEM-VARIMAX model for the year of 2020 to 2036, totaling 17 years. The flowchart of the
SEM-VARIMAX model is shown below.

3. Materials and Methods

The SEM-VARIMAX was developed through the application of advanced statistics, consisting of
the causal factor relationship called structural equation modeling (SEM), and the estimation of such a
relationship with the vector autoregressive model. The model was structured to be the best model,
hereafter referred to as the SEM-VARIMAX model. Furthermore, the model is characterized with the
best linear unbiased estimate, and is not spurious. The details are provided below.

3.1. SEM-VARIMAX Model

Structural equation modeling (SEM) is a second-generation model, which can analyze the
relationships between multiple levels of SEM. This is inclusive of completely analyzing relationships
in the inner model (structure model) and outer model (measurement model). This feature differs from
first generation modeling, such as regression analysis, ANOVA, and MANOVA, which are used to
analyze a single subject at a time and so may take longer for the path model. Even though the outcome
is no different, of which the study findings is parallel with this result, it is not a numerical value of
regression coefficients, statistical values t (t-test) and other indicators. This is because these values are
commonly different as their method is different; however, they still have similar values [72,73,103].

SEM produces models that indicate the relationships between variables, and it is explained
below [104].

Given that X =
{

X1, X2, . . . , XH
}

represent the observed value of the exogenous
latent variable.

Given ξ =
{
ξ1, ξ2, . . . , ξH

}
is the exogenous latent variable (we may call the latent variable

the score or component).
Given that Y =

{
Y1, Y2, . . . , yK

}
represent the observed value of the endogenous

latent variable.
Given η =

{
η1, η2, . . . , ηK

}
is the endogenous latent variable.

The coefficient π j is the multiple regression coefficient.
The reflective relationship has been developed to positively connect observer variables (MV) and

latent variables (LV), and it is a loading, and/or the regression coefficient must be a positive value. Yet,
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it is allowable to have a negative value, but such value tells us some issues with data. For instance,
it indicates an incompatibility in the scale of measurement, and that the mean or variance does not
reflect the real meaning of the data.

Therefore, the solution is to change the estimation method by using the Vector Autoregressive
model at p: VAR(p) as follows.

There are 2 series of time series, which are Yt and Zt. They can be written in the VAR(p) model as
shown below [105,106].

Yt = a10 + a11,1Yt−1 + a12,1Zt−1 + a11,2Yt−2 + a12,2Zt−2 + . . .+ a11,pYt−p + a12,pZt−p + u1t (1)

Zt = a20 + a21,1Yt−1 + a22,Zt−2 + a21,2Yt−2 + a22,2Zt−2 + . . .+ a21,pYt−p + a22,pZt−p + u2t (2)

If we have n series of time series, including X1t, X2t, . . . , Xnt, we will write that time series in the
VAR(p) model as illustrated below.

Xt = A0 + A1Xt−1 + A2Xt−2 + . . .+ ApXt−p + ut (3)

where Xt =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

X1t
X2t

...
Xnt

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
n×1

, A0 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a01

a02
...

a0n

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
n×1

, Ai =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a11,i · · · a1n,i

a21,i · · · a2n,i
...

...
...

an1,i · · · ann,i

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
n×n

, i = 1, . . . , P, and ut =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
u1t
...

unt

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
n×1

.

As for measuring the mean and variance of the VAR(p) model, the same method can be used as
that of the VAR(1) model. When observing the VAR(p) model, the value of the parameter is many,
that is constant in the number of n. In addition, the parameters as the coefficient value of Xt−1, Xt−2,
. . . , Xt−p are n2 + n2 + . . .+ n2 = pn2. Hence, all parameters of the VAR model are n + pn2. Here,
it indicates that the greater the number of time series is by 1 unit or sequence of VAR is bigger by 1 unit,
the parameters will also be greater at the same time. Thus, any time series used in the VAR model
should be an impactful time series, that can explain each other’s effect.

However, constructing a model as the best model requires a BLUE feature. In the actual context,
there should be exogenous variables in the modelling. This simplifies that the model should have white
noise and be free from a spurious in which heteroskedasticity, multicollinearity and autocorrelation
are eliminated. The authors, therefore, developed a new model called the SEM-VARIMAX model,
which effectively incorporates various exogenous variables in different contexts or various sectors.
The details of the SEM-VARIMAX model are explained as follows [107].

Yt = β10 − β12Zt + γ11Yt−1 + γ12Zt−1 + εyt (4)

Zt = β20 − β21Yt + γ21Yt−1 + γ22Zt−1 + εyt (5)

BXt = Γ0 + Γ1Xt−1 + εyt (6)

where B =

[
1 β12

β21 1

]
, Xt =

[
Yt

Zt

]
, Γ0 =

[
β10

β20

]
, Γ1 =

[
γ11 γ12

γ21 γ22

]
, εt =

[
εyt

εzt

]
.

When considering Equation (4), it indicates that εyt will affect Yt, while Yt will affect Zt

when considering Equation (5) (or briefly written as εyt → Yt → Zt ). Hence, we can say that
Cov

(
Zt , εyt

)
� 0 or time series of Zt and εyt are related, indicating the assumption of CLRM is

incorrect. Therefore, the parameter estimation in Equation (4) will be a biased estimator. Even if the
sample is large, it still finds that the probability of the estimator with the least squares method with not
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be as the actual value (inconsistent estimator). Equation (5) will also give the same result as above.
However, when the SEM-VARIMAX model is transformed into a deformed model, or VAR(1) model
by multiplying B−1 throughout Equation (6), Equation (7) will be as follows [94,108,109].

Xt = A0 + A1Xt−1 + ut (7)

where A0 = B−1Γ0 =

[
a01

a02

]
, A1 = B−1Γ1 =

[
a11 a12

a21 a22

]
and ut = B−1εt =

[
u1t
u2t

]
, or rewritten as

Equations (8) and (9) like below.

Yt = a10 + a11yt−1 + a12Zt−1 + u1t (8)

Zt = a20 + a21yt−1 + a22Zt−1 + u2t (9)

We can see that the VAR(1) model will not cause any problems like what occurred in the
SEM-VARIMAX(1) model. Besides, we can estimate the parameters in the VAR(1) model with the least
squares method. By observing the SEM-VARIMAX(1) model and the VAR(1) model, it was found that

• The parameters in the VAR(1) model are actually caused by the parameters in the SEM-VARIMAX(1)
model, or the parameters of both models are related.

• The number of parameters in the VAR(1) model was 9, namely the a10, a11, a12, a20, a21, a22,
parameters of Var(u1t), the parameters of Var(u2t) and the parameter of Cov(u1t, u2t).

• The number of parameters in the SEM-VARIMAX(1) model was 10, namely the β10, β11, β20,
β21,γ11,γ12,γ21,γ22, parameters of Var(ε1t) and the parameters of Var(ε2t).

It can be observed that the number of parameters in the VAR(1) model is less than the
SEM-VARIMAX(1) model’s. Even though all the parameters can be estimated in the VAR(1) model,
we still cannot use the relationship between the parameters of both models to find the parameter
estimator in the SEM-VARIMAX(1) model [91,92].

However, if we can place some limitations in the SEM-VARIMAX(1) model, then it would cause a
reduction in the number of parameters to 9, allowing us to use the parameter estimator in the VAR
model(1) in discovering the parameter estimator of the SEM-VARIMAX(1).

As for the SEM-VARIMAX(p) model, it can run up to sequence (p) as determined in the study,
aiming at benefiting future applications.

3.2. Measurement of the Forecasting Performance

In this research, tested the performance of the SEM-VARIMAX model by comparing it with other
exiting models, like the MLR, BP, Grey, ANN, ANFIS, and ARIMA models. In this comparison, we use
the MAPE and RMSE values to examine the forecasting accuracy in each model. The calculation
equations are shown as follows [101–103]:

MAPE =
1
n

n∑
i=1

∣∣∣∣∣ ŷi − yi

yi

∣∣∣∣∣ (10)

RMSE =

√√
1
n

n∑
i=1

(ŷi − yi)
2 (11)

4. Empirical Analysis

4.1. Screening of Influencing Factors for Model Input

In this paper, the structure equation modeling framework was determined. Four factors were
modelled as latent variables as follows: Sustainable development policy under environmental law
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(S.D.EL), economic (ECON), social (SOCI), and environmental (ENVI), while the observed variables
comprised of 13 indicators inclusive of energy consumption (EC). The economic indicators were per
capita GDP (GDP), urbanization rate (UR), industrial structure (IS), net exports (E −M), indirect
foreign investment (IF), and foreign tourists (FT). The social indicators are employment (EM),
health and illness (HI), social security (SS), consumer protection (CP). The environmental indicators
comprised Carbon dioxide emissions (CO2) and energy intensity (EI). This research analyzed the
influence of the relationship of the causal factors with the SEM-VARIMAX model. All the causal factors
used in the model must be stationary at the same level only. Here, the natural logarithm of every
variable is taken, so that linear data can be obtained and tested for stationary. The value obtained from
this process is then compared to MacKinnon critical value at level I (0) based on the Dickey-Fuller
theory. In this paper, all variables were found to be non-stationary at level I (0). Therefore, those
variables were carried forward to perform stationary tests at the first difference I (1), as illustrated in
Table 1.

Table 1. Stationary at first difference I (1).

Stationary MacKinnon Critical Value

Variables Tau Test 1% 5% 10%

Δln(EC) −5.69 *** −4.15 −3.20 −2.50
Δln(GDP) −5.21 *** −4.15 −3.20 −2.50
Δln(UR) −5.16 *** −4.15 −3.20 −2.50
Δln(IS) −4.65 *** −4.15 −3.20 −2.50

Δln(E−M) −5.05 *** −4.15 −3.20 −2.50
Δln(IF) −4.50 *** −4.15 −3.20 −2.50
Δln(FT) −4.32 *** −4.15 −3.20 −2.50
Δln(EM) −4.29 *** −4.15 −3.20 −2.50
Δln(HI) −4.68 *** −4.15 −3.20 −2.50
Δln(SS) −4.91 *** −4.15 −3.20 −2.50
Δln(CP) −5.01 *** −4.15 −3.20 −2.50
Δln(CO2) −5.85 *** −4.15 −3.20 −2.50
Δln(EI) −5.34 *** −4.15 −3.20 −2.50

Notes: EC is energy consumption, GDP is per capita GDP, UR is urbanization rate, IS is industrial structure, E−M
is the net exports, IF is indirect foreign investment, FT is foreign tourists, EM is employment, HI is health and illness,
SS is social security, CP is consumer protection, CO2 is carbon dioxide emissions, EI is energy intensity. *** denotes
a significance, α = 0.01, compared to the Tau test with the MacKinnon critical value, Δ is the first difference, and ln is
the natural logarithm.

Table 1 shows that all factors were stationary at the first difference or stationery at Level I (1).
When calculating the Tau test of every causal factor, the values were found to be greater than the
MacKinnon critical value, which indicates all causal variables were stationary at a significance level
of 1%, 5%, and 10%. When all causal factors were stationary at the same level, we used them for the
co-integration test proposed by Johansen and Juselius, as shown in Table 2.

Table 2. Co-integration test by Johansen and Juselius.

Variables Co-Integration Test
Mackinnon

Critical Value

Δ ln(EC), Δ ln(GDP), Δ ln(UR), Δ ln(IS),
Δ ln(E−M), Δ ln(IF), Δ ln(FT), Δ ln(EM), Δ ln(HI),

Δ ln(SS), Δln(CP), Δ ln(CO2), Δ ln(EI)

Trace statistic
test

Max-Eigen
statistic test 1% 5%

215.75 *** 121.01 *** 15.25 11.75

Notes: *** denotes significance α = 0.01.
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4.2. Analysis of Co-Integration

According to Table 2, the co-integration test result based on Johansen and Juselius shows that all
causal factors, which were stationary at first difference in the SEM-VARIMAX model, were co-integrated
at the significance level of 1% and 5% because the Trace statistic test value (215.75) and the Maximum
Eigen statistic test value (121.01) were greater than the MacKinnon critical values at significance levels
of 1% and 5%, respectively. Therefore, all variables could be used in analyzing the impact of causal
factors using the SEM-VARIMAX model, as shown in Figure 2 and Table 3.

Figure 2. The casual relationship in the SEM-VARIMAX model.

Table 3. Results of the relationship of size analysis of the structural equation modeling/vector
autoregressive model with exogenous variables (SEM-VARIMAX) model.

Dependent
Variables

Type
of

Effect

Independent Variables

Economic (ECON) Social (SOCI) Environmental (ENVI) Error Correction Mechanism(ECMt−1)

Economic
(ECON)

DE - 0.68 *** 0.53 ** −0.39 ***
IE - 0.05 *** 0.02 ** -

Social
(SOCI)

DE 0.73 *** - 0.31 ** −0.26 ***
IE - - 0.09 ** -

Environmental
(ENVI)

DE 0.82 *** 0.57 *** - −0.05 ***
IE 0.12 *** 0.09 *** - -

Note: In the above, *** denotes significance α = 0.01, ** denotes significance α = 0.05, χ2/df is 1.19, RMSEA is 0.05,
RMR is 0.003, GFI is 0.95, AGFI is 0.90, R-squared is 0.94, the F-statistic is 225.05 (probability is 0.00), the ARCH test
is 22.85 (probability is 0.1), the LM test is 1.35 (probability is 0.10), DE is the direct effect, and IE is the indirect effect.

4.3. Formation of Analysis Modeling with the SEM-VARIMAX Model

The SEM-VARIMAX model is a model that consists of short-term and long-term causal
relationships, which show the impact of the latent variables, with the analysis explained as follows.

Figure 2 shows the impact of the causal factor relationship in the SEM-VARIMAX model determined
by Sustainable development policy under environmental law (S.D.EL), where the latent variables
are: economic (ECON), social (SOCI), and environmental (ENVI); the observed variables consist of
energy consumption (EC), per capita GDP (GDP), urbanization rate (UR), industrial structure (IS),
net exports (E−M), indirect foreign investment (IF), foreign tourists (FT), employment (EM), health
and illness (HI), social security (SS), consumer protection (CP), Carbon dioxide emissions (CO2),
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energy intensity (EI), and error correction mechanism (ECMt−1). The study findings reveal which
factors had direct and indirect effects, as can be seen in Table 3.

Table 3 illustrates the parameters of the SEM-VARIMAX model at the statistically significant level
of 1% and 5%. With the analyzed findings, the SEM-VARIMAX model features with the goodness
of fit standards, where the value of RMSEA and RMR is not far from 0 (zero), while the GFI and
AGFI values approach 1. Furthermore, the BLUE testing indicates that the SEM-VARIMAX model
has a BLUE feature, indicating that the model is not spurious yet it is reliable. This is due to the
absence of heteroskedasticity, multicollinearity, and autocorrelation. In contrast, the F-test matters at
the significance level of 1%. Besides, the SEM-VARIMAX model explains a lot about the model featured
under Sustainable Development Policy with Environmental Law (S.D.EL). In detail, the economic
factor (ECON) has a direct impact on the environmental factor (ENVI) amounting to 82% at a
significance level of 1%, the economic factor (ECON) has a direct impact on the social factor (SOCI) of
73% at a significance level of 1%, the social factor (SOCI) has a direct impact on the environmental
factor (ENVI) totaling 57% at a significance level of 1%, the environmental factor (ENVI) has a direct
impact on the social factor (SOCI) at 31% at a significance level of 5%, and the environmental factor
(ENVI) has a direct effect on the economic factor (ECON) of 53% at a significance level of 5%.

In the case of ECMt−1, this has a direct effect on the economic factor (ECON), where the parameter
value is −0.39 at a significance level of 1%, suggesting that the economic factor (ECON) has the ability
to adjust toward the equilibrium at 39%. For the same case of ECMt−1, this has a direct effect on social
factor (SOCI), where the parameter value is −0.26 at a significance level of 1%, telling us that the social
factor (SOCI) has the same stated ability of 26%, as is the same for ECMt−1, which has a direct effect
on the environmental factor (ENVI), where the parameter value is −0.05 at a significance level of 1%,
showing that the environmental factor (ENVI) has the same ability at 5%.

As for this SEM-VARIMAX mode, it has been measured for performance monitoring of the
forecasting model in comparison with other models, including the MLR, BP, Grey, ANN, ANFIS,
and ARIMA models by using the MAPE and RMSE, as illustrated below.

Table 4 explains the SEM-VARIMAX model in terms of MAPE and RMSE, and they are found to be
lower than any other existing model at 1.06% and 1.19%, respectively. If considering the performance
monitoring result of the forecasting model for other models, the following was found. For the ARIMA
model, its MAPE and RMSE were 6.29% and 3.41%, respectively; the ANFIS model generated MAPE
and RMSE with a value of 6.42% and 6.89%, respectively; the ANN model generated MAPE and RMSE
with a value of 8.65% and 10.15%, respectively; the Grey model generated MAPE and RMSE with a
value of 12.11% and 14.48%, respectively; the BP model generated MAPE and RMSE with a value of
13.50% and 16.87%, respectively; and the MLR model generated MAPE and RMSE with a value of
20.06% and 22.91%, respectively.

Table 4. Performance monitoring of the forecasting models.

Forecasting Model MAPE (%) RMSE (%)

MLR model 20.06 22.91
BP model 13.50 16.87

Grey model 12.11 14.48
ANN model 8.65 10.15

ANFIS model 6.42 6.89
ARIMA model 6.29 3.41

SEM-VARIMAX model 1.06 1.19

Therefore, the above calculations show that the SEM-VARIMAX model is particularly suitable for
future forecasting, especially long-term forecasting to support in strategy and effective planning.
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4.4. The Forecasting Model and the Efficiency of the Sustainable Development Policy for Energy Consumption
under Environmental Law in Thailand based on the SEM-VARIMAX model

For forecasting purposes, the SEM-VARIMAX model was applied to predict energy consumption
for the next 17 years (2020–2036) so as to gauge the efficiency of the Sustainable Development Policy
in Energy Consumption under Environmental Law in Thailand based on the national strategy set
to support policy formulation of Thailand in the future (from the present to 2036), as illustrated in
Figure 3.
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Figure 3. The forecasting results of energy consumption from 2020 to 2036 in Thailand.

Figure 3 shows that energy consumption from 2020 to 2036 under the Sustainable Development
Policy for Energy Consumption under Environmental Law in Thailand will continuously increase
from 2020 to 2036 with an increased growth rate from 185.66 (2036/2020) to 397.08 ktoe by 2536.

5. Conclusions and Discussion

This research was developed from relevant theories and advanced statistics to develop the
SEM-VARIMAX model. This model differs from previous ones because it attempts to close several
gaps and generate a functional model for the present, leading to research outcomes that are inclusive
of special features relevant to different sectors and contexts. The software used in this research was
LISREL incorporating EVIEWS, which are widely regarded to be the best choices for application.
This research was conducted thoroughly and carefully while considering factors that influence
policy implementation. This effort differentiates this research from other studies. In addition,
this forecasting model determines real relationships between relevant causal and influential factors
and the efficiency of Sustainable Development Policy for Energy Consumption under Environmental
Law in Thailand (S.D.EL). The model comprises three latent variables: economic (ECON), social
(SOCI), and environmental (ENVI) factors, while the observed variables are energy consumption
(EC), per capita GDP (GDP), urbanization rate (UR), industrial structure (IS), net exports (E−M),
indirect foreign investment (IF), foreign tourists (FT), employment (EM), health and illness (HI),
social security (SS), consumer protection (CP), Carbon dioxide emissions (CO2) and energy intensity
(EI). Each factor has undergone various processes to ensure its significance. To the greatest extent
possible, this research also eliminated potential issues that may lead to spurious results, a problem that
is faced in the development of any model. This elimination ensures the absence of heteroskedasticity,
multicollinearity, and autocorrelation [103,110]. In this research, we identified the relevant factors and
their impact direction. Most importantly, the approach used was able to adjust each latent variable
toward equilibrium, which renders it significant for studying the change and balance resulting from
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the Sustainable Development Policy for Energy Consumption under Environmental Law in Thailand.
The key measurement indicator is the error correction mechanism. In addition, the SEM-VARIMAX
model passed the qualification for the BLUE feature and thus met the goodness-of-fit requirements.
This research also examined the performance of the model in terms of MAPE and RMSE values and
compared them with those of existing models, including the MLR, BP, Gray, ANN, ANFIS, and ARIMA
models. It was found that the SEM-VARIMAX model had the lowest MAPE and RMSE, followed by
the ARIMA, ANFIS, ANN Grey, BP, and MLR models, ordered in descending performance.

The SEM-VARIMAX model was used to predict energy consumption for the period of 2020–2036,
and energy consumption was found to have an increased growth rate from 185.66 (2036/2020) to 397.08
ktoe by 2036. This rate is obviously higher than the government’s set target, which is 251.05 ktoe by 2036.
This further reflects the inefficiency of the Sustainable Development Policy for Energy Consumption
under Environmental Law in Thailand; the findings predict the disruption of the government’s plan
for carrying capacity under the environmental law currently enforced in Thailand. In addition,
this research found that the adjustment to the environmental equilibrium in Thailand can be measured
by the parameter of the error correction mechanism. The value of the parameter reflected a low
adjustment rate of only 5% in the environmental aspect, while the economic side had an adjustment
rate of 39%. For the social aspect, the adjustment rate was 26% of total capacity. This finding presents
clear evidence of the inefficiency of the environmental law in Thailand. In fact, this law has not been
fully updated and modernized for the current context.

Recommendations for the future application of this research include the selection of appropriate
statistics and research procedures that fit efficient long-term forecasting. This forecasting requires
the best model and a white-noise-type model. The findings of this research explicitly reveal that the
country will be at disadvantage if the policy is implemented according to the past or present practice or
according to ordinary least squares or only the ARIMA model is used in the research. Quality research
must focus on the forecasting task, with an emphasis on forecasting quality and validity. This is to
avoid any possible damage that may arise.

The limitation of this research is that Thailand’s policy planning does not consider causal factors
or their impact. This is evident from Thailand’s attempt to improve the economy and society through
the implementation of various measures. However, the environmental law in Thailand does not fit
the current situation or context, which constantly change, leading to a failure to support a green
environment. In addition, some factors were found to be inconsistent with the model because of the
intervening factor of fuel price control and government interference in certain sectors, resulting in
the imbalance between demand and supply. This further causes instability in these factors at certain
times. However, long-term forecasting is always a challenging task that requires detail and consistency.
The SEM-VARIMAX model can be applied to different contexts and sectors, but it has to be carefully
utilized because of its in-depth analysis, complexity, and advanced statistics used in the modeling
process. If this model is properly applied, it will have great potential to provide extensive knowledge
in the future.

The policy recommendations of Thailand derived from this research all concern the environmental
law of Thailand. Although Thailand currently has the National Environmental Quality Promotion
and Preservation Act (Version 2) B.E. 2561, it is still too weak to achieve the efficiency of sustainable
development policy under environmental law. This is due to the failure to achieve the determined
target along with some weaknesses, that require correction. In order to improve the environmental
law, the following is suggested.

1. Increase community participation in the management and preservation of natural resources
and the environment. For instance, there is the requirement of community representatives, state and
public representatives who are elected or nominated to be part of the National Environment Board
(Category 1).

2. Revisit the direction of the National Environmental Development Plan locally, provincially
and nationally.
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3. Adopt the concept and philosophy of Thai traditions about the environment, as well as universal
environmental law concepts, such as environmental justice being integrated into the constitution,
so that the law and ordinances become supportive.

4. There are currently many environmental laws under different wings of administrations.
Therefore, this has to be organized and systemized.

5. At present, the environmental case is under the judicial process of both the civil court and
administrative court. Hence, all environmental cases shall be dealt with only by the administrative
court, as the cases are wholly a matter of environmental justice, relating to the benefits of individuals,
society and public interest. This settlement requires special expertise, which differs from civil cases.
This further requires a revision of the law to switch the jurisdiction.

6. Mobilize scientific experts about the environment in various fields to help making legal decisions,
conducting research, and developing environmental knowledge, as well as keeping environmental
laws up to date.

7. Revise the processes and penalties from the polluter pays principle (PPP) with serious
implementation and clarity.
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Abstract: The aim of this work was to explore the effects of variables on the heat of regeneration,
the stripping efficiency, the stripping rate, the steam generation rate, and the stripping factor.
The Taguchi method was used for the experimental design. The process variables were the CO2

loading (A), the reboiler temperature (B), the solvent flow rate (C), and the concentration of the solvent
(monoethanolamine (MEA) + 2-amino-2-methyl-1-propanol (AMP)) (D), which each had three levels.
The stripping efficiency (E), stripping rate (ṁCO2 ), stripping factor (β), and heat of regeneration (Q)
were determined by the mass and energy balances under a steady-state condition. Using signal/noise
(S/N) analysis, the sequence of importance of the parameters and the optimum conditions were
obtained, and the optimum operating conditions were further validated. The results showed that E
was in the range of 20.98–55.69%; ṁCO2 was in the range of 5.57 × 10−5–4.03 × 10−4 kg/s, and Q was in
the range of 5.52–18.94 GJ/t. In addition, the S/N ratio analysis showed that the parameter sequence
of importance as a whole was A > B > D > C, while the optimum conditions were A3B3C1D1,
A3B3C3D2, and A3B2C2D2, for E, ṁCO2 , and Q, respectively. Verifications were also performed and
were found to satisfy the optimum conditions. Finally, the correlation equations that were obtained
were discussed and an operating policy was discovered.

Keywords: heat of regeneration; stripping rate; stripping factor; mixed solvent; Taguchi method

1. Introduction

In order to reduce CO2 gas emissions, many solutions have been proposed for several significant
industries, such as coal-fired power plants, petroleum industries, steel industries, and cement industries.
In this regard, a number of technologies have been applied, such as post-combustion, pre-combustion,
oxyfuel combustion, and chemical looping. Among these technologies, an absorption-desorption
process for post-combustion has been widely used [1]. A number of solvents have been adopted for
the capture of CO2 [2–4]. In these solvents, amines are most extensively used in chemical absorption to
capture CO2 [5–7]. As the chemical structure of an amine has at least one OH and amine group, the OH
group can reduce the vapor pressure of the amine, and because an amine has alkaline properties, it can
absorb acidic gases. Among the various amines, monoethanolamine (MEA) is used most extensively,
because of its high solution absorbability, high alkalinity, high reaction rate, regenerability, and low cost.
However, some drawbacks have been observed, such as high solvent regeneration energy, corrosion,
and degradation.

Capturing CO2 increases the cost of electricity production by 70%, while the energy required
for the regeneration process is estimated to be in the range of 15–30% of a power plant’s output [8,9].
Therefore, effectively reducing the cost of electric power has become the key to the success or failure
of carbon capture and sequestration (CCS). Achieving minimum heat for regeneration has become a
significant challenge, especially for the improvement of the stripper structure, the discovery of new
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solvents, and improvements in operating conditions [10–20]. In the stripping process, rich solvents are
heated in the stripper to allow for the release of CO2 from the scrubbed solutions. The stripping vapor,
involving water vapor, CO2, and small amounts of solvents, is regenerated in the reboiler, and rises
from the reboiler through the column to the top of the stripper. The stripping vapor counter-current
contacts a rich-loading feed stream, which absorbs energy from the stripping steam for CO2 desorption.
The remaining vapor is condensed at the top of the column in the overhead condenser. The vapor and
liquid contact system are shown in Figure 1, indicating that the system is complex.

The heat of the solvent regeneration in the stripper of the CO2 capture process can be described as
follows [13,21]:

Q = Qsen + Qabs + Qvap (1)

where Qsen is the sensitive heat, Qvap is the heat of evaporation, and Qabs is the heat of absorption. In
general, the three terms are evaluated separately when the relevant thermodynamic data are available.

Figure 1. Vapor and liquid contact in the stripper.

The cost of regeneration is influenced by the adopted solvent, the stripping equipment structure,
the operating temperature, and the steam cost [8,9,22,23]. In order to minimize the heat of regeneration,
many studies have focused on more efficient solvents that show a lower heat of absorption [14,24,25].
These studies showed that blended solvents have been widely studied in the capture of CO2 gas [6,7,10],
while new solvents have also been actively tested [11,14,20,26]. As a result, many scholars have
studied blended amines and effective solvents, with the goal of improving regeneration energy [14–20].
Choi et al. [6] found that MEA + 2-amino-2-methyl-1-propanol (AMP) has a relatively high economic
benefit. Some studies have indicated that if the gas stripping column uses a split-flow, the energy
saved could be at least 20%. The effect of the stripper configuration on the heat duty was also reported
by Rochelle [23], who found that the reduction in energy requirement was 5–20%. Additionally, rich
loading and lean loading each have a relative effect on heat duty. The findings showed that heat duty
in regeneration is relatively higher when rich loading is low, whereas, a lean loading of 0.1–0.2 has a
minimum heat duty [21]. Li and Keener [1] reported that many studies focus on reducing sensible
heat and the heat of evaporation. In order to understand the contribution of individual heat duties, an
investigation of the heat mechanism of regeneration energy can also be explored if the thermodynamic
data are available. Table 1 shows the heat of regeneration data under various conditions. The reported
levels for the heat of regeneration are in the range of 2.1–11.25 GJ/t, depending on the operating
system. However, there are no available empirical equations that could be used to predict the heat of
regeneration at the given conditions.

In some processes, the focus on the development of blended amines and new solvents for
obtaining a low heat of absorption could be misleading, because the focus on solvents with a low heat
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of absorption is not reasonable without considering the overall process, as pointed out by Oexmann
and Kather [21]. They found that at a low heat of absorption, the heat of the solvent regeneration at
a low pressure leads to an increase in power for compression, as well as a lower quality steam. On
the other hand, at a high heat of absorption, solvents show an increase in stripper operating pressure,
and a reboiler temperature that leads to less water vapor at the stripper head. Thus, less heat must
be provided in the reboiler. They also stated that in the evaluation of a solvent, it is necessary to
consider the interdependence of the three terms that contribute to the heat of regeneration and their
connection to the process parameters. This could be accomplished by balancing the materials and
energy in the stripper. However, the regeneration energies are related to the type of solvent, reboiler
temperature, solvent flow rate, loading, and structure of the stripper. Therefore, understanding the
parameter significance and optimization conditions in order to reduce regeneration energy needs was
required. This could be done by using the Taguchi experimental design [4,5].

In this work, the process variables included the concentration of the solvents, the flow rate, the
CO2-loading, and the reboiler temperature. In order to better understand the effects of the process
variables on the outcome data, a framework was designed. The stripping efficiency, heat of regeneration,
stripping rate, and steam generation rate were calculated using materials and an energy balance model
created with the aid of thermal data [2,15]. Finally, the data were used to make a regression to obtain
empirical equations, which were then discussed further.

Table 1. Heats of regenerations and operating conditions at various systems.
AMP—2-amino-2-methyl-1-propanol; SG—sodium glycinate; MEA—monoethanolamine;
AMPD—2-amino-2-methyl-propane-1,3-diol; DETA—Diethylenetriamine; PZ—Piperazine;
PZEA—(Piperazinyl-1)-2-ethylamine; TETA—Triethylenetetramine.

Solvents Conditions
Heat of Regeneration

(GJ/t-CO2)
References

SG
Loading = 0.11–0.52

T = 100–120 ◦C
3–6 M SG

3.68–10.75 [4]

AMP + PZ
Loading = 0.46

L/G = 2.9
18 wt.% AMP + 17.5 wt.% PZ

3.4–4.4 [7]

DETA
Loading = 1.2–1.4

Solvent flow rate = 3–12 m3/m2-h
2–3 M DETA

2.61–4.96 [13]

ACOR100
(MEA + TETA +AMPD + PZEA)

Solvent flow rate = 0.4–0.8 L/min
Partial pressure of CO2 = 54 mbar 2.7–3.9 [24]

KoSol-4
Loading = 0.8

L/G = 1.4–3.1 kg/Sm3

P = 0.35–0.8 kg/cm2
3.0–4.1 [14]

SG
Loading = 0.13–0.50

15–40 wt.%
L/G = 2–10 L/m3

5.3–8.5 [26]

AMP Loading = 0.55
30 wt.% AMP 2.1 [27]

MEA Loading = 0.25–0.49
30 wt.% MEA 3.3–6.4 [28]

PZ Loading 0.4
T = 120–150 ◦C 2.93–3.43 [29]

Ammonia Loading = 0.0525–0.01236
7–14% Ammonia 11.25 [30]

MEA
MEA + ionic liquid +water

30 wt.% MEA
30 wt.% + 40 wt.% + 30 wt.%

T = 103 ◦C
Simulation

8.19
5.14 [31]

SG
MEA

30 wt.%
T = 40–120 ◦C

Thermodynamic calculation

5.7
4.7 [32]

MEA + AMP MEA:AMP = 2:1/1:1/1:2
T = 103–110 ◦C 2.5–5.0 [10]
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2. Experimental Features

2.1. Experimental Design

The experimental design had four parameters, namely: the concentration of blended amine
(MEA + AMP), the feed rate, the CO2 loading, and the reboiler temperature. Each parameter had
three levels. Originally, MEA and AMP (30 wt.% AMP in total amine) were mixed together; then, the
blended amines were poured into a known amount water to prepare the desired amine concentrations.
Theoretically, 34 or 81 experiments were therefore needed. Using the Taguchi experimental design,
the orthogonal array L9(34) showed nine experiments, thereby reducing the number of experiments
needed and the research cost by over 80% [4,5]. The blended amine concentrations were 4 kmol/m3,
5 kmol/m3, and 6 kmol/m3; the feed rates were 3 × 10−4, 6 × 10−4, and 9 × 10−4 m3/s; the CO2 loadings
were 0.3, 0.4, and 0.5 kmol-CO2/kmol-amine; and the reboiler temperatures were 100, 110, and 120 ◦C,
respectively. The MEA/AMP weight fraction ratios obtained in here were 0.1908/0.0818, 0.2388/0.1023,
and 0.2869/0.1229 for 4 kmol/m3, 5 kmol/m3, and 6 kmol/m3, respectively. Table 2 shows the factors
and levels in this work, while Table 3 presents the combination of experiments in the orthogonal
array. The rich loading for the feed solution was obtained by early experimental preparation. Figure 2
illustrates the framework of the research project. The steps involved the input variables, the Taguchi
experimental design, outcome data, data analysis, and verification.

Once the measured data were obtained, the experimental data could be evaluated, and the
optimum condition and importance of the parameters could be determined with a signal/noise (S/N)
ratio using the Taguchi analysis. The S/N ratio is calculated as follows:

( S
N )SB = −10× log( 1

n

n∑
i=1

z2
i ) (smaller is better) (1)

( S
N )LB = −10× log( 1

n

n∑
i=1

1
z2

i
) (larger is better) (2)

(2)

where, n is the amount of data, i is the amount of ith data, and zi is the experimental data, as determined
in this work.

Table 2. Factors and levels used in this study.

Factor 1 2 3

CO2-loading (A)
mol-CO2/mol-amine 0.3 0.4 0.5

Reboiler temperature (B)/◦C 100 110 120
Feed rate (C)/m3/s 3(10−4) 6(10−4) 9(10−4)

Concentration of solvent (D)/kmol/m3 4 5 6

Table 3. Orthogonal arrays for experimental design.

No.
A

(kmol-CO2/kmol-amine)
B

(◦C)
C

(m3/s)
D

(kmol/m3)

1 1 1 1 1
2 1 2 2 2
3 1 3 3 3
4 2 1 2 3
5 2 2 3 1
6 2 3 1 2
7 3 1 3 2
8 3 2 1 3
9 3 3 2 1

378



Energies 2019, 12, 2202

 
Figure 2. A framework between the parameters and outcome data.

2.2. Experimental Device and Operating Procedure

The stripping system is shown in Figure 3. It included a packed column, a reboiler, a condenser,
a heat exchanger, and a heating system. The diameter of the column was 50 mm. It was filled with
an 8 × 8 mm θ-ring. The height of the packed column was 800 mm, and the height of the condenser
was 500 mm. In addition, a reboiler (12 L in volume) was heated by silicone oil using heating tubes.
In order to adjust the pressure in the column, a pressure back valve was adopted as a suitable value at
the top and bottom of the column, as shown.

In order to effectively explore the effect of the process variables on the performance of a stripper,
a continuous process was adopted. First, the temperature indicators, cooling water circulator, and
oil-bath power supply were switched on and adjusted to a preset temperature. Second, the prepared
rich loading solution was poured into the reboiler until it flooded. When the oil-bath temperature
reached the set temperature, the oil-bath pump power supply was turned on and an oil-bath inlet
valve was used to adjust the flow. Third, the inlet temperature of the cooling water was set to
the desired condition. Then, the reboiler was regulated to the desired experimental temperature.
The experiment began when the temperature of the cooling water and that of the reboiler vapor
temperatures reached the set temperatures. The rich loading in the storage tank flowed through a
heat exchanger and into a packed bed, and contacted the vapor rising from the bottom of the column.
The lean loading was withdrawn at the bottom of the reboiler and went through the heat exchanger,
releasing the heat to the rich loading as the input solvent. The lean loading was withdrawn every 30
min for sample examination using a TOC (Total Organic Carbon) meter (Tekmar-Dohrmann Phoenix
800). The measurement procedure was performed according to the operation manual provided by
Tekmar-Dohrmann Co. However, we need to prepare standard solutions (KHP and Na2CO3) before
measurement. The analyzer needs to be calibrated every two-weeks. At this time, it requires being
replaced with ultra-pure water. In addition, two antioxidant solutions also need to be replaced every
month. One is a 20 wt.% H2PO4 solution and the other is one liter of 5 wt.% of H2PO4 solution dissolved
with 10 g of Na2S2O8 solids. In addition, the flow meter was calibrated using a measuring cylinder;
then, it had a micro adjustment to a desired value. During the experiment, all of the temperature points
indicated in Figure 3 had to be recorded, including the bed temperature (T01-T05). A combination of
Taguchi experimental designs was used to effectively explore the effect of multiple variables on the
outcome data.
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Figure 3. A stripping process used for both modes in this work.
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2.3. Determination of Experimental Data

In order to obtain the experimental data, it was necessary to determine the materials and energy
balances in the stripper, as shown in Figure 4. The data involving the stripping efficiency, stripping
rate, heat of regeneration, and steam generation rate were calculated separately.

Figure 4. Materials and energy balances for the stripper.
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2.3.1. Stripping Efficiency

The stripping efficiency is defined as the following:

E =
α0 − α
α0

× 100% (3)

where α0 (mol-CO2/mol-solvent) and α (mol-CO2/mol-solvent) are the rich loading and lean
loading, respectively.

2.3.2. Stripping Rate of CO2

The stripping rate of CO2 is defined as follows:

.
mCO2 =

.
nA(α0 − α)MCO2 (4)

where
.
nA (mol/s) is the molar rate of the solvent, and MCO2 is the molecular weight of carbon dioxide.

2.3.3. Enthalpy Balance for Heat of Regeneration

From Figure 4, this procedure can be divided into three subsystems (i.e., A, B, and C), as indicated
in the figure. Herein, an enthalpy balance can be made at the steady state for the three subsystems, as
shown below:

Subsystem A:
.

H12 +
.

H
′
1 −

.
H01 −

.
Hcol +

.
Hwi −

.
Hwo −

.
HCO2 = 0 (5)

Subsystem B:
.

Hin −
.

Hout +
.

H01 −
.

H7 −
.

H12 −
.

HR = 0 (6)

Subsystem C:
.

H6 +
.

H1 −
.

H2 −
.

H
′
1 −

.
Hh = 0 (7)

From the three equations above, and assuming
.

H6 ≈
.

H7, it can be rewritten as the following
equations:

.
HCO2 =

.
Hreb −

.
Hloss − (

.
H2 −

.
H1) − (

.
Hwo −

.
Hwi) (8)

where
.

Hreb = (
.

Hin −
.

Hout) =
.

moilCp,oil(Tin − Tout) (9)

and
.

Hloss =
.

HR +
.

Hcol +
.

Hh (10)

and
.

H2 −
.

H1 =
.

mACpA(T2 − T1) (11)

and
.

Hwo −
.

Hwi =
.

mwCpw(Two − Twi) (12)

As
.

HCO2 =
.

mCO2Q, Equation (8) becomes the following:

Q =

.
Hreb −

.
Hloss − (

.
H2 −

.
H1) − (

.
Hwo −

.
Hwi)

.
mCO2

(13)

where,
.

moil is the mass flow rate of oil, Cp,oil is the mean heat capacity of oil, and Tin and Tout are the

input and output temperatures of the oil, respectively. In addition,
.

Hloss is the heat loss, including
.

Hcol

in the column,
.

Hh in the heat exchanger, and
.

HR in the reboiler. Therefore, the heat losses
.

Hcol,
.

HR,
and

.
Hh, which can easily be calculated separately, can be evaluated from the sensitive heat, while the

381



Energies 2019, 12, 2202

heat transfer coefficient can be estimated by free convection [33]. Equation (13) states that the heat of
regeneration can be determined when the enthalpy of the reboiler, the enthalpy of the heat loss, the
enthalpy change between the inlet and outlet in the whole system, and the enthalpy change of the
cooler are given.

2.3.4. Steam Flow Rate

In order to determine the bulk steam flow rate, materials and energy balances are required when
the temperature of the stripper is fixed (Figure 4). Considering Subsystem B, the enthalpy balance at a
steady state becomes the following:

.
H12 =

.
Hin −

.
Hout +

.
H01 −

.
H7 −

.
HR (14)

Equation (14) can be integrated into the following equation:

.
ms =

.
moilCP,oil(T9 − T10) − .

mACPA(T7 − T01) −
.

HR

ΔHvap (15)

From the measured data and thermodynamic data [34], the steam flow rate can be evaluated.

3. Results and Discussion

3.1. Steady State Operation

The change in temperature at individual points, as indicated in Figure 3, was observed and
recorded during the operation. Several important points, such as T1, T2, T6, T7, and T12, were
recorded for No. 1, as shown in Figure 5. It was found that the temperatures remained constant
when the operating time was greater than 80 min. In addition, the distribution of the lean loading
was found, as shown in Figure 6, which also remained constant after 80 min, which was coincident
with Figure 5. In addition, the temperature distribution in the packed bed was recorded, as shown
in Figure 7. The distributions approached a steady-state operation after 80 min, except for T05, as it
was near the location of the solvent input and was prone to perturbation during operation. On the
other hand, the effect of the solvent input on other points (T01 to T04) were weak, because they are
far from the solvent input. Because of this, it could be said that the system changed to a steady state
operation after 80 min. Under a steady state condition, the outcome data could be evaluated using
Equations (3), (4), (13), and (15), as shown in Table 4, for the Taguchi experiments (No. 1–No. 9). In
addition, the verification data of the optimum conditions are listed in this table, including No. 10, 11,
and 12, which were discussed further. It was found that the data ranges for the Taguchi experiments
were 20.96–55.69%, 5.57 × 10−5–4.03 × 10−4 kg/s, 5.52–18.94 GJ/t, 0.0580–0.203 kg-CO2/kg-steam, and
8.38 × 10−4–30.63 × 10−4 kg/s for E,

.
mCO2 , Q, β, and

.
ms, respectively. Except for No. 1 and 3, the values

of Q fell between the data (2.1–11.5 GJ/t), as presented in Table 1. However, some data, such as that of
no. 11 and 12, were comparable with the data [7,14,24,29] listed in Table 1 for the systems of MEA,
ACOR100, Kosol-4, and AMP + PZ. However, the heat of the generation data shown here was higher
than that reported by Aroonwilas and Veawab [10]. A possible reason was the difference in heating
systems; the former was an oil bath system and the latter was a steam heating system. This could be
seen in Equations (9) and (13). In order to reduce the heat of regeneration, it was necessary to choose a
lower heat capacity oil that could reduce the

.
Hreb, as shown in Equation (13).
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Figure 5. Variations of temperature during operation.

 
Figure 6. A plot of lean loading versus time.

 
Figure 7. Various temperature distributions in the packed bed.
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Table 4. Measured data obtained in this work.

No.
α0

( kmol−CO2
kmol−amine )

α
( kmol−CO2

kmol−amine )
tR

(◦C)
CA

(kmol/m3)
QA (104)
(m3/s)

Q
(GJ/t)

.
mCO2

(10−5 kg/s)

.
ms(10−4 kg/s)

β

(
kg−CO2

kg−steam )

E
(%)

1 0.31 0.22 100 4 3 15.69 5.57 8.82 0.063 30.43
2 0.31 0.24 110 5 6 7.29 10.04 8.38 0.120 22.45
3 0.30 0.22 120 6 9 18.94 16.71 30.63 0.058 20.98
4 0.41 0.30 100 6 6 10.05 16.71 12.34 0.144 23.64
5 0.41 0.25 110 4 9 7.52 28.91 14.52 0.199 40.79
6 0.39 0.13 120 5 3 6.75 15.77 9.06 0.174 54.78
7 0.51 0.34 100 5 9 7.69 40.26 20.67 0.195 35.73
8 0.50 0.25 110 6 3 7.08 21.59 10.62 0.203 49.63
9 0.49 0.18 120 4 6 5.52 32.04 17.21 0.186 55.70

10 0.55 0.21 120 4 3 6.89 17.41 7.10 0.245 58.18
11 0.47 0.26 120 5 9 3.97 46.15 19.24 0.236 44.54
12 0.52 0.31 110 5 6 4.44 29.61 13.14 0.225 39.20

3.2. Taguchi Analysis

3.2.1. S/N Ratio for E

The stripping efficiency for the nine data points was analyzed according to the S/N ratio, and the
results are shown in Table 5. The parameters, in order of importance, were A > D > C > B, while the
optimum condition was A3B3C1D1. Similarly, the same analysis for

.
mCO2 and Q were obtained and

are listed in Table 6. It was found that the effects of parameters A and D were significant, while those
of B and C were minor. The verification of the optimum conditions for the three runs could thus be
carried out further.

Table 5. Signal to noise (S/N) ratio analysis, as indicated in Equation (2), for efficiency (E).

Level A B C D

1 27.71 29.40 32.78 32.26
2 31.49 31.05 29.80 30.95
3 33.30 32.04 29.90 29.27

Delta 5.59 2.64 2.98 2.99
Rank 1 4 3 2

Table 6. S/N ratio analysis to obtain optimum condition and parameter significance.

S/N Optimum Condition Parameter Importance

E (Equation (2)) A3B3C1D1 A > D > C > B
.

mCO2 (Equation (2)) A3B3C3D2 A > C > B > D
Q (Equation (1)) A3B2C2D2 A > D > B > C

3.2.2. Confirmation of the Optimum Conditions

The procedure of confirmation was similar to that reported in Section 2.2. The results of the
confirmation tests for the three optimum conditions are listed in Table 7. The words printed in red
are the optimum values obtained here compared with the Taguchi experimental values, as shown in
Table 4. The results indicated that the Taguchi experimental design for this study was reliable. In order
to verify the optimum data, the Taguchi data together with the three optimum sets of data were all
adopted for regression.
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Table 7. Confirmation of optimum conditions.

No Optimum Condition
E

(%)

.
mCO2

(105)
(kg/s)

Q
(GJ/t)

No. 10 A3B3C1D1 (58.18) 17.41 6.89
No. 11 A3B3C3D2 44.54 (46.15) 3.97
No. 12 A3B2C2D2 39.20 29.61 (4.44)

3.3. Empirical Equations

In order to obtain the empirical equations for E,
.

mCO2, Q, and
.

ms, the experimental data were
correlated with suitable parameters, that is, Φ = f (α0, tR, CA, QA). For example, the stripping efficiency
was correlated with the CO2 loading, the reboiler temperature, the solvent concentration, and the flow
rate. A total of twelve data sets (listed in Table 3) were used, and the results are as follows:

E = 1.94× 105 exp(−3702.14
TR(K)

)α0
0.68[CA(kmol/m3)]

−1.39
[QA(m3/s)]

−0.33
(16)

The root means relative error, based on the measured values for Equation (16), was 4.97%.
However, the R2 obtained in here was 0.72. Figure 8 shows the confidence of the regression. It was
found that most data, including the data for the optimum condition, were within a ±20% margin of
error, showing that the regression was good. From Arrhenius’ law, the temperature dependence of the
correlation, such as Equation (16), was determined by the activation energy and temperature level of
the correlation, as shown in this equation [35]. The activation energy obtained was found to be 30.78
kJ/mol. The same regression procedure was performed in the others’ correlation equations. The results
for the stripping rate, steam flow rate, and heat of regeneration are shown below:

.
mCO2 = 2.08× 107 exp(−1542.05

TR(K)
)α0

2.03[CA(kmol/m3)]
−0.23

[QA(m3/s)]
0.68

(17)

.
ms = 1.44× 108 exp(−2985.14

TR(K)
)α0
−0.097[CA(kmol/m3)]

0.19
[QA(m3/s)]

0.78
(18)

and
Q = 0.10 exp(

895.75
TR(K)

)α−1.45
0 α−0.0083[CA(kmol/m3)]

0.35
[QA(m3/s)]

−0.011
. (19)

.
Figure 8. A plot of Ecal versus Emea, showing the data distribution.
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It was found that most data, including the data for the optimum conditions, were within a
±20% margin of error for the stripping rate, steam flow rate, and heat of regeneration, as shown in
Figures 9–11, showing that the regressions were good. However, Figure 11 shows that some data were
scattered beyond the ±20% margin of error. The regression errors for the four correlations are listed
in Table 8, and were in the range of 4.79–7.91. The activation energy for the four equations is also
listed in this table, in which the range was −7.45–30.78 kJ/mol. The negative value for Q means that Q
decreased with the increase in T. Correlations with high activation energies are temperature-sensitive;
correlations with low activation energies are very temperature-insensitive [35]. Therefore, E was more
temperature-sensitive compared with other outcome data. In addition, the exponents of each of the
equation is also listed in this table for comparison. The results showed that the effect of α0 on

.
mCO2 was

obvious as compared with others, while the effect of CA on E was the most significant. Finally, the effect
of QA on

.
ms was more significant, compared with the others’ correlations. In addition, the exponents

and activation energy for E and Q were in contract. They need to be discussed in later works.

 
Figure 9. A plot of the calculated stripping rate versus the measured stripping rate.

 

Figure 10. A plot of calculated steam generation rate versus measured values.
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Figure 11. A plot of calculated and measured data for Q, showing regression error.

Table 8. The root mean relative error, activation energy, and exponent for Equations (16)–(19).

Outcome Data
Root Mean Relative

Error (%)

Activation Energy
(kJ/mol)

Exponent for Each Equation

α0 CA QA

Equation (16) (E) 4.97 (R2 = 0.72) 30.78 0.68 −1.39 −0.33
Equation (17) (

.
mCO2 ) 7.00 (R2 = 0.92) 12.82 2.03 −0.23 0.68

Equation (18) (
.

ms) 5.71 (R2 = 0.71) 24.81 −0.097 0.19 0.78
Equation (19) (Q) 7.91 (R2 = 0.56) −7.45 −1.45 0.35 −0.011

3.4. Heat of Regeneration and Stripping Factor

Alternatively, the heat of regeneration was used to correlate to the stripping factor, which was
defined as the ratio of the stripping rate to the steam flow rate, that is, β =

.
mCO2 /

.
ms. Here, the β value

can act as the performance indicator of the stripper. The higher the β value, the better the stripper.
Thus, the regression result became the following:

Q = 1.62β−0.84 (20)

The R-square value was 0.8036. Figure 12 shows a plot of Q versus β. It was found that the trend
of the Q value decreased with the increase in β, which could be calculated using Equations (17) and
(18) when α, QA, CA, and TR were given. The increase in β indicated that, with the same amount of
steam, more CO2 could be desorbed.

 

Figure 12. A plot of Q against β, showing the effect of the stripping factor on the heat of regeneration.
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3.5. Policy in Operation

Figure 13 is a plot of E versus Q. The plot shows that the trend of E decreased with the increase
in Q. Therefore, if Q was set to 3, the corresponding stripping efficiency would be about 80%. From
Equation (16), it was found that α0 and tR needed to be higher, while CA and QA needed to be lower.
On the other hand, when ignoring the effects of the lean CO2 loading and liquid flow rate shown in
Equation (19) for Q, it was found that α0 and tR needed to be higher, while CA needed to be lower.
The trend was similar to that obtained from Equation (16) for E. Because of these findings, α0 and tR
needed to be controlled at higher values, while lower values for CA and QA required reducing the Q
value and increasing the E value.

Figure 13. A plot of E versus Q showing the variation of E with Q.

4. Conclusions

This study successfully used a continuous packed-bed stripper with an MEA + AMP solvent
containing CO2 for the study of the heat of regeneration using the Taguchi experimental design. Using
mass and energy balances, the stripping efficiency, stripping rate, steam flow rate, stripping factor, and
heat of regeneration could be determined under a steady-state condition. Quantitatively, the effects of
the variables on E,

.
mCO2, β, and Q were explained by the empirical equations obtained in this study.

The definition of the stripping factor (β) was used to describe the performance of the stripper. It was
found that the heat of regeneration could be correlated with β. The heat of regeneration decreased with
the increase in β, showing that more CO2 could be desorbed. The Taguchi S/N ratio analysis found that
the parameter importance sequence was A > D > B > C. Additionally, the optimum conditions for E,
.

mCO2, and Q were all verified, thereby showing confidence in the experimental design. In order to
obtain a higher E and a lower Q, lower values of QA and CA were required, while higher values of α0

and tR were needed.
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Abbreviation

AMP 2-amino-2-methyl-1-propanol
AMPD 2-amino-2-methyl-propane-1,3-diol
DETA Diethylenetriamine
MEA Monoethanolamine
PZ Piperazine
PZEA (Piperazinyl-1)-2-ethylamine
SG Sodium glycinate
S/N Signal/Noise
TETA Triethylenetetramine

Nomenclature

C kmol/m3 concentration
CA kmol/m3 concentration of amine
CPw kJ/kg·K hat capacity of water
CPA kJ/kg·K hat capacity of amine
Cp,oil kJ/kg·K hat capacity of oil
E % stripping efficiency
.

HR kJ/s reboiler heat loss
.

Hcol kJ/s column heat loss
.

Hcold kJ/s heat removed by cooler
Hh kJ/s heat exchanger heat loss
Hvap kJ/kg heat of evaporation
.

Hloss kJ/s total heat loss
.

Hreb kJ/s heat flow rate in reboiler
.

H1 kJ/s enthalpy at inlet
.

H2 kJ/s enthalpy at outlet
Habs kJ/kg heat of absorption
.

mCO2 kg/s stripping rate
.

moil kg/s oil flow rate
.

ms kg/s steam generation rate
.

mw kg/s cooling water flow rate
n - number of data points
.
nA kmol/s amine flow rate
Q W total heat flow
QA m3/s liquid volumetric flow rate
Qabs kW heat flow of absorption
Qsen kW sensitive heat flow
Qvap W heat flow of evaporation
Tin K temperature at inlet of reboiler
Tout K temperature at outlet of reboiler
To1 K temperature at the bottom of column
TR K reboiler temperature
Ts K steam temperature
Twi K inlet temperatureof the cooler
Two K outlet temperatureof the cooler
T1 K temperature at inlet of storage tank
tR

◦C reboiler temperature
zi - value of ith data
Greek Letters

α kmol-CO2/kmol-amine rich loading
α0 kmol-CO2/kmol-amine lean loading
β kg-CO2/kg-steam stripping factor
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Abstract: Aircraft emissions are the main cause of airport air pollution. One of the keys to achieving
airport energy conservation and emission reduction is to optimize aircraft taxiing paths. The traditional
optimization method based on the shortest taxi time is to model the aircraft under the assumption
of uniform speed taxiing. Although it is easy to solve, it does not take into account the change of
the velocity profile when the aircraft turns. In view of this, this paper comprehensively considered
the aircraft’s taxiing distance, the number of large steering times and collision avoidance in the taxi,
and established a path optimization model for aircraft taxiing at airport surface with the shortest
total taxi time as the target. The genetic algorithm was used to solve the model. The experimental
results show that the total fuel consumption and emissions of the aircraft are reduced by 35%
and 46%, respectively, before optimization, and the taxi time is greatly reduced, which effectively
avoids the taxiing conflict and reduces the pollutant emissions during the taxiing phase. Compared
with traditional optimization methods that do not consider turning factors, energy saving and
emission reduction effects are more significant. The proposed method is faster than other complex
algorithms considering multiple factors, and has higher practical application value. It is expected to
be applied in the more accurate airport surface real-time running trajectory optimization in the future.
Future research will increase the actual interference factors of the airport, comprehensively analyze
the actual situation of the airport’s inbound and outbound flights, dynamically adjust the taxiing
path of the aircraft and maintain the real-time performance of the system, and further optimize the
algorithm to improve the performance of the algorithm.

Keywords: carbon emission; reduction; carbon emission; taxiing on airport surfaces; pollutants
emissions; taxi time; taxi path optimization

1. Introduction

With the rapid growth of traffic flow in the civil aviation transportation industry, the operation of
major airports in China has become increasingly congested, and the operational safety and efficiency
problems of airport surfaces have become increasingly serious. At the same time, the amount of
pollutants emitted by flight operations has gradually increased, bringing immeasurable pressure to the
future atmospheric environment. In order to develop air transport sustainably, the realization of a
safe, efficient, and environmentally friendly new aircraft operation method has become an important
means to maintain the sustainable development of air transport. In this context, the use of scientific
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methods and efficient path planning can reduce aircraft taxiing time, avoid aircraft taxiing conflicts,
improve the overall operation efficiency of the airport, reduce aircraft fuel consumption, and promote
the construction of green airports.

Many national and international scholars have investigated taxi path optimization and pollutant
emissions of aircrafts on airport surfaces. In 2013, Landry et al. [1] used complex network theory to
dynamically detect and resolve conflicts encountered on taxiways and runways, improve the operational
efficiency of the airport surface, and ensure the safety of the aircraft. However, the simulation of the
model is complex and cannot meet real-time. In 2014, Ravizza [2] studied aircraft path planning in
airport surface considering time and fuel consumption, and introduced a sequence diagram-based
algorithm to solve this problem. This method increases the authenticity of the model and more
accurately estimates the aircraft taxi time. Finally, the purpose of reducing taxi time and reducing
fuel consumption was achieved. In 2015, to solve the comprehensive optimization problem of
combining runway scheduling and ground motion problems, Weiszer et al. [3] used the multi-objective
optimization method. The proposed evolutionary algorithm is based on improved congestion distance,
taking into account delay costs and fuel prices. Noticeably, price range uncertainties are defined by
preference. In 2016, Ortega Alba [4] summarized current state-of-the-art energy use behaviors and
airport trends, and analyzed major energy sources and consumers as well as the application of energy
and energy efficiency measures. The airport energy indicators have been established. In 2016, Li and
Lv [5,6] analyzed the monitoring data of Hongqiao Airport, and used SVM (Support Vector Machine)
to classify and traject the taxiing aircraft in airport surface. The application of data mining technology
to the prediction of airport surface taxiing time, taxiing hotspots, and the determination of conflict areas
were studied. In 2016, Przemysław, P. [7] studied models and computer software tools for implementing
dynamic taxi route selection modules, which can use conflict points to describe airport congestion.
The proposed taxi route selection system is integrated with the previously developed system to enable
it to be implemented in the routing module in A-SMGCS (Advanced-Surface Movement Guidance
and Control System). In 2017, a study by Li and Zhang established fuel consumption and emission
calculation models of single-engine taxi, tow-outs, and APU (Auxiliary Power Unit) electric taxi [8].
In this study, the authors analyzed the types of pollutants emitted by aircraft engines, introduced the
calculation model of fuel consumption and emissions under the standard landing and take-off cycle
(LTO) and aircraft all-engine taxi mode. The fuel consumption and emission correction model was
used to correct changes in fuel consumption and emission coefficients caused by external temperature,
air pressure, and humidity during the aircraft taxiing stage. Taking Shanghai Hongqiao Airport
as an example, pollutant emissions of various aircraft types under different taxiing modes were
calculated. The results showed that single-engine taxi and APU electric taxi can reduce HC, CO, and
NOx (hydrocarbon, Carbondioxide, and nitrogen oxides) emissions during the aircraft taxiing phase.
The tow-outs taxi has little effect on NOx emissions, but can significantly reduce HC and CO emissions.
In 2017, Chen et al. [9] considered that the route and schedule generated by taxi time prediction may
not be flexible under the uncertain factors such as changing weather conditions, operating scenarios
and pilot behavior, and based on multi-objective fuzzy rules. This uncertainty is quantified based
on historical aircraft taxi data. In 2018, Zhu et al. [10] used the Shanghai Hongqiao Airport scene
monitoring data to study the number of different departure aircraft in the apron and taxiing system
under the condition of runway capacity limitation, flight departure rate, departure taxi time, and
runway utilization. A departure aircraft taxi time prediction model was established to develop a
reasonable launch control strategy for the departing aircraft during the peak hour of the airport without
reducing the runway efficiency; ultimately, it reduces aircraft taxiing time and reduces aircraft fuel
consumption and pollutant emissions [11–13].

Most traditional taxi path optimization studies have been based on the shortest taxi path,
or model optimization based on the shortest taxi time—assuming aircrafts have equal speed taxiing
conditions [14–17]. The constructed path optimization model is simple and easy to solve. However,
limitations exist in the large gap between the model and the actual taxiing situation of the aircraft.
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In fact, due to the presence of the turning section of the airport surface, the speed profile of the aircraft
changes and the deceleration during a large turning will cause additional taxiing time. The exact
class algorithm has many applications in recent path planning studies because it can fully consider
various airport surface limiting factors and find the optimal solution [18–22]. However, there are many
variables in this kind of algorithm model; the algorithm is complex, and the calculation amount is huge.
It is generally difficult to obtain the global optimal solution in an acceptable time [23–26]. Therefore,
this paper comprehensively considers the factors such as the taxiing distance of the aircraft, the large
number of turns in the taxiing and the collision avoidance, and conducts path planning research on the
aircraft that taxis in the airport surface to reduce the total taxiing time of the aircraft, save aviation fuel
and reduce the amount of gaseous pollutants emitted in the taxiing stage of the aircraft. Although this
method lacks robustness, it is more realistic than others. The proposed method is faster than other
complex algorithms considering multiple factors, and has higher practical application value.

2. Analysis of Airport Surface Movement of the Aircraft

In this paper, we first analyzed taxiing aircrafts’ motion on airport surfaces, and then established
the aircraft taxiway path planning model. Figure 1 shows surveillance data covering the movement
status of a typical arriving and departing aircraft [5,6], which was used to analyze the motion state of
an aircraft on airport surfaces.

In Figure 1a,b, the horizontal axis is the time axis. The left and right longitudinal axes measure the
speed and heading, respectively (Figure 1a,b). The aircraft taxied at a relatively high speed ~10 m/s,
when there was no demand for steering and effect of conflict on airport surfaces. The aircraft with
flight track number 991 arrived with relatively large steering at 80 s, 150 s, and 390 s of its taxiing
time, and the aircraft’s taxiing speed during the turnaround period decreased to less than 2 m/s.
Around 270 s of its taxiing time, aircraft 991 stopped evacuation due to taxi conflict on the path, during
which the aircraft’s speed was reduced to zero. The departure aircraft with flight track number 2091
performed relatively large steering at 120 s, 370 s, and 470 s of its taxiing time. The taxiing speed was
also significantly reduced during these times. For around 400 s of its taxi time, this aircraft queued
before entering the runway, where its speed decreased to zero.

(a) 

Figure 1. Cont.
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(b) 

Figure 1. Approach and departure aircraft movement state diagram. (a) Arrival aircraft and (b)
departure aircraft.

Analysis of the data showed that the taxiing time of the arrival and departure aircrafts on airport
surfaces was not only directly affected by the taxiing distance factor, but was also closely related to
instances of large steering and collision avoidance during the taxiing process. Therefore, this paper
comprehensively considers the aircraft’s taxiing distance, number of large steers during taxiing, and
conflict avoidance. The study also covers path planning of aircraft taxiing in order to reduce the total
aircraft taxiing time on airport surfaces, save aviation fuel, reduce gas emissions during aircraft taxiing,
and improve air quality around the airport.

3. Establishing the Path Planning Model

Airport taxiway systems comprise very complicated networks. The taxiway system can be
resolved into a node and edge G = (V, E) network model, when optimization is performed for aircraft
taxi paths on airport surfaces. In the network model, V represents the set of nodes in the taxiway
system; it consists of intersections between taxiways a intersections between taxiways and runways,
parking position, runway ends, etc. E represents the set of edges connecting each node within the
taxiway system, and consists of the taxiway segments between adjacent nodes in the taxiway system.

3.1. Setting Model Variables

Let P = {1, 2, 3, . . . , r} be the set of aircrafts for the required planning. Among them, the arrival
aircraft is represented by A, and the departure aircraft is represented by D, A, D ∈ P. The set
R = {R1, R2, . . . , Rr} represents the airport surface taxi path for each aircraft. The taxi path Rk(1 ≤ k ≤ r)
of any aircraft k consists of a set of ordered nodes

{
Nk

1, Nk
2, . . . , Nk

q

}
. If the number of airport network

model nodes V is M, then there are: q ≤M; Nk
j ≤ V, j = 1, 2, . . . , q;

(
Nk

j , Nk
j+1

)
∈ E, j = 1, 2, . . . , q − 1.

To avoid the complications of character expressions, when the nodes “Ni”, “Nj”, etc. appear as
subscripts of the characters, they are simplified by “i” and “j”. This replacement is only for writing
format needs, and the meaning remains unaltered. The following define the variables used in the path
optimization model:

xijk = 1: indicates that the aircraft k passes the node Ni of the taxiway, and then taxis to the next
neighboring node Nj, otherwise xijk = 0;

sij is the length of the taxiway section between two adjacent nodes Ni and Nj in the taxiway system;
tjk is the moment of entering the taxiway node Nj during aircraft k taxiing;
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ts is the minimum safety interval between two aircrafts that successively pass through the
same node;

td is the deceleration taxi time on the landing runway after the aircraft k has landed;
yik = 1, indicates the taxiway node Ni in the taxi path of the aircraft k, otherwise yik = 0;
ti jk is the taxi time used by the aircraft k to taxi from the taxiway node Ni to the next adjacent

node Nj;
vk is the taxi speed when the aircraft k is taxiing on the airport surface;
tok is the initial taxiing moment of aircraft k in the taxiway system. The node No represents the

initial taxiing point of the aircraft within the taxiway system. For the arriving aircraft, No represents
the initial point of quick vacated taxiway, for the departing aircraft, No represents gates;

tek is the termination taxiing time of aircraft k in the taxiway system. Node Ne indicates the
aircraft’s termination taxiing point in the taxiway system. For the arriving aircraft, Ne denotes the
parking position. For the departing aircraft, Ne denotes end of the departure runway.

3.2. Building Objective Functions

The purpose of this paper is to reduce aircraft emissions during its taxi stage. The aircraft’s thrust
during taxiing is described by the taxiing thrust state (7%F∞) [9]. Hence, aircraft emissions positively
correlate with taxiing time; thus, the objective of path planning is to minimize the total taxiing time of
all aircrafts on airport surfaces. The established objective function is:

minT =
r∑

k=1

NM∑
i=N1

NM∑
j=N1

xijkti jk +
r∑

k=1

nktn (1)

The above formula contains two items: the first item is the time it takes for the aircraft to taxi
either way. Where xijk is a decision variable defined in Section 3.1, which is 1 or 0 depending on
whether the edge (Ni, Nj) is the taxi path for aircraft k, and ti jk is the time at which the aircraft k taxis
from the taxiway node Ni to the next adjacent node Nj, and can be expressed as:

ti jk = sij/vk (2)

The second term is the time it takes the aircraft to make large steering at each node where a turn is
needed. Where nk denotes the total number of turns aircraft k has accumulated on the taxi path, and tn

denotes the time it takes for aircraft k to average each turn. The number of turns nk for aircraft k during
taxiing is determined by the following formula:

nk =

Nk
q−1∑

j=Nk
2

numk
j (3)

where node Nj ∈
{
Nk

2, Nk
3, . . . , Nk

q−1

}
, numk

j = 1 or 0. When aircraft k passes through the steering angle

θk
j of node Nj and reaches the preset threshold cri, i.e., θk

j ≥ cri, it is considered that when the aircraft

passes through the node Nj, a large steering is performed to make the recorded value numk
j = 1,

otherwise, numk
j = 0, nk is the cumulative value of the numk

j values of the nodes on aircraft k’s taxi path.

To solve the aircraft steering angle θk at each node, the cosine theorem can be used for calculation.
Assume that aircraft k on the airport’s surface starts taxiing at node Nu, and continues taxiing through
nodes Nv and Nw. The airport surface coordinates of the three nodes are currently (xu, yu), (xv, yv),
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and (xw, yw). θk
v is used to indicate the angle by which aircraft k turns through node Nv. By applying

the cosine theorem, we can see that angle θk
v turns at the node Nv:

θk
v = π− arccos

(xw − xv)
2 + (yw − yv)

2 + (xv − xu)
2 + (yv − yu)

2 − (xw − xu)
2 − (yw − yu)

2

2
√
(xw − xv)

2 + (yw − yv)
2
√
(xv − xu)

2 + (yv − yu)
2

(4)

3.3. Construction of Aircraft Taxiing Dynamic Model

For arriving aircrafts, td indicates the time needed to decelerate and vacate from the runway after
landing, enter the quick vacated taxiway, or by-pass taxiway. The moment the high-speed taxiway
or the by-pass runway is entered, is the moment when taxiing begins, which is represented by the
Equation (5):

tok = ETOAk + td (5)

For departing aircrafts, the moment of pushback from the apron is the moment taxi begins,
which is represented by the Equation (6):

tok = EOBTk (6)

If aircraft k’s taxi path is Rk =
{
Nk

1, Nk
2, . . . , Nk

q

}
, the initial taxiing point is No = Nk

1, and the initial
taxiing time is tok, then the time Rk when aircraft k taxis to any node Nkj on its path tjk is:

tjk = tok +

(Nk
j−1,Nk

j )∑
(Nk

1,Nk
2)

ti jk + n∗ktn (7)

where
∑(Nk

j−1,Nk
j )

(Nk
1,Nk

2)
ti jk represents the total time spent by aircraft k from the node Nk

1 taxi to node Nk
j

accumulated on each taxi segment; n∗ktn indicates the time taken by the nodes that requiring a large
steer when the aircraft k is taxied from node Nk

1 to node Nk
j ; n∗k indicates the number of accumulated

steers by aircraft k from Nk
1 taxi to Nk

j ; tn indicates the time taken by each aircraft k for steering. n∗k can
refer to Equation (3), which is represented by the Equation (8):

n∗k =
Nk

j−1∑
j=Nk

2

numk
j (8)

The moment when any aircraft taxis to any node Nk
j , on path Rk can be obtained by Equation (7).

Having determined the aircraft’s taxiing time through each node, we can use the taxiway network
system nodes as the object of operation to construct the constraint function, and add constraints to
the path planning model in Section 3.2 to avoid the problem of taxi conflict in the path planned by
the model.

3.4. Building Constraint Functions

Aircraft taxi collision on airport surfaces can be divided into three types: intersection conflict,
head-on conflict, and tail conflict. During aircraft taxiing, in order to prevent the front plane’s engine
vortex from affecting the rear plane, both aircrafts must meet the requirements of vortex separation.
Table 1 shows the vortex separation standards.
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Table 1. Vortex separation Standards for aircrafts on airport surfaces (m).

The Front Plane
The Rear Plane

Light Medium Heavy

Light 200 200 200
Medium 200 200 200
Heavy 300 300 300

During the aircraft’s taxi path planning, to avoid taxi conflicts and meet the vortex separation
requirements, constraints must be placed on the objective function to ensure the safety and feasibility
of the planned taxi path.

The distance parameter is inconvenient when the taxiway network node is the operating object
for the path planning model constraint. Therefore, vortex separation standards in Table 1, given in the
form of distance, must be converted into the time separation between aircraft. According to relevant
regulations by the Civil Aviation Administration, the maximum speed of an aircraft during its taxi on
airport surfaces should not exceed 50 km/h (13.8 m/s). According to the data analyzed in Section 1,
the linear taxiing speed of aircrafts on airport surfaces was conservatively taken as 10 m/s. The vortex
separation ts in the form of time is as shown in Table 2.

Table 2. Surface taxi, aircraft time vortex separation (s).

The Front Plane
The Rear Plane

Light Medium Heavy

Light 20 20 20
Medium 20 20 20
Heavy 30 30 30

3.4.1. Intersection Conflict and Vortex Separation Constraints

Intersection conflicts occur when two aircraft cross over the same taxiway network node,
with/without meeting safety separations. The intersection conflict and vortex separation problems can
be constrained at the same time. This is achieved by controlling the time separation t of two consecutive
aircrafts k1 and k2, passing through the same taxiway network node ts. Intersection conflict between
aircrafts can be prevented and the vortex separation requirement can be met. The constraints are:

tjk2 − tjk1 ≥ ts (9)

In the formula: ∀k1, k2 ∈ P, k1 � k2, ∀Nj ∈ Rk1 ∩ Rk2. Among them, tjk1, tjk2 can be obtained by
Equation (7).

3.4.2. Head-on Conflict Constraint

Head-on collision is the confrontation between two opposing aircrafts occupying the same taxiing
path, in the taxiway network at the same time. The head-on conflict caused by two aircrafts is more
difficult to resolve. This type of conflict should be avoided as much as possible. Therefore, the two
opposing aircrafts k1 and k2 should satisfy the following formula:

(
xijk1 tik1 − xjik2 tik2

)(
xijk1 tjk1 − xjik2

tjk2

)
> 0 (10)

In the formula: ∀k1, k2 ∈ P, k1 � k2, ∀
(
Ni, Nj

)
∈ Rk1 , ∀

(
Nj, Ni

)
∈ Rk2 . Equation (10) indicates that if

aircraft k1 passes the taxiing path
(
Ni, Nj

)
, and aircraft k2 passes the taxiing path

(
Nj, Ni

)
, then aircraft

k1 must first pass through both nodes Ni and Nj; otherwise, if aircraft k2 passes first through node Nj,
then it must also pass first through node Ni.
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3.4.3. Tail Conflict

Tail conflict refers to two aircraft traveling in the same direction, while occupying the same taxi
path, in the taxiway network at the same time. These aircrafts thus surpass the phenomenon caused by
the rear and front planes catching up, or the problem of small safety separations. Two aircrafts k1 and
k2, traveling in the same direction, should satisfy the following formula:(

xijk1 tik1 − xijk2 tik2

)(
xijk1 tjk1 − xijk2 tjk2

)
> 0 (11)

In the formula: ∀k1, k2 ∈ P, k1 � k2, ∀
(
Ni, Nj

)
∈ Rk1 , ∀

(
Nj, Ni

)
∈ Rk2 . Equation (11) shows that if

both aircrafts pass through taxiway
(
Ni, Nj

)
, then the aircraft passing first through node Ni, must also

pass first through node Nj.

4. Solving the Path Planning Model

The airport surface taxi path planning model for aircrafts, established in this paper, has many
complex variables and formulas, with some nonlinear equations. The traditional algorithm is difficult
to solve. Genetic algorithms have high searchability and strong robustness, and are widely applied to
path planning problems such as highway traffic and drones [14,15]. Genetic algorithms are based on
populations and not single-point searches, and can generate multiple extreme values from different
points at the same time. Obtaining a local optimal solution of the path planning model is not easy;
therefore, the genetic algorithm was used to solve it.

4.1. Chromosome Coding and Initial Population Generation

When genetic algorithms are used to solve the taxi path planning model, chromosome encoding
is firstly required. Genetic algorithms generally have binary encoding, floating-point encoding,
symbol encoding, and other encoding methods. Based on the specific requirements of this model,
floating-point encoding was used (real value encoding method).

Figure 2 is a simplified illustration of a taxiway network, and an example illustrating chromosome
encoding. First, the nodes in the taxiway system were given real values such as 1, 2, 3, . . . , 10, 11, etc.
The order of these real values indicated the genetic sequence of a chromosome, and also corresponded
to the representation of an aircraft’s taxi path on airport surfaces.

Figure 2. Simple taxiway network diagram.

If the length of the chromosome is set to 10, and the aircraft taxis from node “1” to node “11”,
then chromosome A shown in Figure 3 is an effective chromosome, and chromosome A indicates that
the aircraft’s taxi path is 1→ 4→ 7→ 10→ 11 , less than 10 bits are filled with “0” in the back.

Figure 3. Chromosome A.
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Iterative optimization of genetic algorithms is not based on a single chromosome, it is based on
the population of multiple chromosomes. This paper used computer-generated random generation
methods to form the initial population. First, sequence numbers of all nodes in the taxiway system were
randomized; then, the illegal chromosomal sequences formed in the random sorting were eliminated.
That is, the chromosomal sequences that were subject to taxiing path jumps were eliminated, and a
certain number of initial feasible solutions were generated.

4.2. Selecting the Operation and Fitness Function

In this paper, the roulette method was used to select the operator performing chromosome
selections. This method generates the individual population according to the fitness value as the
selected variable, where individuals with large fitness values have a high probability of being selected.
However, this does not only select individuals with large fitness values, as this would generate a
unitary population and limit the algorithm’s rapid convergence to the local optimal solution.

The fitness function is a measure to evaluate an individual’s fitness value. The evaluation function
that was established in this paper, did not only require chromosome encoding fitness values of the
aircraft with a smaller taxiing time, but also effectively eliminated chromosome coding in those aircrafts
with taxiing conflicts. According to the above requirements, the fitness function z was constructed
as follows.

Construct an equivalent taxi time function z first:

z =
r∑

k=1

NM∑
i=N1

NM∑
j=N1

xijkti jk +
r∑

k=1
nktn + Mmax

[
−
(
tjk2 − tjk1

)
, 0
]
+

Mmax
[
−
(
xijk1 tik1 − xjik2 tik2

)
·
(
xijk1 tjk1 − xjik2 tjk2

)
, 0
]
+

Mmax
[
−
(
xi jk1 tik1 − xijk2 tik2

)
·
(
xijk1 tjk1 − xijk2 tjk2

)
, 0
] (12)

where M is the penalty coefficient, which is a value much larger than the normal taxiing time
T =

∑r
k=1

∑NM
i=N1

∑NM
j=N1

xijkti jk +
∑r

k=1 nktn. The calculation result z of Equation (12) is the total aircraft
taxiing time of airport surface taxiing; if intersection conflicts, head-on conflicts, or tail conflicts existed
in the taxi paths represented by this population of chromosomes, a very large z-value would be
obtained due to the penalty coefficient M.

Let the fitness function be: fi = 1/zi, so that the fitness value of chromosome i is obtained, and the
larger the taxiing time, the smaller the fitness value of a population of chromosomes. According to the
proportion of fitness values, the distribution probability of each chromosome population was selected.
The formula is:

pi = fi/
∑

fi (13)

This type of equation shows that the probability of a highly-adapted genome is selected. If the
population is N, then randomly selected N times will form the next generation of new populations.

4.3. Crossover Operations

Commonly-used crossover operators include single-point, two-point, and multi-point crossings.
Chromosomes in this article represent the taxi path of an aircraft on the airport’s surface. Chromosome
order represents the order of nodes passing through the aircraft’s taxi path. To ensure that
cross-replicated chromosomes still have practical significance, this paper used a special single-point
crossover operator. The crossover steps are as follows:

Randomly select a pair of chromosomes from the population as the chromosomes to be crossed
with a certain crossover probability pc (generally a large probability).

Compare two chromosomal genes to investigate the possibility of identifying identical taxiing
node genes in the two chromosomes, except for the start node and termination node. If there are no
identical taxiing node genes, then select a pair of new chromosomes and compare them. However,
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if the same taxiing node gene exists, one of the same taxiing nodes is randomly selected first, and the
gene sequence behind this node is exchanged.

This article uses the same chromosome taxiing node rather than the same length node as the allele,
thus the length of the two chromosomes after the crossover may not be equal. After the crossover,
if the progeny chromosome has more digits than the parent chromosome, the extra “0” is removed
from the end of the progeny chromosome; if the progeny chromosome has fewer cipher digits than the
parent, the progeny chromosome occupies the “0” at the end.

This allowed us to detect whether there were repeated taxiing nodes before and after the newly
generated chromosome pair cross points. If no repeated node were detected, then it must be an effective
chromosome, and the crossover operation ends. If a repeating node exists, then the aircraft would
repeat the round-trip taxiing on the taxiing path, indicating that the progeny chromosome generated
by the crossover operation had no practical meaning, the crossover operation is invalid, and the “1”
operation is performed again.

Still referring to the simplified taxiway network in Figure 2, the two chromosomes A and B were
randomly selected, as shown in Figure 4a, except that the starting and terminating nodes had the same
taxiing node “6”. Then the gene sequence was exchanged after node “6”, thus changing A and B into
two new taxi paths, A* and B*, as shown in Figure 4b. Then, “1” and “0” bits were added at the end
of the new individual A* and B*, respectively, as shown in Figure 4c. The two chromosomes had no
identical nodes before and after node “6”, thus this crossover operation was effective. Chromosomes A*
and B* reserve the basic characteristics of their parent chromosomes; however, they are new individuals
representing the new taxiing path.

 
(a) 

 
(b) 

 
(c) 

Figure 4. Operation diagram of chromosome crossover. (a) Chromosome A and B before crossing;
(b) chromosomes A* and B* after crossing; and (c) chromosome A* and B* after complement
and delocation.

4.4. Mutation Operation

After population cross-selection, in order to improve the local algorithm’s searchability and
maintain the population’s diversity, it was necessary to perform chromosome mutation operations
on the population. Common mutation operators included single-point and multi-point mutations.
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In this model, chromosome sequences represent the aircraft’s taxiing path; therefore, their ordering
sequence characterized the sequence of the nodes passing through the taxiing path. The traditional
mutation method changes single or several nodes within a chromosome, which cannot improve the
local algorithm’s searchability and maintain the population’s diversity. It also destroys the generated
taxi path and affects population convergence.

Therefore, in the solution of this model, the mutation operation selects chromosomes for mutation
from the population based on the mutation probability pm (generally less), and then replaces it
with a randomly generated reasonable taxi path as a new chromosome (Figure 5). This can also be
understood as a multi-point variation in the broad sense, although the new chromosome produced by
this variation method is quite different from the original chromosome, it can supplement new gene
sequences, effectively avoiding the loss of certain genes due to the selection of crossover operations
and maintaining the population diversity.

(a) 

 
(b) 

Figure 5. Operation diagram of chromosome mutation. (a) Chromosome A before mutation; and (b)
chromosome A* after mutation.

5. Emulation Experiment

5.1. Data Description

In this article, we used the Shanghai Hongqiao Airport as an example for simulation analysis.
Figure 6 shows the network diagram of the taxiway at Hongqiao Airport. The airport is a two-runway
airport, 18R/36L is mainly used for departure. It is 3300 m in length and 60 m in width. For arrivals,
18L/36R was used. It is 3400 m in length and 45 m in width. The airport has four main taxiways
parallel to the runways A, B, C, and D. It also includes quick-vacate taxiways, by-pass taxiways,
and apron taxiways.

According to the airport surveillance radar data at Hongqiao Airport, the 1 h traffic during peak
hours includes 40–50 aircrafts. We took 20 real flight sequences within 30 min of a busy period to
record monitoring data as an example; thereby, aircraft taxiway planning analysis was performed.
Due to wind direction, the 18R and 18L runways were used for departure and arrival, respectively.
The starting and ending moments of the flights are shown in Table 3.

5.2. Parameter Settings

During path planning, the initial taxiing time tok of each aircraft k in the taxiway system remained
unchanged at the starting time (Table 3); according to the relevant regulations of the Civil Aviation
Administration and the airport operational data analysis, the linear taxi speed of the aircraft was set
to 10 m/s. Since the data did not have aircraft type items, assuming that flights in Table 3 were all
medium aircraft, then the vortex separation was ts = 20s.
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Figure 6. Network diagram of taxiway at Hongqiao Airport.

Table 3. Airport Flight Schedules.

Flight
Flight Tracking

Number
Arrival and

Departure Type
Apron Location

Taxiing Start and
End Time (s)

1 617 departure No. 2 apron 49,837~50,135
2 834 departure F apron 49,916~50,333
3 2587 arrival No. 4 apron 50039~50,455
4 98 departure G apron 50,055~50,533
5 132 arrival No. 4 apron 50,173~50,621
6 80 departure No. 2 apron 50,276~50,665
7 2894 arrival No. 6 apron 50,323~50,543
8 3433 departure No. 2 North Apron 50,433~50,743
9 1368 arrival No. 2 North Apron 50,443~50,740

10 339 departure No. 2 apron 50,467~50,852
11 1704 arrival No. 2 North Apron 50,565~51,010
12 1527 arrival No. 2 South Apron 50,704~50,855
13 3676 departure No. 2 South Apron 50,752~51,128
14 1727 arrival No. 6 apron 50,825~51,030
15 2712 departure No. 2 North Apron 50,893~51,078
16 925 arrival No. 2 North Apron 50,940~51,216
17 3570 departure No. 2 apron 50,956~51,348
18 1639 departure F apron 51,065~51,465
19 438 arrival No. 6 apron 51,075~51,280
20 1510 arrival No. 2 South Apron 51,214~51,344

High-speed taxiways vacating and runway angles are 25◦ to 45◦, typically 30◦. When the aircraft
turns to a high-speed vacate taxiway, taxiing speed is high; therefore, it is not considered as large
steering, and a large steering critical angle cri = 45◦ was set. For the Airbus A320, for example, it takes
30–60 s to achieve 90◦ steering during taxiing. Therefore, it is assumed that the time taken by an aircraft
to make a large steer is tn = 30s.

Departure flights still originate from their respective original aprons in Table 3, and terminate at
the 18R runway end; the flight’s arrival begins at the original high-speed vacate taxiway of the 18L
runway, and ends at the original apron in Table 3. Without changing the above conditions, only taxiing
path optimization for each aircraft on the airport surface is now performed.

The genetic algorithm was used to solve the established taxi path optimization model. Eight feasible
taxiing paths were randomly generated for each aircraft, and the aircraft taxiing paths were randomly
combined. The initial population number was set to 100, the crossover and mutation probabilities were
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set to Pc = 0.6 and Pm = 0.1, respectively, and the number of iterations was 100 generations. We then
used the MATLAB7.9.0 software for programming.

5.3. Analysis of Results

Figure 7 shows optimal solution curves for each generation in the genetic algorithm.
After optimizing the 100-generation iterative genetic algorithm, the total taxiing time of 20 aircrafts on
the airports surface converged to 5343 s, and the average aircraft taxiing time was about 267 s. Among
them, the total taxiing distance was 38,728 m, and the number of turns was 49.

 
Figure 7. The minimum taxiing time curve generated using the genetic algorithm.

The taxiing path for each aircraft and the time it took the aircraft to pass through each node after
path optimization are shown in Appendix A. Appendix A recorded the nodes that passed through
the aircraft taxi path planning, and the time of entry into the node. For the non-steering node on the
aircraft’s taxi path, it was considered that aircrafts taxi into the node and then directly out, occupying
the node for only a certain moment. For the steering node on the aircraft’s taxi path, it was considered
that after the aircraft taxied into the node, it took 30 s to perform the steering operation, after which the
aircraft taxis out the node.

Taxi data before and after optimization of 20 aircraft paths listed in Table 3 were satisfied.
The comparison results are shown in Table 4.

Table 4. Comparison of important data before and after aircraft path optimization.

Before Optimization After Optimization

Total taxiing distance (m) 39,650 38,728
Total number of turns 52 49

Total taxi time (s) 6423 5343
Number of flights using the C main taxiway 1 7
Number of flights using the D main taxiway 16 10

The number of slow down or stop to avoidance conflict 6 0

Comparing statistical data from Table 4 shows that the total taxiing distance and number of aircraft
turns after path optimization were reduced. However, the impact on total taxiing time reduction was
not significant and taxi collision avoidance was the major factor for reducing total taxiing time.

In Table 3, there are 17 aircrafts whose parking positions were the 2nd, 4th, and 6th aprons on the
west side of runway 18R/36L. Among them, 16 aircraft’s arrival and departure taxiing was in the D
main taxiways, that is, the taxi paths were between nodes 81–101, and only one aircraft with flight track
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number 3676 used the C master taxiway, the taxiing route segment between nodes 56–80. This mode of
airport operation caused aircrafts on the D main taxiway to run slowly, with frequent conflicts, and the
average taxi speed was low, while the C main taxiway was obviously underutilized.

The model built in this paper was based on a conflict avoidance path planning model with the
shortest taxi time. Therefore, the planned taxi path was different from the actual running path of
the airport, and the airport taxiway system resources were fully utilized. Among the taxiing paths
planned by the model, 10 of the 17 arrival and departure aircrafts on the north apron were assigned D
main taxiways, and seven were assigned C main taxiways, in order to avoid the problem of taxi path
conflict between aircrafts, and so that aircrafts on the planned path could meet the vortex separation
requirements. Figure 8 shows the number of taxi aircraft on each taxiway before and after path
optimization. The data show that the airport taxiway resource allocation was more reasonable post
taxi path optimization.

(a) 

 
(b) 

Figure 8. Number of aircraft taxiing on various taxi paths before and after path optimization. (a) Before
optimization; and (b) after optimization.
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6. Comprehensive Optimization Strategy and Fuel Consumption Calculation

Various aircraft taxiing modes have been studied within the local research environment. In addition
to two-engine taxiing, aircrafts have three low-emission airport surface taxiing modes. Among them,
single-engine and electric taxiing speeds are the same as the all-engine taxiing mode [7]. Therefore,
while path planning for aircrafts on airport surfaces is carried out, aircrafts can also implement a
comprehensive optimization strategy using a low-emission taxiing mode, such as single-engine taxiing
or electric-driven taxiing.

To plan the taxiing path of the aircraft on the airport surface, we then used the 20 aircrafts
mentioned in Section 5 to apply the path planning model and the solution algorithm established in this
chapter. At the same time, the aircrafts were considered to adopt the conditions of full engine taxiing,
single-engine taxiing, and electric taxiing. Using the fuel consumption and emissions calculation
model under various taxiing methods [7], we calculated the total fuel consumption and emissions of
all aircrafts in the airport taxiing stage before and after optimization of different combination strategies.
The fuel flow rate and pollutant emission factor of the aircrafts were based on the B736-700 model.
The calculation results for total fuel consumption and pollutant emissions from the 20 aircrafts are
shown in Figure 9a,b.

(a) 

(b) 

Figure 9. Aircraft fuel consumption (a), and emissions (b) under different optimization strategies.
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In Figure 9, “Before Optimization” indicates that no optimization strategy was implemented,
at this time, total fuel consumption and emissions of all aircraft were the largest. “Optimization
Strategy 1” indicates that the aircrafts had conducted the taxi path planning under the all-engine
taxiing mode. The data show that after implementing taxi path planning

For aircrafts on the airport surface, the total fuel consumption and emissions of all aircrafts were
reduced by about 17% compared with before optimization. “Optimization Strategy 2 and Optimization
Strategy 3” indicate that the aircraft had planned the taxi path in the single-engine taxi mode and
the electric drive taxi mode, respectively. This model is a comprehensive optimization strategy for
low-emission taxiing and taxi path planning. The data also indicated that total fuel consumption and
emissions of all aircraft were reduced by 35% and 46%, respectively, compared with before optimization.
The calculations show that the comprehensive optimization strategy is more effective in energy saving
and emission reductions during the aircrafts taxiing stage.

7. Conclusions

In this paper, the motion data of aircrafts were analyzed using monitoring data. Factors such as
the taxiing distance of the aircraft, the number of large turns in the taxiing, and conflict avoidance were
comprehensively considered. The aircraft path optimization model, with the shortest total time of
aircraft taxiing on airport surfaces, was established—the aircraft taxiing dynamic model. According to
this model, possible conflict problems in the path optimization model were constrained. Finally, the
genetic algorithm was used to solve the model, and the crossover and mutation operators of the
traditional genetic algorithm were improved. The simulation was carried out with real flight data,
and the energy-saving and emission-reducing effects of the aircraft’s path planning during the taxiing
stage were analyzed and calculated. The results showed that, after aircraft’s taxi path optimization,
the aircraft’s total taxiing distance and steering times were reduced, taxiing conflict was avoided,
taxiing time was relatively reduced, and the overall speed of the aircraft’s taxiing in airport surface was
increased, which improved the airport’s operating efficiency, which in turn reduced fuel consumption
and pollutant emissions during the taxiing phase. Compared with traditional optimization methods
that do not consider turning factors, energy saving and emission reduction effects were more significant.
The proposed method is faster than other complex algorithms considering multiple factors, and has
higher practical application value.

Aircraft taxi path planning requires a high degree of rationality, accuracy, real-time, and reliability.
Due to factors such as development time constraints, this paper has certain limitations. Mainly reflected
in the proposed method, although it can give the path of the airport surface with free collision and the
shortest taxi time, but in the actual taxiing process, the aircraft cannot ensure that the route is strictly
followed, and it is possible to generate new conflicts. How to dynamically adjust the path of the aircraft
under the premise of ensuring real-time performance needs further study. The future work needs to
be improved by increasing the actual interference factors of the airport, comprehensively analyzing
the actual situation of the airport’s arrival and departure flights, dynamically adjusting the taxiing
path of the aircraft and maintaining the real-time performance of the system, and further optimizing
the algorithm to improve the algorithm’s operation speed and accuracy and greatly improve the
performance of the algorithm.
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Appendix A

Table A1. The taxiing path of each aircraft, and the moment when the aircraft passes through each node.

Flight Track
Number

Path Node (Passing Node Time (s))

617
89 (49,842 s)– > 90 (49,880 s)– > 91 (49,888 s)– > 92 (49,907 s)– > 93 (49,925 s)– > 94 (49,933 s)– >
95 (49,941 s)– > 96 (49,956 s)– > 97 (49,973 s)– > 98 (49,997 s)– > 99 (50,017 s)– > 100 (50,048 s)–

> 10 (50,061 s)– > 56 (50,099 s) – > 55 (50,117 s)

834 4 (49,916 s)– > 8 (49,931 s)– > 19 (49,940 s)– > 33 (49,964 s)– > 42 (49,982 s)– > 41 (50,084 s)– > 40
(50,114 s)– > 39 (50,160 s)– > 38 (50,173 s)–>55 (50,222 s)

2587

34 (50,039 s)– > 43 (50,072 s)– > 49 (50,120 s)– > 76 (50,138 s)– > 85 (50,146 s)– > 86 (50,184 s)– >
87 (50,192 s)– > 88 (50,212 s)– > 89 (50,230 s)– > 90 (50,238 s)– > 91 (50,246 s)– > 92 (50,265 s)– >
93 (50,283 s)– > 94 (50,291 s)– > 95 (50,299 s)– > 96 (50,314 s)– > 97 (50,331 s)– > 98 (50,355 s)– >

99 (50,375 s)– > 100 (50,407 s)

98 8 (5,0055 s)– > 19 (50,064 s)– > 33 (50,088 s)– > 42 (50,106 s)– > 41 (50,208 s)– > 40 (50,238 s)– >
39 (50,284 s)– > 38 (50,297 s)– > 55 (50,346 s)

132
34 (50,173 s)– > 43 (50,206 s)– > 49 (50,254 s)– > 76 (50,272 s)– > 85 (50,280 s)– > 86 (50,318 s)– >
87 (50,326 s)– > 88 (50,346 s)– > 89 (50,364 s)– > 90 (50,372 s)– > 91 (50,380 s)– > 92 (50,399 s)– >
93 (50,417 s)– > 94 (50,425 s)– > 95 (50,433 s)– > 96 (50,448 s)– > 97 (50,465 s)– > 98 (50,489 s)

80
88 (50,276 s)– > 89 (50,294 s)– > 90 (50,302 s)– > 91 (50,310 s)– > 92 (50,329 s)– > 93 (50,348 s)– >
94 (50,356 s)– > 95 (50,364 s)– > 96 (50,379 s)– > 97(50,396 s)– > 98(50,419 s)– > 99(50,439 s)– >

100(50,471 s)– > 101 (50,483 s)– > 56 (50,521 s)– > 55 (50,539 s)

2894 34 (50,323 s)– > 43 (50,356 s)– > 49 (50,404 s)– > 76 (50,422 s)– > 77 (50,479 s)– > 84 (50,517 s)

3433 93 (50,438 s)– > 94 (50,476 s)– > 95 (50,484 s)– > 96 (50,498 s)– > 97 (50,516 s)– > 98 (50,539 s)– >
99 (50,559 s)– > 100 (50,591 s) – > 101 (50,603 s)– > 56 (50,641 s)– > 55 (50,659 s)

1368
34 (50,443 s)– > 43(50,476 s)– > 49(50,524 s)– > 76(50,542 s)– > 75 (50,578 s)– > 74 (50,587 s)– >
71 (50,605 s)– > 70 (50,624 s) – > 69 (50,632 s)– > 68 (50,640 s)– > 67 (50,650 s)– > 66 (50,659 s)– >

65 (50,677 s)– > 64 (50,685 s)– > 94 (50,723 s)

339
89 (50,472 s)– > 90 (50,510 s)– > 91 (50,518 s)– > 92 (50,537 s)– > 93 (50,555 s)– > 94 (50,563 s)– >
95 (50,571 s)– > 96 (50,586 s) – > 97 (50,603 s)– > 98 (50,627 s)– > 99 (50,647 s)– > 100 (50,678 s)–

> 101 (50,691 s)– > 56 (50,729 s)– > 55 (50,747 s)

1704
34 (50,565 s)– > 43 (50,598 s)– > 49 (50,646 s)– > 76 (50,664 s)– > 75 (50,700 s)– > 74 (50,709 s)– >
71 (50,727 s)– > 70 (50,746 s) – > 69 (50,754 s)– > 68 (50,762 s)– > 67 (50,772 s)– > 66 (50,781 s)– >

65 (50,799 s)– > 64 (50,807 s)– > 94 (50,845 s)

1527 34 (50,704 s)– > 43 (50,737 s)– > 49 (50,785 s)– > 76 (50,803 s)– > 85 (50,811 s)– > 86 (50,849 s)

3676
87 (50,757 s)– > 74 (50,765 s)– > 71 (50,813 s)– > 70 (50,832 s)– > 69 (50,840 s)– > 68 (50,848 s)– >
67 (50,858 s)– > 66 (50,867 s) – > 65 (50,886 s)– > 64 (50,894 s)– > 63 (50,902 s)– > 62 (50,916 s)– >
60 (50,933 s)– > 59 (50,957 s)– > 58 (50,977 s)– > 57 (51,008 s)– > 56 (51,021 s)– > 55 (51,069 s)

1727 34 (50,825 s)– > 43 (50,858 s)– > 49 (50,906 s)– > 76 (50,924 s)– > 85 (50,932 s)– > 84 (50,987 s)

2712 93 (50,898 s)– > 65 (50,906 s)– > 64 (50,944 s)– > 63 (50,952 s)– > 62 (50,966 s)– > 60 (50,983 s)– >
59 (51,007 s)– > 58 (51,027 s) – > 57 (51,059 s)– > 56 (51,071 s)– > 55 (51,119 s)

925
34 (50,940 s)– > 43 (50,973 s)– > 49 (51,021 s)– > 76 (51,039 s)– > 85 (51,047 s)– > 86 (51,085 s)– >
87 (51,093 s)– > 88 (51,113 s) – > 89 (51,131 s)– > 90 (51,139 s)– > 91 (51,147 s)– > 92 (51,166 s)– >

93 (51,184 s)– > 94 (51,192 s)

3570
89 (50,961 s)– > 70 (50,969 s)– > 69(51,007 s)– > 68(51,015 s)– > 67 (51,025 s)– > 66 (51,033 s)– >
65 (51,052 s)– > 64 (51,060 s) – > 63(51,068 s)– > 62(51,083 s)– > 60 (51,099 s)– > 59 (51,123 s)– >

58 (51,144 s)– > 57 (51,175 s)– > 56 (51,188 s)– > 55(51236 s)

1639 4 (51,065 s)– > 8 (51,080 s)– > 19 (51,089 s)– > 33 (51,113 s)– > 42 (51,131 s)– > 41 (51,233 s)– > 40
(51,263 s)– > 39 (51,309 s) – > 38 (51,322 s)– > 55 (51,371 s)

438 34 (51,075 s)– > 43 (51,108 s)– > 49 (51,156 s)– > 76 (51,174 s)– > 77 (51,231 s)– > 84 (51,269 s)

1510 34 (51,214 s)– > 43 (51,247 s)– > 49 (51,295 s)– > 76 (51,313 s)– > 85 (51,321 s)– > 86 (51,359 s)
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