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Preface to “Carbon Emission Reduction—Carbon Tax,
Carbon Trading, and Carbon Offset”

The World Bank stated that there are some incentives which have been created to encourage
carbon emission reduction, such as the removal of fossil fuels subsidies, the introduction of
carbon pricing, the increase in energy efficiency standards, and the implementation of auctions
for the lowest-cost renewable energy. Among these, carbon pricing refers to charges for those
who emit carbon dioxide (CO2) from their emissions, including carbon taxes, emissions trading
systems (ETSs), offset mechanisms, and results-based climate finance (RBCF). This Special Issue
collects 19 carbon emissions-related papers (including five that are carbon tax-related) and five
energy-related papers using various methods or models, such as the LMDI (Logarithmic Mean
Divisia Index) decomposition method, panel data model, ordered weighted regression (OWA),
geographically-and-temporally-weighted regression (GTWR), and the expanded stirpat* model.
The research studies come from China, Taiwan, Thailand, Czech Republic, Pakistan, Sweden,
Norway, and United States. These studies involved various industries such as agricultural industry,
transportation industry, electric-power industry, electronic industry, paper industry, iron and steel
industry, and the oil and gas industry. Although this Special Issue does not fully solve our concerns,
it still provides abundant material for implementing energy conservation and carbon emissions
reduction. However, there are still many issues regarding the problems caused by global warming
that require research. Finally, I am grateful to MDPI for the invitation to act as the Guest Editor of
this Special Issue and I am indebted to the editorial office of Energies for their kind cooperation,
patience, and committed engagement. I would like to thank the authors for submitting their excellent
contributions to this Special Issue. My thanks are extended to the reviewers for evaluating the
manuscripts and providing helpful suggestions. Sincere thanks also go to the editorial team of MDPI

and Energies for providing the opportunity to publish this book and helping in all possible ways.

Wen-Hsien Tsai
Editor
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1. Introduction

The Paris Agreement was signed by 195 nations in December 2015 to strengthen the global
response to the threat of climate change following the 1992 United Nations Framework Convention
on Climate Change (UNFCC) and the 1997 Kyoto Protocol. In Article 2 of the Paris Agreement,
the increase in the global average temperature is anticipated to be held to well below 2 °C above
pre-industrial levels, and efforts are being employed to limit the temperature increase to 1.5 °C.
The United States Environmental Protection Agency (EPA) provides information on emissions of
the main greenhouse gases. It shows that about 81% of the totally emitted greenhouse gases were
carbon dioxide (CO,), 10% methane, and 7% nitrous oxide in 2018. Therefore, carbon dioxide (CO,)
emissions (or carbon emissions) are the most important cause of global warming. The United Nations
has made efforts to reduce greenhouse gas emissions or mitigate their effect. In Article 6 of the Paris
Agreement, three cooperative approaches that countries can take in attaining the goal of their carbon
emission reduction are described, including direct bilateral cooperation, new sustainable development
mechanisms, and non-market-based approaches.

The World Bank stated that there are some incentives that have been created to encourage carbon
emission reduction, such as the removal of fossil fuels subsidies, the introduction of carbon pricing,
the increase of energy efficiency standards, and the implementation of auctions for the lowest-cost
renewable energy. Among these, carbon pricing refers to charging those who emit carbon dioxide
(COy) for their emissions, including carbon taxes, emissions trading systems (ETSs), offset mechanisms,
results-based climate finance (RBCF), and so on. In view of the urgent need for carbon emission
reduction, this special issue collects 19 related papers concerning carbon emission reduction by using
various models and methods.

2. Summary Information of 19 Papers in the Special Issue

Table 1 shows the summary information of 19 papers in this special issue, including Research
Topic, Papers’ Author, Method/Model, Research Object, and Industry/Field. From Table 1, we can
see that this special issue has 5 papers for investigating the influencing factors of carbon emissions;
2 papers for exploring the relationship among carbon emissions, economic growth, and agricultural
production; and 6 papers for discussing various tools of carbon emission reduction such as carbon tax,
carbon trading, carbon offset, carbon storage, and carbon footprint. In additions, there are 6 papers
involving the related issues for carbon emission reduction.

Energies 2020, 13, 6128; d0i:10.3390/en13226128 1 www.mdpi.com/journal/energies
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Table 1. Summary information of 19 papers in this special issue.

Topic Paper/Author Method/Model Research Object Industry/Field
57 ‘the Belt and
Zhu, Gao [1] Panel Data Model Road Initiative” Transportation
(BIT) countries
LMDI (Logarithmic Mean o AinPacif
Zhu, Du [2] Divisia Index) S)xclzsl;:;:c\lﬁc Transportation
1.1 Transportation Decomposition Method untries
Carbon Emissions - .
LMDI (Logarithmic Mean
Zhu, Wang, Yang [3] Divisia Index) Regions in China Transportation
1. Influencing Decomposition Method
gac;ors Ef L Ordered Weighted
arbon Emissions Agricultural Regression (OWA); Aericultural
s Iy . . . gricultura
Carbon Emissions Chen, Li, Su, Li [4] Geographically-and- Fujian, China Industry

Temporally-Weighted

Regression (GTWR)
1.3 Carbon Emissions E ded
from Li, Li, Shao [5] Xpance China National level
Energy Consumption STIRPAT * Model
Autoregressive
Ali, Ying, Shah, Tariq, Distributed Lag Pakistan Agricultural
Chandio, Ali [6] (ARDL) Model; Pairwise Industry
Granger Causality Test
2. Relationship among Carbon Emissions, N
Economic Growth, and Agricultural Production . Autoregresslve
. . Distributed Lag (ARDL) .
Ali, Gucheng, Ying, > . Agricultural
Ishaq, Shah [7] Model; Pakistan Industry
4 Kwiatkowski-Phillips—
Schmidt-Shin (KPSS) Test
Mixed Integer Nonlinear Numerical Electric-power

3. Carbon Tax

Che, Zhang, Lang [8]

Programming Model

Experiments

Industry

Hsieh, Tsai, Chang [9]

Mixed Integer Linear
Programming (MILP)
Model

Taiwan

Paper Industry

4. Carbon Trading

Duan, Han, Mu, Yang,
Li[10]

Two-stage Game Theory
Model

China

Tron and Steel
Industry

5. Carbon Offset

Krasovskii, Khabarov,
Lubowski, Obersteiner

[11]

Two-stage Stochastic
Technological Portfolio
Optimization Model

Not specified

Power Industry

Cao, Liu, Hou,
6. Carbon Storage Mehmood, Liao, Feng Literature Review Review Paper Not specified
[12]
. Quintana-Pedraza, Cradle-to-Grave Electronic
7. Carbon Footprint Viera-Agudelo, Multi-Pronged Sweden and China [ndu(h’
Mufioz-Galeano [13] Methodology sy
Fan, Zhang, Gao, Chen, Single-Region . Industrial
Carbon Leakage Li, Miao [14] Input-Output Model China Sector
Differential Absorption Oil and Gas
Gas Leaks Log, Pedersen [15] 1 42 (DIAL) Technique Norway Industry

8. Others

CO; Efficiency Break Point

Bat’a, Fuka, Lesakova,
Heckenbergerova [16]

Modified Life Cycle
Assessment (LCA)

Czech Republic

Transportation

Efficiency of Sustainable

Sutthichaimethee,

A o : . i
Development Policy Naluang [17] SEM-VARIMAX ** Model Thailand National Level
Optimization in the
Stripping Process of Chen, Lai [18] Taguchi Method Not specified Not specified
CO, Gas
Low Emission Taxiing Li, Sun, Yu, Li, Zhang, Path Optimization Model China Airport

Path Optimization

Tai [19]

<Note> * STIRPAT: Stochastic Impacts by Regression on Population, Affluence, and Technology. ** SEM-VARIMAX:
Structural Equation Modeling/Vector Autoregressive Model with Exogenous Variables.

3. Review of the Special Issue

3.1. Influencing Factors of Carbon Emissions

3.1.1. Transportation Carbon Emissions

Zhu and Gao [1] used the Panel Data Model to investigate the factors affecting the carbon emissions
of the transportation industry in 57 of ‘the Belt and Road Initiative’ (BRI) countries. The research results
indicate that the positive factors influencing carbon emissions of the transportation industry are capita
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GDP, urbanization level, and energy consumption structure, while the negative factors are technology
level and trade openness. Zhu and Du [2] applied the Logarithmic Mean Divisia Index (LMDI)
decomposition method to research the driving factors for carbon emissions of the road transportation
industry in six Asia-Pacific countries from 1990 to 2016. This research found that the economic output
and the population size have positive driving influences on carbon emissions for the road transportation
industry; the energy intensity and the transportation intensity have different influences on driving
carbon emissions for the road transportation industry for these six Asia-Pacific Countries. In addition,
the carbon emissions coefficient has a relatively small influence. Based on data from 1997 to 2017,
Zhu, Wang, and Yang [3] adopted the Logarithmic Mean Divisia Index (LMDI) decomposition method
to analyze the influencing degree of several major factors on the carbon emissions of transportation
industry in different regions, and they put forward some suggestions according to local conditions
and provided references for the carbon reduction of Chinese transportation industry. Their results
showed that economic output effect is the most important factor to promote the carbon emissions of
transportation industry in various regions. The regional energy intensity effect in most stages inhibited
carbon emissions of the transportation industry.

3.1.2. Agricultural Carbon Emissions

Based on the carbon emission sources of five main aspects in agricultural production, Chen, Li,
Su, and Li [4] applied the latest carbon emission coefficients released by Intergovernmental Panel on
Climate Change of the UN (IPCC) and World Resources Institute (WRI), and then used the ordered
weighted aggregation (OWA) operator to remeasure agricultural carbon emissions in Fujian from
2008-2017. The research results showed that the regression coefficients of each selected factor in the
cities were positive or negative, which indicated that the impacts on agricultural carbon emission had
the characteristics of geospatial nonstationarity.

3.1.3. Carbon Emissions from Energy Consumption

Li, Li, and Shao [5] used the IPCC (The Intergovernmental Panel on Climate Change) method
to calculate the carbon emissions of energy consumption in China from 1996 to 2016, and used it
as a dependent variable to analyze the influencing factors. Their results showed that the order of
impact on carbon emissions from high to low is total population, per capita GDP, technology level,
industrial structure, primary energy consumption structure, and urbanization level.

3.2. Relationship among Carbon Emissions, Economic Growth, and Agricultural Production

Ali, Ying, Shah, Tariq, Chandio, and Ali [6] employed augmented Dickey—Fuller (ADF) and
Phillips—Perron (PP) tests to check the stationarity of the variables. The results of the analysis revealed
that there is both a short- and long-run association between agricultural production, economic growth,
and carbon dioxide emissions in the country.

Ali, Gucheng, Ying, Ishaq, and Shah [7] aimed to explore the casual relationship between
agricultural production, economic growth, and carbon dioxide emissions in Pakistan. An autoregressive
distributed lag (ARDL) model was applied to examine the relationship between agricultural production,
economic growth, and carbon dioxide emissions using time series data from 1960 to 2014. The results
showed both short-run and long-run relationships between agricultural production, gross domestic
product (GDP), and carbon dioxide emissions in Pakistan.

3.3. Carbon Tax

Carbon tax is a tax on energy sources that emit carbon dioxide. It is a pollution tax and a form of
carbon pricing. The objective of a carbon tax is to reduce the harmful and unfavorable levels of carbon
dioxide emissions, thereby decelerating climate change and its negative effects on the environment and
human health. A Carbon tax also can prompt companies to find more efficient ways to manufacture
their products or deliver their services. Generally, a carbon tax is determined by the carbon tax rate and
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the quantity of carbon emissions that a company processes in its manufacturing, and it is represented
as the amount paid for every ton of greenhouse gas released into the atmosphere. However, carbon tax
also will have some disadvantages, such as imposing expensive administration costs for businesses,
prompting them to move their operations to “pollution havens,” and so on.

Che, Zhang, and Lang [8] formulated the generation self-scheduling problem under the proposed
carbon-tax policy as a mixed integer nonlinear programming model. Numerical results demonstrated
that the proposed decomposition algorithm can solve the considered problem in a reasonable time and
indicated that the proposed carbon-tax policy can enhance the incentive for generation companies to
invest in a low-carbon generation capacity.

Using mathematical programming with activity-based costing (ABC) and based on the theory of
constraints (TOC), Hsieh, Tsai, and Chang [9] proposed a green production model for the traditional
paper industry to achieve the purpose of energy saving and carbon emission reduction. A numerical
example was used to demonstrate how to apply the model presented in their paper.

3.4. Carbon Trading

Carbon trading is another form of carbon pricing under cap-and-trade systems. Cap-and-trade is
one method for regulating and ultimately reducing the amount of carbon emissions. The government
sets a cap on carbon emissions for the whole country, and then limits the amount of carbon dioxide that
companies are allowed to release. A company that can more efficiently reduce carbon emissions can
sell any extra permits in the emission market to companies that cannot easily afford to reduce carbon
emission. Thus, carbon trading markets are set up. The number of emissions trading systems around the
world is increasing. In addition to the EU emissions trading system (EU ETS), national or subnational
systems are already in operation or under development in Canada, China, Japan, New Zealand,
South Korea, Switzerland, and the United States.

To study the emission reduction policies” impact on the production and economic level of the steel
industry, Duan, Han, Mu, Yang, and Li [10] constructed a two-stage dynamic game model and analyzed
various emission reduction policies” impact on the steel industry and enterprises. The research results
indicated that with the increasing emission reduction target (15-30%) and carbon quota trading price
(12.65-137.59 Yuan), social welfare and producer surplus show an increasing trend and emission macro
losses show a decreasing trend.

3.5. Carbon Offset

A carbon offset is a reduction in emissions of carbon dioxide or greenhouse gases made in order
to compensate for or to offset an emission made elsewhere. One ton of carbon offset represents the
reduction of one ton of carbon dioxide or its equivalent in other greenhouse gases. There are two markets
for carbon offsets: (1) The larger compliance market, where companies, governments, or other entities
buy carbon offsets in order to comply with caps on the total amount of carbon dioxide they are allowed
to emit; and (2) the smaller voluntary market, where individuals, companies, or governments purchase
carbon offsets to mitigate their own greenhouse gas emissions from transportation, electricity use,
and other sources. Carbon offset usually supports projects that reduce the emission of greenhouse
gases in the short- or long-term. A common project type is renewable energy, such as wind farms,
biomass energy, or hydroelectric dams. Others include energy efficiency projects, the destruction of
industrial pollutants or agricultural byproducts, the destruction of landfill methane, LULUCF (land use,
land-use change, and forestry), REDD (reducing emissions from deforestation and forest degradation),
and so on.

Krasovskii, Khabarov, Lubowski, and Obersteiner [11] were motivated by the risks associated with
the future CO, price uncertainty in the context of the offsetting of carbon emissions by regulated entities.
They asked whether it is possible to reduce these financial risks. In this study, authors considered the
bilateral interaction of a REDD supplier and a greenhouse gas (GHG)-emitting energy producer in an
incomplete emission offsets market. Their results showed that flobsion’s flexibility had advantages
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compared to a standard option, which can help GHG-emitting energy producers with managing their
compliance risks, while at the same time facilitating the development of REDD programs.

3.6. Carbon Storage

Cao, Liu, Hou, Mehmood, Liao, and Feng [12] aim to provide the latest developments of CO,
storage from the perspective of improving safety and economics. This review demonstrates that CO,
storage in depleted oil and gas reservoirs could play an important role in reducing CO, emission in
the near future and CO, storage in saline aquifers may make the biggest contribution due to its huge
storage capacity. Comparing the various available strategies, CO,—enhanced oil recovery (CO,—EOR)
operations are supposed to play the most important role for CO, mitigation in the next few years,
followed by CO,—enhanced gas recovery (CO,—EGR).

3.7. Carbon Footprint

Quintana-Pedraza, Viera-Agudelo, and Mufioz-Galeano [13] propose the application of a
cradle-to-grave multi-pronged methodology to obtain a more realistic carbon footprint (CF) estimation
of electro-intensive power electronic (EIPE) products. The proposed methodology is applied in a
cradle-to-grave scenario, being composed of two approaches of LCA. Results show that D-STATCOM
considerably decreases the CF and saves emissions taken place during the usage stage. A comparison
was made between Sweden and China to establish the environmental impact of D-STATCOM in
electrical networks, showing that saved emissions in the life cycle of D-STATCOM were 5.88 and
391.04 ton CO,eq in Sweden and China, respectively.

3.8. Others

3.8.1. Carbon Leakage

On the basis of trade data for China’s 20 industrial sectors, Fan, Zhang, Gao, Chen, Li, and Miao [14]
built a panel data model to test the effect of trade on carbon dioxide emissions and the presence of
carbon leakage for all industrial sectors. They derived a single-region input-output model for open
economies based on the industrial sectors” diversity and carbon dioxide emissions, and performed an
empirical test. The results show that higher trade openness leads to a reduction in the intensity of CO,
emissions and gross emissions and that there are obvious structural differences in different sectors
with different carbon emission intensity. The coefficient of trade openness for LCSs is —0.073 and is
statistically significant at the 1% level, so higher trade openness for LCSs leads to a reduction in the
CO; emissions intensity.

3.8.2. Gas Leaks

Log and Pedersen [15] developed a simple logarithmic table based on an existing consequence
matrix for safety related incidents extended to include non-safety related fugitive emissions.
An evaluation sheet was also developed as a guide for immediate risk evaluations when new
leaks are identified. The leak rate table and evaluation guide were tested in the field at five land-based
oil and gas facilities during Optical Gas Inspection (OGI) campaigns. It is demonstrated how the
suggested concept can be used for presenting and analyzing detected leaks to assist in Leak Detection
and Repair (LDAR) programs.

3.8.3. CO, Efficiency Break Point

Bat’a, Fuka, Lesakova, and Heckenbergerova [16] aim to deal with CO, emissions in energy
production process in an original way, based on calculations of total specific CO, emission and,
depending on the type of fuel and the transport distance. It is based on a modified life cycle assessment
(LCA), supplemented with a system of equations. Their key finding is the break point for associated
processes at a distance of 1779.64 km, since it is better to burn brown coal than wood in terms of
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total CO, emissions. The research can conclude that, in some cases, it is more efficient to use coal
instead of wood as fuel in terms of CO, emissions, particularly in regard to transport distance and
type of transport.

3.8.4. Efficiency of Sustainable Development Policy

Sutthichaimethee and Naluang [17] aim to predict the efficiency of the Sustainable Development
Policy for Energy Consumption under Environmental Law in Thailand for the next 17 years
(2020-2036), and aim to analyze the relationships among causal factors by applying a structural
equation modeling/vector autoregressive model with exogenous variables (SEM-VARIMAX Model).
With the implementation of the Sustainable Development Policy for Energy Consumption under
Environmental Law (S.D.EL), the forecast results derived from the SEM-VARIMAX Model indicate a
continuously high change in energy consumption from 2020 to 2036, and the change exceeds the rate
determined by the government.

3.8.5. Optimization in the Stripping Process of CO, Gas

Chen and Lai [18] aimed to explore the effects of variables on the heat of regeneration, the stripping
efficiency, the stripping rate, the steam generation rate, and the stripping factor. The results showed
that the stripping efficiency was in the range of 20.98-55.69%, the stripping rate was in the range of
5.57 x 107°-4.03 x 10~* kg/s, and heat of regeneration was in the range of 5.52-18.94 GJ/t.

3.8.6. Low Emission Taxiing Path Optimization

Li, Sun, Yu, Li, Zhang, and Tsai [19] considered the aircraft’s taxiing distance, the number of
large steering times, and collision avoidance in the taxi, and established a path optimization model
for aircraft taxiing at airport surface with the shortest total taxi time as the target. The experimental
results show that the total fuel consumption and emissions of the aircraft are reduced by 35% and 46%,
respectively, before optimization, and the taxi time is greatly reduced, which effectively avoids the
taxiing conflict and reduces the pollutant emissions during the taxiing phase.

4. Concluding Remarks

The World Bank stated that there are some incentives that have been created to encourage carbon
emission reduction, such as the removal of fossil fuels subsidies, the introduction of carbon pricing,
the increase of energy efficiency standards, and the implementation of auctions for the lowest-cost
renewable energy. Among these, carbon pricing refers to charging those who emit carbon dioxide
(COy) for their emissions, including carbon taxes, emissions trading systems (ETSs), offset mechanisms,
results-based climate finance (RBCF), and so on. This Special Issue collects 19 carbon emissions-related
papers (including 5 that are carbon tax-related) and 5 energy-related papers using various methods or
models. Although this special issue did not fully satisfy our needs, it still provides abundant related
material for energy conservation and carbon emissions reduction. However, there still are many
research topics waiting our efforts to study to solve the problems of global warming.
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Abstract: Carbon emissions in countries in the “Belt and Road Initiative (BRI)” account for more
than half of the world’s total volume. According to the international energy agency report, the
world transportation industry carbon emissions in 2015 came second on the list for the proportion
of global carbon emissions across all industries, accounting for 23.96% of the total. Along with the
advancement of the BRI construction, transportation industry carbon emissions will continue their
rapid growth. Therefore, studying the factors affecting the carbon emissions of the transportation
industry in countries in the BRI is conducive to the formulation of policies to control carbon emissions.
In this paper, the CO, emissions of the transportation industry in countries in the BRI line from 2005
to 2015 were measured, and then the influencing factors of 57 countries in the BRI were analyzed by
using the panel data model. The results show that per capita GDP, urbanization level, and energy
consumption structure have positive effects on the carbon emissions of transportation industry, while
technology level and trade openness have negative effects on carbon emissions of the transportation
industry. Therefore, in order to effectively control the carbon emissions of the transportation industry
in the BRI countries, it is necessary to reasonably control the transportation industry carbon emissions
caused by urbanization, optimize the energy consumption structure of the transportation industry,
optimize the structure of the transportation industry, and improve the openness of trade and the
technical level of the BRI countries.

Keywords: carbon emissions; transportation industry; influencing factors; the “Belt and
Road Initiative”

1. Introduction

As an important part of modern service industry, the transportation industry is a high energy
consumption industry and a large carbon emitter in the national economic system. According to the
international standard industry classification (ISIC Rev 4.0), the transportation industry is divided into
road transportation, railway transportation, navigation transportation, aviation transportation, and
pipeline transportation, and the transportation industry studied in this paper is specified as follows:
road transportation, railway transportation, domestic aviation transportation, pipeline transport, and
domestic navigation transportation. According to the “carbon dioxide emissions from fuel combustion”
report released by the International Energy Agency (IEA) in 2017, the world’s transportation industry
accounted for the second largest share of global carbon emissions in 2017, accounting for 23.96% of the
total [1]. Therefore, the development of low-carbon transportation is not only the requirement of the
transportation industry to save energy and to reduce emissions and the impact on the environment,
but also the requirement of the era for a low-carbon economy. It is the most effective direction of
transportation development to deal with the serious energy consumption in society and prevent
global warming.
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The phrase the “Belt and Road Initiative”(BRI), which stands for the “silk road economic belt”
and “marine silk road in the 21st century”, was successively put forward by Chinese President Xi
Jinping during his visit to Central Asia and Southeast Asian countries in September and October
2013. Then China’s national development and reform commission, ministries of foreign affairs, and
commerce jointly issued the report called “the vision and action of pushing to build the silk road
economic belt and the maritime silk road into the 21st century”. BRI involves 66 countries in Asia,
Europe, and Africa. An in-depth study of the factors affecting the carbon emissions of the transport
industry for these countries will help formulate relevant policies to control their carbon emissions of
the transport industry and make contributions to the control of global warming.

At present, research on the carbon emission of the transportation industry in the BRI countries
mainly focuses on the factors influencing the carbon emission and the low-carbon transportation
development measures of specific countries and regions.

Regarding the research on influencing factors, Danish et al. studied the relationship between
transport energy consumption, economic growth, foreign direct investment, and carbon dioxide
emissions in urban transport sector in Pakistan [2]. Liang et al. analyzed the influence of energy
structure, energy efficiency, transportation mode, transportation development, economic development,
and population size on the CO, emissions of China’s transportation sector from 2001 to 2014 [3].
Xu et al. analyzed the driving force of carbon dioxide emissions in China’s transportation industry by
vector autoregressive model and found that energy efficiency plays a leading role in reducing carbon
dioxide emissions [4]. Song et al. built super-efficiency non-expected models, made evaluation analysis
on transportation energy efficiency among 30 provinces of the China’s eastern, central, and western
parts, and found that the Chinese transportation industry’s overall energy efficiency presents the anti-N
type market decline, and the large discreteness maintains in the eastern and western provinces, and
the strong consistency while the overall level is low in the northeast provinces [5]. Li et al. discussed
the influencing factors of CO, emissions from road freight in China from 1985 to 2007, and concluded
that economic growth is the most important factor for the increase of CO, emissions, while industrial
added value and market concentration levels have a significant impact on the reduction of CO,
emissions [6]. Wang et al. analyzed the driving factors of carbon emissions in China’s transportation
industry from 2000 to 2015 by using the generalized partition index method, and found that the added
value, energy consumption and per capita carbon emissions of the transportation industry were the
main factors leading to the increase of carbon emissions, and energy carbon emission intensity was the
key factor to reduce carbon emissions [7]. Lin et al. used quantile analysis to investigate the impact
of China’s GDP, energy intensity, carbon intensity and urbanization on the carbon emissions of the
transportation industry from 1980 to 2010, and found that GDP, energy intensity and carbon intensity
had a greater impact on carbon emissions than urbanization [8]. Liu et al. investigated the impact
of urbanization on road traffic energy use by using the data of 386 cities in Norway from 2006 to
2009, and found that the urban density level had a significant negative impact on per capita road
energy use [9]. Fameli et al., after calculating the traffic carbon emissions in Attica, Greece, concluded
that vehicle composition, popularity of diesel cars, urban speed, and vehicle renewal are the most
effective parameters for formulating carbon emissions reduction policies [10]. Hassan et al. empirically
analyzed the influence of aircraft technology, operational improvement, and sustainable biofuels on
future carbon dioxide emissions from the perspective of aviation transportation industry [11]. Wu et al.
used data from the years from 1949 to 2012, and applied vector autoregressive model to discuss
the dynamic relationship among the interaction among China’s transportation, economic growth
and carbon emissions [12]. Xiao et al. introduced factors such as the proportion of added value of
transportation industry, energy structure, and development level of transportation to analyze the direct
and indirect impacts of various factors on carbon emissions of the transportation industry [13]. Lu et al.
calculated the regional differences in CO, emissions of the transportation industry in nine provinces
and two cities in the Yangtze river economic belt from three aspects: per capita carbon emissions,
carbon emissions per unit of added value, and carbon emissions per unit of converted turnover [14].
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Du et al., based on the panel data of carbon emissions of China’s transportation industry in the past 20
years, concluded that economic level, transportation intensity, and energy intensity are the main factors
affecting carbon emissions of the transportation industry [15]. Ou et al. analyzed the impact path of
transportation technology progress on carbon dioxide emissions based on the multiple equilibrium
theory and Stochastic Impacts by Regression on Population, Affluence, and Technology model [16].
Li et al. selected carbon emissions, per capita carbon emissions, and carbon intensity indexes from the
spatial-temporal perspective to analyze the spatial agglomeration characteristics of carbon emission of
China’s transportation industry and the convergence characteristics with the change of time axis [17].

Regarding low-carbon transport development measures, Bakker et al. made a comparative analysis
of the approaches and status quo of sustainable and low-carbon transport policies in Association of
Southeast Asian Nations (ASEAN) countries based on the strategy component developed by Howlett
and Cashore [18]. Selvakkumaran et al. adopted a recursive dynamic optimization model based on
bottom-up modeling principle to analyze the energy utilization potential and emission reduction
potential of Thailand’s transportation sector under two scenarios of low-carbon social measures and
emission tax clusters [19]. Fungtammasan et al. found that Thailand could achieve the national
autonomous contribution (INDC) target by improving energy efficiency (especially in the transportation
sector) and deploying the renewable energy and de-carbonization of power sectors [20]. Lah et al.
believe that in order to minimize the rebound effect, a balanced and integrated policy approach is
needed to significantly curb greenhouse gas emissions from the transportation industry by combining
vehicle efficiency standards, fuel tax and differentiated vehicle tax with mode selection and compact
urban design [21]. Shukla et al. showed that carbon dioxide emission reduction in transportation
system can be achieved more effectively by combining emission reduction policies with measures to
change traffic structure [22]. Rashidi et al. selected three low-carbon investment cases of environmental
protection departments and transportation departments in Nairobi (Kenya), Balikpapan (Indonesia),
and Colombo (Sri Lanka) to illustrate how to promote low-carbon investment in transportation and
waste treatment in developing countries [23]. Lu et al. analyzed and calculated the total factor
productivity and carbon emission efficiency of the transportation industry in Eastern China, and
believed that the transportation industry in most provinces and cities still has a large space for energy
conservation and emission reduction [24]. Wang et al. discussed the carbon emission characteristics of
Beijing’s commuting from different perspectives (macro and micro) and believed that reducing carbon
dioxide emissions related to transfer is of great significance and necessity for the low-carbon emission of
China’s urban transportation development. In order to avoid the increasing carbon dioxide emissions
related to commuting, the use of cars should be restricted and public transportation is a priority [25].
Dong et al. adopted life cycle assessment method to quantitatively analyze the environmental impact
of Shenzhen urban public transport system (including buses and subways) from 2005 to 2015, in order
to realize the low-carbon transformation of Shenzhen’s urban transportation sector [26]. Gambhir
et al. found that passenger cars and heavy trucks would constitute the majority of the carbon
dioxide emission saving potential between 2010 and 2050 [27]. Diaz-ruiz-Navamuel et al. empirically
analyzed the values of the reduction in emissions obtained and the advantages of installing Automatic
Mooring Systems and operating RoRo/Pax terminals in commercial ports [28]. Wu et al. compared
the environmental impact of the use of electric vehicles in developing and developed countries by
taking Bric countries as an example and found that the electric car’s impact on the environment is
closely related to the power structure and transmission efficiency in the involved countries and regions
because of the high proportion of thermal power in developing countries. Therefore, considered
that in a sense, the development of the electric car industry in developing countries is transferring
environmental pollutant emissions from vehicles to process of electricity production [29]. Shi et al.
analyzed the emission reduction factors affecting electric vehicles, and also believed that the power
generation energy structure and the power supply route of coal power technology play a decisive role
in the carbon emission reduction space of the fuel life cycle of electric vehicles [30].
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As for the research on country’s development and carbon emissions of BRI, scholars outside China
pay little attention to it, while Chinese scholars have conducted research from the fields of economy
and culture. Lei et al. believed that in order to avoid repeating the mistake of sharp growth of carbon
emissions after China’s accession to the WTO, China must balance the relationship between economic
growth and carbon emission reduction. Therefore, the relationship between China’s economic growth
and carbon emission reduction was studied from the perspective of synergy [31]. Xu et al. empirically
investigated the influence of cultural dimensions on carbon emissions of 42 sample countries in the
BRI from 2000 to 2013 under the framework of environmental Kuznets curve [32]. In the context of
BRI, Zhang et al. studied the threshold effect of economic growth on carbon emissions by using panel
data of 30 provinces (regions) in China from 2006 to 2015 and non-dynamic threshold panel estimation
method [33]. Chen et al. discussed how the trade opening, green investment and energy cooperation
under BRI would contribute to the low-carbon development of the countries in the BRI based on the
current reality and the academic research results [34]. Xiao et al. selected the inter-provincial panel
data of China from 2004 to 2015, and investigated the influence of the carbon emissions on provinces
in the BRI by constructing the simultaneous equation model [35].

A comprehensive review of the existing studies shows that countries in the BRI pay great attention
to low-carbon development, and study the relationship between relevant factors and carbon emissions
from different time spans, regional scope, and professional fields, providing many references and
ideas for the realization of global carbon emission reduction. However, most scholars study carbon
emission from one country or region. Since BRI was proposed by the Chinese government, Chinese
scholars pay more attention to BRL. However, Chinese scholars mainly study national economic pattern
and strategic development issues from the perspective of theoretical framework and strategy, lacking
quantitative research. A small number of studies are conducted from the economic and cultural fields.
With the advance of the BRI construction, the carbon emission in the field of transportation will grow
rapidly, and how to realize the carbon emission reduction in the field of transportation is extremely
urgent. This paper intends to use the transnational panel data to calculate the carbon emissions of
the transportation industry of the countries in the BRI, and use the econometric model to analyze
the influencing factors of the carbon emissions of the countries in the BRI, and finally put forward
suggestions to control the carbon emissions of the transportation industry.

2. Research Methods and Data Sources

2.1. Model Assumption

Panel Data is the data combining time series and cross section, in which time series data can
reflect the dynamic changes of individuals, while cross section data can better reflect the differences
between individuals. The panel data model combines the advantages of time series and cross-sectional
data, and the application of panel data model for empirical research can provide more information,
more changes, less collinearity, more degrees of freedom and efficiency, making up for the deficiency
of two-dimensional data information in the classical linear econometric model. Panel data models
allow for the construction and validation of more complex behavioral models than cross-sectional data
or time series.

The general form of the panel data model is as follows:

k
Yit = Z Brixkit + Uit 1)
k=1

where, i = 1,2,---N, N is the number of individuals; t = 1,2,---, T, T is the number of known time
points. y; is the observed value of the explained variable to the individual i at the time f; xy; is the
observation value of the kth non-random explanatory variable for the individual i at the time ¢, f; is
the parameter to be estimated; i is the random error term.
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2.2. Data Source and Data Processing

BRI includes 66 countries. In Asia, except Japan, South Korea, and North Korea, the remaining
46 countries have all joined BRI, including 19 countries in Europe, and Egypt in Africa. Through
consulting the World Bank database and the International Energy Agency database, this paper obtained
relevant data. Variable data in Laos, Syria, Palestine, Oman, Afghanistan, Iraq, Maldives, Bhutan, and
Serbia was excluded for its overmuch missing. In this paper, after a small amount of missing data
were processed by interpolation method, the variable data of 57 countries (see Table 1) in the BRI were
obtained from 2005 to 2015.

Table 1. Countries in the “Belt and Road Initiative (BRI)”.

Category Region Member Countries

Singapore, Brunei, Israel, Saudi Arabia, UAE, Qatar,

High—incorlr;e countries Asia 8 Kuwait, Bahrain
Europe 11 Greece, Cyprus, Poland, Lithuania, Estonia, Latvia,
P Czech Republic, Slovakia, Hungary, Slovenia, Croatia
Middle- and high-income Asia9 China, Malaysia, Thailand, Iran, Turk'ey, Jordan,
countries Lebanon, Kazakhstan, Turkmenistan
19 Russia, Belarus, Georgia, Azerbaijan, Bosnia and
Europe 10 Herzegovina, Montenegro, Albania, Romania,
Bulgaria, Macedonia
Indonesia, Vietnam, Myanmar, Cambodia,
Low- and middle-income Asia 16 Philippines, Mongoli‘a, Yemen, Egypt, Indié,
countries Pakistan, Banglac.l.es.h, Sri Lanka, Nepal, Uzbekistan,
19 Ta.]lklstan, Ky.rgyzstan
Europe 3 Ukraine, Armenia, Moldova

Note: data were obtained from the World Bank database in 2015.

2.2.1. Explained Variables and Their Data Sources

Carbon emissions is the general term of greenhouse gas emissions, expressed in carbon dioxide
equivalent (CO,eq), including carbon dioxide, nitrous oxide, freon, and methane, of which carbon
dioxide emissions account for 60% of the total greenhouse gas emissions, so it is the main greenhouse
gas causing global warming, therefore having been studied by most scholars. In this paper, total carbon
dioxide emissions are used to measure the carbon emissions level of the transportation industry of
the BRI countries. Due to the incompleteness of global carbon emissions data, most scholars collect
energy consumptions and calculate formulas to obtain carbon emissions data. Therefore, the specific
expression formula of carbon emissions adopted in this paper is as follows:

CE = Zf COy = Zf Eixo; = Zf E; x NCV; x CEF; x COF; x %. )

In which, CE stands for carbon dioxide emissions from transportation industry; i is the type
of fossil fuel, The IEA database classifies fuels consumed by the transportation industry into five
categories: coal, petroleum products, biomass energy, natural gas and electricity. E; refers to energy
consumption of fossil fuel i; 0; is the carbon dioxide emission coefficient of carbon energy i; NCV; is the
average low calorific value of energy i; CEF; is the carbon emission coefficient of energy 7, namely, the
carbon content per unit of heat; COF; is the carbon oxidation factor, that is, the carbon oxidation rate
during energy combustion. 44 and 12 are the molecular weights of carbon dioxide and carbon.

According to the national greenhouse gas inventory guidelines of Intergovernmental Panel on
Climate Change (IPCC), the carbon emission coefficients of various energy sources are shown in
Table 2.
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Table 2. Carbon emission coefficient of transportation and energy.

Average Low

Types of Energ Calorific Value Carbon CO; Emission Carbon Emission
¥y Yy (K)/kg, m?) Oxidation Rate  Factor (kgCO5/GJ) Factor (kg C/GJ)
Coal 20,908 1 94.6 25.8
Oil products 43,070 1 72.35 19.7
Biomass energy 42,338 1 75.18 20.5
Natural gas 38,931 1 56.1 15.3

Electric power — — —

Note: data source: Intergovernmental Panel on Climate Change (IPCC) 2006 edition.

Description: since electricity belongs to secondary energy, the method to calculate the carbon
emission of electricity in this paper is to convert the energy consumption of electricity into equivalent
standard coal, and then use the carbon emission of standard coal to represent the carbon emission
of electricity.

According to the date from Organization for Economic Co-operation and Development (OECD)
database, the carbon emission changes of the 57 countries in the BRI from 2005 to 2015 is shown in
Figure 1, the 57 countries accounted for about 50.06% of the world’s carbon emissions in 2015, and
China alone accounted for 28.01%, far more than the sum of the carbon emissions of the other 56
countries. Therefore, reducing the carbon emissions of the BRI countries is of great significance to the
global carbon emission reduction.

18,000
16,000
£ 14000
= 12,000
S 10,000
£ 8000
2 6,000
o
O 4000
2,000
0

2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015

B China B Other countries
Year

Figure 1. 2005-2015 BRI national carbon emissions.

Figure 2 shows the changes in the top 20 carbon emissions of the BRI countries from 2005 to 2015.
In terms of growth rate, China and India, the two countries in the BRI, saw the largest growth rate
of carbon emissions in their transportation industry, doubling in 11 years, which was related to their
rapid economic growth. In other countries, the changing trend of the transportation industry carbon
emission is stable. In terms of total carbon emission, China, Russia, and India are significantly higher
than other countries. China’s total carbon emission of the transportation industry in 2015 was 871.56
million tons, roughly equivalent to the total carbon emission of the transportation industry of the
second to fourth countries. Russia’s carbon emissions from its transportation industry has remained at
around 3.3 million tons over the years, while India, a fast-growing economy, has seen a significant
increase in its total carbon emissions.
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Figure 2. 2005-2015 BRI national transportation carbon emission.
2.2.2. Explanatory Variables and Their Data Sources

According to the above literatures, the explanatory variables selected in the carbon emission
research of the transportation industry are usually as follows: energy indicators like energy
consumption, energy structure, energy efficiency, energy carbon emission intensity, per capita carbon
emission, carbon intensity, and energy intensity; economic indicators such as: economic growth,
economic development, GDP, economic level, foreign direct investment; indicators of the transportation
industry include transportation mode, transportation intensity, transportation development, added
value of transportation industry, transportation development level, and technological progress of
transportation; Macro indicators such as population size and urbanization.

Some explanatory variables share some certain similarities, such as economic indicators: economic
growth, economic development, GDP, economic level; energy indexes: energy and carbon intensity,
per capita carbon emissions, carbon intensity, energy intensity and traffic development level index:
transportation development, added value of transportation industry, and traffic development level,
while it is so microcosmic for modes of transportation, the intensity of transportation with indicators
of technological progress in transportation that they are not suitable for the macroscopical study of
carbon emissions of BRI transportation industry.

Therefore, for the research on the influencing factors of carbon emissions of the BRI national
transportation industry, this paper preliminarily selected per capita GDP, urbanization level, technology
level, energy consumption structure, net inflow of foreign capital, industry proportion, and trade
openness as explanatory variables, the explanatory variables selected cover most of the explanatory
variables used in the references, and the technical level and energy consumption structure were
newly-added as explanatory variables.

Since there would likely be multicollinearity problems among model variables, stepwise
regression was conducted to determine the optimal explanatory variables before data processing.
The specific method was to gradually introduce other explanatory variables under the initial model.
After introducing variables, the determination coefficient R2 of the model was gradually improved on
the basis of 0.963. However, t test and p values of foreign capital inflow (FDI) and carbon emissions
proportion of the transportation industry did not pass the test at the significance level of 10%, so they
were excluded.

Therefore, per capita GDP, urbanization level, technological level, energy consumption structure
and trade openness are selected as explanatory variables in this paper. All data are from the World
Bank database.
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Per capita GDP is the ratio of GDP to the total population, which is used to reflect the size of the
economy. Due to the different economic sizes of countries in the world, it is not scientific to simply
consider GDP, therefore, per capita GDP (2010 constant dollar) was selected as the explanatory variable
in this paper. Figure 3 shows the per capita GDP of the BRI countries in 2015. It can be seen from
the figure that the countries with higher per capita GDP are mainly distributed: the oil producing
countries in West Asia, Brunei and Singapore in Asia, and the EU members in Eastern Europe, while
countries with low per capita GDP mainly distributed in Southeast Asia, South Asia, and Central Asia.
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Figure 3. Per capita GDP of some countries in the BRI in 2015.

The urbanization level is represented by the proportion of urban population in the total population.

Figure 4 shows the urbanization level of regions in the BRI in 2015, which reflects strong regional
characteristics: the urbanization level of West Asia was close to 80%, then Central and Eastern Europe,
East Asia, and cis countries (the national league built up by several Former Soviet Republics consists of

9 countries such as Russia and Belarus), and general South Asia, with the lowest urbanization level
less than 30%.
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Figure 4. Urbanization rate in the BRI in 2015.

The technical level is represented by the percentage of high-tech export in the export of
manufactured goods. High-technology exports are products with high research and development
intensity, such as in aerospace, computers, pharmaceuticals, scientific instruments, and motors,
reflecting the manufacturing level of a country’s high-tech products. Figure 5 shows the technical level
ranking of the BRI countries in 2015. The high-ranking countries were mainly concentrated in two
regions: one in South Asia and Southeast Asia, and the other in Eastern Europe. The Philippines in
Southeast Asia ranked the highest, followed by Singapore and Malaysia. The reason is that with superior
geographical conditions, these countries have developed export processing industries. While the
Eastern European region is located in the economic circle of the EU with its own high scientific and
technological level and strong high-tech R&D and production capacity, so high-tech exported products
account for a high proportion.
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Figure 5. High-tech exports rank of the BRI countries in 2015

The energy consumption structure is expressed as the percentage of fossil energy consumed by
the transportation industry in the total energy consumption. Figure 6 is the change trend of energy
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consumption structure of the transportation industry in the BRI countries. From 2005 to 2015, the
proportion of fossil energy consumption of the BRI national transportation industry showed a slight
decline trend, but the average proportion of fossil energy consumption was still as high as 97%, and
the use of clean energy was very low.

o 0.986
=1
g 0984
g oom2
2 098
£
g 0978
§<‘> 0.976
5 0974
53]

0.972

2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015
Year

Figure 6. Changing trend of the BRI national transportation industry energy consumption structure
from 2005 to 2015.

Trade openness is expressed as the ratio of trade volume to GDP. The trade volume is the sum
of imports and exports of goods and services. Figure 7 is a part of the BRI national trade openness,
containing the countries whose import and export trades are more than 100% and less than 50% of
the total. It can be seen from the figure, countries with high trade openness are mainly distributed
within two economic circles of the ASEAN and the European Union, which show that the facilitation
of regional trade can promote the growth of trade. The top countries in terms of GDP, such as China,
India, Russia, Indonesia, and Turkey, are relatively low in terms of trade as a share of GDP.
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Figure 7. BRI countries’ trade openness in 2015.
3. Model specification

Introduce the following notations, CE represents carbon emissions, PGDP represents per
capita GDP, UL represents urbanization level, HE represents technical level, ECS represents energy
consumption structure, TO represents trade openness.

3.1. Descriptive Statistics

Based on the statistics, we list the descriptive statistics of variables in Table 3.
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Table 3. Descriptive statistics of variables.

Statistics CE PGDP UL HE ECS TO
Mean 37.8998 11,546.1500 58.3852 9.0348 98.0092 99.5843
Median 8.1200 6029.3970 55.5370 4.3997 99.0553 94.0826
Maximum 871.5600 72,670.9600 100.0000 98.7291 100.0000 441.6038
Minimum 0.1500 502.2394 15.1830 0.0000 87.7193 0.1674
Std. Dev. 97.0310 13,769.6000 20.9816 13.2503 2.3993 54.5934
Kurtosis 34.2811 7.3023 2.2997 12.7772 3.4220 14.8253

Note: all data are based on the World Bank database. CE: carbon emissions; PGDP: per capita GDP; UL: urbanization
level; HE: technical level; ECS: energy consumption structure; TO: trade openness.

3.2. Panel Data Unit Root Test Results

In order to ensure the effectiveness of parameter estimation and avoid the occurrence of
“pseudo-regression”, the stationarity of data should be tested before establishing the model. In order
to ensure the reliability of the test results, this paper applies the Levin-Lin—Chu (LLC) in the same root
case and the Fisher-ADF and Fisher-PP methods in the different root cases to conduct the unit root test.
The co-integration test can only be carried out when the variables are single integrals of the same order.

Multiple test results show that the horizontal value of 6 variables cannot reject the null hypothesis,
that is, the horizontal value of variables has unit root and is a non-stationary sequence. However, the
first-order difference of the six variables all rejected the null hypothesis at the significance level of 1%.
Therefore, the variables were all first-order single integral sequences, and the co-integration analysis
could be continued.

3.3. Co-Integration Test Results of Panel Data

In order to test whether there is a long-term stable relationship between variables and carbon
emissions, the co-integration test of panel data is required. Using Kao test [36], the null hypothesis is
that there is no co-integration relationship. The results are shown in Table 4. The test results reject the
null hypothesis at the significance level of 5%, and there is a long-term stable relationship between
carbon emission and all variables.

Table 4. Kao Test.

Test Method Testing Hypothesis Statistic Name t-Statistic Prob.

HO: no co-integration

Kao test relationship

ADF 3.0521 0.0011

3.4. Panel Model Setting

Because of the panel data’s dimensionality, if the model set is not correct, and the resulting
parameter estimation method is undeserved. This article examines the types of models in two steps.
Firstly, we carried out a Redundant test of Fixed Effect-likelihood ratio [37], which is also called Fixed
effect redundancy test (constraint test), to determine whether there is an effect and the number of
effects. The test results are shown in Table 5:
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Table 5. Redundant Fixed Effects-likelihood ratio test.

Effects Test Statistic Prob.
Cross-section F 208.5271 *** 0.0000
Cross-section chi-square 1939.2385 *** 0.0000
Period F 0.1091 0.9997

Period Chi-square 1.2318 0.9996
Cross-Section/Period F 177.5094 *** 0.0000
Cross-Section/Period Chi-square 1941.1888 *** 0.0000

Note: p value in brackets; *, ** and *** represent the significance levels of 10%, 5%, and 1% respectively.

From the test results, the p value of time fixed effects regression model test was >0.05, therefore, we
accept the null hypothesis—there was no fixed effect at the time point. The individual test p < 0.05, so,
reject the null hypothesis that the individual has a fixed effect; therefore, the model exists an individual
single factor effect.

According to the different ways of the individual influence, models can be divided into two
kinds: fixed effect model and random effect model. This paper uses the Hausman test method [38]
to determine the model affect the form, and the null hypothesis of the model is that a random effect
model should be established. Table 6 indicates the result the p value is less than 0.01, therefore, reject
the null hypothesis and adopted fixed effect model.

Table 6. Hausman test of panel data.

Test Summary Chi-Sq. Statistic =~ Chi-Sq. d.f. Prob.
Cross-section random 93.6754 5 0.0000

Based on the comprehensive analysis, the regression model of fixed individual (i.e., variable
intercept) should be established between the explanatory variable and the explained variable of the BRI
national transportation industry carbon emission from 2005 to 2015. In addition, from the perspective of
actual research needs, the research object is the transportation carbon emissions and other variables of
57 countries, and there is no problem with random sampling from the population. Therefore, compared
with the random effect model, it is appropriate to establish the individual fixed effect model too.

3.5. Panel Model Regression Result

According to the test results above, the individual fixed effect model should be established in this
paper. The model and parameter estimation results are as Table 7:

Table 7. Regression result.

Variable Coefficient Std. Error t-Statistic Prob.
C —535.3166 83.1595 —6.4372 0.0000
PGDP 0.0011 0.0002 4.7791 0.0000
UL 7.7284 0.3067 25.1961 0.0000
HE -0.2182 0.0795 —2.7467 0.0062
ECS 1.1906 0.6861 1.7345 0.0334
TO —0.0481 0.0099 -4.8707 0.0000
R-squared 0.9636 Log likelihood —2719.2810
Adjusted R-squared 0.9596 F-statistic 244.9956
S.E. of regression 19.4938 Prob(F-statistic) 0.0000
Sum squared residuals 214,703.6000
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The regression result shows that what the adjusted R? very close to 1 indicates a good regression
fitting effect. F value is greater than the critical value of 5% significance level, indicating that the
linear relationship of the model is significant. T value of each parameter was greater than the critical
value at significance level = 0.05, indicating that each explanatory variable had significant influence on
the equation.

4. Empirical Analysis

According to the regression results, every 1% is increased in per capita GDP, the carbon emissions
of the transportation industry increased by 0.0011%. For every 1% increase in urbanization level,
the carbon emission of the transportation industry will rise by 7.7284%. For every 1% increase in
the proportion of fossil energy consumption in the transportation industry, the carbon emissions of
the transportation industry will grow by 1.1901%. For every 1% increase in technology level, carbon
emissions of the transportation industry will be reduced by 0.2182%. Trade openness was increased by
1%, and carbon emissions from transportation industry were reduced by 0.0481%.

The change of urbanization level has a great influence on the carbon emissions of the transportation
industry in the countries in the BRI. According to the analysis results in Figure 4, by 2015, the average
urbanization rate of the countries in the BRI is 59.13%, among which half of the countries are lower
than 50%, and one-third of the countries are lower than 35%, while in the same period, the urbanization
level of major developed countries has reached over 80%. Most of the BRI countries are at the initial
stage of urbanization, and the urbanization level will continue to increase, which will lead to the
continuous increase of carbon emissions of the transportation industry in these countries.

The energy consumption structure of the transportation industry is an important driving factor of
transportation carbon emission in countries in the BRI. According to the analysis results in Figure 6,
by 2015, the fossil energy consumption of the transportation industry in countries in the BRI was as high
as 97.69%, and the use of clean energy was very low. In some major developed countries, for example,
in 2015 the United States, 93.98% of the total energy consumption is from the transportation industry,
Germany (93.53%), and France (91.59%), so there still exists a large space for optimizing transportation
energy consumption structure in the BRI countries, which makes the energy structure optimization of
the transportation industry become an important driving factor of reducing carbon emissions.

It cannot be underestimated that per capita GDP holds a lot of weight for carbon emissions
of the transportation industry in the BRI countries. BRI countries account for 62.2% of the world’s
population and 30.9% of the world’s GDP. Per capita GDP is 1/2 of the world average and about 1/3 of
that of the European Union. In recent years, per capita GDP of 47 countries in the BRI has shown an
upward trend, and the growth of per capita GDP has become an important factor driving the growth
of carbon emissions.

Improving the technical level has an obviously inhibitory effect on the carbon emissions of
the transportation industry in the BRI countries. From the development trend in recent years, only
individual countries such as Vietnam, Israel, and Kazakhstan, with high-tech exports accounting for
the obvious rising trend in the proportion of manufactured goods exported, while most countries
witnessed a volatile downward trend. Therefore, the BRI countries should increase the R&D of
high-tech products, promoting the industry from low-end to high-end. Impulse optimization and
upgrading of industrial structure transformation will make it become a significant driving factor of
reducing carbon emissions.

The improvement of trade openness has an inhibitory effect on the carbon emissions of the
transportation industry in the BRI countries. According to the data collected, the overall level of trade
openness of the BRI countries is greatly affected by the world political and economic situation. In 2008,
with the acceleration of the globalization of the world economy, the trade openness level of the BRI
countries witnessed a steady rise, however, because of the influence of the U.S. financial crisis, their
trade openness plunged by 13.28% in 2009. From 2009 to 2012, the world economic situation improved,
and trade openness level increased year by year, while from 2013 to 2015, trade openness level showed
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a downward trend again for the rise of trade protectionism, but the globalization trend is irreversible,
and improving trade openness will still be an important factor to curb carbon emissions.

The individual effects intercept items of the model are shown in Table 8. The meaning of the term
“intercept” is the level of carbon emission when all explanatory variables are equal to zero.

Table 8. Fixed effects (cross) intercept item.

Country Intercept Country Intercept Country Intercept
China 665.7295 Qatar —402.8491 Georgia 17.1848
Singapore —359.1432 Kuwait —370.7331 Azerbaijan 11.9394
Malaysia —72.8431 Bahrain —280.0096 Armenia —70.2872
Indonesia 134.9449 Greece —-172.5202 Moldova 76.8339
Myanmar 176.4387 Cyprus —123.5516 Poland —6.8274
Thailand 146.9235 Egypt 128.0329 Lithuania —94.7458
Cambodia 270.8803 India 380.5904 Estonia —114.0947
Vietnam 217.3133 Pakistan 167.9745 Latvia -106.6167
Brunei —195.1263 Bangladesh 189.0075 Czech —134.5726
Philippines 107.6275 Sri Lanka 281.5551 Slovakia 0.6559
Mongolia —-99.1237 Nepal 289.5090 Hungary —97.9231
Iran —11.0146 Kazakhstan 24.7058 Slovenia 21.1239
Turkey —87.0962 Uzbekistan 151.4763 Croatia —29.0579
Jordan —212.3560 Turkmenistan 56.7199 Bosnia and Herzegovina 116.1757
Lebanon —255.3461 Tajikistan 218.1378 Montenegro -71.3814
Israel —303.1303 Kyrgyzstan 152.0016 Algeria 16.3055
Saudi Arabia —125.9317 Russia 176.2817 Armenia 18.1747
Yemen 179.3969 Ukraine —62.2023 Bulgaria -130.3784
United Arab Emirates —239.8403 Belarus —142.6494 Macedonia —22.2893

This reflects the influence of the neglected variables representing the difference of cross section in
the model. According to the cross-sectional data in Table 8, the value of 29 countries including China,
India, Nepal, Bangladesh, Indonesia, Thailand, and Vietnam, is positive: it indicates that the neglected
variables in the model have a greater impact on the carbon emission of the transportation industry in
these countries. While 28 countries, including Singapore, Israel, Turkey, and Brunei, have negative
values, it indicates that the neglected variables in the model have little impact on the carbon emission
of the transportation industry in these countries.

5. Conclusions and Suggestions

5.1. Conclusions

Based on the 2005-2015 data of 57 BRI countries, this paper, using panel data model, coming
to the following main conclusions: there exists a long-term and stable relationship among transport
carbon emissions, the level of urbanization, transportation energy consumption structure, per capita
GDP, technical level, and trade openness in the BRI countries. For every 1% increase in per capita
GDP, 0.0011% of the transportation industry carbon emissions are added. For every 1% increase
in urbanization level, the carbon emissions of the transportation industry will increase by 7.728%.
For every 1% increase in the proportion of fossil energy consumption in the transportation industry,
the carbon emissions of which will increase by 1.1901%. For every 1% increase in technology level,
carbon emissions of the transportation industry will be reduced by 0.2182%. Trade openness was
increased by 1%, and carbon emissions from transportation industry were reduced by 0.0481%.

Therefore, for West Asia and Eastern Europe with their high urbanization level and per capita
GDP, the main way to reduce the carbon emissions of the transportation industry is to enrich the
energy consumption structure, such as the use of biomass energy, natural gas, solar energy, and other
clean energy, and gradually reduce the proportion of fossil energy in the energy consumption of the
transportation industry. For South Asia, with its low urbanization level, special attention should
be paid to the negative impact of urban development on traffic carbon emissions in the process of
urbanization; not only should the energy consumption structure be optimized, but also the excessive
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growth of carbon emissions be reasonably controlled, which is caused by fossil energy consumption
in the process of urbanization. East Asia and Southeast Asia, which have developed rapidly, should
further promote the reduction of carbon emissions by improving the level of foreign trade. On the
whole, countries in the BRI are different in resource endowment, economic, and technological level.
In the process of BRI development, increasing the proportion of clean energy consumption, expanding
trade openness, and improving the level of science and technology will curb the carbon emissions of
the BRI transportation industry.

5.2. Policy Suggestions

First, traffic carbon emissions caused by urbanization should be properly controlled. From the
research conclusion, urbanization has a great impact on carbon emissions. For countries in the BRI,
urbanization is an irreversible process, so reasonable measures should be taken to control the increase
of carbon emissions caused by the increase of urbanization level. The strategies include vigorously
developing public transport, establishing a low-carbon transport mode dominated by public transport,
and building a comprehensive public transport system with rail transit as the skeleton, conventional
transport as the meridian, taxi as the supplement, and slow traffic as the extension, guiding citizens
to choose “walk + public transport” and “bike + public transport” travel modes, reducing the use
frequency of cars.

Second, the share of fossil energy consumption in the transportation industry should be reduced.
At present, the average proportion of fossil energy consumption in the transportation industry of the
BRI countries is about 97%. In the past 10 years, the proportion of fossil energy in the transportation
industry has not decreased much, the transportation industry need optimizing energy consumption
structure, reducing carbon emissions. Therefore, BRI countries need to promote new energy vehicles
such as hybrid, pure electric, and fuel cells, to improve the electrification rate of railway construction,
to encourage the use of green ships based on new technologies and new energy sources, to actively
promote the use of aviation biofuels.

Third, trade openness should be increased. Trade protectionism is on the rise in the modern
international community. From the perspective of reducing carbon emissions of the transportation
industry, trade openness needs to be enhanced. Countries in the BRI should further reduce tariffs and
non-tariff barriers through bilateral or multilateral economic cooperation mechanisms, and reduce
market access barriers to commodity flows, carry out cooperation in customs clearance, and actively
promote the integration of regions and customs clearance. Making full use of modern information,
network, and communication technologies should improve the efficiency of customs clearance from the
perspectives of optimizing the process of customs clearance and improving the efficiency of key links.

Fourth, the technical level of the BRI countries should be improved. In today’s world, a new
round of scientific and technological revolution and industrial transformation is looming, becoming a
new driving force for world economic growth. Driving the optimization and upgrading of industrial
structure with high-tech industry as the driving force and modern service industry and modern
manufacturing industry should be the direction of development.
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Abstract: The transportation industry is the second largest industry of carbon emissions in the world,
and the road transportation industry accounts for a large proportion of this in the global transportation
industry. The carbon emissions of the road transportation industry in six Asia-Pacific countries
(Australia, Canada, China, India, Russia, and the United States) accounts for more than 50% of this
in the global transportation industry. Therefore, it is of great significance to study driving factors
of carbon emissions of the road transportation industry in six Asia-Pacific countries for controlling
global carbon emissions. In this paper, the Logarithmic Mean Divisia Index (LMDI) decomposition
method is adopted to analyze driving factors on carbon emissions of the road transportation industry
in six Asia-Pacific countries from 1990 to 2016. The results show that carbon emissions of the road
transportation industry in these six Asia-Pacific countries was 2961.37 million tons in 2016, with an
increase of 84.43% compared with those in 1990. The economic output effect and the population
size effect have positive driving influences on carbon emissions of the road transportation industry,
in which the economic output effect is still the most important driving factor. The energy intensity
effect and the transportation intensity effect have different influences on driving carbon emissions
of the road transportation industry for these six Asia-Pacific Countries. Furthermore, the carbon
emissions coefficient effect has a relatively small influence. Hence, in order to effectively control
carbon emissions of the road transportation industry in these six Asia-Pacific countries, it is necessary
to control the impact of economic developments on the environment, to reduce energy intensity by
promoting the conversion of road transportation to rail and water transportation, and to lower the
carbon emissions coefficient by continuously improving vehicle emission standards and fuel quality.

Keywords: logarithmic mean Divisia index; road transportation industry; carbon emissions;
driving factors

1. Introduction

Global warming has become one of the most important challenges for human beings, and the
essential cause is excess emissions of greenhouse gases such as carbon dioxide, etc. According to the
statistics of International Energy Agency Data (IEA Data), the transportation industry accounted for
23.96% of the 32.5804 billion tons of global carbon dioxide emissions in 2017, making it the second
largest industry of carbon emissions. Among them, carbon emissions in sub-industries of road
transportation accounted for the highest proportion of the transportation industry, with more than
70%. Furthermore, according to a rough calculation in this paper, the carbon emissions of the road
transportation industry in six Asia-Pacific countries (Australia, Canada, China, India, Russia, and the
United States) are about 50.81% of the global total volumes of that industry. Therefore, it is of great
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significance to study the driving factors of carbon emissions of the road transportation industry in
these six Asia-Pacific countries for controlling global carbon emissions.

Currently, relevant researches on carbon emissions of the road transportation industry mainly
involve two aspects: One is the relationship between carbon emissions and economic growth, and the
other is the influence factors of carbon emissions. In terms of the relationship between carbon
emissions and economic growth, Grossman et al. [1] firstly proposed an inverted U-shaped relationship
between environmental quality and economic development based on Kuznets Curve (Kuznets [2]).
Panayotou [3] called it the Environmental Kuznets Curve (EKC). Based on the EKC theory, Kwon [4]
proposed, for the first time, that whether British road transportation was fit for the turning point
of EKC should be verified. Abdallah et al. [5] verified, for the first time, that carbon emissions of
road transportation in Tunisia conform to the law of EKC. With the same method, Kharbach et al. [6],
Alshehry et al. [7], and Azlina et al. [8], respectively, verified the applicability of EKC in the road
transportation industry in the United States, Saudi Arabia, and Malaysia. However, some scholars
believe that some countries cannot verify that there is an EKC relationship between environment and
carbon emission (Huang [9]).

In addition, some scholars have also verified the relationship between economy and environment
through Decoupling Theory. The Organization for Economic Cooperation and Development (OECD)
introduced “Decoupling Theory” and created the decoupling model. Lu [10] used this model to
verify the decoupling relationship between the economic development and carbon emissions of the
road transportation industry for Taiwan, Germany, Japan, and South Korea. The study revealed that
Taiwan shows a decoupling relationship, while Korea, Germany, and Japan show a relative decoupling
relationship. Tapio [11] optimized the basic decoupling model by introducing the elastic concept of
economics and established the Tapio Decoupling Model to study the decoupling state of dynamic
data. With this method, Sorrell et al. [12] analyzed the energy consumption of the road freight industry
for Britain from 1989 to 2004 with the decoupling analysis method. The research results showed
that the United Kingdom (UK) has been more successful than most European Union (EU) countries
in decoupling the environmental influences of road freight transportation from GDP. Tapio [11]
created a theoretical framework of decoupling to analyze carbon emissions of road transportation
for the European Union from 1970 to 2001. The result indicated that the freight of the European
Union transforms the relations from weak decoupling to expansive negative decoupling. In the 1990s,
there existed a weak decoupling relation between freight transportation and carbon dioxide emissions
in the UK, Sweden, and Finland, while a strong decoupling relation between road traffic volume
and carbon dioxide emissions from the road transportation industry in Finland from 1990 to 2001.
Kveiborg et al. [13] combined the Divisia Index Decomposition Method and Tapio Decoupling Model
to analyze the carbon emissions of road freight from 1981 to 1997. The research results presented an
obvious decoupling relationship in road freight from 1989 to 1997.

The decoupling model mainly calculates the decoupling index and the decoupling factor (OECD
reference) to determine whether there is decoupling relationship between the environment and the
economy; however, it cannot explain the specific reasons of decoupling. Therefore, some scholars
have begun to study which factors have an influence on carbon emissions. At present, the research
mainly focuses on using the factor decomposition method or the econometric model to analyze the
influencing factors of carbon emissions. The factor decomposition method is mainly divided into the
Laspeyres Index Decomposition method and the Divisia Index Decomposition method. (The Laspeyres
Index Decomposition method follows the Laspeyres price and quantity indices in economics
analysis.) Hankinson et al. [14], Reitler et al. [15], Howarth et al. [16], Howarth et al. [17], Park [18],
Park et al. [19], and Lin [20] all used this method to analyze carbon emissions of different countries
and regions. Due to the defect that the Factor-Reversal Test and the Time-Reversal Test cannot pass
the tests in the Laspeyres Index method, Sobrino et al. [21] adopted the improved Laspeyres Index
method to analyze driving factors for carbon emissions of the road transportation industry in Spain
from 1990 to 2010. The conclusion showed that economic growth reveals a close relationship with
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the rise of carbon emissions, and improved energy efficiency has been a powerful contributor to the
carbon emissions decrease.

Because relatively large residual errors in the calculated results in the Divisia Index Decomposition
method exist, and it cannot solve the problem of zero value, Ang et al. [22] proposed the Logarithmic
Mean Divisia Index (LMDI) in 1998. It effectively solves the above problems and acquires a wide
range of applications. M'raihi et al. [23] adopted this method to study the influencing factors of carbon
emissions of the road transportation industry in Tunisia. The research results showed that economic
growth is the main reason for the increase of carbon dioxide emissions. Effects of fossil fuel share,
fossil fuel intensity, and road freight transport intensity are all found as secondary factors responsible
for CO; emission changes, while Timilsina et al. [24] considered that the economic activity effect and
the transportation energy intensity effect are found to be the main driver of CO; emissions of road
transportation in Latin American and Caribbean countries. Liu et al. [25], Howarthetal et al. [16],
Paul et al. [26], and Lise [27] all used this method to analyze the relationship between energy
consumption and carbon emissions.

Econometric models can effectively analyze time series data. Wei [28] used the impulse response
function and the factor decomposition method to study the carbon emissions of China’s road
transportation industry. The research results showed that traffic structure and carbon emissions
had long-term influences and that dynamic interactive mechanisms exited in China from 1989 to 2009.
Wang et al. [29] used a combined research model, including co-integration analysis, the error correction
model, and the dynamic model, to study the influences of different factors on energy consumptions
in China and OECD countries. However, the paper only showed the strong and weak relationship
of each factor—it did not quantify their influence degrees. Liimatainen et al. [30] firstly proposed
the "road freight-economy" relationship analysis framework (McKinnon et al. [31]) for McKinnon's
improvement, and introduced three indexes of CO; intensity, transport intensity, and energy efficiency.
He used a joint analysis method for comparison to analyze carbon dioxide emissions and energy
efficiencies of the road transportation industry for the four countries of Denmark, Finland, Norway,
and Sweden in northern Europe in 2010. It indicated that transportation intensity and energy efficiency
have significant influences on carbon dioxide emissions. Puliafito et al. [32] calculated the carbon
emissions data of Argentina’s road transportation industry from 1960 to 2010 and predicted the data
from 2011 to 2050, and Monte Carlo sensitivity analysis and scenario analysis methods were applied
to analyze the relations between energy demand and greenhouse gas emissions. Melo [33] applied
both the spatial and non-spatial panel data models and introduced ten influence factors, such as
urbanization, vehicle ownership, and income levels, etc., to analyze the causal relationship between
demand-led, as well as supply-led, factors and carbon emissions of the road transportation industry.
The multi-factor and multi-angle analysis strategy provided in the paper can provide a basis for
future researches on causality and influence factors. Hasan et al. [34] used a multiple regression
model to determine the main driving factors of transportation emissions of passenger vehicles in New
Zealand. The results showed that there is a significant causal relationship between fuel economy and
transportation emissions. The present study can provide reference values for future studies in different
effect factors, and might offer further policy implications for other countries. Sundo [35], adopting a new
mathematical original-destination (O-D) approach of estimating CO, emissions, made a comparison
among five different low-carbon scenarios. The results showed that increasing the proportion of clean
energy can effectively reduce the carbon emissions of the road transportation industry.

Seen from the above references, scholars at home and abroad have conducted in-depth researches
on the carbon emissions of the road transportation industry, but several problems also exist, as follows:
(1) The expansion of Kaya identity is a little simpler when the factor decomposition method is used to
analyze carbon emissions of transportation industry; and (2) currently, only a few scholars conduct
comparative studies among countries, while other scholars take only one country as the research
object, failing to fully explain the differences of carbon emissions among countries. This paper takes six
Asia-Pacific countries as the research object, and expands Kaya identity by introducing transportation
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turnover and other indexes, so as to analyze the influence of more factors on the carbon emissions of
the road transportation industry. The LMDI decomposition method is used to emphatically discuss
the driving factors of carbon emissions of road transportation, and comparative studies among the
six countries are conducted to analyze the influence mode and degree of various factors on carbon
emissions of the road transportation industry in these six countries.

2. Research Method

2.1. Expansion of Kaya Identity

Kaya identity, firstly proposed by Japanese professor Yoichi Kaya at the seminar of
Intergovernmental Panel on Climate Change (IPCC) in 1989 [36], establishes a relationship between
carbon dioxide emissions and economic, policy, as well as population factors, etc. It can decompose
driving factors for carbon dioxide emissions and quantify the contribution rate of each influencing
factor accurately. Its expression is as follow:

GDP _ PE C

— X POP @)

C = JPop X GDp * PE

In Formula (1), C, POP, GDP, and PE respectively represent the volume of carbon dioxide emissions,
the whole population of a country, gross domestic product, and total energy consumption.

Kaya identity has been widely used in the fields of energy, environment, and economy.
However, due to the limited numbers of examined variables, the results obtained are basically
confined to the quantitative relationships between carbon dioxide emissions and energy, economy,
and population at the macro level. In recent years, when studying influencing factors for carbon
emissions of road transportation, most scholars have mainly selected population size, GDP per capita,
and the carbon emissions coefficient of energy [37-39]. However, since carbon emissions are not only
connected to these factors, but also relatively closely related to factors of transportation intensity and
energy intensity, etc., the index of road transportation turnover is added in this paper, and the Kaya
identity is extended. The expression of the expanded Kaya identity is as follows:

GDP _ TRS _ PE C
:mxﬁxﬁxﬁxPOP (2)

In Formula (2), GDP and POP have the same meaning as Formula (1); C represents total carbon
emissions of a country’s road transportation industry; TRS says road transportation turnover of a
country; and PE indicates energy consumptions of a country’s road transportation industry.

bt GDP TRS PE c

Formula (2) can be simplified into Formula (4) by applying Formula (3):

C=GXRxPxSx0O (4)

In Formula (4), G, R, P, S, and O respectively represent economic output, transportation intensity,
energy intensity, and the carbon emissions coefficient of energy, as well as population size.

2.2. The LMDI Decomposition Method Based on Extended Kaya Identity

The factor decomposition method is a further extension of Kaya identity, mainly including the
Laspeyres Index decomposition method, the Logarithmic Mean Divisia Index (LMDI) decomposition
method, and the Fisher’s Ideal Index method, etc. Among them, the LMDI decomposition method,
proposed by Ang. B.W. etc. in 1998, solved the problems of inherent salvage value and zero value
for the index decomposition method. It witnesses an advantage of complete decomposition and the
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results” uniqueness [22,40]. Therefore, the LMDI decomposition method has become a mainstream
research tool in the field of energy and environment.

The LMDI decomposition method includes the two specific methods of additive decomposition
and multiplication decomposition [41]. Because decomposition results of the two methods can be
converted to each other, and their converted results are consistent, this paper adopts the additive
decomposition method to decompose the model shown in Formula (4). The specific formula is shown
in Formula (5).

AC = DG+ DR+ DP + DS + DO )

In Formula (5), DG represents economic output effect, DR represents transportation intensity
effect, DP represents energy intensity effect [42], DS represents carbon emissions coefficient effect
of energy, and DO represents population size effect. Hence, the formulas for calculating the effects
of various factors influencing carbon emissions are shown in Formulas (6)-(10), and the detailed
calculation process is included in the Appendix A.

DG = %1(3_) ©
DR = %h\(;—;) @)

= o) ©
DO = %m(g—;) (10)

Here, among Formulas (6)—(10), CY indicates the baseline year value of carbon emissions for
one country’s road transportation industry; C' represents carbon emissions of a country’s road
transportation industry in year T; G', R, P, S, and O respectively show the economic output,
transport intensity, energy intensity, the carbon emissions coefficient of energy, and population size in
the Tth year of a country’s road transportation industry; and GO RO, PV, S0 and O° respectively show
a baseline year’s economic output, transport intensity, energy intensity, energy coefficient of carbon
emissions, and population size of a country’s road transportation industry.

3. Description of Variables and Data

This paper selects China and India in Asia, and the United States, Canada, Australia, and Russia in
the Pacific Rim, with a total of six countries. The selected countries are characterized by the following
commonalities: That all of the six countries respectively have a large territory area, and their carbon
emissions from the road transportation industry account for a large proportion of that from the
transportation industry. In addition, all of them, being members of the World Trade Organization
(WTO), have a sound multilateral trading system and all of their total economic aggregates rank among
the top in the world. Therefore, meaningful research conclusions can be obtained by comparing and
analyzing the factors influencing carbon emissions of the road transportation industry in these six
countries. The research interval of this paper is from 1990 to 2016, and the data in this paper come from
the International Energy Agency database (IEA database), the United Nations database (UN database),
and the World Bank database.
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3.1. Decomposed Variables and Their Database Sources

Carbon emissions refer to the general term of greenhouse gases, expressed by carbon dioxide
equivalent (CO,eq). It mainly includes carbon dioxide, methane, nitrous oxide, and other carbon
oxides, among which carbon dioxide emissions account for more than 60% of greenhouse gas emissions.
Due to a lack of comprehensive statistics of global carbon emissions at present, most scholars adopt
methods provided by IPCC national guidelines for inventory calculations of greenhouse gas [42],
and use energy consumption data to calculate carbon emissions. Therefore, the specific expression
formula of carbon emissions adopted in this paper is as follows:

44

12 (11)

n n n
C:ZCOZ,-:ZEZ-X(SZ-:ZE,-XNCV,-XCEF,-XCOF,-X
1 1 1

where CE stands for carbon dioxide emissions from road transportation industry; i is the type of fossil
fuel (the IEA database classifies fuels consumed by the road transportation industry into five categories:
Coal, petroleum products, biomass energy, natural gas, and electricity); E; refers to energy consumption
of fossil fuel I; §; is the carbon dioxide emission coefficient of carbon energy i; NCV; is the average
low calorific value of energy i; CEF; is the carbon emissions coefficient of energy i, namely, the carbon
content per unit of heat; COF; is the carbon oxidation factor, that is, the carbon oxidation rate during
energy combustion; and 44 and 12 are the molecular weights of carbon dioxide and carbon [43].

According to the glosses of International Energy Agency database [44], the unit for all energy
consumption is oil equivalent, and the carbon emissions coefficients of various energies are shown in
Table 1.

Table 1. Carbon emissions coefficients of transportation and energy.

Conversion Factor g CO; Emission
Types of Energy (K)/toe) Carbon Oxidation Rate Factor (kgCO2/G))
Coal 41,868 1 94.6
Oil products 41,868 1 72.35
Biomass energy 41,868 1 75.18
Natural gas 41,868 1 56.1

Electric power - - -

Note: Data source: Intergovernmental Panel on Climate Change (IPCC) 2006 edition.

Since electricity is a secondary energy, and carbon emissions from electricity of the road
transportation industry in the six Asia-Pacific countries in 2016 only account for 1.50% of total
carbon emissions of all energy consumptions, the method to calculate carbon emissions of electricity in
this paper is to convert the energy consumption of electricity into equivalent standard coal, and then
use the carbon emissions of standard coal to represent the carbon emissions of electricity.

3.2. Decomposition Variables and Their Data Sources

The driving factors of the decomposition model for carbon emissions based on LMDI mainly
include economic output, transportation intensity, energy intensity, the carbon emissions coefficient,
and population size. The data of the six countries” GDP and population are derived from the UN
database, in which the GDP of the six countries is calculated by constant 2010 prices in US Dollars.
Road transportation turnover comes from the World Bank database. Energy consumptions of road
transportation based on the energy consumptions of the IEA database are converted to standard coal
by the method of “0il equivalent—calorific value-standard coal”. The detailed forms are shown in
Tables 2 and 3.
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Table 2. The element’s description and data sources.

Elements Description Data Resource
GDP Gross Domestic Production at constant 2010 prices in US Dollars UN database
POP Population UN database
TRS Total road turnover World Bank database
PE Total energy consumption of road transportation IEA database
C Total CO, emissions of road transportation Estimate by Formula (11)

Table 3. The driving factors of the decomposition model.

Driving Factors Description Symbols
G Economic output G = GDP/POP
R Transportation intensity R = TRS/GDP
P Energy intensity P = PE/TRS
S Carbon emissions coefficient S=C/PE
o Population size O =POP

3.2.1. Economic Output

According to Figure 1, China’s per capita GDP in 2016 increased by 857.20% compared with that in
1990, ranking first among the six countries. The per capita GDP of Russia in 2016 increased by 19.00%
compared with 1990, being last among the six countries. In 2016, China’s per capita GDP reached
$6,770 per person, Russia’s $11,500 per person, while the per capita GDP of Australia, Canada, and the
United States exceeded $50,000 per person.
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Figure 1. Per capita GDP of six Asia-Pacific countries from 1990 to 2016. Note: Data source: United
Nations (UN) database.

3.2.2. Transportation Intensity

The transportation intensity of the six countries is shown in Figure 2. Indian transportation intensity
of the road transportation industry is highest in 2016, reaching 1620.96 million tonne-kilometer/$billions,
secondary in China at 653.77 million tonne-kilometer/$billions, and lowest in Canada at 121.96 million
tonne-kilometer/$billions. In addition, India’s road transportation industry presents the largest increase
in transport intensity, with 269.04% growth in 2016 compared with 1990, ranked first among all
countries, followed by Canada with an increase of 28.94%. In the study range, the transportation
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intensity of the United States and Russia show a decreasing trend. The transportation intensity of the
United States decreased by 23.01% in 2016 compared with 1990, while that of Russia decreased by
35.04%. The reason for the high transportation intensity of India lies in its relatively high proportion
of manufacturing and agriculture, and relatively high proportion of road transportation in the five
transportation modes. China witnessed a high transportation intensity, which is also due to its relatively
high proportion of manufacturing industry in its national economic industry.
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Figure 2. Transportation intensities of six Asia-Pacific countries from 1990 to 2016. Note: Data source:
Organization for Economic Cooperation and Development (OECD) Database.

3.2.3. Energy Intensity

The changes of energy intensity for the road transportation industry in the six Asia-Pacific countries
are shown in Figure 3. While energy intensities of the road transportation industry in Australia, Canada,
United States, and India show decreasing trends within the research range, energy intensities of China
and Russia increase by 45.26% and 20.78% respectively. In 2016, Canada’s road transportation industry
showed the highest energy intensity, reaching 3.09 tons per million tonne-kilometers; Russia’s was
second at 2.88 tons per million tonne-kilometers; and the United States’ third, with 1.81 tons per
million tonne-kilometers. The reason for India’s low energy intensity is that motorcycles account for
nearly 80% of all motor vehicles in India, while trucks and lorries account for only 5.3%. The energy
consumption of motorcycles is far less than that of vehicles with four wheels or above. The reason for
China’s low energy intensity is that the statistics of China’s road transport industry cover operating
vehicles, excluding private cars, while the statistics of the other five countries cover private cars.
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Figure 3. Energy intensities of the six Asia-Pacific countries from 1990 to 2016. Note: Data source:
International Energy Agency (IEA) database.

3.2.4. Population Size

The population sizes of the six Asia-Pacific countries are shown in Figure 4. In the study range,
the population sizes of the countries, except Russia, have increased to some extent. Among them,
India’s population in 2016 increased by 52.18% compared with 1990, ranking first among the six
countries, while Russia’s decreased by 2.44% year-on-year, ranking last of countries. In 2016, China
and India, respectively, had a population of 1.403 billion and 1.324 billion, accounting for 43.13% and
40.69% of the total population of the six Asia-Pacific countries.
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Figure 4. Population sizes of the six Asia-Pacific countries from 1990 to 2016. Note: Data source: United
Nations (UN) database.
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3.2.5. Carbon Emissions Coefficient

The carbon emissions coefficients of the six Asia-Pacific countries are shown in Figure 5. Within the
research range, the carbon emissions coefficients of the six Asia-Pacific countries show downward
trends, but the decline is relatively small.
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Figure 5. Carbon emissions coefficients of the six Asia-Pacific countries from 1990 to 2016. Note: Data
source: International Energy Agency (IEA) database.

4. Results and Discussions

4.1. Analysis on Total Carbon Emissions

The results of the calculation for carbon emissions of the road transportation industry in the six
Asia-Pacific countries from 1990 to 2016 are shown in Figure 6 and Table 4. The total carbon emissions
from the road transportation industry of the six countries increased from 1605.73 million tons in 1990
to 2961.37 million tons in 2016. Among them, in 2016, the combined carbon emissions from the road
transportation industry of the United States and China accounted for 53.73% of the total volume of the
six countries. On the whole, carbon emissions of the road transportation industry in the six countries
in the study range increased rapidly, among which the average annual growth rate of China’s carbon
emissions is 9.65%, far higher than those of other countries; India ranks second with 6.36%, and Russia
last with a rate of —0.17%.

On the other hand, in the United States and Canada, appeared turning points appeared in carbon
emissions in 2007 and 2011, respectively. In 2016, the per capita carbon emissions of China and
the United States far exceeded those of the other countries, reaching 4.04 tons and 4.99 tons per
capita, respectively.
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Figure 6. Carbon emissions of road transportation in the six Asia-Pacific countries from 1990 to 2016.

Table 4. Carbon emissions from road transportation in the six Asia-Pacific countries.

Carbon Carbon 1990-2016 . Per capita
Average s s . Turning
Emissions Emissions Increasing s e Carbon
Annual . . . Points” Year .
Country in 1990 in 2016 Multiples of Emissions
Growth s . for Carbon .
o (million (million Carbon - in 2016
Rate (%) . Emissions
tons) tons) Emissions (ton/person)
Australia 1.46% 56.68 82.29 0.45 - 3.41
Canada 1.49% 100.36 146.60 0.46 2011 4.04
China 10.67% 60.58 728.49 11.03 - 0.52
India 6.76% 46.95 247.94 4.28 - 0.19
Russia 0.78% 156.77 177.94 0.14 - 1.24
United states 1.20% 1184.39 1606.24 0.36 2007 4.99
Total 22.36% 1605.73 2989.51 16.71 - 14.38

Note: Data source: The International Energy Agency database.

4.2. Analysis on Main Driving Effect

While calculated with Formulas (5)-(10), the years from 1990 to 2016 are divided into nine time
periods at intervals of three years. The effect value and contribution rate of every factor driving carbon
emissions of road transportation industry are calculated separately in each time period. This paper uses
the LMDI decomposition method to decompose carbon emissions of the road transportation industry in
the six Asia-Pacific countries. They are mainly decomposed into economic output effect, transportation
intensity effect, energy intensity effect, energy carbon emissions coefficient effect, and population size
effect, and the calculated effect value and contribution rate of each factor. The contribution rate of each
influence factor is the ratio of effect value of the influencing factor to the total effect value of carbon
emissions, e.g., Bpg = DG/AC, whose results are shown in Tables 5 and 6. Seen from the decomposition
results, the economic output effect presents the largest contribution rate, the population size effect is
the second, and the carbon emissions coefficient the smallest. Therefore, the economic output and
population size effects are the main driving factors for the growth of carbon emissions from the road
transportation industry in the six Asia-Pacific countries.
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4.2.1. Economic Output Effect

As can be seen from Table 5, most of the economic output effect values of the six countries in the
research interval are positive, and only a few years witness small negative values of absolute values.
This indicates that the economic output effect plays a positive driving role in the carbon emissions of
the road transportation industry.

Seen from Figure 7, the values of the economic output effect for the United States, Canada, Russia,
and Australia present an overall inverted "U" pattern, which conforms to the development law of the
environmental Kuznets curve. China and India are both developing countries; their national economy
and industrialization are in a stage of rapid development, and they are still at the left end of the
environmental Kuznets curve, having no turning points yet. Therefore, the influence of economic
output on carbon emissions of the road transportation industry continues to increase.
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Figure 7. Effect values of the economic output effective for the six Asia-Pacific countries.

From the overall results, the value of the economic output effect (DG, Table 5) and its contribution
rate (Bgp, Table 6) in each period of the six countries from 1990 to 2016 are greater than the other effects.
This indicates that the economic output effect is the main influencing factor for the growth of the road
transportation industry’s carbon emissions. According to the calculation, the values of the economic
output effect for China, Australia, and the United States from 1990 to 2016 are 606.64, 31.96, and 540.90,
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respectively, whose respective contribution rates are 90.83%, 127.76%, and 128.22%. The results indicate
that the economic output effects of China, Australia, and the United States have greater influences
on carbon emissions of the road transportation industry than other countries. This reveals that the
economic output effects of the three countries still have a relatively large space to decline.

4.2.2. Transportation Intensity Effect

Most of the effect values (DR, Table 5) are negative in the transportation intensity effects from
China, Russia, and the United States to carbon emissions of road transportation industry in each stage.
This indicates that the transportation intensity effects of the three countries present negative driving
forces of carbon emissions of the road transportation industry. India’s has a positive driving effect.
The reason is that the development of India’s manufacturing industry and the improvement of people’s
living standard leads to increasing traffic. Thus, the growth rate of road freight volume and passenger
volume exceeds that of GDP, bringing an increase of transportation intensity. However, Australia’s and
Canada’s have no significant influence, which shows that for China, Russia, and the United States,
the transportation intensity effect is an important factor to curb the growth of carbon emissions,
while for India, measures need to be taken to reduce the transportation intensity and the influences of
transportation intensity effect on the growth of carbon emissions.

4.2.3. Energy Intensity Effect

There are some differences in the influences of energy intensity effect (DP, Table 5) on carbon
emissions of the road transportation industry in the six countries. Overall, Australia, the United States,
India, and Canada play negative roles in their energy intensity effects driving carbon emissions of the
road transportation industry, while China and Russia act as positive driving roles. Since the 1990s,
the slow promotion of Chinese vehicle energy saving technology and the increasing requirements
of enterprises on the speed, as well as efficiency of transportation, make a gradual rise in energy
consumption intensity of Chinese operating road transportation vehicles. Hence, this finally leads to
the rise of energy intensity for China’s road transportation industry. Therefore, it shows that China’s
energy intensity effect has a positive influence on carbon emissions of the road transportation industry.

During the study period, the contribution rates in 1990-2016 (Bpp, Table 6) of the energy intensity
effect in Canada and Russia are, respectively, —122.83% and —512.81%. This indicates that the energy
intensity effect of the two countries is the main influencing factor in reducing carbon emissions of the
road transportation industry. China’s contributes at a rate of 24.23% to carbon emissions of the road
transportation industry, ranking first among all countries. This indicates that the energy intensity effect
on carbon emissions has a positive effect.

4.2.4. Carbon Emissions Coefficient Effect

It can be seen from Tables 5 and 6 that the values of the carbon emissions coefficient effect
(Bps, Table 5) for the six countries are all less than 4, and the contribution rates of the carbon emissions
coefficient effect are less than 9%. So, the carbon emissions coefficient effect has a relatively small
influence on the carbon emissions of the road transportation industry for the six countries.

4.2.5. Population Size Effect

It can be seen from Table 6 that, except for Russia, most values of the population size effect
(DO, Table 5) for the other five countries in each period are positive. This indicates that the population
size effect plays a positive driving role in the carbon emissions of the road transportation industry.
The effect value of the Russian population size effect is negative, mainly due to the decline of their
population in the research period—and the decline is obvious in that their population decreased by
2.44% in 2016 compared with that in 1990, with a total of 3.59 million people.
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5. Conclusions and Suggestions

5.1. Conclusions

This paper uses the LMDI decomposition model to analyze the carbon emissions and driving
factors of the road transportation industry for six Asia-Pacific countries. It comes to the following
main conclusion that an overall rise is seen in the carbon emissions of the road transportation industry
of the six Asia-Pacific countries from 1990 to 2016. In 2016, the total carbon emissions of the road
transportation industry in the six Asia-Pacific countries reached 2961.37 million tons compared with
that in 1990, with a growth of 84.42%. Among them, the carbon emissions of the road transportation
industry for the United States accounted for 54.24% of the total volume of that in the six Asia-Pacific
countries in 2016, ranking highest among them; China was second with 24.60%, and Australia came in
last with only 2.78%. Among the driving factors, the economic output and population size effects play
positive driving roles in the road transportation industry; the economic output effect is the main factor
for their increasing carbon emissions. However, the transportation intensity effect and the energy
intensity effect, being divergent to some degree in different countries, have negative driving effects on
the carbon emissions of the road transportation industry in most countries. Where the transportation
intensity effect of India plays a positive driving role in the carbon emissions of the road transportation
industry, contributing with a rate of 78.47%, the energy intensity effects of China and Russia also play
positive driving roles in the carbon emissions. The carbon emission coefficient effect has a relatively
small influence on the carbon emissions of the road transportation industry in the six countries—and,
except Russia, the population size effect of the other five countries plays a positive role in driving the
carbon emissions of the road transportation industry.

5.2. Policy Suggestions

The United States, which accounts for more than half of the total carbon emissions from the
six Asia-Pacific countries, withdrew from Paris Agreement in 2017. This signaled that the United
States did not want to fulfill its international obligations to reduce carbon emissions. The international
community should exert pressure on them to change their attitude towards carbon emissions control.
China is second only to the United States in carbon emissions of the road transportation industry,
and has made some progress in carbon emissions in recent years. However, the rising energy intensity
restricts its achievement of carbon emissions control. China should make policies, such as accelerating
the promotion of new energy vehicles and improving vehicle emissions standards, etc., to reduce the
energy intensity of road transportation industry. The carbon emissions of the Indian road transportation
industry are growing relatively fast. Therefore, India should reduce its transportation intensity and
control its carbon emissions growth by controlling the carbon emissions of transportation in the process
of developing manufacturing industry.

Compared with 1990, Russia is the only one of the six Asia-Pacific countries whose carbon
emissions from the road transportation industry decreased in 2016. However, the age of Russian road
operating vehicles is generally older, which leads to its rising energy intensity in the road transportation
industry since 1990. Russia should reduce this energy intensity and promote its carbon emissions to fall
faster by formulating policies such as accelerating the elimination of old cars. Since 2005, the carbon
emissions of the road transportation industry in Canada have begun to slow down, and since 2014,
its carbon emissions have shown a negative growth. So, Canada can lower its carbon emissions
by reducing its transportation intensity. Australia witnesses a relatively slow growth in its carbon
emissions of the road transportation industry, and a relatively good result in its carbon emissions
control. Therefore, it can be improved from the aspect of reducing transportation intensity next.
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Appendix A

In this section, we give the calculation process of the LMDI method. To this end, it follows from

Formula (4) that:

InC=InG+InR+InP+1InS+1InO

Therefore: ; ; ; ; ;
G R P S (0]
t 0 _
InC'—InC —lna+lnﬁ+lnﬁ+ln§+ln@ (Al)
Let AC = C' - (0.

Then, we can rewrite AC as follows:

Ct_cO

AC= ——=
c InCt —InC0

(InC'-InC)

Furthermore, by Formula (A1), we have:

Ct _ CO Gt Rt pt St Ot
Let: ct—O Gt ct—co Rt
DG = Wlng,l)[{ = W'lng;
DO =qrema - ng
Then:
AC = C'—C° = DG + DR + DP + DS + DO
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Abstract: Global warming caused by excessive emissions of CO, and other greenhouse gases is
one of the greatest challenges for mankind in the 21st century. China is the world’s largest carbon
emitter and its transportation industry is one of the fastest growing sectors for carbon emissions.
However, China is a vast country with different levels of carbon emissions in the transportation
industry. Therefore, it is helpful for the Chinese government to formulate a reasonable policy of
regional carbon emissions control by studying the factors influencing the carbon emissions of the
Chinese transportation industry at the regional level. Based on data from 1997 to 2017, this paper
adopts the logarithmic mean divisia index (LMDI) decomposition method to analyze the influencing
degree of several major factors on the carbon emissions of transportation industry in different regions,
puts forward some suggestions according to local conditions, and provides references for the carbon
reduction of Chinese transportation industry. The results show that (1) in 2017, the total carbon
emissions of the Chinese transportation industry were 714.58 million tons, being 5.59 times of those
in 1997, with an average annual growth rate of 9.89%. Among them, the carbon emissions on the
Eastern Coast were rising linearly and higher than those in other regions. The carbon emissions in
the Great Northwest were always lower than those in other regions, with only 38.75 million tons
in 2017. (2) Economic output effect is the most important factor to promote the carbon emissions
of transportation industry in various regions. Among them, the contribution values of economic
output effect to carbon emissions on the Eastern Coast, the Southern Coast and the Great Northwest
continued to rise, while the contribution values of economic output effect to carbon emissions in
the other five regions decreased in the fourth stage. (3) The population size effect promoted the
carbon emissions of the transportation industry in various regions, but the population size effect
of the Northeast had a significant inhibitory influence on the carbon emissions in the fourth stage.
(4) The regional energy intensity effect in most stages inhibited carbon emissions of the transportation
industry. Among them, the energy intensity effects of the North Coast and the Southern Coast in
the two stages had obvious inhibitory influences on carbon emissions of the transportation industry,
but the contribution values of the energy intensity effect in the Great Northwest and the Northeast
were positive in the fourth stage. (5) Except for the Great Southwest, the industry-scale effects of
other regions had inhibited the carbon emissions of transportation industry in all regions. (6) The
influences of the carbon emissions coefficient effect on carbon emissions in different regions were not
significant and their inhibitory effects were relatively small.

Keywords: transportation industry; carbon emissions; regional; influencing factor; LMDI
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1. Introduction

Global climate change is a major challenge in the field of sustainable development for the world.
Global CO; emissions, influenced by rising energy demand, rose 1.7% in 2018 to a record 33.1 billion
tons, according to the research report of “carbon emissions from fuel combustion” released by the
International Energy Agency (IEA) [1]. In 2017, the carbon emissions of the transportation sector
accounted for nearly a quarter of the global total, reaching 8.04 billion tons. According to IEA data,
in 2007, Chinese CO, emissions surpassed those of the United States and China became the world’s
largest CO, emitter [2]. The rapid growth of Chinese carbon emissions has attracted global attention.
Based on IEA data, this paper calculates that Chinese carbon emissions reached 9.302 billion tons
in 2017, accounting for 28.33% of the total in the world. Among them, the transportation industry
accounts for 9.5% of Chinese total carbon emissions, becoming one of the industries with the fastest
growth of carbon emissions in China [3].

In recent years, Chinese carbon reduction has also received extensive attention [4]. Furthermore,
as one of the important sources of Chinese energy consumption and carbon emissions, still in a stage
of rapid growth, the transportation industry is bound to become a key industry to achieve targets of
carbon reduction in the future [5]. China is a vast country with different industrial structures between
provinces and regions [6], as well as different levels of carbon emissions in the transportation sector.
Therefore, it is of positive guiding significance for the Chinese government to scientifically identify the
influence degree of major factors on the carbon emissions of Chinese regional transportation industry
to formulate the policies of total carbon emissions control and distribution as well as carbon reduction.

Schipper of Lawrence Berkeley national laboratory was the first scholar to study the carbon
emissions of the transportation industry [7]. Later, Chinese scholars Zhu et al. and Su et al. also
carried out relevant studies [8,9]. At present, studies at home and abroad mainly focus on applying the
STIRPAT (Stochastic Impacts by Regression on Population, Affluence, and Technology) model, Kaya
identity and its extension model, etc., applying the Laspeyres index method or the logarithmic mean
divisia index (LMDI) method to analyze the degree of key factors influencing on carbon emissions and
using econometric analysis and other methods to study the influencing factors of carbon emissions.
Timilsina and Shrestha (2009) used the LMDI method to study CO, emissions of transportation sector in
some Asian countries. The results showed that the change of GDP (gross domestic product) per capita,
population growth and transport energy intensity were the main factors for the growth of carbon
emissions; fiscal policy, fuel economy policy, and the policy of encouraging transferring into clean
energy and energy-saving vehicles also played positive roles to curb carbon emissions [10,11]. Based
on the Laspeyres index decomposition method, Zhang et al. (2017) selected China and other 6 countries
as the research objects and constructed a secondary decomposition model for CO, emissions of the
roads and railways. The study found that the growth of GDP per capita is the most important reason
for the growth of road and railway turnover; the improvement of energy intensity and energy structure
can slow down the growth of CO, emissions [12]. Du et al. (2017) analyzed the influencing factors
of carbon emissions in the Chinese transportation industry and proposed a path analysis method
based on multiple regression analysis. The results showed that economic level, transportation intensity,
and energy intensity were the main factors influencing the carbon emissions of the transportation
industry [13]. Talbi (2017) used the vector autoregressive model to study the relationship between CO,
emissions and energy consumption, energy intensity, economic growth and fuel efficiency in the road
transportation sector in Tunisia [14]. Based on the panel data of nine provinces and two cities in the
Yangtze River economic belt from 2005 to 2014 and combined with the extended Kaya identity, Lu et al.
(2017) analyzed the influencing factors of CO, emissions in the transportation industry through the
LMDI decomposition method. The results showed that energy structure, energy consumption of per
unit added value and turnover of per unit GDP inhibited CO, emissions, while added value of per
unit turnover, per capita GDP and population promoted CO, emissions [15]. Based on the improved
STIRPAT model, Fan et al. (2019) used ridge regression to explore the influences of passenger-freight
turnover, per capita GDP, energy intensity, urbanization rate and private car ownership on traffic
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carbon emissions in the five Great Northwestern provinces. The result of ridge regression analysis
showed that, except for Gansu Province, the contribution degrees of influence factors in the Great
Northwest were all energy intensity > per capita GDP > urbanization rate > private car ownership
> passenger-freight turnover [16]. In addition, in order to analyze the carbon emissions features of
different regions, some scholars have also conducted studies on specific provinces and cities, such as
Henan Province [17], Jiangsu Province [18] and Beijing [19].

To sum up, scholars at home and abroad further studied the influencing factors of carbon emissions
in the transportation industry combining with different models from different perspectives. However,
there are also the following problems: (1) the vast majority of scholars only focused on the national
level [10-14], specific regions or provinces [15-19], ignoring the differences of CO, emissions in the
transportation industry between regions of a country [20]; (2) few scholars pay attention to the degree
of the same factor influencing carbon emissions in transportation industry in different regions of a
country. This paper divides 30 Chinese provinces into 8 regions, calculates and analyzes the current
situation of carbon emissions of different regions in the transportation industry from 1997 to 2017, and
uses the LMDI decomposition method to analyze the influencing factors on carbon emissions in the
transportation industry of different regions. Finally, the paper puts forward some suggestions according
to local conditions to provide references for the carbon reduction of the Chinese transportation industry.

2. Methods

2.1. Carbon Emissions Calculation Method

Carbon emissions indicate “the general term of greenhouse gases, which is presented by CO,
equivalent (CO; eq)”, mainly including carbon dioxide, methane, nitrous oxide, and other carbon
oxides. Among them, the proportion of CO, emissions is more than 60% of that of greenhouse gas
emissions [21]. For lacking comprehensive statistics of the latest global carbon emissions, most scholars
apply the methods, provided by IPCC (Intergovernmental Panel on Climate Change) Guidelines on
National Greenhouse Gas Inventories, and adopt the data of energy consumption to calculate carbon
emissions. In the aspect of carbon emissions measurement of transportation industry, the common
methods are “top-down” and “bottom-up” methods. The “top-down” method is based on the
conversion factors of energy consumptions and energy carbon emissions coefficient of vehicles to
calculate the carbon emissions of the transportation industry. The “bottom-up” method is to calculate
the energy consumption of the transportation industry based on the data of different types of vehicles
and fuel consumptions of traveled mileage and per unit of traveled mileage, etc., thus calculating the
carbon emissions. Yang et al. (2014) and Ma et al. (2017) both used the “top-down” method to calculate
the carbon emissions of the transportation industry in China and the Chinese Beijing-Tianjin-Hebei
Region [22,23]. As for the “bottom-up” measurement method, Zhang et al. (2009) calculated CO,
emissions of different transportation modes for residents in Shanghai from 2002 to 2006 [24]. Wang et
al. (2019) divided the Chinese comprehensive transportation system into four modes—road, railway,
domestic water transportation and domestic civil aviation—and analyzed the factors of influencing
carbon emissions change from 2003 to 2015 [25]. However, the “bottom-up” method needs to take into
account such factors as the types of vehicles, influencing distance, energy consumption of per unit
mileage, etc. At present, the relevant provincial and regional statistics in China are not yet perfect
and moreover, the uncertainty is relatively large in the calculation [26]. Therefore, this paper adopts a
“top-down” calculation method.

This paper, based on the data of terminal energy consumptions of industry, calculates the carbon
emissions of the transportation industry in 30 provinces of China and selects 12 main types of energies
according to the energy classification of IPCC. The energies include raw coal, cleaned coal, briquette
coal, carbon coke, crude oil, gasoline, kerosene, diesel, fuel oil, liquefied petroleum gas and natural gas.
The calculation formula of carbon emissions of fuel combustion recommended by IPCC is as follows:
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44
C = ;Cij :;Eijxﬁ = ;(EiijCViXCCiXCOFiXﬁ) Q)
In the formula, C represents the total CO, emissions of the transportation industry in China or its
certain region; C;; represents CO, emissions of energy i in province j; i is the type of the fossil fuels
(i=1,2,3,--,12); Ej; stands for the terminal consumption of fossil fuel i in province j; fi indicates for
the CO, emissions coefficient of carbon energy i; NCV; shows the mean low calorific value of energy 7;
CC; refers to the carbon per calorific value of energy i, that is, the carbon content per unit of heat; COF;
is the carbon oxidation factor, namely, the carbon oxidation rate during energy combustion; and 44 and
12 are the molecular weights of CO, and carbon [27].
The specific folding standard coal coefficients and carbon emissions coefficients for all energies
are shown in Table 1.

Table 1. Carbon emissions coefficient of transportation and energy.

Carbon Dioxide

Mean Low Carbon Per A o
o o Carbon Oxidation Emission
. Calorific Value Calorific Value . .
Names of Energies Rate [COF;] Coefficients [f;]
INCV;] 3 e (%) (kg-CO,/kg or
(KJ/kg or KJ/m3) (kg-C/G)) kg-CO,/m>)
Raw coal 20,908 26.37 0.94 1.9003
Cleaned coal 26,344 25.41 0.93 2.2829
Briquette coal 15,910 33.56 0.90 1.7622
Carbon coke 28,435 29.42 0.93 2.8604
Coke oven gas 17,354 13.58 0.98 0.8469
Crude oil 41,816 20.08 0.98 3.0202
Gasoline 43,070 18.90 0.98 2.9251
Kerosene 43,070 19.60 0.98 3.0179
Diesel 42,652 20.20 0.98 3.0959
Fuel oil 41,816 21.10 0.98 3.1705
Liquefied 50,179 17.20 0.98 31013
petroleum gas

Natural gas 38,931 15.32 0.99 2.1622

Note: data are from the General Principles for Calculating Comprehensive Energy Consumption (GB/T 2589-2008)
and the Guide to National Greenhouse Gas Emission Inventory.

2.2. Kaya Identity Extension

Firstly proposed by Yoichi Kaya in 1989 [28], the Kaya identity establishes the relationship between
economic and demographic factors and CO, emissions, decomposes the influencing factors of CO,
emissions and accurately quantifies the contribution degree of various influencing factors.

Kaya identity is simple in structure and easy to operate. Although it has been widely used in
such fields as energy, environment and economy, etc., the identity is limited in the number of focused
variables. In recent years, when studying influencing factors on carbon emissions of transportation
industry, some scholars have found that the change of carbon emissions is also related to energy
intensity, energy structure, added value of the transportation industry, etc. In view of this, this paper
extends the Kaya identity to introduce the scale and energy intensity of the transportation industry.

The specific expression is:
C E ADV _ GDP
C_ExmxﬁxmeOP ()
In the formula, C represents carbon emissions of transportation industry, E represents energy
consumption of transportation industry, ADV represents added value of transportation industry, GDP
represents gross regional product, and POP represents regional population size. Among them, % is the
energy carbon emissions coefficients of the transportation industry, represented by G; A% is the factor

of energy intensity, namely, the energy consumption of per unit added value for the transportation
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industry, represented by S; ’% is the industry scale, that is, the proportion of the added value of the

transportation industry in the gross regional product, represented by A; % is the factor of economic
output, that is, regional GDP per capita, expressed by R;POP represents the factor of population size,
expressed by P.

Thus, Equation (2) can be expressed as Equation (3):
C = GXSXAXRXP 3)

In Equation (3), C, G, S, A, R, and P indicate the relationships between carbon emissions in
transportation and factors of energy carbon emissions coefficients, energy intensity, industry size,
economic output, and population size, etc.

2.3. Logarithmic Mean Divisia Index (LMDI) Decomposition Method Based on Extended Kaya Identity

In recent years, scholars have made great achievements in studying the relationships between
energy consumptions and carbon emissions by means of decomposition analysis. Currently, the two
relatively popular methods of decomposition are structural decomposition analysis (SDA) and index
decomposition analysis (IDA). Based on the input-output table, SDA conducts a detailed analysis on
various influencing factors [29]. In 1991, IDA expanded from the field of energy consumption to the
study of carbon emissions related to energy consumption for the first time. Based on the aggregate
data of departments and its time series analysis, IDA can make a meaningful decomposition for the
industry and find out the deep factors that indirectly affect the total index [29,30].

Based on the comprehensive comparison of SDA and IDA methods, Ang et al. (1998) suggested
that the Laspeyres index and Divisia index of the IDA method should be adopted when studying
the decomposition analyses on factors of energy consumption and gas emissions [31]. However, the
Laspeyres decomposition method will produce relatively large residuals during the decomposition
process, which will have an influence on the results of decomposition analyses. On the contrary,
LMDI in the Divisia index decomposition method solves the residual value and zero value problems
inherent in the index decomposition method, which has the advantage of complete decomposition
and a unique result, making the results more convincing [32,33]. Therefore, the LMDI decomposition
method is finally adopted in this paper to analyze the carbon emissions of the Chinese regional
transportation industry.

The LMDI decomposition method includes two forms, addition and multiplication.
Their decomposition results can be inter-converted and are consistent for the two methods [32].
Therefore, this paper applies the method of “additive decomposition” to decompose the model in
Equation (3). The specific formula is presented in Equation (4):

AC = DG + DS + DA + DR + DP @)

In Equation (4), DG indicates for the carbon emissions coefficient effect of energy, DS indicates for
the energy intensity effect, DA indicates for the industry scale effect, DR indicates for the economic
output effect, and DP indicates for the population size effect. Then, the expressions of each factor,
which influences on carbon emissions, are respectively Equations (5)—(9). Similarly with those in
reference [34], they are used for the detailed derivation process.

CT_cO GT

DG = — = .In(—

¢ = mormoo M) ©)
CT_cO ST

DS = — — = _n(Z 6
mor—moo M5o) ©)
CT_cO AT

DA = — = _.n(2 7
mcr o M) @
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CT_cO RT
DR = — — = _in(— 8
mcr—moo Mge) ®
CT_cO PT
DP = — = n(— 9
mcr—mo ) ©)

In Equations (5)-(9), c? represents the base year’s carbon emissions of the transportation industry
in China or its certain region; CT indicates for the carbon emissions of the transportation industry in
year T in China or its certain region. G0, 80 A0 RO and P? respectively denote the base year’s carbon
emissions coefficient of energy, energy intensity, industry scale, economic output and population size
of the transportation industry; GT, ST, AT, RT and PT respectively indicate the energy carbon emissions
coefficient, energy intensity, industry scale, economic output and population size of the transportation
industry in year T.

2.4. Data Sources

The data range of this paper is from 1997 to 2017. Considering the completeness and availability
of data, this study covers 30 provinces (autonomous regions and municipalities) in China, excluding
Taiwan, Hong Kong, Macao and Tibet. Among them, the reference coefficients of conversion standard
coal for energy and the energy consumption data of terminal transportation industry in each year
of Chinese each province was derived from the China Energy Statistical Yearbook from 1998 to 2018.
The factors of carbon emissions for the energies were derived from the General Principles for Calculation
of Comprehensive Energy Consumption (GB/T 2589-2008) and the 2006 edition of the IPCC Guidelines for
National Greenhouse Gas Emission Inventory. Population, GDP and ADV (added value of transportation
industry) are all from the China Statistical Yearbook from 1998 to 2018. GDP and the added value of the
transportation industry are constant price based on the base year 1997. In addition, individual missing
data are obtained by interpolation, assuming the same annual growth rate.

In order to facilitate the research, this paper divides China into eight comprehensive regions
according to the concept of regional division of comprehensive economy, proposed by the development
research center of the state council of China [35]. They are respectively the Northeast (i.e., Liaoning, Jilin
and Heilongjiang Provinces), the North Coast (i.e., Beijing, Tianjin, Hebei and Shandong), the Eastern
Coast (i.e., Shanghai, Jiangsu and Zhejiang), the Southern Coast (i.e., Fujian, Guangdong and Hainan),
the middle reaches of the Yellow River (i.e., Shaanxi, Shanxi, Henan, Inner Mongolia), the middle reaches
of the Yangtze River (i.e., Hubei, Hunan, Jiangxi, Anhui), the Great Southwest (i.e., Yunnan, Guizhou,
Sichuan, Chongging, Guangxi), and the Great Northwest (i.e., Gansu, Qinghai, Ningxia, Xinjiang).

3. Variable Description and Analysis

3.1. Carbon Emissions Status of Chinese Transportation Industry

The “top-down” calculation method is used to calculate the total carbon emissions of Chinese
transportation industry from 1997 to 2017 by using Equation (1), as shown in Figure 1.

From Figure 1, the total CO, emissions in the Chinese transportation industry are on the rise year
by year, that is, from 108.43 million tons in 1997 to 714.58 million tons in 2017, increasing 5.59 times,
with an average annual growth rate of 9.89%. From 1997 to 2012, the average annual growth rate was
as high as 12.39%, and then from 2012 to 2017, the growth rate slowed down to only 2.71%. This is
mainly because the economic development of China grew rapidly from 1997 to 2012, with the average
annual GDP growth rate of 11.61%. As a result, the rigid demand for transportation continued to
increase and the total carbon emissions of transportation continued to grow at a high speed. After
2012, Chinese economic development turned into the new normal, from the pursuit of speedy growth
to quality growth. Therefore, economic growth was slowing down. From 2012 to 2017, GDP grew by
an average of 8.03% a year. The demand for transportation decreased due to the optimization of the
Chinese industrial structure, the decline of traditional manufacturing, and the increasing proportions
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of the dominating service industry of financial, information, etc. Therefore, carbon emissions growth
slowed down for the Chinese transportation industry from 2012 to 2017.
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Figure 1. Carbon emissions of Chinese transportation industry from 1997 to 2017.

CO, emissions from transportation industry in the eight regions of China are shown in Figure 2
and Table 2. Overall, carbon emissions in all the regions were on the rising trend. Among them,
the carbon emissions on the Eastern Coast rose sharply and were higher than that in other regions.
Its carbon emissions increased from 19.56 million tons in 1997 to 123.36 million tons in 2017, with
an average annual growth rate of 9.64%. The Eastern Coast is located in a favorable geographical
position. Its economic development has always been at a high level and its demand for transportation
continues to increase, so its carbon emissions are the highest. The emissions of the Great Northwest
were always lower than those of other regions, with only 38.75 million tons in 2017. The reason is that
the Great Northwest of China has always been an economically underdeveloped region. Its agriculture
and animal husbandry have been in relatively high proportions for a long time, compared with
other regions; while its industry and commerce account for relatively low proportions. Therefore,
the capital attraction is relatively weak, resulting in insufficient demand for freight. In addition, the
Great Northwest has a small population and relatively less demand for transportation, so it is low for
the carbon emissions of the transportation industry. Carbon emissions in the Great Southwest grew
the fastest during the study period, with an average annual growth rate of 12.18% and an 8.96-fold
increase from 1997 to 2017. Although the economic development level of the Great Southwest is
not as high as that of the Southeastern Coast, it is geographically close to the southeast, carrying on
the industrial transfer of the Southeastern Coast; therefore, the demand for freight is large. At the
same time, the Great Southwest is a place where the population gathers, with a total population of
246 million, accounting for 17.7% of the total population of China, therefore, it shows a large demand
for passenger transportation. The Great Southwest has a more favorable traffic condition. Compared
with the Great Northwest, although the railway mileage of the Great Southwest is comparable, its
road transportation is more developed. Its traffic mileage is more than 94.37% of the Great Northwest,
especially with the convenience of shipping in the Yangtze River of Sichuan and ports in Guangxi,
the inland waterway navigation mileage being 16.7 times that of the Great Northwest. Therefore,
with the rapid growth of the transportation industry, the carbon emissions in the Great Southwest
increase rapidly.
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Figure 2. CO, emissions in the transportation industry in the eight regions of China from 1997 to 2017.

Table 2. Carbon emissions of the transportation industry in eight Chinese regions.

Carbon Emissions ~ Carbon Emissions 1997—2(.)17
Region Average Ann\:)al in 1997 in 2017 Incr.easmg
Growth Rate (%) (Million Tons) (Million Tons) Multlple.s o.f
Carbon Emissions

The Northeast 8.56 14.07 7273 417
The North Coast 9.83 14.57 95.00 5.52
The Eastern Coast 9.64 19.56 123.36 531
The middle reaches of the Yangtze River 10.69 13.53 103.11 6.62
The Southern Coast 9.51 15.71 96.63 5.15
The middle reaches of the Yellow River 9.37 13.04 78.29 5.00
The Great Southwest 12.18 10.71 106.72 8.96
The Great Northwest 8.75 7.24 38.75 4.35
Total 9.89 108.43 714.58 5.59

3.2. Decomposition Variables

3.2.1. Carbon Emissions Coefficients

The carbon emissions coefficients of energy in eight regions of China are shown in Figure 3. Within
the study range, the carbon emissions coefficients show a slow downward trend, with a relatively small
decline. This is because in 2017, compared with 1997, the proportion of clean energy such as natural
gas increased. In addition, the improvements of oil quality and fuel efficiency of vehicles reduced the
CO; emissions under the same energy consumption, which lowered the carbon emissions coefficients
of energy. However, most of the vehicles in China still rely on traditional petroleum energy, so the
carbon emissions coefficients of energies in each region are relatively small.

3.2.2. Energy Intensity

In this paper, the energy intensity is the ratio between the energy consumption of transportation
and the added value of transportation industry (at the constant price in 1997) and its unit is 10,000 tons
of standard coal per 100 million yuan. The change of energy intensities of the transportation industry
in the Chinese regions are shown in Figure 4. In general, the energy intensities of the transportation
industry in most regions present an “inverted U-shaped” trend within the research range, that is, it rises
first and then slowly declines. Among them, the middle reaches of the Yangtze River presented the
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fastest growth in energy intensity, rising 51.07% in 2017 compared with that in 1997, with an average
annual growth rate of 2.08%. In 2017, the energy intensity in the Great Northwest was the highest,
with 23,200 tons of standard coal/100 million yuan. Because the proportion of road transportation in
the region continued to increase, its energy consumption was higher than those of the other regions.
The energy intensity of the North Coast is the lowest, which was only 8500 tons of standard coal/100
million yuan in 2017. The energy intensity of the region decreased rapidly after 2012. It is mainly
because the relatively strict energy conservation policies for vehicles have been adopted to reduce
energy consumption. Thus, its energy intensity is the lowest.
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Figure 3. Carbon emissions coefficients of different regions in China from 1997 to 2017.
3.2.3. Industry Scale

Industry scale is the proportion of added value of transportation industry in gross regional
product. The change of industry scale in each region is shown in Figure 5. During the study range, all
regions show an “inverted U-shaped” trend, which is first in a slow rise and then a fluctuating decrease.
After 20 years of reform and opening up, the Chinese market economy has realized great development
and domestic manufacturing industry has begun to make progress. At the same time, due to the
cheap labor and various preferential policies, large numbers of processing and manufacturing were
shifted to China, resulting in growing demands for transportation. Therefore, the scale of the regional
industry from 1997 to 2002 had different degrees of increase. After 2002, the proportion of services
represented by finance, tourism and information in each region increased, while the proportion of
traditional industries, mainly manufacturing, decreased and the demand for transportation slowed
down, thus slowing down the growth rate of added value of transportation industry.

Among them, the decline rates of the scale of industry in the Southern and the Eastern Coast are
relatively fast, with an average annual decline rate of 2.91% and 2.18% respectively. This is because
the Southern and Eastern Coast are forefronts of reform and opening-up in China. Their industrial
transformation and upgrading paces are faster. Whether information technology or the services
industry, like financial, are all at the advanced level. In addition, while a variety of emerging industries
are influencing regional economic level, they slow down the transportation demand, making industry
scale reduce quickly. In contrast, the industrial scale in the Great Southwest did not decline, but grew
at an average annual rate of 0.08%. This is because, firstly, the industrial transformation and upgrading
in the Great Southwest is relatively slow and the proportion of the traditional secondary industry is not
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substantially optimized. Secondly, there are many basins and plateaus in the Great Southwest, with
rugged terrain and inconvenient transportation, which makes it difficult to reduce transportation costs.
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Figure 5. Industry scale in various regions of China from 1997 to 2017.
3.2.4. Economic Output

Economic output is all expressed by GDP per capita in this paper. From 1997 to 2017, Chinese
economic output continued to grow at an average annual rate of 10.01%. GDP per capita in 2017 was
42,407.71 yuan, 5.73 times higher than that in 1997. As shown in Figure 6, the economic output of
each region continued to rise during the study range. Among them, the GDP per capita of the Eastern
Coast has always been higher than that of other regions, with an average annual growth rate of 9.60%,
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reaching 70,347.40 yuan by 2017. Due to the superior geographical location, the Eastern Coast is the
earliest to implement the reform and opening up in China and supported by national policies, so its
economic output keeps rising. The economic output of the Southern Coast ranking second in 2017
was mainly because that the Southern Coast has had a strong business atmosphere and is also an area
that firstly implemented the reform and open policy. With the locative advantage of being adjacent to
Hong Kong, Macao and Taiwan and with the help of the good shipping conditions, it attracted the
inflow of large amounts of foreign capital, making the change in industrial structure, proportional
increase in manufacturing industry and rapid development of foreign trade, so it reached a relatively
higher economic development level. The economic output in the Great Northwest in 2017 was the
lowest in all the regions. The reason is that the Great Northwest has poor natural conditions, with wide
distribution of desert, Gobi, plateaus and mountains. It makes relatively high proportions of farming
and animal husbandry, with relatively low proportions of commerce and industry. In addition, the
development pattern of the priority given to the marine trade since modern times also causes the
decline of inland commercial. Moreover, the factor of social instability in the Great Northwest also has
a certain influence on the development of its economy.
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Figure 6. Regional economic output of China from 1997 to 2017.
3.2.5. Population Size

Compared with 1997, the Chinese population increased by 153.82 million at the end of 2017,
reaching 1390.08 million. The population sizes of the eight regions are shown in Figure 7. On the
whole, the population sizes of each region increased slowly to varying degrees. Among them, the
Southern Coast was witnessed the highest growth rate, with an average annual growth rate of 1.86%
from 1997 to 2017. It is followed by the Eastern Coast, with an average annual growth rate of 1.06%.
The two regions with the slowest growth rates were the Northeast and the Great Southwest, both with
average annual growth rates of 0.17%. The population of the Northeast decreased 0.31% annually from
2015 to 2017. It is mainly because the Northeast is an old industrial base with unbalanced industrial
structure and slow economic growth, resulting in a large population outflow.
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Figure 7. Regional population sizes of China from 1997 to 2017.

4. Results and Discussion

4.1. Decomposition Results of Total Carbon Emissions in the Chinese Transportation Industry

In this paper, the research range is from 1997 to 2017. Because the research range experienced
financial volatilities of Asian financial crisis and the world financial crisis, etc., Chinese economic
growth has begun to slow markedly since 2012. So this paper divides the research range into four
stages: the first stage (1997-2002), the second stage (2002—-2007), the third stage (2007-2012) and the
fourth stage (2012-2017).

By using the LMDI decomposition method, this paper decomposes the factors, which influence
on the carbon emissions of Chinese transportation industry, into economic output, industry scale,
energy intensity, population size, and carbon emissions coefficients. Equations (5)—(9) are used to
calculate the contribution values (D) and contribution rates (R) of each influencing factor. The results
are shown in Table 3. Among them, the contribution rate is the ratio between the contribution value
of each influencing factor and the sum of contribution values of the five influencing factors, e.g.,
RG = DG/AC.

From 1997 to 2017, the contribution value and contribution rate of energy carbon emissions
coefficients effect were —16.14 and —2.65%, respectively, to the carbon emissions of transportation
industry. It can be seen that the carbon emissions coefficients effect is conducive to the suppression of
the industry’s carbon emissions, but the influence is relatively small. This is because the improvements
of vehicle fuel efficiency and oil quality reduced the carbon emissions coefficients of energy, thus
promoting carbon reduction in the transportation industry.

Energy intensity effect has different influences on carbon emissions of Chinese transportation
industry in different stages. It has a specific and significant effect on curbing carbon emissions of
Chinese transportation industry in the third and fourth stages. The main reasons are as follows:
(1) since 2007 and 2012, the Chinese government has proposed and implemented standards for the
national pollutant emissions of motor vehicles, standardized air pollution emissions from the policy
perspective and improved the quality of oil products for motor vehicles. These measures are conducive
to reducing carbon emissions. (2) The proportion of clean energy consumption has increased. The
proportion of clean energy consumption in Chinese transportation industry has increased from 0.02% in
1997 to 4.76% in 2017. (3) The continuous improvement of Chinese informatization level has promoted
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the information technology development of platforms of online ride-hailing, taxi dispatching, freight
dispatching, etc., effectively improved the motor vehicles” operation efficiencies of trucks, passenger
cars, taxis and etc., and reduced empty influencing rate, thus lowering carbon emissions.

Table 3. Decomposed contribution value (unit: million tons) and contribution rate (unit: %) of
influencing factors on carbon emissions of Chinese transportation.

Effect 1997-2002  2002-2007  2007-2012 20122017  1997-2017

N DG —4.06 —255 —0.34 -8.95 -16.14

Energy Carbon Emission Factor RG 463 109 018 -10.03 265
Eneray Intensit DS 227 132.84 —38.01 —64.12 85.07
sy Y RS -259 56.85 ~19.38 ~71.80 13.95

Industrial Scal DA 25.72 -83.88 -56.31 —95.89 ~116.71

ndustrial Scale RA 29.33 -35.89 -28.71 -107.37 -19.14
Economic Output DR 62.35 180.22 273.56 238.58 616.80
RR 71.10 77.12 139.47 267.15 101.14

Population size DP 5.95 7.06 17.24 19.68 40.82
P RP 6.78 3.02 8.79 22.04 6.69
Total Effect AC 87.69 233.68 196.15 89.31 609.84
otal btlec RC 100 100 100 100 100

The industry scale effect has a relatively obvious influence on the inhibition of carbon emissions in
Chinese transportation industry, with the overall contribution value and contribution rate of —116.71%
and —19.14%, respectively, in the study range. From different stages, except the first stage to promote
the increase of carbon emissions, the last three stages all act as inhibitory effects. This is mainly because
China has begun to actively seek the transformation and upgrading for industrial structure. The
proportion of secondary industry in the national economy has declined, while that of the tertiary
industry has been rising. As the transportation volume for per unit output value of the secondary
industry is higher than that of the tertiary industry, the demand for transportation is gradually reduced
and the industry scale is also continuously reduced, thus restraining the increase of carbon emissions.

As shown in Table 3, the contribution value of economic output effect to the carbon emissions
of the transportation industry increased year by year. The contribution rate increased from 71.10%
in the first stage to 267.15% in the fourth stage. It can be seen that economic output is the key factor
for the rise of the total carbon emissions of Chinese transportation industry. Therefore, if China
wants to reduce the carbon emissions of the transportation industry, it should slow down its speed of
economic development.

The contribution value of the population size effect to the carbon emissions of the transportation
industry continued to rise from 1997 to 2017, but the total contribution value was only 40.82. This
shows that the population size effect has a certain promoting influence on the carbon emissions of the
Chinese transportation industry, but its overall influence is limited. It is because Chinese population
control policy made the population growth rate begin to slow down. Although the continuing growth
of population promoted the increase of the demand for transportation, its increase rate is not large, so
the carbon emissions of transportation do not increase much.

4.2. Analyses of the Key Influencing Factors for Regional Carbon Emissions

In this paper, the LMDI decomposition method is used to decompose the factors affecting the
carbon emissions of transportation in eight regions of China. Their contribution values and contribution
rates of each factor are calculated. The results are shown in Tables 4 and 5.
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Table 4. Results of LMDI decomposition for carbon emissions from transportation industry in the 8
regions (unit: million tons).

Year Factor N::t\}e\east 1\}:)}::11 E::t‘:m RI:cehlilﬂ;l :fle So’?t‘ﬁem R::ceh]:ils? :}e\e ;‘::tl?vi?slt :-Ifl‘:t}?v:fe:stt
Coast Coast Yangtze River Coast Yellow River
DG -143 —-0.03 —-0.05 -0.47 —-0.07 -0.43 -0.55 -0.43
g DS -1.41 -3.86 -0.91 4.40 0.08 -6.72 5.32 -0.86
c:'\ DA 2.88 1.59 4.04 3.82 2.66 3.12 7.80 l.o4
o
- DR 7.12 7.86 12.04 8.72 6.82 5.95 7.65 3.25
DP 0.33 0.73 172 0.05 3.66 0.55 0.09 0.51
aC 7.49 6.28 16.84 16.51 13.15 248 20.31 411
DG -0.13 -1.23 -0.10 -0.36 -0.23 -1.05 0.28 -0.37
.é DS 15.49 32.12 25.77 8.04 25.32 18.29 12.33 0.50
g DA -9.31 -3.44 -20.89 -9.38 -25.16 —4.01 -12.42 -0.80
S
N DR 18.97 25.78 31.56 23.13 23.70 19.57 24.90 7.28
DP 0.41 1.95 3.93 -0.22 298 -0.10 —-0.10 0.70
AC 25.44 55.18 40.26 21.20 26.61 3271 24.98 7.31
DG 0.32 -0.31 -115 0.75 0.35 0.24 -0.35 -0.28
g DS -7.01 -9.19 -15.61 —6.02 -5.75 14.72 -5.87 -3.92
g DA ~7.88 =7.10 -5.31 -10.41 —4.38 -12.15 -9.56 -0.60
S
N DR 32.00 43.30 38.44 37.30 29.51 37.71 43.54 11.01
DP 0.62 6.27 4.72 1.01 5.09 1.30 -0.03 0.84
AC 18.04 32.97 21.08 22.63 24.82 41.82 27.73 7.05
DG -0.05 -1.21 —0.64 -1.27 -0.39 -3.39 -1.37 —-0.55
g DS 3.94 -25.71 -0.13 8.30 -15.60 —25.98 -21.10 7.52
g DA -13.76 -25.67 -15.71 —-15.58 -2.78 -13.83 3.87 —6.85
=}
N DR 18.18 34.70 39.83 35.03 30.71 30.02 38.47 11.27
DP -0.62 3.90 2.26 275 4.39 1.58 3.12 1.64
AC 7.69 -13.99 25.61 29.24 16.33 -11.60 2299 13.03
DG -2.88 -1.98 -1.29 -1.51 -0.36 -3.89 -1.75 -1.91
E DS 11.61 7.70 14.78 18.20 16.17 4.02 10.95 -0.03
; DA -16.53 -13.71 —24.88 -17.55 —26.34 -10.71 0.71 -2.21
N
- DR 65.26 80.10 103.29 88.48 75.05 76.38 84.66 32.04
DP 120 8.33 11.90 1.95 16.40 271 144 3.62
AC 58.66 80.44 103.79 89.58 80.92 68.52 96.00 31.51

4.2.1. Carbon Emissions Coefficient Effect of Energy

From Table 4 (DG), the contribution values of carbon emissions coefficient effect of energy in the
eight regions to the carbon emissions of the transportation industry are all nearly negative and their
absolute values are small. It can be seen that the carbon emissions coefficient effect inhibits the carbon
emissions of the transportation industry in different regions. However, the inhibition effect is small
and the regional differences are not large. This is due to the fact that the fuel sources and the quality of
oil products for vehicles in different regions of China are similar, with a low proportion of clean energy
and a low degree of improvement in the quality of oil products.

4.2.2. Energy Intensity Effect

The energy intensity effect (DS, Table 4) has certain differences in influencing carbon emissions
of the transportation industry in different regions. In general, except for the Great Northwest, the
contribution values of the energy intensity effect to carbon emissions in the other seven regions were
positive from 1997 to 2017.

Within the study range, the energy intensity effects of each region inhibited the carbon emissions
of the transportation industry in most stages. Among them, the energy intensity effects of the Southern
and the North Coast have significant inhibitory influences on the carbon emissions of the transportation
industry in the third and fourth stages. This is mainly because these two regions adopted relatively
strict energy-saving policies for transportation vehicles, which reduced energy consumption in the
transportation process and restrained the increase of carbon emissions. In the fourth stage, the energy
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intensity effects in the Great Northwest and the Northeast regions became positive, and their energy
intensities were still rising. This is because the two regions have relatively weak control over the
energy saving of vehicles, and clean energy consumption accounts for a low proportion.

Table 5. Contribution rate of LMDI decomposition of carbon emissions in transportation industry in
the 8 regions (unit: %).

Year Factor NoT:t‘}emeast 1\};}:’:}\ E::t‘:m Rzrfhﬁlig :;e So?t‘;em R‘:::h]ilg? :}e\e g::ﬂ?‘:e:stt IE{)‘SH?‘:;Z‘(
Coast Coast Yangtze River Coast Yellow River
RG -19.15 -0.52 -0.33 -2.87 -0.54 -17.33 -2.73 -10.40
g RS -18.83 —61.51 -5.38 26.68 0.62 —271.14 26.19 —20.94
; RA 38.49 25.26 23.99 23.11 20.26 126.06 38.43 39.93
2 RR 95.12 125.17 71.49 52.79 51.81 240.32 37.67 79.07
RP 4.37 11.61 10.23 0.29 27.85 22.10 0.44 12.34
RC 100 100 100 100 100 100 100 100
RG -0.49 -2.24 -0.24 -1.68 —-0.88 -3.20 111 -5.01
lé RS 60.89 58.21 64.00 3791 95.17 55.90 49.35 6.85
g RA —36.60 —6.23 -51.90 —44.26 —94.55 -12.25 —49.73 -10.89
=3
N RR 74.57 46.73 78.39 109.08 89.06 59.84 99.69 99.55
RP 1.63 3.54 9.76 -1.05 11.20 -0.29 -0.42 9.50
RC 100 100 100 100 100 100 100 100
RG 177 -0.95 —5.45 3.32 142 0.58 -1.26 —4.01
g RS —38.87 —27.88 —74.04 —26.59 -23.16 35.21 -21.18 —55.55
g RA —43.67 -21.54 -25.21 —45.99 -17.66 —29.06 —34.49 —8.58
& RR 177.35 131.35 182.32 164.81 118.90 90.17 157.04 156.23
RP 3.41 19.01 22.38 4.45 20.50 3.10 -0.11 11.92
RC 100 100 100 100 100 100 100 100
RG —0.66 8.67 —2.49 —4.34 -2.37 29.25 -5.97 —4.23
g RS 51.22 183.80 -0.50 28.39 -95.54 22391 -91.76 57.71
g RA -179.01 183.54 —61.32 -53.28 -17.01 119.19 16.84 -52.57
& RR 236.47 —248.12 155.49 119.83 188.05 —258.77 167.34 86.48
RP —-8.03 -27.90 8.81 9.39 26.87 —-13.58 13.55 12.61
RC 100 100 100 100 100 100 100 100
RG -4.90 —2.46 -1.24 -1.68 -0.45 —5.68 -1.83 —6.07
g RS 19.79 9.58 14.24 20.32 19.98 5.86 11.40 -0.09
; RA -28.17 -17.05 -23.97 -19.59 —32.55 -15.63 0.73 -7.01
N
- RR 111.25 99.58 99.52 98.78 92.75 111.48 88.18 101.69
RP 2.04 10.35 11.46 218 20.27 3.96 1.51 11.48
RC 100 100 100 100 100 100 100 100

4.2.3. Industry Scale Effect

From Table 4 (DA), except for the Great Southwest, the contribution values of industry scale
effects in the other 7 regions were negative from 1997 to 2017, indicating that the industrial scale effect
inhibited the carbon emissions of the transportation industry on the whole.

Among them, the absolute values of the contribution values of industry scale effects in the
Southern and the Eastern Coast were relatively large, which played a great role in restraining the
carbon emissions from the transportation industry. This is mainly caused by the change of regional
industrial structure. The proportion of the secondary industry in the Southern Coast decreased from
47% in 1997 to 37% in 2017, but the tertiary industry increased from 37% in 1997 to 52% in 2017. On the
Eastern Coast, the proportion of secondary industry decreased from 52% in 1997 to 39% in 2017, but the
tertiary industry increased from 36% to 58%. The decreased proportion of secondary industry leads
to a gradual decrease in the demand for transportation and the scale of the transportation industry,
thus restraining the increase of carbon emissions. However, the industrial structure of the Great
Southwest has not changed significantly. In 1997, its secondary industry accounted for 41%, and in
2017, it still accounted for 39%. The demand for transportation was still high, so the carbon emissions
of transportation industry in this region were still rising.
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4.2.4. Economic Output Effect

It can be seen that the contribution values of the economic output effect in each region within
the research range (DR, Table 4) are always positive. Their contribution rates to the carbon emissions
of the transportation industry are greater than other effects in the same period (RR, Table 5). This
indicates that economic output effect is the most important factor influencing on the growth of the
carbon emissions of transportation industry in each region.

Overall, the contribution values of the economic output effects of the Eastern Coast and the
Southern Coast and the Great Northwest to the carbon emissions of the transportation industry
continued to rise. This is mainly due to the fact that the Eastern and the Southern Coast are the first
regions to implement reform and opening up in China, with strong state policy support, a high degree
of foreign trade, superior geographical location and convenient land and sea transportation, resulting
in its rapid economic development. The sustained and rapid economic growth increases the demand
for transportation, so the economic output effect plays a great role in promoting the carbon emissions
of the transportation industry in these two regions. For the Great Northwest, since China officially
implemented the “western development strategy” in 2000, the state council has issued four five-year
plans for the development of the western regions, focusing on the top-level design of industrial
development, ecological and environmental protection, infrastructure construction and opening to the
outside world, etc. The continuous progress of the “western development strategy” made the Great
Northwest realize the transformation and upgrading of partly traditional industries, develop a series
of characteristic industries, promoting the transformation from the resource advantage to economic
advantage. Moreover, because of the low base of economic output in the Great Northwest, its economic
output has grown rapidly, which in turn has increased the speed of demand for transportation, thus
objectively bringing about the increase in carbon emissions.

The contribution values of economic output effect to carbon emissions in the Northeast, the
North Coast, the middle reaches of Yangtze River, Yellow River and the Great Southwest increased
continuously in the first three stages but decreased in the fourth stage. This is mainly due to the
continuous growth of economic output in various regions since the reform and opening up, and these
five regions are no exception. Therefore, the rigid demand for transportation keeps rising, which
promotes the growth of carbon emissions. Consequently, the contribution values of economic output
effect to the carbon emissions of the transportation industry in the first three stages continue to increase.
Since 2012, Chinese economic development has slowed down and turned from high-speed growth
to high-quality development. Due to the slow industrial transformation in these five regions, the
economic growth slowed down, so that the contribution value of economic output effect to the carbon
emissions of the transportation industry declined in the fourth stage.

4.2.5. Population Size Effect

From Tables 4 and 5, the contribution values of population size effects (DP, Table 4) of the eight
regions in each stage are mostly positive, indicating that population size effect can promote the increase
of carbon emissions in the transportation industry.

In general, from 1997 to 2017, the contribution values of population size effects to the carbon
emissions of the transportation industry in the Southern and Eastern Coast were relatively large, 16.40
and 11.90, respectively, with contribution rates of 20.27% and 11.46%, respectively. This is mainly
due to the fact that the Southern and Eastern Coast are the two regions with the most developed
economy in China. The large population inflow resulted in the soaring demand for transportation,
which promoted the increase of carbon emissions.

The contribution degree of population size effect to carbon emissions in the Northeast was
relatively small in the first three stages. Even the contribution value and contribution rate were
negative in the fourth stage. This is mainly because the population of the Northeast has continually
decreased for three consecutive years. The population in 2017 was 0.92% lower than that in 2014.
There are three main reasons for the decline. Firstly, the birth rate in the Northeast is far below that of
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Chinese average and the population is ageing severely. Secondly, the government in the Northeast is
less efficient than those of other economically developed regions, which makes it difficult to attract
investment and thus absorbs less employment. Finally, as the traditional heavy industry in the
Northeast has weakened over the years and light industry has not developed, it attracts fewer talents.

5. Conclusions and Suggestions

5.1. Conclusions

In this paper, 30 provinces of China are divided into 8 regions to calculate and analyze the current
situation of regional carbon emissions in the transportation industry from 1997 to 2017. Based on the
LMDI decomposition method, the contribution values and contribution rates of each influencing factor
are analyzed, and the following main conclusions are drawn as follows.

(1) The total CO; emissions in the Chinese transportation industry show a ladder-type annual
growth, from 108.43 million tons in 1997 to 714.58 million tons in 2017, with an average annual growth
rate of 9.89%. Among them, the carbon emissions on the Eastern Coast are rising steeply and are higher
than those in other regions as a whole. In 2017, the carbon emissions of the transportation industry in
the Eastern Coast accounted for 17.27% of the Chinese total, but the total area only accounted for 2.28%
of Chinese total. The emissions of the Great Northwest were always lower than those of other regions,
with only 38.75 million tons in 2017. Carbon emissions in the Great Southwest grew the fastest during
the study range, with an average annual growth rate of 12.18% from 1997 to 2017, an 8.96-fold increase.

(2) Based on the results of LMDI decomposition, the economic output effect is the most important
factor to promote the carbon emissions of the transportation industry in various regions. Among
them, the contribution values of economic output effect to carbon emissions of the Eastern Coast,
the Southern Coast and the Great Northwest continued to rise, while the contribution values of the
economic output effect to carbon emissions of the other five regions decreased to some degree in the
fourth stage. The population size effect promoted the carbon emissions of the transportation industry
in various regions, but the population size effect of the Northeast had a significant restraining effect
on the carbon emissions in the fourth stage. Energy intensity effects of each region in most stages
suppressed the carbon emissions of the transportation industry. Among them, the energy intensity
effects of the North Coast and the Southern Coast in the two stages had obvious inhibitory influences
on transportation carbon emissions, while the energy intensity effects of the Great Northwest and
the Northeast still had positive contribution values in the fourth stage. Except the Great Southwest,
the industry scale effects have inhibited the carbon emissions of the transportation industry in other
regions. The carbon emissions coefficient effect to carbon emissions in different regions is not significant
and the inhibitory effect is relatively small.

5.2. Policy Recommendations

In general, there are some differences in the factors influencing carbon emissions of the
transportation industry in different regions of China. Therefore, based on the above research results,
the following suggestions are proposed for policy makers.

(1) Change the pattern of economic growth and appropriately lower the speed of economic
development. The results of this paper show that the economic output effect is the main factor leading
to the increase of carbon emissions in the Chinese transportation industry. China should gradually
change the pattern of economic growth, appropriately reduce the speed of economic development, and
strive to achieve a coordinated development of economic growth and environmental protection. In the
process of carbon reduction in the transportation industry, China should set differentiated emissions
reduction targets. Economically developed regions such as the Eastern Coast and the Southern Coast
regions can consider setting more stringent standards for industrial carbon reduction so as to realize the
first transformation of the low-carbon economic growth mode. In the process of economic development,
regions such as the Great Northwest, the Northeast and the middle reaches of the Yellow River can
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gradually increase their responsibilities of carbon reduction and promote the steady transformation of
economic growth pattern.

(2) Reduce the energy intensity of regional transportation industry. Energy intensity effect should
have been an important factor for reducing carbon emissions of the transportation industry, but the
research results show that energy intensity effect promotes carbon emissions of transportation industry
on the whole. So China should actively promote the usages of new energy, clean energy vehicles and
ships, increase the application of new energy and clean energy vehicles in the fields of city bus, taxi,
express delivery, airports, railway freight yard, etc., and reduce the unit consumption of transportation
industry and regional energy intensity to control the carbon emissions of the transportation industry.
The regions of the Great Northwest and the Northeast, etc. with high energy intensities should
formulate more reasonable policies of emissions reduction, vigorously promote the use of clean energy,
and improve the efficiency of clean energy.

(3) Optimize the regional industrial structure. As a whole, the industry scale effect has a restraining
influence on the carbon emissions of the Chinese transportation industry. Therefore, China can promote
the optimization and upgrading of its industrial structure, develop strategic emerging industries
and a modern service industry, and promote the industries to move towards the medium-high
end and achieve high-quality development. The rapid transformation of the industrial structure in
the Eastern Coast and Southern Coast regions has played a significant role in curbing the carbon
emissions of the transportation industry. Therefore, China should continue to optimize the industrial
structure, accelerate the expansion of tertiary industry, and encourage the development of new
high-tech industries. For economically underdeveloped regions such as the Great Southwest, the Great
Northwest and the middle reaches of the Yellow River, appropriate industrial transformation policies
should be formulated to encourage them to constantly optimize their industrial structures, improve
their capacities for scientific and technological innovation, and shift them from low-end traditional
manufacturing to medium- and high-end manufacturing so as to reduce the demand for transportation
and lower carbon emissions.
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Abstract: With the development of agricultural modernization, the carbon emissions caused by
the agricultural sector have attracted academic and practitioners’ circles” attention. This research
selected the typical agricultural development province in China, Fujian, as the research object. Based
on the carbon emission sources of five main aspects in agricultural production, this paper applied
the latest carbon emission coefficients released by Intergovernmental Panel on Climate Change of
the UN (IPCC) and World Resources Institute (WRI), then used the ordered weighted aggregation
(OWA) operator to remeasure agricultural carbon emissions in Fujian from 2008-2017. The results
showed that the amount of agricultural carbon emissions in Fujian was 5541.95 x 10° tonnes by 2017,
which means the average amount of agricultural carbon emissions in 2017 was 615.78 x 10° tonnes,
with a decrease of 13.13% compared with that in 2008. In terms of spatial distribution, agricultural
carbon emissions in the eastern coastal areas were less than those in the inland regions. Among them,
the highest agricultural carbon emissions were in Zhangzhou, Nanping, and Sanming, while the
lowest were in Xiamen, Putian, and Ningde. In addition, this paper selected six influencing variables,
the research and development intensity, the proportion of agricultural labor force, the added value of
agriculture, the agricultural industrial structure, the per capita disposable income of rural residents,
and per capita arable land area, to clarify further the impacts on agricultural carbon emissions. Finally,
geographically- and temporally-weighted regression (GTWR) was used to measure the direction and
degree of the influences of factors on agricultural carbon emission. The conclusion showed that the
regression coefficients of each selected factor in cities were positive or negative, which indicated that
the impacts on agricultural carbon emission had the characteristics of geospatial nonstationarity.

Keywords: carbon emissions; agricultural sector; OWA aggregation operator; GTWR

1. Introduction

Since the 21st Century, global warming, which is mainly caused by the increase of the carbon
dioxide concentration in the atmosphere, has attracted widespread attention. Although the total carbon
emissions are mainly from the industrial and service sectors, agricultural carbon emissions cannot
be underestimated. The main reason for this is that although the agricultural sector provides food
for all mankind, it also needs a large number of inputs of agricultural machinery and equipment,
fertilizers, pesticides, agricultural film, and other means of production, which may ultimately lead to
high carbon dioxide emissions. In addition, according to the statistics, the agriculture, forestry, and
other land use sectors are responsible for about 24% of anthropogenic carbon emissions worldwide
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and have become the second largest source of global greenhouse gas emissions, and the emissions are
also increasing at a fast speed of approximately 1% per annum [1,2]. Therefore, under the background
of increasingly severe global warming, carbon emission reduction in the agricultural sector is an
indispensable link to improve the capability of agriculture to cope with climate change and also an
inevitable choice to achieve economic growth, ecological environmental development, and sustainable
agricultural development. In other words, it is necessary to pay attention to the research on agricultural
carbon emissions.

As alarge traditional agricultural country in the world, China’s carbon emissions in the agricultural
sector have a more noteworthy role in increasing global climate warming. Since 1978 and the progress of
the reform and opening-up policy, China’s agriculture has developed rapidly and become an important
factor to promote economic development and social progress. However, these rapid developments are
largely at the expense of high carbon emissions. According to the statistics, the agricultural sector in
China accounts for approximately 17% of national carbon emissions [3,4]. Among them, the emissions
of methane and nitrogen dioxide caused by agriculture account for 50% and 92% of the national total,
respectively. Thus, under the circumstances that China pledged to peak its carbon dioxide emissions
by around 2030 and make best efforts to peak early, reducing carbon emissions in the agricultural
sector has become a hot issue of academics and the government. In order to reduce carbon emission in
the agricultural sector, first of all, it is necessary to clarify the carbon emission sources, carbon emission
quantities, and influencing factors on carbon emissions. To this end, it is necessary to measure carbon
emissions in the agricultural sector and identify the factors driving these carbon emissions.

As a coastal province in southeastern China, Fujian has some special features that are different
from other provinces. Fujian has many mountains and few farmland, while the cultivated land
resources are scarce, even less than half of the national average level, which seriously restricts the
development of agriculture. Therefore, in order to promote the development of agricultural production,
this can only be done by adding the inputs of chemical fertilizers, pesticides, and agricultural film for
Fujian to increase the outputs of grain and other cash crops. However, these measures have resulted
in a large amount of carbon emissions, causing serious environmental pollution. Besides, in 2014,
Fujian became the first national ecological civilization pilot zone in China, which was announced by
the State Council. That is, low-carbon agricultural development will become an important way to
realize ecological civilization in Fujian Province, so as to realize finally the coordinated development of
agriculture, resources, and the environment. Hence, in order to effectively promote the reduction of
carbon emissions in the agricultural sector and complete the construction of the ecological civilization
pilot zone, it is of great significance to carry out research on Fujian’s agricultural carbon emissions.
Thus, this research takes the prefecture-level cities as the basic units to analyze the spatial and temporal
pattern and the evolution process of agricultural carbon emissions in Fujian and then explores the
influencing factors affecting agricultural carbon emissions, so as to provide scientific evidence for
formulating agricultural carbon emission reduction policies and realizing low-carbon agriculture
in Fujian.

Compared with the existing research, the innovative work of this research is mainly manifested in
the following three aspects. Firstly, the study area of this paper is specific. More concretely, although
some scholars’ research involves the issue of agricultural carbon emissions, most of them stay at the
macro level, that is the literature specific to a certain area is less [5]. Therefore, based on the data of
nine prefecture-level cities in Fujian, this research remeasured the agricultural carbon emissions by
using the latest emission coefficients released by the Intergovernmental Panel on Climate Change of
UN (IPCC, Geneva, Switzerland) and World Resources Institute (WRI, Washington, DC, USA), so as
to achieve more accurate calculation of carbon emissions in the agricultural sector. Secondly, a more
scientific method was used to evaluate the agricultural carbon emissions of each prefecture-level city
in the sample period. Different from other existing research using the simple arithmetic averaging
method, this paper uses the ordered weighted averaging (OWA) aggregation operator to distribute
weights in different years, so as to solve the problem of weighting the same indicators in different
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periods ignored in the calculation of carbon emissions, so as to realize the dynamic comprehensive
evaluation of panel data. Moreover, agricultural carbon emissions are mainly the result of multivariate
interaction, such as economic level, the infrastructure, and resource endowment. The mechanism of the
above action is complex. Therefore, the magnitude and direction of the influencing factors are different
under different in their temporal and spatial distributions. That is, traditional spatial econometric
models will no longer meet the research requirements. The geographically- and temporally-weighted
regression (GTWR) applied in this research is a local linear regression model that considers both
geographical and temporal non-stationarity. On the whole, this study measures carbon emissions in
the agricultural sector and uses the OWA aggregation operator to solve the problem of the dynamic
comprehensive evaluation of panel data. Then, by adopting the GTWR model, this paper analyzes
the spatial-temporal heterogeneity of the impact of factors on agricultural carbon emissions, aiming
to establish an effective agricultural carbon emission reduction mechanism, and finally, aiding local
sustainable development decision-making.

2. Literature Review

2.1. Measurement of Agricultural Carbon Emissions

At present, many existing research works have focused on the measurement of carbon emissions
in the agricultural sector. It should be noted that different methods used to estimate carbon emissions
will produce different results. For instance, Wang et al. followed the IPCC guidelines [6] released in
2006 to estimate the greenhouse gas emission intensity of rice, wheat, and maize yields in China from
1985-2010 [7]. According to the IPCC guidelines, Xiong et al. and Tian et al. estimated the carbon
emissions of agricultural production in Hunan and Xinjiang, respectively [8,9]. In addition, Han et al.
measured carbon emissions from the entire agricultural sector as a whole in China during the period
from 1997-2015 [10]. However, the IPCC guidelines ignored soil emissions during agricultural land
use change in its agricultural inventory [11,12] and are no longer fully suitable for current emissions.
Therefore, some scholars have proposed novel methods to measure agricultural carbon emissions.
For instance, Bell et al. used the Scottish Government’s new method to calculate agricultural carbon
emissions and compared it with the IPCC guidelines and national communications [12]. Wisniewski
and Kistowski proposed a solution that enables local governments to estimate independently the
carbon footprints and monitor the impacts of actions taken to reduce emissions [13]. Moreover, based
on the national statistics, Yue et al. evaluated the carbon footprints of a range of 26 crop products
and six livestock types [14]. Based on the above background, this paper applied the carbon emission
coefficients released by IPCC and WRI to calculate the agricultural carbon emissions in Fujian from
2008-2017, which makes the measurement results more specific and accurate.

2.2. Influencing Factors of Agricultural Carbon Emissions

The driving and inhibiting factors of agricultural carbon emissions can be identified by studying
the influencing factors of agricultural carbon emissions. Existing research on the influencing factors of
agricultural carbon emissions mainly involves many aspects, including agricultural economic growth,
technological progress, population size, income, and agricultural energy consumption. ACIL Tasman
measured agricultural carbon emissions in the United States, Canada, India, the European Union,
and New Zealand and demonstrated that the proportion of agricultural carbon emissions in total
carbon emissions varies greatly, possibly due to different modes of agricultural production [5]. Ismael
et al. also confirmed that agricultural production had a significant impact on carbon emissions [15].
For instance, the organic agricultural production mode had the function of restraining agricultural
carbon emissions [16]. In addition, agricultural economic growth and the increase of the agricultural
population has positive impacts on agricultural carbon emissions [11,17]. Moreover, the agricultural
technology progress is also one of the important factors affecting agricultural carbon emissions. Gerlagh
applied the endogenous technological progress model to study the influence of technological progress
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on carbon emission reduction [18] and confirmed that technological progress significantly reduced the
cost of carbon emission reduction through the learning effect and increased the social benefits at the
same time. Furthermore, agricultural land also affects the agricultural carbon emissions, such as per
capita land use area [19], agricultural land use [20] and farmland conversion [21,22]. Besides, there
also exists a close relationship between agricultural income and carbon emissions [23].

However, it should be noted that there is still no consensus on the causal relationship, direction,
and extent between influencing factors and agricultural carbon emissions. Hence, when selecting the
influencing factors, we should combine the relevant literature with the outstanding characteristics
of Fujian in the process of agricultural development, so as to ensure that the factors are reasonable
and scientific.

2.3. Methodologies of Agricultural Carbon Emissions

There exist many methodologies to explore the relationship between carbon emissions and
their influencing factors in the agricultural sector. Among them, the autoregressive distribution lag
model [24], the Granger causality test [25,26], and the vector error correction model [27] have been
approved and applied by most scholars. Moreover, the logarithmic mean Divisia index [28,29] and the
variance decomposition approach [15] mainly apply the exponential decomposition method to study
the main factors causing the change of agricultural carbon emissions. Furthermore, other scholars have
applied some other novel methodologies, including the denitrification-decomposition models [30], the
spatial econometric models [25] and the fully-modified ordinary least squares [31,32].

However, when examining the degree and direction of the impact factors on agricultural carbon
emissions, most of the literature only considers the time perspective, but ignores the spatial perspective.
It should be noted that there exist great differences in the level of economic development, agricultural
structure, resource endowment, and the agricultural production mode in each region, which will also
lead to different degrees and directions of influencing factors at different times and in different regions.
Hence, in this paper, the GTWR model is used to study the influences of factors affecting agricultural
carbon emissions on each prefecture-level city from the perspective of time and space, so as to remedy
the shortcomings of this research field.

3. Materials and Methodologies

3.1. Study Area

The study area covers Fujian on the southeast coast of China. As an important estuary for the Min
River and also an important window for China’s contacts with the world, Fujian encompasses a total land
area of approximately 124,000 km? and a total maritime area of approximately 136,000 km?. From the
geographical perspective, Fujian is located approximately between longitudes 115°50" E and 120°43" E
and between the latitudes 23°32” N and 28°22" N. As one of the provincial administrative regions in
China, Fujian includes 9 prefectural-level cities: Fuzhou, Xiamen, Quanzhou, Zhangzhou, Sanming,
Putian, Longyan, Nanping, and Ningde. According to the Fujian Statistical Yearbook, from 2010-2018,
the gross output value of agriculture in Fujian increased from 136.367-237.982 billion Yuan at a rapid
rate. Similarly, per capita disposable income of rural residents increased from 7426.86-17,821 Yuan.
However, the rapid development of agriculture is at the expense of the environment. That is, at present,
the agricultural development in Fujian is a typical chemical agriculture type, which relies heavily on
high-carbon means of production such as chemical fertilizers and pesticides, which seriously affects
the sustainable development of agriculture in the future. Thus, it is of great practical significance to
study agricultural carbon emissions and their influencing factors in Fujian and to explore the way to
realize the development of low-carbon agriculture. The location, the latitude and the longitude rage of
the study area can be seen in Figure 1.
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Figure 1. The location of the study area.
3.2. Selection of Measurement Indicators

In agriculture, there exist three main sources of carbon emissions, which can also be considered as
sources of greenhouse gas emissions: agricultural land use, rice paddies and crop production, and
livestock enteric fermentation and manure storage. In the United States, agricultural land use is the
largest source of agricultural carbon emissions, mainly due to the large inputs of fertilizers, pesticides,
and other agricultural materials and the loss of organic carbon caused by soil tillage; livestock enteric
fermentation is the second largest source, and livestock manure storage is the third. Furthermore, the
rice paddies produce fewer greenhouse gases than other agricultural productions because of the lesser
rice planting area. Although Fujian’s agricultural production situation differs from that of the United
States, the composition of agricultural carbon emissions is consistent. Therefore, combining the above
research with other references [17,23], this paper mainly calculates the agricultural carbon emissions
according to the five types of carbon emission sources: (1) CO, emissions produced from agricultural
land use; (2) CHy emissions caused by rice paddies; (3) CHy emissions caused by livestock breeding;
(4) N,O emissions triggered by crop production; (5) N,O emissions triggered by livestock breeding.
All carbon emission sources and their coefficients in agricultural sector in Fujian are listed in Table 1.

Table 1. Carbon emission sources and coefficients in the agricultural sector.

Greenhouse Gases

Sources Detailed Sources Units References
CO; CHy N,O
a‘?:rfglltzal chemical fertilizer kg/kg 3.28 n/a n/a IPCC
pesticide kg/kg 18.09 n/a n/a IPCC
plastic sheeting kg/kg 19.00 n/a n/a IPCC
diesel kg/kg 3.17 n/a n/a IPCC
tillage kg/km? 1146.31 n/a n/a IPCC
irrigation kg/ha 977.19 n/a n/a IPCC
rice paddies early rice kg/ha n/a 77.39 n/a IPCC
late rice kg/ha n/a 525.95 n/a IPCC
in-season rice kg/ha n/a 434.66 n/a IPCC
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Table 1. Cont.

Greenhouse Gases

Sources Detailed Sources Units References
CO, CHy N,O
profiI:gion paddy rice kg/ha n/a n/a 0.24 IPCC
winter wheat kg/ha n/a n/a 2.05 IPCC
soybean kg/ha n/a n/a 0.77 IPCC
vegetable kg/ha n/a n/a 4.21 IPCC
maize kg/ha n/a n/a 2.53 IPCC
other dry crops kg/ha n/a n/a 0.95 IPCC
livestock:
manure dairy kg/head/year  n/a 8.33 2.07 WRI
storage
non-dairy kg/head/year  n/a 3.31 0.85 WRI
goat kg/head/year  n/a 0.28 0.11 WRI
pig kg/head/year  n/a 5.08 0.18 WRI
poultry kg/head/year  n/a 0.02 0.01 WRI
rabbit kg/head/year  n/a 0.08 0.02 IPCC
livestock:
enteric dairy kg/head/year  n/a 89.3 n/a WRI
fermentation
non-dairy kg/head/year n/a 67.9 n/a WRI
goat kg/head/year  n/a 9.4 n/a WRI
pig kg/head/year n/a 1 n/a WRI
poultry kg/head/year n/a n/a n/a WRI
rabbit kg/head/year n/a 0.25 n/a IPCC

Note: Data of IPCC and WRI in the column of the “References” are from [6] and [33], respectively.

3.3. Selection of Influencing Factors

3.3.1. Research and Development Intensity

Agricultural technological progress is an important factor to promote the development of
low-carbon agriculture and has the role of agricultural carbon emission reduction [34]. Hence,
the absence of agricultural technology has become an important factor restricting the sustainable
development of agriculture [35]. Therefore, it is necessary and effective for governments to increase
the input intensity of research and development and promote the progress of agricultural technology
to further improve the technical system of energy saving and emission reduction in agriculture [10,36].
It is noteworthy that the current role of science and technology input is not necessarily reflected in
the current period, such as R & D investment [37]. R & D investment will take effect only after a
later period of time. Thus, it is necessary to consider the lagged rank of R & D investment affecting
agricultural carbon emissions in a certain period of time. The proportion of R & D investment to GDP
is adopted in this research to measure the science and technology intensity and denoted as research
and development intensity (RDI).

3.3.2. Proportion of Agricultural Labor Force

Agricultural labor force (ALF) can affect the carbon emissions from crop production [9], which in
turn affects agricultural carbon emissions. Based on the Kaya model, Zhang and Fang decomposed
factors affecting agricultural carbon emissions and found that reducing the proportion of agricultural
labor can significantly limit the growth of carbon emissions [38]. According to the logarithmic mean
Divisia index (LMDI) method, Yao et al. confirmed that the increase of agricultural labor force is an
important factor for the sustained growth of carbon emissions produced from animal husbandry [39].
Similarly, Satterthwaite [40] and Al-Mulali et al. [41] analyzed the relationship between agricultural
labor force and agricultural carbon emissions from the perspective of urbanization and confirmed that
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with the acceleration of urbanization, the proportion of agricultural labor force continued to decline
and then had a positive impact on the reduction of carbon emissions. The proportion of agricultural
labor force in Fujian decreased from 31.15-21.71% during the time period from 2008-2017, which
inevitably had an influence on agricultural carbon emissions.

3.3.3. Added Value of Agriculture

This paper applies the proportion of added value of agriculture (AVA), forestry, animal husbandry,
and fishery production to measure the level of agricultural economic development. By and large, the
influence of agricultural added value on agricultural carbon emissions has regional characteristics. Tian
et al. combined multiple linear regression with decoupling analysis to evaluate the influencing factors
of agricultural carbon emission and found that there was a weak and unstable decoupling relationship
between agricultural carbon emissions and the added value [9]. Murad also confirmed that there
existed no Granger causality between agricultural output and carbon emissions in Bangladesh [42].
However, Jebli et al. [43] and Rafiq [44] confirmed that there was a two-way causal relationship between
agricultural added value and carbon dioxide emissions. Besides, by using data from provinces from
2001-2013 in Iran, Alamdarlo demonstrated that there existed an inverted “U” relationship between
agricultural value added and agricultural carbon emissions; however, the above conclusion was not
suitable for all provinces, because of the heterogeneity of agricultural development in provinces, such
as the disunity of agricultural infrastructure [45]. Hence, it is necessary to analyze the impact of the
influencing factor based on the specific situation of agricultural development in Fujian.

3.3.4. Agricultural Industrial Structure

The percentage of the output value of the plant products industry to total agricultural output
value is applied in this paper to measure the structure of agricultural industry. The plant products
industry mainly relies on the input of agricultural materials such as pesticides and fertilizers to increase
output, resulting in an increase in agricultural carbon emissions. Hence, with the optimization of
the agricultural industrial structure (AIS), the decline of the proportion of plant products industry
can reduce agricultural carbon emissions [29]. Nevertheless, Yao et al. obtained slightly different
conclusions by studying the influencing factors of the agricultural carbon emission change in animal
husbandry [39]. They found that the impact of the optimization of agricultural industrial structure on
carbon emissions from animal husbandry changed from positive to negative, which is particularly
evident in central and Eastern China. Therefore, empirical research is needed to analyze the direction
and magnitude of the impacts of agricultural industrial structure on agricultural carbon emissions
in Fujian.

3.3.5. Per Capita Disposable Income of Rural Residents

In 1993, Panayotou first introduced and named the relationship between economic growth and
environmental conditions as the environmental Kuznets curve (EKC), indicating that per capita income
had a strong inverted “U” curve relationship with the level of environmental pollution [46]. However,
Liu and Xin confirmed that the evolutionary trend between economic growth and agricultural carbon
emissions showed an “N” curve, indicating that agricultural carbon pollution becomes more serious
than before as the economy continues to expand [47]. In addition, Tian et al. also demonstrated
that when per capita income of agriculture increased by 1 unit, agricultural carbon emissions would
increase by 0.354 units [9]. One explanation could be that while vigorously increasing the per capita
income of agriculture, the extensive use of chemical fertilizers and pesticides into agriculture promoted
the increase of carbon emissions [48]. Therefore, the increase of rural residents” income at this stage
may lead to an increase in agricultural carbon emissions.
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3.3.6. Per Capita Arable Land Area

Reducing per capita arable land area (ALA) will reduce the total agricultural energy demand per
capita, such as chemical fertilizers, pesticides, and plastic film, thus restraining agricultural carbon
emissions [19]. However, if the per capita arable land area were reduced through the transformation of
cultivated land to industrial land, the greenhouse effect would be aggravated [49]. Thus, the degraded
land can be restored by returning cultivated land to grassland. That is, reducing arable land area is
conducive to reducing greenhouse gas emissions from agricultural activities. In brief, the land use and
land use change in the agricultural sector are two important factors influencing agricultural carbon
emissions [50].

3.4. Research Methodologies and Data Sources

3.4.1. Estimation of Agricultural Carbon Emissions

According to the IPCC guidelines, on the basis of the existing research about the carbon emission
equation [20,28,29,36], in view of the current situation of agricultural development in Fujian Province,
this paper chooses carbon emission sources and corresponding carbon emission coefficients to build a
model for calculating agricultural carbon emissions. The specific formula is as follows:

E=Y E=Y Tow M
i=1 i=1

where E represents total agricultural carbon emissions; E; denotes the carbon emission of the specific
source i; T; represents the amount of the specific source i; and p; denotes carbon emission coefficient of
the specific source i. In accordance with the usual practice, it is necessary to convert CO,, CHy, and
N,O to standard carbon. By and large, the greenhouse effects caused by 1 tonne of CO,, CHy, and N,O
are equivalent to that produced by 0.2727, 6.8182, and 81.2727 tonnes of standard carbon, respectively.

3.4.2. Ordered Weighted Averaging Aggregation Operator

The ordered weighted averaging (OWA) aggregation operator, first proposed by Yager in 1988,
is a novel time empowerment method. The basic idea of OWA is to reorder the data according to
the numerical value and then determine the weight by the position of the data in the ranking [51].
In addition, the OWA aggregation operator determines the weights based on the data themselves;
therefore, since it was introduced into the application, the fairness of its empowerment has been
controversial. Scholars in various countries have constantly improved it. Hence, in this paper, an
improved OWA aggregation operator proposed by Xu [52], that is a smooth and continuous normal
distribution density function, is applied to determine the time weights of the panel data of agricultural
carbon emissions in Fujian. The specific steps of the OWA aggregation operator are as follows:

(1) Assume that there exist m regions and 7 years; besides, E;; denotes total carbon emissions in
the agricultural sector in specific region i in specific year j. After summing up the value of E;; in each
year, the average value is as follows:

m
Ej= %Z E;j @)
i=1

(2) Assume that the initial weights of total carbon emissions in each year is 1/n, then the average
value and standard deviation of Ej; are as follows:

E=-Y'E ©
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(3) Standardize the total carbon emissions based on the above average value and standard
deviation, and the calculation equation is as follows:
E-E
i = ®)

o

(4) Using the standard normal distribution density function, the corresponding values of a; under
the specific §; are as follows:

14
aj = )= ——e7 (6)
=)=
(5) Normalize the obtained value of a; to calculate the time weights, and the formula is as follows:
@j

wj = @

Y

(=

3.4.3. Geographically- and Temporally-Weighted Regression

When exploring the relationship between agricultural carbon emissions and influencing factors
in the past, the ordinary least squares method and the spatial econometric model were usually used.
Normal panel models usually only represent the correlation between dependent and independent
variables in the mean sense, but cannot effectively reflect the spatial heterogeneity of the regression.
Therefore, the model estimates are biased and lack an explanation. Besides, in the study of spatial
heterogeneity, the geographically-weighted regression model (GWR) has been widely used because it
can describe the variability of different geographic locations [53,54]; however, the GWR model does not
consider the influence of the time factor [55]. Therefore, as an extension of the geographically-weighted
regression model, the geographically- and temporally-weighted regression incorporates the time
dimension in the geographic space, effectively expanding the multiple linear regression model and
GWR model [56,57]. In this paper, both temporal and spatial effects are included in the model to
analyze the characteristics of the regression relationship changing with space and time. That is, this
paper uses the GTWR model to analyze the data of agricultural carbon emission and its influencing
factors in Fujian from 2008-2017, as well as to explore the direction and degree of influencing factors on
agricultural carbon emission in each region in each year. The specific model of GTWR is as follows [55]:

d

yi = Bolui, vi, ;) + Zﬁk(”i, 0j, b)) Xig € (®)
k=1

where y; denotes the observations of agricultural carbon emissions, while x;; represents the influencing
factors at the specific point (1;,v;,t;). In addition, fy represents the constant coefficients. (u;,v;t;)
denotes the longitude coordinate 1; and the latitude coordinate v;, and the time point ¢; of the specific
location. Bi(u;,v; t;) represents the unknown parameter at the specific location (u;,v;,t;), while it is also
the arbitrary function of (u;,v;,t;). €; denotes an independently and identically distributed (iid) error
and is assumed to obey the N(0,0%) distribution. The cross-validation method is applied in this paper
to determine the optimal bandwidth. Ultimately, this paper chooses agricultural carbon emissions y;
as the dependent variable, selects RDI, ALF, AVA, AIS, disposable income of rural residents (DIR), and
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ALA as the independent variables, denoted as x1, x2, X3, x4, x5, and x¢, then constructs the model as
follows:
vi= Polui,vit;) + B1(ui, vi, t;)xin + Ba(ui, v, 1) xi2 + B3 (u;, v, i) i3+
Ba(ui, i, t)Xig + s (ui, vi, 1) xis + Pe (i, i, £)Xig + &

where i equals the interval of natural numbers from 1-9 and f; (1;,v;,t;) denotes the change range in
which agricultural carbon emissions follow RDI. Similarly, B (14;,v;,t:), B3(u;,viti), Pa(1i,viti), Bs(1i,viti),
and B (u;,v;,t;) represent the change range in which agricultural carbon emissions follow ALF, AVA,
AIS, DIR, and ALA, respectively.

©)

3.4.4. Data Sources

The agricultural carbon emissions from the agricultural land use, rice paddies and crop production,
and livestock enteric fermentation and manure storage, as well as their emission coefficients are used
in this paper. The applied emission coefficients were mainly released by IPCC in 2006 and WRI in
2015. Besides, the original data of the agricultural carbon emissions from 2008-2017 were from the
Fujian Statistical Yearbook and the statistical yearbooks of all prefecture-level cities without any other
processing. In the end, the original data covering 9 prefectural-level cities for 10 years were obtained.

Furthermore, this paper adopts the formula of agricultural carbon emissions and the OWA
operator to measure the agricultural carbon emissions of 9 prefecture-level cities in Fujian Province
from 2008-2017 and analyzes the spatial and temporal characteristics of agricultural carbon emissions
in the past 10 years. In order to further clarify the influences of the 6 driving factors selected above on
agricultural carbon emissions in Fujian, this paper will also use GTWR to measure the direction and
degree of impacts of driving factors in each prefecture-level city. According to the results, this paper
puts forward countermeasures and suggestions to promote effectively agricultural carbon emission
reduction and the development of low-carbon agriculture in Fujian in the next stages.

4. Results

4.1. Evolution Trends of Agricultural Carbon Emissions

According to the calculation process of Formula (1), agricultural carbon emissions in Fujian
from 2008-2017are shown in Table 2. In order to consider fully the dynamic evaluation of the panel
data, the weights of each year based on OWA are listed in the last row of Table 2, while the average
agricultural carbon emissions of each region calculated based on OWA are listed in the last column.
As shown in Table 2, agricultural carbon emissions in Fujian showed a fluctuating downward trend
from 2008-2017. That is, agricultural carbon emissions decreased from 708.88 thousand tonnes in 2008
to 615.78 thousand tonnes in 2017. The fluctuating evolution with the basic spatial pattern of “M”
can be divided into four stages: fluctuating increase, low speed reduction, rapid increase, and finally,
rapid reduction. The result shows that in the process of agricultural development, Fujian has taken
some measures to control agricultural carbon emissions and strengthen the awareness of ecological
agriculture. Besides, the composition of carbon emissions in the agricultural sector varied from year
to year. Moreover, as shown in Table 3, agricultural land use was the main source of agricultural
carbon emissions, exceeding 40% in each year. Rice paddies also accounted for more than 30% of
carbon emissions in each year. The proportion of crop production and livestock enteric fermentation in
agricultural carbon emissions was relatively small. One explanation might be that with the increase of
population, Fujian increased the utilization rate of agricultural land and relied heavily on chemical
fertilizers and pesticides, so as to ensure food supply, which ultimately contributed to the increase of
agricultural carbon emissions.
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Table 2. Average agricultural carbon emissions (ACE) in Fujian (units: 10> tonnes of carbon).

Cities 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017  ACE
Fuzhou 75201 74926 74813 76197 75429 74875 74154 72836 65857 64579 740.87
Xiamen 9619 9327 8728 8633 8619 8260 6600 6209 6148 6372  80.38
Putian 33720 33426 32808 32295 31175 299.66 278.62 27843 26748 22845 307.12
Sanming 94454 92530 91494 92181 90774 90669 90155 90380 77021 779.90 904.92
Quanzhou 70073 698.66 70585 691.92 677.60 66343 64098 63350 628.09 65561 67245
Zhangzhou 115133 115886 117591 118157 1181.36 1165.64 115507 114335 1131.38 1043.93 1160.47
Nanping 104441 1047.00 105341 106575 106576 1299.81 1088.80 1086.94 114593 93396 1087.33
Longyan 83592 83823 84488 84772 84465 84459 83518 76920 71658 71598 822.82
Ningde 517.60 51359 51309 51518 51142 50539 497.19 489.83 47849 47464 505.35
Average  708.88 70649 70795 71058 70453 72406 689.44 67728 65091 61578  nja
W?‘,;g?ts 1144 1195 1165 11.06 1233 759 1380 1279 650  0.89 n/a
Table 3. The proportion of sources of agricultural carbon emissions in Fujian (units: %).
Sources 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017
aglzlrfgllt;s‘fl 46.65 4597 4409 4308 4066 4171 4125 4108 41.07 4092
rice paddies  31.49 30.70 3277 3268 3493 32.88 3345 3401 34.09 34.48
Crop. 392 416 461 440 409 412 405 399 396 390
production
livestock:
manure 1223 1284 1165 1248 13.03 1383 1378 1340 1338 1326
storage
livestock:
enteric 571 633 688 736 729 746 747 752 750 7.44
fermentation
CO, 46.65 4597 44.09 43.08 4066 4171 4125 4108 41.07 4092
CH,4 4364 4421 4608 47.08 4972 4843 4895 4937 4947 4978
N,O 971 982 983 984 962 986 980 955 9.46 9.30

4.2. Regional Differences of Agricultural Carbon Emissions

As can be seen in Table 2, agricultural carbon emissions of prefectural-level cities showed different
trends. According to the variation of agricultural carbon emissions, the trend can be roughly divided
into four types: (1) a rise-drop feature; (2) a slow decline feature; (3) a drop-rise-drop-rise feature; (4) a
drop-rise-drop feature. The representative cities of the first type are Fuzhou, Zhangzhou, Nanping,
and Longyan. However, in 2017, Zhangzhou and Nanping were still the cities with the highest carbon
emissions in Fujian, with the agricultural carbon emissions of these two cities reaching over 35.6% of
the total. In addition, the second type of agricultural carbon emissions showed a downward trend over
time. Putian and Xiamen are the representative cities of the second type. Besides, agricultural carbon
emissions in Xiamen increased slightly in 2017. The third type of carbon emissions presents a typical
“W” trend, mainly represented by Sanming and Quanzhou. The fourth type shows a typical inverted
“N” trend, mainly represented by Ningde. It should be noted that there were also significant differences
in agricultural carbon emissions among cities. For instance, the average agricultural carbon emission
of Zhangzhou based on OWA was about 14.44-times as much as that of Xiamen. Zhangzhou is famous
for its flowers and fruits. In 2018, Zhangzhou'’s total agricultural output value accounted for 20.89%
of the whole province, becoming the largest prefectural-level city of agricultural carbon emissions in
Fujian. By comparison, Xiamen, which is dominated by services, is in the rapid-developing economic
circle on the west side of the Taiwan Strait. Thus, Xiamen'’s agricultural output value accounted for
only 0.47% of the regional gross product and 1.37% of Fujian’s agricultural output value in 2018. In
addition, the continuous reduction of agricultural land use in Xiamen in recent years has further led to
the lowest agricultural carbon emissions.
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Although agricultural carbon emissions in Fujian showed a trend of fluctuating downward
during the investigation period, there are still some problems to be solved, such as an unreasonable
agricultural structure, extensive management, and unreasonable allocation of resources. Accordingly,
vigorously developing low-carbon agriculture will be the main measure of agricultural carbon emission
reduction in Fujian in the future. This paper analyses the influencing factors of agricultural carbon
emissions and clarifies the reasons for the growth of agricultural carbon emissions. Then, according
to the direction and force of the influencing factors, this paper puts forward differentiated measures
for agricultural emission reduction, which is of great significance to promote the development of
low-carbon agriculture.

4.3. Analysis Results of Influencing Factors

The descriptive statistics of all variables used in the GTWR model, including agricultural carbon
emissions and the influencing factors, can be seen in Table 4. The standard deviation of some variables
reflects the great difference among cities. For instance, the maximum value of AVA was 24.68-times
the minimum, while the maximum values of RDI and ALA were 13.52- and 9.00-times the minimum,
respectively. In addition, in order to overcome the shortcomings of heteroscedasticity, all the original
data used in GTWR were adopted in logarithmic form without changing the nature and relevance. That
is, the coefficients calculated by GTWR measure the elasticity of the dependent variable with respect
to the independent variable, i.e., the percentage of the dependent variable when the independent
variable changes by 1%. In addition, this paper mainly adopts ArcGIS 10.4 to realize the regression
coefficient estimation based on the properties of time and space. Moreover, the descriptive statistics
and geographical distribution of the regression coefficients calculated by the GTWR model can be seen
in Table 5 and Figure 2.
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Figure 2. Spatial distribution of regression coefficients calculated by GTWR in 2008, 2012, and 2017.

Table 4. The descriptive statistics of the original data of the variables used in GTWR. RD], research and
development intensity; ALF, agricultural labor force; AVA, added value of agriculture; AIS, agricultural
industrial structure; DIR, disposable income of rural residents; ALA, arable land area.

Variables Units Mean SD Minimum  Q Median Qs Maximum
ACE 10° 68959 33551 6148 48699 73495 92268  1299.81
tonnes
RDI % 113 0.65 023 0.76 1.02 127 3.11
ALF % 2847 13.62 0.26 1783 3257 3855 4953
AVA  108CNY 8587 4592 7.81 5027 8582 11949 19274
AIS % 4084 881 270 3640 4330 4636 56.28
DIR  10°CNY 1124 368 5.40 7.95 1128 13.94 2046
ALA  hajperson  0.05 0.02 0.01 0.03 0.04 0.05 0.09
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In this paper, the ordinary least squares method (OLS) and the GWR and GTWR models are
used for regression analysis and comparison. The comparisons of the regression analyses are shown
in Table 5. As shown in Table 5, the goodness of fit of the GTWR model was superior to OLS and
GWR. For instance, the adjusted R? of the GTWR model was 0.9960, which was larger than that of
GWR and OLS, which equaled 0.9950 and 0.9321, respectively. The residual sum of squares (RSS) and
F-value of GTWR were also better than those of the other models. Moreover, the smaller the AIC
value is, the higher the precision of the model is [58]. Furthermore, if the difference of the AIC values
between two models is more than three, this shows that there is a significant difference between the
two models. As can be seen in Table 5, the AIC value of GTWR was the smallest, and the difference
between the AIC of GTWR and that of GWR or OLS exceeded three, which indicates that the GTWR
estimation was much better than the GWR and OLS estimation. Because GWR and GTWR have a set
of corresponding coefficients at each point, only the maximum, minimum, and mean coefficients of
each independent variable are listed in Table 5. By comparing the coefficients estimated by GWR and
GTWR, it was found that the coefficients varied greatly, which indicates that the direction and degree
of the impacts of influencing factors on agricultural carbon emissions were different in both the time
and space dimensions, which shows significant spatial and temporal non-stationarity characteristics.
The regression coefficients estimated by GTWR are analyzed in detail with the spatial and temporal
distribution of the coefficients.

4.3.1. The Influence of RDI on Agricultural Carbon Emissions

Considering the time lag effect of RDI on agricultural carbon emissions, this paper measures the
influences of the one and two lag stages of RDI on agricultural carbon emissions. When the time lag
stage was one year, the average impact of RDI on agricultural carbon emissions was —0.0524%, but the
impact did not prove to be statistically significant (p > 0.05). When the time lag stage was two years, the
average impact of RDI on agricultural carbon emissions was —0.1829%, and it was significantly negative
under the 1% significant level. It should be noted that the influence of RDI in inhibiting agricultural
carbon emissions requires a process that usually takes two years. Therefore, the RDI data used in this
paper refer to the two-year lag stage. As shown in Table 5, RDI significantly inhibited agricultural
carbon emissions in Fujian. That is, when RDI increased by 1%, agricultural carbon emissions decreased
by an average of 0.1829%. One explanation might be that the inputs of agricultural technical research
and development promote the progress of agricultural technology, reduce the dependence on pesticides,
chemical fertilizers, and other energy consumptions in agricultural production, and finally, play a role
in reducing agricultural carbon emissions. However, the influence of RDI showed strong temporal
and spatial differences. For instance, as demonstrated in Figure 2a, RDI in Xiamen, Quanzhou, and
Zhangzhou in 2008 inhibited agricultural carbon emissions. Except Sanming, RDI in other cities in
both 2012 and 2017 significantly inhibited agricultural carbon emissions. Although the RDI of Sanming
was relatively low and the effect on agricultural carbon emission reduction had not been reflected yet,
with the continuous enhancement of agricultural technological innovation, the promoting influence
of RDI in Sanming on agricultural carbon emissions gradually decreased from 2008-2017. Moreover,
from the spatial perspective, the restraint impact of RDI on agricultural carbon emissions in eastern
Fujian was significantly stronger than that in western Fujian, because the economic development level
in eastern Fujian was much higher than that in the west, which can support the increasing intensity of
agricultural R & D investment.

R & D investment in technology can significantly reduce agricultural carbon emissions, so the
governments should continue to increase R & D investment in technology in the agricultural field and
develop new technologies that are low carbon and have higher efficiency. Moreover, the governments
should also promote new production models, i.e., organic agriculture and ecological agriculture, and
finally, give full play to the role of agricultural technology in low-carbon agriculture [58]. In addition,
there is a time lag effect of R & D investment on agricultural carbon emissions. When the time lag
period was two years, the impact of R & D investment reached the maximum. It should be noted that
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the restraining effect of RDI on agricultural carbon emissions in Sanming was not reflected, so the
government should strengthen the education of agricultural technicians and farmers, cultivate their
long-term strategic thinking, and avoid short-term behavior.

4.3.2. The Influence of ALF on Agricultural Carbon Emissions

The results listed in Table 5 show that ALF significantly promoted the increase of agricultural
carbon emissions. That is, when ALF increased by 1%, agricultural carbon emissions increased by
an average of 0.0512%. One possible explanation is that the disorderly increase of ALF enlarged
the scale of agricultural production to a certain extent, which was not conducive to reducing the
agricultural carbon emissions. As shown in Figure 2b, the increase of ALF in all prefectural-level
cities promoted the increase of agricultural carbon emissions, and the positive influence of ALF
on agricultural carbon emissions in Nanping was the strongest. Nanping’s agricultural labor force
accounted for nearly 50% of the total labor force, which had a strong role in promoting agricultural
carbon emissions. Moreover, the ALF in Quanzhou in 2012 and in Fuzhou, Quanzhou, and Xiamen in
2017 demonstrated negative correlations with agricultural carbon emissions, which was inconsistent
with the significant positive correlation results of other relevant literature. The possible reason is
that ALF showed obvious spatial heterogeneity. That is, Fuzhou, Quanzhou, and Xiamen have been
facing a rapid development of economic and agricultural modernization in recent years. With the
vigorous support of human resources and financial policies, the increase of ALF has brought advanced
technology and professionals, improved the level of agricultural technology, and thus, to a certain
extent, restrained the large growth of carbon emissions. However, the relationship between ALF and
agricultural carbon emissions in other cities is significantly positive, which makes it more important
to think about how to train the labor force in other regions and formulate corresponding policies to
attract talents in the progress of agricultural technological innovation, so as to restrain agricultural
carbon emissions.

The increase of the agricultural labor force in Fujian has promoted agricultural carbon emissions
as a whole. However, in Fuzhou, Quanzhou, and Xiamen, the increase of technical personnel and the
improvement of the quality of the agricultural labor force can reduce agricultural carbon emissions.
Therefore, on the one hand, the government needs to guide actively the transfer of rural surplus labor
to manufacturing and service industries, so as to reduce the agricultural labor force. On the other hand,
the government needs to improve the education level of rural residents and strengthen their low carbon
awareness, so that farmers can rationally use advanced agricultural technology. At the same time, the
government needs to establish, improve, and strengthen the training and introduction of high-quality
agricultural technological talents and provide human support for agricultural modernization.

4.3.3. The Influence of AVA on Agricultural Carbon Emissions

AVA significantly promoted the increase of agricultural carbon emissions and mainly promoted
the average increases of agricultural carbon emissions by 0.6955% when AVA increased by 1%. That is,
AVA is the main driving factor for the increase of agricultural carbon emissions. Besides, Fujian is a
populous province, but the land resources are limited, so agriculture depends on chemical fertilizer
and pesticides to meet people’s demand for agricultural products and agricultural by-products, which
also leads to the increase of AVA and the sharp increase of agricultural carbon emissions. As shown
in Figure 2¢, in 2008, 2012, and 2017, the regression coefficients of AVA in all prefectural-level cities
in Fujian were all positive, and there was no obvious downward trend. Besides, AVA in Putian,
Quanzhou, and Zhangzhou had a stronger impact on agricultural carbon emissions. For instance, in
2017, AVA in Putian, Quanzhou, and Zhangzhou accounted for nearly 2.9322%, 9.9831%, and 19.9504%
of Fujian’s total AVA, respectively, while chemical fertilizer use accounted for 5.0622%, 12.4713%, and
32.2809% of Fujian’s total chemical fertilizer use, respectively. However, it should be noted that there
existed a tendency of diminishing marginal utility in the use of chemical fertilizers, pesticides, plastic
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sheeting, and other products. It is obviously unsustainable for AVA to depend too much on the inputs
of pesticides and fertilizers, nor can it enhance the comprehensive production capacity of agriculture.

Although AVA promotes agricultural carbon emissions, it cannot reduce agricultural carbon
emissions by directly reducing the added value of agriculture. Thus, the increase of AVA mainly
depends on the progress of agricultural technology and the promotion of production efficiency, so as
to achieve the dual objectives of increasing AVA and controlling agricultural carbon emissions, and
this can also fundamentally reduce the positive impact of AVA on agricultural carbon emissions.

4.3.4. The Influence of AIS on Agricultural Carbon Emissions

According to Table 5, AIS significantly promoted the increase of agricultural carbon emissions.
That is, when AIS increased by 1%, agricultural carbon emissions increased by 0.4426% on average
in the same direction. This shows that the plant products industry is the main source of agricultural
carbon emissions, and the increase of its proportion will correspondingly increase the total carbon
emissions. According to Figure 2d, AIS in Fuzhou had less influence on agricultural carbon emissions.
This is mainly due to the high proportion of the fishery industry in Fuzhou’s agricultural structure.
In 2017, the proportion of the fishery industry output in Fuzhou'’s agricultural sector output reached
58%. Moreover, although the proportion of the plant products industry in Zhangzhou is inferior to
Sanming, nearly 50%, the influence of AIS on agricultural carbon emissions was less. The results in
Figure 2d also show that the coefficient of AIS in Zhangzhou was 0.3665 in 2008, 0.2055 in 2012, and
0.0903 in 2017, which shows a large downward trend. The possible reason is that the cultivated land in
Zhangzhou is relatively concentrated and flat, which is suitable for large-scale mechanized farming.
That is, the mechanized level of the plant products industry in Zhangzhou has reached the leading
level. Thus, the development of the plant products industry would promote the increase of agricultural
carbon emissions, but the influence was less, which is closely related to the production mode of its
own planting industry.

AIS was second only to AVA in promoting agricultural carbon emissions. Thus, on the premise of
food security, the government should actively optimize the structure of agriculture, guide farmers
to reduce the planting of crops with high resource input and energy consumption, then increase
the proportion of low-carbon productions such as fruits, flowers, and vegetables. This can not only
improve the economic benefits, but also have a certain carbon-sink function. Besides, AIS played the
most important role in promoting agricultural carbon emissions in Xiamen and Sanming. Thus, Xiamen
and Sanming should further reduce the proportion of the planting industry. For instance, Xiamen can
take advantage of its coastal location to develop fisheries and flowers, while Sanming can continue to
develop special forestry industries such as Camellia oleifera, bamboo shoots, and forest tourism.

4.3.5. The Influence of DIR on Agricultural Carbon Emissions

DIR significantly inhibited the increase of agricultural carbon emissions. When DIR increased
by 1%, agricultural carbon emissions decreased by 0.0711% on average. As a whole, the relationship
between per capita disposable income of rural residents and environmental pollution in Fujian has
jumped over the turning point of the inverted “U” shape and reached the right side. It has entered the
stage that the more the agricultural economy develops, the smaller the agricultural carbon emissions.
Under these circumstances, on the one hand, the increase of disposable income of rural residents can
promote farmers to adopt modern machinery in agricultural production, improve the mechanization
level and agricultural production efficiency, and then achieve the effect of increasing production and
reducing carbon emissions. On the other hand, the increase of rural residents” disposable income
can encourage farmers to choose less polluting products, such as organic fertilizer and bio-fertilizer,
so as to reduce agricultural carbon emissions. As shown in Figure 2e, in 2008, only Xiamen’s DIR
was negatively correlated with agricultural carbon emissions. In 2012, the relationship between DIR
and environmental pollution in Fuzhou, Quanzhou, and Zhangzhou also surpassed the turning point
of the inverted “U” shape, and DIR was negatively correlated with agricultural carbon emissions.
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In 2017, except Sanming, the increase of DIR in the other eight prefectural-level cities all reduced
agricultural carbon emissions, indicating that DIR of Sanming had not reached the inflection point
of the environmental Kuznets curve, and the increase of DIR at this stage increased agricultural
carbon emissions.

The increase of DIR can significantly inhibit agricultural carbon emissions. The governments can
adopt diversified policies to increase rural residents’ disposable income. For areas with rural economic
underdevelopment, such as Longyan, Ningde, Sanming, and Nanping, the governments can reduce the
cost of agricultural production through fiscal policies and the promotion of agricultural mechanization.
The governments can also help these areas establish and develop leading industries through planning
guidance and technical services. For cities with large plains, i.e., Putian, Quanzhou, Zhangzhou,
and Fuzhou, the governments can guide the transfer of agricultural labor forces to non-agricultural
industries, make the agricultural labor force employ more agricultural production materials, and
expand the scale of agricultural operation, increasing the income of agricultural workers. In addition,
Xiamen has a relatively high degree of industrialization and urbanization. The government can
vigorously develop the processing industry of agricultural products and promote the integration of the
industries. In addition, in 2017, except Sanming, the relationship between DIR and agricultural carbon
emissions has jumped the turning point of the inverted “U” shape. Therefore, Sanming should transfer
its environmental Kuznets curve to the decline stage of the inverted “U” shape, that is to take into
account the dual responsibilities of income growth and agricultural carbon emission reduction.

4.3.6. The Influence of ALA on Agricultural Carbon Emissions

According to Table 5, ALA significantly promoted the increase of agricultural carbon emissions.
ALA mainly promoted the average increases of agricultural carbon emissions by 0.2873% when ALA
increased by 1%. As shown in Figure 2f, the positive impact of ALA on agricultural carbon emissions
mainly existed in the northern cities, especially in Ningde and Nanping. In comparison, Xiamen
and Quanzhou, which are located in the southern part, became the cities where arable land area
had a negative influence on agricultural carbon emissions in 2017. A possible explanation for this
is due to the high level of industrialization and urbanization in Quanzhou and Xiamen. In these
two cities, agricultural land has been gradually transformed into industrial land, and the arable land
area has been seriously insufficient. However, economic development and residents” demand for
agricultural products have led to the high investment and intensive use of arable land, which leads
to the increase of agricultural carbon emissions beyond the land carrying threshold. Besides, the
ALA of Putian and Longyan had little impact on agricultural carbon emissions, which is related to
the policy of “returning farmland to forestry” in the two cities. Farmland with serious pollution and
declining soil biological activity stopped being tilled and gradually turned into woodland. Meanwhile,
reclamation of exploitable barren hills could reduce the promotion of arable land area on agricultural
carbon emissions.

There exists a positive correlation between ALA and agricultural carbon emissions, but if the
government blindly returns farmland to forestry or converts agricultural land into industrial land, it
may also increase agricultural carbon emissions. Thus, the governments should develop and utilize
the land rationally and optimize the land use structure. For instance, the governments of Quanzhou
and Xiamen should control the total amount of industrial land to avoid the serious shortage of arable
land threatening food security and bringing about the large use of energy products. Similarly, Ningde
and Fuzhou can implement cultivated land protection measures to improve the ecological carrying
capacity of agricultural land, that is to stop cultivating land with serious pollution and the decline of
soil biological activity, and gradually turn it into woodland or grassland.
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5. Conclusions

This paper measured agricultural carbon emissions in Fujian Province based on carbon emission
coefficients released by IPCC and WRI, then applied GTWR to test empirically the influencing factors
on agricultural carbon emissions. As a whole, the main conclusions can be listed as follows:

(1) Average agricultural carbon emissions in Fujian decreased from 708.88 x 10% tonnes of carbon
in 2008 to 615.78 x 103 tonnes of carbon in 2017, and total agricultural carbon emissions showed a
fluctuating downward trend. The fluctuating evolution with the basic spatial pattern of “M” can
be divided into four stages: fluctuating increase, low speed reduction, rapid increase, and finally,
rapid reduction. In addition, among all kinds of carbon sources, agricultural land use had the largest
agricultural carbon emissions, followed by rice paddies and livestock manure storage, accounting for
40.92%, 34.48%, and 13.26% of the total agricultural carbon emissions in Fujian in 2017, respectively.

(2) From the perspective of direction, among factors affecting agricultural carbon emissions in
Fujian, RDI and DIR mainly had inhibitory effects, while ALF, AVA, AIS, and ALA had promoting
effects. From the perspective of degree, AVA had the greatest influence, followed by AIS and ALA.
When these three factors changed by 1%, agricultural carbon emissions would change by 0.6955%,
0.4426%, and 0.2873% on average, respectively.

(3) According to the GTWR regression results, the six factors selected in this paper had different
directions and different degrees of effects on the nine prefectural-level cities in Fujian Province. For
instance, ALF mainly inhibited agricultural carbon emissions in Fuzhou and Xiamen, but promoted
agricultural carbon emissions in other cities. Moreover, the effect of RDI and DIR on agricultural carbon
emissions in eastern Fujian was stronger than that in western Fujian. Besides, for Xiamen, the main
factor affecting agricultural carbon emissions was AIS, but for other cities of Fujian, the main factor
was AVA. Therefore, it is necessary to adopt different means to reduce carbon emissions according to
the actual situation.

(4) Combining the total amount of agricultural carbon emissions and the spatial and temporal
characteristics of the influencing factors in Fujian, some policy recommendations can be put forward
to achieve the ultimate goal of reducing agricultural carbon emissions.
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Abstract: With the convening of the annual global climate conference, the issue of global climate
change has gradually become the focus of attention of the international community. As the largest
carbon emitter in the world, China is facing a serious situation of carbon emission reduction. This
paper uses the IPCC (The Intergovernmental Panel on Climate Change) method to calculate the
carbon emissions of energy consumption in China from 1996 to 2016, and uses it as a dependent
variable to analyze the influencing factors. In this paper, five factors, total population, per capita GDP
(Gross Domestic Product), urbanization level, primary energy consumption structure, technology
level, and industrial structure are selected as the influencing factors of carbon emissions. Based on
the expanded STIRPAT (Stochastic Impacts by Regression on Population, Affluence, and Technology)
model, the influencing degree of different factors on carbon emissions of energy consumption is
analyzed. The results show that the order of impact on carbon emissions from high to low is total
population, per capita GDP, technology level, industrial structure, primary energy consumption
structure, and urbanization level. On the basis of the above research, the carbon emissions of China’s
energy consumption in the future are predicted under eight different scenarios. The results show that,
when the population and economy keep a low growth rate, while improving the technology level
can effectively control carbon emissions from energy consumption, China’s carbon emissions from
energy consumption will reach 302.82 million tons in 2020.

Keywords: energy consumption; carbon emission; IPCC method; factor analysis; trend forecast

1. Introduction

According to the fourth IPCC assessment report, the average surface temperature has risen by
about 0.74 °C in the past 100 years [1]. Global climate change is mainly caused by greenhouse gases
such as carbon dioxide and methane emitted by human activities. The warming effect of carbon
dioxide is the most clear. In order to reduce carbon dioxide emissions and the negative impact
of human activities on the environment, the international community has made many efforts in
this century. China is the largest developing country whose science and technology are inferior to
developed countries. Additionally, its economic development largely relies on traditional energy, so
the environmental problems and energy crisis need to be solved urgently in China [2]. China is also a
big energy-consuming country. Under the background of global low carbon emission reduction, China
has an obligation to contribute to the development of environmental friendliness.

As for the influencing factors of carbon emissions, scholars at home and abroad have made fruitful
research. The representative research results are driving force analysis based on the IPAT equation
and driving factor analysis based on the Kaya model. Ehrlich et al. put forward the IPAT equation,
believing that the driving force of carbon emissions is the comprehensive effect of population size,
the economic development level, and scientific and technological progress [3]. Dietz et al. combined
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stochastic theory with the IPAT model and established the STIRPAT model. He introduced the index
into the model so that the model could be used to analyze the non-proportional impact of human
factors on the environment [4]. Kaya, who is a Japanese scholar, established a mathematical model
to reflect the quantitative relationship between population, economy, energy, and carbon dioxide
produced by human activities. He believed that the total amount of carbon dioxide produced by
social and economic activities in a region was equal to the product of factors such as total population,
per capita GDP, energy intensity, and carbon emissions per unit energy consumption [5]. Wang et al.
decomposed the influencing factors of carbon emissions by logarithmic mean Dirichlet decomposition
(LMDI). The results showed that energy intensity was the most important factor to reduce carbon
emission [6]. Wang Feng and others used the logarithmic average Divisia index decomposition method
to study the growth rate of carbon dioxide emissions from China’s energy consumption. He thought
that per capita GDP growth was the greatest factor affecting the increase of carbon emissions, and that
the decrease of energy intensity in the production sector was the most important factor to restrain the
increase of carbon emissions [7].

/ Research framework ﬁ
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Figure 1. The research structure of the article.
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Research shows that different factors have different effects on carbon emissions, so it is necessary to
further explore the factors affecting carbon emissions. In view of the shortcomings of previous studies,
this paper uses the expanded STIRPAT model to analyze the impact of population size, affluence,
primary energy consumption structure, technology level, industrial structure, and urbanization level
on total carbon emissions. On the basis of factor analysis, the three most influential factors are taken
as variables to set different scenarios. In addition, the carbon emissions of China’s future energy
consumption under different scenarios are predicted and analyzed. The research structure of the article
is shown in Figure 1. Within the figure, b, k, ¢, i, f, and g are elastic coefficients. Descriptions of other
symbols are shown in following article.

2. Establishment of Influencing Factors Regression Model

2.1. Sources of Data

Energy consumption data are from the China Energy Statistics Yearbook (1996-2016) [8].
Population, GDP, urban population, and output value of secondary industry all come from the
“China Statistical Yearbook” (1996-2016) [9].

2.2. Introduction of the Modeling Method

2.2.1. Introduction of the Carbon Emission Calculating Method

This paper analyzes carbon emissions from energy consumption in China. Considering the
availability of data and the purpose of research, the IPCC method is adopted in this paper. The selected
energy consumption categories are raw coal, washed coal, coke, coke oven gas, other gas, crude oil,
gasoline, kerosene, diesel oil, fuel oil, liquefied petroleum gas, refinery dry gas, and natural gas. The
calculation formula is shown below.

n
CFZZF,‘XS,’XQXH (1)
i=1

F; is the total energy consumption per ton. s; is the standard coal coefficient for energy conversion,
as shown in Table 1. ¢; is the carbon emission factor of each energy source. The energy carbon emission
coefficients used in this paper refer to the various energy carbon emission coefficients in the 2006 IPCC
National Greenhouse Gas Emission Inventory Guidelines, as shown in Table 2. Since the statistical
unit of each energy consumption is not meaningful, u is the unit conversion coefficient.

Table 1. Standard coal coefficient for 13 energy conversions.

Standard Coal E T Standard Coal
Coefficient nergy lypes Coefficient

raw coal 0.7143 kerosene 1.4714

washed coal 0.9000 diesel oil 1.4571

coke 0.9714 fuel oil 1.4286

coke oven gas 0.5926 liquefied petroleum gas 1.7143

other gas 0.3214 refinery dry gas 1.5714

crude oil 1.4286 natural gas 1.2128
gasoline 1.4714
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Table 2. Carbon emission coefficient for 13 energy types.

Energy Types Carbon Emission Energy Types Carbon Emission
Coefficient Coefficient
raw coal 0.7559 kerosene 0.5714
washed coal 0.7559 diesel oil 0.5921
coke 0.855 fuel oil 0.6185
coke oven gas 0.3548 liquefied petroleum gas 0. 5042
other gas 0.3548 refinery dry gas 0.4602
crude oil 0.5857 natural gas 0.4483
gasoline 0.5538

2.2.2. Introduction of Influencing Factors Analysis Method

The IPAT (I = Human Impact, P = Population, A = Affluence, T = Technology) model is widely
used in the research of carbon emission related issues. The IPAT model was first proposed by American
ecologists Ehrlich and Commoner to study the relationship between human activities and the natural
environment. The major variables are population size (P), affluence (A), technology level (T), and
environment (I) [10]. It has been widely used by scholars to analyze the influencing factors of
environmental change since it is simple and easy to understand. However, the factors leading to
environmental problems are complex. The IPAT model only involves three influencing factors, which
cannot fully reflect the actual problems. The model can only analyze the problem by changing one
factor while keeping other factors fixed, so that the influence of independent variables on dependent
variables is proportional. However, this is not in line with the actual situation. In order to make up for
the deficiency of the IPAT model, York and other scholars put forward the STIRPAT model on the basis
of this model [11], which is expressed as follows.

I =aP?x A x Te )

In the formula, a is the coefficient of the model, b, ¢, and d are the index of population size, affluence
degree, and technology level, respectively, and e is the random error term. In practical application,
according to the STIRPAT model, the elasticity of influence factors on the environment is obtained by
taking a natural logarithm on both sides of the equation. The logarithmic form is as follows.

Inl=Ina+bInP+cnA+dInT +e 3)

Among them, b, ¢, and d are the elasticity coefficients of the population, affluence, and the level of
technology, and In a is a constant term.

In order to analyze the influencing factors of carbon emission intensity in China, this paper
introduces six indicators: total population, urbanization level, per capita GDP, technology level,
industrial structure, and primary energy consumption structure to extend the original STIRPAT model.
The expanded STIRPAT model is expressed below.

Inl=Ina+bInP+kInU+cInA+hInT+ fInS+ gInF +Ine 4)

Among them, I represents the total carbon emissions from China’s energy consumption, P
represents the total population, U represents the urbanization level, A represents the per capita GDP, T
represents the level of technology, S represents the industrial structure, and F represents the primary
energy consumption structure. b, k, ¢, h, f, and g are elastic coefficients, which indicate that, when P, U,
A, T, S and F change by 1%, the carbon emissions will change b%, k%, ¢%, h%, f %, and g%, respectively.

The explanations of each variable are given in Table 3.
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Table 3. The explanations of variables.

Variable Symbol Variable Description Unit
carbon emission I total carbon dioxide emissions ten thousand tons
population size P total population ten thousand

affluence A per capita GDP yuan
technology level T energy intensity -

urbanization level u urbanization rate %
industrial structure S the proportion of the .out'put value of %
the secondary industry
primary energy r the proportion of coal consumption in %
consumption structure primary energy consumption

Technology level refer to energy intensity. Energy intensity is energy consumption per unit of
GDP, which reflects the input-output characteristics of the energy system, and reflects the overall
efficiency of energy economic activities.

The urbanization level is expressed by the urbanization rate, that is, the proportion of urban
population to the permanent population. The urbanization level is one of the important factors affecting
carbon emissions. Cities are the concentration areas of population, transportation, industry, and other
resources, as well as energy consumption and carbon emissions [12].

The industrial structure is explained by the proportion of the output value of the second industry
in the total output value of that year. Among the three major industries, the secondary industry
consumes the largest energy, especially the heavy industry.

The structure of the primary energy consumption is the proportion of coal consumption in primary
energy consumption in that year. China’s energy consumption structure is still dominated by coal, and
coal and other fossil energy consumption is the main reason for carbon dioxide production.

In order to test whether there is an inverted U-shaped curve between economic growth and carbon
emissions, the In A in model (4) is decomposed into In A and (In A) 2[13]. The model is adjusted below.

Inl =Ina+bInP+klnU+c;InA+ cy(InA)> +hInT+ fInS+gInF +1Ine 5)

¢1 and ¢, are coefficients of the logarithm of per capita GDP and logarithm quadratic of per capita
GDP, respectively.

From Equation (5), the elasticity coefficient EEj4 of per capita GDP to carbon emissions from
energy consumption can be obtained as follows.

EEjp =c1+2cInA (6)

If ¢; isnegative, there is an inverted U-shaped curve between per capita GDP and carbon emissions.

In data regression, because the nature and unit of each variable are different, if the original data
is directly used for regression, it will result in unfair regression. Therefore, before using principal
component analysis, the data should be standardized. The standard processing method adopted in
this paper is the Z-score processing method [14].

2.3. Regression Model Results

2.3.1. Results of China’s Energy Consumption Carbon Emissions

According to the China Energy Statistics Yearbook (1996-2016) and Formula (1), China’s energy
consumption and carbon emissions from 1996 to 2016 are calculated as shown in Figure 2.
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Figure 2. China’s energy consumption and carbon emissions from 1996 to 2016.

As can be seen from the figure, since 1996, China’s total energy consumption has maintained a
growing trend. China’s total energy consumption in 1996 was 138.948 million tons, while, in 2016,
it was 435.819 million tons, which reached an increase of 213.66%. Similarly, carbon emissions from
China’s energy consumption were increasing. Before 2003, the growth rate was low and stable at 2%.
However, the growth rate in the three years from 2003 to 2005 exceeded 15%, of which the growth rate
in 2004 reached 26.25%. After 2005, the growth rate has decreased slightly, but the carbon emissions
are still increasing. From 111.263 million tons in 1996 to 410.052 million tons in 2016, it increased by
268.54% in 20 years.

2.3.2. Results of the Regression Model

The least squares regression is performed on the variables InP, InU, InA, (InA)?, InT, InS, and InF.
The model test results include the adjustable coefficient R? =0.71505, the F value is 43.31292, and the
p value is 0.00000 < 0.05. The multivariate regression parameters are estimated as shown in Table 4,
and the value p of the variables In A, In T, and In S are all greater than the significance level of 0.05.
The Variance Inflation Factor (VIF) is calculated on the basis of multiple explanatory variables to assist
the regression equation, and reflects the severity of multicollinearity between explanatory variables.
It is generally believed that there is a serious multiple collinearity between explanatory variables and
residual explanatory variables when VIF is greater than 10. Additionally, the multiple collinearity
between explanatory variables will affect the results of least squares regression [15]. In this study, the
variable VIF values for each indicator are shown in Table 4. There are multiple collinearity between
variables. The main methods to eliminate multicollinearity are partial least squares [16], principal
component regression [17], and ridge regression [18]. In this study, principal component regression
is used.

Before eliminating multiple collinearity by principal component regression, the independent
variablesIn P, In U, In A, (In A) 2 InT,In S, and In F should be tested by KMO (Kaiser-Meyer-Olkin)
test and Bartlett sphericity test. The two tests can confirm whether the above variables are suitable for
principal component regression [19]. This can be seen from Table 5. The result shows that KMO = 0.747.
The Bartlett sphericity test has a significant value less than 0.05, so we should reject the zero hypothesis.
Additionally, consider that the correlation coefficient matrix cannot be a unit matrix. Therefore, there is
correlation between the original variables. This indicates that these seven independent variables are
suitable for principal component analysis.
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Table 4. Estimation of multivariate regression parameters.

Variable Coefficient Standard Error t-Statistic Probability VIF
C 8.07x1078 0.0131 6.17x107° 1.0000 -

InP 1.8444 0.7040 2.6199 0.0212 2759.3270
InU -1.8825 0.7706 —2.4430 0.0296 2951.6632
InA -0.7634 3.5876 -0.2128 0.8348 1754.8335

(InA) 2 2.5871 3.3737 0.7669 0.4569 109.1082
InT -0.7992 0.1163 -6.8732 0.0000 75.0465
InS 0.0170 0.0668 0.2549 0.8028 24.1146
InF 0.0163 0.0841 0.1943 0.8489 19.7655

Table 5. KMO test and Bartlett sphericity test.

Kaiser-Meyer-Olkin Measure of Sampling Adequacy 0.747
Bartlett’s Test of Sphericity Approx. Chi-Square 502.132
df 21
sig 0.000

This paper uses SPSS22.0 software to carry out principal component analysis. The eigenvalues of
each factor must be greater than 1. The contribution rate of cumulative variance is shown in Table 6
and the principal component load matrix is shown in Table 7. The contribution rate of variance of
the first principal component extracted is 75.336% and, of the first two, is 97.787%, which means it
meets the requirement of principal component extraction. Therefore, this study extracts two principal
components Z1 and Z2 after seven independent variables of principal component analysis.

Table 6. The cumulative variance contribution rate.

Percentage of Percentage of Square

Component  Eigenvalue Variance of Initial (I:)umulahve Total Sum Loading Variance Cumulative
Eigenvalue ercentage Extracted Percentage
8
1 5.273 75.336 75.336 5.273 75.336 75.336
2 1.572 22.451 97.787 1.572 22.451 97.787
3 0.137 1.958 99.745
4 0.011 0.152 99.897
5 0.007 0.100 99.997
6 0.000 0.003 100
7 7.378x107° 0.000 100

Extraction method: Principal component analysis.

Table 7. Principal component load matrix.

Variable 1 2
InP 0.989 0.124
Inu 0.987 0.146
InA 0.989 0.096

(InA)?2 0.990 0.072
InT 0.991 —0.057
InS —0.611 0.750
InF 0.084 0.977

According to Table 7, we can get the principal component coefficient, as shown in Table 8. With
the result of principal component analysis, the regression equations of Z1 and Z2 can be established.

Z1 =0.187InP* +0.187InU" 4 0.188In A* + 0.188(lnA*)2 +0.188InT* - 0.1881In S* + 0.016 In F*
Z1 =0.079InP* +0.093InU* + 0.061In A" + 0.046(1r1A*)2 -0.036InT" 4 0.477In S* + 0.622In F*
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Establishing regression equation as follows,
InI* = By + 121 + poZ2 )
Po is a constant term. 1 and f3, are coefficients.

Table 8. Principal component coefficient.

Variable 1 2
InP 0.187 0.079
Inu 0.187 0.093
InA 0.188 0.061

(InA)? 0.188 0.046
InT 0.188 ~0.036
InS -0.116 0.477
InF 0.016 0.622

The regression result is shown in Table 9. From Table 9, we can see that VIF is 1.000, so there is no
multiple collinearity between the extracted two principal components. After calculating the score, we
make a regression analysis with a standardized dependent variable In I* and the adjusted R-squared is
0.823. The P value of the T-test of the constant term () is not significant, but the coefficient is very
small and can be neglected. Therefore, it has no influence on this study. The T-test of Z1 and Z2
showed a significant difference.

Table 9. Component coefficient.

Non-Standardize8tandard Standardized

Coefficient Coefficient Error Coefficient t Significant VI
Bo - 0.046 - 0 1.000 -
Z1 0.769 0.047 0.793 20.450 0.000 1.000
z2 0.316 0.047 0.325 2.961 0.008 1.000

* means at 0.1 level. Therefore, the regression result is as follows.

InI* = 079371+ 0.32572
= 0412InP* +0.711 In U* + 1.656 In A* + 1.826(In A*)?
42266InT* +0.752In §* — 0.205 In F*

The above formula is a regression equation for standardized variables. According to the principle
of standardization, the final regression equation can be obtained by restoring the data.

In] =8.011InP +0.505In U+1.314In A + 0.106(lnA)2
+1.184InT +1.026In S + 0.816 In F — 20.513

The regression results show that the order of impact on carbon emissions from high to low is
population, per capita GDP, level of science and technology, proportion of secondary industry, primary
energy consumption structure, and urbanization level. Their elasticity coefficients are 8. 011, (1.314 +
0.212In A), 1.184, 1.026, 0.816, and 0.505, respectively. Among them, A is per capita GDP.

The coefficient of (In A)? is positive, which indicates that there is no inverted U-shaped relationship
between China’s economic growth and carbon emissions. With the economic growth, environmental
pressures are increasing day by day, and there is no equilibrium inflection point yet.
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3. Prediction of Carbon Emission Trend under Different Scenarios

3.1. Introduction of Prediction Model

Based on the simulation results of the STIRPAT model, the future carbon emissions of China are
predicted. The prediction formulas are shown below.

I =exp(8.011InP +0.505In U + 1.134In A + 0.106(InA)* +1.184InT ®)
+1.0261n S + 0.816In F — 20.513)
According to the historical population, per capita GDP, primary energy consumption, energy
intensity, the proportion of secondary industry, and urbanization rate, this paper uses the above model
to simulate the carbon emissions of China’s historical energy consumption, and makes regression
between the simulated and historical values. The comparison chart is shown in Figure 3. The results
show that the simulated R? reaches 0.9984. Therefore, it is feasible to use the above model to forecast
the carbon emissions of energy consumption in China in the future.
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Figure 3. Historical and forecast values of China’s energy consumption carbon emissions.
3.2. Scenarios Setting

In the factor analysis above, population, per capita GDP, and the technological level are the three
factors that have the greatest impact, respectively. Therefore, taking these three indicators as variables
in the scenario and growth rate as scenario conditions, the specific scenario settings are shown in
Table 10.

Table 10. Scenario settings.

Scenario Population Per Capita GDP Technological Level
scenario 1 low growth low growth high growth
scenario 2 low growth low growth low growth
scenario 3 high growth low growth high growth
scenario 4 high growth low growth low growth
scenario 5 low growth high growth low growth
scenario 6 low growth high growth high growth
scenario 7 high growth high growth low growth
scenario 8 high growth high growth high growth
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3.3. Prediction of Carbon Emission Trend

According to the Development Strategy of the Development Research Center of the State Council
and the Report of the Ministry of Regional Economic Research on the Forecast and Analysis of the
Speed of Urbanization in China [No. 99 of 2017], the growth rate of urbanization in China slowed down
from 2016 to 2050. The urbanization rates in 2020, 2030, 2040, and 2050 were 60.34%, 68.38%, 75.37%,
and 81.63%, respectively [20]. In this way, we can deduce that the growth rate of the urbanization rate
in each stage is 0.793%, and then calculate the urbanization rate of China in the coming years.

According to the national energy strategic action plan and related research, the slowdown of coal
demand growth will become a new normal for the development of the coal industry. By 2020, 2030,
2040, and 2050, the proportion of coal in China’s primary energy structure will remain 62%, 55%, 53%,
and 50% [21]. Similarly, it can deduce the primary energy consumption structure in different stages,
and calculate the primary energy consumption structure in future years in China.

According to the Long-term Forecast of China’s Economy in the 21st Century, the proportion
of the secondary industry output value to GDP in 2020, 2030, 2040, and 2050 is 50.2%, 48%, 45.3%,
and 42.1%, respectively [22]. According to the same method mentioned above, we can predict the
proportion of secondary industry output value in China in the coming years.

Based on the historical data of China from 1996 to 2016, the population growth rate and per
capita GDP growth rate of each year are calculated. The maximum and minimum growth rates of
population growth rate (1.13% vs 0.39%)and per capita GDP growth rate (13.64% vs. 6.12%) are used
as their respective high and low growth rates, respectively, to estimate China’s future population and
per capita GDP. The maximum and minimum of the energy intensity decline rate (14.26% vs. 1.75%)
are selected as the high and low growth rates of technology, respectively. Additionally, the future
technological level of China is estimated.

Based on the above scenarios, the carbon emissions from China’s energy consumption are
predicted by using Formula (8). The calculation results are shown in Figure 4. Table 11 provides a
forecast of carbon emissions from China’s energy consumption in 2020, 2030, 2040, and 2050.
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Figure 4. Prediction trends of carbon emissions in different scenarios.

100



Energies 2019, 12, 3054

Table 11. Prediction of China’s energy consumption carbon emissions in different scenarios.

Scenario 2020 2030 2040 2050
S1 302.81 359.96 362.27 692.05
S2 337.72 552.06 704.77 835.34
S3 341.82 429.13 663.62 1123.48
S4 354.29 579.03 1285.48 1963.68
S5 355.61 562.59 1188.6 2103.72
S6 327.33 437.52 770.38 1351.39
S7 316.47 603.37 1547.23 3527.45
S8 368.43 733.56 2003.69 5532.06

Unit: million tons.

4. Discussion

4.1. Discussion on Influencing Factors

Population size has the highest impact on carbon emissions, and the elasticity coefficient is as
high as 8.011. It shows that if the population increases by 1%, the total carbon emissions will increase
by 8.011%. China has a large population base, and its lifestyle and production activities depend on
traditional energy. Population size has the most direct impact on carbon emissions. China is the largest
manufacturing concentration country in the world. Developed countries have set up high-pollution
and high-energy-consuming manufacturing links in China. Labor-intensive and high-carbon industries
make the environmental pressure worse.

Per capita GDP is another important factor affecting China’s energy consumption carbon
emissions. For every 1% increase in per capita GDP, energy consumption carbon emissions will
increase (1.314 + 0.2121 n A). It is the second important factor affecting China’s energy consumption
carbon emissions. This shows that China’s economic development and social life are highly dependent
on energy consumption.

The elasticity coefficient of the impact of technology level on carbon emissions from energy
consumption is 1.184. For every 1% increase in energy intensity, carbon emissions from China’s
energy consumption will grow by 1.184%. China’s energy consumption structure is dominated by
coal, which leads to a large consumption of fossil energy and a large amount of carbon emissions when
GDP increases.

Similarly, the industrial structure also plays an important role in China’s energy consumption
carbon emissions. Regression results show that every 1% increase in the proportion of secondary
industry output value will generate 1.026% carbon emissions. In China’s industrial structure, heavy
industry and manufacturing industry occupy the main position. This kind of industrial structure with
high energy consumption and emission has a negative impact on reducing carbon emissions from
energy consumption in China.

The impact coefficient of primary energy consumption structure, especially coal consumption, on
China’s carbon emissions is 0.816%. The current situation of energy consumption in China is that coal
accounts for 60% of primary energy. China is one of the few countries in the world where coal is the
most important energy resource. It is also one of the most polluted areas in the world because of coal
combustion. The long-term high proportion of coal resources in energy consumption is also one of
the main reasons for China’s high carbon emissions. Therefore, China needs to optimize its energy
structure and vigorously develop low-carbon energy.

The level of urbanization is also a factor contributing to the increase of carbon emissions from
energy consumption in China. The regression results show that an increase of 1% in the urbanization
level will result in an increase of 0.505% in carbon emissions. From 29.37% urbanization in 1996 to
57. 37% in 2016, China’s urbanization level has developed rapidly in the past 20 years. Yet, with
the advancement of urbanization, the demand for energy in urban buildings, transportation, and
residential buildings is also increasing, which increases China’s carbon emissions.
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4.2. Discussion on Trend Prediction

As can be seen from Figure 4, in scenario 1, when China maintains low population growth rate,
low per capita GDP growth rate, and high-tech growth rate in the future, the growth rate of carbon
emissions from energy consumption in China is the slowest. By 2050, the carbon emissions will be
692.05 million tons. In scenario 8, when the population and per capita GDP keep a high growth,
and the technological progress rate keeps low growth, the growth of carbon emissions from energy
consumption will be the fastest. There will be 5532.06 million tons of carbon emissions by 2050. It is
also eight times higher than the result in scenario 1. By comparing Scenario 2, Scenario 3, and Scenario
6 with Scenario 1, we can find that, when the population keeps low growth, the per capita technological
level keeps high growth, and the per capita GDP keeps high growth, while the growth rate of carbon
emissions from energy consumption is the fastest. While, when the population and per capita GDP
keep a low growth, the growth rate of energy consumption is the slowest when the technological level
keeps a low growth. Therefore, reducing carbon emissions from China’s energy consumption should
enhance the technological level and reduce energy intensity.

Comparing Scenario 4 with Scenario 8, when the population keeps a high growth and the
technological level keeps a low growth rate, the carbon emissions of energy consumption can be
effectively reduced by reducing the growth rate of per capita GDP. Therefore, in order to control
China’s future carbon emissions, it is necessary not only to improve energy utilization technology and
control the population, but also to reduce the growth rate of per capita GDP. This means that China
should slow down its economic development in the future, change its mode of economic growth, and
make its economic growth tend to a new normal.

5. Conclusions

First, this paper calculates the carbon emissions of energy consumption in China from 1996 to
2016, and then uses the STIRPAT model to decompose the influencing factors of carbon emissions of
energy consumption and analyze the influence degree of different factors. This combines different
scenarios to predict the future trend of carbon emissions from energy consumption in China.

(1) During the two decades from 1996 to 2016, China’s energy consumption and carbon emissions of
energy consumption showed an increasing trend. Among them, energy consumption increased
by 213.66% and carbon emissions of energy consumption increased by 268.54%.

(2) Among the factors affecting carbon emissions from energy consumption in China, population
factors have the highest impact on carbon emissions, with an elasticity coefficient of 8.011.
The impact of per capita GDP on carbon emissions is second only to that of the population.
The high demand for energy in China’s economic development has greatly increased China’s
carbon emissions from energy consumption. The order of impact degree is population quantity >
per capita GDP > technology level > industrial structure > primary energy consumption structure
> urbanization level.

(3) There is no inverted U-shaped relationship between China’s economic growth and carbon
emissions. Therefore, with economic growth, environmental pressures are increasing, and there
is no equilibrium inflection point.

(4) By forecasting the carbon emissions of China’s future energy consumption in different scenarios,
we can see that the growth rate of China’s energy consumption carbon emissions is the slowest
while maintaining low population growth rate, low per capita GDP growth rate, and a high-tech
growth rate. When in the scenarios of high population growth rate, high per capita GDP growth
rate, and a low-tech growth rate, the carbon emissions are the highest. Therefore, in order to reduce
China’s energy consumption carbon emissions, we should not only control the population size
and control the speed of economic development, but also improve energy utilization technology
and reduce the dependence of economic development on energy.
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Abstract: The present study attempts to explore the correlation between carbon dioxide emissions
(CO; e), gross domestic product (GDP), land under cereal crops (LCC) and agriculture value-added
(AVA) in Pakistan. The study exploits time-series data from 1961 to 2014 and further applies descriptive
statistical analysis, unit root test, Johansen co-integration test, autoregressive distributed lag (ARDL)
model and pairwise Granger causality test. The study employes augmented Dickey—Fuller (ADF)
and Phillips—Perron (PP) tests to check the stationarity of the variables. The results of the analysis
reveal that there is both short- and long-run association between agricultural production, economic
growth and carbon dioxide emissions in the country. The long-run results estimate that there is
a positive and insignificant association between carbon dioxide emissions, land under cereal crops,
and agriculture value-added. The results of the short-run analysis point out that there is a negative and
statistically insignificant association between carbon dioxide emissions and gross domestic product.
It is very important for the Government of Pakistan’s policymakers to build up agricultural policies,
strategies and planning in order to reduce carbon dioxide emissions. Consequently, the country
should promote environmentally friendly agricultural practices in order to strengthen its efforts to
achieve sustainable agriculture.

Keywords: carbon dioxide emissions; cereal crops; gross domestic product; ARDL model; granger
causality; Pakistan

1. Introduction

The changes in climate affect the productivity of the agriculture sector through a variation in
global temperatures, the variability of precipitation and other related factors. It is estimated that
about 15%-30% of the output of agriculture would be affected negatively by 2080-2100 [1]. A further
decline in crop yield may occur in Africa, Latin America and Asia because adaptive measures are
overlooked. The Fourth Assessment Report of the Intergovernmental Panel on Climate Change stated
that it would cost about 5%-10% of GDP for Africa to take adaptation measures to combat climate
change [2]. Moreover, they predicted that about a 50% drop in agricultural crops would be observed by
2020 and the crop revenue may further decrease even up to 90% by 2100. The variation in the pattern of
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rainfall has also affected more than one billion people in South Asia [3]. Researchers including [4-15]
and many others have shown that climate change poses threats to agriculture, food and water supplies,
especially in the developing economies. Most of the models indicate that climate variation would
adversely affect the yield of wheat in South Asia. The Intergovernmental Panel on Climate Change
(IPCC) 4th Assessment Report put forth that in South Asia the crop yield would reduce proportionately
from 1820 m? to 1140 m? from 2001 to 2050.

The increasing population of Pakistan and non-assurance of food security for its society is
a challenge, since the residents are expected to double by 2050 [16]. Climate change and adaptation
strategies are increasingly becoming the main focus of scientific research these days, for instance, the
effect on the production of crops such as wheat, rice and maize [17]. The vulnerability index of the
fluctuation of climate in Pakistan is remarkably rising in comparison to numerous countries around
the globe, due to variable climatic conditions. Of late, Pakistan has been confronted with a lot of
climatic variations, for instance; a rise in temperature, changes in the pattern of precipitation, floods,
earthquakes and weather shifts. The development of the agriculture sector in developing countries
is hampered by increasing climatic risk and projected changes in climate over the 21% century [18].
Pakistan is affected the most by climate change owing to inadequate and substandard infrastructure and
limited adaptive capacity [19]. It is projected that by 2050, there would be a 2%-3% rise in temperature
causing a significant variation in the pattern of rainfall [20]. The country is ranked 8 among the
most negatively affected countries by adverse weather conditions and climate change over the period
1995-2014 as reported by the Global Climate Risk Index (GCRI) [21]. The productivity of the main
crops including wheat, rice, cotton and sugarcane and rural livelihoods has been affected significantly
due to climate variability and extreme events over the last two decades [22]. The vulnerability of
rural livelihood to climate change can be seen from the historic floods during 2010-2014 and severe
droughts from 1999 to 2003 [22]. Greenhouse gas emissions may cause an unproductive effect on the
environment up to a great extent and this issue becomes substantially critical for all countries in the
world. Recently, many researchers have been paying attention to the carbon dioxide emissions as
one of the essential causes of global warming [23-26]. There has been an unprecedented increase in
population, agricultural production, energy demand and economic growth to achieve food security,
and carbon dioxide emissions have also increased over the decades [27-30].

In this study, we conducted an in-depth investigation of the entire country (Pakistan) which
explores the variety of responses of the carbon dioxide emissions (CO; e), gross domestic product
(GDP), land under cereal crops (LCC) and agriculture value-added (AVA) based on historical data
during 1961 to 2014. The autoregressive distributed lag (ARDL) model is employed simultaneously to
observe the effect of the CO; e, GDP, LCC and AVA in order to identify a certain correlation between
them. This enabled us to determine the long-run relationships among several variables [31]. Johansen
and Juseliu’s estimation to carefully investigate this subject in-depth. In addition, we also conducted
generalized impulse response functions and variance decomposition methods to find out the effects of
shocks on the adjustment path of the variables.

The rest of the study is structured as follows: the second section entails a brief part of the literature
review. The third section is about the research methodology refers to the processing for the data
collection. The fourth section is the results and discussion part and the final section is the conclusion
and policy recommendations of the study in hand.

2. Literature Review

A wide range of literature is accessible on determining the factor of economic growth, agricultural
production and the emissions of carbon dioxide. The long-run equilibrium relationship between
carbon dioxide emissions, income growth, energy consumption and agriculture for Pakistan from 1971
to 2014 have been verified and tested. The results confirmed that there were bidirectional causalities
between GDP, agriculture, energy use and CO, emissions. They also found that AVA had a positive
inelastic effect on CO, emissions and that GDP had a positive elastic impact on CO, emissions [32].
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The previous study investigated the impact of AVA and per capita renewable energy consumption
on carbon dioxide emissions in Asian countries. They found that agricultural and renewable energy
had negative impacts on CO, emissions [33]. Evidence from the study revealed long-run equilibrium
association flowing from consumption of electricity industrialization, gross domestic product and
carbon dioxide emissions [34]. The study employed the vector error correction model (VECM) and
ordinary least squares (OLS) regression revealed the effect of population progression, energy intensity
and GDP on carbon dioxide emissions in Ghana. The study provided evidence of the existence of
long-run equilibrium association flowing from population growth, energy intensity and gross domestic
product to carbon dioxide emissions. The study also revealed that there was a bi-directional causality
among energy consumption and carbon dioxide emissions [35]. Another study in Ghana investigated
the association between population growth, use of energy, gross domestic product and carbon dioxide
emissions by using both ARDL regression analysis and VECM. The study found that there will be
fluctuation in carbon dioxide emissions due to the use of energy in the future. Evidence from the
study showed a unidirectional causality running from carbon dioxide emissions to the use of energy
and population [29]. Another study in China employed the ARDL model, the Granger causality test
based on VECM, and impulse response and variance decomposition to test the relationship between
CO; emissions, energy consumption and economic growth in the agricultural sector. The estimated
results illustrated that there is bidirectional causality between agricultural carbon emissions and
agricultural economic growth in both the short run and long run and there exist unidirectional causality
from agricultural energy consumption to agricultural carbon emissions and agricultural economic
growth [36]. The empirical results derived from the study confirmed the validty of the environmental
Kuznets curve (EKC) hypothesis for three countries namely France, Portugal and Spain during the
period under the study in the long-run as well as in short-run with exception the case of Portugal [37].

It is evident that a rise in temperature can have a devastating effect on the productivity of the
agriculture sector, food security and farmers’” incomes. This phenomenon varies in tropical and
temperate zones. In the middle- and the high-latitude zones, the output of crops is anticipated to
increase and spread northwards and vice versa for several other countries in tropical regions [38].
It has been found that high latitudes can cause an expansion in the production by nearly 10% due
to a 2 °C rise in temperature, whereas it reduced production just by the same percent in the low
latitude. Considering the inevitable effect of contemporary technology, it is projected that an increase
in temperature would increase the productivity of yield by 37% and 101% by 2050s for the Russian
Federation [39].

As compared to other developing countries, the effects of escalating temperature on agriculture
are harsher in Sub-Saharan Africa [40]. It has been observed that some important climatic conditions
such as temperatures and rainfall had persisted at their pre-1960 status, then the gap of agricultural
production between different developing countries and Sub- Saharan Africa at the end of the 20th
century would have remained only 32% of the existing shortfall. A study for the period of 1980-2005
in Nigeria indicated that temperature exerts a negative effect while rainfall has a positive effect on
agricultural production [41].

Another study developed a two-chain logarithmic mean divisia index (LMDI) decomposition
method and derived the results that technology, distribution and population effects could not
suppress China’s agricultural carbon dioxide emissions simultaneously in most years [42]. Developed
countries have the ability to maintain a minimum level of technology for the improvement of living
standards and increasing agricultural productivity [43]. Generally, developed countries are capable of
counterbalancing the negative consequences of climate change. Developed states usually have a low
level of susceptibility but a high level of adaptive ability, which itself has a role of technological expertise,
dissemination and supply of assets, and human social and political capital [44]. The developed world
has very standard levels of water filtration and sanitation; on the other hand, developing countries
have insecure and unreliable water supplies and often the sanitation system is non-satisfactory and
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below the margin. The concept of crop insurance is utterly missing in developing countries to protect
their farmers from the negative consequences of climate change which may destroy their livelihoods.

Since the last decade, the country’s (Pakistan) per capita GDP has observed a diverse or unlike
trend and lack of equilibrium. During the period from 2005 to 2014 the per capita GDP increased
from 974.5% to 1111.2% respectively. In 2011, the government gave great importance ton upgrading
the country’s economy and can be witnessed that per capita GDP has consistently increased during
the period 2011 to 2014. During the period of 2011 to 2014, even though there were several types of
socio-economic challenges such as energy crises, a war against terrorism and poverty, still there was
a rise of 64.71% in per capita GDP (Pakistan Economic Survey 2017). In consequence, it is evident that
the Government of Pakistan has taken actions to raise economic growth and enriched living conditions.

3. Methodology and Data Collection

3.1. Data Sources and Description

The fundamental purpose of the aforementioned study is to find out the relationship between
CO; e, GDP, LCC and AVA in Pakistan. The study adopted the time series data spanning from
1961 to 2014 using the ARDL method to test the relationship between study variables. To fulfill the
study objectives, the data sets of the selected variable in the study were procured from the Food
and Agriculture Organization Corporate Statistical Database FAOSTATS (www.fao.org) and World
Development Indicators (http://data.worldbank.org).

Four variables were considered throughout the analysis where carbon dioxide emissions CO; e
(kt) was taken as a dependent variable and explanatory variables include GDP (current US$), LCC
(hectares) and AVA (percentage of GDP). This study employed the actual CO, emissions instead of
potential CO; (i.e., CO; eq.). Previous studies [29,45,46] put into practice the actual CO, emissions
which show that the use of actual CO;, emissions improves the efficiency of the model. Table 1 shows
the source of data and variable description. The trend analysis of the study variables are given Figure 1.

Table 1. Detail of variables.

Variable Name Abbreviation Unit of Measurement Source
Carbon dioxide emission COz e Kilotons (kt) FAOSTAT (2018)
Gross domestic product GDP Current US $ WDI (2018)
Land under cereal crop LCC Hectares WDI (2018)
Agriculture value added AVA Percentage of GDP WDI (2018)
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Figure 1. Cont.
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Figure 1. Trend of the study variables.

3.2. Econometric Model

The current study entails the co-integration and autoregressive distributed lag model to find out
the association between carbon dioxide emissions, gross domestic product, land under cereal crop
and agriculture value-added in Pakistan. The following steps show our study analysis. In the first
step, we have to find out the stationarity in the time series data. For this objective, we conducted the
augmented Dickey-Fuller (ADF) test [47] and Phillips and Perron (PP) unit root tests [48]. The step
second was to find out the optimal lag length of the study variables. To determine the lag lengths we
used the Akaike information criterion (AIC) [49] or Schwarz information criterion (SIC) [50]. In the
third step, we estimated the Johansen co-integration test to seek the long-run relationship between
the study variables. Were there a co-integration, then we moved to the next step. In the last step,
were a co-integration to exist then we estimated an ARDL model. Furthermore, we also estimated the
pairwise Granger causality test to establish causal links between variables. The econometric model
used in this study is given as:

COy ot = f(GDPy, LCCy, AVA;) (1)

where in the above equation (1), CO; e is the carbon dioxide emissions, GDP is the gross domestic
product, LCC is the land under cereal crop, AVA is the agriculture value-added and ¢ is the time period.
We then applied the Cobb Douglas production function in its stochastic form as:

COy ot = aga1GDPy, 0pLCCy, a3AVA; )

Then we employed the log-linear model, for this purpose, we log-transform the above model to
get the linear regression model which is given as:

108(CO2 o) = a0 + ), loge(1 GDPy, asLCCy, a3AVAy) 3)

Then we transformed the variable’s value into their natural logarithm form to find out the long-run
association between the study variables. This transformation of the data into their natural logarithm is
to ensure the results were efficient, reliable and consistent. Equation (4) shows the logarithm form for
the study variables.

InCOy ot = ag + a1InGDPy + aplnLCCy + a3lnAVA; + 4)

where [n1CO; o4 InGDPy, InLCC; and InAVA; expressed the natural logarithm of carbon dioxide emissions,
gross domestic product, crop production index, land under cereal crop and agriculture value-added,
respectively. In the above equation (4), t =1, ... ... .N represents the time period and ¢; is the error
term. The parameters ag, a1, az,and az measure the long-run elasticity of carbon dioxide emissions
with respect to the real GDP, land under cereal crop and agriculture value-added respectively.
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4. Results and Discussions

4.1. Descriptive Analysis and Correlation Matrix

The descriptive analysis shows mean, coefficient of variation, skewness, kurtosis and normality of
distribution over the study variables. Table 2 provides the descriptive analysis and the kurtosis results
display that all the variables exhibit platykurtic distribution. The results of the skewness indicate that
both carbon dioxide emissions and agriculture value-added have long right-tail distribution while the
remaining variables indicate long left-tail distribution. The outcome from the Jarque—Bera test shows
that we accept the null hypothesis of normal distribution at the 5% level of significance for all variables
except agriculture value-added. The mean results show that the gross domestic product generate
a high value of 24.21. The standard deviation analysis show that the gross domestic product is also the
most explosive variable with the highest deviation of 1.19 followed by carbon dioxide emissions.

Table 2. Descriptive statistics and correlation matrix of all the variables.

Variables LnCO; e LnGDP LnLCC LnAVA
Mean 10.88533 24.21358 16.22058 3.290421
Median 10.92998 24.30179 16.24839 3.222102
Maximum 12.02154 26.22191 16.45170 3.746831
EMinimum 9.592673 22.12312 15.87711 3.006656
Std. Dev. 0.801811 1.193248 0.152553 0.196416
Skewness 0.002686 —0.087221 —0.548516 0.734181
Kurtosis 1.510778 1.953711 2.226820 2.385217
Jarque-Bera 4.990073 2.531587 4.052896 5.701605
Probability 0.082493 0.282015 0.131803 0.057798
Correlation
LnCO; e 1.000000
LnGDP 0.978197 1.000000
LnLCC 0.956098 0.973567 1.000000
LnAVA —0.884455 —0.897413 —0.930411 1.000000

4.2. Lag Selection for Vector Error Correction Model

After the unit root test, in the next step we need to find out the optimum lag length for co-integration
analysis by using the AIC criteria [49] or SIC [50] criteria. The AIC results in Table 3 indicate that the
most suitable lag value is lag 2 for the model.

Table 3. Selection of lag length.

Lag LogL LR FPE AIC SC HQ
0 112.9309 NA 1.51e-07 —4.357238 —4.204276 —4.298989
1 346.9699 421.2700 2.46e-11 —-13.07879 —-12.31398* —-12.78755*
2 366.4259 31.90793* 2.17e-11* —-13.21704* —11.84038 -12.69280
3 380.8168 21.29858 2.39e-11 —13.15267 -11.16417 —12.39544
4 395.6585 19.59104 2.67e-11 —13.10634 —10.50599 -12.11611

* indicates lag order selected by the criterion; e: stands for exponential constant; LR: sequential modified LR
test statistic (each test at 5% level); FPE: Final prediction error; AIC: Akaike information criterion; SC: Schwarz
information criterion; HQ: Hannan-Quinn information criterion.

It is important to find out how many lags to be used in ARDL model. Therefore, to figure out
the optimal number of lags for the model, the unrestricted vector autoregression (VAR) lag selection
criteria is tested. Table 3 formulates the lag selection criteria for the model but the most commonly
employed criteria are AIC and SIC. The previous study used AIC for a small sample size [51].
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4.3. Unit Root Test

Before estimating the co-integration analysis, it is important to determine where the study variables
are stationary at first difference i.e., I(1). The stationarity of the variables is tested using the ADF
test [47] and PP test [48] in order to have a robust result and avoid spurious regression results. Table 4
shows the unit root test results. Our findings in Table 4 indicate that all the study variables are
non-stationary at a level. However, the variables became stationary at their first difference and rejected
the null hypothesis that unit root exists at first difference. The results show that all the study variables
are stationary at first difference which means that variables are integrated at I(1). Since the variables
entailed in the study are I(1), so this indicates the spurious regression problem occurs here. Hence it is
important to find out the co-integration test among the time series variables.

Table 4. Unit root test (Augmented Dickey—Fuller).

Akaike Info Criterion Philips-Perron
Variables LEVEL 15T DIFFERENCE LEVEL 15T DIFFERENCE
Trend Trend Trend Trend
Intercept and Intercept and Intercept and Intercept and
Intercept Intercept Intercept Intercept
LnCO, e 063771 2107644  -5915923 -2.908476 —0.809440 —1.554595 -5928838 -5.897317
2 0.8528 0.5292 0.0000 0.1689 0.8082 0.7974 0.0000 0.0001
LnGDP -0.512237 -3.102790 —6.128411 —6.074545 —0.501008 —2.682416 —6.117041 —6.043380
0.8803 0.1165 0.0000 0.0000 0.8825 0.2478 0.0000 0.0000
LnLCC -1.845078 —3.097552 -7.310103 -5.882637 -2.177064 —3.058810 -7.399540 -7.703130
0.3552 0.1175 0.0000 0.0001 0.2168 0.1268 0.0000 0.0000
LnAva 2017304 -1487037 —6.708506 —4.529780 2720270 -1506937 —6.708506 ~—7.242419
0.0959 0.8218 0.0000 0.0039 0.0773 0.8148 0.0000 0.0000
Conclusion  Non-stationary Stationary Non-stationary Stationary

4.4. Johansen Co-Integration Test

A summary of the Johansen co-integration [52] test is presented in Table 5. The purpose of
the Johansen co-integration test is to find out the long-run relationship between the study variables
in the model. Maximum eigenvalue and trace statistic tests [53] were conducted to determine the
co-integration among the study variables. The results of the maximum eigenvalue and trace statistic
showed 4 co-integrating equations at the 5 percent level. Here, the results of co-integration would
determine whether we have to apply a VAR model or VECM model.

Table 5. Results of Johansen co-integration test.

Rank Test (Trace) Rank Test (Maximum Eigenvalue)
Hypothesized Trace 0.05 Max-Ei
. . -Eigen 0.05

No. of CE(s) ~ Eigenvalue Statistic Critical Value Prob. Statistic Critical Value Prob.
None 0.423351 52.89693 47.85613 0.0156 28.07661 27.58434 0.0432
Atmost1 0.300607 24.82032 29.79707 0.1679 18.23469 21.13162 0.1213
At most 2 0.121100 6.585634 15.49471 0.6263 6.583293 14.26460 0.5395
At most 3 0.0000459 0.002341 3.841466 0.9593 0.002341 3.841466 0.9593

4.5. Autoregressive Distributed Lag (ARDL) Bound Testing of Co-Integration

The current study uses an ARDL bound testing approach suggested by [54] to find out both
short-run and long-run association of the CO, e, GDP, LCC and AVA. The ARDL bound testing
method is appropriate for those models in which there is a mixture of I(0) and I(1) variables. Another
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characteristic of this model is that it is appropriate for a small sample size as our sample size is only
52 [54].

After the estimation of unit root testing which shows that all variables are integrated at I(1),
now we carried out the ARDL method of co-integration (bounds testing) to estimate the relationship
between the selected variables in this study. The results of the ARDL bound testing are reported
in Table 6. The results indicate that the f-statistic value (5.805114) is greater than the 10% and 5% upper
critical values of 1(0) bound. The results of the bounds testing validate significant long-run relationships
among variables and showing the rejection of null hypothesis of no co-integration association among
LnCO; e, LnGDP, LnLCC and LnAVA.

Furthermore, the study estimates the AIC to prefer the optimal model by employing long-run and
short-run association among variables. Employing the Akaike information criterion shows the top 20
possible ARDL models in Figure 2. Based on the model specification in equation (4), the short-run
and long-run equilibrium relation LnCO; e, LnGDP, LnLCC and LnAVA is estimated using the ARDL
regression analysis shown in equation (5) where

g =19.2356, &1 = 0.3246, x; = —0.2867 and oz = —3.3902. ®)

Table 6. ARDL bound testing.

Test Statistic Value k
F-statistic 5.805114
Critical Value Bounds
Significance 1(0) Bound I(1) Bound
10% 2.37 3.2
5% 2.79 3.67
2.5% 3.15 4,08
1% 3.65 4.66

Akaike Information Criteria (top 20 models)
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Figure 2. ARDL model selection criterion. Source. Authors’ calculation.
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4.6. Short-Run and Long-Run Equation Models

Table 7 summarizes the results of short-run equation of the ARDL model. The results show that
the speed of adjustment (error correction term ECT(-1)) value is —0.077780 which shows that there
are a long run and short-run equilibrium relationships running from LnGDP, LnLCC and LnAVA to
LnCO; e. The speed of adjustment is approximately 7.7 % in one period of long-run equilibrium.

Table 7. Short-run and long-run relationship estimates selected model for autoregressive distributed
lag (ARDL) (1,3,2,0).

Short Run Coefficients
Variable Coefficient Std. Error t-Statistic Prob.
D(LnGDP) 0.033643 0.056658 0.593784 0.5559
D(LnGDP(-1)) 0.014904 0.055969 0.266287 0.7914
D(LnGDP(-2)) —0.173688 0.058569 —2.965542 0.0050
D(LnLCC) 0.863260 0.241211 3.578864 0.0009
D(LnLCC(-1)) 0.716364 0.243073 2.947112 0.0053
ECT(-1) —-0.077780 0.013781 —5.644230 0.0000
Long Run Coefficients
Variable Coefficient Std. Error t-Statistic Prob.
C 1.496155 4.774608 0.313357 0.7556
Ln CO; e(-1) —-0.077780 0.038989 —1.994952 0.0527
LnGDP(-1) 0.025249 0.042403 0.595470 0.5548
LnLCC(-1) —-0.022297 0.326479 —0.068295 0.9459
LnAVA —0.263688 0.097057 —2.716831 0.0096
D(LnGDP) 0.033643 0.063982 0.525816 0.6018
D(LnGDP(-1)) 0.014904 0.065642 0.227049 0.8215
D(LnGDP(-2)) —0.173688 0.066271 —2.620874 0.0122
D(LnLCC) 0.863260 0.298943 2.887709 0.0062
D(LnLCC(-1)) 0.716364 0.289813 2471814 0.0177

EC =LnCO; e - (0.3246(LnGDP) — 0.2867(LnLCC) — 3.3902(LnAVA) + 19.2356))

Table 5 also shows the results of long-run equation results of the ARDL approach. The results of
long-run equilibrium relationship show that a 1% increase in LnGDP will increase LnCO, e by 2%,
a 1% increase in LnLCC will decrease LnCO; e by 0.02% and a 1% increase in LnAVA will decrease
LnCO; e by 26% in long-run estimates.

The evidence of the following studies reveals that carbon dioxide emissions increase in the early
phases of economic growth and then decline after a threshold point. The findings of these studies such
as [10,55-62] examined the relationship between carbon dioxide emissions and GDP growth.

The findings of previous studies such as [63] for China, [59] for Tunisia, [64] for Iran, [65] for
Pakistan, [66] for Malaysia, [57] for Turkey and [55] for India examined a unidirectional causality
running from GDP income to carbon dioxide emissions without response which suggests that emission
reduction plans will not restrain trade and industry growth and which seems to be a feasible policy
instrument in the aforementioned studied countries to accomplish its long-run sustainable growth.

Furthermore, we applied generalized impulse response functions for the verification of the results.
The generalized impulse response results show an in-depth understanding of shocks to gross domestic
product, land under cereal crop, agriculture value-added affected carbon dioxide emissions. The results
of generalized impulse responses for carbon dioxide emissions, gross domestic product, land under
cereal crop and agriculture value-added are provided in Figure 3.
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Figure 3. Results of generalized impulse response functions.

4.7. Diagnostic Test

As suggested by [67], both the cumulative sum of the recursive residuals (CUSUM) and the
cumulative sum of the square of the recursive residuals (CUSUMSsq) tests were implemented to
run the ARDL model in a befitting manner. Figure 4 reveals that both the graphs of CUSUM and
CUSUMsq tests lie between the critical bounds indicated with red colored lines at a 5% confidence
interval. The blue color lines in the middle represent the measurements for the cumulative sum of the
recursive residuals and the cumulative sum of the squares of the recursive residuals. Both CUSUM
and CUSUMsq graphs show that the model of our study is well stable.
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Figure 4. Stability test based on (a) cumulative sum of the recursive residuals (CUSUM) and (b)
CUSUM of squares. Source. Authors’ calculation.
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Several diagnostic tests were operated to check the good fit of the ARDL model. Table 8 shows that
estimation is fine regarding the serial correlation Lagrange Multiplier (LM) test, where the F-statistics
(0.237056) have insignificant probability. The heteroskedasticity test under Breusch-Pagan-Godfrey
also signifies that there is no sign of serial correlation. The value of F-statistics (1.190498) shows an
insignificant probability, which means there is no heteroskedasticity issue in the model estimation.

Table 8. Diagnostic tests results.

Breusch-Godfrey Serial Correlation LM Test:

F-statistic 0.237056

Obs R-squared 0.936929
Prob. F(3,38) 0.8700
Prob. Chi-Square(3) 0.8165

Heteroskedasticity Test: Breusch-Pagan-Godfrey

F-statistic 1.190498

Obs R-squared 10.56646

Scaled explained SS 10.87174
Prob. F(9,41) 0.3268

Furthermore, the inverse root of AR polynomial graph displaying the stability of the model where
are blue dots is within the circle. Figure 5 shows the inverse root of AR polynomial estimation.

Inverse Roots of AR Characteristic Polynomial
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0.0 .. . >
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Figure 5. Checking the stability of vector autoregression (VAR).
4.8. Pairwise Granger Causality Tests

The pairwise Granger causality test is estimated to find out the robustness of the model, which
elaborates the directional linkages between the two variables at a time. The results of the pairwise
Granger causality is exhibited in Table 9. The estimations of the pairwise Granger causality shows
unidirectional causality between LnGDP to LnCO, e, LnLCC to LnGDP and LnAVA to LnLCC.
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Table 9. Pairwise Granger causality test.

Null Hypothesis: Obs F-Statistic Prob.

LnGDP does not Granger Cause LnCO; e 52 0.34510 0.7099
LnCO; e does not Granger Cause LnGDP 8.51829 0.0007

LnLCC does not Granger Cause LnCO; e 52 1.91090 0.1593
LnCO; e does not Granger Cause LnLCC 1.81672 0.1738

LnAVA does not Granger Cause LnCO, e 52 2.63228 0.0825
LnCO; e does not Granger Cause LnAVA 0.42783 0.6544

LnLCC does not Granger Cause LnGDP 52 1.78823 0.1784

LnGDP does not Granger Cause LnLCC 6.22181 0.0040

LnAVA does not Granger Cause LnGDP 52 1.03562 0.3630

LnGDP does not Granger Cause LnAVA 0.13864 0.8709

LnAVA does not Granger Cause LnLCC 52 3.95660 0.0258

LnLCC does not Granger Cause LnAVA 1.43426 0.2485

4.9. Impulse Response and Variance Decomposition Analysis

Finally, the study employed impulse response analysis between LnCO; e, LnGDP, LnLCC and
LnAVA to describe random innovations among them. As the pairwise Granger causality test does not
indicate any random response, so in this case, we have to run the impulse response analysis. Figure 6
displays that the response of carbon dioxide emissions to a gross domestic product, land under cereal
crops and agriculture value-added are insignificant within 10-period horizons. On the other hand, the
initial response of carbon dioxide emissions to land under cereal crop is significant in the beginning.
A one standard deviation shock to land under cereal crop first increases carbon dioxide emissions
to 1-period horizon and then starts decreasing to the 10-periods horizon. Figure 7 illustrates the
response of gross domestic product, land under cereal crop and agricultural value-added to carbon
dioxide emissions.

Table 10 estimates Cholesky’s method of variance decomposition to random innovation affecting
the variables in the VAR [68]. The results indicate that almost 4.3% of the future fluctuations in LnCO,
e is due to shocks in the LnGDP, 0.27% of future fluctuations in the LnCO, e is due to shocks in LnLCC
and 0.27% of future fluctuations in the LnCO; e is due to shocks in LnAVA, respectively. Evidence
from the table shows that almost 25% of future fluctuations in LnGDP is due to shocks in LnCO, e, 10%
of future fluctuations in LnGDP is due to shocks in LnAVA and 2.9% of future fluctuations in LnGDP
is due to shocks in LnLCC. Moreover, evidence from the results shows that almost 37% of future
fluctuations in LnLCC is due to shocks in LnCO; e, 24% of future fluctuations in LnLCC is due to shocks
in LnAVA and 10% of future fluctuations in LnLCC is due to shocks in LnGDP. Finally, the evidence
from Table 9 shows that almost 6.2% of the future fluctuations in LnAVA is due to shocks in LnLCC,
1.9% of future fluctuations in LnAVA is due to shocks in LnGDP and 0.4% of future fluctuations in
LnAVA is due to shocks in LnCO, e, respectively.
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Table 10. Variance decomposition Cholesky ordering; LnCO, e_EMISSIONS LnGDP LnLCC LnAVA.

Variance Decomposition of LnCO; e:

Period S.E. LNCO; e LnGDP LnLCC LnAVA
1 0.052387 100.0000 0.000000 0.000000 0.000000
2 0.082091 98.71976 0.013097 1.256378 0.010761
3 0.110017 97.05350 2.074796 0.812947 0.058761
4 0.131880 96.72981 2.427748 0.658399 0.184048
5 0.151464 96.20375 2.913165 0.557815 0.325269
6 0.168350 95.78747 3.397230 0.461823 0.353472
7 0.183532 95.44742 3.816423 0.404535 0.331620
8 0.197549 95.30147 4.032265 0.356521 0.309743
9 0.210862 95.20442 4.188896 0.313796 0.292891
10 0.223536 95.10645 4.340165 0.279285 0.274097

Variance Decomposition of LnGDP:

Period S.E. LnCO; e LnGDP LnLCC LnAVA
1 0.090540 1.714846 98.28515 0.000000 0.000000
2 0.147440 18.08957 79.94849 0.319798 1.642142
3 0.180273 24.58352 71.58001 0.872488 2.963985
4 0.202225 27.94786 67.03118 1.197606 3.823346
5 0.227024 28.07898 64.92696 1.894400 5.099661
6 0.250104 27.76311 63.32763 2.031381 6.877877
7 0.268642 27.36151 62.39127 2.146152 8.101068
8 0.285511 26.69581 62.00309 2.495791 8.805307
9 0.302657 25.87071 61.89515 2.792302 9.441847
10 0.319132 25.16367 61.79875 2.942672 10.09490

Variance Decomposition of LnLCC:

Period S.E. LnCO; e LnGDP LnLCC LnAVA
1 0.019616 12.45762 0.679255 86.86313 0.000000
2 0.022818 17.21273 0.890578 78.32556 3.571125
3 0.025397 29.76056 3.976938 63.25735 3.005150
4 0.029421 37.65852 8.366014 47.75381 6.221656
5 0.032195 41.56618 7.848681 40.22046 10.36468
6 0.033756 42.90460 7.661578 36.78005 12.65377
7 0.035466 4215718 8.493156 34.06056 15.28910
8 0.037344 40.54667 9.617245 31.05127 18.78481
9 0.038945 39.10538 10.27839 28.82381 21.79242
10 0.040393 37.68193 10.95538 27.30356 24.05913

Variance Decomposition of LnAVA:

Period S.E. LnCO, e LnGDP LnLCC LnAVA
1 0.040325 0.255478 3.255885 4.319678 92.16896
2 0.060142 0.952231 1.551848 2.327764 95.16816
3 0.071323 1.153774 2.165245 2.590248 94.09073
4 0.081077 0.902385 2.715711 4.100540 92.28136
5 0.091163 0.718266 2.498629 5.149917 91.63319
6 0.100451 0.597671 2.267443 5.312943 91.82194
7 0.108566 0.532349 2.227840 5.480631 91.75918
8 0.116045 0.503706 2.175351 5.836543 91.48440
9 0.123284 0.479624 2.061993 6.111924 91.34646
10 0.130224 0.457998 1.967759 6.249748 91.32449

5. Conclusions and Policy Recommendations

The purpose of the study was to determine the relationships between CO; e as a dependent variable
and GDP, LCC and AVA as independent variables in Pakistan. These independent variables have
been tested to determine their effect on Pakistan’s carbon dioxide emissions. Therefore, an empirical
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study was necessary to notify the policymakers and place Pakistan properly in efforts directed to
mitigate the consequences of global warming. The study uses time-series data from 1961 to 2014. In
the study, we run a descriptive analysis, Johansen co-integration test, pairwise Granger causality test
and autoregressive distributed lag model.

The ARDL bounds test co-integration analysis displayed evidence of both short-run and long-run
equilibrium relationship between the study variables. The speed of adjustment (ECT) is approximately
7.7 percent in one period of long-run equilibrium. Furthermore, the outcome of CUSUM and CUSUMsq
showed that the model used in the study is stable. The pairwise Granger causality test was applied to
find out the robustness of the model.

Our study findings have few policy implications for promoting agricultural development. To
maintain economic growth and to reduce carbon dioxide emissions, it is very important to adjust and
optimize the industrial structure. Pakistan’s industrial sectors are generating heavy and high emissions
of carbon dioxide. Therefore, the policymakers need to promote zero and light emissions industries
for the development of the country. The results of the study show unidirectional Granger causality
from gross domestic product to carbon dioxide emissions which indicates that ensuring a continuous
increase in economic growth is a necessary condition for achieving high carbon dioxide emissions.
Therefore, the government of Pakistan should take necessary actions to achieve high economic growth
with less carbon dioxide emissions. As Pakistan predominantly is an agricultural country, thus, it
is summarized that variations in climate change might have negative consequences for agricultural
production and industrial growth, poverty reduction and job creation. As a South Asian country,
Pakistan is not an exception, and the vulnerability index of climate change in the country is quite
high. The country is listed among the countries severely affected by climate change [69] despite being
a low producer of CO, gases [70] because of its increasing dependence on agriculture for food and
fiber needs [71]. In addition, the agriculture sector of Pakistan consists of a majority of small resource,
poor farmers with less adaption capacity. For the major crop production of mainly cereals, fruits and
vegetables in Pakistan, the policymakers or government need to develop new crop farming methods,
introducing new crop varieties, and an extension services role is also very important for spreading the
updated science-based information.
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Abstract: This study aims to explore the casual relationship between agricultural production, economic
growth and carbon dioxide emissions in Pakistan. An autoregressive distributed lag (ARDL) model
is applied to examine the relationship between agricultural production, economic growth and carbon
dioxide emissions using time series data from 1960 to 2014. The Augmented Dickey—Fuller (ADF),
Phillips—Perron (PP) and Kwiatkowski-Phillips-Schmidt-Shin (KPSS) tests are used to check the
stationarity of variables. The results show both short-run and long-run relationships between
agricultural production, gross domestic product (GDP) and carbon dioxide emissions in Pakistan.
From the short-run estimates, it is found that a 1% increase in barley and sorghum production will
decrease carbon dioxide emissions by 3% and 4%, respectively. The pairwise Granger causality
test shows unidirectional causality of cotton, milled rice, and sorghum production with carbon
dioxide emissions. Due to the aforementioned cause, it is essential to manage the effects of carbon
dioxide emissions on agricultural production. Appropriate steps are needed to develop agricultural
adaptation policies, improve irrigation facilities and introduce high-yielding and disease-resistant
varieties of crops to ensure food security in the country.

Keywords: carbon dioxide emissions; agricultural production; GDP; ARDL bounds test; Granger
causality; Pakistan

1. Introduction

The issue of climate change is now a global challenge and has attracted attention of world leaders
for proactive and expedited planning for low carbon industrial growth, clean and renewable energy
sources, agricultural sustainability and low-level energy-intensive economic growth [1-7]. To ensure
food safety and food security, dedicated actions are needed on climate change and its impacts on food
production [3,8,9].

Climate change can affect agriculture productivity through a change in global temperatures,
variability in precipitation and other related factors. It is estimated that about 15-30% of the output of
agriculture would be affected globally by 20802100 [10]. If timely and adequate adaptive measures are
not taken, a decline in crop yield may occur in Africa, Latin America and Asia. Further, it would cost
about 5-10% of gross domestic product (GDP) for Africa to take adaptation measures to combat climate
change. Moreover, the results of the study predicted that about 50% of the decline in agricultural crops
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would be observed by 2020 and the crop revenue may further decrease, even up to 90% by 2100 [11].
Changes in the pattern of rainfall may also affect more than one billion people in South Asia [12]. Most
of the studies envisage that climate variation would adversely affect the yield of wheat crops in South
Asia. According to the Intergovernmental Panel on Climate Change (IPCC) 4th Assessment Report,
crop yield in South Asia would reduce proportionately from 1820 m3 to 1140 m? from 2001 to 2050.

For estimating the effects of climate change on yield and growth, there are usually two approaches
that are being followed: (1) discovering the effects of long-term variation via crop simulation
models [13,14] and (2) implementation of experiments related to artificial climate change [15-17].
Crop simulation modeling in combination with simulation models and climate change scenarios is
the most frequently used approach. Modeling depends upon several factors, such as nutrition, soil,
evapotranspiration, rainfall, temperature, carbon circulation, economic environment and atmospheric
circulation. Climate change and adaptation strategies are increasingly becoming the main focus of
current scientific research; for instance, the effect on the production of crops such as wheat, rice and
maize [18]. The vulnerability index of the changing climate in Pakistan is relatively high in comparison
to numerous countries around the globe, due to variable climatic conditions. Recently, Pakistan has
faced numerous climatic variations, for instance, increased temperature, changes in the pattern of
precipitation, floods, earthquakes and weather shifts. The development of the agriculture sector in
developing countries is hampered by increasing climatic risk and projected changes in climate over
the 21st century [19]. Pakistan is affected the most by climate change due to poor infrastructure
and limited adaptive capacity [20]. It is projected that by 2050, there would be a 2-3% increase in
temperature causing a significant variation in the pattern of rainfall [21]. Pakistan is ranked eighth
among the countries most negatively affected by adverse weather conditions and climate change over
the period 1995-2014 as reported by the Global Climate Risk Index (GCRI) [22]. The productivity of
major crops, including wheat, rice, cotton and sugarcane, and rural livelihoods, has been affected
greatly due to climate variability and extreme events over the last two decades [23]. The vulnerability
of rural livelihoods to climate change can be seen from the historic floods during 2010-2014 and severe
droughts from 1999 to 2003 [23].

Several conceptual works of literature have been established which show different ways in which
climate change affects economic growth. The negative consequences of climate change are proved
both theoretically and empirically. First, the devastation of the ecosystem by numerous intensive
weather conditions, such as flood, drought, erosion, leading to the extinction of endangered species,
has resulted in perpetual harm to economic growth. Secondly, the necessary resources to oppose the
warming impact reduce investment in the economy, as well as the physical framework, research and
development, and human capital, thus minimizing growth [24,25].

Climate change has resulted in crop reduction in many regions; for example, it was estimated that
global maize production reduced by 12 Mt from 1981 to 2002 [26]. Recently, this methodology has
been used in various regions, such as Europe [27], Pakistan [28], India [29] and Ghana [30], for the
identification of the relationship between climate change and various factors on agriculture. Even
the effect of a single weather variable can harm the long-term benefits of economic development [31].
In South Asia, the production of cereal crops has been already under heat stress. Consequently,
in Central and South Asia, the crop yields will decline by up to 30% by 2050 [32]. The production of
these crops is an important factor in food security around the Asian region.

For decades, researchers globally have struggled to address the problem of endogeneity.
A researcher briefly stated that there is no way to empirically test whether a variable is correlated
with the regression error terms because the error term is unobservable [33]. This is why exogenous
latent variables, and the disturbance term, in particular, as the most common case, is the cause of so
much difficulty for empirical researchers. Because many key exogenous variables of concern are not
measured, “there is no way to statistically ensure that an endogeneity problem has been solved” [33].
This means that the problem of endogeneity is not so much a problem as it is a dilemma, hence, the title
of this paper. Dilemmas do not call for solutions, they call for choices. In the statistical sense, the
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dilemma boils down to a trading one set of untestable assumptions for another. There are no direct
tests of endogeneity, and the consequences of this must be understood. However, there are many
indirect tests that give the researcher useful information to guide their decisions and conclusions.
Therefore, this paper echoes the call for reasonable endogeneity standards found in the recent method
literature [34-36].

Many environmental factors, such as floods, wind speed, sunshine, monsoon patterns and relative
humidity, can affect agriculture production. We only include CO, emissions in our model, so the
endogeneity problem arises here, which can affect the results. Not only environmental variables but
also other factors, such as agricultural land use, fertilizer used, agriculture inputs and population,
are included as control variables. Endogeneity is a problematic situation in which explanatory variables
correlate with the error term. In this case, when there is an endogeneity problem in our model or
variables, we need to remove it with the help of an included instrumental variable. Technically,
a Two-Stage Least Square (2SLS) model is applied when there is endogeneity in time series data. Ideally,
it is only applied to cross-sectional data, as if you apply 2SLS to time series, it will not be able to ensure
co-integration, and results may be spurious. Secondly, if we apply 2SLS to panel data, it might not
incorporate the cross-sectional heterogeneity. Thus, in the case of panel data, most researchers have
used a Generalized Method of Moments (GMM) model as an advanced version of 2SLS. It is very
rare to see endogeneity in time series data because co-integration solves that issue. Some previous
researchers have used the 2SLS model in their studies [37,38].

This study explores the responses of carbon dioxide emissions to gross domestic product (GDP)
and agricultural production based on historical data in Pakistan. An autoregressive distributed lag
(ARDL) model is employed to examine the effect of agricultural production, gross domestic product
and carbon dioxide emissions to determine the long-run relationships among several variables [39].
The remainder of this study is structured as follows: Section 2 consists of a literature review. Section 3
briefly describes the materials and methods, including the study area, data sources and description,
model specification, and econometric model. Section 4 describes the results and discussions, which
consist of descriptive statistics, unit root tests, lag order selection criteria, ARDL bounds tests, analysis
of long-run and short-run estimates, and ARDL diagnostic tests and normality plots. Section 5 contains
the conclusion and policy implications of the study.

2. Literature Review

Many previous studies have employed modern econometric techniques to determine the
association between environmental greenhouse gasses, energy consumption and socio-economic
variables in various nations globally [5,40-47]. A previous study investigated the relationship between
the consumption of electricity, industrialization, GDP and carbon dioxide emissions in Benin using
an autoregressive distributed lag (ARDL) model [42]. Evidence from the study revealed a long-run
equilibrium association flowing from consumption of electricity industrialization, GDP and carbon
dioxide emissions [42]. Another study employed the vector error correction model (VECM) and
ordinary least squares (OLS) regression to reveal the impact of population progression, energy intensity
and GDP on carbon dioxide emissions in Ghana [48]. The study found evidence of the existence of
a long-run equilibrium association flowing from population growth, energy intensity and GDP to
carbon dioxide emissions. The study also revealed that there was a bi-directional causality among
energy consumption and carbon dioxide emissions [48]. Another study in Ghana investigated the
association between population growth, use of energy, GDP and carbon dioxide emissions using both
autoregressive distributed lag (ARDL) regression analysis and a vector error correction model (VECM).
The study found that there will be fluctuation in carbon dioxide emissions due to the use of energy in
the future. Furthermore, evidence from the study showed a unidirectional causality running from
carbon dioxide emissions to use the energy and population [49].

Theoretically, an association could be established through microeconomic and macroeconomic
dimensions. From the view of the macroeconomic dimension, the two important areas which are
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stressed include the impact on the output level, such as yields and the ability of the economy to
grow [50]. On the microeconomic side, we have factors such as physical productivity of labor, health
and conflict. These factors have economy-wide implications [51-53]. Moreover, climate change can
have such effects as political inconstancy, which may obstruct factor accumulation and growth in
productivity [54].

It has been reported that a rise in temperature can have a profound influence on the productivity
of the agriculture sector, food security and farmer’s income. This effect varies in tropical and temperate
areas. In middle and high latitudes, the aptness and output of crops are anticipated to increase and
spread northwards, and vice versa is true for several countries in tropical regions [55]. It is found that
in high latitudes, production can be increased by nearly 10% due to a 2 °C rise in temperature, while
it reduces production by the same percentage in low latitudes. By taking into account the effect of
technology, it is projected that an increase in temperature would increase the productivity of yields by
between 37% and 101% by the 2050s in the Russian Federation [54].

In comparison to other developing countries, the effects of escalating temperature on agriculture
are harsher in sub-Saharan Africa [56]. It has been observed that if some important climatic conditions,
such as temperature and rainfall, had persisted at their pre-1960 status, then the gap of agricultural
production between different developing countries and sub-Saharan Africa at the end of the 20th
century would have remained only 32% of the existing shortfall. A study of the period of 19802005 in
Nigeria indicated that temperature exerts a negative influence while rainfall has a positive effect on
agricultural production [57].

Some illumination of the effects of climate change on African development was provided in
the 4th assessment report of the IPCC. For instance, it was estimated that yield could be reduced by
50% by 2020 in some countries, and the revenue generated from crops could fall nearly 90% by 2100.
Smallholder farmers would be affected the most. This will also provoke water problems, as almost 25%
of the population in Africa has recently encountered high water stress. Because of increasing water
stress in Africa, the population at risk is projected to be between 350 and 600 million by 2050 and about
25-40% of mammals may become endangered in national parks in sub-Saharan Africa [11].

Developed countries have the ability to maintain a minimum level of technology for the
improvement of living standards and increasing agricultural productivity [58]. These countries
are generally also capable of offsetting the negative consequences of climate change. Developed
states usually have a low level of susceptibility but a high level of adaptive ability, which itself is a
function of technological expertise, dissemination and supply of assets, and human social and political
capital [59]. The developed world has good levels of water filtration and sanitation. On the other hand,
developing countries have insecure and unreliable water supplies, and often sanitation systems are
non-satisfactory. The notion of crop insurance to protect farmers from the negative consequences of
climate change, which may destroy their livelihoods, is missing in developing countries.

During the past decade, Pakistan’s per capita gross domestic product (GDP) has experienced a
diverse trend. During the period from 2005 to 2014, per capita GDP increased from USD 974.5 to USD
1111.2. In 2011, the government placed significant emphasis on upgrading the country’s economy,
resulting in a consistent increase of per capita GDP during the period 2011 to 2014. During this period,
despite several types of socio-economic challenges, such as energy crises, a war against terrorism, and
poverty, per capita GDP (Pakistan Economic Survey 2017) increased by USD 64.71, providing evidence
that the Government of Pakistan has taken actions to raise economic growth and enriched the living
conditions of the hinterlands.

3. Materials and Methods

3.1. Data Sources and Description

The key purpose of this study is to answer the question: is there any causal effect between carbon
dioxide emissions, gross domestic product and agricultural production in Pakistan? The study used

126



Energies 2019, 12, 4644

time series data from 1960 to 2014. The data for different variables of this study was acquired from
Index Mundi and World Development Indicators of the World Bank. Based on the review of literature,
the current study uses nine variables: carbon dioxide emissions CO, (kt), gross domestic product
(GDP) (constant 2010 US$), barley production (1000 Mt), corn production (1000 Mt), cotton production
(1000 Mt), milled rice production (1000 Mt), millet production (1000 Mt), sorghum production (1000 Mt)
and wheat production (1000 Mt). The trends of the study variables are given in Figure 1.
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Figure 1. Trend of study variables.
3.2. Econometric Model

Descriptive statistics are estimated to determine the features of the study variables. To find
out the integration order of the study variables, in the first step, we have to identify stationarity
in the time series data. For this purpose, we employed the Augmented Dickey-Fuller (ADF) [60],
Kwiatkowski-Phillips-Schmidt-Shin (KPSS) and Phillips—Perron (PP) unit root tests [61], and the
ARDL bounds test was then estimated. Furthermore, the pairwise Granger causality test and variance
decomposition analysis were carried out to examine the direction of causality and improve the study
variables in the future. Figure 2 presents the schematic diagram of the study.

The econometric specification of the study variables can be written as:

COy = f(GDPy, BARLEY;, CORN;, COTTON;, MILLED RICE;, MILLET;, SORGHUM;, WHEAT})
M
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The empirical specification of the proposed model is written as:

LHCOZt

= ag + a1 LnGDP; + apLnBARLEY + azLnCORN; + asLnCOTTON; + asLnMILLED RICE;
+aLnMILLET; + a;LnSORGHUM; + agLnWHEAT;

+é't)

@

In Equation (2), LnCOy; is the logarithmic form of carbon dioxide emissions, LnGDP; is the
gross domestic product (GDP), LnBARLEY is the barley production, LnCORN} is the corn production,
LnCOTTON} is the cotton production, LnMILLED RICE; is the milled rice production, LuMILLET};
is the millet production, LnSORGHUM, is the sorghum production and LnWHEAT; is the wheat
production in year t, ¢; is the error term, and ag, a1, a2, a3, aa, as, as, a7 and ag are the elasticities to
be estimated in Equation (2).

1. Descriptive Statistics

|

2. Unit root test

|

3. Lag selection criteria

|

4. ARDL bounds test

l

5b. Short-run coefficient 5. ARDL Regression 5a. Long-run coefficient

l

6. ARDL Diagnostic Tests

[

7. ARDL Normality Tests

Figure 2. A schematic presentation of the study.

4. Results and Discussion

4.1. Descriptive Analysis

The descriptive analysis shows the mean, coefficient of variation, skewness, kurtosis and normality
of distribution of the study variables. The results of descriptive statistics of the study variables are
estimated in Table 1. Evidence shows that CO,, gross domestic product (GDP), barley, corn, cotton,
milled rice, millet and wheat exhibit positive skewness, while sorghum exhibits a negative skewness.
The result of the kurtosis test shows that the CO,, gross domestic product (GDP), barley, cotton, milled
rice, millet and wheat exhibit a platykurtic distribution, while corn and sorghum exhibit a leptokurtic
distribution. The outcome from the Jarque-Bera test shows that we accept the null hypothesis of normal
distribution at the 5% level of significance for barley, milled rice, millet, sorghum and wheat crops.
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Table 1. Descriptive statistics analysis.

CO, Barley Corn Cotton 3. Millet  Sorghum
Statistic  Emissions (ISB;’D) (1000 (1000 (1000 1\;11'(1)1;(;1&:;9 (1000 (1000 (1?{)}58131‘9
(kt) M) M) M) Mt) M)
Mean 7050069 8,140,000 1184182 1567.873 5618964 3575291  269.3455 230.3636 13,477.24

Median 53,535.00 6,770,000 118.0000 1100.000  6250.000 3272.000 274.0000 231.0000  12,675.00
Maximum 166,299.0 2,060,000 185.0000 4944.000 11,138.00  7003.000 446.0000  378.0000  25,979.00
Minimum 14,155.00 1,370,000 66.00000 439.0000 1398.000 1030.000 115.0000 115.0000  3814.000

Std. Dev. 52,092.32 5,740,000 29.42013 1213.157 3070.710 1601.680 74.69896  53.63780  6683.929
Skewness 0.627348 0.616588  0.116649  1.464809 0.106986 0.411594 0.226418  -0.102608 0.169114
Kurtosis 1.960562 2149885 2.372942 3.998844  1.527590 2.529724 2451225 3.302701  1.841895
Jarque-Bera 6.083672 5141172 1.025816  21.95496  5.073237 2.059748 1.160074  0.306490  3.335760
Probability 0.047747 0.076491  0.598752  0.000017  0.079134 0.357052 0.559878  0.857919  0.188647

Source “Authors’ calculation”.

4.2. Unit Root Tests

Before estimating the ARDL bounds test co-integration, it is necessary to determine the
stationarity of the variables. To meet the stationarity requirement, the study estimates the unit
root using the Augmented Dickey-Fuller (ADF) [62], Phillips—Perron (PP) [61] and Kwiatkowski—
Phillips-Schmidt-Shin (KPSS) tests in order to have a robust result. The results of the unit root tests are
reported in Table 2. The result of the ADF test shows that the null hypothesis of the unit root cannot be
rejected at a 5% significance level. The results of the KPSS test show the null hypothesis of stationarity
is rejected at a 5% significance level. Evidence from the results of ADF, PP and KPSS unit root tests
shows that the series are integrated at I(1).

Table 2. Unit root test.

ADF Level  ADF 1st Diff KPSS Level KPSS 1st Diff PP Level PP 1st Diff

Model
t-Stat t-Stat
(t:\s,t?t) (t_'\s,t?t) (5% Critical (5% Critical (t_'f/talt) (t:\s;f)
p-vaie p-vae Level) Level) p-vale p-vale
Intercept
LnCO, —0.806182 —5.953051 0.882144 0.121843 -0.761270 —5.991025
(0.8092) (0.0000) (0.463000) (0.463000) (0.8218) (0.0000)
LnGDP —3.144898 —5.525176 0.893568 0.482889 —2.886320 —5.623884
(0.0291) (0.0000) (0.463000) (0.463000) (0.0536) (0.0000)
LnBarley —1.278657 —8.855400 0.304102 0.177851 —1.278657 —8.825782
(0.6332) (0.0000) (0.463000) (0.463000) (0.6332) (0.0000)
LnCorn 0.467842 —8.517140 0.861313 0.147426 0.631484 —8.526955
(0.9840) (0.0000) (0.463000) (0.463000) (0.9894) (0.0000)
LnCotton —1.423831 —9.945326 0.853528 0.170778 —1.450853 —11.39586
(0.5638) (0.0000) (0.463000) (0.463000) (0.5506) (0.0000)
LnMilled rice —-1.631603 —9.582429 0.954980 0.204843 —-1.988090 —-10.16939
(0.4597) (0.0000) (0.463000) (0.463000) (0.2911) (0.0000)
LnMillet —1.647754 -11.71139 0.453031 0.056429 —2.143656 —13.01371
(0.4515) (0.0000) (0.463000) (0.463000) (0.2290) (0.0000)
LnSorghum 0.550452 —11.35154 0.775917 0.187032 0.052072 —-11.65376
(0.9869) (0.0000) (0.463000) (0.463000) (0.9589) (0.0000)
LnWheat —2.155233 —7.468655 0.867938 0.286169 —1.991421 —11.88184
(0.2248) (0.0000) (0.463000) (0.463000) (0.2897) (0.0000)
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Table 2. Cont.

ADF Level  ADF 1st Diff KPSS Level KPSS 1st Diff PP Level PP 1st Diff

Model
t-Stat t-Stat
ot ot (6% Critical (3% Critical ~ "¥AL - PRl
4 4 Level) Level) P P
Intercept and Trend
LnCO, —-1.146817 —5.943842 0.109365 0.109589 —-1.573362 —-6.031511
(0.9110) (0.0000) (0.146000) (0.146000) (0.7905) (0.0000)
LnGDP —0.822407 —6.292270 0.229191 0.056925 —0.994228 —6.301469
(0.9569) (0.0000) (0.146000) (0.146000) (0.9362) (0.0000)
LnBarley —1.549158 —8.936464 0.211863 0.101501 —1.549158 -9.066157
(0.7997) (0.0000) (0.146000) (0.146000) (0.7997) (0.0000)
LnCorn —1.541615 —8.669357 0.207887 0.062252 —-1.328646 —8.690926
(0.8025) (0.0000) (0.146000) (0.146000) (0.8700) (0.0000)
LnCotton —3.418161 —9.913682 0.129370 0.108013 —3.338073 -12.56710
(0.0596) (0.0000) (0.146000) (0.146000) (0.0711) (0.0000)
. , —3.199369 —9.593674 0.156707 0.124665 —-3.079200 -10.85739
LnMilled rice
(0.0954) (0.0000) (0.146000) (0.146000) (0.1216) (0.0000)
LnMillet —1.342745 —8.664871 0.217252 0.032753 -2.391047  —14.16708
(0.8660) (0.0000) (0.146000) (0.146000) (0.3799) (0.0000)
LnSorghum —1.812902 —8.306334 0.154413 0.093016 —2.956875 -13.87512
(0.6845) (0.0000) (0.146000) (0.146000) (0.1538) (0.0000)
LinWheat —1.569448 —7.764154 0.239256 0.126430 —2.593371 —23.15530
(0.7912) (0.0000) (0.146000) (0.146000) (0.2849) (0.0001)

4.3. ARDL Bounds Testing of Co-Integration and Regression Analysis

The current study uses an autoregressive distributed lag (ARDL) bounds testing approach
suggested by [63] to determine both short-run and long-run associations of carbon dioxide emissions,
gross domestic product and agricultural production. The ARDL bounds testing method is appropriate
for those models in which there is a mixture of I(0) and I(1) variables. Another characteristic of this
model is that it is appropriate for small sample size, as our sample size is only 54 [63].

It is important to determine how many lags are to be used in an ARDL model. Therefore, to find
the optimal number of lags for the model, the unrestricted vector autoregression (VAR) lag selection
criteria are tested. Table 3 formulates the lag selection criteria for the model, but the most commonly
employed criteria are the Akaike information criterion (AIC) and the Schwarz information criterion
(SIC). A previous study used AIC for small sample size [64]. In this study, we employed the Akaike
information criterion, which revealed that the most suitable lag value for the model is lag 3.

Table 3. Optimal lags selection.

Lag LogL LR FPE AIC SC HQ
0 223.6244 NA 2.10 x 10715 —8.254784 —7.917069 -8.125312
1 599.5208 607.2173 261%x10720%  -19.59696  —16.21980*  —18.30223 *
2 660.1237 76.91906 7.52 % 10720 —18.81245 -12.39586 —16.35248
3 772.8762 104.0792 * 5.06 x 10720 -20.03370*  —-10.57767 —-16.40848

* indicates lag order selected by the criterion; Likelihood Ratio LR: sequential modified LR test statistic (each test at
5% level); FPE: Final prediction error; AIC: Akaike information criterion; SC: Schwarz information criterion; HQ:
Hannan—Quinn information criterion. Source” Authors’ calculation”.

After unit root testing, which showed all variables are integrated at I(1), we carried out the ARDL
method of co-integration (bounds testing) to estimate the relationship between the selected variables
in this study. The results of the ARDL bounds testing are reported in Table 4. The results indicate
that the f-statistic value (4.954551) is greater than the 10% and 5% upper critical values of I(0) bound.
The results of the bounds testing validate significant long-run relationships among variables and show
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the rejection of the null hypothesis of no co-integration association among LnCO,, LnGDP, Lnbarley,
Lncorn, Lncotton, Lumilled rice, Lnmillet, Lnsorghum and Lnwheat.

Table 4. ARDL Bound Test.

Test Statistic Value k
F-statistic 4.954551
Critical value bounds
Significance 1(0) Bound I(1) Bound
10% 1.85 2.85
5% 2.11 3.15
2.5% 2.33 3.42
1% 2.62 3.77

Furthermore, the study uses the Akaike information criterion (AIC) to select the optimal model by
employing long-run and short-run associations among variables. Employing the Akaike information
criterion shows the top twenty possible ARDL models in Figure 3. Based on the model specification
in Equation (2), the short-run and long-run equilibrium relationships of LnCO,, LnGDP, Lnbarley,
Lncorn, Lncotton, Lnmilledrice, Lnmillet, Lnsorghum and Lnwheat are estimated using the ARDL regression
analysis shown in Equation (3).

Cointeq = LnCO,_EMISSIONS — (2.0507 x LnGDP + 0.3425 x LnBARLEY_P + 0.2393
X LnCORN_P — 0.3300 x LnCOTTON_P — 0.4678 x LnMILLED_RICE_P — 0.2392 x 3)
LnMILLET_P — 0.0549 x LnSORGHUM_P — 0.9790 x LnWHEAT_P — 26.2134)

where ap = —26.2134, a1 = 2.0507, a = 0.3425, a3 = 0.2393, ay = —0.3300, a5 = —0.4678, ag = —0.2393,
a7 = —0.0549 and ag = —0.9790.

Akaike Information Criteria (top 20 models)

-3.58 i
R
0 O R R B

-3.59 | | [ ! [ | .
\}}\‘}‘}\\\\*'
}“\}\}‘\}¢+

—3.607\}}}\}\\l'

A A
[

_3.61,}}}}¢
oo !

A

62 1o
}v

-3.63,}

v

-3.64 T—_Tn_T1_T1_T1 _T1 __T1 _ T __T__T_ T _ T _ T __ 1T __ T _ T __ 1T _ T __T
L M M O M O M - N M N O N N N N O S N N O O
PE R R S B B NS NS S S BN B B NS S N Y B )
NN RN SN N S B SN S SN SN N S N SN PN SR SN I BN
S 6 § 6 0 6 6 ¥ 6 6 6 0 < & & 6 S & & <
S < 6 6 0 6 v« 6 6 v 0 <« < d & 6 < & & o
S 6 & & 0 6 6 O ¥ ¢ 0 0 S S F F < o & &
R B I Y
~ v o < N © ¥ < < < o N < < o < < o F <

Figure 3. ARDL model selection criterion. Source “Authors’ calculation”.
4.4. Short-Run and Long-Run Equation Model

Table 5 summarizes the results of the short-run equation of the ARDL model. The results show
that the speed of adjustment Error Correction Term ECT(-1) value is —0.30225 which shows that
there is a long-run and short-run equilibrium relationship running from LnGDP, LnBARLEY, LnCORN,
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LnCOTTON, LnMILLED RICE, LuMILLET, LnSORGHUM and LnWHEAT to LnCO;. The speed of
adjustment is approximately 30.2% in one period of the long-run equilibrium.

Table 5. Short-run and long-run relationship estimates for the selected model ARDL(1,1,3,0,0,0,2,3,3).

Short Run Coefficients
Variable Coefficient Std. Error t-Statistic Prob.
D(LnGDP) 1.603111 0.134533 11.91612 0.0000
D(LnBARLEY_P) —0.033465 0.044624 —0.749932 0.4591
D(LnBARLEY_P(-1)) —0.028035 0.045818 —0.611888 0.5452
D(LnBARLEY_P(-2)) —0.182478 0.047232 —3.863424 0.0006
D(LnMILLET_P) —0.003291 0.030180 —0.109053 0.9139
D(LnMILLET_P(-1)) 0.120510 0.030014 4.015104 0.0004
D(LnSORGHUM_P) —0.044541 0.041888 —-1.063337 0.2961
D(LnSORGHUM_P(-1))  0.031559 0.047437 0.665288 0.5109
D(LnSORGHUM_P(-2))  0.156119 0.046536 3.354824 0.0022
D(LnWHEAT _P) 0.160592 0.066146 2.427827 0.0214
D(LnWHEAT_P(-1)) 0.254506 0.068919 3.692827 0.0009
D(LnWHEAT _P(-2)) 0.198675 0.070262 2.827628 0.0083
ECT(-1) —0.302533 0.037696 —8.025532 0.0000

Long Run Coefficients
Variable Coefficient Std. Error t-Statistic Prob.
LnGDP 2.050716 0.354124 5.790953 0.0000
LnBARLEY_P 0.342550 0.211505 1.619578 0.1158
LnCORN_P 0.239295 0.236151 1.013316 0.3190
LnCOTTON_P —-0.330019 0.148359 —2.224459 0.0338
LnMILLED_RICE_P —0.467837 0.214080 —2.185334 0.0368
LnMILLET_P —0.239205 0.298329 —-0.801816 0.4290
LnSORGHAM_P —0.054855 0.227681 —0.240930 0.8112
LnWHEAT_P —0.978995 0.346072 —2.828881 0.0082
C —26.21344 7.839747 —3.343659 0.0022

EC = LnCO,_EMISSIONS - (2.0507 x LnGDP + 0.3425 x LnBARLEY_P + 0.2393 X
LnCORN_P - 0.3300 x LnCOTTON_P — 0.4678 X LnMILLED_RICE_P — 0.2392 X
LnMILLET_P - 0.0549 x LnSORGHUM_P — 0.9790 x LnWHEAT_P — 26.2134)

Source “Authors’ calculation”.

Table 5 also shows the results of long-run equation results of the ARDL approach. The results of
the long-run equilibrium relationship show that a 1% increase in LtBARLEY will decrease LnCO; by
3%, a 1% increase in LnMILLET will decrease LnCO; by 0.03%, and a 1% increase in LntSORGHUM
will decrease LnCO, by 3% in short-run estimates. The evidence of the following studies reveals that
carbon dioxide emissions increase in the early phases of economic growth and then decline after a
threshold point. The findings of these studies (such as [10,48-55]) show the relationship between carbon
dioxide emissions and GDP growth. The findings of previous studies, such as [65] for China, [66] for
Tunisia, [67] for Iran, [68] for Pakistan, [69] for Malaysia, [70] for Turkey and [71] for India, indicate
that there is a unidirectional causality running from GDP income to carbon dioxide emissions without
response, suggesting that emission reduction plans will not restrain trade and industry growth and
that the implementation of such plans seems to be a feasible policy strategy in the aforementioned
studied countries to accomplish their long-run sustainable growth.

4.5. Diagnostic Test

Once the cointegration relationship was confirmed for the different variables, the cumulative sum
(CUSUM) and the cumulative sum of the square of the recursive residuals (CUSUM?Z) were implemented
to run the ARDL model in a befitting manner. The CUSUM and CUSUM? tests were employed based
on the recursive regression residuals as suggested by [72]. Evidence from the cumulative sum (CUSUM)
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and cumulative sum of squares (CUSUM?) tests show that the plots lie within the 5% significance level.
The two straight lines (red color) show the critical bounds at the 5% significant level. The lines (blue
color) in the middle represent the measurements for the cumulative sum of the recursive residuals and
the cumulative sum of the square of the recursive residuals. The above statements mean that the ARDL
model is constant and stable for estimation of the parameters of the ARDL co-integration bounds test,
and the long-run and short-run causality relationship. Figure 4 presents the diagnostic and stability
tests for the ARDL model and validates the model.

(@) (b)

[— custm — 5% Significance | —— CUSUM of Squares —— 5% Significance

| P \ 104
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Figure 4. Stability test based on (a) CUSUM and (b) CUSUM of squares. Source “Authors’ calculation”.

Several diagnostic tests were undertaken to check for a good fit of the ARDL model. Table 6
shows that the estimation was suitable with regard to serial correlation and heteroskedasticity, and the
inverse root of the AR graph shows the stability of the model.

Table 6. Diagnostic test results.

Breusch-Godfrey Serial Correlation Lagrange Multiplier LM Test:

F-statistic 2.958497
Obs R-squared 12.86465
Prob. F(3,27) 0.0501
Prob. Chi-Square(3) 0.0049
Heteroskedasticity Test: Breusch-Pagan—Godfrey
F-statistic 1.858453
Obs R-squared 29.40032
Scaled explained sum of square SS 9.473970
Prob. F(21,30) 0.0588
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Inverse Roots of AR Characteristic Polynomial
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4.6. Pairwise Granger-Causality Tests

In this study, we applied an ARDL testing model to determine the short-run and long-run
relationship between variables. To find out the causality between LnCO;, LnGDP, LnBARLEY,
LnCORN, LnCOTTON, LnMILLEDRICE, LaMILLET, LnSORGHUM and LnWHEAT, we used pairwise
Granger causality [73] estimations. The results of the pairwise Granger causality test are presented
in Table 7. The null hypothesis that LnCO,_EMISSIONS does not Granger cause LnCOTTON_P,
LnCO,_EMISSIONS does not Granger cause LnMILLED_RICE_P, LnCO;_EMISSIONS does not
Granger cause LnSORGHUM_P, LnGDP does not Granger cause LnCOTTON_P, LnGDP does
not Granger cause LnMILLED RICE_P, LnGDP does not Granger cause LntSORGHUM_P, LnGDP
does not Granger cause LnWHEAT_P, LnSORGHUM_P does not Granger cause LnBARLEY_P,
LnCORN_P does not Granger cause LnMILLED_RICE_P, LnCOTTON_P does not Granger cause
LnSORGHUM_P, LnIWHEAT_P does not Granger cause LitCOTTON_P, LnCOTTON_P does not Granger
cause LtWHEAT_P, LnMILLED_RICE_P does not Granger cause LtSORGHUM_P, LnWHEAT_P does
not Granger cause LnMILLED_RICE_P, LnMILLED_RICE_P does not Granger cause LinWHEAT_P,
and Ln€WHEAT_P does not Granger cause LnSORGHUM_P is rejected at the 5% significance
level. The results of Granger causality shows unidirectional causality between: LnCOTTON_P
— LnCO,, LuMILLED RICE_P — LnCO,, LnSORGHUM_P — LnCO,, LnCOTTON_P — LnGDP,
LnMILLED RICE_P — LnGDP, LnSORGHUM_P — LnGDP, LtWHEAT _P — LnGDP, LnSORGHUM_P —
LnBARLEY_P, LuMILLED_RICE_P — LnCORN_P, LnSORGHUM_P — LnCOTTON_P, LnSORGHUM_P
— LnMILLED_RICE_P, and LnWHEAT_P — LnSORGHUM_P, and bidirectional causality between:
LnWHEAT_P < LnCOTTON_P and LnWHEAT_P < LnMILLED_RICE_P.
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Table 7. Pairwise Granger causality test.

Pairwise Granger Causality Tests

Null Hypothesis: Obs  F-Statistic Prob.
LnGDP does not Granger cause LnCO,_EMISSIONS 54 1.65000 0.2048
LnCO,_EMISSIONS does not Granger cause LnGDP 0.00268 0.9589
LnBARLEY_P does not Granger cause LnCO,_EMISSIONS 54 3.66357 0.0612
LnCO,_EMISSIONS does not Granger cause LnBARLEY_P 1.63838 0.2063
LnCORN_P does not Granger cause LnCO,_EMISSIONS 54 0.41262 0.5235
LnCO,_EMISSIONS does not Granger cause LnCORN_P 2.10540 0.1529
LnCOTTON_P does not Granger cause LnCO,_EMISSIONS 54 0.57836 0.4505
LnCO,_EMISSIONS does not Granger cause LtCOTTON_P 13.3746 0.0006
LnMILLED_RICE_P does not Granger cause LnCO,_EMISSIONS 54 0.00024 0.9877
LnCO,_EMISSIONS does not Granger cause LtMILLED_RICE_P 4.64682 0.0359
LnMILLET_P does not Granger cause LnCO,_EMISSIONS 54 1.58702 0.2135
LnCO,_EMISSIONS does not Granger cause LnMILLET_P 0.85293 0.3601
LnSORGHUM_P does not Granger cause LnCO,_EMISSIONS 54 0.07604 0.7839
LnCO,_EMISSIONS does not Granger cause LtSORGHUM_P 8.42960 0.0054
LnWHEAT_P does not Granger cause LnCO,_EMISSIONS 54 0.66557 0.4184
LnCO,_EMISSIONS does not Granger cause Lt WHEAT_P 2.66479 0.1088
LnBARLEY_P does not Granger cause LnGDP 54  14x107% 0.9970
LnGDP does not Granger cause LnBARLEY_P 0.82411 0.3683
LnCORN_P does not Granger cause LnGDP 54 0.08792 0.7680
LnGDP does not Granger cause LnCORN_P 1.06664 0.3066
LnCOTTON_P does not Granger cause LnGDP 54 1.78409 0.1876
LnGDP does not Granger cause LnCOTTON_P 13.9597 0.0005
LnMILLED_RICE_P does not Granger cause LnGDP 54 0.17989 0.6733
LnGDP does not Granger cause LntMILLED_RICE_P 7.41034 0.0089
LnMILLET_P does not Granger cause LnGDP 54 0.39985 0.5300
LnGDP does not Granger cause LnMILLET_P 1.45823 0.2328
LnSORGHUM_P does not Granger cause LnGDP 54 1.45676 0.2330
LnGDP does not Granger cause LtSORGHUM_P 9.16817 0.0039
LnWHEAT_P does not Granger cause LnGDP 54 43x1077 0.9995
LnGDP does not Granger cause LnWHEAT_P 11.3023 0.0015
LnCORN_P does not Granger cause LnBARLEY_P 54 1.82014 0.1833
LnBARLEY_P does not Granger cause LnCORN_P 0.83645 0.3647
LnCOTTON_P does not Granger cause LnBARLEY_P 54 0.16781 0.6838
LnBARLEY_P does not Granger cause LtCOTTON_P 0.01421 0.9056
LnMILLED_RICE_P does not Granger cause LnBARLEY_P 54 0.72632 0.3981
LnBARLEY_P does not Granger cause LnMILLED_RICE_P 1.33097 0.2540
LnMILLET_P does not Granger cause LnBARLEY_P 54 0.19762 0.6585
LnBARLEY_P does not Granger cause LnMILLET_P 1.73499 0.1937
LnSORGHUM_P does not Granger cause LnBARLEY_P 54 6.36879 0.0148
LnBARLEY_P does not Granger cause LtSORGHUM_P 1.78782 0.1871
LnWHEAT_P does not Granger cause LnBARLEY_P 54 0.76246 0.3867
LnBARLEY_P does not Granger cause Lt WHEAT_P 2.48626 0.1210
LnCOTTON_P does not Granger cause LnCORN_P 54 0.02533 0.8742
LnCORN_P does not Granger cause LtCOTTON_P 2.74956 0.1034
LnMILLED_RICE_P does not Granger cause LnCORN_P 54 0.03956 0.8431
LnCORN_P does not Granger cause LnMILLED_RICE_P 7.44094 0.0087
LnMILLET_P does not Granger cause LnCORN_P 54 0.11889 0.7317
LnCORN_P does not Granger cause LnMILLET_P 0.19930 0.6572
LnSORGHUM_P does not Granger cause LtCORN_P 54 1.09323 0.3007
LnCORN_P does not Granger cause LiSORGHUM_P 21.4589 3x107%
LnWHEAT_P does not Granger cause LnCORN_P 54 0.13426 0.7156
LnCORN_P does not Granger cause LntWHEAT_P 3.26729 0.0766
LnMILLED_RICE_P does not Granger cause LntCOTTON_P 54 3.47557 0.0680
LnCOTTON_P does not Granger cause LtMILLED_RICE_P 1.58936 0.2132
LnMILLET_P does not Granger cause LnCOTTON_P 54 0.48885 0.4876
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Table 7. Cont.

Pairwise Granger Causality Tests

Null Hypothesis: Obs  F-Statistic Prob.

LnCOTTON_P does not Granger cause LnMILLET_P 1.61906 0.2090
LnSORGHUM_P does not Granger cause LnCOTTON_P 54 0.78492 0.3798
LnCOTTON_P does not Granger cause LSORGHUM_P 5.29439 0.0255
LnWHEAT_P does not Granger cause LtCOTTON_P 54 8.20250 0.0061
LnCOTTON_P does not Granger cause LnWWHEAT_P 5.52918 0.0226
LnMILLET_P does not Granger cause LnMILLED_RICE_P 54 0.17433 0.6780
LnMILLED_RICE_P does not Granger cause LnMILLET_P 1.31917 0.2561
LnSORGHUM_P does not Granger cause LnMILLED_RICE_P 54 1.37066 0.2471
LnMILLED_RICE_P does not Granger cause LnSORGHUM_P 8.25064 0.0059
LnWHEAT_P does not Granger cause LnMILLED_RICE_P 54 4.53110 0.0381
LnMILLED_RICE_P does not Granger cause Lt WHEAT_P 5.60364 0.0218
LnSORGHUM_P does not Granger cause LuMILLET_P 54 0.99540 0.3231
LnMILLET_P does not Granger cause LtSORGHUM_P 0.19501 0.6606
LnWHEAT_P does not Granger cause LnMILLET_P 54 2.35497 0.1311
LnMILLET_P does not Granger cause Lt WHEAT_P 0.09127 0.7638
LnWHEAT_P does not Granger cause LtSORGHAM_P 54 8.43335 0.0054
LnSORGHUM_P does not Granger cause LtWHEAT_P 0.17899 0.6740

Source “Authors’ calculation”.

4.7. Two-Stage Least Square (2SLS) Method for Endogeneity Problem

Endogeneity is a problem when the explanatory variables correlate with the error term. When
an endogeneity problem is found in a model or variables, it is resolved by including an instrumental
variable. To identify if an endogeneity problem exists, we applied the 25LS method to the time series
data. In the case of endogeneity in the model, there is a need for instrumental variables. We added
agriculture value-added (AVA) as an instrumental variable in our model. Table 8 shows the two-stage
least square method for the study variables. The model also shows the Durbin-Watson, ]-statistic and
second-stage results (SSR) for the study variables.

Table 8. Two-stage least square (25LS) method.

Dependent Variable: LNCO2_EMISSIONS
Method: Two-Stage Least Squares

Instrument specification: LnBARLEY LnCORN LnCOTTON LnMILLED_RICE
LnMILLET LnSORGHUM LnWHEAT LnAVA C

Variable Coefficient Std. Error t-Statistic Prob.
LnGDP 0.057291 0.635302 0.090178 0.9285
LnBARLEY 0.167707 0.171722 0.976616 0.3340
LnCORN 0.738820 0.355009 2.081133 0.0431
LnCOTTON 0.359947 0.199564 1.803670 0.0780
LnMILLED_RICE —-0.518871 0.215862 —2.403720 0.0204
LnMILLET —0.059969 0.192319 —-0.311823 0.7566
LnSORGHUM 0.028461 0.182736 0.155750 0.8769
LnWHEAT 0.559824 0.525935 1.064437 0.2928
C —-0.535170 9.044380 —0.059172 0.9531
R-squared 0.972394 Mean dependent var 10.88533
Adjusted R-squared 0.967486 S.D. dependent var 0.801814
S.E. of regression 0.144579 Sum squared resid 0.940644
F-statistic 197.8743 Durbin-Watson stat 0.873537
Prob(F-statistic) 0.000000 Second-Stage SSR 0.984332
J-statistic 241 x10732 Instrument rank 9
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4.8. Impulse Response and Variance Decomposition Analysis

Finally, we employed impulse response analysis in which we employ the response of LnCO,,
LnGDP, LnBARLEY, LnCORN, LnCOTTON, LnMILLED RICE, LaMILLET, LnSORGHUM, and Lt WHEAT
to explain random innovations among them. The random response is not described by the pairwise
Granger causality test. The impulse-response of carbon dioxide emissions to Cholesky One S.D.
innovations in other variables are displayed in Figure 5.

Response of LNCO2_EMISSIONS to LNGDP Response of LNCO2_EMISSIONS to LNBARLEY_P Response of LNCO2_EMISSIONS to LNCORN_P
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Figure 5. Impulse response of LCO, to Cholesky One S.D.

This study employed the variance decomposition method, which estimates the percentage of
influence of each independent variable on the error variance of the dependent variable [39]. Figure 5
shows that the response of carbon dioxide emissions to corn production, millet production, milled rice
production, sorghum production, and wheat production are insignificant within 10-period horizons.
On the other hand, the initial response of carbon dioxide emissions to all other variables, for example,
GDP, barley production and cotton production, is significant. On the other hand, a one standard
deviation shock to GDP causes carbon dioxide emissions to steadily increase within a 10-period horizon.
Similarly, a one standard deviation shock to barley production causes carbon dioxide emissions to
gradually increase within a 10-period horizon, while corn production first increases carbon dioxide
emissions over a 2-period horizon, and then starts decreasing over a 10-period horizon. A one standard
deviation shock to cotton production causes carbon dioxide emissions to exhibit and up-and-down
motion within a 10-period horizon.

Figure 6 shows the response of GDP, barley production, corn production, cotton production,
milled rice production, millet production, sorghum production and wheat production to carbon
dioxide emissions.
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Figure 6. Impulse response of other variables to Cholesky One S.D. Innovations in LCO,.

Table 9 shows the variance decomposition of LCO,, LnGDP, LnBARLEY, LnCORN, LnCOTTON,
LnMILLED RICE, LtMILLET, LtSORGHUM and LnWHEAT within a 10-period horizon. The variance
decomposition provides evidence of the relative importance of each random innovation in affecting
LnCO,, LnGDP, LnBARLEY, LnCORN, LnCOTTON, LnMILLED RICE, LnMILLET, LnSORGHUM and
LnWHEAT in the VAR model.
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5. Conclusions and Policy Implications

This study explored the causal relationship between carbon dioxide emissions, economic growth
and agricultural production in Pakistan for the time period from 1960 to 2014. By employing the ARDL
optimal model, there was evidence of short-run and long-run associations between gross domestic
product, barley, corn, cotton, milled rice, millet, sorghum and wheat to carbon dioxide emissions. The
evidence from the unit root tests (ADF, PP and KPSS) showed that all study variables are integrated at
I(1). The results of the ARDL bounds test showed that there is a co-integration relationship between all
the study variables.

The results of the Granger causality test indicated that there is both unidirectional and bidirectional
causality between the study variables. The study also applied the two-stage least square method to
describe the endogeneity problem in our variables or model. The paper aimed to employ variance
decomposition and Cholesky ordering to investigate the future effect of variables on carbon dioxide
emissions in the VAR model.

Agriculture plays a very important role and is considered a backbone in a nation’s growth.
The government of Pakistan is trying to achieve a healthy living style and increase its economic
growth. There is a need to improve agricultural productivity through advanced agriculture production
techniques. The country is listed among the countries severely affected by climate change [74] despite
being a low producer of CO; gasses [75] because of its increasing dependence on agriculture for food
and fiber needs [76]. The role of extension services is also very important for spreading updated
scientific information to farmers.
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Abstract: We propose an emission-intensity-based carbon-tax policy for the electric-power industry
and investigate the impact of the policy on thermal generation self-scheduling in a deregulated
electricity market. The carbon-tax policy is designed to take a variable tax rate that increases stepwise
with the increase of generation emission intensity. By introducing a step function to express the
variable tax rate, we formulate the generation self-scheduling problem under the proposed carbon-tax
policy as a mixed integer nonlinear programming model. The objective function is to maximize total
generation profits, which are determined by generation revenue and the levied carbon tax over the
scheduling horizon. To solve the problem, a decomposition algorithm is developed where the variable
tax rate is transformed into a pure integer linear formulation and the resulting problem is decomposed
into multiple generation self-scheduling problems with a constant tax rate and emission-intensity
constraints. Numerical results demonstrate that the proposed decomposition algorithm can solve
the considered problem in a reasonable time and indicate that the proposed carbon-tax policy can
enhance the incentive for generation companies to invest in low-carbon generation capacity.

Keywords: generation self-scheduling; emission intensity; carbon tax; mixed integer linear programming

1. Introduction

Thermal-power generation is one of the main sources of carbon dioxide emissions. About
41 percent of global carbon dioxide emissions come from thermal-power generation. Since excessive
emission of carbon dioxide leads to global warming and environmental deterioration, it is important
to set up a reasonable policy to reduce carbon dioxide emissions from thermal-power generation for
the sustainable development of the electric-power industry.

1.1. Literature Review

Three policies are generally implemented to reduce emissions from the electric power industry.
The first policy is the emissions-cap policy that specifies a limit or cap on the total quantity
of emissions over a certain time period. Related studies include an emission-constrained typical
unit commitment problem [1], a tabu search and Benders decomposition based short term unit
commitment solution approach [2], emission-constrained generation self-scheduling problems [3,4],
the emission-constrained robust self-scheduling of a hydro-thermal generation company [5], a stochastic
long-term security-constrained unit commitment formulation [6], and the stochastic self-scheduling of
thermal units with emission constraints [7]. The second policy is the emissions-trading scheme (ETS)
that allocates each emission entity a specified emission allowance, and allows emission entities to
purchase or sell allocated allowances in the emissions-trading market. The ETS was first introduced
in European Union [8] and then developed in many other countries. The effects of the ETS on
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generation scheduling were studied in [9]. Emissions-trading planning for a combined heat and
power producer was investigated in [10]. The impacts of the ETS on the Nordic electricity market and
electricity consumers were assessed in [11]. An agent-based model was established in [12] to study
the potential impact of carbon-emissions trading on the power sector in China. Fuel switching in
electricity production under the ETS was discussed in [13]. A computable general equilibrium model
was established in [14] to analyze the impact of carbon-allowance allocation on the electric-power
industry in China. A review of the carbon-trading market in China was presented in [15]. The third
policy is the carbon-tax policy, under which generation companies are obliged to pay for their carbon
dioxide emissions according to the carbon-tax rate and the quantity of their emissions. The carbon-tax
policy was first implemented in Finland and gradually spread in many other countries, such as Sweden,
Denmark, and Germany. A revenue and distributionally neutral approach was described in [16] to
design a carbon tax to reduce greenhouse-gas emissions. The mitigation effects of carbon tax on carbon
dioxide emissions are comprehensively estimated in [17]. A carbon tax generation self-scheduling
model was presented and the effects of generation profits and emissions profiles under different
carbon-tax scenarios are analyzed in [18]. Different evolutions of carbon dioxide taxes that might
be applied to the national electricity sector in Portugal were studied in [19]. A choice experiment
study of Chinese companies was summarized in [20] to measure the choice preferences of Chinese
companies to carbon-tax policy. A bibliometric analysis of the carbon-tax literature from 1989 to 2014
was provided in [21].

The emissions-cap policy has the advantage of regulating the total quantity of emissions, but lacks
impetus from market forces. The ETS has the advantages of broad participation, international equity,
and controlling the total quantity of emissions [22], but has to face the impact of large uncertainties
from emissions-trading platforms on policy efficiency [16]. Compared with the emissions-cap policy
and the ETS, the carbon-tax policy not only provides a price signal to impel emitters to develop
low-carbon technologies or cleaner energy sources [23], but can also be implemented without trading
platforms; consequently, it is highly recommended by economists and organizations [17].

1.2. Work and Contribution of the Paper

A challenge of carbon-tax policy is how to determine the tax rate, which is the levied charge per
unit quantity of emissions. If the tax rate is low, emissions cannot be effectively reduced. If the tax
rate is high, both production and economic profits are badly hurt. In the previous literature, the tax
rate is usually a designated constant [18,24,25]. However, the use of a constant tax rate does not take
into account the difference in pollution levels between generation companies, and lacks flexibility in
incentives to reduce emissions. It was indicated in [26] that changing the tax rate based on energy
efficiency is more effective than applying the same tax rate to all manufacturers. It was suggested
in [27] to allow the tax rate to vary among generation units.

Inspired by the idea in [26,27], we propose in this paper an emission intensity-based carbon tax
policy in the context of the electric-power industry. Emission intensity is the quantity of emissions per
unit power generation. It is an index to measure the pollution level of power generation. The higher
emission intensity is, the more serious the pollution in power generation is. In order to improve
controlling power-generation pollution, and impel generation companies to invest in low-carbon
power generation, we provide different carbon-price signals for different power-generation levels.
That is, we adjust the tax rate according to the pollution level of power generation. The more serious
the pollution in power generation is, the higher the assigned tax rate is. Therefore, the tax rate is
designed to stepwise increase as emission intensity of power generation increases. By introducing
emission intensity, the proposed carbon-tax policy increases taxation on high pollution production
while balancing generation contribution and environmental pollution in determining the tax rate.

To analyze the effect of the proposed carbon-tax policy, we investigate the impact of the policy
on generation self-scheduling decisions. The generation self-scheduling problem plays an important
role in the daily-operation planning of generation companies in the deregulated electricity market.
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A typical generation self-scheduling problem is deciding the operation of generation units according to
electricity prices and the physical characteristics of generation units, with the objective of maximizing
total profits [28,29]. Effective generation self-scheduling can promote the economic operation of
generation companies. Under the proposed carbon-tax policy, generation companies need to not only
adjust power output according to price signal, but also reduce emissions according to the carbon-tax
policy, which brings a new challenge for generation self-scheduling decisions.

Our work is different from [26,27] in the following two aspects. First, the mechanisms for
designing the tax rate are different. The tax rate was designed based on game theory in both [26]
and [27], while it is designed by explicitly formulating the relation function between tax rate and
emission intensity in our work. Second, the involved models are different. A simple numerical
example was considered in [26], a simplified economic dispatch model omitting time-coupled
unit-operation constraints was considered in [27], while an explicit generation self-scheduling model
that includes conventional unit-operation constraints and decides not only economic dispatch but also
unit commitment is considered in our work. A tax rate that varies based on the quantity of emissions
was presented in [30]. Our work is different from [30] in that tax-rate variation in our work is emission
intensity-based. Compared with [30], our work in determining tax rate takes into account not only
generation emissions but also generation contribution. The major contributions of the paper can be
summarized as follows:

(1) A carbon-tax policy with variable tax rate is proposed with regard to the electric-power industry.
Tax rate is designed to increase stepwise with the increase of power-generation emission intensity,
which can strengthen tax collection from high-pollution generation companies and balance
electricity supply and environmental pollution in determining tax rate.

(2) The impact of the proposed carbon-tax policy is investigated by formulating the generation
self-scheduling problem under the proposed carbon-tax policy as a mixed integer nonlinear
programming (MINLP) model and developing a decomposition algorithm to solve the problem.

(3) Numerical experiments are carried out to test the performance of the proposed algorithm and
discuss the effectiveness of the proposed carbon tax policy.

The remainder of this paper is organized as follows: Formulation of the generation self-scheduling
problem under the proposed carbon-tax policy is described in Section 2. The solution approach to
solving this problem is developed in Section 3. Numerical experiments and results are presented in
Section 4. The conclusions of the paper are provided in Section 5.

2. Problem Description and Formulation

2.1. Parameteres and Decision Variables

The parameters and decision variables used in the formulation are defined as follows:

Parameters
n Number of generation units.
T Scheduling horizon.
M Number of carbon-tax rate values.
'qD / Tl.u Minimum down-time/up-time of generation unit i.
RlD / Riu Ramp-down/ramp-up rate of generation unit 7.
SlD / S,-u Shutdown/startup ramp rate of generation unit 7.
pt/pH Minimum/maximum power output of generation unit i.
i/ Bin Slope/intercept of the h-th segment line for the fuel-cost curve of generation unit i.
B; Startup cost of generation unit i.
T Emission coefficient of generation unit 7.
U Emission intensity.
0 Carbon-tax rate.
[ The m-th carbon-tax rate value.
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Qm Upper bound of emission intensity corresponding to the m-th carbon-tax rate value.

At Expected electricity price in hour f.

1 Binary parameter to indicate the initial on/off status of generation unit i.

Pio Generation output of generation unit i in hour 0.

o; Last hour of the periods during which the on/ off status of generation unit i is determined by

the initial status of the generation unit.

Decision Variables

Uit Binary decision variable to indicate on/off status of generation unit i in hour .

Vjt Binary decision variable to indicate if generation unit i is started up in hour ¢.

Pit Generation output of generation unit 7 in hour ¢.

Pit Fuel cost of generation unit i in hour ¢.

Om Binary decision variable to indicate whether carbon-tax rate equals m-th carbon-tax rate value.

2.2. Description and Formulation of Carbon-Tax Policy

For the carbon tax policy, we consider M levels for the tax rate as illustrated in Figure 1. Each level
corresponds to a tax-rate value and a range of emission intensity. Each tax rate value provides
a carbon-tax signal for the corresponding emission-intensity range.

Level M

Level 2

Level 1

| »

0 Q1 Q . Qma Qum

Figure 1. Tax rate with M levels.

Tax rate is variable and equals a tax-rate value according to the range to which emission intensity
belongs. The relationship between tax rate and emission intensity can be formulated by a step-up
function as follows:

wy, p<Q
o= Wm, Qm71<l"§sz m=2,...,.M-1 (1)
wym, H > Qum-1

where 0 < wy < wp < --- < wy, and emission intensity u over the scheduling horizon is determined
by the ratio of the quantity of total emissions [1,9] to the total generation level as follows:

n n

W T T ) T
Y Yrign/ X X pi, it DY pir >0
i—1t=1 i=1f=1 i=1f=1 , (2)

0, otherwise
0< Q) <Q2 <+ < Qm1 < Qum and Qy is the upper bound of possible emission intensity.
Expression (1) shows that tax rate increases stepwise as emission intensity increases. Particularly,

when M =1, the tax rate is constant. Therefore, the proposed carbon tax policy is a generalization of
the typical carbon tax policy with a constant tax rate.
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2.3. Generation Self-Scheduling Model under the Proposed Carbon-Tax Policy

To investigate the effect of the proposed carbon tax policy, we consider the generation
self-scheduling problem under the proposed carbon-tax policy, which is described as follows.
A generation company schedules a certain number of thermal generation units and sells the produced
electricity at the market price. The objective is to maximize generation profits. The generation
company is obliged to pay for generation emissions in accordance with the proposed carbon-tax
policy. The scheduling of generation units needs to satisfy operating constraints such as minimum
up-time and down-time constraints, generation-capacity constraints, and ramp-rate constraints.

Based on the above description, the generation self-scheduling problem under consideration can
be formulated as follows:

P)
T n n T n T
max ) AtY pir— Y Y (¢ie + Bivie) —p)_ Y righir 3)
=1 i=1 i—1i=1 i—1i=1
subject to (1), (2), and:
uy =uj, Vi, t=1,...,0; 4)
vy =0, Vi, t=1,...,0 (5)
i — g < g, Vi, k= t+1,...,min{T,Tl-U Ty 1}, t=o;+1,...,T ®)
Uig_1 — iy <1—uy, Vi, k= t+l,...,min{T,TiD Tt 1}, t=ci+1,...,T @)
WUjp — Ujp—1 < vy, Vi, t= o+1,...,T (8)
uPk < piy <uyPH, Vi, vt 9)

—RPujyq — SP(1 = wipi1) < pipsr — pir < Ruy + SE(1—uy), Vi, t=0,...,T—1 (10)

$it > wippit + Binkie, Vh, Vi, Vi (11)
$it, pir =0, Vi, Vt (12)
Ujt, U € {O,l}, Vl, Vt. (13)

In formulation (P), function (3) represents generation profits, which consist of generation revenue,
generation cost, and paid tax for generation emissions. Constraints (4) and (5) represent the impact of
the initial statuses of generation units on the on/off statuses, and the start-up actions of generation
units over the scheduling horizon, respectively [31,32]. Constraints (6) and (7) represent the minimum
up-time and down-time requirements of generation units, respectively. Constraints (8) represent the
relationship between the on/off statuses and the start-up actions of generation units. Constraints (9)
represent the range of output power for the committed generation units. Constraints (10) define the
ramp-rate limits to represent the relationship between output levels in adjacent hours. Constraints (11)
represent the piecewise linear approximation of the quadratic fuel cost function. Constraints (12) and
(13) provide the value fields of the decision variables.

3. Solution Methodology

Formulation (P) includes continuous variables, integer variables, a piecewise expression in the
function (1), and a bilinear term in the objective function (3), which corresponds to an MINLP model
and makes it impossible to directly solve the problem by using a commercial solver such as CPLEX.
Therefore, it is necessary to develop an efficient algorithm to solve the problem. According to the
characteristics of (P), we develop the following decomposition algorithm to solve the problem.
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3.1. Reformulation of the Problem

First, by introducing binary variables d,,, m = 1,..., M, to indicate whether the tax rate equals
the m-th value or not, we can obtain the integer linear formulation of the tax rate as follows:

M
p= Z O Wiy (14)
m=1
where:
M
Z o =1 (15)
m=1
n T
51112 Z rigir < 5QOZ Z pi,, m=1,..., M—1 (16a)
i=1t=1 i=1t=
n T
5;112 Z ripit > OmQm— 12 Z pity m=2,...,M (16b)
i=1t=1 i=1t=
Om € {0,1}, Vm. 17)

Then, based on the above expressions, we can reformulate the considered generation
self-scheduling problem as:

P1)
n M

T n T n T
max)_ ArY_ pi— Y, ) (¢ + Bivy) — Z W)Y rithir (18)

=1 i=1 i=1t=1 1=1 i=1t=1
subject to (4)—(13), and (15)—(17).
Finally, according to the formulation of the objective function (18), we replace constraints
(16b) with:

T n T
27’47# > 5QOle Zpitr m :21~~~/M (19)

i=1t=1

nM:

without changing the optimal solution of (P1).

3.2. Decomposition Algorithm

For an arbitrary m, we can obtain the following formulation by fixing 6,, = 1 and 6,,, = 0, m' #m,
in (P1):
(Prm)

n

T n n T
maxy_ ArY " pir— Y. Y (¢ + Bivir) wmz Z Tiit (20)
=1 in1

i=1t= i=1t=

-

subject to constraints (4)—(13), and:

n T n T
22r1¢1t<Q Zzpitriflgmngl (21a)
i=1t=1 i=1t=1
n T n T
melz Z pit = 2 Z iy, if 2 <m < M. (21b)
i=1t=1 i=1t=1

Formulation (P;) corresponds to a generation self-scheduling problem with a constant tax rate
w;; and emission-intensity constraints (21a) and (21b). It is a mixed integer linear programming (MILP)
model and can be solved optimally by a commercial solver if the feasible domain determined by
(4)-(13), (21a), and (21b) is not empty.

The above observation motivates us to enumerate all feasible é,, to decompose (P1) into M
subproblems (P;;) and develop the following algorithm:
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Step0 Initialization: set u_best;; = p_best;; = Oforalliand allt,m =1, m_best = 1, and f_best = My
where M is a large-enough positive number.

Step1 Solve (Py,) by calling an MILP solver. If (P;;) can be optimally solved, denote the optimally
objective function value as f,. If f,, < f_best, update f_best, m_best, and {u_best;;,p_best;,
i=1,...,n,t=1,..., T} with f;, m, and the optimal unit commitment and economic dispatch
decisions of (Py,), respectively.

Step2 If m=M, set

5 1, if m = m_best
" 0, otherwise

and stop. Otherwise, set m = m + 1 and go to Step 1.

Using the above algorithm, we can obtain optimal objective function value f_best, and optimal
unit commitment and economic dispatch decisions {u_best;;, p_best;;, i =1,...,n,t =1,..., T} for (P1).

4. Numerical Results

In this section, we present the numerical experiments in four parts. In the first part, we use test
cases of different sizes to test the performance of the proposed algorithm. In the second part, we test the
impact of tax-rate values on generation self-scheduling and provide a method to choose appropriate
tax-rate values. In the third part, we test the effect of the proposed carbon-tax policy on emission
reduction. In the fourth part, we compare the proposed carbon-tax policy with carbon-tax policy with
a constant tax rate. The test cases are described as follows:

(1) In the first part of the experiments, the scheduling horizon is set to 24, 72, 120, and
168 h, respectively, and the number of generation units is set to 10, 40, 70, and 100, respectively.
The combination of the two configurations forms 16 problem sizes. Under each problem size, ten test
cases are randomly generated. For each test case, parameters for startup costs and emission coefficients
are uniformly generated from the ranges provided in Table 1, in which ranges for startup costs are
based on those for cool-start fuel costs in [33] and ranges for emission coefficients are based on data
in [9]. Other unit parameters are uniformly generated from ranges provided in [33].

Table 1. Value ranges for startup costs and emission coefficients.

Parameter (Unit) Value Range
B; (%)
If PY < 600 @rY, 6PH)
1f PY > 600 (2PY, 4PY)
7 (t/$)
If P < 600 (0.05, 0.09)
1f PY > 600 (0.005, 0.04)

(2) In the remaining three parts of the experiments, the test is performed by using the ten sets of
generation-unit data corresponding to the problem size of 10 generation units and 24 h in the first part
of the experiments. To clearly show the impact of the proposed carbon-tax policy on generation
self-scheduling, the initial status of each generation unit is modified so that the on/off statuses of the
generation unit during the scheduling horizon are not affected by the initial status of the generation unit.
For each set of generation-unit data, the scheduling horizon is set to 24, 72, 120, and 168 h, respectively.
The combination of the generation-unit data and the scheduling horizon forms 40 test cases.

(8) The number of tax rate values can be set according to the actual requirement. If the number
of tax rate values is too small, pollution levels cannot be well-distinguished. If the number of tax
rate values is too large, it is inconvenient to implement carbon-tax policy. As a tradeoff between the
two aspects, the number of tax rate values is set as five in the experiments. Based on the range of
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emission intensity, Q;;, is set to 0.1m and wy, is set to mA, in which tax-rate increment A is set to 15
without loss of generality in the first part of the experiments; its value is discussed in the second part of
the experiments. In practice, tax-rate value wy, can be set in other form according to the requirements.
We use Pennsylvania-New Jersey—Maryland (PJM) Interconnection Real Time data from 2005 to
2006 [34] to estimate electricity prices. The estimated price data for 168 h are presented in Figure 2.
A ten-piece piecewise linear function is used to approximate each fuel cost function.

120
100
80

60

Price ($MWh)

40 |

20

1 25 49 73 97 121 145
Time (h)

Figure 2. Estimated electricity price data for 168 hours ($/MWh).

The solution algorithm is tested under the computing environment of 3.40 GHz Intel Core i7 CPU
and 16.0 GB memory. The MILP involved is solved by calling CPLEX 12.5.

4.1. Performance of Proposed Algorithm

To test the performance of the proposed algorithm, the MILP approach in which (P1) is
transformed into an MILP model by using the method in [35] is also used to solve the test cases.
The computation time and the number of cases that can be solved optimally are reported in Table 2,
in which each computation time is the average of solvable test cases in the same problem size. If no
test cases in a problem size can be solved optimally, the average computation time is not reported
for that problem size. The number of cases that can be solved optimally in the same problem size is
denoted by N. From Table 2, we can obtain the following observations:

(1) For the MILP approach, the computation time increases exponentially as the problem size
increases. All cases can be solved optimally for the problem in small sizes corresponding to 10 x 24,
40 x 24,10 x 72,10 x 120 and 10 x 168. Only partial cases can be solved optimally for the problem
in medium sizes corresponding to 70 x 24, 100 x 24,40 x 72,70 x 72,100 x 72,40 x 120, 70 x 120,
and 40 x 168. CPLEX is out of memory for all cases for the problem in large sizes corresponding to
100 x 120,70 x 168, and 100 x 168. The average number of cases that can be solved optimally in the
same problem size is 5.

(2) Compared with the MILP approach, the proposed algorithm requires a shorter computation
time. All the cases in all problem sizes can be solved optimally by the proposed algorithm. The average
computation time is 55.77 s, and the longest computation time is 288.06 s.

The above observations indicate that the proposed algorithm is more effective than the
MILP approach for solving the considered problem and can solve the considered test cases in
a reasonable time.
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Table 2. The computation time and the number of cases that can be solved optimally for the MILP
approach and the proposed algorithm.

MILP Proposed

No. Size (n X T)
Time (s) N2 Time (s) N2
1 10 x 24 1.40 10 1.04 10
2 40 x 24 23.56 10 442 10
3 70 x 24 131.35 8 8.76 10
4 100 x 24 136.17 7 14.07 10
5 10 x 72 8.79 10 3.19 10
6 40 x 72 101.60 4 18.03 10
7 70 x 72 149.65 1 38.45 10
8 100 x 72 468.42 3 68.39 10
9 10 x 120 3047 10 597 10
10 40 x 120 365.90 2 42.42 10
11 70 x 120 284.56 2 77.52 10
12 100 x 120 - 0 131.72 10
13 10 x 168 116.63 10 9.74 10
14 40 x 168 363.93 6 64.14 10
15 70 x 168 - 0 116.33 10
16 100 x 168 - 0 288.06 10
Average - 5 55.77 10

2 The number of cases that can be solved optimally.

4.2. Impact of Tax-Rate Values on Generation Self-Scheduling

To analyze the impact of the tax-rate values, w,,, m = 1,...,5, on generation self-scheduling,
we test the model under different w,, settings by allowing tax-rate increment A to vary within
{0,5,10,15, ... ,75}. For each tax-rate increment, test cases are solved and four indices are obtained
in the optimal solution of each test case, including total profits, total generation level, the quantity of
total emissions, and emission intensity over the scheduling horizon. The variations of the four indices,
along with the increase of the tax-rate increment, are shown in Figure 3, in which each point depicts
the average of the ten test cases in the same problem size. From Figure 3, it can be observed that the
four indices show different sensitivity to the change of tax-rate increment as follows:

(1) As tax-rate increment increases, total profits decrease and the sensitivity of the total profits to
the tax-rate-increment change gradually decreases.

(2) As tax-rate increment increases, total generation level, the quantity of total emissions, and
emission intensity decrease. The decrease rates of the three indices present oscillating behavior when
tax-rate increment increases from 0 to 25, and relatively stable behavior when the tax rate increment
increases from 25 to 75.

(3) Because emission intensity is the ratio of total emissions quantity to total generation level, the
decrease of emission intensity with the increase of tax-rate increment indicates that the quantity of
total emissions is more sensitive to the increase of tax-rate increment than total generation level.
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Figure 3. Variations of total generation profits, total generation level, the quantity of total emissions,
and emission intensity with the increase of tax-rate increment.
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Based on the above observations, we design the following method to choose an appropriate
tax-rate increment. Note that a reduction in emission intensity is at the expense of generation profits.
To evaluate profit loss in reducing unit emission intensity, we define the ratio of profits-reduction
percentage to emission intensity reduction percentage as follows:

(Profo — Profa)/Profy
(Ho = pa) /o

O =

in which Profy and pg are total profits and emission intensity under no carbon-tax policy
(corresponding to A = 0), respectively, and Profs and y, are total profits and emission intensity
corresponding to a nonzero tax-rate increment A, respectively, in which A € {5, 10, 15, ..., 75}.
The variation of 0, with the increase of tax-rate increment A is presented in Figure 4, in which each
point depicts the average of all test cases. From Figure 4, it can be observed that 65 presents obvious
decline behavior when tax-rate increment increases from 5 to 15, reaches the first local minimum
value at A = 15, presents oscillating behavior when tax-rate increment is larger than 15, and reaches
the minimum at A = 25. The difference between 605 and 6,5 is small. To balance between emission
intensity and generation profits, tax-rate increment is set to 15 for the test cases. Correspondingly,
tax-rate value wy, is set to 15m, m = 1,...,5, which is used in the following experiments.

5 15 25 35 45 55 65 75
Tax Rate Increment ($/t)
Figure 4. Variation of 6, with the increase of tax-rate increment.
4.3. Effect of Proposed Carbon Tax Policy on Emission Reduction

To test the effect of the proposed carbon-tax policy on emission reduction, we compare the
quantity of total emissions and emission intensity under the proposed carbon-tax policy with those
under no carbon-tax policy, respectively. The quantity of total emissions and emission intensity under
the proposed carbon-tax policy are reported in columns 4 and 5 of Table 3, respectively, and those under
no carbon-tax policy are reported in Table 4. From the results, we can make the following observations:

(1) For the quantity of total emissions, the average value under the proposed carbon-tax policy is
170,037.51 t, whereas the average value under no carbon-tax policy is 230,946.30 t. The ratio between
the two quantities is 0.74. The results show that the quantity of total emissions is reduced by 26% by
adopting the proposed carbon-tax policy.

(2) For emission intensity, the average value under the proposed carbon-tax policy is 0.26, whereas
the average value under no carbon-tax policy is 0.31. The ratio between the two emission intensities is
0.84. The results show that the quantity of emissions per unit power generation is reduced by 16% by
adopting the proposed carbon-tax policy.

The above observations indicate the effectiveness of the proposed carbon-tax policy in reducing
total generation emissions and the pollution level of power generation.
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Table 3. Total generation profits, total generation level, the quantity of total emissions, and emission
intensity under the proposed carbon-tax policy.

T Generation Profits Generation Level Quantity of Emission
(&) (MW) Emissions (t) Intensity (/MW)
24 5,423,040.63 156,285.49 40,663.25 0.26
72 17,369,095.36 491,025.77 131,917.18 0.27
120 27,175,633.46 807,196.34 211,287.38 0.26
168 37,811,819.12 1,131,651.47 296,282.21 0.26
Average 21,944,897.14 646,539.77 170,037.51 0.26

Table 4. The quantity of total emissions and emission intensity under no carbon-tax policy.

T (h) Quantity of Emissions (t) Emission Intensity (t/MW)
24 56,966.69 0.31
72 172,953.10 0.31
120 288,939.50 0.31
168 404,925.90 0.31
Average 230,946.30 0.31

4.4. Comparison between Proposed Carbon-Tax Policy and Carbon-Tax Policy with a Constant Tax Rate

To show the difference between the proposed carbon-tax policy and carbon-tax policy with
a constant tax rate, we make the following comparisons. First, we compare the optimal solutions under
the two carbon-tax policies without changing the test-case parameter setting. Second, we adjust value
ranges for emission coefficients and compare the sensitivities of the optimal solutions to the change of
emission coefficients under the two carbon-tax policies. For the carbon-tax policy with a constant tax
rate, five constant tax rates are considered, with values set from w, to ws, respectively.

4.4.1. Comparison between Two Carbon-Tax Policies without Changing Parameter Setting

The optimal solution under each carbon-tax policy is presented by the same indices used in
Section 4.2. The results under the proposed carbon-tax policy are reported in Table 3, and those under
the carbon-tax policy with a constant tax rate corresponding to different settings of the constant tax
rate are reported in Table 5.

From Tables 3 and 5, we can make the following observations:

(1) Average emission intensity under the proposed carbon-tax policy is 0.26, which indicates
that the average tax rate corresponding to the proposed carbon-tax policy is equal to w3. Compared
with the carbon-tax policy with a constant tax rate of no more than w3 (w;, wy, or ws3), the proposed
carbon-tax policy corresponds to lower generation profits and generation level, but much-reduced
emission quantity and intensity.

(2) Compared with the carbon-tax policy with relatively large constant tax rate wy, the proposed
carbon-tax policy corresponds to a lower generation level, and emission quantity and intensity, but
higher generation profits.

(8) Compared with the carbon-tax policy with the largest constant tax rate ws, the proposed
carbon-tax policy is corresponding to higher generation level and quantity of emissions, but an equal
emission intensity and much-increased generation profits.

The above comparison indicates the superiority of the proposed carbon-tax policy over the
carbon-tax policy with a constant tax rate in comprehensive consideration of generation profits,
generation level, emission quantity, and emission intensity.
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Table 5. Total generation profits, total generation level, the quantity of total emissions, and emission
intensity under the carbon-tax policy with a constant tax rate.

T Tax Rate Generation Generation Quantity of Emission Intensity
($/1) Profits ($) Level (MW) Emissions (t) (t/MW)
24 wy 7,042,972.81 183,806.99 56,954.39 0.31
wy 6,212,003.63 178,441.98 53,104.73 0.30
w3 5,453,691.95 168,627.56 47,995.38 0.29
Wy 4,776,296.57 156,731.18 42,564.42 0.28
ws 4,181,646.67 144,142.39 36,981.80 0.26
72 wy 22,473,333.53 558,384.99 172,915.76 0.31
wy 19,923,699.57 547,249.87 164,666.40 0.30
w3 17,556,184.34 522,160.40 150,658.46 0.29
wy 15,414,841.59 490,051.75 135,105.06 0.28
ws 13,513,722.19 453,420.58 117,811.99 0.26
120 wy 35,631,936.10 932,979.61 288,892.02 0.31
wy 31,363,452.90 915,292.42 275,542.84 0.30
w3 27,399,348.57 873,602.74 251,806.51 0.29
Wy 23,827,289.19 816,426.34 222,986.41 0.28
ws 20,710,184.75 751,676.87 191,643.08 0.26
168 wy 49,660,909.40 1,307,523.04 404,822.36 0.31
wy 43,680,701.04 1,282,775.65 386,336.73 0.30
w3 38,123,525.06 1,224,525.39 353,144.53 0.29
Wy 33,109,787.72 1,145,776.37 313,255.36 0.28
ws 28,739,390.04 1,053,084.53 268,178.16 0.26
Average wy 28,702,287.96 745,673.66 230,896.13 0.31
wy 25,294,964.28 730,939.98 219,912.68 0.30
w3 22,133,187.48 697,229.02 200,901.22 0.29
Wy 19,282,053.77 652,246.41 178,477.81 0.28
ws 16,786,235.91 600,581.09 153,653.76 0.26

4.4.2. Comparison between Two Carbon-Tax Policies under Different Emission-Coefficient Settings

Emission coefficients are important parameters that determine the pollution level of power
generation. To show how significantly the optimal solution changes as emission coefficients increase,
we test the generation self-scheduling model corresponding to each carbon-tax policy under different
value range settings for emission coefficients. In the test, eight sets of value ranges for emission
coefficients are considered and provided in Table 6 in increasing order, in which each set of value ranges
is denoted by R;, j =1,...,8. Results for tax-rate value, emission intensity, and total generation profits
in the optimal solution corresponding to different carbon-tax policies under different value-range
settings for emission coefficients are depicted in Figure 5, in which each point depicts the average over
all test cases. From Figure 5, we can make the following observations:

(1) Compared with the carbon-tax policy with a constant tax rate, the proposed carbon-tax policy
provides a tax rate that can be adaptively adjusted according to the change of emission coefficients and
increases in a stepwise manner as emission coefficients increase. The result indicates that the proposed
carbon-tax policy provides more flexibility than the carbon-tax policy with a constant tax rate.

(2) For each carbon-tax policy, emission intensity increases as emission coefficients increase.
Compared with each carbon-tax policy with a constant tax rate, the proposed carbon-tax policy
corresponds to the smallest average increase of emission intensity. The results indicate that the
proposed carbon-tax policy can slow down the rise of emission intensity caused by the increase of
emission coefficients.

(3) For each carbon-tax policy, total generation profits increase with the decrease of emission
coefficients. As emission coefficients decrease, the proposed carbon-tax policy corresponds to a
larger increase in total generation profits compared with the carbon-tax policy with a constant tax
rate that is equal to the tax rate value of the proposed carbon-tax policy. The results indicate that
the proposed carbon-tax policy can provide more economic incentives for generation companies to
develop emission-reduction technologies or cleaner energy sources, compared with a carbon-tax policy
with a constant tax rate.
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Table 6. Value ranges for emission coefficients.

Situation Ry R, R3 Ry
If P,-u < 600 (0.05, 0.055) (0.055, 0.06) (0.06, 0.065) (0.065, 0.07)
If Pl.u > 600 (0, 0.005) (0.005, 0.01) (0.01, 0.015) (0.015, 0.02)
Situation Rs R¢ Ry Rg

If Piu < 600 (0.07,0.075) (0.075, 0.08) (0.08, 0.085) (0.085, 0.09)
If P,U > 600 (0.02, 0.025) (0.025, 0.03) (0.03, 0.035) (0.035, 0.04)
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(a) Variation of tax-rate value with the increase of emission coefficients.
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(b) Variation of emission intensity with the increase of emission coefficients.
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(c) Variation of total generation profits with the increase of emission coefficients.

Figure 5. Variations of tax-rate value, emission intensity, and total generation profits with the increase
of emission coefficients. Curves 1, 2, 3, 4, and 5 depict the results corresponding to the carbon-tax policy

with constant tax rate wq, wy, w3, wy, and ws, respectively; Curve 6 depicts the results corresponding
to the proposed carbon-tax policy.

160



Energies 2019, 12, 777

5. Conclusions

In this paper, we propose a rate-variable carbon-tax policy and analyze the impact of the policy
on generation self-scheduling of a generation company. The tax rate is designed to change along
with emission-intensity variation, which is more flexible for emission reduction and distinguishes the
proposed carbon-tax policy from existing carbon-tax policies. The variable tax rate is expressed
by a step function, and the generation self-scheduling problem under the proposed carbon-tax
policy is formulated as an MINLP model. A decomposition algorithm where multiple MILP
procedures are implemented is developed to solve the problem. Computational results indicate
that the decomposition algorithm is more effective than the MILP approach. It is also observed from
numerical results that the proposed carbon-tax policy is effective in emission reduction and has more
advantages than a carbon-tax policy with a constant tax rate in: (1) comprehensive consideration
of generation profits, generation output, emission quantity s, and emission intensity; (2) slowing
down the rise of emission intensity; and (3) stimulating generation companies to invest in low-carbon
electricity-generation methods.

Our research provides new advice for policy makers to establish an effective emission-reduction
mechanism for the electric-power industry. Modeling the generation self-scheduling problem under
the proposed carbon-tax policy provides a theoretical framework for the implementation of carbon-tax
policy. However, no uncertainties on electricity market are considered in the model, which is still
a practical limitation of our research.

Besides addressing this limitation, future research can focus on: (1) analyzing the proposed policy
under a generation-expansion planning framework to assess the impact of the proposed policy on
investment in renewable energies and clean-generation techniques, and (2) studying environmental
policies in other energy-intensive industries.
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Abstract: Using mathematical programming with activity-based costing (ABC) and based on the
theory of constraints (TOC), this study proposed a green production model for the traditional paper
industry to achieve the purpose of energy saving and carbon emission reduction. The mathematical
programming model presented in this paper considers (1) revenue of main products and byproducts,
(2) unit-level, batch-level, and product-level activity costs in ABC, (3) labor cost with overtime
available, (4) machine cost with capacity expansion, (5) saved electric power and steam costs by using
the coal as the main fuel in conjunction with Refuse Derived Fuel (RDF). This model also considers the
constraint of the quantity of carbon equivalent of various gases that are allowed to be emitted from the
mill paper-making process to conform to the environmental protection policy. A numerical example is
used to demonstrate how to apply the model presented in this paper. In addition, sensitivity analysis
on the key parameters of the model are used to provide further insights for this research.

Keywords: green production; Activity-Based Costing (ABC); Theory of Constraints (TOC); green
supply chain; energy saving; carbon emission reduction

1. Introduction

A total of 195 nations signed the Paris Agreement in December 2015 in order to solve the problem
of environmental climate change [1]. Green issues have received considerable attentions in many
industries worldwide in recent decades [2]. Enterprises have also tried to recover renewable raw
materials to achieve profit, as well as to protect the environment [3,4], to actively reduce energy and
resource consumption, waste output and virgin material consumption [5].

When implementing environmental strategies, the government should formulate and promote
laws and regulations that all industries should comply with, and draw up plans to promote the
entire industry, and provide sufficient funds and resources for enterprises [6]. However, when the
government faces pressure on limited natural resources and waste disposal, they formulate resource
recovery policies [3], and as the public continue to increase pressure on the government in terms
of environmental pollution, it forces the government to develop stricter environment regulations
and fines for environmental pollution, aiming to reduce the pollution caused by enterprises by
adopting environmental management regulations [7]. The purpose of environmental management
is to solve the problem of ecological environment pollution during the growth of enterprises [8],
and to promote the production efficiency and effective use of raw materials of enterprises, including
the use of alternative raw materials, and recycling and reusing raw materials, in order to effectively
use raw materials and reduce resource waste [9]. Environmental problems can be considered and
solved in the engineering or product development stage, especially through the life cycle assessment
(LCA) method [10], where product designers can make a more environmentally friendly design [11].
The solution to environmental pollution largely depends on a combination of pollution prevention
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technologies and environmental management, which are keys to achieve the goals of environmental
protection and pollution reduction. Through process innovations, enterprises can achieve both cost
reduction and environment protection [7].

Early paper mills used wood, straw, sugarcane bagasse, and waste paper as raw materials to
make pulp, which was used to make paper products. Concern for the environment has forced
many enterprises to develop local policies for environment protection. Regarding the paper industry,
practicing paper recycling is a cost-reducing choice, as compared to using wood as the raw material [12].
Some paper mills use a variety of waste paper to produce recycled paper, purchase pulp and paper
equipment to improve efficiency and reduce the consumption of water and coal by using cogeneration
equipment (also known as combined heat and power) in order to efficiently use energy. Then, paper
mills can sell excess heat and electricity to recover costs. Coal, given its advantage of low cost, is
the main fuel used to power the generator units of the paper industry; however, it greatly influences
the environment, for example, the emitted pollutants of Carbon Dioxide (CO;), Sulphur Oxides
(SOy), Nitrogen oxides (NOy), and suspended matter, which brings severe harm to the environment.
The paper-making process consists of pulping, papermaking, coating, and packing. The waste paper
recycling rate in high-income countries is higher than that in less developed countries, meaning
that countries with higher economic development need more attention on the problems of waste
management and environmental protection [13].

This paper describes the acts related to the environmental management of enterprises, takes the
paper industry as an example, and provides feasible pollution prevention and control technologies
for the production processes of traditional paper mills. This paper is organized as follows: Section 1
introduces the research background and purposes; Section 2 explores the sustainable management
under green paper industry; Section 3 describes the problem statement and model formulation;
Section 4 presents a numerical example to demonstrate how to apply the model explored in this paper;
Section 5 explains the managerial implications and limitations; and Section 6 offers the conclusions.
This study found that enterprises can make full use of production capacity and waste through precise
environmentally-friendly production processes to increase profit.

2. Sustainable Management under Green Paper Industry

The consumers and the government have requested companies to achieve a balance between
profitability and environmental protection. The demand for integrating environmental awareness
and product recycling into supply chain management has become a hot topic [14-16]. Sustainable
management under green paper industry is described as follows.

2.1. Green Innovation in Paper Industry

Green innovation brings competitive advantages to the paper industry; since it helps enterprises
reduce costs and increase income, some analysts have put forward that improving a company’s
environmental performance can result in better economic and financial results, instead of increasing
costs [17-19]. The green innovation modes are described as green manufacturing and contamination
control. Green manufacturing helps to reduce waste, control pollution [20], and improve energy
efficiency and production processes through the integration of the production value chain, in order to
elevate the efficiency of greenhouse gas reduction. Pollution prevention helps enterprises to reduce,
transform, and prevent pollutants and wastewater by improving their internal processes, including
changing production modes and means of transport [9], redesigning products and manufacturing
modes, as well as recycling to prevent enterprise pollution [21]. More and more manufacturing
companies are taking the environment into consideration before conducting their activities, a trend that
is gaining support from the management level [22]. In fact, enterprise efforts in green manufacturing
and pollution prevention will pave their way to a greener economy [23]. As the digital wave has
swept across the world in recent years, it has indirectly impacted the traditional papermaking industry.
This study analyzes successful cases where green manufacturing and pollution prevention are adopted
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prior to providing methods for increasing the utilization level of raw materials and effective waste
recycling for the traditional paper industry, where coal-fired boilers still prevail.

2.2. MIP Model for Green Paper Industry

A Mix-Integer Programming (MIP) model is used to solve problems in the allocation and
disposition of limited resource [24], which can effectively handle the multi-item inventory problem
in the periodic replenishment plan (replenishment cycles are scheduled) [25], in order to optimize
inventory distribution and production plans [26], solve the multilevel capacitated lot-sizing and
scheduling problem [27], and provide enterprises with simultaneous multiple decision-making
schemes [28]. Therefore, this model can be used for decision-making evaluations for enterprises to
estimate operating costs and maximize profit [29,30]. In order to save costs, while the traditional
paper industry still widely uses coal to power its boilers, coal is a major source of environmental
pollution. The ideal mode of production for this industry is to make full use of raw materials in the
production process and to recycle the waste. Using mixed integer linear programming models to
optimize the production plan of the paper industry and reduce inventory is an issue recently discussed
by the paper industry; it concludes that the application of activity-based costing (ABC) and theory
of constraints (TOC) can solve the above problems [31,32]. The paper industry has used the ABC
model for cost modeling, as well as analysis of the production flow [33]. The TOC could reduce the
inventory and costs of mills [34], and overcome the bottleneck of resource limitation in the production
process, thereby enhancing production efficiency [35]. Enterprises can use the ABC and TOC in their
decision-making [36], as well as the linear programming (LP) model, to solve product mix decision
problems [37,38]. As their complementary nature has gradually formed a trend, this model is expected
to become a future trend; thus, this study adopts ABC and TOC to build an environmentally-friendly
process model for the paper industry, and for discussion.

2.3. ABC and TOC

ABC is based on two stages, and is an extension of modern cost accounting in order to increase
the accuracy of cost calculations. The common expenditures (e.g., management fees) of a business
are assigned to activities, and then activity costs are traced to products [39]. On the other hand,
TOC enhances scientific decision-making in production plans. According to the principles of TOC,
enterprises can analyze manufacturing obstacles, increase their upper limit profits [40], and deal with
the interactions of supply constraints through an improved product-mix [41]. Therefore, prominent
business corporations will apply ABC and TOC to production planning in order to increase their total
profits [42] and enhance the operational efficiency and immediateness of distribution centers [43].
Hence, ABC, TOC, and MIP can be adopted by enterprises during their decision-making processes on
product portfolios [2,37,44,45].

Based on ABC and TOC, a model presented in this paper can be applied to the green supply
chain [46] by using the Mathematical Programming Approach. In terms of the green nature of resources,
it can also be applied to building municipal waste recycling systems, regional sewage streams [47],
as well as solid waste collection and transportation systems [48]. The optimal process of waste collection
and transportation to an incinerator can thus be planned [49]. In this study, the raw materials for
green recycled paper are pulp substitutes, clean waste paper, and ordinary waste paper. The products
of recycling paper mills are discussed according to the direct combinations of the aforesaid three
materials, while ABC, TOC, and the Mathematical Programming Approach are used to plan new types
of energy saving and carbon emission reduction activities for enterprises, in order to maximize profit.

3. Problem Statement and Model Formulation

This section takes the paper industry as an example. The green production flow for recycled
paper is shown in Figure 1.
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Figure 1. The papermaking process.

The recycled paper company of this case uses purchased pulp and waste paper as raw materials
to produce paper products. The manufacturing process consists of pulping, papermaking, coating, and
packing. In consideration of costs, in addition to saving water, coal and RDF-5 are used as the main
fuels, and the cogeneration equipment integrates steam and electric energy for efficient energy use.
The efficient application of waste could increase the profit for enterprises. The optimum mathematical
programming decision model, as employed by the recycled paper mill, combines its processes with ABC
to meet environmental protection requirements, while considering the maximization of corporate profit.

3.1. The Objective Function

The objective of this model is to maximize the total profit; the total corporate profit function is
as follows:

Z = [(main paper products revenue) + (relevant byproducts revenue) + (saved electric power
cost) + (saved steam cost)] — [(unit — level activity cost : total material cost + total expense
~+total direct labor cost + total machine cost) + (batch —level activity cost) + (product —level
activity cost) + (total facility — level activity cost) + environmental management cost] )

n not m n
= (_ZleXHr Y X cshisXi+ ZOSSCp¢p+ ZOSECq%)— Z Z CntinXi + 1. Z djAijX;
i=

i=1s=1 p= q= i= i=1 jel

n n r
+(LC101 +LC202) + Y. Y. d/-a,-]-Bi,- +X X d/'p,'jR,' + Y, MCyox + CE]
i=1jeB i1 jep =0

In Equation (1), the total corporate profit is calculated by subtracting various costs/expenses
from main products revenue, relevant byproducts revenue, and electric power and steam costs
saved. The revenues and costs/expenses and their associated constraints will be described in the
following subsections.

3.2. Revenue of Main Products and Byproducts

In the product manufacturing process, the mill uses an Electrostatic Precipitator (ESP) and a
Flue-Gas Desulfurization (FGD) to reduce the environmental pollution of the production processes,
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and to recover any waste byproducts for resale. If the price of the main products and relevant
byproducts are represented by p; and cs, respectively, and the quantity of byproduct s of product i
n

is b;sX;, then the revenue of main products and relevant byproducts are expressed as }, p;X; and
i=1

n t
Y. Y. csbisXi, respectively.
i=1s=1

3.3. Direct Material and Expense

In the preparation phase of papermaking, the purchase unit preliminarily sets the prices of various
raw materials (a;,,) for each product (X;) after investigating the market prices. There are one to n

products and one to s raw materials. The total direct material cost is the fifth term of Equation (1),
n S

Y Y cmapX;. The decision-maker decides the maximum resources (Qy,) available for each raw

i=1m=1

material according to the actual cost information previously provided by the accounting division,

expressed as Equation (2).
n

Zaimxi <Qm, m=1,2,...,s, 2)

i=1
3.4. Unit-Level Activity Cost

Unit-level activity is executed one time for each unit of a product. Thus, the total unit-level activity
n
cost is the sixth term of Equation (1), ‘Z djA;jX;, where A;; is the activity driver demand of unit-level

i=1 jel
activity j (j € U) of one unit product i and d; is the running activity cost per activity driver for activity j.

3.5. Direct Labor Cost

In mill operation, employee operation modes are divided into normal work and overtime work,
as shown in Figure 2. The labor hours of normal work are in the range of [0, LH; ], and the cost is LC;
at LH;. When the mill receives a large order, and must complete the work quickly, the employees
may work overtime. At this point, labor hours are in the range of [LH;, LH>], and the cost increases
from LC; to LCy. The total labor cost is the seventh term of Equation (1), (LC;61+ LC20,), and the
associated constraints are expressed as Equations (3) to (8), where TL in Equation (3) is the total labor
hours needed for the company.

TL =LH,0;+LH,60, ®)
0p—71<0 4)
01-y1-y2<0 ®)
6, -72<0 (6)
Oo+61+0,=1 @)
yit+ya=1 ®)

(y1,72) is a SOS1 set of 0-1 variables, within which exactly one variable must be non-zero;
(00, 61, 02) is a SOS2 set of non-negative variables, within which at most two adjacent variables, in the
order given to the set, can be non-zero. When the papermaking activities are completed by normal
work, then y; = 1and y, = 0 (from Equation (9), and it is in the first segment of Figure 2; 0 < 6y, 01 <1
(from Equations (4) and (5)) and 0, = 0 (from Equation (6)); and 6y + 61 = 1 (from Equation (7)).
Thus, the total direct labor hours required is TL = LH;0; (from Equation (3)), and TL is the linear
combination of 0 and LH;. Similarly, when the papermaking activities need overtime work, then
y2=1,91=0,0<01,0,<1,60) =0, 01 + 02 = 1, and the total direct labor hours (TL) required will
be the linear combination of LH; and LHj.
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Figure 2. Piecewise direct labor cost.

3.6. Batch-Level Activity Cost
In ABC, batch-level activity is executed one time for each batch of a product. The total batch-level

n
activity cost is the eighth term of Equation (1), ¥, Y. d juijBij, and the associated constraints are
i=1 jeB

Equations (9) and (10):

X,‘S‘ui/‘B,‘]’,iZl,Z,...,Vl,‘jGB 9)

n

Y B <T; B;>0,j€B (10)

i=1

Equation (9) is the constraint of the quantity of product i, and Equation (10) is the constraint
of resource available for batch-level activity j. If the batch-level activity is the activity “Setup”,
then Equation (10) may mean that the setup hour available for the batch-level activity “Setup” is T ;.
3.7. Product-Level Activity Cost

In ABC, the product-level activity is the activity consumed by a specific product. The total

n
product-level activity cost is the ninth term of Equation (1), Y. Y. d ;pijRi, and the associated constraints
i=1jeP

are expressed in Equations (11) and (12).

X;<ViR;, i=12,...,n 1)

iR <D:X;>0, i=1,2,...,n 12
Pij j

Equation (11) is the constraint of the quantity of product 7, and Equation (12) is the constraint
of resource available for product-level activity j. If the product-level activity is the activity “Product
Design”, then Equation (12) may mean that the Computer-Aided Design (CAD) hour available for the
product-level activity “Product Design” is D;.

3.8. Machine Cost

In this paper, it is assumed that machine capacity can be expanded to various levels, as shown in
Figure 3 [50]. Assume that the current machine hours available for use are MHy, and the machine cost
is MCy, i.e., the depreciation of machines. If the machine hours increase to MH;, the machine cost will
be MC after buying or renting additional machines. When the machine hours exceed the upper limit
of MH; and reach the range of MH;,MH>, the machine cost will increase to MC,.
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Figure 3. Stepwise machine cost.

r
Total machine cost is the tenth term of Equation (1), Y, MCyoy, and the associated constraints are
=

expressed as Equations (13) and (14).

q r
Y 6iXi <) MHa; 13)
i=1 k=0
r
Z O = 1 (14)
k=0

i 6;X; is the total machine hours needed for all products; (09, 01,02, ...,0k) is a special ordered
set ofl T}lipe 1 (SOS1) of 0-1 variables, within which exactly one variable must be non-zero. If 0y = 1, then
it is within the current level of machine capacity, i.e., MHy. Then, f 0;X; < MHy (from Equation (13))
and total machine cost is MCy (from Equation (1)). If 61 =1, ther{:the machine hours increase to the
interval MHy, MHy; it is in the first expansion level of machine capacity, i.e., MH;. Then, i 6iX; <

i=1
MH, (from Equation (13)) and total machine cost is MC; (from Equation (1)). Similarly, if oy = 1, then
the machine hours increase to the interval MHy_;,MHj, within the kth expansion level of machine

n
capacity, i.e., MHy. Then, Y, 6;X; < MHj (from Equation (13)) and total machine cost is MCy (from
i=1

Equation (1)).

3.9. Benefit of Using RDF-5

The mill uses cogeneration equipment to take advantage of steam and electric energies; therefore,
when the consumption of coal and RDF-5 reaches a certain level, per unit steam energy and electric
energy costs decrease. Given the power supply, steam supply, and heat supply benefits, RDF-5 can be
used in mechanical bed boilers and fluidized bed furnaces as the main or auxiliary fuel for multifuel
combustion. Therefore, the electric power and steam costs saved by using RDF-5 are considered in
this paper.

First, the saved electric power cost is the sum of saved steam costs (SSCp) at m power rates, i.e.,

m
the third term of Equation (1), . SSCp¢p. In the paper-making process, the steam cost saved by using
p=0
RDF has different conversion benefits due to different degrees of saving electric costs, expressed as
Equation (15). The mill adopts the appropriate type of the aforesaid m rates according to the actual

state of saving, or allocates according to appropriate proportions in two adjacent schemes, where the
sum of the allocation proportions is 1, expressed as Equation (16).
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Constraints:

n m
Y ijXi <) SSHyd, (15)
i=1 p=0

Z Pp=1 (16)
p=0

The steam cost saved is the sum of the saved electric costs (SEC,) at t power rates, i.e., the
t
fourth term of Equation (1), ¥, SECy¢,. In the paper-making process, the steam cost saved by using
q=0

RDF has different conversion benefits due to different degrees of electric costs savings, expressed as
Equation (17). The mill adopts an appropriate type of the aforesaid 7 rates according to the actual state
of saving, or allocates according to appropriate proportions in two adjacent schemes, where the sum of
allocation proportions is 1, expressed as Equation (18).

n t
Y viXi <) SGHypq 17)
i=1 q=0

t
Y =1 (18)
q=0

The quantity of carbon equivalent of various gases allowed to be emitted from the mill
paper-making process is G in order to conform to the environmental protection policy, as shown in

Equation (19).
n 1
Z Z p8pXi <G (19)
i=1p=1

4. Numerical Example

This section provides an example that describes how to apply ABC and TOC to the Mathematical
Programming Approach, in order to determine the optimal product mix.

4.1. Description of the Case Problem

In response to environmental protection, Company A of the paper industry has recently used
recycled pulp substitutes, clean waste paper, and ordinary waste paper, as the raw materials for
paper products. The mixture of the three raw materials can be used to make three kinds of products.
Considering the cost, coal remains in use for power generation, and the cogeneration coal-fired
machine is used to take full advantage of electric energy and heat energy. The sewage and waste in the
production process are properly treated, and a part of the waste is made into RDF-5, which is used
together with the coal for cogeneration in the coal-fired machine. In order to take full advantage of
resources and exploit financial resources, Company A sells the surplus electric energy of the process
to the power company, while the heat energy is sold to nearby residential buildings. In response
to environmental protection, the sludge treated from sewage is made into organic compost, while
the ash from the incineration treatment is made into cement products. The residual fly ash from the
power generation of the coal-fired machine is made into construction materials, the bottom ash is made
into structural building materials, and the FGD gypsum is made into fire plate materials. In order to
simplify the computing model, the machine costs and labor costs in this section are equally allocated to
the unit-level activity of the main products. The costs in the production process include: (1) unit-level
activity: including the costs of the three direct materials, direct expenses, required machine hours, and
labor hours in the production process; (2) batch-level activity: including pulping costs, papermaking
costs, coating costs, and packing costs of the general paper making process; (3) product-level activity:
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i.e., product design cost; (4) facility-level cost: the environmental management cost refers to the costs
related to routine inspections, effluence, and ensuring the process conforms to the environmental
standard assessment specifications as regulated by local government; and the benefit of using RDF-5
is provided.

This paper uses Company A to describe that the present productive capacity determines the
maximum profit of products. The aforesaid data are listed in Table 1, and the manufacturing process of
Company A is shown in Figure 4. Company A sells three kinds of paper products. In terms of selling
price, (Productl, Product2, Product3) = (320, 280, 250), where each product has its allocated cost during
the production run. Under ABC, reasonable operating activity analysis and cost driver allocation can
increase the correctness of cost information; and the electric energy and heat energy costs, as saved
by using RDE-5, are included in the analysis. In order to meet the practical situation, the overtime
problem in the production process is considered. The machine hours have three stepwise costs: mill
works on demand, general activity, and frequent overtime. The electric and heat energy benefits saved
by using RDF-5 are processed piecewise, and the maximum demand for the product is shown at the
bottom of Table 1.

Company A uses three raw materials effectively: recycled pulp substitute (X;), clean waste paper
(X») and ordinary waste paper (X3), and generates revenue from seven byproducts of the production
process: electricity, steam heat, sludge organic compost, ash cement products, fly ash building materials,
bottom ash reinforced structural building materials, and FGD gypsum fire plates. After the optimum
production (Bj;), preparation (Bj»), treatment (B;3), and cutting (Bj) of the batch-level activities, the
emissions meet the environmental policy, that CO, should not exceed 80,000 units, and the numerical
values of NOy, CO,, SO,, CO, COD, BOD, SS, AOX, and product-level constraints (R;) are obtained.
The most important cost is calculated using LINGO software, based on the machine, labor, electricity,
and steam costs. The left part of Figure 4 shows the process of paper-making; the middle part shows
the required water, coal, electricity, and steam for the paper-making process, as well as the sewage and
waste remaining from the production process; the right part shows the utilization of waste from the
paper-making process, which can be used as byproducts. The excess electric and heat energies are sold,
thereby turning waste into resources, and creating extra profit for the company. Based on Equations (1)
to (19), the aforesaid green product mix decision model is described in Appendix A.
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