
﻿Steady-State O
peration, Disturbed O

peration and Protection of Pow
er N

etw
orks   •   François Vallée

Steady-State 
Operation, Disturbed 
Operation and 
Protection of Power 
Networks

Printed Edition of the Special Issue Published in Energies

www.mdpi.com/journal/energies

François Vallée
Edited by



Steady-State Operation, Disturbed 
Operation and Protection of 
Power Networks





Steady-State Operation, Disturbed 
Operation and Protection of
Power Networks

Editor

François Vallée

MDPI • Basel • Beijing • Wuhan • Barcelona • Belgrade • Manchester • Tokyo • Cluj • Tianjin



Editor

François Vallée

Power Electrical Engineering Unit,

University of Mons

Belgium

Editorial Office

MDPI

St. Alban-Anlage 66

4052 Basel, Switzerland

This is a reprint of articles from the Special Issue published online in the open access journal Energies

(ISSN 1996-1073) (available at: https://www.mdpi.com/journal/energies/special issues/SDP PN).

For citation purposes, cite each article independently as indicated on the article page online and as

indicated below:

LastName, A.A.; LastName, B.B.; LastName, C.C. Article Title. Journal Name Year, Volume Number,

Page Range.

ISBN 978-3-0365-0320-2 (Hbk)

ISBN 978-3-0365-0321-9 (PDF)

© 2021 by the authors. Articles in this book are Open Access and distributed under the Creative

Commons Attribution (CC BY) license, which allows users to download, copy and build upon

published articles, as long as the author and publisher are properly credited, which ensures maximum

dissemination and a wider impact of our publications.

The book as a whole is distributed by MDPI under the terms and conditions of the Creative Commons

license CC BY-NC-ND.



Contents

About the Editor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

Preface to ”Steady-State Operation, Disturbed

Operation and Protection of Power Networks” . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

Vasileios Papadopoulos, Jos Knockaert, Chris Develder and Jan Desmet

Peak Shaving through Battery Storage for Low-Voltage Enterprises with Peak Demand Pricing
Reprinted from: Energies 2020, 13, 1183, doi:10.3390/en13051183 . . . . . . . . . . . . . . . . . . . 1
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Preface to ”Steady-State Operation, Disturbed

Operation and Protection of Power Networks”

With the ongoing energy transition, distributed energy resources (DERs) and new loads

(e.g., electric vehicles, EVs) are emerging in modern power systems, which highly impacts the

operation of the latter. Indeed, in addition to an increased uncertainty in power system management,

DERs as well as EVs can significantly affect the power quality level and contribute in multiple

manners to faulty currents. Many algorithms and tools have been developed in recent years to

ensure the safe operation of the system while fostering the integration of renewable energy-based

generation. Moreover, the current advances in artificial intelligence and computation resources offer

new prospects for related research.

This Special Issue offers a wide panel of up-to-date research that aims to ensure the enhanced

operation of the electricity system. The first three contributions investigate how artificial intelligence

(both machine and reinforcement learning) and new local business models (e.g., renewable energy

communities) can assist in an effective management of modern distribution systems. In addition, it is

essential to have an accurate knowledge of the network parameters when analyzing the stability and

power quality of a power system. In this way, the network impedance versus frequency characteristic

is a key element to monitor, involving a huge amount of data to be processed. Hence, the fourth paper

of this Special Issue investigates how lossy compression techniques impact the network impedance

determination. Finally, high voltage–direct current technologies are emerging candidates when

electricity needs to be distributed over large distances. Consequently, modern interconnected power

systems are becoming increasingly hybrid with both AC and DC subsystems. It is therefore of

key importance to ensure the dynamic resilience of such hybrid systems in emergency situations

through advanced control strategies. This topic is the central theme of the fifth contribution of this

Special Issue.

Ultimately, the whole content of the Special Issue tackles research not only applied to the

different voltage levels of power systems, but also focusing on different time scales (from steady-state

disturbed operation to close-to-real-time stability matters), allowing one to have a good overview of

the main research issues when dealing with the safe operation of modern power systems. Enjoy

the reading!

François Vallée

Editor
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Abstract: The renewable energy transition has introduced new electricity tariff structures. With the
increased penetration of photovoltaic and wind power systems, users are being charged more for their
peak demand. Consequently, peak shaving has gained attention in recent years. In this paper, we
investigated the potential of peak shaving through battery storage. The analyzed system comprises a
battery, a load and the grid but no renewable energy sources. The study is based on 40 load profiles of
low-voltage users, located in Belgium, for the period 1 January 2014, 00:00–31 December 2016, 23:45,
at 15 min resolution, with peak demand pricing. For each user, we studied the peak load reduction
achievable by batteries of varying energy capacities (kWh), ranging from 0.1 to 10 times the mean
power (kW). The results show that for 75% of the users, the peak reduction stays below 44% when the
battery capacity is 10 times the mean power. Furthermore, for 75% of the users the battery remains
idle for at least 80% of the time; consequently, the battery could possibly provide other services as
well if the peak occurrence is sufficiently predictable. From an economic perspective, peak shaving
looks interesting for capacity invoiced end users in Belgium, under the current battery capex and
electricity prices (without Time-of-Use (ToU) dependency).

Keywords: peak shaving; battery storage; peak demand pricing; lithium-ion; tariff structure

1. Introduction

Over the past decade, most countries all over the world have taken action towards reducing their
polluting emissions by investing in renewable energy sources. Among those sources, particularly,
photovoltaic (PV) solar panels and wind power systems have seen a significant growth [1]. However,
the increase of renewables goes hand in hand with technical challenges. The stochasticity of both PV
and wind power systems causes the maintenance of grid stability to become more difficult [2,3].

A major stakeholder impacted by the renewable energy transition is the distribution network
operator. While end users are becoming increasingly more independent from the grid, the revenue
constraint for the grid operator still remains [4]. Under the current tariff structure, which is primarily
based on the energy-volume component, a ‘death spiral’ phenomenon is imminent [4,5]. Nevertheless,
the grid infrastructure costs are mainly dependent on the power capacity of the system. Yet, PV users
have reportedly slightly lower peak power than non-PV users [6]. In other words, PV-users pay less
than non-PV users even though both of them use the grid almost to the same extent [6]. To counteract
such unfairness between different user groups and correctly attribute the costs to their origin, new
tariff structures are being introduced that increase the weight factor for the peak demand component.
This (peak demand pricing) will also apply for small user groups such as residential consumers who
have been so far excluded from peak power measurements [7,8].

Energies 2020, 13, 1183; doi:10.3390/en13051183 www.mdpi.com/journal/energies1
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Given these increased peak power costs, peak demand reduction (‘peak shaving’) has gained
much attention in recent years. Peak shaving is not a new concept; industrial users with high peak
demand already have been using diesel and gas generators to reduce electricity costs for a long time.
Still, those conventional generation methods are expected to be replaced by ‘green’ technologies,
among which energy storage and in particular batteries are the primary candidate.

Battery storage systems have been deployed in the past to provide different types of services,
such as (i) increasing the self-sufficiency of PV/wind power installations [9–11], (ii) providing ancillary
services to the grid operator [12–14], (iii) peak shaving [15–17], (iv) back-up generators and UPS [18,19].
A common issue, arising particularly in (i), (ii) and (iii), is that due to the high cost of the storage
system, battery storage investments are not yet economically feasible. However, we note that in the
majority of those studies, the battery is deployed exclusively for one service. Therefore, to accelerate
the return of investment, many suggest as a possible solution ‘hybridizing’ multiple services into a
single application instead of providing each one separately [14,20,21]. Before studying how such a
hybrid strategy can be applied, we should first identify the technical constraints of the services under
consideration. In this paper, we focus specifically on peak shaving and present some insights that
reflect its potential for hybridization. In the next paragraph, we review previous research works on
peak shaving through battery storage.

In [15], the authors present a sizing methodology for defining the optimal energy and power
capacity of battery storage systems used for peak shaving. An economic feasibility study was conducted
for two different technologies, lead acid and vanadium redox flow (VRF). A control strategy was
proposed, but it assumed that the load profile is perfectly predictable in advance. In [16], the researchers
applied peak shaving for residential end users. One of the main conclusions was that the utilization of
the lithium-ion battery stays very low, lower than 165 cycles per year. At such a low rate (here, the
cycle lifetime is 3000 cycles) the system could be used for more than 20 years unless it exceeded its
calendar lifetime. Finally, considering also its calendar lifetime, the battery would have to be replaced
approximately after 10–15 years. Furthermore, the researchers suggested adding grid support services
next to peak shaving in order to increase the utilization of the system. In [22], the researchers developed
a model in Matlab/Simulink where a VRF battery is used to simultaneously provide frequency
regulation and peak shaving. It was concluded that the battery storage system can successfully perform
both services. However, the experiment was conducted only for a limited time period (30–140 s),
thus, in essence, without affecting the battery state of charge (SoC) and as a consequence, it was
not possible to evaluate the reliability of the control system under unfavorable conditions. In [23],
a fuzzy control algorithm was developed for peak shaving in university buildings. The algorithm
was tested and compared to two different peak shaving techniques, namely the fixed-threshold and
adaptive-threshold controller. The results showed that the proposed algorithm was the best of all.
Although the researchers conducted several case studies (with 8 different load profiles), they did
not provide sufficient information about the load forecasting method. In [17], a control algorithm is
proposed for peak shaving in low-voltage distribution networks based on day ahead aggregated load
forecasts. The main novelty of that study is that the algorithm, considering also the inherent forecasting
errors, relies solely on historic data; hence there is no need to intervene in real-time and readapt the
dis-charging process of the battery. Results from a case study show that peak reduction is achieved
for 97% of the time and that for 55% of the time, the peak reduction is at least 10%. In [18,19,24,25],
peak shaving is addressed as a secondary application. Here, the primary service of the battery is to
provide uninterruptible power supply (UPS) in data centers. The researchers argue that because of
the significantly low probability of the peak occurrence (e.g., a Google data center exceeds 90% of its
power capacity only for 1% of the time), it is possible to achieve peak reduction without impacting
the reliability of the primary service. In [26], a battery sizing methodology and an optimal control
algorithm is proposed for peak shaving in industrial and commercial customers. One of the main
objectives was to determine an appropriate peak shaving threshold. Three case studies were carried
out, each one considering a different daily load profile. The results showed that adapting the peak
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shaving threshold in real-time leads to higher peak reduction than keeping a fixed threshold based
only on a historic data analysis. A drawback of the study might be that when calculating the battery
utilization, it is assumed that the battery is equally utilized every weekday of the year, thus omitting
possible idle periods on days with low power consumption. In [27], a peak shaving algorithm was
proposed for microgrid applications. In contrast to conventional approaches considering only the
load consumption, here, the peak threshold applies also for the PV generation. The battery capacity
is equally reserved for both positive (injection to the grid) and negative (absorption from the grid)
peaks by setting the SoC during normal operation at 50%. The algorithm was tested on a real-time
microgrid, implemented in the lab. The researchers used predefined data (load/PV profiles) to carry
out the experiment; however, they did suggest in future deploying predictive analytics to improve the
reliability of the system.

In this paragraph, we explain three major contribution pillars of the present research work.

i. Dataset: First, an important conclusion to note, resulting from our literature review is that
all previous studies refer to unique use cases. Moreover, in almost all previous studies, the
data was very limited (max 2–3 months); thus, the seasonal periodicity was not present. To
the best of our knowledge, the present study is the first to consider such large dataset: 40
load profiles (in the Supplementary Materials), each one with 3 full years of historic load
power. Knowing the difficulties of finding qualitative data, we decided to make this dataset
publicly available (The dataset is available as attachment to this manuscript. Or contact
Vasileios.Papadopoulos@ugent.be) in order to stimulate further research on this topic.

ii. Sizing methodology: Secondly, aside from the extended datasets, another thing that has been
missing from the existing literature on peak shaving, which has focused mainly on control
strategies, is a concrete methodology of sizing the battery capacity. In the present paper, we
demonstrate how to calculate the minimum battery capacity requirement by combining a power
flow model with the dichotomy optimization algorithm.

iii. Quantitative results: Thirdly, in our attempt to strengthen the validity of our conclusions, we
provide an overview of quantitative results from all 40 different use cases. We show both
energetic assessments and economic results. The third contribution pillar can be summarized
in answering the following:

• How much peak demand reduction can a user achieve for a given battery energy capacity
(kWh)?

• What is the battery utilization, how much time during the year and how many cycles?
Does peak shaving heavily impact the degradation of the battery? Can we hybridize peak
shaving with other services?

• Which performance metrics should we use and how can these be interpreted from an
economic perspective? What are the profitability margins of battery storage for Belgium?

The rest of the paper is structured as follows. In Section 2, the data of the study are presented
(Section 2.1). Then, we proceed with the methodology; the power flow model is explained (Section 2.2)
and the dichotomy method is proposed as an optimization algorithm (Section 2.3). Section 2 closes
with the definition of performance metrics (Section 2.4). Next, Section 3 shows the results of the
simulation (Section 3.1) and explains how to interpret those from an economic perspective (Section 3.2).
Finally, Section 4 summarizes the most important conclusions and makes suggestions for future
research objectives.

3
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2. Materials and Methods

2.1. Data

We received 40 load profiles from the Flemish distribution grid operator (Fluvius) Each profile
is the active power (in kW) of an enterprise for the 3-year period between 1 January 2014, 00:00 and
31 December 2016, 23:45. All enterprises are low-voltage users with peak demand pricing and a
connection capacity above 56 kVA and lower than 1 MVA. The data was logged through automatic
measurement reading (AMR) devices with a time resolution of 15 min. The mean power of the users
varied between 1.92 and 53.75 kW (Figure 1a). The peak-to-mean power ratio was between 1.5 and 40;
however, for 90% of the users, the ratio is lower than 10 (Figure 1b).

Figure 1. Boxplots, 40 load profiles–(a) Mean power (left), (b) Ratio: Peak-to-mean power (right).

2.2. Power Flow Model

Figure 2 shows the topology of our system. The battery is connected through a DC/AC inverter
behind the meter of the user. The grid serves as the only power supply since there are no renewable
energy sources. In general, for peak shaving, the energy storage system should have high energy
efficiency as well as high power capacity (C rate) [28]. For these reasons, we selected a Lithium-ion
battery to carry out our analysis (See Table 1).

 

Figure 2. System topology.
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Table 1. LFP Cell Characteristics, according to [29].

Characteristics Specifications

Chemistry LiFePO4
Energy capacity 2.28 Ah (7.52 Wh)
Nominal voltage 3.3 V

Operating voltage 2.5 to 3.6 V
Operating temperature −30 ◦C to + 60 ◦C

Cell weight 70 g

The simulation model, built in Matlab/Simulink is shown in Figure 4. Here, it is worth noting
that a part of the present model used for peak shaving was based on the model described in [30].
Therefore, in this paper, we will only detail the new model components, which are blocks 1 and
5 (See Figure 4). For the remaining blocks 2, 3 and 4, we provide a generic description, but for
more information, the reader is referred to [30], in particular its Section 2.3. For the development
of the model, we relied heavily on a real test-setup—microgrid emulator (The microgrid emulator
makes part of the laboratory infrastructure of EELab/Lemcko, an expertise center of Ghent university,
specialized in Renewable Energy System applications. For more information, contact the first author
(Vasileios.Papadopoulos@UGent.be)) comprising of: (i) a low-voltage grid (250 kVA power source),
(ii) a 90 kVA DC/AC converter, (iii) a 20 kWh LiFePO4 battery, (iv) a 30-kW programmable load.
The behavior of each component and the interaction between them was studied analytically and
converted into simulation models using information from test measurements, scientific papers and
commercial datasheets.

To begin with, the model has three variables: (i) the time resolution of the load profile, (ii) the
battery capacity (kWh) and (iii) its C rate. Furthermore, it receives two data inputs: (i) the load
profile and (ii) a power threshold. The load profile is simply a time series of the active power in kW
at 15 min resolution. The power threshold is a constant specifying the ‘desired’ maximum power.
This value must be lower than the peak power but also higher than the mean power. Given the
time step (resolution) and the 3-year period, in total, there are 105,216 simulation steps (1096 days
× 96 quarters/day). At each step, the model reads the load power of that moment and the current
State-of-Charge (SoC). Then, it undergoes three sequential processes (1, 2 and 3) to calculate the battery
power Pbat (inverter’s DC side), the inverter power Pinv (inverter’s AC side) and the power of the grid
Pgrid. Next, after updating the State-of-Charge (SoC) of the battery, it proceeds to the next simulation
step and hence, the simulation progresses. Figure 3 shows the DC/AC conversion efficiency of the
inverter in charging mode. Additionally, all the equations that were used to calculate the inverter
power Pinv and battery power Pbat in charging and discharging mode.

Pbat = f(x)·Pinv (1)

Pbat

Pnom
= f(x)· Pinv

Pnom
(2)

Pbat

Pnom
= f(x)·x = g(x) (3)

Pinv

Pnom
= g−1(

Pbat

Pnom
) (4)

Pbat =
Pinv

f(x)
(5)

Pbat

Pnom
=

Pinv

Pnom
· 1
f(x)

(6)

Pbat

Pnom
=

x
f(x)

= h(x) (7)
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Pinv

Pnom
= h−1(

Pbat

Pnom
) (8)

Figure 3. DC/AC efficiency, Y = f(x).

With respect to the sequential processes, process 1 performs the power conversion from AC to
DC compensating for the efficiency losses (AC to DC). Process 2 applies two saturation constraints to
the battery power: one for the given C rate and one for the given time resolution. Finally, process 3
performs the reverse conversion from DC to AC considering the inverse (DC to AC) efficiency losses.
In the following paragraph, we describe with more detail those processes.

Process 1—AC/DC power conversion (Figure 4, block 1): Initially, we set the inverter power equal
to the difference PThreshold − Pload. In case of a power surplus (positive difference), the inverter is in
charging mode to restore the battery’s energy capacity, otherwise, in case of a power deficit (negative
difference), the inverter is in discharging mode to shave the peak. After setting the inverter power,
next, we calculated the battery power compensating for the efficiency losses. In charging mode, the
battery power is always lower than the inverter power (See Equation (1)) and vice versa in discharging
mode the battery power is always higher than the inverter power (See Equation (5)).

Process 2—Power saturation constraints (Figure 4, block 2, 3, 4): Here, we impose two constraints
to the battery power. First (block 2), the battery power can never exceed its power capacity as specified
by its C rate limit and the SoC level. For this battery technology, the recommended C rate is 1. How
we calculate exactly the power from the C rate limit, has been explained in [30], Section 2.3. (As an
approximation, we can state that the power capacity is equal to the battery’s nominal voltage times
the C rate, times its energy capacity in Ah: Pbat max = Unom·Crate·CAh.) Second (block 3), we must
take into account also the time resolution of our data (15 min). This constraint comes into effect when
the SoC level is very close either to its upper or lower limit (90% and 10% respectively) (10–90% is
the recommended by the manufacturer SoC range to maximize the lifetime of the battery). Since our
simulation is executed in discrete steps of 15 min, we need to consider how much energy is left inside
the battery and saturate its power accordingly (see [30], Section 2.3). Afterwards, at the output of the
second constraint, the battery power was finally defined and hence the SoC can be updated (block 4).

6
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Figure 4. Power flow model for peak shaving designed in Matlab/Simulink.

Process 3—DC/AC power conversion (Figure 4, block 5): Knowing the final value of the battery
power, it is then possible to calculate the final value of the inverter power. At this point, the DC/AC
efficiency function f(x) needs to be inverted. In charging mode, we make use of Equation (4) (function
g−1) and in discharging mode Equation (8) (function h−1). As a result, we finally know both the load
power Pload and the inverter power Pinv. Therefore, we can also calculate the power of the grid Pgrid

(Pgrid = Pload + Pinv) and proceed to the next simulation step.

7
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2.3. Dichotomy Method

As already mentioned in Section 2.2, the Simulink model receives both the battery capacity (as
variable) and a peak threshold (as data input). To find out whether or not that threshold will be met, all
we have to do is run the simulation and check the maximum load power Max(Pload). On the one hand,
if the threshold is too low, the system will be unreliable (Max(Pload) > PThreshold) due to insufficient
battery capacity, whereas, on the other hand, if the threshold is too high (Max(Pload) ≤ PThreshold) the
system will be reliable but the battery is overdimensioned. Consequently, for each load profile and
a given battery capacity, there is only one threshold that minimizes the load power (See Figure 5).
To find the solution for our optimization problem we deployed the ‘dichotomy method’. In the next
paragraph, follows a short description of the algorithm.

 

Figure 5. Flow chart—Dichotomy method: (a) Pseudocode (left), (b) Midpoint evolution (right).

Dichotomy method (Figure 5):

1. Initialize the lower and upper threshold limit at a = Pmean and b = Pmax, respectively.
2. Enter dichotomy loop: Calculate the midpoint at c = (a + b)/2 and set the peak threshold equal to

that value.
3. Run the Simulink model.
4. Check the maximum load power. If the load power exceeds the threshold update the lower limit

at a = c. Otherwise, update the upper limit at b = c and store that value as the current solution.
5. Check convergence criterion. If the distance between the current and previous midpoint is lower

than a constant, exit the loop, otherwise, go to step 2 and recalculate the new midpoint.

2.4. Definition of Performance Metrics

Before continuing with the presentation of the simulation results, first, we need to give the
definitions of our performance metrics, based on which we evaluated the peak shaving potential of
the users. In our approach, we would rather associate the word ‘potential’ explicitly to energetic
assessments. The extent to which these can be translated into economic terms (e.g., revenues, expenses,
ROIs) depends certainly on the tariff structure under consideration as well as the cost for the battery

8
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storage system. Although, as shown in Section 3, we do provide some insights specifically for Belgium,
preferably, each reader ought to make his own reflections.

Peak reduction (%): It is the percentual difference between the initial peak power and the final peak
power after peak shaving:

Apeak red =
Pmax i − Pmax f

Pmax i
·100 (9)

where Apeak red is the peak reduction, Pmax i is the initial peak power, Pmax f is the final peak power
after peak shaving.

Peak reduction-to-capacity: It is the difference between the initial peak power and the final peak
power after peak shaving divided by the battery capacity. This metric can serve us as a rough estimation
of the profitability of the installation if we can express the revenue and costs linearly proportional to
the peak reduction and battery capacity respectively.

Rpeak red−to−cap =
Pmax i − Pmax f

Cbat
(10)

where Rpeak red−to−cap is the ratio peak reduction-to-capacity, Pmax i is the initial peak power, Pmax f is
the final peak power after peak shaving, Cbat is the battery capacity.

SoC active time (%): It is the average percentage of time per year that the battery is deployed
for peak shaving. This metric can be very useful, especially when our intention is to combine peak
shaving with other services (e.g., increasing the self-sufficiency of PV, ancillary services, Time-of-Use
(ToU) prices).

SoCact time =
1096·96∑
i = 1

i· 100
1096×96

i =

{
1, |Pbat|> 0

0, Pbat = 0

(11)

where SoCact time is the SoC active time, Pbat is the battery power, i is the quarter index of the
simulation, 1096 × 96 is the total number of quarters within the 3 years period (1st January 2014–31st
December 2016).

Battery utilization (cycles/year): It is the average total energy discharged by the battery within a
year divided by the battery capacity. This metric can be used to assess how fast the battery reaches
the end of its lifetime. Particularly for peak shaving applications, it is desirable that the battery be
utilized as low as possible since our cost savings are exclusively dependent on the power component
(cost in function of kW). Conversely, when the aim is to increase the self-sufficiency of the installation
(PV or wind), the battery utilization should be as high as possible, since our cost savings are mainly
dependent on the energy component (cost in function of kWh).

Ubat =
Edis tot

Cbat·3 (12)

where Ubat is the battery utilization, Edis tot is the total discharged energy within the 3 years period,
Cbat is the battery capacity.

Consumption increase (%): It is the percentage of energy consumption increase due to efficiency
losses of the battery storage system. In addition to the initial capital expenditures for the battery, the
additional energy consumption should be taken into account as operating cost.

Aincr =
Eload f − Eload i

Eload i
·100 (13)

where Aincr is the consumption increase, Eload f and Eload i is the total energy consumed within the
3-year period after and before peak shaving, respectively.

9
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3. Results

As mentioned in Section 2, the power flow model receives three variables: battery capacity, C rate,
and time step. For each load profile in our dataset, we carried out multiple simulations by varying
only the battery capacity, whereas both the time step and the C rate were set at constant values. The
peak threshold was calculated using the dichotomy method after defining the battery capacity.

The time step was set at 15 min which is the time resolution of the dataset. The C rate was set
at 1 C; higher values are not recommended for the chosen battery technology because this would
negatively impact its lifetime. Furthermore, based on our experience, for most applications, 1 C is
sufficiently high to meet a given peak threshold. In general, the extent to which we can reduce the
peak power depends on the battery’s energy capacity rather than its power capacity. Nevertheless,
we do suggest for future research to investigate the impact of the C rate as well, but in this study, it
will not be addressed. Regarding the battery capacity, since we deal with several users, in order to
maintain a common reference of comparison between the users, we normalized the battery capacity
by dividing it by the mean power of the user. Finally, the ratio battery capacity-to-mean power was
varied within 0.1–10.

3.1. Energetic Assessments

The simulation results are presented in Figures 6 and 7. Knowing that our dataset consists of
40 users, it would be ineffective to illustrate 40 individual plots into the same figure. Instead, we
selected five quantile elements at which the cumulative probability becomes 5%, 25%, 50%, 75% and
95%. This gives us a better view of the statistical distribution of each performance metric.

Figure 6. Simulation results: (a) Peak reduction-to-capacity (left), (b) peak reduction (right).
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Figure 7. Simulation results: (a) SoC active time (left), (b) Battery utilization (middle), (c) Consumption
increase (right).

From both Figure 6a,b, it can be concluded that the peak reduction increase decreases with the
battery capacity (second derivative of the function in Figure 6b is negative) or in other words: as the
battery capacity increases, peak shaving becomes more difficult. For a battery capacity 2 times the
mean power (e.g., a user with 30 kW mean power installs a 60 kWh battery) seventy percent of the users
between Q5 and Q75 achieve peak reduction in the range 0.26–1.5 times their mean power (Figure 6a).
The same group of users achieves peak reduction up to 6–27% of their peak power (Figure 6b). For a
battery capacity of 10 times the mean power (e.g., a user with 30 kW mean power installs a 300 kWh
battery) the peak reduction for that group (Q5–Q75) varies within 0.4–2.8 times their mean power
(Figure 6a) and 20–44% of their peak power (Figure 6b).

Regarding the SoC active time (Figure 7a), it increases with the battery capacity. The reason is that
as the battery capacity increases, the peak threshold is reduced and consequently, the battery is used
more frequently. An important conclusion to note is that, for most users, the SoC active time remains
very low, even for large battery capacities. Seventy percent of the users between Q5 and Q75 with
a battery capacity 10 times the mean power deploy their battery in the range of 0–20%, or in other
words the battery stays idle for at least 80% of the time during the year. This fact in itself opens up new
research opportunities.

If peak shaving does occur rarely, then we could possibly hybridize our energy management
system including other services as well (e.g., ancillary services, increasing the self-sufficiency of
renewable energy installations). Figure 7b provide another indication that the battery is underutilized,
here, however in terms of lifetime expectancy. Over the entire battery capacity dimension, for
ninety-five percent of the users (Q0–Q95), the battery does not deliver more than 80 cycles per
year. This number is considerably lower compared to the cycle lifetime of nowadays’ state-of-the-art
Lithium-ion technologies (above 5000 cycles) [28]. At such low utilization rates, the battery can endure
several years of use (more than a decade). Finally, it will be due to another reason why the battery was
decommissioned such as a maintenance issue or simply because the battery has reached the end of its
calendar lifetime. (The capacity fade effect of Lithium-ion batteries is both time-dependent (calendar
lifetime) and cycle-number dependent (cycle lifetime). Regardless of its utilization, after a certain time
period the battery loses a part of its initial capacity. Usually, the End of Life (EoL) of a battery is defined
when its initial capacity is reduced by 20%, in many critical applications (e.g., EVs) this is the time
when the battery needs to be either decommissioned or repurposed for another application.)

The consumption increase is shown in Figure 7c. It is worth noting once more that the battery
technology in the present study exhibits a very high energy efficiency. Undoubtedly, if other technologies
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were used (e.g., lead acid, flow batteries), the consumption increase would be higher. As can be seen
from the figure, obviously, the higher the battery capacity, the higher the absolute energy losses. One
reason why this happens is due to the increase of the battery utilization (see Figure 7b) and another
reason is because both the battery and the dc/ac converter become bigger in size. Consider, for instance,
a user with 30 kW mean power and a battery capacity of 300 kWh (capacity-to-mean power is 10). Only
the converter losses to (dis)charge the battery at 1 C are approximately 15 kW (at 95% dc/ac efficiency).
If the battery capacity was 30 kWh (capacity-to-mean power is 1), those losses would be significantly
lower (1.5 kW).

3.2. Economic Evaluations

Let us now consider a case study of how to interpret those results from an economic perspective.
Table 2 lists the parameters used for our economic analysis:

• The electricity price is an average for Belgium energy invoices in the considered capacity connection
range. The electricity price lies in the range of 0.2–0.25 €/kWh [31]. Here, it must be noted that our
analysis is exclusively applicable for end users with fixed electricity prices during the year; there
is no Time-of-Use (ToU) dependency (e.g., day/night tariff, dynamic pricing schemes). (In case of
ToU dependency, the control strategy of the battery is different. Peak demand pricing coexists
with ToU pricing and therefore, we need to solve the economic optimization problem first.)

• Regarding the peak shaving compensation, for the DSO in Belgium, peak demand is defined as
the highest 15 min load power measured by the user’s AMR meter over the last 12 months. The
compensation ranges approximately within 87.6–131 €/kW per year depending on the geographical
location. By dividing by the total number of hours per year (8760 h), this equals 0.01–0.015 €/kW/h.
(These values have been defined using a cost simulation tool from the distribution grid operator.
The values apply exclusively to those users connected to the low-voltage grid with peak demand
pricing.)

• With respect to the battery storage system, we consider capital expenditures at 500 €/kWh (per
kWh of energy capacity). The consumption increase can be approximated as linear function of
the battery capacity (See Figure 7c) at 0.4%/capacity-to-mean power. The battery cycle lifetime
is estimated at 5000 cycles (at 80% EoL) considering normal operating conditions: (i) Ambient
temperature 25 ◦C, (ii) SoC within 10–90%, (iii) (dis)charge current at 1C. Given that our battery
utilization is very low (80 cycles/year worst case), we will consider only calendar aging at 2%
capacity loss per year. (To calculate the battery’s cycle lifetime and calendar aging, under those
conditions (25 ◦C, 10–90% SoC, 1C) we received information from the manufacturer. For those
interested in analytic methods to calculate the battery cycle lifetime and calendar aging, we refer
to noteworthy research works [32,33].) The payback period of our investment is 10 years and we
do not consider any option to resell the battery; after this period the battery is recycled.

Table 2. Peak Shaving—Parameters for Economic Feasibility.

Parameters Values

Payback period 10 Years
Peak shaving compensation 0.01–0.015 €/kW/h

Battery capex 500 €/kWh
Consumption increase rate 0.4%/capacity-to-mean power

Electricity price 0.20–0.25 €/kWh
Battery capacity fade 2% per year

In order for the system to be profitable, the total peak shaving compensation has to be higher than
the total cost (incl. battery and losses) over the payback period; this condition is expressed in Equation
(14). Next, as shown in Equation (15), the peak reduction-to-capacity ratio can be expressed in function
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of all economic parameters. Finally, by replacing with the values of Table 2, it can be concluded that
the ratio needs to be higher than 0.43–0.67 (Equation (16)).

Rev·8760·ROI·ΔPpeak > Cap·(Costbat + Ratecons incr·Pelect·8760·ROI) (14)

ΔPpeak

Cap
>

Costbat + Ratecons incr·Pelect·8760·ROI
Rev·8760·ROI

(15)

ΔPpeak

Cap
> 0.43− 0.67 (16)

where ΔPpeak is the peak reduction, ROI is the return of investment (payback period), Rev is the peak
compensation (revenue), Cap is the battery capacity, Costbat is the battery capex, Ratecons incr is the
rate of consumption increase and Pelect is the electricity price.

Over the 10-year period, the total capacity loss of the battery will be 20%. Consequently, to ensure
that the peak threshold will always be met, we have to oversize the battery capacity. Finally, the results
of the economic feasibility study are illustrated in Figure 8. Figure 8 can be made easily from Figure 6a
(see Section 3.1) by adding a 20% margin to the minimum battery capacity requirement. The color at
each point [x,y] represents the total number of users whose peak reduction-to-capacity exceeds the
y value (similarly to the quantile plots of Figure 6a). The yellow and green dashed lines represent
the profitability thresholds 0.43 and 0.67, respectively (see Equation (16)). As can be seen, there are
several positive use cases; of course the number of positive cases depends on the battery size. To give
an example, when the ratio capacity/mean power equals 2, there are 15–20 users exceeding the value
0.43 (lower profitability threshold), whereas when the ratio capacity/mean power becomes 10, there are
only 0–5 users exceeding that value (0.43). With that being said, we do now have an estimation of the
profitability margins for the Belgian use cases.

 

Figure 8. Peak shaving—results of economic feasibility study. At each point [x, y], the color represents
the total number of users whose peak reduction-to-capacity exceeds the y value. The yellow and green
dashed lines represent the profitability thresholds 0.43 and 0.67, respectively (see Equation (16)).

Needless to say that our estimation is strongly influenced by the considered parameter values
(Table 2). Even without changing neither the electricity price nor the peak shaving compensation,
simply by varying the payback period and/or the battery capex we would get different results. Here, it
is worth noting that the battery capex at 500 €/kWh is very realistic for the time being and it is expected
to decline further in the coming years [34]. (To define the battery capex we consulted manufacturers
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and received offers.) As a general conclusion, we can note that given the current electricity prices (fixed,
no ToU dependency) and capital expenditures, particularly for Belgium, peak shaving through battery
storage seems to be interesting from an economic perspective for several low-voltage enterprises.

4. Discussion and Conclusions

To summarize briefly what has been done, a model was developed in Matlab/Simulink for peak
shaving. The dichotomy method was proposed as an optimization algorithm to find the minimum
threshold above which we are 100% certain that the peak will never be exceeded. The model was
tested for 40 low-voltage users with peak demand charge derived from the Belgian grid operator.
We introduced five performance metrics to evaluate the simulation results. Furthermore, we gave
an example how to interpret the results from economic perspective and explored the profitability of
the application in Belgium. Below is a summary of the most important conclusions resulting from
our analysis:

• For a battery capacity 2 times the mean power, the peak reduction of the group of users Q5–Q75
varies between 6% and 27%, whereas for a battery capacity 10 times the mean power, the peak
reduction ranges between 20% and 44%.

• The SoC active time is limited for almost all cases. Even with an over-dimensioned battery
(capacity-to-mean power is 10), for seventy-five percent of the users (Q0–Q75), the battery remains
idle for at least 80% for the time. Consequently, peak shaving could possibly be hybridized with
other services (e.g., increasing PV self-sufficiency, ancillary services) in order to accelerate the
return of investment of the battery storage system. (By adding more revenue streams (stacked
services) the payback period of the investment can be reduced.)

• The battery utilization is very low, up to 80 cycles per year in worst case. This number is
significantly lower compared to the cycle lifetime of nowadays’ lithium-ion batteries.

• The consumption increase gets higher with the battery capacity. It lies in the range 0% to 5% and
does not substantially impact the operating cost of the system.

• From an economic perspective, peak shaving seems to be interesting for several low-voltage users
in Belgium under the current capex and fixed electricity prices (no ToU dependency).

One of our main conclusions is that the battery utilization (SoC active time and number of cycles)
is very low for almost all users. Consequently, there seems to be enough potential to let our battery
provide additional services during those inactive periods in order to accelerate the payback period of
our investment. Which services can be combined and how efficiently this can be done is certainly a
topic to be addressed by future research works.

As an initial step, we suggest studying the predictability of the load profile. In our study,
we consider the battery to be available for peak shaving 100% of the time; therefore, there is no need
to know in advance when the peak occurs. However, in hybrid applications, time must be allocated
appropriately and as a result load prediction plays an important role. To better explain this argument,
let us consider two different load profiles derived from our dataset, user A and B (Figures 9 and 10
respectively). Although the battery utilization is in both cases very low (peak occurs rarely), user
A is by far more predictable than the user B. For user A, the peak occurrence is dependent on the
day, the time of use and the temperature, whereas for user B, there seem to be no clear explanatory
variables. Consequently, user B cannot know how to allocate his inactive time to other services; hence,
the battery remains underutilized solely reserved for peak shaving. Closing this paragraph, we note
that, so far, most research works on battery storage have addressed only single applications. In our
view, the concept of hybridization will gain more attention in the coming years as users gradually
acquire more incentives to interact with the grid.
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Figure 9. Thermal image—predictable load profile.

Figure 10. Thermal image—unpredictable load profile.

Supplementary Materials: The following are available online at http://www.mdpi.com/1996-1073/13/5/1183/s1,
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Abstract: Renewable Energy Communities consist in an emerging decentralized market mechanism
which allows local energy exchanges between end-users, bypassing the traditional wholesale/retail
market structure. In that configuration, local consumers and prosumers gather in communities
and can either cooperate or compete towards a common objective, such as the minimization of
the electricity costs and/or the minimization of greenhouse gas emissions for instance. This paper
proposes data analytics modules which aim at helping the community members to schedule the
usage of their resources (generation and consumption) in order to minimize their electricity bill.
A day-ahead local wind power forecasting algorithm, which relies on state-of-the-art Machine
Learning techniques currently used in worldwide forecasting contests, is in that way proposed. We
develop furthermore an original method to improve the performance of neural network forecasting
models in presence of abnormal wind power data. A technique for computing representative profiles
of the community members electricity consumption is also presented. The proposed techniques
are tested and deployed operationally on a pilot Renewable Energy Community established on
an Medium Voltage network in Belgium, involving 2.25 MW of wind and 18 Small and Medium
Enterprises who had the possibility to freely access the results of the developed data modules by
connecting to a dedicated web platform. We first show that our method for dealing with abnormal
wind power data improves the forecasting accuracy by 10% in terms of Root Mean Square Error.
The impact of the developed data modules on the consumption behaviour of the community members
is then quantified, by analyzing the evolution of their monthly self-consumption and self-sufficiency
during the pilot. No significant changes in the members behaviour, in relation with the information
provided by the models, were observed in the recorded data. The pilot was however perturbed by the
COVID-19 crisis which had a significant impact on the economic activity of the involved companies.
We conclude by providing recommendations for the future set up of similar communities.

Keywords: energy communities; machine learning; forecasting; abnormal data; wind power; outliers;
electricity consumption representative profiles; self-consumption

1. Introduction

1.1. Context

The operation and planning of modern electric power systems face major transformations
nowadays, due to the increasing share of renewable generation (e.g., wind or solar) in the electricity
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mix, which is uncertain by nature and tends to be deployed in a decentralized way, and to the
liberalization and unbundling of the electricity supply chain which occurred in the 1990s in Europe.

The main challenge with electricity systems consists in the fact that generation and consumption
must be physically equal at every instant in order to maintain system stability, since electrical energy is
as for now difficultly storable at a large scale. Extreme problems of coordination must thereby be solved
by modern Transmission System Operators (TSOs), which are furthermore complicated by the fact
that they do not own the generation (and consumption) assets, since the liberalization of the electricity
sector. The coordination is in that context performed through market platforms on which the market
actors can interact. The wholesale market level allows in that way interactions between large producers,
large consumers and entities known as Access Responsible Parties (ARPs) (or Balance Repsonible
Parties—BRPs—depending on the country), which are responsible for maintaining the balance in their
portfolio (containing injection, offtakes and possibly exchanges with other ARPs/BRPs). Bilateral
contracts, and power exchange platforms such as EPEX SPOT [1] in Western Europe, provide such
opportunities at the wholesale level, with exchange horizons starting from years ahead to close to real
time. The retail market enables on the other hand interactions between small end-users (consumers
and prosumers) and electricity suppliers (through e.g., fix and varying tariff contracts), which are often
themselves ARPs/BRPs.

Currently, new modes of exchange of electricity tend to emerge at the local level, which question
the market structure depicted above. This is motivated firstly by the proliferation of decentralized
renewable energy resources (owned by small end-users or prosumers), following the ambitious
environmental targets promoted at the European and worldwide scale, for which a more efficient
coordination could be achieved locally. The increasing willingness of the citizen to play an active
role in the electricity supply chain is another important driving factor. The literature speaks of
’consumer-centric electric systems’, for which the end-user is placed at the centre of the electrical
energy value chain.

Some studies propose in that way to keep a centralized market structure, while adapting the
wholesale markets to extend their conditions of access to small end-users [2,3]. On the other hand, fully
decentralized structures relying on peer-to-peer exchanges, in which all prosumers and consumers
are directly interconnected between each other for buying and selling energy services, are discussed
in [4,5]. An intermediate solution promotes the grouping of local consumers/prosumers into organized
communities, in which energy resources are pooled and allocated to reach a common objective.
The modes of exchanges of energy inside the community may however vary depending on authors:
local competitive markets are for instance established in [6,7], whereas collaboration prevails over
competition in [8,9]. Peer-to-peer exchanges inside communities are also studied in [10,11].

In its directive 2018/2001 on the promotion of the use of energy from renewable sources [12],
the European (EU) Commission has formalized the concept of Renewable Energy Communities
(or RECs), in which end-users would be allowed to exchange renewable energy produced locally.
The directive has since been transposed into decrees and legal frameworks in many countries of the
European Union, e.g., in Wallonia in Belgium [13], in France [14] or in Italy [15]. The science and
technology communities have in parallel launched many initiatives to study and implement pilot
projects of RECs: the cVPP project [16], lead by the Technische Universiteit of Eindhoven, and the
E-Cloud project [17,18], lead by ORES (one of the main Walloon Distribution System Operator or DSO)
and which will further be described in Section 3, are two striking examples. The present paper focuses
more particularly on the case of such RECs.

1.2. Related Work

Many challenges related to the modeling of RECs are still investigated in the literature, which
mainly deal with the optimal operation (e.g., how should we allocate in day-ahead energy resources
among members in a community to fulfill a given objective?) and sizing (how should we dimension
renewable generation, storage, etc. in a community?) of the communities (see references [6–11]
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exposed above). More particularly, the multi-agent nature of the underlying optimization problems
has driven an increasing attention of the researchers towards game theoretical models for studying
the economic equilibria that can appear inside the communities [11,19,20]. Some authors are focusing
on the other hand on regulatory aspects related to RECs: these communities consist indeed in a new
market design which can play a role at the macroeconomic scale in case of a general adoption. Authors
in [21] use cooperative game theory to show for instance that inadequate grid tariffs may lead to an
excess adoption of the model, with a potential snowball effect.

Optimally allocating resources in day-ahead in a community requires however to be informed
with accurate prospects in terms of local injections (renewable energy production) occurring in the
community, with a small time granularity (e.g., quarter hourly). The role of demand (i.e., electricity
consumption) response for better matching the generation, in the context of RECs and more generally in
electrical power systems, is furthermore well-kown and heavily investigated in the literature, through
e.g., the direct control of appliances (see e.g., [22]), or appropriate ex ante recommendations on the
consumption behavior of end-users, provided possibly by optimization routines driven by economic
signals (see e.g., [23]).

More particularly, data analytics techniques, and especially Machine Learning, can play an
important role in better anticipating the generation and demand primitives in communities. The 1 h
ahead forecasts of the electricity consumption are for instance performed in [24] using neural networks,
in order to support a fuzzy-logic based controller which implements the resource matching in rural
communities. Authors in [25] developed a Markov Chain for forecasting a day ahead the aggregated
solar generation surplus and residual load in a community comprising storage. A Long Short Term
memory network is proposed in [26] to forecast in day-ahead the energy demand in a whole P2P
community. Other researchers try on the other hand to avoid the complexity of forecasting models
by developing online optimization methods [27,28]. Finally, some studies leverage data analytics for
improving the sizing of the communities, such as [29], in which a load profile generator based on Self
Organized Maps (SOMs) is proposed.

1.3. Objectives and Contributions

In this paper, we focus on the day-ahead forecasting of time series of local wind power generation
in a community, whereas most of the literature studies communities with solar generation only, and on
the modeling of the electricity consumption of the individual community members, whereas most of
references focus on the consumption quantities aggregated at the community level. We develop data
analytics modules, relying on state-of-the-art Machine Learning models, which are expected to help
the community members to adapt their consumption profiles to the local renewable energy generation,
thereby improving the local coordination. More particularly:

1. we develop a day-ahead local wind power forecasting model, based on the use of state-of-the-art
Machine Learning models (tree-based techniques and neural network architectures) trained
using a backtesting procedure commonly used in the field of time series forecasting, among the
best currently used in worldwide energy forecasting contests [30],

2. we propose an original method for improving the performance of neural network forecasting
models in presence of wind power abnormal data, which is quite abundant when performing
localized wind power predictions,

3. rather than developing pure load forecasting models for each individual, which is a complex task
requiring explanatory variables difficultly obtainable in practice (e.g., for privacy concerns), we
propose an algorithm for generating representative profiles of the community members electricity
consumption at the considered time of the year, which is solely based on past consumption data,

4. we deploy operationally the developed data analytics modules in a pilot REC established on
an industrial area in Tournai (Belgium) on the existing Medium Voltage (MV) distribution grid
in the framework of the E-Cloud project [17,18], comprising 2.25 MW of wind generation and
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18 Small and Medium Enterprises (SMEs), who had the possibility to freely access the results of
the developed data modules by connecting to a dedicated web platform,

5. we quantify the impact of the modules on the operation of the REC (forecasting performance
of the developed models, and behaviour of the community members via the evolution of their
self-sufficiency and self-consumption during the pilot).

The paper is organized as follows. Section 2 describes the developed data analytics models, with
an emphasis on local wind power forecasting in Section 2.1 and on the generation of representative
electricity consumption profiles in Section 2.2. Section 3 first describes the pilot REC on which the
developed modules are applied (Section 3.1), focuses then on the performance of the wind power
forecasting module (Sections 3.2 and 3.3), and finally quantifies the impact of the data analytics
modules on the behaviour of the community members and on the operation of the REC, by analyzing
the evolution of the community self-consumption and self-sufficiency (Section 3.4).

2. Methodology

The developed data analytics modules, which aim at improving the operation of the RECs through
a better coordination between local generation and consumption, are explained in the present section.
More particularly, a local day-ahead wind power forecasting model, able to deal with wind power
abnormal data, is presented in Section 2.1. Section 2.2 describes the generator of electricity consumption
representative profiles.

2.1. Local Wind Power Forecasting

This section first describes the different Machine Learning models that are employed for the
day-ahead prediction of wind power time series. An original methodology for automatically dealing
with abnormal wind power data, which are abundant in the case of localized predictions (as opposed
to the case of aggregate predictions made at the regional or national level), during the learning phase
of neural network models, thereby improving the forecast performance, is then presented.

2.1.1. Forecasting Model

The forecasting of wind power time series is cast as a Machine Learning regression problem,
a particular class of supervized learning problems for which the output is continuous. In this paper,
five different models are employed and compared. We first implement two state-of-the-art neural
network architectures, namely the traditional feedforward MultiLayer Perceptron or MLP [31], as well
as recurrent extensions such as the LongShort Term Memory network or LSTM [32] and its bidirectional
variant BLSTM [33], recently applied in the energy sector in [34,35]. We then implement two tree-based
techniques, namely Random Forests or RF [36], and Gradient Boosting Decision Tree techniques or
GBDT [37]. Finally, the fifth forecasting model (ENSEMBLE) is an ensemble forecast whose output is
simply the average of the four previous models. The employed models represent a snapshot of current
state-of-the-art Machine Learning techniques, as exemplified by their high performances in contests
such as the Global Energy Forecasting Competition [30].

We focus on the day-ahead prediction of wind power, i.e., we aim at forecasting at 12:00 p.m.
of day D − 1 the wind power for the 96 quarters of an hour of day D. Figure 1 depicts the overall
procedure. Input features are composed of historical data (i.e., past wind power production and
meteorological data such as wind speed, temperature and pression) and of future data (in this case
the publicly available day-ahead onshore wind power forecast made by the Transmission System
Operator—or TSO—at the national level). In the case of the tree-based models, i.e., RF and GBDT, one
model is trained for each of the 96 quarters of an hour of day D, and the quarter hourly forecasts WPRF

q

(or WPGBDT
q ) , q = 0, . . . , 95 are combined in a forecast vector WPRF

0−95 (or WPGBDT
0−95 ) for the whole day

D. One single MLP model with an output layer of size 96 predicts the wind power for day D WPMLP
0−95,

22



Energies 2020, 13, 4892

and one single unrolled BLSTM model predicts WPBLSTM
0−95 . Finally, the output of the ENSEMBLE model,

i.e., WP
Average
0−95 , is computed by calculating the average of WPRF

0−95, WPGBDT
0−95 , WPMLP

0−95 and WPBLSTM
0−95 .

Figure 1. Wind power forecasting methodology.

2.1.2. Strategy for Dealing with Abnormal Wind Power Data

Abnormal data—or outliers—are quite common in localized wind power data, which may
have a strong impact on the performance of wind power forecasting models which are built on
such data. These can be detected by analyzing the wind turbine power curve (which depicts wind
power as a function of wind speed), and can be classified into four categories depending on their
position with respect to the normal power curve, according to [38]: bottom curve stacked outliers
(due to turbine failure, communication equipment failure, measurement terminal failure, unplanned
maintenance—see zone 1 of Figure 2), mid-curve stacked outliers (caused by wind curtailment or
communication issues—see zone 2 of Figure 2), top-curve stacked outliers (caused by communication
error or wind speed sensor failure—see zone 3 of Figure 2) and around-curve stacked outliers (due to
random factors such as signal propagation noise and extreme weather conditions—see zone 4 of
Figure 2).

In this paper, we propose an original method for taking into account the presence of abnormal
wind power data directly in the learning procedure of the neural network wind power forecast
models, in order to improve the forecast performance. In practice (and voluntarily summarizing the
process for the sake of clarity), the learning procedure for neural networks, and more generally for
supervised learning models, consists in identifying the values of the model parameters θ (e.g., the
weights of a neural network) minimizing a loss function L, which quantifies how well the model fits
the training data:

θ∗ = arg min
θ

L(ŷ = fθ(x), y) (1)

with ŷ the output of model fθ(x), x the vector of input features, y the target vector (i.e., the true
forecast values extracted from the training set (xi, yi), i = 1, . . . , N, with N the number of samples in
the training set), and θ∗ the optimal parameters values. Problem (1) is solved using variants of the
gradient descent algorithm, for most of supervised learning models.
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Figure 2. Abnormal data in wind power curves (extracted from [38]).

In that context, the main idea of our adapted learning procedure consists in modifying the loss
function L in order to cancel the contribution of data objects which are tagged as abnormal by an ad
hoc abnormal data detection algorithm. The general procedure, depicted in Figure 3, can be described
as follows in the case of a neural network model. Each time a training sample (xi, yi) is presented at
the input of the model, apply the following steps:

1. Forward pass. Compute ŷi = fθ(xi), i.e., an estimation of the true forecast yi.
2. Abnormal data detection. Detect abnormal wind power data in the target vector yi using an

ad-hoc data detection algorithm. Reference [38] proposes for instance a two-step algorithm,
based on a combination of the changing-point grouping method and the quartile method,
for automatically detecting and tagging wind power abnormal data, and that we propose to
use in the present work. By doing so, a masking vector mi, which contains 1 when the data are
normal and 0 if the data are considered as abnormal, is created.

3. Compute loss function. Compute the loss function Li, excluding the contribution of components
tagged as abnormal data. The classical L2-norm is in that way modified as follows:

Li =
1
2
‖mi(yi − ŷi)‖2

2 (2)

4. Backward pass. Update the parameters (i.e., the weights W = {wl
ij} of the neural network, with

l = 1, . . . , NL, i = 1, . . . , nl−1, j = 1, . . . , nl , and with NL the number of layers in the neural
network and nl the number of neurons in layer l) according to standard backpropagation formula.

Figure 3. Strategy for training neural networks in presence of wind power abnormal data.
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2.2. Electricity Consumption Representative Profiles

Forecasting in day-ahead the electricity consumption of individual companies with the required
time granularity (quarter hourly in the present case) is a complex task. The consumption of companies
in different branches shows indeed a high variance, as exemplified in [39]. An accurate forecast would
require therefore explanatory variables which precisely describe the economic activity of the company,
and which are therefore difficultly obtainable in practice, mainly for privacy reasons. In that context,
researchers tend to aggregate the electricity consumption at an appropriate level before performing
the forecasting task (see e.g., [26,34]), or focus on longer time spans (such as [39] in which the authors
predict the annual electricity consumption of enterprises).

In this paper, instead of developing pure forecasting models for each company of the community,
we propose a method for generating representative electricity consumption profiles for each member,
which is solely based on their past consumption data. The method is inspired by [40] and adapted to
the present context.

In the following, we assume that a dataset X of daily profiles of electricity consumption, sampled
at a quarter hourly rate, is available for each member. Each data object xi is therefore a 96-dimensional
vector (= 4 × 24). The procedure is explained below for one community member.

1. Data preprocessing. We firstly remove from the original dataset data objects with missing data.
2. Segmentation of the full dataset according to calendar information. For each community

member, we segment the available dataset of quarter hourly electricity consumption according to
seasons (spring, ..., winter) and days (Monday, ..., Sunday). By doing so, 28 datasets are generated
for each member (7 days in one week times 4 seasons). Official off-days are pooled in a separate
dataset, so that 29 datasets (= 28 + 1) are finally created for each community member.

3. Computing representative profiles for each dataset. Then, a representative profile (or prototype)
is calculated for each of the 29 datasets of each client. The medoid μ of each dataset, i.e., the data
object for which the sum of distances to all other objects is minimized, is in that way computed:

μ = arg min
y∈X={x1,x2,...,xN}

N

∑
i=1

d(y, xi) i = 1, . . . , N (3)

with X = {x1, x2, . . . , xN} a dataset of N consumption profiles, and d(., .) a distance function
between two data objects. We use a Dynamic Time Warping (DTW) distance in this work,
which is a distance originally developed in the field of speech processing [41] but is now
generally employed when comparing time series, and more particularly in shape-based time
series clustering [42].

4. Generate consumption profiles between two pre-specified dates. Finally, electricity consumption
profiles between day d and day d′ are created by 1. generating the sequence of dates between d
and d′ and 2. assigning to each date the corresponding medoid (winter Monday profile, summer
Tuesday profile, off-day profile, etc.).

3. Use Case and Results

The data analytics modules described in Section 2 are applied in this section on a pilot REC
established in Belgium in the framework of the E-Cloud project [17]. We begin by describing the
selected use-case (Section 3.1), focus then on the performance of the wind power forecasting module
(Sections 3.2 and 3.3), and finally quantify the impact of the data analytics modules on the behaviour of
the community members and on the operation of the REC, by analyzing the evolution of the members
self-consumption and self-sufficiency (Section 3.4).
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3.1. Use Case Description

The E-Cloud project [17,18], led by ORES (one of the main Walloon DSOs) in collaboration with
local private and public entities (Luminus, IDETA, Siemens, DAPESCO, N-Side and the University of
Mons- UMONS- ), established a pilot REC in Tournai (Belgium), on an industrial area connected to the
Medium Voltage electricity distribution network.

The REC involved 18 members (mainly Small or Medium Enterprises or SMEs) and included
18 MW of wind power generation (of which a portion of only 2.25 MW was allocated to the community,
the rest was sold through traditional market processes and wasa therefore out of the scope of the
present work), as well as 70 kW of peak photovoltaic generation, owned by third-party investors (the
community itself could however own the generation assets, which will be studied in future works).
A temporary derogation was granted by the regional Walloon regulator (’Commission Wallonne Pour
l’Energie’, or CWAPE) in order to apply a tailored pricing scheme inside the community; in that way,
community members were allowed to purchase, at an advantageous price, (part of) their electricity
consumption directly to the local renewable generation when it was available, bypassing the traditional
wholesale-retail market structure and favouring local consumption of the local available generation.
A distribution key calculated a priori [18] specified the portion of local renewable energy allocated
to each community member every quarter of an hour. For the consumption not covered by the local
generation, members were free to establish contracts with suppliers in the classical retail market. In the
E-Cloud project, thanks to the data analytics modules presented in this paper, community members
were furthermore informed in day-ahead of the prospects in terms of renewable energy production,
as well as of their own typical electricity consumption profiles at the concerned time of year. They were
in that way incentivized to adapt their consumption to local generation via the preferential tariff which
was applied in the community.

The project preparatory phase started in 2017, and the pilot was effectively deployed in Tournai,
applying the pricing derogation granted by the regulator, from July 2019 to June 2020. During the pilot
life, approximately 7500 MW h were produced by local generation, of which 56% have been consumed
locally. The total consumption of the 18 involved companies during the full year of the pilot can be
observed on Table 1.

Table 1. Total electricity consumption of the 18 member companies during the pilot (July 2019–June 2020).

Member Total Cons. [MW h] Member Total Cons. [MW h]

1 1.07 10 0.2
2 1.01 11 0.21
3 2.29 12 0.22
4 0.76 13 0.21
5 0.073 14 0.15
6 0.44 15 0.2
7 1.89 16 0.14
8 0.49 17 0.41
9 0.27 18 0.02

3.2. Dealing with Wind Power Abnormal Data

We first demonstrated the efficiency of the original procedure proposed in Section 2.1.2 for dealing
with abnormal wind power data in the training of neural network based forecast models. To that
end, we leveraged a dataset made available in the framework of the E-Cloud project, consisting of
approximately 1.4 years (January 2018–May 2019) of:

• historical wind power data for the wind farm installed in Tournai, sampled at a quarter
hourly scale,

• historical meteorological data (wind speed, atmospheric pressure, temperature), sampled at a
quarter hourly scale,
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• onshore wind power forecasts at the national level, made available publicly by the Belgian
Transmission System Operator (TSO) Elia [43] with the objective to benefit market participants
and improve the electricity market outcomes [44], sampled at a quarter hourly scale.

The abnormal data detection algorithm [38] presented in Section 2.1.2 was first applied on the
farm level wind power curve created using wind power and wind speed data. The outcome of the
procedure is depicted in Figure 4, where green circles refer to normal data, and red crosses (blue stars)
correspond to abnormal data detected by the quartile method (change point method respectively).

The abnormal data points were employed to create masking vectors mi, which were involved in
the modified learning procedure of the wind power neural network forecasting models. A 96-output
MultiLayer Perceptron (MLP) which aimed at performing a day-ahead wind power forecast was in
that way trained on the dataset depicted above, according to the procedure of Figure 3. More precisely,
in accordance with standard text books in Machine Learning [31], a backtesting procedure based
on cross-validation and which respected the temporal order of observations, which is common in
the field of time series prediction, was performed by decomposing the 1.4 years dataset into three
sets: a 13-month training set (January 2018–February 2019) which was used for estimating the model
parameters (e.g., the weights of the neural networks, etc.), a 1-month validation set (March 2019)
which was employed for tuning model hyperparameters (such as e.g., the number of neurons per
layer and the number of layers in neural networks, etc.) and prevent overfitting, as well as a 2-month
test set (April–May 2019), for evaluating the model performances on new data that had not been seen
previously by the model.

The Python libraries Keras [45] and TensorFlow [46] were employed for implementing and
training the neural networks. The Adam optimization algorithm [47], a state-of-the-art variant of
stochastic gradient descent, was selected as the training algorithm for estimating the neural network
weights. The Tree-structured Parzen Estimator (TPE) approach [48] was employed for optimizing the
hyperparameters of the neural network (i.e., the number of hidden layers, the number of neurons in
each layer, the size of the input feature vector, etc.), with the help of the Hyperopt Python library [49],
which led to an MLP architecture with one hidden layer, 32 neurons, and an input layer including 12
past time steps for the wind power, seven past time steps for the wind speed and the atmospheric
pressure, and 31 past time steps for the temperature.

Figure 4. Abnormal wind power data filtering on the E-Cloud data, according to the procedure exposed
in [38]. Normal points are tagged with green circles, and abnormal points are tagged with blue stars
(red crosses) if they have been identified using the change point method (quartile method).

27



Energies 2020, 13, 4892

We then compared the performance of the trained neural network in two different configurations,
i.e., when masking the contribution of wind power abnormal data during training according to the
procedure exposed in Section 2.1.2 (’MLP with mask’), and without applying any masking effect (’MLP
without mask’). To that end, we trained 100 neural networks with the best architecture found above,
and computed the Root Mean Square Error (RMSE) obtained on the test set by comparing the forecast
and the true value of wind power generation. The Adam training algorithm was indeed a stochastic
algorithm, which aimed at minimizing a highly non convex cost function, and which thereby ended
up in local minima which varied according to different initial conditions, training parameter values,
etc. [47]. The average of the RMSEs, as well as the standard deviation, the min and max values of the
RMSE, are depicted in Table 2, for the two approaches (with and without mask). It is shown that the
masking of wind power abnormal data was able to decerase the average RMSE by approximately 10%,
which confirms the interest and efficiency of the proposed methodology.

Table 2. Strategy for dealing with wind power abnormal data: forecasting performance of the trained
MultiLayer Perceptrons (MLPs) with and without the proposed mask.

MLP without Mask MLP with Mask

μRMSE [kW] 2634.8 2436.2

σRMSE [kW] 98.7 58.8

max RMSE [kW] 2892.9 2621.5

min RMSE [kW] 2414.9 2337.7

3.3. Forecasting Performance

The performance of the five day-ahead wind power forecasting models described in Section 2.1.1
is studied in this section. The neural networks models were implemented in Keras [45], using the
original training procedure presented in the previous section, and the tree-based models (RF and
GBDT) were implemented in Python using the Scikitlearn library [50]. The output of the ENSEMBLE
model was simply coded in Python by computing the average of the outputs of the four other models.
The same dataset and input features than the previous section were employed, and cross-validation
was also performed for the training-evaluation procedure. Figure 5 depicts the wind power forecast
obtained with the ENSEMBLE model (in red) as a function of time, as well as the actual wind power
generation (in black), for a random day of the test set. One can observe that, even if the forecast error
remained clearly visible, the model was most of the time able to correctly capture the time of day when
the peak of wind power generation occurred, which is fundamental information for the community
members for scheduling their consumption for the upcoming day.

Table 3 shows the RMSE of the five developed forecast models. We observed that the RF model
was the individual model which provided the smallest forecast error in this particular application, and
that the ENSEMBLE model (which was simply built by taking the average of the four other models),
was still able to slightly improve the accuracy. The ENSEMBLE model was therefore selected for the
operational deployment described in Section 3.4.

Table 3. Forecasting performance in terms of Root Mean Square Error (RMSE), for the five local
day-ahead wind power forecast models (Random Forest—RF, Gradient Boosting Decision Tree—GBDT,
MultiLayer Percpetron—MLP, Bi-LSTM—BLSTM, and ENSEMBLE.

RF GBDT MLP Bi-LSTM Ensemble (Average)

RMSE [kW] 2347 2387 2338 2389 2327
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Figure 5. Time series of wind power forecast and actuals for a day of the test set.

3.4. Impact on the Consumption Behaviour of the Renewable Energy Community Members

The two data analytics modules developed in this work were deployed operationally in the
E-Cloud pilot using Mindsphere [51], a cloud-based open IoT operating system developed by Siemens.
Each member of the pilot community received a personal access that he used to freely connect to a
dedicated web platform using his personal computer, on his own initiative. Each member was in
that way able to consult general data such as his own monthly self-consumption or self-sufficiency
(see definitions below), as well as the same quantities for the whole community. It is important to
mention that personal data from the other community members was hidden, for the sake of privacy.
As explained in the previous sections, a common (i.e., the same for each member) day-ahead renewable
generation forecast under the form of a quarter hourly time series, which was refreshed every day at
12 pm, was also made available to each member, using the methodology of Section 2.1. Each member
was also able to consult a typical consumption profile for the upcoming day, representative of his
past consumption at the considered time of year, according to the procedure exposed in Section 2.2.
Given the preferential tariff that was in application in the community for the purchase of energy
which was locally produced, we expected that the members would take advantage of the information
provided by the data modules, on their own initiative, in order to adapt their consumption profiles to
local generation, thereby decreasing their energy bill.

The modules became effectively operational from April 2020 to June 2020. A downscaled version
of the regional solar forecast made available publicly by the TSO Elia [43] was employed for the
70 kW of solar generation installed in the community, since the absence of metered solar data
in the pilot prevented the training of a local solar forecast model. The amount of installed wind
generation—1.8MW—was however 20 times higher than installed PV power, which mitigated the
necessity to have a very accurate solar forecasting module in this particular case.

We show the impact of the data analytics modules on the behaviour of the community members
by computing the monthly self-consumption of members, i.e., the ratio between the member
self-consumed energy (i.e., the member electrical energy consumption covered by the local energy
which was put at his disposal) and the local energy which was put at his disposal (i.e., the portion of
local generation that was allocated to him, according to predefined distribution keys mentioned in
Section 3.1), during one month. This first index quantified to what extent the community generation
tended to be consumed locally, where it has been produced: a self-consumption of 100% for a member
meant for instance that he had consumed all the local renewable generation that was allocated to him

29



Energies 2020, 13, 4892

for the considered month. The monthly self-consumption SCi,m of member i during month m was in
that way expressed as follows:

SCi,m =
Eself,i,m

ηiEgen,m
, ∀i ∈ I , m ∈ M, (4)

with Egen,m the total energy generated locally in the community during month m, ηi the fraction of that
energy that is allocated to member i (constant during the whole pilot), Eself,i,m the energy consumed by
member i during month m that was covered by ηiEgen,m, and I (M) the set of community members i
(respectively considered months m). It should be noted that if renewable energy was allocated to a
member who did not consume it entirely, the corresponding excess of energy was not counted in the
numerator of (4).

Similarly, we computed the monthly self-sufficiency of members, i.e., the ratio between the
member electrical energy consumption covered by the local generation that was allocated to him and
the total energy consumed by the member, again during 1 month. This index shows what part of his
electricity consumption the member consumed from local resources, and by extension what part he
had to purchase on the traditional retail market: a self-sufficiency of 100% means that the member
was able to cover all its consumption with the local generation that was allocated to him during the
considered month. Self-sufficiency of member i during month m is in that way computed as follows:

SSi,m =
Eself,i,m

Econs,i,m
, ∀i ∈ I , m ∈ M, (5)

with Econs,i,m the total energy consumed by member i during month m.
The left part of Figure 6 shows the monthly self-consumption of the 18 community members

during the pilot duration, i.e., from July 2019 to June 2020. It is first very important to note that the
data analytics module were effectively deployed on-site in April 2020, one month after the generalized
lockdown that occurred in Belgium as a consequence of the COVID-19 crisis. The economic activity of
the 18 companies involved in the community suffered in that context from a drastic reduction, which
has been materialized by a significant drop of their electricity consumption, while the generation
remained unchanged compared to the pre-COVID situation. This explains in the authors opinion
why the self-consumption of almost all members significantly decreased starting from March 2020 to
May 2020, with a progressive increase in May and June 2020, in line with the progressive removal of
lockdown measures that occured in mid-May 2020 in Belgium. This effect masked unfortunately the
possible positive impact of the data analytics modules on the behaviour of the community members.

The right part of Figure 6 depicts the monthly self-sufficiency of each member during the pilot
duration, which should be a priori less impacted by the COVID-19 crisis since it is a ratio between
two consumptions, namely the member consumption covered by local resources and the member
total consumption, which are both expected to decrease in the COVID-19 situation. We observed a
global increasing trend in the self-sufficiency of the community members from March to June 2020.
It was however not possible to entirely attribute this positive effect to the operational availability of the
developed data modules: the effect of the COVID-19 crisis on the trends in self-sufficiency could not
be completely discarded, since changes in economic activity may have modified the shape of the daily
consumption patterns (due to the temporary suspension of some industrial processes, etc.), which can
impact the self-sufficiency as likely. Furthermore, the global increase in terms of self-sufficiency may
also be attributed to a yearly seasonal effect, which is possible considering the values in July 2019,
at the beginning of the pilot. The time span covered by the pilot, i.e., one year according to the special
derogation granted by the Walloon regulator (CWAPE), is however not sufficient to discard or confirm
that hypothesis.
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Figure 6. Monthly self consumption (left) and self-sufficiency (right) of the 18 members of the E-Cloud
pilot. The preferential tariff became effective in July 2019, which started the pilot officially, and ended
late June 2020. The data analytics modules developed in this work were effectively deployed on site in
April 2020, during approximately 3 months.

Finally, we show in Table 4 the relative change in terms of self-sufficiency for each member
between July 2019 and June 2020, in percent. We expect in that way to compare consumer habits at
almost one year interval, which can be a better indicator of possible changes in consumption patterns.
For 11 out of the 18 members, it appeared that the self-sufficiency decreased, whereas it increased for
six members. Again, no significant impact of the data modules on the consumption behaviour was
observed (to be more conclusive, July 2020 should have been compared with July 2019, but the pilot
was scheduled to end in June 2020 as explained above). The effect of the COVID-19 crisis in June 2020
could not be completely discarded as well, since the economic activity in Belgium had not recovered
its pre-COVID intensity in July 2020 yet, at the time of writing.

Table 4. Change εSS in self-sufficiency between July 2019 and June 2020 for each community member,
in percent.

Member 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

εSS [%] −10 −2 −5 −2 0.5 −12 −8 −5 1 2 −0.8 1.5 −9.8 0.4 −3.7 NA −3 4.5

4. Conclusions and Perspectives

This work proposed energy analytics tools to inform the members of Renewable Energy
Communities (RECs) of the day-ahead prospects in terms of local renewable energy generation, as well
as in terms of electricity consumption profiles which are representative of the members behaviour at the
considered time of the year. By doing so, the members were expected to adapt their own consumption
patterns to local generation, in order to benefit of advantageous energy pricing mechanisms which
prevail in a community.

A localized day-ahead wind power forecasting tool, based on state-of-the-art Machine Learning
algorithms, has been developed in that way. The ENSEMBLE model, whose output is computed
as the average of the outputs of four other Machine Learning models (Random Forests, Gradient
Boosting Decision Trees, a MultiLayer Perceptron and a Bi-directional LSTM) has shown the best
forecasting performance on the E-Cloud pilot project data. Forecasting accuracy has been further
improved by automatically detecting wind power abnormal data samples and by adapting the training
procedure accordingly. A procedure for generating representative electricity consumption profiles
of the community members, relying on Dynamic Time Warping (a state-of-the-art Machine Learning
distance employed when comparing time series), has further been implemented.
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The data modules have been deployed on-site in the framework of the E-Cloud pilot project, on a
REC connected to the existing Medium Voltage distribution grid in an industrial area in Belgium,
and composed by 18 members (mainly Small and Medium Enterprises or SMEs) and by local
generation (mainly wind power). The information provided by the data modules was freely available
to the community members by connecting to a dedicated web platform on their own initiative.
Global quantities, such as the monthly self-sufficiency and self-consumption of the community
members, have been computed to quantify the impact of the data modules on the consumption
behaviour of the community members. We were not able however to highlight significant changes in
the consumer habits. It is worth mentioning though that the general lockdown that occurred in Belgium
in March 2020 due to the COVID-19 crisis significantly affected the results, especially knowing that the
data modules became operational for the first time in April 2020, during lockdown. Yearly seasonal
effects were furthermore observed in the self-sufficiency patterns, which further masked the potential
benefits of the deployed data modules. We recommend therefore to extend in accordance with the local
regulator the duration of similar REC pilots to more than one year, in order to better understand these
yearly seasonal effects, and to better quantify the impact on the members consumption behaviour.
Furthermore, we strongly encourage researchers and industrials that will implement similar pilot
RECs in the future to establish a system for monitoring the usage of the displayed information by
the community members (for instance by recording the number of connections to the dedicated web
platform), in order to quantify and possibly stimulate their interest in the provided tools.

As a first perspective, we intend to deploy a pilot REC for a longer time span, with an active
monitoring of the members interest in the available tools, in order to confirm/infirm the hypotheses
raised in this work. This is however a slow process, since temporary derogations by the local regulator
are mandatory currently in Belgium for applying a community-based pricing scheme. We further
aim at building another pilot REC in a residential area, in order to analyze the behaviour of domestic
consumers. We finally intend to improve the accuracy of the wind power forecasting module by
using turbine-level data in the model definition, and by adapting the learning procedure of tree-based
algorithms to the presence of wind power abnormal data. We also intend to focus our research effort
on the correct prediction of peaks of generation, since the community benefits are optimized when
members shift their consumption to generation peak times, and on the recalibration of the wind power
forecasting models in the flavour of [52].
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Abstract: This paper addresses the voltage control problem in medium-voltage distribution networks.
The objective is to cost-efficiently maintain the voltage profile within a safe range, in presence
of uncertainties in both the future working conditions, as well as the physical parameters of the
system. Indeed, the voltage profile depends not only on the fluctuating renewable-based power
generation and load demand, but also on the physical parameters of the system components. In reality,
the characteristics of loads, lines and transformers are subject to complex and dynamic dependencies,
which are difficult to model. In such a context, the quality of the control strategy depends on the
accuracy of the power flow representation, which requires to capture the non-linear behavior of the
power network. Relying on the detailed analytical models (which are still subject to uncertainties)
introduces a high computational power that does not comply with the real-time constraint of the
voltage control task. To address this issue, while avoiding arbitrary modeling approximations,
we leverage a deep reinforcement learning model to ensure an autonomous grid operational control.
Outcomes show that the proposed model-free approach offers a promising alternative to find a
compromise between calculation time, conservativeness and economic performance.

Keywords: voltage control; deep deterministic policy gradient; deep reinforcement learning;
model uncertainties

1. Introduction

The massive integration of Distributed Generation (DG) units in electric distribution networks
poses significant challenges for system operators [1–5]. Indeed, distribution networks were historically
sized (with a radial structure) to meet maximum load demands while avoiding under-voltages at the
end of the lines. However, in presence of local generation, the opposite over-voltage problem may
appear. In case of severe voltage violation, inverters of DG units are temporarily cut off. This induces
not only a loss of renewable-based energy, but also a deterioration of the delivered power quality
(due to resulting voltage and current transients) that accelerates the equipment degradation [6]. In this
context, the objective of modern Distribution System Operators (DSOs) is to adopt a reliable and
cost-efficient strategy that is able to maintain a safe voltage profile in both normal and contingency
conditions, with the goal of enhancing the ability of the system to accommodate new renewable-based
resources. To that end, researchers have developed a wide range of techniques, with the aim of avoiding
costly investment plans that simply upgrade/reinforce the network. Also, static (experience-based)
strategies based on past observations have shown limitations, as they are often sub-optimal and unable
to react in a very short time frame (to prevent cascading faults just after a disturbance) [7].
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Theoretically, different methods can be applied for voltage management of Medium-Voltage
(MV) distribution systems, but the most common methods are based on using on-load tap changer
mechanism of the transformer, reactive power compensation and curtailment of DG active powers [8,9].
It is generally known that each of the above voltage control methods has its own advantages and
drawbacks, and there is no single perfect voltage regulation method [10]. Recently, there has been
a growing literature focusing purely on local strategies in which resources rely only on localized
measurements of the voltages’ magnitude, and do not exchange information with other agents [11,12].
Such local algorithms are easy to implement in practice, but the lack of a global vision may prevent
to cost-efficiently solve the voltage control problem. As an alternative, distributed strategies,
which require communication capabilities between neighbouring agents, are also considered. Such
approaches enable resources (that are physically close) to share information in order to cooperatively
achieve the desired target levels, while considering other objectives such as losses minimization [13–15].
However, to further improve the optimality of the control solution, centralized voltage control
algorithms, which are mainly based on an Optimal Power Flow (OPF) formulation, have also been
proposed [16–18].

In general, although the latter centralized model-based techniques have shown promising
performance, they are plagued with two main issues.

Firstly, they require to solve challenging optimization problems, which are non-linear and
non-convex (from the AC power flow equations used to comply with the physical constraints of
the electrical distribution system), and subject to uncertainties (from the stochastic load and generation
changes, and the unexpected contingencies). The OPF-based methods thereby face scalability issues,
which makes them of little relevance for real-time operation. This is partly addressed by using efficient
nonlinear programming techniques [19], or through convex approximations of power flow constraints,
which mainly resort on second order cone programs [20] or linear reformulations using the sensitivity
analysis [21–23]. However, modeling errors inevitably arise and may lead to unsafe and sub-optimal
solutions. Moreover, the recent trend of operating the modern distribution networks in closed loop
mode makes traditional approximations even less accurate [24].

Secondly, the common feature of model-based techniques is that they assume that the physical
parameters of the distribution networks are perfectly known, which is impractical due to the high
complexity of these systems. In that regard, the real-time characteristics of the network components
are not static, and are governed by complex dynamic dependencies [25]. For instance, deviations of
parameters can arise from the atmospheric conditions and aging. Important effects are thereby often
neglected, i.e., load power factors are not available precisely, there is a complex dependence structure
between load and voltage levels, line impedances vary with the conductor temperatures, and the
shunt admittances of lines as well as the internal resistance of transformers are also affecting network
conditions [26].

The first issue (related to the high computational costs of model-based control algorithms) has led
to the implementation of reinforcement learning (RL). These data-driven methods have the advantage
to directly learn their operating strategy from historical data in a model-free fashion (without any
assumptions on the functional form of the model). Consequently, they can show good robustness under
very complex environments with measurement noise [27,28]. A novel deep reinforcement learning
(DRL)-based voltage control scheme (named Grid Mind) is developed in [29]. In particular, two
different techniques have been compared, i.e., deep Q-network (DQN) and deep deterministic policy
gradient (DDPG), and both have shown promising outcomes. In [30], voltage regulation is improved
using a RL-based policy that determines the optimal tap setting of transformers. Then, a new voltage
control solution combining actions on two different time scales is implemented in [31], where DQN
is applied for the (slow) operation of capacitor banks. Finally, multi-agent frameworks have been
developed in [32,33] to enable decentralized executions of the control procedure that do not require a
central controller.
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However, all these methods are disregarding the endogenous uncertainties on network
parameters, which may mislead the DSO into believing that the control strategy satisfies technical
constraints, while it may actually result into unsafe conditions. In this context, the main contribution
of this paper is to propose a self-learning voltage control tool based on deep reinforcement learning
(DRL), which accounts for the limited knowledge on both the network parameters and the future
(very-short-term) working conditions. The proposed tool can support DSOs in making autonomous
and quick control actions to maintain nodal voltages within their safe range, in a cost-optimal manner
(through the optimal use of ancillary services in a market environment). In this work, it is assumed
that for voltage control purpose, we can act on the active and reactive powers of DG units as well as
on the transformer tap position. The resulting problem is formulated as a single-agent centralized
control model.

The main advantage of the proposed method lies in its ability to learn from scratch (in an off-line
fashion) and gradually master the system operation. Hence, the computational burden is transferred
in pre-processing (when the model is calibrated/learned through many simulations), such that the
real-time control process (in actual field operation when the agent is trained) is insignificant (�1 s).
Also, the model-free tool allows to immunize the voltage control procedure against uncertainties in
both exogenous (load conditions) and endogenous (network parameters) variables, while accounting
for approximations in the power flow models describing the system operation. Results from a case
study on a 77-bus, 11 kV radial distribution system reveal that the proposed tool allows determining
an optimal policy that lead to safe grid operation at low costs.

The remainder of this paper is organized as follows. Section 2 introduces the theoretical
background in reinforcement learning, with a particular interest on the deep deterministic policy
gradient (DDPG) algorithm, which allows to handle high-dimensional (and continuous) action
spaces. Section 3 describes the simulation environment, including the different sources of uncertainty.
The developed method is tested (using new representative network conditions) in Section 4 on a
realistic 77-bus system, where we validate its robustness through the numerical simulations. Finally,
conclusions and perspectives for future research are given in Section 5.

2. Reinforcement Learning Background

In this section, we introduce the basics of reinforcement learning (RL), while making the practical
connections with the voltage control problem.

2.1. Markov Decision Process

Firstly, the problem has to be formulated as a Markov Decision Process (MDP). The general
principle consists of an agent interacting with an environment E over a number of discrete time steps
until the agent reaches a terminal state. In particular, at each step t, the agent observes a state st from
the state space S , and selects an action at ∈ A according to its policy π(at|st). As a result, the agent
ends up in the next state st+1 ∼ P(st+1|st, at) while receiving an immediate scalar reward rt based on
the distribution R(rt|st, at) in accordance with the natural laws of the environment. The next state
st+1 depends only on the action at on state st (and not on the prior history), which is a characteristic
referred to as the Markov property.

In this work, the agent is the central controller which regulates the voltage level within its control
area, and the environment is the electrical distribution network (including the realization of the
different sources of uncertainty affecting its operation). The state-transition model P(st+1|st, at) and
the reward function R(rt|st, at) are inherently stochastic, and the problem can thus be formulated
using reinforcement learning.

2.1.1. State Space

The state space of the RL agent (i.e., central controller) is defined by the information that
can be measured in real-time by SCADA (Supervisory Control and Data Acquisition) or PMU
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(Phasor Measurement Unit). In that regard, the state space st at time t contains the voltage levels
Vn,t for each node n ∈ N of the distribution system. Then, this information is complemented by the
(predicted) maximum power level Pg,t+1 of each distributed generators g ∈ G at the next time interval
t + 1. This information (reflecting, e.g., the maximum energy contained in the wind) allows the agent
to know the upper limit of these control variables when taking its actions. Practically, this is achieved
using a (deterministic) single-step ahead forecaster, which is based on an advanced architecture of
recurrent neural networks, as presented in [34]. The latter is tailored to predict the power level in the
upcoming future by leveraging the past dynamics of the generator output. Finally, the current tap
position Tapt of the transformer (which defines the turn ratio between primary and secondary voltage
levels) is also included in the state space st.

st = (V1,t, ..., VN,t, P1,t+1, ..., PG,t+1, Tapt) (1)

2.1.2. Action Space

The action space at to fix voltage issues in the studied network consists in changing the active
and reactive powers of DG units, i.e., ΔPg,t and ΔQg,t ∀g ∈ G, as well as adjusting the transformer tap
ratio ΔTapt.

at = (ΔP1,t, ..., ΔPG,t, ΔQ1,t, ..., ΔQG,t, ΔTapt) (2)

The actual changes in active ΔPg,t and reactive ΔQg,t power levels initiated at time t (which will
define the power output at time t + 1) are limited by the available power at time t + 1:

0 ≤ Pg,t + ΔPg,t ≤ Pg,t+1 ∀g ∈ G (3)

ΔQg,t+1 ≤ ΔQg,t ≤ ΔQg,t+1 ∀g ∈ G (4)

where Pg,t denotes the power level of (dispatchable) generator g at time t, while ΔQg,t+1 and ΔQg,t+1

determine the safe range of variation of reactive power of unit g around the operation point. Likewise,
the variation ΔTapt around the operation point Tapt of the transformer tap change is given by:

ΔTap ≤ Tapt + ΔTapt ≤ ΔTap (5)

where ΔTap and ΔTap are the physical limits of the on-load tap changer.
It should be noted that other types of control actions, such as changing the terminal voltage

set-points of (medium-sized) conventional generators or switching shunt devices, could also be
considered if such resources are available in the system.

2.1.3. Reward

As the goal of the algorithm is to eliminate voltage issues at a minimal cost, the reward includes
both the costs inherent to control actions (changing set-points of control variables, which may reflect
the costs of relying on ancillary services [35]), and the costs of violating network constraints (which may
damage the equipment). In this way, the immediate reward rt at time step t is defined as follows:

rt = − ∑
g∈G

(
CQ|ΔQg,t|+ CP|ΔPg,t|

)− CTR|ΔTapt|+

⎧⎪⎪⎨
⎪⎪⎩
+Rpos, ∀Vn,t ∈ [V, V]

−Rneg(V − Vn,t), ∀Vn,t < V

−Rneg(Vn,t − V), ∀Vn,t > V

(6)

where V and V are respectively the lower and upper bounds delimiting the safe voltage levels.
Then, coefficients CP and CQ represent the costs of modifying the active and reactive powers of DG
units, while CTR stands for the (high) cost of changing the transformer tap position. Typically, we have
CQ < CP < CTR. Indeed, modifying the reactive power of generators can be done at almost no
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cost (using the power electronics converters), while the curtailment of active power infers a loss of
generated energy that ultimately results into a financial loss [36]. Then, high costs are associated with
a tap change of the transformer due to the aging effects on the tap changer contacts. The terms Rpos

and Rneg respectively reflect the positive reward for the nodes having voltages within the safe range,
and the negative reward (i.e., penalty) for nodes outside the permitted zone. In general, all these costs
need to be properly weighted (see Section 4). Indeed, if the costs of actions CQ, CP and CTR are too high
with respect to Rpos and Rneg, the agent may choose to suffer the negative rewards related to voltage
violations (rather than correcting the voltage problem). Conversely, if the costs of actions are too low,
unnecessary actions may be taken (to ensure the positive rewards related to safe voltage levels).

2.2. Reinforcement Learning Algorithm

Like most machine learning techniques, it is important to differentiate training and test stages.
During the training, the goal of the agent is to learn the best policy π∗, i.e., to select actions that

maximize the cumulative future reward Gt = ∑T
j=t γj−trj with a discount factor γ ∈ [0, 1]. This can

be achieved by approximating the optimal action-value function Q∗(s, a) = E
π∗
(Gt|s, a), which is

the expected discounted return of taking action a in state s, then continuing by choosing actions
optimally. Indeed, once Q∗-values are obtained, the optimal policy can be easily constructed by taking
the action given by a∗t = argmaxa∈AQ∗(st, a). Using Bellman’s principle of optimality, Q∗(st, at) can
be expressed as

Q∗(st, at) = Est+1∼E
[

rt + γ max
at+1

Q∗(st+1, at+1)

]
(7)

where the next state st+1 is sampled from the environment’s transition rules P(st+1|st, at). In general,
an agent starts from an initial (poor) policy that is progressively improved through many experiences
(during which the agent learns how to maximize its rewards).

When the training is completed, i.e., during the test (in practical field operations), the trained
agent selects the greedy action a∗t according to its learned policy.

This general principle is the source of many different RL algorithms, each with different
characteristics that suits different needs. In this context, the choice of the most suited technique
for the voltage control task is mainly driven by the fact that both state and action spaces are continuous.
Hence, well-known algorithms, such as (deep) Q-learning, will not be considered as they only deal
with a discrete action space. In this work, we will thereby focus on the deep deterministic policy
gradient (DDPG) technique.

2.3. Deep Deterministic Policy Gradient (Ddpg) Algorithm

The deep deterministic policy gradient (DDPG) relies on a complicated architecture, referred to as
actor-critic [37], which is depicted in Figure 1. The goal of the actor is to learn a deterministic policy
μφ(s) which selects the action a based on the state s. The quality of the action is estimated by the critic,
by computing the corresponding Qθ(s, a). To achieve good generalization capabilities of both actor
and critic functions, they are estimated using deep neural networks, which are universal non-linear
approximators that are very robust when the state and action spaces become large.

Figure 1. Working principle of the DDPG agent, which relies on an actor-critic architecture.
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Overall, starting from an initial state s, the actor neural network (characterized by weight
parameters φ) determines the action at = μφ(st). This action is then applied to the environment,
which yields the reward rt and the next state st+1. The experience tuple (st, at, rt, st+1) is then stored
in the replay memory. Once the replay memory includes enough experiences, a random mini-batch
of D experiences is sampled. For each sample in the mini-batch, the state st and the action at are fed
into the critic neural network (characterized by weight parameters θ) that yields the Q-value. Both
networks are then jointly updated, and the procedure is iterated until convergence.

Practically, the critic network is trained by adjusting its parameters θi (at regular intervals i ∈ I
during the learning phase) so as to minimize the mean-squared Bellman error (MSBE) (9). In contrast
to supervised learning, the actual (i.e., optimal) target value rt + γmaxat+1 Q∗(st+1, at+1) is unknown,
and is thus substituted with an approximate target value yt (using the estimation Qθi ):

yt = rt + γmaxat+1 Qθi (st+1, at+1) (8)

where at+1 is given by the critic network, i.e., at+1 = μφi (st+1).
Contrary to supervised learning where the output of the neural network and the target value

(i.e., ground truth) are completely independent, we see that the target value y in (8) depends on the
parameters θi and φi that we are optimizing in the training. This link between the critic’s output
Qθi (st, at) and its target rt + γmaxat+1 Qθi (st+1, at+1) may infer divergence in the learning procedure.
A solution to this problem is to use separate target networks (for both the critic and the actor), which are
responsible for calculating the target values. Practically, these target networks are time-delayed
copies of the original networks with parameters θi,targ and φi,targ that slowly track the (reference)
learned networks. As explained in [37], these target networks are not trained, and enable to break
the dependency between the values computed by the networks and their targeted value, thereby
improving stability in learning.

As a result, the critic network is trained (i.e., updated) by minimizing the following MSBE loss
function L(θi) with stochastic gradient descent:

L(θi) = ∑
D

⎛
⎜⎜⎝Qθi (st, at)︸ ︷︷ ︸

(i)

−
(

rt + γQθi,targ(st+1, μφi,targ(st+1))
)

︸ ︷︷ ︸
(ii)

⎞
⎟⎟⎠

2

(9)

Starting from random values θi=0, the parameters θi are thus progressively updated towards the
optimal action-value function Q∗ by minimizing the difference between (i) the output of the critic
and (ii) the target (computed with target networks), which provides an estimate of the Q-function
using both the outcome rt of the simulation model and the action at+1 from the target actor network.
The update is performed on a mini-batch D of different experiences (st, at, rt, st+1) ∼ U(D), drawn
uniformly at random from the pool of historical samples. This (replay buffer) procedure breaks the
similarity between consecutive training samples, thus avoiding that the model is updated towards a
local minimum.

In parallel, the actor network is trained (on the same mini-batch D) with the goal of adapting its
parameters φi, so as to provide actions at that maximize Qθi . This amounts to maximize the following
function L(φi), which is achieved with a gradient ascent algorithm:

L(φi) = ∑
D

Qθi

(
st, μφi (st)

)
(10)

To ensure that the DDPG algorithm properly explores its environment during the training phase,
noise εt is added to the action space, i.e., at = μφ(st) + εt. In particular, we use an exponential decaying
noise so as to favor exploration at the start of the training, which is then progressively decreased to
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stimulate exploitation as the agent converges towards the optimal policy. Naturally, when the model is
trained (and used during test time), no noise is added to the optimal action a∗.

3. Simulation Environment

To train the DRL agent, it is necessary to build a simulation environment E that mimics the actual
system. This environment is composed of three modules: (i) to generate realistic deviations of the
expected nodal load and distributed generation powers for the next time step (to reflect prediction
errors), (ii) to provide realistic values of the uncertain network parameters, and (iii) to simulate the
physical flows in the distribution network.

As depicted in Figure 2, the RL agent is trained off-line through interactions with the simulation
environment, which allows calibrating the RL model using experience and rewards. As previously
explained, the starting point is an observation of the state st of the environment (e.g., nodal voltage
levels of the distribution system). Based on this information, the (target) actor network is used to take
an action at = μφ(st) + εt (where the additional noise εt is used during training to boost exploration).
It should be noted that, if no voltage problem is observed, the optimal action is to do nothing. Then,
the simulator (thoroughly described in the rest of this Section) is used to determine the impact of
the action on the environment, which consists in computing the reward rt, but also the next state
st+1. Then, the (target) critic is used to evaluate the quality of the decisions, and both actor and critic
networks are updated using respectively (10) and (9) to improve the policy of the DRL-based agent.

When the learning is performed, the agent can be deployed for practical power system operation
(for which only the actor network is useful). Interestingly, the agent can still continue its learning
(and thus adapt to potential misrepresentations of the simulation environment) by adjusting its
parameters through on-line feedback. This may also serve for calibrating the model to the time-varying
conditions of the system.

Figure 2. Training of the DRL agent for autonomous voltage control in distribution systems.

3.1. Exogenous Uncertainties on the Network Operating Point

The first category of uncertainties belongs to the network working point (regarding both the
nodal consumptions and generations). Indeed, the output power of renewable-based generators is
intermittent upon the nature of their primal sources (mainly wind and solar), such that the generated
power can quickly vary within a short interval. Moreover, the nodal consumption and generation levels
are not always measurable. Consequently, in practice, the future operating state of the distribution
system is not known with certainty, and this stochasticity is here represented with scenarios of
representative prediction errors. Practically, for the renewable generation, a database is constructed
based on the historical prediction errors of the employed forecaster (described in Section 2.1.1), and a
sample is randomly drawn from this database to generate the desired scenario. For the nodal loads,
the same sampling strategy is used to simulate the (uncertain) changes in the consumption level.
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3.2. Endogenous Uncertainties on the Network Component Models and Parameters

The second category of uncertainties is related to partial knowledge of network component
models and parameters. In general, network analyses and simulations are carried out relying on the
simplified models of network components, which do not correctly represent the physical relations and
dependencies within the real network. This includes uncertainties associated with the line, load and
transformer models [26].

In particular, we model the thermal dependency phenomenon whereby the line resistance
fluctuates with respect to the conductor temperature variation. Then, the uncertainty associated
with the load power factor is considered to better reflect the different natures, types and amplitudes of
the various load demands. Moreover, as shown in [38], the internal resistance of the transformer can
have a significant effect on the node voltages, and is thereby also incorporated in the network model.
Finally, in contrast to typical network models, the shunt admittances of power lines are taken into
account using the PI line model. Overall, all these (uncertain) parameters are modelled as random
variables changing within representative predefined bounds.

3.3. Distribution Network Model

The electrical network operation is modeled through load-flow calculations, which are solved
using the Newton-Raphson approach.

4. Case Study

To solve the voltage control problem, the DDPG algorithm is implemented in Python using
PyTorch and Gym libraries. The solution is tested on the 11 kV radial distribution system with
N = 77 buses shown in Figure 3 [39]. The bus 1 is the high-voltage (HV) connection point, which is
considered as the slack node. The substation (between nodes 1 and 2) supplies 8 different feeders, for a
total of 75 loads. The maximum (peak) active and reactive consumption powers equal to 24.27 MW
and 4.85 Mvar, respectively. The system is also hosting 22 (identical) distributed generators, with an
installed power equal to 4 MW.

The objective of the DRL-based agent is to maintain the voltage magnitudes of the 77 buses within
the desired range. In order to illustrate the effectiveness of the proposed control scheme, these allowed
voltage limits are defined by a very conservative range of [0.99, 1.01] p.u., and the initial reactive
powers of DGs are set to zero. The reward function (6) is characterized by a compromise between the
costs of voltage violations and those of corrective actions. We give more weight in maintaining safe
voltage levels by defining Rpos = 0.1 and Rneg = 15, while CTR, CP and CQ are respectively set to 1, 0.1
and 0.04.

A total of 12,000 initial operating states (that need to be processed by the DRL-based agent) are
generated with the simulation model, among which 10,000 are used to train the agent, while the
remaining 2000 scenarios are kept (as a test set) to evaluate the performance of the resulting model.
It should be noted that, in this work, the agent has a single step to process each of the generated
scenarios (it cannot rely on several interactions with the environment to solve a voltage problem).
The value of the discount factor γ is thereby fixed to 1.

To have an overview of the global network conditions in the case where no control action is
performed, we show in Figure 4 the distribution of nodal voltage levels (for the 12,000 simulated
states) using a boxplot representation. We observe that violations of voltage limits [0.99, 1.01] p.u.
occur more than 50% of the time. In particular, the distribution is asymmetrical, skewed towards more
over-voltage issues (due to the high penetration of distributed generation) which occurs in 40.1% of
the simulated samples.
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Figure 3. Schematic diagram of the 77-bus distribution system. The section between bus 1 and 2 is the
substation, which is supplying 8 different feeders.

Figure 4. Boxplot representing the (nodal) distributions of the voltage levels for the 77 buses among
the 12,000 simulated states.

4.1. Impact of Ddpg Parameters

In the proposed case study, the state space st is of size 100, i.e., 77 dimensions for the nodal
voltages Vn,t, 22 dimensions for the (predicted) maximum power of the 22 generators Pg,t+1, and 1
dimension for the position of the tap changer Tapt. Also, the action space at is of size 45, i.e., 2 × 22 = 44
dimensions corresponding to the changes in active and reactive power for the 22 generators, and 1
dimension for changing the position of the tap changer. Hence, as sketched in Figure 5, the actor
network has an input layer of size 100 (i.e., composed of 100 neurons), and an output layer of size 45.
Then, the critic network is characterized by 145-dimensional input layer, for a single output.

Based on this (fixed) information, we then performed an optimization of the hyper-parameters of
the DRL-based agent, which consists in optimizing its complexity by adding extra hidden layers in the
architecture of both actor and critic neural networks. In particular, the best performance was achieved
by connecting the input and output layers (for both the actor and the critic networks) with 5 fully
connected layers, with 20 units in all layers. The activation functions of the hidden layers are ReLU
(rectified linear units). Then, the hyperbolic tangent function is used for the output layer of the actor,
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while a linear function is employed for the critic. The batch size of the learning is set to 16 samples,
and the target networks are updated (during the training) with a delay of 10 iterations. Both actor and
critic networks are initialized with random weights in the range [−0.1, 0.1].

Figure 5. Representation of the neural network architectures for both actor and critic.

The exploration-exploitation parameter (i.e., extra noise added to the actions during the training)
is εt = N (0, 0.2) × (0.005 + 0.995e−k/ΔT ), where N (0, 0.2) is a zero-mean Gaussian noise with a
standard deviation of 0.2, which is exponentially decaying along the training iterations k. The decay
period ΔT is equal to 5000 episodes. In general, this action noise has a significant impact on the learning
abilities of the DRL-based agent. This observation is illustrated in Figure 6, where we depict two
different learning curves where all parameters of the agents are similar, except for the action noise.
In particular, the optimal calibration of N (0, 0.2) is compared to a perturbation of N (0, 0.6) (with the
same decaying intensity over the training samples).

In general, when the perturbations are too small, the training may fail to properly explore
the search space (which increases the probability to end up in a local minimum), while oversized
perturbations may negatively affect the learning (and even leading the algorithm to repeatedly perform
the same action).

Figure 6. Evolution of the total immediate rewards rt across training episodes for two different
configurations of the action noise εt.

For the best model (right part of Figure 6), we see that the DDPG control scheme quickly learns
(after around 7500 interactions with the environment) a stable and efficient policy. In particular, at the
beginning (during the 2000 first training steps), the agent randomly selects actions, which lead to
many situations where it deteriorates the electrical network conditions. However, in the course of
the learning procedure, the agent is progressively evolving, and starts solving the voltage issues with
less costly decisions. The agent eventually converges to total rewards r ≈ 5. In contrast, the other
model (left part of Figure 6) achieves convergence at a much lower performance (total rewards
of r ≈ −7.5), which roughly corresponds to the same reward as when no action is performed.
In general, the main advantage of the proposed framework lies in its generic design that makes it
broadly applicable (e.g., to any distribution system), and in its ability to adapt to the varying operating
conditions. Evidently, when the methodology is applied to another environment, the DDPG agent

46



Energies 2020, 13, 3928

needs to be re-trained from scratch, and its hyper-parameters (e.g., training noise, as well as number of
hidden layers and number of neurons for both actor and critic networks) also need to be adapted.

4.2. Impact of Endogenous Uncertainties

The impact of endogenous uncertainties (regarding the physical parameters of the distribution
system) is evaluated through the analysis of three cases.

1. The network parameters are considered as perfectly known in both training and test stages;
2. The uncertainty on the network parameters are neglected during the training phase (to mimic

current optimization models), but are considered when evaluating the performance of the trained
DRL-based agent (to reflect reality);

3. The uncertainty on the values of network parameters is accounted for in both training and
test phases.

The simulation results regarding the three cases are summarized in Figure 7. Practically, we represent
the evolution of the negative reward (which is a measure of the voltage violations) in both training and
test phases. This negative reward rneg is equal to 0 in the perfect situation where all nodal voltages pertain
to [V, V] = [0.99, 1.01] p.u., and decreases in negative values with the severity of voltage violations, i.e.,:

rneg =

⎧⎪⎪⎨
⎪⎪⎩

0, ∀Vn ∈ [V, V]

−Rneg(V − Vn), ∀Vn < V

−Rneg(Vn − V), ∀Vn > V

(11)

Figure 7. Evolution of the reward rneg in the three studied cases in both training and test stages.

We observe that when uncertainties associated with the model parameters are neglected during the
training (cases I and II), the RL agent quickly find actions that remove voltage violations, i.e., the upper
bound of the negative reward rneg = 0 is almost reached in around 2000 episodes. This performance is
achieved in more than 4000 episodes when dealing with endogenous uncertainties due to the increased
difficulty of the task. This effect is also translated into a higher variability of the reward. Interestingly,
by comparing the evolution of rneg with the total reward r in Figure 6 during the training, we see
that even though the agent is able to mitigate the voltage issues after 4000 training episodes, the
cost-efficiency of the actions can still be improved (which is realized during the next 4000 episodes).
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To quantify the impact of neglecting the endogenous model uncertainties, the mean value of the
negative reward rneg in (11) over the last 2000 episodes of the training phase, and over the 2000 new
episodes of the test set are provided in Table 1 for the three studied cases.

Table 1. Average value of the negative reward rneg across training and test sets.

Case 1 Case 2 Case 3

Training set −0.6 −0.6 −0.69

Test set −0.53 −0.93 −0.67

As expected, the agent that is agnostic to endogenous uncertainties on the physical parameters
of the system during the training (cases 1 and 2) achieves a lower out-of-sample performance when
these effects are modeled in the test set. Specifically, the reward rneg drops from −0.53 (in case 1 when
endogenous uncertainties are also disregarded at the test stage) down to −0.93 in the realistic case 2.
In this latter situation, the agent expects a reward of around −0.6 (at the end of its learning), while it
actually results in a disappointing ex-post outcome of −0.93. This problem can be efficiently alleviated
by incorporating these endogenous uncertainties within the learning procedure. In that framework
(case 3), the training and test rewards are close to each other, i.e., rneg ≈ −0.67, which illustrates the
good performance of the proposed method.

4.3. Extreme Cases

In this part, the outcome of the DRL-based agent is illustrated for two extreme situations,
respectively corresponding to the worst-case over- and under-voltage states. These states
result from the combination of extreme consumption and generation conditions, associated with
unfavourable parameters of the distribution system (such as high line impedances arising from a
temperature increase).

In Figure 8, we select the scenario (from the 2000 test samples) which leads to the worst-case
voltage rise. In this case, the load demands are low (globally equal to around 10% of their nominal
values) while active powers of DGs are at 90% of their rated values. The initial system voltages
significantly exceed the upper limit of 1.01 p.u. (for almost all nodes), and reach a maximum value
of 1.08 p.u. at node 27 (end of feeder 1). Also, the absolute value of the reward associated with the
control actions taken by the proposed DDPG algorithm is represented in the right part of the Figure 8.

Figure 8. Initial nodal voltages as well as the corrected ones obtained by the DRL-based agent in an
extreme over-voltage situation. The corresponding (absolute value) of the reward related to each family
of actions is also displayed.

Interestingly, the DRL-based agent has completely solved the voltage problem. We see that it
did not rely on the curtailment of the active power of distributed generators. Indeed, this solution is
more expensive than consuming reactive power (which is thereby the privileged action). However,
the transformer tap ratio had also to be modified (i.e., voltage drop between nodes 1 and 2) to prevent
over-voltages at the end of the feeders.
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In Figure 9, the voltage drop condition is analyzed, which corresponds to a situation where load
demands are maximum, while active powers of DGs are equal to zero. This results into under-voltage
issues in many nodes of the distribution system.

Figure 9. Initial nodal voltages as well as the corrected ones obtained by the DRL-based agent in an
extreme under-voltage situation. The corresponding (absolute value) of the reward related to each
family of actions is also displayed.

Similarly to the over-voltage case, the privileged action is to modify the reactive power level of DG
units (here by exchanging capacitive reactive power to compensate the voltage drops). The corrected
situation brings the voltage plan within the desired limits, at the exception of some nodes at the end of
feeder 1 that are slightly violating the lower bound (of 0.99 p.u.).

In general, after the training, the agent is able to successfully make the right decisions. In particular,
during the testing under new randomly generated conditions, the proposed DRL-based algorithm
achieves robust solutions (against the various sources of uncertainty) that mitigate severe voltage
violations using cost-effective actions.

5. Conclusions and Perspectives

This paper was devoted to the voltage control problem in distribution systems, which is facing
new challenges from growing dynamics and uncertainties. In particular, current strategies are
hampered by the limited knowledge of the network parameters, which may prevent achieving the
optimal cost-efficiency. This problem is formulated as a centralized control of resources using deep
reinforcement learning, through an actor-critic architecture that enables to properly represent the
continuous environment. This framework bypasses the need to represent analytically the electrical
system, such that the impact of model accuracy is decoupled from the control performance.

The main advantage of the proposed model is to put the computational complexity on the
pre-processing (in a fully data-driven framework), such that the model provides very fast decisions
in test time. Interestingly, the developed regulation scheme is not only easy to implement,
but also cost-efficient as we observe that the agent is able to automatically adapt its behavior to
varying conditions.

The promising outcomes of the work pave the way towards more advanced strategies, such as
the extension to a decentralized approach using a multi-agent formulation (that would prevent the
single point of failure of the centralized framework). Similarly, extending the framework to partially
observable networks (where the state of the system is not fully known [40]) also offers a valuable area
of research for system operators.
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Abstract: One of the essential parameters to measure the stability and power-quality of an energy grid is
the network impedance. Including distinct resonances which may also vary over time due to changing
load or generation conditions in a network, the frequency characteristic of the impedance is an import
part to analyse. The determination and analysis of the impedance go hand in hand with a massive
amount of data output. The reduction of this high-resolution voltage and current datasets, while
maintaining the fidelity of important information, is the main focus of this paper. The presented
approach takes measured impedance datasets and a set of lossy compression procedures, to monitor
the performance success with known key metrics. Afterwards, it continually compares the results of
various lossy compression techniques. The innovative contribution is the combination of new and
existing procedures as well as metrics in one approach, to reduce the size of the impedance datasets
for the first time. The approach needs to be efficient, suitable, and exact, otherwise the decompression
results are useless.

Keywords: impedance determination; lossy compression algorithms; singular value decomposition;
wavelet transformation

1. Introduction

The energy system transformation and smart grid applications require knowledge about detailed
power and load profiles with sophisticated datasets on the one hand. On the other, an increasing
number of power electronic converters (PECs) from renewable energies and smart loads are integrated
into the electrical supply system to measure and analyse the power-quality, stability, and control design
considerations. Since the first generation of grid-connected converters, the grid impedance has been an
important part of the analysis of the stability of the whole energy system or detection of islanding grids [1,2].
The so-called PECs are usually self-controlled pulse width modulation (PWM) power converters that
connect generators or loads to the 50 Hz power supply system. For the power- quality analysis or a filter
design of the converters detailed knowledge is required of the frequency characteristics of the network
impedance at a specific grid-connection point [3]. Along with the increasing number of PECs especially in
low and medium voltage grids, the generated, and transferred amount of data rises massively. This opens
up multiple situations for system optimization. The current operational conditions of the municipal utilities,
grid owner, or system operator—low bandwidth and low computational power—and the development of
impedance shaping intensifies problems in many cases [4,5]. To improve memory consumption, collection,
and transmission efficiency, the reduction of high-resolution impedance datasets while maintaining the
fidelity of relevant information presents one opportunity for system optimization.
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The overwhelming majority of the studies that try to tackle this larger issue focus on how to
generate, analyse, and shape the network impedance so as to make it usable with the grid [6–8].
As regards the topic of compression, some approaches have been investigated in the field of medical
data science [9].

This paper addresses the question of how to compress voltage and current datasets of an impedance
measurement device by using lossy compression approaches without any detrimental effect on the
impedance results of the measurement. Since raw voltage and current datasets contain further information
e.g., about voltage harmonics, the aim is to compress the raw data instead of the calculated impedance
data. Therefore, the scope of the paper is the grid impedance and the compression compatibility. It is
not important to compress the data set one-to-one or to create a method with the highest efficiency,
depending on processing duration or error level. The idea is to generate an easy to handle, efficient,
sufficiently selective, accurate, and usable approach that output a compressed impedance dataset without
irrelevancies. Two other highly important questions are, one, how to transfer and store large amounts of
data using small amounts of resources and costs and, two, how to extract necessary information from
the dataset. Due to limited computational i.e., bandwidth and storage space, and human resources
lossy compression algorithms are promising. The new procedure and model technique, which combines
measured impedance datasets, lossy compression techniques, and key metrics addresses exactly this
specific gap in knowledge.

Section 2 describes the background of the impedance measurement to show the used test case
and the simulation approach, which produced the dataset. The remainder of this paper is organized
as follows. Section 3 presents typical lossy compression approaches, which can be used to reduce
the amount of data. After those techniques have been explained, the approach taken in this paper,
and the key metrics are introduced in Section 4. The obtained performance results are presented in
Section 5 to show if they meet the required criteria. Finally, conclusion and outlook are presented in
Section 6.

2. Mid Voltage Impedance Measurement System

In the literature, the methods to measure the network impedance may be categorized into active
and passive methods used for power systems during operation. Active methods use excitation signals
at the point of common coupling (PCC) to identify the impedance. The signal generator can be a
current or voltage source or a current sink.

2.1. Impedance Identification

The used signal generation is a sink: A load resistor is switched on and off in a random pattern.
Hence, the load current is a random pulse pattern. Figure 1 shows the principle connection scheme
of the network impedance measurement (NIM) device and its corresponding complex equivalent
circuit. The voltage in off and on state (v1(t) and v2(t)) as well as the current in the on state i2(t) (off
state current i1(t) is zero) are measured. The frequency-dependent complex values V1(ω), V2(ω) and
I2(ω), derived from the fast Fourier transform, are used to calculate the complex frequency-dependent
impedance ZN(ω) (1).

ZN(ω) =
V2(ω)− V1(ω)

I2(ω)
(1)

2.2. Impedance Identification of Three Phase Systems

In this section, the measurement system for the determination of the frequency dependency of
the grid impedance is presented. The device includes highly accurate sensors for the measurement of
voltage and current wave forms. Figure 2 shows a simplified scheme of the measurement setup to
evaluate the impedance of the three-phase mid voltage PCC [10,11]. A resistive load is switched by an
insulated gate bipolar transistor (IGBT), while the measurement loop (e.g., L1–L2) is selected by a B6
thyristor bridge. A 3D model of the measurement device and its main components are depicted in
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Figure 3. The measurement device is portable and may be connected to connection points in medium
voltage grids via its own medium voltage switch gear (SF6 circuit breaker). To determine the line
impedances of a three-phase system four measurements are required:

• At first, the open circuit is measured to obtain the reference V1(ω). Hence, the load is not pulsed
and I1(ω) is zero,

• Then, a pulse pattern is applied to the three loops of phase a to b, phase b to c, and phase c to a.

PCC NIM

Figure 1. Principle of the network impedance measurement/identification.

ua

T1 T3 T5
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Figure 2. Impedance identification circuit for 20 kV medium voltage level.

For each measurement the following parameters are recorded over at least one period of 50 Hz:

• ia(t)/ib(t)/ic(t): current phase a/b/c
• ua(t)/ub(t)/uc(t): voltage phase a/b/c to earth

The loop impedances Zab(ω), Zbc(ω), Zca(ω) are derived from the recorded parameters with (1).
These loop impedances can be rearranged into the line impedances Za(ω), Zb(ω), and Zc(ω) [10]:

Za(ω) =
1
2
· [Zab(ω)− Zbc(ω) + Zca(ω)] (2)

Zb(ω) =
1
2
· [Zab(ω) + Zbc(ω)− Zca(ω)] (3)

Zc(ω) =
1
2
· [−Zab(ω) + Zbc(ω) + Zca(ω)] (4)
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Figure 3. Impedance identification measurement device for 20 kV medium voltage level.

Typically, the impedances are average values over ten 50 Hz periods measured every five minutes
over a month or more to identify impedance changes over daytime. Figure 4 shows a sample measurement.
The compression approach, explained in Section 4, is applied to the voltage and current data, which is
recorded during grid excitation and which is used for the calculation of the grid impedance. The authors
want to determine the effect of data compression on the grid impedance calculation with this compressed
raw dataset.

This setting yields 288 measurements per day or 8928 per month for each recorded voltage and
current parameter. The sample rate is 500 kHz. Overall, the authors use a dataset with d = 206,744 data
points (sample size d) for each recorded parameter, voltage and current. For an easy representation
of the following figures and the compression dataset, the number of measuring points d was used
(instead of the time vector t). Theoretically, the respective t-vector would have to be multiplied by the
reciprocal of the sampling rate (500 kHz).

As the measurement device is remotely controlled and the data is transferred via the cellular
network a compression is beneficial to optimize the data transfer speed and costs. Especially when the
measurement device’s installation site is in areas with low network coverage exhibiting low transfer
rates. The transients in the recorded voltage and current parameters are the essential part of the data,
as they determine the frequency dependency of the impedance values.
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Figure 4. Measurement results with UDS (a) and IDS (b).

3. Lossy Compression Techniques

Various meta-analyses, types and overviews of data compression approaches can be found
in [12–16]. The compression techniques are divided into lossy and lossless methods. Lossy ones generate
better results by losing (preferably irrelevant) information. This can be explained by the fact that the
result of the decompression is not identical to the starting dataset. In contrast, lossless methods produce
an identical decompressed dataset [13].

The combination of impedance measurements and data compression can hitherto be found only
in other fields of research. As an example serves the medical area where an extensive comparison of
compression methods adapted to the impedance of cardiomyocytes is presented. The approach uses
the wavelet transformation technique to analyse the effect of compression on sensitive data coming
from cardiomyocytes and generating compression ratio of round about 5:1 [9].

Hereinafter follows a short description of the lossy compression methods that are compared in
this paper. All of these approaches are frequently used for other types of data (SVD, WT) and appear
interesting for the paper approach (TFA) [17–22]. The two well-known, widely used approaches WT
and SVD are only briefly described. For further explanation, please consult the references that are listed
in the Sections 3.1 and 3.2. TFA is explained in more detail but can be found in [17,22] if necessary.

3.1. SVD—Singular Value Decomposition

The so-called Singular Value Decomposition (SVD) splits a m × n set of data (voltage/current ×
time stamp) DS into three different matrices (5). The diagonal matrix Σ contains the singular values
(SVs), see also Figure 5.

DSm×n = Um×mΣm×nVT
n×n (5)

The data compression takes advantage of the fact that a close approximation of DS can be
achieved by keeping the significant SVs of matrix Σ. The compression success depends on the amount
of reduction of singular values in Σ.
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DSmxn Umxm ∑mxn Vnxn=

Time 
instants

Voltage,
Current

Figure 5. SVD of data matrix DS.

3.2. WT—Wavelet Transformation

A wavelet transform (WT) orthogonally decomposes a time series into wavelet and scaling
coefficients. The main difference to the Fourier transform, which splits a signal into cosine and sine, is
the use of (real and Fourier space) functions by the WT. The deletion of irrelevant data points increase
the compression ratio and reduce the mean percentage error (MPE) and mean absolute error (MAE).
That is why, it is important to find the best thresholds, levels of decomposition (LoD), and Daubechies’
wavelets (DW). For further explanation, see [19–21].

3.3. TFA—Triangular Function Algorithm

The Triangular Function Algorithm (TFA) encloses the steps (I)-(VI) and is an enhanced version of
the approach developed in [17]. (I) Read the dataset and choose your preferred percentiles (e.g., Q5–Q95).
(II) Generate percentiles of the original dataset and save the data points yi Q, xi Q. Perform a moving
average FIR filter to smooth the (remainder of the) dataset. (III) Read a0 data points, which is the step
width. (IV) Choose number of polynomials of least square fit. Perform Λ in (6), to obtain the slope b1

and intercept b0 (6). Determine the mean square error and unbiased standard deviation (σ).

Λ =
a

∑
i=1

[yi − (b1xi + b0)]
2 (6)

In our case, quadratic or higher polynomial functions should be avoided because of the lower
compression-error-ratio depending on the higher number of compressed and saved datapoints (e.g., b2,
b1, b0). (V) Read and check the following data point (yi, xi). If its value is within (±mσ, with factor m)
the predicted values, jump to (III). Otherwise start a new line segment and go to step (IV). (VI) After
compressing the whole dataset, insert percentiles (yiQ, xiQ) to finish the algorithm. For further
explanation, please see [17].

4. Proposed Approach and Key Metrics

4.1. Novel Approach

The first step to compress and decompress the impedance data is the generation of the dataset
obtained from impedance measurements (Section 2). In a second step, the dataset is smoothed to
generate a periodic pulse signal with spikes. For this step, either the moving average filter (FIR filter)
method or the Δ sin-signal method is chosen. The latter method uses the basic function of the voltage
output (depending on the measured dataset (7)) to extract the noise of the input function of UDS.
The basic function (7) is determined by the impedance evaluation program and approximated by using
fitting algorithm toolboxes.

Ubase =
√

2 · 11.56 kV · sin (2π · 48 Hz · t) (7)

The result of delta (Ubase − UDS) or the FIR-filter output from delta (UFIR − UDS) extracts the
difference, the so-called spikes Unoise, Inoise, shown in Figure 6. These spikes are challenging to compress
and the main reason for the complexity of the developed approach. Typically, existing programs

58



Energies 2020, 13, 3661

(e.g., smooth from Matlab) smooth out these minimal data swings or spikes directly, thus eliminating
the possibility to determine the grid impedance (depending on UDS).

Figure 6. Overview of UDS and generated UBase (a) and UNoise (b).

Regarding the current, this procedure can only be carried out with the FIR filter because the I
function cannot be readjusted similarly.

Step 3 includes the compression of the dataset. Using different types of lossy compression algorithms,
the spikes Unoise(C) and the current IDS(C) are converted into a compressed dataset that is stored or saved
in online or local data storage systems by their owner (e.g., distribution grid owner, utilities, etc.).
After decompression, the recombination of the basic signal and the decompressed spikes is realised
(only for the voltage). A validation of the output signal and an automatic performance check, including
a comparison between the different compression approaches, ensues. As a result, the generated grid
impedance can be compared to the input dataset (and the determined grid impedance) to determine
the differences and whether or not the procedure has to be repeated. A flowchart and overview of
these steps are shown in Figure 7.

Simulation 
results

New mea-
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Figure 7. Flowchart of the novel paper approach.
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4.2. Key Metrics

Between different compression algorithms, the compared key factors are the processing duration
and the errors in combination with compression ratios to achieve an accurate reconstruction result.
To ensure a valid comparison of the different types of compression algorithms, different key metrics
are used. The compression ratio CR is defined in (8).

CR =
size of the input dataset (measured, uncompressed)

size of the output dataset (compressed)
(8)

Following this definition, values greater than 1 indicate compression and values less than 1 imply
expansion. The loss of information will be measured by comparing the reconstructed data matrix XR

(with their rows and columns nrow · ncol) with the original data matrix X. The so-called MAE—mean
absolute error is defined in (9).

MAE =
1

nrow · ncol

nrow

∑
i=1

ncol

∑
j=1

|X(i, j)− XR(i, j)| (9)

5. Results

To generate comparable results, all compression approaches are set on a CR round about 4:1.
This CR is like a trade-off between the advantages of compression and sufficiently high data fidelity,
but randomly chosen for this test case. Although higher CRs are technically possible, this is not the
objective of this paper. A comparison of all results for the compression of UNoise and IDS is displayed
in Table 1.

Table 1. Compression factor, MAE and processing time of different compression approaches for Unoise

and IDS.

Type CR (U) MAE (U) t (U) CR (I) MAE (I) t (I)

SVD 4.1:1 0.36 120 s 4.2:1 0.001 113 s
WT 4.0:1 0.39 8 s 4.0:1 0.002 31 s
TFA 4.2:1 0.29 101 s 4.7:1 0.17 261 s

The proposed approaches have been implemented using MATLAB and performed on a PC
Intel core i5-3210M processor, 2.50 GHz, with 4 GB of RAM. To illustrate the difference between the
approaches, Figures 8 and 9 show the resulting decompression graphs for UNoise and IDS. In particular,
the TFA algorithm does not possess good compression properties, especially when looking at Figure 9.
The original curve is simply linearized because of a sluggish (high) threshold (±mσ), even if the
resulting MAE is as good as in the other compression methods.

Only the WT and SVD algorithms yield accurate values for the impedance after the recombination
of Ubase and the decompressed Unoise(DC) including the decompressed current IDS(DC). WT shows a
particularly good fit of its decompressed impedance values Z to the original values Z1 (Figure 10).
Based on (10), Figure 10 shows the absolute impedance |Z| (a), the impedance angle ∠(Z) = ϕZ (b),
and the absolute deviation Δ |Z1 − Z| (c) over the frequency f .

Z = |Z| ϕZ (10)
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Figure 8. Comparison of UDS and the resulting compression outputs ∑(Ubase , Unoise(DC)) of the different
lossy approaches.

Figure 9. Comparison of IDS and the resulting compression output of the different lossy approaches IDS(DC).

Only for frequencies ≥ 25 kHz do the discrepancies in the WT results increase slightly (≥1%),
see Figure 10 (bottom). In comparison see Figure 11, the results obtained by the SVD algorithm deviate
from the original dataset by almost 2% for f ≥ 25 kHz. Depending on IDS, the TFA algorithm produces
a large deviation of the MAE that leads to the significantly worse results.

Additionally, both the SVD and the TFA algorithms show high processing times t(I), t(U)

(Table 1). An evaluation of the best fitting technique based on the processing time is only possible to a
limited extent. Compression using SVD and WT should be investigated for each data set separately.
Conclusively, the TFA algorithm is deemed inadequate to handle the task discussed in this paper or
similar tasks.
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Figure 10. Impedance measurement results of the original (ori = original dataset and their impedance Z1)
and decompression results using WT (WT = WT decompressed dataset and their impedance Z).
The absolute impedance |Z| (a), the impedance angle ∠(Z) = ϕZ (b), and the absolute deviation Δ |Z1 − Z|
(c) over the frequency f are shown.

Figure 11. Impedance measurement results of the SVD, for explanation see Figure 10.

6. Conclusions

A more detailed understanding of the effects of different voltage and current profiles on the grid
impedance requires large amounts of data, especially in the future.

Thus, a very important question is whether or not it is possible to compress data sets from
impedance measurements of energy systems by using lossy compression algorithms while maintaining
data fidelity. In this paper, the authors show that especially the WT (Wavelet transform) show promising
results by reducing the size of the dataset in an efficient way without losing relevant information.
The SVD (Singular Value Decomposition) generates almost comparable results, but need much
more processing time, referring to the used programming language and computational environment.
The presented approach allows of easy and effective data compression with only limited computational
resources and, as a result, an increase in the number of measurements that can be stored. It is also
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conceivable that the presented approach can be applied for efficient online or on-site external server
data backup.

While high compression levels are useful in order to reduce the data amount for e.g., utilities,
the needed level of data fidelity in the output dataset depends on the targeted application. That is why
it is not the objective of this paper to create the best technique and perform on a given dataset. Lossy
compression works better when the nature of the compressed data is taken into account (e.g., such as
human ear characteristics in MP3). To be able to determine the limits of usability of lossy compression
methods, further analyses need to be done. It must be analysed which lossy method generates the best
possible outcome i.e., the maximum level of accuracy with the highest suitable compression ratio.

A comparison with lossless compression methods is also interesting. And the authors want to
assess if the proposed method is suitable for on-line impedance measurement [4,5].
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Abstract: Short-circuit faults in a receiving-end power system can lead to blocking events of the
feed-in high-voltage direct-current (HVDC) systems, which may further result in system instability.
However, security assessment methods based on the transient stability (TS) simulation can hardly
catch the fault propagation phenomena between AC and DC subsystems. Moreover, effective
emergency control strategies are needed to prevent such undesired cascading events. This paper
focuses on power systems with multi-infeed HVDCs. An on-line security assessment method based
on the electromagnetic transient (EMT)-TS hybrid simulation is proposed. DC and AC subsystems
are modeled in EMTDC/PSCAD and PSS/E, respectively. In this way, interactions between AC and
DC subsystems can be well reflected. Meanwhile, high computational efficiency is maintained for
the on-line application. In addition, an emergency control strategy is developed, which coordinates
multiple control resources, including HVDCs, pumped storages, and interruptible loads, to maintain
the security and stability of the receiving-end system. The effectiveness of the proposed methods
is verified by numerical simulations on two actual power systems in China. The simulation results
indicate that the EMT-TS hybrid simulation can accurately reflect the fault propagation phenomena
between AC and DC subsystems, and the coordinated emergency control strategy can work effectively
to maintain the security and stability of systems.

Keywords: receiving-end system; multi-infeed HVDCs; security assessment; emergency control
strategy; electromagnetic transient (EMT)-transient stability (TS) hybrid simulation

1. Introduction

With the growing penetration of line-commutated converter-based high-voltage direct-current
(LCC-HVDC) lines, power systems with multi-infeed HVDCs, where several HVDC lines feed into
nearby AC systems, are becoming more common [1,2]. Due to the complicated interactions among
HVDCs and AC systems, such systems are facing challenges in secure and stable operation, especially
when the short-circuit capacity of the receiving-end AC system is low relative to the rated power of
the HVDCs [3–5]. An AC system fault that occurs at the receiving-end system can cause not only
commutation failure of the directly-connected HVDC but also concurrent commutation failures or
even blockings of adjacent HVDCs, giving rise to risks of instability and large-scale blackouts [6–8].
Therefore, it is critical to conduct on-line pre-decisions before such credible contingencies occur so that
effective emergency controls can be implemented in time to prevent such cascading failures.

There are two steps involved in the on-line pre-decision-making [9–11]. One is the security
assessment, which estimates the system security and stability under anticipated contingencies at the
current operation point. The other is emergency control strategy decision-making, which generates
emergency control strategies based on the security assessment result. Therefore, a control strategy
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table composed of emergency control strategies and corresponding contingencies will be generated in
the pre-decision-making. Once a contingency occurs, emergency controls can be implemented in time
by searching the control strategy table. In the on-line pre-decision-making, the control strategy table is
updated within a fixed period to adapt to the changing operating conditions.

Up to now, many security assessment methods have been proposed for AC/DC systems.
The time-domain simulation method is widely used for its good model extensibility and can be
classified into two categories: One is based on mature transient stability (TS) simulators with the
built-in models and solvers, like Power System Simulator/Engineering (PSS/E) [12], Bonneville Power
Administration (BPA) [13], and Transient Security Assessment Tool (TSAT) [14], and the other is based
on customized models and solving algorithms, like the voltage source equivalent-based method [15],
multi-decomposition method [16], and optimal subinterval selection method [17]. However, in these
methods, HVDC converters are expressed by steady-state models, and the fault propagation phenomena
between AC and DC subsystems, such as commutation failures and blocking events caused by AC
system faults, may not be reflected accurately. Similarly, in transient energy-based methods [18,19]
and their derived methods, which combine them with time-domain simulation methods [20,21],
the transient energy function cannot incorporate HVDC converter-involved dynamics, and there
is a probability that the commutation failures or blocking event-related issues cannot be identified.
However, considering the credible impact of interactions between AC and DC subsystems on the
secure and stable operation, accurately detecting the fault propagation phenomena is crucial in the
above methods [22,23]. Recently, data-driven artificial intelligence (AI) methods have been proposed
as fast tools, e.g., the generative adversarial network (GAN) [24], convolutional neural network
(CNN) [25], and deep belief network (DBN) [26]. Most of these methods are at their early stages and
their practicality needs to be improved [26]. Therefore, improving the accuracy of the time-domain
simulation method or transient energy-based methods is necessary. In fact, to describe the detailed
dynamics of HVDCs accurately, electromagnetic transient (EMT) simulation is a suitable tool, but it
cannot be used directly in the on-line security assessment due to its low computational efficiency [27].
Therefore, a method that can take advantage of the modeling accuracy of EMT and the computational
efficiency of existing security assessment methods should be explored. EMT-TS hybrid simulation,
in which the HVDC-related subsystems are modeled in EMT and the rest in TS, provides an idea for
solving the problem.

In emergency control, load shedding (LS) is a common measure and its optimization method is
continuously improved to achieve cost-effective control for issues like frequency instability [28] and
voltage collapse [29]. Subsequently, considering that large disturbances can affect the power angle,
voltage, and frequency simultaneously, the authors of [30] constructed an LS optimization model
considering multiple security constraints, including transient voltage deviation security, transient
frequency deviation security, and transient angle stability, which can remedy the limitation of single
security constraint-based methods. In addition to LS, other control resources, such as HVDCs [31,32]
and pumped storages [33], can also be used for emergency control. However, their control amount is
usually determined separately [31–33]. The authors of [34,35] comprehensively coordinate HVDCs,
pumped storages, and interruptible loads in the emergency control strategy to handle frequency
stability issues in the East China power grid. Nevertheless, similar to [28], only frequency instability
is considered in the proposed scheme. The authors of [36] developed a multi-resource coordinated
control strategy for an actual power grid to cope with the impact the DC blockings have on weak AC
channels, but it was obtained based on the characteristics of the grid without mathematical analysis,
which may be not suitable for other grids.

According to the above analysis, for power systems with multi-infeed HVDCs: (1) A security
assessment method that can well reflect the fault propagation phenomena between AC and DC
subsystems, and generate reliable results within an acceptable time should be studied; and (2) the
emergency control strategy that can comprehensively coordinate multiple control resources while
satisfying multiple critical security constraints is needed.
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In this paper, an on-line pre-decision-making scheme, including security assessment and emergency
control strategy decision-making, is proposed for power systems with multi-infeed HVDCs. The contributions
are as follows:

(1) A security assessment method based on EMT-TS hybrid simulation is achieved. DC and AC
subsystems are modeled in EMTDC/PSCAD and PSS/E, respectively. The security assessment
method can accurately identify the security and stability issues related to interactions between
AC and DC subsystems while maintaining the high computational efficiency;

(2) An emergency control strategy decision-making method that can coordinate HVDCs, pumped
storages, and interruptible loads is developed subject to multiple security constraints. The decision-
making method can minimize the control costs while maintaining the security and stability of the
receiving-end system.

This paper is structured as follows: Section 2 introduces the procedure of the on-line pre-decision-
making scheme. Section 3 describes the implementation of the security assessment based on EMT-TS
hybrid simulation. Section 4 presents the optimization model and solution method of the emergency
control decision-making problem. Two actual provincial systems in China are used to verify the
proposed method in Section 5. Section 6 concludes the paper.

2. Procedure of the On-Line Pre-Decision-Making Scheme

In the on-line decision-making scheme, the control strategy table is updated at fixed intervals.
During each interval, the operating condition of the system is assumed as being unchanged [11], and the
anticipated contingencies include merely the fault and protection action information. According to the
severity and probability, the contingencies can be divided into three levels [37]: (1) Single component
fault; (2) single severe fault; and (3) multiple severe faults. Especially, in the third level, operation
failure of the protection and reclosing failure caused by a permanent fault may induce HVDC blocking
events and result in instability of the receiving-end system [38], which should be paid more attention to.

When updating the control strategy table, security assessment is conducted for the anticipated
contingency set based on the current operating condition, and the emergency control strategy will be
developed if system security and stability issues arise. Therefore, the procedure can be divided into
three stages, as shown in Figure 1.

(1) Off-line preparation. Construct the EMT-TS hybrid model based on the information of the network
topology, electrical parameters, control parameters, etc. Then, generate an off-line control strategy
table under the anticipated contingency set and pre-determined typical operating conditions
(different from the on-line control strategy table, various typical operating conditions need to be
considered in the off-line control strategy table [39]), which will provide the initial solution of the
decision-making model for the emergency control strategy;

(2) On-line security assessment based on EMT-TS hybrid simulation. Update the real-time operating
state data, including the operation mode of the system and the power flow of the main transmission
section; choose one contingency from the anticipated contingency set and run the hybrid simulation.
Then, identify possible security and stability issues according to the security indices. Finally,
generate the assessment result for contingencies that cause security and stability issues, including
the current operating condition, contingency, and power shortage in the receiving-end system; and

(3) Emergency control strategy decision-making. Initialize the decision-making model with the
operating condition and the control strategy. The operating condition is obtained from the
assessment result. The control strategy, which is used as the initial solution, is determined based
on the power shortage and the control strategy obtained through an approximate search of
the off-line control strategy table. Then, solve the decision-making model based on the beetle
antennae search (BAS) algorithm [40], a meta-heuristic algorithm developed by the inspiration of
the beetle forging principle, until the termination criteria are met.
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Figure 1. Procedure of the on-line pre-decision-making scheme.

3. Security Assessment Based on EMT-TS Hybrid Simulation

Security assessment refers to the analysis required to determine whether a power system
can meet specified security criteria in both transient and steady-state time frames under credible
contingencies [41]. Therefore, assessment methods and security indices are two of the parts involved
in the security assessment. Considering that commutation failures and blocking events caused by AC
system faults are typical fault propagation phenomena between AC and DC subsystems, the analysis
of commutation failures and blocking events simulation is firstly analyzed in the following subsections.
Then, the principle of EMT-TS hybrid simulation modeling and the security assessment index system
are introduced.

3.1. Analysis of Commutation Failures and Blocking Events Simulation

The essence of the commutation failure is that the thyristor cannot establish a forward voltage
blocking capability due to the insufficient negative voltage time, which can be represented by the
extinction angle [42]. Therefore, a commutation failure can be considered to occur when the extinction
angle is less than the inherent limit of the thyristor. As stated in [38], a commutation failure, which occurs
again after an interval of 200 ms, is called a continuous commutation failure in engineering and may
cause an HVDC blocking event. Therefore, in the study, a continuous commutation failure with an
interval of 200 ms is taken as the condition of HVDC blocking.

However, in the simulation analysis, different criteria are developed to determine the occurrence
of commutation failures and blocking events due to different modeling methods of HVDC converters.
Table 1 compares the typical criteria of commutation failures and blocking events in the pure TS
simulation and EMT-TS hybrid simulation. In the pure TS simulation, the models of the HVDC
converter, such as the CDC4 model in PSS/E, are represented by steady-state equations. That is,
the HVDC converter is modeled without thyristor valves, so commutation failures and blocking events
can only be identified according to the AC voltages at commutation buses [43]. The AC voltage criteria
are usually obtained under the assumption of an infinite AC system and the effect of voltage waveform
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distortion on commutation failures is ignored, so the accuracy is poor [42]. In the EMT-TS hybrid
simulation, HVDC converters are modeled by thyristor valves, which are consistent with the actual
condition, so commutation failures and blocking events can be identified accurately through detection
of the extinction angle and the interval between two commutation failures.

Table 1. Typical criteria of commutation failures and blocking events in two simulation methods.

Simulation Methods Commutation Failures Blocking Events

Pure TS simulation AC voltage at the inverter side
(e.g., 0.785 p.u.)

AC voltage at the
rectifier side (e.g., 0.6 p.u.)

EMT-TS simulation Extinction angle (7.2◦ [44]) Interval between two
commutation failures (200 ms [38])

Therefore, the EMT-TS hybrid simulation can achieve more accurate results in the commutation
failures and blocking events simulation. It is more suitable for the security assessment of receiving-end
systems to identify HVDC-related security and stability issues, which is validated in Section 5.

3.2. Principle of EMT-TS Hybrid Simulation Modeling

To build the hybrid simulation platform, two mature business software, PSS/E [45] and EMTDC/
PSCAD [46], are integrated based on the interface software E-Tran Plus [47]. To construct the hybrid
simulation model, several issues should be addressed:

(1) Interface location. As shown in Figure 2, the power system will be divided into two parts:
The internal network and the external network. The internal network is comprised of HVDCs
and the nearby AC buses, and it is modeled in the EMT simulator EMTDC/PSCAD. The rest of
the system is the external network and is represented in the TS simulator PSS/E. To guarantee the
accuracy and efficiency of the hybrid simulation, a proper interface location should be identified.

(2) Equivalent models of the external and internal networks. For the model in EMTDC/PSCAD,
in addition to the detailed model of the internal network, an equivalent model of the external
network needs to be constructed to ensure the integrity of the system. Similarly, an equivalent
model of the internal network in PSS/E is also indispensable.

(3) Interaction protocol and data. During the hybrid simulation, the two simulators will exchange
data through a certain interaction protocol to update the states of the equivalent models in time.

Figure 2. Topology of the power system.

3.2.1. Identify the Interface Location

When HVDC was first simulated in an EMT-TS hybrid simulation, the interface was located at
the terminal buses of converters [48,49]. Subsequently, considering that TS simulation based on the
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fundamental frequency positive-sequence phasor model cannot effectively represent the waveform
distortion or phase imbalance at converter terminals, an extension of the internal network into the
AC system was suggested [50]. However, the specific methods for identifying the interface location
were not mentioned. In PSS/E, phase imbalance caused by asymmetrical faults can be described
by appending negative-sequence and zero-sequence parameters to the positive-sequence system,
so the interface location mainly depends on the description of harmonic distortion, which is related to
the frequency [51].

Based on the above analysis, a frequency-domain characteristics analysis method is used here to
identify the location of the interface. The range of the internal network is expanded continuously and
the impedance-frequency characteristics at the buses of interest are analyzed in the hybrid simulation,
until the differences among the impedance-frequency characteristics under different locations reduce
to a certain range. That is, expanding the scope of the internal network has almost no effect on the
impedance-frequency characteristics anymore. Then, the interface location is finally identified based
on the smaller internal network of the last two-scope internal networks.

In the security assessment of power systems with multi-infeed HVDCs, HVDC dynamics are
essential and should be described accurately. Therefore, the commutation buses at the rectifier side
and inverter side can be taken as the buses of interest.

3.2.2. Equivalent Models of the External and Internal Networks

In the study, the construction of equivalent models is implemented in E-Tran Plus. In order to
consider the asymmetrical faults, a multi-port three-phase equivalent circuit with voltage sources,
PI sections and transformers, is constructed in EMTDC/PSCAD to represent the external network.
PI sections represent the impedance between buses of the same voltage level, whereas transformers
represent the impedance between buses of different voltage levels. As for the equivalent model of the
internal network, the generator model is used in PSS/E. When performing the power flow calculation
to get the updated data, which will be transferred to EMTDC/PSCAD, the generator model will act as a
current injection and a change in the system admittance matrix in PSS/E. The equivalent models of
both networks can be found in the implementation of the hybrid simulation shown in Figure 3.
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Figure 3. Implementation of the hybrid simulation.
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3.2.3. Interaction Protocol and Data

A parallel interaction protocol is adopted to exchange the updated data, indicating both simulators
run simultaneously during the simulation process. Before the simulation, initialization will be executed,
in which the equivalent voltage sources in EMTDC/PSCAD and the equivalent generators (or current
sources and admittance matrix) in PSS/E are initialized based on the power flow results of the pure
TS simulation in PSS/E. During the simulation, the voltage magnitude, phase angle, and frequency
information from PSS/E will be sent to EMTDC/PSCAD to update the equivalent voltage sources. At the
same time, a discrete Fourier transform (DFT) will be used to extract PQ values from EMTDC/PSCAD
to update the equivalent generators. All the data are exchanged at the time step of the TS simulation.

3.3. Security Assessment Index System

During the security assessment, the EMT-TS hybrid simulation model is updated with the
real-time operating data obtained by the intelligent measurement system and run under the pre-defined
contingency. Then, the results are evaluated based on a security assessment index system to identify
the security and stability issues. Once any security index in the simulation results exceeds the preset
range, the current operating condition, contingency, and power shortage in the receiving-end system
will be sent to the decision-making model to obtain the optimal emergency control strategies.

The security assessment index system is composed of static security indices and dynamic security
indices. The steady-state frequency deviation, voltage deviation, and power flow of the lines belong to
static indices while the maximum/minimum value of the transient voltage and frequency, as well as
the maximum transient relative power angle, belong to dynamic indices. Referring to [52], the preset
ranges of the security assessment index system are shown in Table 2. In static indices, the threshold
values of the steady-state frequency deviation Δf and steady-state voltage deviation ΔV are 0.05 Hz
and 0.1 p.u., respectively; and the power flow of lines should be less than the transmission power limit
pmax, which is 1 p.u. in the study. As for dynamic indices, the security threshold of equipment, as well
as coordination among different controls, needs to be considered. To ensure the safety of power system
equipment, the maximum value of the transient voltage should be less than 1.3 p.u.; to avoid triggering
low-voltage LS, high-frequency generator tripping, and low-frequency LS, the minimum value of the
transient voltage should be higher than 0.85 p.u. and the threshold values of the maximum/minimum
transient frequency are 51.5 and 49.25 Hz, respectively. At the same time, the power angle difference
Δδ of any two units should be less than 360◦ to avoid the out-of-step of the first and second pendulums.

Table 2. Preset ranges of the security assessment index system.

Static Security Indices Preset Range Dynamic Security Indices Preset Range

steady-state
frequency deviation (Hz) |Δf | < 0.05 maximum/minimum

transient frequency (Hz) 49.5 < f < 50.5

steady-state
voltage deviation (p.u.) |ΔV| < 0.1 maximum/minimum

transient voltage (p.u.) 0.85 < V < 1.1

steady-state
power flow of lines (p.u.) p < pmax

maximum transient relative
power angle (◦) Δδ < 360◦

4. Emergency Control Strategy Decision-Making Based on BAS

When a security or stability issue is identified by security assessment, the emergency control
strategy will be generated by solving the decision-making model with BAS. In the following subsections,
the mathematical decision-making model and the decision-making procedure of the emergency control
strategy are described.

4.1. Mathematical Decision-Making Model

The emergency control strategy decision-making problem can be formulated as a constrained
optimization problem. The objective includes minimizing control costs and deviations of the frequency
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and voltage, and adjustment amount constraints, steady-state constraints, and transient-state constraints
are considered.

4.1.1. Objective Function

The primary objective is minimizing the total control costs of multiple resources, and the secondary
objective is minimizing the total weighted deviations of the frequency and voltage. The two objectives
are normalized and combined through a weighted coefficient to formulate the objective function f,
as shown in the following equations:

min f = f1 +ω0 f2, (1)

min f1 = (

ND∑
i=1

ΔpDC
i +

NS∑
j=1

Δppump
j · xj +

NL∑
k=1

Δpload
k )/Sbase, (2)

min f2 = ε f

∑
g

Δ fg(p)

σg f base
+εv

∑
m

ΔVm(p)
Vbase

KV, (3)

Δ fg(p) = Δ f s(p) + Δ f d
g (p), (4)

ΔVm(p) = ΔVs
m(p) + ΔVd

m(p), (5)

where f1 is the primary objective; f2 is the secondary objective; ω0 is the weighted coefficient; ND,
NS, and NL are the numbers of HVDCs, pumped storages, and interruptible loads in emergency
resources; ΔpDC

i is the power adjustment of HVDC i; Δppump
j is the consumed power of the tripped

pumped storage j; xj is a 0–1 variable, 1 represents tripping the pumped storage j while 0 represents
keeping the original state; Δpload

k is the power adjustment of load k; Sbase is the base value of the power
system capacity; ε f and εv are the weighted coefficients of the frequency and voltage; Δ fg and σg

are the frequency deviation and coefficient of the primary frequency adjustment at the generator g,
respectively; f base is the reference frequency; ΔVm is the voltage deviation of bus m; KV is the voltage
regulation factor; Vbase is the reference voltage; Δ f s is the steady-state frequency deviation of the
system; Δ f d

g is the transient-state frequency deviation of bus g; and ΔVs
m and ΔVd

m are the steady-state
and transient-state voltage deviations of bus m.

Equation (1) is the objective function, in which the weighted coefficient ω0 is defined by users.
Equation (2) is the primary objective, with ΔpDC

i , xj, and Δpload
k as decision variables. Equation (3)

describes the secondary objective. Considering that the power imbalance of the receiving-end
system due to the HVDC blocking event will seriously affect the system frequency, assume ε f > εv.
Equations (4) and (5) represents the frequency deviation and voltage deviation, respectively.

It should be noted that the priority of three kinds of control resources is different, which is reflected
by the control action time in the control strategy. Taking the control speed and control cost into account,
the action sequence adopted here is HVDCs, pumped storages, and interruptible loads. Considering
the communication delay and control device response time, the control action time of HVDCs is
100 ms after the security or stability issue occurs, and the pumped storages and interruptible loads are
followed, which are 300 and 500 ms, respectively [53]. Therefore, the control action time for control
resources is fixed and not taken as the decision variable in the decision-making.

4.1.2. Adjustment Amount Constraints

The adjustment amount of each equipment should not exceed its maximum power capacity, such as
the maximum active power of HVDC can be increased up to being 1.1 times the rated capacity [54].
Therefore, the emergency control strategies should meet the following constraints:

pDC,min
i − pDC

i ≤ ΔpDC
i ≤ pDC,max

i − pDC
i (i = 1, · · ·, ND), (6)
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pload,min
k − pload

k ≤ Δpload
k ≤ pload,max

k − pload
k (k = 1, · · ·, NL), (7)

where pDC
i is the transmission power of HVDC i; pDC,max

i and pDC,min
i are the transmission power limits

of HVDC i; pload
k is the power of load k; and pload,max

k and pload,min
k are the LS amount limits of load k.

Equation (6) is the power adjustment amount limits of HVDC and Equation (7) is the LS limits.

4.1.3. Steady-State Constraints

Based on the indices discussed in Section 3.3, the steady-state constraints are as follows:

Δ f s,min < Δ f s(p) < Δ f s,max , (8)

ΔVs,min
m < ΔVs

m(p) < ΔVs,max
m (m = 1, · · ·, NB), (9)

Ss
q(p) < Ss,max

q (q = 1, · · ·, NT), (10)

where Δ f s,max and Δ f s,min are the steady-state frequency deviation limits of the system; NB is the total
number of the buses; ΔVs,max

m and ΔVs,min
m are the upper and lower limits of the steady-state voltage

deviation at bus m; NT is the total number of lines; Ss
q is the transmission power of line q; and Ss,max

q is
the transmission power limit of line q.

Equations (8) and (9) are the steady-state deviation limits of the frequency and voltage. Equation (10)
is the transmission power limit of lines.

4.1.4. Transient-State Constraints

The transient variables, such as the transient frequency deviation, transient voltage deviation,
and relative power angle, of the generators should meet:

Δ f d,min
g < Δ f d

g (p) < Δ f d,max
g (g = 1, · · ·, NG), (11)

ΔVd,min
m < ΔVd

m(p) < ΔVd,max
m (m = 1, · · ·, NB), (12)

Δδs,r(p) < Δδmax (s, r = 1, · · ·, NG), (13)

where NG is the total number of the generators; Δ f d,max
g and Δ f d,min

g are the upper and lower limits of

the transient frequency deviation at generator g; ΔVd,max
m and ΔVd,min

m are the upper and lower limits of
the transient voltage deviation at bus m; Δδs,r is the power angle difference between generators s and r;
and Δδmax is the maximum power angle difference between any two units during the transient process.

Equations (11) and (12) are the transient deviation limits of the frequency and voltage. Equation (13)
is the transient limit of the power angle difference.

4.2. Decision-Making Procedure of the Emergency Control Strategy

As described in Section 4.1.1, the priority and the control action time of the emergency resources
are different. In the decision-making process, the resources are optimized in order of priority, which is
HVDCs, pumped storages, and interruptible loads. Only when the adjustable amount of the resource
with high priority is insufficient to maintain the security and stability will the resource with low priority
be adjusted. Therefore, the types of control resources that need to be adjusted should be determined
firstly according to the power shortage and the control strategy obtained from the off-line table. Then,
those with high priority are adjusted to the maximum adjustment amount, and those with low priority
are optimized by solving the decision-making model.

As for the solution method, there are two kinds that can be used to solve the non-linear
decision-making problems: One is to transform the non-linear function to a linear function, such as
the trajectory sensitivity-based method in [30], and the other is to handle the problems with AI
algorithms. In the study, the latter one is adopted, in which the BAS algorithm [40] and TS simulation
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are combined to obtain the optimal control strategy. Considering that the BAS algorithm may take
several iterations during the decision-making process and the influence of the control strategies brought
by the steady-state model in TS simulation is relatively small, TS simulation is used to improve the
overall efficiency. At the same time, it should be noted that the decision variable corresponding to
the pumped storages is an integer variable. In the optimization, it is treated as a continuous variable,
and finally rounded to the nearest integer to obtain the decision-making result.

The specific decision-making procedure is as follows and the flowchart is shown in Figure 4.

Figure 4. Flowchart of the decision-making procedure.

Step 1: Initialization of the decision-making model.
Determine the types of control resources that need to be adjusted through comparing the adjustable

amount of the resources and the power shortage. Obtain the control strategy corresponding to the
pre-determined contingency and the current operating condition through an approximate search of the
off-line control strategy table. If the control resource types in the control strategy are the same as those
determined based on the power shortage, then the control strategy is used as the initial population
x; otherwise, if the control resource types in the control strategy differ from those determined based
on the power shortage, the control resource types are consistent with those determined based on
the power shortage, and the resource with the lowest priority in the control resource types will be
optimized, with the initial adjustment amount as 0. Then, initialize the decision-making model with
the current operating state data, initial population x, and other solution parameters. The solution
parameters include the variable step-size parameter E, the step-size sp, the distance between left and
right populations d0, and the number of iterations n.

Step 2: Fitness value calculation of the current population.
Update the TS simulation model with the current control strategy, i.e., the current population x.

Then, extract the deviations of the frequency and voltage described in Section 3.3 through traversing
the simulation results. Finally, calculate the fitness value of the current population based on the fitness
value function shown in Equations (1)–(5).

Step 3: Update of the population.
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Assume that the beetle forages randomly in any direction, then the direction vector from its right
antenna to the left antenna should also be random. Therefore, the optimization problems in kdim

dimensional space can be represented and normalized by a random vector:

D =
rands(kdim, 1)∣∣∣rands(kdim, 1)

∣∣∣ , (14)

where kdim is the spatial dimension and rands() is a random function.
To imitate the activities of the beetle’s left and right antennae, populations xl and xr are defined to

represent a population in the left-side and right-side searching areas, respectively:

xl − xr = d0 ·D, (15)

xl = x + d0 ·D/2, (16)

xr = x− d0 ·D/2. (17)

Then, the fitness values of populations xl and xr are calculated based on TS simulation results and
Equations (1)–(5), and expressed as f left and f right, respectively.

Finally, the position where the beetle will go next, i.e., the next population, can be determined by
comparing the fitness values f left and f right based on Equation (18):

x =

{
x + E · sp ·D ( f left < f right)

x− E · sp ·D ( f left > f right)
. (18)

The variable step-size parameter E is between 0 and 1, and 0.95 is an acceptable value here.
Step 4: Termination criteria
If the difference between the fitness values of two adjacent populations is less than the threshold

value ε or the number of iterations n has reached the maximum value, as shown in Equation (19),
then the decision-making is terminated and the new population is considered as the optimal emergency
control strategy; otherwise, take the previous population as the input and perform step 2 and step 3
again until Equation (19) is met:

fn − fn−1 ≤ ε or n ≥ nmax, (19)

where fn and fn−1 are the fitness values of the nth iteration and (n− 1)th iteration, respectively; and nmax

is the maximum number of iterations.

5. Case Studies

In this section, two actual power systems in China are used as the test systems to verify the
proposed scheme.

5.1. Test System 1

The topology of test system 1 is shown in Figure 5. There are 64 equivalent loads, 39 equivalent
generators, 101,000 kV buses, 80,500 kV buses, and 3 HVDC lines: ±660 HVDC 1, ±800 HVDC 2,
and ±800 HVDC 3. The total capacity of equivalent loads is 59.6 GW, and the transmission power of
the HVDC lines are 4, 8, and 8 GW, respectively. That is, the capacity proportion of HVDCs is 33.56%
of the equivalent loads.
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Figure 5. Topology of test system 1.

5.1.1. Construction of the Hybrid Simulation

As discussed in Section 3.2.1, the accuracy of the hybrid simulation is related to the interface
buses, so the frequency-domain characteristics analysis is conducted to determine the interface buses.

For the convenience of description, the number of branches in the shortest path between two
buses is defined as the electrical distance. For example, the electrical distance between bus 38 and
bus 66 is 3. Since the commutation buses are modeled as the internal nodes of the HVDC model in
PSS/E, the buses with an electrical distance of 2, 3, 4, and 5 from the commutation buses are taken
as the interfaces to construct the hybrid simulation models, respectively. According to Section 3.2.1,
the impedance-frequency characteristics at the commutation buses of HVDCs are obtained based on
the frequency-domain characteristics analysis. Take HVDC 2 as an example, the positive-sequence
impedance-frequency characteristics of the rectifier-side bus 301 and inverter-side bus 55 are shown in
Figure 6.

(a) (b) 

Figure 6. (a) Impedance-frequency characteristic of the rectifier-side bus 301; (b) Impedance-frequency
characteristic of the inverter-side bus 55.

As can be seen in the figures, the differences of the impedance-frequency characteristics at bus
301 under different interface locations are negligible, which may result from the direct connection
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with generator 302. Additionally, the four waveforms at bus 55 match well when the frequency is
lower than 110 Hz and higher than 400 Hz. Although some differences exist under other frequencies,
the characteristics under 2 buses away and 3 buses away are very close. Buses with an electrical
distance of 2 from the commutation buses are taken as the interface location.

5.1.2. Implementation of Security Assessment and Emergency Control Strategy Decision-Making

As discussed in Section 2, operation failure of protection and reclosing failure caused by a
permanent fault are two issues of interest to researchers in recent years. Therefore, they are studied as
two scenarios in the study. To verify the accuracy of the proposed EMT-TS hybrid simulation, the PSS/
E simulator is adopted as the pure TS simulation tool for comparison.

In the EMT-TS simulation, the limit of the extinction angle for commutation failures determination
is 7.2◦. In PSS/E, the actual AC voltage criteria of commutation failures for HVDC 1, HVDC 2,
and HVDC 3 are 528, 628, and 628 kV while the criteria of blocking events are 0.6 p.u.

• Scenario 1: Operation Failure of Protection

a. Implementation of Security Assessment.

In this case, a three-phase short-circuit fault occurs at line from bus 29 to bus 46 at 1.1 s, and the
opening of the circuit breaker fails due to its malfunction. Therefore, the faulted line is finally isolated
by tripping circuit breakers of adjacent lines at 1.4 s, which is called failure protection.

Figure 7 shows the corresponding responses of typical interface buses and HVDC 2 in the hybrid
simulation and PSS/E. As can be seen from Figure 7a, the waveforms of interface buses match well
before the fault occurs. Although there is a slight deviation in the transient process before the fault
removal, a similar trend is obtained, which can verify the correctness of the hybrid simulation results.
Meanwhile, continuous commutation failures of HVDC 2 are observed in both PSS/E and hybrid
simulations during the fault. It should be noted that due to the different modeling methods of HVDC
converters, the extinction angle under commutation failures is different in PSS/E and the hybrid
simulation. In PSS/E, the extinction angle is set to 90◦ [45], while in the hybrid simulation, the extinction
angle is lower than 7.2◦ [46]. Therefore, it can be seen from the waveforms of the extinction angle in
Figure 7b, in both PSS/E and the hybrid simulation, the intervals between two commutation failures
(extinction angle is lower than 7.2◦ in the hybrid simulation while equals to 90◦ in PSS/E) are longer than
200 ms, which indicates the occurrence of continuous commutation failures. Nevertheless, HVDC 2
is blocked at 1.4 s in the hybrid simulation while not in PSS/E, which can be seen from the slow
restoration of the inverter-side active power in PSS/E. Therefore, it validates that the ETM-TS hybrid
simulation proposed in this paper can detect the blocking event while there is a limitation in using
pure TS simulation to detect blocking events.

Through traversing the simulation results of scenario 1, it can be found that the steady-state
frequency deviation |Δf | is 0.24956, which exceeds the threshold of 0.05, and the minimum transient
frequency is 49.169, which is lower than the threshold of 49.25 Hz. Therefore, the emergency control
strategy should be developed to maintain the security and stability of the receiving-end system.

b. Implementation of Emergency Control Strategy Decision-Making.

Since there is no pumped storage in the provincial power system, only HVDCs and interruptible
loads are taken as the control resources. By applying the decision-making method proposed in
Section 4.2, the emergency control strategy for the bipolar blocking event of HVDC 2 is to increase
the transmission power of the rest HVDC systems by 1.2 GW at 1.5 s and shear a load of 6.16 GW at
1.7 s. The static security indices and dynamic security indices before and after adopting the emergency
control strategy are shown in Figure 8. The steady-state and transient frequency indices will exceed
the preset range without control, while all static and dynamic indices are within preset ranges with the
control strategy obtained by the proposed method.
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(a) 

(b) 

Figure 7. (a) Voltage of typical interface buses; (b) Active power, dc voltage, and extinction angle at the
inverter side of HVDC 2.

(a) (b) (c) 

Figure 8. (a) Static indices; (b) Dynamic indices corresponding to the minimum transient frequency
and voltage; (c) Dynamic indices corresponding to the maximum transient frequency and voltage.

In order to further verify the control effect of the emergency control strategy, the trajectory
sensitivity-based LS scheme proposed in [55] is compared with the proposed scheme in the paper,
and the results are shown in Figure 9. The LS ranges of the sensitivity-based scheme are set as (0, 10%)
and (0, 14%), respectively. As can be seen from the results, the LS amount under the two ranges are
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concentrated at the upper or lower limit, and there is significant non-uniformity. The control costs
are 6.4763 and 6.4712 GW, respectively. In comparison, the LS amount obtained from the proposed
scheme has higher consistency among the entire network, and the local LS is not uniform. Furthermore,
the control cost of LS is reduced to 6.1646 GW.

Figure 9. Load shedding amount under different schemes.

• Scenario 2: Reclosing at a Permanent Fault

a. Implementation of Security Assessment.

In this scenario, a three-phase short-circuit fault occurs at the line between bus 65 and 66 at 1.1 s,
and the circuit breaker is opened at 1.2 s. In addition, the reclosing of the circuit breaker at 2.2 s fails
due to a permanent fault. Therefore, the circuit breaker is reopened at 2.3 s.

The results of typical interface buses, HVDC 2 and HVDC 3, are shown in Figure 10. It can be
seen in Figure 10a that the voltage waveforms of interface buses in hybrid simulation and PSS/E before
reclosing are close. However, the HVDC systems show different characteristics during the transient
process. As can be seen in Figure 10b,c, in the hybrid simulation, continuous commutation failures are
observed in HVDC 2 and HVDC 3 due to the unsuccessful reclosing of the breaker, so they are blocked
at 2.3 s; while in PSS/E, the active power of the HVDC systems restores slowly after the reopening of
the breaker. Obviously, reclosing to a permanent fault does not cause the second commutation failure
in PSS/E, which shows the limitation of adopting the AC voltage at the inverter side as the criterion for
detecting the commutation failure.

Different from Scenario 1, in addition to the steady-state frequency deviation and the minimum
transient frequency, the maximum transient frequency exceeds the threshold. Therefore, the emergency
control strategy should be developed.

b. Implementation of Emergency Control Strategy Decision-Making.

As discussed in the above, the permanent fault will cause bipolar blocking events of HVDC 2 and
HVDC 3, leading to a power loss of 16 GW. Through applying the decision-making method proposed
in Section 4.2, the emergency control strategy is to increase the transmission power of the rest HVDC
systems by 0.4 GW at 2.4 s and shear a load of 15.3 GW at 2.6 s. The static and dynamic indices
before and after adopting the emergency control strategy are shown in Figure 11. The steady-state and
transient frequency indices will exceed the preset ranges without control, while all static and dynamic
indices are within preset ranges with the control strategy obtained by the proposed method.
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(a) 

(b) 

(c) 

Figure 10. (a) Voltage of interface buses; (b) Active power, dc voltage and extinction angle at the
inverter side of HVDC 2; (c) Active power, dc voltage, and extinction angle at the inverter side of
HVDC 3.
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(a) (b) (c) 

Figure 11. (a) Static indices; (b) Dynamic indices corresponding to the minimum transient frequency
and voltage; (c) Dynamic indices corresponding to the maximum transient frequency and voltage.

5.2. Test System 2

Test system 2 is divided into three regional grids by 8 HVDC lines, as shown in Figure 12. There are
271 buses and 296 AC transmission lines. The total capacity of the generators and loads are 27,550 and
26,878 MW, respectively. For the HVDCs, the rated voltage is ±800 kV and the transmission power is
800 MW, respectively. The specific information of regions is shown in Table 3.

 

Figure 12. Topology of test system 2.

Table 3. Specific information of regions.

Regions
Capacity of

Generators (MW)
Capacity of
Loads (MW)

Sending HVDC
(MW)

Feeding HVDC
(MW)

Region A 8100 6363 3200 800
Region B 10,000 5653 4000 0
Region C 9450 14,862 0 5600

Due to the space limitations, only the results of the emergency control strategy are presented.
Assume that HVDC 3 is blocked at 1.4 s under the scenario of operation failure of protection.
The steady- state frequency and the transient frequency of region A and C exceed the threshold.
Therefore, the emergency control strategy is developed based on the decision-making method proposed
in Section 4.2.

The emergency control strategy for the bipolar blocking event of HVDC 3 is to increase the
transmission power of the rest HVDC systems between region A and C by 160 MW (HVDC 2 and
HVDC 6), HVDC systems between region B and C by 320 MW (HVDC 4, HVDC 5, HVDC 7, and HVDC
8), and decrease the transmission power of HVDC 1 by 320 MW at 1.5 s. Then, a generator of 600 MW
in region A is sheared at 1.6 s and a load of 500 MW in region C at 1.7 s. The static and dynamic security
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indices of the three regions before and after adopting the emergency control strategy are shown in
Figures 13–15, respectively. The steady-state and transient frequency indices of region A and C finally
meet the preset ranges with the control strategy obtained by the proposed method.

(a) (b) 

Figure 13. Static and dynamic security indices of region A. (a) Static indices; (b) Dynamic indices
corresponding to the maximum transient frequency and voltage.

(a) (b) 

Figure 14. Static and dynamic security indices of region B. (a) Static indices; (b) Dynamic indices
corresponding to the maximum transient frequency and voltage.

(a) (b) 

Figure 15. Static and dynamic security indices of region C. (a) Static indices; (b) Dynamic indices
corresponding to the minimum transient frequency and voltage.

6. Conclusions

This paper proposes an on-line pre-decision-making scheme, including security assessment
and an emergency control strategy decision-making, for power systems with multi-infeed HVDCs.
The security assessment method is based on the EMT-TS hybrid simulation, and can generate accurate
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assessment results while maintaining the high computational efficiency. The emergency control
strategy decision-making method can make full use of HVDCs, pumped storages, and interruptible
loads to maintain the security and stability of receiving-end systems. The case studies showed that
the proposed scheme is reliable. In addition, the results also indicate that it is essential to describe
interactions between AC and DC subsystems in security assessment to identify HVDC-related security
and stability issues.

In future work, the dynamic average-value modeling method can be used in HVDC modeling to
further improve the computational efficiency. In addition, more attention will be paid to the detailed
design of the emergency control strategy, such as the coordination of HVDC controllers and the
classification of interruptible loads.
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